
mdpi.com/journal/applsci

Special Issue Reprint

Disruptive Trends in 
Automation Technology 

Edited by 

Seppo Sierla, David Hästbacka and Kai Zenger



Disruptive Trends in Automation
Technology





Disruptive Trends in Automation
Technology

Editors

Seppo Sierla

David Hästbacka
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Abstract: The efficient testing and validation of the high-voltage (HV) insulation of small-outline
integrated circuit (SOIC) packages presents numerous challenges when trying to achieve faster and
more accurate processes. The complex behavior these packages when submerged in diverse physical
media with varying densities requires a detailed analysis to understand the factors influencing their
behavior. We propose a systematic and scalable mathematical model based on trapezoidal motion
patterns and a deterministic analysis of hydrodynamic forces to predict SOIC package misalignment
during automated high-voltage testing in a dielectric fluid. Our model incorporates factors known to
cause misalignment during the maneuvering of packages, such as surface tension forces, sloshing,
cavity formation, surface waves, and bubbles during the insertion, extraction, and displacement of
devices while optimizing test speed for minimum testing time. Our model was validated via a full-
factorial statistical experiment for different SOIC package sizes on a pick-and-place (PNP) machine
with preprogrammed software and a zero-insertion force socket immersed in different dielectric
fluids under controlled thermal conditions. Results indicate the model achieves 99.64% reliability
with a margin of error of less than 4.78%. Our research deepens the knowledge and understanding of
the physical and hydrodynamic factors that impact the automated testing processes of high-voltage
insulator SOIC packages of different sizes for different dielectric fluids. It enables improved testing
times and higher reliability than traditional trial-and-error methods for high-voltage SOIC packages,
leading to more efficient and accurate processes in the electronics industry.

Keywords: high-voltage testing; surface-mount devices (SMDs); dielectric fluid hydrodynamics;
SOIC package misalignment

1. Introduction

The automated testing and validation of high-voltage (HV) integrated circuits (ICs)
has enabled unprecedented growth and efficacy in the power electronics industry. Despite
the advances made in the last decade, there still exist multiple avenues that hold promise in
further improving the testing processes of HV reinforced insulating barrier IC packages [1].
The demand for efficient testing methods for electronic devices operating at voltages up to
20 kV has experienced significant growth in recent years, particularly in low-profile power
electronics devices [2,3]. The prevention of arcing in the narrow gaps of small-outline
integrated circuit (SOIC) packages during high-voltage tests is an essential requirement to
meet the International Electrotechnical Commission (IEC) VDE 0884-11 standard [4]. This
necessity has heightened the interest in efficient testing methods for the introduction of new-
generation insulating materials. Controlled HV testing of small components has required
submerging the device under test (DUT) in a dielectric fluid to prevent electric arcs [5].
However, optimizing the maneuverability of small components under such conditions is
a challenging task due to the myriad of factors that come into play when attempting to
predict their dynamic behavior [6].

Recent research in electronics manufacturing and testing has made significant strides,
particularly in dielectric fluids and IC manipulation studies. Azmi et al. studied the
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breakdown voltage of dielectric oils and underscored the superior performance of FR3 over
mineral and vegetable oils in high-voltage applications [7]. Haegele et al. complemented
this finding with research on the aging of natural vegetable oils, demonstrating that oils
like FR3 possess greater dielectric strength and better dissipation factors, albeit with
susceptibility to changes due to humidity, oxidation, and viscosity over time [8]. As
for integrated circuit testing, Kamath et al. delved into the resilience of insulators in FR3
fluid, a crucial step in preventing electrical arcing and IC damage [2].

Likewise, the employment of pick-and-place machines in the manipulation of elec-
tronic components has been the focus of numerous studies in technical literature, un-
derscoring the importance of precision, timelines, and speed engineering algorithm ma-
nipulation [9–14]. Parallel advancements in micromanipulation technologies have also
helped improve the field. Masood et al. worked on the development of thermodynamic
microgrippers, which have played a pivotal role in precise component placement within
fluids [15]. Their work sparked further interest in precision studies, such as those led by
Nally et al., who explored the integration of vision systems in pick-and-place systems for
parallel system assembly [16].

Together, these studies highlight the crucial need for ongoing innovation and re-
finement in high-voltage IC testing methods, underscoring the importance of material
properties, precision engineering, and advanced test methods for reliable and efficient
IC test and electronic systems development. The previously reviewed studies, however,
do not provide information on how to establish a speed at which a package can travel
in a dielectric fluid without exceeding the maximum allowed misalignment to guarantee
successful insertion into the test socket or for successful removal, preventing detachment
from the pneumatic holder.

Our research addresses the challenges posed by the automation of the manufacturing
and validation processes, especially in SOIC package handling capable of withstanding high
stresses. The proposed study aims to improve the efficiency and accuracy of high-stress
testing methods by addressing the complex hydrodynamic interactions that develop during
the movement of these packages in dielectric fluids and optimizing the testing process.

We addressed the problem of establishing the maximum speed at which a DUT can be
displaced to prevent exceeding the maximum misalignment allowed for SOIC packages
during automated insertion and removal from a zero-insertion force (ZIF) socket immersed
in a dielectric fluid. Our approach was to understand and quantify the factors affecting such
a misalignment, focusing on the interactions occurring during the DUT movement into,
inside, and out from the fluid. We characterized stress forces, splashes, cavity formation,
and surface waves that limit the speed and precision of their manipulation. We hypothesize
that it is possible to predict the resulting misalignment based on an analysis of the physical
properties of the dielectric fluid and its interaction with the SOIC packages.

This research used a methodology that involves the creation of an innovative mathe-
matical model for the automated testing of SOIC packages in dielectric fluids, integrating
mechanical and hydrodynamic aspects with standardized test procedures and thorough
reliability assessments. It includes a comprehensive evaluation of the insertion, extraction,
and displacement processes for SOIC packages in various dielectric fluids. The methodol-
ogy involves the construction of a specialized automated mechanical platform designed
for precision testing, incorporating thermal control of the dielectric fluids. It also involves
meticulous data collection and the application of comprehensive statistical methods, such
as analysis of variance and frequency distribution, through a full factorial experimental
design to confirm the validity of the model.

This research is an important step forward in high-voltage IC testing, particularly in
automated SOIC package handling in dielectric fluids. This study achieves an exceptional
reliability of 99.64% with a margin of error of less than 4.78%. This study is notable for
the implementation of a forward automated system that achieves vertical movements
at a speed of 0.2882 m/s and is characterized by its ability to consistently manipulate
packages quickly and accurately. In addition, this research contributes significantly to the
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standardization of calculations for optimum test speeds and highlights the limitations of
high-speed package handling.

The rest of this document is organized as follows: Section 2 establishes the theoretical
foundations for the model. Section 3 describes the development of the mathematical model
for hydrodynamic force analysis. The following section discusses the statistical model
validation and the results from the model application and assesses model consistency and
repeatability. The final sections compare misalignment speeds across various models and
summarize the essential conclusions and implications.

2. Mathematical Preliminaries

In this section, we present the mathematical concepts used for the scalable formulation
leading to the generation of the proposed mathematical model.

2.1. Effects of Dielectric Fluids

The physical properties of dielectric fluids, such as surface tension, mass density,
volume, temperature, and viscosity, can significantly impact the dynamics of packages
undergoing a submerged high-voltage testing process. This statement takes particular
significance for small-outline integrated circuit (SOIC) packages, as even small shifts have
the potential to cause misalignment before they reach their intended position. Dielectric
fluids undergo molecular property changes due to the pressure exerted by the surface
topology of a device under test (DUT). Although there is no static friction between a
solid and a liquid, even a small force can result in a transfer of momentum with slight
acceleration, causing the fluid’s velocity to increase linearly with depth [8].

2.1.1. Interfacial Tension

Molecular attraction at the solid–liquid interfaces, particularly between the DUT and
the dielectric fluid’s surface, causes interfacial tension (IFT). Surface tension influences
several factors, including the dielectric fluid’s characteristics, environmental conditions,
viscosity–temperature coefficient (VTC), and the DUT’s contact area.

Surface tension induces fluid movement, generating additional reflected forces acting
both normally and tangentially on the device’s surface. The excess reflected forces introduce
surface energy, which gradually causes the DUT to deviate from its initial position [17].

Two main factors, the drag coefficient (or resistance) and the drag force the device
exerts on the fluid, influence the flow around a SOIC package. The friction factor represents
the ratio between the fluid’s kinetic energy per unit volume of the SOIC and the drag force
exerted per unit area:

f · Ke =
Ff

A
, (1)

where Ff represents the force resulting from the fluid’s motion, A is the characteristic area
of the wet surface projected on a plane perpendicular to the fluid’s approach velocity, and
Ke denotes the characteristic kinetic energy per unit volume [18]. Ke is obtained as

Ke = 0.5 · ρ ·�v2, (2)

where �v represents the fluid’s approximate external velocity and ρ represents its density.

2.1.2. Dynamics of the Conservation of Mass and Momentum

The mass, density, and volume dynamics directly influence the behavior of an IC
package submerged in a dielectric fluid. Unlike the DUT, the dielectric fluid can change its
shape, but the volume of liquid displaced by the DUT remains constant. As the DUT mass
remains constant, the product of density and volume also remains unchanged. When the
fluid changes direction upon contact with the moving DUT, a force acts from the center to
the corners of the DUT where the fluid bends [19]. To calculate the displaced fluid amount,
multiply the device’s submerged volume (V) by the fluid’s density (ρ). Laminar turbulence
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occurs and bends the fluid at contact points where the displaced fluid exceeds the device’s
contact angles by 180 degrees, altering the device’s original position. Determining the force
that the DUT can withstand before misalignment occurs is crucial.

Various factors determine the resulting thrust force on the IC. These include the
device’s weight, the interaction between the friction coefficient and fluid pressure in the
horizontal direction, and the frictional forces that oppose rectilinear movement. This
analysis requires a flow control model in a coordinate axis system, as referenced in [20–22].
Figure 1a shows a model that analyzes the dielectric flow around the base of a SOIC
package, illustrating the force variation from laminar flow as the package moves within
the fluid. Similarly, Figure 1b demonstrates the interaction between the laminar flow and
the lower IC surface during downward movement. A grid representation of the lower
part of the IC enables the identification of consecutive velocity and pressure values, which
aids in solving the steady-state incompressible Navier–Stokes equations by treating the
flow as compressible [23]. Each analysis yields a new speed, which helps to determine the
consecutive values of the resulting forces. The force in the x direction is equivalent to the
rate of mass change, as expressed in Equation (3),

�F(∂x) =
∂�m
∂t

(v2cosθ2 − v1cosθ1), (3)

where v1 and v2 are speeds in a defined position.

Figure 1. Analysis of linear momentum: (a) pressure coefficient and velocity contours, (b) IC isometric
model with laminar flow fluid behavior, and (c) resulting force from stream function by the pressure
and speed grid model.

In a collision between the DUT and the dielectric fluid, the impulse (J) acting on the
DUT is equal to the change in the device’s linear momentum in time Δt = t f − ti and can be
expressed as the area under the curve of the function �F(t) [24]. The impulse (J) is given by

J =
∫ t f

ti

�F(t)dt (4)

Utilizing Newton’s second law of motion [25], the net force acting on an object is
determined as the summation of all vector forces applied to it, expressed by the follow-
ing equation:

�Fnet = Δ�P ∗ (Δt)−1, (5)

where the net force ( �Fnet) in the DUT is directly associated with the change in fluid momen-
tum �P over time (t). Evaluating the momentum between the initial moment �Pi and the final
moment �Pf in Equation (4), we obtain the change in fluid momentum �P:

Δ�P = J = �Pf − �Pi (6)
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The momentum remains constant if no external forces act over the DUT. Internal forces
( �Fnet) can change the momentum Δ�P ∗ (Δt)−1 → �Pf = �Pi on parts of the system, but they
cannot change the total momentum of the entire system.

The strain rate in a fluid over time depends on the discrete applied shearing stress and
its relation to the velocity gradients. This relationship is given by

�Fnet = m�a = m ∗ Δ�v/(Δt) (7)

Here, the product of the mass of the device (m) and its velocity (�v) at a specific time
(t) determines the momentum of the fluid, which can be expressed through three scalar
values representing the vector relationships along the X, Y, and Z axes. Figure 1c shows
a staggered grid model that stores velocity components at its center. Pressure differences
between corner nodes drive the rate of mass change in this configuration. Each grid analysis
yields a new speed, which helps determine the successive values of the resulting forces.
The force in the X direction is equivalent to the rate of mass change, written as:

�F(∂x) =
∂�m
∂t

(v2cosθ2 − v1cosθ1) (8)

where v1 and v2 are speeds in a defined position. Speed change in the X direction and the
force in the Y direction are analogous to the mass change rate from the speed change in the
Y direction, shown below:

�F(∂y) =
∂�m
∂t

(v2sinθ2 − v1sinθ1) (9)

The individual resultant force for the flow grid model is given by

FResultant =

√
�F(∂x)

2
+ �F(∂y)

2
(10)

Hence, the total force exerted on the fluid equals the momentum change rate through
the DUT volume and can be calculated with Equation (11).

F =
∂�m
∂t

(�vout −�vin), (11)

where �vout and �vin are speeds in a defined time range. Analysts reviewed each grid to
derive new speeds and consecutive values of resulting forces. The rate of mass change
determines the forces acting in the x and y directions. Consequently, the momentum rate
of change through the DUT volume dictates the total force on the fluid, which comprises
three vector components in the velocity direction. The total force FT equals the sum of
these forces:

FT = Fm + FB + FD (12)

Here, the device’s base area exerts the machine force (Fm) on the fluid. The fluid exerts
the buoyant force (FB) on the device’s area in contact with it. Similarly, the fluid pressure
exerts the drag force (FD) on the device’s contour. Vectors FB and FD oppose the velocity
and are represented with a negative sign as:

FB = −ρVg, (13)

FD = −0.5 ∗ ρ ∗ μA ∗�v2
max, (14)

where ρ is the fluid density and Vg is the DUT volume, �v2
max is the maximum velocity

along the Z-axis, μ is the fluid friction coefficient, and A is the device’s area in contact with
the fluid.

The resulting force on the Z-axis depends on the weight in the vertical mechanism
parallel to the central axis of the screw, the horizontal friction coefficient in the screw, and

5



Appl. Sci. 2024, 14, 3693

the forces opposing linear motion [26]. Figure 2 illustrates the variables and parameters
involved in the vertical load movement of our load model using the lead-screw drive [27].
A stepper motor provides the required torque to move the load through the lead screw
against the thrust load on the ball nut. The necessary torque needed to move the load is
given by

T = Tw1 + Tw2, (15)

where Tw1 represents the torque against the external force and Tw2 is the torque against the
friction force. Hence, the required basic torque can be expressed as

T = Pt
Fm + μmg

2π
expressed in N · m (16)

Figure 2. Vertical movement of a load using a lead-screw drive.

Isolating (Fm) from (16), we obtain the machine force on the Z-axis, given as

Fm =
2πT

Pt
− μmg, (17)

where Pt is the lead screw pitch (m), μ is the friction coefficient on the sliding surface, m is
the overall load mass (Kg), and g is the gravity 9.81 m/s2.

2.2. Electronic Components Assembly

In the advanced electronic component assembly industry, automated machinery places
surface-mount devices (SMDs) using pick-and-place machining centers. Testing industrial
isolation SOIC packages focuses on aligning components and preventing disturbances
during their three-dimensional navigation. Precisely positioned nozzles, aided by vacuum
systems for suction pressure, meticulously transport surface-mount components. Typically,
the production team maintains a clean, disturbance-free environment. In the industrial
process of testing SOIC package isolation, The primary focus in testing SOIC package
isolation is on component alignment and disturbance prevention while maneuvering
within a dielectric fluid [11]. An integrated vision system with cameras ensures accuracy,
validating the correct placement of devices in Cartesian X and Y coordinates.

2.2.1. Assembly in the Presence of Dielectric Fluids

Performing procedures in the presence of a dielectric fluid is crucial in the high-
voltage testing process of small-outline integrated circuit (SOIC) packages. Optimizing
such an operation necessitates a predictive model for assessing package misalignment when
manipulated by a pick-and-place system. Figure 3 illustrates a model of a high-voltage
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(HV) testing setup for SOIC packages inserted into and extracted from a zero insertion
force (ZIF) socket submerged in dielectric fluid. Figure 3 shows a model depicting the
high-voltage (HV) testing setup, where a system inserts and extracts SOIC packages into
and from a zero-insertion force (ZIF) socket submerged in dielectric fluid.

When an automatic pick-and-place machine transports an integrated circuit through a
dielectric fluid, the DUT encounters additional forces influenced by various factors such as
IC volume, fluid characteristics, travel speed, and reached depth. Upon submergence, the
fluid’s viscosity reduces the cohesion between the nozzle and the DUT. This viscosity effect
primarily applies to the thin region adjacent to the solid boundary (surface layer), where
forces are significant.

Figure 3. High-voltage testing manipulation model.

Higher viscosity in a dielectric fluid creates a large surface layer next to the IC, in-
creasing the fluid’s surface tension from the device’s edges to its center. Higher viscosity
indicates lowest fluidity, but this fluidity increases with rising temperature. The changes in
fluid behavior due to temperature affect the forces exerted on the DUT.

Friction building up on the IC surface can cause turbulent flow between the pin spaces,
around the device’s encapsulation, and at the junction between the nozzle and the DUT.
This phenomenon arises due to the device’s shape and the changes in fluid pressure. Energy
builds up unevenly at the device’s edges, sometimes overcoming the vertical resistance
that maintains alignment and altering the device’s horizontal position in both the X and Y
components [28].

2.2.2. Physical Characteristics of SOIC Packages

We selected three different SOIC packages to meet the research requirements, adhering
to the dimensions and specifications set by the Solid State Technology Association (JEDEC
300 mil). Table 1 list the physical and physic characteristics of three models of selected
SOIC packages (small-outline package plus the number of pins).

Table 1. SOIC packages’ physical and physic characteristics.

SOIC
Package

Length
mm

Width
mm

Height
mm

Equivalent
Diameter

mm

Area
mm2

Volume
mm3

Mass
Kg

Weight
N

SOP-16 10.49 10.64 2.65 10.57 111.68 296.61 1.36 × 10−4 1.33 × 10−3

SOP-20 12.60 10.64 2.65 11.54 134.13 355.60 4.99 × 10−4 4.89 × 10−3

SOP-24 15.60 10.64 2.65 12.65 166.00 440.81 6.35 × 10−4 6.23 × 10−3
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2.2.3. Physical Characteristics of Selected Dielectric Fluids

The physical properties of dielectric fluids, such as viscosity, surface tension, and
density, significantly affect the performance of HV testing processes. FR3 vegetable oil
(Plymount, MN, USA), DPMS (DMS-T23) silicone (Morrisville, PA, USA), and DTE-150
(LVO-330) mineral oil (Irving, TX, USA) are industrial electrical insulators with similar
densities and surface tensions [29–31]. The kinetic viscosity directly affects the mobility of
a DUT submerged in a dielectric fluid, particularly when there are temperature variations.
Generally, as the temperature increases, the kinetic viscosity of the fluid tends to decrease.
This reduction in viscosity enhances the mobility of the DUT in the fluid, as a lower
viscosity implies less resistance to the movement of the DUT within the fluid. To maintain
a consistent viscosity of the dielectric fluid during tests, the temperature was controlled at
25 ◦C ± 0.25 ◦C. This control was achieved using a C206T temperature controller, equipped
with a 6.56 FT sensor and a 20 Watts/120 VAC halogen bulb for heating [32]. Once the
dielectric fluid reached the target temperature, it consistently stayed within this range,
eliminating the need for an additional cooling system. Table 2 details the characteristics
of the chosen dielectric fluids, allowing us to evaluate the device under mobility test with
three different viscosity ranges.

Table 2. Constants of the physical characteristics of dielectric fluids.

Dielectric
Medium

Density
Kg/m3

Viscosity at 25 ◦C
cSt

Surface Tension
mN/m

Air 1.17 16.92 N/A
FR3 922.99 40.00 23.99

DTE-150 856.00 150.00 22.26
DPMS 967.99 350.00 21.10

3. Mathematical Model Development

In this section, we conduct an analytical assessment of the trapezoidal movement
pattern to ascertain the SOIC package’s trajectories, speed, acceleration, and test dura-
tion. Subsequently, we perform a deterministic analysis of the hydrodynamic forces and
physical factors influencing the SOIC package’s positional deviation when immersed in a
dielectric fluid.

3.1. Motion Profile Analysis of the Characterization

Developing mathematical models that combine mass and momentum conservation
principles for energy conservation in movements through varying densities requires a
comprehensive analysis of the trapezoidal movement pattern [33]. Such analysis is piv-
otal in understanding SOIC package trajectories, considering essential factors like speed,
acceleration, and test time. It also requires a deterministic evaluation of dielectric fluids’
physical and dynamic properties. This evaluation leads to an examination of hydrodynamic
forces and physical dependencies. These factors determine how a SOIC package moves
and positions itself in a dielectric fluid.

The nozzle holds the package at its original position along the Z-axis, where the
analysis begins. Figure 4 illustrates the complete time–speed trapezoidal motion pattern for
the entire process divided in twenty stages represented by the Roman numbers (I–XX). The
detailed analysis examines the device’s insertion and extraction displacements along the
Z-axis, which the nozzle holds. The movement sequence involves first moving downwards
through the air, then submerging into the dielectric fluid until reaching the upper surface
of the zero-insertion force (ZIF) socket. The insertion process slows down and continues
moving until the ZIF socket activates and stops it.

Subsequently, the process allocates a specific time to release the SOIC package and then
moves the Z-axis back to the ZIF socket’s surface at a reduced speed. Once in position, the
system increases the speed to the maximum allowed and then halts again upon reaching the
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home position. For extracting the SOIC package from the ZIF socket, the system replicates
the same operational sequence in reverse order. A programmed speed ratio, tailored to the
distance between each step, governs each travel time, featuring instant transitions with
constant acceleration or deceleration. While inserting and removing the package are the
most critical movements for the IC, technicians must remove the nozzle from the dielectric
fluid to conduct high-voltage tests. Figure 5 showcases the trapezoidal motion pattern for
either the insertion or extraction of the SOIC package selected from the twenty process
stages represented by the Roman numbers.

Figure 4. Trapezoid movement pattern: time–speed complete.

Figure 5. Trapezoid movement pattern: time–speed.

The insertion or extraction procedure requires a total time (tT), which includes the
sum of the downward travel time (ΔtDEC), the upward travel time (ΔtASC), and a waiting
period (tOUT) to activate or deactivate the pneumatic system that releases or retains the
SOIC package. Each downward or upward travel phase is segmented into periods with
constant transitions, resulting in five distinct travel periods in each direction. The total time
for each completed characterization process is 2tT . In a single characterization process, the

9



Appl. Sci. 2024, 14, 3693

total travel distance X0 equals twice the sum of the descent distance XDEC and the ascent
distance XASC.

A mathematical analysis of the trapezoidal pattern for downward travel requires
motion with a constant acceleration function ΔX = V0Δt + 1

2 aΔt2 (constant a), where X is
the final position, V0 is the initial velocity, Δt is the time interval, V is the final velocity, and
a is the acceleration to evaluate each segment [34]. Tables 3 and 4 show the equations of the
intervals covered and accelerations obtained.

Table 3. Equations of the intervals covered.

Stage
Downward Period
Distance Covered

Stage
Upward Period
Distance Covered

I XA = 1
2 aAΔtA

2 XVI XE = 1
2 aEΔtE

2

II XB = VmaxΔtB XVII XD = VZIFΔtD
III XC = VmaxΔtC − 1

2 aCΔtC
2 XVIII XC = VZIFΔtC + 1

2 aCΔtC
2

IV XD = VZIFΔtD XIX XB = VmaxΔtB
V XE = VZIFΔtE − 1

2 aEΔtE
2 XX XA = VmaxΔtA − 1

2 aAΔtA
2

Table 4. Equations of acceleration or deceleration on trapezoid pattern.

Stage Accel–Decel Stage Accel–Decel Stage Accel–Decel

I and XX aA = Vmax
ΔtA

III and XVIII aC = Vmax−VZIF
ΔtC

V and XVI aE = VZIF
ΔtE

The total distance (XT) required to complete a test corresponds to the sum of four
distances traveled on the Z-axis. Each vertical run covers a distance of 78.994 mm. This
comprises a 75.819 mm path from the Z-axis origin to the top surface of the ZIF socket,
along with a 3.175 mm path for inserting or removing the SOIC package into the ZIF socket.
The distance covered at maximum speed is the sum of distances XA, XB, and XC, while the
ZIF socket operating distance is the sum of distances XD and XE. The equation for the total
distance traveled is as follows:

XT = 4 · [XA + XB + XC + XD + XE] (18)

Replacing the values obtained from the motion trapezoidal pattern, we obtained a
total distance traveled as a function of time–speed, as shown in Equation (19):

XT = 2Vmax(ΔtA + 2ΔtB + ΔtC) + 2VZIF(ΔtC + 2ΔtD + ΔtE) (19)

The total time required to complete a test is equal to the sum of the partial times ΔtDES,
ΔtASC, and ΔtOUT , as shown below:

tT = 2ΔtDEC + 2ΔtASC + 3ΔtOUT (20)

3.2. Behavioral Analysis of Forces Exerted on DUT

Analyzing the forces acting on the SOIC package, especially near its contour, the com-
plexity increases due to the variety of forces encountered in different fluid environments.

To understand a device’s behavior in different fluids, we must deduce the forces acting
during its linear displacement. Understanding these forces helps determine the SOIC
package’s maximum permissible speed while maintaining its alignment [35].

Table 5 lists the mechanical and physical parameters necessary for force analysis in
the Z-axis. The impact of forces in the dielectric fluid requires considering the friction coef-
ficients (μ), obtained from Equations (22) and (23), and Reynold’s number (Re), obtained
from Equation (21).
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Tables 6 and 7 provide a breakdown of the Reynold numbers for each medium through
which the SOIC packages moved and the corresponding coefficients of friction.

Re =
ρ ∗ Sd ∗ VMmax

η
(21)

μair =
24 ∗ (1 + 0.15 ∗ R0.687

eair
)

Reair

(Re < 500) (22)

μoil =
24

Reoil

+
6

1 +
√

Reoil

+ 0.4
(

0.2 < Re < 105
)

(23)

Table 5. Summary of parameters’ Z-axis characteristics.

Symbol Description Value Units

T Motor torque on the Z-axis 0.8054 N·m
Pt Lead screw pitch 0.01 m
μ Friction coefficient on the sliding surface 0.15
m Overall load mass 1 Kg
Fm Machine force on the Z-axis from Equation (17) 318 N
j Rotor inertia 1.172 × 10−5 Kg·m2

RPS Revolutions per second 0.547 rev/s
aa Angular acceleration 43,373.56 rad/s2

VMmax Maximum linear velocity on the Z-axis 0.288 m/s
Xair Air travel distance 0.045 m
Xoil Oil travel distance 0.030 m
X f Final travel distance in the oil 0.003 m
XT Total travel distance 0.078 m
Dn Nozzle contact end diameter 0.0036 m
an Nozzle contact end suction area 1.02 × 10−5 m2

ancyl Nozzle contact end cylinder area 3.02 × 10−5 m2

PSm Measured maximum suction pressure 9997.40 Pa·N/m2

FSmax Maximum suction force is equal 0.102 N

Table 6. Reynold’s number for each media and SOIC package.

SOIC Package
Dielectric Medium

Air FR3 DTE-150 DPMS

SOP-16 211.04 70,222.13 17,366.60 8416.66
SOP-20 230.48 76,689.88 18,966.13 9191.87
SOP-24 252.74 84,095.12 20,797.52 10,079.44

Table 7. Friction coefficients for each media and SOIC package.

SOIC Package
Dielectric Medium

Air FR3 DTE-150 DPMS

SOP-16 0.788 0.423 0.447 0.464
SOP-20 0.760 0.422 0.445 0.461
SOP-24 0.732 0.421 0.442 0.458

For force analysis exerted on the DUT, we maintained a constant maximum speed in
two different mediums (air and dielectric fluid), each with varying densities. Assuming
near-zero instantaneous acceleration concerning the displacement of the SOIC package, we
analyzed the resulting forces during its trajectory and the associated energy losses for each
density, including transitions between different fluids. Figure 6 shows the force models we
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developed for each medium, detailing how we moved the SOIC package and facilitating
the analysis of static and dynamic force behaviors.

The force analysis depicted in Figure 6 reveals a model for the initial moment without
vertical movement in Figure 6a. In this scenario, the machine force (Fm), drag force (Fdair

),
and normal force (N) are all zero. Therefore, the initial suction force (FS) must be equal to
or greater than the weight of the SOIC package (WSOIC).

The resulting force, considering the machine force (Fm), acceleration, and an initial
velocity of zero, is given by Equation (24):

−Fs + WSOIC − N − Fd = 0 (24)

Here, the normal force (N) results from multiplying the air density (ρair), gravity
acceleration (g), and the volume of the SOIC package base (γSOIC). The drag force ( fd)
depends on the normal force, and we multiply it by the friction coefficient (μair).

Figure 6. (a) Analysis for SOIC package moving down in the air, (b) air–dielectric fluid interface, and
(c) SOIC package moving up in a dielectric fluid.

To determine the maximum velocities for each medium, we use Newton’s second law
for force analysis and apply the principle of conservation of energy to symmetric temporal
translation [36]. In this case, the Z-axis moves vertically, holding a SOIC package under
suction pressure.

The drag force exerted by the fluid medium depends on the square of the velocity
and the area of the SOIC package (aSOIC) in contact with the dielectric fluid, given by
Equation (25):

Fd =
V2

max ∗ ρ ∗ μ ∗ aSOIC
2

(25)

By substituting the drag force into Equation (24), we can derive the maximum speed
for downward displacement in the air, as shown in Equation (26):

|VmaxAirD
| =

√
2(Fs + N − WSOIC)

μ · ρair · aSOIC
(26)

We considered the velocity as an absolute value and denote its direction with the suffix
D = downward and U = upward.

Moving on to Figure 6b, which represents a constant velocity, zero acceleration, and
downward displacement in a dielectric fluid, we obtained Equation (27):

−Fs + WSOIC − B = 0 (27)
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Here, the buoyant force (B) is equal to the dielectric fluid density (ρoil) multiplied by
gravity acceleration (g) and by the volume of the SOIC package base (γSOIC). The drag
force (Fd) is proportional to the buoyant force and the friction coefficient (μoil).

The maximum velocity (Vmax) for downward displacement in the dielectric fluid can
be determined using Equation (28):

|VmaxOilD
| =

√
2(Fs + B − WSOIC)

μ · ρoil · aSOIC
(28)

In the context of upward displacement in the dielectric fluid, as depicted in Figure 6c,
the drag force ( fd) exhibits an inverse direction about the flotation force, acting only over
the upper areas of the SOIC package (excluding the area under the nozzle ancyl ). This results
in Equation (29):

−Fs + WSOIC − B + Fd = 0 (29)

By substituting the equivalent values for the drag force, the maximum speed for
upward displacement in the dielectric fluid can be expressed using Equation (30):

VmaxOilU
=

√
2(Fs + B − WSOIC)

μ · ρ · (aSOIC − ancyl )
(30)

Behavioral Analysis of Suction Force

The minimum suction force (Fs) required to securely hold the SOIC package during
vertical movement, as described in Equation (31), is directly linked to several factors. These
include the mass of the SOIC package (mSOIC), the acceleration due to gravity (g), the
linear machinery acceleration (aL), a minimum safety factor (S f ) typically set at 1.5 or
2.0 (which accounts for the secure holding of rigid surfaces with minimal porosity), the
nozzle diameter of 3.607 mm, and the reciprocal of the drag coefficient (μ) of the dielectric
fluid [37]. The formula for calculating the minimum suction force is given as follows:

Fs = mSOIC · (g +
aL
μ
) · S f (31)

The maximum linear machinery acceleration obtained was 40.77 m/s2. For the experi-
mentation and analysis, a minimum safety factor of 1.5 was selected.

Table 8 presents the values of the pneumatic line’s minimal pressure and the corresponding
suction force necessary to ensure the secure attachment of the SOIC package to the nozzle.

Table 8. Minimum suction force and vacuum pressure for each SOIC package.

Dielectric
Medium

SOIC
Package

Minimum Suction Force
N

Vacuum Pressure
N/m2

SOP-16 0.0138 458.78
AIR SOP-20 0.0471 1560.70

SOP-24 0.0613 2031.89

SOP-16 0.0239 791.59
FR3 SOP-20 0.0790 2617.87

SOP-24 0.0999 3309.28

13



Appl. Sci. 2024, 14, 3693

Table 8. Cont.

Dielectric
Medium

SOIC
Package

Minimum Suction Force
N

Vacuum Pressure
N/m2

SOP-16 0.0227 753.53
DTE-150 SOP-20 0.0754 2496.94

SOP-24 0.0955 3162.83

SOP-16 0.0220 727.74
DPMS SOP-20 0.0729 2414.89

SOP-24 0.0925 3063.13

After determining the suction force values, we substituted them into
Equations (26), (28) and (30) to calculate the maximum speed of continuous displacement
along the Z-axis during testing.

The results of these calculations are presented in Table 9, which provides the maximum
speed values required for transporting the DUT through two different media, namely air
and oil. These speed values account for constant acceleration and are essential for the
testing process.

Table 9. Maximum Z-axis velocity calculated (downward and upward).

Dielectric
Medium

SOIC
Package

Downward
m/s

Upward
m/s

SOP-16 29.735 18.132
AIR SOP-20 26.581 30.197

SOP-24 27.820 30.757

SOP-16 1.073 1.257
FR3 SOP-20 1.721 1.955

SOP-24 1.741 1.925

SOP-16 1.055 1.235
DTE-150 SOP-20 1.697 1.928

SOP-24 1.720 1.901

SOP-16 0.922 1.080
DPMS SOP-20 1.472 1.673

SOP-24 1.494 1.652

To calculate the maximum speed (VZIF) needed to close the ZIF socket, we applied a
force to the spring-loaded mechanism until the spring shifted to a position that corresponds
to the total distance (XD + XE), as shown in Figure 5. We can determine the magnitude of
this force using Equation (32), where (K) denotes the spring’s elasticity constant, following
Hooke’s law [38].

FZ = K · (XD + XE) (32)

The work performed by the spring (WSpring), as calculated in Equation (33), is directly
proportional to the potential energy (Ep) stored in the spring. It is important to note that
this calculation neglects energy losses due to vibration.

WSpring = 0.5 · K · (XD + XE)
2 (33)

The potential energy (Ep) stored in the spring, as expressed in Equation (34), is propor-
tional to the square of the maximum speed used to close the ZIF socket (VZIF).

Ep = 0.5 · mload · V2
ZIF (34)
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The equation for determining the maximum speed required to close the ZIF socket,
VZIF, is derived from equating the work performed by the spring (WSpring) to the potential
energy (Ep) stored in the spring, as shown in the equation below:

VZIF =

√
K · (XD + XE)2

m
(35)

Using the mechanical specifications of the ZIF socket, a force of 1.7 Kgf , equivalent to
16.67 N, is required for compression. Applying Newton’s law for forces, where force equals
mass times acceleration due to gravity, we find a mass of 0.0044 Kg.

To determine the spring constant (K) of the ZIF socket, the mechanical specifications
indicate a force of 0.39 N (40 gmf) per pin. In the case of the 28-pin ZIF socket model,
the total applied force is 11 N for a travel distance of 0.003 m. Substituting these values
into Equation (32), we find that the elasticity constant of the ZIF socket is equivalent to
9.485 Kg/s2. By substituting these values into Equation (36), we determine the maximum
operating speed of the ZIF socket to be:

VZIF = 0.14 m/s (36)

4. Behavioral Analysis of Surface Tension, Capillarity, Cavitation, and Splash

Dynamic surface tension affects the splatter. It increases during surface expansion
and decreases as waves move in the newly formed interface [39]. Further analysis of
surface tension strength, along with considerations of capillarity, cavitation, and splash
effects, enabled the establishment of a more precise mathematical model. This model
can now predict deviations with different DUT sizes, various dielectric fluids with other
characteristics, and different operational speeds of pick-and-place machines.

4.1. Behavioral Analysis of Surface Tension Force

The force that exists due to the surface tension of the dielectric and the forces that arise
from the contact of a DUT when immersed in the dielectric fluid can generate significant
deviations in the final insertion position of the SOIC package. The force between the
DUT and the surface of the dielectric fluid changes as the size of the DUT increases, the
temperature varies, the impact velocity increases, and the physical characteristics of the
dielectric make it denser. The surface tension force FST depends on the device’s side length
LSOIC, its width WdSOIC, the capillarity Ca, and the surface tension coefficient σ. Surface
tension force equation is given by Equation (37).

FST = (2 · LSOIC + WdSOIC) · σ · (1 − Ca) (37)

Table 10 shows the values of the net surface tension force values on SOIC packages
when they are submerged in the dielectric fluid.

Table 10. Surface tension force (N/m) for each dielectric and SOIC package.

SOIC Package
Dielectric Medium

FR3 DTE-150 DPMS

SOP-16 39.929 43.957 49.561
SOP-20 37.127 40.805 46.058
SOP-24 35.025 38.528 43.431

4.2. Cavitation and Capillarity Analysis

Cavitation during the insertion of the SOIC package into the dielectric fluid at the
initial impact speed could lead to the formation of splashes at the edges of the SOIC package.
However, cavity formation becomes dependent on the physical properties of the SOIC
package, the pin contours, the wettability of the material, and the impact speed. Using
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approximations of the Froude model that describe the surface behavior of the dielectric
fluid when it receives disturbances at the moment of contact with an object, we analyzed
each of the SOIC packages concerning the maximum operating speed of the pick-and-place
machine [40]. The nondimensional Froude’s number is given by fr = VMmax · (g · D)−1/2,
where VMmax is the maximum velocity at the moment of contact with the dielectric fluid, g
is the gravity acceleration, and D is the equivalent diameter of SOIC package. The Froude
numbers exhibit variation across different SOIC packages, with values of 0.8946 for the
16-pin, 0.8561 for the 20-pin, and 0.8175 for the 24-pin.

The air cavity’s hydrodynamics and the device’s geometry, resulting from vertical
immersion, exhibit relatively low Froude numbers near the cavity (Fr ≤ 0). However,
the nozzle holding the SOIC package prevents the air cavity on the DUT from completely
closing. Therefore, analyzing the effects of viscosity and surface tension near the air cavity
closure due to capillarity on the SOIC package’s surface using the Weber model (We) [41].
We evaluated the role of surface tension and the drag force of the capillarity (Ca) on the
device’s surface as follows:

We =
ρ · V2

Mmax · D
σ

(38)

Ca =
We

Re
, (39)

where ρ is the dielectric fluid density, D is the equivalent diameter of the SOIC package, σ
is the surface tension coefficient, and VMmax is the maximum velocity of the pick-and-place
machine. Table 11 shows the nondimensional values of capillarity at the surface of SOIC
packages when they change between the air interface and the dielectric fluid.

Table 11. Capillarity for each dielectric and SOIC package.

SOIC Package
Dielectric Medium

FR3 DTE-150 DPMS

SOP-16 2.4 × 10−4 9.687 × 10−4 2.498 × 10−3

SOP-20 2.4 × 10−4 9.687 × 10−4 2.498 × 10−3

SOP-24 2.4 × 10−4 9.687 × 10−4 2.498 × 10−3

We used the values in Table 11 to predict the cohesion between the surfaces of dif-
ferent SOIC packages and a similar dielectric fluid. This capillary action contributes to
the formation of microdroplets and bubbles. We deduced that the maximum capillary
action depends on the dielectric’s viscosity below a certain microunit threshold, allowing
negligible cavitation.

4.3. Splash Analysis

To calculate the percentage and splash threshold of the dielectric fluid, we need to
relate the surface tension and inertial forces, taking into account the viscosity’s impact.
By applying Equation (40), we can obtain the splash percentage (% Splash). Furthermore,
the nondimensional Ohnesorge number (Oh), as defined in Equation (41), allows us to
relate surface tension with viscous and inertial forces. This correlation estimates the splash
threshold constant Ks, which we can calculate using Equation (42), as modeled by Brown
(2008) [42].

Splash =
100 · We

We + 106 (40)

Oh =

√
We

Re
(41)
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Ks = We · Oh0.4 (42)

Table 12 shows the dimensionless values of the percentage of the splash and dimen-
sionless values of the splash threshold between the air interface and the dielectric fluid
when making contact with the base area of the SOIC package.

Drawing on Murphy’s comparative analysis of different oils, we compared the splash
percentages of dielectric fluids [43]. Our findings indicate that the splash heights range
approximately from 0.533 μm to 1.974 μm.

Table 12. Splash threshold and sloshing percentage for selected dielectric fluid interfaces and
SOIC packages.

Dielectric
Medium

SOIC
Package

Splash
Percentage (%)

Splash
Threshold

SOP-16 0.169 0.063
FR3 SOP-20 0.168 0.110

SOP-24 0.210 0.167

SOP-16 0.184 0.064
DTE-150 SOP-20 0.184 0.112

SOP-24 0.230 0.170

SOP-16 0.200 0.065
DPMS SOP-20 0.202 0.114

SOP-24 0.252 0.174

5. Results and Analysis

We present the results obtained to establish the correlation between the final position
of a SOIC package manipulated in a dielectric fluid and its vertical travel speed during
pick-and-place machine-assisted tests. These experimental results determine the probability
distribution of the observed profiles, showcasing the repeatability, reproducibility, and
robustness of the overall setup employed in this study.

5.1. Statistical Validation of Samples

To validate our proposed solution, we first examined the behavior of the extracted
data and identified the relationships between variables. We performed 450 measurements
in total across three different SOIC packages and three different dielectric fluids. For each
possible combination, we completed 50 measurements and reported the sample deviations
for each set in X and Y coordinates. To identify the direction of measurements, we assigned
a negative sign to deviations to the left on the X-axis and the front on the Y-axis. We
assigned implicit positive values to deviations to the right on the X-axis and backward on
the Y-axis. The model did not permit deviations in the Z direction, so we did not consider
them in the analysis.

Figure 7 shows boxplots of the X and Y axes, respectively, illustrating the median, the
highest significance percentiles, and the minimum and maximum values of the deviation
of the SOIC packages in Cartesian X and Y coordinates for each type of dielectric fluid.

In each boxplot, the ends of the vertical lines indicate the minimum and maximum
data values. The Points outside the extremes indicated by the symbol (*), present outliers
up to a maximum of 1.5 times the interquartile range. We observed a conservative quartile
concentration trend around the maximum alignment point in the box plots, with minimal
variations in the upper and lower quartiles not exceeding 0.1 mm. The SOP16 packages
showed minor deviations from other SOIC packages but did not maintain symmetric be-
havior across different dielectric fluids. Conversely, SOP24 packages had a symmetrical
deviation ratio in various dielectric fluids and a higher concentration of deviations than
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SOP16 and SOP20 packages. Significantly, we recorded the lowest concentration of devia-
tions with the dielectric fluid FR3. The higher friction coefficient and greater contact area of
SOP24 with the dielectric fluid likely caused a thinner cohesion layer and higher surface
tension at the edges.

Figure 7. Boxplot of X and Y axes SOIC packages deviation on dielectric fluid.

5.2. Consistency and Repeatability

We estimated the overall reliability of the results by evaluating them at a confidence
level of 95% or higher, using the acceptable internal consistency indicator. Cronbach’s
alpha showed an overall reliability of 99.64%, confirming the high reliability of the collected
data. Figures 8 and 9 show the frequency values within the deviation range of the SOIC
packages on a set of histograms with the variance dispersion correlation at 25% of the total
deviation range.

Figure 8. Histogram with a normal curve of SOIC packages on dielectric fluids.

The histogram analysis of Figure 8 revealed a Gaussian curve with a center frequency
trend and uniform dispersion around most results. Notably, dielectric fluid FR3 exhibited a
higher center alignment frequency for SOP16 packages, while SOP24 packages showed the
lowest center alignment frequency.
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Figure 9. Correlation of dispersion matrix plot: X and Y axes deviation.

Examining the dispersion matrix plot in Figure 9, we observed linear correlations
between deviations in both negative and positive directions. Median and mode results for
each sample set consistently equaled zero. To assess data consistency, we determined the
sample arithmetic mean, maximum, and minimum deviation values and sampled standard
dispersion around the mean, standard deviation, median, and mode for each set of samples,
thereby reducing limitations.

We observed that the SOP24 packages had the lowest misalignment values at the
minimum and maximum end points relative to the SOP16 and SOP20 packages. However,
their standard deviations recorded in tests on all dielectric fluids were the largest. We also
observed that SOP16 packages had the highest maximum and minimum misalignment
values for the DPMS dielectric fluid and the highest misalignment range in all tested
dielectrics. The testing results of the SOP20 packages were compared and recorded as the
lowest standard deviation for the FR3 dielectric fluid.

5.3. Misalignment Velocity Analysis

Our factorial analysis determined that the relative standard error margin was less than
4.78%, ensuring an overall reliability of 99.64%. As shown in Figure 10, the pick-and-place
machine achieved a maximum test speed of 0.288 m/s. We found the average deviation
to be 0.0711 mm, which is about 25.14%, significantly lower than the error tolerance limit
of 0.2829 mm. Our probability assessments revealed that the mean velocity probability
for misalignment is 0.832 m/s, and the median probability for maintaining the IC within
0.2829 mm alignment at maximum velocity is 1.5466 m/s. We identified that dielectric
fluids with lower viscosity, such as FR3, DTE-150, and PDMS , allow better alignment of
ICs at maximum speeds of 1.778 m/s, 1.727 m/s, and 1.499 m/s, respectively.
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Figure 10. Maximum velocity for testing SOIC packages aligned.

Figure 11 shows the cumulative deviation statistics of a SOIC package model as it
moves through a specific dielectric fluid. We calculated the maximum deviation using the
test pick-and-place machine’s maximum velocity. We then compared these data with the
permitted maximum alignment on both the X and Y axes.

We determined each set’s maximum alignment speed by multiplying the deviation
frequencies with the test’s velocity, assuming linear dispersion correlation.

Figure 11. Accumulated deviation in the results obtained.

The results obtained present margins of relative standard errors lower than 4.78%, as
shown in Figure 12. It was observed that the SOP24 package presented more deviations
in the test with DPMS dielectric fluid. The SOP20 package maintained the most stable
behavior, with the least deviation in the different dielectric fluids.
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Figure 12. Descriptive statistics of the relative standard errors.

5.4. Additional Parameters Analyzed during the Tests

We observed no perceptible levels of splashing in the dielectric fluid during the SOIC
package insertion. Dielectric fluid dripped and leaked during nozzle removal and testing
of the SOIC package. We compared the dielectric fluid losses for every 150 tests with about
19.89 mL of FR3, 34.1 mL of DTE-150, and 51.14 mL of DPMS.

We observed that during the release of the SOIC package from the nozzle after testing,
the DPMS dielectric fluid exhibited higher adhesion to the surface, in contrast to FR3, which
exhibited less adherence and prevented the IC’s release due to its weight.

We detected the presence of dielectric fluid in the vacuum pneumatic lines after each
set of tests. However, these minimal levels of dielectric fluid did not obstruct the airflow.

6. Conclusions

We have presented the development of a systematic and scalable mathematical model
to predict SOIC package misalignment during automated high-voltage IC testing in a
dielectric fluid, achieving an impressive reliability of 99.64%, with a margin of error below
4.78%. This model comprehensively analyzes mechanical and hydrodynamic factors,
including the crucial aspects of misalignment during the insertion and extraction of SOIC
packages from ZIF sockets.

This study furthered the knowledge in the development of an energy model for
high-voltage test speed calculation that seeks to improve the handling of SOIC packages
in dielectric fluids in an advanced automated system, offering vital information on the
rate-limiting hydrodynamic effects and precision in handling of SOIC packages.

A thorough analysis of the physical properties of dielectric fluids, including viscosity,
surface tension, and density, was conducted to understand their influence on the misalign-
ment experienced by the packages during the insertion and removal process. The proposed
configuration was evaluated consistently across three types of certified dielectric fluids
(FR3 vegetable oil, DPMS silicone, and DTE-150 mineral oil) and different SOIC packages,
which included SOP16, SOP20, and SOP24, aligned to JEDEC’s standard MC-012 [44],
significantly defining the understanding of fluid dynamics and ensuring the reliability and
repeatability of the results.

This study introduced novel knowledge by analyzing the forces acting on SOIC
packages in air and dielectric fluid environments, including the interface between these two
mediums. It developed a model to quantify energy losses in each environment where SOIC
packages operate. This research highlighted the advantages and limitations of various
trapezoidal motion patterns, particularly in high-speed operations, emphasizing their
potential to expedite automated high-voltage testing processes.
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This research also explored the mechanics of the ZIF socket and the potential effects of
cavitation and splash formation when inserting the SOIC package into the dielectric fluid.
This study evidenced that the DUT geometry and fluid properties significantly influence
these phenomena.

This study applied Cronbach’s alpha for robust statistical reliability validation, ef-
fectively confirming Gaussian distribution patterns and linear deviation correlations. It
also analyzed and comprehensively evaluated misalignment probabilities, analyzing fac-
tors such as surface tension, sloshing, cavity formation, and bubble dynamics during
DUT handling.

This study represents a significant contribution to the semiconductor industry in the
field of high-voltage IC testing, providing an advanced model for predicting SOIC package
misalignment with a resource-efficient approach that outperforms traditional trial-and-
error models, improving the automated handling and validation of high-voltage isolation
tests for SOIC packages.
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Abstract: In a vast majority of cases, remediation of IT issues encoded into domain-specific or
user-defined alerts occurring in cloud environments and customer ecosystems suffers from accurate
recommendations, which could be supplied in a timely manner for recovery of performance degra-
dations. This is hard to realize by furnishing those abnormality definitions with appropriate expert
knowledge, which varies from one environment to another. At the same time, in many support cases,
the reported problems under Global Support Services (GSS) or Site Reliability Engineering (SRE)
treatment ultimately go down to the product teams, making them waste costly development hours on
investigating self-monitoring metrics of our solutions. Therefore, the lack of a systematic approach to
adopting AI Ops significantly impacts the mean-time-to-resolution (MTTR) rates of problems/alerts.
This would imply building, maintaining, and continuously improving/annotating a data store of
insights on which ML models are trained and generalized across the whole customer base and
corporate cloud services. Our ongoing study aligns with this vision and validates an approach that
learns the alert resolution patterns in such a global setting and explains them using interpretable
AI methodologies. The knowledge store of causative rules is then applied to predicting potential
sources of the application degradation reflected in an active alert instance. In this communication,
we share our experiences with a prototype solution and up-to-date analysis demonstrating how
root conditions are discovered accurately for a specific type of problem. It is validated against the
historical data of resolutions performed by heavy manual development efforts. We also offer experts
a Dempster–Shafer theory-based rule verification framework as a what-if analysis tool to test their
hypotheses about the underlying environment.

Keywords: automated troubleshooting; real-time product activity detection; problem root cause
analysis; machine learning; explainable AI; proactive SaaS support

1. Introduction

With the intensive evolution of IT ecosystems, such as the cloud computing infrastruc-
tures and the Internet of Things (IoT), in complexity and sophistication, automated manage-
ment methods are becoming increasingly important for the industry. Performance surveil-
lance and root cause analysis (RCA) of issues using traditional monitoring tools, dash-
boarding of such environments, and operator-driven correlation of occurring atomic events
for inference are not sufficient to effectively derive sources of misbehaviors. Providers
of cloud services, including VMware, are continuously researching novel solutions and
product features with machine intelligence to address this challenge. It concerns the di-
agnosis of customer data centers and the products managing those assets. In particular,
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when a problem has been detected (reflected in an alert with related symptoms) within
an application service, in most cases, it is not self-explainable in terms of its underlying
reasons. Whether it comes from a machine learning (ML) module that senses an atypical
or anomalous behavior (in a performance metric or a super-metric representing its health
status) or user-defined conditions, identifying the potential causes of such an event among
a lot of other co-occurring events remains a hard task to be delegated to another ML en-
gine. There are no generic resolutions to this challenge in the cloud space because of the
diversities and specificities in those applications with various constraints and limitations,
especially when it comes to the issue of unavailability of annotated datasets for supervised
learning purposes. Approaches vary on a use case basis, some of which are outlined in the
related discussion in Section 2. In this regard, our goal in the current study is to design an
interpretable ML approach and related system for identifying conditions of occurrence of
major performance problems in the service with simple rules that are easily comprehensible
for human operators. For such a goal, therefore, we have to deal with a supervised ML
while finding sources of labels associated with the performance issue. In this scenario, each
problem type has its special RCA model.

Currently, Problem/Alert troubleshooting or RCA in cloud services remains a perma-
nent headache for product engineers despite the extensive efforts, developed concepts,
and toolsets, including Aria management platform [1–4] authors working towards its
enhancement with AI Ops capabilities.

Figure 1 shows a typical chain (shared with us by the partner colleagues in the relevant
department) of activities that a product engineer faces across his/her troubleshooting journeys:

a. Aria Ops (former vR Ops) generates a mission-critical alert, and a customer/user
cannot diagnose or even understand the situation.

b. Site Reliability Engineering (SRE) or Global Support Services (GSS) teams are involved
in the issue resolution.

c. If the issue necessitates, development teams are included in the process.
d. Development spends hours and days performing root cause analysis.
e. Development provides the fix for the problem.
f. Participating engineers gain valuable domain knowledge/expertise.

Figure 1. Typical flow in a problem resolution.

Overall, this process chain consumes varying amounts of time and human resources
and implies impacts on customer business application loyalty.
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At the same time, because of such intensive efforts, the knowledge gained during this
process largely remains unsystematized for faster and more machine-based facilitation of
handling the next cases to save critically important development resources and relocating
them to the delivery of the core solutions/features in the roadmap of off-the-shelf product
releases. Of course, in specific cases, when domain expertise is well developed and available,
just by inspecting some performance metrics (time series) and log messages, it is quite
straightforward to fix the problem with such a manual RCA. Our SRE partners in this study
exemplify such situations from their experience. However, from the product perspective,
the development teams have no mechanism for automatic knowledge sharing and RCA,
which eventually could help the customer to quickly resolve the issue without involvement
of third parties.

Our proposal is motivated by the above-mentioned traditional and inefficient ways
of problem troubleshooting in such real-time services of business-critical importance and
addresses the related lack of capabilities with a recommendation engine (ProbRCA), which
is AI-driven and explainable for human operators. Users can easily approve/decline
those recommendations for action frameworks and/or enrich related alert definitions with
resolution recipes.

This paper focuses on an explainable AI Ops approach [5] (see also survey [6] on RCA
methods) to automatically identify conditions that recommend the roots of a specific type of
problem occurring across the customer base. Thus, separate ML models need to be trained
and continuously improved with additional factual data for trending issues within the
provider services. This will allow providers to fix the problems in a timely manner, and even
automatically, within a global analytics service/recommender system, especially where
the software-as-a-service (SaaS) delivery model is concerned (with the related opportunity
to generalize cross-customer patterns based on available self-monitoring metrics of the
cloud product). As previously mentioned, human ground truths are unavailable in our
use case. Therefore, explainable ML methodologies become attainable with a self-labeling
technique we adopt in our research while using system performance indicators (which
might be a time series metric) as sources of generating labels. We recently validated this
kind of self-supervised learning in the data center administration contexts in other research
initiatives on cloud observability tasks (based also on log and trace data).

We also incorporate into our study a rule validation mechanism based on the Dempster–
Shafer theory (DST) of evidence [7] with uncertainty modeling, which essentially provides
a “what-if” analysis framework for diagnosing the underlying system and its phenomena.
This allows cloud users or developers of services to rigorously verify their hypotheses
about the system behavior using a recently proposed interpretable classifier [8] with expert
encoded rule conditions on system features. It enables owners/experts of the cloud infras-
tructure or application services to build a troubleshooting knowledge base that systemizes
their professional wisdom with scientifically grounded theory and explainable ML mecha-
nisms for more effective and automated diagnosis of business-critical software for which
they are responsible for healthy availability. This is another novelty aspect we incorporate
into our study since, as stated in the survey [6], no specific learning algorithm was found
in the literature on DST.

2. Related Research

As noted in the introduction, real-time diagnostics of offered services remains a
challenge. Assistive frameworks, such as Troubleshooting Workbench (TW) by Aria Op-
erations [1], which provide intelligent event/alert consolidation methods of guessing the
origin of issues, target this critical task from different angles. TW relies on discovery of
important and relevant changes occurring within a delta time-and-topology scope of the
cloud infrastructure hierarchy that might provide evidence about the source of the problem,
while the alert grouping concepts rely on helping users to focus on the larger incidents
to make inference of the root issues easier, as well as helping to look into the problem in
relation to co-occurring events across time and infra/app topology axes. However, all
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these methods are too inherently limited in automation capacities and intelligence power
to perform deep and targeted RCA for alerts.

Other event management vendors, such as Big Panda (Redwood City, CA, USA) [9],
Moogsoft (San Francisco, CA, USA) [10], and Pager Duty (San Francisco, CA, USA) [11],
have adopted the consolidated insight and incident discovery strategy but also built a
vision of human-driven guidance of alerts and incidents consisting of those atomic events
for training supervised RCA models. An important related approach in the industry is
represented by InfoSight (Miami Lakes, FL, USA) [12] by HPE, an AI-powered autonomous
operations service applying analytics from global learning with a self-managing, self-
healing, and self-optimizing vision for cloud applications. In this regard, ProbRCA was
proposed to realize self-support for cloud management offerings with explainable fea-
tures. It applies cross-customer user and developer feedback and trains accurate models
over time to use them to recommend problem resolutions while interpreting/justifying
those measures.

In various research initiatives (see [13]), ML methods underly the automation of the
management of complex data center applications (built upon many networked objects
such as virtual machines (VMs), hosts, datastores, etc.) based on large volumes of data
measured from those environments for complete monitoring and observability. At the
same time, cloud services must be furnished with efficient self-diagnostics capabilities for
business continuity and availability to avoid/eliminate time-consuming analysis of issues
by product support specialists. This is a critical problem within self-driving data centers [14].
Moreover, interpretable models (see [15,16]) in RCA are preferable compared to their black-
box versions to produce justified recommendations to users and mitigate potential impacts
and risks induced by those recommendations. There are specific use cases (e.g., [17–20])
recently modeled by researchers in the domain of intelligent cloud applications relevant
to our current study. In some related areas, such as cellular networks [21] and cloud
databases [22], authors perform domain-specific modeling for similar problem solutions,
which, in our use cases, are not readily achievable because of many factors, including a
lack of labeled/annotated datasets, which are hard to obtain for cloud infrastructures. In
this regard, we investigate more universal ways to build RCA models while adopting
self-supervised strategies in training those models.

3. Materials and Methods for ProbRCA

As an automation solution to the resource-expensive issue of managing problems
in product troubleshooting, we suggest ProbRCA, an analytics system with AI Ops that
builds and maintains ML models capable of learning explainable and causative patterns
(remediation rules) for alert/problem types. In the Aria Ops integration scenario, this
approach can automatically check the existence of those rules and proactively provide
appropriate recommendations for the resolution of a problem that is not even reported
yet or reflected in the alerts stream. As a result, a user quickly obtains valuable data for
comprehending the problem and its possible fix, without including additional resources
and avoiding the need for time-intensive investments. ProbRCA essentially supports the
pipeline in Figure 2 with the building blocks summarized in the following items (reflected
in the process diagram of Figure 3):

a. Aira Ops generates mission-critical alerts.
b. ProbRCA sets its general scope to the alert-related other impacted key performance

indicators (KPIs) and their monitoring data for trainings.
c. Related time series metrics preprocessing, e.g., smoothing, min/max normalization,

thus making the data ready for an accurate analysis.
d. Executing rule induction learning.
e. Discovered rules are added to the library of rules.
f. Relevant rules are tracked and recommended for alert resolution.
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Figure 2. Proposed system (ProbRCA) with AI Ops.

Figure 3. AI empowered rule induction.

Within the SaaS offering model, the self-monitoring metrics for Aria Ops compo-
nents are owned and managed by the provider, which means that there is a huge and
extremely valuable dataset from different customers to be utilized for training the ML
models underlying ProbRCA and delivering real-time troubleshooting.

However, Figure 3 can make an expression in which our goal is to design a system
that will automatically detect and remediate all types of IT issues. Unfortunately, that is not
feasible in general. The same KPI degradations may correspond to totally different IT issues,
especially in different customer environments. Figure 4 indicates that the main goal of our
system is to generalize, explain, and store the experience of experts for a specific problem
and with specific KPI behavior, and automate the process of the proactive detection of
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similar issues for potentially impacted customers with similar cloud environments. Our
system also supports the knowledge transfer from experienced experts who worked for
specific customer escalations and stores this information in Knowledge Datastores for
further utilization by other specialists.

 
Figure 4. Expert-centric architecture of the system.

This also means that even without the most advanced AI-driven intelligence, ProbRCA
may still represent problem solving, a common knowledge sharing/extraction system
leveraging cross-customer insights, and a troubleshooting center relying on the basic
conceptual and architectural components, as depicted in Figure 5, where reactive and
proactive problem resolution depends on the availability of relevant ML models trained
on the datasets identified according to the above-mentioned items and the pipeline in
Figures 3 and 4.

Figure 5. Knowledge-based proactive/reactive problem resolution.

Analysis of specific issues by developers at a serviced cloud eco-system with the Aria
Ops management solution and the objective of finding their root causes have resulted in
the following interesting lessons:

• Aria Ops collects and stores data with some monitoring intervals. The traditional
monitoring interval is 5 min. This means that Aria Ops averages the available values
of a metric within this interval and stores them with a time stamp corresponding to
the end of that interval. As a result, the average can vary from the actual value corre-
sponding to that specific time stamp, and the difference may be very large, especially
in the case of many outliers. We noticed that due to these random fluctuations, some
correlated metrics are no longer detectable by the correlation analytics in Aria Ops
based on the Pearson coefficient. Hence, this effect makes the correlation engine of the
product unfairly useless.

• This synchronization problem can only be resolved by the application of proper
data-smoothing techniques. In our experiments, we apply a well-known min–max
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smoothing technique that Aria Ops uses in UI for visualizing many data points on a
small window. It takes a time window (say, 6 h), finds the minimum and maximum
values of a metric, and puts them in the middle and at the end of that interval in the
same order as they appeared in that interval. For example, if the minimum occurred
earlier than the maximum, then the value of the minimum should be put in the middle
and the value of the maximum at the end. Then, it shifts the window by 6 h and
reiterates the procedure until the end of the metric.

• Aria Ops collects a vast number of metrics from cloud infrastructures and a num-
ber of self-generated metrics constructed by domain experts. The final monitored
datasets contain thousands of metrics with highly correlated subsets describing the
same process. As a result, the metric correlation engine, or TW, can detect hundreds
of other metrics with the same behavior. However, it will be very hard to separate
the metrics that describe the same process from the metrics related to different ones
for the detection of possible causations. This problem can be resolved only by users
with some expertise. They need to manually separate the possible domains of inter-
relations and skip analysis within the same areas. That is why we work separately
with three different datasets below, thus manually decreasing the total number of
possible correlations.

• Alerts/alarms are another source of uncertainty in Aria Ops. Many alerts are not
directly connected to a problem, as user-defined ones are not always sufficiently
indicative. Conversely, many problems have appeared without proper alert generation.
In our example below, the problem is not connected to a known alert–the “Remote
Collector Down” metric does not trigger any alert due to its fast oscillations. We found
that a problem analysis always starts from the corresponding KPI and its behavior.
Even if the problem description starts from an alert, the set of appropriate KPI metrics
should be identified and described.

• Finally, as we mentioned before, the expert knowledge of Aria Ops engineers remains
hidden in internal departments among a small number of specialists. As a rule,
this knowledge is not systemized, not shared appropriately, and cannot be used for
consistent and proactive management or a fast resolution of similar issues, especially
in cross-customer mode.

4. Trending Problem Scenarios

Let us describe a specific trending problem for a period that has impacted many user
environments (within several weeks, leading to multiple customer excavations):

Customers did not configure their firewall for Aria Ops Cloud Proxy [23] properly, which
means ensuring outgoing traffic to various sub-services.

vR Ops Cloud Proxy is a primary component for data collection. In the case of the
SaaS offering, it is the only appliance deployed in the customer environments and the only
means of data collection. Because of this, over time, a big set of different functionalities
were added to it. All this means is that whenever there is a problem with Cloud Proxy-to-vR
Ops cluster communication, the data collection, alerts stream, etc., are all stopped to be
serviced; in other words, vR Ops actually is not available.

Cloud Proxy basically contains two major services: the collector service, which is
responsible for the collection of data from the endpoints and sending them to the vR
Ops cluster, and CaSA (cluster and slice administration), which is responsible for the
management of the Cloud Proxy, i.e., initial deployment, upgrade, configuration, etc.
For both, as well as for the CP VM, vR Ops collects self-monitoring metrics. All the
communication from Cloud Proxy to the vR Ops cluster goes out from HAproxy.

From the engineers’ experience, whenever there is a problem on the customer side, e.g.,
deployment was not performed properly, or the network and firewall were not configured
properly, tremendous efforts are required to root out the cause of the situation and validate
the resolution. This is especially true in cases related to the firewall, as they require the
involvement of different departments and third parties, the customer’s network team, the
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security team, the firewall support team, and development. This results in exhausting
communication back and forth and time-consuming activities. We omit listing here SRs
that provide evidence for this and contain private information.

In all these cases, the situation is rather simple. It takes time until a customer notices
the issue. Then GSS becomes involved, and later, developers join the investigations. Finally,
it becomes clear that the cause is the customer’s firewall configuration. In the best case,
according to our SRE partners’ estimate, it takes a week to identify and fix it, but there
were cases when it took longer. Additionally, it requires much effort to prove and convince
the customer that the problem is not vR Ops-related. This is a common story in practice.
Furthermore, in all these cases, Cloud Proxy goes down periodically, and the cloud proxies
deployed within the same network and firewall act with the same periodicity. Another
observation is that a service can have issues sending the data to the vR Ops cluster in the
case of a product bug. In this use case scenario, the developer’s investigations lead to the
discovery of a common sequence of patterns:

a. An issue with the collector service in the cloud proxy is reported;
b. The CaSA service is also not sending self-metrics;
c. However, whenever the cluster starts receiving (self-monitoring) metrics data, it is

found that the cloud proxy VM was not down during the span of the issue;
d. These patterns happen periodically and synchronously.

It is then becoming clear that the problem is network-/firewall-related. We collected
datasets on the problem instances of cloud proxy failures detailed above to train and
validate interpretable ML algorithms capable of discovering the conditions or causes of
those failures (which are already established by the developers as the ground truth of such
poor performance).

5. Experiments and Discussions

According to the system diagram of ProbRCA, we conducted initial research on the
above-mentioned trending problem and related identification of impacted KPIs. The status
of cloud proxy down was chosen. We identified the periodicity and the same behavior
for the KPI metrics in case cloud proxies share the same network and firewall. Later,
we identified components that can be useful to include in our analysis with their self-
monitoring metrics (i.e., collector, CaSA, and Cloud Proxy).

5.1. Data

We utilize three different datasets synchronized by the time stamps. The first dataset
contains the metrics from CaSA. It has 36 metrics (columns) and 7530 metric values (rows)
with a 5 min monitoring interval. Some of the metrics are “API Calls Avg Response Time”,
“Free Physical Memory”, “Garbage Collector PS Scavenge Collection Time”, “Max Heap
Size”, and “System Attributes Original Total Alert Count”.

The second dataset contains the metrics of the collector, with 138 columns and
7530 rows (5 min monitoring interval). Engineers removed some of the redundant met-
rics. This dataset is composed of metrics such as “Control To Collector Task Action Status
Elapsed Time Summary”, “Controller To Collector Perform Action Tasks Receive”, “Collec-
tor To Controller Get Adapter Ids Elapsed Time Summary”.

The third dataset is a collection of cloud proxy metrics with 151 columns and 7530 rows
(5 min monitoring interval). Some of the names of metrics are “Net TCP CP Close Wait”,
“Data Receiving Status”, “Disk File System Storage DB Files Free”, “Disk File System Write
Bytes”, “Net All Inbound Total”.

5.2. Specific Results

According to our general planning, we start with identifying the KPI. For this specific
problem, the corresponding alert is missing, but the “Remote Collector Down” KPI has
a typical behavior shown in Figure 6. It started to oscillate, going up and down rather
frequently, indicating a problem. The same behavior of the same KPI has been detected for
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a series of customers with totally independent cloud environments. We apply min–max
smoothing with a 6 h time interval before applying more intelligent solutions. Figure 7
confirms the oscillating behavior of the KPI after the smoothing. It reduces the number of
metric values from 7530 to 208.

 
Figure 6. The oscillating behavior of the “Remote Collector Down” KPI.

 
Figure 7. “Remote Collector Down” KPI metric after the min–max smoothing.

We separately analyze connections between the KPI and other indicative metrics for
CaSA, collector, and Cloud Proxy. Since our research focuses on interpretable ML strategies,
we apply the classification rule-induction system RIPPER (see the related literature [24,25]),
which reveals rules containing the names of important metrics with some thresholds
combined in conditions. The labeling of datasets is performed via the values of KPI
(labels = 0, 1), where label = 1 indicates the “down” status of the cloud proxy. We detected
44 down conditions from 208 available data points.

Applying RIPPER to the CaSA dataset exposed the following rule (Rule 1):

(CaSA API Calls Total Requests ≤ 0.1) and
(CaSA Garbage Collector Aggregated Coll. Time ≥ 0.03) → KPI = Down (23/1).

The fraction at the end of the rule characterizes the importance. The number 23
shows how often the rule has been fired, and the denominator indicates the number of
misclassifications. The coverage of the rule is

22/44 × 100% = 0.5%

and the accuracy is
22/23 × 100% = 96%

33



Appl. Sci. 2024, 14, 1047

Applying RIPPER to the collector dataset detects the second rule (Rule 2):

(Collector To Controller Lookup Resource Elapsed Time Summary ≥ 0.002)
→ KPI = Down (42/5)

This rule has 84% coverage and 88% confidence.
Applying RIPPER to the Cloud Proxy dataset returns the third rule (Rule 3):

(Net TCP Listen = 0) → KPI = Down (47/9)

which has 86% coverage and 80% accuracy.
These rules and the KPI’s specific behavior can be stored as the knowledge that can be

used to identify and quickly resolve similar issues. Aria Ops engineers have verified Rules
1–3, which, in combination, indicate firewall problems.

5.3. Experimental Setup

The explainability of predictions (KPI = Up/Down) is critically important for systems
owned/managed by experts. AI recommendations must be transparent and trusted, allow-
ing experts to validate and adopt the solutions. Explainable AI (XAI) has many powerful
methods with internal (built-in) and external interpretability capabilities. These can reveal
the important set of features and sometimes also unveil the ranges of those features, pro-
viding a more detailed understanding of specific predictions. These recommendations,
given as a set of rules, are known to provide the highest level of explainability that can
be easily consumed by domain experts. Modern rule-learning methods contain several
powerful classifiers. Two well-known classical approaches known as C5 rules and RIPPER
are the state-of-the-art rule induction. RIPPER is especially powerful for large and noisy
datasets as it scales linearly with the number of observations. However, we can equally
apply both approaches as our datasets are rather small. In those cases, they show similar
performance. The selection of RIPPER is simply connected with its efficient implementa-
tion in WEKA 3 machine learning software (https://www.cs.waikato.ac.nz/ml/weka/,
accessed on 29 November 2023). The corresponding implementation is known as JRip
(Java RIPPER).

Let us show how JRip provides the recommendations. We apply it to the first dataset
(CaSA) and obtain a set of rules, as in Figure 8. The first two rules explain the positive class
(KPI is Down), and the final one labels all the remaining observations from the negative
class (KPI is Up). RIPPER rules have hierarchical importance. The first has the largest
coverage. After removing the observations (negative and positive) that fire the first rule, we
can use the second rule to explain the labels of the remaining instances. Then, we remove
the observations that fire the second rule, and all the remaining instances are labeled from
the negative class. Our experiments showed only the first rules, although the others can be
stored as relevant. We see that RIPPER is very fast for such small datasets. It generated
those three rules in 0.03 s.

JRip’s output also reveals the classification measures in Figure 9. The accuracy is 86.2%
for the first dataset. The corresponding evaluation is very important, as we cannot rely
on the rules that eventually result in small accuracy. Similar analysis we performed for
all three datasets evaluates the models’ performance, calculates the precisions and recalls
of the rules, and enables an expert validation if the corresponding scores are acceptable.
We cannot control the number of rules. These rules can be simple or complex. Moreover,
the experts can reject even very confident rules if the conclusions are frustrating or if they
cannot validate them.
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Figure 8. JRip rules for the first dataset (CaSA).

 
Figure 9. JRip classifier performance for the first dataset (CaSA).

5.4. Rule Validation with Dempster-Shafer Theory

To generalize expert views or knowledge gained over larger contexts and measured
data horizons related to various scales of product ecosystems and the workloads they
manage, we alternatively study a special rule verification framework and the corresponding
classifier proposed in [8]. This takes expert hypotheses as rules defined on features (and
their combinations) to assess their quality, thus realizing an interpretable what-if analysis
for further utilization in the knowledge store and real-time remedial executions. This
framework utilizes DST of evidence or plausibility as additional assistance to help experts
validate their observations about the environmental conditions in the classification setting.
Thus, if their experience tells them that some patterns or behaviors of specific features
within particular ranges might lead to the system misbehaving, they plug those hypotheses
(in other words, rules) into the DS classifier and obtain validation of their quality, including
uncertainty estimates to account for. Moreover, the classical rule induction algorithms
and DS rule verification approach can be leveraged and combined, while feeding the
automatically learned rules from the first strategy to be estimated with the second. In
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particular, Rule 1, discovered by RIPPER, obtains a low uncertainty estimate through DS
rule testing:

(CaSA API Calls Total Requests ≤ 0.1) and
(CaSA Garbage Collector Aggregated Collection Time ≥ 0.03)

with a probability of positive class 0.943 and uncertainty 0.057.
For Rules 2 and 3 learned by RIPPER, DST results in the following estimates:

Collector To Controller Lookup Resource Elapsed Time Summary ≥ 0.002

with a probability of positive class 0.861 and uncertainty 0.139; and

Net TCP Listen = 0

with a probability of positive class 0.763 and uncertainty 0.237. In the above, we see a
higher uncertainty in the last rule compared to the previous ones, which indicates that
there is less evidence for such a condition leading to a KPI breach.

The user of this framework can simply break value ranges (rule intervals) of all the
data frame features to verify how they can be indicative, standalone, or in any combination.
Here is a set of rules validated with splitting features into two ranges, which in several
cases surprisingly results in high-quality rules:

CaSA API Calls Total Requests < 0.424,

with a probability of positive class 0.998 and uncertainty 0.002;

CaSA Threads = 0.5,

with a probability of positive class 0.993 and uncertainty 0.067;

CaSA Free Physical Memory > 0.397,

with a probability of positive class 0.859 and uncertainty 0.141;

CaSA Garbage Collector PS Mark Sweep collection Time > 0.218,

with a probability of positive class 0.857 and uncertainty 0.143.
Another complex rule enforced by the user obtains the following estimate:

(CaSA GarbageCollector PS MarkSweep Collection Count = 1) and
(CaSA GarbageCollector PS Scavenge Collection Count = 0),

with a probability of positive class 0.973 and uncertainty 0.027.
The two-interval split is just motivated by the simplicity of rules that experts can expect

from the DS rule verification. It also has cheap performance in terms of the algorithm
execution. The probability of the positive class and the uncertainty level in the rule
estimated by the DST are the main factors the expert user could take into account in
approving it for the Knowledge Base and linking it to the troubleshooting procedures
and action frameworks. As an expert tool, the DST rule verification allows users to
discover patterns/conditions that affect the KPI state, thus guiding them to focus on the
corresponding attributes of the environment in root cause identification or prevention of
potential misbehaviors. In one of the above rules obtained by DST rule induction, we
observe that a free physical memory attribute above some level (0.397) leads to “KPI down”
with high probability; thus, the user needs to take care of its tuning accordingly in order to
prevent reoccurrence of the issue.

36



Appl. Sci. 2024, 14, 1047

6. Evaluation of Results

We apply available knowledge to an unknown issue in our further evaluation analysis.
Aria Ops detected similar problems in other customer environments. We analyze one of
those problems. The “Remote Collector Down” KPI inspection showed the same behavior
as in Figures 6 and 7. We detected 46 cases when the cloud proxy was down. Verification of
rules showed that in the case of Rule 1, the rule was correctly fired in 31 of the cases. In the
case of Rule 2, the rule was correctly fired in 32 of the cases. In the case of Rule 3, the rule
was correctly fired in 38 of the cases. We can confirm the matching of the problem pattern
stored in the rules’ library. These highly accurate results on unseen data demonstrate the
feasibility of the chosen approach and the quality of the explainable ML models trained.
Figures 10 and 11 present the behavior of some of the metrics that participated in the rules
in combination with the “Remote Collector Down” KPI after min–max smoothing to clarify
the correlations.

Figure 10. Behaviors of “Remote Collector Down” and “Net TCP Listen” metrics.

Figure 11. Behaviors of “Remote Collector Down” and “Collector to Controller . . .” metrics.
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7. Conclusions and Future Work

Our study proposes an explainable ML framework for automated troubleshooting of
cloud services, validating it for several trending problem use cases. It incorporates rule
induction methods to learn conditions or sources of anomalous behaviors for application
KPIs. Machine-detected causality conditions can enrich the alert definitions in cloud
operations services, thus enhancing their event management capabilities with AI-driven
problem resolution assistance as an easily achievable implication of this work. We also
described our larger vision of building a real-time self-diagnostic system and RCA tool
based on global learning across the customer eco-systems within the SaaS cloud delivery
model. Our method demonstrated accurate predictions of the root causes of those problem
types. We plan to extend our analysis to other problem types and derive insights and
quality metrics from larger experimental test beds.

Architecting an end-to-end ProbRCA service requires substantial development work.
Within this study, our objective was to prove the viability of such a system from a data
science perspective. There are several aspects to work on for a consistent benchmarking
solution design, improvement, and evaluation. Continuously retraining ML models for
problem types while performing the relevant data labeling in a pipeline, performance
analysis of rule induction methods for real-time recommendations, and their validation
over time with user feedback mechanisms or indirect means of tracking their actions are
several of those aspects. We also plan to put effort into adopting DST-based approaches to
better understand this theory’s frontiers and its practical significance as an apparatus for
characterizing and comprehending managed services.

This communication relates to and builds upon our prior research [26,27] on various
specific tasks in cloud diagnostics and administration comprising time series forecasting,
anomaly and change detection in not only such structured data, but also in logs and traces,
as well as abnormality root cause inference from these types of information sources. Based
on these solutions, our outlook for the future of intelligent cloud management includes
designing comprehensive AI-driven systems for self-driving data centers.
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Abstract: Powered parafoils, known for their impressive load-bearing capacity and extended en-
durance, have garnered significant interest. However, the parafoil system is a highly complex
nonlinear system. It primarily relies on the steering gear to change flight direction and utilizes a
thrust motor for climbing. However, achieving precise trajectory tracking control presents a challenge
due to the interdependence of direction and altitude control. Furthermore, underactuation and wind
disturbances bring additional difficulties for trajectory tracking control. Consequently, realizing
trajectory tracking control for powered parafoils holds immense significance. In this paper, we
propose a trajectory tracking method based on Twin Delayed Deep Deterministic Policy Gradient
(TD3) algorithm-optimized Linear Active Disturbance Rejection Control (LADRC). Our method
addresses the underactuation issue by incorporating a guiding law while utilizing two LADRC
methods to achieve decoupling and compensate for disturbances. Moreover, we employ the TD3
algorithm to dynamically adjust controller parameters, thus enhancing the controller performance.
The simulation results demonstrate the effectiveness of our proposed method as a trajectory tracking
control approach. Additionally, since the control process is not reliant on system-specific models, our
method can also provide guidance for trajectory tracking control in other aircraft.

Keywords: trajectory tracking control; powered parafoil system; linear active disturbance rejection
control; twin delayed deep deterministic policy gradient

1. Introduction

The parafoil unmanned aerial vehicle (UAV) is a type of flexible aircraft. A conven-
tional parafoil comprises a canopy, parachute, and payload, enabling it to carry out tasks
such as airdrops and aircraft recovery. With the development of autonomous aircraft
technology, powered parafoils appeared, incorporating thrust devices into the traditional
parafoil design, thus enhancing their endurance capabilities [1]. Hence, powered parafoils
possess the capability to execute precise tasks, such as stationary airdrops, and effective
trajectory tracking control is paramount for mission success. Nevertheless, the challenges
of trajectory tracking control encompass wind disturbances, underactuation, coupling, and
unexpected dynamics.

A mathematical model is necessary for analyzing the motion characteristics of a
parafoil system given the limitations imposed by actual flight tests, which involve substan-
tial preparation work, time, and expenses. Currently, there are numerous ways to express
models of powered parafoils. From a dynamics standpoint, this includes three-degree-of-
freedom (DOF) modeling [2], four-DOF modeling [3], six-DOF modeling [4], eight-DOF
modeling [5], and nine-DOF modeling [6]. Among them, the eight-DOF model takes into
account the slew, sway, yaw, heave, pitch, and roll motions, as well as the relative pitch
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and relative yaw motion between the parafoil canopy and the payload, which effectively
describe the motion state of the actual parafoil [7].

Trajectory tracking control of powered parafoils is a challenging task. The main
difficulties arise from three aspects. Firstly, the actual model is more intricate than the
constructed model, and there are unmodeled dynamics. Secondly, parafoil trajectory con-
trol is achieved by controlling the steering gear during flight, while altitude control is
achieved through thrust, resulting in coupling and underactuation between these two
control processes. Thirdly, during flight, the system is susceptible to wind disturbances,
potentially leading to severe loss of control. Taking into account the issues mentioned
above, research has been conducted. However, most of the literature only addresses the
problem of path following [8,9]. In our opinion, the main difference between implementing
trajectory tracking and path following lies in the design of the guidance law. The guidance
law plays a crucial role in expressing the tracking error in alternative forms and effectively
addressing the challenges of underactuation. However, in path following control, the guid-
ance law typically overlooks the consideration of forward tracking errors [10]. For example,
Sun et al. [11] formulated the guidance law as a sliding mode surface and employed linear
extended state observer (LESO) to decouple horizontal path following and height tracking.
Subsequently, they accomplished a three-dimensional path following control by utilizing
sliding mode controllers (SMCs). Similarly, Li et al. [12] also utilized an SMC for path
following control. Guo et al. [13] utilized the barrier Lyapunov function and backstepping
method, and developed an adaptive path-following controller. Zheng et al. [14] introduced
a horizontal path following guidance law that utilized the lateral tracking error and yaw an-
gle, enabling control of lateral tracking and the yaw angle through flap deflection. However,
the study overlooked the parafoil’s sideslip angle. There are very few research results on
parafoil trajectory tracking control. Li et al. [15] transformed tracking errors into guidance
commands for the yaw angle and glide slope angle and employed PID controllers to achieve
trajectory tracking control. For a powered parafoil without forward thrust, we proposed a
new guidance law and initially realized trajectory tracking control [16]. When selecting a
controller, apart from the aforementioned SMCs and PID controllers, other control methods
are available, such as LADRC. LADRC is a control method that has been developed based
on PID. It operates independently of model information, possesses inherent decoupling
capabilities, and is straightforward to implement in engineering applications [17,18]. As a
result, LADRC has demonstrated favorable outcomes in path-following control [19–21].

Parameter selection is a vital aspect of the controller configuration process as it directly
impacts the tracking accuracy of the controller. Researchers commonly rely on manual
tuning of controller parameters, which presents challenges in achieving optimal system
performance. Consequently, there has been a continuous emergence of various optimiza-
tion algorithms aimed at addressing this issue. For example, the heuristic algorithm,
exemplified by particle swarm optimization (PSO) [22] and the genetic algorithm [23], is
employed to optimize a set of fixed parameters of the controller [24,25]. Fuzzy control and
neural networks are utilized to obtain adaptive controller parameters [26,27]. However,
fuzzy control heavily relies on model information, while neural networks face challenges
in making appropriate decisions based on state changes. Therefore, deep reinforcement
learning (DRL) algorithms [28] that do not rely on model information and can make au-
tonomous decisions have been promoted. DRL is a kind of algorithm that combines the
computational capabilities of neural networks with the decision-making abilities of RL.
Its primary objective is to train optimal decision making through continuous interactions
between the agent and the environment. Currently, in the field of DRL, several algorithms
have been developed, including Deep Q-Networks (DQNs) [29] and Deep Deterministic
Policy Gradient (DDPG) [30]. DQNs are well suited to discrete action spaces, whereas
DDPG effectively handles continuous action spaces. The Twin Delayed Deep Determin-
istic Policy Gradient (TD3) algorithm was developed based on DDPG with enhanced
stability [31]. Current applications of the TD3 algorithm in motion control can be delin-
eated into two main categories. The first category entails employing the TD3 algorithm
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directly as a controller to optimize control variables [32,33]. The second category involves
integrating the TD3 algorithm with the designed controller to enhance its intelligence and
performance [34]. Comparatively, the second approach exhibits noticeable improvements
in training efficiency and contributes to the advancement of intelligent control systems.

Motivated by prior research, this paper presents a TD3-optimized LADRC method for
the trajectory control of a powered parafoil system. The main contributions of this paper
are summarized as follows:

• A guidance law for the trajectory tracking of a powered parafoil is proposed, which
effectively addresses the underactuation of the system.

• Based on the guidance law, two LADRC controllers aiming to achieve 3D trajectory
tracking control are designed to address challenges stemming from wind disturbances
and the coupling between horizontal trajectory and altitude.

• The TD3 algorithm is employed to acquire the controller’s real-time parameters by
leveraging the powered parafoil’s flight states. The TD3-optimized LADRC was
compared against the traditional LADRC control method using simulation results,
demonstrating the effectiveness of the proposed approach.

This paper is organized as follows: Section 2 establishes the eight-DOF model for the
powered parafoil system. Section 3 introduces the guidance law and outlines the design
process of the LADRC for horizontal trajectory and altitude control. The design process
of the TD3-optimized LADRC is presented in Section 4. Section 5 presents the simulation
results, and Section 6 concludes the paper.

2. Dynamic Modeling Introduction of Powered Parafoil

To provide a more precise depiction of the parafoil’s motion characteristics, this paper
adopts an eight-DOF dynamic model [5]. The model encompasses the parafoil canopy’s
slew, sway, yaw, heave, pitch, and roll movements, along with the relative pitch and yaw
motions between the parafoil canopy and the payload. To facilitate the modeling of the
parafoil system, three coordinate systems are introduced: the ground coordinate system,
denoted as Odxdydzd; the parafoil coordinate system, denoted as Osxsyszs; and the payload
coordinate system, denoted as Owxwywzw. These coordinate systems are illustrated in
Figure 1.

Figure 1. Schematic diagram of parafoil system coordinates.

First of all, based on Figure 1, we can observe that a powered parafoil system comprises
a parafoil canopy, a payload, parafoil ropes, and a thrust device. During flight, the paracord
can adjust its direction by pulling it either to the left or right. The thrust device, powered
by the propeller, generates the necessary upward lift for the parafoil. Hence, compared
to the conventional unpowered parafoil, the powered parafoil investigated in this study
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exhibits enhanced flexibility. Subsequently, we will briefly introduce the dynamic equation
of the powered parafoil.

By analyzing the forces acting on the canopy and the payload, the following momen-
tum equation can be obtained,⎧⎪⎨⎪⎩

∂Ps

∂t
+ Ws × Ps = Faero

s + FG
s + Ft

s

∂Pw

∂t
+ Ww × Pw = Faero

w + FG
w + Ft

w + Fth
w

(1)

where the subscripts s and w refer to the parafoil canopy and the payload, respectively,
indicating the variables associated with each component. Ps and Pw represent the mo-
mentums, which are calculated as the product of the mass and velocity of the canopy or
payload, respectively. In addition, the right side of the equation represents the force exerted
on both the canopy and the payload. The canopy experiences the combined effects of
aerodynamic force Faero

s , gravity FG
s , and the tension in the connecting ropes Ft

s . Similarly,
the payload undergoes these three forces, but it is further influenced by the propeller’s
thrust Fth

w . The velocity vectors are denoted as Vs = [us, vs, ws]
T and Vw = [uw, vw, ww]

T ,
respectively. Similarly, the angular velocity vectors are represented by Ws = [ps, qs, rs]

T

and Ww = [pw, qw, rw]
T . For the specific parameters of the model in this paper, please refer

to [5,35]. Equation (2) is the momentum moment equation corresponding to Equation (1),⎧⎪⎨⎪⎩
∂Hs

∂t
+ Ws × Hs + Vs × Ps = Maero

s + MG
s + M f

s + Mt
s

∂Hw

∂t
+ Ww × Hw = Maero

w + M f
w + Mt

w

(2)

where the moment of momentum H is obtained by multiplying the moment of inertia
matrix with the angular velocity.

Indeed, by utilizing Equations (1) and (2), we can derive the dynamic equation of the
powered parafoil system. This equation encompasses the state variables Vs, Vw, Ws and Ww,
along with the relative yaw angle ψr and relative pitch angle θr existing between the canopy
and the payload. Furthermore, the system comprises two control variables: flap deflection,
expressed as u1(−10 ≤ u1 ≤ 10 cm), and thrust, expressed as u2(0 ≤ u2 ≤ 120 N). u1
and u2 represent the variables for flap deflection and thrust, respectively. The acceptable
range for these variables is determined by the capabilities of the steering gear and thrust
motor. The saturation value is intentionally set to safeguard the equipment. Flap deflection
alters the flight direction, while thrust generates lift for the parafoil, enabling climbing. It
should be pointed out that u1 < 0 means pulling down the left paracord, and u1 > 0 means
pulling down the right paracord.

In general, the dynamic equation of the powered parafoil can be briefly described by
Equation (3)

ẋs = f (xs, u1, u2) (3)

with xs =
[
VT

w , WT
w , VT

s , WT
s , ψ̇r, θ̇r

]T .
Based on the kinetic equations, the kinematic equation can be further obtained,⎡⎣ ẋ
ẏ
ż

⎤⎦ =

⎡⎣ cosθcosψ cosθsinψ −sinθ
sinφsinθcosψ − cosφsinψ sinφsinθsinψ + cosφcosψ sinφcosθ
cosφsinθcosψ + sinφsinψ cosφsinθsinψ − sinφcosψ cosφcosθ

⎤⎦T

Vs (4)

where (x, y, z) are the position coordinates of the parafoil in the earth’s coordinate sys-
tem. Additionally, the roll, pitch, and yaw angles are represented by φ(φ ∈ [−π, π]),
θ(θ ∈ [−π

2 , π
2 ]), and ψ(ψ ∈ [−π, π]), respectively. Equation (5) establishes the relationship

between these Euler angles and the angular velocity. Furthermore, it should be noted that
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the pitch angle of the parafoil will not reach ±90◦ during flight, so there is no need to
consider the issue of singular values.⎡⎣ φ̇

θ̇
ψ̇

⎤⎦ =

⎡⎣ 1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

⎤⎦Ws (5)

The above is an introduction to the model of the powered parafoil system, while
the system’s flight process is elucidated through dynamic equations. Furthermore, it is
noteworthy that the flight state of the parafoil can be dynamically changed by implementing
both the steering gear and the thrust device. As a result, this capability enables the parafoil
to adeptly accomplish a wide range of predetermined trajectory tasks with remarkable
flexibility. However, during the control process, when comparing the built simulation
model with the actual system, the simulation model may contain uncertain factors, such
as unmodeled dynamics, internal parameter perturbations, and external environmental
interferences. Consequently, it becomes imperative for the designed control system to
address these challenges effectively.

3. Trajectory Tracking Controller Design Based on LADRC

The trajectory tracking of a powered parafoil system faces an underactuation problem,
requiring the utilization of two control variables to facilitate movement along the three
coordinate axes, as shown in Figure 2. Hence, it becomes imperative to employ the guidance
law before controller design to surmount the challenge posed by underactuation.

Figure 2. Schematic diagram of trajectory tracking for a powered parafoil system.

3.1. Guidance Law Design for Horizontal Trajectory

In Figure 2, (x, y, z) represents the current position of the parafoil system, while
(xd(�), yd(�), zd(�)) denotes the target position, where � is the trajectory variable. By
considering (xd, yd, zd) as the origin, we establish a target coordinate system denoted as
OvXvYvZv. Then, the horizontal trajectory tracking errors xe and ye in OvXvYvZv can be
expressed as {

xe = (x − xd) cos(ψd) + (y − yd) sin(ψd)

ye = −(x − xd) sin(ψd) + (y − yd) cos(ψd)
(6)

where ψd(�) = arctan(ẏd(�)/ẋd(�)).
In this paper, the guidance law for the horizontal trajectory is designed as

ψg = ψd + arctan(−αye)− χ (7)
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where α is a positive constant, ψg is the guided yaw angle, and χ = arctan(v/u) is the
sideslip angle. Then, the following theorem arises.

Theorem 1. Under the premise that the actual yaw angle ψ tracks the guided yaw angle ψg
very well, the horizontal trajectory tracking error can gradually converge to 0 with the desired
forward speed

ud = U cos(ψ + χ − ψd) + kxe (8)

where k > 0 and U =
√

u2 + v2.

Proof of Theorem 1. Construct a Lyapunov function as V = 1
2 x2

e +
1
2 y2

e ; then, its derivative
is derived as

V̇ = xeẋe + yeẏe (9)

According to Equation (6), the following expression can be derived,{
ẋe = U cos(ψ + χ − ψd)− ud + ψ̇dye

ẏe = U sin(ψ + χ − ψd)− ψ̇dxe
(10)

where the desired forward speed has the following expression:

ud = �̇
√

ẋ2
d(�) + ẏ2

d(�) (11)

With Equation (10), Equation (9) can be rearranged as

V̇ = xeU cos(ψ + χ − ψd)− xeud + yeU sin(ψ + χ − ψd) (12)

Further, with ψ = ψg and substituting Equation (8) into Equation (12), the following
inequality can be obtained

V̇ = −kx2
e + yeU sin(arctan(−αye))

= −kx2
e − αy2

e

≤ 0

(13)

Remark 1. The guidance law presented in Equation (7) effectively merges the lateral error ye with
the yaw angle ψ to achieve convergence of the lateral error. By altering the flight direction, this
approach effectively addresses the issue of underactuation. Furthermore, by combining Equation (8)
and Equation (11), we can derive the following rules for �̇:

�̇=
U cos(ψ + χ − ψd) + kxe√

ẋ2
d(�) + ẏ2

d(�)
(14)

To conclude, when the yaw angle ψ can accurately track the guided yaw angle ψg stated
in Equation (7), and the parameter � satisfies Equation (14), it is possible to achieve horizontal
trajectory tracking.

3.2. LADRC Design Process for Trajectory Tracking

Based on the guidance of the above law, it is necessary to develop a corresponding
controller that can effectively regulate the steering gear of the parafoil system. This con-
troller is essential for ensuring accurate tracking of the guidance yaw angle. Additionally,
another controller is required to calculate the appropriate thrust, enabling the parafoil
system to maintain a stable altitude during flight. In this paper, an LADRC controller is
chosen for several reasons. One notable advantage of LADRC is its independence from
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model information, allowing it to handle unknown disturbances effectively. Moreover,
LADRC exhibits inherent decoupling characteristics, effectively addressing the challenge of
coupling between horizontal trajectory tracking and altitude tracking. This makes LADRC
a suitable choice for the control system design in this study.

3.2.1. Horizontal Trajectory Tracking Controller

LADRC eliminates the need for detailed knowledge about the controlled object, as it
solely requires the order relationship between the output and input variables. According to
Equation (5), the following expression about ψ can be obtained,

ψ̈ =
sin φ

cos θ
q̇ +

cos φ

cos θ
ṙ +

sin θ sin 2φ

cos2θ
q2 − sin θ sin 2φ

cos2θ
r2 +

cos φ

cos θ
pq − sin φ

cos θ
pr

+
2 sin θ cos 2φ

cos2θ
qr

(15)

Then, combining Equations (3) and (15), we obtain the following second-order system,

ψ̈ = f1(·) + f2(u1) (16)

where, due to the complexity of the model, we use the abbreviated terms f1 and f2 to
express the system. This does not impact the design of the controller.

Furthermore, let y = ψ − ψg; then, there is

ÿ = f1(·) + f2(u1)− ψ̈g (17)

To facilitate the design of the controller, Equation (17) is rearranged to

ÿ = f1(·) + f2(u1)− ψ̈g − b01u1 + b01u1

= fh + b01u1
(18)

where fh is the total disturbance and b01 is an adjustable parameter.
By defining the state as x11 = y, x12 = ẏ, and x13 = fh, the following state space

equation can be obtained, ⎧⎪⎪⎨⎪⎪⎩
ẋ11 = x12
ẋ12 = x13 + b01u1
ẋ13 = ḟh
y = x11

(19)

Consequently, a full-order LESO is utilized to estimate the above state,⎧⎨⎩
˙̂x11 = x̂12 + β01(y − x̂11)
˙̂x12 = x̂13 + b01u1 + β02(y − x̂11)
˙̂x13 = β03(y − x̂11)

(20)

where x̂11, x̂12, and x̂13 are the estimated values of x11, x12, and x13, respectively. β01,
β02, and β03 are observer gains, and these three parameters are related to the accuracy
of the estimated values. Usually, the pole configuration method is used to configure the
observer gain parameters to the pole −ωo1 (ωo1 > 0) that can make the system stable, that
is, β01 = 3ωo1, β02 = 3ω2

o1, and β03 = ω3
o1. In this case, only the single parameter ωo must

be adjusted to align the observed values with the actual values.
When the observed states are accurate, we have x̂13 ≈ fh. Then, we can employ a PD

control law to mitigate the disturbance,

u1 =
kp1(yd − x̂11)− kd1 x̂12 − x̂13

b01
(21)
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where kp1 and kd1 are controller parameters; yd is the desired value of y. yd = 0. In
addition, by substituting Equation (21) into Equation (18), we observe that the estimated
disturbance value effectively compensates for the unknown disturbance within the system.
This fundamental concept lies at the core of the LADRC algorithm. In addition, the stability
analysis of an LADRC control system is provided in the Appendix A.

3.2.2. Altitude Controller

Altitude control is comparatively more straightforward than horizontal trajectory
tracking since it does not require the implementation of guidance laws. Nevertheless, the
design process for the altitude controller follows a similar approach to that of the horizontal
controller, as both require knowledge of the system order.

According to Equation (4),

ż = −us sin θ + vs sin φ cos θ + ws cos φ cos θ (22)

In fact, according to ref. [5], there exists a relationship between the parafoil canopy’s
speed and the thrust u2, which can be expressed as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v̇s =
cos θr sin ψr

ms + ma,11
u2 + ...

u̇s =
cos θr cos ψr

ms + ma,22
u2 + ...

ẇs =
− sin θr

ms + ma,33
u2 + ...

(23)

where the ellipsis represents items not related to u2.
Then, further deriving Equation (22), it can be deduced that

z̈ = −u̇ssinθ + v̇ssinφcosθ + ẇscosφcosθ − (uscosθ + vssinφsinθ + wscosφsinθ)θ̇

−(wscosθsinφ − vscosθcosφ)φ̈

=

(
−cos θr cos ψr sin θ

ms + ma,22
+

sin φ cos θ cos θr sin ψr

ms + ma,11
− sin θr cos φ cos θ

ms + ma,33

)
u2 + . . . (24)

As a result, a second-order system can also be obtained:

z̈ = fa + b02u2 (25)

where fa represents the total unknown disturbance in this system.
Next, we can proceed with the sequential design of the LESO and PD control law

based on Equations (19)–(21) mentioned earlier. However, the detailed description of this
process is beyond the scope of this discussion.

In summary, the trajectory tracking control of a powered parafoil in this paper depends
on two LADRC controllers, each requiring the adjustment of four parameters. Hence, the
parameters that necessitate adjustment in the control system are as follows: ωo1, kp1, kd1,
b01 for the horizontal controller, and ωo2, kp12, kd2, b02 for the height controller. These pa-
rameters will undoubtedly affect the trajectory tracking accuracy. To explore the parameter
adjustment rules within the LADRC controller, interested readers are encouraged to consult
ref. [36].

4. Optimized LADRC Approach Using TD3

Parameter tuning is indeed a sequential decision-making problem, and DRL algo-
rithms have been proven as an effective way to solve it. The TD3 algorithm is a deep
reinforcement learning algorithm designed to handle problems with a continuous action
space. This paper focuses on adaptively varying the parameters, making the TD3 algorithm
an ideal choice for optimizing the controller parameters. Additionally, it is worth noting
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that ref. [37] highlights the significance of ωo and b0 in ensuring the stability of the LESO.
Therefore, this paper solely focuses on optimizing the parameters within the control law,
namely kp and kd.

4.1. The Basics of the TD3 Agent

The TD3 algorithm fundamentally derives the optimal strategy by facilitating continu-
ous interaction between the agent and the environment. This paper uses a powered parafoil
system with controllers as the environment. At the same time, the agent functions as the
algorithm’s cognitive component, responsible for decision-making processes, as shown
in Figure 3. Specifically, the agent is situated in a specific state, denoted as st ∈ S, at each
time step. Depending on the state transition probability Pa

ss′ = P[st+1 = s′|st = s, at = a]
and the action value a ∈ A, the agent undergoes a transition from the current state st to
the subsequent state st+1 with a certain probability. Simultaneously, the agent receives an
immediate reward rt+1 ∈ R associated with this transition. S and A are the state space and
action space, respectively.

Figure 3. Schematic diagram of the interaction process.

The goal of the TD3 algorithm is to find the optimal strategy. This, of course, necessi-
tates receiving feedback in the form of reward values. Consequently, the optimal strategy
is attained by maximizing the expected value of the cumulative reward, which can be
expressed as

π∗ = max
π

Eτ∼π [Rc(τ)] (26)

where Rc =
∞
∑

t=0
γtrt+1 is the cumulative reward, and the discount factor γ ∈ (0, 1] is

employed to represent the importance of future reward values.
The TD3 agent consists of several key components, namely a replay buffer, two critic

networks, an actor network, and their respective target critic networks and target actor
network, as illustrated in Figure 4. On the one hand, the critic network estimates the Q
value expressed in Equation (27) by taking the state and action as inputs and generating
the corresponding Q value as output, a common approach in DRL algorithms. On the
other hand, the actor network is updated using the policy gradient method, which involves
computing the gradient of the expected Q value concerning the actor network parameters.
The parameters of the networks are represented by θ(θ′) for the critic networks and φ(φ′)
for the actor network.
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Figure 4. Structure diagram of the TD3 agent.

Qπ(s, a) = Eπ [Rc|st = s, at = a ] (27)

The training process of the TD3 algorithm is shown in Algorithm 1.

Algorithm 1 TD3 Algorithm

Initialize critic networks Qθ1(s, a), Qθ2(s, a) and actor network πφ(s) with random pa-
rameters θ1, θ2 and φ.
Initialize target networks Qθ′1

(s, a), Qθ′2(s, a) and πφ′(s) with weights θ′1 ← θ1, θ′2 ← θ2

and φ′ ← φ.
Initialize replay buffer D.
if t ≤ T then

Select action with exploration noise a ∼ πφ(s) + ε, ε ∼ N (0, σ) , observe reward r and
new states s′.
Store transition tuple (s, a, r, s′) in D.
Sample mini-batch of m transitions (s, a, r, s′) from D.
a′ ← πφ′(s′) + ε, ε ∼clip(N (0, σ′),−c, c).
y ← r + γmini=1,2Qθ′ i (s

′, a′).
Update critics by θi ← arg minθi

1
m ∑

(
y − Qθi (s, a)

)2.
if t mod κ then

Update φ by the deterministic policy gradient: ∇φ J(φ) =
1
m ∑∇aQθ1(s, a)

∣∣∣a=πφ(s)∇φπφ(s) .

Update target networks by moving average method: θ′i ← τθi + (1 − τ)θ′i , φ′ ←
τφ + (1 − τ)φ′ .

end if
end if

4.2. Agent Design for Powered Parafoil System

Based on the introduction to the TD3 agent mentioned earlier, we will proceed with
the design of the state space, action space, and reward function of the agent to address the
powered parafoil system’s trajectory tracking control problem.

The action variables within the agent are unquestionably parameters that require
optimization, namely, kp1 and kd1 for the horizontal controller and kp2 and kd2 for the
altitude controller. Then, the four-dimensional action space can be expressed as{

a1, a2, a3, a4 ∈ A
∣∣a1 = kp1, a2 = kd1, a3 = kp2, a4 = kd2

}
(28)
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State variables are pieces of information that the agent can directly acquire from the
environment. For the trajectory tracking problem, the trajectory tracking errors directly
indicate the controller’s performance. Therefore, the state space is constructed as

{s1, s2, s3, s4 ∈ S|s1 = y, s2 = ẏ, s3 = z − zd, s4 = ṡ3 } (29)

In Equation (29), the impact of horizontal trajectory tracking is observed through
variable y in Equation (17), with an expected value of 0. Based on the state space, it is
necessary to design the reward function. The fundamental principle guiding the design of
the reward function is to assign a reward when the state value approximates the desired
state, otherwise applying a penalty. In this paper, the reward function is designed as follows:

r = −|s1| − 5|s3|+ a + b (30)

where

a =

⎧⎪⎨⎪⎩
2 tanh(1/|s1|), If ∃ (s1 ≤ 0.5&s2 ≤ 0.05)

2 tanh(1/|s3|), If ∃ (s3 ≤ 5&s4 ≤ 0.5)

0, Otherwise

(31)

b =

{
− 2, If ∃ s1s2 > 0‖s3s4 > 0

0, Otherwise
(32)

In the designed reward function, the terms a and b correspond to the reward and
penalty components, respectively. The two terms are employed to encourage minimal
trajectory tracking errors.

Once the action space and state space have been established, the number of input
and output neurons for both the critic network and actor network of the TD3 agent can
be determined. To enhance the visual representation of the network structure, Figure 5 is
utilized to present it more intuitively.

(a) Critic network (b) Actor network

Figure 5. Structure diagram of critic and actor networks.

5. Simulation Results

Table 1 illustrates the dimensions of the powered parafoil investigated in this paper.
Numerical simulations were performed in the Matlab environment and executed on a
laptop with an i7-10875H CPU. In addition, the hyperparameters involved in the TD3
algorithm were γ = 0.99 and τ = 0.005. The simulation in this paper was completed on the
MATLAB platform. The learning rate of networks was 0.001.

To validate the efficacy of the proposed TD3-LADRC method, simulation verification is
performed using the model presented in Section 2. With an initial velocity of the parachute
set as V0 = [14.9, 0, 2.1]T m/s and W0 = [0, 0, 0]T rad/s, the initial position is specified as
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(x0, y0, z0) = (20, 20, 550) m. The initial Euler angles are defined as [φ0, θ0, ψ0] = [0, 0, 0]. In
addition, suppose the following formula expresses the target trajectory:⎧⎪⎨⎪⎩

xd(�) = 6�

yd(�) = 8�

zd = 500

(33)

Table 1. Physical parameters of the powered parafoil system.

Parameter Description Value

Wing span 4.5 m
Mean aerodynamic chord 1.3 m

Mass of parafoil 1.7 kg
Mass of payload 20 kg

Wing area 6.5 m2

Rope length 3 m

Subsequently, the TD3-LADRC control method is employed to achieve the desired
trajectory, as depicted in Equation (33). In the control system, the parameter values in
the guidance law are set as α = 0.02 and k = 50. For the horizontal trajectory controller,
ωo and b0 are chosen as 5 and 0.5, respectively. Likewise, for the altitude controller, the
values selected are 15 and 2, respectively. Furthermore, the action space is expressed by
Equation (34). Moreover, the following four cases are considered:

• Wind-free: there is no wind during the flight;
• Wind-X: a wind of 2 m/s from the west direction is added at 60 s and lasts until the

end of the simulation;
• Wind-Y: a wind of 2 m/s from the south direction is added at 60 s and lasts until the

end of the simulation;
• Wind-Z: a wind of 2 m/s from the vertical direction is added at 60 s and lasts until the

end of the simulation. ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
kp1 ∈ [0.005, 0.05]

kd1 ∈ [0.1, 0.5]

kp2 ∈ [0.05, 0.5]

kd2 ∈ [1, 2]

(34)

The simulation results are shown in Figures 6–11. First and foremost, the results of
episode rewards are displayed in Figure 6, which indicate that the TD3 agent can achieve
stabilization. For the four cases mentioned above, Figure 7 displays the schematic diagrams
of both the 3D and 2D trajectories. Additionally, Figure 8 illustrates the progression of the
steering gear and thrust obtained by the controller. The corresponding trajectory tracking
errors and the reward value change process are depicted in Figure 9. Furthermore, Figure 10
showcases the variations in Euler angles and velocity throughout the flight, while Figure 11
presents the TD3-optimized controller parameters.
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Figure 6. Episode reward for the TD3 agent.

(a) 3D trajectory tracking (b) Horizontal trajectory

Figure 7. Trajectory performance in different cases.

(a) Flap deflection (b) Thrust output

Figure 8. Control variables.

(a) Tracking errors (b) Instant reward value

Figure 9. Trajectory tracking errors and the corresponding reward value.
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(a) Euler angles (b) Velocity component

Figure 10. Euler angles and speed change process.

(a) Parameters of the horizontal controller (b) Parameters of the altitude controller

Figure 11. Controller parameters by TD3.

In general, our objective is to test the trajectory tracking effect of the proposed TD3-
LADRC in various cases. Additionally, we compared the control effect of the LADRC with
fixed parameters in the obtained results. For the fixed parameters, we selected kp1 = 0.005,
kd1 = 0.1, kp2 = 0.05, and kd2 = 1. Overall, the method depicted in the results diagram can
successfully accomplish trajectory tracking control. This, to a certain extent, demonstrates
the effectiveness of the proposed guidance law and LADRC control method. Specifically,
under the same condition of being disturbed by wind in the X direction, it can be found
from Figure 7a that the trajectory tracking effect of the yellow curve is better than the blue
curve, which shows that the proposed TD3-LADRC method is better than the traditional
LADRC method, and this conclusion can also be further verified in Figure 9a. Observing
the response of the proposed TD3-LADRC to different disturbances, it can be found that the
thrust output and flap deflection will also fluctuate when they are perturbed, and they will
eventually stabilize to a constant value, as illustrated in Figure 8. Furthermore, the proposed
method can overcome the effects of disturbance and coupling to achieve trajectory tracking
control. It can be seen from Figure 10 that the parafoil does not lose control of its attitude
during flight and can fly smoothly. The selection of parameters in Figure 11 is determined
based on the reward value in Figure 9b. As state changes result in fluctuations in reward
values, the controller parameters experience more frequent adjustments in the presence
of disturbances compared to disturbance-free scenarios. Furthermore, when subjected to
the same disturbance, the trajectory tracking effect optimized by the TD3 algorithm proves
superior, as evident from Figure 9a. By examining the change process of the steering gear,
thrust output, and controller parameters, as illustrated in Figures 8 and 11, we observe that
the system responds differently to various wind disturbances to achieve precise trajectory
tracking. This observation further supports the trajectory tracking approach presented in
this paper.
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6. Conclusions

This paper investigates the trajectory tracking control problem in powered parafoil
systems. To address the underactuation, coupling, and wind disturbance challenges during
the control process, we propose an intelligent control method based on TD3-optimized
LADRC. Initially, an eight-DOF model is established to simulate the actual parafoil system’s
flight state accurately. Subsequently, we address the underactuation issue by introducing a
trajectory tracking guidance law. Moreover, we design two LADRC controllers to achieve
decoupling between horizontal trajectory tracking and height control while enabling trajec-
tory tracking control. To further enhance the trajectory tracking process, we employ the
TD3 algorithm to obtain real-time parameters for the controller, thereby reducing track-
ing errors. The proposed method successfully achieves trajectory tracking control under
various disturbance conditions, with its effectiveness duly validated.

The proposed method in this paper effectively achieves trajectory tracking control
for powered parafoils and is also instructive for the trajectory tracking control of other
aircraft. However, during the TD3 optimization process, finding a good balance between the
horizontal and height tracking states within the reward function is a significant challenge
that warrants further consideration. Assigning excessively high rewards to either state
can undermine the feedback loop of the other state during the training process. We intend
to continue investigating this issue in our future research. Additionally, in this paper,
the configuration of the action space is manually adjusted based on multiple simulations,
lacking theoretical solid justification. Addressing this limitation is a crucial aspect that
requires dedicated research efforts. Furthermore, this paper did not delve into a theoretical
analysis of the actor–critic framework. Some insights on this can be found in refs. [38–40],
and we plan to carry out further research in this direction in the future.
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Appendix A

This section takes the LADRC in Section 3.2.1 as an example to prove the stability of
the closed-loop system. Firstly, according to the LESO in Equation (20), the estimation error
vector is defined as ε = [ε1, ε2, ε3]

T , with εi = x1i − x̂1i. Then, the following Theorem A1
can be obtained.

Theorem A1. Assuming that h = ḟh is bounded, that is, |h| ≤ M1, (M1 > 0), then the observer
error ε of the LESO is also bounded, that is, |ε| ≤ M2, M2 > 0.

Proof of Theorem A1. With Equations (19) and (20), the state space equation about ε can
be derived as:

ε̇ = A1ε + Bh (A1)
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where A1 =

⎡⎣ −β01 1 0
−β02 0 1
−β03 0 0

⎤⎦, B =

⎡⎣ 0
0
1

⎤⎦.

According to Equation (A1), we have

ε(t) = eA1tε(0) +
∫ t

0
eA1(t−τ)Bhdτ (A2)

Since A1 is a Hurwitz matrix, there exists an invertible real matrix T that allows the
following expression of A1:

A1 = Tdiag{−λ1,−λ2,−λ3}T−1 (A3)

where −λi(λi > 0), i = 1, 2, 3, represents the eigenvalues.
Then, we have

eA1t = Tdiag
{

e−λ1 , e−λ2 , e−λ3
}

T−1 (A4)

Further, the following inequality can be derived by m∞ − norm:∥∥∥eA1t
∥∥∥

m∞
≤ βe−λ1t (A5)

where β is a constant value.
According to Equation (A5), with the assumption of |h| ≤ M1, Equation (A2) can have

the following inequality derivation process:

‖ε(t)‖ =

∥∥∥∥eA1tε(0) +
∫ t

0
eA1(t−τ)Bhdτ

∥∥∥∥
≤

∥∥∥eA1tε(0)
∥∥∥+ ∥∥∥∥∫ t

0
eA1(t−τ)Bhdτ

∥∥∥∥
≤

∥∥∥eA1t
∥∥∥

m∞
‖ε(0)‖+

∫ t

0

∥∥∥eA1(t−τ)
∥∥∥‖B‖‖h‖dτ

≤ βe−λ1t‖ε(0)‖+ M1β

λ1

(
1 − e−λ1t

)
≤ β‖ε(0)‖+ M1β

λ1

= M2

(A6)

Theorem A2. Assume that the control system tracks a bounded input r and the observer error satisfies

lim
t→∞

‖ε(t)‖ = 0 (A7)

then the tracking errors e can also converge to 0.

Proof of Theorem A2. Let r1 = r, r2 = ṙ, r3 = f ′h, then the tracking error vector of the
controller can be defined as ξ = [ξ1, ξ2]

T , with ξi = ri − x1i. In addition, the PD control law
in Equation (21) can have the normal form,

u1 =
kp1(r1 − x̂11) + kd1(r2 − x̂12) + (r3 − x̂13)

b01
(A8)

Then, according to Equations (19) and (A8), the following expression can be derived:{
ξ̇1 = ξ2
ξ̇2 = −kp1(ξ1 + ε1)− kd1(ξ2 + ε2)− ξ3

(A9)
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Furthermore, Equation (A9) can be expressed in another form:

ξ̇ = A2ξ + A3ε (A10)

with A2 =

[
0 1

−kp1 −kd1

]
, and A3 =

[
0 0 0

−kp1 −kd1 −1

]
.

Similarly, Equation (A10) has the following solution,

ξ(t) = eA2tξ(0) +
∫ t

0
A3εeA2(t−τ)dτ (A11)

A2 is also a Hurwitz matrix, thus satisfying
∥∥eA2t

∥∥
m∞

≤ βe−λ1t. As a result, there is
the following inequality about ξ(t),

‖ξ(t)‖ =

∥∥∥∥ξA2tξ(0) +
∫ t

0
A3εeA2(t−τ)dτ

∥∥∥∥
≤

∥∥∥ξA2tξ(0)
∥∥∥+ ∥∥∥∥∫ t

0
A3εeA2(t−τ)dτ

∥∥∥∥
≤ βe−λ1t‖ξ(0)‖+ ‖ε‖‖A3‖β

∫ t

0
e−λ1(t−τ)dτ

≤ βe−λ1t‖ξ(0)‖+ M2‖A3‖β

λ1

(
1 − e−λ1t

)
(A12)

In accordance with the assumption presented in Equation (A7), finding the limit of ξ
in Equation (A12) leads to the following result,

lim
t→∞

‖ξ(t)‖ = 0 (A13)

Remark A1. Theorem A1 proves the stability of the linear extended state observer under the
premise that the disturbance is bounded, which shows that the observation errors are bounded.

Remark A2. Theorem A2 further establishes that with the utilization of the expanded state observer
and PD control law, the tracking error of the closed-loop system is bounded, thus ensuring the
stability of the closed-loop system.
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Abstract: The aim of wastewater treatment plants (WWTPs) is to clean wastewater before it is
discharged into the environment. Real-time monitoring and control will become more essential as
the regulations for effluent discharges are likely to become stricter in the future. Model-based soft
sensors provide a promising solution for estimating important process variables such as chemical
oxygen demand (COD) and help in predicting the performance of WWTPs. This paper explores
the possibility of using interpretable model structures for monitoring the influent and predicting
the effluent of paper mill WWTPs by systematically finding the best model parameters using an
exhaustive algorithm. Experimentation was conducted with regression models such as multiple
linear regression (MLR) and partial least squares regression (PLSR), as well as LASSO regression with
a nonlinear scaling function to account for nonlinearities. Some autoregressive time series models
were also built. The results showed decent modelling accuracy when tested with test data acquired
from a wastewater treatment process. The most notable test results included the autoregressive model
with exogenous inputs for influent COD (correlation 0.89, mean absolute percentage error 8.1%) and
a PLSR model for effluent COD prediction (correlation 0.77, mean absolute percentage error 7.6%)
with 20 h prediction horizon. The results show that these models are accurate enough for real-time
monitoring and prediction in an industrial WWTP.

Keywords: soft sensor; wastewater treatment; modelling; resource efficiency; exhaustive search

1. Introduction

The purpose of wastewater treatment is to remove suspended solids, organic matter,
nutrients and harmful compounds from water so that its quality meets certain limit values
before it is discharged back to the environment, typically into the sea or a river. It is
very likely that the regulations and limit values for effluent quality set by the authorities
will be more stringent in the future. The influent wastewater of an industrial wastewater
treatment plant (WWTP) typically contains wastewater from several sources and, therefore,
depending on the sourcing process and how it is operated, the quality (e.g., temperature,
amount of nutrients and organic matter) and quantity of influent can vary significantly.
These changes can be profound and occur quickly, but the heart of the wastewater treatment
process, i.e., biomass, adapts slowly to changes. Drastic changes may be challenging for
the operation of the treatment process and affect the quality of the effluent. In addition, the
treatment process includes varying delays. Hence, there is a need for real-time monitoring
of the WWTP process. Real-time monitoring may include online measurements but also
soft sensors. In this study, the development of soft sensors for chemical oxygen demand is
studied. These soft sensors can help reduce the pollution load and increase the efficiency of
the WWTP process.

Chemical oxygen demand (COD) refers to the amount of oxygen consumed by the
dissolved and suspended matter in a sample when exposed to a specific oxidising agent
under specific conditions [1]. In simple terms, COD provides an estimate of the overall
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organic pollution or contamination level in water or wastewater. COD is a measure of
the wastewater’s capacity to consume oxygen in chemical reactions. Typically in WWTPs,
the COD is used to quantify the amount of harmful organic matter in the wastewater.
The COD is, in many cases, measured in a laboratory offline from a sample or with an
expensive online analyser. However, the harsh process conditions in WWTPs can cause
deterioration and biofilm formation in analyser sensors that can cause interference, which
can lead to reduced measurement precision over time [2]. Therefore, these sensors require
constant maintenance, recalibration or replacement to keep them accurate, which is why
soft sensors could prove to be a good alternative. A soft sensor can be utilised to indicate
the malfunction of a hardware sensor or used instead of a hardware sensor for monitoring
a process variable [3–5]. With a real-time estimator, process operators could match the
process conditions to the incoming COD more accurately. Combined with a predictive
effluent model, with the purpose of predicting the amount of COD discharged into the
water basins, the WWTP operation could be optimised to treat the maximum amount of
wastewater with minimal effort for both environmental and economic gain.

Regression models such as partial least squares regression (PLSR) and multiple linear
regression (MLR) have been used to estimate the COD and other quality parameters in
the past [6]. Mujunen et al. [7] utilised PLSR to estimate COD reduction among other
parameters to analyse the treatment efficiency of a pulp and paper mill WWTP, using a
large number of variables from the WWTP and a forward stepwise procedure to select
the variables. One year later, in a similar study, Teppola et al. [8] utilised multiple linear
regression, principal component regression and PLSR with a Kalman filter to update
regression model coefficients to model COD reduction. Woo et al. [9] applied kernel partial
least squares to model the COD, total nitrogen and cyanide of an industrial coke WWTP
and compared the results with conventional linear PLSR. They found that the kernel partial
least squares method was able to capture the nonlinearities of the WWTP and provide a
better estimate for the modelled variables when compared to the linear PLSR. Dürrenmatt
and Gujer [10] used generalised least squares regression (along with other modelling
methods) to estimate the effluent COD in primary clarifiers and the ammonia concentration
in activated sludge tanks. They found that simple linear models could be used accurately
as soft sensors in a municipal wastewater treatment setting. Abouzari et al. [11] estimated
the COD of a petrochemical wastewater treatment plant using various linear and nonlinear
methods. They found that piece-wise regression linear regression provided relatively high
accuracy and had better reliability compared to other methods. More recent studies on
industrial applications have focused more on either nonlinear model structures or hybrid
model structures and have been a popular research topic, as it is believed that these kinds
of hybrid models could capture both nonlinear and linear behaviour [12].

Machine learning methods have also been a popular option in studies where soft
sensing or prediction of process performance has been the focus [13–16]. Yang et al. [17]
used a nonlinear autoregressive network with exogenous inputs (NARX) model to predict
effluent COD and total nitrogen and compared the results with artificial neural network
(ANN) models. Wang et al. [2] compared nine different machine learning algorithms in
total to predict effluent COD. The resulting models demonstrated a high degree of precision.
Zhang et al. [18] proposed a novel modelling method using dynamic Bayesian networks
with variable importance in projection for soft sensor applications. The study included
comparisons of their new modelling method to PLSR, ANN and other Bayesian networks.
Many studies focus on nonlinear machine learning models, which provide little knowledge
on how a modelled variable could be controlled [19]. These models are also difficult to
implement in practice, which is why there is a significant need for models that could be
directly derived from process measurements and easily implemented into practice.

In terms of studies where WWTP influent is monitored, municipal WWTPs have been
a popular topic of research. This is largely due to rain having a large effect on the operation
of municipal WWTPs, as the source of the incoming wastewater naturally greatly affects the
characteristics of the wastewater and WWTP operation. Similar modelling methods have
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been used in studies where influent quality parameters are modelled [20–23]. However,
since the main purpose of this research is to study industrial wastewater treatment, these
studies are not further explored here.

This research aims to improve the utilisation of online process measurements in the
context of industrial wastewater treatment plants. Online COD measurement is difficult and
laborious to maintain. If left unmaintained, the measurement reliability is compromised.
In addition, the sampling interval for online measurement is four hours, but with a soft
sensor, the sampling interval can be reduced. Thus, this study focuses on models that
can replace the online measurement device. The aims of this study are to form models
for influent and effluent COD using available process data. The first target is to develop
an accurate model for the influent, specifically to provide a basis for a soft sensor that
estimates COD levels. This model gives online information about the influent COD. The
second target is to construct a predictive model for effluent quality. The working principle
of this model is similar to the influent model, but the goal is to predict the remaining COD
in the wastewater before the wastewater is discharged, assuming the process conditions
remain unchanged. The model proposed can be used for online monitoring of the WWTP.
Because it predicts future effluent COD values, the information it provides can even be
used to prevent undesired changes in the process. It is essential that models developed for
both targets possess a high degree of interpretability and are sufficiently straightforward to
enable direct implementation using process measurements. For this purpose, this work
focuses on straightforward linear model structures.

WWTP process data contain many variables, from which one must be able to select
the most important ones for the modelling. The selection of input variables is typically
conducted based on available data using either an input variable selection method or
process knowledge. The literature reports many techniques for automatic variable selection.
This study does not use these, and thus these methods are not described here. An interested
reader can find an excellent review of these, for example, by Guyon and Elisseeff [24]. In
this study, an exhaustive algorithm is utilised to systematically test various combinations of
online process variables from a pool of variables together with delays and model structures.
Furthermore, suitable training windows are systematically browsed. By systematically sift-
ing through the data, valuable information for modelling can be found. The key advantage
of the whole approach is that it enables a comprehensive exploration of the entire dataset
and model structures. In this study, the following model structures are examined: multiple
linear regression (MLR), partial least squares regression (PLSR), autoregressive exogenous
model (ARX), autoregressive moving average with exogenous input model (ARMAX) and
least absolute shrinkage and selection operator (LASSO). Overall, this method offers a
thorough approach to variable selection, enabling the extraction of important information
from the available data and the creation of straightforward, interpretable models with
real-world applicability.

This paper is organised in the following manner: Section 2.1 includes general knowl-
edge about soft sensor development and the challenges related to it. Sections 2.2 and 2.3
includes an introduction to the case WWTP and to the data collected from the plant. They
outline the key characteristics and configuration of the WWTP, as well as how the data
are used for modelling work. Section 2.4 discusses how these data were pre-processed to
be used for modelling purposes. It explores the techniques used to transform the data to
ensure their suitability for subsequent modelling purposes. Section 2.5 includes a discus-
sion of the proposed modelling approach. Sections 2.6 and 2.7 includes descriptions of the
model structures utilised in this work, as well as the validation procedures used to assess
their performance and accuracy. Lastly, Section 3 includes results from the modelling work
and discussion.
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2. Materials and Methods

2.1. Soft Sensor Development

Soft sensors are mathematical models that combine the outputs of one or more hard-
ware sensors to estimate the targeted variable. A data-based soft sensor uses historical
data to predict or estimate the variable of interest, even when direct measurements are
not readily available. One of the main advantages of soft sensors is that they enable the
estimation of hard-to-measure variables by a created mathematical model that consists
of easy-to-measure variables. The mathematical models used in soft sensors are usually
derived from data using statistical or machine learning methods. For the soft sensor output
to be reliable, there needs to be a large amount of relevant data for soft sensor training [25].

One of the challenges is to find relevant data for model training. The data used for
training and validation of the data-derived model should be of high quality to ensure a
high-quality soft sensor. There can be various issues related to the data, such as nonlinear
behaviour, different process phases and multicollinearity, which make modelling more
difficult. Challenges related to information can relate to possible process deviations, sensor
faults or over-fitting, or deterioration of the soft sensor model, all of which can make the
development of soft sensor models more difficult. Lastly, challenges can be related to the
implementation of expert knowledge. Leveraging process knowledge can be valuable in
tasks such as pre-selecting relevant process variables or manually detecting outliers in the
data, which can enhance the accuracy and reliability of the soft sensor model. Process
knowledge can be utilised, for example, in the pre-selection of a process variable or manual
detection of outliers [26]. Overall, these challenges in data acquisition, data-related issues,
information challenges and utilisation of expert knowledge can pose significant hurdles in
the development and successful implementation of high-quality soft sensor models.

2.2. Wastewater Treatment Plant

Data from a certain wastewater treatment plant related to a paper manufacturing plant
were utilised in this study. A simplified schematic of the wastewater treatment plant in
question is depicted in Figure 1. The wastewater leading to the WWTP originates from
multiple sources. These sources include paper machines and the debarking process. The
wastewaters from paper machines flow to the wastewater tank as individual streams. This
tank also includes the wastewater from debarking. In addition, one wastewater stream
(paper machine filtrate) enters the pumping station after primary clarification. The positions
where online COD is measured are indicated in Figure 1.

Figure 1. Simplified schematic of the studied wastewater treatment plant and activated
sludge process.

The wastewater purification process at the plant consists of primary clarification as
a primary treatment method and activated sludge process as a secondary treatment. The
primary clarifier plays a crucial role in removing pollutants from the wastewater. It operates
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by allowing the settling of heavier or more readily separable solids at the bottom of the
clarifier, forming a sludge layer, while the clarified water is collected from the top. The
primary clarification helps improve the overall efficiency and cost-effectiveness of the
process. After the primary clarifier, the paper machine filtrate stream is mixed with the
rest of the wastewater. This combined wastewater is then pumped into a tank to wait
for aeration. At this point, the wastewater quality measurements that are important for
assessing the effectiveness of the treatment process and monitoring the performance of the
plant are taken. Parameters such as COD, temperature, pH and other indicators provide
valuable information about the overall condition of the wastewater going into aeration. The
wastewater is then divided into two streams for the rest of the wastewater treatment. Next,
the wastewater streams are sent to biological wastewater treatment, where the wastewater
is mixed with air in a tank during the aeration process. The continuous circulation of
air promotes the degradation of organic matter present in wastewater through the action
of microorganisms. Following the biological treatment (aeration) stage, the wastewater
undergoes the final treatment step in a secondary clarifier. In this step, the remaining
pollutants and sludge are separated and removed from the wastewater, further improving
its quality. The sludge is collected and further processed for disposal or potential reuse.
Once the wastewater has undergone all the mentioned treatment steps, it is considered
sufficiently treated and ready for discharge into the river. This final step ensures that
the purified wastewater meets regulatory requirements and minimises its impact on the
receiving water body.

2.3. Data Collection

Three datasets were received from an actual WWTP process, including online mea-
surements from the automation system. Data from the related paper machine were also
received. Online data were stored at a one-minute frequency. Table 1 shows the relevant
information about the datasets used.

Table 1. Dataset content information and its usage for modelling.

Data Length Variables Variable Info Dataset Usage

Dataset 1 1 year 44 Wastewater treatment process data Effluent model development
Dataset 2 4.5 months 31 Wastewater treatment process data Influent and effluent model development
Dataset 3 6 months 17 Wastewater data from paper machines Influent and effluent model development

Dataset 1 was the largest of the received datasets, containing one year’s worth of
data. The initial dataset from the plant included 44 online measurements. From these
measurements, 27 were chosen for the next step after the data pre-processing phase. Some
variables were neglected because they contained no useful information. The measurements
in Dataset 1 included data on temperature, pressure, flow rate, liquid level and various
quality measurements from the wastewater process. Dataset 2 included similar data to
Dataset 1, i.e., measurements from the wastewater treatment plant, but it covered only the
summer period. Dataset 3 included measurements about WWTP influent obtained from the
paper machine automation system and covered about the same time period as Dataset 2.
These data were crucial for the development of the influent soft sensor. Dataset 2 spanned
approximately 4.5 months, while Dataset 3 covered a period of six months. Datasets 2 and 3
were aligned and merged, and thus, about 1.5 month period from Dataset 3 was removed.

Dataset 1 was utilised as training data in developing the predictive effluent model.
Dataset 2 served two purposes. Firstly, it was used as validation data for the predictive
effluent model. Secondly, it was utilised in conjunction with Dataset 3 for developing an
influent soft sensor model.

The device responsible for online COD measurement extracts periodic wastewater
samples at a four-hour frequency. These samples undergo thorough analysis giving the
online data that are promptly recorded within the automation system. This means that
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online data for the targeted variables are updated roughly every four hours. This applies to
both the influent and effluent COD measurements.

2.4. Data Pre-Processing

The data were pre-processed using MATLAB® software. The purpose of data pre-
processing was to process the available data into the most complete form so that it could
be used for modelling purposes. This included multiple steps. Firstly, variables that were
constant (such as set point values for certain variables) were removed from the datasets.
Variables were also removed if they included many Not a Number (NaN) values. Such
variables contained no useful information from the modelling perspective.

The NaN values were replaced with interpolated values. Removal of NaN values
from the data is important because they can cause issues with mathematical operations
and modelling methods later. In this study, linear interpolation was employed to replace
NaN values, utilising either the last known value or the next known value. The choice
between these options depended on factors such as whether the variable began or ended
with a NaN value.

Removal of NaN values was followed by an automatic outlier detection method.
Outlier detection is an important step in data analysis and modelling. Firstly, it helps
ensure data quality by identifying and addressing data errors, leading to higher data
integrity and reliability. It also enables accurate statistical analysis by preventing distortions
in data distribution and calculations of statistical measures. The ‘quartiles’ method was
used to identify outlier points automatically [27]. In this method, data elements that are
1.5 interquartile range (IQR) below the lower quartile or above the upper quartile are
automatically classified as outliers. The IQR can be calculated as in Equation (1):

IQR = Q3 − Q1, (1)

where Q3 represents the upper quartile (75 per cent of values from lowest to highest) and
Q1 the lower quartile (25 per cent of values from lowest to highest). After detecting the
points that are above or below 1.5 IQR of their respective quartile, the points were marked
as outliers and changed to NaN values. This was performed so that the locations of these
points would not go missing during deletion, as the removal of values from different parts
between datasets would lead to discontinuity with the data timestamps if removed directly.

Usually, during this part of data pre-processing, data timestamps would also have to
be fixed. However, the timestamps did not include any errors or multiple values, which is
why the timestamps could be ignored during the data pre-processing and modelling as
every data point was recorded at steady one-minute intervals.

Next, data points from the dataset, which were clearly outliers (such as negative pH
values), were changed to NaN values. Other outlier points were detected by manually
inspecting the data for possible outliers. Possible outlier points were left in the dataset if it
was unclear whether the point was an outlier or a correct reading. The NaN values were
then replaced with interpolated values similarly to before.

Once all outliers and NaN values were removed and interpolated from the data, the
data were standardised. Standardisation is performed so that every variable uses the same
common scale and can be performed with many different formulas. However, since most
of the variables in the datasets were close to normally distributed, the standardisation was
performed using the standard score formula (Equation (2)) [28]:

Zi =
xi − x

S
(2)

where x is the mean, and S is the standard distribution of the variable being standardised.
The standard score Zi represents how many standard deviations the actual value xi differs
from the variable mean.
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The datasets were then sampled utilising a moving median [29], where a median from
a certain point window is used to represent all the data points from that window. The data
points that were used to calculate the median were removed afterward, and only one point
remained to represent all the removed values. Consequently, this means that the number of
data points in each variable decreases drastically without losing any critical information.
This type of averaging is beneficial as it allows more efficient calculation as well as filtering
of the data. The efficient calculation is important later as an algorithm is utilised in the
modelling part, which can be considered computationally heavy. The original minute data
were reduced to a median of two-hour time intervals between data points.

As the last step of the pre-processing stage, the variables in the datasets were sub-
jected to a nonlinear scaling algorithm with the purpose of making linear methodologies
applicable to nonlinear cases. The nonlinear scaling algorithm was developed by Juuso [30].
The purpose of this method is to consider the nonlinear effects of the data. The scaling
function transforms the data and scales it to a range of [−2, +2] using two monotonously
increasing functions. One function is identified for the range of [−2, 0] and the other for the
range of [0, +2]. Nonlinear scaling of variables is mainly utilised in regression modelling.
Experiments were also performed without nonlinear scaling.

2.5. Modelling Methodology

Modelling of the influent COD and effluent COD was carried out by testing different
model structures on both cases and tuning the optimal model parameters utilising an
exhaustive algorithm. Figure 2 shows the overall flow of the modelling methodology steps,
including the data pre-processing and analysis steps that were discussed in detail in the
earlier section.

Figure 2. Overall flow of the modelling work as described in Sections 2.3–2.7 and 3.
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Since three different datasets were received, the first step was to divide the data into
training, test and validation data for both cases. For the influent model, we combined
Datasets 2 and 3 into one from the same time period. This was performed because Dataset
3 included data on incoming wastewater from the paper machines that were thought to
be important for the estimation of influent COD. The aim was for every measurement
that was used in modelling to originate from before or at the aeration inlet pool for the
influent model. As discussed above, Dataset 3 fits this criterion perfectly. Variables that
fit this criterion were picked from Dataset 2. Dataset 3 had to be trimmed a little due to
being slightly longer than the other to make sure that the timestamps would fit correctly
and be comparable to each other, as discussed in Section 2.3. It was noticed during the
data pre-processing stage that Datasets 2 and 3 both had a section of data that was of poor
quality that could not be used for modelling or validation. The majority of the data before
the poor-quality section could be used for model training and testing and the later part for
model validation.

For the effluent model, it was decided to use Dataset 1 for training and Dataset 2,
which included nearly the same variables, for model validation. One deciding factor was
that Dataset 1 was the longest of the three datasets and would contain the largest number
of variables. However, some of the variables in Dataset 1 could not be utilised because they
could not be found in Dataset 2. It was then decided which datasets would be used to model
which case; the modelling work for each of the targets could be performed separately.

Both cases were modelled utilising a similar modelling strategy. The modelling work
was performed by testing different model structures to see which model structure would
fit the data best. Interpretable model structures were prioritised during the selection. The
model structures and analysis methods tested included:

• Autoregressive exogenous model (ARX), autoregressive moving average with exoge-
nous input model (ARMAX);

• Multiple linear regression (MLR), partial least squares regression (PLSR);
• Least absolute shrinkage and selection operator (LASSO).

After the model structure was chosen, it was tested on the chosen dataset by sys-
tematically testing for different attributes. In general, everything that could be tested
systematically was considered. Features that could be tested varied depending on the
chosen model structure. Systematic testing included:

• Time delays;
• Training windows;
• Variable combinations;
• Model orders (when needed).

Systematic testing of different attributes was conducted by utilising a design matrix
in for-loop in MATLAB® software. The design matrix is based on full factorial design is a
statistically valid way to systematically test for different variables, in this case, different
attributes [27]. The variables that were chosen for systematic testing were collected into a
matrix pool. The numbers in the design matrix represent the indexes of the variables in the
pool of variables. For example, with a model using five input variables, experiment 1 would
consist of variables 1, 2, 3, 4 and 5; experiment 2 would consist of variables 1, 2, 3, 4 and 6.
The design matrix for variables was constructed in the following manner:

1. Choose the total number of variables for the pool of variables.
2. Choose the number of variables for the model.
3. Construct a full factorial design, where the total number of variables in the pool act as

levels and the chosen number of variables as factors.
4. Remove rows containing the same variable index.
5. Remove rows that are not unique.

The number of chosen variables for the pool and the number of variables in the model
essentially determine how many experiments there will be. However, before the formed
design matrix can be used for modelling, some adjustments need to be performed. Rows
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that contain the same variable indexes (multiple same numbers) need to be removed from
the matrix, as it is not beneficial to model cases where the same variable is taken into the
model twice. The same applies to cases where the rows are not unique (same numbers,
different order). The last two steps are not necessary but make the calculation time faster.

Time delays and model orders could be tested directly by creating a full factorial
design of the desired range of time delays and model orders. For the influent models, time
delays were tested between data points 1 and 16. With time intervals of two data points in
the full factorial design, this meant that there were 32,768 possible time delay combinations
to test for each attribute. A similar strategy was utilised when testing for different model
orders. However, model orders were limited to the range from 1 to 6. For five variables,
this would still mean 7776 different model order combinations. Lastly, different model
training windows were tested over the dataset in a sliding window. The training window
size also varied from a couple of hundred data points to the whole dataset. Therefore, the
whole dataset was examined as thoroughly as possible to find the critical information.

The effluent model was modelled using the same strategy. However, it was found
that fewer variables were needed to model the effluent COD, which is why more freedom
was given to testing different attributes, as testing for three attributes is computationally
significantly lighter compared to five variables. Furthermore, the effluent measurements
are located farther away compared to the influent model, which is why it also made sense
to increase the range for time delay testing.

In addition, tests with changes to the data pre-processing step were performed. These
changes included modelling without the usage of nonlinear scaling. This could especially
be performed with dynamic model structures when using more complex model orders.
This is because one of the purposes of scaling the data with a nonlinear scaling function is
that complex model structures are not needed in the modelling phase. Aside from tests
with and without nonlinear scaling, modelling was performed with different values from
the moving median window size. We experimented with different sampling rates for a
2, 4 and 8 h moving median value.

The purpose of the following pseudocodes is to provide further explanation of the
modelling work. The purpose of these codes is to systematically test all possible variable
and parameter combinations and store the results. This section includes pseudocodes for
the ARX/ARMAX model structures and one for linear model structures. The pseudocode
for the ARX model structure is presented in Figure 3.

Figure 3. Pseudocode demonstrating the implementation of ARX modelling. Incorporating nested
loops for variable selection, model orders, delays and sliding window parameters that are being
systematically tested.
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As discussed in Section 2.5, multiple inputs are required for the code to work. Most
importantly, the variable pool, design matrixes for the variables, model orders nb and
delays. For the ARMAX model, an additional for loop is required for the model orders.
The last loops are for determining the lengths and starting points of the varying sliding
windows. It is important to consider the length of the data when defining the sliding
windows and their starting points so that the whole data can be utilised with varying
sliding windows and their starting points without producing an error. Inside the main
for loop, the training data should be formed based on the indexes of the variable design
matrix and the sliding window. An ARX model should be formed from this training data
together with the selected delays and model orders. After the model was trained, validation
data were formed based on the selected variables. The length of the validation data is the
same every loop, as the model performance must be tested on data from the same period
every time. Lastly, the results from the performance evaluation as well as important loop
data, must be stored into a variable. This is important so that the results can be accessed
afterward to see which variables, model orders, delays and training periods from the
available data give the best results. The best model structure is then further tested with
independent test data. The code for linear models worked in a similar manner (Figure 4).
However, there are some differences. The linear model structures do not include model
orders at all. The variables were also manually delayed. Finally, the code for linear models
includes cross-validation in the loop.

Figure 4. Pseudocode demonstrating the implementation of PLSR/MLR modelling. Incorporat-
ing nested loops for variable selection, delays and sliding window parameters that are being
systematically tested.

2.6. Model Structures

Different model structures were utilised during this modelling work, including dy-
namic time series model structures such as the ARX and ARMAX. Aside from dynamic
time series models, simple regression models such as PLSR and MLR were used. Lastly, we
experimented with LASSO regression.

2.6.1. Dynamic Model Structures

Two dynamic model structures were chosen for this study. The ARX and ARMAX
time series models are linear representations of a dynamic system [31]. The ARX model
structure can be represented by the following Equation (3):

y(t) + a1y(t − 1) + . . . + ana y(t − na) = b1u(t − nk) + . . . + bnb u(t − nb − nk + 1) + e(t), (3)

where y(t) represents the model output at time t, and na and nb represent the chosen model
orders. The model delays are represented by nk, which states how many input samples
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occur before that specific input affects the model output. Finally, e(t) represents the white
noise value of the system.

The ARMAX model structure is similar to that of the ARX. The major difference
between the model structures is that the ARMAX model includes the moving average (MA)
term [32]. The ARMAX model can be represented by the following Equation (4):

A(q)y(t) = B(q)u(t − nk) + C(q)e(t), (4)

where, similarly to the ARX model, y(t) represents the model output at time t, na, nb and
nc (included in A, B and C components) are the orders of the ARMAX model, nk represents
the model delays and finally, e(t) is the value of the white noise disturbance.

2.6.2. Static Model Structures

As stated above, of the static modelling methods, PLSR and MLR models were utilised
in this study. The advantage of linear regression models is that they are interpretable. How-
ever, these model structures may fail to capture nonlinear or dynamic relationships. In this
work, nonlinear scaling is utilised in the case of regression models, as stated in the section
on nonlinear scaling, which means that nonlinearities are considered this way and should
make these model structures perform well without losing their interpretability. Below
(Equation (5)), the MLR model structure is given with n amount of input variables [33]:

ŷ = b0 + b1x1 + b2x2 + . . . + bnxn, (5)

where ŷ represents the predicted values; xn the predictor variables; bn represents the slope
coefficients for the explanatory variables used in the model; and, finally, b0 is the y-intercept
term. The MATLAB® function ‘regress’ was utilised to calculate the b coefficient estimates.
For PLSR, the MATLAB® function ‘plsregress’ was utilised [34]. The function follows the
SIMPLS algorithm developed and discussed in detail by De Jong [35].

2.6.3. LASSO Regression

Lastly, we experimented with modelling methods that automatically choose variables
for the models. LASSO regression does the variable selection and model training simulta-
neously [36]. It can be a suitable method, especially when there is a situation where data
are abundantly available (especially a lot of variables). The LASSO method minimises the
sum of squared error, while the model regression coefficients that are not important are
given values close to zero [37]. The LASSO model solves the following Equation (6) for
different values of λ:

min
β0,β

(
1

2N ∑N
i=1

(
yi − β0 − xT

i β
)2

+ λ∑p
j=1

∣∣β j
∣∣), (6)

where λ represents the regularisation term, N represents the number of observations,
yi represents the response at observation i, xi represents the input data at observation i, p is
the vector length, and β0 and β are the model parameters (regression coefficients).

2.7. Model Validation

The models were validated with a dataset that was not used during model training.
In the case of ARX/ARMAX, a training window was utilised to systematically pick a
part of the dataset, train a model and compare the results over the rest of the dataset.
In the case of regression models, k-fold cross-validation was used to divide the datasets
into training and test data. K-fold cross-validation divides the dataset into k number
of folds (or partitions) that are nearly equal in size. After the data were divided, the
k − 1 number of folds was used for model training, and the remaining data were used for
model validation. This procedure was iterated k times, which means that each fold was
successively utilised in validation, and the remaining data were used as training data [38].
The value for k was chosen to be 5 because there a large dataset was available and a separate
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independent validation dataset to test the effluent model on. With this k-value, it was
believed that the results would be the most realistic as opposed to biased or optimistic.
Monte Carlo repetitions were utilised to repeat this process 2000 times each time model
training was performed. Both models were also subsequently tested with independent
validation data afterward.

There are many ways to evaluate the performance of an identified model. Com-
monly utilised measurements include the root mean squared error (RMSE), mean absolute
percentage error (MAPE) and the correlation coefficient (r). The following equations
were used to calculate these performance metrics for the identified models to evaluate
their performance [39]:

MSE =
1
N ∑N

t=1(ŷt − yt), (7)

RMSE =
√

MSE, (8)

APEt =
|ŷt − yt|

yt
·100%, (9)

MAPE =
1
N ∑N

t=1 APEt, (10)

rxy =
∑n

i=1 (xi − x)(y1 − y)
(n − 1)SxSy

, (11)

where ŷt represents the predicted values, yt is the measured values, N is the number of
data points, ŷ is the response variables mean and t represents time.

3. Results and Discussion

Modelling work was carried out as described in Section 2.5. In this section, the results
are presented and discussed. A summary of the results for influent COD modelling are
presented in Table 2. After the best model parameters and structures were identified, a
set of measurements were calculated to evaluate the performance of identified models, as
discussed in Section 2.7.

The Dynamic model structures (ARX/ARMAX) performed the best when identifying
the model for the influent COD. The ARX model demonstrated strong performance on
both the training dataset, with a correlation coefficient of 0.82, MAPE of 9.4% and RMSE of
242.7 mg/L. Similarly, on the test dataset, the ARX model exhibited good results, achieving
a correlation coefficient of 0.89, a MAPE of 8.1% and an RMSE of 191.1 mg/L. In terms
of other models, PLSR and LASSO models also show reasonable performance with mod-
erate r values and acceptable MAPE and RMSE values. The MLR model shows weaker
performance compared with the other models (lower r values and higher MAPE and RMSE
values). The most effective model (ARX) for the influent soft sensor model is depicted in
Figure 5a. In this figure, the measured COD from the aeration inlet pool is represented by
the black line, and the modelled COD is represented by the blue line as a function of time.
The grey area that is plotted in the figures represents the 95% prediction interval estimated
with training data. The ARX/ARMAX models had correlation coefficients of approximately
0.8. In both cases, the same variables were chosen for the model as input variables by the
algorithm. The variables included two inflows from the paper machines, the flow from
debarking, and pH and temperature from the aeration inlet pool. The addition of the
moving average term to the model did not increase the correlation coefficients significantly.
Hence, the ARX (orders: na: 6, nb: (2 5 4 5 5)) model can be considered better as the model
structure is simpler than the ARMAX model. The best model structures were attained
when nonlinear scaling was omitted, and the dynamic model coefficients increased slightly.
The identified model structure was then tested with validation data that had not been used
in the model training. The results from this testing are presented in Figure 5b.
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Figure 5. Measured influent COD (black) and soft sensor estimates (blue) as a function of time
(1 data point = 2 h), (a) training data (correlation 0.82, MAPE 9.4%). (b) Model testing on independent
test data (correlation 0.89, MAPE 8.1%). Grey area is the estimated 95% prediction interval.

A summary of the results for effluent COD modelling are presented in Table 3. For
effluent predictive models, both the chosen dynamic model structures and the linear model,
especially the PLSR structure without nonlinear scaling, worked well. The PLSR model
without nonlinear scaling demonstrated good performance on both the training dataset,
with a correlation coefficient of 0.74, MAPE of 15.7% and RMSE of 42.5 mg/L. On the
test dataset, the PLSR model without nonlinear scaling also showed good results, with a
correlation coefficient of 0.77, a MAPE of 7.6% and an RMSE of 23 mg/L. The PLSR model
with nonlinear scaling also stands out as a well-performing model with high correlation
coefficients (r values), low MAPE values and low RMSE values for both the training and test
data. The MLR model with nonlinear scaling also performs reasonably well, although it has
slightly lower correlation coefficients and higher MAPE and RMSE values compared with
PLSR models. The identified ARX/ARMAX models worked best overall for the effluent
prediction case based on correlation and MAPE values. However, because one of the goals
of this research was model simplicity, more attention was also given to the linear regression
model structures as they work for these data.

The identified PLSR model outputs (blue) and measured effluent COD (black) training
data are plotted in Figure 6a. The variables chosen for this model were all located at the
aeration inlet pool. The variables included the COD, pH and oxygen of the aeration inlet
pool. The optimal delays for the identified PLSR model for these variables were 10, 10
and 20 data points, respectively. Since the minimum delay for the model is 10, this would
indicate that effluent COD can be predicted 20 h in advance (one data point corresponds to
two hours of data), assuming that there are no significant process changes. As discussed in
Section 2.4, different moving median values were experimented with, and the 2 h period
provided the best results from both the data analysis and modelling perspective. For the
training data, the performance metrics show a correlation coefficient of 0.74. Similarly to
the influent model, the identified model was tested on independent validation data. The
results are presented in Figure 6b.

One explanation for why the correlation is much higher in the validation data when
compared to the training data in the case of the effluent model is the number of data points.
The training data contained approximately 4000 data points, whereas the validation dataset
utilised was only 600 data points long, for the reasons discussed in Section 2.5. The COD
measurement does not work as intended between data points 440 and 520 on the test data
(Figure 6b), as the measurement output is constant for a long period of time. During this
time, the model outputs significantly lower values and provides a much better estimate
of the COD than a measurement device that is not working. Such malfunctions occur at
constant intervals due to sensor fouling. Zoomed in perspective is presented in Figure 7.
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Figure 6. Measured effluent COD (black) and model estimates (blue) as a function of time with a
prediction horizon of 20 h (1 data point = 2 h): (a) training data (correlation 0.74, MAPE 15.7%);
(b) model testing with independent test data (correlation 0.77, MAPE 7.6%). Grey area is the estimated
95% prediction interval.

Further model validation was performed by analysing the residuals of the created
models. Histograms and normal probability plots were drawn for the training and test sets
to evaluate model performance visually. A normal probability plot compares the residual
to what would be expected if the data followed a normal distribution. The data are plotted
in a way that should result in a straight line. If not, it suggests that the data do not conform
to a normal distribution [27]. For the model to be considered good, the model residual
should be close to normally distributed. The residuals for the influent COD soft sensor are
plotted in Figure 8.
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Figure 7. Zoomed view of Figure 6b at time period 400–550 when hardware sensor is malfunctioning
(approximately 440–520).

The histogram and the normal probability plot for the soft sensor training data residual
in Figure 8a,b suggest that the residual appears to be normally distributed. Minor deviations
can be observed at the tails of the distribution. The soft sensor test data residual in
Figure 8c,d, on the other hand, shows more deviations at the tails yet shows a relatively
straight line in the middle portion of the data. For the effluent COD predictive model,
the training data in Figure 9a,b shows significant deviation for residual values that differ
from the predicted values by one standard deviation (approx. 10% of values). A similar
phenomenon could be observed in the effluent COD test data in Figure 9d, albeit to a
lesser degree.
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Figure 8. Influent soft sensor model residual for training and test data: (a) training data residual
histogram; (b) training data residual normal probability plot; (c) test data residual histogram; (d) test
data residual normal probability plot.

Lastly, some properties of the residual were calculated (Table 4) to numerically verify
the observations. The range indicates the span of residual values, while the standard
deviation represents the spread or variability around the model predictions. Skewness and
kurtosis reveal the shape and potential outliers in the residual distribution. Monitoring
these properties can help identify model deficiencies and guide further improvements.

Table 4. Residual properties.

Residual Range Std. Deviation Skewness Kurtosis

Influent model training data [−1.4, 2] 0.54 0.19 2.91
Influent model test data [−0.8, 1.3] 0.43 0.74 3.3

Effluent model training data [−2.4, 2.9] 0.67 0.63 4.3
Effluent model test data [−1.2, 2.87] 0.55 0.34 3.84
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Figure 9. Effluent predictive model residual for training and test data: (a) training data residual
histogram; (b) training data residual normal probability plot; (c) test data residual histogram; (d) test
data residual normal probability plot.

The effluent training data exhibit residual values ranging from −1.4 to 2, with a stan-
dard deviation of 0.54. The distribution of residuals is moderately peaked (kurtosis = 2.91)
and is slightly skewed (skewness = 0.19) with a longer tail on the right side. This suggests
the presence of some outliers or heavy-tailed behaviour. These values are good for a model
made with industrial data. The test data for the influent model show residual values
ranging from −0.8 to 1.3. The standard deviation decreases slightly to 0.43, indicating
a relatively smaller spread of residuals compared to the training data. The distribution
remains slightly skewed (skewness = 0.74) and exhibits a higher peak (kurtosis = 3.3),
suggesting a higher probability of outliers.

The effluent model’s training data exhibit residual values ranging from −2.4 to 2.9.
The standard deviation of 0.67 indicates a larger spread of residuals compared to both
the influent model’s training and test data. The distribution is similarly slightly skewed
(skewness = 0.63) with a higher peak and heavier tails (kurtosis = 4.3), also suggesting the
presence of extreme values or outliers. The test data for the effluent model show residual
values ranging from −1.2 to 2.87. The standard deviation is 0.55, indicating a moderate
spread of residuals. The distribution remains slightly skewed (skewness = 0.34) with a
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lower peak and lighter tails (kurtosis = 3.84) compared to the model’s training data. Overall,
it seems that both models are a decent fit for their intended purposes, even if the models
sometimes exhibit outliers. Considering that the models are a representation of a real
wastewater treatment process, modelled with real data where situations and circumstances
can vary significantly.

In general, the models perform well, especially when considering the complexity of
the wastewater treatment process. Our study yielded results that are similar to previous
industrial wastewater studies employing linear model structures. For example, Abouzari
et al. [11] reported correlations between 0.68 and 0.835 for various linear models on test
data. However, it should be noted that there can be significant differences between different
industries on the formation of wastewater. When compared to studies that use machine
learning methods for COD modelling, the linear model structures are unable to reach as
high accuracies. For example, Güçlü and Dursun [13] were able to reach a correlation
of 0.85 on the test data using an artificial network and a somewhat lower MAPE value
(approximately 5%). However, as previously mentioned, linear model structures offer
significant practical advantages such as interpretability, straightforward model adaptation
and computational efficiency.

It is important to consider the specific requirements of the problem and the trade-off
between model accuracy and complexity when choosing the most appropriate model,
especially since the online hardware data are used mainly for monitoring purposes as
laboratory analyses are required to ensure that effluent COD levels are within limits. Thus,
the requirement for soft sensor accuracy is not that strict, and an acceptable margin of error
ranges between 10 and 20%. This level of deviation is considered reasonable and tolerable,
given the nature and objectives of the monitoring tasks at hand.

There are still some limitations and uncertainties in the models and, thus, possibilities
for future work. One goal of this work was to develop interpretable models. However,
the models developed here do not capture how the changes in manufactured paper grade
affect the incoming COD to the WWTP well, for example. One solution could be to create
multiple sub-models for each condition. However, this would require additional data
fusion concerning the manufactured paper grades.

One of the limiting factors regarding the modelling work is that the data utilised for
influent soft sensor modelling were acquired during a summer period. This may mean that
the model can accurately estimate COD during similar summer conditions. Therefore, the
knowledge of how the modelled solution would behave during winter conditions is still
missing. The models have learned how the system behaved during the specific period that
the data are from, which means that if the dynamics of the WWTP change over the years,
the accuracy of these models may decrease. This is likely to happen when the WWTPs
and the paper machine equipment are older, which may change the process dynamics.
Therefore, it is important to keep in mind that the models developed here will occasionally
require retraining or continuous adaptation for them to remain accurate.

It should also be noted that the dataset used for influent COD modelling only contained
useful information regarding the flow rate of the incoming wastewater from the paper
machines. With more useful quality data on the incoming wastewater streams, the soft
sensor model could be significantly more accurate and simpler. Measurements from both
the wastewater and the paper machines themselves could also potentially be utilised in
modelling these kinds of model-based soft sensors.

Further research could include studies with more abundant data from process variables
at the source of the wastewater. How the wastewater is formed naturally has a large effect
on the overall quality of the wastewater, which is why data on the origin of the wastewater
are valuable for influent soft sensor modelling. One interesting topic of research could
include studies on how the influent soft sensor and the effluent predictive model could
be combined.

The effluent predictive model relies on influent COD measurements as an input
parameter. This value can be provided by the influent COD soft sensor model, and thus
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it is possible to predict the effluent COD without the need for physically measuring the
influent COD. However, as discussed, for the models to replace the hardware sensor, model
adaptation tools need to be developed. This would be a more challenging task if no online
COD measurements were available. Instead, other measurements and laboratory data must
be utilised to update the model coefficients effectively. This is not studied in this paper and
would need more research.

The models developed need to be tested in practice. Implementation of these models
is straightforward and only requires changes to the plant’s automation system to include
the calculation of COD from the existing process measurements. This would give the plant
a new monitoring tool, which can be useful as itself or in conjunction with the hardware
sensor, especially in determining when the hardware sensor needs replacing and providing
an estimate during that time, as depicted in Figure 7. The soft sensors also allow for
lowering the sampling frequency of the hardware sensor, which in turn leads to reduced
sensor maintenance costs as the measurement instrument is used less frequently. This can
be very beneficial because the hardware sensor would be there to generate data for model
adaptation but with lower costs.

4. Conclusions

The results indicate that measurements of paper machine wastewater streams can be
utilised in estimating the total COD of wastewater incoming to the wastewater treatment
plant with reasonable accuracy. The best model structure for the influent model was found
to be an autoregressive-exogenous (ARX) model with low model orders. The chosen model
structure was able to estimate incoming COD with a correlation coefficient of 0.82 and
MAPE of 9.4% on the training data. For independent test data, the correlation and MAPE
between the estimated model and measured outputs were 0.89 and 8.1%, respectively.

The results also indicate that measurements of the wastewater treatment plant are
sufficient to predict the amount of COD present in the effluent. For the predictive effluent
model, the partial least squares regression model was chosen from the results. Dynamic
models such as the ARX models give similar results; however, more interpretable models
were prioritised for this case as they were also able to obtain acceptable results. The
chosen partial least squares regression model was able to estimate the effluent COD with
a correlation of 0.74 and a MAPE of 15.7% for the training data. For the test data, the
correlation and MAPE were 0.77 and 7.6%, respectively. The results seem reasonable
considering the complexity of the wastewater treatment process. The delays indicate
that the level of COD can be predicted approximately 20 h before the wastewater leaves
the plant.
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Abstract: Robots executing contact tasks are essential in a wide range of industrial processes such as
polishing, welding, debugging, drilling, etc. Force control is indispensable in these type of tasks since
it is required to keep the interaction force (between the robot and the environment/surface) within
acceptable values. In this paper, we present a methodology to analyze and to design the force control
system needed to regulate the force as close as possible to the desired value. The proposed methods
are presented using a widely used generic contact task consisting of exerting a desired force on the
normal direction to the surface while a desired velocity/position is tracked on the tangent direction
to the surface. The analysis considers environments/surfaces with certain uneven characteristics, i.e.,
not perfectly flat. The uneven characteristic is studied using ramp or sinusoidal signals disturbing
the position on the normal direction to the surface, and we present how the velocity on the tangent
direction is related with the slope of the ramp or the frequency of the sinusoidal disturbance. Then,
we provide a method to design the force controller that keeps the force error within desired limits
and preserves stability, despite the uneven surface. Furthermore, considering the relation between
the disturbance (ramp or sinusoidal) and the tangent velocity, we present a method to compute the
maximum velocity for which the task can be executed. Simulations exemplifying and verifying the
proposed methods are presented.

Keywords: robotics; force control; stability

1. Introduction

Robots executing contact tasks are essential to automate plenty of manufacturing
processes. Regulating the force produced during the interaction between the robot and
the environment is critical. There are principally two approaches to regulate the force;
one is called indirect force control, since the force is regulated through motion control,
i.e., changes in the position error at the end-effector, and the second one is called direct
force control, since force feedback is directly compared with a desired force to calculate the
robot’s control input [1].

Direct force control is preferred when the application requires a precise regulation of
the force. Additionally, direct force control is capable of accomplishing the contact task
without damaging the environment and the robot itself [2]. However, the advantages of
direct force control come at a price, since preserving stability is challenging, mainly because
of the presence of unavoidable dynamics such as sensor dynamics, filters, and delays [3].

On the other hand, when direct force control techniques are implemented in industrial
robots, one should design controllers that generate velocity or position inputs, since these
are the standard inputs of industrial robots [4,5]. Admittance controllers are the ones
having velocity/position as an output and force as an input [6]. Despite the fact that the
implementation of admittance-type controllers has shown efficiency and efficacy [7], there
exists a compromise between performance and stability during its design [8,9].

Recent research on force control has been focused in the design of Proportional-
Integral-Derivative (PID) controllers that reach quickly the desired force with limited
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overshoot. For example, the authors in [10] present a force control system based on PID that
ensures asymptotic convergence of the force error to zero with small overshoot and short
settling time. In [11], a force control system is presented based on PID that keeps the force
within the desired value despite uncertainty in the surface’s model. In [12], the authors
analyze the effect of the surface’s stiffness in the force control, and they present a PID
controller that reaches the desired force without overshoot. Furthermore, advanced control
techniques have been recently applied to regulate force. An application to medical robotics
in [13] presents a force controller based on sliding mode control that ensures convergence
of the force error to zero in finite time. Data-driven control is used in [14] to present a
data-driven force control that ensures global convergence of the error to a steady state.
Notwithstanding the prominent results presented in the mentioned references, the velocity
of the robot in the tangent direction (along the surface) has not been studied, although this
velocity is important since it is related to the velocity at which the task can be executed.
Furthermore, a quantitative approach to design the control gains that produces a specified
tolerance error is hardly discussed. The mentioned methods (estimation of the velocity of
the task and a quantitative design) are relevant to practical applications required to execute
the task as fast as possible and to keep the force error within acceptable limits.

In this paper, we propose a methodology to analyze and to design the force control of a
robot in contact with an uneven surface. The proposed methods are presented considering
the general contact task of maintaining a desired velocity along the surface (in the tangent
direction to the surface) while a desired force is applied on the normal direction to the
surface. This contact task properly describes applications when the priority is to regulate the
force in one direction, such as polishing and assembly tasks, as well as medical applications
(see [15]).

We study admittance direct force controllers with Proportional-Integral-Derivative
(PID) structure to have methods suitable for industrial robots allowing velocity/position
inputs and to fit our methods with the industrially accepted PID controller.

Ramp and sinusoidal signals are used to model the uneven characteristics of the
surface, and the relation between the disturbances and the velocity along the surface is
presented. Since we are considering only the regulation of the force in the normal direction,
the magnitude of the slope (values of frequency) is bounded to avoid steep slopes producing
force in a different direction than the normal one.

Then, we propose a method to compute the controller considering the performance in
terms of force error and attenuation of disturbances in the normal direction. Additionally,
we include the gain margin analysis to estimate how much the control gain/magnitude
can be modified without creating instability. In addition, the gain margin is used to predict
how much uncertainty in the stiffness the system can tolerate. Furthermore, considering
the proportional relation between the velocity along the surface, and the ramp magnitude
(or frequency of the sinusoidal), we provide a method to estimate the maximum velocity
at which the task can be executed. The proposed methods are validated via simulations.
(Preliminary results linked with this paper were presented in [16]).

The structure of the paper is the following. Section 2 presents the problem statement.
The methods of analysis and design are presented in Section 3. Section 4 contains the
simulations, and the conclusions are presented in Section 5.

2. Problem Statement

Figure 1 presents the robot in contact with the uneven surface. The robot has to execute
the following task: to exert a desired force fd in the normal direction (x direction) to the
surface while a desired velocity vd is maintained along the surface (y direction).
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Figure 1. The contact task. v is the velocity in the normal direction, and vy is the velocity along
the surface.

During the execution of the task (see Figure 1), the following assumptions are consid-
ered. First, the end-effector of the robot is always in contact with the surface; the methods
provided in this paper are not valid when the robot loses contact with the surface. Sec-
ond, it is assumed that no forces are produced along the z-axis since the end-effector is
moving along the y-axis. Third, the end-effector is in compliance with the surface in the
x-direction. The compliance in the x-direction helps to direct most of the force produced by
the curved surface to the x-direction; hence, the force along the y-axis is minimum and one
can consider that the normal force is mainly defined by the force in the x-direction. Then,
the interaction force is studied using the one-degree-of-freedom (1DOF) model presented
in Figure 2, considering only the movement in the x direction [6].

1DOF

Figure 2. The one-degree-of-freedom interaction force model.

The force exerted by the robot on the surface is described by the following elastic
model:

f = K(x − xe) (1)

where K > 0 is the accumulative stiffness of the tool plus the environment, x is the end-
effector position, and the location of the surface in xe. The control objective is to design the
robot’s input v that ensures the desired force fd is applied on the surface.

Considering the models in Figure 2 and Equation (1), the force control system pre-
sented in Figure 3 is used to study and to design the control v. The force control system is
composed of the following blocks: Gc(s) is the controller, GLP(s) describes the dynamics of
a filter used to attenuate noise from force sensor measurements, and GT(s) corresponds to
the delay produced by sensor–hardware communication. The block K corresponds to the
stiffness. The block named Robot is the single-input single-output model of the robot, and
the time-constant τ defines how fast the robot’s position x responds to the control input v.
The signals fd, f , e = fd − f , v, and xd represent the desired force, the measured force, the
force error, the control signal, and a disturbance emerging in the position x, respectively.
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-+
+

Robot

-+
+

eq. (1)

Figure 3. Block diagram of the force control system.

The transfer functions of the force control system in Figure 3 are as follows.

Gc(s) = Kp + Kds +
Ki
s

(2)

GLP(s) =
1

τLPs + 1
(3)

GT(s) = e−Ts (4)

where s is the Laplace variable, Kp, Kd, Ki > 0 are control gains, τLP is the time constant of
the filter, and T is the time-delay value. The transfer functions and its parameters were
already identified and presented in [17] by our research group. Note that the controller
Gc(s) is a direct force control, and it is similar to an admittance control since its input is a
force and its output is a velocity.

Direct force control and admittance control have been studied and tested in industrial
robots; however, during the adjustment of the gains, there exists an unavoidable com-
promise between performance and stability [8,9]. Furthermore, when delays and filters
are included in the force control system (see Figure 3), these additional dynamics deterio-
rate the stability of the force control system [3]. Additionally, when disturbances emerge,
the design of the gains should consider disturbance rejection as well as the stability of
the system.

In this paper, we propose a method for the analysis and design of force control systems,
such as the one in Figure 3, considering performance, stability margins, and robustness
against disturbances. For the stability analysis, our method estimates how much the control
magnitude should be modified before losing stability. Furthermore, using stability margins,
we can estimate how much stiffness uncertainty the force control can handle. For the
robustness analysis, we considered a disturbance (xd) on the robot’s position, i.e., the
x direction. These disturbances represent the uneven nature of the surface, and then the
performance of the disturbed system is studied in terms of the force error e, and a method
is proposed to compute the control gains that keep the error within given limits and ensure
acceptable stability margins.

Ramp and sinusoidal signals are used to disturb the system. The ramp value and
the frequency of the sinusoidal signal are used to define the velocity at which the task is
executed. Then, from the proposed design method, the maximum velocity at which the
task can be executed is estimated.

3. Analysis and Design of the Force Control System

In this section, we present the analysis of the force control system in Figure 3, the
design method to keep the force error within acceptable limits, and how to estimate the
maximum velocity at which the task can be executed.

3.1. Disturbance Rejection

Consider the uneven characteristics of the surface, a trapezoid with slopes of magni-
tude M (see Figure 4a). Then, the disturbance xd is modeled using a ramp signal Xd(s) = M

s2

with magnitude M, and s is the Laplace variable. Note that the ramp magnitude M is
proportional to the velocity vy at which the task is executed. For example, when the robot
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executes a linear movement from point A to point B, the bigger the velocity vy, the bigger
the magnitude M of the ramp in the x direction.

Point A

Point B

(a) (b)

Point A Point B

Figure 4. The uneven characteristics of the surface. (a) Ramp shape and (b) sinusoidal shape.

The performance of the force control system in Figure 3 is analyzed using the steady-
state error ess = lims→0 sE(s), where E(s) is the force error e in the Laplace domain; then

ess = lim
s→0

s
KG(s)

1 + Gc(s)KG(s)GLP(s)GT(s)
Xd(s) (5)

where Gc = Kp + Kds + Ki
s is the controller, G(s) = 1

s(τs+1) is the transfer function of the
robot, GLP(s) is the filter, GT is the transport delay, XD(s) is the external disturbance, and
K is the stiffness.

Considering the ramp disturbance Xd(s) = M
s2 , the control Gc(s) = Kp + Kds + Ki

s

ensures zero steady-state error ess [18]. However, the integral term Ki
s has a drawback since

it produces a sluggish and oscillatory response.
On the other hand, when the controller is Gc(s) = Kp + Kds, the steady-state error

is ess = M
Kp

, but it can be reduced by incrementing the control gain Kp (or the control
magnitude |Gc(s)|). In Figure 5, the curves for different values of ess are presented. These
curves are obtained from ess =

M
Kp

using different ramp values and gains Kp.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0
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10

Figure 5. Curves of steady-state error ess in terms of control gain Kp and ramp value M.

The curves in Figure 5 represent a design tool considering the disturbance ramp
magnitude M (proportional to the velocity vy at which the task is executed) and force error
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via steady-state error. If the magnitude M is known/estimated, one can obtain the control
gain Kp that produces the steady-state error ess presented in the curves, and vice versa, if a
certain steady-state error ess is desired, one can choose the gain Kp producing this error.

Note than the stiffness value K does not appear in disturbance analysis presented in
this section. However, the value of K matters when it is big since the stability of the force
control system may be compromised. Furthermore, one should be careful when the gain
Kp is selected, since a big Kp value may affect the stability too.

Time-Varying Disturbances

Another way to study the uneven characteristics of the surface is using sinusoidal
disturbances xd(t) = sin(ωt) (see Figure 4b). In this case, the velocity vy at which the task
is executed is proportional to the frequency ω of the disturbance in the x direction. For
example, the faster the end-effector is moving on the surface from point A to point B, the
higher the frequency ω of the sinusoidal disturbance. The proportionality relation depends
on the wavelength λ of the sinusoidal, i.e., vy = λ(ω/2π).

When a sinusoidal disturbance appears, the steady-state error ess cannot be used to
analyze the force error, and the analysis presented in Section 3.1 is not valid. However, one
can find a relation between the magnitude of the time-varying disturbance and the control
gain/magnitude.

Consider the following transfer function,

F(s)
Xd(s)

=
KGLP(s)GT(s)

1 + Gc(s)G(s)KGLP(s)GT(s)
,

from the disturbance xd to f ( fd = 0). From [18], this transfer function can be approximated
by F(s)

Xd(s)
≈ 1

Gc(s)G(s) . Then, the disturbance Xd(s) can be attenuated by increasing the
magnitude of Gc(s), since the goal is to have a magnitude,

|F(s)|s=jω =
|Xd(s)|s=jω

|Gc(s)|s=jω |G(s)|s=jω
, (6)

as close as possible to zero. Again, one should be aware of stability when the magnitude of
the controller increases.

Note that the computation of the magnitude |F(jω)| depends on the parameters of the
controller Gs, the dynamics of the robot G, and the frequency ω. Whenever the mentioned
parameters are available, one can obtain curves similar to those presented in Figure 5; an
example of the curves is presented in Section 4.

3.2. Stability Analysis

In this section, the relative stability analysis of the force control system in Figure 3 is
performed. Then, we find how much the control gain/magnitude Kp (also stiffness K) can
be incremented without damaging stability.

3.2.1. Stability in Terms of K

The gain margin is computed using the open-loop transfer function L(s). For the force
control system in Figure 3, the transfer function L(s) is as follows (see [18]):

L(s) = KGc(s)G(s)Gf (s)Gd(s). (7)

Considering s = jω, the gain margin is obtained using the magnitude of L(jω),

|L(jω)| = K|Gc(jω)||G(jω)||Gf (jω)||Gd(jω)|,

where ω is the frequency associated with the frequency response of L(s). Note that the
magnitude |L(jω)| is directly proportional to the gain K independent of the frequency ω.
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From the definition of the gain margin [18], the gain margin is the biggest increment
of magnitude |L(jω)| that conserves stability. The condition for stability is |L(jω)| < 1,
and this condition can be tested in the following way. First, a multiplicative gain KGM is
added to |L(jω)|, and second, KGM is increased until the stability condition is violated, i.e.,
KGM|L(jω)| ≥ 1 [19]. The magnitude |L(jω)|test,

|L(jω)|test = KGMK|Gc(jω)||G(jω)||Gf (jω)||Gd(jω)|,

is used to check the gain margin, and the stability is ensured if |L(jω)|test < 1. Note that
the stability condition will be violated for certain KGM = KGMmax producing |L(jω)|test = 1,
and the value of the gain margin will be KGMmax .

One can observe that the term KGMK affects the whole magnitude |L(jω)|test. There-
fore, when the gain margin KGMmax is known, one can use KGMmax to estimate the maximum
increment/change in stiffness K that maintains the stability.

3.2.2. Stability in Terms of Kp

For the computation of the gain margin in terms of Kp, the stiffness K is consid-
ered constant and the frequency response Gc(jω) is divided in real and imaginary parts,

Gc(jω) = Kp +
(

Kdω2−Ki
ω

)
j. Adding the multiplicative gain KGM to Gc(jω), the magnitude

|Gc(jω)|KGM is defined as

|Gc(jω)|KGM = KGM|Gc(jω)| =
∣∣∣∣KGMKp +

(
KGMKdω2 − KGMKi

ω

)
j
∣∣∣∣,

= KGM

∣∣∣∣Kp +

(
Kdω2 − Ki

ω

)
j
∣∣∣∣.

Note that the gain KGM is directly proportional to the control magnitude |Gc(jω)|KGM
or directly proportional to each control gain Kp,Kd, and Ki.

Using |Gc(jω)|KGM , the transfer function to test and compute the gain margin is

|L(jω)|test = KGM|Gc(jω)|K|G(jω)||Gf (jω)||Gd(jω)|,

where KGM represents an increment/change in the magnitude |Gc(jω)|. Since the stability
condition is |L(jω)|test < 1, the gain margin is the gain KGM = KGMmax that produces
|L(jω)|test = 1. Therefore, the gain margin computation gives an estimate of how much
one can modify the control gain/magnitude without producing instability.

3.3. Design Method

Considering the stability analysis presented in the preceding section and the design
curve in Figure 5, one can observe a compromise between stability and error attenuation.
Selecting a big value of control magnitude |Gc(jω)| might result in an acceptable force error
but this magnitude may deteriorate the stability.

The proposed design method for the controller Gc = Kp + Kds is obtained, when one
includes in the curves of Figure 5 the maximum value of magnitude/gain KGMmax that
preserves stability (see Figure 6). The set of gains Kp presented in Figure 6 is selective since
it considers only the gains Kp that guarantee stability. The values of ess corresponding to
the gain KGMmaxKp are the minimum values one can have in the force error considering
the disturbance magnitude M and the stability margin. Therefore, the curves in Figure 6
provide a better design method for the controller Gc(s) compared with the curves in
Figure 5.
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Figure 6. Design method: steady-state error ess in terms of control gain Kp and ramp value M Kp

considering gain margin.

Selecting Gains of Gc Considering Stiffness K

From Equation (7), one can observe how the product of K and |Gc(jω)| affects the gain
margin. Therefore, when the control gains in Equation (2) are selected/adjusted, one should
consider the value of stiffness K in order to preserve the relative stability of the system.

Assume the stiffness K can be modified/adjusted (adding elasticity to the end-effector
using a spring). Then, from Equation (7), the magnitude |L(jω)| contains two adjustable
terms (its parameters are at hand); the first one is the controller Gc and the second one is
the stiffness K.

If the goal is to preserve a desired gain margin, one should keep the magnitude |L(jω)|
as close as possible to its value associated with the desired gain margin. Therefore, when
the control gains are adjusted (or the stiffness is adjusted), one should keep a balance
between the magnitude of the controller Gc and the value of stiffness K. For example, if the
magnitude of Gc increases, one should balance/compensate this change with a decrease in
K to preserve the desired magnitude |L(jω)| associated with the desired gain margin.

Therefore, in order to preserve a stable contact force, the following relations between
the stiffness and the controller exist:

• For a rigid surface/environment, a compliant controller is needed, i.e., K >> |Gc|.
• For a compliant surface/environment, a rigid controller is needed, i.e., K << |Gc|.

3.4. Estimation of the Maximum Velocity at Which the Task Is Executed

Assume emax is the maximum tolerable force error in the force control system in
Figure 3. Then, all the errors ess < emax are acceptable.

On the other hand, when one selects the maximum gain KGMmaxKp from Figure 6, this
gain is the critical gain since it corresponds to the case |L(jω)|test = 1. In practice, one
should avoid having a critical gain, since the system may have an oscillatory response, and
a small disturbance may cause instability. Therefore, the selection of the controller gain
should be Kp < KGMmaxKp.

Considering the maximum error emax and the recommended selection of the gain
Kp < KGMmaxKp, it is possible to obtain a more selective set of gains Kp from Figure 6. In
Figure 7, certain values for emax and Kp < KGMmaxKp are presented. One can observe a
selective set of gains Kp defined by the limits emax and Kp < KGMmaxKp. The mentioned
region contains the set of gains that ensure an acceptable force error and a safer response,
since Kp is far from the critical gain. Additionally, there are curves corresponding to
different values of M, and a maximum value Mmax can be obtained from the region. In
Figure 7, Mmax = 1.5M. Since M is proportional to the velocity at which the task is executed
(see Section 3.1), the maximum velocity can be estimated from Mmax.
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Figure 7. Curves including maximum tolerable error emax and recommended Kp < KGMmaxKp.

4. Simulations

Firstly, using the pidTuner of Matlab, we tuned three controllers Gc(s), a Proportional
(P), Proportional-Derivative (PD), and Proportional-Integral-Derivative (PID) to havethe
same settling time ts ≈ 0.8 seconds and overshoot of 15%. The gains of the mentioned
controllers are presented in Table 1.

Table 1. Control gains.

Kp Kd Ki ts Overshoot

P 0.002229 0 0 0.88 s 14.8% (7.4 N)

PD 0.004211 0.001111 0 0.71 s 14.4% (7.2 N)

PID 0.0053947 0.0005154 0.01411 0.88 s 15.4% (7.7 N)

For the simulation, the force control system in Figure 3 is built in Simulink, and
the simulation is executed using the solver ode1(euler) with a fixed sampling time of
1 millisecond. The parameters of the force control system used in the simulation are
τ = 0.05, T = 0.008, K = 3000, and τLP = 0.05. We test a step input of 50 N at 30 s. Figure 8
shows the time response; one can see that the settling time and overshoot are similar but
the PD controller is faster than P and PID.
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Figure 8. Simulation results: force f with P, PD, and PID.
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4.1. Disturbance Rejection

Consider the controller Gc = Kp + Kds with the parameters of Table 1, and a ramp
disturbance of magnitude M = 3.14 × 10−3 emerging at t = 20 s. Then, the simulation
is performed, and Figure 9 presents the disturbance xd(t) and the force error e from the
simulation. Note that the disturbance xd(t) produces a force error of ess ≈ 0.74 [N]. This
error corresponds with that estimated theoretically using M = 0.00314 and Kp = 0.004211,
i.e., ess ≈ 0.00314

0.004211 ≈ 0.74.
Considering the design curves of Figure 6, if we want to reduce the error ess, we

need to increment the gain Kp. Then, increasing the gain Kp to Kpa = Kp + 0.002 and
Kpb = Kp + 0.004, the simulation of the force control system using these gains is performed,
and the resulting error is shown in Figure 9. One can observe that ess is reduced when the
value of Kp is increased.
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Figure 9. Force error ess in presence of ramp disturbance and disturbance xd(t).

Time-Varying Disturbances

Considering a sinusoidal disturbance xd(t) = 0.01 sin(0.628t) emerging at t = 20 s,
and the controller Gc = Kp + Kds + Ki

s with the gains in Table 1, the simulation of the
force control system is performed. The resulting force error e is presented in Figure 10 for
different values of control magnitude. One can observe that the error decreases when the
gains of magnitude of Gc(s) increase, as expected from Equation (6).
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Figure 10. Force error ess in presence of sinusoidal disturbance xd(t) = 0.01 sin(0.628t) and distur-
bance xd (t).
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4.2. Stability

In this subsection, we compute the gain margin of the force control system in Figure 3.
Figure 11 presents the Bode plot of the system with controller Gc = Kp + Kds and
Gc = Kp + Kds + Ki

s . The gain margin is computed in the crossing of the magnitude
Bode plot with zero decibels (see [18]); this intersection is indicated with an arrow in
Figure 11. For the PD controller, the gain margin is equal to 11.1 dB, which is equivalent
to 3.6 (10(11.1/20)) in magnitude. For the PID controller, the gain margin is equal to 16 dB,
which is equivalent to 6.3 (10(16/20)) in magnitude. This gain margin represents the maxi-
mum value of the control gain (magnitude) that one can use without compromising the
stability of the system. From the analysis presented in Section 3.3, the gain for the system
with the PD controller is KGMmax = 3.6, and for PID, the magnitude is KGMmax = 6.3. From
the design curves in Figure 5, the control gain Kp can be increased until 3.6 times without
losing stability when the PD controller is used.

Figure 11. Bode plot and stability margins.

Now, the simulation is executed with Gc = Kp + Kds, and two values of Kp, i.e.,
Kp1 = 3Kp and Kp2 = 3.45Kp. The resulting force error e = fd − f is presented in
Figure 12a,b. One can observe that the higher the gain, the more oscillations in the force
error e. Furthermore, a gain of Kp3 = 3.6Kp was tested, but these results are not presented in
Figure 12, since this gain produces instability. Note that the simulation results correspond
with the gain margin presented in Figure 11, since oscillations appear when the control
gains are closer to the gain margin.
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Figure 12. Force error e = fd − f with PD controller. (a,b) The control gain Kp increases. (c,d) The
stiffness K increases.
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In accordance with Section 3.3, one can relate the gain margin shown in Figure 11 with
the maximum value of stiffness that preserves stability. This value is Kmax ≈ KGMmax K ≈
3.6 K. Figure 12c,d present the simulation of the force control system with two different
values of stiffness, Ka = 3.2 K and Kb = 3.45 K, where K = 3000. The resulting force error e
presents oscillations when K increases. For stiffness values higher than 3.5 K, the system
lost stability. This unstable case is not presented in Figure 12 for visibility purposes. The
simulation matches with the estimated gain margin, since oscillations/instability appear
when the value of stiffness K approaches/reaches the gain margin.

4.3. Design Method

In Section 4.2, a gain margin of 3.6 was obtained. Considering a constant stiffness
K, the maximum gain Kpmax that preserves stability is Kpmax ≈ 3.6Kp. Then, adding this
maximum gain Kpmax ≈ 3.6Kp into the design curves in Figure 6, one can obtain the gain
that keeps the error within desired values while preserving stability. Figure 13 shows the
design curves, including the stability margin bound Kpmax ≈ 3.6(0.004211) ≈ 0.0152. The
curves are obtained considering a value of M = 0.00314.

0 0.005 0.01 0.015
0

2

4

6

8

10

Figure 13. Design method: steady-state error ess in terms of control gain Kp and ramp value M,
considering gain margin.

The curves in Figure 13 can be used to find the control gain Kp that gives a desired
force error. Assume the magnitude of the disturbance is provided, for example, 4M. Then,
if one selects a control gain of Kp = 0.013, the expected steady-state error is ess ≈ 0.96 N
(see the curve 4M in Figure 13).

Considering the disturbance of magnitude 4M and the controller Gc = Kp + Kds with
Kp = 0.013, the force control system is simulated. Figure 14 presents the disturbance
and the resulting force error e. Note that the force error e in Figure 14, when Kp = 0.013,
corresponds to the value of e ≈ 1 in the curves of Figure 13.

Since Kp = 0.013 is close to Kpmax , a small increase in Kp can cause oscillations and
instability in the system. The presented technique can be combined with root-locus analysis
to make an adjustment of Kp to have a desired damping. Figure 15 presents the root-
locus of the force control system, computed from the open-loop transfer function L(s) in
Equation (7) with Gc = Kp + Kds and using a second-order Padé approximation of GT(s),

i.e., GT(s) =≈ Nr(sL)
Dr(sL) , where Nr(sL) = ∑r

k=0
(2r−K)!
k!(r−k)! (−sT)k, Dr(sL) = ∑r

k=0
(2r−K)!
k!(r−k)! (sT)k,

T is the value of the delay, and r is the order of the approximation (see [18]). Figure 15
contains three markers showing the critical gain value 6.3 (similar to the gain margin),
the gain 3.08 corresponding to Kp = 0.013, and the gain value 0.231 corresponding to a
damping factor of 0.7.
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Figure 14. Force error ess in presence of ramp disturbance and disturbance xd(t).

Figure 14 presents the simulation when Kp is adjusted by the gain value 0.231, i.e.,
Kp = 0.231 × 0.004422 = 9.9 × 10−4. One can see that the force error e has a damped
response when Kp = 9.9 × 10−4 but the value of e is bigger than the case when KP is
close to the gain margin value. Therefore, one can observe the compromise between force
regulation and stability.

Figure 15. Root-locus analysis computed with L(s) in Equation (7). Bottom part: zoom-in around
the origin.

Time-Varying Disturbances

The design curves, such as those in Figure 5, for the case of time-varying disturbance
are computed as follows. Considering the disturbance xd(t) = 0.01 sin(0.628t) and the
controller Gc = Kp + Kds + Ki

s with the gains presented in Table 1, Equation (6) can be
used to obtained the curves presented in Figure 16. These curves are computed for a fixed
frequency of 0.628 and different sinusoidal amplitudes (from 0.005 to 0.08). The horizontal
axis represents the controller magnitude, and the vertical axis represents the deviation of
the force from its desired value.
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Figure 16. Curves of steady-state error ess in terms of control gain Kp and sinusoidal amplitude.

The simulation of the force control system with disturbance xd(t) = sin(0.628t) for
different amplitudes (0.01, 0.02, 0.04, and 0.08) is performed, and the results are presented
in Figure 17. Note that the deviation of the force f with respect to the reference fd = 50 N
corresponds with the deviation predicted by the curves in Figure 16 for the case KGM = 1,
since the control magnitude was not changed. Specifically, Figure 16 predicts an approxi-
mated deviation of 0.25, 0.5, 1, and 2, when a sinusoidal disturbance with magnitude 0.01,
0.02, 0.04, and 0.08, respectively, appears in the system. This prediction matched with the
simulation results presented in Figure 17; see the zoom-in of the figure.
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Figure 17. Simulation of the force control system: sinusoidal disturbance with variable amplitude.

When the amplitude of the sinusoidal disturbance is fixed, one can obtain curves
similar to those presented in Figure 16 for several frequency values. Figure 18 presents the
mentioned curves, when the sinusoidal disturbance has an amplitude of 0.01 and different
frequency values. Then, whenever the amplitude and frequency are known, the curves
in Figure 18 can be used to tune the control magnitude in accordance with the desired
force error.
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Figure 18. Curves of steady-state error ess in terms of control magnitude KGM and sinusoidal
frequency.

Figure 19 presents the results of the simulation of the force control system with the
sinusoidal disturbance of amplitude of 0.01 and different values of frequency. One can see
that the simulation results matched with the predicted force error of the design curves in
Figure 18. For a control magnitude of one, i.e., KGM = 1, the predicted force errors are 0.5, 1,
3.5, and 10 [N], when a disturbance with frequency 0.628, 1.25, 2.5, and 5 rad/s, respectively,
emerges. These force errors are similar to the ones obtained in the simulation presented
in Figure 19; see the zoom-in. Note that the gain margin of 6.3 (see Figure 11) must be
considered during the selection of the control magnitude KGM in the curves presented in
Figures 16 and 18.
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Figure 19. Simulation of the force control system: sinusoidal disturbance with variable frequency.

4.4. Maximum Speed along the Surface

The maximum speed at which the task can be executed is computed as follows.
Consider that the maximum force error tolerated by the system is emax = 3 N, and controller
gain Kp = 0.005 (close to the one in Table 1). Then, locating these values in the design
curves of Figure 13, one obtains a region containing the possible values of disturbance
magnitude M that can be compensated (see Figure 20). The maximum value of M is the
one located in the upper right corner of the rectangular region delimited by emax = 3 N and
Kp = 0.005. Note that the maximum value is 4M. Then, the maximum speed at which the
task can be executed is computed as 4M = 4 × 0.00314 = 0.0126 m/s.
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Figure 20. Computing the maximum speed using the curves of steady-state error ess in terms of
control gain Kp and ramp value M.

For the case of time-varying disturbances, the maximum speed at which the task
can be executed is computed using the curves presented in Figure 18. Considering a
maximum error of emax = 3 N and a selection of control magnitude KGM = 1.5, the
maximum velocity can be estimated with the frequency value associated with the closest
curve to the upper right corner of the rectangular region delimited by emax = 3 N and
KGM = 1.5. In Figure 21, this frequency value is 2.5 rad/s. Then, assuming a wavelength
λ = 0.1 m and considering the maximum frequency of 2.5 rad/s, the maximum velocity is
0.1 × (2.5/2π) = 0.0199 m/s.
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Figure 21. Computing the maximum speed using the curves of steady-state error ess in terms of
control magnitude KGM and disturbance frequency.

5. Conclusions

The methods of analysis and design presented in this paper are useful to keep the force
error within desired limits while guaranteeing stability. Furthermore, the presented design
curves can be used to estimate the maximum velocity at which the task can be executed.
Since this method is model-based, its application requires certain knowledge about the
disturbances acting on the system, such as maximum magnitude and frequency. However,
these parameters might be available in practical applications or not difficult to estimate.
The simulations presented in the paper verify the effectiveness of the proposed methods.
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Abstract: The food supply chain is a critical part of modern societies. As with other facets of life, it is
thoroughly digitalized, and uses network connections. Consequently, the cyber security of the supply
chain becomes a major concern as new threats emerge. Cyber ranges can be used to prepare for
such cyber security threats by creating realistic scenarios mimicking real-world systems and setups.
Organizations can participate in cyber security training and exercises that present them with these
scenarios. Cyber ranges can also be used efficiently for research and development activities, because
cyber ranges are realistic environments and can be used for the generation of realistic data. The
aim of this study is to describe a digital twin of the food supply chain built for cyber range-based
cyber security exercises. The digital twin mirrors the real-world situation with sufficient detail, as
required by the cyber exercise. This research uses the design science methodology, which describes
the construction and evaluation of the proposed system. The study explains the general capabilities
of the food supply chain digital twin and its use in the cyber range environment. Different parts of the
supply chain are implemented as Node.js services that run on the Realistic Global Cyber Environment
(RGCE) platform. The flow of ingredients and products is simulated using an apparatus model and
message queues. The digital twin was demonstrated in a real live cyber exercise. The results indicate
that the apparatus approach was a scalable and realistic enough way to implement the digital twin.
The main limitations of the implemented system are the implementation on one specific platform,
and the need for more feedback from multiple exercises. Creation of a digital twin enables the use of
cyber ranges to train organizations related to the food supply chain.

Keywords: cyber security; cyber exercise; digital twin; critical systems; food supply chain

1. Introduction

The food supply chain represents the interlinked flow of raw materials to food prod-
ucts. It consists of food production, processing, distribution, and retail [1]. Such systems
include traditional and modern Internet of Things (IoT) devices. As a critical system,
the resilience of the supply chain against any disturbances is important [2], including envi-
ronmental [3] and pandemic [4] reasons. Cyber threats against supply chains have been
identified earlier, e.g., using target IT systems to facilitate weapons trafficking, pharma
sabotage, or cargo theft [5]. Similar threats could target any supply chain, taking into
account their characteristics. The concept of the supply chain covers all aspects of society,
including the use of subsidy schemes, which can be modeled mathematically [6]. Demand
disruptions are possible, and the effects of such events can be modeled in a simplified setup
of one manufacturer and one retailer [7]. Figure 1 illustrates the basic schematic structure
of the food supply chain, adapted from [1,8].
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Figure 1. Food supply chain.

1.1. Cyber Exercises

Like all IT systems, the food supply chain is vulnerable to cyber security threats,
e.g., in the areas of smart farming and cyber–physical systems [9]. Cyber attacks against
food supply chains can be devastating. Therefore, preparing for such scenarios in a safe
environment is important. An effective solution to enhance the knowledge and skills of staff
members against cyber threats is the cyber security exercise, where the learning audience
participates in a realistic scenario using a technical infrastructure that mirrors the systems
and networks in the real world [10]. Such technical infrastructure is called cyber range
and/or cyber arena, especially when an expansive environment is considered. Karjalainen
and Kokkonen introduce the requirements for cyber arena environments [11]: (i) realism,
(ii) isolated and controlled environment, (iii) internet simulation, (iv) user and network
traffic generation, (v) attack execution and simulation, (vi) organizations’ infrastructures,
(vii) collaboration, and (viii) planning, executing, monitoring, and analyzing. When creating
new target domains for cyber arenas, the requirements of realism, user and network traffic
generation, and organizations’ infrastructures in particular become essential.

Cyber arenas need services that replicate the real-world environments where the staff
members would face realistic cyber attacks. One way of replicating the food supply chain
is to create a digital twin, which mirrors the production cycle and factory setups of the
domain. Digital models such as digital twins have their roots in life-cycle management,
with a focus on computational modeling; they are virtual representations mirroring physical
systems [12]. These models are, naturally, software programs that copy the behavior of
their real-world counterparts. The exact definition of a digital twin is an elusive concept
that is perhaps not enough distinguished from computing models and simulations [13].

Figure 2 illustrates a typical cyber exercise conducted in a cyber arena. Domain exper-
tise defines the scenario, which can be realized with digital twins and models. The white
team (WT), also known as exercise control, controls the planning and execution of the
exercise. The blue team (BT) is the learning audience of the exercise defending their sys-
tems: by implementing required incident response and forensics maneuvers, for example.
The BT is usually modeled in accordance with real organizational structures, and there
can be one or several BTs in the exercise. The red team (RT) acts as the threat actor by
executing real cyber attacks against the exercise assets of the BTs [14,15]. There is also a
green team (GT); they act as system administrations for the whole exercise environment.
Basically, the GT enable the technical exercise and assist the other teams if there are out-of-
scenario technical issues during the exercise. In this paper, the domain is the food supply
chain, the organizations are companies in that domain, and the Realistic Global Cyber
Environment (RGCE) [16] serves as the cyber arena.

The cyber arena models the whole networked information security infrastructure
required for the cyber exercise. Consequently, it can be realized using digital twins, which
meet the requirements set by cyber security exercises. Themes related to digital twins,
such as physical and virtual processes and virtual environments [17], are relevant in the
cyber arena.
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Figure 2. Elements of a cyber exercise.

1.2. Digital Twins and Supply Chain

Digital twins include a physical and a virtual entity, which should have a similar
state in the end of the realized twinning. The physical entity is measured or observed,
and then realized as a virtual entity. The flow of information is similar: back from the
virtual entity back to the real world [17]. The concept of the digital model might be more
appropriate for our research, i.e., a system where data flow is not automatic [13]. However,
the supply chain itself is not a single distinct entity, but a network of actors. Calling a
digital representation of such an entity a digital twin is meaningful, as the concept itself is
not well-defined.

The data flows in mirroring or twinning are presented in Figure 3, as suggested
by Jones et al. [17]. Such real-time approaches are not quite feasible for cyber security
situations, not least because of the often sensitive nature of the domain data. We discuss
the actual solution in the result section of this paper.

Real World
Data

Used for requirements
to implement the digital 

twin or simulationDigital Twin

Simulated
Information
from Twin
Can be used
in real world
applications

Figure 3. Theoretical dependencies between a real-world system and a digital twin.

The use of digital twins is somewhat implicit in cyber exercises. The concept for
a supply chain digital twin has been discussed elsewhere, e.g., by Barykin et al. [18].
They conclude that such twins differ from twins of other—mainly physical—concepts,
and that simulation, optimization, and data analytics are the main technologies needed
for implementation, although there is no clarity about this in the literature they reviewed.
Wang et al. propose a smart supply chain driven by digital twins and highlight a real-use
case involving a retailer [19]. Marmolejo-Saucedo describes the design and development
of digital twins for supply chains. The presented case study focuses on a pharmaceutical
company, and includes simulations related to the supply chain [20]. In their review,
Abideen et al. [21] emphasize the use of data analytics as the next step for digital twins in
the supply chain and logistics.An review articleby Eckhart and Ekelhart [22] concludes that
the concept of digital twins has possibilities beyond the few present uses. They also present
a definition of the digital twin for cyber–physical systems, where real-time or historical
data is used to build a replica with sufficient fidelity. Studies such as Alim et al. [23] have
implemented digital twins with physical testbeds to mirror farmland canal systems. Enns
and Suwanruji have created a simulation testbed that was used for supply chain modeling.
The solution was based on network flows and featured a user interface [24]. The mentioned
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studies illustrate the usefulness of digital twins in testbeds for various domains. However,
little literature exists about actual implementations of such systems in the context of supply
chains and cyber security.

1.3. Aims and Motivation

We aim to show that the digital twin can also be built to support cyber security con-
cerns. Consequently, a digital twin of relevant parts of the food supply chain is described.
This study aims to describe the implementation of the food production cyber arena, which
meets the eight high-level requirements mentioned above. This digital representation facili-
tates the creation of a simulated supply chain for a cyber exercise aimed at organizations
working in the domain of food production and processing. For example, food production
companies could exercise their response to cyber attacks targeted at critical points in their
processes. A cyber exercise in the food supply domain could include participants from a
food processing factory. Staff members from departments such as management, commu-
nications, and operations could participate. The scenario includes a cyber attack to the
factory, to which the participants should react. The resolution of the problem will provide
resilience information to the departments. In this article, we describe the design of the
digital twin for this purpose.

The following key questions in this study can be identified:

• RQ1: How can we develop a digital twin of the food supply chain for cyber exercises?
• RQ2: What kind of simulation concept fulfills the requirements of the food supplychain

digital twin?

This article is structured in the following manner. After the introduction, the cyber
range used in this study, the Realistic Global Cyber Environment (RGCE), is described in
Section 2. Section 3 describes the proposed design, the design science approach used in
this study, the requirements of the system, architecture, implementation, and simulation
concerns. The results are discussed in Section 4, describing the use of digital twins in RGCE,
and evaluating how the system fulfilled the requirements. Finally, Section 5 concludes
the article.

2. Realistic Global Cyber Environment

The most recognized term for a technical cyber exercise environment is the cyber range.
To understand the term cyber range, it can be associated with a shooting range where one
can improve one’s skills with firearms [25], or a driving range, where players can improve
their golf swings. In a cyber range, one can train and improve their cyber security-related
skills and tactics. There are, globally, a multitude of cyber ranges developed by govern-
mental organizations, industries, universities, and research centers. The inaccuracy of the
term cyber range is that it is used from the one-server testbed to enormous infrastructure
mimicking global internet in organization environments.Because of this heterogeneity,
Karjalainen and Kokkonen introduced the term cyber arena to describe those massive
cyber environments which are implemented for the simulation of a total and complex
cyber–physical system of systems [11].

One of the most valuable and critical assets of cyber security is the knowledge and
skills (know-how) of the individuals. At the organizational level, the cyber know-how
of the staff members forms the cyber resilience of the organization. Cyber exercise is
an effective way to improve skills facing the stressful situation of a cyber attack. Cyber
exercise is beneficial to the skills of individual people but also to the cyber security ca-
pability of the organization. During the exercise, organization’s internal processes and
co-operation interfaces with other organizations are trained during realistic scenarios in
a realistic environment. To demonstrate the need for such environments, we refer to
Finland’s cyber security strategy, where measures to promote cyber security competence
include, for example [26], “Training programmes related to cyber and information security”. The
strategy also emphasizes the support provided “by both national and international training
and exercises” [26]. Nationally, exercises are encouraged as well as “digital security training
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in the public administration” to develop the personnel’s skills, including those of businesses,
stakeholders, and citizens [26].

The cyber arena used for this study is the RGCE, which is a fully functional live cyber
arena. It performs in an isolated private cloud, a realistic digital globe with realistic organiza-
tion environments, by combining virtualization techniques, physical devices, and business-
specific systems. As a digital twin of that global entity, it offers possibilities not only for
realistic trainings and exercises but also for research and development activities [16].

RGCE is isolated and fully controlled, so it allows usage of vulnerabilities and real
attack vectors, which is a specific feature to be considered when implementing a digital twin
for cyber exercises: how can we realistically mimic the systems that can be compromised
during the cyber exercise?RGCE has been implemented since 2011 by various research
and development projects. In the ongoing project Food Chain Cyber Resilience, critical food-
production infrastructure is mimicked as a digital twin for cyber security exercises for
food-production organizations [27]. The environment is implemented and hosted by the
JYVSECTEC (Jyväskylä Security Technology) center for cyber security, artificial intelligence,
and data analytics-focused research. The development and training center is hosted by the
Institute of Information Technology at Jamk University of Applied Sciences.

3. Proposed Design

3.1. Design Science Approach

This study takes the design science approach. The approach focuses on the processes
and especially the artifacts created in the processes. The two main tasks are to build
and evaluate the artifact during the research. Consequently, the approach is suitable for
information science research [28]. Design science closely resembles constructive research,
where the goal is also to produce an artifact [29]. The presentation of such research varies,
although some efforts have been made when considering software engineering and design
science [30]. The process elements of design science can be summarized as follows [31]:

• Problem identification and motivation,
• Objectives of a solution,
• Design and development,
• Demonstration,
• Evaluation,
• Communication.

The goal of the design science process is to create a new artifact, which in this study is
the digital twin model of the food supply chain. The objectives and design are described
further in this section. The demonstration and evaluation of the system take place during
the cyber exercises that use the digital twin, which are discussed in Section 4 of this article.

3.2. Requirements

The requirements were discovered from domain experts via interviews and group
work. Both domain requirements and cyber exercise requirements need to be taken into
account when creating a system for the cyber arena. The requirements considered the
following categories: (i) Realistic enough to represent farms and factories. (ii) Factory
system simulation at the level that cyber attacks could be used against the simulated
machines. (iii) Scalable and flexible so that multiple copies of the target, e.g., farms, could
be created effortlessly. (iv) Possibility to represent food shipments and storage. (v) Dynamic
possibility to create recipes for food products.

3.3. Architecture and Implementation

Figure 4 illustrates the setup of the food supply chain simulation. The basis for the
simulation was mainly implemented using the Node.js runtime environment. Each service
is simulated using the Node.js application that provided the needed interfaces. The various
services run on virtual machines in containers on the virtual machine platform of the cyber
arena. The services communicate via the (virtual) network, sending the simulated control
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messages and simulated material flow using TCP/IP. Messages are passed using REST
APIs or mock-ups of protocols such as Modbus. Such messages are usually formatted as
JSON using schemas specific to the scenario. Storage is presented with a simple PostgreSQL
database solution, which can increase and decrease the amount of material as needed by
the scenario or as requested by the simulation. The raw materials and products passed from
apparatus to another are simulated using the Bull queue system for the Redis in-memory
cache. Figure 5 also shows the relation of the technologies to the simulation.

Realistic Global Cyber Environment (RGCE)

Network and Virtual Machine Platform

Simulation Layer Simulated products passed as message queue messages

Factory

TankMilking Robot Processing Storage

Farm Retail

Storage

Other Nutrient Sources

Figure 4. Food supply chain simulation building blocks.

Apparatus (n)

Simulated PLC Job Queue

SCADA/HMI

MES

Raw material system

Redis
Simulates conveyors/pipelines

Product storage

Simulated material ow
Simulated control messages

Figure 5. Apparatus schematic.

3.4. Simulation

The simulated factory in the cyber exercise is created so that malicious actors can use
cyber attacks against the factory. Each of the parts described below can be targeted as
required by the exercise scenario.

The supply chain itself is modeled using two basic elements: apparatus and messages.
The apparatus represents the various machines and storage in the supply chain. Apparatus
can represent, for example, milking robots, food-processing machines, and packaging
machines. The messages are passed from one apparatus to another. These messages contain
the relevant domain information (e.g., a message could contain the amount of milk in liters),
and metadata (such as the measurement unit).

The simulated factory has the following parts created as Node.js services. As with
many industrial applications, a supervisory control and data acquisition (SCADA) unit
controls the programmable logic controllers (PLC). Both SCADA and PLCs are built for
the exercise scenario. The SCADA system is used via a human machine interface (HMI),
which enables humans to give commands via, for example, a web interface. While SCADA
controls the machinery’s PLCs, the manufacturing execution system (MES) controls the
production process itself. Therefore, the production plan dictated by MES will be followed
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by SCADA, which commands the individual apparatuses. For exercise purposes, each of
these can have bespoke user interfaces created for the exercise scenario.

The apparatus are the various machines in the factory. There can be many apparatus,
since a food-production process could require multiple sequential or parallel steps. A simu-
lated apparatus contains a PLC, which runs programs as instructed by SCADA, and a job
queue, which requests raw materials from conveyors and sends products to conveyors.

The raw material system (RMS) contains various tanks, from which the SCADA
system can make requests. There could be a tank for each type of ingredient which can
be arbitrarily created for the exercise scenario. The virtual raw material is then conveyed
to the apparatuses, which require ingredients to create the products. Redis simulates the
conveyors and pipelines in the factory. Product storage is the end point for the products.

The apparatus schematic is shown in Figure 5. Here, all simulated control messages
and simulated material flow are passed via TCP/IP at the exercise infrastructure level.

4. Results and Discussion

4.1. Digital Twins in RGCE

The RGCE can be considered as one comprehensive digital twin of the global internet,
consisting of several interconnected digital twins. As a basis, there is the RGCE’s internet,
consisting of several realistic functions and services: for example, BGP routing and realistic
structure with public IP addresses, or global PKI infrastructure for certificates. The RGCE
includes a wide range of internet public services, such as news sites, social media, and
discussion forums. The other layer of the digital twins in the RGCE are the specific organi-
zation environments. There is a wide range of organization environments implemented
for the RGCE: financial organization, electricity companies, and healthcare-related organi-
zations, to name a few examples. As in the real world, there are interrelated connections
between those different elements and, for example, a cyber attack against an electricity
company may cause cascade effects to other elements. Similarly, attacks against some
crucial software may cause effects on another organization, or if the other organization
offers services to another, those might be interrupted because of the cyber attack, which
allows training for co-operation between organizations [16].

In this study, the digital twin of the food-production value chain is modeled. It
consists of several organizational elements connected digitally which are dependent on
those previously implemented services. These parts of the food production value chain are,
for example, smart farming, food-production companies, and retail chains. For example,
if there is a cyber attack against a refrigeration unit of the food-production organization,
it affects other elements, and that same unit with the same vulnerability can also be used
in retail.

During the implementation of those digital twins, there is a lot of co-operation between
the real actors of the industry sectors. By that co-operation, the requirements for the
implementation can be gathered to ensure that the implemented digital twins are, from the
cyber security training and exercise point of view, as realistic as possible.

The schematic idea behind every digital twin in the RGCE is presented in Figure 6.
The requirements describing processes and structures related to the domain are passed from
the real world. The feedback to the real world after an exercise concerns organizational
practices and processes.

Real World
Requirements:

Processes,
Systems,
StructuresRGCE

Learning outcomes:
Organization,

Processes

Figure 6. Digital representations in RGCE.
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4.2. Evaluation

The implemented digital twin of the food production value chain was tested during
the pilot cyber security exercise on 28–29 March 2023. Participants of the exercise varied
from governmental organizations to the private sector, including direct participants of
food production (for example, smart farming, food production, and retail chains) but also
companies that offer services for food production (for example, internet service operators
or manufacturers of special hardware) [27,32].

The requirements for the system are presented in the previous Section 3.2. Table 1
compares the requirements with the implemented solution. In the following sections,
the requirements are evaluated individually, based on the cyber exercise where the system
was used as part of the cyber arena.

Table 1. Solutions that were implemented to satisfy the requirements.

Requirement Solution

Realism of the environment Realistic products and descriptions, realistic supply
chain components

Factory system as cyber
attack target Open to vulnerabilities, identifiable inconsistencies

Scalability Each apparatus running on dedicated virtual instance
Representation of food
shipments and storage JSON descriptions and Redis pipeline

Dynamic food recipes Versatile JSON descriptions

4.2.1. Realism of the Environment

The realism of the environment was achieved with the use of realistic products and
product descriptions. The sufficient representation of the food supply chain was achieved
so that the participants could recognize and understand the simulated supply chain. The vi-
sual presentation of the various views was also a concern. The ultimate evaluation for this
is how well the system was received by the participants of the cyber exercise.

After the exercise, feedback was collected from the participants in order to further
develop the cyber arena and the exercise concept. As a motivation for this goal, it seemed
that nearly all of the BT and WT members would participate in an exercise again.Feedback
also included ideas and requirements for future development. In general, it can be said that
the pilot exercise was a success, and the participants were satisfied with the technical im-
plementation. Furthermore, the pilot exercise was arranged to identify possible deficiencies
and future implementation topics. After a thorough analysis of the feedback and the next
version of the implementation, there will be the first full version of the food production
cyber range as a digital twin for training and exercise usage.

Figure 7 shows the view in the SCADA/HMI (see also Figure 5) This view indicates
the production status of three production lines. The name of the line and the current
product are mentioned on the left. The completion percentage of the production line for
the batch is indicated on the right.
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Figure 7. Production-line view in the user interface.

4.2.2. Factory System as Cyber Attack Target

The system was used during a cyber exercise. This demonstrates that it was at a
mature enough level to provide cyber attack targets for the exercise scenario. The use of
the system also shows that its functioning could be disturbed in a meaningful way, so
that the participants could detect the attack, react, and defend the critical infrastructure.
By leaving the system open to simulated cyber attacks, the red team could create threat
scenarios during the exercise. The participants were able to detect the consequences and
inconsistencies in the information. Figure 8 shows an interface to follow the production
process. Interruptions in the graphs and logs could indicate cyber attacks. Either the
organizing white team or the defending blue team could use such an interface to monitor
the processes.

Figure 8. Apparatus monitoring.

4.2.3. Scalability

Running all apparatuses on one virtual machine was not feasible because a realistic
representation of the food supply chain contains many production lines and many machines.
Consequently, each apparatus runs on its own virtual instance, so that new apparatus can be
spawned and killed from the simulation as needed by the exercise scenario. This way, only
the capacity of the virtual machine platform limits the size of the simulated manufacturing
plants. Figure 9 shows the user interface to inspect a certain production line, where each
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block is one apparatus in the line and there are seven in total in this line. This illustrates
how crucial it is to have a scalable number of apparatus. A full supply chain simulation
includes several production lines.

Figure 9. Apparatus in a production line.

4.2.4. Representation of Food Shipments and Storage

Representing food shipments was one of the core features for demonstrating the food
supply chain. As described in Section 3.4, the raw material system and product storage
services represent the storage. Food shipments were simulated, and the representations
of raw material and food product shipments were handled internally as JSON messages.
The relevant information was included in the shipment messages. Listing 1 provides an
example of the representations of the raw materials in the system. Each shipment has an ID
number and metrics describing its properties relevant to the food supply chain use case.

Listing 1. JSON representation of raw material.

{
"id": "283 d61bf -fafd -465a-a525 -ca43b27c4cbe",
"amount ": 359,
"batchId ": "7552 b60a -6413 -4d2d -82b5 -e3d2255ae4b6",
"metrics ": {

"temperature ": 5,
"acidValue ": 2.2132 ,
"somaticCells ": 344558

},
"type": "milk"

}

4.2.5. Dynamic Food Recipes

There was also a need to represent the products in detail, so that cyber attacks in
the production line could cause changes in the composition of the products. The label
and content descriptions of the products were sufficient to enable the tracking of product
contents during the cyber exercise. In a cyber attack scenario, the description on the label
could be erroneous due to manufacturing deficiency. A shortened example of the basic
structure of food product representations is shown in Listing 2.
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Listing 2. A shortened example of JSON representation of food products.

{
"label": {

"ean": "1234567890" ,
"name": "Rye bread product X",
"lotId": "L077007126630",
"price": {

"vat": {
"rate": 12,
"class": 3

},
"value": 1.50,
"currency ": "\euro",
"priceUnit ": ""

},
},
"content ": {

"properties ": {
"nutrients ": [

{
"name": "Energy",
"value": "1213 kJ / 290 kcal"

},
{

"name": "Carbohydrate",
"value": "50 g"

},
]

},
"batchAmount ": 0.200

}
}

}

5. Conclusions

This article presented a way to design a digital twin to represent supply chains for
cyber exercises. The development of a digital twin of a food supply chain for cyber exercises
(RQ1) could be achieved with standard web technologies. The design of a food supply
chain digital twin uses generic apparatus services to simulate various production machines.
In addition, the raw material system and the end storage can be simulated with databases
and queues. Standard web technologies are sufficient to build the services required by a
digital twin for cyber exercises. Accordingly, the developed simulation concept for the food
supply chain (RQ2) followed a web service architecture. The use of simulated parts of the
food supply chain actors, such as MES and SCADA, facilitates the immersiveness of the
exercise. In addition, the scalable apparatus architecture makes it feasible to create new
scenarios and extend the existing ones, depending on the domain needs.

Digital modeling and twinning can be seen as valuable tools for exercises. When
building digital twins, a restricted domain and application area, e.g., cyber security, serve
to constrain the complexity of the system. However, the evaluation of such constructs could
be difficult because of the specifics of the domain. The realistic nature of the scenario is
essential to cyber exercises. The simulated products were dynamically created as a process
which enabled unusual events during the exercise. Cyber attacks against such targets
are sensible for the attackers (RT) and for the exercise, because the consequences affect a
realistic process.

The main limitation of this study is that the system was built for one specific cyber
range, the RGCE. The solutions used in this cyber range could be idiosyncratic to it,
and adaptability to other environments might be inconvenient. Secondly, as this is the
first iteration of this kind of digital twin approach, the design and development process of
future digital twins might reveal better technical practices in the implementation.

The use of digital twins of domain systems as part of cyber exercises improves the
immersiveness by simulating real supply chains. This way, the participants can exercise in
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a realistic environment which mirrors the systems and processes in their ordinary work.
Implementing the digital twin requires a modular design with appropriate messaging
simulating the real-world counterparts. Further research includes detailed validation by
analyzing the conducted cyber exercises. The generalizability of the solution could also
be studied.
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Abstract: Well-performing control loops have an integral role in efficient and sustainable industrial
production. Control performance monitoring (CPM) tools are necessary to establish further process
optimization and preventive maintenance. Data-driven, model-free control performance monitoring
approaches are studied in this research by comparing the performance of nine CPM methods in
an industrially relevant process simulation. The robustness of some of the methods is considered
with varying fault intensities. The methods are demonstrated on a simulator which represents a
validated state-space model of a supercritical carbon dioxide fluid extraction process. The simulator is
constructed with a single-input single-output unit controller for part of the process and a combination
of relevant faults in the industry are introduced into the simulation. Of the demonstrated methods,
Kullback–Leibler divergence, Euclidean distance, histogram intersection, and Overall Controller
Efficiency performed the best in the first simulation case and could identify all the simulated fault
scenarios. In the second case, integral-based methods Integral Squared Error and Integral of Time-
weighted Absolute Error had the most robust performance with different fault intensities. The
results highlight the applicability and robustness of some model-free methods and construct a solid
foundation in the application of CPM in industrial processes.

Keywords: performance; control loop; monitoring; overall controller efficiency; single-input
single-output

1. Introduction

In industrial applications, processes are automatically controlled for the purposes of in-
creasing production efficiency and reducing wasted resources. Many processes also require
continuous control to stay within the operational limits. Well-performing control loops
have an integral role in these tasks. However, the control loops require regular maintenance
for keeping up with disturbances and decay present in industrial applications. Thus, the
effectiveness of each control loop should be monitored to identify the maintenance needs.

The primary objective of control loop monitoring is to identify the control loops with
inadequate performance. For this aim, a plethora of performance estimation methods is
available in the current literature [1–3]. A well-performing control loop creates a solid
foundation for further process optimization and preventive maintenance.

Poorly performing control loops may be caused by normal process deterioration over
time or by disturbances and failures in sensors, controllers, actuators, and the process itself.
In a performed analysis [4], some of the most common issues for control, process, and signal
processing include manually overridden loops, control element out of range, and step out
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or quantization. In [5], the most common faults according to control engineers in the
industry comprised controller saturation, oscillations, manual control, sluggish behavior,
and quantization.

The most applied automatic control strategy is the proportional, integral, and deriva-
tive controller (PID controller). PID control loops are usually tuned at the time of installation
but could receive less attention in the continuous maintenance work. This could result in
poor control and consequently declining process performance over time.

Control loop performance monitoring tools are widely used in industry. In a survey [5],
it was found that approximately two-thirds of control engineers use control performance
monitoring (CPM) tools or packages. The use of CPM tools has been on the rise and
automation companies provide solutions for use in industrial plants. Some companies may
develop their own internal solutions for control performance monitoring. For example, ABB
developed a control loop performance monitoring application, ServicePort, which allows
for the monitoring of plant-wide control loop performance and provides an automated
procedure for disturbance analysis [4].

Control performance measurement methods can be categorized based on the method’s
required a priori knowledge [1]; model-based methods require modeling of the monitored
process and utilize the model as a reference to assess the current control loop performance.
Model-free methods require no initial knowledge of the process but are instead based on
the data collected during process operation.

In this paper, data-driven, model-free approaches are prioritized for the purpose of
obtaining easily adaptable methodologies. Generally, the methods should be applicable
to an industrial plant, where the modeling of countless numbers of sub-processes would
require immense effort. Some commercial products are founded on similar aims. Non-
invasiveness, utilization of existing sensors, minimal process knowledge, and simple
algorithms are demanded from control loop performance monitoring tools [6]. Many of
the demonstrated methods have been widely used in control loop tuning applications, and
this work further utilizes these methods in a dynamic performance monitoring application.
Machine learning and deep learning methods may also be used for control performance
monitoring purposes [7,8]; however, the training and validation of these methods may
prove impractical in industrial applications with countless numbers of control loops. Thus,
this work focuses on easily applicable model-free methods.

This work evaluates the applicability of several conventional and machine learning,
model-free CPM methods on a simulated dynamic process. In addition, a method for con-
trol performance monitoring is presented, namely, adopting the ideas from the framework
of Overall Equipment Efficiency (OEE) to this new context, the OCE (Overall Controller Ef-
ficiency) method. OEE is one well-known utilization-based metric to measure productivity
and efficiency. Other acknowledged metrics include total preventive maintenance, lean, 5S,
and the virtual factory [9]. In monitoring, OEE can be efficiently used to identify the under-
lying production losses to systemically establish process performance improvements [10].
It has also been applied as one possible indicator for measuring the impact of maintenance
practices on sustainability performance (overall sustainability score) in [11].

The comparative study in this paper is conducted with a validated simulator represent-
ing a sub-process in a supercritical fluid extraction system. A single control loop is isolated
and single-input single-output control performance is evaluated dynamically with the
demonstrated methods. Several simulation scenarios are created to deteriorate the system
behavior from the nominal control performance and thus illustrate the performance of the
CPM methods. With the simulated process data, a comparison of the ability to identify
faults and the robustness of the CPM methods is performed.

The structure of this article is as follows: Section 2 describes the considered CPM
methods, the simulated process, and the simulation scenarios of the faulty control. Section 3
presents the obtained results from the CPM methods’ application on the simulated dataset.
In Section 4, the results are further discussed. Finally, Section 5 concludes this study.
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2. Materials and Methods

Control performance monitoring is performed utilizing data from processes to estimate
the state of control. Several methods have been adapted for these purposes, with different
requirements and restrictions. Some methods utilize modeling of the process to obtain
accurate estimation. Unlike these model-based methods, model-free methods require no
process model.

Model-free control performance measurement methods can be further divided into
sub-categories such as statistical factors, integral time measures, correlation measures, and
alternative indices. The CPM method classification according to [1] is shown in Figure 1.

Figure 1. CPM method classification (adapted from [1]). The methods focused on in this work are
highlighted in grey.

Among the model-free CPM methods, the statistical approaches have shown benefits
for the cases of processes with non-linear properties. In [12], higher-order statistics-based
methods are used to identify oscillatory behavior and diagnose the possible cause for the
disturbance. Gaussianity and linearity are tested for in the process and possible identified
oscillatory behavior can be characterized by visual analysis of the process output vs. the
controller output plot. For example, valve stiction is generally identified by elliptical cycles
and sharp corners in the plot [12]. Statistical approaches also include methods such as cross-
correlation-based oscillation detection [13] and autocorrelation-based control performance
monitoring implementation [14].

Integral-based indices are a set of widely used performance indices such as Mean
Square Error (MSE), Integral Absolute Error (IAE), Integral Squared Error (ISE), and Integral
of Time-weighted Absolute Error (ITAE). Further adaptations of integral time measures
have been developed, some of which are described in Section 2.1. Integral-based indices
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have been widely utilized in the field of tuning control loops [15–18]. This work considers
application of these methods in dynamic control performance monitoring.

Alternative indices utilize other methods such as wavelets and entropy. The applicabil-
ity of dynamic response analysis is often limited in on-line control performance monitoring,
as it might require repeated process experiments and excitation.

2.1. Implemented CPM Indices

CPM methods for demonstration were chosen based on the criteria previously men-
tioned. The methods should perform without the need for modeling of the process. A priori
knowledge of the process should not be needed for estimating the control performance. As
such, the methods described in the following section were chosen.

Integrated Squared Error (ISE, Equation (1)) is calculated as a function of time and in
a sliding window. Here, a sliding window of one day is selected as:

ISE =
∫ n

n−x
e(t)2dt, (1)

where ISE is comprised of the sum of squared errors (e(t)) between the current time (n) and
the duration of the sliding window (x).

For the performed step changes, the Integral of Time-weighted Absolute Error (ITAE,
Equation (2)) is monitored for identifying longer period faults in the process. The longer
a fault is present, the larger the time weight grows and directly increases the metric. The
time weight used is the time since the last setpoint change:

ITAE =
∫ w

1
t|e(t)|dt, (2)

where ITAE is the sum of the absolute values of errors (e(t)) multiplied by the time since
the last setpoint change (w). Additionally, Amplitude Index (AMP, Equation (3)) is used
to measure the ratio between the maximum amplitude of process error and the size of the
performed step change. The value is obtained from the minimum and maximum values
after the rise time period, as in [3]:

AMP =
ymax − ymin

Δysp
, (3)

where ymax and ymin are the maximum and minimum values, respectively, of the process
value after the rise time and Δysp is the magnitude of the performed step change.

The difference from normal operation in the process can be identified by utilizing
the measurement error residuals and comparing the distribution to a selected time period
from normal operation. Kullback–Leibler divergence (KL, Equation (4)) [19] provides
a measurement for difference between the two datasets. In real processes, obtaining
data from the normal operation may prove difficult, especially if the process has been in
operation for a while and unknown disturbances may have occurred. Kullback–Leibler
divergence has been previously adapted to an index in MIMO controller performance
monitoring [20]:

KL =
∫

h1 log
h1

h2
dx, (4)

where h1 is the reference dataset and h2 is the dataset in the chosen sliding window.
Additionally, histogram intersection (HI, Equation (5)) [21] and Euclidean distance (ED,
Equation (6)) [22] are used here to estimate the difference between the reference data and
the sliding window testing datasets:

HI =
∑m

j=1 min(h1,m, h2,m)

∑m
j=1 h2,m

, (5)
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ED =

√√√√ m

∑
j=1

(h1,m − h2,m)
2, (6)

where the datasets h1 and h2 are divided into m histogram bins.
In addition, a commercial CPM tool was applied to the studied process. Overall

Controller Efficiency (OCE) is a method developed by Insta Advance. The idea of OCE
was inspired from a more general framework called OEE and is an adaptation of it in
the context of PID controller performance. OCE defines one number that describes one
PID controller’s history, present, and future ability to function in a specified task. The
main point in OCE is to follow the trend of the OCE value, and a continuous decrease in
the OCE value may indicate the need for action. On the contrary, an increase in the OCE
value can show the recovery or improvement of PID controller efficiency. OCE was first
developed for detecting long-term phenomena (e.g., crawling due to wearing), but in this
paper, OCE’s suitability to detect short-term phenomena has been examined in detail in the
experimental part.

In general, OCEtotal is a product of three separate factors, as indicated in Equation (7):

OCEtotal = OCEa × OCEp × OCEq. (7)

In Equation (7), OCEa is the availability, or the portion of time the controller au-
tonomously produces good-quality data. OCEp is the performance, or the accuracy to
follow the setpoint value without oscillation, and OCEq is the quality, or the ability to
continue as part of the production process in the future.

In this application, availability is calculated based on the proportion of automatic and
manual control of the studied control loop, while performance is related to the setpoint
tracking error. Quality is related to several indices describing the control loop performance
in long-term trends. The details of the quality factors are omitted due to company confiden-
tiality reasons. Overall, the calculation of the OCEtotal value relies on a statistical algorithm.
The OCE method includes parameters to finetune the process, and in this paper, the two
parameters that describe the number of days in the buffer and evaluation are considered.
In both cases, a value of 10 was used.

Since OCEtotal represents a product of the three aforementioned factors, it is sensitive
to variability in any of the indices. An extreme example is that if any of the factors are zero,
the whole OCEtotal value becomes zero. Moreover, in the case of asymmetric indices, OCE
may become less appropriate.

2.2. Simulated Process

A supercritical fluid extraction (SFE) process utilizes properties of a supercritical fluid
to extract product from a raw material. Carbon dioxide (CO2) is commonly used as the
supercritical fluid due to the properties of CO2, with it being sufficiently easy to achieve
pressure (73.8 bar) and temperature (32.1 ◦C) for the critical point. The process consists of
six parts, namely, the extraction reactor, extract separator, condenser, CO2 storage, CO2
flow pre-heater, and pump, as shown in Figure 2. A set of central composite design
experimental test runs were performed and state-space models for the process components
were identified in [23,24]. Thus, the simulator used represents a validated model of the
physical process.
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Figure 2. Flow chart of the supercritical CO2 fluid extraction process [23].

One control loop from the previously identified simulator was isolated for this work.
The selected discrete-time, state-space model (see Equations (8) and (9)), namely, the CO2
flow, was identified from open-loop measurements of the original work [17,18], while other
portions of the simulator were identified with the existing PID control in the process. The
CO2 flow is the controlled variable, y(n), and valve position is the manipulated variable,
u(n). The second input is the external variable, ΔP. In this study, the external variable is
utilized as a disturbance, with a value of 0 in normal operation.

x(n + 1) =
[

0.9895 0.03677
−0.01237 0.9649

]
x(n)+[−2.520e − 05 −1.673e − 06

−2.199e − 04 −5.346e − 06

]
u(n),

(8)

y(n) =
[ −10.22
−0.1235

]
x(n)

(
+

[
0
0

]
u(n)

)
, (9)

The state-space model for the supercritical fluid extraction process was implemented to
MATLAB® and Simulink® software (Version R2020b Update 2). PI control, with parameters
8 for proportional gain and 0.2 for integral gain, was added to the simulator, and the
parameters were kept constant for the simulations. As the simulator models the CO2 flow
into the reactor, the lower limit for the output was limited to 0. The closed-loop process
settling time after a step change is approximately 400 s. Therefore, the simulation scenario
involved setpoint changes every 1200 s. The setpoint values were selected randomly
from an even distribution between 0 and 0.8, with an interval of 0.1. With these chosen
step changes, a representative dataset for the process was obtained for the whole area of
operation of the process. Additionally, having frequent step changes in the process, the
overall size of the dataset could be reduced, decreasing computing time in the later stages
of the demonstration. The obtained measurement data were then sampled every 10 s to
further reduce the size of the data matrix.
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2.3. Simulated Faults

In Case 1, the performance of the CPM methods for different kinds of faults was
studied in a long simulation period. The faults were added to the simulated process, first
occurring individually and later simultaneously. From the common faults presented in [5],
the following faults were used in this work:

• Valve stiction, where a certain difference between the previous and new controller
output is required in order to have an effect on the actuator position. Nominally, the
valve stiction in a faulty situation was set to 0.002.

• Valve change rate limit—simulating a scenario where the motor controlling the valve
has a sudden fault limiting the speed of the valve change. In this case, the speed is
limited to 0.04 valve rotations/s.

• Sin-wave with a constant amplitude of 75 bar, a frequency of 0.00002 Hz, and a rising
amplitude (from 0 to 141.6 bar), with a frequency of 0.0001 Hz representing an external
disturbance to the process. This disturbance acts as the second input variable in the
state-space model (pressure error), as described in Section 2.2.

• Quantization, where the measured process value fed back for the controller is quan-
tized within an accuracy of 0.08 L/min instead of a floating number. This value was
selected to produce a noticeable effect on the process control behavior.

• PID controller tuning error, where the value of the P-parameter is changed from 8 to
0.8 for the duration of the fault.

The simulator with the implemented control and faults is displayed in Figure 3.

Figure 3. Control and fault implementation for the simulated process. The rounded boxes at the top
represent the common faults in this work.

The faults are enabled one by one as follows. The first 15 days of the simulation are
fault-free. The following 2.3 days of the simulation have only one fault activated. The
remaining faults are then enabled one by one, every 1.2 days, until each fault is enabled.
The faults are then disabled one by one every 1.2 days, following the order of activation for
the faults. Thus, during the period from 20.8 to 22.0 days, all faults are present. Afterwards,
a rising sin-wave external fault is enabled during the time period of 26.6 to 30.1 days. The
final 9.9 days of the simulation are without faults, where restoration to the normal state can
be observed.

Figure 4 depicts the simulation of 40 days containing the setpoint changes mentioned
in Section 2.3 and the faults described above for the case with PID p-value disturbance.
Simulations were repeated with different fault scenarios for a comparison of different
measurement metrics with each fault case.

In Case 2, the robustness of the methods was tested. A simulation dataset with
different values for fault intensities was obtained, focusing on the valve stiction fault. First,
a simulation with no faults was performed to obtain a reference dataset. A total of 500
different simulations were performed with different fault intensities for valve stiction,
chosen randomly for each simulation from an even distribution. For the valve stiction
intensity, a required difference from 0 to 0.0036 between new and old actuator values was
chosen. To speed up the simulation, 800 s between setpoint changes was used instead of
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the 1200 s used in Case 1. With the reduction of the simulation time, the OCE method does
not perform adequately and is left out for this case.

Figure 4. Faults and setpoints during a simulation run of 40 days.

3. Results

3.1. Case 1. Identification of Faults with Different CPM Methods

Kullback–Leibler divergence, histogram intersection, and Euclidean distance are used
in this case to compare the selected reference dataset to a testing set selected from a sliding
window of one day (8640 data points). The training data are selected from the beginning
of the simulation with a size of 50,000 data points. The start of the dataset is known to
represent the normal behavior of the process and can thus provide an accurate reference
for the methods. Additionally, the number of bins for the histograms used is set to 8.

In practice, identifying normal behavior of the process is a challenge for accurate
monitoring in industrial processes. For this purpose, the utilized simulator allows for a
fault-free scenario when identifying the normal process behavior and provides means for
estimating the performance of the chosen CPM indices.

In Figure 5, the differences between the reference data (first 50,000 data points) and a
testing set selected with a sliding window of size 8640 (1 day) can be seen for the histogram
intersection method. For the HI method, the high index values indicate good performance
as the statistical properties of the test set are close to the reference data obtained during
a normal control loop performance. Slight changes in the metrics occur even in normal
operation (days 6–15), due to the randomly chosen setpoints. During the periods with faults,
the index clearly deviates from the values in normal operation. After the simulated faults
have ceased, the index returns to nominal value range, indicating a good performance of
the CPM method. Similar performance was observed for the Kullback–Leibler divergence
and Euclidean distance metrics.
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Figure 5. Histogram intersection between reference data and a sliding window of 1 day. Individual
faults enabled between the first two vertical lines. Faults disabled after the last vertical line. The lines
overlap on days 6–15 and 32–40.

However, with these methods, properties of the training data can affect the resulting
metrics. Deviations from the training data have a significant effect and retraining may be
necessary to adapt to an evolving process environment. Moreover, selection of the size
of the sliding window for the metrics affects the resolution of the results. With a larger
window size, the observation of a fault might be delayed as a lower proportion of the
window is from faulty data. Determining alarm limits is dependent on the process as
tolerances can vary.

Identification of an individual fault was considered by comparing a period of the
simulation where one fault was present with an equal-sized duration from the fault-free
period. In Figure 6a, this comparison for the OCE method was performed and presented
as a boxplot for normal, fault-free data, and separately for the five fault scenarios. A
high OCEtotal value corresponds to good control, whereas lower values indicate decreased
control loop performance. It can be seen that the OCE method can separate all of the faulty
situations from the normal operation, as the notches of the plot (95% confidence) do not
overlap. The process was repeated for all metrics (boxplots presented in Appendix A,
Figures A1–A7) and qualitatively compiled in Table 1. The fault was considered to be
identified when the index significantly differed from the normal behavior in the expected
direction. As indicated in Figure 6b, ISE shows a lower index value for the fault scenarios’
quantization and valve stiction, although it is expected that the integrated error value would
increase in the presence of fault. According to Table 1, among the tested CPM methods, KL,
HI, ED, OCEp, and OCEtotal could detect the decreased control loop performance simulated
in Case 1.
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Figure 6. (a) Boxplot of OCEtotal during a single fault, (b) Boxplot of ISE in sliding window during a
single fault.

Table 1. Qualitative performance of CPM indices. The fault situations marked with X showed
statistically significant difference in the monitored index between normal and faulty operation.

CPM Index
Cont.

Tuning
Ext. Dist. Rate Limit Quant.

Valve
Stiction

ISE X X X - -

ITAE X - - X X

AMP X - X - -

KL X X X X X

ED X X X X X

HI X X X X X

OCEp X X X X X

OCEq - X X - X

OCEtotal X X X X X

3.2. Case 2. Robustness of the Methods with Varying Fault Intensities

The robustness of the demonstrated methods was considered with the second sim-
ulation case, where the fault intensity for valve stiction was changed randomly for 500
different simulations. The resulting index values for the histogram intersection are shown
in Figure 7.

It can be seen in Figure 7 that some of the intensities for valve stiction can be identified,
as the index value clearly decreases below the normal operation (dashed horizontal line).
However, most of the index values are near normal operation limits, suggesting a limited
performance of the CPM index in this case. To improve the identification of the fault, the
CPM method parameters need to be adjusted. After testing a different number of bins for
the histogram intersection method, the best results in terms of the method’s robustness to
different fault intensities was achieved with a parameter value of 15 bins. Figure 8 depicts
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the result. It is notable that the resolution (absolute values of the index) of the method was
now considerably lower in comparison to the results in Figure 7.

 

Figure 7. Histogram intersection for 500 different amplitudes for valve stiction. The vertical dotted
line marks the time where the fault starts. The horizontal dashed line is the lower quartile of histogram
intersection in the fault-free simulation.

 

Figure 8. Boxplot (median and IQR) for adjusted histogram intersection with 500 different valve
stiction intensities. The red vertical line shows the value of valve stiction in Case 1.
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Valve stiction was identified for different methods with varying degrees of intensity for
the fault required. In Figures 8 and 9, the metrics are drawn as a boxplot (median, and lower
and upper quartiles) as a function of the fault intensity. HI (Figure 8), ED, and KL (Figure 9a)
can identify the fault well, as the intensity of the fault increases above 0.002. AMP performed
poorly with all chosen intensities, due to the nature of the valve stiction fault. Among the
studied CPM methods, ITAE showed the most robust behavior for different intensities of
the valve stiction, shifting from the normal operation with even small disturbance values, as
shown in Figure 9b. ISE also performed well, as shown in Figure 9c.

Figure 9. (a) Boxplot (median and IQR) for adjusted Kullback–Leibler divergence with 500 different
valve stiction intensities. (b) Boxplot (median and IQR) for ITAE with 500 different valve stiction
intensities. (c) Boxplot (median and IQR) for ISE in sliding window with 500 different valve stiction
intensities. For comparison, the red vertical line shows the value of valve stiction used in simulations
in Case 1 (Section 3.1).

The sensitivity of the demonstrated indices was compiled in Table 2, where statistically
significant difference (95% confidence) for the medians in the fault-free simulation and the
simulations with different fault intensities were compared.

The results suggest that KL, HI, and ED can identify small fault intensities with some
accuracy, but only reach accurate identification with the highest intensities. Additionally,
the absolute values of these metrics were low, and the performance may vary in more
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non-ideal conditions. AMP could not identify any of the implemented fault intensities.
Integrating methods ISE and ITAE performed well and had only a small range between the
lowest identified and highest non-identified fault intensities.

Table 2. Index performance with different fault intensities.

CPM
Index

Lowest Identified
Fault Intensity

Highest Non-Identified
Fault Intensity

Identified Fault
Intensities

Identification
Percentage

ISE 1.4 × 10−3 0.0015 307/500 61.4%
AMP - - 0/500 0%
ITAE 1.1 × 10−3 0.0014 345/500 69%
KL 6.9 × 10−6 0.0026 447/500 89.4%
HI 2.5 × 10−5 0.0031 194/500 38.8%
ED 2.5 × 10−5 0.0031 194/500 38.8%

4. Discussion

The current state of control performance monitoring methods was explored, and different
model-free CPM methods were chosen for a demonstration case with the aim of providing
easily adaptable methodologies for control loop performance monitoring in industrial appli-
cations. Some of these methods are widely used in control loop design and tuning, and this
work further adapts these methods in a dynamic control performance monitoring application.
A simulated environment was used to obtain a representative dataset for testing, with the
possibility of including different faults in different time periods in the simulation.

Among the studied methods, histogram intersection well identified the control error
residual difference from the reference data. Increased error from poor control results in an
abnormal distribution. However, the metric is heavily dependent on the conditions from
which reference data were obtained. Naturally causing drift and other changes in the process
can cause the metric to shift from an optimal area, even though the process may perform
adequately. As such, multiple metrics should be monitored for verifying the results of other
metrics and observing the actual state of the process. One option to facilitate this is to take
the approach used in the OCE method, which uses a product of several indices to assess the
overall controller performance. For example, the histogram intersection is naturally scaled to
values between 0 and 1, thus being an appropriate candidate for such a combined CPM index.

With respect to the second case with varying fault intensities, the KL, HI, and ED methods
performed rather poorly. The metrics mostly stayed at levels of normal operation with the
original method parameters. Adjusting the parameters for these methods allowed accurate
identification of the fault with the valve stiction values above 0.0031, as seen in Table 2.
However, robustness was compromised, with the methods only falling slightly below the
normal operation levels (for example, the median stayed above 0.96 for histogram intersection
in the highest valve stiction cases). The metrics could identify some of the lowest fault
intensities with decent accuracy but missed the identification of some of the highest intensities.
Amplitude Index performed poorly in the second case; however, the metric has utilization
potential in different fault cases. The integral methods ITAE and ISE performed well, with
ISE identifying 61.4% and ITAE 69% of the varying fault intensities. This can be explained
by the nature of the implemented fault, which caused residual setpoint error that integrating
methods can identify well. Additionally, due to the nature of the simulation, the chosen sliding
window has a large and very homogenous number of step changes. In practice, setpoint
changes can happen infrequently and at random time intervals. As such, applicability of the
methods should be considered when implementing CPM tools.

This paper focused on a single control loop case to build on a solid foundation for
further research. Multiple-input multiple-output control could prove an interesting topic
in the future. The setpoint changes utilized in the demonstrations were chosen to be
rather short, while industrial applications may run in the same state for weeks at a time.
Additionally, only one process was utilized for the simulations. Differences in process
dynamics may cause differences in the behavior of the control performance monitoring
metrics. Thus, the performance of the methods should also be studied for different types of
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data to ensure industrial applicability. Further, the demonstration presented was based on
simulated, noise-free data. Stability and tuning of the methods will require more attention
with real data, where noise is present or partially filtered.

5. Conclusions

In this work, it was found that the Kullback–Leibler divergence, Euclidean distance,
histogram intersection, and OCE method could identify all the simulated fault scenarios in
the first simulation case. In the second case, the robustness and sensitivity of the metrics
were further analyzed in the presence of valve stiction fault, where the integral-based ISE
and ITAE metrics demonstrated robust performance.

Control performance may suffer due to different sources of faults and different CPM
methods’ performance varies depending on the nature of the fault. Thus, a combination of
methods should be considered as a monitoring solution. As noted in this work, the OCE
method consisted of several factors and responded well to different fault scenarios.
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Appendix A

 

Figure A1. Boxplot of Amplitude Index during a single fault.
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Figure A2. Boxplot of ITAE during a single fault.

 

Figure A3. Boxplot of Kullback–Leibler divergence during a single fault.
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Figure A4. Boxplot of Euclidean distance during a single fault.

 

Figure A5. Boxplot of histogram intersection during a single fault.
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Figure A6. Boxplot of OCE method quality factor during a single fault.

 

Figure A7. Boxplot of OCE method performance factor during a single fault.
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Abstract: In the Software Development Life Cycle (SDLC), Development and Operations (DevOps)
has been proven to deliver reliable, scalable software within a shorter time. Due to the explosion of
Machine Learning (ML) applications, the term Machine Learning Operations (MLOps) has gained
significant interest among ML practitioners. This paper explains the DevOps and MLOps processes
relevant to the implementation of MLOps. The contribution of this paper towards the MLOps
framework is threefold: First, we review the state of the art in MLOps by analyzing the related
work in MLOps. Second, we present an overview of the leading DevOps principles relevant to
MLOps. Third, we derive an MLOps framework from the MLOps theory and apply it to a time-series
forecasting application in the hourly day-ahead electricity market. The paper concludes with how
MLOps could be generalized and applied to two more use cases with minor changes.

Keywords: continuous software engineering; DevOps; electricity market; Machine Learning; MLOps;
time-series analysis

1. Introduction

Sufficient motivation for the DevOps process emerged around 2009 [1]. At this time,
Development and Operations teams struggled to achieve smooth rollouts of software
products. The main reason for this struggle was that the software developers were not
concerned about deployments and the operation teams were not concerned about the
development processes. DevOps is a set of processes that utilizes cross-functional teams
to build, test, and release software faster, in a reliable and repeatable manner, through
automation [1–3]. Recently, investment in Machine Learning (ML) applications has enabled
stakeholders to solve complex business use cases that were difficult to solve. However,
in most cases, ML applications are only a tiny part of a more extensive software system,
and this small fraction of ML code is surrounded by a variety of software, libraries, and
configuration files [4]. Hence, the main challenge in ML applications is to build continuous
software engineering practices [5,6], such as DevOps [7], which can promise stakeholders
the seamless integration and deployment known as MLOps [8,9]. MLOps refers to DevOps
principles applied to ML applications. This paper introduces both DevOps and MLOps,
provides a detailed explanation of both, and explains how to implement MLOps from
the perspective of DevOps. Before diving deep into these technologies, it is helpful to
understand some history behind DevOps and how MLOps has evolved from DevOps. This
paper makes three contributions:

1. The literature on the motivations and the state of the art of MLOps is reviewed.
2. An overview of MLOps theory and DevOps theory relevant to the implementation of

MLOps is presented, and an MLOps framework is proposed.
3. The proposed framework is applied to a time-series forecasting application as a case

study. The case study is implemented with MLOps pipelines.
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Most importantly, this paper systematically presents the concept of MLOps from
DevOps and explores how to implement and extend the generic MLOps pipeline to multiple
use cases. These two aspects are the motivation and significance of this paper. The
remainder of the article is organized as follows: Section 2 reviews related works from the
context of MLOps. Section 3 provides an overview of DevOps principles that lead to the
development of MLOps, along with our generic MLOps framework. Section 4 presents the
application of the proposed generic MLOps use case for forecasting an hourly day-ahead
electricity market price.

2. Related Work

2.1. Software Development Life Cycle

The Software Development Life Cycle (SDLC) is a methodology with defined pro-
cesses for creating high-quality software [10]. SDLC processes include different phases,
such as planning, analysis, design, and implementation. The Waterfall model, Spiral model,
Iterative model, Prototype model, V-model, Rapid Development model (RAD), and Agile
model are some of the major SDLC models [10,11]. For successful project implementation,
it is crucial to select a proper SDLC model depending on different parameters, such as
software complexity and type [12,13]. Dayal Chauhan et al. [14] analyzed the impacts of
various SDLC methods on the cost and risk of projects. Several authors have classified all of
the available SDLC models into two types of methodology: heavyweight and lightweight
methodologies [10,11,15]. Heavyweight methodologies are mainly process-oriented, might
not entertain requirement changes, and emphasize documentation. The Waterfall, Spi-
ral, and Incremental models are a few examples of heavyweight methodologies [15,16].
Lightweight methodologies are mainly people-oriented, entertain frequent requirement
changes, have short development life cycles, and involve the customer. The Prototyping,
RAD, and Agile models are a few examples of lightweight methodologies [15,16].

Several authors have compared lightweight and heavyweight methodologies and
provided more insights on the SDLC selection process. For instance, Ben-Zahia and Ja-
luta [11] discussed the criteria for selecting proper SDLC models based on people, process,
or plan orientations. A few authors have defined a third methodology called the hybrid
development methodology, which uses both heavyweight and lightweight methods [17].
Khan et al. [10] used the analytic hierarchy process to select the best SDLC model from all
three methodologies. Among the lightweight, heavyweight, and hybrid SDLC methodolo-
gies, Waterfall and Agile are the most used SDLC methods, based on different parameters
such as usability [18,19], cost [20,21], safety [22,23], and customer involvement [24]. Several
authors have shown that customers are transitioning to Agile from the traditional Waterfall
SDLC due to the advantages of Agile, including short development life cycle, frequent
changes, customer involvement, and usability [19,22]. However, Agile SDLC methods have
also been criticized by some practitioners in cases where the requirements do not often
change [25] or where there are human-related challenges related to a lack of emotional
intelligence. Various authors [26,27] have analyzed issues such as quality and productivity
with traditional software development strategies such as Waterfall and compared them to
the Agile methodology, where clear advantages can be seen in Agile.

2.2. Agile and DevOps

Agile methodologies are the most widely implemented project management ap-
proaches in modern software systems. The 12 principles of the Agile Manifesto [28,29]
characterize the process integrity and methods of Agile project management, which are
applied to different Agile methodologies. Scrum, extreme programming, lean software
development, and crystal methodologies are some of the Agile methodologies [14,30,31].
Ever-changing business needs demand a continuous process in software development,
delivery, and system operations [32]. Implementing these continuous software practices
in Agile has enabled fast delivery of software [33]. Martin Fowler introduced the idea of
Continuous Integration (CI) and, later, J. Humble and D. Farley extended these ideas into
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Continuous Delivery (CD) as a concept of the deployment pipeline [34]. Several authors,
including Arachchi et al. [34] and Süß et al. [35], conducted research on automating CI and
CD for Agile. With Agile, faster software development, quality improvement, frequent
requirement changes, and customer involvement are achieved throughout the project.
Nevertheless, the structural gap between the Development and Operations teams remains
with the Agile methodologies. Development and Operations (DevOps) practices close this
gap [36].

The working nature of software developers and operational professionals is different,
and they work in isolation. This isolation might cause some conflicts between them [3]. The
Development and Operations teams work under different departments and leadership [37].
Working in isolation leads to different Key Performance Indices (KPIs) [38], which are
important in most organizations as they are used to define the performance of an individual
or a team [39]. Not only do KPIs define the performance alone, they are also a function of
several metrics [40]. An example of a developer KPI could be the time needed to roll out a
feature with minor or no bugs. For the operations team, one KPI could be the time taken
to roll out a feature with less or no downtime. To improve the KPIs, each team should
concentrate on the task at hand. As the size of the software grows, maintainability and
scalability become increasingly serious concerns [41,42]. For instance:

• An error might occur when the operations team tries to deploy a new feature to
the production environment [43,44]. However, the same code might work on the
developer’s machine and the Quality Assurance (QA) instance.

• The new codebase might break old features.
• It is difficult to track what has changed.
• The software might not serve its core purpose at all.

These are only a subset of the issues that can arise due to the Development and Op-
erations teams working in isolation and chasing their own KPIs. None of the product
owners [45], developers [46], or team leaders from either team are responsible for address-
ing the issues mentioned above. Even though these issues can be solved, this requires
more discussions and code exchanges between the Development and Operations teams.
Various studies [47–49] have been performed to understand the effects of such impacts.
Any software project has one more key stakeholder—the customer [50,51]. The customer
plays a significant role in the software life cycle [13], as the customer’s tolerance to risk and
ability to support collaborative routines influences key parameters such as project cost and
implementation time.

These issues are the driving factors that led to the formulation of the Agile and DevOps
methodologies [52–54]. Agile focuses on formal requirement gathering, on small–medium
but rapid releases and, finally, on continuous customer feedback. It enforces collabora-
tion between various teams to ensure rapid reaction times to ever-changing consumer
needs [55,56]. This collaboration contrasts with the traditional project management ap-
proach, which concentrates on long timelines and schedules. DevOps is the extension of the
Agile methodology [57,58], and the two can work in tandem [37,51], as shown in Figure 1.

Figure 1. Agile and DevOps.
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The Agile workflow assumes that the software development process is divided into
multiple sprints [59,60] and the customer is notified about the changes. A sprint is the
smallest duration of Agile, where a team works on an assigned task [60]. The main goal
for the Development and Operations teams in a sprint is to produce a stable software
release in every sprint cycle [61]. Combining Agile activities with the DevOps framework is
reasonable considering the software development and delivery aspects. One such example
is integrating Agile tools with DevOps tools.

2.3. MLOps from DevOps

With the successful adoption of DevOps, various organizations are trying to incorpo-
rate continuous practices in ML system development [62]. ML developers and operations
teams are trying to adopt DevOps concepts to ML systems for end-to-end life-cycle automa-
tion. Containerized microservices and cloud-based DevOps have seen good stability and a
reasonable success rate in production deployments [63]. For example, Kubeflow [64,65] is
an ML toolkit for Kubernetes, available for almost all major cloud providers. Such toolkits
aim to create ML workflows in which containers are already present. Karamitsos et al. [66]
discussed such concepts and issues of applying DevOps practices to ML applications, while
John et al. [62] discusses DevOps applications in ML systems. Data play an influential role
in any ML application. Unlike conventional software development practices, the SDLC of
an ML application revolves around data. In most cases, the core ML code is minimal, but it
must integrate with some significant components of a bigger system. Sculley et al. [4] ana-
lyzed such systems and explored the hidden technical debt. The complexity increases when
ML applications are deployed on the cloud or interfaced with web APIs. Banerjee et al. [67]
proposed operationalizing ML applications for such an environment, and MLOps could be
implemented for such hybrid cloud deployments.

Several authors have investigated MLOps. Makinen et al. [9] studied the state of ML to
understand the extent of MLOps required and to analyze the issues with data; however, the
authors did not consider deployment. Some research has been performed on the trends and
challenges in MLOps. Tamburri et al. [68] recapped trends in terms of properties such as
the fairness and accountability of sustainable ML operations of a software system. Several
works propose the MLOps framework for applications [62,69] such as the automotive
industry, supply chain management, and IoT. Granlund et al. [70] presented issues related
to the MLOps pipeline when multiple organizations are involved, highlighting factors
such as scalability. Different cloud providers offer MLOps solutions as a service so that
the whole ML product life cycle can be managed on the cloud. Azure MLOps [71] and
AWS SageMaker for MLOps [72] are some examples of such cloud services. A few cloud
providers have published a detailed guide on the MLOps life cycle for the purpose of
building ML applications and MLOps pipelines on the cloud or on-premises servers [73].

2.4. Summary of MLOps from DevOps

This section presents state-of-the-art MLOps articles mentioned in Section 2.3 in terms
of methodology, novelty, and results. Table 1 provides the summary.

Table 1. Summary of state-of-the-art MLOps articles.

Paper Methodology Novelty Result

[62]
Systematic literature review along

with a grey literature review to
derive a framework

MLOps framework that describes
the activities involved in the

continuous development of the
ML model

Framework validation in three
embedded systems case companies

[65]

Verified the feasibility of creating an
ML pipeline with CI/CD

capabilities on various appliances
with specific

hardware configuration

Performance evaluation of ML
pipeline platforms characterized by

Kubeflow on different models
according to various metrics.

Consumption of time and resources
concerning the ML platform and

computational models.
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Table 1. Cont.

Paper Methodology Novelty Result

[66]
Review of the two DevOps

components CI and CD, in the
ML context

ML manual and automated pipeline
design with CI/CD components Scaling ML models

[67] Five issues in ML-based solutions
for performance diagnostics

MLOps pipeline to resolve the five
challenges in the

performance diagnostics

Fully automated pipeline for
continuously training the new

models upon the arrival of
new data

[9]

Surveyed and compiled responses
from ML professionals to

investigate the role of MLOps in
their daily activities

Survey with questions and goals

Based on survey, presented data on
challenges based on survey data,

ML problem types, and future plans
with ML

[68]

A brief overview of the
state-of-the-art MLOps and an

overview of the organizational and
educational structures around AI

software operations

Challenges and trends in AI
software operations

Challenges in educating AI
operations and properties to be
supported by software for the

domain it was designed for

[69]
Multiple IoT experimental setups.

Each setup is equipped with an IoT
device and an edge device

An automated framework for
MLOps at the edge, i.e.,

edge MLOps

Deployed and monitored IoT data
and edge node operations in

real time

[70]
Study integration between two

organizations in detail for a
multi-organization setup

Addressed scaling of ML to a
multi-organization context

Integrated challenges of the ML
pipeline, datasets, models,

and monitoring.

3. An Overview of DevOps and MLOps

3.1. DevOps

DevOps is a set of practices or fault-tolerant workflows built to increase software
quality by providing continuous development and delivery through end-to-end automa-
tion [35,53,74]. DevOps practices bring together the development, testing, and opera-
tional software development teams through automation [2]. DevOps enables a shorter
code–build–deploy loop with a better end product [4,75]. A typical DevOps workflow is
shown in Figure 2.

3.1.1. DevOps Workflow and Components

The main focus of DevOps is to automate the software delivery process throughout,
thereby ensuring continuous delivery and the feedback loop of the software [76]. Con-
tinuous delivery combines the development, testing, and deployment processes into one
streamlined operation. The primary goal is to quicken the whole process through automa-
tion. If both Development and Operations teams are practicing DevOps, they can quickly
deploy code improvements, improving the transparency between two teams and allowing
the end user to see changes quickly [53,74,77]. Due to continuous deployment and the
involvement of customers in the DevOps workflow, the customers do not have to wait for a
monthly/quarterly/yearly software release cycle [53,78] to test or provide feedback about
the software.

The DevOps workflow shown in Figure 2 helps the teams to build, test, and deploy
software quickly and efficiently through a combination of tools and practices, from develop-
ment to maintenance. DevOps reduces Time to Market (TTM) and enables Agile software
development processes [79,80]. These DevOps components are closely related to Agile.
DevOps is the next step in the evolution of Agile methodologies [53,79]. The following sub-
sections discuss the components—or phases [53]—within the DevOps workflow [58,79,81].
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Figure 2. Typical DevOps workflow adapted from [66,79].

Plan

In this phase, requirements are defined, and the initial execution plan is created. The
tools used for DevOps help the user and the developers to be constantly in sync. In this
phase, if Agile is used as the SDLC, the user stories and tech stories should be defined with
the teams [82]. Various issue-tracking and project-management tools, such as Jira [83], are
used in this phase to help with the planning.

Code

Coding is the first step in DevOps automation, and all of the team members should
adhere to the agreed coding standards and best practices [2,84]. Test-Driven Development
(TDD), Acceptance Test-Driven Development (ATDD), and Behavior-Driven Development
(BDD) are a few of the best practices [84]. One of the significant areas in coding that is still
highly neglected is versioning of the software via source control. Versioning not only helps
to maintain the software, but also helps to automate the DevOps workflow properly [85,86].
It is essential to implement good practices within the source control, such as pull requests,
proper branching, and commit messages [87–89]. Several authors [90,91] have shown that
artifact traceability can be achieved if performed adequately with good practices.

A branching strategy is used to share and collaborate the code changes among de-
velopment teams. Feature-branching-based versioning and trunk-based versioning are
the two most widely used branching strategies. Some versioning tools include Git, Sub-
version (SVN), and Team Foundation Server (TFS). Figure 3 shows a feature branching
strategy with different types of branches [92,93], while Figure 4 shows typical trunk-based
versioning [94,95].

Build

The software build usually refers to the whole software package, consisting of the
business logic, the software dependencies, and the environment [96]. A few authors refer
to the build phase as the verify phase [81]. In either case, the main aim of DevOps build
systems is to evaluate the correctness of software artifacts [81,97]. Typically, three standard
deployment instances are used while developing an application—development, Quality
Assurance (QA), and production instances [98,99]. The build systems in DevOps make
sure that code integrity is maintained. Software build systems are highly dependent on
software configuration management systems, and multiple builds are possible among
these environments [97,100], including private system builds. Several authors, including
Leite et al. [101], mention various build tools for DevOps.
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Figure 3. Feature branching strategy adapted from [92,93].

 
Figure 4. Typical trunk-based versioning adapted from [94,95].

Test

In the test phase of DevOps, automated testing is performed continuously to ensure
the quality of the software artifact [84,102]. There are different ways to include test cases
such as units and integration while the software is being written. One such method is to
use Test-Driven Development (TDD) [103]. In this case, the developer writes the test cases
first, and then the actual functionality. There is another approach called Behavior-Driven
Development (BDD), which is an extension of TDD [104]. Some good practices, such as
code coverage [105], are part of the DevOps pipeline, and some cloud DevOps services,
such as Azure DevOps [106], provide this within the service.
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Release

Once all test cases are passed, the software is ready for deployment. By this phase,
a code change has already passed a series of manual and automated tests [107]. Regular
feature releases can be carried out according to a regular schedule or once milestones are
met. A manual approval process could be added at the release stage, allowing only a few
people within an organization to authorize a release for production [74,78].

Deploy

In the deployment stage, the focus is on continuously deploying or redeploying the
software. The deployment varies depending on the type and nature of the application.
The deployment process can be automated easily for the production environment, using
virtualization or containerization as the orchestration technology. Jenkins is one of the most
widely used deployment tools in the industry [53,87].

Operate

The operate phase involves maintaining and troubleshooting applications in a pro-
duction environment. Teams ensure system reliability and high availability. They aim for
zero downtime while reinforcing security [108]. Selecting the proper hardware size for
scaling or implementing the scaling methods on the cloud is crucial for the application’s
uptime and ability to handle high loads [109,110]. This configuration is performed in the
operate phase.

Monitor

After the application is deployed and configured to handle the ever-changing load, it is
essential to monitor the application to ensure that it is stable enough to handle the promised
uptime [111]. The monitor phase helps perform operations such as application health
tracking and incident management. “New Relic” is one such tool to monitor the application.

3.1.2. DevOps Pipeline

In practice, some of the DevOps components mentioned above are combined to
form a sequence of operations called a pipeline. There is no single generalized pipeline
structure [80,112]. Every pipeline is unique, and the pipeline structure depends on the
nature of the application and the implementation technology. In DevOps, the following
common pipeline components can be found [53,54,58,77,84]:

• Continuous Integration (CI);
• Continuous Delivery (CD);
• Continuous Deployment;
• Continuous Monitoring.

These pipelines include DevOps components mentioned in the previous section. Most
of the DevOps implementations consider CI and CD as the core components.

Continuous Integration

Continuous integration is the practice of integrating code changes from multiple
developers into a single source via automation [77]. The important practice of CI is that
all developers commit the code frequently to the main or trunk branch [113] mentioned
in Section 3.1, subsection ‘Plan’ After the commitment, the code building is performed as
explained in Section 3.1, subsection ‘Build’. As soon as the build succeeds, the unit test
cases are run as explained in Section 3.1, subsection ‘Test’. Primarily, CI uses SCM (Software
Configuration Management) tools such as Git, as explained in Section 3.1, subsection ‘Code’,
to merge the code changes into SCM for code versioning. CI also performs automated
code quality tests, syntax style reviews, and code validation [114]. Since many developers
integrate the code, the following issues may occur:
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• Code or merge conflicts: This is the state when SCM is unable to resolve the difference
in code between two commits automatically. Until the merge conflict is resolved, the
SCM will usually not allow the code to be merged. Usually, merge conflicts happen if
the changes are inconsistent when merging changes from two branches [115].

• Dead code: Dead code is a block of code never reached by the execution flow [116].
Dead code can be introduced at any step in the programming as part of a code merge.
For instance, consider two feature branches: Feature A and Feature B. Feature A’s
developers might have considered some exceptions from Feature B and created code
blocks to handle that. However, if this exception never happens or some logic in the
Feature B branch changes, this exception block will never be executed [117,118].

• Code overwrites: As the software evolves, there is a high possibility that the old code
needs to be updated to meet the ever-changing requirements. Nevertheless, this might
also affect the old features, resulting in code breaks after merging.

One of the primary benefits of CI is that it saves time during the development cycle by
identifying and addressing conflicts early [119]. The first step in avoiding the abovemen-
tioned issues is to set up an automated testing pipeline [80,120].

In a CI testing pipeline, the code should be built successfully with no code conflicts be-
fore the tests are run. The CI pipeline tests vary depending on the nature of the application.
To get an early warning of the possible issues, it is suggested to run this CI pipeline for
every branch of the SCM and not only on the main or trunk branches. The basic CI pipeline
is ready once the SCM and an automated unit testing framework are ready. The following
are some of the critical points to keep in mind while implementing CI:

• Unit tests are fast and cost less in terms of code execution time as they check a smaller
block of code [121].

• UI tests are slower and more complex to run, more complex to set up, and might also
have high costs in terms of execution time and resource usage. Furthermore, a mobile
development environment with multiple emulators and environments might add more
complexity. Hence, UI tests should be selected more carefully and run less frequently
than the unit tests [103,122].

• Running these tests automatically for every code commit is preferred, but doing this on
a development or feature branch might be costlier than manual testing [123].

• To meet the code coverage criteria [105], both white-box and black-box testing could
be part of CI. However, white-box testing can be time-consuming, depending on the
codebase [124].

• Combining code coverage metrics with a test pipeline is the most effective way to know
how much code the test suite covers [105]. This coverage report can help in eliminating
dead code [125].

The following two practices help to avoid or detect early merge conflicts [115]:

• Pushing of local changes to the SCM should be performed early and often.
• Changes should be pulled from the SCM before pushing. This frequent code pulling

will reveal any merge conflicts early.

Various software builds such as Integration builds should be rebuilt and retested after
every change [119]. In a CI tool, if every test case runs smoothly without issues, and if there
are no merge conflicts, the CI tool shows the current build status as “Pass”. If anything
goes wrong, this will be changed to “Fail”. The priority of the whole development team is
to keep the builds “Passing” [126].

Continuous Delivery and Continuous Deployment

Continuous Delivery (CD) and Continuous Deployment are implemented in the
DevOps pipeline after CI. In Continuous Delivery, the aim is to keep the application ready
for production deployment. At the least, unit test cases, a few optional quality checks, and
other tests should have been completed before continuous delivery [54,127]. Continuous
Delivery/Deployment is a process of deploying the application to various deployment
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instances, such as testing or production. The key differences between Continuous Delivery
and Continuous Deployment are as follows: The Continuous Delivery process is the
frequent code shipping to production or test instances manually, whereas Continuous
Deployment is the automated deployment of code to the instances. In both cases, the code
is kept ready for deployment at any point [53,58,120].

Continuous Delivery (CD) is an extension of the previously discussed CI. CD auto-
matically deploys all code changes to the testing and/or production environment after
the code-building stage. It is possible to deploy the application manually from the CD
pipeline utilizing a manual trigger. CD is mainly used for automated deployments as soon
as the build artifacts are ready. In this paper, a build artifact is defined as a binary such as a
container or a web portal build after this binary has passed all of the tests and the build
stage [128,129]. CD is beneficial when the build artifacts are deployed to production as
soon as possible. This frequent deployment ensures that the software release contains small
batches, which are easy to debug in case of any issues in the post-production deployment.
Figure 5 shows the sample CI/CD pipeline.

 

Figure 5. A typical CI/CD pipeline adapted from [54,77,80,127].

Continuous Monitoring

Continuous Monitoring (CM) is an automated DevOps pipeline to monitor the vitals
of the deployed application on the production instance. CM comes at the end of the DevOps
pipeline and provides real-time data from the monitoring instance. CM helps to avoid
and track system downtimes and evaluate application performance, security threats, and
compliance concerns [130].

3.2. MLOps

Machine Learning Operations (MLOps) is a set of practices that aims to maintain and
deploy Machine Learning code and models with high reliability and efficiency. MLOps
is primarily based on DevOps practices such as CI and CD to manage the ML life cy-
cle [131,132]. The main target of MLOps is to achieve faster development and deployment
of the ML models with high quality, reproducibility, and end-to-end tracking. Like DevOps,
MLOps also enables a shorter code–build–deploy loop and aims to automate and monitor
all steps of ML [9,68,69].

3.2.1. MLOps Workflow and Components

Like DevOps, the focus of MLOps is to automate the software delivery process through-
out, ensuring continuous delivery and a feedback loop of the software. However, in most
cases, the ML application must work with the other software assets in a DevOps-based
CI/CD environment. In such cases, additional steps are introduced to the existing DevOps
process because existing DevOps tools and pipelines cannot be applied to ML applica-
tions [9]. The adaptation of MLOps practices is still in its initial stages, as there is little
research on MLOps compared with DevOps [62]. For the ML systems, data scientists and
operations teams are trying to automate the end-to-end life cycle of ML by utilizing DevOps
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concepts [66]. Due to the variations in ML methodologies, it is challenging to generalize
MLOps components.

To date, numerous designs with different components have been proposed, such
as Iterative/Incremental processes [132] and Continuous Delivery for Machine Learning
(CD4ML) [133]. In 2015, Sculley et al. [4] highlighted that in most real-world ML ap-
plications, the quantity of actual ML code is significantly smaller than the surrounding
infrastructure, and a vast infrastructure supports this small ML code. The authors also
discussed technical issues and challenges in ML systems, such as model complexity, repro-
ducibility of the results, testing, and monitoring. Most of these are also relevant for DevOps
components. Hence, it is vital to include the data, infrastructure, and core ML code in
the MLOps life cycle. Numerous ML life-cycle processes such as CRISP-ML(Q) [134] have
been proposed to establish a standard process model for ML development. John et al. [62]
presented a maturity model outlining various stages by which companies evolve their
MLOps approaches.

A generic MLOps workflow is shown in Figure 6. As mentioned, the concerns cited
by Sculley et al. [4]—such as code maintenance problems and system-level issues—are
also present in traditional software development, and DevOps solves most of them via
CI/CD. This CI/CD process creates reliable pipelines with assured quality to release the
software into production. A cross-functional team is a way of involving expertise from
different functional areas [78,135], such as data scientists and ML engineers [131]. In
MLOps, a cross-functional team produces ML applications in small increments based on
three parameters: code, data, and models. These can be released and reproduced at any
time, using a constant seed value for random sample initialization to set the weights of the
trainable layers, if applicable [136]. The following subsections define the generic MLOps
process model illustrated in Figure 6.

Figure 6. Typical MLOps workflow adapted from [68,131].

The MLOPs workflow in Figure 6 is similar to the DevOps workflow in Figure 2 but
introduces two new components: data and model. Furthermore, the MLOps components
testing, deployment, and monitoring are slightly different from their DevOps counterparts.
Along with data and model, these differences are explained in the following sections.

Data

ML is driven by data; hence, data analysis and operations are vital to MLOps. [137,138].
Unlike DevOps, ML operations are experimental, which is true in almost all of the steps of
MLOps. For instance, hyperparameter optimization is varied during implementation. The
same is true for data, and the following operations are involved in data analysis [139,140]:

• Data extraction;
• Data validation;
• Data analysis;
• Data preparation.

The sequence and usage of these components depend on the type of ML and the nature
of the application.

Data extraction is mainly concerned with the gathering of data from different sources.
The data sources—such as online APIs, cloud-based data lakes, CSV files, or a combination
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of these—can be diverse. Extra precautions should be taken while extracting the data for
some ML tasks. For instance, for a classification issue, the data must be balanced after they
are extracted. Failing to do so might degrade the classifier’s performance [141]. The data
extraction component in the MLOps pipeline is usually the first step, in which data from
one or more sources are integrated for further processing [139].

To detect inaccurate data early and avoid training ML models with flawed data, the
suggested technique is to incorporate a data validation process [140]. Common data quality
issues include the following [140,142]:

• Incomplete data; for instance, the presence of null values.
• Inconsistent data, such as issues with the data type.
• Inaccurate data; for example, data collection with the wrong measurements.

Data analysis is a crucial step in the creation of a model. In this step, Exploratory Data
Analysis (EDA) is performed to understand the characteristics of the data [138]. Depending
on this knowledge, feature engineering is performed in the following steps, and a suitable
model is designed.

In data preparation, the validated data are split into three standard datasets: training,
test, and validation [143]. Features are selected from the data, data-cleaning operations
are performed, and some extra features are added after EDA. EDA shows the trends and
patterns in the data, and we can add more features from new data sources to support
the existing data [144]. In data preparation, common data quality issues can be fixed.
If required, data transformations such as date–time format matches from different data
sources [145] are performed on the data and, finally, the three sets of data are sent to
the model.

Model

The ML model is the heart of any ML application. Neural networks are the most
common type of ML model, and the rest of this paper assumes that the ML model is a
neural network. Once the model structure is defined, model training, model evaluation,
and model validation operations are performed.

Model training trains one or several models with the prepared data. Hyperparameter
optimization is performed, where model variables such as the number of layers and nodes
in each layer are optimized in different iterations. After this optimization, the model is
trained or well-fitted [146,147].

Once the model is trained, it is evaluated in model evaluation of the validation data.
The trained model is evaluated using the held-out validation datasets to measure the
model’s quality. Model validation gives the measure of performance of the model [148].
Metrics such as absolute error and mean absolute error are used to define the model quality.
These metrics are helpful in testing and comparing different models [149,150].

Testing

As in DevOps, unit and integration tests should be performed. Testing of ML mod-
els is mostly limited to checks related to the convergence of models, shapes of passed
tensors/vectors, and other model-related variables. However, there is a lot of code sur-
rounding an ML model, which should also be tested [151]. However, white-box testing for
ML-based systems could entail high test efforts due to the large test input space [152]. In
MLOps, test cases should check the proper input and output data format.

Deployment

Unlike DevOps, deploying ML applications is not straightforward, especially if the
ML application is a part of a DevOps application such as a web API. In ML applications,
the arrival of new data triggers the retraining and redeployment of models. An automated
pipeline must be created to perform these actions [153].
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Monitoring

It is crucial to monitor the performance of the deployed ML model. Continuous moni-
toring helps to understand the model performance and trigger retraining if required [154].
In DevOps, the main concern is ensuring that the application is healthy and able to handle
the load. If the ML is part of an application such as a web API, the monitoring component
should check for ML parameters such as data drift and model performance [131,155].

As in DevOps, some of these steps are combined to form a pipeline. Usually, these are
combined with DevOps pipelines. As in DevOps, there is no single generalized pipeline
structure. Every pipeline is unique, and the pipeline structure depends on the nature of the
application, the type of ML, and the implementation technology.

3.2.2. MLOps Pipeline

In MLOps, the following standard pipeline components are implemented [62,69,131]:

• Continuous Integration (CI);
• Continuous Deployment (CD);
• Continuous Training (CT).

Continuous Integration

As in DevOps, the CI pipeline is about the testing and validation of code components.
For ML applications, data and model validations are added along with classical unit and
integration tests [65]. Unit tests are written to cover the changes in feature engineering,
and different methods used to implement the models. Moreover, tests should be written to
check the convergence of the model training. During training, a machine learning model
reaches a convergence state when the model loss value settles within an error range, after
which any additional training might not improve the model’s accuracy [156].

Continuous Deployment

There are considerable changes in the Continuous Deployment pipeline compared to
DevOps. As the ML models evolve continuously, verifying the models’ compatibility with
the target deployment environments with respect to computing power and any changes in
the deployment environments is essential. The process changes depending on the use case
and whether the ML prediction is online or batch processing [157].

Continuous Training

This new pipeline component is unique to MLOps., The Continuous Training (CT)
pipeline automatically retrains the model [158]. Different ML components explained in
Section 3.2.1 are automated to work in a sequence to achieve this. Retraining the model
is essential, as the data keep changing or updating in any ML application. To cope with
the new incoming data, the model needs retraining. This retraining includes automating
several model retraining, data validation, and model validation processes. To initiate such
processes, triggers are included in the pipeline.

Some additional components, such as feature storage and metadata management, are
used along with these pipelines in MLOps. They help in managing data and reproducibility
aspects. These are discussed below.

3.2.3. Feature Store

Due to many variations, such as the components involved in the ML applications,
feature stores are used. This feature store acts as a central repository for standardizing
the definition, access, and storage of a feature set. A feature store helps to achieve the
following [159]:

• Store commonly used features;
• Build feature sets from the available raw data;
• Reuse custom feature sets;
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• Model monitoring and data drift detection;
• Transform and store the data for training or inference purposes.

3.2.4. Metadata Management

The fundamental nature of ML is experimentation. It would not be easy to track the
steps that lead to an ideal model or the best-performing dataset with many experiments in
all of the different components. With the help of metadata management, almost all of the
metadata for the whole ML process can be tracked and used to repeat the desired result.
The most significant metadata include [160]:

• Experiments and training metadata—Metadata such as environment configuration,
hardware metrics, code versions, and hyperparameters.

• Artifact metadata—Metadata such as dataset paths, model hashes, dataset previews,
and artifact descriptions.

• Model metadata—Model-related metadata such as model versions, data and perfor-
mance drifts, and hardware usage.

• Pipeline metadata—Pipeline metadata such as node information and completion re-
ports of each pipeline.

MLOps pipelines might look highly automated. Nevertheless, not all of the pipelines
or pipeline components are necessary to implement. The pipeline and its components can
be selected depending on the implementation and use case. Sculley et al. [4] mentioned
that only a minority of the application is ML code, since most of the system is composed
of data collection and verification components, model analysis and building, resource
and metadata management, automation, and configuration. Google Cloud [161] proposes
three MLOps process levels for implementing the CI/CD pipeline for different needs
based on the work of Sculley et al. [4]; these define the different levels of maturity of the
MLOps processes:

• MLOps level 0: Manual process;
• MLOps level 1: ML pipeline automation;
• MLOps level 2: CI/CD pipeline automation.

3.3. Research Gap

In the next section, MLOps is applied for a time-series forecasting application, which
predicts the price of a day-ahead hourly electricity market. The MLOps level 2 automated
CI/CD pipeline is implemented. CI and CD services are utilized for reliable delivery of the
ML results.

This use case fills the following research gap observed in Sections 2 and 3:

• Even though the core ML is a tiny part of the whole software ecosystem, the ML
application needs various new tools for the MLOps implementation.

• MLOps tools might not be compatible with the DevOps tools, burdening the com-
plete system.

• Creating an MLOps pipeline with traditional software—such as a web application
where DevOps is already implemented—is an issue.

• Additionally, to explain the generalization of the created MLOps pipeline and the tools,
Case Study 1 is extended to two more case studies. In the last two case studies, the
price forecast solution (Case Study 1) is adapted with minimal work.

4. Case Study 1: Forecasting an Hourly Day-Ahead Electricity Market Using an
MLOps Pipeline

The reliable operation of the electric power grid relies on a complex system of markets,
which ensures that electric power consumption and generation are matched at every point
in time. This matching is crucial for the stability of the grid, since the grid cannot store
electric energy. From an MLOps perspective, forecasting the price of any electricity market
depends on the market schedule, and the ML experts do not need to understand how the
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market contributes to stabilizing the grid. The timing characteristics of the market represent
important knowledge for the developers of time-series forecasting solutions. In particular,
two characteristics are crucial:

• Does the price change weekly, daily, hourly, or at some other interval?
• When does the market participation occur and, thus, how far into the future should

forecasts be available?

There are numerous markets in a single country, and significant differences can exist
between different countries. Thus, an ML team working on electricity price forecasting
would do well to avoid hardcoding assumptions related to the questions above, and should
instead parameterize them. A common market structure in Europe and elsewhere is the
hourly day-ahead market [162,163], which used as a concrete example in this paper. Such
markets have the following characteristics:

• The market interval is one hour; in other words, there is a separate price for each hour.
• The market participants need to place their bids on the previous day; for example,

before the market deadline today, separate bids should be placed for each hour of the
next day.

In our case study, we look at a specific hourly day-ahead market—the Finnish Fre-
quency Containment Reserves for Normal Operations (FCR-N) market. The FCR markets
compensate participants for maintaining a reserve that can be activated to generate or
consume energy in case such an activation is required due to a momentary imbalance in
the power grid. An offline neural-network-based forecasting solution for this market is
presented in [164].

4.1. The Frequency Containment Reserves Market

With the advent of smart grids and Virtual Power Plants (VPPs), various Distributed Energy
Resources (DERs)—such as smart loads, batteries, photovoltaics (PVs), and wind power—are be-
ing exploited on various electricity markets, including frequency reserves [165–168]. Frequency
reserves with a fast response time for frequency deviations are generally called Primary
Frequency Reserves (PFRs), and traditionally they consist of fossil-fuel-burning spinning
reserves. These reserves are now being replaced with DERs in the push towards reducing
carbon emissions [169]; due to this, under the current allowed delays for PFRs, the reduced
grid inertia is becoming a threat to the stability of power systems [170]. The FCR-N market
was selected among other ancillary services for this case study, as the FCR-N does not have
hard real-time constraints and a minimum power bid for market participation. The FCR-N
is a day-ahead market, and bidders must submit all of the bids for the hours of the next
day before 6 p.m. of the current day [171,172].

If the day-ahead reserve market prices can be predicted, then the DER owners can
anticipate variations in price peaks and low or zero prices. Thus, this case study presents
a solution based on artificial neural networks, which are deployed online, so that the
predictions are automatically updated and available before the bidding deadline of the
day-ahead market. A transformer-based ANN model is exploited to predict the day-ahead
ancillary energy market prices. The MLOps pipelines are configured to ingest the data at
1 p.m. on the current day, so the forecasts are available, e.g., at 2 p.m., so that the person or
system doing the bidding has the forecast a few hours before submitting the bid.

4.2. Prediction Model

For the energy price predictions in ML, ANNs are widely used. For instance, based on
the architecture defined in [173], Recurrent Neural Networks (RNNs) and feed-forward neu-
ral networks are the two major ANN categories. RNNs can predict the high energy spikes
better, whereas feed-forward networks can predict the spot market prices for day-ahead
prediction [174]. An ANN was employed to predict ancillary market prices by consid-
ering different data sources where the results outperformed Support-Vector Regression
(SVR) and Autoregressive Integrated Moving Average (ARIMA) [164]. For implementing
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the FCR-N market price forecasting using the MLOps pipeline, this case study uses the
Temporal Fusion Transformer (TFT) model structure defined in [175]. Energy price predic-
tion datasets have a time component, and forecasting the future price values can provide
significant value for multi-horizon forecasting, i.e., predicting variables of interest at mul-
tiple future time steps. Deep Neural Networks (DNNs) have been used in multi-horizon
forecasting, showing substantial performance improvements over traditional time-series
models. However, most existing RNN models often do not consider the different inputs
commonly present in multi-horizon forecasting, and either assume that all exogenous
inputs are known in the future or do not consider static covariates. Conventional time-
series models are influenced by complex nonlinear interactions between many parameters,
making it difficult to explain how such models arrive at their predictions. Attention-based
models are proposed for sequential data such as energy price prediction datasets. However,
multi-horizon forecasting has many different types of inputs, and attention-based models
can provide an understanding of appropriate time steps, but they cannot contrast the
importance of different features at a given time step, and TFT solves these issues in terms
of accuracy and interpretability.

TFT is an attention-based architecture that combines multi-horizon forecasting with
interpretable insights into temporal dynamics. TFT utilizes recurrent layers for local
processing and interpretable self-attention layers for learning long-term dependencies with
the knowledge of temporal relationships at diverse scales [175]. The major components of
TFT are summarized below.

• Gating mechanisms skip any unused components of the model.
• Variable selection networks choose relevant input variables at each time step.
• Static features can have a meaningful impact on forecasts, and static covariate encoders

integrate such features based on which temporal dynamics are modeled.
• A sequence-to-sequence temporal processing layer to learn long-term and short-term

temporal relationships.

Table 2 provides additional information on TFT hyperparameters for practitioners
who may wish to reproduce the results.

Table 2. TFT hyperparameters.

Temporal Fusion Transformer

hidden_size 32

attention_head_size 1

dropout 0.1

hidden_continuous_size 16

learning_rate 0.03

loss QuantileLoss()

log_interval 2

reduce_on_plateau_patience 4

Trainer

gpus 1

max_epochs 10

gradient_clip_val 0.1

4.3. MLOps Pipeline for FCR-N Market Price Forecasting

The main scope of this example is to define an MLOps pipeline for such applications
and determine how the whole process could be automated. First, the data are ingested
via Fingrid and the Finnish Meteorological Institute’s (FMI) REST API into raw data
storage. The data from Fingrid and FMI are available online via the REST API, but not
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as a manual download via files; hence, it is possible to automate this pipeline. Next, the
data are prepared for further processing by selecting the essential features from the raw
data storage, and this feature selection is based on past experimentation. Data are then
validated for missing values or the presence of NaN values and stored in a feature store
for data reusability. Additionally, EDA is performed on the data to understand any data
drifts. The next step is to build the model through model training and evaluation. Once
the model is evaluated, the prediction is performed on the new dataset. The performance
of the model is evaluated for monitoring purposes. The resulting pipeline architecture is
shown in Figure 7.

Figure 7. Proposed MLOps pipeline.

4.4. MLOps Runtime Environment

As mentioned in Section 3.1, subsection ‘Code’, the first step is to ensure that the code
is appropriately versioned. GIT was selected as the version control for this implementation,
and GIT feature branching was followed. Figure 8 shows the commits and GIT branches.

Two feature branches were created for the development of the solution, namely,
“feature/build-model” and “feature/ingest-data”. Additionally, one “develop” branch and
one “release” branch were created. The develop branch was branched out from the main
branch, and the feature branches were branched out of the develop branch. The feature
branches were frequently merged back to the development branch, and all the feature
branches were updated with the recent changes. Once the final code was merged back to
the develop branch, the code was planned for release from the release branch. The code
was versioned correctly, and a stable version of the code was always kept in the main
branch after tagging correctly.
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Figure 8. Commits in GIT showing branches, merging, and tags.

In this use case—MLOps level 2—CI/CD implementation was followed as explained
at the end of Section 3. Hence the CI/CD should include source control, ML pipelines,
test services, model services, feature storage, and deployment services. The first step in
the CI/CD process is to create pipelines. These pipelines run in a sequence to implement
the price forecast task. Moreover, the pipelines should provide a supportive environment,
including runtimes and libraries. We selected PyTorch as the ML library and Python as the
scripting language. Python libraries such as NumPy and Pandas were installed in a virtual
environment and loaded by the pipeline at the beginning to prepare the environment for the
forecasting job. For this implementation, 10 pipelines were selected, and the modular code
was created to run in each component. The required unit tests were also implemented and
included along with data validation. The trigger was set to any commit changes in the SCM
main branch; the pipelines would be triggered upon such changes, and the code would be
deployed to generate the forecasting results. There is a variety of software available for
creating CI/CD pipelines. Jenkins was selected as the CI/CD server because it is the most
commonly used CI/CD server for DevOps. MLOps pipelines were incorporated using
Jenkinsfile and Python. In this use case, we also used the DevOps process for implementing
a web UI using Django, where the Django web framework was used for viewing the
predicted result. All of the required software—including GIT, Jenkins, Python, Anaconda,
and Docker—was installed on the CSC cloud.

Figure 9 shows the pipelines created for the FCR-N market price forecaster. A new
SCM commit change at the main branch would trigger the pipeline. The following pipelines
were created in this example implementation:

• Data ingestion;
• Data preparation;
• EDA;
• Model building;
• Deployment and monitoring pipelines with a few sub-pipelines.

“Data Ingestion—Data Fetch” fetches the data from the Fingrid and FMI API. “Data
Ingestion—Store Raw Data” pipeline stores these data in an SQL database, and PostgreSQL
is used as the database, which stores the raw data. “Data Preparation—Feature Selection”
performs the feature selection from the raw data. Different experiments have been per-
formed in the past, based which this pipeline selects the features. “Data Preparation—Data
Validator” validates the data and checks against different validation rules and data con-
sistency, including null values, the presence of NaN, and data types. Along with this
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code level, unit test cases are also executed to ensure code integrity. These data are then
stored in a feature store for future use and analysis using the “Data Preparation—Feature
Store” pipeline.

 
Figure 9. MLOps pipeline for FCR-N market price forecasting.

Data analysis is performed automatically with the “EDA” pipeline to avoid data drift
and other issues with data quality. The next step is to normalize the data and build the
model, and this is done via the “Model Building—Model Training” and “Model Building—
Model evaluation” pipelines. It is then necessary to create a docker container of the predic-
tion model. “Deployment—Prediction” pipeline does that, and then forecasts the FCR-N
market price for the next 24 h. The forecasted result is stored in the PostgreSQL database.
The model’s accuracy and performance are monitored via the “Monitoring—Performance
monitor” pipeline. The EDA and performance monitoring results are monitored regularly,
and the pipelines are updated if the performance has gone down.

Due to the modular nature of the CI/CD pipeline design, it is easy to plug in/out a
module. If a build fails—for instance, at the “Data Ingestion—Data Fetch”—the CI/CD
system shows a detailed log on the CI/CD UI, as shown in Figure 10.

 
Figure 10. Build fail notification.

These logs are maintained in the CI/CD system so that it is easy to debug and repli-
cate the errors in the developer’s machine using the local build discussed in Section 3.1,
subsection ‘Build’. Figure 10 shows the failure pipeline. Once the pipeline finishes the job
execution, depending on the build’s status, an email is triggered from the CI/CD system to
the configured emails notifying about the new build job. This notification system is created
while building the pipelines.

MLflow was selected as the ML application life-cycle management tool. MLflow was
integrated with the ML model operations to track the model parameters and performance
metrics. Figure 11 shows the MLflow UI hosted on an SaaS service.
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Figure 11. ML life-cycle management with MLflow.

MLflow includes experimentation tracking and reproducibility. This is achieved by
logging the metrics and the parameters of each experiment. As shown in Figure 11, several
experiments’ results can be logged and compared. MLflow stores the artifacts such as
configuration files that save information about the model input and the model under
training. These artifacts can be stored in a cloud object store such as MinIO for future
reproducibility, as shown in Figure 12.

 

Figure 12. ML artifact storage using the MinIO object store.

4.5. FCR-N Forecasting Results

Figure 13 shows the one-day predicted vs. actual price prediction for the FCR-N
market price. The ML model runs daily, and the predicted values are stored in the database.
A Django-based web UI was designed for viewing these values and hosted in the CSC
cloud as an SaaS, as shown in Figure 14. This SaaS service can also act as a REST API to
expose the predicted data to a third-party system.
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Figure 13. Predicted vs. actual price for 16 April 2020.

Figure 14. Web UI for exploring the model prediction values.

5. Case Study 2: National Electricity Consumption Forecast Adapted from the Price
Forecast MLOps Pipeline

In the above use case, the MLOps pipeline was defined and implemented as shown
in Figure 7, while in this use case, the same MLOps pipeline was adapted with minimal
changes to forecast the Finnish national electricity consumption. The data were collected
from the Finnish Transmission System Operator (TSO) via an online API. The TSO defines
the electricity consumption as follows:

Consumption = Production + Import − Export (1)

This use case was implemented with all of the pipeline components defined in Figure 7.
However, the following changes were made to the previous MLOps source code:

• In the TFT, the FCR_N price variable was replaced with electricity_consumption as the
prediction variable.

• In the GIT, a new feature branch was created.
• A new experiment name was created for tracking the ML model parameters using

MLflow.
• A new Jenkins project as created, and MLOps pipelines were incorporated using the

same Jenkinsfile.
• Unit test cases are updated.
• To explore the predicted values via web UI, as shown in Figure 14, the corresponding

legend and variable names were changed.

Except for the test cases, most of the abovementioned changes were in the configu-
ration files and, most importantly, the same MLOps pipeline and tools were reused on
the same cloud platform. Figure 15 shows the one-day predicted vs. actual electricity
consumption forecasts for Finland.
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Figure 15. Predicted vs. actual electricity consumption for 16 April 2020.

6. Case Study 3: National Electricity Generation Forecast Adapted from the Price
Forecast MLOps Pipeline

In the previous use case, electricity consumption was forecasted by adapting to the
MLOps pipelines created for FCR-N market price forecasting. In this example, electricity
production was forecasted, and the MLOps pipeline changes made for the previous use
case were used here. As in the electricity consumption forecasting, the data were collected
from the Finnish TSO via an online API.

However, the following changes were made to the previous MLOps source code:

• In the TFT, the electricity_consumption variable was replaced with electricity_production
as the prediction variable.

• In the GIT, a new feature branch was created.
• A new experiment name was created for tracking the ML model parameters using

MLflow. Creating a new experiment name is helpful in grouping the new experiments
within a project or use case.

• A new Jenkins project was created, and MLOps pipelines were incorporated using the
Jenkinsfile used for the above use case.

• Unit test cases were updated.
• To explore the predicted values via web UI, as shown in Figure 14, corresponding

legend and variable names were changed.

Figure 16 shows the one-day predicted vs. actual electricity production forecasts
for Finland.

Case Studies 2 and 3 were implemented with minimal work by adapting to the im-
plementation of Case Study 1. Case Studies 1 and 2 both used the same MLOps pipeline
structure and the same set of tools. This generalization is applicable while forecasting
similar variables—for instance, wind power forecasting or photovoltaic power genera-
tion forecasting—with 1 h as the sampling interval. However, if the sampling interval
changes—for example, to 15 min—considerable work must be performed in the MLOps
pipeline, such as “Data ingestion” and “Prediction service”.
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Figure 16. Predicted vs. actual electricity production for 16 April 2020.

7. Conclusions

The main aim of MLOps is to introduce ML products to production by avoiding
Development and Operations bottlenecks and automating the workflows. The MLOps
system and workflow design need to be modular to accommodate such a system. Such a
modular design cannot be generalized and must be specific to the application. This would
ensure a system with reduced development, deployment, and monitoring issues. The end-
to-end life-cycle management of MLOps is easy. This paper presents a use case where we
built modular pipelines for an ML time-series forecasting system. There are several ways
to implement MLOps, but the principles of DevOps and modularity should be considered
as the primary key factors. Even though it is hard to generalize the pipeline structure, in
this paper we explain the things to consider when creating the MLOps design architecture.

The case study is generalizable with minor changes to other hourly day-ahead electric-
ity markets. The main changes are related to identifying the relevant features. The case
study is further generalizable to other electricity markets operating on a similar timescale.
For example, the market interval in some countries is 30 min or 15 min instead of an hour.
For a day-ahead market, the market interval will impact the size of the input layer as well
as the output layer of the ANN. For electricity markets that are not day-ahead—for exam-
ple, intraday markets—the bidding deadlines are different, which needs to be taken into
account in scheduling the execution of the deployed containers. All of these generalizations
require minor efforts in the form of manual work. A topic for further research would be the
development of a generic MLOps solution for day-ahead or intraday electricity markets,
which would further reduce this manual work. The current case studies are only integrated
with the web application to explore the forecasted values. This MLOps work could be
extended for Virtual Power Plants, which use the predicted data for managing the assets
using the REST API, where concurrency and response time matter. Currently, the REST
API implements a basic authentication for exposing the predicted values, and this basic
authentication could be further improved.
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Abstract: Intelligent fault diagnosis (IFD) models have the potential to increase the level of automation
and the diagnosis accuracy of machine condition monitoring systems. Many of the latest IFD models
rely on convolutional layers for feature extraction from vibration data. The majority of these models
employ batch normalisation (BN) for centring and scaling the input for each neuron. This study
includes a novel examination of a competitive approach for layer input normalisation in the scope of
fault diagnosis. Network deconvolution (ND) is a technique that further decorrelates the layer inputs
reducing redundancy among the learned features. Both normalisation techniques are implemented
on three common 1D-CNN-based fault diagnosis models. The models with ND mostly outperform
the baseline models with BN in three experiments concerning fault datasets from two different rotor
systems. Furthermore, the models with ND significantly outperform the baseline models with BN
in the common CWRU bearing fault tests with load domain shifts, if the data from drive-end and
fan-end sensors are employed. The results show that whitened features can improve the performance
of CNN-based fault diagnosis models.

Keywords: CNN architecture; normalization techniques; intelligent fault diagnosis; vibration

1. Introduction

A malfunctioning rotating system is a common concern across a multitude of industries
in the modern world. A malfunction in a rotating system can be caused by a number of
reasons such as faulty bearings, broken shafts or worn gears. Typically, these faults increase
the harmful vibration of the system by exciting the rotating parts on a per revolution basis.
Often these excitations that alter the vibration profile of the system can be observed from
measurements conducted with vibration sensors such as accelerometers.

Vibration based fault diagnosis for rotating systems has been developed for decades [1].
Most developed methods can be described as two step processes of feature extraction and
fault recognition [2]. Features can be extracted from vibration data with a set of signal
processing techniques in the time domain, the frequency domain and the time-frequency
domain [3]. Typically, the features most sensitive to various faults are then exploited in fault
recognition. Some of the studied fault recognition models employing traditional machine
learning rely on, for example, random forests [4], support vector machines [5] and shallow
neural networks [6]. Despite the successful results related to these techniques, they still
suffer from a few disadvantages. Designing the signal processing techniques for feature
extraction requires manual labour and often task-specific feature selection. Furthermore,
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the learning capacity of the models limits their performance if many non-linear relations
between the input space and the fault label space are required.

Currently, deep learning (DL) seems like a promising solution for the challenges
related to the other machine learning (ML) related fault diagnosis techniques. Deep learning
requires no manual feature extraction nor sophisticated signal processing techniques, for it
can be utilized to process the raw vibration data directly. The advantage of DL algorithms
originates from their capacity to learn hierarchical and non-linear features autonomously
between the raw data and the fault label space [7]. This implies that both steps, the feature
extraction and the fault recognition can be simultaneously optimised and combined under
one deep learning model. Furthermore, some studies have indicated that features acquired
with deep learning increase the machine fault classification accuracy and noise tolerance
when compared to features acquired with signal processing tools [8,9].

These advantages have attracted a growing amount of research interest toward
deep learning based fault diagnosis [1,10,11]. Many deep learning architectures, such
as deep-belief networks (DBN) [12], autoencoders (AE) [9] and recurrent neural networks
(RNN) [13] have been proposed for anomaly detection and fault diagnosis tasks. Despite
these impressive results, learning the rich features required for fault recognition is difficult.
Fortunately, many works have shown that convolutional neural networks (CNN) are effec-
tive in extracting features from vibration data [1,10,14]. For example, a number of studies
have shown that 1D-CNNs can diagnose faults from time-series data [15–18]. Furthermore,
a number of studies have also demonstrated that CNNs can effectively diagnose faults from
the vibration frequency spectrum [19–21]. In addition, some studies have demonstrated the
efficiency of 2D-CNNs for diagnosing the faults from time-frequency spectrograms [19,22].
Furthermore, CNN-based fault diagnosis models seem to be at the core of the most recent
research branch of fault diagnosis concerning transfer learning [23–25]. Although deep
learning based fault diagnosis models have been extensively studied and the focus seems
to be shifting towards transfer learning, the techniques improving the feature extraction of
the current models are still relevant.

Many of the recent CNN-based state-of-the-art deep learning algorithms for fault
diagnosis rely on batch-normalisation (BN) [15–17]. BN efficiently accelerates the model
convergence and improves model generalisation [26,27]. In essence, this standardisation
method centres and scales the layer activations based on the mini-batch statistics [26].
Centring and scaling each layer activation per mini-batch effectively stabilises the gradient
distribution for each corresponding weight [27]. Stabilised gradient distribution increases
the consistency of the gradient descent. However, BN can be considered an incomplete
normalisation method, since its design includes a compromise that separates it from
whitening [26]. In addition to centering and scaling, whitening includes decorrelation,
which has been argued to simplify the optimisation of the model weights by making the
adjacent weights independent [28]. Decorrelation has been excluded from BN due to the
heavy toll it introduces to the computation [26]. Fortunately, recent studies have shown how
to implement full whitening of the activations without excessive computational cost. These
studies have also shown that whitening improves the learning results over BN [29–31].

Despite the promising results regarding feature whitening techniques, CNN-based
fault diagnosis models still mostly rely on BN. This study shows how whitening the layer
activations improves the current state-of-the-art 1D-CNN-based algorithms for machine
fault diagnosis. The novel experiments employ three previously published fault diagnosis
models. These commonly known models are Ince’s model [32], WDCNN [15] and SRD-
CNN [18]. The experiments reveal the fault diagnosis accuracies of these baseline models
in parallel with corresponding models employing a whitening normalisation technique
instead of BN. The whitening technique is adapted from an earlier study showing that
decorrelating layer inputs channel-wise and pixel-wise consistently improved 2D-CNN-
based model performance and training convergence on image data [31]. This “network
deconvolution” (ND) operation, developed in [31], is further adjusted and integrated with
the three 1D-CNN-based fault diagnosis models for time series data in this study. The ex-
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periments of this work complement the previously reported results with ND performance
in 1D-CNN-based models. The three experiments in this study employ two vibration
datasets acquired from different rotor systems. The first dataset is the thoroughly studied
bearing fault dataset produced by Case Western Reserve University [33]. The second
dataset consists of vibration data from three azimuth thrusters before and after bearing
and gear related faults were noticed. Each experiment shows that models with whitened
features achieve high performance. More specifically, the models with whitened features
achieve mostly better or significantly better diagnosis accuracies compared to the baseline
models in the three experiments.

2. CNNs and Normalization Layers

Convolutional neural networks (CNNs) typically consist of convolutional layers,
pooling layers, normalisation layers and a few fully connected layers. In vibration-based
fault classification, the final fully-connected layer can be considered as the classifier in the
fault recognition step. The other fully-connected layers, convolutional layers, normalisation,
and pooling layers are used for the feature extraction step.

2.1. 1D Convolutional Layer

1D convolutional layers consist of filters computing cross-correlations over local areas
of the input. Each filter consisting of N kernels with M weights computes an output value
for a local area that consists of N × M values, where N denotes the number of channels
e.g., different vibration sensors at the first layer and M denotes the length of the local area
e.g., time steps. The filters process the local areas subsequently along the length axis with
the same set of weights. Equation (1) shows this cross-correlation computation for a given
local area:

yl,i
j =

N

∑
n=0

kl
j,n ∗ xl,i

n + bl
j,n (1)

where yl,i
j denotes the i-th local area output value of j-th filter on the layer l, kl

j,n is the

kernel for n-th channel of j-th filter on the layer l, xl,i
n is the n-th channel of the i-th local

area, ∗ denotes the dot product and bl
j,n is the bias term of the kernel n of filter j on layer

l. To conclude, the output value yl,i
j is the sum of the dot-products between the kernels

and the local areas computed at each corresponding input channel n. This computation is
commonly referred to as the depth-wise convolution.

The computation at a given convolutional layer can be formulated as matrix multi-
plication Xw. With one dimensional data and a single input channel, for example, time
series data from a single sensor at the first layer, the rows in matrix X would correspond
to each local area x1,i

1 and w corresponds to a column vector of the weights in the only
kernel k1

j,1 of the filter j. Typically, there are multiple input channels to each convolutional
layer, and the number of kernels in a convolutional layer filter equals the number of input
channels to that layer. The local areas xl,i

n of the latter input channels are concatenated to the
transformed data matrix X, so that each local area xi

n, corresponding to the i-th convolution,
are on the same row. Similarly, the weights of each kernel kn for all channels n are vertically
concatenated to the column vector w. This transformation of input data to matrix X is
similar to the commonly known im2col transformation with the difference that time series
data is one-dimensional. The transformation is visualised in Figure 1.
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Figure 1. Convolutional layer computation composed in the matrix multiplication form visualised
over two non-overlapping local areas and two channels.

2.2. Pooling Layer and ReLU Activation

Pooling layers efficiently reduce the model complexity and redundant information
passed between the layers in CNNs. Each pooling layer consists of kernels that slide
through the input array similar to the convolution layer kernels. Pooling layers rely on
sub-sampling each local area under the kernels’ receptive field. The most common pooling
layers are the max-pooling and the average-pooling layer. Max-pooling has been shown to
consistently outperform average pooling [34]. A max-pooling layer compresses the signals
between layers by concatenating the maximum values of each local area for every channel
separately. Equation (2) demonstrates the max-pooling operation:

ŷl,k
j = max(yl,k

j ) (2)

where yl,k
j denotes the values under the max-pooling kernel receptive field from the k-

th local area of the j-th channel between convolutional layers l and l + 1, and ŷl,k
j is the

corresponding maximum value.
Typically between consequent cross-correlation computations, the output values are

processed with a non-linear activation function, such as the rectified linear unit (ReLU)
shown in Equation (3). The processed output values xl+1,i

j can then be passed forward to
the next layer l + 1.

xl+1,i
j = ReLU(yl,i

j ) = max(0, yl,i
j ) (3)

2.3. Batch Normalisation

Batch normalisation (BN) layers are additional layers that fix the activation distribu-
tions. This technique reduces the effect of internal covariate shift, a phenomenon hindering
stochastic gradient descent optimisation [26]. Internal covariate shift can be described as a
drastic change in the activation distributions due to the changed network parameters. BN
normalises each activation separately with activation mean μb and variance σ2

b estimated
from the mini-batch statistics. Furthermore, BN learns an additional set of scale γ and
shifts β parameters by backpropagation. The computations related to BN are shown in
Formulas (4)–(7).

μb ← 1
m

m

∑
i=1

xi (4)

σ2
b ← 1

m

m

∑
i=1

(xi − μb)
2 (5)

x̂i ← xi − μb√
σ2

b + ε
(6)
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yi ← γx̂i + β (7)

In Formulas (4)–(6), xi denotes the i-th convolution layer output values in a batch, i.e.,
xi = yl,i

j as in Equation (1). More explicitly, xi ∈ X = [x1...m], where X is the batch with m

convolution layer activations yl,i
j . Alternatively, BN can operate on the activation values

given by the ReLU-activation function in Equation (3). In Formulas (4) and (5), the mean μb
and the variance σ2

b are computed from the distribution of the corresponding output values
in the batch. Formula (6) shows the normalisation computation, where x̂i is the normalised
output, and ε is a small constant introduced for numerical stability. In Formula (7), yi is the
BN layer output and γ and β are weights for scaling and shifting activations, optimised
with backpropagation. Furthermore, during training the moving averages of μb and σ2

b are
collected and utilised during testing.

2.4. From BN to Whitening Features

Image data may contain correlating data between nearby pixels and channels. For
example, the pixels nearby a blurry object in an image correlate spatially. In addition, a
grey object in an RGB image results in channel-wise correlation, since the RGB values are
close to equal in the grey pixels. Machine vibration data may contain a similar correlation.
For example, nearby sensors likely collect similar vibration patterns. Such data can hamper
the optimisation process by inducing a correlation between the features learned by the
neural network. Moreover, correlated features have been deemed problematic for neural
network optimisation in the past [28].

Although BN has been shown to be effective in numerous state-of-the-art works [35–38],
it merely scales and shifts the activations. BN was not designed to decorrelate the features
due to the expense of computing the inverse square root of the activation covariance ma-
trix and the corresponding derivatives. Nevertheless, several normalisation techniques
that also decorrelate features have been proposed. These techniques typically seek better
optimisation results by whitening the activations directly. Activations can be whitened
for example according to the population statistics [39,40]. However, the estimation of the
population statistics is hindered by the computational constraints and the changes to the
activation distributions caused by the weight updates during optimisation [27]. Fortu-
nately, these problems can be avoided by whitening the activations based on the mini-batch
statistics. Such techniques are, for example, decorrelated batch normalisation (DBN) [30],
IterNorm [41] and network deconvolution [31]. These three techniques first estimate the
covariance matrix of the activations in the batch, as shown in Equation (8). In Equation (8),
X ∈ R

C×N is the activation matrix with C channels and N samples, and μ ∈ R
C is the

mean of the N activations in the batch. The batch of activations is then whitened with
the inverse square root of the covariance matrix, i.e., the whitening matrix, and the batch
mean, as shown in Equation (9). DBN has a slight disadvantage since it computes the
whitening matrix with eigenvalue decomposition. IterNorm was proposed to solve the
computational problems of DBN. IterNorm approximates the inverse square root of the
whitening matrix with Newton’s iteration. Network Deconvolution is similar to IterNorm.
However, it employs coupled Newton-Schulz iteration, which was shown both a quick and
stable approximation technique for the whitening matrix [31].

Cov =
1
N
(X − μ)T(X − μ) (8)

X̃ = (X − μ)Cov− 1
2 (9)

3. Proposed Improvement for Fault Diagnosis Models

This study seeks to improve the current state-of-the-art CNN-based techniques for
diagnosing faults from raw vibration data. The experiments in this study adapt three
reportedly highly performing 1D-CNN models, remove all BN functions and normalise the
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layer inputs with ND instead. The study then evaluates the original models employing
BN in parallel with the corresponding models employing ND. The baseline models are
known as Ince’s model [32], the stacked residual dilated convolutional neural network
(SRDCNN) [18] and the Deep Convolutional Neural Networks with Wide First-layer Ker-
nels (WDCNN) [15]. Although numerous other fault diagnosis models exist, these were
chosen due to their simple and effective architectures. For example, WDCNN has been
shown to produce the best bearing fault diagnosis results with slight modifications as an
ensemble [16] and with an additional RNN-path [17]. However, the contrast in the results
between models employing ND and BN can be sufficiently shown with these models
without additional modifications.

This section is divided into three parts. Section 3.1 visits briefly the baseline model
architectures. Then, Section 3.2 describes the ND practical implementation details. Finally,
some general training algorithmic design choices are presented in Section 3.3.

3.1. Model Architectures

Ince’s model [32] was one of the first CNN-based models proposed for vibration-
based fault diagnosis of a rotating system. The original study showed that the model
could accurately detect bearing faults from induction motor currents. The original model
architecture consists of three CNN layers (Conv1D) and two fully-connected layers (FCL).
The original model was slightly modified for the experiments in this study. Table 1 details
the modified model architecture. Furthermore, Figure 2 shows the corresponding feature
maps between the model layers. The modified version of Ince’s model only employs one
fully connected layer. The output space spans over 10 probabilities for every bearing
health state in the CWRU dataset. In addition, the output space can include only one value
corresponding to the probability of a fault, if the model is optimised for the binary thruster
fault detection tasks. Furthermore, BN was placed after every CNN layer, despite BN not
being mentioned in the original publication proposing Ince’s model.

Table 1. Ince’s model architecture.

Layer Kernel Size Channels in Filters Stride Padding

Conv1D 9 × 1 1 or 2 60 5 18
Conv1D 9 × 1 60 40 5 4
Conv1D 9 × 1 40 40 9 3

FCL 1×1 400 1 or 10 N/A N/A

2@2048x1

Con
v1

D  +
 BN

60@416x1

40@84x1

40@10x1
400x1

10x1

Resh
ap

e
FCL

Con
v1

D  +
 BN

Con
v1

D  +
 BN

Figure 2. Feature maps of the Ince’s model employed in this study. These feature maps correspond
to a model that diagnoses the probability of 10 health states from vibration data measured with two
vibration sensors.
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WDCNN is an accurate model for vibration based condition monitoring [15]. The
model consists of two levels. The first level includes five 1D-CNN, BN and pooling layers
employed for feature extraction. The second level includes two fully connected layers with
BN for fault recognition. Table 2 details the WDCNN architecture. Furthermore, Figure 3
shows the corresponding feature maps between the model layers. The first layer filters
consist of wider 64 × 1 kernels. Each filter includes a kernel for every input channel. The
rest of the CNN layers consist of 3 × 1 kernels. After every CNN layer, there is a BN
layer, max-pooling layer and a (ReLU) activation function, in this order. All max-pooling
layers apply 2 × 1 kernel with a stride of 2. The final fully connected layers compute the
probabilities for the system health states.

Table 2. WDCNN architecture.

Layer Kernel Size Channels in Filters Stride Padding

Conv1D 64 × 1 1 or 2 16 16 24
Conv1D 3 × 1 16 32 1 1
Conv1D 3 × 1 32 64 1 1
Conv1D 3 × 1 64 64 1 1
Conv1D 3 × 1 64 64 1 1

FCL 1×1 192 18 N/A N/A
FCL 1×1 18 1 or 10 N/A N/A
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D  +
 BN + m

ax
 poo

l
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v1

D  +
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 poo

l
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v1

D  +
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l
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v1

D  +
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ax
 poo

l
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v1

D  +
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ax
 poo

l

Resh
ap

e

FCL + BN

FCL + BN

16@64x1
32@32x1

64@16x1
64@8x1

64@3x1 192x1
18x1

10x1

Figure 3. Feature maps of the WDCNN employed in this study. These feature maps correspond to
a model that diagnoses the probability of 10 health states from vibration data measured with two
vibration sensors.

SRDCNN [18] is a promising model, which achieved relatively high accuracies in bear-
ing fault diagnosis tests in the original study. Similar to Ince’s model and WDCNN, SRD-
CNN extracts features with 1D convolutional layers and then computes the probabilities for
the system health with fully-connected layers. Table 3 lists the main components of SRD-
CNN architecture. Furthermore, Figure 4 shows the corresponding feature maps between
the model layers. The model consists of five convolutional layers and two fully-connected
layers. However, the convolutional layers of SRDCNN differ from the convolutional layers
of WDCNN and Ince’s model. SRDCNN applies dilated convolutions. Furthermore, each
convolutional layer includes two adjacent convolutional sublayers and a residual connec-
tion. These adjacent sublayers are structured similarly to the input gates in the recurrent
neural network type known as long short-term memory (LSTM). The activation values of
these sublayers are multiplied element-wise together and then added element-wise to the
residual values. The residual values are the input values to the layer passed through a third
adjacent 1D-convolutional sublayer with 1 × 1 kernels. These dilated convolutional layers
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were named residual dilated convolutional layers (RDConv1D) in the original publication.
BN is employed after every convolutional sublayer and fully-connected layer except the
convolutional sublayers with 1 × 1 kernels for residual connections.

Table 3. SRDCNN architecture.

Layer Kernel Size Channels in Filters Stride Padding Dilation

RDConv1D 64 × 1 1 or 2 32 2 31 1
RDConv1D 32 × 1 32 32 2 31 2
RDConv1D 16 × 1 32 64 2 30 4
RDConv1D 8 × 1 64 64 2 28 8
RDConv1D 4 × 1 64 64 2 24 16

FCL 1×1 4096 100 N/A N/A N/A
FCL 1×1 100 1 or 10 N/A N/A N/A

RDCon
v1

D + BN

RDCon
v1

D + BN

RDCon
v1

D + BN

RDCon
v1

D + BN

RDCon
v1

D + BN

Resh
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e

FCL + BN

FCL + BN

2@2048x1
32@1024x1

32@512x1
64@256x1

64@128x1
64@64x1

4096x1

100x1

10x1

Figure 4. Feature maps of the SRDCNN employed in this study. These feature maps correspond to
a model that diagnoses the probability of 10 health states from vibration data measured with two
vibration sensors.

All these models can function with vibration data from an arbitrary number of sensors.
The number of input sensors corresponds to the number of input channels in the first layer
of the model. Tables 1–3 show that the number of the first layer input channels in all the
models in this study is either one or two because the datasets in this study contain vibration
data measured with one or two accelerometers. Furthermore, all these models can compute
an arbitrary number of probabilities for the health states of the rotor system. The tables
in this section show that the output dimensions of the final fully-connected layers of the
models can be either 1 or 10. These dimensions correspond to the health states in the two
datasets in this study.

Depending on the number of probabilities, this study employs two classification
functions computing the diagnosed health state from the probability values. Softmax
function, Equation (10), processes the 10 model output values into a probability distribution
of 10 probabilities that sum to 1. The diagnosed health state of the system is the label with
the highest probability. Sigmoid function, Equation (11), computes the model output value
into a probability between [0, 1]. This probability corresponds to the probability of a fault
occurring in the system.

S(z) =
ez

∑N
j=0 ezj

(10)
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S(z) =
1

1 + e−z (11)

3.2. Whitening CNN Inputs

ND, as proposed in [31], employs the matrix multiplication composition of a convo-
lutional layer, as explained in Section 2.1. ND performs the whitening of the layer input
X by subtracting its mean, and then by multiplying it with the inverse square root of
the corresponding covariance matrix. Subtracting the mean centres the layer input, and
multiplying with the inverse square root of the covariance matrix decorrelates the layer
input local area-wise and channel-wise. Ideally, after ND the layer inputs have a mean
of zero and the covariance matrix is approximately an identity matrix. The computations
related to this whitening operation are shown in the following equations:

Cov =
1
N
(X − μ)T(X − μ) (12)

D ≈ (Cov)−
1
2 (13)

yj = (X − μ) · D · wj + bj. (14)

In Equation (12), the covariance of layer input data is computed. X is the transformed
input data matrix and μ are the mean of N values in the columns of X, i.e., the mean of
values multiplied by an arbitrary weight. N depends on the number of samples in a mini-
batch and the number of local areas. D is the deconvolution kernel in Equation (13), which
is an approximation of the inverse square root of the covariance matrix. Equation (14)
shows the computation of the output values yj of the j-th filter with the centered and

transformed input X − μ, the deconvolution kernel D ≈ COV− 1
2 , the filter weights wj and

the filter bias terms bj.
The whitening computations, as presented above, may decelerate the optimisation of

a deep neural network excessively. Therefore, computation acceleration techniques for ND
were also proposed [31]. These techniques include subsampling the layer input matrix X

for lighter covariance matrix computation, coupled Newton-Schulz iteration for the inverse
square root of the covariance matrix approximation, and implicit decorrelation of layer
inputs. This work optimised these acceleration algorithms for the 1D-CNN-based fault
diagnosis models. The remainder of this subsection explains the practical implementation
of ND and the required acceleration techniques.

After the layer input formulation to matrix X, as shown in Figure 1, the covariance
matrix is computed as expressed in Equation (12). Since the covariance matrix computation
is performed for every layer and during every forward pass, subsampling the layer input
matrices Xl likely decreases the required training time. That is, the number of rows N in
a layer input matrix X, consisting of local areas from all mini-batch samples, decreases
by subsampling the rows. Subsampling is likely to have a small effect on the covariance
matrix because the number of input values N is relatively high compared to the covariance
matrix dimensions.

To whiten the layer inputs, the inverse square root of the covariance matrix needs to
be computed. Several techniques exist for computing the inverse square root of a matrix.
However, the coupled Newton-Schulz iteration was shown to be both a numerically stable
and fast algorithm for approximating the inverse square root of the covariance matrix [31].
The iteration starts by initialising matrices Y0 = Cov + ε · I and Z0 = I. The matrices
Yk and Zk are updated every iteration with Equations (15) and (16), respectively. The
matrices converge to approximate values of the square root and the inverse square root of
the covariance matrix, as shown in Formulas (17) and (18).

Yk+1 =
1
2

Yk(3I − ZkYk) (15)
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Zk+1 =
1
2
(3I − ZkYk)Zk (16)

Yk+1 → Cov
1
2 (17)

Zk+1 → Cov− 1
2 (18)

Once the inverse square root of the covariance matrix has been approximated, the
inverse correction can be applied to the layer input matrix X. However, ND performs this
whitening correction implicitly by correcting the weights w of the convolutional layers
instead of decorrelating the input data. This whitening can be considered as decorrelating
the weights of each kernel in a filter. During training, a running mean of the deconvolution
matrix D ≈ (Cov + ε · I)− 1

2 is collected for each layer. A small constant ε is added for
numerical stability and regulatory effect. After training has finished, the running average
of the deconvolution kernels Dl are frozen and kept constant during testing to reduce
the computation time. This implicit deconvolution is expressed mathematically on the
right-hand side of Equation (19).

yl
j = (Xl − μl) · (Dl · wl

j) + bl
j = Xl · Dl · wl

j + bl
j − μl · Dl · wl

j (19)

3.3. Training the Models

The training convergence of a deep neural network depends heavily on the training
algorithm design. With suitable choices, the sample efficiency and the test performance are
likely to increase. This work deployed various techniques, such as time window division,
learning rate scheduling and early stopping. The following discusses briefly the major
choices. The repository for this study is linked in Appendix A for further evaluation.

A disadvantage of deep neural network solutions for fault diagnosis originates from
their need for a large number of training samples in order to converge to a satisfying
optimum. Fortunately, the number of training samples can be increased with data augmen-
tation. This work employed overlapping time window division for data augmentation.
That is, the time series samples were split into shorter time windows including time steps
over multiple rotor revolutions. Figure 5 demonstrates this overlapping time window divi-
sion technique. The extracted time windows correspond to an input sample of 2048 time
steps in this study.

The loss function for multi-categorical fault diagnosis tasks is cross-entropy loss (CE
loss), as shown in Equation (20). The CE loss is a measure for the difference of the target
distribution and the estimated distribution over K categories averaged over N samples
in a batch. In Equation (20), yn

j ∈ {0, 1} are the K values in the target distribution with
the correct category encoded as 1 and f n

j ∈ [0, 1] are the K probabilities in the estimated
distribution. The loss function for binary fault detection tasks is the binary cross-entropy
loss (BCE loss), as shown in Equation (21). Similarly to CE loss, the BCE loss is averaged
over the N samples in the batch. In Equation (21), yn ∈ {0, 1} is the correct label and
f n ∈ [0, 1] is the probability of a fault.

CE loss = − 1
N

N

∑
n=1

K

∑
j=1

yn
j log( f n

j ) (20)

BCE loss = − 1
N

N

∑
n=1

(ynlog( f n) + (1 − yn)(1 − log( f n)) (21)

The gradient optimisation steps of all models were controlled with Adam optimiser [42]
and decaying learning rate. The learning rate decayed by half every tenth epoch. Further-
more, all models were optimised with early stopping and checkpoints. That is, at the end of
every epoch, if the validation loss decreases, the model weights are saved. If the validation
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loss increases, the previous best weights are loaded to the model. The optimisation ends
after a maximum number of epochs or after the validation loss increases seven times. A
maximum number of epochs and other training and model related hyperparameters are
detailed in Appendix B.

...

...
Overlaper

Figure 5. Time series sample consisting of two input signals divided to overlapping training samples.

4. Validation of ND for Fault Diagnosis

This section presents the performance of the baseline models relying on BN and the
modified models relying on ND under two different tasks. The first task in Section 4.1
relates to the extensively studied benchmark dataset for bearing fault diagnosis. The dataset
consists of rotor system vibration data sampled at different motor loads. The second task in
Section 4.2 demonstrates the model’s performance at detecting faults from vibration data
acquired in more diverse operating conditions. The dataset of this task consists of thruster
vibration data sampled in real operation conditions.

4.1. Case 1: Bearing Fault Diagnosis under Varied Load Conditions

The CWRU bearing fault dataset [33] is a well-established machine fault classification
benchmark. The vibration dataset includes samples of healthy and faulty bearings placed
in the test rig in Figure 6. There are four different bearing health conditions in the dataset:
healthy (H), ball fault (B), inner race fault (I) and outer race fault (O). Each fault type was
machined with three different diameters: 0.1778 mm (*L), 0.3556 mm (*M) and 0.5334 mm
(*H). Thus, the number of different health states in the dataset is 10. Each fault type was
measured at three different motor loads: 0.746 kW (1 hp), 1.491 kW (2 hp) and 2.237 kW
(3 hp). Each time series sample was measured with two accelerometers at the drive-end
and the fan-end of the motor. The sampling frequency was 12 kHz. Earlier related studies
have mostly trained the fault diagnosis models with the vibration data acquired with the
drive-end sensor only [15,18,19]. However, often condition monitoring systems include
multiple sensors. Therefore, this subsection also presents the fault diagnosis experiments
employing both, the drive-end and the fan-end sensor data as model inputs.

171



Appl. Sci. 2022, 12, 4411

Figure 6. Bearing fault test rig [33].

Table 4 shows the details related to the bearing fault dataset. The training samples
were acquired by sampling overlapping time windows from the 10 time series samples
corresponding to the health states. Each training sample is 2048 timesteps long. The shift
between adjacent training samples is 32 timesteps. Test samples share the length with
training samples, however, they do not overlap.

Table 4. Number of training and test samples per bearing health state and motor load.

Load Split H BL BM BH IL IM IH OL OM OH

1 hp Train
Test

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

2 hp Train
Test

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

3 hp Train
Test

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

1980
59

The baseline models with BN and the modified models with ND were trained to recog-
nise the health state of the bearing from the vibration data. Every model was trained on
each motor load domain and then evaluated on the other motor load domains. These tests
were repeated 10 times for each model and load domain. Furthermore, these experiments
were conducted with data from both accelerometers and with data from the drive-end
accelerometer only. Figure 7 presents the means and standard deviations of the model
accuracies when only the data from the drive-end accelerometer was available. Figure 8
presents the results from repeated experiments with data from both accelerometers.

Figure 7 shows that all models diagnose the bearing health states with over 80%
accuracy on average from the drive-end accelerometer data. In the same experiments, the
modified WDCNN and SRDCNN models achieve more than 5 percentage points (pp) better
average classification accuracies than the corresponding baseline models. The accuracy
of the modified Ince’s model is 0.35 pp less than the corresponding baseline. Overall
the modified models achieve similar or significantly better diagnosis accuracies than the
corresponding baselines in these experiments.
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Figure 7. Means and standard deviations of the accuracies of the baseline models with BN (red) and
the same models with ND (green) on six different load domain shift problems over ten trial runs. The
models diagnosed the bearing health state from the drive-end sensor data. The test data was drawn
from the motor load domains the arrows point and the training data was drawn from the motor load
domains the arrows point from.
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Figure 8. Means and standard deviations of the accuracies of the baseline models with BN (red)
and the same models with ND (green) on six different load domain shift problems over ten trial
runs. The models diagnosed the bearing health state from the drive-end and the fan-end sensors
simultaneously. The test data was drawn from the motor load domains the arrows point and the
training data was drawn from the motor load domains the arrows point from.

Figure 8 shows that the average diagnosis accuracies of the models decreased after
introducing data from both accelerometers to the task. Only modified Ince’s model and
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modified SRDCNN increased the diagnostic accuracy compared to the results in Figure 7.
Especially the baseline models performed significantly worse when they were trained with
data acquired with the motor load of 3 hp. Overall, the average diagnosis accuracies of the
modified models were significantly higher than the corresponding baseline counterparts.

4.2. Case 2: Azimuth Thruster Fault Detection

Three azimuth thrusters of a similar configuration of the same drill ship were moni-
tored frequently from mid-2018 to the end of 2019. An azimuth thruster is a rotor system
which ships may use for movement or for preserving position. The three thrusters were
operated in diverse environments at various rotating speeds and thrusting angles. Figure 9
shows the rotating speed distribution of the vibration samples in the dataset. Each vibration
sample in the dataset is a time series sample including four revolutions sampled at 1024
distinct encoder positions totalling 4096 sampling points. Therefore, the time dimension
differs between the vibration samples measured at different rotating speeds.

Figure 9. Thruster rotating speed varied between the acquired vibration samples in the range between
100 RPM and 750 RPM.

The vibration samples were acquired with accelerometers in similar positions near
the input shafts (IS) of the thrusters. During the monitoring period, the thrusters were
healthy in the beginning but suffered malfunctions in matching components. The faults
were related to the bearing near the gear end of the pinion shaft (B) and the gear pinion
and the gear wheel (G). Figure 10 shows the thruster assembly, the fault locations and the
sensor position. All faults occurred in all three thrusters during the period of observations.
The faults in the dataset were recognised by condition monitoring specialists.

Some samples with abnormal data were filtered from the dataset with a quality control
function. Appendix C describes the quality control function in detail. The resulting dataset
is described in Table 5, where the components were either labelled as healthy or faulty. The
severity of the faults in a single thruster changes between the samples, due to the long
observation period. That is, vibration samples were collected over a long period of time
before and after the malfunctions were first noticed.
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Figure 10. The azimuth thruster vibration was measured with an accelerometer sensor near the input
shaft. The positions of the sensor and the faulty components are pointed with red lines.

The lowest row in Table 5 shows the number of samples drawn and augmented to
training, validation and test datasets. The relatively high number of training, validation and
test samples is due to data augmentation with time window division. Each time window
was 2048 time steps long. The time windows were overlapped during training data and
validation data augmentation, but not overlapped during test data augmentation. The
same number of samples were drawn randomly 10 times for each trial consisting of training
and evaluation of all models. Furthermore, each set holds an equal number of healthy and
faulty samples.

Table 5. Azimuth thruster dataset statistics.

Thruster Condition B G

1 Healthy
Faulty

263
468

283
448

2 Healthy
Faulty

108
843

200
751

3 Healthy
Faulty

125
405

216
314

Total Healthy
Faulty

496
1716

699
1513

Data
splits

Train
Val
Test

48,230
11,960

368

77,740
19,110

592

The baseline models with BN and the modified models with ND were optimised to
recognise faulty behaviour in a specific component. Therefore, the models were subjected
to binary classification tasks. All models were trained and then evaluated 10 times for
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each task with the hyperparameters listed in Appendix B. Figure 11 shows the average test
classification accuracies of the models in the fault diagnosis tasks. All models achieved
similar diagnosis accuracies between 84% and 91% in both tasks. Overall, the modified
models with ND performed slightly better. The modified SRDCNN and Ince’s model
diagnosed the bearing condition less than 1 pp more accurately than the corresponding
baseline models. Moreover, the modified WDCNN and SRDCNN diagnosed the bearing
condition less than 2 pp more accurately than the corresponding baseline models.

Bearing Gear
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Figure 11. Mean and standard deviation of accuracies of the baseline models with BN (red) and the
modified models with ND (green) on both binary fault detection problems over 10 trial runs. Datasets
were randomly drawn for each trial separately. Every model was tested with the same randomly
drawn set of samples.

5. Discussion

Based on the results, ND seems like a competitive solution for BN in CNN-based
machine fault diagnosis from vibration data. In Section 4.1, the modified models with
ND were compared to the baseline models with a well-established benchmark dataset
for bearing fault diagnosis. In this multi-categorical bearing fault recognition task, the
modified models with ND mostly outperformed the baseline models with BN in terms of
the average accuracy of all experiments. Whitening seemed to especially improve WDCNN
performance. The average accuracy of modified WDCNN was 5.18 pp and 11.73 pp higher
than the baseline in results shown in Figures 7 and 8, respectively. Furthermore, the
modified WDCNN and modified SRDCNN outperformed remarkably the corresponding
baselines in experiments with training data drawn from the vibration data sampled at a
3 hp motor load.

In Section 4.2, the modified models and the baseline models were compared by using
a real world dataset consisting of ship thrusters in diverse environments. In these thruster
fault detection tasks, all models achieved relatively high accuracies of over 84%. However,
there were no significant differences between the fault detection accuracies of the compared
models. Based on these thruster fault detection tasks, ND can be considered as good as BN
for normalising the activations of CNN-based fault detection models.

Although ND is a promising technique for whitening the features between CNN lay-
ers, it introduces a few extra hyperparameters for fault diagnosis model training. Moreover,
the models relying on ND can be very sensitive toward these hyperparameters. That is, the
sampling stride, the number of coupled Newton-Schulz iterations and the regularisation

176



Appl. Sci. 2022, 12, 4411

term ε, for example, may affect optimisation results and require careful tuning. For con-
venience, Appendix D shows accuracies at different subsampling strides and batch sizes.
Furthermore, Appendix E provides some examples of the deconvolution matrix D after
a different number of coupled Newton-Schulz iterations. Fortunately, similar ND hyper-
parameters seemed to perform well in both model validation case studies, even though
the data was significantly different due to the measurement circumstances and due to the
health state spaces. Therefore, the values searched in this work for ND hyperparameters
are likely suitable for other vibration diagnosis tasks.

Overall, whitening the layer inputs seems to consistently provide high test perfor-
mance for CNN-based fault diagnosis models. By whitening the layer inputs, the model
learns uncorrelated features containing less redundant information than correlated features.
With uncorrelated features, the domain adaptation of the model improves on average, as
shown in Section 4.1. The difference in domain adaptation between whitened features
and batch normalised features is significant, especially when shifting from the higher load
domains to lower load domains. Furthermore, decor-related features seem to significantly
increase the accuracies of the diagnosis models compared to the baseline models when
data from two sensors were employed, as Figure 8 shows. This indicates that decorrelating
CNN-based model features may increase fault diagnosis accuracy of condition monitoring
systems with many sensors.

6. Conclusions

This study demonstrated the effect of whitening the features of 1D-CNN-based fault
diagnosis models. The features of three commonly known and highly accurate fault
diagnosis models were whitened with network deconvolution. Network deconvolution is a
recently proposed, implicit and approximative whitening technique. The models modified
with network deconvolution were compared to the originally proposed models relying on
batch normalisation under two validation case studies. In the first case study, the models
were evaluated on a well established bearing fault dataset under varied load domains. The
second case study evaluated the model performances in more challenging real thruster
fault detection tasks. The first case study showed that whitened features increased the
1D-CNN model performances on average. Furthermore, the same case study showed
that the models with whitened features were significantly more accurate at diagnosing
the bearing health state from the vibration data acquired with two sensors. However,
the second case study showed that the models with whitened features achieved similar
fault detection accuracies to the corresponding baseline models. Overall, this study shows
that whitening 1D-CNN-based fault diagnosis model features may improve the diagnosis
performance. These results are significant for CNN-based fault diagnosis algorithms since
the whitening technique employed in this study can replace all batch normalisation layers
in any CNN-based fault diagnosis model.
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Abbreviations

The following abbreviations are used in this manuscript:

IFD Intelligent Fault Diagnosis
BN Batch Normalization
ND Network Deconvolution
CNN Convolutional Neural Network
DL Deep Learning
ML Machine Learning
DBN Deep Belief Network
AE Autoencoder
RNN Recurrent Neural Network
WDCNN Deep Convolutional Neural Networks with Wide First-layer Kernels
SRDCNN Stacked Residual Dilated Convolutional Neural Network
ReLU Rectified Linear Unit
LSTM Long Short-Term Memory
CE Cross-Entropy
BCE Binary Cross-Entropy
pp Percentage Point

Appendix A. Source Code

The repository linked below contains the source code related to this study.
https://github.com/miettij/Intelligent-fault-diagnosis; accessed on 4 April 2022.

Appendix B. Model Specific Hyperparameters

Before the model optimisation, some of the training related and model related hyper-
parameters were optimised for every model separately. Table A1 lists the hyperparameters
employed in the bearing fault diagnosis experiments in Section 4.1. Table A2 details the hy-
perparameters of the thruster experiments in Section 4.2. The models marked with ‘ND’ in
parenthesis refer to the models modified with network deconvolution. First layer iterations
refers to the number of coupled Newton-Schulz iterations at the first convolutional layer.
Deconv iterations refers to the number of coupled Newton-Schulz iterations on other model
layers. ε is the small constant for regularisation and numerical stability of the iteration.
Sampling stride defines the subsampling factor for the layer input matrix X.

Table A1. Hyperparameters deployed in bearing fault experiments *.

Param Ince SRDCNN WDCNN Ince (ND) SRDCNN (ND) WDCNN (ND)

Batch size 32 64 64 8 128 (8) 8
Learning rate 0.001 0.0001 0.001 0.0001 0.1 (0.0001) 0.0001
Max epochs 60 60 70 70 40 70

Bias False True True True True True
First layer iterations N/A N/A N/A 15 15 15

Deconv iterations N/A N/A N/A 5 5 5
ε N/A N/A N/A 10−5 10−5 10−5

Sampling stride N/A N/A N/A 5 5 5

* Hyperparameters employed in experiments with the drive-end and the fan-end sensors are in parentheses
if different.
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Table A2. Hyperparameters deployed in thruster fault experiments.

Param Ince SRDCNN WDCNN Ince (ND) SRDCNN (ND) WDCNN (ND)

Batch size 32 64 64 8 8 8
Learning rate 0.001 0.0001 0.001 0.0001 0.0001 0.0001
Max epochs 60 60 70 70 70 70

Bias False True True True True True
First layer iterations N/A N/A N/A 15 15 25

Deconv iterations N/A N/A N/A 5 5 5
ε N/A N/A N/A 10−5 10−5 10−5

Sampling stride N/A N/A N/A 5 5 36

Appendix C. Quality Control Function for Filtering Abnormal Samples

Although the thruster data was sampled in diverse environments and the time series
samples differed, some samples containing outliers were removed from the dataset. Outlier
samples originated likely due to many reasons, such as faulty sensor or heavy storm
conditions. For this purpose, a quality control algorithm was developed to reject the
outlying samples based on three checks. Firstly, the data sample consisting of 4096 × 1 time
series was divided into sliding time windows of 100 × 1, with the step size of 1. A
mean value was then computed for all the sliding windows. The sample was rejected
if the difference between the maximum and the minimum mean value was higher than
0.2 × 9.81 m/s2. Secondly, the sample was rejected if the maximum and minimum values
of the time series were the same. Thirdly, the sample was rejected if the absolute mean of
the time series was over 0.5 × 9.81 m/s2. If the sample passed each check, it was accepted
for further processing.

Appendix D. Batch Size and Sampling Stride Effect on ND

The batch size and sampling stride both affect the number of values in the layer input
X, as in Figure 1. With larger batch sizes, the number of values in each column increases.
With higher sampling strides, the number of values in each column decreases. The number
of values in each column correlates with the representability of the covariance matrix, and
thus affects the decorrelation reliability. With a low number of inputs per neuron, the
covariance matrix might not represent the true input distribution over the whole dataset.
Therefore, the sampling stride and batch size were searched. Figure A1 shows three
different grid search results for batch size, sampling stride and learning rate. The model in
this grid search was WDCNN and the input data included vibration data from the fan-end
and the drive-end sensors. Each accuracy in the figure corresponds to average accuracy
of six load domain shift tasks, as in Section 4.1. The experiments were repeated 10 times
with less than 20 training epochs. Each standard deviation in the figure corresponds to the
distribution of all load domain shift test accuracies over the ten experiments. In addition,
Figure A2 visualises covariance matrices of the WDCNN first layer inputs corresponding
to a random sample with drive-end and fan-end data from the bearing fault dataset. The
covariance matrices are computed with different sampling strides. Figure A2 shows that
the covariance between the inputs decreases as the sampling stride increases.
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Figure A1. Mean and standard deviations of WDCNN test accuracies over 10 trials of load domain
shift tests with the bearing fault dataset. Specifically, each accuracy and standard deviation in the
figure is the total average of the six load domain shift results, similar to the ones in Section 4.1.

Figure A2. Covariance matrices of the first layer input related to a batch of vibration samples with
two channels (fan-end and drive-end sensors) from the bearing fault dataset. The sampling stride
corresponds to the sampling strides in Figure A1. The covariance is highest between inputs in the
same channel (diagonal corner quarters of the heatmaps) and between the nearby weights within a
kernel. The first layer filter of WDCNN has two kernels of size 64 × 1, which explains the covariance
matrix dimension of 128 × 128.

Appendix E. Iteration Count Effect on the Approximation of the Deconvolution Kernel

The coupled Newton-Schulz iteration for approximating the inverse square root of the
covariance of layer input matrix X converges to values with more contrast as the number
of iterations increases. Figure A3 shows these deconvolution matrices approximated with
different number of iterations.
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Figure A3. Three deconvolution matrices with different number of iterations approximated from the
leftmost covariance matrix in Figure A2. The deconvolution matrix approximation grow significantly
sharper as the number of iterations increase.
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Abstract: Walnut (Juglans regia L.) is a monoecious species and although it exhibits self-compatibility,
it presents incomplete overlap of pollen shed and female receptivity. Thus, cross-pollination is
prerequisite for optimal fruit production. Cross-pollination can occur naturally by wind, insects,
artificially, or by hand. Pollen has been recognized as one possible pathway for Xanthomonas arboricola
pv. juglandis infection, a pathogenic bacterium responsible for walnut blight disease. Other than the
well-known cultural and chemical control practices, artificial pollination technologies with the use of
drones could be a successful tool for walnut blight disease management in orchards. Drones may
carry pollen and release it over crops or mimic the actions of bees and other pollinators. Although this
new pollination technology could be regarded as a promising tool, pollen germination and knowledge
of pollen as a potential pathway for the dissemination of bacterial diseases remain crucial information
for the development and production of aerial pollinator robots for walnut trees. Thus, our purpose
was to describe a pollination model with fundamental components, including the identification
of the “core” pollen microbiota, the use of drones for artificial pollination as a successful tool for
managing walnut blight disease, specifying an appropriate flower pollination algorithm, design of
an autonomous precision pollination robot, and minimizing the average errors of flower pollination
algorithm parameters through machine learning and meta-heuristic algorithms.

Keywords: cross-pollination; Juglans regia; literature review; self-compatibility; walnut blight disease;
aerial pollination; artificial pollination technologies; pollination drone

1. Introduction

The process of pollination involves the transfer of pollen grains from the anther, the
male portion of a flower, to the female part (stigma) of the same or another plant. There are
two types of pollination: (i) self-pollination (autogamy), in which pollen is deposited on the
stigma of the same or another flower on the same plant; and (ii) cross-pollination (allogamy),
in which pollen is transferred from one plant to the flower of a genetically different plant or
cultivar. Walnut trees are self-compatible, but they require cross-pollination with another
walnut tree to produce nuts due to being protandrous, meaning that the male flowers
mature—release pollen—before the female flowers become receptive, and pollen shedding
occurs before female bloom begins, or being protogynous, meaning that the female flower
begins opening—become receptive—prior to pollen shedding. Cross-pollination involves
transferring pollen from the male flowers of one walnut tree to the female flowers of another.
This can occur naturally, with the help of the wind (wind-blown pollen) or insects such as
bees, or artificially through the process of hand pollination [1].
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On walnut trees, the pollen is produced in catkins, which may also be colonized with
Xanthomonas arboricola pv. juglandis, the causative agent of walnut blight disease [2,3].
Mainly the disease can affect the leaves, stems, and nuts of the tree, leading to reduced
yield and poor-quality nuts. Xanthomonas arboricola pv. juglandis is primarily spread by
water, either through rain or irrigation, and can be more severe during warm and wet
weather [4,5].

Once the bacterium enters the tree tissues, it can survive and spread within the
tree through the sap. To prevent and control X. arboricola pv. juglandis, farmers can use
a combination of cultural and chemical control measures. This may include removing
infected plant material, managing irrigation practices to reduce water on the foliage,
and applying copper-based fungicides during the dormant season or at the first signs
of infection. Here, it is important to note that the overuse of chemical control measures
can lead to the development of resistant strains of the bacterium, so it is important to
use a holistic approach to disease management that incorporates a variety of methods.
Additionally, early detection and rapid response to infected trees can help to limit the
spread of the disease to other trees in the orchard.

Research has shown that inoculum of X. arboricola pv. juglandis is also disseminated
through pollen [3,6]. This evidence-based early detection of developmental-behavioral
problems from primary infection of X. arboricola pv. juglandis in symptomless plant materi-
als, such as catkins and pollen, should be considered besides that in symptomatic materials
(leaves, fruit, and other plant debris).

Pathogenic bacteria and pollen are two distinct biological entities that are not directly
related to each other. While pathogenic bacteria and pollen are not directly related, they
can sometimes interact in certain situations. For example, pollen can sometimes serve as a
carrier for pathogenic bacteria. Pollen of Actinidia spp. is a good substrate for Pseudomonas
syringae pv. actinidiae colonization, survival, and a pathway for its spread [7]. Therefore,
pollen may be a conduit for the spread of P. syringae pv. actinidiae and kiwifruit bacterial
canker [7]. Further, pollen dispersal has been presented for Erwinia amylovora of pome
fruit [8] and for X. arboricola pv. juglandis of walnut [9,10]. Moreover, pollen was recognized
as a possible pathway for X. arboricola pv. juglandis, although further studies were suggested
to confirm if pollen could spread the pathogen [3]. Viable pathogenic bacteria such as
X. arboricola pv. juglandis have often been isolated from pollen, and infected pollen also
represents a potential route of introduction into healthy walnut groves even in case of
mechanical pollination [3,6]. Walnut cv. Chandler and cv. Serr results showed that pollen
was recognized as a possible pathway for X. arboricola pv. juglandis [3].

Therefore, the survival of the bacterium X. arboricola pv. juglandis in catkin buds and
catkins should be checked before the bacterium overwinters in blighted leaf and catkin
buds. When water carries the bacteria to the leaves and stigmatic surfaces of the flowers,
blight spreads from these reservoirs. When catkins open and staminate flowers release
pollen, the disease may also spread through the air. Contaminated pollen may be carried
by wind and deposited on any young growing parts of trees [4].

Artificial pollination technologies have been developed to address various challenges
in natural pollination, including the issue of contaminated pollen or contributing to possible
disease outbreaks from contaminated pollen [11,12]. Artificial pollination systems have
been developed to supplement natural pollination and provide yield security even in poor
pollination scenarios. These technologies include various methods for pollen collection and
application, such as hand pollination, handheld and vehicle-mounted devices, unmanned
aerial vehicles (UAVs), and robotic and autonomous pollinators. These systems have been
found to perform adequately for certain crops, including kiwifruit, olive, date palm, walnut,
and tomato [13,14].

Moreover, artificial pollination technologies have seen significant advancements, with
the integration of machine learning and artificial intelligence (AI) playing a crucial role in
the development of innovative solutions for future farming. Especially, AI and machine
learning are being integrated into pollination technologies to develop autonomous pollina-
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tion systems [15,16]. Based on the above, researchers are developing various drone-based
pollination technologies, such as the use of tiny drones equipped with artificial intelligence
to autonomously navigate and carry pollen between plants [17,18].

In our view, the parameters are important and will be further analyzed in this re-
view paper. Further, while pollen-mediated transmission of bacterial pathogens has been
suggested for Xanthomonas arboricola pv. juglandis, we will try to answer what are the
advantages of pollination drones and how they can help to prevent or reduce the risk
of walnut blight disease. In the end, we have designed a path-planning algorithm for a
pollination robot that involves determining the disease inoculum and an optimal route for
the robot to pollinate flowers efficiently.

2. Walnut Blight Prevention

Walnut Blight and Conditions

Typically, the cycles of walnut blight bacteria are dependent upon weather conditions
and rainfall during the growing season. Infrequent rainfall during the spring may lead
to monocyclic progress, while frequent spring rainfall tends to favor polycyclic disease
epidemics. Rainfalls during late spring (after leaf growth) have been reported to favor the
spread of X. arboricola pv. juglandis bacterium, which causes serious damage to trees and is
responsible for significant crop losses, which can reach more than 50% of nut drop [19].

All aerial walnut organs, including catkins, female flowers, leaves, and fruit, are
infected [3]. Necrotic lesions on the fruit, twigs, and foliage are characteristic disease
symptoms. Leaf lesions consist of small water-soaked spots, surrounded by chlorotic halos
that extend to become brown necrotic lesions. Fruit lesions begin as tiny, water-soaked
spots and develop into pericarp and inner nut tissue necrosis, which results in early fruit
drop. After shell hardening, infections often only impact the epicarp [20].

Cankers serve as a source of inoculum for leaves and nutlet infections [4,21,22]. Popu-
lations of X. arboricola pv. juglandis found on dormant buds serve as the primary inoculum
for nut infections [21]. Tissues that have recently been infected can act as secondary sources
of inoculum for the pathogen. Pollen released from infected catkins plays a role in pathogen
dissemination [2,21]. The bacterium is transmitted through moisture, particularly through
the combined action of wind and rain [23]. The cultivars Chandler and Vina exhibit signifi-
cant susceptibility to X. arboricola pv. juglandis, thus demonstrating the potential of these
cultivars to be infected with X. arboricola pv. juglandis under conditions favorable for the
disease [5,21,24]. The terminal fruitfulness cultivars Milotai, Marbot, Sibisel, and Ronde
de Montignac and the lateral fruitfulness cultivars Chandler, Sunland, and Techama were
found to be highly susceptible cultivars, making it possible to serve as host responses to
bacterial blight infections at different leaf and fruit growth stages [20].

Overall, the degree of infection caused by X. arboricola pv. juglandis bacterium de-
pends on: (a) the quantity of the pathogen present in individual catkin buds and catkins
(inoculum); (b) the quantity of walnut blight cankers present on certain walnut varieties;
(c) the environmental conditions, such as rain, which play a significant role in spreading
bacteria and aiding infection; and (d) the variety, with early leafing varieties being most
severely affected.

Besides the favorable conditions for the disease, research suggests that pollen released
from infected catkins plays a role in pathogen dissemination [21,22]. Aerial dissemination
of infected pollen from diseased catkins may also transmit the bacterium X. arboricola
pv. juglandis to pistillate flowers. However, this source of inoculum might be region
specific [25] or due to different origins of the propagation material [3]. Up to date new
evidence provides data that infections depend on pollen, especially in walnut orchards
with varieties for which the catkins emerge before the pistillate flowers, i.e., cv. Chandler.
Indeed, pollen is important for spreading bacteria and aiding infection [3]. Even more, the
isolation of X. arboricola pv. juglandis in late winter-early spring led to the finding that the
primary inoculum is present in buds (overwintering), catkins, and female flowers [4,21].
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So, it is crucial to select walnut varieties resistant to bacterial blight and to implement
good orchard management techniques, such as pruning and fertilization, to keep trees
healthy and less susceptible to disease. Moreover, one should be aware of pollen released
from infected catkins, which contributes to the spread of the pathogen, X. arboricola pv.
juglandis. If bacterial blight is present in the orchard, it may be necessary to apply fungicides
or use other treatments to prevent the disease from spreading, such as artificial techniques
for cross-pollination, which probably directly causes or prevents bacterial blight in walnut
trees. Apart from the infection of catkins with X. arboricola pv. juglandis, which plays a role
in pathogen dissemination, walnuts produce pollen that is desiccation intolerant. Pollen
that does not have homeostatic mechanisms for maintaining a constant water content
dies rapidly after opening of the anther or after pollen dispersal [26]. The previously
described ‘partially hydrated’ or, more precisely, desiccation-sensitive pollen of this type
may serve as the connection point with X. arboricola pv. juglandis when the environmental
conditions such as temperature and relative humidity affect pollination processes or are
highly favorable for pathogen growth in plants [26].

However, the relationship between this pollen property and walnut blight disease
during the flower cycle when the daily temperature and leaf wetness are more favorable
for X. arboricola pv. juglandis has not been supported with detailed experimental data.
The epiphytic colonization of the stigmas of the kiwifruit flower after inoculation by
pollen contaminated with GFPuv-labeled Pseudomonas syringae pv. actinidae (Psa), which is
responsible for the bacterial canker of the kiwifruit, indicated that Psa is often transmitted
to the stigma by pollen contamination [27]. Further, it is well known that plants employ
sexual mimicry, and flowers mimic the mating signals of their pollinator insects. Based on
the mimicry phenomenon, researchers demonstrated that fire blight, a serious disease of
pear and apple trees, requires the combination of warm temperatures, open blossoms, and
wet weather. The disease spreads quickly from flower to flower through wind, water, and
pollinating insects. So, the specific mimic odors that serve as a tool to enhance honeybee
foraging and pollination activities in pear and apple crops spread serious diseases such
as a fire blight of pear and apple trees [28,29]. So, concerning walnut blight disease, the
fundamental questions are: Is flower/corolla closure linked to a decrease in viability
of desiccation-sensitive pollen? Is this disease related to other pollination activities or
phenomena such as mimicry or dissemination by wind?

As far as walnut plants are concerned, if pollen serves as a possible pathway for
the dissemination of X. arboricola pv. juglandis and walnut blight disease, to prevent the
disease from spreading, apart from fungicides, it is necessary to use artificial techniques for
cross-pollination, as mentioned above, with uninfected pollen (pollen that is free from the
above pathogens or diseases).

3. Walnut Buds: Bloom and Pollination Events—Cross-Pollination

Walnuts are monoecious and have male and female flowers on the same tree. Male
flowers are formed in structures called catkins. They develop directly on the prior year’s
growth and are easy to identify by eye. At leaf out, the preformed shoot develops, and
compound leaves start to grow before the pistillate (female) flowers form. This explains why
walnut cultivars are indicated by both their leaf out date and bloom date. Female flowers
are only receptive to pollination for a short time. In particular, pollen shed from staminate
(male) flowers during anthesis is spread by wind (wind-blown pollen) and remains viable
for a short time, generally up to 48 h. As already mentioned, walnut is self-compatible but
has adapted a mechanism called dichogamy to reduce the degree of inbreeding. Walnuts
are classified as heterodichogamous; however, the majority of commercial walnut cultivars,
such as Chandler and Serr, are protandrous, meaning that the male flowers mature and
pollen shed occurs before the female bloom begins. So, protandrous cultivars, i.e., Serr,
may be large contributors to protogynous cultivar pollination. In most walnut-growing
regions, dichogamy is the reason for including pollinizers in orchards. Moreover, in certain
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cultivars, such as Serr, excessive pollen on pistillate flowers (too much pollen) has been
identified to be the cause of pistillate flower abortion [1].

During cross-pollination, pollen is transferred from the male reproductive organ
(stamen) of one plant to the female reproductive organ (pistil) of another plant of the same
species, resulting in fertilization and the production of seeds. In the case of nut trees like
walnuts, cross-pollination is necessary for the trees to produce nuts. Cross-pollination can
occur naturally, through the action of wind or insects such as bees, or it can be performed
artificially through hand pollination, in which pollen is manually transferred from one tree
to another. Natural cross-pollination can be affected by factors such as the proximity of the
trees, the timing of flowering, and the presence of pollinators.

Walnuts require cross-pollination for optimal nut production. Cross-pollination in-
creases the genetic diversity of the trees and can lead to larger and more flavorful fruit.
However, not all nut tree varieties are compatible for cross-pollination. It is important to
choose compatible varieties and to plant them close enough for natural cross-pollination to
occur. In some cases, artificial pollination may be necessary to ensure adequate pollination
and fruit set. This is especially true in orchards where natural pollinators are scarce or
when the weather is unfavorable for pollination. Artificial pollination involves manually
transferring pollen from the male flowers of one tree to the female flowers of another. As
mentioned above, walnut trees probably require cross-pollination with another walnut tree
to produce nuts and minimize the risk of bacterial contamination. This can occur naturally,
artificially with air vehicles, or through the process of hand pollination or the design of
specific aerial pollination systems for walnut trees.

4. Artificial Pollination—Artificial Pollination Technology

Pollination is critical for many crops for successful production. To avoid pollination
failure due to weather events, bloom asynchrony, insects, and wind-based pollination
systems, artificial pollination systems are required that can provide yield security for
crops [30].

There are various reasons for resorting to artificial pollination, including:

1. Crop yield enhancement: In agriculture, artificial pollination is sometimes employed
to increase crop yields. This can be particularly important for crops where natural
pollination may be insufficient [31].

2. Control of pollination: Artificial pollination allows for precise control over the polli-
nation process. This is useful in hybrid seed production, where specific traits can be
selected [32].

3. Overcoming pollination challenges: Some crops may face challenges with natural
pollination due to factors like low insect activity, unfavorable weather conditions,
i.e., wind, or geographic isolation. Artificial pollination can overcome these chal-
lenges [33].

4. Biotechnological research: In scientific research, artificial pollination can be used to
study plant genetics, breeding, and other aspects of plant biology [34].

Artificial pollination technology involves various methods and tools designed to
facilitate the pollination process in plants by assisting the natural transfer of pollen. Some
of the technologies and techniques used for artificial pollination include:

1. Drones: Unmanned aerial vehicles (UAVs), or drones, equipped with special devices
can be used for pollination. These devices may carry pollen and release it over crops,
i.e., walnut trees, or mimic the actions of bees and other pollinators [35].

2. Robotic pollinators: Small robots designed to mimic the behaviors of natural pollina-
tors can navigate through crops, transferring pollen between flowers. These robots
are often equipped with cameras and sensors to identify and locate flowers [36].

3. Spraying devices: Some systems involve the use of sprayers to disperse pollen over
crops. These devices can be mounted on tractors or other vehicles, releasing pollen in
a controlled manner [37].
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4. Electrostatic pollination: This method uses an electrostatic charge to adhere pollen
to flowers. The charged pollen is attracted to the stigma, increasing the chances of
successful pollination [38].

5. Vibrational devices: Certain crops respond well to vibrational stimulation, which can
be achieved through devices that vibrate the flowers, causing the release of pollen [39].

6. Artificial flowers: In controlled environments like greenhouses, artificial flowers
containing pollen can be placed strategically to enhance pollination [40].

7. Automated pollination systems: Some systems use automated robotic arms or other
mechanical devices to transfer pollen between flowers. These systems can be pro-
grammed to work efficiently and quickly [41].

The development of artificial pollination technologies is driven by the need to address
challenges such as declining bee populations, environmental factors, and the increasing
demand for efficient and reliable pollination in agriculture. Using VOS viewer mapping
software (version 1.6.20) and the Scopus bibliographic database based on the search strategy
criteria “Artificial and Pollination and Technologies” (Figure 1) revealed that the above-
mentioned technologies show promise, but they are still in the early stages of development
(co-keyword: “artificial intelligence”, Figure 1) and may vary in effectiveness (co-keyword:
“optimization”, Figure 1), depending on the specific crop, environmental conditions, and
probably other parameters such as the disease inoculum [42–46].

Figure 1. Co-keyword network visualization based on “Artificial” and “Pollination and Technologies”.

Furthermore, it is important to note that while artificial pollination can be a useful tool
in certain situations, such as for walnut trees, apart from robotics (co-keyword: “artificial
robots”, Figure 2), modeling (co-keyword: “MATLAB”, Figure 2), and agriculture drones
(co-keyword: “agriculture drones”, Figure 2), pollen germination (co-keyword: “pollen
germination”, Figure 2) and knowledge of pollen as a possible pathway for the dissemina-
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tion of bacterial diseases of other crops, such as pear and kiwifruit plants (co-keywords:
“pear” and “Actinidia deliciosa”, Figure 2), remain crucial information for the design and
manufacture of aerial pollinator robots for walnut trees.

Figure 2. Co-keyword network visualization based on “Artificial” and “Pollination and Technologies
and Walnut”.

The keywords “Artificial” and “Pollination and Technologies and Walnut” are pre-
sented as 13 clusters defined by 310 keywords (items), which contribute to a total 100%, as
presented in Figure 2.

Cluster 1 (Figure 3) is defined by 52 keywords (items), with keywords including “MAT-
LAB”, “Adams MATLAB cosimulation”, “computational fluid dynamics”, “cosimulation”,
“flight simulators”, “flying robots”, “quad rotors”, “aerial robot”, “robotics”, “agricultural
robots”, “system stability”, “vibration analysis”, “vibration transmissibility”, “software
testing”, “antennas”, “artificial pollinations”, “fruit production”, “ population growth”,
“population statistics”, “walnut pollinator”, “crop growth”, “wind disturbance”, etc.

Cluster 2 (Figure 4) is defined by 45 keywords (items), with keywords including “al-
gorithms”, “bacterial artificial chromosome”, “chromosomes, artificial, bacterial”, “contig
mapping”, “expressed sequence tags”, “genome analysis”, “genotyping techniques”, “het-
erozygosity”, “homozygosity”, “physical map”, “plant genome”, “plant growth”, “pollen
sources”, “population genetic structure”, “sequence analysis, DNA”, “single nucleotide
polymorphism”, “vegetative propagation”, etc.

Based on the above observations in clusters 1 and 2 (Figures 3 and 4), “artificial
pollination technologies” include knowledge of: (a) mechanical pollination technology,
i.e., aerial vehicles (UAVs), robotics, and autonomous pollinators (hardware) and ba-
sic simulation methodologies for controlling a quadrotor (software); and (b) Mother
Nature’s pollination technology, i.e., pollen (pollen germination), crops (cultivars), and
microorganisms (bacteria).
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Figure 3. Co-keyword network visualization based on “Artificial” and “Pollination and Technologies
and Walnut”. Results are based on Cluster 1, which is defined by 52 keywords (items).
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Figure 4. Co-keyword network visualization based on “Artificial” and “Pollination and Technologies
and Walnut”. Results are based on Cluster 2, which is defined by 45 keywords (items).

Based on simulation methodologies for controlling a quadrotor, MATLAB provides a
solution for the standard flower pollination algorithm, with more information on nature
optimization algorithms provided in a book entitled Nature-Inspired Optimization Algorithms.
The flower pollination algorithm (FPA) is a type of optimization algorithm based on the
behavior of flowering plants [47]. It is a population-based metaheuristic algorithm that
has been modified and hybridized to perform efficiently across a range of optimization
problems. One such modification involves the integration of the bee pollinator concept,
which has shown promising results in solving the data clustering problem [48]. A modified
version of the FPA, which utilizes the crossover technique for resolving multidimensional
knapsack problems, was also developed [49]. Keeping the abovementioned facts in view,
we believe that an algorithm such as the FPA should be used for a pollination robot to
prevent or reduce the risk of walnut blight disease.

In addition to the FPA, the bacterial microbiota associated with flower pollen is in-
fluenced by the pollen type and exhibits a significant degree of diversity and species
specificity [49]. So, for microbe–pollen interactions, presumably we must know the se-
quencing of 16S rRNA gene amplicon libraries to identify dominant microbial phyla and the
core microbiome of pollen from different walnut cultivars. Since pollen-associated bacteria
may have a potential impact on walnut blight disease, pollen microbial communities from
different walnut cultivars need to be identified. This information could play a significant
role in the flower pollination algorithm and development of a strategy that leads to new
valuable information on walnut cultivar microbe–pollen interactions during pollination.

Moreover, considering the algorithm-based approach, it is necessary to provide criteria
for the aerial robot path. Basic simulation steps helped to determine pollen streams under
a quadrotor unmanned aerial vehicle [35]. These steps were the following:

1. Design and fabrication of quadrotor components For the quadrotor to be able to carry
and distribute pollen over trees, the quadrotor components needed to be selected
correctly, i.e., the body size was chosen based on the pollen tank. The objective of the
quadrotor was to pollinate, so the tank was equipped with a nozzle with four holes to
allow pollen to fall uniformly. It was recommended that the propulsion system use a
motor with a lower current. The electronic device contained various sensors, such as
a compass, a global positioning system (GPS), a barometer, and connections for the
flight control system [35].
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2. Modeling and Control Computational fluid dynamic (CFD) software was used to
simulate the airflow beneath the UAV. This simulation assisted in identifying the
pollen streams under the robot so that the released pollen could be directed toward
the target trees. The quadrotor controller was designed and simulated in MATLAB to
ensure system stability [35].

3. Pollination of walnut trees Different mixtures of pollen diluted with talcum powder
were distributed over various groups of trees using the quadrotor. The results achieved
on the trees were measured after a few months to evaluate the benefits of the proposed
system [35].

In the context of pollination supply modeling, MATLAB is utilized to predict polli-
nation services like pollinator visitation rates, fruit set, and pollen deposition [50]. These
predictions can help to optimize pollination services in the field and support the develop-
ment of effective agri-environmental schemes or conservation initiatives. Bayesian models,
particularly in MATLAB, are pivotal in pollination research for various applications [51].
These models aid in reconstructing plant–pollinator networks from observational data
by separating structure from noise, estimating the expected number of visits between
specific plant–pollinator species pairs, and predicting pollinator abundance under differ-
ent scenarios. In summary, research shows that the integration of Bayesian models with
MATLAB provides a powerful tool for researchers to analyze plant–pollinator interactions,
predict pollinator abundance, optimize pollination services, and make informed decisions
regarding conservation strategies and agricultural practices based on reliable data-driven
insights [50,51].

5. Machine Learning and Pollination

Machine learning (ML) can play a significant role in the context of pollination, offering
innovative solutions and insight to address challenges and optimize pollination processes.
Below are several ways in which machine learning is applied to pollination:

1. Predictive modeling: ML algorithms can analyze historical data on pollination suc-
cess, environmental conditions, crop yields, and phenology to create predictive
models. These models can help to predict optimal times for pollination, consid-
ering factors such as weather patterns, bloom asynchrony, and the availability of
pollinators [52–54].

2. Automated monitoring: ML-powered monitoring systems can analyze images or
sensor data to track the health and development of crops. This real-time monitoring
allows for the early detection of issues related to pollination, such as low pollination
rates or the presence of pests that could affect pollinators [55,56].

3. Optimizing pollination strategies: Machine learning algorithms can optimize arti-
ficial pollination strategies based on a variety of factors [57,58]. These include the
type of crop, environmental conditions, and the efficiency of different pollination
methods [59,60]. This can lead to more targeted and effective pollination efforts [61].

4. Identification of pollinator behavior: ML can be used to analyze the behavior of natural
pollinators, such as bees, by processing video footage or sensor data. Understanding
pollinator behavior can provide insight into their preferences, movement patterns,
and efficiency in pollinating specific crops [62,63].

5. Genetic analysis: Machine learning techniques can analyze genetic data related to
plant characteristics, including traits associated with pollination [64,65]. This informa-
tion can contribute to breeding programs aimed at developing crops that are more
resilient to environmental challenges and more compatible with artificial pollination
methods [66,67].

6. Decision support systems: ML-based decision support systems can assist farmers
in making informed choices related to pollination strategies. These systems can
consider a range of variables and provide recommendations for optimal pollination
practices [68,69].
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7. Data integration: Machine learning excels at integrating and analyzing large datasets
from various sources. In the context of pollination, this can include data on weather
conditions, soil quality, plant health, and more. The integrated data can provide a
comprehensive understanding of the factors influencing pollination success [70–72].

While machine learning holds great promise for improving pollination processes, it is
essential to recognize the importance of interdisciplinary collaboration between machine
learning and pollination, as presented by the VOS viewer analysis in Figure 5. Based
on Figure 5, up to date knowledge as of 2022 (Figure 5 items with yellow dots) requires:
“anatomy and histology”, “classification of information”, “classification algorithms”, “im-
age classification”, “neural networks”, “population statistics”, “robotics”, “machine learn-
ing”, “deep learning”, and “meta-heuristic algorithms” (Figure 5, items with yellow dots).

Figure 5. Co-keyword network visualization based on “Machine Learning” and “Pollination”.

Even more, using VOS viewer mapping software and the Scopus bibliographic
database based on the search strategy criteria “Aerial and Pollination” (Figure 6) revealed
that all of the abovementioned criteria or technologies show promise, but they still re-
quire important improvements, such as “antennas”, “aircraft detection”, “aircraft control”,
“MATLAB”, “internet of things”, “population diversity”, “flower population algorithm”,
“swarm intelligence algorithm”, “learning algorithm”, “learning systems”, “deep learn-
ing”, “quadrotor control”, “image enhancement”, “auxiliary pollination”, “supplementary
pollination”, and “convolutional neural networks” (Figure 6, items with yellow dots).
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Figure 6. Co-keyword network visualization based on “Aerial” and “Pollination”.

6. Walnut Pollination: Model to Prevent or Reduce the Risk of the Walnut Blight
Disease (Our View)

Developing a walnut pollination model involves creating a predictive framework that
considers various factors influencing the pollination of walnut trees [36,48]. Keeping in
mind the success of the walnut pollination model (Figures 1–6) and based on the above
paragraphs, we illustrate the following flowchart (6 steps, state of the art flowchart), which
provides a general guideline for conducting a state-of-the-art analysis for a pollination robot
to prevent or reduce the risk of walnut blight disease. The development of autonomous
visual navigation for a flower pollination drone has been presented in a paper published in
the journal Machines [73]. This technology could enable drones to autonomously approach
flowers and perform pollination tasks.

State of the Art Flowchart

1st Step. Walnuts: budbreak, bloom, and pollination growth stages

1.1. Identify spring bud break, leaf emergence, and anthesis growth stages of the walnut
cultivars.

1.2. Understand how plants grow and develop during bud break, anthesis, and pollination.
1.3. Understand protandrous and protogynous mechanisms prior to pollen shedding.

2nd Step. Study the bacterial microbiota associated with flower pollen

2.1. Identify the “core” pollen microbiota.
2.2. Compare bacterial abundance and diversity between walnut cultivars.
2.3. Assess the impact of the pollination type on the variability of the flower pollen

microbiota.
2.4. Estimate the role of X. arboricola pv. juglandis in stigma exposed to contaminated

pollen.

3rd Step. State of Walnut Pollination – Develop Pollination Algorithms

3.1. Check reservoir cultivars, i.e., Chandler, for the presence of inoculum.
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3.2. Check for conditions that encourage the disease to spread, such as moisture, and
especially the combined action of wind and rain.

3.3. Check for air-borne inoculum when catkins open.
3.4. Check for pistil-late flowers.
3.5. Collect and store uninfected pollen.

4th Step. State of Walnut Pollination – Develop Pollination Algorithms

4.1. Set genetic algorithm for ‘mutation’, ‘selection’, and ‘recombination’ based on pollen–
microbe interaction.

4.2. Use metaheuristic algorithms, which include differential evolution.
4.3. Use the appropriate flower pollination algorithm that is suitable and inspired by the

process of pollination.

5th Step. Design of an Autonomous Precision Pollination Robot

5.1. Quadrotor (pollinating drone) to carry pollen grains.
5.2. Pollinating drone to make an ideal delivery system, landing on the pistil of a flower

to result in pollination.
5.3. Drone technique would need some refinement in localization, mapping, and control.
5.4. Metaheuristic optimization algorithm to find the best (feasible) solution out of all

possible solutions to the pollination optimization problem.

6th Step. Algorithm Optimization

6.1. Analyze historical data on pollination success, environmental conditions, and crop
yields (machine learning).

6.2. Tune flower pollination algorithm parameters (formulating the above steps, mainly
steps 1 and 2, due to climate change).

6.3. Start the process from step 3 and improve the equipment at steps 4 and 5.

7. Conclusions

Evidence to date is convincing that microbes such as the bacterium X. arboricola pv.
juglandis occur in pollen and influence walnut blight disease. Research shows that X.
arboricola pv. juglandis, the causative agent of walnut blight, can affect the leaves, stems,
and nuts of the tree, and even the pollen. In this review, we present a flow diagram of a
new artificial pollinator that we assume can reduce the spread of the disease in orchards.
As we have seen in this study, we can conclude that the walnut pollination model and
walnut blight disease are complex problems that require solutions due to the interaction of
several factors. Significant progress in understanding these dynamic processes is reported
in the literature utilizing various scientific approaches. Considering the knowledge needed
for a solution to overcome this bacterial plant infection, the VOS viewer results suggest
that the foundation for a new, more sophisticated and efficient walnut pollination model to
prevent or reduce the risk of walnut blight disease is possible. So, the purpose of the ideas
presented here was to facilitate a description of such a pollination model with fundamental
components, including the identification of the ‘core’ pollen microbiota, specifying an
appropriate flower pollination algorithm, design of an autonomous precision pollination
robot, and minimizing the average errors of flower pollination algorithm parameters
through machine learning and meta-heuristic algorithms.
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