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Abstract: This research article investigates the application of Lévy noise to understand the dynamic
aspects of measles epidemic modeling and seeks to explain the impact of vaccines on the spread
of the disease. After model formulation, the study utilises uniqueness and existence techniques to
derive a positive solution to the underlying stochastic model. The Lyapunov function is used to
investigate the stability results associated with the proposed stochastic model. The model’s dynamic
characteristics are analyzed in the vicinity of the infection-free and endemic states of the associated
ODEs model. The stochastic threshold Rs that ensures disease’s extinction whenever Rs < 1 is
calculated. We utilized data from Pakistan in 2019 to estimate the parameters of the model and
conducted simulations to forecast the future behavior of the disease. The results were compared to
actual data using standard curve fitting tools.

Keywords: stochastic models; Lévy jump; persistence; parameter estimation; real data; measles
in Pakistan

1. Introduction

The measles infection, also called rubella, is extremely contagious and spreads through-
out the globe. It is caused by the virus Morbilli, related to the community of Paramyxoviri-
dae [1,2]. Vaccination is a powerful tool in reducing the impact of the disease over time.
However, the force of mortality continues to affect young children under the age of five [3].
Measles infects ten million children each year, and millions of them die due to factors
such as the unavailability of a balanced diet, weak digestion, and pneumonia [4]. Disease
spread is caused by personal contact, sneezing, coughing, and contact with airborne and
nasal droplets. The virus stays active for approximately two hours, and remains highly
contagious during this period. The initial symptoms of the disease include nasal discharge,
sore throat, and the presence of small white spots on the tongue. In later stages, coughing
may occur. The typical incubation period for this infection is about four days before the
appearance of the rash, and lasts for nearly five days after the rash appears. The mean
incubation time is about fourteen or fifteen days, changing with external factors such as the
environment and weather of the surroundings [5]. In real practice, vaccinated people may
suffer side-effects, or it may be the case that vaccines are not available. On the other hand,
vaccination acts as a preventive measure against measles, reducing the incidence rate by up
to 73% over the past eighteen years. According to the World Health Organisation, Measles
is present in many developed countries around the world, particularly in Asia and Africa.
More than one hundred and fifty thousand people died due to measles in 2018. In the
meantime, the death to infection ratio has decreased by about 85 percent [6,7]. According to
reports from the WHO, nearly 110,000 people died in 2017 due to measles, with a majority
of them being children under six years old. This highlights the need for effective and safe
vaccination [8]. The discovery of vaccines for infectious diseases has lowered the ratio of
death and infection to a large extent. This process saves about three hundred thousand
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individuals from death each year. Vaccines produce antibodies that act against reinfection
and strengthen the immune system [9]. Specifically, measles can be controlled by the MMR
vaccines. These vaccines are considered very safe for both children and the elderly, and can
reduce the severity of measles infection to a great extent. According to studies, one dose of
the MMR vaccine can prevent disease in around 91% of cases, while two doses can provide
approximately 95% protection. Other diseases such as the mumps can be controlled by this
vaccine as well [10]. Nigeria experiences periodic outbreaks of measles, as the disease is
endemic in the country. The disease spreads in Nigeria during all seasons of the year, and
is highly contiguous during dry weather.

In addition, Pakistan is among the countries in the WHO’s Eastern Mediterranean
Region most highly burdened by measles [11]. Over the past 9 to 12 years, there has been a
sharp increase in measles outbreaks throughout Pakistan; some 2845 cases of measles were
reported in Pakistan in 2016. This number increased to 6791 in 2017 and 33,007 in 2018,
which represents approximately 43%, 21%, and 50% of all cases reported in the Eastern
Mediterranean region comprising 23 countries [11]. Nearly 129 children died from measles
in 2017, and in 2018 the number increased to about 300 [12].

Mathematical modeling is regarded as a significant and powerful approach for ex-
amining and forecasting the dynamic patterns of epidemics [7,12–14]. Most of the models
used to date employ the integer order derivative, and their analysis is related to classical
theory. The foundation of a mathematical modeling relies heavily on the availability of
biological information and data regarding the epidemic under consideration. Mathematical
models for the measles have wide application for understanding its spreading dynamics
and controlling it. White noise plays a vital role in explaining the dynamics of physical and
biological problems. The impact of external environmental factors such as white noise on
the dynamics of measles epidemics is significant [15]. Due to the non-homogeneity and
nonlinearity of population interactions and other complexities, epidemic prediction cannot
be depicted using traditional modeling approaches. Moreover, the dynamics and control of
various epidemics may be affected by global environmental factors.

The human population is subject to many complex and random variations in the
real world. Therefore, stochastic models are a more appropriate technique for modelling
epidemics. It has been demonstrated that stochastic models are more realistic compared to
deterministic models. Several researchers have recently focused on perturbations that can
capture the true dynamics of the epidemic based on stochastic modelling [13,15,16]. The
Lévy white noise is important at various velocities for the spacing of threshold parameters.
Adding Lévy noise terms can lead to more realistic and accurate results in stochastically
analyzed models for various infectious diseases. The stochastic version of the underlying
deterministic mode can be obtained by including this noise in the aforementioned systems.
Typically, two types of noise are utilized in such models, namely, Lévy noise and Gaussian
noise. The Lévy noise is more suitable than the Gaussian noise because the resulting system
is able to model systems with a higher degree of complexity [16–19]. Due to fluctuations in
diffusion problems, disturbances cannot be described by the continuous stochastic model;
thus, it is important to model these phenomena using jump processes. For this reason, we
consider the problem using Lévy noise.

The remainder of this manuscript is structured as follows. In Section 2, we propose a
model based on random processes for the transmission dynamics of measles. In Section 3,
we present the dynamic features of the globalized positive model’s solution. In Sections 4
and 5, we obtain necessary conditions related to disease elimination and persistence of
the proposed stochastic model. We optimize the proposed problem using the cases of
measles infection in the population of Pakistan for January to October 2019 in Section 6. In
Section 7, we verify the theory behind the obtained results qualitatively and quantitatively,
and provide numerical simulations. Finally, we conclude our analysis in Section 8 with
remarks and recommendations for future research work.
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2. Model Formulation

Olumuyiwa et al. [20] recently developed a mathematical model for describing the
infection dynamics of the epidemic measles by using a deterministic approach. The authors
employed the epidemiological concept of population and divided the entire human popu-
lation into six classes, including susceptible, vaccinated, exposed, infectious, hospitalised,
and recovered individuals, respectively denoted by S(t), V(t), E(t), I(t), H(t), and R(t).
The addition to the susceptible population per day is provided by the rate φ. The vulnerable
class is subject to a vaccination rate τ and loses immunity against the disease at a rate ω,
which is commonly known as the “waning rate of vaccination”. The rate of infection for
the susceptible class is denoted by α. Therefore, the term αSI represents the total infection
rate per time unit. Additionally, the transition from the exposed class to the infected class
is represented by β. Individuals in the infected population are hospitalized at a rate ρ and
then recover from measles at a rate γ. The model assumes a constant natural death rate,
denoted by μ, for all population classes. In addition, the infection-related death rate is
provided by the parameter δ. Here, we do not assume any natural recovery from measles
infection. The model chart is illustrated in Figure 1 [21]. The mathematical formulation
of the above discussion can be converted into a model of ordinary differential equations
(ODEs), represented in symbolic form as follows:

dS(t)
t

= −αI(t)S(t) + φ − (μ + τ)S(t) + ωV(t),

dV(t)
t

= −(ω + μ)V(t) + τS(t),

dE(t)
t

= −(β + μ)E(t) + αI(t)S(t),

dI(t)
t

= −(μ + ρ + δ)I(t) + βE(t),

dH(t)
t

= −(μ + γ + δ)H(t) + ρI(t),

dR(t)
t

= −μR(t) + γH(t).

(1)

The threshold parameter for the model (1) is obtained using standard techniques, and
has the following form:

RD
0 =

(μ + ω)φβα

(μ + β)(μ + δ + ρ)(μ + ω + τ)μ
. (2)

Figure 1. Moments of individuals among the classes in the measles model (1) [21].

The main theme of the present manuscript is to modify model (1) by including white
and Lévy noise as well as the incidence rate of nonlinear shapes; the white noise is used

3
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for the continuity part and the Lévy noise for the jumping part. The extended form of the
deterministic system can be written in stochastic form as follows:

dS =

[
φ − αS(t)I(t)

N(t)
+ ωV(t)− (τ + μ)S(t)

]
dt + ξ1S(t)dW1(t) +

∫
Y
X1(y)S

(
t−
)
Ñ(dt, dy),

dV =

[
τS(t)− (μ + ω)V(t)

]
dt + ξ2VdW2(t) +

∫
Y
X2(y)V

(
t−
)
Ñ(dt, dy),

dE =

[
αS(t)I(t)
N(t)

− (μ + β)E(t)
]

dt + ξ3E(t)dW3(t) +
∫

Y
X3(y)E

(
t−
)
Ñ(dt, dy),

dI =
[

βE(t)− (ρ + δ + μ)I(t)
]

dt + ξ4I(t)dW4(t) +
∫

Y
X4(y)I

(
t−
)
Ñ(dt, dy),

dH =

[
ρI(t)− (γ + δ + μ)H(t)

]
dt + ξ5I(t)dW5(t) +

∫
Y
X5(y)H

(
t−
)
Ñ(dt, dy),

dR =

[
γH(t)− μR(t)

]
dt + ξ6R(t)dW6(t) +

∫
Y
X6(y)R

(
t−
)
Ñ(dt, dy),

(3)

where Wi(t) for i = 1, · · · , 6 is standard Brownian motion defined in a complete probability
space (Ω,F,P) with filtration {Ft}t�0, satisfying the usual condition ξ1, ξ2, ξ3, ξ4, ξ5, with
ξ6 representing the intensity of noise, S(t−),V(t−),E(t−), I(t−),H(t−) and R(t−) being
the left limit of S,V,E, I,H and R, respectively, Ñ = N(dt, dy)− v(dy)dt and N(dy, dt) a
Poisson counting measure with characteristic measure ν on the measurable subset Y of
[0, ∞), and with ν(Y) < ∞ and Xi : Z × Ω −→ R+, (i = 1, 2, 3, 4, 5, 6) representing the
effect of random jumps, which are assumed to be bounded and continuous with respect to
ν and to be B(Y)× Ft-measurable.
With regard to the model (3), in the present work we are particularly interested in answering
the following questions:

Q1: Does the Lévy noise influence the dynamic properties of measles outbreaks?
Q2: How can contaminated vaccinations contribute to the spread of measles, and what

measures are in place to prevent such incidents?
Q3: What criterion is used to determine the extinction of a disease?
Q4: What are the criteria that indicate the persistence of the system?

3. The Existence of a Positive Solution and Its Uniqueness

In this section, we intend to apply the techniques from [16] to establish a proof of
the existence of a global and positive solution to the proposed stochastic model. To prove
the existence and uniqueness of a solution of model (3), it is important to consider the
following two conditions:

(C1). For every Q > 0 ∃ LQ > 0;∫
Y
|Ai(x1, y)− Ai(x2, y)|2v(dy) ≤ LQ|x1 − x2|2, i = 1, · · · , 6, (4)

for |y1| ∨ |y2| ≤ M; here,

A1(x, y) = X1(y)x at x = S(t−),
A2(x, y) = X2(y)x at x = V(t−),
A3(x, y) = X3(y)x at x = E(t−),
A4(x, y) = X4(y)x at x = I(t−),
A5(x, y) = X5(y)x at x = H(t−),
A6(x, y) = X6(y)x at x = R(t−).

(C2). |log(Xi(x))| ≤ C for Xi(x) > −1, i = 1, · · · , 6, C is a positive constant.

4
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Theorem 1. For a given initial value (S,V,E, I,H,R)(0) ∈ R6
+, system (3) has one global root

(S,V,E, I,H,R)(t) ∈ R6
+ for all t ≥ 0 a.s.

Proof. Using (C1), the results due to drifted and the diffused terms are local Lipschitzian,
for every initial conditions (S,V,E, I,H,R)(0) ∈ R6

+, ∃ a unique localized root (S(t),V(t),
E(t), I(t),H(t),R(t)) on t ∈ [0, τe), τe is the explosion time. To show that the solution is
global, we have to prove that τe = ∞ a.s. In the first attempt, we prove the condition that
(S(t),V(t),E(t), I(t),H(t),R(t)) are not approaching infinity in a finite duration of time.
Let k0 > 0 is too much large such that (S(0),V(0),E(0), I(0),H(0),R(0)) lies in [ 1

k0
, k0]. For

every integer value k ≤ k0, consider the stopping time in the form of

τk = inf
{

t ∈ [0, τe)/(S(t),V(t),E(t), I(t),H(t),R(t)) /∈
(

1
k

, k
)}

. (5)

Let inf ∅ = ∞; from this, we can see that τ+ ≤ τe, which implies that τ+ = ∞ a.s
showing τe = +∞ a.s. Considering that τ+ is less than ∞, there must exist a number T > 0
such that 0 < P(τ+ < T).

Next, let us consider the operator F : R6
+ → R+ from the C2 set in the form of

F(S,V,E, I,H,R) = H+V+ S+ I+E+R− 6 − (logS+ logV+ logE+ logI+ logH+ logR). (6)

Applying Itô formula to F for all t ∈ [0, τ+], we have

dF = LF(S,V,E, I,H,R)dt + ξ1(S− 1)dW1(t) + xi2(V− 1)dW2(t)

+ ξ3(E− 1)dW3(t) + ξ4(I− 1)dW4(t) + ξ5(H− 1)dW5(t) + ξ6(R− 1)dW6(t)

+
∫

Υ
[X1(y)S− log(X1(y) + 1)]Ñ(dχ) +

∫
Υ
[X2(y)V− log(1 +X2(y))]Ñ(dχ)

+
∫

Υ
[X3(y)E− log(1 +X3(y))]Ñ(dχ) +

∫
Υ
[X4(y)I− log(1 +X4(y))]Ñ(dχ),

+
∫

Υ
[X5(y)H− log(1 +X5(y))]Ñ(dχ) +

∫
Υ
[X6(y)R− log(1 +X6(y))]Ñ(dχ).

(7)

In Equation (7), LF : R6
+ → R+ is given by using the assumption C2; thus,

LF ≤ φ + 6μ + τ + ω + β + ρ + γ + 2δ +
ξ2

1 + ξ2
2 + ξ2

3 + ξ2
4 + ξ2

5 + ξ2
6

2

+
∫

Y
[X1(y)− log(1 +X1(y))]ν(dy) +

∫
Y
[X2(y)− log(1 +X2(y))]ν(dy)

+
∫

Y
[X3(y)− log(1 +X3(y))]ν(dy) +

∫
Y
[X4(y)− log(1 +X4(y))]ν(dy)

+
∫

Y
[X5(y)− log(1 +X5(y))]ν(dy) +

∫
Y
[X6(y)− log(1 +X6(y))]ν(dy).

(8)

We can refer to Theorem 2.1 of Fatin et al. [16] for the remaining proof, and therefore
we skip it here.

4. Extinction for System (3)

Minimizing the infection effect on any community depends mostly on time and certain
useful conditions taken from analysis of the dynamics of the disease in question. In this
section, the investigation of the main condition for the vanishing of the infection is discussed
through stochastic modeling. To proceed further, we first define the threshold parameter
for the deterministic model (3) as follows:

RD
0 =

(μ + ω)φβα

(μ + β)(μ + δ + ρ)(μ + ω + τ)μ
. (9)

5
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Based on the standard techniques for stochastic systems, we are now ready to calculate
the threshold number for the stochastic model, which is provided by

Rs =
α[

(μ + β)(μ + δ + ρ) +
ξ2

3
2 +

ξ2
4

2 +
∫

y{(X3(y) +X4(y))− ln(1 + (X3(t) +X4(y)))}ν(dy)
] . (10)

Subsequently, we introduce the following concept, which is beneficial for the forth-
coming discourse. 〈

X(t)
〉
=

1
t

∫ t

0
X(w)dw.

Lemma 1 ((Strong Law) [21,22]). If an operator fulfills the condition of continuity of process
Z = {Z}0≤t within a local Martingale as t → 0, it vanishes; then,

lim
t→∞

〈
Z,Z

〉
t = ∞, a.s., ⇒ lim

t→∞

Zt〈
Z,Z

〉
t
= 0, a.s.

lim
t→∞

sup

〈
Z,Z

〉
t

t
< 0, a.s., ⇒ lim

t→∞

Zt

t
= 0, a.s.

(11)

Theorem 2. Consider a solution (S,V,E, I,H,R)(t) of model (3) with initial condition (S,V,E, I,H,

R)(0) ∈ R6. Next, for q >
(ξ2

1∨ξ2
2∨ξ2

3∨ξ2
4∨ξ2

5∨ξ2
6)

2 and Rs < 1, we have

lim
t→∞

log
〈
E(t)

〉
t

< 0, and lim
t→∞

log
〈
I(t)

〉
t

< 0, a.s.

The above inequality implies that the compartments E(t) and I(t) approaching 0 a.s., showing
the elimination of the disease with unit probability.

Furthermore,

lim
t→∞

〈
S(t)

〉
=

(μ + ω)φ

(μ + ω + τ)μ
,

lim
t→∞

〈
V(t)

〉
=

τφ

μ(τ + ω + μ)
,

lim
t→∞

〈
E(t)

〉
= 0,

lim
t→∞

〈
I(t)

〉
= 0,

lim
t→∞

〈
H(t)

〉
= 0,

lim
t→∞

〈
R(t)

〉
= 0.

(12)

Proof. Let us consider a solution (S,V,E, I,H,R)(t) of the proposed model (3) associ-
ated with the initial condition (S,V,E, I,H,R)(0) in the positive cone of R6

+. Further, let
us define

G1(t) = (β + μ)I(t) + βE(t). (13)

If we differentiate relation (13) and then follow the Ito’ formula, we have

6
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d(lnG1(t)) =
1

G1

[
αβSI

N
− (β + μ)(ρ + δ + μ)I

]
− β2E2ξ2

3 + (μ + β)2ξ2
4I

2

2(G1)2

+
βξ3

[βE(t) + (μ + β)I]
EdW3(t) +

(μ + β)ξ4

[E+ (μ + β)I]
IdW4(t)

+
∫

y

{
ln
(

1 +
βX3(t)E+ (μ + β)X4(y)I

G1

)
− βX3(y)E+ (μ + β)X4(y)I

G1

}
ν(dy)

+
∫

y
ln
(

1 +
βX3(y)E(t−) + (μ + β)X4I(t−)

G1(t−)

)
Ñ(dχ)

≤ 1
G1

[
αβI− (β + μ)(ρ + δ + μ)I

]
− β2E2ξ2

3
2(G1)2 − (μ + β)2ξ2

4I
2

2(G1)2

−
∫

y

{
βX3(y)E+ (μ + β)X4(y)I

G1
− ln

(
1 +

βX3(t)E+ (μ + β)X4(y)I
G1

)}
ν(dy)

+
βξ3

[βE(t) + (μ + β)I]
EdW3(t) +

(μ + β)ξ4

[E+ (μ + β)I]
IdW4(t)

+
∫

y
ln
(

1 +
βX3(y)E(t−) + (μ + β)X4I(t−)

G1(t−)

)
Ñ(dχ), [∵ S ≤ N]

≤ 1
(β + μ)

[
− (μ + ρ + δ)(β + μ) + α

]
− ξ2

3
2

− ξ2
4

2

−
∫

y
{(X3(y) +X4(y))− ln(1 + (X3(t) +X4(y)))}ν(dy)

+
βξ3

[βE(t) + (β + μ)I]
EdW3(t) +

(μ + β)ξ4

[E+ (μ + β)I]
IdW4(t)

+
∫

y
ln
(

1 +
βX3(y)E(t−) + (μ + β)X4I(t−)

G1(t−)

)
Ñ(dχ). [∵ I ≤ I+

βE

(μ + β)
]

(14)

We obtain the following result if we integrate both sides of the previous inequality
over the interval [0, t]:

7
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lnG1(t) ≤
1

(β + μ)

{
α −

[
(μ + β)(ρ + δ + μ) +

ξ2
3

2
+

ξ2
4

2

+
∫

y
{(X3(y) +X4(y))− ln(1 + (X3(t) +X4(y)))}ν(dy)

]}
+
∫ t

0

Eξ3βdW3(t)
[(β + μ+)I+ βE(t)]

+
∫ t

0

(β + μ)Iξ4dW4(t)
[(β + μ)I+E]

+
∫ t

0

∫
y

ln
(

1 +
βX3(y)E(t−) + (μ + β)X4I(t−)

G1(t−)

)
Ñ(dχ),

≤ 1
(β + μ)

{
α −

[
(μ + ρ + δ)(+β + μ) +

ξ2
3

2
+

ξ2
4

2

+
∫

y
{(X3(y) +X4(y))− ln(1 + (X3(t) +X4(y)))}ν(dy)

]}
+
∫ t

0

Eξ3βdW3(t)
[(β + μ+)I+ βE(t)]

+
∫ t

0

(β + μ)Iξ4dW4(t)
[(β + μ)I+E]

+
∫ t

0

∫
y

ln
(

1 +
βX3(y)E(t−) + (μ + β)X4I(t−)

G1(t−)

)
Ñ(dχ),

≤

[
(μ + β)(μ + ρ + δ) +

ξ2
3

2 +
ξ2

4
2 +

∫
y{(X3(y) +X4(y))− ln(1 + (X3(t) +X4(y)))}ν(dy)

]
(μ + β)

[
Rs − 1

]
+
∫ t

0

Eξ3βdW3(t)
[(β + μ)I+ βE(t)]

+
∫ t

0

(β + μ)Iξ4dW4(t)
[(β + μ)I+E]

+
∫ t

0

∫
y

ln
(

1 +
βX3(y)E(t−) + (μ + β)X4I(t−)

G1(t−)

)
Ñ(dχ).

(15)

By taking the superior limit as t → ∞ after dividing Equation (15) by t and using
Lemma 1, we obtain

lim sup
t→∞

(lnG1(t)) ≤[
(μ + ρ + δ)(β + μ) +

ξ2
3

2 +
ξ2

4
2 +

∫
y{(X3(y) +X4(y))− ln(1 + (X3(t) +X4(y)))}ν(dy)

]
(μ + β)

[
Rs − 1

]
.

(16)

If 1 > Rs, then limt→∞ G1 = 0, a.s whenever Rs < 1. As μ+ β and β are both positive,
per relation (13) we have limt→∞[(β + μ)I(t) + βE(t)] = 0 =⇒ limt→∞ E = limt→∞ I = 0;
thus, we reach the conclusion.

5. Persistence in Mean

The purpose of this section is to perform an analysis of the persistence of the dis-
ease and examine the long-term behaviour of the infection. First, we present the mean
persistence, as can be seen in [16].

Definition 1 ([19]). Under the following assumption, model (3) shows the persistence of the infection

lim inf
t→∞

1
t

∫ t

0
F(r)dr > 0 a.s. (17)

For more details on disease persistence, interested readers are referred to the results
provided in [16,17].

8
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Lemma 2. Let g ∈ C(R≥0 × Ω,R>0) and G ∈ C(R≥0 × Ω,R) such that limt→∞
G(t)

t = 0 a.s.
If we assume the following relation to be true for all positive values of t

log g(t) ≥ λ0t +G(t)− λ
∫ t

0
g(s)ds, a.s.

then
lim inf

t→∞
〈g(t)〉 ≥ λ0

λ
a.s.,

where λ0 is non-negative and λ is a positive real number.

Next, we provide several mathematical assumptions for the mean persistency of
system (3), where the conclusion of the said part is provided by the following theorem.

Theorem 3. If Rs
0 > 1, then for initial approximations (S,V,E, I,H,R)(0) ∈ R6

+ the disease
class I(t) has the following property:

lim inf
t→∞

〈
I(t)

〉
≥

3φ

(√
Rs

0 − 1
)

C1α
, a.s., (18)

where C1 = φ

(τ+μ+
ξ2
1
2 +

∫
Y X1(y)+log(1+X1(y))ν(dy))

implies that infection is present in the community.

Let us now reproduce the threshold for the stochastic system as

Rs
0 =

αβ

abc
, (19)

where

a =

(
τ + μ +

ξ2
1

2
+
∫

Y
X1(y) + log(1 +X1(y))ν(dy))

)
,

b =

(
β + μ +

ξ2
3

2
+
∫

Y
X3(y) + log(1 +X3(y))ν(dy)

)
,

c =
(

μ + δ + ρ +
ξ2

4
2

+
∫

Y
X4(y) + log(1 +X4(y))ν(dy)

)
.

(20)

Proof. Let
G1 = −C1lnS−C2lnE−C3lnI, (21)

here, C1,C1 and C3 are constants, and will be calculated later. Using the Itô formula with
Equation (21), we obtain

dG1 = LG1 −C1ξ1dW1(t)−C2ξ3dW3(t)−C3ξ4dW4(t)

−
∫

Y
[log(1 +X1(y))]Ñ(dχ)−

∫
Y
[log(1 +X3(y))]Ñ(dχ)−

∫
Y
[log(1 +X4(y))]Ñ(dχ),

(22)

where

9
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LG1 =− C1φ

S
+

C1αI

N
− C1ωV

S
+C1(τ + μ)−C2

αSI

E
+C2(μ + β)−C3

βE

I
+C3(μ + δ + ρ)

+
C1ξ2

1
2

+
C2ξ2

3
2

+
C3ξ2

4
2

+
∫

Y
C1X1(y) +C1 log(1 +X1(y))ν(dy) +

∫
Y
C2X3(y)

+C2 log(1 +X3(y))ν(dy) +
∫

Y
C3X4(y) +C2 log(1 +X4(y))ν(dy),

≤ −C1φ

S
−C2

αSI

E
−C3

βE

I
+C1(τ + μ +

ξ2
1

2
+
∫

Y
X1(y) + log(1 +X1(y))ν(dy))

+C2(μ + β +
ξ2

3
2

+
∫

Y
X3(y) + log(1 +X3(y))ν(dy))

+C3(μ + δ + ρ +
ξ2

4
2

+
∫

Y
X4(y) + log(1 +X4(y))ν(dy)) +

C1αI

N
.

(23)

Let

C1(τ + μ +
ξ2

1
2

+
∫

Y
X1(y) + log(1 +X1(y))ν(dy)) =φ,

C2(μ + β +
ξ2

3
2

+
∫

Y
X3(y) + log(1 +X3(y))ν(dy)) =φ,

C2(μ + δ + ρ +
ξ2

4
2

+
∫

Y
X4(y) + log(1 +X4(y))ν(dy)) =φ,

(24)

namely,

a =

(
τ + μ +

ξ2
1

2
+
∫

Y
X1(y) + log(1 +X1(y))ν(dy))

)
,

b =

(
μ + β +

ξ2
3

2
+
∫

Y
X3(y) + log(1 +X3(y))ν(dy)

)
,

c =
(

μ + δ + ρ +
ξ2

4
2

+
∫

Y
X4(y) + log(1 +X4(y))ν(dy)

)
.

Then, we can write inequality (23) in the form of

LG1 ≤ −3

√
C1φ

S
× C3αSI

E
× C3βE

I

+C1(τ + μ +
ξ2

1
2

+
∫

Y
X1(y) + log(1 +X1(y))ν(dy))

+C2(μ + β +
ξ2

3
2

+
∫

Y
X3(y) + log(1 +X3(y))ν(dy))

+C3(μ + δ + ρ +
ξ2

4
2

+
∫

Y
X4(y) + log(1 +X4(y))ν(dy)) +C1αI,

= −3

√
φ3αβ

abc
+ 3φ +C1αI,

= −3φ

(√
Rs

0 − 1
)
+C1αI.

(25)

By putting Equation (25) into Equation (21) and taking the integral of both sides of the
stochastic model (3), we have

10
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G1(S,E, I)(t)− G1(S,E, I)(0)
t

≤ −3φ

(√
Rs

0 − 1
)
+C1αI−C1ξ1dW1(t)

−C2ξ3dW3 −C3ξ4dW4 −
∫

Y
[log(1 +X1(y))]Ñ(dχ)

−
∫

Y
[log(1 +X3(y))]Ñ(dχ)−

∫
Y
[log(1 +X4(y))]Ñ(dχ).

(26)

If we define the notion Ψ(t) in the form of

Ψ(t) = −C1ξ1dW1(t)−C2ξ3dW3 −C3ξ4dW4 −
∫

Y
[log(1 +X1(y))]Ñ(dχ)

−
∫

Y
[log(1 +X3(y))]Ñ(dχ)−

∫
Y
[log(1 +X4(y))]Ñ(dχ).

(27)

Then, from Strong’s law as provided in Lemma 1, we have

lim
t→∞

Ψ(t) = 0. (28)

Further, from Equation (27), we have

C1α
〈
I(t)

〉
≥ 3φ

(√
Rs

0 − 1
)
− Ψ(t) +

G1(S(t),E(t), I(t))− G1(S(0),E(0), I(0))
t

,

〈
I(t)

〉
≥

3φ

(√
Rs

0 − 1
)

C1α
− Ψ(t)

C1α
− 1

C1α

(
G1(S(t),E(0), I(t))− G1(S(0),E(0), I(0))

t

)
.

(29)

From Lemma 1 and Equation (28), the superior limit of Equation (5) takes the form

lim inf
t→∞

〈
I(t)

〉
≥

3φ

(√
Rs

0 − 1
)

C1α
≥ 0, a.s., (30)

showing that lim inft→∞
〈
I(t)

〉
≥ 0.

Thus, the proof of Theorem 3 is concluded.

6. Estimation

Utilizing practical observations to obtain insights into certain missing epidemiological
factors is a widely used technique in biological systems analysis. The verification of
analytical results pertaining to the measles model (1) and determination of the parameters
were performed by considering the measles data presented in Table 1; accordingly, the
model was fitted against the data. From the WHO reports for 2018, the continuous rate
of fatality μ for a Pakistani individual is 66.5 years (1.253 × 10−4 per month), and with a
population of 207,862,518, the inflow rate is estimated to be φ ≈ 25,983 individuals per
month. In [12], it is reported that the Measles vaccine has an efficacy rate of approximately
97%, indicating that the vaccination outcome, denoted by τ, is nearly 0.97. The effects of
the other parameters, such as the interactive rate β, the retrieval rate δ, the rate of clinically
tested symptoms α, and the rate of vaccine coverage ω, are presented in Table 2 in relation
to the calculated numbers. These parameters were estimated, and the modeled predictions
using real data are plotted in Figure 2 using the MATLAB software considering the data for
the first ten months of 2019. It can be seen from Figure 2 that model (1) provides a good fit,
and the actual measles data are almost covered by the curve predicted by model (1). Using

the result 1
10 ∑10

k=1

∣∣∣∣κreal
k −κ

approximate
k

κreal
k

∣∣∣∣ ≈ 1.4685e−01, we can find the mean relative error of the

fitting procedure.

11
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Table 1. Reported measles cases in Pakistan during the first ten months of 2019 [12].

Jan Feb Mar Apr May June July Aug Sep Oct

238 253 398 398 277 169 71 29 24 18

Table 2. Justification and values of the parameters used for simulating the model (1).

Parameter Description Source

φ 260,479 Estimated
α 1.253133 × 10−3 Estimated
ω 0.97 Estimated
τ 1.60056 × 10−7 Fitted
μ 9.3408 Fitted
β 9.2373 × 10−1 Fitted
δ 5.8306 × 10−1 Fitted
ρ 0 Estimated
γ 5.8306 × 10−1 Fitted

1 2 3 4 5 6 7 8 9 10

Time(Months)

0

50

100

150

200

250

300

350

400

450

I(t
)

Real Data
ODE

Figure 2. Fitting of the model (1) against reported measles cases from Table 1.

7. Numerical Results and Discussion

In this section, we present a graphical representation of the model dynamics using
the available numerical method(s) and values of the parameters discussed in the previous
section. For illustrative purposes, we provide the findings of our scheme and compute
the approximate paths for the stochastic model (3) and its deterministic counterpart. The
desired time interval is [0, 100] and the step size is Δ = 0.3, whereas the initial size of the
population is provided by (S0,V0,E0, I0,H0,R0) = (0.5, 0.4, 0.3, 0.5, 0.2, 0.1).

12
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To simulate the model, we utilized two different types of hypothetical data. Initially,
we simulated the model by considering the intensity of the noise and the parameter values
from Example 1. The figure presented in Figure 3 demonstrates that as RD

0 < 1, the
solution of system (3) with L’evy jump approaches the disease-free equilibrium point of
the corresponding deterministic system, indicating that the disease is in the process of
disappearing. Theorem 2 provides the necessary conditions for the extinction of system (3).
The graphical representation verifies that the result of Theorem 2 is valid only if Rs < 1.

Example 1. In the present scenario, we have considered the parameter values as φ = 1.0, τ = 0.3,
α = 0.3, μ = 0.03, β = 0.005, δ = 0.4, γ = 0.02 , ρ = 0.01, ω = 0.02, and the intensities
of the white noise as ξ1 = 0.55, ξ2 = 0.40, ξ3 = 0.30, ξ4 = 0.20, ξ5 = 0.10, ξ6 = 0.20, and

Xi(y) =
−kiy2

1+y2 , with y = 0.5 and ki equal to 0.50, 0.50, 0.40, 0.20, 0.20, and 0.30, respectively,
for i = 1, · · · , 6. The simulations of the model indicate that the epidemic will become extinct, as
predicted by Theorem 2. The disappearance of the infection based on the predictions of the stochastic
system are depicted in Figure 3a–f.
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Figure 3. Cont.
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Figure 3. The plot shows the dynamics of the stochastic system (3) and the associated deterministic
system (1) subject to jumps and without jumps. (a) The plot shows the S(t)−curve with and without
jumps. (b) The plot shows the dynamics of V(t) with and without jumps. (c) Three different scenarios
for class I(t). (d) The dynamics of the exposed class with and without jumps. (e) Time evolution of
the number of hospitalized people with and without jumps. (f) Three different scenarios for class R(t).

The findings of Theorem 3 suggest that the disease will continue to exist in the
community with the dynamics predicted by model (3) if the value of RD

0 is greater than
1. The statement RD

0 > 1 indicates that Rs
0 will be greater than 1 even with low intensities

of the noise. This conclusion is supported by the numerical simulations presented in
Figures 3c,d and 4c,d, which validate the expected behavior of the epidemic model (3) as
per Theorem 3.

Example 2. In this example, the numerical values of the parameters are φ = 0.9, τ = 0.75, α = 0.5,
μ = 0.06, β = 0.05, δ = 0.4, γ = 0.2 , ρ = 0.1, and ω = 0.2, and the intensity of the white noise

is ξ1 = 0.45, ξ2 = 0.30, ξ3 = 0.10, ξ4 = 0.20, ξ5 = 0.15, ξ6 = 0.20, and Xi(y) =
−kiy2

1+y2 , with
y = 0.5 and where ki equal to 0.50, 0.35, 0.30, 0.35, 0.10, and 0.20, respectively, for i = 1, · · · , 6.

For this set of parameters, it is easy to verify that both the stochastic threshold Rs
0 and the basic

reproduction number RD
0 are greater than one. The simulation results of the mean shown in Figure 4

confirm the persistence of the disease, which supports the conclusion of Theorem 3. Additionally,
Figure 4a–f illustrates that the epidemic will continue to persist in the population in the meantime.
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Figure 4. Simulation of the stochastic system (3) and deterministic system (1) with and without jumps
for the case when the respective thresholds are greater than one. (a) The dynamics of the susceptible
class with and without jumps. (b) Time evolution of the number of vaccinated people both with and
without jumps. (c) The plot shows the E(t)−curve with and without jumps. (d) The dynamics of the
infected class with and without jumps. (e) The plot shows the H(t)−curve with and without jumps.
(f) Time evolution of the number of recovered people when the threshold exceeds one.

The Impact of Lévy Noise on the I Class

The impact of the intensity of the white noise on class I corresponding to system (3) is
shown in Figure 5a–c. These figures suggest that increasing values of ξi for i = 1, · · · , 6
lead towards the extinction of the disease. This means that the size of the infected class
approaches zero as the intensity value of the noise increases. Further, this indicates that
for small values of the noise intensity the infected class oscillates around the endemic
steady state I�m which confirms the result of Theorem 3. However, if the intensity of the
white noise term is sufficiently high, the solution I may not exhibit oscillations near the
endemic equilibrium point. This demonstrates that continuous efforts to increase stochastic
disruptions through mass recovery of susceptible individuals and the effective treatment
and care of the infected persons can significantly lower the spread of the measles virus in
the population.
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Figure 5. Simulations of I(t) based on the stochastic and deterministic systems, showing the effect
of the intensities on class I when φ = 0.5, τ = 0.90, α = 0.5, μ = 0.06, β = 0.05, δ = 0.4, γ = 0.2 ,
ρ = 0.2, ω = 0.3, and the noise intensity is assumed as ξ1 = 0.50, ξ2 = 0.40, ξ3 = 0.10, ξ4 = 0.20,

ξ5 = 0.15, ξ6 = 0.20, and Xi(y) =
−kiy2

1+y2 , with y = 0.5 and where ki equals 0.60, 0.34, 0.30, 0.35,
0.10, 0.20, respectively, for i = 1, · · · , 6 and (S0,V0,E0, I0,H0,R0) = (0.5, 0.4, 0.5, 0.3, 0.2, 0.1). (a) The
dynamics of I(t) subject to sufficiently large values of noise intensity. (b) The plot shows the behavior
of the infected class subject to moderate values of noise intensity. (c) The dynamic behavior of the
infected class subject to low values of noise intensity.

8. Concluding Remarks and Future Directions

In this work, we have considered a stochastic SVEIHR epidemic model with Lévy
noise while considering the nonlinear incidence rate. Our study aimed to investigate the
impact of environmental noise on human society, and the results can shed light on the
crucial role of noise in disease persistence and extinction. The proposed model assumed six
different classes: a healthy class (S), vaccinated class (V), infected class (I), exposed class
(E), hospitalized class(H), and class of recovered individuals(R). After model formulation,
the study utilized the uniqueness and existence techniques to derive a positive solution
for the underlying stochastic model. The stability results of the model were investigated
using the Lyapunov function. The model’s dynamic characteristics were analyzed in the
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context of the infection-free and endemic states of the associated ODE model. The stochastic
threshold Rs was calculated to ensure disease extinction whenever Rs < 1. Using data
from Pakistan in 2019, we estimated the model parameters and conducted simulations to
forecast future disease behavior. The results were compared to actual data using standard
curve fitting tools. In our future research, we plan to investigate the impact of regime
switching and temporary immunity on system (3).
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Abstract: Let Y(t) be a one-dimensional jump-diffusion process and X(t) be defined by
d X(t) = ρ[X(t), Y(t)]dt, where ρ(·, ·) is either a strictly positive or negative function. First-passage-
time problems for the degenerate two-dimensional process (X(t), Y(t)) are considered in the case
when the process leaves the continuation region at the latest at the moment of the first jump, and
the problem of optimally controlling the process is treated as well. A particular problem, in which
ρ[X(t), Y(t)] = Y(t)− X(t) and Y(t) is a standard Brownian motion with jumps, is solved explicitly.

Keywords: Brownian motion; Kolmogorov backward equation; dynamic programming; method of
similarity solutions
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1. Introduction

Diffusion processes are used as models in various applications, in particular in neuro-
science to emulate the dynamics of the membrane potential of a neuron [1]. Moreover, to
take into account the spikes of the neuron, jump-diffusion processes have been proposed
by Jahn et al. [2] and Melanson and Longtin [3], among others.

Now, diffusion and jump-diffusion processes both increase and decrease in any inter-
val, however small. However, in some applications, it is not realistic to assume that the
process can decrease or increase. For example, if X(t) represents the wear of a machine at
time t, the stochastic process {X(t), t ≥ 0} should increase with time.

One way to obtain a strictly increasing or decreasing process is to consider degenerate
two-dimensional diffusion processes (X(t), Y(t)) defined by

dX(t) = ρ[X(t), Y(t)]dt, (1)

dY(t) = f [Y(t)]dt + {v[Y(t)]}1/2 dB(t), (2)

where ρ(·, ·) is either a strictly positive or negative function and {B(t), t ≥ 0} is a standard
Brownian motion. The functions f and v are such that {Y(t), t ≥ 0} is a diffusion process.
When ρ[X(t), Y(t)] = Y(t), the process {X(t), t ≥ 0} is called an integrated diffusion
process. We can of course generalize the definition to the case when {Y(t), t ≥ 0} is a
jump-diffusion process.

The author has published a number of papers on integrated diffusion processes; see,
for instance, Lefebvre [4] for a recent one. Other papers on this topic include those by
Lachal [5], Makasu [6], Metzler [7], Caravelli et al. [8] and Levy [9].

Next, we define the first-passage time

T(x, y) = inf{t > 0 : (X(t), Y(t)) /∈ C | (X(0), Y(0)) = (x, y) ∈ C}, (3)

where C is a subset of R2.

Fractal Fract. 2023, 7, 152. https://doi.org/10.3390/fractalfract7020152 https://www.mdpi.com/journal/fractalfract19
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Let φ(ξ, η; x, y) be the joint probability density function (pdf) of the random vector
(X(t), Y(t)), with (X(0), Y(0)) = (x, y). As is well known (see, for example, Cox and
Miller [10], p. 247), the function φ satisfies the Kolmogorov backward equation

1
2

v(y)φyy + f (y)φy + ρ(x, y)φx = φt for (x, y) ∈ C. (4)

Moreover, the pdf g(t; x, y) of the random variable T(x, y) satisfies the same partial differ-
ential equation (PDE):

1
2

v(y)gyy + f (y)gy + ρ(x, y)gx = gt (5)

(subject to different boundary conditions). It follows that the moment-generating function
of the random variable T(x, y), namely

M(x, y; α) := E
[
e−αT(x,y)

]
, (6)

where α > 0, is a solution of the following PDE:

1
2

v(y)Myy + f (y)My + ρ(x, y)Mx = α M for (x, y) ∈ C, (7)

where Myy := ∂2M(x, y; α)/∂y2, etc. Furthermore, this equation is subject to the boundary
condition

M(x, y; α) = 1 for (x, y) /∈ C. (8)

We now replace the diffusion process {Y(t), t ≥ 0} by the jump-diffusion process
defined by

Y(t) = Y(0) +
∫ t

0
f [Y(s)]ds +

∫ t

0
{v[Y(s)]}1/2 dB(s) +

N(t)

∑
n=1

Zn, (9)

where {N(t), t ≥ 0} is a Poisson process with rate λ. The random variables Z1, Z2, . . . are
assumed to be independent and identically distributed (i.i.d.), and also independent of the
Poisson process. We can state the following proposition.

Proposition 1. The function M(x, y; α) satisfies the integro-differential equation (dropping the
dependence on α from the notation)

α M(x, y) =
1
2

v(y)Myy(x, y) + f (y)My(x, y) + ρ(x, y)Mx(x, y) (10)

+ λ

{∫ ∞

−∞
M(x, y + z) fZ(z)dz − M(x, y)

}
for (x, y) ∈ C, where fZ(z) is the common density function of the Zns. As above, the equation is
subject to the boundary condition (8).

Proof. This result is obtained by generalizing the infinitesimal generator of the jump-diffu-
sion process {Y(t), t ≥ 0} in Kou and Wang [11] to the case when f (y) and v(y) are not
necessarily constant functions.

Remark 1. See also the remark after the proof of Proposition 2.

There are still few explicit solutions to first-passage problems for jump-diffusion
processes. Kou and Wang [11] obtained explicit formulae for the Laplace transform of the
pdf of the first-passage time τ to a constant boundary for a Wiener process with jumps
having a double exponential distribution. This model was generalized or modified in
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various papers. In Chen et al. [12], τ was the first-exit time from a finite interval, while
in Yin et al. [13] the jumps were mixed-exponential random variables. Karnaukh [14]
considered the case when the parameters of the Wiener process depend on a finite Markov
chain. In Lefebvre [15], the jump sizes were assumed to be uniformly distributed, while
in Abundo [16] the jumps (positive and/or negative) were of a constant size and the
boundaries were time-dependent. Because obtaining exact analytical solutions to such
problems is difficult, some authors presented numerical techniques to obtain the quantities
of interest; see, for example, Belkaid and Utzet [17].

Di Crescenzo et al. [18] computed bounds for first-crossing-time probabilities of a
Wiener process with random jumps driven by a counting process. Fernández et al. [19]
proposed algorithms to compute double-barrier first-passage-time probabilities of a jump-
diffusion process with an arbitrary jump size distribution.

D’Onofrio and Lanteri [20] obtained numerical approximations for the density func-
tions of first-passage times in the case of diffusion processes with state-dependent jumps.
Finally, in Lefebvre [21], the author was able to obtain exact solutions to optimal control
problems for Wiener processes with exponential jumps.

In the current paper, explicit results will be presented for the first-passage time of a
two-dimensional jump-diffusion process.

In the next section, the special case when the two-dimensional process (X(t), Y(t)) is
killed at the latest at the moment of the first jump, will be considered. We are also interested
in the mean value of T(x, y), as well as in the probability that (X(t), Y(t)) will leave the
continuation region through a given part of its boundary ∂C. In Section 3, the problem
of maximizing or minimizing the time the controlled version of the process (X(t), Y(t))
spends in the continuation region C will be treated. A particular problem will be solved
explicitly in Section 4. Finally, we will conclude with a few remarks in Section 5.

2. Killed Processes

Assume that the random variables Z1, Z2, . . . are such that no overshoot is possible.
That is, the degenerate two-dimensional jump-diffusion process (X(t), Y(t)) cannot jump
over the boundary of the continuation region C. Let m(x, y) := E[T(x, y)] and

p(x, y) := P[(X(T), Y(T)) ∈ ∂C0 | X(0) = x, Y(0) = y], (11)

where ∂C0 ⊂ ∂C. We have the following corollaries.

Corollary 1. The function m(x, y) satisfies the integro-differential equation

−1 =
1
2

v(y)myy(x, y) + f (y)my(x, y) + ρ(x, y)mx(x, y)

+ λ

{∫ ∞

−∞
m(x, y + z) fZ(z)dz − m(x, y)

}
(12)

for (x, y) ∈ C, subject to the boundary condition

m(x, y) = 0 for (x, y) /∈ C. (13)

Proof. It follows from the expansion of M(x, y; α) into an infinite series (see Cox and
Miller [10]):

M(x, y; α) := E
[
e−αT(x,y)

]
= E

[
1 − α T(x, y) +

1
2

α2 T2(x, y)− . . .
]

(14)

= 1 − αm(x, y) +
1
2

α2 E[T2(x, y)]− . . . (15)

Notice that in our case, E[Tn(x, y)] will exist for any n ∈ {1, 2, . . .} because of Equation (18)
below.
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Corollary 2. The probability p(x, y) is a solution of the integro-differential equation

0 =
1
2

v(y) pyy(x, y) + f (y) py(x, y) + ρ(x, y) px(x, y)

+ λ

{∫ ∞

−∞
p(x, y + z) fZ(z)dz − p(x, y)

}
(16)

for (x, y) ∈ C. Moreover, the boundary condition is

p(x, y) =
{

1 if (x, y) ∈ ∂C0,
0 if (x, y) ∈ ∂D,

(17)

where ∂D := ∂C \ ∂C0.

In this paper, we consider the special case when the random variable Z1 is such that
the process (X(t), Y(t)) will leave the continuation region C at the latest at the moment τ1 of
the first event of the Poisson process. Let T0(x, y) be the random variable that corresponds
to T(x, y) when λ = 0. We can write that

T(x, y) = min{T0, τ1}, (18)

where τ1 has an exponential distribution with parameter λ. Furthermore, the sum in
Equation (9) can be replaced by Z1�{N(t)>0}, where �{N(t)>0} is the indicator variable of
the event {N(t) > 0}, and the equation is valid for t ∈ [0, T(x, y)]. We can say that the
process (X(t), Y(t)) is killed at time T(x, y).

An application of the above problem is the following: as mentioned in Section 1, a
more realistic model for the wear of a machine is the degenerate two-dimensional process
(X(t), Y(t)) defined in Equations (1) and (2), when ρ(·, ·) is a strictly increasing function.
Rishel [22] proposed this model (in n dimensions) in the context of an optimal control
problem. If X(t) denotes the remaining amount of deterioration that a device can undergo
before it must be repaired or replaced, then ρ(·, ·) should be strictly negative instead.
Moreover, the remaining lifetime of the device is the first-passage time to zero or to a level
at which it is considered worn out.

Now, many electronic devices, especially mobile phones, are often replaced as soon as
they break down, rather than being repaired. A mobile phone failure can be seen as a jump
from the current value of X(t) to zero, so that the device is killed at the time of the jump. It
is also possible that the device will be replaced before a failure occurs, due to normal wear
and tear or because it has become obsolete. Thus, deterioration could also include the age of
the device.

Similarly, in the case of humans, the downward jump to zero could occur during a
massive heart attack or stroke.

Because we assume that (x, y + z) ∈ ∂C for any possible value z of the random
variable Z, the integro-differential Equations (10) and (12) become, respectively, the partial
differential equations

α M(x, y) =
1
2

v(y)Myy(x, y) + f (y)My(x, y) + ρ(x, y)Mx(x, y)

+ λ [1 − M(x, y)] (19)

and
−1 =

1
2

v(y)myy(x, y) + f (y)my(x, y) + ρ(x, y)mx(x, y)− λm(x, y). (20)
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In the case of Equation (16), if (x, y + z) ∈ ∂C0 ∀z, then

0 =
1
2

v(y) pyy(x, y) + f (y) py(x, y) + ρ(x, y) px(x, y) + λ [1 − p(x, y)], (21)

whereas, we have

0 =
1
2

v(y) pyy(x, y) + f (y) py(x, y) + ρ(x, y) px(x, y)− λ p(x, y) (22)

if (x, y + z) ∈ ∂D ∀z. If (x, y + z) belongs to ∂C0 for some values of z, and to ∂D for other
values of z, then the integral in Equation (16) is replaced by∫ ∞

−∞
�{(x,y+z)∈∂C0} fZ(z)dz = P[(x, y + Z) ∈ ∂C0]. (23)

Solving integro-differential equations explicitly and exactly is not an easy task. In
Section 4, an example of a problem that we can indeed solve analytically will be presented.
As above, the integro-differential equations will be reduced to PDE’s, and the method
of similarity solutions will be used to transform these PDE’s into ordinary differential
equations.

3. Optimal Control

In this section, we consider a controlled version of the two-dimensional process
(X(t), Y(t)):

Xu(t) = Xu(0) +
∫ t

0
ρ[Xu(s), Yu(s)]ds, (24)

Yu(t) = Yu(0) +
∫ t

0
bu[Xu(s), Yu(s)]ds +

∫ t

0
f [Yu(s)]ds

+
∫ t

0
{v[Yu(s)]}1/2 dB(s) +

N(t)

∑
n=1

Zn, (25)

where u(·, ·) is the control variable, which is assumed to be a continuous function, and b is
a non-zero constant. The aim is to find the value of the control that minimizes the expected
value of the cost function

J(x, y) :=
∫ T(x,y)

0

{
1
2

qu2[Xu(t), Yu(t)] + θ

}
dt, (26)

where q > 0 and θ are constants. If the parameter θ is positive (respectively negative), the
optimizer must try to minimize (respectively maximize) the time spent by the controlled
process in the continuation C, taking the quadratic control costs into account. This type of
problem is known as a homing problem; see Whittle [23] and/or [24].

To solve the above problem, we can make use of dynamic programming. We define
the value function

F(x, y) = inf
u[Xu(t),Yu(t)]
t∈[0,T(x,y))

E[J(x, y)]. (27)

That is, F(x, y) is the expected cost (or reward, if it is negative) obtained by choosing the
optimal value of the control variable in the interval [0, T(x, y)).
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Proposition 2. The value function F(x, y) satisfies the second-order, non-linear partial integro-
differential equation

0 = θ − 1
2

b2

q
F2

y (x, y) + ρ(x, y)Fx(x, y) + f (y)Fy(x, y) +
1
2

v(y)Fyy(x, y)

+ λ

{∫ ∞

−∞
F(x, y + z) fZ(z)dz − F(x, y)

}
. (28)

Moreover, we have the boundary condition

F(x, y) = 0 for (x, y) /∈ C. (29)

Proof. First, thanks to Bellman’s principle of optimality, we can write that

F(x, y) = inf
u[Xu(t),Yu(t)]

0≤t≤Δt

E
[ ∫ Δt

0

{
1
2

qu2[Xu(t), Yu(t)] + θ

}
dt (30)

+ F
(

x + ρ(x, y)Δt, y + [ f (y) + bu(x, y)]Δt + v1/2(y)B(Δt)

+
N(Δt)

∑
n=1

Zn

)
+ o(Δt)

]
= inf

u[Xu(t),Yu(t)]
0≤t≤Δt

E
[{

1
2

qu2(x, y) + θ

}
Δt (31)

+ F
(

x + ρ(x, y)Δt, y + [ f (y) + bu(x, y)]Δt + v1/2(y)B(Δt)

+
N(Δt)

∑
n=1

Zn

)
+ o(Δt)

]
.

Next, let
ξ := x + ρ(x, y)Δt (32)

and
η := y + [ f (y) + bu(x, y)]Δt + v1/2(y)B(Δt). (33)

We have

E

[
F
(

ξ, η +
N(Δt)

∑
n=1

Zn

)]
= E

[
E

[
F
(

ξ, η +
N(Δt)

∑
n=1

Zn

) ∣∣∣∣ N(Δt)

]]
. (34)

Since N(Δt) has a Poisson distribution with parameter λΔt, we can write that

P[N(Δt) = 1] = λΔt e−λΔt = λΔt + o(Δt) (35)

and
P[N(Δt) ≥ 2] = o(Δt). (36)

Hence,

E

[
F
(

ξ, η +
N(Δt)

∑
n=1

Zn

)]
= E[F(ξ, η)] (1 − λΔt) + E[F(ξ, η + Z1)]λΔt + o(Δt). (37)
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Now, assuming that F(x, y) is twice differentiable with respect to x and to y, making
use of Taylor’s formula for functions of two variables, we obtain that

F
(
x + ρ(x, y)Δt, y + [ f (y) + bu(x, y)]Δt + v1/2(y)B(Δt)

)
= F(x, y) + ρ(x, y)Δt Fx(x, y)

+
{
[ f (y) + bu(x, y)]Δt + v1/2(y)B(Δt)

}
Fy(x, y)

+
1
2
[ρ(x, y)Δt]2 Fxx(x, y)

+
1
2

{
[ f (y) + bu(x, y)]Δt + v1/2(y)B(Δt)

}2
Fyy(x, y)

+ [ρ(x, y)Δt]
{
[ f (y) + bu(x, y)]Δt + v1/2(y)B(Δt)

}
Fxy(x, y)

+ o(Δt). (38)

Furthermore, we have E[B(Δt)] = 0 and E[B2(Δt)] = V[B(Δt)] = Δt, which implies that

E[F(ξ, η)](1 − λΔt) = F(x, y) + ρ(x, y)Δt Fx(x, y)

+ [ f (y) + bu(x, y)]Δt Fy(x, y) +
1
2

v(y)Δt Fyy(x, y)

− F(x, y)λΔt + o(Δt). (39)

Similarly, we find that

E[F(ξ, η + Z1)]λΔt = E[F(x, y + Z1)]λΔt + o(Δt) (40)

= λΔt
∫ ∞

−∞
F(x, y + z) fZ(z)dz + o(Δt).

Indeed, by independence, we have

E[F(ξ, η + Z1)] =
∫ ∞

−∞
E[F(ξ, η + z)] fZ(z)dz. (41)

Let w := y + z. We compute

E
[

F
(
x + ρ(x, y)Δt, y + [ f (y) + bu(x, y)]Δt + v1/2(y)B(Δt) + z

)]
= F(x, w) + ρ(x, y)Δt Fx(x, w) + [ f (y) + bu(x, y)]Δt Fw(x, w)

+
1
2

v(y)Δt Fww(x, w) + o(Δt), (42)

so that

E
[

F
(
x + ρ(x, y)Δt, y + [ f (y) + bu(x, y)]Δt + v1/2(y)B(Δt) + z

)]
λΔt

= F(x, w)λΔt + o(Δt) = F(x, y + z)λΔt + o(Δt). (43)

Thus,

E[F(ξ, η + Z1)]λΔt =
∫ ∞

−∞
[F(x, y + z)λΔt + o(Δt)] fZ(z)dz

= E[F(x, y + Z1)]λΔt + o(Δt). (44)

25



Fractal Fract. 2023, 7, 152

From Equation (31) and the above results, we deduce that

0 = inf
u[Xu(t),Yu(t)]

0≤t≤Δt

{[
1
2

qu2(x, y) + θ

]
Δt + ρ(x, y)Δt Fx(x, y) (45)

+ [ f (y) + bu(x, y)]Δt Fy(x, y) +
1
2

v(y)Δt Fyy(x, y)

− F(x, y)λΔt + λΔt
∫ ∞

−∞
F(x, y + z) fZ(z)dz + o(Δt)

}
.

Dividing both sides of the above equation by Δt and letting Δt decrease to zero, we obtain
the dynamic programming equation

0 = inf
u(x,y)

{
1
2

qu2(x, y) + θ + ρ(x, y)Fx(x, y) (46)

+ [ f (y) + bu(x, y)]Fy(x, y) +
1
2

v(y)Fyy(x, y)

− λ F(x, y) + λ
∫ ∞

−∞
F(x, y + z) fZ(z)dz

}
.

From the preceding equation, we find that the optimal control u∗(x, y) can be expressed
as follows:

u∗(x, y) = − b
q

Fy(x, y). (47)

Substituting the optimal control into Equation (46), we obtain Equation (28).
Finally, the boundary condition (29) follows at once from the definition of F(x, y),

since T(x, y) = 0 if (x, y) /∈ C.

Remark 2. Suppose that we set u[Xu(s), Yu(s)] equal to zero in Equation (25) and that we replace
the cost function J(x, y) defined in Equation (26) by

J0(x, y, t0) :=
∫ ∞

t0

e−αt g(t; t0, x, y)dt, (48)

where g(t; t0, x, y) is the pdf of T(x, y) when the starting time is equal to t0. Then, since J0(x, y, t0)
is actually a deterministic function, we may write that

Φ(x, y, t0) := E[J0(x, y, t0)] = J0(x, y, t0) = M(x, y, t0; α). (49)

Proceeding as in the above proof, we find that

0 = e−αt0 g(t0; t0, x, y) + Φt0(x, y, t0) + ρ(x, y)Φx(x, y, t0) + f (y)Φy(x, y, t0) (50)

+
1
2

v(y)Φyy(x, y, t0)− λΦ(x, y, t0) + λ
∫ ∞

−∞
Φ(x, y + z, t0) fZ(z)dz.

We have g(t0; t0, x, y) = 0 for (x, y) ∈ C. Moreover, using the Leibniz integral rule,

Φt0(x, y, t0) = −e−αt0 g(t0; t0, x, y) +
∫ ∞

t0

e−αt gt0(t; t0, x, y)dt (51)

= 0 −
∫ ∞

t0

e−αt gt(t; t0, x, y)dt

= −e−αt g(t; t0, x, y)
∣∣∣∣∞
t0

− α
∫ ∞

t0

e−αt g(t; t0, x, y)dt

= −α M(x, y, t0; α),
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where we used the fact that gt0(t; t0, x, y) = −gt(t; t0, x, y) because the two-dimensional process
(Xu(t), Yu(t)) is time-invariant. Hence, setting t0 equal to zero, we retrieve Equation (10).

In the case of the killed processes considered in Section 2, the integro-differential
Equation (28) reduces to the non-linear PDE

0 = θ − 1
2

b2

q
F2

y (x, y) + ρ(x, y)Fx(x, y) + f (y)Fy(x, y) +
1
2

v(y)Fyy(x, y) (52)

− λ F(x, y).

The boundary condition remains the one in Equation (29).
In the next section, a particular problem will be treated. We will find the exact optimal

control when the parameter λ is equal to zero, so that there are no jumps, and a numerical
solution will be computed in the case when λ > 0.

4. A Particular Problem

We consider the process (X(t), Y(t)), defined by

X(t) = X(0) +
∫ t

0
[Y(s)− X(s)]ds, (53)

Y(t) = Y(0) + B(t) +
N(t)

∑
n=1

Zn. (54)

That is, {Y(t), t ≥ 0} is a standard Brownian motion with jumps. Moreover, we can write
that

X′(t) = Y(t)− X(t), (55)

which implies that

X(t) = e−t X(0) +
∫ t

0
Y(s) e−s ds. (56)

Let

T(x, y) = inf{t > 0 : Y(t)− X(t) = k1 or k2 | (X(0), Y(0)) = (x, y)}, (57)

where 0 ≤ k1 < y − x < k2. Notice that ρ[X(t), Y(t)] = Y(t)− X(t) > 0 in the continuation
region, so that X(t) is strictly increasing with time.

Next, we define

Z1 =

{
x − y + k1 with probability p0 ∈ (0, 1),
x − y + k2 with probability 1 − p0.

(58)

Thus, Z1 is a discrete random variable such that at time τ1 the process will leave the
continuation region, if it has not already done so. We can write that

fZ(z) = δ(z − x + y − k1) p0 + δ(z − x + y − k2) (1 − p0), (59)

where δ(·) is the Dirac delta function.
We deduce from Equation (19) that the moment-generating function of T(x, y) satisfies

the PDE
α M(x, y) =

1
2

Myy(x, y) + (y − x)Mx(x, y) + λ [1 − M(x, y)]. (60)

Based on this equation and the boundary conditions M(x, y) = 1 if y − x = k1 or k2, we
look for a solution of the form

M(x, y) = N(r), (61)
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where r := y − x. This is an application of the method of similarity solutions, and r is
called the similarity variable. For the method to work, both the equation and the boundary
conditions must be expressed in terms of r (after simplification). Here, we find that
Equation (60) reduces to the ordinary differential equation (ODE)

α N(r) =
1
2

N′′(r)− r N′(r) + λ [1 − N(r)], (62)

subject to the boundary conditions N(ki) = 1, for i = 1, 2. With the help of the mathematical
software program Maple, we find that the general solution of the above equation can be
written as

N(r) = c1 r M
(

1 + α + λ

2
,

3
2

, r2
)
+ c2 rU

(
1 + α + λ

2
,

3
2

, r2
)
+

λ

α + λ
, (63)

where M(·, ·, ·) and U(·, ·, ·) are Kummer functions. The constants c1 and c2 are uniquely
determined from the boundary conditions N(k1) = N(k2) = 1.

Since, as noted in Section 2 (see Equation (18)), T(x, y) = min{T0, τ1}, when λ is large,
the function M(x, y; α) should be close to the moment-generating function of an exponential
random variable with parameter λ, namely

M0(α) :=
∫ ∞

0
e−αt λ e−λt dt =

λ

α + λ
. (64)

In Figure 1, we present the functions M0(α) and M(x, y; α) for α ∈ (0, 10), when λ = 1,
k1 = 0, k2 = 1 and y − x = 0.5. We observe that the two functions differ significantly.
However, the two functions are very similar when λ = 20, as can be observed in Figure 2.
When λ = 100, M0(α) and M(x, y; α) practically coincide for α ∈ (0, 10).

Figure 1. Functions M0(α) (below) and M(x, y; α) for α in the interval (0, 10), when λ = 1, k1 = 0,
k2 = 1 and y − x = 0.5.

Figure 2. Functions M0(α) (below) and M(x, y; α) for α in the interval (0, 10), when λ = 20, k1 = 0,
k2 = 1 and y − x = 0.5.
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Next, the function m(x, y) = E[T(x, y)] satisfies the PDE (see Equation (20))

−1 =
1
2

myy(x, y) + (y − x)mx(x, y)− λm(x, y), (65)

subject to m(x, y) = 0 if y − x = k1 or k2. Setting m(x, y) = n(r), we obtain the ODE

−1 =
1
2

n′′(r)− r N′(r)− λ N(r), (66)

with n(ki) = 0, for i = 1, 2. We find that

n(r) = c1 r M
(

1 + λ

2
,

3
2

, r2
)
+ c2 rU

(
1 + λ

2
,

3
2

, r2
)
+

1
α

. (67)

The particular solution that satisfies the boundary conditions n(0) = n(1) = 0 is presented
in Figure 3.

Figure 3. Function n(r) for 0 ≤ r ≤ 1, when λ = 1, k1 = 0 and k2 = 1.

Finally, let

p(x, y) = P[Y(T)− X(T) = k1 | X(0) = x, Y(0) = y]. (68)

This function is a solution of the PDE

0 =
1
2

pyy(x, y) + (y − x) px(x, y) + λ [p0 − p(x, y)]. (69)

Assuming that p(x, y) = q(r), we obtain the ODE

0 =
1
2

q′′(r)− r q′(r) + λ [p0 − q(r)], (70)

whose general solution is

q(r) = c1 r M
(

1 + λ

2
,

3
2

, r2
)
+ c2 rU

(
1 + λ

2
,

3
2

, r2
)
+ p0. (71)

The solution that satisfies the boundary conditions q(0) = 1 and q(1) = 0 is shown in
Figure 4, when λ = 1 and p0 = 1/2.

29



Fractal Fract. 2023, 7, 152

Figure 4. Function q(r) for 0 ≤ r ≤ 1, when λ = 1, k1 = 0, k2 = 1 and p0 = 1/2.

To conclude this section, we will try to find the optimal control of the two-dimensional
process (Xu(t), Yu(t)) defined by

Xu(t) = Xu(0) +
∫ t

0
[Yu(s)− Xu(s)]ds, (72)

Yu(t) = Yu(0) +
∫ t

0
bu[Xu(s), Yu(s)]ds + B(t) +

N(t)

∑
n=1

Zn. (73)

To do so, we must solve the non-linear second-order PDE

0 = θ − 1
2

b2

q
F2

y (x, y) + (y − x)Fx(x, y) +
1
2

Fyy(x, y)− λ F(x, y), (74)

subject to F(x, y) = 0 if y − x = k1 or k2.
As above, we make use of the method of similarity solutions. We look for a solution of

the form F(x, y) = G(r = y − x). Equation (74) becomes

0 = θ − 1
2

b2

q
[G′(r)]2 − r G′(r) +

1
2

G′′(r)− λ G(r). (75)

If λ = 0, Maple is able to obtain the general solution of the preceding equation:

G(r) = − q
b2

[
w2 + ln(Δ1/Δ2)

]
, (76)

where

Δ1 := b2
[

c1 M
(

b2 θ + q
2q

,
3
2

, r2
)
+ c2 U

(
b2 θ + q

2q
,

3
2

, r2
)]

(77)

and

Δ2 := (b2 θ − 2q)U
(

b2 θ + q
2q

,
3
2

, r2
)

M
(

b2 θ − q
2q

,
3
2

, r2
)

(78)

− 2q M
(

b2 θ + q
2q

,
3
2

, r2
)

U
(

b2 θ − q
2q

,
3
2

, r2
)

.

The constants c1 and c2 are determined by making use of the boundary conditions
G(k1) = G(k2) = 0.

When λ > 0, Maple and Mathematica are unable to provide an analytical expression
for the solution of Equation (75). It is, however, not difficult to obtain a numerical solution
for any choice of the parameters. For instance, if we choose b = q = θ = λ = 1, k1 = 1
and k2 = 2, we obtain the function G(r), as shown in Figure 5, together with the function
obtained when λ = 0. Finally, in Figure 6, we present the corresponding optimal controls.
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Figure 5. Function G(r) for 1 ≤ r ≤ 2, when b = q = θ = 1, k1 = 1, k2 = 2, and λ = 1 (with the
squares) and λ = 0 (with the circles).

Figure 6. Optimal control in the interval [1, 2] when b = q = θ = 1, k1 = 1, k2 = 2, and λ = 1 (with
the squares) and λ = 0 (with the circles).

5. Conclusions

In this paper, we have considered degenerate two-dimensional jump-diffusion pro-
cesses, defined in such a way that the first component of the vector (X(t), Y(t)) is a strictly
increasing or decreasing function with respect to time. This kind of process is more re-
alistic than a one-dimensional diffusion or jump-diffusion process in many applications,
especially when X(t) represents the age or wear of a certain device. We could generalize
the model by incorporating more than one diffusion process Y(t). The diffusion processes
could model the various variables that influence X(t). For example, in the case of wear,
important factors to consider are temperature, speed of use, etc.

In Section 2, we obtained equations for functions defined in terms of a first-passage
time for the processes (X(t), Y(t)). Moreover, we treated an optimal control problem for
these processes in Section 3. Finally, a particular problem was solved explicitly in Section 4.

As mentioned in Section 1, there are few first-passage problems for one-dimensional
jump-diffusion processes that have been solved exactly and explicitly so far. Here, we
were able to find exact analytical expressions for quantities defined in terms of a first-
passage time for a (degenerate) two-dimensional jump-diffusion process. Furthermore,
in Section 2, we saw that the processes considered in this paper could serve as models in
real-life applications, such as the remaining amount of deterioration that a given device
can undergo before it needs to be repaired or replaced.

In general, to solve this type of problem, it is necessary to find the solution of an integro-
differential equation with partial derivatives. We considered the case when the process
leaves the continuation region at the latest when the first event of the Poisson process
occurs. In this case, the equation to be solved becomes a partial differential equation. Using
the method of similarity solutions, it is sometimes possible to reduce this PDE to an ODE.
It should also be possible to find a numerical solution to any particular problem.

As a follow-up to this work, we would like to find exact analytical solutions to
problems where the equations to be solved are integro-differential equations; for example,
by trying to transform the integro-differential equations into differential equations.
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Abstract: This paper presents a detailed investigation of a stochastic model that rules the spreading
behavior of the measles virus while accounting for the white noises and the influence of immuniza-
tions. It is hypothesized that the perturbations of the model are nonlinear, and that a person may
lose the resistance after vaccination, implying that vaccination might create temporary protection
against the disease. Initially, the deterministic model is formulated, and then it has been expanded
to a stochastic system, and it is well-founded that the stochastic model is both theoretically and
practically viable by demonstrating that the model has a global solution, which is positive and
stochastically confined. Next, we infer adequate criteria for the disease’s elimination and permanence.
Furthermore, the presence of a stationary distribution is examined by developing an appropriate
Lyapunov function, wherein we noticed that the disease will persist for Rs>1

0 and that the illness will
vanish from the community when Rs<1

0 . We tested the model against the accessible data of measles
in Pakistan during the first ten months of 2019, using the conventional curve fitting methods and
the values of the parameters were calculated accordingly. The values obtained were employed in
running the model, and the conceptual findings of the research were evaluated by simulations and
conclusions were made. Simulations imply that, in order to fully understand the dynamic behavior
of measles epidemic, time-delay must be included in such analyses, and that advancements in every
vaccine campaign are inevitable for the control of the disease.

Keywords: stochastic measles epidemic model; stationary distribution; parameter estimation; real data;
Pakistan measles outbreak

1. Introduction

Measles is still a major worldwide health issue, particularly in the less developed
countries. Measles (also known as Rubella or morbilli) is an extremely contagious illness
caused mostly by the Morbillivirus genus in the Paramyxovirus [1,2]. Although efficient
vaccines against this severe illness are commonly accessible, still measles is a leading cause
of death among children below five of years of age [3]. The disease infecting hundreds of
millions of children each year and resulting in a high mortality and morbidity in the child
population, owing primarily to complicated conditions that exist side by side with the
disease like malnutrition, diarrhea, and pneumonia [4]. Sneezing and coughing, touching
the nasal or aerosol fluids, or close physical touch with an infected person are all ways
to spread measles. It can stay extremely contagious for a maximum of two hours in
the atmosphere and on the surfaces. Clinical manifestations include soar throat, cough,
nasal congestion, blurred vision, and small white patches in the mouth; these signs and
symptoms often develop within 10–12 days post-infection. Subsequently, a rash appears,
extending downward out of the nose. The period of peak infectivity (virus shed) starts four
days before that and four days just after commencement of the rashes. The usual incubation
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time is 14 days; however, it can range from 7–18 days [5]. In reality, even vaccinated people
may still be susceptible if the immunization fails or existing immunity from the vaccine
wears off. Despite the fact that vaccination has cut worldwide measles fatalities by 73%
between 2000–2018, measles continues to remain a widespread in many underdeveloped
nations, particularly in Asia and Africa. Around 140,000 individuals died from the measles
in 2018. During 2000–2018, worldwide measles immunization results in an 85 percent drop
in measles transmission [6,7]. Despite the abundance of a safe and effective vaccination in
2017, around 110,000 deaths occurred from measles, primarily children under the age of
six, as per the report of the World Health Organization (WHO) [8]. Vaccination is amongst
the most successful health promotion strategy for reducing death rates and the spreading
of epidemics; it has been demonstrated that vaccination saves over 3 million people only
in Nigeria every year. The vaccination will work with the immune system of the body to
establish the body’s natural defenses, reducing the likelihood of relapse [9]. The MMR
vaccination can protect against measles, which is a vaccine-preventable illness. The MMR
vaccines are highly effective at protecting both adults and children from the epidemic
measles. Only one dose of the MMR vaccines is roughly 92% successful in suppressing
the measles, whereas two doses are around 95% effective. The MMR vaccine also protects
against rubella and mumps [10]. This disease is an endemic one in Nigeria, with epidemics
occurring at regular intervals. Measles is present across Nigeria at all seasons; however, it
is more widespread in the summer months.

Pakistan is one of the most measles-affected nations in Asia [11]. Every 8–10 years, the
nation has a recurring measles epidemic. In fact, 2845 identified measles infections were
reported in Pakistan during the year 2016. This figure increased to 6791 in 2017 and, in the
year 2018, 33,007 cases were reported. These results represent about 44, 20, and 51 percent
of the total number of cases recorded in the East Mediterranean, which includes 22 nations.
In 2017, over 130 children lost their lives due to this infection, with the figure rising to
nearly 300 in 2018 [12].

It is strongly advised to employ the methods of mathematical modeling to examine
the transmission process and prevention of an epidemic disease [7,13–15], modeling with
fractional differential equations also have several applications in all fields of science [16–18].
While depicting the natural history of an infectious disease, the tools of modeling can create
a balance among the data and its real biology. Thus far, models responsible for describing
the dynamics of measles both from population to outbreak levels have demonstrated a
wide variety of disease patterns. External noise is usually the main significant feature of
physical processes and bio-systems. It has been discovered that environmental variables
have a significant impact on the dynamics of measles disease spread [19]. Because of the
uncertainty of person-to-person interactions or inherent characteristics of the population,
outbreak onset and propagation are fundamentally unpredictable. As a result, the condition
of the disease is influenced by the environment’s heterogeneity and uncertainty.

Changes in the environment likewise have a significant impact on the parasites’ persis-
tence and distribution. Because the stochasticity of parameters and states depicts the exact
dynamic behavior of an infectious disease, it is regarded as an essential part in epidemio-
logical studies. Even though the perturbations are varying, these should be autocorrelated
in a positive way. Furthermore, the perturbations may be estimated theoretically using
the linked problem’s probability density function [20–23]. There are two main techniques
to epidemic modeling: the deterministic modeling and stochastic modeling. Stochastic
differential equation (SDE) models are recommended over deterministic models for mathe-
matical modeling of biological functions because they may provide a higher level of reality
than their deterministic equivalents [23–26]. We may choose to use SDEs to generate a
distribution of the predicted output(s); for example, the number of infected individuals
over time t. Moreover, when tested numerous times, a stochastic model produces more
useful outputs than a deterministic one. A deterministic model, on the other hand, will
produce only one outcome irrespective of the number of experiments. To explain the
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viral evolution of COVID-19, numerous deterministic infectious disease models have been
suggested; for example, see [27,28].

The rest of the manuscript is organized in the following manner: Section 2 deals with
the formulation of the proposed stochastic model for the spreading of the epidemic measles.
The uniqueness and existence problem for obtaining a positive global solution is presented in
Section 3. In Sections 4 and 5, we characterized sufficient criteria for the stationary distribution
and extinction of the disease. We optimize the proposed model using data from Pakistan
compiled in the first ten months of 2019 in Section 6. We quantitatively compared the obtained
analytical results, and graphical illustrations were presented in Section 7. We concluded the
work in Section 8 by presenting the future directions and a comprehensive summary.

2. Model Formulation

Olumuyiwa et al. [29] have recently developed a model of the transmission of rubella
disease by using the differential equations. Keeping in view the work of Olumuyiwa et al., here
we intend to extend the model to a stochastic model. Furthermore, by considering different
stages during the measles epidemic, we stratified the total population into six disjoint classes,
namely: susceptible, vaccinated, exposed, infectious, hospitalized and recovered individuals
whose sizes in mathematical terms are, respectively, S(t),V(t),E(t), I(t),H(t), and R(t).

The entrance of new persons through this population is captured by the rate φ and
will be kept in the susceptible compartment. People in the vulnerable group start receiving
a vaccination at a rate τ and setback immune function at a vaccine wane rate ω. The contact
rate of susceptible persons is α, and thus the term force of infection becomes αSI, with
the transition again from exposures to infection stages occurring at a rate of β. People
who are infected with the measles seek medical attention at a rate of ρ and recover from
the infection after the successful treatment supplemented at a rate of γ. We consider two
types of death rates: the natural μ (that is constant for all classes) and the disease-induced
mortality rate δ. This study assumes the recovery from measles that is possible due to the
treatment only, that is, the study considering no natural recovery. The movements between
the compartments are depicted via a flowchart in Figure 1. The above assumptions will
lead to the following deterministic system:

dS(t)
t

= φ − αS(t)I(t) + ωV(t)− (τ + μ)S(t),

dV(t)
t

= τS(t)− (μ + ω)V(t),

dE(t)
t

= αS(t)I(t)− (μ + β)E(t),

dI(t)
t

= βE(t)− (μ + δ + ρ)I(t),

dH(t)
t

= ρI(t)− (δ + γ + μ)H(t),

dR(t)
t

= γH(t)− μR(t).

(1)

The threshold parameter has the following expression for model (1) as

R0 =
(μ + ω)φβα

(μ + β)(μ + δ + ρ)(μ + ω + τ)μ
. (2)
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Figure 1. Flow chart of the measles model (1) [29].

In order to consider the noises due the environment in the study (i.e., model (1)),
we shall take into account the standard Brownian motions Wi(t) for i = 1, · · · , 6 with
Wi(0) = 0. Furthermore, system (1) is modified by considering the incidence rate of
bi-linear form αS(t)I(t)

N(t) . For the noise intensities, we have taken ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 as the
relative weights. By considering these stochastic terms, the deterministic model (1) takes
the form

dS =

[
φ − αS(t)I(t)

N(t)
+ ωV(t)− (τ + μ)S(t)

]
dt + ξ1S(t)dW1(t),

dV =

[
τS(t)− (μ + ω)V(t)

]
dt + ξ2VdW2(t),

dE =

[
αS(t)I(t)
N(t)

− (μ + β)E(t)
]

dt + ξ3E(t)dW3(t),

dI =
[

βE(t)− (μ + δ + ρ)I(t)
]

dt + ξ4I(t)dW4(t),

dH =

[
ρI(t)− (μ + δ + γ)H(t)

]
dt + ξ5I(t)dW5(t),

dR =

[
γH(t)− μR(t)

]
dt + ξ6R(t)dW6(t).

(3)

Keeping in view system (3), the authors have a keen interest to find the possible
answers to the following questions:

Q1 : What role do the random noises play in the transmission measles?
Q2 : What role contaminated vaccination in the spreading of measles disease?
Q3 : Under what condition(s) will the disease tend to go extinct?
Q4 : Under what condition(s) will the epidemic measles persist in the population?

3. Stochastic Model Analysis

This section investigates the existence/uniqueness of solutions, global asymptotic
behavior, derivation of conditions under which the disease tends to go extinct, and the
presence of an ergodic stationary distribution for the proposed stochastic model.

Positive Global Solution of the Model

The very first crucial question in studying the dynamic behavior is whether there is
a possibility of the existence of a global solution to the model. Furthermore, for a system
modeling the population dynamics, the nature of the solution’s value is of major relevance.
In addition, we demonstrate in this section that the solution of randomized system (3) is
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global in nature and positive. It is well established that, for every given initial amount, the
coefficients of a stochastic equation must fulfill the normal growth constraint and the local
Lipschitz criterion in order to have a unique global solution (i.e., without any explosion in
a limited period).

Theorem 1. There exists a unique solution (S(t),V(t),E(t), I(t),H(t),R(t)) of system (3) for
t ≥ 0 under the initial conditions from the state R6

+. Moreover, the solution remains in the same
space (i.e., R6

+) surely for ∀t ≥ 0.

Proof. Keeping in view the Lipschitzness of the coefficients used in the model and from
the fact ((S(0),V(0),E(0), I(0),H(0),R(0))) ∈ R6

+, we can say that the proposed system
has a unique local solution in [0, τe) and t ≥ 0. The term τe stands for the explosion time,
and readers are referred to [30,31] for a detailed analysis. By showing that, actually τe = ∞,
we reach the conclusion that such a solution is global in nature. To do so, it is necessary
that we assume a large k0 > 0 in such a way that [ 1

k0
, k0] contains all parts of the solution.

Assume k0 ≤ k and let us define

τk = in f {t ∈ [0, τe) :
1
k
≥ min{S(t),V(t),E(t), I(t),H(t),R(t)} or

k ≤ max{S(t),V(t),E(t), I(t),H(t),R(t)}.
(4)

Whenever φ represents the empty set, then we shall write inf φ = ∞. By increasing the
value of k, one can notice that it increases τk. We apply the limit k → ∞ and assume that
the τk → τ∞ and a.s. τe ≥ τ∞. Thus, if we show τ∞ = ∞ a.s., it ensures τe = ∞. Proving
all these guarantees that (S(t),V(t),E(t), I(t),H(t),R(t)) ∈ R6

+ for any time t ≥ 0. Let us
assume the contrary case that τe �= ∞; then, there must exist positive real numbers T and
ε ∈ (0, 1) in such a way

ε < P{τ∞ ≤ T}. (5)

Thus, for an integer k0 ≤ k1, we have

P{T ≥ τk} ≥ ε, ∀ k1 ≤ k.

To begin, first let us establish a Lyapunov function of the type

G = (S− 1 − logS) + (E− logE− 1) + (I − log I− 1) + (H− logH− 1) + (R− logR− 1), (6)

By utilizing the formula due to Itô, letting k0 ≤ k and assuming a very large non-
negative real T, Equation (6) can be written in the form of

dG(S,V,E, I,H,R) = LG(S,V,E, I,H,R)dt + ξ1(S− 1)dW1(t) + ξ2(V− 1)dW2(t) + ξ3(E− 1)dW3(t)

+ ξ4(I− 1)dW4(t) + ξ5(H− 1)dW5(t) + ξ6(R− 1)dW6(t).
(7)

In Equation (23), the LV operator is from the space R6
+ to R+.

The remaining parts of the proof are merely similar to Theorem 2.1 in [26,30]. Thus,
it is very simple for the reader to follow the result and and hence, is not completely
proved here.

4. Extinction

While modeling the dynamical aspects of any epidemic diseases, it is important to
investigate the situations under which the disease will become exterminated or tend to
become extinct in the community. Within this section, we demonstrate that, when the white
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noises are large enough, the solution of the associated stochastic model (3) surely vanishes.
Let us define

〈B(t)〉 = 1
t

∫ t

0
B(s)ds.

Lemma 1. (Strong Law) [32,33] Let Z = {Z}0≤t be continuous and real valued along with a local
martingale, which vanishes as t → 0, then

lim
t→∞

〈
Z,Z

〉
t = ∞, a.s., ⇒ lim

t→∞

Zt〈
Z,Z

〉
t
= 0, a.s.

lim
t→∞

sup

〈
Z,Z

〉
t

t
< 0, a.s., ⇒ lim

t→∞

Zt

t
= 0, a.s.

(8)

Lemma 2. Assume that (S,V,E, I,H,R) corresponds to initial data S(0),V(0),E(0), I(0),H(0),
R(0)) in the space R6

+ and is a solution of model (3). Then,

lim sup
t→∞

lnS(t)
t

= 0, lim sup
t→∞

V(t)
t

= 0, lim sup
t→∞

lnE(t)
t

= 0,

lim sup
t→∞

ln I(t)
t

= 0, lim sup
t→∞

lnH(t)
t

= 0, lim sup
t→∞

lnR(t)
t

= 0, a.s. (9)

Furthermore, if μ >
ξ2

1∨ξ2
2∨ξ2

3∨ξ2
4

2 , and d >
ξ2

5
2 , then

lim
t→∞

∫ t
0 S(s)dW1(s)

t
= 0, lim

t→∞

∫ t
0 V(u)dW2(u)

t
= 0, lim

t→∞

∫ t
0 E(u)dW3(u)

t
= 0,

lim
t→∞

∫ t
0 I(s)dW4(s)

t
= 0, lim

t→∞

∫ t
0 H(s)dW5(s)

t
= 0, lim

t→∞

∫ t
0 R(s)dW6(s)

t
= 0, a.s. (10)

Then, the solution of (3)

lim sup
t→∞

S(t) =
(μ + ω)φ

(μ + ω + τ)μ
,

lim sup
t→∞

V(t) =
φτ

(μ + ω + τ)μ
,

lim sup
t→∞

E(t) = 0,

lim sup
t→∞

I(t) = 0,

lim sup
t→∞

H(t) = 0,

lim sup
t→∞

R(t) = 0, a.s.

(11)

To prove Lemma 2, we follow almost the same techniques as performed in proving
Lemmas 2.1 and 2.2 carried out in the work of Zhao [32], and thus the readers can simply
prove the results.

Next, to develop the extinction theory related to model (3), we first define the threshold
quantity Rs for the proposed stochastic model which can be written in the form of

Rs =
α[

(μ + β)(μ + δ + ρ) +
ξ2

3
2 +

ξ2
4

2

] . (12)
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Theorem 2. The exposed population E(t) and infected population I(t) of system ((3) tends to zero
exponentially almost surely if Rs < 1, where Rs is given by Equation (12).

Proof. Let (S(t),V(t),E(t), I(t),H(t),R(t)) correspond to initial data S(0),V(0),E(0),
I(0),H(0),R(0)) in the space R6

+, being a solution of model (3).
Define

G1(t) = βE(t) + (μ + β)I(t). (13)

Differentiating Equation (13) following Ito’s formula, one can obtain

d(lnG1(t)) =
1

G1

[
αβSI

N
− (μ + β)(μ + δ + ρ)I

]
− β2E2ξ2

3 + (μ + β)2ξ2
4I

2

2(G1)2

+
βξ3

[βE(t) + (μ + β)I]
EdW3(t) +

(μ + β)ξ4

[E+ (μ + β)I]
IdW4(t),

≤ 1
G1

[
αβI− (μ + β)(μ + δ + ρ)I

]
− β2E2ξ2

3
2(G1)2 − (μ + β)2ξ2

4I
2

2(G1)2

+
βξ3

[βE(t) + (μ + β)I]
EdW3(t) +

(μ + β)ξ4

[E+ (μ + β)I]
IdW4(t), [∵ S ≤ N]

≤ 1
(μ + β)

[
α − (μ + β)(μ + δ + ρ)

]
− ξ2

3
2

− ξ2
4

2

+
βξ3

[βE(t) + (μ + β)I]
EdW3(t) +

(μ + β)ξ4

[E+ (μ + β)I]
IdW4(t). [∵ I ≤ I+

βE

(μ + β)
]

(14)

By taking the integral of either sides of the above inequality over the interval [0, t],
we have

lnG1(t) ≤
1

(μ + β)

{
α −

[
(μ + β)(μ + δ + ρ) +

ξ2
3

2
+

ξ2
4

2

]}
+
∫ t

0

βξ3EdW3(t)
[βE(t) + (μ + β)I]

+
∫ t

0

(μ + β)ξ4IdW4(t)
[E+ (μ + β)I]

,

≤ 1
(μ + β)

{
α −

[
(μ + β)(μ + δ + ρ) +

ξ2
3

2
+

ξ2
4

2

]}
+
∫ t

0

βξ3EdW3(t)
[βE(t) + (μ + β)I]

+
∫ t

0

(μ + β)ξ4IdW4(t)
[E+ (μ + β)I]

,

≤

[
(μ + β)(μ + δ + ρ) +

ξ2
3

2 +
ξ2

4
2

]
(μ + β)

[
Rs − 1

]
+
∫ t

0

βξ3EdW3(t)
[βE(t) + (μ + β)I]

+
∫ t

0

(μ + β)ξ4IdW4(t)
[E+ (μ + β)I]

.

(15)

By assuming the lim sup as t → ∞ and multiplying both sides of relation (15) by 1
t

while considering Lemma 2, we obtain

lim sup
t→∞

(lnG1(t)) ≤

[
(μ + β)(μ + δ + ρ) +

ξ2
3

2 +
ξ2

4
2

]
(μ + β)

[
Rs − 1

]
.

(16)

If Rs < 1, then limt→∞ G1 = limt→∞[βE(t) + (μ + β)I(t)] = 0, a.s if Rs < 1. Again,
β > 0, (μ + β) > 0, and we assert that limt→∞[βE(t) + (μ + β)I(t)] = 0 =⇒ limt→∞ E =
limt→∞ I = 0—hence the result.

5. The Stationary Distribution of the Disease

We understand that there are no endemic states in stochastic models. As a result, the
stability of the system cannot be used to predict how long an illness would endure. As a
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result, one must concentrate on the existence/uniqueness assumption of the stationary
distribution. In certain aspects, this assists the illness with survival. For this purpose, we
employ a well-known method due to Hasminskii [34].

Assume a homogeneously time-dependent Markov process X(t) in the space Rn
+ that

satisfies the below stochastic model

dX(t) = b(X)dt +
k

∑
r

σrdBr(t).

The diffusion matrix can be demonstrated as:

A(X) = [aij(κ)], aij(κ) =
k

∑
r=1

σi
r(κ)σ

r
j (κ).

Lemma 3. [34]. The process X(t) has a one and only one stationary distribution m(.) whenever
there is a bounded domain having a regular boundary in such a way that Ū ∈ Rd \ Ū closure
Ū ∈ Rd, and having the below characteristics

1. The smallest eigenvalue of the matrix A(t) is bounded below from the origin in the open
domain U and in its neighborhood.

2. For κ ∈ Rd \ U, the average time period τ (at which a path starts from κ reaching the set U)
is bounded, and for every compact subset K ⊂ Rn, we have Supκ∈kEκτ < ∞. When f (.) is
an integrable function with the measure pi, then we have

P
{

lim
T→∞

1
T

∫ T

0
f (Xκ(t))dt =

∫
Rd

f (κ)π(dx)
}

= 1,

for all κ ∈ Rd.

Let us define the following parameter for our future use:

Rs
0 =

μβα(
ξ + μ + σ2

2

2

)(
α + μ + σ3

2

2

)(
δ + μ + σ4

2

2

) . (17)

Theorem 3. For Rs
0 > 1, then a solution (S(t),V(t),E(t), I(t),H(t),R(t)) of system (3) is

ergodic and has one and only one stationary distribution π(.).

Proof. For verifying condition (2) of Lemma (3), we must develop a positive C2−function
G2 : R6

+ → R+. To do so, we first formulate

G2 = S+V+E+ I+H+R− a1 lnS− a2 lnE− a3 ln I,

where a1, a2 and a3 are all real and positive constants, and must be calculated later on. By
assuming the formula due to Itô’s and keeping in view system (3), we obtain
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L(V+ S+ I+E+H+R) =φ − μ(V+ S+ I+E+H+R)− δ(I+H),

L(− lnS) =− Π
S

+
αI

N
− ωV

S
+ (τ + μ) +

ξ2
1

2
,

L(− lnV) =− τS

V
+ (μ + ω) + μ +

ξ2
2

2
,

L(− lnE) =− αSI

EN
+ (μ + β) +

ξ2
3

2
,

L(− ln I) =− βE

I
+ (μ + δ + ρ) +

ξ2
4

2
,

L(− lnH) =− ρI

H
+ (γ + δ + μ) +

ξ2
5

2
,

L(− lnR) =− γH

R
+ μ +

ξ2
6

2
.

(18)

Hence,

LG2 = φ − μ(V+ S+ I+E+H+R)− δ(I+H)− a1Π
S

+
a1αI

N
− a1ωV

S
+ a1(τ + μ) +

a1ξ2
1

2

− a2αSI

EN
+ a2(μ + β) +

a2ξ2
3

2
− a3βE

I
+ a3(μ + δ + ρ) +

a3ξ2
4

2
.

The preceding calculation indicates that

LG2 ≤− 4
[

μN× a1φ

S
× a2αSI

EN
× a3βE

I

] 1
4

+ a1(τ + μ +
ξ2

1
2
) + a2(μ + β +

ξ2
3

2
) + a3(μ + δ + ρ +

ξ2
4

2
)

+ φ +
a1αI

N
− a1ωV

S
− δ(I+H).

Suppose

a1(τ + μ +
ξ2

1
2
) = a2(μ + β +

ξ2
3

2
) = a3(μ + δ + ρ +

ξ2
4

2
) = φ.

Namely,

a1 =
φ

(τ + μ +
ξ2

1
2 )

,

a2 =
φ

(μ + β +
ξ2

3
2 )

,

a3 =
φ

(μ + δ + ρ +
ξ2

4
2 )

.

(19)

As a result,

LG2 ≤ −4

⎡⎢⎣
⎛⎝ φ4μαβ

(τ + μ +
ξ2

1
2 )(μ + β +

ξ2
3

2 )(μ + δ + ρ +
ξ2

4
2 )

⎞⎠ 1
4

− φ

⎤⎥⎦+
a1αI

N
− a1ωV

S
− δ(I+H),

LG2 ≤ −4Π
[
(Rs

0)
1/4 − 1

]
+

a1αI

N
− a1ωV

S
− δ(I+H).

Furthermore, we obtain
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G2 = a4(E+ S+V+H+ I+R− a1 lnS− a2 lnE− a3 ln I)− lnS− lnV− lnH− lnR

E+ S+V+H+ I+R,

= (a4 + 1)(E+ S+V+H+ I+R)− (a1a4 + 1) lnS− a2a4 lnE− a3a4 ln I− lnV− lnH− lnR,

where a4 > 0 is an unknown real number and must be determined later. It is very helpful
to state

lim inf
(S,V,E,I,H,R)∈R6

+\Uk

G3(S,V,E, I,H,R) = +∞, as k → ∞, (20)

where Uk = ( 1
k , k)× ( 1

k , k)× ( 1
k , k).

In the below steps, we show that actually the function G3(S,V,E, I,H,R) has the min-
imum value, G3(S(0),V(0),E(0), I(0),H(0),R(0)). The partial derivatives of the function
G3 with respect to the state variables are given by:

∂G3(S,V,E, I,H,R)
∂S

= 1 + a4 −
1 + a1a4

S
,

∂G3(S,V,E, I,H,R)
∂V

= 1 + a4 −
1
V

,

∂G3(S,V,E, I,H,R)
∂E

= 1 + a4 −
a2a4

E
,

∂G3(S,V,E, I,H,R)
∂I

= 1 + a4 −
a3a4

I
,

∂G3(S,V,E, I,H,R)
∂H

= 1 + a4 −
c3c4

H
,

∂G3(S,V,E, I,H,R)
∂R

= 1 + a4 −
1
R

.

One can verify very easily that the function G3 has only one stagnation point.

(S(0),V(0),E(0), I(0),H(0),R(0)) =
(

1 + a1a4

1 + a4
,

1
1 + a4

,
a2a4

1 + a4
,

a3a4

1 + a4
,

1
1 + a4

,
1

1 + a4

)
. (21)

Furthermore, at (S(0),V(0),E(0), I(0),H(0),R(0)) for V2(S,V,E, I,H,R), the Hessian
matrix is as follows:

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+a1a4
S2(0) 0 0 0 0 0

0 1
V2(0) 0 0 0 0

0 0 a2a4
E2(0) 0 0 0

0 0 0 a3a4
I2(0) 0 0

0 0 0 0 1
H2(0) 0

0 0 0 0 0 1
R2(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (22)

The Hessian matrix is obviously positive definite. As a result, the minimum value of
G3(S,V,E, I,H,R) is G3(S(0),V(0),E(0), I(0),H(0),R(0)). We may assert that G3(S,V,E, I,
H,R) has one and only one minimum value G3(S(0),V(0),E(0), I(0),H(0),R(0)) inside
R6
+ based on Equation (20) and the continuity of G3(S,V,E, I,H,R). Then, as follows, we

delineate a non-negative C2−function G : R6
+ → R+:

G(S,V,E, I,H,R) = G3(S,V,E, I,H,R)− G3(S(0),V(0),E(0), I(0),H(0),R(0)).

Using Ito′s formula and the suggested system, we arrive at

42



Fractal Fract. 2023, 7, 130

L(G) ≤ a4

{
− 4Π

[
(Rs

0)
1/4 − 1

]
+

a1αI

N
− a1ωV

S
− δ(I+H)

}
+ φ − μ(S+V+E+ I+H+R)− δ(I+H)− Π

S
+

αI

N
− ωV

S
+ (τ + μ) +

ξ2
1

2

− τS

V
+ (μ + ω) + μ +

ξ2
2

2
− ρI

H
+ (γ + δ + μ) +

ξ2
5

2
− γH

R
+ μ +

ξ2
6

2
.

(23)

Based on the above result, we have the following assertion:

LV ≤ −a4a5 + (a1a4 + 1)
αI

N
− (a1a4 + 1)

ωV

S
− δ(a4 + 1)(I+H)

}
+ φ − μN− Π

S

+ (τ + μ) +
ξ2

1
2

− τS

V
+ (μ + ω) + μ +

ξ2
2

2
− ρI

H
+ (γ + δ + μ) +

ξ2
5

2
− γH

R
+ μ +

ξ2
6

2
,

(24)

where

a5 = 4φ

[
(Rs

0)
1/4 − 1

]
> 0.

Overall, for the solution to the model, we have the following set

D = {ε1 < S <
1
ε2

, ε1 < V <
1
ε2

, ε1 < E <
1
ε2

, ε1 < I <
1
ε2

, ε1 < H <
1
ε2

, ε1 < R <
1
ε2
},

where εi > 0 are extremely small positive real values to be calculated later on. For the sake
of simplicity, the whole set was partitioned into the following subsets:

D1 =

{
(S,V,E, I,H,R) ∈ R6

+, 0 < S ≤ ε1

}
,

D2 =

{
(S,V,E, I,H,R) ∈ R6

+, 0 < V ≤ ε1,S > ε2

}
,

D3 =

{
(S,V,E, I,H,R) ∈ R6

+, 0 < E ≤ ε1,V > ε2

}
,

D4 =

{
(S,V,E, I,H,R) ∈ R6

+, 0 < I ≤ ε1,E > ε2

}
,

D5 =

{
(S,V,E, I,H,R) ∈ R6

+, 0 < H ≤ ε1, I > ε2

}
,

D6 =

{
(S,V,E, I,H,R) ∈ R6

+, 0 < R ≤ ε1, I > ε2

}
,

D7 =

{
(S,V,E, I,H,R) ∈ R6

+,S ≥ 1
ε2

}
,

D8 =

{
(S,V,E, I,H,R) ∈ R6

+,V ≥ 1
ε2

}
,

D9 =

{
(S,V,E, I,H,R) ∈ R6

+,E ≥ 1
ε2

}
,

D10 =

{
(S,V,E, I,H,R) ∈ R6

+, I ≥ 1
ε2

}
,

D11 =

{
(S,V,E, I,H,R) ∈ R6

+,H ≥ 1
ε2

}
,

D12 =

{
(S,V,E, I,H,R) ∈ R6

+,R ≥ 1
ε2

}
.

43



Fractal Fract. 2023, 7, 130

Then, we show that LG(S,V,E, I,H,R) < 0 on R6
+\D, which is the same is displaying

the solution on the eight sub-regions.
Case 1. If (S, V, E, I, R) ∈ D1, then, by Equation (24), we obtain

LG ≤ −a4a5 + (a1a4 + 1)
αI

N
− (a1a4 + 1)

ωV

S
− δ(a4 + 1)(I+H)

}
+ φ − μN− Π

S

+ (τ + μ) +
ξ2

1
2

− τS

V
+ (μ + ω) + μ +

ξ2
2

2
− ρI

H
+ (γ + δ + μ) +

ξ2
5

2
− γH

R
+ μ +

ξ2
6

2
,

≤ +(a1a4 + 1)
αI

N

}
+ φ − Π

ε1
+ (τ + μ) +

ξ2
1

2
+ (μ + ω) + μ +

ξ2
2

2
+ (γ + δ + μ) +

ξ2
5

2
+ μ +

ξ2
6

2
,

For every (S,V,E, I,H,R) ∈ D1., picking ε1 > 0, returns LG < 0.
Just as in the proof above, we conclude that LG < 0 for (S,V,E, I,H,R) ∈ Di,

i = 2, 3...12..
As a result, we arrived to the point that there must be positive constant W > 0 in such

a way
LG(S,V,E, I,H,R) < −W < 0 for all (S,V,E, I,H,R) ∈ R6

+\D.

Thus,

dG(S,V,E, I,H,R) < −Wdt + [(a4 + 1)S− (a1a4 + 1)ξ1]dW1(t) + [(a4 + 1)V− ξ2]dW2(t)

+ [(a4 + 1)E− a2a4ξ3]dW3(t) + [(a4 + 1)I − a3a4ξ4]dW4(t)

+ [(a4 + 1)H− ξ5]dW5(t) + [(a4 + 1)R− ξ5]dW6(t).

(25)

Consider (S(0),V(0),E(0), I(0),H(0),R(0)) = (κ1,κ2,κ3,κ4,κ5) = κ ∈ R6
+\D, and

τκ is the amount of time it takes for a path to start from κ to achieve set D,

τn = in f {t : |X(t)| = n} & τ(n)(t) = min{τκ , t, τn}.

The next relation could be obtained if one integrates the above inequality from 0 to
τ(n)(t), considering the expectation and using Dynkin’s formula:

EG(S(τ(n)(t)),V(τ(n)(t)),E(τ(n)(t)), I(τ(n)(t)),H(τ(n)(t)),R(τ(n)(t)))− G(κ)

= E

∫ τ(n)(t)

0
LG(S(u),V(u),E(u), I(u), H(u),R(u))du,

≤ E

∫ τ(n)(t)

0
−Wdu = −WEτ(n)(t).

Hence, G(κ) is non-negative; then,

Eτ(n)(t) ≤ V(κ)

W
.

We have P{τe = ∞} = 1 as a result of the proof of Theorem (3). This also shows
that model (3) is regular and, consequently, by letting n, t → ∞, almost surely we have
τ(n)(t) → τκ .

Moreover, by utilizing the Fatou’s lemma, we have

Eτ(n)(t) ≤ G(κ)

W
< ∞,

supκ∈KEτκ < ∞, where K is the compact set, i.e., a subset of R6
+. This proves the condi-

tion (2) of Lemma (3) in an alternative approach.
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Additionally, the diffusion matrix for the system (3) is

B =

⎡⎢⎢⎢⎢⎢⎢⎣

ξ2
1S

2 0 0 0 0 0
0 ξ2

2V
2 0 0 0 0

0 0 ξ2
3E

2 0 0 0
0 0 0 ξ2

4I
2 0 0

0 0 0 0 ξ2
5H

2 0
0 0 0 0 0 ξ2

6R
2

⎤⎥⎥⎥⎥⎥⎥⎦.

Taking M = min(S,V,E,I,H,R)∈D∈R6
+
{ξ2

1S
2, ξ2

2V
2, ξ2

3E
2, ξ2

4I
2, ξ2

3E
2, ξ2

5H
2, , ξ2

6R2}, we ob-
tain

6

∑
i,j=1

aij(S,V,E, I,H,R)ξiξ j = ξ2
1S

2σ2 + ξ2
2V

2σ2
2 + ξ2

3E
2σ2 + ξ2

4ξ2
4I

2 + ξ2
5σ2

5 + ξ2
6σ2

6R
2 ≥ M|σ|2,

(S,V,E, I,H,R) ∈ D,

where ξ = (σ1, σ2, σ3, σ4, σ5, σ6) ∈ R6
+. Similarly, this proves condition (1) of Lemma (3).

Keeping in view the previous statements, the ergodicity of model (3) is insured by Lemma (3)
and hence proving that the model has stationary distribution.

6. Parameter Estimation

Among the most important processes to carry through out the testing process is the
utilization of real data (if available) to acquire findings for certain unidentified biological
factors used in the epidemiology system under study. Real-world measles cases, as shown in
Table 1, are used to test the proposed rubella model and to choose the best fitted parameters
for numerous unknown biological parameters that emerge in the system. Considering the
2018 statistics of WHO, the natural death rate of a Pakistani individual is 1/66.5 since the life
expectancy of a Pakistani is 66.5. In addition, the entire size of the country is 207, 862, 518,
whereas the recruitment rate is calculated to be Π = 207, 862, 518×μ ≈ 260, 479. Additionally,
Memon et al. [13] indicates that the rate of measles vaccination is generally 97 percent
effective, implying that the vaccines’ effectiveness τ equals 0.97. Some values of the parameters
are estimated and others were fitted against the data, and these were presented in Table 2.
In Figure 2, the results via simulations for measles resurgence cases obtained by adapting
the proposed model (3) with real data from the first ten months of the year 2019 are shown.
As shown in Figure 2, it gives a rather good match, lending veracity to the predictions generated

from the proposed measles model (3). We employed the relation 1
10 ∑10

k=1

∣∣∣∣κreal
k −κ

approximate
k

κreal
k

∣∣∣∣ ≈
1.4685 × 10−1 to measure the associated relative error for fitting the model against the data.

Table 1. Real cases of the measles epidemic in Pakistan during January and October 2019.

Jan (01) Feb (02) Mar (03) Apr (04) May (05) June (06) July (07) Aug (08) Sep (09) Oct (10)

237 252 397 399 276 168 70 28 23 19

Table 2. Values of the parameters estimated and fitted against the real measles cases.

Parameter Description Source

φ 260,479 Estimated
α 1.253133 × 10−3 Estimated
ω 0.97 Estimated
τ 1.60056 × 10−7 Fitted
μ 9.3408 Fitted
β 9.2373 × 10−1 Fitted
δ 5.8306 × 10−1 Fitted
ρ 0 Estimated
γ 5.8306 × 10−1 Fitted
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Figure 2. The figure shows the fitting of both ODE and SDE models against the real data by using
values of the parameters shown in Table 2.

7. Numerical Simulations and Discussion

It is of great concern to simulate each mathematical model against the real data and
to verify theoretical results, and this step is very important when dealing with modeling
biological problems. The researchers seek to simulate problem (3) employing classic
numerical algorithms that rapidly converged. Almost all of the theoretical conclusions are
quantitatively validated by using the well-known RK-4 approach.

Si+1 = Si +

[
φ − αSiIi + ωVi − (τ + μ)Si

]
� t + ξ1Si

√
�tς1,i +

ξ2
1

2
Si(ς

2
1,i − 1)� t,

Vi+1 = Vi +

[
τSi − (μ + ω)Vi

]
� t + ξ2Vi

√
�tς2,i +

ξ2
2

2
Vi(ς

2
2,i − 1)� t,

Ei+1 = Ei +

[
αSiIi − (μ + β)Ei

]
� t + ξ3Ei

√
�tς3,i +

ξ2
3

2
Ei(ς

2
3,i − 1)� t,

Ii+1 = Ii +

[
βEi − (μ + δ + ρ)Ii

]
� t + ξ4Ii

√
�tς4,i +

ξ2
4

2
Ii(ς

2
4,i − 1)� t,

Hi+1 = Hi +

[
ρIi − (γ + δ + μ)Hi

]
� t + ξ5Hi

√
�tς5,i +

ξ2
5

2
Hi(ς

2
5,i − 1)� t,

Ri+1 = Ri +

[
γHi − μRi

]
� t + ξ6Ri

√
�tς5,i +

ξ2
6

2
Ri(ς

2
6,i − 1)� t.

(26)

where ςi,j(i = 1, 2, 3, 4, 5, 6) stands for the standard Gaussian stochastic variables, having
distribution N(0, 1), and Δt is the constant time-step. The terms ξi > 0, (i = 1, 2, 3, 4, 5, 6)
reflect the intensities of the white noises.

To quantitatively validate the analytical conclusions, we require the parameters’ value
being used in model (3). In Example 1 and 2, we established two sets of parameters’ values
for this reason, and the population levels of each compartment at t = 0 were displayed.
For every scenario, we simulated the model over the interval [0, 80].

We formulated Theorem 2 based on the stochastic theory of stability, which indicates
that, under the condition of Rs < 1, the infection would continue to perish from the
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community regardless of the levels of the variables at t = 0. Furthermore, the theory
demonstrates that the infection will be eradicated from the community with unit probability.
Figure 3 shows that the random curves reach the infection-free state after a limited period
of time, confirming the analytical results.

Example 1. The values of the parameter are assumed as: φ = 0.12, τ = 0.002, β = 0.008,
ω = 0.09, μ = 0.005, δ = 0.005, α = 0.02, γ = 0.004 and ρ = 0.05, where the initial values of the
state vector are S(0) = 50,V(0) = 30,E(0) = 10, I(0) = 15,H(0) = 25,R(0) = 20. Similarly,
the intensities of the white noises are: ξ1 = 0.55, ξ2 = 0.25, ξ3 = 0.25, ξ4 = 0.33, ξ5 = 0.55,
ξ6 = 0.50. Using those same model parameters, we estimated Rs, which was found to be lower than 1.
As a result, the assumption of Theorem 2 is met, and hence the components of the solution of the
model adhere to the following relations:

lim
t→∞

sup
logE(t)

t
≤ 0, a.s.

lim
t→∞

sup
logI(t)

t
≤ 0, a.s.

Essentially, these relations explain the elimination of the virus from the community, as seen by
Figure 3. As a consequence, the derived research findings on elimination are valid and may be relied on.
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(b) Stochastic System (3)

Figure 3. Sample solutions of stochastic systems (3) with its associated deterministic counterpart.

Likewise, Theorem 3 guarantees the disease’s prevalence in the population given
permissible limits. By considering data from Example 2, we calculated the value of Rs

0, and
it was found that it is greater than unity. Figure 4 depicts the numerical results based on the
theorem’s assumptions. The figure implies that the infection persists inside the population,
and that there is persistence of the solution of the proposed model (3). This verifies the
conclusion of Theorem 3 in the case of deterministic model (1). These results further
elaborate that, when the related threshold parameter of the perturbed system exceeds unity,
the solution of the model (3) lies within the neighborhood of endemic equilibrium. Thus,
policymakers must provide strong preventative measures against various variations in
order to restrict the spreading of multiple strains throughout the community. Moreover,
Theorem 3 ensures the existence of an ergodic stationary distribution for model (3), and it
is confirmed by Figure 5.

Example 2. In this case, the chosen parameter values are of the form: φ = 2.12, β = 0.08,
ω = 0.07, μ = 0.001, δ = 0.005, α = 0.2, ρ = 0.004 and γ = 0.08. Similarly, the initial
population sizes of the state variables are S(0) = 50,V(0) = 30,E(0) = 10, I(0) = 15,H(0) = 25,
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R(0) = 20, whereas the intensities are given by ξ1 = 0.50, ξ2 = 0.35, ξ3 = 0.70, ξ4 = 0.50,
ξ5 = 0.41, ξ5 = 0.45. Considering the measles data and hence the estimated and fitted parameters,
we find that Rs

0 exceeds unity. It is also explored that the model parameters taken in this example
satisfy the premise of Theorem 3. We tested the model using this input, and the outcomes are
displayed visually in Figure 4. The figure shows that the disease tends to stay inside the community,
and the model exhibits a homogeneous stationary distribution in this situation.
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Figure 4. Sample solution profiles of the system (3) correspond to its deterministic counterpart.
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Figure 5. Ergodic stationary distribution of (3).

From Theorem 3, there is a single stationary distribution of system (3). To numerically
illustrate this statistical property, we present in Figure 4 and 5, the trajectories and the
associated joint density function for each class of the population. For a good visibility, we
offer the 3D and upper view of the aforementioned joint densities in Figures 6–10. This
indicates that the infection is still present in the population over time. We talk here about
persistence in the mean of the epidemic. In Figure 4, we illustrate the continuation of
all groups of the studied population. We remark that the stochastic trajectories fluctuate
around the deterministic solution with reasonable distances according to magnitude of
the noises.
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(a) S(t) individuals and V(t) individuals
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(c) S(t) individuals and E(t) individuals
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(d) S(t) individuals and E(t) individuals

(e) S(t) individuals and I(t) individuals
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(f) S(t) individuals and I(t) individuals

Figure 6. The right panel of the figure shows the joint two-dimensional densities at t = 3000 of
individuals S, V, E and I of system (3) correspond to data from Example 2—Test 2 (2nd column),
where different colors depict the density sizes. The panel on the left demonstrates the 3D graph of
the two-dimensional densities of S, V, E and I collectively (in this case, α = 1.99).
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(a) S(t) individuals and H(t) individuals
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(b) S(t) individuals and H(t) individuals

(c) S(t) individuals and R(t) individuals
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(d) S(t) individuals and R(t) individuals

(e) V(t) individuals and E(t) individuals
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Figure 7. The right panel of the figure shows the joint two-dimensional densities at t = 3000
of individuals S, H, R, V and E of system (3) correspond to data from Example 2—Test 2
(2nd column), where different colors depict the density sizes. The panel on the left demonstrates the
3D graph of the two-dimensional densities of S, H, R, V and E collectively (in this case, α = 1.99).
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(a) V(t) individuals and I(t) individuals
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(e) V(t) individuals and R(t) individuals
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(f) V(t) individuals and R(t) individuals

Figure 8. The right panel of the figure shows the joint two-dimensional densities at t = 3000 of
individuals V, I, H, and R of system (3) correspond to data from Example 2—Test 2 (2nd column),
where different colors depict the density sizes. The panel on the left demonstrates the 3D graph of
the two-dimensional densities of V, I, H, and R collectively (in this case, α = 1.99).
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(a) E(t) individuals and I(t) individuals
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(c) E(t) individuals and H(t) individuals
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(e) E(t) individuals and R(t) individuals

8 10 12 14 16 18

E

0

10

20

30

40

50

60

70

80

R

2

4

6

8

10

12

14
10-3

(f) E(t) individuals and R(t) individuals

Figure 9. The right panel of the figure shows the joint two-dimensional densities at t = 3000 of
individuals E, I, H, and R of system (3) correspond to data from Example 2—Test 2 (2nd column),
where different colors depict the density sizes. The panel on the left demonstrates the 3D graph of
the two-dimensional densities of E, I, H, and R, collectively (in this case, α = 1.99).
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(a) I(t) individuals and H(t) individuals
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(f) H(t) individuals and R(t) individuals

Figure 10. (First part) The right panel of the figure shows that the joint two-dimensional densities
at t = 3000 of individuals I, H, and R of system (3) correspond to data from Example 2–Test 2
(2nd column), where different colors depict the density sizes. The panel on the left demonstrates the
3D graph of the two-dimensional densities of I, H, and R collectively (in this case, α = 1.99).

8. Conclusions and Future Research

In this study, we presented a detail analysis of a stochastic model that describes the
spreading behavior of the measles virus while accounting for the white noises and the
influence of immunizations. It is assumed that the randomness being used in the model
is nonlinear, and that a person may lose the resistance after vaccination, implying that
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vaccination might create temporary protection against the disease. First of all, we formu-
lated a deterministic model and then it was expanded to a stochastic model. It is shown
that the stochastic model is both theoretically and practically viable by demonstrating that
the model has a global solution which is positive and stochastically bounded. Next, we
developed sufficient criteria for the disease’s elimination and permanence. Furthermore,
the presence of a stationary distribution is examined by constructing a suitable Lyapunov
function, wherein we noticed that the disease will persist for Rs>1

0 and that the illness will
vanish from the community for Rs<1

0 . We simulated the model against the available data of
measles in Pakistan during the first ten months of 2019, by using the conventional curve
fitting methods, and the values of the parameters were calculated therein. These values
of the parameters were used in simulating the model, and the theoretical findings of the
research were evaluated and conclusions were made. Simulations of the study suggest that,
in order to fully understand the dynamic behavior of the measles epidemic, time-delay
must be included in such analyses, and that advancements in every vaccine campaign are
unavoidable in order to stop or minimize the spreading of the disease.

We fit both stochastic and determinism models to known data on rubella in Pakistan
during the first ten months of 2019, and the values of parameters were obtained using
lsqcurvefit methods. These model parameters are used, and the threshold number, which is
around 13, is determined. This demonstrates that measles is extremely harmful and might
have a negative impact on this community if adequate control tactics are not implemented
in time. It also suggests that, if no appropriate measures are implemented, the cases of
the measles may increase in the coming years. To further reduce the transmission rate,
health authorities and lawmakers must launch awareness campaigns, mass immunizations,
particularly among youngsters, and, most crucially, care and treatment for people having
chronic conditions. This was also discovered that α serves as the most critical indicator to
the threshold parameter; thus, lowering the disease spreading co-efficient (by lowering the
household and sexual interactions of chronic patients with vulnerable) for acutely infected
individuals who become chronic is also an effective control to reduce the spread of measles.

In the next research studies, the authors intend to use fractional calculus and modify
this and the related model while utilizing different definitions of fractional derivatives such
as Riesz, Caputo, Atangana–Baleanu, Caputo–Fabrizio, and many others for capturing the
real dynamics of such and related diseases.
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Abstract: For a fractionally integrated Brownian motion (FIBM) of order α ∈ (0, 1], Xα(t), we
investigate the decaying rate of P(τα

S > t) as t → +∞, where τα
S = inf{t > 0 : Xα(t) ≥ S} is the

first-passage time (FPT) of Xα(t) through the barrier S > 0. Precisely, we study the so-called persistent
exponent θ = θ(α) of the FPT tail, such that P(τα

S > t) = t−θ+o(1), as t → +∞, and by means of
numerical simulation of long enough trajectories of the process Xα(t), we are able to estimate θ(α)

and to show that it is a non-increasing function of α ∈ (0, 1], with 1/4 ≤ θ(α) ≤ 1/2. In particular,
we are able to validate numerically a new conjecture about the analytical expression of the function
θ = θ(α), for α ∈ (0, 1]. Such a numerical validation is carried out in two ways: in the first one,
we estimate θ(α), by using the simulated FPT density, obtained for any α ∈ (0, 1]; in the second
one, we estimate the persistent exponent by directly calculating P(max0≤s≤t Xα(s) < 1). Both ways
confirm our conclusions within the limit of numerical approximation. Finally, we investigate the
self-similarity property of Xα(t) and we find the upper bound of its covariance function.

Keywords: fractional integrals; first-passage time; decaying rate; tail distribution

1. Introduction

The study of integrals with respect to the time-parameter of assigned stochastic pro-
cesses constitutes one of the main chapters of stochastic calculus and one of the main tools
for designing phenomenological models (see, for instance, [1–3] and references therein).
Fractionally integrated stochastic processes are the natural extensions of the above pro-
cesses in the context of the fractional calculus applied to the stochastic one (see, for in-
stance, [4,5]). They are a rather new topic which appears to be of interest both from a
theoretical point of view and for application (see [1] and references therein). Here, in partic-
ular, we focus on the (Liouville) fractionally integrated Brownian motion (FIBM) of order
α ∈ (0, 1], denoted by Xα(t) rigorously defined below. Our aim is to study the distribution
of τα

S = inf{t > 0 : Xα(t) ≥ S}, also denoted only by τ if there is no ambiguity about the
specified boundary S. This is the first-passage time (FPT) of Xα(t) through a boundary
(otherwise called a barrier or threshold) S > 0. We specifically address the problem of
studying the decaying rate of P(τα

S > t) as t → +∞.
The study of the distribution of the FPT τ of a stochastic process through a boundary

is a classic problem in probability theory; generally, it is difficult to obtain an explicit
expression of this law. However, it has been observed that in many interesting cases, the
survival function has a polynomial decay which does not depend on the boundary:

P(τ > t) = t−θ+o(1), as t → +∞, (1)

or, equivalently:

lim
t→+∞

log P(τ > t)
log t

= −θ, (2)
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where θ is a positive constant called persistence exponent and characterizes the profile of
the tail of the distribution of τ for large t values. The computation of this exponent
turns out to have connections with various problems in probability and mathematical
physics. In general, for self-similar processes, the persistent exponent θ does not depend
on the boundary, so this fact is natural in our case, since Xα(t) is actually self-similar (see
Section 4.1).

A well-known result concerns Brownian motion: in this case, the persistence exponent
turns out to be equal to 1/2; another important result is that of Goldman-Sinai, regarding
the case of integrated Brownian motion (see [6,7]), for which the persistence exponent
is θ = 1/4. A generalization of this result regards the study of the persistence exponent
for twice integrated, or more generally n-th time integrated, Brownian motion (see [3,8]
and the references therein). Another example is the study of the persistence exponent for
integrated fractional Brownian motion with Hurst parameter H (it was conjectured in [9]
that θ should be H(1 − H)). Moreover, the persistence exponent for the integrated stable
Lévy process was studied in [8].

Furthermore, the persistence exponent was studied for an α−fractionally integrated
centered Lévy process; in [10], it was proved that the corresponding persistence exponent
is a non-increasing function of the fractional order α; the class of processes considered
includes FIBM.

1.1. The Motivation

To our knowledge, none of the known results in the literature regard the theoretical
computation of the persistence exponent for FIBM Xα(t), nor have numerical estimates of
θ(α) been previously obtained. Thus, the aim of the present article is to numerically estimate
θ(α) as a function of α ∈ (0, 1) by using simulated trajectories of Xα(t). In particular, we
are able to validate the following conjecture numerically:

for α ∈ [0, 1] the persistence exponent of FIBM Xα(t) is given by θ(α) =
1

2(α + 1)
. (3)

Note that this formula agrees with the known results in the cases α = 0 and α = 1,
and it is also a non-increasing function of α, according to results in [10]. The idea and
some motivations of the conjecture are given in Section 2; the numerical validation of the
conjecture will be illustrated in detail in Section 3. Note that our validation is strongly based
on numerical simulations of long enough trajectories of the process Xα(t), which require
a lot of computation time; so, our analysis could be improved by using a more powerful
computer dedicated to the purpose. Unfortunately, we cannot compare our results with
those of other authors, since to our knowledge no numerical result of this kind is actually
present in the literature.

We emphasize that our study about the persistent exponent of Xα(t) with regard only
to the values of α ∈ [0, 1]; actually, (3) is only a local conjecture, holding for α belonging
to the unit interval. We have not considered extensions of the process Xα(t) to negative
values of α or to α > 1, nor have we studied the persistent exponent for these values of α.
In fact, the conjecture (3) cannot hold for negative α (see [3]) and for α > 1 (see [11]). The
reason we have limited ourselves to study the process Xα(t) and its persistent exponent for
α ∈ [0, 1] is due to the fact that we are mainly interested in stochastic processes, such as the
FIBM, that model neuronal activities, for which the appropriate range of the fractionally
integration parameter α is the unit interval.

The mathematical interest of a such study relies essentially on the need to further
investigate the probability laws of Xα(t) and its FPT in order to refine and complete
the mathematical setting of the FIBM. Furthermore, this study presents the possibility
of shedding light upon a wider class of fractionally integrated stochastic processes and
their applications. Indeed, the FIBM has interesting applications in the description of
the time evolution of stochastic systems: it appears, e.g., in the framework of certain
diffusion models for neuronal activity (see [1], but also [12] for similar models with different
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processes), where one expects that the inter-spike instants will have a heavy tail distribution,
i.e., a power-law decaying rate. The specific choice of fractionally integrated stochastic
processes (or, specifically, diffusions) in neuronal modeling allows us to devise models that
are more adherent to phenomenological evidence, such those affecting the neuronal spike
activity “with memory”for which, after a sequence of short inter-spike times, sequences of
long inter-spike times are detected, due to a sort of “adaptation ”([12]).

We can essentially remark that this article is motivated by the aim to study the behavior
of the persistent exponent for stochastic processes “with memory” such as the FIBM, by
varying the order α ∈ [0, 1] of fractional integration.

1.2. The Results

Our study of the decaying rate of the tail distribution of τα
S (namely its persistence

exponent) is essentially based on numerical simulations. Indeed, by using an ad hoc
algorithm implemented in an R-script, we perform simulations of long enough trajectories
of the process Xα(t), and the results confirm that for α = 0 (i.e., case of BM), one has
θ(α) = θ = 1/2, while for α = 1 (case of integrated BM ), one has θ = θ(α) = 1/4
(see [6,7]).

For 0 < α < 1, our numerical investigation shows that the exponent θ(α) decreases
as α increases (cf., for instance [3], in which the persistence exponent is revealed to be as a
non-increasing function of α). We provide numerical estimates and comparisons by means
of graphs and tables (see Section 3 for details and discussion of results).

1.3. In Summary

The paper is organized as follows. In the next section, we give the essential ingredi-
ents of our study and the main known results from which it starts, and we explain our
conjecture, successively supported by simulation results. In Section 3, we describe the
specialized algorithm for the simulation paths of the process Xα(t) and of its FPT. We
provide graphic results in some figures in order to show and compare the profiles of the
FPT density approximations for different values of fractional order α. We explain our
method to obtain the estimation of the persistence exponent for the simulated cases. Our
results are in agreement with the well-known result for the case of α = 1, and they provide
quantitative approximations for cases of α = 0.75, 0.5, 0.25, suitably justified under our
conjecture. Additionally, we also provide numerical estimates of the probability in (1) in
order to show the agreement between the study of the density and of the distribution of
the FPT under the conjecture assumption. In Section 4, we highlight some properties of the
fractionally integrated processes such as self-similarity that can be useful for implementa-
tion purposes of numerical simulations, and long-range dependence that, together with
the magnitude of persistence exponent, makes such processes suitable tools for modeling
biological dynamics with “memory”. In Section 5, we discuss the possible strategy to be
adopted for special Gaussian processes, including Gauss–Markov (GM) processes such as
Ornstein–Uhlenbeck (OU). Indeed, thanks to the fact that a GM can be transformed into an
OU process (which in turn can be written in terms of BM), one finds that the FPT of a GM
process is finite with probability one, and information about the tail behavior of the FPT
may be analytically obtained.

2. The Persistence Exponent for Integrated BM: Known Results and a Conjecture

Now, we recall the definition of the fractional integral of order α ∈ (0, 1) of Brownian
motion (FIBM):

Xα(t) =
1

Γ(α)

∫ t

0
(t − s)α−1B(s)ds, (4)

where Bt = B(t) is a standard Brownian motion (BM), and Γ denotes the Gamma Euler
function, i.e., Γ(z) =

∫ +∞
0 tz−1e−tdt , z > 0.

Taking the limit for α → 0+, one finds that X0(t) is BM itself, while for α = 1, one
obtains the ordinary integral of BM. The process Xα(t) starts from zero at t = 0 with
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probability 1 (w.p.1) and turns out to be Gaussian with mean zero (cf. [4]); its covariance
function as well its variance were studied at length in [1]. Actually, in [1] we have also
performed numerical simulations of trajectories of Xα(t), and the probability distribution
of τα

S was numerically studied.
As the case of BM is concerned, it is well-known that its FPT through the barrier S,

say τB
S , is finite with probability one, though the expectation E(τB

S ) = +∞ and the exact
formula holds (see, e.g., [13]):

P(τB
S ≤ t) = 2(1 − Φ(S/

√
t)) (5)

where Φ denotes the cumulative distribution function of a standard Gaussian variable.
Then (see also [14]):

P(τB
S > t) ∼

√
2
π

S√
t
, as t → ∞, (6)

i.e., the persistence exponent is θ = 1/2 (see also Example 2.2.2. in [12]). Instead, for
non-Markov Gaussian processes such as Xα(t) is, very few results are known about the
FPT through a barrier S.

Actually, there is an objective difficulty in numerically estimating the FPT distribution
using simulated trajectories of the process, since detecting the instant of the first passage
through the barrier S can be an arduous task, because the trajectory considered could
hit the barrier, but only after a number of simulation time steps which possibly exceed
the maximum allowed by the computer algorithm. Therefore, this kind of trajectory is
disregarded in the computation of those crossing the boundary within that maximum time
of simulation.

Now, we recall the behavior of the tail of the FPT τα of Xα(t) through the boundary S
for well-known cases.

CASE α = 0

This is the case when X(t) := X0(t) = B(t). From Formula (2), it follows that:

P(τB > t) = 2Φ
(

S√
t

)
− 1;

then, as easily seen by using the Hospital rule, one gets:

lim
t→+∞

P(τB > t)
√

t = lim
t→+∞

√
t
(

2Φ
(

S√
t

)
− 1

)
= S

√
2
π

,

that is P(τB > t) ∼ c/
√

t, as t → +∞, and the persistence exponent is θ = 1/2.

CASE α = 1

Now, we have X(t) := X1(t) =
∫ t

0 B(s)ds i.e., the ordinary integral of BM. The
exact result (see, specifically, [6,15]) is that θ = 1/4. Actually, the estimation of the FPT
of integrated BM through the barrier S, numerically obtained by computer simulation,
indicates that its probability density behaves as c · t−5/4, as t → +∞, that is, the persistence
exponent is θ = 1/4. According to this, we find that the tail of the FPT distribution of
integrated BM is heavier than that of τB, which behaves as t−1/2.

The constant c in front of t−5/4 was exactly calculated in [15] (see the last formula at
pg. 1292), and it is:

c =
S1/6325/12Γ(5/12)

265/12π
√

π
2F1(5/12; 7/4; 3/2; 3/4). (7)

This is the product of the result of Goldman ([6]) and 1/6. We also evaluated it by R
functions; for the case of S = 1, we obtained the value c = 0.1795595.
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Remark 1. One can observe that X(t) ∼ N (0, t3/3),; so, for fixed t, X(t) has the same distribu-
tion as X̃(t) = B(t3/3). Note that X(t) is different by X̃(t), which is a time-changed BM. Indeed,
if τ̃ denotes the FPT of X̃(t), then τ̃3/3 = inf{r > 0 : Br > S} = τB, and so:

P(τ̃ > t) = P(τ̃3/3 > t3/3) = P(τB > t3/3) ∼ c
t3/2 , as t → +∞. (8)

This is expected, since the process X̃(t) reaches the barrier S more quickly than in the case of BM
(being t3/3 much greater than t, for t large).

CASE α ∈ (0, 1): a conjecture

For the other values of α ∈ (0, 1), our numerical estimations show that the tail of the
FPT τα of the fractionally integrated BM Xα through the barrier S is heavier than that of
τB (corresponding to the case of α = 0). Precisely, we find that, as α increases in (0, 1], the
tail becomes heavier and heavier; that is, the persistence exponent θ(α) does not increase.
Finally, we confirm that the persistence exponent θ(α) is a non-increasing function of the
fractional order α. Indeed, we are confident that our following conjecture holds:

The persistence exponent for Xα(t) is:

θ = θ(α) =
1

2(α + 1)
, α ∈ (0, 1). (9)

Our conjecture is born from the following reasoning. First, we recall the results for the
Brownian motion and its FPT τB through, e.g., the boundary S = 1 (recall that the persistent
exponent is independent of the boundary), i.e.,

P(τB > t) = P(max
0≤s≤t

B(s) < 1) ∼ t−1/2, for large t (10)

and for the integrated Brownian motion and its FPT τ, i.e.,

P(τ > t) = P
(

max
0≤s≤t

∫ s

0
B(z)dz < 1

)
∼ t−1/4, for large t. (11)

By recalling the following distribution equality (see, for instance, [3]):

P
(

max
0≤s≤t

∫ s

0
B(z)dz < 1

)
= P

(
max
0≤s≤t

∫ s

0
(s − z)dB(z) < 1

)
(12)

we also have that

P(τ > t) = P
(

max
0≤s≤t

∫ s

0
(s − z)dB(z) < 1

)
∼ t−1/4 for large t. (13)

Note that the last approximation can be interpreted in the two following ways:

P
(

max
0≤s≤t

∫ s

0
(s − z)dB(z) < 1

)
∼ (t1/2)−1/2 (14)

or

P
(

max
0≤s≤t

∫ s

0
(s − z)dB(z) < 1

)
∼ (t−1/2)1/2. (15)

From this, we do our conjecture for Xα(t). We consider that

P(τ > t) = P
(

max
0≤s≤t

Xα(s) < 1
)
= P

(
max
0≤s≤t

∫ s

0
(s − z)α−1B(z)dz < 1

)
(16)
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and, by using the following distribution equality

P
(

max
0≤s≤t

∫ s

0
(s − z)α−1B(z)dz < 1

)
= P

(
max
0≤s≤t

1
α

∫ s

0
(s − z)αdB(z) < 1

)
we conjecture that, for large t,

P(τ > t) = P
(

max
0≤s≤t

1
α

∫ s

0
(s − z)αdB(z) < 1

)
∼
(

t
1

α+1

)−1/2
= t−

1
2(α+1) . (17)

The conjecture (17) is equivalent to:

P(τ > t) = P
(

max
0≤s≤t

1
α

∫ s

0
(s − z)αdB(z) < 1

)
∼
(

t−
1

α+1

)1/2
= t−

1
2(α+1) . (18)

In particular, the conjecture, expressed as in (17), can also be explained by means of (2)
and by interpreting the persistence exponent θ for large t as a function of the time t and α;
i.e., θ(t, α), such that:

θ(t, 0) =
1
2
=

1
2 · 1

in case of (t1/(0+1))−1/2 ∼ P
(

max
0≤s≤t

∫ s

0
(z − s)0dB(z) < 1

)

θ(t, 1) =
1
4
=

1
2 · 2

in case of (t1/(1+1))−1/2 ∼ P
(

max
0≤s≤t

∫ s

0
(z − s)1dB(z) < 1

)
and consequently,

θ(t, α) =
1

2(α + 1)
in case of (t1/(α+1))−1/2 ∼ P

(
max
0≤s≤t

1
α

∫ s

0
(z − s)αdB(z) < 1

)
.

Note that in the conjecture we include the case of α = 0 (i.e., that of the BM) with
persistence exponent θ = 1

2(α+1) =
1
2 , and the case of α = 1 (i.e., that of the integrated BM)

with persistence exponent θ = 1
2(α+1) = 1

2(1+1) = 1
4 ; all other cases for α ∈ (0, 1) have a

persistence exponent θ, such that 1
4 ≤ θ ≤ 1

2 with θ non increasing function of α.
Unfortunately, we are not able to show an analytical reason for the conjecture (17); our

heuristic motivation comes by comparing the above equations, and it is confirmed by our
numerical computations.

About the FPT density:
Actually, by taking the derivative in the expression P(τα > t) ∼ t−θ(α), the conjecture

(9) implies that the FPT density of τα behaves as const · t−(θ(α)+1), as t → ∞, where θ(α)
is the persistent exponent of FIBM Xα(t). Then, inspired by Goldman (see [6,15]), we will
suppose that the density of the FPT τα through the boundary S behaves as

cα · S1/6t−(3+2α)/(2α+2), (19)

as t → ∞, where the multiplicative constant cα is also estimated as a suitable constant
multiplied by α. We will validate our conjecture, that is, (19), by means of long trajectories of
the process obtained by computer simulation, samples of their FPT and the approximation
of the respective densities.

About the FPT distribution:
In addition, we will also work with the purpose

(i) to obtain a numerical estimate of the following probability for t “large enough”

P
(

max
0≤s≤t

∫ s

0
(s − z)α−1B(z)dz < 1

)
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(ii) to compare it with the function t−
1

2(α+1) and from their ratio to derive an estimate
of the multiplicative cα such that the asymptotic (in time) tail behavior of the FPT
distribution for S = 1 can be finally characterized as (see Section 3.2 for details)

cα · t−
1

2(α+1) .

All numerical validations of such a conjecture and approximation results are described
in detail in the next section.

3. The Simulation Algorithm and Numerical Results

In the following, we show and compare graphically the behaviour of the tail of the
density of FPT τα for some samples of simulated paths. The simulation algorithm partially
follows the R script adopted in [1]. Here, the script is specialized in order to investigate
the decaying profile of the FPT densities as the value of the fractional order α varies. The
algorithm requires knowledge of the covariance matrix of Xα(t), whose mathematical
expression can be found here in Section 4.2. After some statistical comparisons taking into
account the execution time of the simulation algorithm, the accuracy of the results and the
theoretical expected number of the sample paths crossing the specified boundary, the time
discretization step h is chosen as h = 0.05 here. Moreover, by means of the same sequence
of pseudo-random Gaussian numbers, we perform several cases corresponding to different
α values.

Specifically, and referring to the methods for generation of pseudo-random numbers
(see also [16]), we give the scheme of our R-algorithm:

STEP1. IN INPUT: we specify the size of the sample of paths we want to simulate, the
boundary, the fractional order, the time step, the seed for the random generation
routine, and the maximum time length of each path, i.e., the maximum number N
of time steps for each path;

STEP2. we calculate the covariance matrix C(ti, tj) with dimension N × N in h−equi-
spaced times ti, tj, i, j = 1, . . . , N;

STEP3. we construct the lower triangular matrix L(i, j) such that C = LLT by applying the
Cholesky decomposition algorithm to the covariance matrix C;

STEP4. by the ad hoc R-function (rnorm), for each path, we generate an N-dimensional
array z of standard pseudo-Gaussian numbers;

STEP5. we construct the simulated path with the specified correlation matrix C as the array
x = Lz;

STEP6. at each step of the path, we check if crossing of the boundary occurs, and if this is
the case, the corresponding FPT is recorded;

STEP7. we repeat STEPS 4-6 for each path in order to simulate the specified number
of paths;

STEP8. we provide the array of simulated FPTs of dimension equal to the size of the
total number of simulated paths (note that if a simulated path does not cross the
boundary in the specified (in input) maximum number of steps, a zero value is
recorded as its FPT).

STEP9. IN OUTPUT: the array of FPT is cleaned from zero values and it is used for
histograms and kernel density approximations for visualizations and comparisons
in figures.

3.1. Graphical and Approximation Results

On the left of Figure 1, we plotted the empirical FPT densities of Xα(t) (on the hor-
izontal axes time t) through the threshold S = 0.1 for values of α specified in the figure.
The empirical density has been obtained by means of 5000 simulated trajectories with a
time step equal to 0.05; to obtain it, we have counted only the trajectories which have
crossed the threshold within the time bound of 300 time steps h = 0.05, i.e., until time 15.
The simulated paths are obtained by applying the algorithm described at the beginning of
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this section, and their first passage times have been recorded. The plotted curves in the
figure are the results of the plot R-function of the density R-function applied to the array of
the FPT values of the simulated paths. We underline that the function density computes
(Gaussian) kernel density estimates with values for bandwidth “adjust ”parameter between
4 and 12, in such a way that greater values determine smoother curves. The plots of such
approximations are provided in the same figure to show how the fractional order α affects
the profiles of the FPT densities, and to allow comparisons.
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Figure 1. Left: Comparisons of FPT densities of Xα(t) through the boundary S = 0.1 for several
values of α. The samples are until 5000 simulation paths and the time discretization step is 0.05.
Right: Zoom on tails of densities (shown on the left) for several values of α.

Finally, on the right of Figure 1, we give an enlarged visualization of the tail of the
densities on the left of the same figure. We note that as α increases, the tails become heavier,
determining smaller values for the corresponding persistence exponents.

First, we show our simulation results for the well-known case of α = 1 in order to
validate our investigation approach. In Figure 2, (left) we show the simulated FPT density
(in red) of X1(t) through the threshold S = 0.1. The black curve is the plot of the function
we denote as

a(t) = S1/6 · t−(3+2α)/(2α+2) = S1/6t−5/4

with S = 0.1. Then, we estimated the value of the constant cα as the ratio between the
simulated density and the black curve a(t) at times ≥ 12 obtaining cα = 0.177. Actually, if
we denote the simulated density by d(t), we estimate:

cα =
d(t)
a(t)

in values of t ≥ t̄, t̄ being the starting time at which we observe a quite constant difference
between d(t) and a(t) values. The choice of times “large enough”depends on the value of
α. In this case, we apply this strategy in order to validate it, because we already know the
value of the constant c1, is, as previously specified, 0.1795595.

Moreover, the blue curve is obtained as the product of the black curve and the constant
cα, i.e., by denoting as b(t) the blue curve, we plot, in blue color, the function

b(t) = cα · a(t) = cα · S1/6 · t−(3+2α)/(2α+2).

that, for α = 1, S = 0.1 and cα = 0.17, specifically is

b(t) = 0.17 · (0.1)1/6 · t−5/4.
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Figure 2. Case α = 1. Simulation details as in Figure 1. On the left: the red curve is simulated.
The black curve is the plot of S1/6 · t−(3+2α)/(2α+2) = S1/6t−5/4 with S = 0.1. The blue curve
is then obtained as the product of the black curve and the constant cα, whose estimated value is
cα = 0.177. On the right is a zoom of the simulated density (red) and the approximation curve (blue)
corresponding to those on the left.

Ultimately, the matching between the two curves (visible in the enlarged visualization
on the right of Figure 2) is very good for large enough t. This means that our simulation
results are in according to well-known behavior of the FPT tail distribution, i.e., const · t−1/4,
corresponding to the persistence exponent θ(1) = 1/4.

In Figures 3–5, we show the results of the corresponding investigations, as performed
to provide the results shown in Figure 2 for the specified cases of α = 0.75, 0.5, 0.25,
respectively.
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Figure 3. Case α = 0.75. Simulation details as in Figure 1. On the left, the red curve is simulated. The
black curve is the plot of a(t) = S1/6 · t−(3+2α)/(2α+2) with S = 0.1. The blue curve is then obtained
as b(t) = cα · a(t), with an estimated value of cα = 0.15. On the right, a zoom of the simulated density
(red) and the approximation curve (blue), corresponding to those on the left.
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Figure 4. Case α = 0.5. Simulation details as in Figure 1. On the left, the red curve is simulated. The
black curve is the plot of a(t) = S1/6 · t−(3+2α)/(2α+2) with S = 0.1. Blue curve is then obtained as
b(t) = cα · a(t), with estimated value of cα = 0.1. On the right, zoom of the simulated density (red)
and the approximation curve (blue), corresponding to those on the left.
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Figure 5. Case α = 0.25. Simulation details as in Figure 1. On the left, the red curve is simulated. The
black curve is the plot of a(t) = S1/6 · t−(3+2α)/(2α+2) with S = 0.1. The blue curve is then obtained
as b(t) = cα · a(t), with estimated value of cα = 0.075. On the right, a zoom of the simulated density
(red) and the approximation curve (blue), corresponding to those on the left.

In these figures, the simulated FPT densities d(t) are plotted in red for processes Xα(t)
through the same threshold S = 0.1. The black curves are the plot of the function

a(t) = S1/6 · t−(3+2α)/(2α+2) (20)

with the specific value of α = 0.75, 0.5, 0.25, respectively. The estimates of cα are obtained
as cα = d(t)

a(t) for t ≥ t̄α, whose values are specified in Table 1. From the presented study,
we hypothesize that cα is approximately equal to the product α · c1 ≈ α · 0.177, even if we
believe further investigations needed to validate this. Finally, our approximation curves,
i.e., the blue curves, are obtained as

b(t) = cα · a(t) = cα · S1/6 · t−(3+2α)/(2α+2) (21)

for the values of α = 0.75, 0.5, 0.25, respectively.
Furthermore, the values of the persistence exponents for the considered cases are

reported in Table 1.
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Table 1. For the specified values of fractional order α, the persistence exponent θ, the estimates
of cα, the power decaying function a(t) · S−1/6, the value t̄α and the value of the adjust parameter
are reported. Note that here, S = 0.1, and the value of cα is evaluated as d(t̄α)/a(t̄α), with d(t) the
simulated density and a(t) is as in (20). The values of adjust are used in the evaluation of the density
R-function to obtain the smoothed simulated density d(t).

Numerical Approximations for FPT Density

α θ cα a(t) · S−1/6 t̄α adjust

1.0 1/4 0.17 t−5/4 14 4

0.75 2/7 0.15 t−9/7 13.5 4

0.5 1/3 0.10 t−4/3 13.9 8

0.25 2/5 0.075 t−7/5 14.5 4

We also recall that our approximation function (the blue curve in Figures 3–5) for the
specified values of α = 0.75, 0.5, 0.25 is finally obtained as b(t) in (21) by means of values of
Table 1, respectively.

Ultimately, for the considered cases, the obtained numerical results, the visible good
agreement between the simulated densities (red) and the proposed approximation curves
(blue) present in the figures support the proposed conjecture.

3.2. A Further Numerical Approximation

Now, specifically for the tail of the FPT distribution, we aim to give an additional
validation of our conjecture, but also a verification tool for previous results inherent to
the FPT density. We have already explained the idea of such numerical verification at the
end of Section 2. To this end, we realized a specific algorithm in an ad hoc R-script that is
implemented with the following steps:

• For a fixed value of t̂ and for a given integer n, we consider the equispaced times
0 < t1 < · · · < tk < · · · < tn = t̂, and we generate the pseudo-random values:

Etk =

{∫ tk

0
(tk − z)α−1B(z)dz

}
for k = 1, . . . , n

by means of the following approximation procedure (with m is specified in input):

Êtk =
tk
m

m−1

∑
i=1

(tk − ϑi)
α−1z(

√
ϑi) (22)

where 0 < θ1 < · · · < θm = tk are equispaced times and z(
√

ϑi), with i = 1, . . . , m − 1,
are pseudo-random numbers generated with Gaussian distribution, having zero mean
and

√
ϑi standard deviation.

• We record the value
Mn(t̂) = max

k=1,...,n
Êtk . (23)

• We repeat the previous steps for N times in order to obtain a sample of N pseudo-
random values

M(j)
n (t̂) = max

k=1,...,n
Ê(j)

tk
, j = 1, . . . , N;

we count how many M(j)
n (t̂) are such that

M(j)
n (t̂) < 1, j = 1, . . . , N,

and we denote such number as Mn(t̂).
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• Hence, we approximate the following probability as

P
(

max
0≤s≤t̂

∫ s

0
(s − z)α−1B(z)dz < 1

)
≈ Mn(t̂)

N

and we denote such estimated probability as p(t̂) = Mn(t̂)
N .

• Under the conjecture θ = − 1
2(α+1) , we compute the value ĉα as follows

ĉα =
p(t̂)

t̂−
1

2(α+1)

=
p(t̂)
t̂−θ

. (24)

We did many executions of such algorithm with different t̂ in order to find the value
of t̂ for which we can obtain the agreement between the estimated probability p(t̂)
and the expected value,i.e.,

p(t̂) ≈ αc1 · t̂−θ with c1 = 0.179.

Indeed, from the previous investigation by means of simulations, we already knew
that the approximation cα ≈ αc1 can be adopted for the considered cases.

Note that the value of ĉα in (24) depends on the value of t̂. This numerical strategy
also provides the value of the time t̂ at which a quite satisfactory agreement of the above
approximations is obtained.

The above algorithm has been implemented many times in order to also find the
optimal parameters n, m, N to guarantee a sufficient accuracy of the results (we limit
ourselves to the second digital digit) and not too long execution times. The results are
reported in Table 2 for specified values of α.

We remark that the above probability approximation p(t̂) is a punctual estimation;
indeed, it is computed in the time instant t̂ for which we found some results in agreement.
We also note that the values of t̂ in Table 2 are different from those of t̄ in Table 1, even if
these times are those for which we obtain the validation of our conjecture. This depends on
the two different numerical strategies used; however, we can say that both times, t̄ and t̂,
provide information about the starting time of the power decaying of the FPT probability
laws (density and distribution, respectively) whose order has been conjectured here.

Table 2. For the specified values of fractional order α, we report the following: the conjectured
persistence exponent θ, the number N of trials, the number n for the evaluation of the maximum
as in (23), the number m of nodes of the quadrature as in (22), the product αc1, the estimate ĉα as in
(24), the time value t̂ in which the probability is computed, the approximate probability p(t̂) and the
expected (conjectured) value αc1 t̂−θ .

Numerical Approximations for FPT Distribution

α θ N n m αc1 ĉα t̂ p(t̂) αc1 t̂−θ

1.0 1/4 100 75 30 0.179 0.177 15 0.09 0.0909

0.75 2/7 100 70 20 0.13425 0.1275 14 0.06 0.0631

0.5 1/3 500 60 20 0.0895 0.0732 12 0.032 0.0390

0.25 2/5 2000 20 20 0.0425 0.0425 8 0.0185 0.01849

4. Some Further Properties of the Process Xα(t)
4.1. On the Self-Similarity Property of Xα(t)

Let c be a positive constant; from the definition of the FIBM Xα(t), it follows:

Xα(ct) =
1

Γ(α)

∫ ct

0
(ct − s)α−1B(s)ds
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=
1

Γ(α)

∫ ct

0

(
ct − c

s
c

)α−1
B(s)ds;

by the variable change u = s/c, and by using the self-similarity property of Brownian
motion (B(ct) =

√
cB(t)), one finds the following equality in distribution:

Xα(ct) =
cα

Γ(α)

∫ t

0
(t − u)α−1√c B(u)du =

cα+1/2

Γ(α)

∫ t

0
(t − u)α−1B(u)du = cα+1/2Xα(t).

Thus, for c > 0 we obtain the self-similarity property of the FIBM:

Xα(ct) = cα+1/2Xα(t),

or
Xα(t) = c−(α+1/2)Xα(ct), (25)

where equality is meant in distribution.
From the self-similarity property (25), we obtain:

Xα(τS) = S ⇒ c−(α+1/2)Xα(cτS) = S,

and so Xα(cτS) = cα+1/2S.
Therefore, if S′ = cα+1/2S, it holds τS′ = cτS, namely

τS =
1
c

τS′ , (26)

where equality is meant in distribution.
Equation (26) provides a relation between the FPT-distribution of the FIBM Xα(t)

through the boundary S and the FPT-distribution through the boundary S′ = cα+1/2S; note
that, if c > 1, one finds that S′ > S.

Now, setting a = S′ = cα+1/2S, namely

c =
( a

S

) 1
α+1/2 ,

we obtain:

τa = cτS =
( a

S

) 1
α+1/2

τS. (27)

Thus, without loss of generality, one can study, e.g., the distribution of τ1, that is, the FPT
of the FIBM through the barrier S = 1. In fact, from (27), it follows:

τa = a
1

α+1/2 τ1. (28)

This fact can be useful during the numerical procedure to obtain the FPT of Xα(t) through
the barrier a.

4.2. On the Covariance Function of Xα(t)

Let Cα(u, t) = cov(Xα(u), Xα(t)) be the covariance function of Xα(t), u, t ≥ 0; we aim
to obtain an upper bound for Cα(u, t) for 0 ≤ u ≤ t.

We recall the following explicit expressions of Cα(u, t) and of Var(Xα(t)) (see Equa-
tions (10) and (13) of [1]):

Cα(u, t) =
1

Γ2(α)

[
tα+1uα

α2(α + 1)
− tHα(u, t)

α(α + 1)
+

Jα(u, t)
α(α + 1)

]
, (29)

Var(Xα(t)) =
t2α+1

(2α + 1)Γ2(α + 1)
, (30)
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where

Jα(u, t) =
∫ u

0
s(u − s)α−1(t − s)αds and Hα(u, t) =

∫ u

0
(u − s)α−1(t − s)αds. (31)

Let us suppose that 0 ≤ u ≤ t; then, we obtain:

0 ≤ Hα(u, t) ≤
∫ u

0
(t − s)2α−1ds; (32)

moreover:
0 ≤ Jα(u, t) ≤

∫ u

0
s(t − s)2α−1ds ≤ u

∫ u

0
(t − s)2α−1ds

=
u
2α

[
t2α − (t − u)2α

]
≤ ut2α

2α
≤ t2α+1

2α
. (33)

From (29), by using (33) and the fact that Hα(u, t) ≥ 0, we get:

Cα(u, t) ≤ 1
Γ2(α)

[
t2α+1

α2(α + 1)
+

t2α+1

2α2(α + 1)

]
,

namely:

Cα(u, t) ≤ 3t2α+1

2Γ2(α)α2(α + 1)
, 0 ≤ u ≤ t. (34)

Thus, for fixed u and t ≥ u, the covariance function of Xα(t) increases as t increases, but for
t → +∞ it grows at most as a constant × the power t2α+1, as the variance does.

5. Some Details on Gauss–Markov Process Fractionally Integrated

Remark 2. In principle, one could use the previous arguments to study the tail behavior of the FPT
of a fractionally integrated Gauss–Markov process Y(t). We recall that a continuous GM process
(see [1]) is in the form:

Y(t) = m(t) + h2(t)B(ρ(t)), (35)

where m(t), h1(t), h2(t) are continuous functions of t ≥ 0, which are C1 in (0,+∞), such that
h2(t) �= 0, and ρ(t) = h1(t)/h2(t) is differentiable non-negative, with ρ(0) = 0 and ρ′(t) > 0 for
t > 0. The process Y(t) has mean m(t) and covariance c(s, t) = cov(Y(s), Y(t)) = h1(s)h2(t),
for 0 ≤ s ≤ t. Besides BM itself, a noteworthy case of the GM process is the Ornstein–Uhlenbeck
(OU) process; in fact, any continuous GM process can be represented in terms of an OU process
(see, e.g., [17]).

Then, the fractional integral of a GM process Y(t) is defined by:

Xα(t) =
1

Γ(α)

∫ t

0
(t − s)α−1Y(s)ds. (36)

However, the covariance and variance function of Xα(t) are far more complicated than in the case of
FIBM (see [1])).

We conclude with a remark concerning the FPT of OU process.

Remark 3. Let Z(t) be OU process, starting from Z(0) = z > 0, driven by the SDE

dZ(t) = −μZ(t)dt + σdB(t),

for some μ, σ > 0. One has
Z(t) = e−μt(z + B(ρ(t))),

where

ρ(t) =
σ2

2μ

(
e2μt − 1

)
.
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Set now τZ(z) = inf{t > 0 : Z(t) = 0}, then τZ(z) = inf{t > 0 : B(ρ(t)) = z}, where equality
is meant in distribution, so ρ(τZ(z)) ≡ τB(z) = inf{s > 0 : B(s) = z}. Then, from (5), one gets

P(τZ(z) ≤ t) = 2(1 − Φ(z/
√

ρ(t)), and limt→+∞ P(τZ(z) > t)
√

ρ(t) = z
√

2
π . From this, it

follows that the first passage time of Z(t) through zero has a much lighter tail than that of BM;
in particular,

d
dt

P(τ(z) ≤ t) =
z√

2πρ3/2(t)
e−z2/2ρ(t)ρ′(t) ∼ const · e−μt, as t → +∞.

Therefore, E(τ(z)) < +∞, unlike the case of BM, for which E(τB) = +∞.

6. Conclusions and Final Remarks

In this paper, we have considered fractionally integrated Brownian motion (FIBM) of
order α ∈ (0, 1], that is, Xα(t) = 1

Γ(α)

∫ t
0 (t − s)α−1B(s)ds. The FIBM is an interesting process,

since it appears, e.g., in the framework of diffusion models for neuronal activity (see [1]),
where one expects that the inter-spike instants will have a heavy tail distribution, i.e., a
power-law decaying rate.

The goal of this paper was to perform a qualitative study of the decaying rate of the
tail distribution of τα

S , where τα
S = inf{t > 0 : Xα(t) ≥ S} is the first-passage time (FPT)

of Xα(t) through the barrier S > 0. Precisely, we have studied the so-called persistent
exponent θ = θ(α) of the FPT tail, such that P(τα

S > t) = t−θ+o(1), as t → +∞. This
study has been carried out by numerical simulation of long enough trajectories of the
process Xα(t). In fact, we have estimated θ(α), as the order α of fractional integration
varies in (0, 1], and we have showed that it is a non-increasing function of α ∈ (0, 1], with
1/4 ≤ θ(α) ≤ 1/2. This means that the tail of the distribution of τα

S becomes heavier and
heavier as α ∈ (0, 1] increases. Note that, to our knowledge, none of the known results
in the literature regard the theoretical computation of the persistence exponent for FIBM
Xα(t), except for α = 0 (in the case of BM) and α = 1 (in the case of integrated BM ). Our
numerical estimations confirm that for α = 0, one has θ(α) = 1/2, while for α = 1, one has
θ(α) = 1/4 (see [6,7]).

In particular, we have numerically validated a new conjecture about the analytical
expression of the function θ = θ(α), α ∈ (0, 1], namely θ(α) = 1

2(α+1) , α ∈ (0, 1]. Such a
numerical validation has been carried out by simulation of long enough trajectories of the
process Xα(t) in two ways. In the first one, we have estimated the persistent exponent
θ(α) by using the simulated FPT density obtained for any α. In the second one, we
have estimated the persistent exponent by directly calculating P

(
max0≤s≤t

∫ s
0 B(z)dz < 1

)
,

which is nothing but P(τα
1 > t). Both ways confirm our conclusions within the limits of

numerical approximation.
In the final part of the paper, we have investigated the self-similarity characteristics of

Xα(t) and we have found an upper bound to its covariance function; moreover, we have
given some details on the fractionally integrated Gauss–Markov process .

The arguments of this paper allow us, in principle, to also study the decaying rate of
the tail distribution (and therefore of the corresponding persistent exponent) of the FPT of
the fractional integral of order α of a Gauss–Markov process.
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Abstract: We study the problem of the first passage time through a constant boundary for a jump
diffusion process whose infinitesimal generator is a nonlocal Jacobi operator. Due to the lack of
analytical results, we address the problem using a discretization scheme for simulating the trajectories
of jump diffusion processes with state-dependent jumps in both frequency and amplitude. We obtain
numerical approximations on their first passage time probability density functions and results for
the qualitative behavior of other statistics of this random variable. Finally, we provide two examples
of application of the method for different choices of the distribution involved in the mechanism of
generation of the jumps.

Keywords: first passage time problem; Jacobi process; simulation algorithm; nonlocal operator;
Wright–Fisher model

1. Introduction

Recently, there has been growing interest in jump diffusion models in many applied
areas, ranging from computational neuroscience [1–3] to mathematical biology [4], metrol-
ogy [5] and queueing theory [6], just to name a few. In particular, they have been popular
in financial modeling, starting with the celebrated paper by Merton [7]. Since this, the use
of such models has been increasing in real markets and theoretical studies (see, for in-
stance, [8–12]), thanks to their ability to account for some empirically observed effects
that otherwise would not be explained by traditional diffusion-based models. A compre-
hensive discussion on this matter can be found in [13]. Roughly speaking, by choosing
the parameters of the jump process appropriately, one can generate a wide variety of
dynamics incorporating relevant effects without relying only on a very large amount of
noise. In all these application contexts, it is often required to face the problem of the
first passage time (FPT) of the process describing the dynamics of the model through a
boundary [14,15]. Depending on the context, this crossing is interpreted in a different way,
but from a mathematical point of view, its treatment is formally the same. Despite being a
classical problem [16], its resolution is non-trivial, and exact analytical results are available
only in a few cases even for pure diffusion processes [17,18].

Early attempts to introduce jumps occurring at exponential times can be found
in [19–24], where to maintain mathematical tractability, the jumps were assumed to be
of a constant amplitude or coming from a fixed distribution. More recently, results on
generalized mechanisms of the generation of jumps have appeared, assuming that the jump
size depends on the value of the process [25,26] or the state dependence is for both size
and frequency [27]. Following this direction, we consider a family of processes with state-
dependent jumps whose diffusion part evolves according to a Jacobi (or Wright–Fisher)
model. In [28], the authors introduced and studied nonlocal Jacobi operators, which
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generalized the classical (local) Jacobi operators. Apart from some analytical results ob-
tained in [27], the literature on the FPT problem for these processes is scarce. For this
reason, the study of approximations and simulations of the involved quantities constitutes
a fundamental tool.

In this paper, we use a discretization scheme for simulating sample paths of these
jump diffusion processes with state-dependent jump intensities. At each time step of the
algorithm, a downward jump can occur with a probability and amplitude that depend
on the distribution characterizing the jump component and the actual state of the process.
Between each jump epoch, the dynamics of the constructed process are purely diffusive
and are simulated using the Milstein’s discretization method [29].

From the simulations of the trajectories of the process, we obtain approximations of
the density of the FPT through a constant boundary for different choices of the measure
describing the distribution of the jumps. In particular, in the case of the Jacobi process
with jumps, we consider exponential and Pareto distributions. From the simulations, we
observe that despite the presence of only downward jumps, the decay of the tails of the
FPT pdfs is fast, as it happens for the diffusion processes without jumps. Moreover, under
specific initial conditions, we might observe a bimodal FPT pdf. This behavior suggests
the existence of interactions between the two components of the dynamics, resulting in a
mixture of two distributions. From the reiteration of the simulation procedure, we also
studied the behavior of some quantities related to the FPT, namely the mean and the
variance of the FPT as a function of the parameters characterizing the jump component
and the average number of jumps, and we observed a non-trivial behavior for the average
jump size, which had a non-monotone behavior as a result of the state dependence of the
jumps for both frequency and amplitude.

Throughout this paper, we use the description of the process involving an infinitesimal
generator. This approach is more convenient due to the fact that the usual formulation
using a stochastic differential equation is made less intuitive by the presence of possibly
complicated random measures. Moreover, the simulation strategy adopted here only needs
the knowledge of a distribution Π, which will be defined later, and the values of the drift
and diffusion parameters. Even the Bernstein function associated with the generator, which
is essential for the calculation of the analytical results, does not need to be known explicitly.

The algorithm that we present is specialized for a non-local Jacobi operator, but since
the continuous part of the trajectory is constructed using a classical discretization scheme,
the procedure can be applied to other non-local perturbations of classical operators, as long
as it is proven that the resulting operator is still the generator of a Markov process.

This paper is structured as follows. In Section 2, we introduce the Jacobi processes
with jumps and the qualitative behavior of their trajectories. In Section 3, we present the
problem of the FPT through the analytical results available in the literature. Section 4 is
devoted to the description of the numerical procedure that simulates the sample paths
of the process. In Sections 5 and 6, we provide two examples of use of the discretization
scheme for different choices of the distribution involved in the mechanism of generation
of the jumps. Finally, in Section 7, we discuss the obtained results and highlight possible
future works.

2. Jacobi Processes with Jumps and Their First Passage Time Problems

Let us denote with Y = (Yt)t≥0 the generalized Jacobi process with jumps introduced
in [28]. For this kind of Levy-type process, the best description is given in terms of
infinitesimal generators, which are functional operators whose terms contain the drift
part of the process, the diffusion component and the contribution of the jumps using the
integral with respect to a random measure (for a complete description of Feller semigroups
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and generators, see, for instance, [30]). The process Y is a Feller process on [0, 1], whose
infinitesimal generator is given for a smooth function f on [0, 1] by

JY f (y) = J f (y) +
∫ ∞

0
( f (e−ry)− f (y))

Π(dr)
y︸ ︷︷ ︸

jump part

(1)

where J is the classical Jacobi operator

J f (y) =
σ2

2
y(1 − y) f ′′(y)︸ ︷︷ ︸
diffusion part

− (λy − μ) f ′(y)︸ ︷︷ ︸
drift part

with σ2 > 0, where Π is a finite, nonnegative Radon measure on R+ with � =
∫ ∞

0 rΠ(dr) < ∞.
Throughout this paper, we impose the following assumption that guarantees that

y = 0 is an entrance boundary:

μ > �+
σ2

2
. (2)

The latter condition is a standing assumption in [28] and extends the Feller classifica-
tion of boundaries in the presence of jumps. The results presented here could be obtained
with an arbitrary set of parameters satisfying these conditions.

In [28], it is shown that JY, which is obtained as a nonlocal perturbation of the
generator of the classical Jacobi process, is indeed the generator of a Markov process on
[0, 1] with càdlàg trajectories. The hypotheses on the Π measure guarantee that JY satisfies
the positive maximum principle which, together with the Hille–Yosida–Ray theorem for
Markov generators, ensures that JY is the infinitesimal generator of a Markov semigroup
on C1[0, 1] (for more technical details, see [28]). As a consequence, the jumps are only
downward, and both the amplitude and the intensity of the jumps are state-dependent. In
fact, the process jumps from state y to state e−ry at a frequency given by Π(dr)/y, which
is inversely proportional to the achieved state. When the process is close to the lower
boundary (i.e., zero), the average number of jumps is high, but the corresponding jump size
is small, as the support of the distribution of the amplitude of the jumps is [0, y]. Conversely,
for higher values of the state of the process, the probability of jumping becomes smaller,
whereas the average jump size depends on Π. See Figure 1 for an example of two possible
paths of the process under investigation.

Figure 1. Examples of trajectories of Y for α = 1 (left) and α = 2 (right) while fixing the other
parameters. At the bottom of each plot, each red vertical segment represents the time point of a jump.

Since this process can perform a finite number of jumps in a finite time, we can derive
a path interpretation of this Markov process (see [31]). The stochastic process Y starts from
y0 by undergoing the same dynamics of the classical Jacobi process until a random time T ,
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at which the process performs a downward jump. The survival probability up to time t of
T is given by

P(T > t) = e−
Π(R+)

Yt . (3)

After a jump, the process restarts from the new position, undergoing the diffusion
dynamics until the next jump.

Different choices of Π allow different sizes for the jumps. The more mass Π concen-
trates around zero, the smaller, in principle, the amplitude of the jumps is. If Π admits
large values with high probability, then the state of the process can almost be set to zero
after the jump.

Bernstein and Bernstein–Gamma Functions

In this section, we recall a few definitions and results that will be useful in the following.
We recall that a function φ : [0, ∞) → [0, ∞) is a Bernstein function if it is infinitely

differentiable on R+ and (−1)n+1 dn

dun φ(u) ≥ 0 for all n = 1, 2, . . . and u ≥ 0 [32].
We observe that JY is uniquely determined by σ2, Π, μ and λ. In particular, by fixing

λ, the triplet (σ2, Π, μ) constitutes a Lévy triplet of the Bernstein function φ defined, for
u ≥ 0, by

φ(u) = u +

(
2
σ2 μ − 2

σ2 �− 1
)
+

2
σ2

∫ ∞

0
(1 − e−ur)Π(r)dr (4)

where Π(r) =
∫ ∞

r Π(du) such that for a fixed λ, there is a one-to-one correspondence
between φ and JY (see [27] for more details).

In [33], the authors wrote Wφ for the solution in the space of positive definite functions
for the recurrence equation Wφ(z + 1) = φ(z)Wφ(z), with Wφ(1) = 1, z ∈ C and Re(z) > 0.
For any n ∈ N, we set for the Bernstein-Gamma function

Wφ(n + 1) =
n

∏
k=1

φ(k) (5)

with the convention ∏0
k=1 φ(k) = 1. Note that the gamma function appears as a special

case of the Bernstein–gamma function Wφ for φ(n) = n.
Using this function, it is possible to introduce the mapping

2F1(a, b, φ; x) =
∞

∑
n=0

(a)n(b)n

n!
xn

Wφ(n + 1)
(6)

with (a)n = Γ(a+n)
Γ(a) , n ∈ N∪ {0} and a ∈ C, which generalizes the Gauss hypergeometric

function that appears as a special case for Π ≡ 0 (see [27] for more details).
We are now ready to formulate the problem of the first passage time of Y through a

constant boundary and resume the existing analytical results.

3. The First Passage Time Problem

Let us consider the evolution of the stochastic process Y in the presence of a constant
threshold S ∈ (0, 1). We are interested in the random time in which the process reaches the
threshold S for the first time (i.e., the random variable):

TS = inf{t > 0; Yt ≥ S|Y0 = y0 < S}. (7)

The direct problem of the first passage time consists mainly of finding the distribution
of TS. Although it is a classical and easy-to-state problem, its solution is, for most of
the stochastic processes, not available [15,16]. An analytical closed-form expression for
the probability density function g(t) of TS is not known even for the classical Jacobi
process [34]. Often, it is convenient to evaluate the Laplace transform of g(t) in order to
obtain information on the distribution, the probability of crossing the threshold and the
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moments of TS. For the Jacobi process with jumps, the Laplace transform of g(t) is known
to be [27], for any 0 < y0 < S < 1 and q > 0, the following:

Ey0

[
e−qTS

]
= 2F1(κ(q), θ(q); φ; y0)

2F1(κ(q), θ(q); φ; S)
, (8)

involving the mapping defined in Equation (6), where φ is a Bernstein function and κ(q)
and θ(q) are solutions to the system{

κ(q)θ(q) = 2q
σ2

κ(q) + θ(q) + 1 = 2λ
σ2 .

(9)

In principle, the moments of TS of any order can be computed using derivatives of
Ey0

[
e−qTS

]
when they exist. The first moment is known to have the following explicit

analytical expression [27]:

Ey0 [TS] =
2
σ2

∞

∑
n=0

(2λ/σ2)n

n + 1
Sn+1 − yn+1

0
Wφ(n + 2)

. (10)

However, the dependence of Ey0 [TS] on the parameters of the process is non-trivial
since the contribution of the drift is hidden in the function Wφ, which merges the contribu-
tion of the deterministic and diffusion components.

Using terminology that comes from the context of computational neuroscience, we
distinguish between two possible regimes to characterize the tendency of the process to
cross the barrier. If the asymptotic mean value of the process (The process has a stationary
distribution, which is a generalized beta distribution.) is larger than S, then the process is
in the so-called suprathreshold regime. In the classical case, in this regime, the crossings
are regular, and the dynamics are driven mainly by the drift part. If the asymptotic mean
is smaller than S, then the process is said to be in the subthreshold regime, and the noise
plays a prominent role in the crossing of the threshold. The Jacobi process with jumps is in
the suprathreshold regime if

μ > aλ +
∫ ∞

0
e−rΠ(r)dr. (11)

The derivation of higher-order moments from the Laplace transform is impractical,
involving at least second derivatives of the generalized Gaussian hypergeometric function
in Equation (6) with respect to the parameters. For this reason, it is fundamental to
construct an algorithm to simulate trajectories for the family of one-dimensional jump
diffusion processes, with the state-dependent intensity generated by the functional in
Equation (1) for different choices of Π.

4. The Discretization Scheme for the First Passage Time

We use a discretization scheme for simulating the sample paths of jump diffusion
processes with state-dependent jump intensities. Due to the dependence of the jumps on
the current state of the process, in terms of both frequency and amplitude, the times when
the jumps occur cannot be drawn in advance in the simulation. For this reason, at each time
step of the algorithm, a value for r is sampled from the distribution Π(dr), and according
to the probability in Equation (3), a jump from Yt to e−rYt may occur. Then, the trajectory
moves according to the diffusion from state e−rYt if there was a jump; otherwise, it moves
according to the diffusion from state Yt. Between the jump epochs, the dynamics of the
constructed process are purely diffusive and are simulated using Milstein’s discretization
method, which is a generalization of the Euler–Maruyama scheme used for stochastic
processes with multiplicative noise [29].
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When the intensity of the point process driving the jump component is state-dependent,
the error generated in the construction of the continuous component can be amplified
in the simulation of the jumps and depends on the size of the time step. However, this
algorithm is related to the discretization schemes for which it was proven in [35] that the
method converges and the weak convergence order equals the order of the adopted time
step. This means that the simulation error is of the same order as that of the discretization
schemes for pure diffusions.

To avoid discretization errors, one can think of using an exact algorithm that simulates
directly the hitting times without constructing the whole paths, as in [10] (see also [36,37]).
For the special case of the Jacobi diffusion see [38].

However, the lack of knowledge for many functions and properties concerning these
processes and the difficult implementation of the generalized functions involved in the
transition density and the stationary distribution of the process may prevent the use of
these exact strategies.

The proposed discretization strategy is light and very simple to implement, and it has
an advantage: we can simulate the process just from the distribution Π without knowing
explicitly the associated Bernstein function φ. Moreover, it relies on the study of the process
in terms of its generator. Using generators in this context is more convenient with respect
to the usual definition of the process as solution to a stochastic differential equation (SDE).
Indeed, for a state-dependent jump process, the theory of SDEs is still incomplete and
involves integrals with respect to some random measures that make both the numerical
implementation and the interpretation of the dynamics hard.

In this paper, we focus mostly on the simulation of the paths of the process in order to
answer the problem of the first passage time. For this reason, we construct the trajectory
until it reaches the level S, and we record the time of this crossing. We repeat this procedure
n times, and we use the collected FPT times to find an approximation of the FPT density
and other statistics for which it is not possible to have analytical results.

In Algorithm 1 we illustrate a scheme of the sampling procedure we use to draw an
FPT from the process.

Algorithm 1 Sampling FPT

Require: y0, S, dt, σ2, λ, μ
Ensure: FPT sample tS

while yi < S do
r ∼ Π(dr)
j ∼ Be

(
1 − exp(− r

yi−1
dt)
)

if j = 1 then � a jump occurs
y∗ ← eryi−1

else if j = 0 then � a jump does not occur
y∗ ← yi−1

end if

g(y∗) ←
√

σ2

2 y∗(1 − y∗)
yi ← y∗ − (λy∗ − μ)dt + g(y∗)ΔWi +

1
2 g(y∗)(g(y∗))′((ΔWi)

2 − dt) � diffusion
end while
tS = i

5. Example: Exponential Distribution

We consider a parametric family of non-local Jacobi operators of the form in Equation (1),
for which

Π(r) =
∫ ∞

r
Π(du) = e−αr, r > 0 (12)

where
Π(dr) = αe−αrdr (13)
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is an exponential probability density function with a parameter α. In particular, we will
choose α ≥ 1 throughout the paper as in [28].

Moreover, to guarantee from the assumption in Equation (2) that y = 0 is an entrance
boundary, we have

μ >
σ2

2
+

1
α

. (14)

The presence in the last inequality of a positive term 1/α suggests that the maximum
noise amplitude has to be smaller than in the classical case. A large value of σ can lead
the process across the lower boundary, a condition that we want to avoid. Unfortunately,
classical approximation schemes cannot preserve the properties of the boundaries inde-
pendent of the choice of the time discretization step, even if the theoretical assumption
in Equation (14) is satisfied [39,40]. In particular, for the Jacobi process, even the splitting
methods do not preserve the boundary behavior, and other strategies such as the balanced
implicit split step (BISS) method, which is able to preserve the boundary structure, are
lacking in accuracy (see [41] for an extensive discussion).

Finally, in this case, the regime is a suprathreshold if

μ > aλ +
1

1 + α
, (15)

We observe that, as expected, the downward jumps make the asymptotic mean of Y,
μ
λ − 1

1+α , smaller than that of the classical Jacobi process (μ/λ):

Remark 1. The integro-differential operator JY from Equation (1) takes the form

J f (y) =
σ2

2
y(1 − y) f ′′(y)− (λy − μ) f ′(y)−

∫ 1

0
( f (r)− f (y))

rα

yα+1 dr. (16)

Moreover, � = 1/α, and simple algebra yields to the explicit expression of the corresponding
Bernstein function:

φ(u) = u +
2
σ2

(
μ − 1

u + α

)
− 1. (17)

However, the application of the proposed discretization scheme does not require the knowledge of
the explicit expression of the infinitesimal operator nor of the Bernstein function φ. This constitutes
a great advantage when working with distributions whose expression prevents easy calculation of
the involved quantities.

We want to investigate the behavior of the FPT density and other statistical quantities
of this random variable under a change in the parameters characterizing the distribution
Π. Precise analysis of these moments is made difficult by the presence of the generalized
hypergeometric function in the expression of the Laplace transform (Equation (8)), while a
formal analytical study on the FPT pdf is prevented by the lack of explicit results. For these
reasons, the information obtained from the simulations are of great importance. In the
following, we show some of the qualitative statistical behaviors of TS using the simulation
scheme described in the previous section.

Let us consider the jump diffusion process Y generated by the non-local operator in
Equation (1), with Π given in Equation (13).

In Figure 1, we show two possible realizations of Y until it reaches the threshold S
for the first time. We can see the impact of different choices of α on the trajectories of the
considered stochastic process. A lower value of α implies that possibly larger values r are
sampled from Π, resulting in a lower frequency of the jumps in principle and a higher
size for them. However, the state dependence of the jumps makes the jump generation
mechanism more complex. Moreover, these pictures display how the jumps were more
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dense when the process was close to the lower boundary, as expected from the probability
in Equation (3).

In [27], it was shown, using Equation (10), that the mean FPT decreases as α increases.
This is due to the fact that for large values of α, a small value r is most likely sampled
from Π, affecting the probability (Equation (3)). Using simulations, we observed the
same behavior for the variance of TS as a function of α (not shown). This is explained
equivalently by the fact that the average number of jumps decreased as α increased (see
Figure 2). However, the dynamics was not as simple as it may appear due to the presence
of state-dependent jumps. Indeed, it is interesting to observe the behavior of the average
length of the jumps as a function of α in Figure 2. Up to some value of α, the average size
of the jumps increased with α. This behavior could sound counterintuitive, since lower
values of α imply, on average, a higher gap between y and e−ry. However, we have to take
into account that jumps were more frequent when y was small, and since the support of
the distribution of the amplitude of the jumps was [0, y], most of the jumps were short.
Therefore, roughly speaking, even if there is a large jump that pushes the process to the
lower boundary, it will be compensated for by many small jumps close to the zero level.
Even for higher values of α, we observed that the average length of the jumps started to
decrease. In this case, very large jumps occurred with a small probability, so on average,
the size of the jumps decreased.

α

ju
m

p-
si

ze

jum
p-num

ber

Figure 2. Average jump lengths (black solid line) and average number of jumps (red dashed line)
as a function of α. Confidence bands for the jump lengths (gray solid line) were obtained for the
5th and the 95th percentiles. The averages were taken over 5000 simulated sample paths of Y from
Equation (1) for μ = 1.1, σ = 0.1, λ = 1.1, x0 = 5 × 10−4, S = 0.9 and time step dt = 0.01.

If a diffusion process admits a stationary distribution, then the corresponding FPT pdf
is known to have asymptotically, for large times and large boundaries, an approximately
exponential distribution whose mean is related to the average first passage time from
the origin to the boundary (see [42] for the Ornstein–Uhlenbeck process, ref. [43] for one-
dimensional diffusion processes and [44] for Gauss–Markov processes). Since the presence
of downward jumps decreases the asymptotic mean of the process with respect to the case
without jumps and increases the mean FTP, it is natural to ask whether the FPT pdf tail
decays slower.

In Figure 3, we show approximations of the FPT pdfs obtained from histograms of
5× 104 simulated first passage times of Y through S for 6 different choices of α. As expected,
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we can appreciate that the threshold S was more likely to be crossed earlier for larger values
of α, but the tail decay remained qualitatively the same.

To measure the tail decay, we selected the densities g̃ of the histograms after the third
quartile, which were the heights of the bars on the right-hand side of the histogram that
summed to a probability approximately equal to 0.25, and fit them with two different
models. More specifically, we used an exponential function and a power law function,
defined by

Me : h = β0 + β1e−β2t (18)

Mp : h = β0 + β1t−β2 . (19)

The estimation of the parameters (β0, β1, β2) for the two models was performed using
non-linear optimization software.

In the legends of Figure 3, we display the logarithm of the mean squared error (MSE)
as a measure of goodness of fit for both curves. We can see that although both curves
approximated the tails well, the approximation error of the exponential function was always
the smallest. This might indicate that the tails of the FPT pdf had an exponential decay.

Figure 3. Histograms of FPT data obtained from 5 × 104 simulations of trajectories of Y for 6 different
choices of α. Other parameters were μ = 1.1, σ = 0.1, λ = 1.1, y0 = 5 × 10−5, S = 0.9 and
dt = 0.01. The black vertical line indicates the third quartile, marking the beginning of the tail of the
approximated FPT pdf. The legend shows the MSE in logarithmic scale of the estimation of the tails
made with exponential and power curves.

Interestingly, the FPT distribution could show a bimodal behavior when the starting
point y0 was close to the threshold S. This behavior followed from the fact that if no jump
occurred in the very first moments, then the positive drift quickly pushed the process
toward S (first peak). On the other hand, if a large jump took place before the process was
absorbed right away in S, then the process would take a longer time to reach the threshold
with a distribution showing a longer tail (second peak). In other words, one could see
this distribution as a mixture of two distributions of the first passage time: one related
to a Jacobi process without jumps and the other related to a Jacobi process with jumps
and a starting point y0 far from S, where the weights of such a mixture depend on the
probability of the process to perform a jump before the drift pushes it across the threshold
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S. An example of this behavior can be appreciated in Figure 4, where to better stress the
bimodality of the distribution, we display an histogram of the logarithm of the FPT in a
setting where y0 is close to S.

log(t)

Figure 4. Histogram of the logarithm of FPT data obtained from 5000 simulations of trajectories of Y,
with α = 1 and y0 = 0.85. All other parameters were chosen as in Figure 3.

6. Example: Pareto Distribution

We consider a parametric family of non-local Jacobi operators as in Equation (1)
for which

Π(r) =
∫ ∞

r
Π(du) =

{( η
r
)θ if r ≥ η,

1 if r < η

where

Π(dr) =

{
θηθ

rθ+1 dr if r ≥ η

0 if r < η
(20)

is a Pareto Type I probability density function with a shape parameter θ > 0 and location
parameter η > 0. In order to match the assumption that � =

∫ ∞
0 rΠ(dr) < ∞, we will

choose θ > 1 throughout this paper. Moreover, to guarantee that y = 0 is an entrance
boundary, from Equation (2), we have

μ >
θη

θ − 1
+

σ2

2
. (21)

In this case, the regime is a suprathreshold if, for r ≥ η, the following is true:

μ > Sλ +
∫ ∞

0
e−rΠ(dr) = Sλ +

∫ ∞

0
e−r

(η

r

)θ
dr = Sλ + ηθΓ(1 − θ), (22)

where the last equality involving the integral representation of the gamma function holds
only for Re(θ) > 1, which is a case that cannot be considered here.

An analytical expression of the moments of TS in the case of the Pareto distribution is
not known and neither is the expression of the Bernstein function associated with the non-
local operator. Using the discretization scheme, we can find an estimation of the mean and
variance of TS as a function of the two parameters characterizing the Pareto distribution.
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In Figure 5, we show the behavior of the variance of the FPT when tuning simultane-
ously the scale and location parameters θ and η, respectively. The variance increases with
the location parameter η. In fact, the support of the Pareto distribution is the interval [η, ∞],
meaning that a large value r ∈ [η, ∞] will be sampled by the algorithm if η is large. At the
same time, the variance of TS decreases as θ increases due to the shape of the distribution
for large values of θ that favour small values of r. In order to match Equation (21) for all
the couples (θ, η), the chosen drift is relatively strong (μ = 10.5), which explains why the
resulting variance was small in all the considered cases. Qualitatively, the same behavior
can be observed for the mean FPT (not shown here), where the mean FPT increases with η
and decreases as θ increases.

Figure 5. Variance of the FPT as a function of the scale and location parameters of the Pareto
distribution. The heatmap was obtained by simulating 2000 FPTs for each couple of parame-
ters. The trajectories were obtained from Equations (1) and (20) with μ = 10.5, σ = 0.1, λ = 1.1,
x0 = 5 × 10−5, S = 0.9 and dt = 0.01.

Under the assumption of θ > 2, which guarantees finite variance for the Pareto
distribution, we consider the two following parameter choices:

Case 1: θ = 1 +
√

2, η =
√

2
1+

√
2
;

Case 2: θ = 1 +
√

2, η =
√

2
2(1+

√
2)

.

These choices guarantee expected values equal to 1 and 1/2, respectively, and vari-
ances equal to the square of the means, as in the exponential case, allowing a comparison
between the two examples.

In Figure 6, we consider the histograms of the FPT for the two cases. As performed
in the previous section, we applied the fitting models of Equations (18) and (19) to the
tails of the distributions. Additionally, in this case, both models fit well, but the use of an
exponential curve resulted in a lower MSE. The Pareto distribution is a classical example of
a heavy-tailed probability distribution, meaning that large values of r in the mechanism
of generation of jumps can be chosen by the algorithm. It could be natural to expect that
the shape of the FPT pdf could be stretched by the heavy tails of the Pareto distribution.
However, for our parameter choice, the tail of the Pareto distribution became fatter than
the one of the exponential distribution only for values with negligible probabilities.
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Case 1 Case 2

Figure 6. Histograms of 2 × 104 simulated FPT data. The parameters of the Pareto distribution
were those of Case 1 (left) and Case 2 (right). All other parameters were chosen as in Figure 3. The
black vertical line indicates the third quartile, marking the beginning of the tail of the approximated
FPT pdf. The legend shows the MSE in a logarithmic scale of the estimation of the tails made with
exponential and power curves.

7. Discussion

Due to the lack of analytical results regarding the FPT of jump diffusion processes, for
which the jumps are state-dependent in terms of both frequency and amplitude, the use of
simulations is crucial. Using a discretization scheme, we simulated the trajectories of these
processes, and we studied the problem of their passage times through a constant boundary.
The method is specialized for a Jacobi process with jumps but can be used for any Markov
process whose infinitesimal generator is obtained as a non-local perturbation of a classical
operator. We obtained approximations on the FPT pdf for different choices of the measure
describing the distribution of the jumps. In particular, in the case of the Jacobi process
with jumps, we considered exponential and Pareto distributions. From the simulations,
we observed that despite the presence of only downward jumps, the decay of the tails of
the FPT pdfs was fast, as happened for the diffusion processes without jumps. This was
a consequence of the main assumption in Equation (2) for the drift of the process, which
guaranteed the Markov property. Analytical results for the pdf’s tails’ decay could be
obtained by Tauberian theorems for Laplace transforms, but the presence of the generalized
functions in Equation (8) prevented straightforward calculations.

Another interesting feature that might be observed is the multimodality of the FPT
pdf, which can appear even if the drift part of the process is non-periodic. The effect is
more visible if the starting point of the process y0 is close enough to the boundary S. In
this case, the first peak of the FPT pdf is determined by the drift part of the process, and a
second bump is visible, suggesting the existence of interactions between the components of
the dynamics, resulting in a mixture of two distributions. In [2], a similar behavior was
observed but only in the presence of both positive and negative jumps.

From iterations of the simulation procedure, we also studied the behavior of some
moments of the FPT. In particular, we studied the variance of the FPT as a function of
the parameters characterizing the jump component in the case of both one- and two-
parameter distributions. Finally, we studied the average number of jumps as a function
of the parameter of Π, and we observed a non-trivial behavior of the average jump size,
which had a non-monotone behavior as a result of the state dependence of the jumps in
terms of both frequency and amplitude.

We stress that we used the infinitesimal generator in Equation (1), but in the application
context, more specific operators defined on different intervals can be used. The same result
follows if one can identify a homeomorphism between the new semigroups and the one
of Jacobi processes with jumps on (0, 1) defined in Equation (1). For example, this was
performed in the framework of mathematical neuroscience in [27], taking advantage of the
intertwining approach.
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Abstract: For the Wiener, Ornstein–Uhlenbeck, and Feller processes, we study the transition prob-
ability density functions with an absorbing boundary in the zero state. Particular attention is paid
to the proportional cases and to the time-homogeneous cases, by obtaining the first-passage time
densities through the zero state. A detailed study of the asymptotic average of local time in the
presence of an absorbing boundary is carried out for the time-homogeneous cases. Some relationships
between the transition probability density functions in the presence of an absorbing boundary in the
zero state and between the first-passage time densities through zero for Wiener, Ornstein–Uhlenbeck,
and Feller processes are proven. Moreover, some asymptotic results between the first-passage time
densities through zero state are derived. Various numerical computations are performed to illustrate
the role played by parameters.

Keywords: Wiener process; Ornstein–Uhlenbeck process; Feller process; asymptotic average of the
local time; first-passage time and its moments

1. Introduction and Background

Diffusion models are widely used to describe dynamical systems in economics, fi-
nance, biology, genetics, physics, engineering, neuroscience, queueing, and other fields (cf.
Bailey [1], Ricciardi [2], Gardiner [3], Stirzaker [4], Janssen et al. [5], Pavliotis [6]). In various
applications, it is useful to consider diffusion processes with linear infinitesimal drift and
linear infinitesimal variance. This class incorporates Wiener, Ornstein–Uhlenbeck, and
Feller diffusion processes. In population dynamics, these processes can be used to describe
the growth of a population and the zero state represents the absorbing extinction threshold.
With this aim, we study the absorbing problem for linear diffusion processes.

In the remaining part of this section, we shall briefly review some background results
on the absorbing problems that will be used in the next sections for Wiener, Ornstein–
Uhlenbeck and Feller diffusion processes.

Let {Z(t), t ≥ t0} be a time-inhomogeneous diffusion (TNH-D) process with state-
space D = (r1, r2), which satisfies the stochastic differential equation

dZ(t) = ζ1[Z(t), t] dt +
√

ζ2[Z(t), t] dW(t), Z(t0) = x0,

with ζ1(x, t) and ζ2(x, t) denoting, respectively, the infinitesimal drift and the infinitesimal
variance of Z(t) and where W(t) is a standard Brownian motion. Often, D = (−∞,+∞),
with ±∞ unattainable endpoints, but in some cases Z(t) is confined to the state space
D = (0,+∞) and in the zero state is imposed an absorbing condition.
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When the endpoints ±∞ of D are unattainable boundaries, the transition probability
density function (PDF) fZ (x, t|x0, t0) is the solution of the backward Kolmogorov equation
(cf. Dynkin [7])

∂ fZ (x, t|x0, t0)

∂t0
+ ζ1(x0, t0)

∂ fZ (x, t|x0, t0)

∂x0
+

1
2

ζ2(x0, t0)
∂2 fZ (x, t|x0, t0)

∂x2
0

= 0, (1)

with the initial delta condition limt0↑t fZ (x, t|x0, t0) = δ(x − x0). In the backward Kol-
mogovov Equation (1), the forward variables x and t are constant and enter only through
the initial and boundary conditions.

We remark that the PDF fZ (x, t|x0, t0) is also solution of a forward Kolmogorov equa-
tion, also known as the Fokker–Planck equation (cf. Dynkin [7]), in which the backward
variables x0 and t0 are essentially constant. In this paper, we choose to use the Kolmogorov
backward equation because we will address absorption problems. Indeed, if one is in-
terested to the first-passage time distribution through a fixed state S as a function of the
initial position x0, then the backward Kolmogorov equation provides the most appropriate
method (cf. Cox and Miller [8]).

For a diffusion process Z(t), the first-passage time (FPT) problem can be reduced to
estimate the density of the random variable

TZ (S|x0, t0) =

{
inft≥t0{t : Z(t) ≥ S}, Z(t0) = x0 < S,
inft≥t0{t : Z(t) ≤ S}, Z(t0) = x0 > S,

which describes the FPT of Z(t) through the state S starting from Z(t0) = x0 �= S.
The FPT problem plays an important role in various biological applications. For in-

stance, in the context of population dynamics the FPT problem is suitable to model popula-
tion’s extinction or persistence (see Bailey [1], Ricciardi [2], Allen [9,10]).

Let gZ (S, t|x0, t0) = dP{TZ (S|x0, t0) ≤ t}/dt be the FPT density, being P{TZ (S|x0, t0) ≤
t} the distribution function of the random variable TZ (S|x0, t0). If the endpoints of D are
unattainable boundaries, the densities fZ (x, t|x0, t0) and gZ (S, t|x0, t0) are related by the
following renewal equation (cf. Blake and Lindsey [11]):

fZ (x, t|x0, t0) =
∫ t

t0

gZ (S, τ|x0, t0) fZ (x, t|S, τ) dτ, (x0 < S ≤ x) or (x ≤ S < x0). (2)

Equation (2) indicates that any sample path that reaches x ≥ S [x ≤ S], after starting
from x0 < S [x0 > S] at time t0, must necessarily cross S for the first time at some
intermediate instant τ ∈ (t0, t).

For diffusion processes, closed form expressions for FPT densities through con-
stant boundaries are not available, except in some special cases (see Ricciardi et al. [12],
Ding and Rangarajan [13], Molini et al. [14], Giorno and Nobile [15], Masoliver [16]). In par-
ticular, closed form expressions are available in the following cases: (i) the Wiener process
through an arbitrary constant boundary; (ii) the Ornstein–Uhlenbeck process through the
boundary in which the drift vanishes; and (iii) the Feller process through the zero state. In
the literature many efforts have been devoted to determining the asymptotic behavior of
FPT density and its moments for large boundaries or large times and to search efficient
numerical and simulation methods to estimate the FPT densities (cf. Ricciardi et al. [12],
Linetsky [17]). Furthermore, the FPT problems play a relevant role also in the context of
fractional processes (see, for instance, Guo et al. [18], Wiese [19], Abundo [20], Leonenko
and Pirozzi [21]).

For a TNH-D process Z(t) confined to interval (0,+∞), with 0 absorbing boundary
and +∞ unattainable boundary, we denote with

aZ (x, t|x0, t0) =
∂

∂x
P{Z(t) ≤ x; Z(θ) > 0, ∀θ < t|Z(t0) = x0}, x > 0, x0 > 0
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the PDF of Z(t) with an absorbing condition in the zero state. The PDF aZ (x, t|x0, t0)
satisfies the Kolmogorov Equation (1) with the initial condition limt0↑t aZ (x, t|x0, t0) =
δ(x − x0) and the absorbing condition limx0↓0 aZ (x, t|x0, t0) = 0.

The densities fZ (x, t|x0, t0), gZ (0, t|x0, t0), and aZ (x, t|x0, t0) are related by the follow-
ing integral equations (cf. Siegert [22]):

aZ (x, t|x0, t0) = fZ (x, t|x0, t0)−
∫ t

t0

gZ (0, θ|x0, t0) fZ (x, t|0, θ) dθ, x0 > 0, x > 0, (3)∫ +∞

0
aZ (x, t|x0, t0) dx +

∫ t

t0

gZ (0, θ|x0, t0) dθ = 1, x0 > 0. (4)

In the context of population dynamics, the first integral in (4) gives the survival
probability, i.e., the probability that the trajectories of the process Z(t) are not absorbed in
the zero state in (t0, t). Moreover, from (4) one obtains the FPT density

gZ (0, t|x0, t0) = − ∂

∂t

∫ +∞

0
aZ (x, t|x0, t0) dx, x0 > 0, (5)

and the ultimate FPT probability of Z(t) through the zero-state

PZ (0|x0, t0) =
∫ +∞

t0

gZ (0, τ|x0, t0) dτ = 1 − lim
t→+∞

∫ +∞

0
aZ (x, t|x0, t0) dx, x0 > 0. (6)

In population dynamics, gZ (0, t|x0, t0) in Equation (5) represents the density of
the time required to reach the zero state for the first time (extinction density); instead,
PZ (0|x0, t0) in Equation (6) provides the probability that the population will become extinct
sooner or later.

For a TNH-D process Z(t), the local time L(t, x|t0) at an interior state x ∈ D is a
random variable defined as (cf. Karlin and Taylor [23], Aït-Sahalia and Park [24]):

L(t, x|t0) = lim
ε↓0

1
2ε

∫ t

t0

1{|Z(θ)− x| ≤ ε} dθ, t > t0, (7)

where, for ε > 0, we have set

1{|Z(θ)− x| ≤ ε} =

{
1, |Z(θ)− x| ≤ ε,
0, otherwise.

The asymptotic average of the local time in the presence of an absorbing boundary in
the zero state, for x > 0 and x0 > 0 is:

LZ (x|x0, t0) = lim
t→+∞

E[L(t, x|t0)|Z(t0) = x0] =
∫ +∞

t0

aZ (x, θ|x0, t0) dθ. (8)

For a time-homogeneous diffusion (TH-D) process Z(t) one has ζ1(x, t) = ζ1(x) and
ζ2(x, t) = ζ2(x) for all t. In this case, the classification of the endpoints of the state space D,
due to Feller [25,26], is based on integrability properties of the functions

hZ (x) = exp
{
−2

∫ x ζ1(u)
ζ2(u)

du
}

, sZ (x) =
2

ζ2(u) hZ (u)
, x ∈ D, (9)

called scale function and speed density, respectively. Such functions allow us to determine
the FPT moments for TH-D processes thanks to the Siegert formula (cf. Siegert [22]).
Specifically, if Z(t) is a TH-D process with state space D = (r1, r2), for n = 1, 2, . . .
it results in

• for x0 < S, if PZ (S|x0) =
∫ +∞

0 gZ (S, t|x0) dt = 1 and if
∫ z

r1
sZ (u) du converges one

has:
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t(Z)
n (S|x0) =

∫ +∞

0
tn gZ (S, t|x0) dt = n

∫ S

x0

dz hZ (z)
∫ z

r1

sZ (u) tn−1(S|u) du, x0 < S, (10)

• for x0 > S, if PZ (S|x0) = 1, and if
∫ r2

z sZ (u) du converges one has

t(Z)
n (S|x0) =

∫ +∞

0
tn gZ (S, t|x0) dt = n

∫ x0

S
dz hZ (z)

∫ r2

z
sZ (u) tn−1(S|u) du, x0 > S, (11)

with t(Z)
0 (S|x0) = PZ (S|x0).

In the sequel, for the FPT of TH-D process Z(t) we denote by

Var(Z)(S|x0) = t(Z)
2 (S|x0)− [t(Z)

1 (S|x0)]
2, Cv(Z)(S|x0) =

√
Var(Z)(S|x0)

t(Z)
1 (S|x0)

,

Σ(Z)(S|x0) =
t(Z)
3 (S|x0)− 3 t(Z)

1 (S|x0) t(Z)
2 (S|x0) + 2 [t(Z)

1 (S|x0)]
3

[Var(Z)(S|x0)]3/2
·

the variance, the coefficient of variation, and the skewness, respectively.
For a TH-D process in (0,+∞), with 0 absorbing boundary, if x0 > 0 and x > 0 the

asymptotic average of the local time is (cf. Giorno and Nobile [27]):

LZ (x|x0) =

⎧⎨⎩
sZ (x)

∫ x0∧x
0 hZ (z)dz, +∞ unattainable, nonattracting,

sZ (x)PZ (0|x ∨ x0)
∫ x0∧x

0 hZ (z)dz, +∞ unattainable, attracting,
(12)

where x0 ∧ x = min(x0, x) and x0 ∨ x = max(x0, x).
For a TH-D process Z(t), in the sequel we denote by

ϕ
(Z)
λ (x|x0) =

∫ +∞

0
e−λ t ϕZ (x, t|x0) dt

the Laplace transform (LT) of the function ϕZ (x, t|x0).

Plan of the Paper

In Section 2, we consider the time-inhomogeneous Wiener (TNH-W) process X(t),
with infinitesimal drift and infinitesimal variance A1(t) = β(t) and A2(t) = σ2(t), respec-
tively. For β(t) = γ σ2(t), with γ ∈ R, we determine the PDF aX(x, t|x0, t0) and the FPT
density gX(0, t|x0, t0). Furthermore, for the time-homogeneous Wiener (TH-W) process,
the FPT moments through a boundary S ∈ R and the asymptotic average of the local time
are studied.

In Section 3, we take into account the time-inhomogeneous Ornstein–Uhlenbeck
(TNH-OU) process Y(t), with infinitesimal drift and infinitesimal variance B1(x, t) =
α(t) x + β(t) and B2(t) = σ2(t), respectively. For β(t) = γ σ2(t) e−A(t|0), with γ ∈ R and
A(t|0) =

∫ t
0 α(u) du, we determine aY(x, t|x0, t0) and gY(0, t|x0, t0). Moreover, for the TH-

OU process, the FPT mean through a constant boundary and the asymptotic average of the
local time are evaluated.

In Section 4, we consider the time-inhomogeneous Feller (TNH-F) process Z(t) with
infinitesimal drift and infinitesimal variance C1(x, t) = α(t) x + β(t) and C2(x, t) = 2 r(t) x,
respectively, with an absorbing boundary in the zero-state. For β(t) = ξ r(t), with 0 ≤
ξ < 1, we obtain aZ(x, t|x0, t0) and gZ(0, t|x0, t0). Furthermore, for the TH-F process,
the FPT mean through a constant boundary and the asymptotic average of the local time
are examined.

We remark that time-inhomogeneous Wiener, Ornstein–Uhlenbeck and Feller diffusion
processes are used in biological systems to model the growth of a population. In such
a context, α(t) represents the growth intensity function and β(t) denotes the immigra-
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tion/emigration intensity function. The functions σ2(t) (in Wiener and Ornstein–Uhlenbeck
processes) and r(t) (in the Feller process) are the noise intensity functions and take into
account the environmental fluctuations.

In Sections 2–4, by using Siegert Formulas (10) and (11), extensive computation are
performed with MATHEMATICA to obtain the mean, the variance, the coefficient of
variation, and the skewness of FPT for the TH-W, TH-OU, and TH-F processes for various
choices of parameters. For these processes, some considerations on the asymptotic average
of the local time in the presence of an absorbing boundary in the zero state are also made.

In Section 5, for β(t) = r(t)/2, some relationships between the PDF in the presence of
an absorbing boundary in the zero state and between the FPT densities through zero for
Wiener, Ornstein–Uhlenbeck and Feller processes are proved. Moreover, for β(t) = ξ r(t)
(0 < ξ < 1) some asymptotic results for large times between the FPT densities are provided.

2. Wiener-Type Diffusion Process

Let {X(t), t ≥ t0}, t0 ≥ 0, be a TNH-W process, having infinitesimal drift and infinites-
imal variance

A1(t) = β(t), A2(t) = σ2(t), (13)

with the state space R, where β(t) ∈ R and σ(t) > 0 are continuous functions.
The Wiener process arises as the mathematical limit of other stochastic processes, such

as random walks (see Knight [28]). This process has been originally used in physics to
model the motion of particles suspended in a fluid and it is still used as a mathematical
model for various random phenomena in applied mathematics, economics, quantitative
finance, evolutionary biology, and physics.

For t ≥ t0, the PDF of X(t) is normal,

fX(x, t|x0, t0) =
1√

2πVX(t|t0)
exp

{
−
[
x − MX(t|x0, t0)

]2

2 VX(t|t0)

}
, x, x0 ∈ R, (14)

with

MX(t|x0, t0) = x0 +
∫ t

t0

β(u) du, VX(t|t0) =
∫ t

t0

σ2(u) du.

We now consider the TNH-W process X(t), having infinitesimal moments given in (13),
restricted to the state space (0,+∞) with 0 absorbing boundary; we denote by aX(x, t|x0, t0)
its PDF. For the Wiener process X(t) in the presence of an absorbing boundary in the zero
state, we analyze two cases: the proportional case with β(t) = γ σ2(t), being γ ∈ R and
σ(t) > 0, and the time-homogeneous case.

2.1. Proportional Case for the Wiener Process

Proposition 1. Let β(t) = γ σ2(t), with γ ∈ R and σ(t) > 0 in (13). For the TNH-W process
X(t) one has

aX(x, t|x0, t0) = fX(x, t|x0, t0)− e2γ x fX(−x, t|x0, t0), x > 0, x0 > 0, (15)

with fX(x, t|x0, t0) given in (14).

Proof. If β(t) = γ σ2(t), from (14) the following symmetry relation holds,

fX(x, t|0, t0) = e2γx fX(−x, t|0, t0), x ∈ R,

so that from (3) one has

aX(x, t|x0, t0) = fX(x, t|x0, t0)− e2γx
∫ t

t0

gX(0, τ|x0, t0) fX(−x, t|0, τ) dτ, x0 > 0, x > 0. (16)

Hence, by virtue of the renewal Equation (2), Equation (15) follows from (16).
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From (15), for β(t) = γ σ2(t), with γ ∈ R and σ(t) > 0, one explicitly obtains

aX(x, t|x0, t0) =
1√

2πVX(t|t0)

[
exp

{
−
[
x − x0 − γ VX(t|t0)

]2

2 VX(t|t0)

}

−e2γ x exp
{
−
[
x + x0 + γ VX(t|t0)

]2

2 VX(t|t0)

}]
, x0 > 0, x > 0. (17)

We note that Equation (17) for t0 = 0 is in agreement with Equation (25) in Molini et al. [14].

Proposition 2. Under the assumptions of Proposition 1, for the TNH-W process X(t) one has

gX(0, t|x0, t0) =
x0 σ2(t)√

2π
[
VX(t|t0)

]3
exp

{
−
[
x0 + γ VX(t|t0)

]2

2VX(t|t0)

}
, x0 > 0. (18)

Moreover, if limt→+∞ VX(t|t0) = +∞, the ultimate FPT probability of X(t) through zero is

PX(0|x0, t0) =
∫ +∞

t0

gX(0, t|x0, t0) dt =

⎧⎨⎩
1, γ ≤ 0,

e.−2γ x0 , γ > 0,
x0 > 0. (19)

Proof. For x0 > 0, from (17) one obtains

∫ +∞

0
aX(x, t|x0, t0) dx =

1
2

[
1 + Erf

(
x0 + γ VX(t|t0)√

2 VX(t|t0)

)
− e−2γx0 Erfc

(
x0 − γ VX(t|t0)√

2 VX(t|t0)

)]
, (20)

where Erf(x) = (2/
√

π)
∫ x

0 e−z2
dz denotes the error function and Erfc(x) = 1 − Erf(x)

is the complementary error function. Hence, due to (5) and recalling (20), Equation (18)
follows. Finally, if limt→+∞ VX(t|t0) = +∞, Equation (19) follows, making use of (20) in (6)
and by noting that

lim
t→+∞

Erf
(

x0 + γ VX(t|t0)√
2 VX(t|t0)

)
=

⎧⎨⎩
−1, γ < 0,
0, γ = 0,
1, γ > 0,

lim
t→+∞

Erfc
(

x0 − γ VX(t|t0)√
2 VX(t|t0)

)
=

⎧⎨⎩
0, γ < 0,
1, γ = 0,
2, γ > 0,

for any x0.

Equation (19) shows that if β(t) = γ σ2(t), with γ ∈ R and σ(t) > 0 in (13), the
first-passage for the Wiener process through zero is a sure event for γ > 0 and x0 > 0.

2.2. Time-Homogeneous Case for the Wiener Process

We consider the TH-W process, obtained from (13) by setting β(t) = β and σ2(t) = σ2,
with β ∈ R and σ > 0. When β > 0 (β < 0) the end point −∞ is a nonattracting (attracting)
natural boundary and the end point +∞ is an attracting (nonattracting) natural boundary.
Instead, for β = 0 the end points −∞ and +∞ are nonattracting natural boundaries.
The scale function and the speed density, defined in (9) for the TH-W process X(t) are

hX(x) = exp
{
−2β

σ2 x
}

, sX(x) =
2
σ2 exp

{2β

σ2 x
}

, (21)

respectively.
The FPT density of the TH-W process X(t) through the constant boundary S starting

from x0 is

gX(S, t|x0) =
|S − x0|
σ
√

2π t3
exp

{
− (S − x0 − β t)2

2σ2 t

}
, S �= x0 (22)
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and the ultimate FPT probability is

PX(S|x0) =
∫ +∞

0
gX(S, t|x0) dt =

{
1, β = 0 or β(S − x0) > 0,

exp
{

2β(S−x0)
σ2

}
, β(S − x0) < 0.

(23)

For β(S − x0) > 0, the FPT moments of the TH-W process X(t) are finite and from (22)
one has

t(X)
n (S|x0) =

2 |S − x0|
σ
√

2π

(S − x0

β

)n−1/2
exp

{ β(S − x0)

σ2

}
Kn−1/2

[ β(S − x0)

σ2

]
, n = 1, 2, . . .

where Kν(z) denotes the modified Bessel function of the third kind, which can be expressed
in terms of the modified Bessel function of first kind Iν(z) (see Abramowitz and Stegun [29],
p. 375, n. 9.6.2),

Kν(z) =
π

2
I−ν(z)− Iν(z)

sin(ν π)
, Iν(z) =

+∞

∑
k=0

1
k! Γ(ν + k + 1)

( z
2

)2k+ν
, (24)

where Γ(ν) =
∫ +∞

0 yν−1 e−y dy, with Re ν > 0, is the Euler gamma function.
In particular, for β(S − x0) > 0 the first three FPT moments of the TH-W process

X(t) are

t(X)
1 (S|x0) =

S − x0

β
, t(X)

2 (S|x0) =
(S − x0

β

)2
{

1 +
σ2

β (S − x0)

}
,

t(X)
3 (S|x0) =

(S − x0

β

)3
{

1 +
3 σ2

β (S − x0)
+

3 σ4

β2 (S − x0)2

}
.

In Tables 1 and 2, the mean t(X)
1 (S|x0), the variance Var(X)(S|x0), the coefficient of

variation Cv(X)(S|x0), and the skewness Σ(X)(S|x0) of the FPT are listed for x0 = 4, σ = 1
and some choices of β and S.

Table 1. For the Wiener process, with A1(x) = β and A2(x) = 1, the mean, the variance, the coefficient
of variation, and the skewness of FPT are listed for x0 = 4, β = 0.1, 0.2 and for increasing values the
boundary S > x0.

S t(X)
1 (S|x0) Var(X)(S|x0) Cv(X)(S|x0) Σ(X)(S|x0)

β = 0.1

100 960 96,000 0.322749 0.968246
500 4960 496,000 0.141990 0.425971
1000 9960 996,000 0.100201 0.300602
1500 14,960 1, 496, 000 0.0817587 0.245276
2000 19,960 1, 996, 000 0.0707815 0.212344
2500 24,960 2,496,000 0.0632962 0.189889
3000 29,960 2,996,000 0.0577736 0.173321

β = 0.2

100 480 12,000 0.228218 0.684653
500 2480 62,000 0.100402 0.301207
1000 4980 124,500 0.0708525 0.212558
1500 7480 187,000 0.0578122 0.173436
2000 9980 249,500 0.0500501 0.150150
2500 12,480 312,000 0.0447572 0.134272
3000 14,980 374,500 0.0408521 0.122556
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Table 2. As in Table 1, with x0 = 4, σ = 1, β = −0.1,−0.2 and for decreasing values the boundary
S ∈ [0, x0).

S t(X)
1 (S|x0) Var(X)(S|x0) Cv(X)(S|x0) Σ(X)(S|x0)

β = −0.1

3.5 5 500 4.47214 13.4164
3.0 10 1000 3.16228 9.48683
2.5 15 1500 2.58199 7.74597
2.0 20 2000 2.23607 6.7082
1.5 25 2500 2.0 6.0
1.0 30 3000 1.82574 5.47723
0.5 35 3500 1.69031 5.07093
0.0 40 4000 1.58114 4.74342

β = −0.2

3.5 2.5 62.5 3.16228 9.48683
3.0 5 125 2.23607 6.7082
2.5 7.5 187.5 1.82574 5.47723
2.0 10 250 1.58114 4.74342
1.5 12.5 312.5 1.41421 4.24264
1.0 15 375 1.29099 3.87298
0.5 17.5 437.5 1.19523 3.58569
0.0 20 500 1.11803 3.3541

As shown in Tables 1 and 2, for the TH-W process X(t) the coefficient of variation and
the skewness of the FPT decrease when S moves away from x0.

Moreover, by setting β(t) = β, σ2(t) = σ2 and γ = β/σ2 in (17), for the TH-W process
X(t) one has

aX(x, t|x0) =
1√

2πσ2t

[
exp

{
−
(
x − x0 − β t

)2

2 σ2t

}
− exp

{2β x
σ2

}
exp

{
−
(
x + x0 + β t

)2

2 σ2t

}]
(25)

with x0 > 0 and x > 0.

Proposition 3. For the TH-W process X(t), the asymptotic average of the local time is

LX(x|x0) =
∫ +∞

0
aX(x, t|x0) dt

=

⎧⎪⎪⎨⎪⎪⎩
1
|β| exp

{
β(x−x0)

σ2

}[
exp

{
−|β(x−x0)|

σ2

}
− exp

{
−|β(x+x0)|

σ2

}]
, β �= 0,

|x+x0|
σ2 − |x−x0|

σ2 = 2 (x0∧x)
σ2 , β = 0,

(26)

with x0 ∧ x = min(x0, x) and x0 ∨ x = max(x0, x).

Proof. Because +∞ is a nonattracting boundary for β ≤ 0 and attracting for β > 0,
Equation (26) follows from (12) making use of (21) and (23).

From (26), for β ∈ R and σ > 0 one has limx↓0 LX(x|x0) = 0 and

lim
x↑+∞

LX(x|x0) =

⎧⎪⎨⎪⎩
0, β < 0,
2 x0
σ2 , β = 0,

1−e−2 β x0/σ2

β , β > 0.

We note that LX(x|x0) tends to zero as x increases if β < 0, and it approaches a positive
value when β ≥ 0.
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In Figure 1, the asymptotic average of the local time for the TH-W process X(t) is
plotted for x0 = 4, σ = 1 and some choices of β. We note that LX(x|x0) tends to zero only if
β < 0, otherwise approaches to a positive value.
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Figure 1. LX(x|x0), given in (26), with x0 = 4, σ = 1 and some choices of β. In (a) β = −0.1, 0, 0.1
and in (b) β = −0.2, 0, 0.2.

3. Ornstein–Uhlenbeck-Type Diffusion Process

Let {Y(t), t ≥ t0}, t0 ≥ 0, be a TNH-OU process, having infinitesimal drift and
infinitesimal variance

B1(x, t) = α(t) x + β(t), B2(t) = σ2(t), x ∈ R, (27)

with state space R, where α(t) ∈ R, β(t) ∈ R, σ(t) > 0 are continuous functions. Note that
when α(t) = 0 for all t, the process Y(t) identifies with the TNH-W process X(t) having
infinitesimal moments (13).

Although the Ornstein–Uhlenbeck process has been originally used in physics to
model the velocity of a Brownian particle (see Uhlenbeck and Ornstein [30]), it finds many
applications in several scientific fields. In particular, the Ornstein–Uhlenbeck process is
frequently proposed as a stochastic model for the single neuronal activity (see Ricciardi and
Sacerdote [31], Lánský and Ditlevsen [32]). A wide field of applications of the Ornstein–
Uhlenbeck process lies also in mathematical finance to model the evolution of the interest
rate of financial markets (cf. Vasicek [33], Hull and White [34]).

The PDF of Y(t) is normal,

fY(x, t|x0, t0) =
1√

2πVY(t|t0)
exp

{
− [x − MY(t|x0, t0)]

2

2 VY(t|t0)

}
, x, x0 ∈ R, (28)

with

MY(t|x0, t0) = x0 eA(t|t0) +
∫ t

t0

β(θ) eA(t|θ) dθ, VY(t|t0) =
∫ t

t0

σ2(θ) e2A(t|θ) dθ, (29)

being

A(t|t0) =
∫ t

t0

α(θ) dθ. (30)

We now consider the TNH-OU process Y(t), having infinitesimal moments given
in (27), restricted to the state space (0,+∞), with 0 absorbing boundary, and denote by
aY(x, t|x0, t0) its PDF. For the TNH-OU process Y(t) with 0 absorbing boundary, we take
into account two cases: the proportional case in which β(t) = γ σ2(t) e−A(t|0), with γ ∈ R,
α(t) ∈ R and σ(t) > 0, and the time-homogeneous case.

95



Fractal Fract. 2023, 7, 11

3.1. Proportional Case for the Ornstein-Uhlenbeck Process

Proposition 4. Let β(t) = γ σ2(t) e−A(t|0), with γ ∈ R, α(t) ∈ R, σ(t) > 0 in (27) and A(t|0)
defined in (30). For the TNH-OU process Y(t) one has

aY(x, t|x0, t0) = fY(x, t|x0, t0)− exp
{

2γ x e−A(t|0)
}

fY(−x, t|x0, t0), x > 0, x0 > 0, (31)

with fY(x, t|x0, t0) given in (28).

Proof. By choosing β(t) = γ σ2(t) e−A(t|0), from (28) the following symmetry relation holds,

fY(x, t|0, t0) = exp
{

2γ x e−A(t|0)
}

fY(−x, t|0, t0), x ∈ R,

so that from (3) one obtains

aY(x, t|x0, t0) = fY(x, t|x0, t0)− exp
{

2γ x e−A(t|0)
} ∫ t

t0

gY(0, τ|x0, t0) fY(−x, t|0, τ) dτ (32)

for x0 > 0 and x > 0. Hence, by virtue of the renewal Equation (2), Equation (31) follows
from (32).

From (31), if β(t) = γ σ2(t) e−A(t|0), for x0 > 0 and x > 0 one obtains

aY(x, t|x0, t0) =
1√

2πVY(t|t0)

[
exp

{
−
[
x − x0 eA(t|t0) − γ e−A(t|0) VY(t|t0)

]2

2 VY(t|t0)

}

− exp
{

2γ x e−A(t|0)
}

exp
{
−
[
x + x0 eA(t|t0) + γ e−A(t|0) VY(t|t0)

]2

2 VY(t|t0)

}]
. (33)

Proposition 5. Under the assumptions of Proposition 4, for the TNH-OU process Y(t) one has

gY(0, t|x0, t0) =
x0 σ2(t) eA(t|t0)√

2π [VY(t|t0)]3
exp

{
−
[
x0 eA(t|t0) + γ e−A(t|0)VY(t|t0)

]2

2 VY(t|t0)

}
, x0 > 0. (34)

Furthermore, if limt→+∞[e−2A(t|t0)VY(t|t0)] = +∞, the ultimate FPT probability for x0 >
0 is

PY(0|x0, t0) =
∫ +∞

t0

gY(0, t|x0, t0) dt =

⎧⎪⎨⎪⎩
1, γ ≤ 0,

exp
{
−2γ x0 e−A(t0|0)

}
, γ > 0.

(35)

Proof. Recalling (33), one obtains

∫ +∞

0
aY(x, t|x0, t0) dx =

1
2

[
1 + Erf

(
x0 eA(t|t0) + γ e−A(t|0) VY(t|t0)√

2 VY(t|t0)

)

− exp
{
−2γ x0 e−A(t0|0)

}
Erfc

(
x0 eA(t|t0) − γ e−A(t|0) VY(t|t0)√

2 VY(t|t0)

)]
, x0 > 0. (36)
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By virtue of (5) and recalling (36), Equation (34) follows. Moreover, under the assump-
tion limt→+∞[e−2A(t|t0)VY(t|t0)] = +∞, Equation (35) follows, making use of (36) in (6) by
noting that

lim
t→+∞

Erf
(

x0 eA(t|t0) + γ e−A(t|0) VY(t|t0)√
2 VY(t|t0)

)
=

⎧⎨⎩
−1, γ < 0,
0, γ = 0,
1, γ > 0,

lim
t→+∞

Erfc
(

x0 eA(t|t0) − γ e−A(t|0) VY(t|t0)√
2 VY(t|t0)

)]
=

⎧⎨⎩
0, γ < 0,
1, γ = 0,
2, γ > 0,

for any x0.

3.2. Time-Homogeneous Case for the Ornstein–Uhlenbeck Process

We consider the TH-OU process Y(t), by setting in (27) α(t) = α, β(t) = β, σ2(t) = σ2,
with α �= 0, β ∈ R and σ > 0. The end points −∞ and +∞ are nonattracting natural
boundaries for α < 0 and attracting natural boundaries for α > 0. The scale function and
the speed density, defined in (9), for the TH-OU process Y(t) are

hY(x) = exp
{
− α

σ2

(
x2 +

2β

α
x
)}

, sY(x) =
2
σ2 exp

{ α

σ2

(
x2 +

2β

α
x
)}

, (37)

respectively. The LT of fY(x, t|x0) is

f (Y)λ (x|x0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
λ
|α| −1

σπ
√

|α|
Γ
(

λ
2|α|

)
Γ
(

1
2 + λ

2|α|

)
exp

{
− |α|

2 σ2

[(
x + β

α

)2
−
(

x0 +
β
α

)2]}
×D− λ

|α|

(
−
√

2|α|
σ

[
x0 ∧ x + β

α

])
D− λ

|α|

(√
2|α|
σ

[
x0 ∨ x + β

α

])
, α < 0,

2
λ
α

σπ
√

α
Γ
(

1 + λ
2α

)
Γ
(

1
2 + λ

2α

)
exp

{
− α

2 σ2

[(
x0 +

β
α

)2
−
(

x + β
α

)2]}
×D− λ

α −1

(
−

√
2α
σ

[
x0 ∧ x + β

α

])
D− λ

α −1

(√
2α
σ

[
x0 ∨ x + β

α

])
, α > 0,

(38)

where Dν(z) is the parabolic cylinder function defined as (cf. Gradshteyn and Ryzhik [35],
p. 1028, no. 9.240). We have

Dν(z) = 2ν/2e−z2/4

{ √
π

Γ
(

1−ν
2

)Φ
(
−ν

2
,

1
2

;
z2

2

)
− z

√
2 π

Γ
(
− ν

2

)Φ
(1 − ν

2
,

3
2

;
z2

2

)}
(39)

in terms of Kummer’s confluent hypergeometric function

Φ(a, c; x) = 1 +
+∞

∑
n=1

(a)n

(c)n

xn

n!
,

with (a)0 = 1 and (a)n = a(a + 1) · · · (a + n − 1) for n = 1, 2, . . . In the following, we will
make use of the relations (cf. Gradshteyn and Ryzhik [35], p. 1030, no. 9.251 and no. 9.254).

D0(x) = e−x2/4, D1(x) = x e−x2/4, D−1(x) =
√

π

2
ex2/4 Erfc

( x√
2

)
. (40)

For the TH-OU process, taking the Laplace transform in (2) and recalling (38), for x0 �=
S one has
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g(Y)λ (S|x0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
{

|α|
2σ2

[(
x0 +

β
α

)2
−
(

S + β
α

)2]} D− λ
|α|

(
sign(x0−S)

√
2|α|
σ

(
x0+

β
α

))
D− λ

|α|

(
sign(x0−S)

√
2|α|
σ

(
S+ β

α

)) , α < 0,

exp
{
− α

2σ2

[(
x0 +

β
α

)2
−
(

S + β
α

)2]} D− λ
α −1

(
sign(x0−S)

√
2α
σ

(
x0+

β
α

))
D− λ

α −1

(
sign(x0−S)

√
2α
σ

(
S+ β

α

)) , α > 0,

(41)

where sign(z) denotes the sign function that returns −1 if z < 0, +1 if z > 0 and 0 otherwise.
Moreover, by setting λ = 0 in (41) and recalling (40), for x0 �= S one has

PY(S|x0) =
∫ +∞

0
gY(S, t|x0) dt =

⎧⎪⎪⎨⎪⎪⎩
1, α < 0,

Erfc
(√

α
σ

(
x0+

β
α

))
Erfc

(√
α

σ

(
S+ β

α

)) , α > 0,
(42)

so that the first passage through the state S is a sure event for α < 0.
The inverse LT of g(Y)λ (S|x0) can be obtained in closed form only if S = −β/α.

Proposition 6. For the TH-OU process, the FPT density through the boundary S = −β/α is

gY

(
− β

α
, t
∣∣∣x0

)
=

2 eα t
∣∣x0 + β/α

∣∣
σ
√

π

[ α

e2αt − 1

]3/2
exp

{
−α e2αt (x0 + β/α)2

σ2(e2αt − 1)

}
, x0 �= −β/α, (43)

and the ultimate FPT probability is

PY

(
− β

α

∣∣∣x0

)
=
∫ +∞

0
gY

(
− β

α
, t
∣∣∣x0

)
dt =

{
1, α < 0,

Erfc
(√

α
σ

(
x0 +

β
α

))
, α > 0.

(44)

Proof. Because

Dν(0) =
2ν/2 √π

Γ
(

1−ν
2

) ,

from (41) for α �= 0 and x0 �= −β/α one has

g(Y)λ

(
− β

α

∣∣∣x0

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{
|α|
2σ2

(
x0 +

β
α

)2}
2

λ
2|α|√

π
Γ( 1

2 + λ
2|α|

)
D− λ

|α|

(√
2|α|
σ

∣∣∣x0 +
β
α

∣∣∣), α < 0,

exp
{
− α

2σ2

(
x0 +

β
α

)2}
2

λ
2α + 1

2√
π

Γ(1 + λ
2α

)
D− λ

α −1

(√
2α
σ

∣∣∣x0 +
β
α

∣∣∣), α > 0.

(45)

Equation (43) follows by taking the inverse LT of (45) and making use of the following
result (cf. Erdèlyi et al. [36], p. 290, no. 9):

∫ +∞

0
e−pt

[
et/2

(et − 1)ν+1/2 exp
{
− γ2

4(et − 1)

}
D2ν

( γ√
1 − e−t

)]
dt

= 2p+νΓ(p + ν) D−2p(γ), Re p > 0.

Moreover, by setting λ = 0 in (45) and recalling (40), one obtains (44).
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When α < 0, the FPT moments through S starting from x0 can be evaluated by making
use of Siegert Formulas (10) and (11) with r1 = −∞ and r2 = +∞. In particular, for n = 1
and α < 0 one has

t(Y)1 (S|x0) =
1
|α|

{
π

2

[
Erfi

(√|α|
σ

(
x0 ∨ S +

β

α

))
− Erfi

(√|α|
σ

(
x0 ∧ S +

β

α

))]
+ψ1

(√|α|
σ

(
S +

β

α

))
− ψ1

(√|α|
σ

(
x0 +

β

α

))}
, x0 �= S, ,

where

Erfi(z) =
2√
π

∫ z

0
eu2

du =
2√
π

+∞

∑
k=0

z2k+1

(2k + 1) k!
, ψ1(z) =

+∞

∑
k=0

2kz2k+2

(k + 1) (2k + 1)!!
·

Furthermore, for α < 0 from (10) and (11) one obtains (cf. Ricciardi et al. [12])

lim
S→+∞

t(Y)n (S|x0)

[t(Y)1 (S|x0)]n
= n! (x0 < S)

for n = 1, 2, . . . so that for α < 0 the FPT density of the Ornstein–Uhlenbeck process exhibits
an exponential asymptotic behavior as the boundary moves away from the starting point.

In Tables 3 and 4, the mean t(Y)1 (S|x0), the variance Var(Y)(S|x0), the coefficient of
variation Cv(Y)(S|x0), and the skewness Σ(Y)(S|x0) of the FPT, obtained by using (10)
and (11), are listed for x0 = 4, α = −0.02, σ = 1 and some choices of β and S.

Table 3. For the TH-OU process, with B1(x) = −0.02 x + β and B2(x) = 1, the mean, the variance,
the coefficient of variation, and the skewness of FPT are listed for x0 = 4, β = −0.1, 0, 0.1 and for
increasing values the boundary S > x0.

S t(Y)
1 (S|x0) Var(Y)(S|x0) Cv(Y)(S|x0) Σ(Y)(S|x0)

β = −0.1

5 1.491996 × 102 1.265053 × 105 2.383893 3.759894
10 3.97436 × 103 1.842427 × 107 1.080010 2.020738
15 1.005474 × 105 1.017251 × 1010 1.003097 1.999075
20 7.036678 × 106 4.951899 × 1013 1.000042 1.986165
25 1.413375 × 109 1.997625 × 1018 0.9999992 1.970391

β = 0

5 3.077237 × 101 5.966963 × 103 2.510243 4.446831
10 4.475225 × 102 2.545499 × 105 1.127383 2.098001
15 4.272683 × 103 1.855231 × 107 1.008088 2.000674
20 1.008457 × 105 1.017263 × 1010 1.000136 1.993045
25 7.036975 × 106 4.951901 × 1013 1.000000 1.980451

β = 0.1

5 1.161050 × 101 7.316673 × 102 2.329732 4.818854
10 1.162808 × 102 1.533674 × 104 1.065021 2.181767
15 5.330310 × 102 2.639197 × 105 0.9637923 2.002620
20 4.358192 × 103 1.856168 × 107 0.9885583 1.997674
25 1.009312 × 105 1.017264 × 1010 0.9992894 1.998622

From Table 3, we note that for the TH-OU process Y(t) the coefficient of variation
approaches the value 1 and the skewness approaches the value 2 for large boundaries.
Hence, when α < 0 the FPT density of the TH-OU process exhibits an exponential behavior
for large boundaries S, such that S > x0.
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Table 4. As in Table 3 with x0 = 4, α = 0.02, σ = 1, β = −0.1, 0, 0.1 and for decreasing values the
boundary S ∈ [0, x0).

S t(Y)
1 (S|x0) Var(Y)(S|x0) Cv(Y)(S|x0) Σ(Y)(S|x0)

β = −0.1

3.5 2.321819 38.35014 2.667198 6.633648
3.0 4.740922 81.06132 1.899083 4.708105
2.5 7.264863 128.7704 1.561998 3.861617
2.0 9.902021 182.2269 1.363272 3.362382
1.5 12.66172 242.3166 1.229416 3.026467
1.0 15.55435 310.0904 1.132119 2.782932
0.5 18.59156 386.8000 1.057858 2.597858
0.0 21.7864 473.9432 0.9992582 2.452724

β = 0

3.5 3.763743 130.8265 3.03898 6.851246
3.0 7.756523 281.9104 2.164654 4.855690
2.5 12.00269 457.1913 1.781437 3.978597
2.0 16.53010 661.5233 1.555955 3.462116
1.5 21.37079 900.9213 1.404503 3.115650
1.0 26.56169 1182.882 1.294836 2.865643
0.5 32.14558 1516.804 1.211556 2.676884
0.0 38.17219 1914.549 1.146268 2.530113

β = 0.1

3.5 7.745813 697.7332 3.410183 6.676430
3.0 16.23615 1550.603 2.425310 4.719137
2.5 25.58427 2600.685 1.993291 3.859455
2.0 35.92567 3903.424 1.739074 3.354977
1.5 47.42327 5532.504 1.568445 3.018737
1.0 60.27406 7586.697 1.445093 2.778458
0.5 74.71751 10199.60 1.351666 2.599416
0.0 91.04643 13553.66 1.278690 2.462534

From Table 4, we note that for the TH-OU process Y(t) the coefficient of variation and
the skewness decreases as S decreases.

Moreover, taking the Laplace transform in (3) one has

a(Y)λ (x|x0) = f (Y)λ (x|x0)− g(Y)λ (0|x0) f (Y)λ (x|0), x0 > 0, x > 0, (46)

so that, recalling (38) and (41), one can obtain the LT of aY(x, t|x0) for the TH-OU process
in (0,+∞) with 0 absorbing boundary.

Proposition 7. Let Y(t) be a TH-OU process.

• For α < 0, one has

LY(x|x0) =
∫ +∞

0
aY(x, t|x0) dt =

1
σ

√
π

|α| exp
{
−|α|

σ2

(
x +

β

α

)2}
×
[
Erfi

(√|α|
σ

(
x0 ∧ x +

β

α

))
− Erfi

(√|α|
σ

β

α

)]
, x0 > 0, x > 0. (47)

• For α > 0, it results in

LY(x|x0) =
∫ +∞

0
aY(x, t|x0) dt =

1
σ

√
π

α
exp

{ α

σ2

(
x +

β

α

)2}Erfc
(√

α
σ

(
x0 ∨ x + β

α

))
Erfc

(√
α

σ
β
α

)
×
[

Erf
(√α

σ

(
x0 ∧ x +

β

α

))
− Erf

(√α

σ

β

α

)]
, x0 > 0, x > 0. (48)

Proof. Because +∞ is a nonattracting boundary for α < 0 and attracting for α > 0,
Equations (47) and (48) follow from (12) making use of (37) and (42).

From (47) and (48), for α �= 0, β ∈ R and σ > 0 one obtains limx↓0 LY(x|x0) = 0 and
limx↑+∞ LY(x|x0) = 0.
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In Figure 2, the asymptotic average of the local time for the TH-OU process Y(t) is
plotted for x0 = 4, σ = 1 and some choices of α and β.
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Figure 2. LY(x|x0), given in Proposition 7, with x0 = 4, σ = 1, and some choices of β. In (a) α = −0.02
and in (b) α = 0.02.

4. Feller-Type Diffusion Process

Let {Z(t), t ≥ t0}, t0 ≥ 0 be a TNH-F process having infinitesimal drift and infinitesi-
mal variance

C1(x, t) = α(t) x + β(t), C2(x, t) = 2 r(t) x, (49)

with state space (0,+∞), where α(t) ∈ R, β(t) ∈ R, r(t) > 0 continuous functions.
We point out that the processes (27) and (49) have identical infinitesimal drifts; instead,

the infinitesimal variances are different in terms of the involved noise intensity functions.
The TNH-F process is used to describe the growth of a population (cf. Feller [37],

Giorno and Nobile [38]) and the number of customers in queueing models (cf. Di Crescenzo
and Nobile [39]). This process is also applied in mathematical finance to study stochas-
tic volatility and interest rates (see Tian and Zhang [40], Cox et al. [41], Di Nardo and
D’Onofrio [42]) and in neurobiology to model the input–output behavior of single neurons
(see Ditlevsen and Lánský [43], D’Onofrio et al. [44]).

We consider the TNH-F process Z(t), having infinitesimal moments (49), with an
absorbing condition placed in the zero state and we denote with aZ(x, t|x0, t0) its PDF. We
assume that α(t) ∈ R, β(t) ∈ R, r(t) > 0, β(t) ≤ ξ r(t), with 0 ≤ ξ < 1. For the TNH-F
process Z(t) with an absorbing boundary in zero, we consider two cases: the proportional
case in which β(t) = ξ r(t), with 0 ≤ ξ < 1 and r(t) > 0, and the time-homogeneous case.

4.1. Proportional Case for the Feller Process

We assume that α(t) ∈ R, r(t) > 0 and β(t) = ξ r(t), with 0 ≤ ξ < 1, in (49).
As proven in Giorno and Nobile [45] one has

aZ(x, t|x0, t0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e−A(t|t0)
Γ(2−ξ)

[
1

R(t|t0)

]2−ξ
x1−ξ

0 exp
{
− x0

R(t|t0)

}
, x = 0,

e−A(t|t0)
R(t|t0)

(
x0
x

)(1−ξ)/2
exp

{
− x0+x e−A(t|t0)

R(t|t0)

}
× exp

{
1−ξ

2 A(t|t0)
}

I1−ξ

[
2
√

x x0 e−A(t|t0)

R(t|t0)

]
, x > 0,

(50)

with A(t|t0) given in (30), Iν(z) defined in (24) and

R(t|t0) =
∫ t

t0

r(θ) e−A(θ|t0) dθ. (51)
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Proposition 8. Let α(t) ∈ R, r(t) > 0 and β(t) = ξ r(t), with 0 ≤ ξ < 1, in (49). For the
TNH-F process Z(t) one has

gZ(0, t|x0, t0) =
1

Γ(1 − ξ)

r(t) e−A(t|t0)

R(t|t0)

[ x0

R(t|t0)

]1−ξ
exp

{
− x0

R(t|t0)

}
, x0 > 0, (52)

with R(t|t0) given in (51). Moreover, it results in

PZ(0|x0, t0) =
∫ +∞

t0

gZ(0, t|x0, t0) dt =

⎧⎪⎪⎨⎪⎪⎩
1, limt→+∞ R(t|t0) = +∞,

Γ
(

1−ξ, x0
c

)
Γ
(

1−ξ
) , limt→+∞ R(t|t0) = c.

(53)

Proof. From (50), one has (cf. Erdèlyi et al. [36], p. 197, no. 19)∫ +∞

0
aZ(x, t|x0, t0) dx =

1
Γ(1 − ξ)

γ
(

1 − ξ,
x0

R(t|t0)

)
, 0 ≤ ξ < 1, (54)

where Γ(ν) is the Euler gamma function and γ(ν, z) =
∫ z

0 yν−1 e−y dy, with ν > 0, is the
incomplete gamma function. Hence, due to (5) and recalling (54), Equation (52) follows.
Finally, Equation (53) is obtained, making use of (54) in (6).

We point out that the general TNH-F process with an absorbing boundary in zero
is considered in Giorno and Nobile [45], Masoliver and Perelló [46], Masoliver [47] and
Lavigne and Roques [48].

4.2. Time-Homogeneous Case for the Feller Process

Let Z(t) be the TH-F process, obtained by setting α(t) = α, β(t) = β and r(t) = r
in (49). From (9), the scale function and the speed density of the TH-F process Z(t) are

hZ(x) = x−β/r exp
{
−αx

r

}
, sZ(x) =

xβ/r−1

r
exp

{αx
r

}
, (55)

respectively. As proven by Feller, the state 0 is an exit boundary for β ≤ 0, regular for
0 < β < r and entrance for β ≥ 0. Furthermore, the end point +∞ is a nonattracting
natural boundary for α ≤ 0 and an attracting natural boundary for α > 0. In the sequel,
we assume that α ∈ R, β ∈ R, r > 0, with β < r, and an absorbing condition is set in
the zero-state.

As proven in Giorno and Nobile [45], for a TH-F process Z(t) having β ∈ R, r > 0,
with β < r, one has

• If α = 0 one has

aZ(x, t|x0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Γ(2−β/r)

(
1
r t

)2−β/r
x1−β/r

0 exp
{
− x0

r t

}
, x = 0,

1
r t

(
x0
x

)(1−β/r)/2
exp

{
− x+x0

r t

}
I1−β/r

[
2
√

x x0
r t

]
, x > 0.

(56)

• If α �= 0 one obtains

aZ(x, t|x0) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e−α t

Γ(2−β/r)

[
α eα t

r(eα t−1)

]2−β/r
x1−β/r

0 exp
{
− α x0 eα t

r(eα t−1)

}
, x = 0,

α eα(1−β/r) t/2

r(eα t−1)

(
x0
x

)(1−β/r)/2
exp

{
− α(x+x0 eα t)

r(eα t−1)

}
I1−β/r

[
2α
√

x x0 eα t

r(eα t−1)

]
, x > 0.

(57)
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Proposition 9. Let α ∈ R, β ∈ R, r > 0, with β < r. For the TH-F process Z(t), with x0 > 0,
one has

gZ(0, t|x0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

t Γ(1−β/r)

(
x0
r t

)1−β/r
exp

{
− x0

r t

}
, α = 0,

1
Γ(1−β/r)

α
eα t−1

[
α x0 eα t

r(eα t−1)

]1−β/r
exp

{
− α x0 eα t

r (eα t−1)

}
, α �= 0

(58)

and

PZ(0|x0) =
∫ +∞

0
gZ(0, t|x0) dt =

⎧⎨⎩
1, α ≤ 0,
Γ
(

1− β
r , α x0

r

)
Γ
(

1−β/r
) , α > 0.

(59)

Proof. From (56) and (57), one obtains (cf. Erdèlyi et al. [36], p. 197, no. 19)

∫ +∞

0
aZ(x, t|x0) dx =

⎧⎪⎪⎨⎪⎪⎩
1

Γ(1−β/r)γ
(

1 − β
r , x0

r t

)
, α = 0,

1
Γ(1−β/r)γ

(
1 − β

r , α x0 eα t

r (eα t−1)

)
, α �= 0.

(60)

Making use of (60) in (5), Equation (58) follows. Finally, by virtue of (6) and (60), we
obtain the FPT probability (59).

By applying the Siegert Formula (11) with r2 = +∞ and recalling (55), for α = 0
and β < r one has that the FPT mean t(Z)

1 (0|x0) diverges, whereas for α < 0 and β < r
one obtains

t(Z)
1 (S|x0) =

1
|α|

∫ |α|x0/r

|α|S/r
x−β/rex Γ

( β

r
, x
)

dx, x0 > S ≥ 0.

In Table 5, the mean t(Z)
1 (S|x0), the variance Var(Z)(S|x0), the coefficient of varia-

tion Cv(Z)(S|x0), and the skewness Σ(Z)(S|x0) of the FPT, obtained by using the Siegert
Formula (11), are listed for x0 = 4 and some choices of S, with α = −0.02, β = −0.1, 0, 0.1
and r = 0.5.

As shown in Table 5, for the TH-F process Z(t) the mean and the variance of the FPT
increases as S decreases; instead, the coefficient of variation and the skewness decrease as
S decreases.

Proposition 10. Let Z(t) be a TH-F process having β ∈ R, r > 0, with β < r.

• If α ≤ 0, for x0 > 0 and x > 0 one has

LZ(x|x0) =
∫ +∞

0
aZ(x, t|x0) dt

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
r

(
r

|α|x

)1−β/r
e−|α| x/r ∫ |α|(x0∧x)/r

0 y−β/rey dy, α < 0

1
r

1
1−β/r

(
x0∧x

x

)1−β/r
, α = 0.

(61)

• If α > 0, for x0 > 0 and x > 0 one obtains

LZ(x|x0) =
∫ +∞

0
aZ(x, t|x0) dt

=
1
r

( r
αx

)1−β/r
eα x/rγ

(
1 − β

r
,

α(x0 ∧ x)
r

)Γ
(
1 − β

r , α (x0∨x)
r

)
Γ
(
1 − β

r
) · (62)
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Proof. Because +∞ is a nonattracting boundary for α ≤ 0 and attracting for α > 0,
Equations (61) and (62) follow from (12), making use of (55) and (59).

Table 5. For the TH-F process, with C1(x) = −0.02 x + β and C2(x) = x, the mean, the variance,
the coefficient of variation, and the skewness of FPT are listed for x0 = 4, β = −0.1, 0, 0.1 and for
decreasing values the boundary S ∈ [0, x0).

S t(Z)
1 (S|x0) Var(Z)(S|x0) Cv(Z)(S|x0) Σ(Z)(S|x0)

β = −0.1

3.5 1.392620 43.55136 4.738799 13.55745
3.0 2.859008 89.01922 3.300096 9.501619
2.5 4.412074 136.5521 2.648539 7.684201
2.0 6.069704 186.2977 2.248724 6.585614
1.5 7.858374 238.3733 1.964699 5.823477
1.0 9.821571 292.7690 1.742134 5.249299
0.5 12.04587 348.9465 1.550747 4.792382
0.0 14.86611 401.3413 1.347596 4.429951

β = 0

3.5 1.702121 69.83433 4.909578 13.0398
3.0 3.512494 144.3878 3.420973 9.119134
2.5 5.452850 224.4206 2.747311 7.356073
2.0 7.554206 310.9409 2.334265 6.285290
1.5 9.864220 405.3553 2.041057 5.536382
1.0 12.46511 509.782 1.811324 4.964136
0.5 15.53300 627.8781 1.613178 4.494585
0.0 19.91651 768.9171 1.392280 4.068225

β = 0.1

3.5 2.126455 115.1039 5.045321 12.41484
3.0 4.415487 240.9926 3.515793 8.659792
2.5 6.904328 380.0698 2.823646 6.964637
2.0 9.647790 535.8021 2.399244 5.929435
1.5 12.73337 713.5752 2.097861 5.199456
1.0 16.31983 922.7997 1.861394 4.631900
0.5 20.77405 1184.008 1.656366 4.155107
0.0 28.39302 1607.070 1.411906 3.602509

From (61) and (62), for α ∈ R, β ∈ R, r > 0, with β < r, one has limx↑+∞ LZ(x|x0) =
0 and

lim
x↓0

LZ(x|x0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
r

1
1−β/r α ≤ 0,

1
r

1
1−β/r

Γ
(

1− β
r , α x0

r

)
Γ
(

1− β
r

) , α > 0.

Therefore, for the TH-F process the asymptotic average of local time tend to zero as x
increases, whereas it is positive for x ↓ 0.

In Figure 3, the asymptotic average of the local time for the TH-F process Z(t) is
plotted for x0 = 4, r = 0.5 and some choices of α and β.
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Figure 3. Cont.
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Figure 3. LZ(x|x0), given in Proposition 12, with x0 = 4, r = 0.5, and some choices of β. In (a) α =

−0.02, in (b) α = 0.02 and in (c) α = 0.

5. Relationships and Asymptotic Results

In this section, for β(t) = r(t)/2 some relationships between the PDF in the presence
of an absorbing boundary in the zero state and between the FPT densities through zero for
Wiener, Ornstein–Uhlenbeck and Feller processes are proven; moreover, for β(t) = ξ r(t)
(0 < ξ < 1) some asymptotic results for large times between the FPT densities are provided.

5.1. Relations between the Transition Densities with an Absorbing Boundary in the Zero State

We consider the TNH-F process (49) with β(t) = r(t)/2 in the presence of an absorbing
boundary in the zero state, and we show that its PDF can be related to the PDF of the Wiener
and of the Ornstein–Uhlenbeck processes with an absorbing boundary in the zero state.

Proposition 11. Let Z(t) be a TNH-F process with C1(t) = r(t)/2 and C2(x, t) = 2 r(t) x,
where r(t) > 0, and let X(t) be a TNH-W process with A1 = 0 and A2(t) = r(t)/2. One has

aZ(x, t|x0, t0) =
1

2
√

x
aX(

√
x, t|√x0, t0), x0 > 0, x > 0, (63)

gZ(0, t|x0, t0) = gX(0, t|√x0, t0), x0 > 0. (64)

Proof. For the TNH-F process Z(t), by setting α(t) = 0 and β(t) = r(t)/2 in (50) and in
Proposition 9, recalling that

I1/2(x) =

√
2
π

sinh(x)√
x

, γ
(1

2
, x
)
=

√
π Erf(

√
x), (65)

one has

aZ(x, t|x0, t0) =

⎧⎪⎪⎨⎪⎪⎩
2
√

x0
π [R̃(t|t0)]3

exp
{
− x0

R̃(t|t0)

}
, x = 0,

1
2
√

π R̃(t|t0)x

[
exp

{
−
(√

x−√
x0

)2

R̃(t|t0)

}
− exp

{
−
(√

x+
√

x0

)2

R̃(t|t0)

}]
, x > 0,

(66)

and

gZ(0, t|x0, t0) = r(t)

√
x0

π [R̃(t|t0)]3
exp

{
− x0

R̃(t|t0)

}
, x0 > 0, (67)

where R̃(t|t0) =
∫ t

t0
r(θ) dθ. Furthermore, for the TNH-W process X(t) with β(t) = 0 and

σ2(t) = r(t)/2, one has VX(t|t0) = R̃(t|t0)/2. Then, (63) and (64) follow by comparing (66)
and (67) with (17) and (18), respectively.

Under the assumptions of the Proposition 13, one has LZ(x|x0, t0) = LX(
√

x |√x0, t0)/

(2
√

x) for x > 0, x0 > 0 and, if limt→+∞ R̃(t|t0) = +∞, one obtains t(Z)
n (0|x0, t0) =

t(X)
n (0|√x0, t0) for n = 1, 2, . . . with x0 > 0.
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Proposition 12. Let Z(t) be a TNH-F process with C1(x, t) = α(t) x + r(t)/2 and C2(x, t) =
2 r(t) x, where α(t) is not always zero and r(t) > 0, and let Y(t) be a TNH-OU process with
B1(x, t) = α(t) x/2 and B2(t) = r(t)/2. One has

aZ(x, t|x0, t0) =
1

2
√

x
aY(

√
x, t|√x0, t0), x0 > 0, x > 0, (68)

gZ(0, t|x0, t0) = gY(0, t|√x0, t0), x0 > 0. (69)

Proof. For the TNH-F process Z(t), by setting β(t) = r(t)/2 in (50) and in Proposition 9,
recalling (65), one obtains

aZ(x, t|x0, t0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2 e−A(t|t0)
√

x0
π [R(t|t0)]3

exp
{
− x0

R(t|t0)

}
, x = 0,

e−A(t|t0)/2

2
√

π R(t|t0)x

[
exp

{
−
(√

x e−A(t|t0)−√
x0

)2

R(t|t0)

}
− exp

{
−
(√

x e−A(t|t0)+
√

x0

)2

R(t|t0)

}]
, x > 0,

(70)

and

gZ(0, t|x0, t0) = r(t) e−A(t|t0)
√

x0

π [R(t|t0)]3
exp

{
− x0

R(t|t0)

}
, x0 > 0, (71)

with A(t|t0) and R(t|t0) given in (30) and (51), respectively. Moreover, in the TNH-OU
process Y(t) we set β(t) = 0, σ2(t) = r(t)/2 and we change α(t) into α(t)/2, so that,
by virtue of (29) and (51), one has VY(t|t0) = R(t|t0)eA(t|t0)/2. Then, (68) and (69) follow
by comparing (70) and (71) with (33) and (34), respectively.

Under the assumptions of Proposition 14, one has LZ(x|x0, t0) = LY(
√

x |√x0, t0)/

(2
√

x) for x > 0, x0 > 0 and, if limt→+∞ R(t|t0) = +∞, one obtains t(Z)
n (0|x0, t0) =

t(Y)n (0|√x0, t0) for n = 1, 2, . . . with x0 > 0.

5.2. Asymptotic Behaviors between the FPT Densities

In this section, for β(t) = ξ r(t) (0 < ξ < 1) some asymptotic results for large times
between the FPT densities of TNH-W, TNH-OU and TNH-F processes are shown.

Proposition 13. Let Z(t) be a TNH-F process with C1(t) = ξ r(t) and C2(x, t) = 2 r(t) x, where
r(t) > 0, 0 < ξ < 1, and let X(t) be a TNH-W process with A1 = 0 and A2(t) = ξ r(t).
If limt→+∞ R̃(t|t0) = +∞, and one has

lim
t→+∞

gZ(0, t|x0, t0) [R̃(t|t0)]
1/2−ξ

gX(0, t|x1−ξ
0 , t0)

=

√
2 π ξ

Γ(1 − ξ)
, x0 > 0. (72)

Proof. Recalling (18) and (67) and noting that VX(t|t0) = ξ R̃(t|t0), one has

gZ(0, t|x0, t0) [R̃(t|t0)]
1/2−ξ

gX(0, t|x1−ξ
0 , t0)

=

√
2 π ξ

Γ(1 − ξ)
exp

{
− x0

R̃(t|t0)
+

x2(1−ξ)
0

2 ξ R̃(t|t0)

}
,

from which, under the assumption limt→+∞ R̃(t|t0) = +∞, Equation (72) follows.

Proposition 14. Let Z(t) be a TNH-F process having C1(x, t) = α(t) x + ξ r(t) and C2(x, t) =
2 r(t) x, with α(t) not always zero, r(t) > 0, 0 < ξ < 1, and let Y(t) be a TNH-OU process with
B1(x, t) = α(t) x/2 and B2(t) = ξ r(t). If limt→+∞ R(t|t0) = +∞, and one has

lim
t→+∞

gZ(0, t|x0, t0) [R(t|t0)]
1/2−ξ

gY(0, t|x1−ξ
0 , t0)

=

√
2 π ξ

Γ(1 − ξ)
, x0 > 0. (73)
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Proof. Making use of (34) and (52) and noting that VY(t|t0) = ξ R(t|t0) eA(t|t0), one obtains

gZ(0, t|x0, t0) [R(t|t0)]
1/2−ξ

gY(0, t|x1−ξ
0 , t0)

=

√
2 π ξ

Γ(1 − ξ)
exp

{
− x0

R(t|t0)
+

x2(1−ξ)
0

2 ξ R(t|t0)

}
,

from which, recalling that limt→+∞ R(t|t0) = +∞, Equation (73) follows.

6. Conclusions

For the Wiener, Ornstein–Uhlenbeck, and Feller processes, we analyze the transition
densities in the presence of an absorbing boundary in the zero state and the FPT problem
to the zero state. Particular attention is dedicated to the proportional cases and to the
time-homogeneous cases, by achieving the FPT densities through the zero state. Exten-
sive computation are performed with MATHEMATICA to obtain the mean, the variance,
the coefficient of variation and the skewness of FPT for TH-W, TH-OU and TH-F processes.
Moreover, for these processes, a detailed study of the asymptotic average of local time with
an absorbing boundary in the zero-state is carried out.

In Table 6, a summary containing the conditions and the most important equa-
tions numbering in Sections 2–4 concerning the absorbing problem for Wiener, Ornstein–
Uhlenbeck and Feller diffusion processes is given.

Table 6. Summary containing conditions and the most important equations numbering in Sections 2–4
for Wiener, Ornstein–Uhlenbeck and Feller diffusion processes.

Conditions Results—Equations Numbering

Wiener process
A1(t) = β(t)
A2(t) = σ2(t)

(β(t) ∈ R, σ(t) > 0)

β(t) = γ σ2(t)
(γ ∈ R, σ(t) > 0)

aX(x, t|x0, t0)− (17)
gX(0, t|x0, t0)− (18)

PX(0|x0, t0)− (19)

β(t) = β, σ2(t) = σ2

(β ∈ R, σ > 0)

gX(S, t|x0)− (22)
PX(S|x0)− (23)

aX(x, t|x0)− (25)
LX(x|x0)− (26)

Ornstein–Uhlenbeck process
B1(x, t) = α(t) x + β(t)

B2(t) = σ2(t)
(α(t) ∈ R, β(t) ∈ R, σ(t) > 0)

β(t) = γ σ2(t) e−A(t|0)

(γ ∈ R, α(t) ∈ R, σ(t) > 0)

aY(x, t|x0, t0)− (33)
gY(0, t|x0, t0)− (34)

PY(0|x0, t0)− (35)

α(t) = α, β(t) = β, σ2(t) = σ2

(α �= 0, β ∈ R, σ > 0)

g(Y)λ (S|x0)− (41)
PY(S|x0)− (42)

a(Y)λ (x|x0)− (46)
LY(x|x0)− (47), (48)

Feller process
C1(x, t) = α(t) x + β(t)

C2(x, t) = 2 r(t) x
(α(t) ∈ R, β(t) ∈ R, r(t) > 0,
(β(t) ≤ ξ r(t), 0 ≤ ξ < 1)

β(t) = ξ r(t)
(0 ≤ ξ < 1, r(t) > 0)

aZ(x, t|x0, t0)− (50)
gZ(0, t|x0, t0)− (52)

PZ(0|x0, t0)− (53)

α(t) = α, β(t) = β, r(t) = r
(α ∈ R, β ∈ R, r > 0, β < r)

aZ(x, t|x0)− (56), (57)
gZ(0, t|x0)− (58)

PZ(0|x0)− (59)
LZ(x|x0)− (61), (62)

As shown in Table 6, by setting β(t) = 0 in TNH-W, TNH-OU and TNH-F processes,
the PDF in the presence of an absorbing boundary in the zero state and the FPT density
through zero are given in closed form. Moreover, in TH-W, TH-F processes, the previous
densities are obtainable, whereas for the TH-OU process only the LT is available.

The knowledge of the PDF in the presence of an absorbing boundary in the zero
state is of interest in the context of biological systems because it allows us to evaluate
the survival probabilities (20), (36) and (54) for Wiener, Ornstein–Uhlenbeck and Feller
processes, respectively. Moreover, such PDF allows one to get information on the FPT
density through zero (extinction density) (18), (34), and (52) and on the probability of
extinction (19), (35) and (53) of the considered processes. Furthermore, the asymptotic
average of the local time for TH-W, TH-OU, and TH-F processes provides information on
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the average of the sojourn time in the various states before the absorption occurs in the
zero state.

The results of Section 5 show that the same FPT density through the zero-state (extinc-
tion density) may correspond to different diffusion processes with modified initial states.
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Abbreviations

The following abbreviations are used in this manuscript:

PDF Transition Probability Density Function
FPT First Passage Time
TNH-D Time Inhomogeneous Diffusion
TNH-W Time Inhomogeneous Wiener
TNH-OU Time Inhomogeneous Ornstein-Uhlenbeck
TNH-F Time Inhomogeneous Feller
TH-D Time Homogeneous Diffusion
TH-W Time Homogeneous Wiener
TH-OU Time Homogeneous Ornstein-Uhlenbeck
TH-F Time Homogeneous Feller
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Abstract: A stochastic nonautonomous SIAM (Susceptible individual–Infected individual–Aware
individual–Media coverage) epidemic model with Markov chain and nonlinear noise perturbations
has been constructed, which is used to research the hybrid dynamic impacts of media coverage
and Lévy jumps on infectious disease transmission. The uniform upper bound and lower bound
of the positive solution are studied. Based on defining suitable random Lyapunov functions, we
researched the existence of a nontrival positive T-periodic solution. Sufficient conditions are derived
to discuss the exponential ergodicity based on verifying a Foster–Lyapunov condition. Furthermore,
the persistence in the average sense and extinction of infectious disease are investigated using
stochastic analysis techniques. Finally, numerical simulations are utilized to provide evidence for the
dynamical properties of the stochastic nonautonomous SIAM.

Keywords: media coverage; Lévy jumps; nontrival positive T-periodic solution; exponential ergodicity;
persistence in mean; extinction

1. Introduction

Recent studies have shown that public health alerts via social media exert a positive
influence on usefully informing people of the prevalence about infectious disease [1]. There-
fore, media coverage has effectively reduced the prevalence and shortened the duration
of disease [2]. The influence of media message reminders on local behavioral response
and public awareness response was studied in [3], and pharmaceutical interventions and
the response of infected people to information have also been successful in controlling of
the epidemic.

As the mass media has directed people’s attention, it is often focused on infectious dis-
ease; thus, relying on the mass media to publicize the law of infectious disease transmission
is extremely constructive for the effective treatment of the epidemic [4,5]. Assuming that
the implementation of a public health alert program is proportional to the infected popu-
lation, recent studies have shown that progress has been made in the social cost–benefit
analysis of media campaigns for vaccination against infectious disease [6–9].

There is also a series of studies that specifically discussed the increased vaccination
coverage of people due to social media advertising and television programs [10–12], which
includes the example of discussing the function of media alerts to reduce the number of
infected people. Particularly, in [12] a SIAM (Susceptible individual—Infected individual—
Aware individual—Media coverage) epidemic model with media coverage and public
health alerts was established as follows, and stability analysis around the endemic equilib-
rium was studied.

Fractal Fract. 2022, 6, 699. https://doi.org/10.3390/fractalfract6120699 https://www.mdpi.com/journal/fractalfract110



Fractal Fract. 2022, 6, 699

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dS(t)
dt = Λ − βS(t)I(t)− λS(t) M(t)

M(t)+p + νI(t) + λ0 A(t)− hS(t),
dI(t)

dt = βS(t)I(t)− (ν + α + h)I(t),
dA(t)

dt = λS(t) M(t)
M(t)+p − (λ0 + h)A(t),

dM(t)
dt = r

(
1 − θ

A(t)
w+A(t)

)
I(t)− r0(M(t)− M0),

(1)

with the initial value for model (1) takes the following from:

S(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0, M(0) ≥ M0,

S(t), I(t), A(t) denotes the number of susceptible individuals, infected individuals and
aware individuals, respectively. M(t) is the cumulative number of TV programs and social
media. Λ denotes the increase in the number of people who are susceptible. β stands for the
rate of contact between susceptible individuals and infected individuals. ν, α and h denote
the rate of recovery, disease-induced death and natural death, respectively. Furthermore,
λ represents the rate of awareness among the susceptible, and λ0 is the transfer rate of
aware individuals to susceptible individuals. r is the growth rate in media coverage, and r0
represents the diminution rate of advertisements [12].

It is well-known that dynamical effects of a periodically varying situation are different
from those in a relatively stable situation [13]. Some parameters describing seasonal effects
are affected by disturbances in time and usually exhibit [14]. Therefore, it is more accurate
to assume periodicity of the surrounding situation and introduce time-varying periodic
function parameters into the epidemic models, which can be found in [15–17] and the
references therein.

Recently, there have been studies concentrated on discussing the spread dynamics of
infectious disease using a stochastic mathematical model with Brownian motion [14–17].
Recently, some scholars found that, compared with Gaussian white noise and Brownian
motion, Lévy jumps can more accurately describe the unexpected violent disturbances in
the real situation [18,19]. Furthermore, Markov chain [20] is usually used to describe the
vital transient transitions of important rates between two or more infectious states [21,22].

Taking the above mentioned content into account, media coverage, random pertur-
bations and time-varying periodic function parameters are important disciplines in the
modeling and dynamical analysis of infectious disease transmission. In this work, a random
nonautonomous SIAM infectious disease model with Markov chain and nonlinear noise
perturbations has been established as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =
[
Λ(t)− β(t)S(t)I(t)− λ(t)S(t) M(t)

M(t)+p(t) + ν(t)I(t) + λ0(t)A(t)− h(t)S(t)
]
dt

+[σ11(γ(t)) + σ12(γ(t))S(t)]S(t)dB1(t) +
∫
Y

c1(u)S(t−)X̃(du, dt),
dI(t) = [β(t)S(t)I(t)− (ν(t) + α(t) + h(t))I(t)]dt

+[σ21(γ(t)) + σ22(γ(t))I(t)]I(t)dB2(t) +
∫
Y

c2(u)I(t−)X̃(du, dt),
dA(t) =

[
λ(t)S(t) M(t)

M(t)+p(t) − (λ0(t) + h(t))A(t)
]
dt

+[σ31(γ(t)) + σ32(γ(t))A(t)]A(t)dB3(t) +
∫
Y

c3(u)A(t−)X̃(du, dt),
dM(t) =

[
r(t)

(
1 − θ(t) A(t)

w(t)+A(t)

)
I(t)− r0(t)(M(t)− M0(t))

]
dt

+[σ41(γ(t)) + σ42(γ(t))M(t)]M(t)dB4(t) +
∫
Y

c4(u)M(t−)X̃(du, dt).

(2)

where Λ(t), β(t), λ(t), p(t), ν(t), λ0(t), h(t), α(t), r(t), θ(t), w(t), r0(t) are continuous
T-periodic functions. σ2

ij(·) > 0(i = 1, 2, 3, 4, j = 1, 2) represent white noises. γ(t) de-
notes a irreducible and continuous Markov chain, which is defined in N = {1, 2, 3, . . . , K}.
γ(t) is supposed to be generated by the following transition rate matrix Γ = (μnj)K×K,

P{γ(τ +�τ) = j|γ(τ) = n} =

{
μnj�τ + o(�τ), n �= j,

1 + μnn�τ + o(�τ), n = j,
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where μnj > 0 is the transition rate from state n to state j, and μnn = −ΣK
n �=j,n=1μnj holds

for n �= j.
Due primary to γ(t) being an irreducible Markov procedure, it exists as a unique

stationary probability distribution φ = (φ1, φ2, · · · , φK) ∈ R1×K subject to ∑K
n=1 φn =

1 and φn > 0 hold for any n ∈ N. S(t−), I(t−), A(t−), M(t−) denotes left limit of
S(t), I(t), A(t), M(t), respectively. Y represents for a measurable subset of R+, X depicts
an independent Poisson counting measure with Lévy measure ρ on Y with ρ(Y) < ∞ such
that X̃(dt, du) = X(dt, du)− ρ(du)dt. It is supposed that ci(u) > −1, and there are four
constants κi > 0(i = 1, 2, 3, 4) are constructed as below,

max{
∫
Y
(ln(1 + ci(u))ρdu,

∫
Y
(ln(1 + ci(u))2ρdu} ≤ κi. (3)

Based on the properties of Markov chain, we can regard system (2) as the subsystems
defined as below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) =
[
Λ(t)− β(t)S(t)I(t)− λ(t)S(t) M(t)

M(t)+p(t) + ν(t)I(t) + λ0(t)A(t)− h(t)S(t)
]
dt

+[σ11(n) + σ12(n)S(t)]S(t)dB1(t) +
∫
Y

c1(u)S(t−)X̃(du, dt),
dI(t) = [β(t)S(t)I(t)− (ν(t) + α(t) + h(t))I(t)]dt

+[σ21(n) + σ22(n)I(t)]I(t)dB2(t) +
∫
Y

c2(u)I(t−)X̃(du, dt),
dA(t) =

[
λ(t)S(t) M(t)

M(t)+p(t) − (λ0(t) + h(t))A(t)
]
dt

+[σ31(n) + σ32(n)A(t)]A(t)dB3(t) +
∫
Y

c3(u)A(t−)X̃(du, dt),
dM(t) =

[
r(t)

(
1 − θ(t) A(t)

w(t)+A(t)

)
I(t)− r0(t)(M(t)− M0(t))

]
dt

+[σ41(n) + σ42(n)M(t)]M(t)dB4(t) +
∫
Y

c4(u)M(t−)X̃(du, dt).

(4)

Remark 1. In recent related work, stochastic perturbations are usually represented by linear form
perturbation of white noise, and the influences of linear noises perturbations on nonautonomous
epidemic models were studied in [13–17]. However, in order to accurately depict some stochastic
phenomena arising from infectious disease transmission in the real world, it is more constructive
to introduce nonlinear noise perturbations into a nonautonomous epidemic model. Furthermore,
some stochastic models have been established to discuss the prevalence mechanism of infectious
diseases [23–31] without Lévy jumps.

A SIS infectious disease system with regime-switching driven by Lévy jumps was investigated
in [32], while the random dynamics for infectious disease system with hybrid dynamic impacts of Lévy
jumps and media coverage are rarely reported. Taking the media coverage and random disturbance into
dynamic impacts on threshold dynamics of random infectious disease model were investigated in [33–36],
while Lévy jumps and periodic function parameters were not considered in [33–36].

The dynamic behavior of infectious disease systems in [37–39] were investigated under non-
linear noise perturbations and Lévy jumps, while all parameters were assumed to be constant
values in [37–39], periodicity factors during transmission within the infectious disease regimes were
not considered.

Although the stochastic infectious disease model and its dynamic analysis have attracted wide
attention, as far as the authors know, the hybrid dynamic impacts of Lévy jumps and media coverage
on random dynamics of the nonautonomous SIAM epidemic model with Markov chain and nonlinear
noise perturbations have not been reported in previous related studies.

By incorporating Lévy jumps, nonlinear noise perturbations and periodic function
parameters into the the epidemic system, we aim to study the hybrid dynamic impacts
of media coverage on infectious disease transmission driven by Lévy jumps. For the
rest of this work, we will make some arrangements as below: In the next section, the
uniform upper bound and lower bound of the solution for stochastic nonautonomous
system will be investigated. Based on constructing certain appropriate stochastic Lyapunov
functions, sufficient conditions for existence of a nontrival positive T-periodic solution will
be discussed.
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Based on verifying a Foster–Lyapunov criterion, sufficient conditions for the expo-
nential ergodicity are discussed. Furthermore, some sufficient conditions are derived to
discuss the persistence in the mean and extinction of the infectious disease. In the third
section, numerical simulations are used to prove the accuracy of the theoretical derivation.
Lastly, section four is the conclusion of this paper.

2. Qualitative Analysis

For the sake of the narrative, we define the following mathematical symbols,

gu = sup
t∈R+

g(t), gl = inf
t∈R+

g(t), 〈g(t)〉 = 1
t

∫ t

0
g(t)dt.

Lemma 1. For any initial value (S(0), I(0), A(0), M(0), n) ∈ R4
+ × N, when the sufficient

condition (3) holds, then there exists a uniform upper bound and a uniform lower bound for the
solution of system (4).

Proof. Let y1(t) = Sη(t), η ∈ (0, 1). Utilizing the Itô’s formula to ety1(t) and, integrating
both sides from 0 to t, the following results can be obtained.

E(ety1(t))

= E

∫ t

0
es
[

1 + η

(
Λ(t)
S(t)

− β(t)I(t)− λ(t)M(t)
M(t) + p(t)

+
ν(t)I(t)

S(t)
+

λ0(t)A(t)
S(t)

− h(t)
)]

y1(t)ds

+y1(0) +E

∫ t

0
es
[∫

Y
((1 + c1(u))η − 1)X̃(du, dt)

]
y1(t)ds

−E

∫ t

0
es
[

η(1 − η)

2
(σ11(n) + σ12(n)S(t))2

]
y1(t)ds

≤ E

∫ t

0
es
[

1 + η

(
Λ(t)
S(t)

− β(t)I(t)− λ(t)M(t)
M(t) + p(t)

+
ν(t)I(t)

S(t)
+

λ0(t)A(t)
S(t)

− h(t)
)]

y1(t)ds

+y1(0)−E

∫ t

0
es
[

η(1 − η)

2
(σ11(n) + σ12(n)S(t))2

]
y1(t)ds

+E

∫ t

0
es
[∫

Y
((1 + c1(u))η − 1 − ηc1(u))ρdu

]
y1(t)ds.

When S(t) ≥ 0 and 0 < η < 1, based on the inequality Sη(t) ≤ 1 + η(S(t)− 1), if
sufficient condition (3) holds, we can obtain the following results

y1(t)
[

1 + η

(
Λ(t)
S(t)

+
ν(t)I(t)

S(t)
+

λ0(t)A(t)
S(t)

− β(t)I(t)− λ(t)M(t)
M(t) + p(t)

− h(t)
)]

−y1(t)
[

η(1 − η)

2
(σ11(n) + σ12(n)S(t))2 −

∫
Y
((1 + c1(u))η − 1 − ηc1(u))ρdu

]
≤

[
1 + η

(
Λ(t)
S(t)

− β(t)I(t)− λ(t)M(t)
M(t) + p(t)

+
ν(t)I(t)

S(t)
+

λ0(t)A(t)
S(t)

− h(t)
)]

Sη(t)

≤ G1(η),

where G1(η) is a positive definite function associated with η.
Hence, we can reach the following conclusion

E(ety1(t)) ≤ y1(0) +E

∫ t

0
esG1(η)ds,

which reveals that lim supt→∞ E(S(t)η) ≤ G1(η).
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Basing on utilizing the similar arguments, one can find that⎧⎨⎩
lim supt→∞ E(I(t)η) ≤ G2(η),
lim supt→∞ E(A(t)η) ≤ G3(η),
lim supt→∞ E(M(t)η) ≤ G4(η).

Let (χ(t), n) = (S(t), I(t), A(t), M(t), n) ∈ R4
+ ×N, it yields that

2(1−
η
2 )
∧

0 | χ(t) |η≤ Sη(t) + Iη(t) + Aη(t) + Mη(t),

which follows that

lim sup
t→∞

E | χ(t) |η ≤ 0.5(1−
η
2 )
∧

0 lim sup
t→∞

E[Sη(t) + Iη(t) + Aη(t) + Mη(t)]

≤ 0.5(1−
η
2 )
∧

0[G1(η) + G2(η) + G3(η) + G4(η)] := G(η).

For any η ∈ (0, 1), let G(ε) =
(

G(η)
ε

) 1
η , by applying the Chebyshev’s inequality, we

will obtain the following results⎧⎨⎩
P[χ(t) < G(ε)] ≤ G(ε)ηP[χ(t)−η(t)],

lim inft→∞[χ(t) ≤ G(ε)] ≥ 1 − ε.

Nextly, based on using Chebyshev’s inequality and similar arguments, one can find a
constant Q(ε) > 0 subject to

lim inf
t→∞

[χ(t) ≥ Q(ε)] ≥ 1 − ε.

Taking the above mentioned discussions into consideration, one can draw a conclusion
that there exists a uniform upper bound and a uniform lower bound for the solution of
system (4) with any initial value (S(0), I(0), A(0), M(0), n).

Lemma 2. For every initial value (S(0), I(0), A(0), M(0), n) ∈ R4
+ ×N. When sufficient con-

dition (3) holds, then system (4) exists a unique positive solution (S(t), I(t), A(t), M(t), n) that
remains in R4

+ ×N with probability one.

Proof. First, based on some standard arguments and analysis, it is not difficult to show that
system (4) meets the local Lipschitz conditions. Thus, system (4) exists with a unique local
positive solution on t ∈ [0, τe) most likely for any initial value (S(0), I(0), A(0), M(0), n),
where τe represents the explosion time. For the sake of proving the positive solution is
global, next, we will show that τe = ∞.

Secondly, it is assumed that there exists a sufficiently large integer N∗
0 ≥ 0 subject to

(S(0), I(0), A(0), M(0)) all on the interval
[

1
N∗

0
, N∗

0

]
. For any positive integer n ≥ N∗

0 , we
can construct the stopping time as below,

τs = inf
{

t ∈ [0, τe)

∣∣∣∣ min{S(t), I(t), A(t), M(t)} ≤ 1
n , or

max{S(t), I(t), A(t), M(t)} ≥ n

}
.

According to the mathematical properties of τs, it is clear that τe increases as n →
∞. Let τ∞ = limn→∞ τs, and then we can obtain that τ∞ ≤ τe most likely. If τ∞ = ∞
holds most likely, it can be obtained that τe = ∞ most likely holds, which obtains that
(S(t), I(t), A(t), M(t), n) ∈ R4

+ ×N holds for all t ≥ 0.
If τ∞ = ∞ most likely does not hold, then we can find two positive constants Ñ∗

0 > 0
and ε < 1 subject to P{τ∞ ≤ Ñ∗

0 } ≥ ε. Therefore, we can find a positive integer N1 > Ñ∗
0

subject to P{τs ≤ Ñ∗
0 } ≥ ε holds for any n > N1.
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By utilizing a C4− function V : R4
+ → R+ ∪ {0} as below,

V(S(t), I(t), A(t), M(t)) = S(t)− a1 − a1 ln
S(t)
a1

+ I(t)− 1 − ln I(t)

+A(t)− 1 + ln A(t) + a1(M(t)− 1 − ln M(t)),

where a1 = αl+hl

ru+βu .
Based primary on utilizing Itô’s formula, we can find the following results

dV(S(t), I(t), A(t), M(t))

=

(
1 − a1

S(t)

)[
Λ(t)− β(t)S(t)I(t)− λ(t)S(t)M(t)

M(t) + p(t)

]
dt

+

(
1 − a1

S(t)

)
[ν(t)I(t) + λ0(t)A(t)− h(t)S(t)]dt

+

(
1 − 1

I(t)

)
[(β(t)S(t)I(t)− (ν(t) + α(t) + h(t))I(t))]dt

+

(
1 − 1

A(t)

)[
λ(t)S(t)

M(t)
M(t) + p(t)

− (λ0(t) + h(t))A(t)
]

dt

+

(
a1 −

a1

M(t)

)[
r(t)

(
1 − θ

A(t)
w(t) + A(t)

)
I(t)− r0(t)(M(t)− M0)

]
dt

+

[
a1

2
(σ11(n)S(t) + σ12(n))2 +

1
2
(σ21(n)I(t) + σ22(n))2

]
dt

+

[
1
2
(σ31(n)A(t) + σ32(n))2 +

a1

2
(σ41(n)M(t) + σ42(n))2

]
dt

+

[
a1

∫
Y
(c1(u)− ln(1 + c1(u)))ρdu +

∫
Y
(c2(u)− ln(1 + c2(u)))ρdu

]
dt

+

[∫
Y
(c3(u)− ln(1 + c3(u)))ρdu + a1

∫
Y
(c4(u)− ln(1 + c4(u)))ρdu

]
dt

+(σ11(n)S(t) + σ12(n))(S(t)− a1)dB1(t) + (σ21(n)I(t) + σ22(n))(I(t)− 1)dB2(t)

+(σ31(n)A(t) + σ32(n))(A(t)− 1)dB3(t) + a1(σ41(n)M(t) + σ42(n))(M(t)− 1)dB4(t)

+a1

∫
Y
[c1(u)S(t)− ln(1 + c1(u))]X̃(du, dt) +

∫
Y
[c2(u)I(t)− ln(1 + c2(u))]X̃(du, dt)

+
∫
Y
[c3(u)A(t)− ln(1 + c3(u))]X̃(du, dt) + a1

∫
Y
[c4(u)M(t)− ln(1 + c4(u))]X̃(du, dt)

Furthermore, it follows from simple computations that

dV(S(t), I(t), A(t), M(t))

= LVdt + (σ11(n)S(t) + σ12(n))(S(t)− a1)dB1(t) + (σ21(n)I(t) + σ22(n))(I(t)− 1)dB2(t)

+(σ31(n)A(t) + σ32(n))(A(t)− 1)dB3(t) + a1(σ41(n)S(t) + σ42(n))(M(t)− 1)dB4(t)

+a1

∫
Y
[c1(u)S(t)− ln(1 + c1(u))]X̃(du, dt) +

∫
Y
[c2(u)I(t)− ln(1 + c2(u))]X̃(du, dt)

+
∫
Y
[c3(u)A(t)− ln(1 + c3(u))]X̃(du, dt) + a1

∫
Y
[c4(u)M(t)− ln(1 + c4(u))]X̃(du, dt),

where LV is defined as follows,
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LV = Λ(t)− h(t)S(t)− (α(t) + h(t))I(t)− h(t)A(t) + a1r(t)
(

1 − θ(t)
A(t)

ω(t) + A(t)

)
I(t)

+a1

[
r0(t)(M0(t)− M(t))− Λ(t)

S(t)
+ β(t)I(t)

]
+ (a1 − S(t))

λ(t)M(t)
M(t) + p(t)

−a1

[
ν(t)I(t)

S(t)
+ a1

λ0(t)A(t)
S(t)

− a1h(t)
]
− β(t)S(t) + ν(t) + α(t) + h(t)

−a1

[
r(t)I(t)

M(t)
− θ(t)r(t)I(t)

M(t)
A(t)

ω(t) + A(t)
− r0(t) + r0(t)

M0(t)
M(t)

]
+

a1

2
(σ11(n)S(t) + σ12(n))2 +

1
2
(σ21(n)I(t) + σ22(n))2

+
1
2
(σ31(n)A(t) + σ32(n))2 +

a1

2
(σ41(n)M(t) + σ42(n))2

+
∫
Y
(c1(u)− ln(1 + c1(u)))ρdu + a1

∫
Y
(c2(u)− ln(1 + c2(u)))ρdu

+
∫
Y
(c3(u)− ln(1 + c3(u)))ρdu + a1

∫
Y
(c4(u)− ln(1 + c4(u)))ρdu.

When the condition (3) are met, we can obtain the following results based on simple
computations

LV ≤ Λ(t) + [a1(r(t) + β(t))− (α(t) + h(t))]I(t) + a1r0(t)M0(t) + a1λ(t)

+a1(h(t) + r0(t)) + ν(t) + α(t) + 2h(t) + λ0(t) + a1
r(t)θ(t)I(t)A(t)

M(t)(ω(t) + A(t))

+
a1

2
(σ11(n)S(t) + σ12(n))2 +

1
2
(σ21(n)I(t) + σ22(n))2 +

1
2
(σ31(n)A(t) + σ32(n))2

+
a1

2
(σ41(n)M(t) + σ42(n))2 + a1(κ1 + κ4) + κ2 + κ3.

Based on the properties of parametric function and Lemma 1 of this paper, one can
find that

LV ≤ Λu + [a1(ru + βu)− (αl + hl)]I(t) + a1(ru
0 Mu

0 + λu + hu) + νu + αu + hu

+(λ0 + h)u + a1ru
0 + a1

ruθuG2(ε)

Q(ε)(ωl + Q(ε))
+

a1

2
(σ11G(ε) + σ12)

2 +
1
2
(σ21G(ε) + σ22)

2

+
1
2
(σ31G(ε) + σ32)

2 +
a1

2
(σ41G(ε) + σ42)

2 + a1(κ1 + κ4) + κ2 + κ3,

where a1 = αl+hl

ru+βu .
The rest of the discussions resemble those in [16,20]; thus, we omitted them. One can

find that τ∞ = ∞, which means that the solution of (4) will not explosion in a finite time
most likely.

Lemma 3. If a sufficient condition (3) holds, the following properties holds for the positive solution
of (4) with every initial value (S(0), I(0), A(0), M(0), n) ∈ R4

+ ×N,{
lim supt→∞〈S(t)〉 ≤ Λu

hl , lim supt→∞〈I(t)〉 ≤ Λu

αl+hl ,
lim supt→∞〈A(t)〉 ≤ Λu

hl , lim supt→∞〈M(t)〉 ≤ ruΛu

rl
0αl + Mu

0 .
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Proof. Based on the first three formulas of system (4), we can find the results as below

S(t)− S(0)
t

+
I(t)− I(0)

t
+

A(t)− A(0)
t

≤ Λu − hl〈S(t)〉 − (αl + hl)〈I(t)〉 − hl〈A(t)〉

+
1
t

3

∑
i=1

[∫ t

0
(σi1(n) + σi2(n)χi(t))χi(t)dBi(t) +

∫ t

0

∫
Y

ci(u)χi(t−)X̃(du, ds)
]

,

which reveals that

hl〈S(t)〉 ≤ Λu +
S(0) + I(0) + A(0)− S(t)− I(t)− A(t)

t

+
1
t

3

∑
i=1

[∫ t

0
(σi1(n) + σi2(n)χi(t))χi(t)dBi(t) +

∫ t

0

∫
Y

ci(u)χi(t−)X̃(du, ds)
]

.

Hence, it is not difficult to show that

〈S(t)〉 ≤ Λu

hl +
S(0) + I(0) + A(0)− S(t)− I(t)− A(t)

hlt

+
1

hlt

3

∑
i=1

[∫ t

0
(σi1(n) + σi2(n)χi(t))χi(t)dBi(t) +

∫ t

0

∫
Y

ci(u)χi(t−)X̃(du, ds)
]

,

which follows that

〈S(t)〉 ≤ Λu

hl +
S(0) + I(0) + A(0)

hlt
+

3

∑
i=1

(
ψ1i

hl t
+

ψ2i

hl t

)
,

where ψ1i and ψ2i (i = 1, 2, 3) will be defined as follows,{
ψ1i =

∫ t
0 (σi1(n) + σi2(n)χi(t))χi(t)dBi(t),

ψ2i =
∫ t

0

∫
Y

ci(u)χi(t−)X̃(du, ds).

By using Lemma 1, Lemma 2 and exponential martingale inequalities, it can be
obtained that

〈ψ1i, ψ1i〉 =
∫ t

0
(σi1(n) + σi2(n)χi(t))2χ2

i (t)ds,

and

lim sup
t→∞

〈ψ1i, ψ1i〉
t

= lim sup
t→∞

1
t

∫ t

0
(σi1(n) + σi2(n)χi(t))2χ2

i (t)ds

≤ (σu
i1 + σu

i2G(ε))2G2(ε)

< ∞,

which follows that

lim sup
t→∞

ψ1i
t

= 0, (5)

holds for i = 1, 2, 3.
Further computations show that

P

{
sup

0≤i≤j

[
ψ2i −

1
2
〈ψ2i, ψ2i〉

]
> 2 ln j

}
≤ 1

j2
. (6)
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It is easy to show that we can find a random integer j0 = j0(ω) holds with almost all
ω ∈ Ω. Hence, it can be concluded that

sup
0≤i≤j

[
ψ2i −

1
2
〈ψ2i, ψ2i〉

]
≤ 2 ln j0 (7)

holds for ω ∈ Ω most likely, which reveals that

ψ2i ≤ 2 ln j0 +
1
2
〈ψ2i, ψ2i〉 (8)

holds for i = 1, 2, 3 and all 0 ≤ t ≤ j0.
Consequently, we have

〈S(t)〉 ≤ Λu

hl +
S(0) + I(0) + A(0)

hlt
+

2 ln j0
hlt

+
3

∑
i=1

ψ1i

hl t

≤ Λu

hl +
S(0) + I(0) + A(0)

hlt
+

2 ln j0
hl(j0 − 1)

+
3

∑
i=1

ψ1i

hl t
.

By taking the superior limit of 〈S(t)〉, for all 0 ≤ t ≤ j0, it yields

lim sup
t→∞

〈S(t)〉 ≤ lim sup
t→∞

Λu

hl + lim sup
t→∞

S(0) + I(0) + A(0)
hlt

+ lim sup
t→∞

2 ln j0
hlt

+ lim sup
t→∞

3

∑
i=1

ψ1i

hl t

≤ lim sup
t→∞

Λu

hl + lim sup
t→∞

S(0) + I(0) + A(0)
hlt

+ lim sup
t→∞

2 ln j0
hl(j0 − 1)

+ lim sup
t→∞

3

∑
i=1

ψ1i

hl t

≤ Λu

hl .

Based on using the similar arguments and discussions mentioned above, one can find

lim sup
t→∞

〈I(t)〉 < Λu

αl + hl , lim sup
t→∞

〈A(t)〉 < Λu

hl , lim sup
t→∞

〈M(t)〉 < ruΛu

rl
0αl

+ Mu
0 ,

and the proofs are omitted here. Hence, we can draw the next conclusions{
lim supt→∞〈S(t)〉 ≤ Λu

hl , lim supt→∞〈I(t)〉 ≤ Λu

αl+hl ,
lim supt→∞〈A(t)〉 ≤ Λu

hl , lim supt→∞〈M(t)〉 ≤ ruΛu

rl
0αl + Mu

0 .

This proof is ending.

Theorem 1. When R1 > 0 and R2 > 0 holds, there exists a nontrival positive T-periodic solution
of system (4), where Ri (i = 1, 2) will be constructed as below:⎧⎨⎩ R1 =

〈
β(t)Λ(t)

ν(t)+α(t)+h(t)+ζ2(u)+ 1
2 ∑K

n=1 φnσ2
21(n)

− 2(λ(t)+h(t)+l2(t)Λ(t)+ζ1(u))+∑K
n=1 φnσ2

11(n)
2

〉
,

R2 = h(t)− (σ2
12(n) ∨ σ2

22(n) ∨ σ2
32(n)).

(9)
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and ζi(u), li(t) (i = 1, 2) will be constructed as below,⎧⎪⎪⎨⎪⎪⎩
ζi(u) =

∫
Y
(ci(u)− ln(1 + ci(u)))ρdu,

l1(t) =
β(t)Λ(t)

[ν(t)+α(t)+h(t)+ζ1(u)+ 1
2 ∑K

n=1 φnσ2
21(n)]

2 ,

l2(t) =
max{σ11(n)σ12(n),l1(t)σ21(n)σ22(n)}

h(t) .

(10)

Furthermore, �ω(n) is assumed to be a twice continuously differentiable function that charac-
terizes a Markov process and its Itô’s derivative is defined as follows:

L�ω(n) =
K

∑
n=1,j=1

μnj�ω(n). (11)

Proof. First, we define U1(t) as follows

U1(t) = − ln S(t)− l1(t) ln I(t) + l2(t)(S(t) + I(t) + A(t)) + �ω(n).

Based primary on utilizing Itô’s formula, we can find the results as below

LU1(t) = −Λ(t) + ν(t)I(t) + λ0(t)A(t)
S(t)

+ β(t)I(t) +
λ(t)M(t)

M(t) + p(t)
+h(t) + l1(t)[−β(t)S(t) + ν(t) + α(t) + h(t)]

+
1
2
[σ11(n) + σ12(n)S(t)]2 +

l1(t)
2

[σ21(n) + σ22(n)I(t)]2

+
∫
Y
(c1(u)− ln(1 + c1(u))ρdu + l1(t)

∫
Y
(c2(u)− ln(1 + c2(u)))ρdu

+
K

∑
n=1,j=1

μnj�ω(n) + l2(t)Λ(t)− l2(t)[h(t)(S(t) + I(t) + A(t))− α(t)I(t)]

≤ −2
√

l1(t)β(t)Λ(t) + l1(t)
(

ν(t) + α(t) + h(t) +
1
2

σ2
21(n) + ζ2(u)

)
+λ(t) + h(t) +

1
2

σ2
11(n) + ζ1(u) + l2(t)[Λ(t)− h(t)(S(t) + I(t))]

+max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n)}(S(t) + I(t)) +
K

∑
n=1,j=1

μnj�ω(n)

+β(t)I(t) + max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t)). (12)

According to irreducibility property of n, for (σ2
11(1), σ2

11(2), . . . , σ2
11(K)), there exists a

functional vector �ω(n) = (ω(1), ω(2), . . . , ω(K)), and �ω(n) has been mentioned in (11),

1
2

σ2
11(n) +

K

∑
n=1,j=1

μnj�ω(n) =
1
2

K

∑
n=1

φnσ2
11(n).

By using similar arguments, for (σ2
21(1), σ2

21(2), . . . , σ2
21(K)), we have

1
2

σ2
21(n) +

K

∑
n=1,j=1

μnj�ω(n) =
1
2

K

∑
n=1

φnσ2
21(n),

where n ∈ N and μnj > 0 depicts the rate that switch from state n to state j.
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Based on the above analysis, Rs(t) is constructed as below,

Rs(t) :=
β(t)Λ(t)

ν(t) + α(t) + h(t) + ζ2(u) + 1
2 ∑K

n=1 φnσ2
21(n)

−λ(t)− h(t)− ζ1(u)− l2(t)Λ(t)− 1
2

K

∑
n=1

φnσ2
11(n),

one can obtain the following results

LU1(t) ≤ −Rs(t) + max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t))

+max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t)). (13)

In the following part, we construct a T-periodic function as follows,

Φ(t) = −
∫ t

0
(R1 − Rs(τ))dτ,

where R1 = 〈Rs〉T is construct as below

R1 = 〈Rs〉T =

〈
β(t)Λ(t)

ν(t) + α(t) + h(t) + ζ2(u) + 1
2 ∑K

n=1 φnσ2
21(n)

−λ(t)− h(t)− ζ1(u)− l2(t)Λ(t)− 1
2

K

∑
n=1

φnσ2
11(n)

〉
.

Based on some simple computations, we can find the following results

L(U1(t) + Φ(t)) ≤ −R1 + max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t))

+max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t)). (14)

Secondly, we define U2(t) as follows

U2(t) = S(t) + I(t) + A(t) +
1

S(t) + I(t) + A(t)
.

By using Itô formula, it yields that

LU2(t) = Λ(t)− h(t)U1(t)− αI(t)− Λ(t)− h(t)(S(t) + I(t) + A(t))− αI(t)
(S(t) + I(t) + A(t))2

+
S2(t)(σ11(n) + σ12(n)S(t))2 + I2(t)(σ21(n) + σ22(n)I(t))2

(S(t) + I(t) + A(t))3

+
A2(t)(σ31(n) + σ32(n)A(t))2

(S(t) + I(t) + A(t))3 +

∫
Y

(
1

cmin(u)
− 1 + cmax(u)

)
ρdu

S(t) + I(t) + A(t)

≤ −
[

h(t)− (σ2
12(n) ∨ σ2

22(n) ∨ σ2
32(n))

][
S(t) + I(t) + A(t) +

1
S(t) + I(t) + A(t)

]

+Λ(t)− Λ(t)
(S(t) + I(t) + A(t))2 +

2h(t) + α(t) +
∫
Y

(
1

cmin(u)
− 1 + cmax(u)

)
ρdu

S(t) + I(t) + A(t)

+(σ2
11(n) ∨ σ2

21(n) ∨ σ2
31(n))

1
S(t) + I(t) + A(t)

+2[σ11(n)σ12(n) ∨ σ21(n)σ22(n) ∨ σ31(n)σ32(n)].
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Hence, one can find the following results

LU2(t) ≤ −R2

[
S(t) + I(t) + A(t) +

1
S(t) + I(t) + A(t)

]
+ W1(t), (15)

where R2 is defined in (9) and{
cmin(u) = min{c1(u), c2(u), c3(u)},
cmax(u) = max{c1(u), c2(u), c3(u)},

(16)

and

W1(t) = Λ(t) +

[
2h(t) + α(t) +

∫
Y

(
1

cmin(u)
− 1 + cmax(u)

)
ρdu

]2

2Λ(t)
+2(σ11(n)σ12(n) ∨ σ21(n)σ22(n) ∨ σ31(n)σ32(n))

+

[
(σ2

11(n) ∨ σ2
21(n) ∨ σ2

31(n))− (σ2
12(n) ∨ σ2

22(n) ∨ σ2
32(n))

]2

2Λ(t)
.

Based on the boundedness of the parametric functions, the following results can be
obtained that

W1(t) ≤ W1 = Λu + 2(σu
11σu

12 ∨ σu
21σu

22 ∨ σu
31σu

32)

+

[
2hu + αu +

∫
Y

(
1

cl
min(u)

− 1 + cu
max(u)

)
ρdu

]2

2Λl

+

[
((σ2

11)
u ∨ (σ2

21)
u ∨ (σ2

31)
u)− ((σ2

12)
l ∨ (σ2

22)
l ∨ (σ2

32)
l)
]2

2Λl , (17)

where W1 represents the supreme of W1(t).
Thirdly, for any constant ξ ∈ (0, 1), U3(t) is defined as below,

U3(t) = Σ4
i=1(1 + χi(t))ξ + l3(t)(Σ3

i=1χi(t)),

For the convenience of proof, Fi(t) (i = 1, · · · , 4) are constructed as below,

Fi(t) = − ξ(1 − ξ)(1 + χi(t))ξχ2
i (t)

2
(σi1(n) ∧ σi2(n))2 −

∫
Y
(1 + χi(t))ξρdu.

where χ(t) = (χ1(t), χ2(t), χ3(t), χ4(t)) = (S(t), I(t), A(t), M(t)).
Based on utilizing the simple computations, one can be yield the results as below

LU3(t) ≤ [max{ξνu, ξλu
0 + ξλu, ξru} − l3(t)h(t)](Σ3

i=1χi(t))

+W2(t) + Σ4
i=1Fi(t), (18)

where l3(t) and W2(t) are defined as follows,

l3(t) =
max{ξνu, ξλu

0 + ξλu, ξru}
h(t)

,
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W2(t) = ξΛu + l3(t)Λu − ξ(1 + S(t))ξ−1
[

βlS(t)I(t) + λl S(t)M(t)
M(t) + pu + hlS(t)

]
.

−ξ(1 + I(t))ξ−1(νl + αl + hl)I(t)− ξ(1 + A(t))ξ−1(λl
0 + hl)A(t)

+ξβuS(t)I(t)− ξ(1 + M(t))ξ−1rl
0M(t) + ξru

0 Mu
0

+
4

∑
i=1

∫
Y

[
(1 + ci(u)χi(t) + χi(t))ξ − ξ(1 + χi(t))ξ−1ci(u)χi(t)

]
ρdu.

It is not difficult to show W2(t) is continuous in (0,+∞) and it follows from Lemma 1 that

W2(t) ≤ W2 = (ξ + lu
3 )Λ

u − ξ(1 + G(ε))ξ−1
[

βlQ(ε) + λl Q(ε)

G(ε) + pu + hlQ(ε)

]
−ξ(1 + G(ε))ξ−1(νl + αl + λl

0 + rl
0 + 2hl)Q(ε) + ξ(βuG(ε) + ru

0 Mu
0 ) (19)

+
4

∑
i=1

∫
Y

[
(1 + ci(u)G(ε) + G(ε))ξ − ξ(1 + Q(ε))ξ−1ci(u)Q(ε)

]
ρdu,

where W2 represents the supreme of W2(t).
Finally, we define U(t) as follows,

U(t) = Θ(U1(t) + Φ(t)) + U2(t) + U3(t),

where Θ is a sufficient large positive constant such that for χi(t) → 0+ (i = 1, · · · , 4)

− ΘR1 + W1 + W2 + sup
4

∑
i=1

Fi(t) < −2. (20)

A continuous function U(t) will be defined as below, and there exists a minimum
U(S0, I0, A0, M0, n0) around (S0, I0, A0, M0, n0) when U(t) tends to ∞.

Hence, we formulate a non-negative function as follows,

Ũ(t) = U(S(t), I(t), A(t), M(t), n)− U0(S0, I0, A0, M0, n0).

By using (14), (15) and (18), one can be yielded that

LŨ(t) = LU(S(t), I(t), A(t), M(t), n)−LU(S0, I0, A0, M0, n0)

≤ −ΘR1 + Θ max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t))

+Θ max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t))

−R2[1 + (Σ3
i=1χi(t))2]

Σ3
i=1χi(t)

+ W1 + W2 + Σ4
i=1Fi(t),

where W1 and W2 have been defined in (17) and (19).
When χi(t) → 0 or χi(t) → ∞, if R2 > 0, one can find that

−R2[1 + (Σ3
i=1χi(t))2]

Σ3
i=1χi(t)

→ −∞. (21)

Based on Lemma 1, when χi(t) → 0, it yields that

Θ max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t))

+Θ max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t))

≤ 2Θ max{σ2
12(n), l1(t)σ2

22(n)}G2(ε)

+2Θ max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}G(ε). (22)
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By using (20)–(22), if R1 > 0 hold, when χi(t) → 0, it gives that

LŨ(t) ≤ −R2[1 + (Σ3
i=1χi(t))2]

Σ3
i=1χi(t)

− ΘR1 + W1 + W2

+Θ max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t)) + sup Σ4
i=1Fi(t)

+Θ max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t))

≤ −1. (23)

When χi(t) → ∞ (i = 1, · · · , 4), it is easy to show that

Θ̃ → −∞, (24)

where Θ̃ is constructed as follows,

Θ̃ = Θ max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t))

+Θ max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t))−
∫
Y
(1 + χi(t))ξρdu

− ξ(1 − ξ)(1 + χi(t))ξ χ2
i (t)

2
(σi1(n) ∧ σi2(n))2. (25)

Furthermore, if R1 > 0 and R2 > 0 hold, it follows from (21) and (24), it yields that

LŨ(t) ≤ −R2[1 + (Σ3
i=1χi(t))2]

Σ3
i=1χi(t)

− ΘR1 + W1 + W2

− ξ(1 − ξ)(1 + χi(t))ξχ2
i (t)

2
(σi1(n) ∧ σi2(n))2 −

∫
Y
(1 + χi(t))ξ ρdu

+Θ max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t))

+Θ max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t))

≤ −∞ − ΘR1 + W1 + W2 − ∞

< −1, (26)

where W1 and W2 have been defined in (17) and (19).
According to Lemma 1 and (26), we can find following results

(i) system (4) exists a unique global solution;
(ii) we can find a T-periodic function Ũ(t) ∈ C1 ×N and LŨ(t) < −1 on the outside of

some compact set.

Hence, sufficient condition (i) and condition (ii) in Theorem 3.8 [40] all hold, which
means that system (4) exists a nontrival positive T-periodic solution.

The proof is ending.

Theorem 2. When R̃s > 0 holds, the solution of system (4) is f -exponentially ergodic, where
R̃s = ∑K

n=1 φnR̃n, and R̃n (n = 1, 2, · · · , K) are defined as follows,

R̃n = βlQ(ε)− (νu + αu + hu)− (ϑ + 1)(σu
21(n) + σu

22(n)G(ε))2

2

−
∫
Y

[
(1 + c2(u))−ϑ − 1

ϑ
− c2(u)

]
ρdu, (0 < ϑ < 1). (27)

Proof. For the diffusion matrix form of system (4), we have{
Dmin ‖ χ(t) ‖2≤ ∑4

i=1
[
σi1(n)χi(t) + σi2(n)χ2

i (t)
]2

χ2
i (t),

∑4
i=1
[
σi1(n)χi(t) + σi2(n)χ2

i (t)
]2

χ2
i (t) ≤ Dmax ‖ χ(t) ‖2,

(28)
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where Dmin and Dmax are defined as follows,⎧⎨⎩ Dmin = min
{

∑4
i=1
[
σi1(n)χi(t) + σi2(n)χ2

i (t)
]2

χ2
i (t)

}
,

Dmax = max
{

∑4
i=1
[
σi1(n)χi(t) + σi2(n)χ2

i (t)
]2

χ2
i (t)

}
.

and χ(t) = (χ1(t), · · · , χ4(t)) = (S(t), I(t), A(t), M(t)).
It follows from (28) that uniform elliptic conditions hold for the diffusion matrix of

system (4). Furthermore, the diffusion of initial value (S(t), I(0), A(0), M(0), n) transition
probability exists a positive smooth density on R4 ×R4 ×R4 ×R4 ×N.

Furthermore, according to Lemma 2 in [41], for the following linear equation,

(R̃1, · · · , R̃K)
T − Γχ(t) = (R̃s, · · · , R̃s)T , (29)

where R̃s = ∑K
n=1 φnR̃n. It follows from simple computations, we can find a unique positive

solution (�1, · · · , �K)
T of Equation (29).

If R̃n > 0 (n = 1, 2, · · · , K) hold, it is easy to show that R̃s = ∑K
n=1 φnR̃n > 0, where

∑K
n=1 φn = 1 and φn > 0 hold for any n ∈ N.

Based on the above analysis, we define U4(t) and U5(t) as follows,{
U4(t) = Σ3

i=1χi(t) + αl

ru M(t),
U5(t) = (1 + ϑ�n)I(t)−ϑ.

Based primary on utilizing the Itô formula to system (4), it yields that

LU4(t) = Λu − hl(Σ3
i=1χi(t))− αl I(t)

+
αl

ru

[
ru I(t)

(
1 − θl A(t)

ωu + A(t)

)
− rl

0M(t) + ru
0 Mu

0

]
. (30)

and

LU5(t) = ϑ(1 + ϑ�n)I(t)−ϑ[ν(t) + α(t) + h(t)− β(t)S(t)]

+
ϑ(1 + ϑ�n)I(t)−ϑ(ϑ + 1)(σ21(n) + σ22(n)I(t))2

2

+I(t)−ϑ

{
ϑ ∑

n=1,j=1
μnj�n + (1 + ϑ�n)

∫
Y
[(1 + c2(u))−ϑ − 1 + ϑc2(u)]ρdu

}
= ϑI(t)−ϑ(1 + ϑ�n)[−β(t)S(t) + ν(t) + α(t) + h(t)]

+ϑI(t)−ϑ(1 + ϑ�n)
(ϑ + 1)(σ21(n) + σ22(n)I(t))2

2

+ϑI(t)−ϑ ∑
n=1,j=1

μnj�n +
∫
Y

[
(1 + c2(u))−ϑ − 1

ϑ
+ c2(u)

]
ρdu

= ϑI(t)−ϑ ∑
n=1,j=1

μnj�n − (1 + ϑ�n)[β(t)S(t)− (ν(t) + α(t) + h(t)]

−ϑI(t)−ϑ

{
ϑ + 1

2
[σ21(n) + σ22(n)I(t)]2 +

∫
Y

[
(1 + c2(u))−ϑ − 1

ϑ
+ c2(u)

]
ρdu

}
.

If (29) holds, then it is easy to show that ∑n=1,j=1 μnj�n = R̃n − R̃s, which yields that
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LU5(t) = ϑI(t)−ϑ

{
∑

n=1,j=1
μnj�n − (1 + ϑ�n)[β(t)S(t)− (ν(t) + α(t) + h(t))]

}

−ϑI(t)−ϑ

{
ϑ + 1

2
[σ21(n) + σ22(n)I(t)]2 +

∫
Y

[
(1 + c2(u))−ϑ − 1

ϑ
+ c2(u)

]
ρdu

}
≤ ϑI(t)−ϑ

{
R̃n − R̃s − (1 + ϑ�n)

[
βlQ(ε)− (νu + αu + hu)

]}
+
(ϑ + 1)ϑI(t)−ϑ(1 + ϑ�n)

2
[σ21(n) + σ22(n)G(ε)]2

+ϑI(t)−ϑ(1 + ϑ�n)
∫
Y

[
(1 + c2(u))−ϑ − 1

ϑ
+ c2(u)

]
ρdu

≤ ϑI(t)−ϑ
[

R̃n − R̃s − (1 + ϑ�n)R̃n

]
= ϑI(t)−ϑ[−ϑ�nR̃n − R̃s]. (31)

By using (30) and (31), it can be obtained that

L[U4(t) + U5(t)] = L
[

Σ3
i=1χi(t) +

αl

ru M(t) + (1 + ϑ�n)I(t)−ϑ

]

≤ −M̃

[
Σ3

i=1χi(t) +
αl

ru M(t) + (1 + ϑ�n)I(t)−ϑ

]
+ Λu +

ru
0 αl

ru

= −M̃[U4(t) + U5(t)] + Λu +
ru

0 αl

ru ,

where M̃ = min
{

hl , rl
0, K(K�nR̃n+R̃s)

1+K�n

}
(n = 1, 2, · · · , K).

According to Theorem 6.1 in [42] and Theorem 6.3 in [43], all the sufficient conditions
for existence of exponential ergodicity hold.

Hence, based on the above analysis, if R̃s > 0 , the positive solution of system (4) is
f -exponentially ergodic.

The proof is ending.

Remark 2. Let P(t, (χ(t), n), ·) depict the transition probability of (χ(t), n). According to Theo-
rem 2 of this paper, for some positive constant δ ∈ (0, 1), it can be found that (χ(t), n) is considered
to be f -exponentially ergodic if there exists a probability measure π(·) and a finite-valued function
υ(χ(t), n) such that

‖P(t, (χ(t), n), ·)− π(·)‖ ≤ υ(χ(t), n)δt,

holds for all t ≥ 0 and (χ(t), n) ∈ R4
+ ×N.

In the next part, we will concentrate on hybrid dynamic impacts of random perturba-
tions and media coverage on the variations of epidemic transmission.

Theorem 3. For the infected individual I(t) of system (4),

(i) if RI < 1 and RI is defined in (32),

RI =
βuΛu

hl(νl + αl + hl + ζ l
2)

+
σu

2 Λu

(αl + hl)(νl + αl + hl + ζ l
2)

, (32)

then the number of infected individual I(t) of system (4) satisfies

lim
t→∞

I(t) = 0,
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which means infected individual tends to zero exponentially;
(ii) if RE > 0 and RE is defined in (33),

RE =
Λu(βl + hl)

λu + hu + ζu
1 + 1

2 ∑K
n=1 φn(σu

11 + σu
12G(ε))2

−
[

ru
0 Mu

0 + νu + αu + hu +
1
2
(σu

21 + σu
22G(ε))2 + ζu

2

]
, (33)

then the number of infected individual I(t) of system (4) meets

lim inf
t→∞

1
t

∫ t

0
I(s)ds > 0,

which means infected individual will be persistent in the average sense.

Proof. (i) Based on applying Itô’s formula to system (4), we can obtain the results as below

d ln I(t) = [β(t)S(t)− (ν(t) + α(t) + h(t))]dt − (σ21(n) + σ22(n)I(t))2

2
dt

+

[∫
Y
[ln(1 + c2(u))− c2(u)]ρdu

]
dt + (σ21(n) + σ22(n)I(t))dB2(t)

+
∫
Y

ln(1 + c2(u))X̃(dt, du).

Based primary on integrating from 0 to t among both sides of the above equation, the
following results can be yielded

ln I(t)− ln I(0)

=
∫ t

0
[β(s)S(s)− (ν(s) + α(s) + h(s))]ds

−
∫ t

0

(σ21(n) + σ22(n)I(s))2

2
ds +

∫ t

0

[∫
Y
(ln(1 + c2(u))− c2(u))ρdu

]
ds

+
∫ t

0
(σ21(n) + σ22(n)I(s))dB2(t) +

∫ t

0

∫
Y

ln(1 + c2(u))X̃(du, ds).

Further computations show

ln I(t)− ln I(0)
t

≤ βu〈S(t)〉 − (νl + αl + hl)− σ21(n)σ22(n)〈I(t)〉 − ζ l
2

+

∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t)

t
+

∫ t
0

∫
Y

ln(1 + c2(u))X̃(du, ds)
t

≤ βu Λu

hl + σ̃∗ Λu

(αl + hl)
− (νl + αl + hl)− ζ l

2

+

∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t)

t
+

∫ t
0

∫
Y

ln(1 + c2(u))X̃(du, ds)
t

, (34)

where σ̃∗ = max{−σ21(n)σ22(n)}.
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By using the mathematical properties of white noise, it is not difficult to show that
σ̃∗ ≥ 0. For

∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t), based on Lemma 1 (the boundedness of I(t))

and exponential martingale inequality from Lemma 3 that

lim sup
t→∞

〈∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t),

∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t)

〉
t

= lim sup
t→∞

1
t

∫ t

0
[(σ21(n) + σ22(n)I(t))I(t)]2ds

< (σu
21 + σu

22G(ε))2G(ε)2

< ∞. (35)

Hence, it can be concluded that

lim
t→∞

∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t)

t
= 0. (36)

Let ψ3(t) =
∫ t

0

∫
Y

ln(1 + c2(u))X̃(du, ds), by applying the exponential martingales
inequality, it follows from similar arguments in Lemma 3 that

P

{
sup

0≤i≤j

[
ψ3 −

1
2
〈ψ3, ψ3〉

]
> 2 ln j

}
≤ 1

j2
. (37)

We can easily to find a random integer j∗0 = j∗0 (ω) holds for the almost whole ω ∈ Ω,
and it can be obtained that

sup
0≤i≤j∗0

[
ψ3 −

1
2
〈ψ3, ψ3〉

]
≤ 2 ln j∗0 (38)

holds for ω ∈ Ω most likely.
Hence, it can be obtained that

ψ3 ≤ 2 ln j∗0 +
1
2
〈ψ3, ψ3〉 (39)

holds for all 0 ≤ t ≤ j∗0 .
By taking the superior limit for (34), if RI < 1 holds, then it yields that

lim sup
t→∞

ln I(t)− ln I(0)
t

≤ βu Λu

hl + σ̃∗ Λu

(αl + hl)
− (νl + αl + hl + ζ l

2)

+ lim sup
t→∞

∫ t
0

∫
Y

ln(1 + c2(u))X̃(du, ds)
t

+ lim sup
t→∞

∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t)

t
(40)

≤ βu Λu

hl + σ̃∗ Λu

(αl + hl)
− (νl + αl + hl + ζ l

2) + lim sup
t→∞

2 ln j∗0
j∗0 − 1

+ lim sup
t→∞

∫ t
0 (σ21 + σ22(n)I(t))dB2(t)

t
.

holds for all t ≤ j∗0 . By utilizing the above equation, we can find the following results

lim sup
t→∞

ln I(t)− ln I(0)
t

< 0,
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which derives that limt→∞ I(t) = 0.
The proof of (i) of Theorem 3 is ending.
(ii) First, we construct U6(t) as follows,

U6(t) = S(t)− l4 − l4 ln
S(t)

l4
+ I(t)− 1 − ln I(t) + A(t) + M(t) + �ω(n),

where l4 is defined as follows: l4 =
Λu(βl+dl)[

λu+hu+ζu
1+∑K

n=1
φn
2 (σu

11+σu
12G(ε))

2]2 .

Based primary on utilizing Itô’s formula and simple computations, one can find that

LU6(t) ≤ Λu − hlS(t) + ru I(t) + ru
0 Mu

0 − l4

[
Λl

S(t)
− βu − λu − hu

]

−βlS(t) +
1
2

[
l4(σu

11 + σu
21S(t))2 + (σu

21 + σu
22 I(t))2

]
+νu + αu + hu + l4ζu

1 + ζu
2 +

K

∑
n=1,j=1

μnj�ω(n)

≤ −2
√

l4Λu(βl + dl) + l4

[
λu + hu +

1
2
(σu

11 + σu
12G(ε))2 + ζu

1

]
+ru

0 Mu
0 + νu + αu + hu +

1
2
[σu

21 + σu
22G(ε)]2

+(l4βu + ru)I(t) + ζu
2 +

K

∑
n=1,j=1

μnj�ω(n),

which derives that

dU6(t) ≤ − Λu(βl + dl)

λu + hu + ζu
1 + 1

2 ∑K
n=1 φn[σu

11 + σu
12G(ε)]2

+ru
0 Mu

0 + (νu + αu + hu) +
1
2
(σu

21 + σu
22G(ε))2 + ζu

2 + (l1βu + ru)I(t)

+
4

∑
i=1

[
(σi1(n) + σi2(n)χi(t))χi(t)dBi(t) +

∫
Y

ci(u)χi(t−)X̃(du, dt)
]

+l4[σ11(n) + σ12(n)S(t)]dB1(t) + [σ21(n) + σ22(n)I(t)]dB2(t)

+l4
∫
Y

ln(1 + c1(u))X̃(du, dt) +
∫
Y

ln(1 + c2(u))X̃(du, dt),

holds for i = 1, 2, 3, 4.
By integrating both sides of above equation from 0 to t and dividing by t, one can

yields that

U6(t)− U6(0)
t

≤ −RE +
l4βu + ru

t

∫ t

0
I(s)ds

+
4

∑
i=1

[
1
t

∫ t

0
(σi1(n) + σi2(n)χi(t))χi(t)dBi +

1
t

∫ t

0

∫
Y

ci(u)χi(t−)X̃(du, ds)
]

+
l4
t

∫ t

0
(σ11(n) + σ12(n)S(t))dB1 +

1
t

∫ t

0
(σ21(n) + σ22(n)I(t))dB2

+
l4
t

∫ t

0

∫
Y

ln(1 + c1(u))X̃(du, ds) +
1
t

∫ t

0

∫
Y

ln(1 + c2(u))X̃(du, ds), (41)

where RE has been defined in (33).
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Based on similar arguments utilized in Lemma 3 of this paper, it gives that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

limt→∞
1
t
∫ t

0 (σi1(n) + σi2(n)χi(t))χi(t)dBi(t) = 0,
limt→∞

1
t
∫ t

0

∫
Y

ci(u)χi(t−)X̃(du, ds) = 0,
limt→∞

l4
t
∫ t

0

∫
Y

ln(1 + c1(u))X̃(du, ds) = 0,
limt→∞

l4
t
∫ t

0 (σ11(n) + σ12(n)S(t))dB1(t) = 0,
limt→∞

1
t
∫ t

0 (σ21(n) + σ22(n)I(t))dB2(t) = 0,
limt→∞

1
t
∫ t

0

∫
Y

ln(1 + c2(u))X̃(du, ds) = 0,

holds for i = 1, 2, 3, 4.
Based on taking the inferior limit on the both sides of (41), if RE > 0 holds, then one

can be obtained that

lim inf
t→∞

1
t

∫ t

0
I(s)ds ≥ RE

l4βu + ru > 0,

which means infected individual is persistent in mean.
This proof of (ii) of Theorem 3 is ending.

3. Numerical Simulations

In this chapter, we will prove the results obtained above through numerical simulation,
which are utilized to show hybrid dynamic impacts of media coverage and nonlinear
perturbations on random dynamics of system (4). The parameter functions utilized in this
section are as follows,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ(t) = 5 + 0.5 sin t, β(t) = 3 + 0.3 sin t
λ(t) = 0.12 + 0.05 sin t, λ0(t) = 0.08 + 0.01 sin t,
ν(t) = 0.02 + 0.01 sin t, α(t) = 1 × 10−3 + 5 × 10−4 sin t,
h(t) = 4 × 10−3 + 8 × 10−4 sin t, r(t) = 0.006 + 0.003 sin t,
r0(t) = 0.05 + 0.01 sin t, θ(t) = 5 × 10−3 + 1 × 10−3 sin t,
ω(t) = 0.06 + 0.01 sin t, p(t) = 1.2 + 0.6 sin t,
M0(t) = 5 + 0.02 × sin t.

It is assumed that n ∈ N = {1, 2, 3, 4}, Y = {1, 2, 3, 4, 5} and the transition matrix is
given as follows:

Γ =

⎛⎜⎜⎝
−1 1 0 0
2 −2 0 0
0 0 −3 3
0 0 4 −4

⎞⎟⎟⎠.

Hence, it follows from simple algebraic computations that (φ1, φ2, φ3, φ4) =
1√
30
(2, 1, 4, 3).

3.1. Numerical Simulation I

It is assumed that σi1(n) = 0.04 + 0.01 sin n, σi2(n) =
√

0.1 + 0.05 sin n (i = 1, 2, 3, 4),
if c1(u) = 0.5, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05, ϑ = 0.5, then it is easy to
show that R̃1 = 0.0349, R̃2 = −0.0252, R̃3 = 0.0445, R̃4 = −0.0273, which follows that
R̃s = 0.0257 > 0. Based on Theorem 2, one can be concluded that (S(t), I(t), A(t), M(t), n)
of system (4) is f -exponentially ergodic. The dynamical responses S(t), I(t), A(t), M(t) of
system (4) with initial value (0.4, 0.1, 0.05, 5) are plotted in Figure 1a, Figure 1b, Figure 1c,
Figure 1d, respectively, which indicates an exponential convergence.
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Figure 1. If σi1(n) = 0.04 + 0.01 sin n, σi2(n) =
√

0.1 + 0.05 sin n (i = 1, 2, 3, 4), c1(u) =

0.5, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05, ϑ = 0.5, then it is easy to show that R̃1 =

0.0349, R̃2 = −0.0252, R̃3 = 0.0445, R̃4 = −0.0273, which follows that R̃s = 0.0257 > 0. The
dynamical responses S(t), I(t), A(t), M(t) of system (4) with initial value (0.4, 0.1, 0.05, 5) are
plotted in (a–d), respectively, which indicates an exponential convergence.

If c1(u) = 0.4, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05, ϑ = 0.5, then it is easy to
show that R̃1 = 0.0426, R̃2 = −0.0849, R̃3 = 0.0551, R̃4 = −0.0415, which follows that
R̃s = 0.0176 > 0. Based on Theorem 2, one can be concluded that (S(t), I(t), A(t), M(t), n)
of system (4) is f -exponentially ergodic. The dynamical responses S(t), I(t), A(t), M(t) of
system (4) with initial value (0.35, 0.15, 0.04, 5) are plotted in Figure 2a, Figure 2b, Figure 2c,
Figure 2d, respectively, which indicates an exponential convergence.

Figure 2. If σi1(n) = 0.04 + 0.01 sin n, σi2(n) =
√

0.1+ 0.05 sin n (i = 1, 2, 3, 4), c1(u) = 0.4, c2(u) =

0.03, c3(u) = 0.02, c4(u) = 0.05, ϑ = 0.5, then it is easy to show that R̃1 = 0.0426, R̃2 = −0.0849, R̃3 =

0.0551, R̃4 = −0.0415, which follows that R̃s = 0.0176 > 0. The dynamical responses S(t), I(t), A(t), M(t)
of system (4) with initial value (0.35, 0.15, 0.04, 5) are plotted in (a–d), respectively, which indicates an
exponential convergence.
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In order to show the dynamic effects of Lévy jumps, values of R̃s are given in Table 1
under four different ci(u) (i = 1, 2, 3, 4), and the detailed values can be found in Table 1.
Furthermore, total variation norms ‖P(t, (χ(t), n), ·)− π(·)‖ are plotted in Figure 3 due to
variations of ci (i = 1, 2, 3, 4) under four different cases.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

T
ot

al
 v

ar
ia

tio
n 

no
rm

Case I

Case II

Case III

Case IV

Figure 3. Total variation norms ‖P(t, (χ(t), n), ·) − π(·)‖ are plotted due to variations of ci(u)
(i = 1, 2, 3, 4) under four different cases corresponding to Table 1.

Table 1. When σi1(n) = 0.04 + 0.01 sin n, σi2(n) =
√

0.1 + 0.05 sin n (i = 1, 2, 3, 4), values of R̃s are
given under four different values of ci (i = 1, 2, 3, 4).

Values of ci(u) (i = 1, 2, 3, 4) R̃s

Case I c1(u) = 0.5, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05 0.0257
Case II c1(u) = 0.4, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05 0.0176
Case III c1(u) = 0.3, c2(u) = 0.02, c3(u) = 0.01, c4(u) = 0.03 0.0159
Case IV c1(u) = 0.2, c2(u) = 0.02, c3(u) = 0.01, c4(u) = 0.02 0.0113

3.2. Numerical Simulation II

It is assumed that σi1(n) = 0.04 + 0.01 sin n, σi2(n) =
√

0.1 + 0.05 sin n (i = 1, 2, 3, 4).
If c1(u) = 0.5, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05 and initial value (0.4, 0.1, 0.05, 5),
then it can be obtained that RI = 0.7143 < 1, which follows from Theorem 3-(i) that
the infected individual I(t) of system (4) tends to zero exponentially. On the other hand,
if c1(u) = 0.5, c2(u) = 0.02, c3(u) = 0.01, c4(u) = 0.03, then it can be obtained that
RE = 0.2683 > 0, which follows from Theorem 3-(ii) that the number of infected individual
I(t) of system (4) is persistent in average sense. Dynamical responses of the number of
infected individual I(t) are shown in Figure 4a and Figure 4b, respectively.

It is assumed that σi1(n) = 0.09 + 0.04 sin n, σi2(n) =
√

0.2 + 0.09 sin n (i = 1, 2, 3, 4).
If c1(u) = 0.04, c2(u) = 0.3, c3(u) = 0.06, c4(u) = 0.03 and initial value (0.35, 0.15, 0.04, 5),
then it can be obtained that RI = 0.8926 < 1, which follows from Theorem 3-(i) that
the number of infected individual I(t) of system (4) tends to zero exponentially. On the
other hand, if c1(u) = 0.4, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05, then it can be obtained
that RE = 0.1972 > 0, which follows from Theorem 3-(ii) that the number of infected
individual I(t) of system (4) is persistent in average sense. Dynamical responses of the
infected individual I(t) are shown in Figure 5a and Figure 5b, respectively.
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Figure 4. If σi1(n) = 0.04 + 0.01 sin n, σi2(n) =
√

0.1 + 0.05 sin n (i = 1, 2, 3, 4), c1(u) = 0.5, c2(u) =
0.03, c3(u) = 0.02, c4(u) = 0.05 and initial value (0.4, 0.1, 0.05, 5), dynamical responses of the infected
individual I(t) are shown in (a,b), respectively. It can be obtained that RI = 0.7143 < 1, which
follows that infectious disease becomes extinct exponentially. In other words, if c1(u) = 0.5, c2(u) =
0.02, c3(u) = 0.01, c4(u) = 0.03, then it can be obtained that RE = 0.2683 > 0, which follows that
infectious disease persists in mean.
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Figure 5. If σi1(n) = 0.09 + 0.04 sin n, σi2(n) =
√

0.2 + 0.09 sin n (i = 1, 2, 3, 4), c1(u) = 0.04, c2(u) =
0.3, c3(u) = 0.06, c4(u) = 0.03 and initial value (0.35, 0.15, 0.04, 5), dynamical responses of the infected
individual I(t) are shown in (a,b), respectively. It can be obtained that RI = 0.8926 < 1, which
follows that infectious disease becomes extinct exponentially. In other words, if c1(u) = 0.4, c2(u) =
0.03, c3(u) = 0.02, c4(u) = 0.05, then it can be obtained that RE = 0.1972 > 0, which follows that
infectious disease persists in mean.

Remark 3. From the above two numerical experiments under two different values of σi1(n), σi2(n)
(i = 1, 2, 3, 4), it reveals that the Gaussian white noises performing on I(t) play sufficiently effective
roles in reducing the spread of infectious disease. For finite state spaces, although the infectious
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disease only persists within one certain state, there still exists opportunity for infectious disease
to persist eventually. Furthermore, Lévy jumps may act double roles in directly controlling the
infectious disease based on the values of ci(u) (i = 1, 2, 3, 4).

Based on the numerical simulations in Figures 1 and 2, the dynamical responses fluctuate with
larger amplitudes under comparatively strong disturbances depicting by Lévy jumps. In the real
world, the strong disturbances usually lead to oscillations in the real world, which highly relevant to
the vivid phenonomena, i.e., contemporary controlled state—recurrence—re-controlled state within
transmission of epidemics.

When the amplitudes of white noises maintain some certain levels, the dynamic changes of
total variation norm due to variations of Lévy jumps are discussed, which are indicated in Table 1
and Figure 3. It reveals that the transmission of infectious disease becomes severe with large
stochastic fluctuations from surrounding environment in the real world. However, it follows from
Figures 4 and 5 that infectious disease may tend to extinction when the stochastic fluctuations from
surrounding environment decrease, and the transmission will be controlled within certain duration.

4. Conclusions

Media coverage, random disturbances and time-varying periodic function parameters
are important disciplines in the modeling and dynamical analysis of infectious disease
transmission. One of the key themes in epidemiology is the study of the stochastic dynamics
of infectious disease system. Current field observations of the public health alerts and
stochastic perturbations in stochastic nonautonomous infectious disease dynamics has
highlighted the necessity of improving related systems that do not consider the joint
dynamic impacts of Lévy jumps and media coverage.

In the last few years, scholars have introduced a media coverage feedback mechanism
in mathematical model formulation to account for the constructive effects of public health
alerts. Stochastic perturbations are usually represented by linear form perturbation of white
noise, and the influences of linear noises perturbations on nonautonomous epidemic models
were studied in [13–17]. However, in order to accurately depict some stochastic phenomena
arising from infectious disease transmission in the real world, it is more constructive to
introduce nonlinear noise perturbations into nonautonomous epidemic model.

Furthermore, stochastic models have been established to discuss the prevalence mech-
anism of infectious disease [23–31] without Lévy jumps. A SIS infectious disease model
with regime-switching and driven by Lévy jumps was investigated in [32], while combined
dynamic impacts of media coverage and Lévy jumps on random dynamics of infectious
disease system are rarely reported.

Hybrid dynamic effects of media coverage and stochastic perturbations in the thresh-
old dynamics of random epidemic system have been investigated in [33–36], while Lévy
jumps and periodic function parameters were not considered in [33–36]. The dynamic
behavior of infectious disease systems in [37–39] were investigated under nonlinear noise
perturbations and Lévy jumps, while all parameters were assumed to be constant values
in [37–39], periodicity factors during transmission within the infectious disease regimes
were not considered.

Although the stochastic infectious disease model and its dynamic analysis have at-
tracted wide attention, as far as the authors know, the hybrid dynamic impacts of Lévy
jumps and media coverage on random dynamics of the nonautonomous SIAM epidemic
model with Markov chain and nonlinear noise perturbations have not been reported in
previous related studies.

In order to depict the impact of public health alerts and stochastic dynamics of nonau-
tonomous SIAM epidemic model, we extend the work done in [12] by incorporating Lévy
jumps, nonlinear noise perturbations and periodic function parameters into the epidemic
model. The existence of a stochastically ultimate upper bound and a uniform lower bound
of a positive solution of the proposed SIAM epidemic model was studied in Lemma 1.

The existence and uniqueness of globally positive solution to the proposed SIAM
epidemic model was studied in Lemma 2. Based on defining certain fitted stochastic
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Lyapunov functions, sufficient conditions for existence of a nontrival positive T-periodic
solution were discussed in Theorem 1. By verifying a Foster–Lyapunov condition, some
sufficient conditions for the exponential ergodicity were investigated in Theorem 2. Fur-
thermore, several conditions were derived in Theorem 3, which were utilized to discuss the
persistence in an average sense and the extinction of the epidemic system.

Finally, numerical simulations were provided to support the theoretical findings. The
main analytical findings are theoretically beneficial to reveal the transmission mechanism of
infectious disease under a stochastic surrounding environment. Furthermore, by utilizing
the findings associated with the elimination mechanism of infectious disease, it is also
constructive for agencies to formulate policies and measures to control the spread of
infectious disease.
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Abstract: The Poisson-stopped sum of the Hurwitz–Lerch zeta distribution is proposed as a model for
interarrival times and rainfall depths. Theoretical properties and characterizations are investigated in
comparison with other two models implemented to perform the same task: the Hurwitz–Lerch zeta
distribution and the one inflated Hurwitz–Lerch zeta distribution. Within this framework, the capa-
bility of these three distributions to fit the main statistical features of rainfall time series was tested on
a dataset never previously considered in the literature and chosen in order to represent very different
climates from the rainfall characteristics point of view. The results address the Hurwitz–Lerch zeta
distribution as a natural framework in rainfall modelling using the additional random convolution
induced by the Poisson-stopped model as a further refinement. Indeed the Poisson contribution
allows more flexibility and depiction in reproducing statistical features, even in the presence of very
different climates.

Keywords: Hurwitz-Lerch zeta distribution; log-concavity; compound poisson distribution; one
inflated model; moment; simulated annealing

1. Introduction

Analysis of rainfall data, and the subsequent modelling of the many variables concern-
ing rainfall, is fundamental to many areas such as agricultural, ecological and engineering
disciplines. From assessing hydrological risk to both crop and hydropower plannings, rain-
fall modelling is of the utmost importance. Moreover, being able to provide reliable rainfall
modelling is essential in the well known issue of climate change. Due to the complexity
of hydrological systems, their analysis and modelling rely heavily on historical records.
Rainfall historical records are of various time scales, from hourly data to annual data. How-
ever, daily rainfall series are arguably the most used information in environmental, climate,
hydrological, and water resources studies [1]. Rainfall manifests one peculiar characteristic
which is common to many other geophysical processes: intermittence [2]. Intermittence
is found in variables which are related to the internal and external structure of rainfall.
The most commonly seen for the external structure are the Wet Spells (WS) and Dry Spells
(DS), meaning the sequences of rainy days and non-rainy days, respectively. A way of
studying the alternance of WS and DS is through the Interarrival Times (IT), that is the
time elapsed between two consecutive days of rain. If we suppose that IT observations are
independent and identically distributed (i.i.d.), one natural way to model them is through
the well known renewal processes [3]. Many examples can be found in the literature. The
simplest renewal process, the Bernoulli process, has been used in [4] for example. In this
case, the IT’s are geometrically distributed. Its continuous counterpart, the Poisson process,
has been used for its simpler mathematical tractability, but requires dealing with the IT
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random variable (r.v.) as continuous, despite its discrete nature. The need to suppose a
non-constant probability of rain requires slightly more sophisticated models.

The challenge of this paper is to propose a suitable discrete distribution to fit IT at the
daily scale. It is on this time scale that the intermittent character of precipitation can be
appreciated and at the same time most practical applications are possible. The proposed
distribution must be able to model both the numerous occurrences of the value equal to
one, which represent the sequence of rainy days, and some large values scattered over time
and responsible for drought phenomena. Our starting point is the three parameter family
Hurwitz–Lerch Zeta distribution (HLZD), successfully proposed in [5]. Such a distribution
represents a step forward with respect to other commonly used IT modelling distributions,
such as the logarithmic one. In Section 3, we summarize the main properties of the HLZD
and state new results on its log-concavity and convolution. As a step forward, in this
paper we propose to model the IT r.v. using the Poisson-stopped HLZD (PSHLZD). This
discrete distribution presents excess zeroes (paralleling the excess of IT=1) and a long
tail [6]. The PSHLZD has been used in [6] for comparisons with the negative binomial
distribution, a popular model for fitting over-dispersed data. Indeed the PSHLZD can be
seen both as a Poisson-stopped sum of HLZD’s as well as a generalization of a negative
binomial distribution. The Poisson contribution allows us to model the superposition of
i.i.d. HLZD’s in the observed time series as rare event. In Section 4, we summarize its main
properties using the combinatorics of exponential Bell polynomials. It is noteworthy to
mention that Bell polynomials are used within fractional calculus, see for example [7,8]
and within fractal models [9]. Moreover, new results are added on the the PSHLZD, as for
example on log-concavity.

A second goal of this paper is to show that the PSHLZD is also a suitable model for
a different feature strictly related to the internal structure of rainfall: the depth (or the
intensity) of the rainy days [10]. In the literature, refs. [11,12] rainfall depths are more
often treated as continuous despite that sometimes these models fail to account for the
time discreteness of the sample process [13]. Daily rainfall depth measurements are almost
always performed by automatically counting how many times a small bucket corresponding
to 0.2 mm is filled. This led use to treat them as discrete, because of the abundance of ties in
the data. Finally, in Section 5 we have also considered a third modelling distribution: the
One Inflated HLZD (OIHLZD). Such a distribution mixes two generating processes: the first
generates one’s and the latter is governed by a HLZD. This stochastic structure takes into
account the dominance of one’s in the rainfall depth or interarrival time series.

In Section 6, we discuss the results for fitting all these models to rainfall data, proving
that the PSHLZD provides a very general framework for rainfall modelling. Indeed the
PSHLZD replicates the fitting features of the OIHLZD and outperforms the fitted HLZD
in some cases. The PSHLZD has a limited number of parameters and at the same time
can adapt very well to data collected in very different climates, from England to Sicily.
Let us underline that the analyzed dataset has never been considered in the literature and
consists of measures sampled along 70 years at 5 different stations. These stations were
chosen in order to represent different climates from the rainfall characteristics point of view.
In fact, the interarrival data examined are very different from each other, with a regular
pattern of many rainy days in England, and a winter rainy season alternating with long
periods in summer without rain, typical of the Sicily Mediterranean climate. The same is
for the rainfall depth, namely many small depths in England, and few big storms in Sicily.
This made it possible to confirm the great utility of the proposed statistical models within
rainfall modelling. Some concluding remarks and future developments are addressed at
the end of the paper.

2. Bell Polynomials in a Nutshell

The partial exponential Bell polynomials are usually written as [14]

Bn,j(z1, . . . ,zn−j+1)=∑
n!

(1!)r1 r1!(2!)r2 r2! · · · z
r1
1 · · ·zrn−j+1

n−j+1 n∈N, j≤n (1)
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where the summation is over all the solutions in non-negative integers r1, . . . ,rn−j+1 of
r1+2r2+ · · ·+(n− j+1)rn−j+1 =n and r1+r2+ · · ·+rn−j+1 = j. A lighter expression is ob-
tained using partitions of the integer n with length j. Recall that a partition of an integer n is
a sequence π=(π1,π2, . . .) of weakly decreasing positive integers, named parts of π, such
that π1+π2+ · · ·=n. A different notation is π=(1r1 ,2r2 , . . .), where r1,r2, . . . , named multi-
plicities of π, are the number of parts of π equal to 1,2, . . . respectively. The length of the
partition is l(π)= r1+r2+ · · · and the vector of multiplicities is m(π)= (r1,r2, . . .). We write
π�n to denote that π is a partition of n. Thus the partial exponential Bell polynomials (1)
can be rewritten as [15]

Bn,j(z1, . . . ,zn−j+1)= ∑
π�n, l(π)=j

dπzπ (2)

where the sum is over all the partitions π�n with length l(π)= j and

zπ = zr1
1 zr2

2 · · · dπ =
i!

(1!)r1 r1!(2!)r2 r2! · · · . (3)

Using integer partitions, the explicit expression of the partial exponential polynomials
can be recovered in R using the kStatistics package [16]. A useful property used in the
following is

Bn,j(abz1, . . . ,abn−j+1 zn−j+1)= aj bn Bn,j(z1, . . . ,zn−j+1) (4)

with a,b constants. Equation (4) follows from (2) since from (3) we have

(abz1)
r1(ab2 z2)

r2 · · ·= ar1+r2+··· br1+2r2+···zπ = aj bn zπ

taking into account that l(π)= r1+r2+ · · ·= j and r1+2r2+ · · ·=n.
The n-th complete exponential Bell polynomials in the indeterminates z1, . . . ,zn is

defined as [14]

Bn(z1, . . . ,zn)=
n

∑
j=0

Bn,j(z1, . . . ,zn−j+1) (5)

with {Bn,j} the partial exponential Bell polynomials (1). Note that n is the positive integer
corresponding to the maximum degree of the monomials in (5). This polynomial sequence
satisfies the following recurrence [14]

Bn+1(z1, . . . ,zn+1)=
n

∑
j=0

(
n
j

)
zj+1Bn−j(z1, . . . ,zn−j) (6)

with the initial value B0 =1. The generating function of {Bn} is the formal power series
composition [14]

exp[hz(t)−z0]= ∑
n≥0

tn

n!
Bn(z1, . . . ,zn)∈R[[t]] (7)

where R[[t]] is the ring of formal power series in t and hz(t) is the generating function of
{zk}k≥0, that is

hz(t)= ∑
k≥0

tk

k!
zk.

A different expression of the n-th complete exponential Bell polynomial involves
integer partitions [15] as follows

Bn(z1, . . . ,zn)= ∑
π�n

dπzπ (8)
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where the sum is over all the partitions π�n,dπ and zπ are given in (3). In particular
we have

Bn(λz1, . . . ,λzn)= ∑
π�n

λl(π)dπzπ (9)

with λ a constant. Now, suppose to replace λl(π) in (9) with a numerical sequence {al(π)}.
Thanks to this device, the complete exponential Bell polynomials results as a special case of
a wider class of polynomial families, the generalized partition polynomials [16]

Bn(a1, . . . ,an;z1, . . . ,zn)= ∑
π�n

dπal(π)zπ (10)

where the sum is again over all the partitions π�n. A different expression of (10) involves
the partial exponential Bell polynomials {Bn,j} in (1)

Bn(a1, . . . ,an;z1, . . . ,zn)=
n

∑
j=1

ajBn,j(z1, . . . ,zn−j+1). (11)

An example of a well known polynomial family, arising from (11) is the logarithmic one [14]

Ln(z1, . . . ,zn)=
n

∑
j=0

(−1)j−1(j−1)!Bn,j(z1, . . . ,zn−j+1). (12)

3. The Hurwitz-Lerch Zeta Distribution

Definition 1. A discrete random variable Y d
=HLZD(a,θ,s) if

qy :=P(Y= y)=
θy

T (θ,s,a)(y+ a)s+1 , θ ∈ (0,1) , a>−1, s∈R (13)

for y= 1,2, . . . , with T (θ,s,a)= θΦ(θ,s+1,a+1), where

Φ(θ,s,a)=
∞

∑
n=0

θn

(n+ a)s (14)

is the Lerch Transcendent function.

The probability generating function (pgf) of Y d
=HLZD(a,θ,s) is

GY(z)=
θΦ(zθ,s+1,a+1)

Φ(θ,s,a)
, |z|≤ 1 (15)

with GY(0)= 0.

3.1. Moments and Cumulants

HLZD moments have a closed form expression involving the Lerch Transcendent
function. Differently from [17], we find this closed form expression using (13).

Proposition 1. If Y d
=HLZD(a,θ,s), then

ξk :=E[Yk]=
k

∑
j=0

(−a)k−j
(

k
j

)
Φ(θ,s+1− j,a)
Φ(θ,s+1,a+1)

. (16)
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Proof. Using the binomial expansion of yk =(y− a+ a)k, we have

ξk =
∞

∑
y=1

ykP(Y= y)=
∞

∑
y=1

yk θy−1

Φ(θ,s+1,a+1)(y+ a)s+1

=
∞

∑
y=1

(
k

∑
j=0

(
k
j

)
(y+ a)j(−a)k−j

)
θy−1

Φ(θ,s+1,a+1)(y+ a)s+1

=
k

∑
j=0

(
k
j

)
(−a)k−j 1

Φ(θ,s+1,a+1)

∞

∑
y=1

θy−1

(y+ a)s+1−j

from which (16) follows by taking into account (14).

As a corollary, the mean and the variance are respectively:

E[Y]=
T (θ,s−1,a)
T (θ,s,a)

− a Var[Y]=
T (θ,s−2,a)
T (θ,s,a)

−
(T (θ,s−1,a)

T (θ,s,a)

)2

.

More generally, the k-th central moment can be recovered as

ξ ′k :=E[(Y−ξ1)
k]=

k

∑
j=0

(
k
j

)
ξ

j
1 ξk−j

and the factorial moments as

(ξ)k =E[Y(Y−1) · · ·(Y−k+1)]=
k

∑
j=0

s(k, j)ξk (17)

with s(k, j) Stirling numbers of the first kind [14]. HLZD cumulants are such that [14]

κn(Y)=Ln(ξ1, . . . ,ξn) n= 1,2, . . .

where {ξ j} are the moments of Y d
=HLZD(a,θ,s), given in (16), and Ln is the n-th logarith-

mic polynomial (12). Let us recall that, if the moment generating function (mgf) MY(t) of Y is
well defined in a suitable neighborhood of 0, then the coefficients {κn(Y)} in the expansion

MY(t)= exp

(
∑
n≥1

tn

n!
κn(Y)

)

are the cumulants of Y. The first cumulant is the mean E[Y], the second cumulant is the
variance Var(Y), the skewness and the kurtosis of Y can be recovered using the third and
the fourth cumulant of Y respectively.

3.2. Mode

The HLZ distribution is a particular case of a wider class of distributions called the
Modified Power Series Distributions (MPSD) [18].

Definition 2. A discrete random variable Y d
=MPSD(a,g, f ) if

py :=P(Y= y)=
a(y)g(θ)y

f (θ)
, y∈T⊂N (18)

where a(y), g(θ) and f (θ) are positive, bounded, and differentiable functions of y and θ respectively
with f (θ)=∑y∈T a(y)g(θ)y.
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Using this wider class of distributions, we will prove that Y d
=HLZD(a,θ,s) is uni-

modal for all s∈R. To this aim, let us recall that a discrete distribution with support T⊂Z

is said to be strongly unimodal if and only if the sequence {py}y∈T , with py :=P(Y= y), is
a logarithmically concave sequence [19], that is if and only if

p2
y ≥ py−1 py+1, ∀y∈T. (19)

Proposition 2. Suppose Y d
=HLZD(a,θ,s).

(i) If s≥−1, the sequence {qy}y≥1 is monotonically decreasing and the mode is y= 1.
(ii) If s<−1, Y is strongly unimodal.

Proof. Similarly to what stated in Section 2.3 of [20], we have

qy

qy−1
= θ

(
1− 1

a+y

)s+1
y= 2,3, . . . . (20)

Since θ ∈ (0,1), a>−1 and s≥−1, the rhs of (20) is always between 0 and 1, thus (i) follows.
For (ii) we have to prove that {qy}y≥1 is log-concave, that is it satisfies (19). Using (13), (19)
reduces to (1− (y+ a)−2)s+1 ≥ 1, which is always true if s<−1.

3.3. Convolution

The family of HLZ distributions is not closed under convolution. Nevertheless, as a
subclass of MPS distributions, the HLZD convolution still returns a MPSD. Indeed we will
prove that the family of MPS distributions is closed under convolution.

Theorem 1. If Y1, . . . ,Yj are independent r.v.’s identically distributed to Y d
=HLZD(a,θ,s), then

Y1+ · · ·+Yj
d
=MPSD(aj,g, f j) with fj(θ)= [T (θ,s,a)]j and

aj(y)=
j!
y! ∑

π�y, l(π)=j
dπ(aπ)

s+1 with aπ =(a+1)−r1(a+2)−r2 · · · (21)

and dπ given in (3).

Proof. Observe that if Y1, . . . ,Yj are r.v.’s i.i.d. to Y d
=MPSD(a,g, f ), then Y1+ · · ·+Yj

d
=

MPSD(aj,g, f j) with f j(θ)= f j(θ) and

aj(y)=

⎧⎨⎩
j!
y!

By,j[a(1), . . . ,a(y− j+1)], y∈Tj

0, y �∈Tj

(22)

with Tj = {y1+ · · ·+yj ∈N|y1, . . . ,yj ∈T}. Indeed in (18), set a(y)=0 if y �∈T and consider
the sequence {py}y≥1 such that py = 0 if y �∈T. By using Lemma 1 in [21], we have

P(Y1+ · · ·+Yj = y)=
j!
y!

By,j(p1, . . . , py−j+1) (23)

where {By,j} are the partial exponential Bell polynomials (1). From (23) with pi replaced by
a(i)g(θ)i/ f (θ) for i= 1, . . . ,y− j+1 and using (4) we have

P(Y1+ · · ·+Yj = y)=
j!
y!

g(θ)y

f j(θ)
By,j[a(1), . . . ,a(y− j+1)]. (24)
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Thus Y1+ · · ·+Yj
d
=MPSD(aj,g, f j) with f j(θ)= f j(θ) and aj(y) given in (22). From (24)

note that aj(y)=0 if 1,2, . . . ,y− j+1 �∈T. By replacing g(θ)= θ, f (θ)=T (θ,s,a) and a(k)=
(k+ a)−(s+1) for k= 1, . . . ,y− j+1 in (24) we have

aj(y)=
j!
y!

By,j

[
(a+1)−(s+1), . . . ,(a+y− j+1)−(s+1)

]
y= 1,2, . . . .

The result follows after some manipulations, rewriting the partial Bell exponential polyno-
mials as in (2).

3.4. Maximum Likelihood Estimation

Consider a vector y=(y1, . . . ,yn) of independent observations of Y d
=HLZD(a,θ,s).

The maximum likelihood estimation (MLE) of (θ,s,a) is

(θ̂, ŝ, â)= argmax
(θ,s,a)∈Θ

�n(θ,s,a,y), (25)

with Θ=(0,1)× (−∞,+∞)× (−1,∞), �n(θ,s,a,y)= ln Ln(θ,s,a,y) the log-likelihood func-
tion and

Ln(θ,s,a,y)=
n

∏
i=1

P(Y= yi).

The MLE of the HLZD parameters (θ,s,a) has been studied by Gupta in [20]. He showed
that the three likelihood equations arising from maximizing the log-likelihood correspond
to the equations of the method of moments. In particular we have

n

∑
i=1

yi
n
=E[Y],

n

∑
i=1

log(a+yi)

n
=E[log(a+Y)],

n

∑
i=1

1
n(a+yi)

=E

[
1

a+Y

]
.

Unfortunately, closed form solutions of the above equations are not available and also the
moments E[log(a+Y)] and E[1/(a+Y)] must be numerically approximated. As noted
in [20], the likelihood equations may be solved by standard numerical methods to obtain
the MLE. However, it is well known that this does not guarantee that global maxima of the
likelihood have been achieved. In order to avoid this problem, a global optimization method
can be employed to solve (25). The global optimization method takes advantage of the bounds
of the parameters. More specifically, the MLE of the parameters can be obtained through a
global optimization algorithm known as Simulated Annealing [22]. Simulated annealing is a
stochastic global optimisation technique applicable to a wide range of discrete and continuous
variable problems. It makes use of Markov Chain Monte Carlo samplers, to provide a means
to escape local optima by allowing moves which worsen the objective function, with the aim
of finding a global optimum. Technical details can be found in [22], a variant of which is the
algorithm implemented in the Optim function in the base Stats R-package.

4. The Poisson-Stopped Hurwitz-Lerch Zeta Distribution

Definition 3. A discrete random variable X d
=PSHLZD(λ,a,θ,s) if its pgf is

GX(t)= exp
(

λ

[
θΦ(zθ,s+1,a+1)

Φ(θ,s,a)
−1

])
λ> 0, (26)

where Φ is the Lerch Transcendent function (15).

According to Definition 3, X d
=PSHLZD(λ,a,θ,s) takes non-negative integer values

and belongs to the class of generalized r.v.’s [23]. Indeed given two independent r.v.’s Z
and Y, with pgf GZ(t) and GY(t) respectively, the generalized r.v. X has pgf

GX(t)=GZ[GY(t)]. (27)
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The composition (26) matches (27) when Y d
=HLZD(a,θ,s) and Z is a Poisson r.v. (PS) of

parameter λ> 0, independent of Y, since GZ(t)= exp[λ(t−1)].
In the following we analyse in detail the properties of the PSHLZD using the complete

exponential Bell polynomials. Some of the properties given in [6] will also be briefly recalled.

Proposition 3. If X d
=PSHLZD(λ,a,θ,s) then

px :=P(X= x)=

⎧⎨⎩e−λ, x= 0,

e−λ

x! Bx(λq1, . . . ,λ x!qx), x= 1,2, . . .
(28)

where Bx is the complete exponential Bell polynomial (5) of degree x.

Proof. Observe that GY(0)= 0 and GY(t)=∑y≥1 y!qyty/y!. The result follows from (7) with
z0 = 0 and hz(t)=GY(t), since from (26) we have

exp(−λ)exp[λGY(t)]= ∑
x≥0

tx

x!
e−λBx(λ1!q1, . . . ,λ x!qx).

Corollary 1. If X d
=PSHLZD(λ,a,θ,s) then p0 = P(X= 0)= e−λ and

px :=P(X= x)= θxe−λ ∑
π�x

(
λ

T(θ,s,a)

)l(π) (aπ)s+1

mπ !
x= 1,2, . . . . (29)

where the sum is over all the partitions π� x, mπ != r1!r2! · · · and aπ is given in (21).

Proof. From (28), using (8) and (3), we have

px =
e−λ

x! ∑
π�x

x!
(1!)r1 r1!(2!)r2 r2! · · · (λ1!q1)

r1(λ2!q2)
r2

= e−λ ∑
π�x

λr1+r2+···

r1!r2! · · ·
[(a+1)−(s+1)]r1 [(a+2)−(s+1)]r2 · · ·θr1+2r2+···

T(θ,s,a)r1+r2+···

by which (29) follows observing that r1+r2+ · · ·= l(π) and r1+2r2+ · · ·= x.

As a corollary of Proposition 3 and recursion (6), the sequence {px} in (28) satisfies
the following equations.

Corollary 2. If X d
=PSHLZD(λ,a,θ,s) then

px+1 =
λ

x+1

x

∑
j=0

(j+1)qj+1 px−j, x= 1,2, . . . with p0 = e−λ.

Proof. The result follows using (6) since we have

px+1 =
e−λ

(x+1)!
Bx+1(λq1, . . . ,λ(x+1)!qx+1)

=
e−λ

(x+1)!

x

∑
j=0

(
x
j

)
Bx−j(λq1, . . . ,λ(x− j)!qx−j)(j+1)!qj+1

=
e−λ

(x+1)!

x

∑
j=0

x!
(x− j)!j!

px−j
(x− j)!

e−λ
(j+1)!qj+1.
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The PSHLZD is unimodal if s≥ 0 and −1< a≤ 0 ([6], Property 1).

4.1. Log-Concavity

Under suitable conditions, the PSHLZD is log-concave.

Proposition 4. If X d
=PSHLZD(λ,θ,a,s) and s≥−1, then X has a log-concave cumulative

distribution function (cdf), that is

[P(X≤ x)]2 ≥P(X≤ x−1)P(X≤ x+1), x= 0,1,2, . . . .

Proof. According to ([24], Theorem 1), a random sum ∑Z
i=1 Yi of i.i.d. r.v.’s has a log-concave

cdf if Z is strongly unimodal and the distribution of {Yi} has a decreasing pdf. Thus, the

result follows as X d
=∑Z

i=1 Yi with Z d
=PS(λ), which has a log-concave pdf (strongly uni-

modal), and Y d
=HLZD(θ,a,s) with a decreasing pdf when s≥−1 (see Proposition 2).

Proposition 4 gives a sufficient condition to get cdf log-concavity. A different way is
to consider the sequence {px}. Indeed, if X has a log-concave pdf (19), then its cdf is also
log-concave [24]. In the more general setting of generalized r.v.’s, X has a log-concave pdf
if and only if the sequence

px :=P(X= x)=
1
x!
Bx(1!q̃1, . . . ,x!q̃x;1!q1, . . . ,x!qx) x= 1,2, . . . (30)

is log-concave with p0 =P(X= 0)=GZ[GY(0)] and q̃x =P(Z= x),qx =P(Y= x). Equation (30)
follows from Equation (2.3) in [23] using the general partition polynomials (8). When

Z d
=PS(λ) a necessary and sufficient condition to recover strong unimodality is related to

the magnitude of q1 and q2, as the following theorem shows.

Theorem 2. If X is a generalized r.v. with Y strongly unimodal and Z d
= PS(λ), then X is strongly

unimodal if and only if λq1 ≥ 2q2.

Note that a similar result is proved in ([25], Theorem 4). We provide a different proof
using the following lemma.

Lemma 1. If {zj}j≥1 ∈ [0,∞) is a log-concave sequence, then the sequence { 1
n! Bn(z1, . . . ,zn)}n≥1

is log-concave if and only if z1 ≥ 2z2, with {Bn} given in (5).

Proof. If {zj}j≥0 with z0 = 1 is a log-concave sequence of non-negative real numbers and
the sequence {a(n)}n≥0 is defined by

∞

∑
n=0

a(n)
n!

yn = exp

(
∞

∑
j=1

zj

j!
yj

)
(31)

then the sequence { a(n)
n! }n≥ is log-concave [26]. Equation (31) parallels (7). Therefore, the

sequence { 1
n! Bn(z1, . . . ,zn)}n≥1 results as log-concave if the sequence {zj}j≥0 is log-concave.

Note that for j≥ 2 we have
z2

j

[(j−1)!]2
≥

zj−1

(j−2)!
zj+1

j!
,

which easily reduces to jz2
j ≥ (j−1)zj−1 zj+1 always satisfied when {zj}j≥1 is log-concave.

Now let j= 1. We have {zj}j≥0 is log-concave if and only if z1 ≥ 2z2 and the result follows.
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Proof of Theorem 2. Following the same arguments of Proposition 3, for a generalized r.v.

with Z d
= PS(λ), (30) reduces to

P(X= x)=
e−λ

x!
Bx(λ1!q1, . . . ,λx!qx)

with qx =P(Y= x) for x= 1,2, . . . . The sequence { e−λ

x! Bx(λ1!q1, . . . ,λx!qx)}x≥1 is log-concave
if and only if the sequence { 1

x! Bx(λ1!q1, . . . ,λx!qx)}x≥1 is log-concave. The result follows
using Lemma 1.

Corollary 3. If s<−1, X d
=PSHLZD(λ,θ,a,s) is strongly unimodal if and only if λq1 ≥ 2q2.

4.2. Moments and Cumulants

PSHLZD moments and cumulants have closed form expressions in terms of moments

of Y d
=HLZD(a,θ,s).

Proposition 5. If X d
=PSHLZD(λ,a,θ,s) then

μk :=E[Xk]= Bk(λξ1, . . . ,λξk), k= 1,2, . . . , (32)

with Bk the k-th complete exponential Bell polynomial (5) and ξ1, . . . ,ξk the first k moments of

Y d
=HLZD(a,θ,s) given in (16).

Proof. If MX(t) and MY(t) are the mgf’s of X d
=PSHLZD(λ,a,θ,s) and Y d

=HLZD(a,θ,s)
respectively, then

MX(t)=GX(et)= eλ[GY(et)−1] = eλ[MY(t)−1] (33)

from (27). Equation (32) follows as the rhs of (33) can be written as (7), with hz(t)=λMY(t)
and z0 =λ.

Remark 1. Taking into account (33), if X d
=PSHLZD(λ,a,θ,s) then X d

=Y1+ · · ·+YZ with

Y d
=HLZD(a,θ,s) and Z d

=PS(λ), that is X is a compound Poisson r.v. Therefore the PSHLZD is
an infinitely divisible distribution [27].

Moments (32) can be explicited written using (9). A straightforward corollary of
recursion (6) is the following.

Corollary 4. μk+1 =λ∑k
j=0 (

k
j)μk−jξ j+1, k= 1,2, . . . .

If μ′
k :=E[(X−μ1)

k] denotes the k-th central moment of X d
=PSHLZD(λ,a,θ,s) then

μ′
k =

n

∑
k=0

(
n
k

)
(−λξ1)

n−kBk(λξ1, . . . ,λξk), k= 1,2, . . .

Proposition 6. If X d
=PSHLZD(λ,a,θ,s) then

(μ)k :=E[X(X−1) · · ·(X−k+1)]= Bk(λ(ξ)1, . . . ,λ(ξ)k), k= 1,2, . . . (34)

where (ξ)1, . . . ,(ξ)k are the first k factorial moments of Y d
=HLZD(a,θ,s) given in (17).

Proof. Let us recall that, if QX(t) is the factorial mgf of {(μ)k}, then QX(t)=GX(t+1)
with GX the pgf of X. Therefore we have
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QX(t)=GX(t+1)= exp
(
λ[GY(t+1)−1]

)
= exp

(
λ[QY(t)−1]

)
, (35)

with QY(t) the generating function of the factorial moments {(ξ)k}. Equation (34) follows
as the rhs of (35) can be written as (7), with z0 =λ and hz(t)=λQY(t).

Proposition 7. If κn(X) is the n-th cumulant of X d
=PSHLZD(λ,a,θ,s) then κn(X)=λξn, for

n= 1,2, . . . where ξn is the n-th moment of Y d
=HLZD(a,θ,s) given in (16).

Proof. The result follows since

log MY(t)= log[eλ(MX(t)−1)]=λ[Mx(t)−1]= ∑
n≥1

tn

n!
λE[Xk].

4.3. Maximum Likelihood Estimation

Suppose to have x=(x1, . . . ,xn) independent observations of X d
=PSHLZD(λ,a,θ,s).

The MLE of (λ,θ,s,a) is

(λ̂, θ̂, ŝ, â)= argmax
(λ,θ,s,a)∈Θ

�n(λ,θ,s,a,x),

with Θ=(0,∞)× (0,1)× (−∞,+∞)× (−1,∞), �n(λ,θ,s,a,x)= ln Ln(λ,θ,s,a,x) the log-like-
lihood function and

Ln(λ,θ,s,a,x)=
n

∏
i=1

P(X= xi).

The MLE of the PSHLZD parameters in this case must be directly tackled with the global
optimization method described in Section 3.4, since �n(λ,θ,s,a) is not analytically tractable
referring to (29).

5. The One Inflated Hurwitz-Lerch Zeta Distribution

Definition 4. A discrete random variable Z d
=OIHLZD(p,a,θ,s) if

P(Z= 1) = p+(1− p)P(Y= 1),

P(Z= x) = (1− p)P(Y= x), x= 2,3, . . .
(36)

with p∈ [0,1] and Y d
=HLZD(a,θ,s).

This definition parallels the definition of the Zero Inflated Modified Power Series

Distribution given by Gupta [28]. If GZ(t) denotes the pgf of Z d
=OIHLZD(p,a,θ,s) then

GZ(t)= pt+(1− p)GY(t) (37)

and the HLZD is retrieved by setting p= 0.

5.1. Moments and Cumulants

If Z d
=OIHLZD(p,a,θ,s) then MZ(t)=GZ(et)= pet+(1− p)GY(et)= pet+(1− p)

MY(t) from (37). Thus

νk :=E[Zk]= p+(1− p)ξk k= 0,1, . . . (38)

with ξk the k-th moment of Y d
=HLZD(a,θ,s) given in (16). For example, we have

E[Z]= p+(1− p)E[Y] and Var[Z]= (1− p)
[
Var[Y]+ p(1+E[Y]2−2E[Y])

]
.
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Similarly, if QZ(t) is the factorial mgf of Z d
=OIHLZD(p,a,θ,s), since QZ(t)=GZ(t+1)=

p(t+1)+(1− p)GY(t+1)= p(t+1)+(1− p)QY(t), with QY(t) the factorial mgf of Y d
=

HLZD(a,θ,s), then

(ν)k :=E[Z(Z−1) · · ·(Z−k+1)]=
{

p+(1− p)(ξ)1 k= 1
(1− p)(ξ)k k= 2,3, . . .

with (ξ)k the k-th factorial moment of Y d
=HLZD(a,θ,s) given in (17).

OIHLZD cumulants are κn(Z)=Ln(ν1, . . . ,νn), n=1,2, . . . with {νj} moments of

Z d
=OIHLZD(p,a,θ,s) given in (38), and Ln the n-th logarithmic polynomial (12).

5.2. Maximum Likelihood Estimation

To estimate the OIHLZD parameters using the MLE, let us first rewrite (36) using (18),
that is

P(Z= 1) = 1−w,

P(Z= x) = (1− p)
a(x)g(θ)x

f (θ)
, x= 1,2. . .

(39)

where w=(1− p)[1−P(Y=1)],g(θ)= θ,a(x)= (a+x)−(s+1) and f (θ)=T(θ,a,s). Rewrite
(39) as

P(Z= 1)= 1−w

P(Z= x)=wP(W = x)

where W has a One Truncated Hurwitz-Lerch Zeta Distribution (OTHLZD) [29], that is

P(W = x) :=
1

1− a(1)g(θ)
f (θ)

a(x)g(θ)x

f (θ)
, x= 1,2. . . (40)

Suppose z=(z1, . . . ,zn) is a vector of independent observations of Z d
=OIHLZD(p,a,θ,s)

and l(θ,a,s,w,z)= ln Ln(θ,a,s,w,z) is the log-likelihood function with

Ln(θ,a,s,w,z)=
n

∏
i=1

P(Z= zi).

If nj is the number of times the integer j appears in the vector z for j=1,2, . . . , then the
log-likelihood l(θ,a,s,w,z) can be written as

l(θ,a,s,w,z)=n1 log(1−w)+(n−n1) log(w)+
∞

∑
j=2

nj log
(

P(Y= j)
1−P(Y= 1)

)
.

Now set
l1(w,z)=n1 log(1−w)+(n−n1) log(w) (41)

and

l2(θ,a,s,z)=
∞

∑
j=2

nj

(
P(Y= j)

1−P(Y= 1)

)
. (42)

From (41) and (42), the parameters (θ,a,s,w) can be estimated separately, that is the esti-
mation ŵ can be recovered from l1(w,z) and the estimations (θ̂, â, ŝ) from l2(θ,a,s,z). The

latter ones give the MLE of the parameters of W d
=OTHLZD(θ,s,a) in (40) using the vector

z restricted to the observations which are greater than 1. As a consequence, the estimation
p̂ of p can be recovered from ŵ as
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p̂= 1− ŵT(θ̂, â, ŝ)
T(θ̂, â, ŝ)− a(1)θ̂

.

6. Data-Fitting

6.1. Rainfall Depths and Interarrival Times

With rainfall depth we indicate to what depth liquid precipitation would cover a
horizontal surface in an observation period if nothing could drain, evaporate or percolate
from this surface. Let a time series of rainfall data be defined as h= {h1, . . . ,hn}, where h
(mm) is the rainfall depth recorded at a fixed uniform unit τ of time (e.g., a day). A day k
is considered rainy if the rainfall depth hk ≥ h∗, where h∗ is a fixed rainfall threshold. The
sub-series of h of the rainy days can be defined as the event series E= {t1, . . . ,tnr}, where
nr ≤n is an integer multiple of the time-scale τ. The sequence built with the times elapsed
between each element of E (except the first one) and the immediately preceding one is
defined as the interarrival time series IT= {IT2, . . . , ITnr}. In order to select an appropriate
distribution for IT, some statistical characteristics usually observed in IT samples have to
be considered: very high variance and skewness, relatively high frequency associated to the
observation IT= 1, monotonically decreasing frequencies with a slowly decaying tail and
a drop in the passage from the frequency at IT=1 to the one at IT=2. The HLZD in (13)
has been fitted to rain IT in [5] for stations in Sicily and in [30] for stations in Piedmont,
with good results. However, it has not yet been considered for rainfall depths. Recall that
in the following we assume to model rainfall depths with a discrete r.v.

6.2. The Data

In this paper, the IT series analyzed were obtained from the recorded rainfall observa-
tions, using the rainfall threshold h∗= 1 mm, which is the conventional threshold stated by
the World Meteorological Organization in order to discriminate between rainy and non
rainy days. This dataset has not been previously considered in the literature and consists
of both IT and h measured over 70 years at the following five stations: Floresta, Trapani,
Torino, Oxford, Ceva. They were chosen in order to represent different climates from the
rainfall characteristics point of view. Floresta and Trapani represent the Mediterranean
climate with a very wet and a very dry situation respectively. For both stations, the rainfall
is concentrated in the colder part of the year, as typical of the Mediterranean climate. Torino
and Ceva are more continental, but Ceva is more influenced by the Ligurian sea. Therefore,
Torino has its maximum rain in Spring, while that of Ceva is in Autumn, because of the
heating of the sea in the Summer. Finally, Oxford is a northern Europe station with rainfall
homogeneously spread across the whole year. The recordings start in 1947 and end in 2017,
for a total of 70 years. Moreover, the time series were further subdivided. Thus for each
station we considered for a total of 33 samples. Note that we did not consider wet and dry
seasons for Oxford station due to its climate.

More specifically let station_name ∈ {Floresta, Trapani, Torino, Oxford, Ceva} and
season_name ∈ {wet, dry, spring, summer, autumn, winter}. Then the samples tagged with
station_name year span the whole length of the series for the station_name station, while the
samples tagged with station_name season_name are the union of all the season_name seasons
in the whole time series for the station_name station, omitting all the other seasons from the
dataset. The MLE was used to fit the HLZD (Section 3), the PSHLZD (Section 4) and the
OIHLZD (Section 5) to the dataset (Note that the PSHLZD has support k= 0,1, . . . and the
r.v. IT naturally has support k= 1,2, . . . so we had to consider the shifted r.v. IT′= IT−1.).
In all cases, the MLE has been tackled with the method described in Section 3.4. The ad-
dressed global optimization procedure was further simplified by the previously mentioned
statistical characteristics of the data allowing to work on a subset of the parameter space Θ.

• the whole time series, without subdividing the different seasons;
• all the wet seasons and all the dry seasons;
• the standard meteorological seasons,
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6.3. Results

In the following we summarize the results of the distribution fitting for IT and h
data. The fitting was satisfactory for both the PSHLZD and the HLZD. The assessment of
the goodness-of-fit was obtained by following the methodology suggested by [31]. In the
case of long tailed distributions, the goodness-of-fit through the classical χ2 test might be
biased, because if there are several small classes, strong asymmetry might occur [31] and
some problems of inaccuracy might appear if the classes are grouped [32]. The alternative
procedure used to test the goodness-of-fit relies on Monte Carlo simulation to numerically
reconstruct the null hypothesis of the χ2 test to compute the p-values [33].

To further inspect the differences between the distributions, we have measured the
fitting errors whose magnitude is strictly related to the discrepancy between the empirical
frequencies and the fitted ones. Since many empirical frequencies are zero (in the tail),
the cdf has been considered. In particular we considered the mean absolute error (MAE)
and the mean relative absolute error (MRAE). Let us recall that, if x=(x1, . . . ,xn) is an
ordered sample, then MAE(x)=∑n

j=1
1
n |FN(xj)− F̂(xj)| and MRAE(x)=∑n

j=1
1
n |Fn(xj)−

F̂(xj)|/Fn(xj) with Fn the empirical cdf and F̂ the fitted cdf.

6.3.1. Interarrival Times

We have compared the fitted PSHLZD with the fitted HLZD and the fitted PSHLZD with
the fitted OIHLZD. To summarize the results, we have selected 4 of the 33 available samples
since they have been considered particularly meaningful with respect to the whole dataset.
The selected samples were Floresta Summer, Trapani Wet, Trapani Dry and Torino Winter.

Figure 1 is an example of IT empirical frequencies: they usually range from a high
peak located at IT=1 to a multitude of rather smaller values in the slow decaying tails.
Therefore, to perform comparisons, a log-log scale for all the plots has been adopted.

IT

Figure 1. Histogram of the empirical IT frequency for the Trapani station over the whole year. The
range is up to 133. The mode is IT=1 with relative frequency 0.44. The mean and the standard
deviation are 5.89 and 11.97 respectively.

Figure 2 shows plots of the fitted PSHLZD (solid line) and HLZD (dotted line) com-
pared with the empirical frequencies (dot line) for the 4 selected samples. The fitting in
both cases is very good. In particular, in the cases of Floresta Summer, Torino Winter and
Trapani Dry the PSHLZD succeeds in fitting the drop from IT=1 to IT=2 whereas the
HLZD fails. This happens in the drier periods, where this drop is more prominent.
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Figure 2. Log-log plots of the fitted HLZD (green dotted line), the fitted PSHLZD (black solid line)
and the IT empirical frequencies (red dot line) for the 4 selected samples Floresta Summer, Torino
Winter, Trapani Wet and Trapani Dry.

Moreover, Figure 1 shows the dominance of the frequencies corresponding to IT= 1
and IT=2, which are particularly meaningful in hydrology. Figure 3 shows the plots of
MAE and MRAE obtained by comparing the fitted cdf’s of the PSHLZD (circle) and the
HLZD (triangle) with the empirical IT cdf’s. Note that the MAE and the MRAE are in gen-
eral lower for the PSHLZD. Due to the dominance of the frequency corresponding to IT= 1,
we explored modelling IT with the OIHLZD for all the samples. In all cases, the fitted
OIHLZD and the PSHLZD one have minimal differences and are almost indistinguishable
(see Figure 4 for an example), confirming the great flexibility of the latter distribution.

Figure 3. Dot plots of MAE and MRAE taking as reference the cdf of the PSHLZD (black circle) and
of the HLZD (red triangle) for all the IT samples. The maximum MAE as well as the mean MAE are
given in the top left for both the fitting distributions.
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(a) (b)

Figure 4. (a), the fitted PSHLZD (black solid line) is plotted together with the fitted HLZD (green
dotted line) and the IT empirical frequencies (red dot line) for the sample of Trapani Dry. (b) the fitted
OIHLZD (black solid line) is plotted together with the fitted HLZD (green dotted line) and the IT
empirical frequencies (red dot line) for the same sample.

To conclude the validation analysis, we compared sample means and sample vari-
ances with the same theoretical moments of the HLZD and the PSHLZD computed in
Section 3 and 4 respectively. In Table 1, we show the results for the 4 selected samples.
In all cases, the fitted distributions agree with the sample means. For the variances, the
PSHLZD performs better in many cases. In Table 1, an exception is Trapani Wet because the
data are highly dispersed.

Table 1. The sample means and the sample variances for the 4 selected samples are given in the first
column. The means and the variances of the fitted HLZD and of the fitted PSHLZD are given in the
second and in the third column respectively.

Trapani Dry

Sample HLZ PSHLZ

Mean 3.758 3.758 3.758
Var 26.173 26.668 26.588

Trapani Wet

Sample HLZ PSHLZ

Mean 12.788 12.788 12.788
Var 461.938 461.168 529.513

Floresta Summer

Sample HLZ PSHLZ

Mean 8.93 8.93 8.93
Var 161.344 189.699 153.808

Torino Winter

Sample HLZD PSHLZD

Mean 6.594 6.594 6.594
Var 99.561 130.709 107.723

6.3.2. Rainfall Depths

In this section, we summarize the fitting of the rainfall depth time series using both the
PSHLZD and the HLZD. We omit the comparison with the OIHLZD since this distribution
does not add more insights on the fitting nor what happens for the IT datasets.

Figure 5 shows again an empirical frequency histogram ranging from a high peak in
h= 1 to a multitude of rather smaller values in the slowly decaying tails. As in the previous
section, we employed a log-log scale for all the plots. The selected samples were Ceva
Winter, Torino Winter, Floresta Dry and Trapani Summer.
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h

Figure 5. Plot of the empirical h frequency histogram for the Trapani station over the whole year. 111
is the maximum registered depth. The mode is h= 1 with relative frequency 0.22. The mean and the
standard deviation are 6.81 and 9.16 respectively.

In Figure 6 we have plotted the fitted PSHLZD and HLZD compared with the empirical
frequencies. As with IT samples, the fitting is very good, even better that in the IT case.
Moreover there is less difference between the performances of the PSHLZD and the HLZD.

Figure 7 shows the plots of the MAE and the MRAE obtained by comparing the
fitted cdf’s of the PSHLZD (circle) and the HLZD (triangle) with the empirical h cdf’s.
Even though both errors are smaller for the PSHLZD, there is less difference between the
two distributions and they are generally lower than for the IT case.

Figure 6. Log-log plots of the fitted HLZD (green dotted line), the fitted PSHLZD (black solid line)
and the h empirical frequencies (red dot line) for the 4 selected samples Ceva Winter, Torino Winter,
Floresta Dry and Trapani Summer.
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Figure 7. Dot plots of MAE and MRAE taking as reference the cdf of the PSHLZD (black circle) and
of the HLZD (red triangle) for all the h samples. The maximum MAE as well as the mean MAE are
given in the top left for both the fitting distributions.

7. Conclusions

The first part of this paper focuses on a class of discrete distributions useful to describe
very high one counts and long tails. We have reviewed the main properties using the
combinatorics of exponential Bell polynomials. This device has permitted the derivation
of closed form expressions for the pdf’s and their convolutions, as well as moments and
cumulants. Moreover, new results on log-concavity have been presented. We have also
considered the OIHLZD to compare its features with the HLZD and the PSHLZD. This
deep analysis was aimed of investigating how to use these models to find a better fit for
rainfall data. Indeed, the PSHLZD and the HLZD were fitted on Interarrival Times IT and
rainfall depths h data coming from 5 different stations, which composed a dataset never
previously analyzed in the literature. The h data were treated as observations of a discrete
r.v., which is not the usual practice in the literature, but seems reasonable when taking into
account how they are measured. The fitting was performed with the classical MLE method,
but the likelihood was maximized using the Simulated Annealing procedure, which turns
out to be fundamental since there are no closed forms of the likelihood equations. The fit
was very good for both distributions, with the PSHLZD performing slightly better than
the HLZD. This mostly happens for the IT data. Moreover, the PSHLZD was also able to
replicate the fit of the OIHLZD further validating its flexibility.

From the modelling point of view, let us underline two final remarks. Firstly, the fit
was excellent for both the IT and the h data, suggesting that the PSHLZD can be proposed
as a general framework in rainfall modelling. Secondly, it is noteworthy to underline that
these models capture the variability of rainfall stochastic phenomena, even though the
5 considered stations represent very different climates: a case study not yet considered in
the literature that deals with previous applications of HLZD. Future works will consider
modelling the dependence (inter-correlation) between IT and h. Given the remarkable
performance of these distribution families in the univariate modelling, a first step would be
to consider bivariate modified power series distributions [34] and the methods to estimate
their parameters on a rainfall time series. This is in the agenda for our future developments.
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Abstract: The aim of this research is to identify an efficient model to describe the fluctuations around
the trend of the soil temperatures monitored in the volcanic caldera of the Campi Flegrei area in
Naples (Italy). This study focuses on the data concerning the temperatures in the mentioned area
through a seven-year period. The research is initially finalized to identify the deterministic component
of the model given by the seasonal trend of the temperatures, which is obtained through an adapted
regression method on the time series. Subsequently, the stochastic component from the time series is
tested to represent a fractional Brownian motion (fBm). An estimation based on the periodogram
of the data is used to estabilish that the data series follows an fBm motion rather than fractional
Gaussian noise. An estimation of the Hurst exponent H of the process is also obtained. Finally, an
inference test based on the detrended moving average of the data is adopted in order to assess the
hypothesis that the time series follows a suitably estimated fBm.

Keywords: fractional Brownian motion; stochastic model; regression; time series; residuals analysis;
Hurst exponent; Campi Flegrei caldera; temperature fluctuation

1. Introduction

In several applied contexts, one of the main problems in the description of a phe-
nomenon that evolves over time is the individuation of the probabilistic laws by which the
phenomenon itself is driven. To this aim, schemes based on the superposition of determin-
istic and random components are often chosen, in which the deterministic part describes
the phenomenon’s trend, while the random one describes the fluctuations determined by
unpredictable exogenous factors. An example of such a model is presented in the work
by Sebastiani and Malagnini [1], where a physical model with non-constant variance is
proposed to describe the phenomenon of coupling erosion that caused the 2011 earthquake
in Tohoku-Oki (Japan). Analogously, another compound model can be found in the work of
Giordano and Morale [2]. Here, the authors propose a mathematical model for the prices of
electricity in the Italian market through the years, whose stochastic component is given by
the sum of a fractional Ornstein–Uhlenbeck process and the solution of a mean-reverting
SDE driven by a Hawkes-marked process.

The aim of the present study is to implement an analogous scheme to describe the
soil temperatures observed on the surface of the Campi Flegrei caldera. This volcanic
area is located near the city of Naples in Italy and is famous for the ground deformations
that have been registered in the area since ancient times. Recent observations, carried out
from 2011 to 2017, were led to monitor the presence of radon in two sites of the area (cf.
Sabbarese et al. [3]). In [3], the presence of radon in the soil was tracked, along with its
dependence on physical quantities such as temperature, pressure and humidity, in order to
prove how the seismic activity in the Campi Flegrei area was influenced by the presence of
the element.
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Starting from the research mentioned above, in this work, we aim to build a model able
to describe the fluctuations in soil temperatures in the caldera through the identification of
the temporal trend and the corresponding random component.

What emerged from the present study is that the deterministic component is described
well by a piecewise linear model, where the segments’ slopes are alternating in sign. The
slopes can be determined by applying the ordinary least squares (OLS) method on the
observed data. The endpoints for each segment of the piecewise curve are chosen through
an emphirical method. The stochastic model describing the random fluctuations component
is instead recognized to be the fractional Brownian motion (fBm). For a description of the
most relevant probabilistic and statistical aspects of fBm, see, for example, the works of
Nourdin [4] and Prakasa-Rao [5]. This stochastic process has been proposed in several
studies for modeling various geophysical phenomena. In the work by Mattia et al. [6],
fBm is proposed as an approximation of the process describing the trend of ground data
involving soil roughness collected over three different European sites. In the paper by
Yin and Ranalli [7], the authors show that the event of earthquake rupturing in a fault is
related to factors such as static shear stress and static frictional strength through a potential
dynamic stress drop. The latter is regarded as a one-dimentional stochastic process, and it
is modeled as an fBm with a Hurst exponent close to zero.

The evidence of the reasonableness of the model first emerges as consequence of a
statistical test, in which the hypothesis that the random fluctuations of the model can be
described by Brownian motion is rejected. The subsequent phase of the work involves the
study of the periodogram of the data. It allows verifying that the random fluctuations are
described well by fBm, in opposition to a fractional Gaussian noise (fGn). Such analysis
also leads to the estimation of the involved parameters, namely the Hurst exponent H and
the scale parameter D of the fBm. Many estimation techniques for the former parameters
have been proposed in the literature, such as the methods presented in [8]. Other works
often provide modified versions of the already known algorithms.

Subsequently, this study moves toward analyzing the residual series emerging from
the considered stochastic process and simulated fBm with the previously estimated param-
eters. First of all, such a residual series is plotted with respect to the temperatures series,
which suggests the Gaussianity of the residuals. Then, the procedure is repeated through
suitable simulations. Two statistical tests are performed on the obtained values, with both
leading to the acceptance of the null hypothesis of Gaussianity.

The goodness of the considered model is finally confirmed through an inference test,
in which the test statistics involve the detrending moving averages obtained from the data.

The main results of this article are as follows:

• The development of a suitable stochastic model X(t) describing a geophysical phenomenon;
• The estimation of the parameters involved in the model based on real observed data;
• The design of revised statistical algorithms to construct the model and to perform

appropriate testing for confirming its validity.

Here is the plan of the article. In Section 2, we introduce the starting equation for
modeling the soil temperature trend (cf. Equation (1)). Section 3 focuses on the data analysis
directed toward identifying the deterministic component of the temperature trend. The
remaining part of the article is dedicated to the analysis of the stochastic component of the
model. More specifically, Section 4 is aimed at studying the periodogram obtained from
the data observations, from which emerges the eligibility of fBm to describe the random
component of the temperature compared to fGn. An estimation of the relevant parameters
of the process (i.e., the Hurst exponent and the scale parameter) is also performed. Testing
on the residuals of the model is then performed by resorting to the Shapiro–Wilk test
and the robust Jarque–Bera test. The work is completed by Section 5, which contains the
statistical test leading to the acceptance of the model, and Section 6, which collects the
conclusions of the study.
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2. The Stochastic Model

The time series considered throughout this study describes the temperatures of the
surface soil of the Campi Flegrei caldera, obtained via daily observations in the time period
between 1 July 2011 and 31 December 2017. The main aim of the research is to develop
a model able to describe the fluctuations of the data. As usually observed in geophysical
studies, the trajectory of the time series is seen as the superposition of a deterministic
component and a stochastic one, where the latter represents the fluctuations from the
trend. As a consequence, the process {X(t), t ≥ 0} that represents the daily observed soil
temperatures is described by the following equation:

X(t) = r(t) + BH(t), (1)

where r(t) constitutes the deterministic component of the process, while BH(t) is a stochas-
tic process. We will show that a suitable assumption is to identify BH(t) as fBm. A similar
model has been proposed for the vertical motion of the soil in the Campi Flegrei area (cf.
Travaglino et al. [9]).

Under the assumption that BH(t) is indeed fBm, it is easy to observe that the model
shown in Equation (1) is such that E(X(t)) = r(t). We recall, in fact, that fractional
Brownian motion is a continuous-time Gaussian process with zero mean and covariance:

Cov[BH(t), BH(s)] = D(t2H + s2H − |t − s|2H), t, s ≥ 0, (2)

where D > 0 is a scale parameter named the diffusion constant and 0 < H < 1 is a
parameter known as the Hurst exponent. The process was first introduced by Mandelbrot
and Van Ness in [10]. It is a generalization of Brownian motion, since for D = 1/2 and
H = 1/2 it reduces to a standard Wiener process. We remark that fBm has the property of
self-similarity; that is, for any choice of a > 0, the following is true:

{BH(at), t ≥ 0} d
= {aH BH(t), t ≥ 0},

meaning that the two processes are equal in distribution. The parameter H is therefore also
referred to as the scaling exponent or fractal index of the process.

The model in Equation (1) is not stationary, since fBm is not a stationary process itself.
The process of the increments of BH(t), defined by Z(t) = BH(t + 1)− BH(t) for all t ≥ 0,
is, however, stationary. This is known as fractionary Gaussian noise (fGn).

Introducing the process Z(t) leads to another well-known property of fBm, which is
long-range dependency (LRD). As pointed out in [11], a stationary process X(t) has long-
range dependence (or is a long memory process) if its autocorrelation function, defined as

ρ(k) =
Cov(X(t), X(t + k))

Var[X(1)]
,

satisfies the condition
+∞

∑
k=−∞

ρ(k) = ∞.

This definition implies that the autocorrelation of the process decays slowly over time,
making the sum of the autocorrelations divergent. Therefore, if X(t) is an LRD process, then

lim
k→+∞

ρ(k)
ck−α

= 1, (3)

where c > 0 and 0 < α < 1 are constants. This definition states that the decay of the autocor-
relation function is power-like and hence slower than exponential decay. In the case of fBm,
long-range dependence can be seen when looking at the increments in Z(t). Moreover, the
parameter α is related to the Hurst exponent through the equation α = 2H − 2, evidencing
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that the value of the Hurst exponent can be used to determine the nature of the process.
We recall the following (see also [11,12]):

• If 1
2 < H < 1, then the increments of the process are positively correlated, making the

process persistent (i.e., likely to keep the trend exhibited in the previous observations);
• If 0 < H < 1

2 , the increments of the process are negatively correlated, and the process
is counter-persistent (i.e., likely to break the trend followed in the past).

A relation similar to Equation (3) but concerning the frequency domain of the time
series is shown in Section 3, where it is used for the estimation of a parameter of the process.
It is worth mentioning that recent investigations showed that fBm with a random Hurst
exponent can be employed to describe biological phenomena such as particle motion and
intracellular transport, as reported by Balcerek et al. [13] and Han et al. [14], respectively.

3. The Deterministic Component

The model in Equation (1) was adopted to analyze the time series of the recorded
temperatures of the Campi Flegrei caldera soil (cf. Sabbarese et al. [3]). The initial dataset
consisted of N̂ + 1 = 2005 observations collected at the times indicated by t0, t1, . . . , tN̂ and
shown in the scatter plot in Figure 1.

Figure 1. Scatter plot of the data series X(t) for the temperatures of the surface soil of the Campi
Flegrei caldera at the Monte Olevano (NA) site, collected during the observation period.

The observations are not equally spaced time-wise, since the data series was collected
daily with the lack of a quite large number of observations. As shown in the plot in Figure 2,
a seasonal trend is clearly visible in the dataset, with the temperatures increasing during
spring and summer in each year and then starting to decrease around September. For this
reason, the deterministic trend r(t) is constructed by alternating segments with opposite
slopes, whcih were obtained from the data through the OLS method. The first and the last
measurement of the dataset, which are also the extremes of the curve, are given by

t0 = 07/29/2011, X(t0) = 31.78;

tN̂ = 12/31/2017, X(tN̂) = 29.94.

To obtain the points in which the curve changes its slope, a heuristic method based on
linear regression was used, which was developed upon the methodologies illustrated by
Hudson in [15]. First, for the dataset, we detected the local minima mi, i = 1, . . . , 6 and
maxima Mi, i = 1, . . . , 7, as shown in Table 1.
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Table 1. Local maxima Mi and minima mi for each subset of the dataset and the corresponding dates
τi (day, month, and year).

τi Mi = X(τi) (°C) τi mi = X(τi) (°C)

16 September 2011 31.78 14 February 2012 28.68
25 August 2012 33.6 22 March 2013 28.63

11 September 2013 33.31 4 March 2014 29.17
22 September 2014 33.4 27 February 2015 27.08
5 September 2015 32.4 11 March 2016 29.27

19 September 2016 33.29 03 February 2017 28.88
30 August 2017 34.04

Figure 2. Seasonal plot of the temperatures described by X(t). This was obtained by taking weekly
spaced values from the time series X(t) and representing each year of observation (2011–2017) separately.

The time t0 was used as the first extreme of the first segment of the piecewise linear
curve. Subsequently, the slope αj and the intercept of the regression line between τ0 and
the first local maxima M1 were estimated using the OLS method. The corresponding
coefficient of determination R2 was also calculated. The second step consisted of repeating
the operation and choosing the second extreme among the five values that preceded and the
five ones that followed M1. Hence, among the 11 possible choices, we chose the regression
line that maximized R2. Table 2 shows the values obtained for each endpoint.

Table 2. Slopes of the segments obtained by linear regression between initial time t0 and a neighbor-
hood of M1 with their corresponding coefficients of determination. The slope was chosen such that
R2 was the highest, as underlined.

tj αj R2

11 September 2011 0.0219 0.9302
12 September 2011 0.0217 0.9326
13 September 2011 0.0215 0.9341
14 September 2011 0.0213 0.9369
15 September 2011 0.0213 0.9405
16 September 2011 0.0213 0.9442
23 September 2011 0.0199 0.9021
24 September 2011 0.0190 0.8787
25 September 2011 0.0182 0.8574
26 September 2011 0.0174 0.8369
27 September 2011 0.0162 0.7880
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Then, the same method was applied for the next 12 segments, in which the first initial
time was determined by the previous step. The last regression line was finally calculated
using tN̂ as the endpoint. We denote by ci > 0 and vi < 0 the alternating slopes obtained
through the regression model. The endpoints θi for each interval, as well as the estimated
slopes and the coefficients of determination, are reported in Table 3.

The values obtained by means of this procedure allowed us to identify the deter-
ministic component r(t) of the model in Equation (1). The values of R2 confirm that the
regression lines provided a good fitting of the data in each interval. The scatter plot and
the resulting linear model are shown in Figure 3.

Table 3. Estimated slopes ci and vi and corresponding coefficients of determination evaluated for
each subset [θi−1, θi] of the data series, with θ0 = t0 = 29 July 2011.

θi ci R2 θi vi R2

16 September 2011 0.0213 0.9442 27 February 2012 −0.0264 0.9709
13 September 2012 0.0262 0.9356 7 March 2013 −0.0311 0.9722
6 September 2013 0.0287 0.9818 7 March 2014 −0.0256 0.9573

24 September 2014 0.0237 0.9701 1 March 2015 −0.0418 0.9635
23 August 2015 0.0294 0.9659 19 March 2016 −0.0145 0.9287

8 September 2016 0.0238 0.9619 16 February 2017 −0.0261 0.9357
14 September 2017 0.0228 0.9674 31 December 2017 −0.0346 0.9153

Figure 3. The scatter plot of the data series X(t) and the linear approximation of the deterministic
trend r(t).

4. Analysis of the Stochastic Component

In this section, we focus on the investigation concerning the nature of the time series
BH(t) = X(t)− r(t). To this aim, some preparatory interpolations were performed on the
dataset, as is customary. Since the times of the initial series were not equally spaced, we col-
lected the missing data by performing a linear interpolation covering the whole observation
period. The prepared dataset obtained after this phase consisted of N + 1 = 2348 observa-
tions. A plot of BH(t) is shown in Figure 4.

Figure 4. Plot of the time series BH(t) = X(t)− r(t).

161



Fractal Fract. 2022, 6, 421

As a preliminary study on the nature of the process BH(t), we represented the time se-
ries through a histogram and a qq-plot, as shown in Figure 5 and Figure 6, respectively. The
obtained plots suggest classifying the stochastic component among Gaussian processes,
thus justifying the following testing.

Figure 5. Histogram of the discrete time series BH(t).

Figure 6. Qq-plot of the discrete time series BH(t).

4.1. Testing for Brownian Motion

With reference to the model in Equation (1), hereafter, we perform a test on the process
BH(t), aiming to assess its suitable nature. With reference to the Brownian motion B(t), we
consider the following hypothesis:

Hypothesis 1. BH(t) = σB(t).

Hypothesis 2. BH(t) is a confined or directed diffusion.

By adopting the test proposed by Briane et al. in [16], the asymptotic region of accep-
tance for H0 is given by {

q
(α

2

)
≤ SN

D
σ̂
√

tN
≤ q

(
1 − α

2

)}
,

where
SN

D = max
j=1,... ,N

|BH(tj)− BH(t0)|,

σ̂ =

{
1
N

N

∑
j=1

[BH(tj)− BH(tj−1)]
2

tj − tj−1

}1/2

,

and q(α) is the quantile of
sup

0≤s≤1
|B(s)− B(0)|.

The extremes of the acceptance interval for the significance level α = 0.05 are given by
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q(0.025) = 0.834, q(0.975) = 2.940,

while the value obtained for the test statistic is 0.0787. The null hypothesis of the pro-
cess BH(t) being Brownian motion is therefore rejected. This justifies the further analysis
conducted hereafter.

Let us now conduct an investigation on BH(t) to verify whether it might follow an fBm
or fGn trend. Consequently, we also estimate the Hurst exponent H of the process. To this
aim, we apply the theoretical procedure consisting of evaluating the Fourier spectrum S( f )
of the data and studying its behavior with respect to the frequencies f . In fact, a relation
analogous to Equation (3) for long memory processes can be presented in the frequency
domain of the time series. In particular, for an fBm or a fGn process, the estimated Fourier
spectrum S( f ) and the frequencies f are asymptotically evaluated as

S( f ) = S( f0) f−β, (4)

where both S( f0) and β are constants. The coefficient β is linked to the Hurst exponent H
by different equations, depending on the nature of the underlying process. Indeed, for an
fGn (fBm) process, Equation (4) holds with β = 2H − 1 (β = 2H + 1) (cf. [17–19]). Recalling
that 0 < H < 1, we find the following:

(i) If −1 < β < 1, then the time series can be identified as a realization of fractional
Gaussian noise;

(ii) If 1 < β < 3, then the data series represents a sample path of fractional Brownian motion.

From Equation (4), we have

log S( f ) = log S( f0)− β log f ,

so that an estimation of the coefficient β can be obtained by plotting on a log-log scale the
frequencies and the values of S( f ) and then taking the opposite value of the slope of the
least squares line as an estimation.

To attain an estimation of the function S( f ), we evaluate the periodogram of the data
series, which for BH(t) is defined by

I( f ) =

∣∣∣∣∣ 1
2πN

N

∑
i=0

BH(ti)ei f ti

∣∣∣∣∣
2

.

In order to achieve the best possible approximation for the Fourier spectrum, many
modified versions of the periodogram have been devised. In particular, we chose the
estimation of S( f ) using the modified periodogram method suggested by Welch in [20].
The technique consists of dividing the signal into overlapping segments and averaging the
modified periodograms calculated in each window to obtain the final result. The modified
Welch’s periodogram is shown in Figure 7.

Hence, by applying a log-log transformation on the frequencies and the estimated
periodogram, we obtained the plot shown in Figure 8. The estimate of β obtained as the
slope of the regression line is given by

β = 1.853,

with the corresponding R2 = 0.907. Since the coefficient β belongs to the interval (1, 3), we
could conclude that the data series followed an fBm trend. This also led to an estimation of
the Hurst parameter as follows:

Ĥ =
β − 1

2
= 0.427. (5)
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Figure 7. Modified Welch periodogram for the data series BH(t) plotted for different values of the
frequency.

Figure 8. Log-log plot for the Welch’s periodogram of the data series with respect to frequency. The
slope of the least squares line estimates the coefficient β.

The estimation obtained in Equation (5) shows that the Hurst exponent of the process
was less than 0.5, implying anti-persistence in the data trend. This result has already
emerged in the literature in investigations related to soil temperatures. In the work by
Zhang et al. [21], surveys of the soil temperature at different levels of depth showed
that a weak anti-persistence (H∼0.4) was observed near the soil surface, consistent with
our result.

In order to complete the estimation of the parameters for BH(t), we also evaluated the
diffusion constant D of the process. This was performed directly from the data, calculating
the sample variance of the increments BH(t)− BH(t − 1) of the data series. The estimate
obtained to this point was

D̂ = 0.0846. (6)

To further confirm the hypothesis suggested from the periodogram, we performed
analysis of the residuals of the time series making use of simulations of fBm. To this aim,
we denoted with BĤ,D̂(t) a simulated sample path of a fractional Brownian motion process
with a Hurst exponent and scale parameter estimated as in Equations (5) and (6). Then,
the residual
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z(t) = X(t)− r(t)− BĤ,D̂(t)

was evaluated by means of the residuals plot. Moreover, the normality of the residuals was
assessed hereafter through two tests: the Shapiro–Wilk test and robust Jarque–Bera test
for Gaussianity.

4.2. The Shapiro–Wilk Test

Since the test statistic W of the Shapiro–Wilk test tended to detect even small depar-
tures from the null hypothesis when the sample size was sufficiently large, it was convenient
for reducing the sample to a smaller size. Hence, from now on, we consider a subset X̃(t)
of the main dataset which contains weekly spaced observations. After simulating a sample
path B̃Ĥ,D̂ of fBm of a length M = �(N + 1)/7�, we plotted the residual series

z̃(t) = X̃(t)− r̃(t)− B̃Ĥ,D̂(t)

with respect to the values of X̃(t) (see Figure 9). Notice that the residuals do not seem to
follow a specific path; rather, they appear to be distributed randomly with respect to X̃(t).

Figure 9. Plot of the residuals series z̃(t) with respect to the temperatures X̃(t), equally spaced with
one observation for each 7 days.

Let us now describe the adopted testing strategy. Since we were interested in studying
the behavior of the residual series, we first simulated the fBm path B̃Ĥ,D̂(t) for a total of
n = 104 iterations. For each simulation, we evaluated the residuals series z̃i(t) and first
performed a Shapiro–Wilk test for i = 1, . . . , n. The procedure was necessarily based on the
repetition of the Shapiro–Wilk test since we dealt with simulated fBm paths. Hence, we
considered the collection of test statistics

Wi =
∑M

j=1 ajz̃i(t(j))

∑M
j=1(z̃i(tj)− μi)2

, i = 1, . . . , n, (7)

where Wi refers to the ith simulation and where μi represents the sample mean of z̃i(t). The
coefficients aj, as is well known, are related to some moments of the order statistics of i.i.d.
random variables sampled from the standard normal distribution. The values of Wi, as in
Equation (7), ranged between 0 and 1. The ith test rejects the Gaussian hypothesis when
Wi is close to 0, and hence we accepted the null hypothesis if Wi ≥ 0.98 for i = 1, . . . , n.
As shown in Figure 10, a large proportion of the values of Wi was greater than 0.98. This
result was observed for more than 70% of the values of Wi even for various repetitions
of the n-simulation procedure (cf. [22,23]). This was also confirmed by the cumulative

165



Fractal Fract. 2022, 6, 421

histogram of Wi shown in Figure 11. The results of the test suggest the acceptance of the
Gaussianity hypothesis.

Figure 10. The values of the statistic Wi evaluated according to Equation (7).

Figure 11. Cumulative histogram for the Wi statistic.

4.3. Robust Jarque–Bera Test

Let us now perform a modified version of the Jarque–Bera test. The statistic for the
original Jarque–Bera test for a sample of a size n is given by (cf. [24])

JB =
n
6

(
μ̂3

μ̂3/2
2

)2

+
n
24

(
μ̂4

μ̂2
− 3

)2
,

which is a combination of the sample skewness
(

μ̂3

μ̂3/2
2

)
and the sample kurtosis

(
μ̂4
μ̂2

− 3
)

obtained from the data through the estimates μ̂i of the central moments i = 2, 3, 4. If the
data series is distributed normally, one has that JB ∼ χ2(2) asymptotically. Thus, under
the null hypothesis of the time series being Gaussian, both the expected skewness and the
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expected kurtosis are zero. Therefore, higher values of the JB statistic lead to the rejection
of the Gaussianity hypothesis.

For our testing procedure, we followed the modified version of the test proposed
by Gel and Gastwirth in [25], which is known as the robust Jarque–Bera (RJB) test. The
modification consisted of substituting the estimate of the spread, formerly μ̂2, with the
average absolute deviation from the sample median, henceforth denoted as Med, given by

JM =

√
π/2
M

M

∑
j=1

| ˜z(tj)− Med|,

where M refers to the sample size. This substitution makes the statistics less influenced by
outliers. Therefore, the statistic becomes

JBM =
M
C1

(
μ̂3

J3
M

)2

+
M
C2

(
μ̂4

J4
M

− 3

)2

,

where C1 and C2 are positive constants estimating moments of JM, which is obtained
through Monte Carlo simulations. Moreover, the p-values for the RJB test are obtained by
use of k = 10,000 Monte Carlo simulations instead of the χ2(2) distribution, thus obtaining
a better approximation (cf. [26]).

To perform the RJB test, we repeated 10 blocks of n simulations with 3 different
numbers of iterations (n = 100, 500 and 1000). For each simulation, the residual series

{z̃i(tj), j = 1, . . . , M}i=1,...,n (8)

was tested. The choice of performing blocks of simulations arose from the need for re-
ducing the computational times. The results, reported in Table 4, showed compliance
with the Shapiro–Wilk test and led to the acceptance of the Gaussianity hypothesis for the
residuals series.

Table 4. Percentages of acceptable values for the residuals series in Equation (8) tested with the RJB
method and repeated for h = 1, . . . , 10, with significance level α = 0.02 and different values of n.

h n = 100 n = 500 n = 1000

1 64% 66.8% 68.0%
2 76% 72.2% 69.9%
3 68% 70.0% 66.1%
4 66% 69.4% 71.3%
5 70% 71.0% 70.5%
6 68% 71.4% 71.1%
7 68% 70.8% 70.5%
8 71% 67.0% 69.9%
9 70% 73.0% 68.1%
10 70% 69.4% 71.5%

5. Statistical Test for the Model

To further confirm the results obtained in Section 4, we performed a statistical test
on the whole N-term data series for the hypothesis of BH(t) being fractional Brownian
motion with parameters Ĥ = 0.427 and D̂ = 0.0846. To this aim, we used the inference test
presented in Sikora [27] based on the detrending moving average (DMA) of the data. The
hypotheses for the test were

H0 : {BH(t1), BH(t2), . . . , BH(tN)} is a trajectory of fBm with parameters Ĥ and D̂,

H1 : {BH(t1), BH(t2), . . . , BH(tN)} is not a trajectory of fBm with parameters Ĥ and D̂.
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The corresponding test statistic for a fixed value m > 1 was given by

S2(m) =
1

N − m

N

∑
j=m

(BH(tj)− Bm
H(tj))

2, (9)

where Bm
H(tj) denotes the moving average of the m observations BH(tj−i), i = 0, 1, . . . , m− 1.

The p-value for this test was defined by an infinite series, so it needed to be computed
as an empirical quantile obtained from series of generalized chi-squared random variables.
Recalling Step 5 in Section 3 of [27], the p-value of the test was calculated as

p =
2
L

min{#(σ2
l (m) < S2(m)), #(σ2

l (m) > S2(m))}. (10)

In this formula, L is the number of samples generated for the chi-squared distribution.
For a good estimate of p, we set L = 1000. Moreover, in Equation (10), we considered

σ2
l (m) =

1
N − m

N−m+1

∑
j=1

λj(m)Ul
j , l = 1, 2, . . . , L,

where Ul = {Ul
1, Ul

2, . . . , Ul
N−m+1} is the lth chi-square sample and λj(m) is the jth eigen-

value of the sample matrix

Σ̃ = {E[BH(tj)BH(tk)]; j, k = 1, 2, . . . , N − m + 1}.

Recalling Equation (9), since the search for an optimal value for m was still an open
question, we divided the data series into 10 subsets of about 250 observations each in order
to adapt the procedure even to cases with large numbers of observed data. Then, we ran
the test in every subset for each suitable value of m.

After that, we collected the p-values and created a box plot with jitter for each subset
in order to determine the outlier values for p (cf. Figure 12).

Figure 12. Box plot for the values of p obtained in the 10 subsets of the data.

The significance level considered for this test was α = 0.02. Therefore, the results in
each subset were collected and divided into three categories:

(i) For p ≤ 0.02, the null hypothesis is rejected;
(ii) For 0.02 < p ≤ 0.05, the values are considered as a “warning”;
(iii) For p > 0.05, the hypothesis H0 cannot be rejected.

Table 5 shows the results, with the percentages of the number of rejected, warning and
acceptable values over the total p-values calculated in the 10 datasets. It can be observed

168



Fractal Fract. 2022, 6, 421

that the null hypothesis could not be rejected in almost 90% of the cases covered, considering
all the subsets and all the different choices of m for the test statistic. This allowed stating
the validity of the hypothesis that the time series BH(t) followed an fBm trend.

Table 5. Number of cases in which the DMA statistic test had different outcomes for the data
series B(t).

Set
Reject Values

(p ≤ 0.02)
Perc.

Warning Values
(0.02 ≤ p ≤ 0.05)

Perc.
Acceptable Values

(p > 0.05)
Perc.

1 0 0% 12 4.86% 235 95.14%
2 70 28.23% 12 4.84% 154 62.10%
3 17 6.85% 6 2.42% 219 88.31%
4 70 28.23% 6 2.42% 166 66.94%
5 23 9.27% 10 4.03% 205 82.66%
6 4 1.61% 4 1.61% 236 95.16%
7 3 1.21% 3 1.21% 239 96.37%
8 0 0% 0 0% 248 100%
9 1 0.4% 0 0% 247 99.6%

10 0 0% 0 0% 95 100%

6. Conclusions

The performed analysis shows that the proposed stochastic model is suitable to fit the
observed temperatures. Indeed, the obtained results suggest that the coefficients obtained
for the process X(t) display high values for R2, thus ensuring the goodness of the fit. In
conclusion, this study reveals that the evolution of the temperatures in the Campi Flegrei
caldera can be modeled by the sum of a deterministic component, which represents the
seasonal trend, and fractional Brownian motion.

Possible future developments of the performed analysis can be oriented toward (1) the
prevision of the trend of the seasonal terms and (2) the study of other quantities of interest,
such as leaked radon.
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LRD long-range dependency
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Abstract: Since November 2019, each country in the world has been affected by COVID-19, which has
claimed more than four million lives. As an infectious disease, COVID-19 has a stronger transmission
power and faster propagation speed. In fact, environmental noise is an inevitable important factor
in the real world. This paper mainly gives a new random infectious disease system under infection
rate environmental noise. We give the existence and uniqueness of the solution of the system and
discuss the ergodic stationary distribution and the extinction conditions of the system. The probability
density function of the stochastic system is studied. Some digital simulations are used to demonstrate
the probability density function and the extinction of the system.

Keywords: stochastic epidemic model; threshold dynamics; infection rate; extinction; ergodic
stationary distribution

1. Introduction

So far, infectious diseases have become one of the important factors endangering
human health. Medical research shows that there are three outcomes of any infectious
disease: the first is that the infectious virus is eliminated by human drugs; the second is
that the virus exists only in a small area, such as Ebola, SARS (severe acute respiratory
syndrome), and so on; the third is the long-term coexistence of viruses and humans, such
as influenza, AIDS (acquired immunodeficiency syndrome), and so on [1].

In order to describe the dynamic behavior of the epidemic, mathematical modeling is
considered to be an important tool [2]. According to the occurrence, transmission, and de-
velopment law of infectious disease in the population, Mathematicians and ecologists have
established several epidemic models to study and control various epidemics [3–5]. The
authors gave the dynamics and stationary distribution of the hepatitis E model. Meanwhile,
the authors obtained the optimal control analysis and the Atangana–Baleanu derivative
for the dynamical analysis of the hepatitis E model in [6]. Through the qualitative analysis
and numerical simulation of the dynamic behavior of the infectious disease model [7],
the authors gave an exact expression of the probability density function of the stochastic
model SVI (susceptible, vaccinated, infectious) around the unique endemic equilibrium of
the deterministic system by solving the corresponding Fokker–Planck equation, which is
guaranteed by a new critical value Rs

0 in [8], and other models, such as SIR (susceptible, in-
fectious, recovered), SIRS (susceptible, infectious, recovered, susceptible), SEIR (susceptible,
exposed, infectious, recovered), etc. [9,10].

Since November 2019, the world has been enveloped in COVID-19 (coronavirus dis-
ease 2019). As a contagious virus, COVID-19 is highly infectious [11]. Since April 2021,
only half a year, the number of newly confirmed cases in the world has increased by
100 million [12]. At the same time, Griffin B.D., etc. [13], found that the new coronavirus
could infect and spread among North American deer rats, which has increased the diffi-
culty in controlling COVID-19. Many countries are working hard to prevent the spread of
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COVID-19. Mathematicians use simulated mathematical models to predict the future be-
havior of coronavirus disease transmission in 2019. So far, several typical 2019 coronavirus
disease transmission models have been proposed and are being used in some decisions.
Recently, people have grasped valuable inferences through mathematical modeling and
obtained in-depth understanding of the novel coronavirus (COVID-19) [14]. A. Atangana
confirmed the effect of lockdown as a possible adequate measure to help flatten the curve
of deaths and infections with the epidemic model as follows: [15]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dS(t) = [Λ − βS(t)D(t)
N − (δ + μ)S(t) + ηR(t)]dt,

dC(t) = [( βS(t)D(t)
N + δS(t)− (β + μ + π)C(t)]dt,

dI(t) = [δ(1 − θ)S(t) + πC(t)− (τ + μ + σ)I(t)]dt,
dR(t) = [βC(t) + τ I(t)− (μ + η)R(t)]dt,
dD(t) = [σI(t)]dt,

(1)

where the parameters are in Table 1.

Table 1. The definitions of the parameters.

Parameter Definitions

S(t) The susceptible class
I(t) Infected people
C(t) Carriers (dead corpse)
R(t) Recovered persons
D(t) Total number of deaths
μ Rate of natural death recruitment rate into S(t)
θ Probability of an S(t) class to join C(t) class
σ Death rate induced by COVID-19
β Recovery rate of C(t) class
δ Force of infection of class S(t)
τ Recovery rate of I(t) class
π Rate at which an C(t) class is recovered
η Rate at which treated persons become C(t) class

However, in the real world, due to the influence of various factors, such as the envi-
ronment, a random model is constructed by random components with some distribution.
Through the addition of some white noise, these distributions may reflect the uncertainty of
the input content or random process [16]. Meanwhile, the quarantined measures play a very
important role in fighting and preventing the increase in COVID-19. The authors found
that the dynamic system with the external source was more reliable than the suspected
people travelling, and that the rate of isolation is extremely important for controlling the
increase in the cumulative confirmed people of COVID-2019 [17]. The authors in [18] put
forward the stochastic coronavirus epidemic model with the parameter disturbance by the
natural mortality rate by translating the quarantined factor as follows:⎧⎪⎨⎪⎩

dS(t) = [Λ − βS(t)I(t)
N − μ0S(t)]dt + η1S(t)dB1(t),

dI(t) = [( βS(t)I(t)
N − (γ1 + μ1 + μ0)I(t) + σQ(t)]dt + η2 I(t)dB2(t),

dQ(t) = [γ1 I(t)− (μ0 + μ + σ)Q(t)]dt + η3Q(t)dB3(t),
(2)

where the definitions of the parameters are in Table 2 and N = S(t) + I(t) + Q(t).
In the system (2), the important role of isolation in COVID-19 is pointed out, and

the stable distribution of the model under extinction conditions is obtained. However, in
the real world, according to the COVID-19 data in Pakistan [19], the disturbance of the
infection rate coefficient plays a very important role in the spread of COVID-19. Meanwhile,
vaccination and isolation measures can also affect the infection rate. In the present paper,
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we give the stochastic coronavirus epidemic model with the stochastic disturbance of the
infection rate coefficient. The system is the following:⎧⎪⎨⎪⎩

dS(t) = [Λ − βS(t)I(t)
N − μ0S(t)]dt − ηS(t)I(t)

N dB(t),
dI(t) = [( βS(t)I(t)

N − (γ1 + μ1 + μ0)I(t) + σQ(t)]dt + ηS(t)I(t)
N dB(t),

dQ(t) = [γ1 I(t)− (μ0 + μ + σ)Q(t)]dt,
(3)

The main composition of the present paper is as follows. The second section gives the
basic lemma and basic concepts of this paper. The existence and uniqueness of the global
positive solution of the system (3) are obtained in the third section, and the fourth section
gives the ergodic stationary distribution of the system (3). In order to better understand
the degree of control of the virus, we consider the extinction condition of the system (3) in
the fifth section. Meanwhile, in the sixth section, the probability density function of the
system (3) is given to understand the trend of the coronavirus viruses in the system (3).
In the last section, by numerical simulation, two examples give the extinction, long-term
persistence, and the probability density function with the corresponding conditions.

Table 2. The definitions of the parameters.

Parameter Definitions

S(t) The susceptible class
I(t) Infected people
Q(t) Quarantined people
N Total population
Λ Capita constant fecundity rate
β Infection rate
μ0 Infected natural mortality rate
μ1 Quarantined natural mortality rate
μ Disease-related mortality rate
γ1 The constant rate of quarantining infected
σ The quarantined rate from infected people
Bi(t), i = 1, 2, 3 Brownian motion
ηi, i = 1, 2, 3 The intensity of Bi(t)

2. Preliminaries

We give some basic conceptions as in [3,5,16,20]. Suppose (Ω, F , {Ft}t≥0,P) is a com-
plete probability space with a filtration {Ft}t≥0; we define R3

+ = {x ∈ R3 : xi > 0 for all

1 ≤ i ≤ 3} and R
3
+ = {x ∈ R3 : xi ≥ 0 for all 1 ≤ i ≤ 3}. In addition, if f (t) is an integral

function on t ∈ [0, ∞), we define f μ = sup{ f (t) | t ≥ 0}, f l = in f { f (t) | t ≥ 0}. In the
following, we give the Itô′s formula.

Lemma 1 ([3]). Let x(t) be an Itô′ process with the stochastic differential

dx(t) = f (t)dt + g(t)dBt, for t ≥ t0, (4)

where f ∈ L1(R+,R) and g ∈ L1(R+,R). Let V ∈ C2,1(R×R+,R). Then, V(x(t), t) is again
an Itô′ process with the stochastic differential given by

dV(x(t), t) = [Vt(x(t), t) + Vx(x(t), t) f (t) +
1
2

Vxx(x(t), t)g2(t)]dt + Vx(x(t), t)g(t)dBt a.s.

Firstly, we consider the general three-dimensional stochastic differential equation

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t), for t ≥ t0 (5)
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with initial value x(t0) = x0 ∈ R3, where B(t) denotes three-dimensional standard Brown-
ian motion defined on the above probability space (Ω, Γ, {Γt}t≥0,P). Define the differential
operator L by Mao [3] as

L =
∂

∂t
+ Σ fi(x, t)

∂

∂xi
+

1
2

Σ[gT(x, t)g(x, t)]ij
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(R3 × R̄+; R̄+), where R+={x ∈ R : x ≥ 0}, then

LV(x, t) = Vt(x, t) + Vx(x, t) +
1
2

trac[gT(x, t)Vxx(x, t)g(x, t)],

where Vt =
∂V
∂t , Vx = ( ∂V

∂x1
, · · · , ∂V

∂x3
) and Vxx = ( ∂2V

∂xi∂xj
)3×3.

By Lemma 1, we obtain

dV(x(t), t) = LV(x(t), t)dt + Vx(x(t), t)g(x(t), t)dB(t).

The diffusion matrix is defined as follows:

A(x) = (aij(x)), aij =
3

∑
r=1

gi
r(x)gj

r(x), 1 ≤ i, j ≤ 3.

3. Existence and Uniqueness of the Global Positive Solution

The problem where the solution is global and positive is important in studying the
dynamical behavior of the system (3). The coefficients of the system (3) are not the linear
growth, and the solutions of the system (3) may explode at a fixed time. The main theorem
is as follows.

Theorem 2. There is a unique positive solution (S(t), I(t), Q(t)) of system (3) on t ≥ 0 by the
initial value (S(0), I(0), Q(0)) ∈ R3

+, and the solution (S(t), I(t), Q(t)) ∈ R3
+ for all t ≥ 0

almost surely (a.s.).

Proof. Based on [5], we obtain the fact that there is a unique solution (x(t), y(t), z(t), w(t))
on [0, τ0) for the reason that the coefficients of the system (3) are the locally Lipschitz
continuous, where τ0 is an explosion time. We can obtain the fact that the local solution
is global when τ0 = ∞ a.s. By the definitions in [3], we define a fundamental C2-function
U : R3

+ → R̄+, which is

U(S, I, Q) = (S(t)− 1 − ln S(t)) + a(I(t)− 1 − β ln I(t)) + b(Q(t)− 1 − ln Q(t)), (6)

where a, b are positive constants, which will be determined in the following text. The
non-negativity of the function U can be seen from x − 1 − ln x ≥ 0 for any x > 0.

Applying Itô′s formula [3], we obtain

dU(S, I, Q) = LUdt + η(S(t)−1)I(t)
N2 dB(t)− η(I(t)−1)S(t)

N2 dB(t), (7)

where
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LU = (1 − 1
S )(Λ − βSI

N − μ0S)− η2

2 ( I
N )2 + (1 − 1

I )[(
βSI
N − (γ1 + μ1 + μ0)I + σQ] + η2

2 ( S
N )2

+(1 − 1
Q )[γ1 I − (μ0 + μ + σ)Q]

= Λ − βSI
N − μ0S − Λ

S + βI
N + μ0 − (μ0 + μ1 + γ1)I + βSI

N + σQ − βS
N + (μ0 + μ1 + γ1)− σQ

I + γ1 I

−(μ0 + μ + σ)Q − γ1 I
Q + (μ0 + μ + σ)− η2

2 ( I
N )2 + η2

2 ( S
N )2

≤ Λ − μ0S − Λ
S + β + μ0 − (μ0 + μ1 + γ1)I + σQ + (μ0 + μ1 + γ1)− (μ0 + μ + σ)Q

− σQ
I + γ1 I − γ1 I

Q + (μ0 + μ + σ) + η2

2

≤ Λ − μ0S − Λ
S + β + μ0 + (μ0 + μ1 + γ1)− σQ

I − γ1 I
Q + (μ0 + μ + σ) + η2

2

≤ Λ + β + 3μ0 + μ1 + γ1 + μ + σ − 2
√

μ0Λ − 2
√

σγ1 +
η2

2

= (
√

Λ −√
μ0)

2 + (
√

σ −√
γ1)

2 + β + 2μ0 + μ1 + μ + η2

2 ,

(8)

Then, we can obtain

LU ≤ (
√

Λ −√
μ0)

2 + (
√

σ −√
γ1)

2 + β + 2μ0 + μ1 + μ + η2

2 := K, (9)

where K is a positive constant. The remainder of the proof is similar to Theorem 3.1 in
Mao [5]. Hence, we omit it here.

4. Ergodic Stationary Distribution of the Stochastic Coronavirus Epidemic Model

In this section, the existence of ergodic stationary components of the system (3) is
given. Firstly, we define R∗

0 as a stochastic reproductive ratio of the system (3), such as

R∗
0 =

μ0βσγ1

(μ0 +
1
2 η2)(γ1 + μ1 + μ0 +

1
2 η2)2(μ0 + μ + σ)

,

which is equal to βσγ1
(γ1+μ1+μ0)2(μ0+μ+σ)

when η = 0 [3]. The following is a known result.

Lemma 3 ([3,5]). The Markov process X(t) has a stationary distribution μ(·) if there exists a
bounded domain U ⊂ El with regular boundary Γ and

(B.1) there is a positive number M such that ∑l
i,j=1 aij(x)ξiξ j ≥ M|ξ|2, x ∈ U, ξ ∈ Rl;

(B.2) there exists a nonnegative C2 function V such that LV is negative for any El\U. Then,

Px

{
lim

T→∞

1
T

∫ T

0
f (X(t))dt =

∫
El

f (x)μ(dx)
}
= 1,

for all x ∈ El, where f (·) is a function integrable with respect to the measure μ.

Theorem 4. When R∗
0 > 1, for the solution (S(t), I(t), Q(t)) of the system (3), there exists an

ergodic unique stationary distribution.

Proof. We construct a C2-function Ṽ : R3
+ → R as follows:

Ṽ = N(t)− c1 ln S(t)− c2 ln I(t)− c3 ln Q(t).

Applying Itô′s formula [3], we obtain

LṼ = (Λ − μ0N − μ1 I − μQ) + c1[−Λ
S + βI

N + μ0 +
1
2 (η IN)2] + c2[− βS

N + (γ1 + μ1 + μ0)− σ Q
I + 1

2 (
ηS
N )2]

+c3[−γ1
I
Q + (μ0 + μ + σ)]

= c1
βI
N + [−μ0N − c1

Λ
S − c2

βS
N − c2σ Q

I − c3γ1
I
Q ] + c1(μ0 +

1
2 η2) + c2(γ1 + μ1 + μ0 +

1
2 η2)

+c3(μ0 + μ + σ) + Λ − μ1 I − μQ
≤ c1

βI
N − 5(μ0c1c2

2c3βσΛγ1)
1
5 + c1(μ0 +

1
2 η2) + c2(γ1 + μ1 + μ0 +

1
2 η2) + c3(μ0 + μ + σ) + 2Λ

≤ c1
βI
N − 5Λ[(R∗

0)
1
5 − 1],

(10)
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and R∗
0 = μ0βσγ1

(μ0+
1
2 η2)(γ1+μ1+μ0+

1
2 η2)2(μ0+μ+σ)

. We choose c1 = Λ
μ0+

1
2 η2 , c2 = Λ

γ1+μ1+μ0+
1
2 η2 ,

c3 = Λ
μ0+μ+σ .

When R∗
0 > 1, we suppose

V = MṼ − ln S(t)− ln I(t)− ln Q(t) + N(t),

and V := V(S, I, Q)− V(S0, I0, Q0).

Applying Itô′s formula to V, we obtain

LV = MLṼ − L ln S(t)− L ln I(t)− L ln Q(t) + LN(t)
= −5ΛM[(R∗

0)
1
5 − 1] + c1M βI

N + (−Λ
S + βI

N + μ0 +
1
2 η2 + [− βS

N + (γ1 + μ1 + μ0)− σ Q
I − 1

2 η2]
+[−γ1

I
Q + (μ0 + μ + σ)] + Λ − μ0N − μ1 I − μQ

≤ −5ΛM[(R∗
0)

1
5 − 1] + (c1M + 1)β − Λ

S − σ Q
I − γ1

I
Q − βS

N + 3μ0 + γ1 + μ1 + μ + σ + Λ
−μ0N − μ1 I − μQ
≤ (c1M + 1)β + 3μ0 + γ1 + μ1 + μ + σ + Λ − Λ

S − σ Q
I − γ1

I
Q − μ0S − (μ1 + μ0)I − (μ + μ0)Q.

(11)

Define

f1(S) = (c1M + 1)β + 3μ0 + γ1 + μ1 + μ + σ + Λ − Λ
S
− μ0S,

f2(I) = −σ
Q
I
− (μ1 + μ0)I,

f3(Q) = −γ1
I
Q

− (μ + μ0)Q.

We can divide R3
+ \ Dε into the following six domains:

D1 = {(S, I, Q) ∈ R3
+ : 0 < S < ε}; D2 = {(S, I, Q) ∈ R3

+ : S >
1
ε
};

D3 = {(S, I, Q) ∈ R3
+ : 0 < I < ε}; D4 = {(S, I, Q) ∈ R3

+ : I >
1
ε
};

D5 = {(S, I, Q) ∈ R3
+ : Q < ε2, I > ε}; D6 = {(S, I, Q) ∈ R3

+ : Q >
1
ε
};

Clearly, Dε =
⋃6

j=1 Dj. In the following text, we will show that LV(S, I, Q) ≤ −1 on
R3
+ \ Dε.

Case 1. If (S, I, Q) ∈ D1
⋃

D2, one can choose

M < −μ0 +
1
2 η2

Λ
,

and
LV(S, I, Q) ≤ 3μ0 + γ1 + μ1 + μ + σ + Λ − Λ

S
− μ0S ≤ −2;

Case 2. If (S, I, Q) ∈ D3
⋃

D4,

LV(S, I, Q) ≤ (c1M + 1)β + 3μ0 + γ1 + μ1 + μ + σ + Λ + f2(I) ≤ −2;

Case 3. If (S, I, Q) ∈ D5
⋃

D6,

LV(S, I, Q) ≤ (c1M + 1)β + 3μ0 + γ1 + μ1 + μ + σ + Λ + f3(Q) ≤ −2;

therefore, for all (S, I, Q)) ∈ R3
+ \ Dε, LV(S, I, Q)) ≤ −1, which indicates that assumption

(B.2) holds.
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We can know that the system (3) is ergodic and has a unique stationary distribution.
This completes the proof.

5. Extinction of the Stochastic Coronavirus Epidemic Model

It is a very important topic to consider the dynamic behavior of the epidemic virus to
obtain the conditions for the virus to be eliminated in a long time. We mainly discuss the
extinction conditions of the system (3). According to the results in [10], we can obtain the
following lemma.

Lemma 5. For any initial value, the solution of stochastic model satisfies

lim
t→∞

ln x(t)
t

≤ 0, lim
t→∞

ln y(t)
t

≤ 0, lim
t→∞

ln z(t)
t

≤ 0, lim
t→∞

ln w(t)
t

≤ 0 a.s. (12)

lim
t→∞

x(t) + y(t) + z(t) + w(t)
t

= 0, a.s.. (13)

Moreover,

limt→0
1
t
∫ t

0 x(m)dB1(m) = 0 , limt→0
1
t
∫ t

0 y(m)dB2(m) = 0, limt→0
1
t
∫ t

0 z(m)dB3(m) = 0 a.s.. (14)

Theorem 6. Let (S(t), I(t), Q(t)) be the solution of system (3) with any initial value (S(0), I(0),
Q(0)) ∈ R3

+. If RS
0 < 1, then the solution (S(t), I(t), Q(t)) of system (3) satisfies

lim sup
t→∞

ln I(t)
t

≤ 1
μ0 + γ1 + μ1 + μ + σ

(RS
0 − 1) < 0 a.s.,

where RS
0 = β

2η2 (μ0 + γ1 + μ1 + μ + σ). Namely, the disease will be eradicated in the long term.

Proof. Applying Itô′s formula to ln I(t), we obtain

d ln I(t) = dI(t)
I(t) = ( βS

N − (γ1 + μ1 + μ0) + σ Q
I )dt − 1

2 (
ηS
N )2dt − ηS

N dB(t)

≤ [ βS
N − 1

2 (
ηS
N )2 − (γ1 + μ1 + μ0) + σ]dt − ηS

N dB(t)

≤ {− η2

2 [( S
N )2 − 2β

η2
S
N + ( β

η2 )
2 − ( β

η2 )
2]− (γ1 + μ1 + μ0) + σ}dt − ηS

N dB(t)

≤ [ β2

2η2 − (γ1 + μ1 + μ0 − σ)]dt − ηS
N dB(t).

(15)

Integrating the above formula from 0 to t on both sides, we obtain

ln I(t)− ln I(0) ≤
∫ t

0
[

β2

2η2 − (γ1 + μ1 + μ0 − σ)]ds −
∫ t

0

ηS
N

dB(t).

According to the strong law of large numbers [20], we have

lim
t→0

1
t

∫ t

0

ηS
N

dB(t) = 0 a.s..

and we can obtain

lim sup
t→∞

ln I(t)
t ≤

∫ t
0 [

β2

η4 − (γ1 + μ1 + μ0 − σ)]ds

≤ β2

η4 − (γ1 + μ1 + μ0 − σ)

= (γ1 + μ1 + μ0 − σ)( β2

η4(γ1+μ1+μ0−σ)
− 1)

< 0 a.s..

(16)

We choose RS
0 = β

2η2 (μ0 +γ1 +μ1 +μ+σ) < 1, which is equal to η > ( η2

μ0+γ1+μ1+μ+σ )
1
4 .
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Therefore, the above indicates that

lim
t→∞

I(t) = 0 a. s..

and we can obtain the fact that the viral will be eradicated, which completes the proof.

6. The Probability Density Function of the Stochastic Coronavirus Epidemic Model

Let N = S + I + Q; we can transfer system (3) into the following system:⎧⎪⎨⎪⎩
dS(t) = [Λ − βS(t)(N(t)−S(t)−Q(t))

N − μ0S(t)]dt − ηS(t)(N(t)−S(t)−Q(t))
N dB(t)

dQ(t) = (γ1N(t)− γ1S(t)− (γ1 + μ0 + μ + σ)Q(t))dt
dN(t) = [Λ − (μ1 + μ0)N(t) + μ1S − (μ1 − μ)Q(t)]dt.

(17)

Hence, we can consider the probability density function of system (17) in place of
system (3).

Theorem 7. We consider the condition that R∗
0 > 1, for any initial value (S(0), Q(0), N(0))

∈ R3
+; then, the solution (S(t), Q(t), N(t)) of system (3) with a weak kernel will have a normal

probability density function Φ(S(t), Q(t), N(t)) around (S∗, Q∗, N∗), which is given by

Φ(S(t), Q(t), N(t)) = (2π)−
3
2 | Σ |− 1

2 (S(t),Q(t),N(t))Σ−1(S(t),Q(t),N(t))T
,

where Σ is a positive definite matrix and satisfies

Σ =

⎛⎜⎝
a2

2(a1a2−a3)
0 − 1

2(a1a2−a3)

0 1
2(a1a2−a3)

0
− 1

2(a1a2−a3)
0 a1

2a3(a1a2−a3)

⎞⎟⎠,

where a1 = γ1 + 2μ0 + μ + σ + β(N∗−2S∗−Q∗)
N∗ , a2 = (μ0 − μ1)(γ1 + 2μ0 + μ + σ)+

β(N∗−2S∗−Q∗)
N∗ (2μ0 + μ+ σ)+ γ1β(N∗−S∗)

N∗ , a3 = βS∗(N∗−S∗−Q∗)
(N∗)2 +(γ1μ+(μ0 − μ1)(γ1 + μ0 +

μ + σ))(μ0 +
β(N∗−2S∗−Q∗)

N∗ ) + μ1(2γ1 + μ0 + μ + σ).

Proof. Firstly, we can obtain the linear system of system (17) at point (y1, y2, y3) =
(S∗, Q∗, N∗).⎧⎪⎨⎪⎩

dy1 = (b11y1(t) + b12y2(t) + b13y3(t))dt − ηS∗(N∗−S∗−Q∗)
N∗ dB(t)

dy2 = (b21y1(t) + b22y2(t) + b23y3(t))dt
dy3 = (b31y1(t) + b32y2(t) + b33y3(t))dt,

(18)

where

A =

⎛⎝ b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞⎠ =

⎛⎜⎝ −(μ0 +
β(N∗−2S∗−Q∗)

N∗ ) βS∗
N∗ − βS∗(S∗+Q∗)

(N∗)2

−γ1 −(γ1 + μ0 + μ + σ) γ1
μ1 μ − μ1 −(μ1 + μ0)

⎞⎟⎠,

B =

⎛⎜⎝ ηS∗(N∗−S∗−Q∗)
N∗ 0 0
0 0 0
0 0 0

⎞⎟⎠,

Let Y = (y1, y2, y3)
T , G = diag( ηS∗(N∗−S∗−Q∗)

N∗ , 0, 0); then,

dY = AYdt + GdB(t).
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By the Roozen [21], we can obtain the fact that the density function Φ(Y) = Φ(y1, y2, y3)
of system (18) nearby the origin point can approximate to the Fokker–Plank equation as follows:

− η2

2
∂2Φ(t)

∂y2
1

+ ∂
∂y1

[(b11y1(t) + b12y2(t) + b13y3(t))Φ(t)]

+ ∂
∂y2

[(b21y1(t) + b22y2(t) + b23y3(t))Φ(t)]
+ ∂

∂y3
[(b31y1(t) + b32y2(t) + b33y3(t))Φ(t)]

= 0.

(19)

By Gaussian distribution,

Φ(Y) = C exp {−1
2
(Y − Y∗)P(Y − Y∗)T}, (20)

where P is a real symmetric matrix that satisfies

PG2P + AT P + PA = 0. (21)

Let P−1 = Σ; then, we have

G2 + AΣ + ΣAT = 0. (22)

We know there exists a matrix

M̃ =

⎛⎝ 1 0 0
0 1 0
0 μ1

γ1
1

⎞⎠,

satisfying

M̃AM̃−1 =

⎛⎝ −a11 a12 a13
a21 −a22 a23
a31 a32 −a33

⎞⎠ =

⎛⎜⎝ −(μ0 +
β(N∗−2S∗−Q∗)

N∗ ) βS∗
N∗ − βS∗(S∗+Q∗)

(N∗)2

−γ1 −(γ1 + μ0 + μ + σ) γ1

0 −μ1(2γ1+μ0+μ+σ)+γ1μ
γ1

−μ0

⎞⎟⎠.

Hence, we have the characteristic polynomials of A as

ϕA(λ) = λ3 + a1λ2 + a2λ + a3.

Denote

dY = d

⎛⎝ y1
y2
y3

⎞⎠ =

⎛⎝ −a1 −a2 −a3
1 0 0
0 1 0

⎞⎠⎛⎝ y1
y2
y3

⎞⎠dt,

where a1 = a11 + a22 + a33 = γ1 + 2μ0 + μ + σ + β(N∗−2S∗−Q∗)
N∗ > 0, a2 = a11a22 + a11a33 +

a22a33 + a23a32 + a12a21 = (μ0 − μ1)(γ1 + 2μ0 + μ + σ) + β(N∗−2S∗−Q∗)
N∗ (2μ0 + μ + σ) +

γ1β(N∗−S∗)
N∗ > 0, a3 = a11a22a33 + a11a23a32 + a12a21a33 + a13a21a32 = βS∗(N∗−S∗−Q∗)

(N∗)2 +

(γ1μ + (μ0 − μ1)(γ1 + μ0 + μ + σ))(μ0 +
β(N∗−2S∗−Q∗)

N∗ ) + μ1(2γ1 + μ0 + μ + σ) > 0. We
can easily obtain a1a2 − a3 > 0. Therefore, by some transformation, the standard R1 matrix
of A is unique. By the same method of the Lemma 3 in [22], we can obtain a positive matrix.

Σ =

⎛⎜⎝
a2

2(a1a2−a3)
0 − 1

2(a1a2−a3)

0 1
2(a1a2−a3)

0
− 1

2(a1a2−a3)
0 a1

2a3(a1a2−a3)

⎞⎟⎠.

Hence, Σ is a positive definite, and we complete the proof.
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7. Examples and Numerical Simulations

In this section, we give the numerical simulation of system (3) by using the discrete
equation with the same method as [10]. The equations are as follows:⎧⎪⎪⎨⎪⎪⎩

S(k + 1) = S(k) + [Λ − βS(t)I(t)
N(t) − μ0S(t)]�t − η

S(t)I(t)
N(t)

√�tξk − η2

2
S(t)I(t)

N(t) �t(ξ2
k − 1),

I(k + 1) = I(k) + [( βS(t)I(t)
N − (γ1 + μ1 + μ0)I(t) + σQ(t)]�t + η

S(t)I(t)
N(t)

√�tξk +
η2

2
S(t)I(t)

N(t) �t(ξ2
k − 1),

Q(k + 1) = Q(k) + [γ1 I(t)− (μ0 + μ + σ)Q(t)]�t,

(23)

where the time increment �t > 0, and ξk is a the Gaussian random variable (k =
0, 1, 2, · · · n).

Example 1. Here, in system (3), we use the environmental noise parameter as η = 0.1. In addition,
following the biological feasibility result, the values of the parameters are as shown in Table 3.

Table 3. Parameters value.

Notation Value References

Λ 0.028 [18]
β 0.2 Estimated

μ0 0.011 [18]
μ1 0.2 Estimated
γ 0.06 [18]
σ 0.3 Estimated
μ 0.5 [18]

In addition, we can choose the following real data S(0) = 355,250, I(0) = 1453, Q(0) = 51,343,
in Pakistan on 7 October 2021 [19]. Then, R∗

0 = 3.208 > 1, where R∗
0 is defined in Section 4. By

the results of Theorem 4, we can find that system (3) will persist for a long time by a distribution
μ(·). The numerical simulations (Figure 1) confirm this.

Figure 1. The red lines describe the solution of system (3) and the green lines stand for the solution
of the corresponding system (2). The right pictures are the histogram of the density function for S, I,
and Q populations.

180



Fractal Fract. 2022, 6, 245

Example 2. Here, in system (3), we use the environmental noise parameter η = 0.1. In addition,
following the biological feasibility result, the values of the parameters are as shown in Table 4.

Table 4. Parameters value.

Notation Value References

Λ 0.5 [15]
β 0.6 Estimated

μ0 0.2 [15]
μ1 0.2 Estimated
γ 0.3 [15]
σ 0.1 Estimated
μ 0.2 [15]

In addition, we can choose the following real data S(0) = 355,250, I(0) = 1453, Q(0) = 51,343,
in Pakistan on 7 October 2021 [19]. Then, R∗

0 = 0.0769 < 1, where R∗
0 is defined in Section 4.

We can find that system (3) will be extinct in a long time. The numerical simulations (Figure 2)
confirm this.

Figure 2. The red lines discribe the solution of system (3) and the green lines stand for the solution of
the corresponding system (2). The right pictures are the histogram of the density function for S, I,
and Q populations.

In fact, using the statistical data of Pakistan for September to December 2021, it can be
seen from the figure (Figures 3–5) that the control of the isolation number will affect the
disturbance of the infection rate and control the increase in the infection number. At the
same time, when the infection rate is disturbed by other factors, such as vaccine injection,
the number of deaths decreases with the decrease in the number of infections. This is
basically consistent with the research results of system (3) in this paper.
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Figure 3. The number of the daily statistics of quarantined people in Pakistan from September to
December 2021.

Figure 4. The red curve represents the daily statistics number of infections in Pakistan from September
to December 2021.

Figure 5. The blue curve represents the daily statistics death toll in Pakistan from September to
December 2021.

182



Fractal Fract. 2022, 6, 245

8. Discussion

So far, the COVID-19 coronavirus disease is still one of the most serious diseases in the
world. Until today, there is no appropriate treatment. At the same time, due to the strong
transmission of the virus, with the existence of many uncertain factors (human activities,
animal activities, express delivery, etc.), it also contains a lot of randomness. With the
help of stochastic theory, we developed a model for the new 2019 coronavirus disease, and
considered studying the transmission characteristics of the disease and understanding its
transmission dynamics in the change in population and environment. The important role
of isolation measures in controlling transmission is introduced. By disturbing the infection
coefficient, the existence and positivity of Lyapunov function theory are studied. In this
paper, in order to further discuss the extinction and stable distribution, we gave a new
random infectious disease system under infection rate environmental noise. We give the
existence and uniqueness of the solution of the system and discuss the ergodic stationary
distribution and the extinction conditions of the system. The probability density function
of the stochastic system is studied. Some digital simulations are used to demonstrate
the probability density function and the extinction of system (3). Through numerical
simulation, we analyzed the above results and drew a conclusion with the support of
graphics. This work shows that random analysis is a better method used to study the
dynamics of infectious diseases, especially the new 2019 coronavirus disease.

We know that the control of infectious diseases needs to consider a variety of random
disturbance factors, and we will consider system (3) in more general random phenomena
and their persistence and extinction properties in our future research.
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