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Machine Learning-Based Estimation of the Compressive
Strength of Self-Compacting Concrete: A Multi-Dataset Study

Nhat-Duc Hoang 1,2

1 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;
hoangnhatduc@duytan.edu.vn; Tel.: +84-2036-382-7111 (ext. 809)

2 Faculty of Civil Engineering, Duy Tan University, Da Nang 550000, Vietnam

Abstract: This paper aims at performing a comparative study to investigate the predictive capability
of machine learning (ML) models used for estimating the compressive strength of self-compacting
concrete (SCC). Seven prominent ML models, including deep neural network regression (DNNR),
extreme gradient boosting machine (XGBoost), gradient boosting machine (GBM), adaptive boosting
machine (AdaBoost), support vector regression (SVR), Levenberg–Marquardt artificial neural network
(LM-ANN), and genetic programming (GP), are employed. Four experimental datasets, compiled in
previous studies, are used to construct the ML-based methods. The models’ generalization capabilities
are reliably evaluated by 20 independent runs. Experimental results point out the superiority of the
DNNR, which has excelled other models in three out of four datasets. The XGBoost is the second-best
model, which has gained the first rank in one dataset. The outcomes point out the great potential
of the utilized ML approaches in modeling the compressive strength of SCC. In more details, the
coefficient of determination (R2) surpasses 0.8 and the mean absolute percentage error (MAPE) is
always below 15% for all datasets. The best results of R2 and MAPE are 0.93 and 7.2%, respectively.

Keywords: self-compacting concrete; compressive strength; deep neural network; gradient boosting
machine; machine learning

MSC: 65K05; 90C15

1. Introduction

SCC is typically characterized by its enhanced workability and good resistance to
segregation. This type of concrete is able to settle by its own weight without the requirement
of internal or external vibration during the placing phase [1–3]. Therefore, SCC is highly
applicable in areas featuring congested reinforcements (e.g., high-rise shear walls) and at
other narrow cross-sections [4]). Due to its excellent workability, SCC is often employed in
elements that are unconventionally shaped or hardly reachable [5].

The compressive strength (CS) of SCC is a crucial mechanical parameter for both
design and application purposes on construction sites as well as in ready-mixed concrete
plants [6]. Other properties of SCC such as modulus of elasticity and tensile strength can be
inferred from the CS [7]. The CS of a SCC mix is usually obtained via time-consuming and
costly experiments [8]. Due to its importance, various research works have been conducted
to measure the CS of SCC mixes corresponding to different proportions of their constituents.
Therefore, it is highly beneficial to analyze the existing experimental records and construct
intelligent models that can estimate the CS of SCC mixes. These data-driven models can be
effective decision-support tools to assist in the design of SCC mixes. It is because designing
a proper mixture of SCC is still a challenging task in civil engineering [9,10].

In recent years, the research community has observed a burgeoning trend of applying
machine learning (ML) in modeling the CS of various types of concrete [11–13], including
SCC. ML has demonstrated unquestionable advantages in terms of prediction accuracy
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and flexibility over conventional empirical models for concrete mechanical strength. Nev-
ertheless, deriving accurate models for estimating the CS of SCC is by no means an easy
task. The reason is that the mapping function between the CS and the concrete constituent
is typically nonlinear and multivariate.

Moreover, various supplementary materials, cement replacement components, and
environmentally friendly mineral additives (e.g., fly ash, silica fume, ground granulated
blast furnace slag, rice husk ash, etc.) are often added to the mix [9,14,15]. This fact
significantly complicates the function approximation process. For instance, Sukumar
et al. [16] shows a significant effect of fly ash content to the development of strength at
early ages of curing. Dinakar et al. [3] demonstrates that variations in cement, mineral
additives, and aggregate type can bring about large changes in the properties of SCC.

Accordingly, various advanced ML methods have been proposed and applied to
model the CS of SCC. Neural networks were used in [6] to predict the 28-day CS of normal
and high-strength SCC mixes containing fly ash. Uysal and Tanyildizi [17] put forward an
artificial neural network (ANN) model for estimating the CS of mixes that contain mineral
additives and polypropylene (PP) fiber exposed to elevated temperature. In addition,
Portland cement (PC) was substituted by mineral additives such as fly ash, granulated blast
furnace slag, limestone powder, basalt powder, and marble powder in different proportions.
The ANN model is then trained by a dataset consisting of 85 data samples.

Vakhshouri and Nejadi [18] relied on an adaptive neuro fuzzy inference model (ANFIS)
to perform the task of interest. Although ANFIS is a capable tool for nonlinear regression
analysis, its learning phase requires a significant effort in model configuration, which
involves the setting of fuzzy membership functions. In addition, this study only employed
a limited dataset, including only 55 data samples. To establish reliable and robust ML
models, larger datasets should be used. Asteris and Kolovos [4] also employed ANN in
estimating the 28-day CS of SCC; the authors relied on a fairly large dataset, consisting of
205 records and 11 predictor variables.

ML based on ANN and genetic programming (GP) was used in [19] to predict the
strength properties of geopolymer blended SCC. The results show that both ANN and GP
are capable of delivering good predictions with respect to the experimental data. Farooq
et al. [20] investigated the performance of ANN, support vector regression (SVR), and
gene expression programming (GEP) in modeling a dataset consisting of 300 samples. The
cement, water–binder ratio, coarse aggregate, fine aggregate, fly ash, and superplasticizer
are considered the influencing factors of the CS. The authors demonstrated that the GEP
could obtain an accurate prediction outcome, but they also pointed out that this method
might not deliver satisfactory results if it is trapped in a local optimal solution.

Levenberg-Marquardt ANN (LM-ANN) models were used in [8,21]. These models rely
on the Levenberg-Marquardt (LM) algorithm, which is derived from Newton’s method and
highly suitable for minimizing functions that are sums of squares of nonlinear functions.
This study reported a good correlation between the observed and predicted CS of SCC.
However, the LM algorithm requires the calculation and storage of the Jacobian matrix [22],
which might be computationally expensive for large-scale datasets and deep ANN.

As can be seen from the literature, the existing works have extensively relied on
conventional ANN, GP, and SVR for estimating the SC of SCC. Apparently, there is a lack
of comprehensive comparative study that analyzes the capability of state-of-the-art ML
models that are feasible for the task of interest. Notably, the gradient boosting machine
(GBM) and the extreme gradient boosting machine (XGBoost) have shown remarkable
prediction performances in predicting the SC of high-performance concrete [23]. Deep
learning is also a burgeoning research direction with high potential in modeling complex
engineering processes [24]. However, gradient boosting machines and deep learning have
not yet been used for estimating the CS of SCC.

To fill this gap in the literature, this paper conducts a comparative study that considers
prominent ML-based regression analysis methods, including the GBM, XGBoost, and deep
neural network regression (DNNR). In addition, an adaptive boosting machine (AdaBoost),
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SVR, LM-ANN, and GP are also taken into account due to their good performances in pre-
vious studies [8,25,26]. The predictive capability of the employed ML models is evaluated
reliably via four datasets and 20 independent runs.

Conceptually, the GBM, AdaBoost, and XGBoost rely on the idea of gradient boost-
ing [27] which views a model’s training process as an optimization of a cost function.
Gradient boosting machines sequentially select a weak learner (e.g., a regression tree) that
helps to drive the optimization process to the negative gradient direction. The AdaBoost
improves the data fitting process by assigning weights to data points adaptively during
the training phase. By doing so, this ML method is able to focus on the training samples
that are not well fitted. The XGBoost model further improves the conventional boosting
machine with the concept of Similarity Score and Gain index; these two metrics are used to
determine the best node splits during the training phase of regression trees [28].

In addition, the SVR employs the concept of the margin of tolerance and kernel
mapping to construct a robust model. The margin of tolerance is used to alleviate the effect
of noisy data points. The kernel mapping function helps the SVR effectively cope with
nonlinear functions. The LM-ANN relies on the LM algorithm to train the regression model;
the LM algorithm can be viewed as a variant of the Newton algorithm for optimizing a
nonlinear function. The GP is a technique for evolving a set of mathematical equations
used for modeling a response variable; this algorithm employs operations that are similar
to natural genetic processes. Meanwhile, the DNNR relies on the hierarchical organization
of various hidden layers to model complex patterns. Each layer in a DNNR model serves
as a feature engineering operator that sequentially constructs high-level representations
of the input dataset [29]. This characteristic helps this deep learning method effectively
capture and simulate complex functional mappings.

The novelty of the current work can be summarized as follows:
(1) The performance of prominent ML methods in a comparative manner to predict

the CS of SCC is investigated. It is apparent that existing works lack a comprehensive
comparison of the prominent ML models’ performance applied to the problem of interest.
Chou et al. [30] covered a wide range of ML approaches such as SVR and ANN; however,
deep learning solutions and novel gradient boosting machines were unexplored. The ANN
models have been utilized in [4]; however, this work did not take into account the potential
of state-of-the-art gradient boosting machines. Nguyen et al. [23] has recently covered
a wide variety of models and proven the superiority of the XGBoost; nevertheless, the
performance of the DNNR were not included.

(2) The current work utilizes multiple datasets, instead of a single dataset, to train and
test the ML models. Since each dataset has distinctive characteristics due to the materials
used and the mixed design, employing multiple datasets provides a comprehensive view
of the predictive capability of the ML approaches.

The rest of the paper is organized as follows: The next section reviews the employed
ML models. Descriptions of the datasets are provided in the third section. Experimental
results are reported in the next section, followed by the final section that summarizes the
research findings.

2. The Machine Learning Methods for Estimating the CS of SCC

2.1. Deep Neural Network Regression (DNNR)

Deep learning (DL) is a powerful approach for pattern recognition and modeling com-
plex mapping functions [29]. The advantage of DL stems from its hierarchical organization
of hidden layers of individual processing units, called neurons. These stacked layers of
neurons allow a DL-based model to capture, simulate, and represent complex patterns
hidden in the data. A typical structure of a DNNR model, employed for estimating the CS
of SCC, includes an input layer, a set of hidden layers, and an output layer. The first layer
receives input signals in the form of the SCC constituent and curing age. The hidden layers
contain individual information processing units organized into different layers.

3



Mathematics 2022, 10, 3771

Each hidden layer serves as a feature engineering operator that gradually distills
increasingly high-level representations of the original dataset [29]. The stacked hidden
layers equip a DNNR with the capability of learning multivariate and complex functional
mapping between the CS and its influencing factors [31]. Notably, to cope with complex
mapping relationships, nonlinear activation functions (fA) are often employed in the neu-
rons of the hidden layers. The commonly utilized fA includes logistic sigmoid (Sigmoid),
hyperbolic tangent sigmoid (Tanh), and rectified linear unit activation (ReLU). In addition,
the output layer uses the linear function to derive the estimated value of the CS. The
training phase of a DNNR involves the adaptation of the weight matrices, which represent
the entire model structure [32]. This study employs the state-of-the-art adaptive moment
estimation (Adam) to train the DNNR.

2.2. Extreme Gradient Boosting Machine (XGBoost)

The XGBoost, proposed in [28], is enhanced according to the original gradient boosting
algorithm [33]. This ML approach can also be viewed as an ensemble of boosting decision
trees. Notably, the model construction phase of the XGBoost can be executed very fast
because it can be performed in parallel [34]. Similar to the GBM, the XGBoost for regression
analysis also utilizes the mean squared error loss function. During the training phase,
individual regression trees are fitted using the residuals of their predecessors.

To construct regression trees, an XGBoost model relies on the Similarity Score and
Gain index to determine the best node splits [28]. The Similarity Score is a function of the
model residuals. The Gain of a node is computed from the Similarity Score of the right leaf,
left leaf, and root. Accordingly, the note split having the highest Gain index is selected to
build the regression tree [35]. The progress of the construction phase is governed by the
learning rate parameter. The complexity of each regression tree can be controlled by the
tree depth parameter. In addition, a regularization parameter (λ), which is included in the
calculation of the Similarity Score, can be used to alleviate the over-fitting issue during the
model training phase.

2.3. Gradient Boosting Machine (GBM)

The GBM is a ML that sequentially combines a set of weak learners (e.g., regression
trees) to establish a robust model [27]. The GBM can be considered as a numerical opti-
mization method, used to formulate an additive model that minimizes a loss function. For
the task of nonlinear function approximation, the mean squared error is commonly used as
the loss function. During the training phase, the GBM sequentially adds a new decision
tree to the current ensemble to minimize the mean squared error loss. By fitting decision
trees to the residuals, the overall model is able to focus on the samples of the dataset which
have not been well fitted.

2.4. Adaptive Gradient Boosting Machine (AdaBoost)

The AdaBoost [36] also relies on the principle of boosting algorithms to rectify the
residual committed by a ML model, e.g., a decision tree. This method first builds a
model on the training dataset. Initially, AdaBoost assigns equal weights to all of the data
instances. Subsequent models are then built to rectify the existing error committed by their
predecessors. This process is repeated until the error is lower than a specified threshold. It
is noted that during the model fitting process, the AdaBoost gradually adjusts the weights
of data points. In more detail, it increases the weights assigned to data points associated
with high residuals. This ML method is adaptive in the sense that subsequent weak learners
(e.g., regression trees) are trained with the inclination of fitting the data samples associated
with high residuals. Hence, although an individual regression tree may not fit the entire
dataset well, the aggregated model can converge to an accurate predictor [37].
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2.5. Support Vector Regression (SVR)

The SVR [38,39] relies on a margin of tolerance (ε) and the concept of kernel functions
for constructing a nonlinear and multivariate mapping relation. The goal of the SVR is to
construct f (x) that has at most ε deviation from the desired variable. To deal with nonlinear
mapping functions, the SVR utilizes kernel functions that map the input data from the
original space to a high-dimensional space where a linear hyper-plane can be used to fit the
collected data. For nonlinear regression problems, the radial basis function (RBF) is often
employed as the kernel function [23]. The training phase of a SVR model is formulated as a
quadratic programming problem. Therefore, the SVR is suitable for modeling small- and
medium-sized datasets because it demands substantial computational cost for dealing with
large-scale datasets. In addition, the implementation of the SVR requires a proper setting
of the RBF and the regularization parameters. These parameters can be determined via a
grid search [40].

2.6. Levenberg–Marquardt Artificial Neural Network (LM-ANN)

An ANN model typically consists of an input layer, a hidden layer, and an output layer.
This ML is designed as an attempt to mimic the information processing and knowledge
generalization in the human brain [41]. Each neuron employs a nonlinear activation
function (e.g., Sigmoid) to process the signals received from the input layer. An ANN
model can be completely characterized by the weight matrix of the hidden layer (W1), the
weight matrix of the output layer (W2), the bias vector of the hidden layer (b1), and the bias
vector of the output layer (b2). The number of the neurons in the hidden layer strongly
influences the learning capability of the LM-ANN and this parameter should be tuned to
attain a robust prediction model [42].

Accordingly, an ANN model used for nonlinear function estimation can be generally
stated as:

f (x) = b2 + W2 × σ(b1 + W1 × x) (1)

where x denotes the matrix of input variables; σ represents the activation function.
The weight matrices and the biases of an ANN model can be adapted by the Levenberg–

Marquardt (LM) algorithm [43]. Thus, the ANN model trained by the LM algorithm can be
denoted as the LM-ANN. The LM algorithm can be viewed as a modification of the Newton
algorithm for optimizing a nonlinear function, e.g., the Mean Square Error function. The
LM–ANN is an effective method for modeling moderate-sized datasets as demonstrated
in [4].

2.7. Genetic Programming (GP)

The GP [44] is a ML technique used for evolving programs. These programs can be
used as functions to model complex and multivariate processes, such as the CS of SCC. The
GP commences with a population of random programs consisting of a predefined set of
mathematical operations (e.g., addition, subtraction, multiplication, etc.). The algorithm
then evolves this population with operations that are analogous to the natural genetic
processes. The employed operations are selection, crossover, and mutation, which imitate
the concepts in the Genetic Algorithm [45]. The first operator aims at preserving the
most desired programs and casting out inferior ones. The second operation involves
swapping random genes of the selected parents to generate a new offspring that possesses
the advantageous features of the parents. The third operation introduces some random
changes in a program so that an offspring can have features that don’t exist in the parents.

The GP can be used to construct mathematical equations automatically from the
data (Searson 2015). However, since this ML method involves a stochastic search for
the best program, it generally demands a considerable computational cost for evaluating
the fitness of the programs and performing genetic operations (e.g., selection, crossover,
and mutation). One significant advantage of the GP is that the constructed model can
be explicitly presented as a mathematical equation used for predicting the CS from the
mix’s constituents. However, for decently describing complex mapping relationships,

5



Mathematics 2022, 10, 3771

the resulting mathematical equations can be quite complicated [46]. This fact hinders
the process of interpreting these GP-based mathematical equations by civil engineers.
Moreover, the quality of a GP-based model in terms of prediction accuracy does not always
outperform that of the prominent nonlinear regression methods such as the ANN [47].

3. The Collected Datasets

In this study, four datasets, compiled by the previous studies, are used to evaluate
the employed ML approaches. It is noted that the dataset investigates different sets of
predictor variables that influence the CS of SCC. Therefore, each dataset has distinctive
features because of the materials employed and mix design. This paper relies on the
four datasets to provide a comprehensive assessment of the modeling capabilities of the
prominent ML approaches. General information about the collected datasets is provided in
Table 1. The statistical descriptions of the variables in the datasets are reported in Tables 2–5.
The minimum number of testing records in the datasets is 205. The number of predictor
variables used as the CS’s influencing factors ranges from 6 to 11. The 28-day CS of SCC
specimens is used as a modeled variable in the first two datasets. Meanwhile, the concrete
age, measured in days, is used as an influencing factor in Dataset 3 and 4. The desired
characteristics of SCC are obtained via the use of supplementary cementitious materials
such as fly ash, silica fume, and chemical additives (e.g., superplasticizers) [48].

Dataset 1 [4] contains 205 mixes of SCC. The predictor variables in this dataset are the
cement, the coarse aggregate, the fine aggregate, the water, the limestone powder, the fly
ash, the ground granulated blast furnace slag, the silica fume, the rice husk ash, superplas-
ticizers, and the viscosity modifying admixtures. The mixes include the use of limestone
powder and rice husk ash as supplementary cementing materials (SCMs). Blending SCMs
with Portland cement has been shown to bring about significant environmental benefits
(e.g., reducing CO2 emission) and enhancement of the physical properties of the concrete
mixes [49].

Table 1. The collected datasets of SCC.

Dataset
Number of

Predictor Variables
Number

of Data Points
General Description Reference

1 11 205 28-days CS of SCC specimens [4]

2 6 300 28-days CS of SCC specimens containing fly ash [20]

3 7 327 Predicting the CS of SCC containing Class F fly
ash at different curing ages [8]

4 7 366 Predicting the CS of SCC containing with silica
fume at different curing ages [21]

Table 2. The variables used in the Dataset 1.

Variables Notation Unit Min Mean Std. Max

Cement X1 kg/m3 110.00 349.22 93.43 600.00
Limestone powder X2 kg/m3 0.00 25.67 60.78 272.00
Fly ash X3 kg/m3 0.00 106.36 94.01 440.00
Ground granulated blast furnace slag X4 kg/m3 0.00 17.39 52.01 330.00
Silica fume X5 kg/m3 0.00 14.91 33.45 250.00
Rice husk ash X6 kg/m3 0.00 6.55 24.29 200.00
Coarse aggregate X7 kg/m3 500.00 772.35 175.36 1600.00
Fine aggregate X8 kg/m3 336.00 827.93 144.33 1135.00
Water X9 kg/m3 94.50 179.27 27.65 250.00
Superplasticizer X10 kg/m3 0.00 5.96 4.35 22.50
Viscosity-modifying admixtures X11 kg/m3 0.00 0.14 0.31 1.23
Compressive strength Y MPa 10.20 58.08 21.61 122.00
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Table 3. The variables used in the Dataset 2.

Variables Notations Unit Min Mean Std. Max

Cement X1 kg/m3 83.00 292.79 93.73 540.00
Fly ash X2 kg/m3 0.00 115.34 87.26 525.00
Water-powder ratio X3 - 0.22 0.48 0.13 0.90
Sand X4 kg/m3 478.00 805.74 98.47 1180.00
Coarse aggregate X5 kg/m3 578.00 912.48 119.43 1125.00
Superplasticizer X6 % 0.00 0.17 0.26 1.36
Compressive strength Y MPa 8.54 36.60 15.80 79.19

Table 4. The variables used in the Dataset 3.

Variables Notations Unit Min Mean Std. Max

Cement X1 kg/m3 61.00 293.08 89.78 503.00
Water X2 kg/m3 132.00 197.00 37.62 390.39
Class F fly ash X3 kg/m3 20.00 170.23 69.68 373.00
Coarse aggregate X4 kg/m3 590.00 828.34 137.30 1190.00
Fine aggregate X5 kg/m3 434.00 807.47 135.80 1109.00
Superplasticizer X6 % 0.00 0.98 1.11 4.60
Age of concrete X7 Days 1.00 44.31 63.76 365.00
Compressive strength Y MPa 4.44 36.45 19.07 90.60

Table 5. The variables used in the Dataset 4.

Variables Notations Unit Min Mean Std. Max

Water to binder ratio X1 kg/m3 0.22 0.38 0.04 0.51
Binder X2 kg/m3 359.00 493.09 53.00 600.00
Silica fume X3 kg/m3 0.00 45.68 36.84 250.00
Fine aggregate X4 kg/m3 680.00 902.90 101.22 1166.00
Coarse aggregate X5 kg/m3 595.00 817.03 112.70 1000.00
Superplasticizer X6 kg/m3 1.30 7.21 2.53 15.00
Age of specimen X7 Days 1.00 32.37 42.92 270.00
Compressive strength Y MPa 21.10 54.01 18.79 106.60

Dataset 2 [20] consists of 300 samples and 6 influencing factors: cement, water–binder
ratio, coarse aggregate, fine aggregate, fly ash, and superplasticizer. Dataset 3 [8] focuses
on the inclusion of class F fly ash as a partial cement replacement in concrete mixes. The
use of class F fly ash is able to provide various desired features, including enhancements
of the mechanical properties [50,51] and reductions in the construction costs [8]. This
dataset contains 327 samples and 7 predictor variables (the cement, water, class F fly ash,
coarse aggregate, fine aggregate, superplasticizer, and concrete age). Dataset 4 [21] aims
at investigating the CS of SCC containing silica fume at different curing ages. It considers
366 samples and 7 predictor variables: the water to binder ratio, the binder, the silica
fume, the fine aggregate, the coarse aggregate, the superplasticizer, and the age of concrete
specimen. It is noted that fly ash is used in the first three datasets. Meanwhile, the silica
fume is only used as a predictor variable in the Dataset 1 and Dataset 4.

The first dataset has the highest number of predictor variables, but it contains the
smallest number of data points. The scatter plots showing the correlation between the
predictor variable and the CS as the modeled variable of the 4 datasets are demonstrated in
Figures 1–4. Generally, these figures show weak linear correlations between the predictor
variables and the CS of CSS and point out the need for advanced nonlinear analysis methods
to predict the CS effectively.
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Figure 1. Scatter plots of variables in Dataset 1.

Figure 2. Scatter plots of variables in Dataset 2.
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Figure 3. Scatter plots of variables in Dataset 3.

Figure 4. Scatter plots of variables in Dataset 4.

4. Experimental Results and Discussion

The aforementioned four datasets containing the CS of SCC specimens and their
corresponding constituents are used to train and verify the ML approaches. Each dataset
is randomly separated into two subsets: a training (85%) set and a testing (15%) set.
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The former is used for model construction. The latter is reserved for evaluating the
generalization capability of the trained ML models. To mitigate the effect of randomness
due to the data sampling process, in this study, we conducted 20 independent experiments.
The model performance is evaluated via the statistical indices, i.e., the mean and the
standard deviation (std.), obtained from these independent experiments. It is noted that the
experiments were performed on the Dell G15 (Core i7-11800H and 16 GB Ram). In addition,
to standardize the range of the predictor variables (e.g., the concrete constituents and curing
age) and target variable (i.e., the CS of SCC), this study relies on the Z-score normalization.
This method transforms the original range of a variable into a standardized variable with
a mean of 0 and a standard deviation of 1. The equation of the Z-score normalization is
given by:

XZ =
XO − μX

σX
(2)

where XZ and XO are the standardized and the original variables, respectively. μX and σX
denote the mean and standard deviation of the variable, respectively.

Furthermore, the root mean square error (RMSE), mean absolute percentage error
(MAPE), and coefficient of determination (R2) are the commonly employed metrics for
evaluating the performance of a ML model. These metrics are computed as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ti)
2 (3)

MAPE =
100
N

×
N

∑
i=1

|yi − ti|
yi

(4)

R2 = 1 −

N
∑

i=1
(ti − yi)

2

N
∑

i=1
(ti − t)2

(5)

where ti and yi denote the actual and predicted CS of the SCC, respectively. N is the number
of specimens. t denotes the mean of the observed CS values.

Notably, the RMSE indicates the deviations between the actual and predicted CS
of SCC. This index is computed as the square root of the second sample moment of the
residuals (or deviations) between the observed and predicted CS values. The RMSE
aggregates the magnitudes of the deviations in predictions for all of the specimens into a
unified measurement that demonstrates the predictive power of a ML model. Basically, the
smaller the RMSE is, the better the prediction outcome is. The MAPE demonstrates the
relative error of the prediction and is often expressed in terms of a percentage. Meanwhile,
the R2 denotes the proportion of the variation in target output that can be predicted by a
model [52]. A perfect regression model is indicated by a R2 = 1. The higher the index is,
the better the prediction result is. The RMSE is a scale-dependent index; it is only valid for
comparing different models in modeling the same dataset. On the contrary, the MAPE and
R2 are scale-independent; therefore, they can be used to assess the performance of a ML
model in predicting the CS of different datasets.

This study employs 7 ML models: the DNNR, XGBoost, GBM, AdaBoost, SVR, LM-
ANN, and GP. The DNNR model is coded in MATLAB by the author. The XGBoost is built
with the assistance of the Python library provided in [53]. The GBM and SVR models are
constructed with the help of built-in functions provided in the Scikit-Learn library [54]. The
LM-ANN is implemented with the MATLAB’s Statistics and Machine Learning Toolbox [55].
The library developed by [56] is used to construct the GP model.

The DNNR requires a proper setting of the number of hidden layers, the number of
neurons, the learning rate, the activation function type, and the regularization coefficient.
The regularization coefficient is used to penalize large values of the network’s weight;
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therefore, the issue of over-fitting can be alleviated [32]. In this study, the number of hidden
layers ranging from 2 to 5 is investigated. The number of neurons in each hidden layer
varies in the range of [0.5D, 2D] where D is the number of the CS’s influencing factors. The
Sigmoid, Tanh, and ReLU activation functions are used. Various learning rates ranging
from 0.001 to 0.1 are employed. The regularization parameters are selected from a set of
{0.00001, 0.0001, 0.001, 0.01}.

The essential hyper-parameters of the XGBoost model are the learning rate, the max-
imum tree depth, and the regularization coefficient. The learning rate, the number of
estimators, and the maximum tree depth are the hyper-parameters that govern the learning
phase of a GBM model and an AdaBoost model. The SVR requires the specification of the
penalty coefficient, the kernel function’s parameter, and the margin of tolerance (ε). In
this study, the LM-ANN is adapted during 300 epochs; its hyper-parameters include the
number of neurons and the learning rate. The GP has a population size of 100, a maximum
number of genes of 8, and a maximum number of evolutionary generations of 3000. In
this study, the hyper-parameters of the ML models for each dataset were properly set with
the use of the five-fold cross validation processes [57]. For the ANN models, the number
of neurons in the hidden layer is allowed to range from 0.5D to 3D, where D denotes the
number of predictor variables.

The average performance of the ML models with respect to different datasets is
reported in Table 6. It can be seen from the experimental results that the DNNR achieves
outstanding results; it has outperformed other models in Dataset 1 (with RMSE = 7.73,
MAPE = 11.21%, and R2 = 0.81), 2 (with RMSE = 4.68, MAPE = 10.29%, and R2 = 0.90), and 4
(with RMSE = 4.84, MAPE = 7.16%, and R2 = 0.93). Additionally, the XGBoost achieved the
best outcome in Dataset 3 (with RMSE = 5.49, MAPE = 14.36%, and R2 = 0.91). The setting
of the XGBoost model found by the cross-validation process is as follows: the learning
rate = 0.5, the maximum tree depth = 3, and the regularization parameter = 1. The GBM
is slightly inferior to the XGBoost with RMSE = 5.61, MAPE = 14.89%, and R2 = 0.91. The
DNNR achieved the third rank with RMSE = 6.68, MAPE = 17.40%, and R2 = 0.87.

Table 6. Average performance of the ML models.

Dataset Metrics
The ML Models

DNNR XGBoost GBM AdaBoost SVR LM-ANN GP

1
RMSE 7.73 8.91 9.59 9.14 8.32 10.96 9.82
MAPE (%) 11.21 14.15 13.69 14.74 12.26 15.01 15.27
R2 0.81 0.82 0.77 0.79 0.80 0.73 0.73

2
RMSE 4.68 5.26 5.57 6.04 4.80 5.19 5.20
MAPE (%) 10.29 11.52 11.39 13.26 11.36 12.33 12.24
R2 0.90 0.88 0.87 0.84 0.90 0.88 0.88

3
RMSE 6.68 5.49 5.61 7.60 7.28 8.67 8.15
MAPE (%) 17.40 14.36 14.89 23.07 20.57 25.02 24.02
R2 0.87 0.91 0.91 0.84 0.84 0.77 0.79

4
RMSE 4.84 4.90 4.98 6.24 5.65 7.16 7.03
MAPE (%) 7.16 6.69 6.41 10.50 7.60 10.61 10.15
R2 0.93 0.93 0.92 0.88 0.91 0.84 0.85

Note: Bold text indicate the best performance.

The values of R2 obtained from the ML are at least 0.81, which indicates a good degree
of data fitting results. For Dataset 1, the DNNR is able to explain 81% of the variation in the
CS of SCC. For other datasets, the R2 is always larger than 0.9; this outcome demonstrates
that the fluctuations of the CS values are well captured and generalized by the ML models.
In addition, the MAPE values within the range of 7% and 15% show an acceptable deviation
between the predicted and observed variables [58]. More details of the prediction results
obtained from the ML models are provided in Appendices A and B.
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Based on the experimental results, it is found that those parameters of the DNNR are
highly data dependent. The configurations of the DNNR models that help to achieve the
most accurate predictions are reported in Table 7. It can be seen that the Tanh activation
function is favored in Dataset 1, 2, and 4. Meanwhile, for Dataset 3, in which the DNNR is
the second-best approach, the ReLU activation function is favored. The DNNR models in
all datasets require two hidden layers. This means that a two-layer structure is considered
to be deep enough for modeling the CS of SCC. However, the suitable number of neurons
varies with respect to different datasets. The number of neurons can be as low as 6 in the
case of Dataset 2 and as high as 16 in the case of Dataset 4. This can be explained by the
fact that Dataset 4 includes a comparatively larger number of instances. Therefore, more
neurons are required to model the mapping functions stored in those datasets.

In addition, the average computational time of each model is provided in Table 8.
Generally, the training time of the ML models used for predicting the CS of SCC is minor. It
is because the sizes of the currently collected datasets are moderate with the largest number
of instances = 366. As shown in this table, the computational cost of the XGBoost is lower
than that of the DNNR. It is because the training algorithm of the XGBoost can be executed
in parallel. It is also observable that the GP consumes the largest amount of computational
expense due to its genetic operators.

The detailed ranking of the ML models with respect to different datasets is reported in
Table 9 and Figure 5. Herein, the model performance is ranked according to the average
RMSE in the testing phase. As mentioned previously, the DNNR has gained the best
outcomes in three out of four datasets. This model gains the third rank in Dataset 3. The
XGBoost has gained the best performance once with dataset 3; it achieved the second, third,
and fifth rank in Dataset 4, 1, and 2, respectively. The best outcomes of the GBM and the
SVR are the second rank in Dataset 3 and 2, respectively. The LM-ANN achieved the third
rank in Dataset 2 and obtained the worst performance in the other three datasets.

Figure 5. Summary of the models’ rankings.

The GP only outperformed the LM-ANN in Dataset 2 and was worse than the ANN
model in the other three datasets. Hence, the results of this paper are, to some degree, com-
ply with that reported in the previous works of [23,59] which demonstrated the advantage
of the XGBoost. In addition, the current paper also points out the great potential of the
DNNR since it was able to outperform the XGBoost in three datasets. The GBM was able
to excel the DNNR once (in Dataset 3) but it never outperformed the XGBoost. The deep
neural network is always better than the shallow network of the LM-ANN. This fact clearly
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shows the superiority of deep learning over conventional ANN in the task of predicting the
CS of SCC. The AdaBoost and GP generally show mediocre performances in comparison
with the DNNR and the XGBoost.

Figure 6 illustrates the correlation between the actual and predicted CS with respect
to different datasets. The line of best fit, ±10% bounds, and ±20% bounds are provided
to assist the inspection of the prediction errors. The red straight line denotes a perfect fit
where the CS of a specimen is correctly estimated. The nearer the data samples (shown
as black circles) to the line of best fit, the better they are estimated by the ML approaches.
In addition, the distribution of the residual (or error) committed by the ML models is
presented by four histograms in Figure 7. Generally, the mean of the residuals is close to 0
and the values of the std. are less than 8 for all of the cases.

  

 

Figure 6. The correlation between the actual and predicted CS.

Table 7. Model configuration of the DNNR models that helps to attain the best performance.

Dataset

Parameters

Number of
Hidden Layers

Number of
Neurons

Learning Rate
Regularization

Coefficient
Activation
Function

1 2 10 0.03 0.001 Tanh
2 2 6 0.03 0.001 Tanh
4 2 16 0.01 0.001 Tanh
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(a) 
(b) 

 
(c) 

(d) 

Figure 7. Histograms of residuals of the ML models used for predicting the CS: (a) Dataset 1,
(b) Dataset 2, (c) Dataset 3, and (d) Dataset 4.

Table 8. Average computational time (s).

Dataset
The ML Models

DNNR XGBoost GBM AdaBoost SVR LM-ANN GP

1 3.82 0.11 0.05 0.17 0.06 0.62 297.20
2 5.43 0.05 0.14 0.13 0.07 0.96 289.25
3 6.44 0.08 0.14 0.38 0.04 0.55 736.70
4 7.64 0.13 0.14 0.38 0.04 0.55 795.50

Table 9. Detailed model ranking.

Dataset
The Employed ML Models

DNNR XGBoost GBM AdaBoost SVR LM-ANN GP

1 1 3 5 4 2 7 6
2 1 5 6 7 2 3 4
3 3 1 2 5 4 7 6
4 1 2 3 5 4 7 6

By inspecting the range of the residuals (refer to Figure 8), it can be seen that the data
samples in all of the datasets lie within the ±20% bound. The best outcome in Dataset 3,
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predicted by the XGBoost, has 22% of the cases that stay beyond the ±20% bound. The
results predicted by the DNNR has at most 14% of the samples that go beyond the ±20%
bound. Particularly, prediction accuracy of the instances in Dataset 4 is remarkably high
because only 6% of the samples have the residuals lying beyond the ±20% bound.

One possible explanation for this finding is that the number of data instances in
Dataset 4 is decently high so that the DNNR can be effectively trained. Thus, this model can
generalize the function that provides a mapping between the CS of SCC and its constituents.
The proportion of the residual ≤ 5% for the case of interest is also notably high (52%). In
the case of Dataset 3, the relatively high proportion of the residuals lying beyond the ±20%
bound shows the high complexity of the functional mapping between the CS and the SCC
mix containing class F fly ash. It is possible that the CS of SCC samples containing class F
fly ash are governed by other explanatory variables that have not yet investigated.

 
(a) 

 
(b) 

 
(c) (d) 

Figure 8. Distribution of the residual range: (a) the DNNR used for modeling Dataset 1, (b) the
DNNR used for modeling Dataset 2, (c) the XGBoost used for modeling Dataset 3, and (d) the DNNR
used for modeling Dataset 4.

5. Conclusions

The CS is a crucial mechanical property of SCC that must be considered during the
phase of mix design and quality monitoring. An accurate and reliable estimation of the
CS considerably facilitates the process of concrete mixture design. Data-driven models,
which take into account past experimental tests of SCC, can effectively analyze the input
information and quickly deliver estimations of the CS of SCC. These models are useful for
reducing the cost and time required for performing laboratory tests. In addition, a good
estimate of the CS with respect to different concrete ages is also desirable for scheduling
the installation and removal of formwork or scaffolding on construction sites. It is because
these activities highly depend on the development of the CS.

In this paper, we conduct a comparative work that takes into account the capability
of prominent ML models used for predicting the CS of SCC. The employed models are
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DNNR, XGBoost, GBM, AdaBoost, SVR, LM-ANN, and GP. Four historical datasets are
used to train and verify the predictive ability of these ML models. The RMSE, MAPE,
and R2 are the metrics used for quantifying the modeling performance. This paper also
performs a repetitive data sampling process, including 20 independent runs, to reliably
evaluating the prediction results. Experimental results demonstrate the superiority of the
DNNR which excels other models in three out of four datasets. The developed DNNR is
about 7.0% and 2.5% better than the SVR for the cases of Dataset 1 and 2, respectively. In
Dataset 4, the deep learning method outperformed the XGBoost by a minor margin of 1.3%.
The XGBoost is the second-best method that achieves the first rank in one dataset. The R2

values in all cases are greater than 0.8. The R2 surpasses 0.9 in three datasets. These facts
show a sufficient degree of variance explanation obtained by the selected ML models. The
DNNR clearly outperformed the shallow ML approach of the LM-ANN. The improvement
of the deep learning in comparison with the shallow neural network is at least 9.87% in
Dataset 2 and can be as high as 36.6% in Dataset 3.

Future extensions of the current work may include the following directions: (1) the
investigation of other advanced ML ensembles and boosting machines in the task of
predicting the CS of SCC to reduce the prediction errors; (2) the use of sophisticated
feature selection or transformation techniques for enhancing the model performance; and
(3) the employment of metaheuristic approaches for tuning the hyper-parameters of the
neural network models [60,61]; (4) investigation of other crucial mechanical properties of
SCC [62,63] such as elastic modulus, peak strain, ultimate strain, and residual strain; and
(5) analyzing the effect of the material properties on the CS of SCC [64,65].
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Appendix A

Table A1. Detailed statistical performance of the ML models.

ML Models Metrics
Dataset 1 Dataset 2 Dataset 3 Dataset 4

Mean Std. Mean Std. Mean Std. Mean Std.

DNNR
RMSE 7.73 1.69 4.68 0.90 6.68 0.97 4.84 1.34
MAPE (%) 11.21 2.49 10.29 1.94 17.40 3.28 7.16 1.42
R2 0.81 0.10 0.90 0.05 0.87 0.04 0.93 0.05

XGBoost
RMSE 8.91 1.42 5.26 0.74 5.49 0.65 4.90 1.20
MAPE (%) 14.15 3.07 11.52 2.25 14.36 1.98 6.69 0.93
R2 0.82 0.08 0.88 0.03 0.91 0.02 0.93 0.04

GBM
RMSE 9.59 3.03 5.57 0.62 5.61 0.78 4.98 1.35
MAPE (%) 13.69 4.04 11.39 1.73 14.89 2.70 6.41 1.21
R2 0.77 0.18 0.87 0.04 0.91 0.03 0.92 0.07

AdaBoost
RMSE 9.14 1.58 6.04 1.06 7.60 1.45 6.24 0.96
MAPE (%) 14.74 3.49 13.26 2.35 23.07 3.90 10.50 1.36
R2 0.79 0.08 0.84 0.07 0.84 0.06 0.88 0.03

SVR
RMSE 8.32 1.74 4.80 0.96 7.28 0.66 5.65 1.21
MAPE (%) 12.26 2.85 11.36 2.09 20.57 3.87 7.60 1.24
R2 0.80 0.11 0.90 0.05 0.84 0.03 0.91 0.04

LM-ANN
RMSE 10.96 3.42 5.19 0.78 8.67 1.53 7.16 1.82
MAPE (%) 15.01 4.53 12.33 2.25 25.02 6.64 10.61 2.51
R2 0.73 0.18 0.88 0.04 0.77 0.09 0.84 0.09

GP
RMSE 9.82 2.21 5.20 1.09 8.15 1.72 7.65 0.40
MAPE (%) 15.27 3.54 12.24 2.00 24.02 3.51 11.55 0.80
R2 0.73 0.19 0.88 0.07 0.79 0.10 0.85 0.01
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Appendix B

Figure A1. Boxplots of the model performance (The blue box denotes the 25th and 75th percentiles of
RMSE. The red line represents the median value. The symbol “+” denotes an outlier.)
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Abstract: The Dbar-dressing method is extended to investigate the derivative non-linear Schrödinger
equation with non-zero boundary conditions (DNLSENBC). Based on a meromorphic complex
function outside an annulus with center 0, a local Dbar-problem inside the annulus is constructed.
By use of the asymptotic expansion at infinity and zero, the spatial and temporal spectral problems
of DNLSENBC are worked out. Thus, the relation between the potential of DNLSENBC with the
solution of the Dbar-problem is established. Further, symmetry conditions and a special spectral
distribution matrix are presented to construct the explicit solutions of DNLSENBC. In addition, the
explicit expressions of the soliton solution, the breather solution and the solution of the interaction
between solitons and breathers are given.
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1. Introduction

As a result of a specific balance between non-linear effects and dispersion effects, the
soliton plays a pivotal role in three-level atomic systems, microcavity wires, and other
physical systems [1–3]. Non-linear integrable differential equations have soliton solutions
and elastic collision properties during propagation. In some suitable conditions, we can use
integrable equations to depict many important wave propagation phenomena. The non-
linear Schrödinger (NLS) equation is a classical physical model. It has extensive applications
in physical fields, such as the disturbance of water waves [4], the action of a particle’s
gravitational field on the quantum potential [5], and others [6–8]. The derivative non-linear
Schrödinger (DNLS) equation

iqt + qxx − i(|q|2q)x = 0, (1)

is an important non-linear physical model, which can describe the propagation of circular
polarized non-linear Alfvén waves in plasmas [9–14]. The DNLS equation has been studied
extensively in recent decades. For example, in [15–17], the involutive solutions of the DNLS
equation and generalized DNLS equation were developed, respectively. The multi-soliton
solutions were derived via Darboux transformation and Bäcklund transformation [18,19]. The
high-order rational solution and rogue wave of the DNLS equation were determined in
2012 [20]. The N-double-pole solution was investigated by means of inverse scattering
transformation in 2020 [21]. In addition, the existence of global solutions of the model (1)
was fully discussed in [22]. In 2022, combining profile decomposition techniques with the
integrability structure of the model (1), the global well-posedness of the DNLS equation
was proved in [23].

The Dbar-dressing method, which can also be referred to as the ∂-dressing method, is a
powerful tool to explore integrable non-linear systems and to derive corresponding soliton
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solutions. This approach was first introduced by Zakharov and Shabat [24]. Thereafter,
Beals, Coifman, Manakov, Ablowitz and Fokas developed it further [25–29]. By generalizing
a Riemann–Hilbert problem, a corresponding ∂-problem can be constructed. Then, based on
the obtained ∂-problem, the equation to be studied can be solved using the Dbar-dressing
procedure. In contrast to the numerical solutions provided in [30,31], the Dbar-dressing
method can be used to obtain the explicit solutions of soliton equations. At present, varieties
of well-known non-linear integrable equations, such as the NLS equation, the sine-Gordon
equation, the Gerdjikov–Ivanov equation and others, have been solved successfully by
means of this approach [32–40]. In particular, a new calculating rule of the Lie bracket
which contains the standard calculating rule was proposed in [41]. Based on this, a new
generalized NLS hierarchy and its reduction equations were worked out using the ∂-
method. The ∂-method is also a valuable method for researching high-dimensional systems;
in [42], it was applied to the Sawada–Kotera equation and some interesting results were
obtained.

Based on the dressing method proposed by Zakharov and Shabat, the inverse scatter-
ing transformation (IST) method is mainly used for the factorization of integral operators
on a line into a product of two Volterra operators and the Riemann–Hilbert (RH) prob-
lem. In our work, the Dbar-dressing method is the most powerful version of the dressing
method, which incorporates the ∂-problem formalism. New spectral problems, hierarchy
and soliton solutions can be readily discovered using the Dbar-dressing method. Compared
with other classical methods, the advantage of the Dbar-dressing method is that it can
deal with the RH problem with non-analytical jump matrices. From this perspective, this
method is an improved and upgraded version of the IST method and the RH method [43].
Moreover, compared to the existing reports described above, such as [38], our aim is to
construct N-soliton solutions of DNLSENBC using the Dbar-dressing method and to fully
analyze the properties of the solution. In our investigation, we mainly seek to improve the
analysis of solutions and to explore the relationship between the types of solutions and the
discrete spectrum.

For the purpose of describing and investigating complex magnetic fields more ac-
curately, the non-zero boundary conditions on the non-linear integrable equations are
imposed. In this paper, we extend the ∂-dressing method to construct the Lax pair and
N-soliton of the DNLS equation with non-zero boundary conditions (DNLSENBC)

iqt + qxx − 2i(|q|2 + q2
0)qx + q2

0(−|q|2 + q2
0)q − iq2qx = 0, (2)

and
q(x, t) → ρ, |x| → ∞, (3)

where ρ is a constant and |ρ| = q0 �= 0.
The structure of this paper is as follows: In Section 2, we obtain the symmetry condition

of the eigenfunction as z → ∞ and z → 0 by considering a local 2 × 2 matrix ∂-problem
with special non-canonical normalization. In Section 3, the Lax pair of DNLSENBC is
constructed. In Section 4, the symmetry conditions and particular spectral transformation
matrix are introduced to construct the N-soliton solutions of DNLSENBC. Moreover, as
applications of the N-soliton solutions, the explicit one- and two-soliton solutions, one-
and two-breather solutions, and soliton-breather solution are presented. The conclusions
are presented in the final section.

2. Dbar-Dressing Method and ∂-Problem for DNLSENBC

We introduce the framework of the Dbar-dressing method, in general, in Section 2.1
and obtain the symmetric constraint of the eigenfunction based on the eigenvalue problem
and the ∂-problem in Section 2.2, which plays a key role in the asymptotic expansion and
construction of the N-soliton solutions.
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2.1. Dbar-Dressing Method

As necessary knowledge for the Dbar-dressing method, we introduce the ∂-operator
and the Cauchy integral formula. By introducing the complex variable z = x + iy,
z = x − iy and directly calculating, we have

∂

∂z
=

1
2
(∂x + i∂y) ≡ ∂,

∂

∂z
=

1
2
(∂x − i∂y) ≡ ∂, ∂x = ∂ + ∂, ∂y = i(∂ − ∂). (4)

The partial derivative ∂
∂z is called the ∂-operator and ∂ is the conjecture of ∂. Suppose

that g(z) is a given function in a simply connected domain D of the complex z plane, then
the equation

∂ f (z) = g(z), z ∈ D, (5)

is called a ∂-problem, where f (z) = f (z, z) is a complex function; here, we represent it as
f (z) for simplicity. If f (z) is analytical in a simply connected domain D, then, along its
closed contour ∂D, we have the Cauchy integral theorem∮

∂D
f (z)dz = 0, (6)

and the Cauchy integral formula

f (z) =
1

2πi

∮
∂D

f (ξ)
ξ − z

dξ, z ∈ D. (7)

In order to facilitate the calculation of Section 2.2, we provide the following propositions:

Proposition 1. Suppose that D is a domain with closed curve ∂D, f (z), g(z) and their derivatives
are continuous in D, then ∮

∂D
f (z)dz = −

∫ ∫
D

∂ f (z)dz ∧ dz,∮
∂D

g(z)dz =
∫ ∫

D
∂g(z)dz ∧ dz,

(8)

where dz ∧ dz = −2idx ∧ dy = −2idxdy, dx ∧ dy is a Lebesgue measure.

Proposition 2. Suppose that ∂D is a closed curve with boundary D, f (z) and its derivatives are
continuous and bounded in D, then we have the Cauchy–Green formula

f (z) =
1

2πi

∮
∂D

f (ξ)
ξ − z

dξ +
1

2πi

∫ ∫
D

∂ f (ξ)
ξ − z

dξ ∧ dξ, (9)

where ξ = ζ + iη and dξ ∧ dξ = (dζ + idη) ∧ (dζ − idη) = −2idζdη.

Define the complex δ function∫ ∫
D

ψ(z)δ(z − z0)dz ∧ dz = −2iψ(z0), (10)

and suppose that g(z) ∈ L1(z) ∩ L∞(z), then we can find that the ∂-problem (5) admits a
general solution

f (z) = a(z) +
1

2πi

∫ ∫
D

g(ξ)
ξ − z

dξ ∧ dξ, (11)

23



Mathematics 2022, 10, 4424

where a(z) is an arbitrary analytical function. If f (z) is Hölder continuous on ∂D and
g(z) ∈ L1(z) ∩ L∞(z), then, using the Cauchy integral formula, we get

f (z) =
1

2πi

∮
∂D

f (ξ)
ξ − z

dξ +
1

2πi

∫ ∫
D

g(ξ)
ξ − z

dξ ∧ dξ, (12)

satisfying the ∂-problem (5) on D.

2.2. ∂-Problem for DNLSENBC

The DNLS equation has the following eigenvalue problem [44]

Φx = UΦ, Φt = VΦ, (13)

where

U =

[
ik2 kq
−kq −ik2

]
, V =

[ −2ik4 + i|q|2k2 −2k3q + |q|2qk + iqxk
2k3q − |q|2qk + iqxk 2ik4 − i|q|2k2

]
. (14)

Here the bar represents the complex conjugate and the subscript x (or t) stands for the
partial derivative of x (or t). As an arbitrary number, k is called the eigenvalue (or spectral
parameter) and Φ is called the eigenfunction associated with k.

In the asymptotic behavior of |x| → ∞, we note the variable z as z = k + λ and solve
the eigenvalues of U and V, and obtain

λ(z) = 1
2 (z +

q2
0
z ), k(z) = 1

2 (z −
q2

0
z ),

θ(x, t, z) = k(z)λ(z)(x − 2k(z)2t + q2
0t),

(15)

and the eigenfunction of (13)

(I +
i
z

σ3Q0)eiθ(x,t,z)σ3 ,

where

Q0 =

[
0 ρ
−ρ 0

]
, σ3 =

[
1 0
0 −1

]
. (16)

Here, we consider a 2 × 2 matrix ∂-problem

∂Ψ(x, t, z) = Ψ(x, t, z)r(z), z ∈ C \ {0}, (17)

where r(z) is a 2 × 2 matrix and is independent of x and t. Moreover, Ψ(x, t, z) is a 2 × 2
matrix and has the non-canonical normalization conditions

Ψ(x, t, z) ∼ eiθ(x,t,z)σ3 , z → ∞,
Ψ(x, t, z) ∼ i

z σ3Q0eiθ(x,t,z)σ3 , z → 0.
(18)

For simplicity, we define

Ψ̂(x, t, z) = Ψ(x, t, z)e−iθ(x,t,z)σ3 , (19)

then Ψ̂ has the following asymptotic behavior

Ψ̂(x, t, z) → I, z → ∞, Ψ̂(x, t, z) → i
z

σ3Q0, z → 0. (20)

Now, we consider a new ∂−problem

∂Ψ̂(x, t, z) = Ψ̂(x, t, z)R(x, t, z), R(x, t, z) = eiθ(x,t,z)σ3 r(z)e−iθ(x,t,z)σ3 , z ∈ C \ {0}. (21)
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Based on the generalized Cauchy integral formula, we have

Ψ̂(z) = lim
ε→0,R→∞

1
2πi

∮
ΓR+Γε

Ψ̂(ξ)

ξ − z
dξ +

1
2πi

∫ ∫
ε<|ξ|<R

∂Ψ̂(ξ)

ξ − z
dξ ∧ dξ

= I +
i
z

σ3Q0 +
1

2πi

∫ ∫
ε<|ξ|<R

∂Ψ̂(ξ)

ξ − z
dξ ∧ dξ = N (Ψ) + JΨ̂(z), (22)

where Γε and ΓR are oriented circles with centers at the origin of the z plane with radii R
and ε.

We note the solution space F of the ∂-problem (17) as

F = {Ψ(x, t, z)|∂Ψ(x, t, z) = Ψ(x, t, z)r(z), z ∈ C \ {0}}. (23)

To investigate the DNLSENBC through the ∂-problem (17), we first introduce the
following constraint:

Proposition 3. Let Φ ∈ F and N (Φ) = I + i
z σ3Q0, then it satisfies

Φ(x, t, z) =
i
z

Φ(x, t,− q2
0

z
)σ3Q0. (24)

Suppose that Φ(x, t, z) has the asymptotic expansion at z → ∞ and z → 0,

Φ(x, t, z) ∼ (I + ∑∞
l=1 al(x, t)z−l)eiθ(x,t,z)σ3 , z → ∞,

Φ(x, t, z) ∼ (∑∞
l=−1 bm(x, t)zm)eiθ(x,t,z)σ3 , z → 0.

(25)

By making use of the formula
∮

∂D f (z)dz = − ∫ ∫
D ∂ f (z)dz ∧ dz, the coefficients al

and bm can be determined

al(x, t) = δl,1iσ3Q0 − 1
2πi

∫ ∫
C\{0}

Φ(ξ, x, t)r(ξ)e−iθ(ξ)σ3 ξ l−1dξ ∧ dξ, l = 1, 2, · · · , (26)

bm(x, t) =

{
δm,0 +

1
2πi

∫ ∫
C\{0} Φ(ξ, x, t)r(ξ)e−iθ(ξ)σ3 ξ−m−1dξ ∧ dξ, m ≥ 0,

iσ3Q0, m = −1.
(27)

Remark 1. Based on the Proposition 3, we can find that the coefficients al(x, t) and bm(x, t) are
not independent and that satisfy

bm−1(x, t) =
i

(−1)mq2m
0

am(x, t)σ3Q0, m = 1, 2, · · · . (28)

3. Lax Pair of the DNLSENBC

In this section, we deduce the Lax pair of the DNLSENBC. We first introduce the
conclusion.

Proposition 4 ([37,38]). Suppose ΨR ∈ L1(C\{0}) ∩ L∞(C\{0}), then the homogeneous equa-
tion of (22) only has a zero solution for a small norm of the operator J, i.e., Ψ̂(I − J) = 0 ⇒ Ψ̂ = 0.

For Ψ1(x, t, z), Ψ2(x, t, z) ∈ F , the following conclusion can be derived from Proposition 4:

N (Ψ̂1(x, t, z)) = N (Ψ̂2(x, t, z)) ⇔ Ψ1(x, t, z) = Ψ2(x, t, z), (29)

which plays a crucial role in constructing the Lax pair of the DNLSENBC.
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Theorem 1. The DNLSENBC (2) has the following Lax pair

Φx = XΦ, Φt = TΦ, (30)

with

X = i(k2 + 1
2 q2

0)σ3 + kQ, Q =

[
0 q
−q 0

]
,

T = (−2ik4 + iq4
0)σ3 − ik2Q2σ3 − 2k3Q − kQ3 − ikQxσ3 + kq2

0Q.
(31)

which implies that DNLSENBC is Lax integrable.

Proof. If Φ ∈ F , then Φt and Φx belongs to the solution space F . From (25), we have, at
z → ∞,

Φx =
[ ∞

∑
l=1

al,xz−l + (I +
∞

∑
l=1

alz−l)iθxσ3

]
eiθσ3

=
[ ∞

∑
l=1

al,xz−l +
i
4
(z − q2

0
z
)(z +

q2
0

z
)σ3 +

i
4

∞

∑
l=1

al(z −
q2

0
z
)(z +

q2
0

z
)σ3z−l

]
eiθσ3

=
i
4

[
z2σ3 + a1σ3z + a2σ3 + O(

1
z
)
]
eiθσ3 .

(32)

At z → 0, we have

Φx = (
∞

∑
m=−1

bm,xzm + i
∞

∑
m=−1

bmzmθxσ3)eiθσ3

=
[
b−1,xz−1 +

∞

∑
m=0

bm,xzm +
i
4

∞

∑
m=−1

bmzm(z − q2
0

z
)(z +

q2
0

z
)σ3

]
eiθσ3

=
[
b−1,xz−1 − i

4
q4

0b−1z−3σ3 − i
4

q4
0b0z−2σ3 − i

4
q4

0b1z−1σ3 + O(1)
]
eiθσ3 .

(33)

By direct calculation, we find[
i(k2 +

1
2

q2
0)σ3 +

i
2

k(a1σ3 − σ3a1)
]
Φ =

i
4

[
z2σ3 + a1σ3z + a2σ3 + O(

1
z
)
]
eiθσ3 , z → ∞,[

i(k2 +
1
2

q2
0)σ3 − i

2
kq2

0(b0σ3 + σ3b0)b−1
−1

]
Φ =

[
(b−1,xz−1 − i

4
q4

0b−1z−3σ3 − i
4

q4
0b0z−2σ3

− i
4

q4
0b1z−1σ3 + O(1)

]
eiθσ3 , z → 0.

(34)

The relation of the coefficients al and bm in (28) gives that i
2 k(a1σ3 − σ3a1)

= − i
2 kq2

0(b0σ3 + σ3b0)b−1
−1. Thus, using (22), we obtain

N (Φ̂x) = N
[
(i(k2 +

1
2

q2
0)σ3 +

i
2

k(a1σ3 − σ3a1))Φ̂
]
, (35)

which gives the spatial linear spectral problem based on (29)

Φx =
[
i(k2 +

1
2

q2
0)σ3 + kQ

]
Φ, Q =

i
2
[a1, σ3]. (36)

Similarly, we can have

Φt = − i
8

[
z4 − 4q2

0z2 + a1z3 + a2z2 + a3z + a4 − 4q2
0a1z − 4q2

0a2 + O(
1
z
)
]
, z → ∞,

Φt =
i
8

q6
0

[
q2

0(b−1z−5 + b0z−4 + b1z−3 + b2z−2 + b3z−1)− 4(b−1z−3 + b0z−2 + b1z−1) + O(1)
]
, z → 0.

(37)

And
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TΦ = − i
8

[
z4 − 4q2

0z2 + a1z3 + a2z2 + a3z + a4 − 4q2
0a1z − 4q2

0a2 + O(
1
z
)
]
, z → ∞,

TΦ =
i
8

q6
0

[
q2

0(b−1z−5 + b0z−4 + b1z−3 + b2z−2 + b3z−1)− 4(b−1z−3 + b0z−2 + b1z−1) + O(1)
]
, z → 0.

(38)

Again using (22), (29), (37) and (38) gives the temporal linear spectral problem.

Theorem 1 forms a connecting link between the preceding and the following: Starting
from the asymptotic expression of Φ(x, t, z) in Section 2, we obtain the spatial and temporal
linear spectral problem that Φ(x, t, z) satisfies in Theorem 1. Integrability is an extremely
important property of non-linear equations and Theorem 1 proves that the DNLSENBC is
Lax integrable. Moreover, Theorem 1 establishes the connection between the potential of the
DNLSENBC and the solution of the Dbar-problem, which paves the way for construction
of the N-soliton solutions of the DNLSENBC in the next section.

4. Solutions

In this section, we construct the N-soliton solutions of the DNLSENBC.

4.1. ∂-Dressing Method and N-Soliton Solutions

We first introduce the symmetry condition on the off-diagonal matrix Q in (36)

σ2Qσ2 = Q, σ2 =

[
0 −i
i 0

]
. (39)

Based on (39), we can find that the matrix eigenfunction Φ and the distribution r(z)
satisfy the symmetry conditions

Φ(x, t, z) = σ2Φ(x, t, z)σ2, r(z) = σ2r(z)σ2, (40)

which plays a key role in the construction of solutions.

Theorem 2. Suppose that ηj are 2N1 + N2 discrete spectra in a complex plane C. For the purpose
of obtaining the soliton solutions of the DNLSENBC, we choose a spectral transformation matrix
r(z) as

r(z) = π
2N1+N2

∑
j=1

[
0 cj(δ(z − ηj) + δ(z + ηj))

−cj(δ(z − η j) + δ(z + η j)) 0

]
, (41)

where cj ∈ C are all constants and

ηj = zj, ηN1+j = − q2
0

zj
, η2N1+n = ζn, cN1+j =

ρq2
0

ρ·η2
j
cj, j = 1, 2, · · · N1, n = 1, 2, · · · N2.

(42)
Then, the DNLS Equation (2) with a non-zero boundary condition (3) admits the solutions

q = ρ − 2i detMa

detM , M = I + An,m, (43)

where Ma are (2N1 + N2 + 1)× (2N1 + N2 + 1) matrices defined as

Ma =

[
0 Y
F M

]
, Y = (Y1, Y2, · · ·Y2N1+N2), Yj = cje

2iθ(ηj), Dj(z) =
cj

z2 − η2
j

e2iθ(ηj),

F = ( f1, f2, · · · f2N1+N2), fn = 1 − 2iρ
2N1+N2

∑
n=1

Dj(ηn), An,m = 4
2N1+N2

∑
j=1

η2
j Dj(ηn)Dm(η j),

θ(x, t, ηj) =
1
4
(η2

j −
q4

0
η2

j
)
[

x − 1
2
(η2

j +
q4

0
η2

j
)t + 2q2

0t
]
.
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Proof. From Equations (26) and (36), we have

Q = Q0 +
1

4π

[
σ3,

∫ ∫
C0

Φ̂(x, t, z)eiθ(z)σ3 r(z)e−iθ(z)σ3 dz ∧ dz
]
. (44)

Substituting (41) into (44), we have the solution of the DNLSENBC

q = ρ − 2i
2N1+N2

∑
j=1

cje
2iθ(ηj)Φ̂11(ηj). (45)

In order to obtain the explicit expression of q, the key is to determine the functions Φ̂11.
Making use of the properties of the δ function and the symmetry (24), from (22), we have

Φ̂11(z) = 1 − 2
2N1+N2

∑
j=1

cj
η j

z2 − η2
j

e−2iθ(η j)Φ̂12(η j), (46)

Φ̂12(z) =
i
z

ρ + 2
2N1+N2

∑
m=1

cm
z

z2 − η2
m

e2iθ(ηm)Φ̂11(ηm). (47)

Taking z = ηn in (46) and z = η j in (47), a system of linear equations is obtained

Φ̂11(ηn) +
2N1+N2

∑
m=1

An,mΦ̂11(ηm) = fn, n = 1, 2, · · · 2N1 + N2, (48)

with

fn = 1 − 2iρ
2N1+N2

∑
n=1

Dj(ηn), An,m = 4
2N1+N2

∑
j=1

η2
j Dj(ηn)Dm(η j), Dj(z) =

cj

z2 − η2
j

e2iθ(ηj).

For simplicity, we further note

M = I + An,m, F = ( f1, f2, · · · f2N1+N2)
T , Φ̌ = (Φ̂11(η1), Φ̂11(η2), · · · Φ̂11(η2N1+N2))

T .

Then (48) can be written in the matrix form

MΦ̌11 = F. (49)

Substituting the solution Φ̌11 of (49) into (45) gives the Formula (43).

4.2. Application of N-Soliton Formula

As applications of the Formula (43), we present explicit soliton solutions of the
DNLSENBC. For simplicity, we take |ρ| = 1 in the following.

Case 1. One-breather
In this case, we take N1 = 1, N2 = 0, η1 = reiα, c1 = eμ+iν , and ρ = eiφ. From (42), we

can determine η2 = − 1
r eiα, c2 = 1

r2 eμ+i(2φ+2α−ν). Substituting the above parameters in (43),
we have the one-breather solution (see Figure 1)

q(x, t) = 1 − 2i

det

⎡⎣ 0 Y1 Y2
f1 1 + A1,1 A1,2
f2 A2,1 1 + A2,2

⎤⎦
det
[

1 + A1,1 A1,2
A2,1 1 + A2,2

] , (50)
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where
θ(x, t, ηj) =

1
4
(η2

j −
1
η2

j
)[x − 1

2
(η2

j +
1
η2

j
)t + 2t], j = 1, 2,

Dj(z) =
cj

z2 − η2
j

e2iθ(x,t,ηj), Yj = cje2iθ(x,t,ηj), j = 1, 2,

fn = 1 − 2i
2

∑
n=1

Dj(ηn), An,m = 4
2

∑
j=1

η2
j Dj(ηn)Dm(η j), m, n = 1, 2.

(51)

(a) (b)

Figure 1. (a) One-breather of (50) with r = 0.5, α = 0.8, μ = 0.5, ν = 0.5, φ = 2π, q0 = 1, (b) the
corresponding density profile.

Case 2. One-soliton

Let N1 = 0 and N2 = 1. Based on (42), we take η1 = eiβ, c1 = eκ+iτ and ρ = eiφ. The
relation (43) gives rise to the one-soliton solution (see Figure 2)

q(x, t) = 1 − 2i
−Y1 f1

1 + A1,1
, (52)

where

θ(x, t, η1) =
1
4
(η2

1 −
1
η2

1
)[x − 1

2
(η2

1 +
1
η2

1
)t + 2t], D1(η1) =

c1

η2
1 − η2

1
e2iθ(x,t,η1),

Y1 = c1e2iθ(x,t,η1), f1 = 1 − 2iD1(η1), A1,1 = 4η2
1D1(η1)D1(η1).

(53)

(a)
(b)

Figure 2. (a) One-soliton of (52) with β = −1.46, κ = −1.35, τ = −1.35, φ = 2π, q0 = 1, (b) the
corresponding density profile.

On the one hand, when N1 = 1, N2 = 0, the one breather occurs for the parameters
r = 0.5, α = 0.8, μ = 0.5, ν = 0.5, φ = 2π, q0 = 1. On the other hand, when selecting N1 = 0,
N2 = 1, one soliton is displayed with β = −1.46, κ = −1.35, τ = −1.35, φ = 2π, q0 = 1.
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Thus, Figures 1 and 2 reveal that a single specific discrete spectrum leads to the appearance
of a specific type of soliton.

Case 3. Soliton-breather solution

Let N1 = 1 and N2 = 1. Based on (42), we can take η1 = reiα, η2 = − 1
r eiα,

η3 = eiβ, ρ = 1, c1 = eμ+iν, c2 = 1
r2 eμ+i(2α−ν), and c3 = eκ+iτ . Substituting these data

in (43) gives the soliton-breather solution (see Figure 3)

q(x, t) = 1 − 2i
det
[

0 Y
f I + A

]
det
[
I + A

] , (54)

where
Y = (Y1, Y2, Y3), f = ( f1, f2, f3)

T , A = (Ai,j), i, j = 1, 2, 3,

θ(x, t, ηj) =
1
4
(η2

j −
1
η2

j
)[x − 1

2
(η2

j +
1
η2

j
)t + 2t], j = 1, 2, 3,

Dj(z) =
cj

z2 − η2
j

e2iθ(x,t,ηj), Yj = cje
2iθ(x,t,ηj), j = 1, 2, 3,

fn = 1 − 2i
3

∑
n=1

Dj(ηn), An,m = 4
3

∑
j=1

η2
j Dj(ηn)Dm(η j), m, n = 1, 2, 3.

(55)

(a)

t=-0.1
t=1
t=3

-10 -5 0 5
x

1

2

3

4

5

6

7
|q|

(b)
(c)

Figure 3. (a,b) Interaction of the soliton and breather with r = 2.5, α = −0.72, β = 1.45,
μ = −0.45, ν = 1.5, κ = −0.5, τ = 1.55, ρ = 1, q0 = 1, (c) the corresponding density profile.

Under the specific parameters r = 2.5, α = −0.72, β = 1.45, μ = −0.45, ν = 1.5,
κ = −0.5, τ = 1.55, ρ = 1, q0 = 1 of case 3, we can find that the soliton-breather solution
propagates from right to left and the collision is elastic. Due to a mixed discrete spectrum,
(N1 = 1, N2 = 1) is introduced in (43), and the interaction of the bright soliton and the
bright breather emerges. This further reflects that the discrete spectrum N1 and N2 have
different effects on the type of solitons.

Case 4. Two-breather

Let N1 = 2 and N2 = 0. From (42), we can choose ηj = rje
iαj , ηN1+j = − 1

rj
eiαj

(j = 1, 2), ρ = 1, c1 = eμ+iν, c2 = eκ+iτ , cN1+j =
1
r2

j
eμ+i(2αj−ν). From (43), we obtain the

two-breather solution (see Figure 4)

q(x, t) = 1 − 2i
det
[

0 Y
f I + A

]
det
[
I + A

] , (56)
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where

Y = (Y1, Y2, Y3, Y4), f = ( f1, f2, f3, f4)
T , A = (Ai,j), i, j = 1, 2, 3, 4,

θ(x, t, ηj) =
1
4
(η2

j −
1
η2

j
)[x − 1

2
(η2

j +
1
η2

j
)t + 2t], j = 1, 2, 3, 4,

Dj(z) =
cj

z2 − η2
j

e2iθ(x,t,ηj), Yj = cje
2iθ(x,t,ηj), j = 1, 2, 3, 4,

fn = 1 − 2i
4

∑
n=1

Dj(ηn), An,m = 4
4

∑
j=1

η2
j Dj(ηn)Dm(η j), m, n = 1, 2, 3, 4.

(57)

(a)

t=-1
t=1
t=2

-10 -5 0 5 10
x

1

2

3

4

5
|q|

(b)
(c)

Figure 4. (a,b) Interaction of the two breathers with r1 = 0.42, r2 = 0.42, α1 = 0.25, α2 = 0.5,
μ = 0.2, ν = 0.2, κ = 0.5, τ = 0.5, ρ = 1, q0 = 1, (c) the corresponding density profile.

Figure 4 corresponds to the case where only N1 exists in the discrete spectrum and
N1 = 2, so the interaction of the two breathers naturally appears. As can be seen in Figure 4,
for the parameters r1 = 0.42, r2 = 0.42, α1 = 0.25, α2 = 0.5, μ = 0.2, ν = 0.2, κ = 0.5,
τ = 0.5, ρ = 1, q0 = 1, the two-breather solution propagates from left to right and the two
breathers collide elastically.

Case 5. Two-soliton

Let N1 = 0 and N2 = 2. From (42), we can choose ηj = eiβ j (j = 1, 2), c1 = eμ+iν,
c2 = eκ+iτ . Based on (43), we gain the two-soliton solution (see Figure 5)

q(x, t) = 1 − 2i

det

⎡⎣ 0 Y1 Y2
f1 1 + A1,1 A1,2
f2 A2,1 1 + A2,2

⎤⎦
det
[

1 + A1,1 A1,2
A2,1 1 + A2,2

] , (58)

where
θ(x, t, ηj) =

1
4
(η2

j −
1
η2

j
)[x − 1

2
(η2

j +
1
η2

j
)t + 2t], j = 1, 2,

Dj(z) =
cj

z2 − η2
j

e2iθ(x,t,ηj), Yj = cje
2iθ(x,t,ηj), j = 1, 2,

fn = 1 − 2i
2

∑
n=1

Dj(ηn), An,m = 4
2

∑
j=1

η2
j Dj(ηn)Dm(η j), m, n = 1, 2.

(59)
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Figure 5. (a,b) Interaction of the two solitons with β1 = −0.5, β2 = −1, μ = 1.2, ν = 0.3, κ = 1.2,
τ = 0.3, ρ = 1, q0 = 1, (c) the corresponding density profile.

Compared with case 4, case 5 has only N2 in the discrete spectrum and N2 = 2, so
we obtain the two soliton solution in Figure 5 for the parameters β1 = −0.5, β2 = −1,
μ = 1.2, ν = 0.3, κ = 1.2, τ = 0.3, ρ = 1, q0 = 1. At this time, the two-soliton solution
propagates from right to left and collides elastically.

The above results can be briefly described in Table 1:

Table 1. The relation between the type of soliton and the discrete spectrum N1 and N2.

N1 = 1, N2 = 0 N1 = 0, N2 = 1 N1 = 1, N2 = 1 N1 = 2, N2 = 0 N1 = 0, N2 = 2

one-breather one-soliton soliton-breather two-breather two-soliton

It is straightforward to find that the discrete spectrum N1 controls the generation of
breathers, while the discrete spectrum N2 leads to the appearance of solitons. When we take
the mixed discrete spectrum (i.e., N1 = N2 = 1), the interaction of the bright soliton and
the bright breather occurs. In the case of N1 = 2, N2 = 0, the solution of (56) displays the
interaction of the bright breather and the bright breather, which is shown in Figure 4. When
we take N1 = 0, N2 = 2, as shown in Figure 5, the solution of (58) exhibits the interaction of
the bright soliton and the bright soliton. Case 3 to case 5 show that the collision is elastic,
because the size and shape of the solitons remain unchanged before and after the collision.

5. Conclusions

In this paper, a special distribution and a symmetry matrix function were presented to
construct the DNLSENBC and its linear spectral problem. Thus, the the relation between
the potential of the DNLSENBC with the solution of the Dbar-problem was established.
We extended the Dbar-dressing method to study the DNLSENBC based on the fact that
the solution of the Dbar-problem was meromorphic outside an annulus with center 0 and
satisfied a local Dbar-problem inside the annulus. Further, 2N1 + N2 discrete eigenvalues
were introduced in the distribution and the N-soliton solution was worked out. An innova-
tive aspect of this investigation is the exploration of the relation between the type of soliton
and the values of the discrete spectrum N1 and N2. The discrete spectrum N1 is related
to the appearance of breathers, while the discrete spectrum N2 affects the generation of
solitons. The interaction of the soliton and the breather occurs with the introduction of
the mixed discrete spectrum. The dynamic behaviors of the soliton solution, the breather
solution, and the solution of the interaction between the solitons and the breathers, are
further elaborated in the figures and tables. Based on the results obtained in this study,
we intend to investigate the long time asymptotic behavior of the DNLSENBC in another
paper in the near future.
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Abstract: Sustainable economic development plans have been shattered by the devastating COVID-19
crisis, which brought about an economic recession. The companies are suffering from financial losses,
leading to financial distress and disengagement from sustainable economic goals. Many companies
fail to achieve considerable financial performances, which may lead to unachieved organizational goal
and a loss of direction in decision-making and investment. According to the past studies, there has
been no comprehensive study done on the financial performance of the companies based on liquidity,
solvency, efficiency, and profitability ratios by integrating the entropy method and fuzzy technique
for order reference based on similarity to the ideal solution (TOPSIS) model in portfolio investment.
Therefore, this paper aims to propose a multi-criteria decision-making (MCDM) model, namely the
entropy-fuzzy TOPSIS model, to evaluate the financial performances of companies based on these
important financial ratios for portfolio investment. The fuzzy concept helps reduce vagueness and
strengthen the meaningful information extracted from the financial ratios. The proposed model is
illustrated using the financial ratios of companies in the Dow Jones Industrial Average (DJIA). The
results show that return on equity and debt-to-equity ratios are the most influential financial ratios
for the performance evaluation of the companies. The companies with good financial performance,
such as the best HD company, have been determined based on the proposed model for portfolio
selection. A mean-variance (MV) model is used to validate the proposed model in the portfolio
investment. At a minimum level of risk, the proposed model is able to generate a higher mean
return than the benchmark DJIA index. This paper is significant as it helps to evaluate the financial
performance of the companies and select the well-performing companies with the proposed model
for portfolio investment.

Keywords: entropy; fuzzy; TOPSIS; multi-criteria decision making; financial ratio; ranking

MSC: 90B50

1. Introduction

The present needs must be attained without adversely affecting our future or the Earth,
our home. This notion has moved into the center of discussion since the late 1980s and
has since been put into writing as the Sustainable Development Goals (SDGs) in 2015 to
be achieved in the next 15 years [1]. The call for the understanding, implementation, and
management of SDGs is urgent, with the ultimate goal of generating long-term values for
businesses, societies, and the environment. Several insightful companies have taken this
initiative to apply various indicators under the SDGs to scan for business opportunities
and global risks to enhance their financial performances through sustainable economic
developments [2]. The companies pay notable attention to their financial performances
because financial results reflect the quantifiable aspects of organizational goal achievements
and, hence, allow companies to gauge their successes on a timely basis. In addition, based
on recent financial performances, the management team is able to make prudent budgets
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and decisions to position the company strategically in the local and international markets.
Investors also look at financial performances to establish their intentions for initial or
continuous support of a company after weighing the risks and returns.

However, COVID-19 has impeded some progress toward sustainable economic devel-
opments in many parts of the world, which has then affected their financial performances.
Safitri et al. [3] studied the impacts of COVID-19 on these efforts in Indonesia and found
that social and economic sectors had been hit hard since 2020. Many industrial activities
were also disrupted due to strict protocols to control this infectious disease. A study by
Suriyankietkaew and Nimsai [4] also proved that economic activities have been stagnant
as COVID-19 cases soared. In addition, the International Monetary Fund (IMF) pointed
out that fiscal stimulus during this time could help improve resiliency and reduce the
divergence from sustainable economic development goal attainment. As a result, countries
in America, Asia, and Europe are standing together in solidarity and have responded by
providing assistance to individuals and businesses [5]. However, despite governmental
aid, high financial impacts are still felt by businesses, with many facing closure due to
financial instability [6].

Over the years, sustainable economic development has helped countries develop
economies and assisted companies in strengthening their financial statuses. However, as
a result of the outbreak, commercial activities face labor, occupational health and safety,
sales, and cash flow challenges that blur the future of businesses. In addition, individuals,
families, and corporations tend to be conservative and save their capital, which then
results in slower economic growth [7]. Furthermore, amid Omicron-variant concerns in
the United States, with many flights halted for the 2021 year-end holidays, the Dow Jones
Industrial Average (DJIA) plummeted more than 400 points, leading to growing anxieties
among the listed companies [8]. This has reversed many companies’ plans to perform
expansions deemed risky, as there is a clear sign of a sluggish recovery from the recession
and businesses could continue to suffer from weak balance sheets [9]. As much as they
focus on strengthening their bottom lines, companies also realize the necessity of improving
liquidity and leverage levels in a financial crisis [10]. In fact, financial strategies should be
in place to be activated instantly during a crisis to reduce its daunting consequences [11].

Achim et al. [12] found that the large listed companies in Romania still faced a notable
drop in quick ratio (QR), return on equity (ROE), and return on assets (ROA) in 2020. The
results from Karim et al. [13] also indicated drops in liquidity, solvency, and operating
efficiency of companies in Bangladesh during this health crisis. As a large economic zone,
companies in the European Union began suffering from revenue shocks and deteriorating
solvency levels since the start of the pandemic, with no definite timetable for recovery, as
proven in research by Mirza et al. [14]. In China, listed companies also saw reductions in
ROE and asset turnover (AT) [15]. Vito and Gómez [16] explained that companies tend
to experience lower sales, which led to a cash crunch, causing the companies to resort to
borrowing to reduce short-term liquidity concerns. Rababah et al. [17] revealed that some
industries had worrying declines in financial performances as they were worst hit by the
outbreak. In addition, financial distress could lead to operational issues such as debts,
lower employee morale, and reduced productivity [18]. Given that the financial positions
of a large number of companies are highly volatile, there is a pressing need for companies
to continuously assess their financial health.

The financial performance of a company can be assessed using a multi-criteria decision-
making (MCDM) model. The MCDM is popular due to its success in allowing simultaneous
assessment of both optimistic and pessimistic decision criteria, where some criteria generate
values while others incur expenses for a decision alternative [19]. Generally, the MCDM
model involves the ranking of decision alternatives with regards to various criteria in
order to obtain the best solution. Shaverdi et al. [20] studied the financial performance
of petrochemical companies in Iran using a combination of the fuzzy analytic hierarchy
process (AHP) and the fuzzy Technique for Order Performance by Similarity to an Ideal
Solution (TOPSIS). In this study, the decision criteria were made up of liquidity, leverage,
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activity, and profitability ratios such as the current ratio (CR), the quick ratio (QR), the
debt-to-equity ratio (DER), the debt-to-assets ratio (DAR), the AT, the ROA, and the ROE.
Shaverdi et al. [20] also noted that uncertainties in real-life situations could be mitigated
using fuzzy logic to overcome the limitations of the traditional MCDM model. A fuzzy
AHP with CR, QR, DER, DAR, ROA, and ROE was also used in a separate study in Iran [21].
Further, researchers in India also categorized financial ratios into liquidity, leverage, and
profitability ratios and adopted CR, QR, DAR, and ROE to evaluate the performances
of companies in India with AHP [22]. In Turkey, commercial banks were investigated
based on their financial performances with various financial indicators using AHP [23].
The financial aspects of the service and banking industries were examined with financial
indicators using fuzzy AHP in Taiwan [24]. CR, QR, DER, DAR, AT, ROA, and ROE were
also applied to assess technology companies in Turkey using TOPSIS to increase the power
of assessment [25]. In measuring the efficiency of ports in India, Gayathri et al. [26] found
that debt ratios had the greatest significance and that integrated MCDM models offered
better evaluation.

According to Shannon [27], in decision-making analysis, the quantity and quality of
data greatly influence the precision and reliability of the results. Shannon’s entropy reflects
the amount of useful information within a set of data to determine criteria weights in
MCDM models such as TOPSIS. In addition, Shannon theorized that as an entropy value
gets smaller, the criterion weight shall be greater with additional information carried by the
criterion and greater effects on the research objective [28]. Shannon’s entropy’s application
to determining the objective weights of decision criteria before the alternatives are ranked
using the TOPSIS model can be found in a study on the selection of industrial robots
in India, and the results of entropy TOPSIS were found to be useful [29]. Furthermore,
Shannon’s entropy was proven to be prominent when this method was integrated with
TOPSIS to assess the risks present in heritage sites in China, which then assisted the
local government in risk mitigation in culturally preserved areas [30]. Moreover, flood
vulnerability assessments and rail system performance research were also done with
Shannon’s entropy and TOPSIS [31,32].

The introduction of fuzzy set theory by Zadeh [33] has had extensive use for the
quantification of linguistic aspects of data. The fuzzy set theory offers higher flexibility
in decision boundaries and can therefore, reflect particularities more precisely [34]. In
addition, when crisp data is less suitable to model an event due to vagueness, interval
judgment with linguistic terms can be used for initial evaluation. All linguistic terms can
be transformed into triangular fuzzy numbers (TFNs) for quantitative computations [35].
The TOPSIS model is applicable to rank decision alternatives by calculating Euclidean
intervals. This means obtaining distances from positive (PIS) and negative ideal solutions
(NIS). The most feasible alternative shall have the shortest Euclidean interval from PIS
and the furthest interval from NIS simultaneously. After identifying the decision criteria
and alternatives in TOPSIS, the next step is to assign significance levels to the decision
criteria by assigning weights to each criterion. The literature does not provide a definite
computational method to find criteria weights [36]. Therefore, in this research, entropy is
proposed to quantify the weights of the criteria before fuzzy TOPSIS is applied. The fuzzy
integration with TOPSIS has been applied for project selection [37,38], dry bulk carrier
selection [39], and website evaluation [40].

According to the past studies, there has been no comprehensive study done on the
financial performance of the companies based on liquidity, solvency, efficiency, and prof-
itability ratios by integrating the entropy method and fuzzy TOPSIS model in portfolio
investment. The novelty of this research lies in the integrated entropy-fuzzy TOPSIS
model used to evaluate the financial performance of companies and determine the best
performing companies for portfolio investment. Secondly, this paper employs TFNs to
reduce the vagueness of data obtained from financial ratios. Therefore, this research adopts
a comprehensive set of financial ratios that involve liquidity, solvency, efficiency, and
profitability ratios for their financial performance evaluation of companies based on the
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financial statements. This paper intends to contribute by identifying the influential financial
ratios that contribute to the financial performance of the companies so that the companies
can work on enhancing critical ratios to increase the companies’ values. This study can
also serve as a reference for investors making portfolio investments. The investors can
determine an optimal portfolio from the well-performing companies in terms of financial
performance for portfolio investment based on the proposed model. Section 2 demonstrates
the methodology of the proposed entropy-fuzzy TOPSIS model. Section 3 presents the
empirical results of this study. Section 4 summarizes the findings of this research and
its conclusion.

2. Materials and Methods

This research aims to propose an MCDM model, namely the entropy-fuzzy TOPSIS
model, to assess and compare the financial performance of all components of the DJIA
with a total of 30 companies from 2015 to 2021 for portfolio investment. Throughout
the years, TOPSIS has emerged as one of the most powerful and reliable methods to
provide resolutions to managerial policy implementations and complications [41]. In real
life, financial information incorporated into the coefficients of objective functions and
constraints contains vagueness, which could be eliminated with fuzzy set theory.

In fact, there has been no proper judgment on the exact value of a financial ratio that
reflects the best performance of a company. Moreover, a considerably fair ratio value in an
industry in a region may not reflect the same information in other sectors and nations due
to the adoption of different strategies and external factors such as legalities and level of
competition. However, a rise or decline in a ratio value over consecutive years may not
necessarily signal a success or hazard in a company’s business structure and operation [42].
Therefore, due to subjectivity, the entropy-fuzzy TOPSIS model is proposed in this research.
Figure 1 shows the flowchart for this research.

 

Figure 1. Process flowchart.
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The proposed model consists of two stages, as shown below:
Stage-1: Compute the weights of decision criteria (financial ratios) using Shannon’s

entropy method.
Stage-2: Assess and rank the decision alternatives (companies) with a fuzzy TOP-

SIS model.
Table 1 presents the research framework proposal to assess the financial performances

of 30 companies under the DJIA using the entropy-fuzzy TOPSIS model.

Table 1. Research framework proposal.

Hierarchy Description

Objective Assessment and Ranking of the Financial Performances of Companies under DJIA

Decision Criteria

Current Ratio (CR)
Quick Ratio (QR)

Debt-to-Equity Ratio (DER)
Debt-to-Assets Ratio (DAR)

Asset Turnover (AT)
Return on Asset (ROA)
Return on Equity (ROE)

Decision Alternatives

AXP
AMGN
AAPL

BA
CAT

CSCO
CVX
GS
HD

HON

IBM
INTC
JNJ
KO
JPM

MCD
MMM
MRK
MSFT
NKE

PG
TRV
UNH
CRM
VZ
V

WBA
WMT
DIS

DOW

Table 1 highlights the framework proposal of this research, including the objective,
decision criteria, and decision alternatives to assess and rank the financial performance of
companies under the DJIA. The DJIA is a prominent US equity index, which consists of the
30 listed companies in the United States [43,44]. In addition, the DJIA measures the entire
direction of the stock market. As the index goes up, the market is usually doing well. If
the index falls, the stocks are underperforming [45,46]. Seven sets of prominent financial
ratios, including CR, QR, DER, DAR, AT, ROA, and ROE, are fixed as the decision criteria.
According to González et al. [47], financial ratios are categorized into four types: liquidity,
solvency, efficiency, and profitability. The liquidity-type ratios reflect information on the
ability to meet short-term obligations. However, solvency ratios consider the potential to
meet long-term debts and are most likely linked to the financial health of a company. The
efficiency ratios are highly operational measures that analyze the effective deployment of
resources for sales generation and are commonly related to cash flows. In fact, investors
and shareholders postulate on profitability ratios, which indicate the value creation of
a company [48,49]. Furthermore, these four categories of financial ratios have also been
supported in a study by Horta [50] and reported by S&P, a giant credit rating company [51].
As a result, this research incorporates all four categories of financial ratios, in which CR
and QR are used to study liquidity, DER and DAR for solvency, AT for efficiency, and ROA
and ROE are adopted to observe the profitability of a company [52–54]. The 30 companies
under DJIA then serve as the decision alternatives in this research. The proposed model is
presented in Section 2.1.

2.1. Proposed Entropy-Fuzzy TOPSIS Model

Upon the collection of financial ratio data from the financial statements of the 30 com-
panies, Shannon’s entropy method is applied in Stage-1 to compute the objective weights of
the decision criteria due to the vagueness and ambiguity of the financial ratios [55,56]. The
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implicit information existing among various criteria can be captured to obtain the value
dispersion for analysis, which is the strength of Shannon’s entropy method [57]. However,
as the entropy value gets larger, the entropy weight will become smaller, reflecting less
information and the lesser importance of the criteria in a research study, and vice versa. In
addition, Shannon’s entropy has also received great interest in TOPSIS studies [58]. The
details of Shannon’s entropy method in Stage-1 are presented in the following steps:

Step-1: Determine the weights of the decision criteria with Shannon’s entropy method [59].
When there are h alternatives and k criteria, the initial decision matrix, D, is:

D =
(
xij
)

hxk (1)

xij shows the value of jth criterion from the ith alternative.
Step-2: Normalize the initial decision matrix, D.

pij =
xij

∑h
i=1 xij

, i = 1, 2, 3, . . . , h; j = 1, 2, 3, . . . , k (2)

Step-3: Obtain the information entropy, ej, of criterion k.

ej = − 1
ln m

h

∑
i=1

pij ln pij, j = 1, 2, 3, . . . , k (3)

Step-4: Compute the entropy weight, wj of criterion k.

wj =
1 − ej

∑k
j=1
(
1 − ej

) , j = 1, 2, 3, . . . , k (4)

where 0 ≤ wj ≤ 1 and ∑k
j=1 wj = 1.

Stage-2 of this research incorporates a fuzzy TOPSIS model to assess and rank the
decision alternatives. Due to the limitation of providing unconcise information in TOPSIS,
a fuzzy TOPSIS was then proposed by Chen [60]. The fuzzy TOPSIS is based from cardinal
data on the criteria. The most critical concept of fuzzy TOPSIS is the interval or extent
between fuzzy positive ideal solutions (PIS) and fuzzy negative ideal solutions (NIS) for
the alternatives, respectively. In order to improve the suitability and reputability of this re-
search, the assessment and ranking of the alternatives engage the use of linguistic variables
with triangular fuzzy numbers (TFNs), which could exist in vector forms x̃ = (p, q, r). The
membership of a TFN can be found below:

x(g)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 i f g < p

g−p
q−p i f p ≤ g < q
r−t
r−q i f q ≤ g < r

0 i f g > r

(5)

where p ≤ q ≤ r.
Due to this, the chances of capturing imprecise data will be reduced with the adop-

tion of mathematical means [61]. The steps for the entropy-fuzzy TOPSIS model are
explained below.

Step-5: Construct a fuzzy decision matrix, D̃ from the ratings of h alternatives and
k criteria [58]. Rating is given to each alternative using linguistic variables of TFNs as
shown in Table 2 [61–64].

D̃ =

⎡⎢⎢⎢⎣
x̃11 x̃12 . . . x̃1j
x̃21 x̃22 · · · x̃2j

...
...

...
...

x̃i1 x̃i2 · · · x̃ij

⎤⎥⎥⎥⎦, i = 1, 2, 3, . . . , h; j = 1, 2, 3, . . . k (6)
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where x̃ij =
(
aij, bij, cij

)
where aij is the lower bound, bij is the median, and cij is the upper

bound, with i = 1, 2, 3, . . . , h; j = 1, 2, 3, . . . , k.

Table 2. Linguistic variables corresponding to TFNs.

Linguistic Terms TFNs

Very low 1, 1, 3
Low 1, 3, 5

Medium 3, 5, 7
High 5, 7, 9

Very high 7, 9, 9

According to Table 2, the rating from the fuzzy decision matrix is converted into TFNs.
This conversion is based on where the rating will fall between the intervals of minimum
value and maximum value for each financial ratio. For instance, the ratings with lower
values will be rated as having very low linguistic terms. On the other hand, the ratings with
higher values will be classified as very high linguistic terms. The ratings with intermediate
values will be categorized as low, medium, or high in linguistic terms based on the interval
between the minimum value and maximum value of the financial ratios.

Step-6: Compute the normalized fuzzy decision matrix, p̃ij.
In this step, the optimistic and pessimistic criteria are classified. In this research, CR,

QR, AT, ROA, and ROE are the optimistic criteria expecting maximum values, whereas
DER and DAR are the pessimistic criteria with a minimum value to be obtained [59,62].

For the optimistic criteria, normalization can be computed as follows.

p̃ij =

(
aij

c+j
,

bij

c+j
,

cij

c+j

)
, j ∈ G, c+j = maxi

{
cij : i = 1, 2, 3, . . . , h

}
(7)

For the pessimistic criterion, normalization can be performed as follows.

p̃ij =

(
a−j
aij

,
a−j
bij

,
a−j
cij

)
, j ∈ H, a−j = mini

{
aij : i = 1, 2, 3, . . . , h

}
(8)

where G = optimistic criterion and H = pessimistic criterion.
Step-7: Calculate the weighted normalized fuzzy decision matrix, ṽij by multiplying

the normalized fuzzy decision matrix, p̃ij, with the entropy weight of criteria, wj.

ṽij = p̃ij × wj (9)

Step-8: Determine the fuzzy PIS, A+ and fuzzy NIS, A−.

A+ =
(
ṽ+1 , ṽ+2 , ṽ+3 , . . . , ṽ+k

)
, where ṽ+j = maxi

(
ṽij
)

(10)

A− =
(
ṽ−1 , ṽ−2 , ṽ−3 , . . . , ṽ−k

)
, where ṽ−j = mini

(
ṽij
)

(11)

Step-9: Calculate the extent of every alternative with A+ and A−.
Extent of alternative to A+:

d
(

ṽij, ṽ+j
)
=

√
1
3
[(aij − a+j )

2
+ (bij − b+j )

2
+ (cij − c+j )

2
] (12)

Extent of alternative to A−:

d
(

ṽij, ṽ−j
)
=

√
1
3
[(aij − a−j )

2
+ (bij − b−j )

2
+ (cij − c−j )

2
] (13)
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Step-10: Determine the overall extent of an alternative to A+, Y+
i , and A−, Y−

i .

Y+
i =

k

∑
j=1

d
(

ṽij, ṽ+j
)

, i = 1, 2, 3, . . . , h; j = 1, 2, 3, . . . , k (14)

Y−
i =

k

∑
j=1

d
(

ṽij, ṽ−j
)

, i = 1, 2, 3, . . . , h; j = 1, 2, 3, . . . , k (15)

Step-11: Calculate the closeness coefficient (CCi) for every alternative [63].

CCi =
Y−

i
Y−

i + Y+
i

(16)

The alternative with the greatest CCi value is the best alternative, while the remaining
alternatives can be ranked based on the descending order of CCi values [64].

2.2. Validation of the Proposed Model in Portfolio Investment

In this paper, the proposed model is validated in portfolio investment with a real-life
case study on the DJIA. The portfolio optimization is determined by the mean-variance
(MV) model. The MV model is developed by Markowitz [65] to construct an optimal
portfolio to achieve the expected return at a minimum level of risk [66–70]. Furthermore,
the investor is assumed to be rational in maximizing returns and minimizing risks. In
this study, the top 15 companies, which are determined by the ranking of the proposed
model, are selected for portfolio investment. Further, the MV portfolio optimization model
is adopted to determine an optimal portfolio [71]. According to the previous studies, the
researchers used the MV model to construct the optimal portfolio [72–78].

The MV portfolio optimization model’s formulation is demonstrated as follows:

Minimize
n

∑
i=1

n

∑
j=1

σijxixj (17)

Subject to
n

∑
j=1

xj = 1 (18)

n

∑
j=1

rjxj ≥ ρ (19)

xj ≥ 0, j = 1, 2, 3, . . . , n (20)

where

ρ denotes a parameter representing the target rate of return required by an investor,
xj denotes the weight invested in asset j,
σij denotes covariance between assets i and j,
rj denotes the expected return of asset j per period,
n denotes the number of assets,
xi denotes weight invested in asset i.

The objective function of the MV portfolio optimization model is to minimize portfolio
risk, which is indicated in Equation (17). The purpose of Equation (18) is to make sure that
the total of all the weights of assets is equal to one. In addition, Equation (19) is utilized
to get the returns at the desired level of return. Moreover, the weights of the assets must
be positive. This constraint is presented in Equation (20). The Equation (20) shows that
short sales are also not allowed for the MV portfolio optimization model since they require
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positive weights for assets. Therefore, it is a limitation of the proposed entropy-fuzzy
TOPSIS model integrated into a portfolio optimization model for portfolio investment.

Equation (21) shows the portfolio mean return [79].

rp =
n

∑
j=1

rjxj (21)

where

rj denotes the expected return of asset j per period,
xj denotes the weight invested in asset j,
rp denotes the portfolio’s mean return.

The portfolio performance ratio is determined based on the equation below [75].

Portfolio performance ratio =
Portfolio mean return

Portfolio risk
(22)

The performance of the optimal portfolio is compared with the benchmark DJIA in
terms of mean return.

3. Empirical Results

The results of this study consist of three sections. Section 3.1 presents the priorities of
financial ratios using the entropy weight method as described in Stage 1 of the proposed
model. In addition, Section 3.2 presents the financial performance evaluation and ranking
of the companies using fuzzy TOPSIS as presented in Stage 2 of the proposed model.
Finally, Section 3.3 presents the validation of the proposed entropy-fuzzy TOPSIS model in
portfolio investment.

3.1. Priorities of Financial Ratios with Entropy Weight Method

The weights of the financial ratios are determined using the entropy weight method.
Table 3 displays the initial decision matrix for the companies with respect to all financial ratios.

Table 3. The initial decision matrix for the companies with respect to all financial ratios.

Companies CR QR DER DAR AT ROA ROE

MMM 1.7400 1.2100 134.4386 38.3543 0.8386 13.8314 46.3529
AXP 1.1347 1.1347 257.5771 30.3486 0.1673 3.2200 26.5114

AMGN 3.0971 2.8086 256.5757 48.6843 0.3471 10.8200 49.4629
AAPL 1.2629 1.2271 115.2043 30.5629 0.8043 18.1143 63.9543

BA 1.2271 0.3586 1329.2100 21.0657 0.7671 2.1971 459.5800
CAT 1.3829 0.9800 253.5143 47.2471 0.6043 4.8886 26.2443
CVX 1.1529 0.9314 25.5686 14.8700 0.5257 2.2371 3.8286

CSCO 2.3329 2.2757 48.2171 21.1129 0.4557 9.7943 22.5071
KO 1.1343 1.0000 203.8743 50.3757 0.4314 8.4271 35.9286

DOW 1.8500 1.3250 97.3975 25.7400 0.7033 3.3433 14.1867
GS 1.1002 1.1002 435.3043 39.2800 0.0474 1.0057 11.8657
HD 1.2171 0.3671 810.5420 55.6857 2.2414 20.1857 2932.2020

HON 1.3257 1.0786 93.5800 29.1529 0.6686 9.3443 29.0271
IBM 1.1357 1.0929 272.6314 38.0429 0.5557 7.3100 54.6171

INTC 1.8657 1.5014 38.5686 22.0929 0.5400 13.3329 23.1929
JNJ 1.6200 1.3543 45.9986 18.8486 0.5200 10.2650 25.0067
JPM 1.1050 1.1050 195.3814 18.5686 0.0396 1.1443 12.7429

MCD 1.6629 1.6443 340.3300 76.9371 0.5857 14.4514 118.6800
MRK 1.3371 1.0800 85.3800 29.6357 0.4529 6.5629 18.8200
MSFT 2.5386 2.5000 72.3214 26.8100 0.4843 12.9114 34.0871
NKE 2.5714 1.7586 48.5114 17.7286 1.5000 16.1900 36.4957
PG 0.8729 0.7043 60.3671 25.9871 0.5614 8.1900 18.8129

CRM 0.9786 0.9792 27.0286 11.7143 0.4929 1.8514 3.1914
TRV 1.3065 1.3065 26.2729 6.1457 0.2838 2.6986 11.3929
UNH 1.5156 1.5156 72.0386 24.2114 1.5049 7.6743 22.6257

VZ 0.9100 0.8650 271.4600 42.2200 0.4786 6.3843 50.7843
V 1.7543 1.7551 46.2486 21.9929 0.3029 14.1786 30.5643

WBA 0.9600 0.5214 61.7471 22.5371 1.7414 5.0429 12.5686
WMT 0.8686 0.2686 59.2043 22.7214 2.3871 6.2714 16.4629
DIS 1.0129 0.9414 49.9386 24.2100 0.5100 7.1771 14.2443
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Next, the initial decision matrix is normalized to form the normalized decision matrix
as presented in Table 4.

Table 4. The normalized decision matrix for the companies with respect to all financial ratios.

Companies CR QR DER DAR AT ROA ROE

MMM 0.0396 0.0330 0.0230 0.0425 0.0389 0.0555 0.0110
AXP 0.0258 0.0309 0.0441 0.0336 0.0078 0.0129 0.0063

AMGN 0.0704 0.0765 0.0440 0.0539 0.0161 0.0434 0.0117
AAPL 0.0287 0.0334 0.0197 0.0339 0.0373 0.0727 0.0151

BA 0.0279 0.0098 0.2278 0.0233 0.0356 0.0088 0.1088
CAT 0.0314 0.0267 0.0435 0.0523 0.0280 0.0196 0.0062
CVX 0.0262 0.0254 0.0044 0.0165 0.0244 0.0090 0.0009

CSCO 0.0531 0.0620 0.0083 0.0234 0.0212 0.0393 0.0053
KO 0.0258 0.0273 0.0349 0.0558 0.0200 0.0338 0.0085

DOW 0.0421 0.0361 0.0167 0.0285 0.0326 0.0134 0.0034
GS 0.0250 0.0300 0.0746 0.0435 0.0022 0.0040 0.0028
HD 0.0277 0.0100 0.1389 0.0617 0.1040 0.0811 0.6939

HON 0.0301 0.0294 0.0160 0.0323 0.0310 0.0375 0.0069
IBM 0.0258 0.0298 0.0467 0.0421 0.0258 0.0294 0.0129

INTC 0.0424 0.0409 0.0066 0.0245 0.0251 0.0535 0.0055
JNJ 0.0368 0.0369 0.0079 0.0209 0.0241 0.0412 0.0059
JPM 0.0251 0.0301 0.0335 0.0206 0.0018 0.0046 0.0030

MCD 0.0378 0.0448 0.0583 0.0852 0.0272 0.0580 0.0281
MRK 0.0304 0.0294 0.0146 0.0328 0.0210 0.0264 0.0045
MSFT 0.0577 0.0681 0.0124 0.0297 0.0225 0.0518 0.0081
NKE 0.0585 0.0479 0.0083 0.0196 0.0696 0.0650 0.0086
PG 0.0198 0.0192 0.0103 0.0288 0.0261 0.0329 0.0045

CRM 0.0223 0.0267 0.0046 0.0130 0.0229 0.0074 0.0008
TRV 0.0297 0.0356 0.0045 0.0068 0.0132 0.0108 0.0027
UNH 0.0345 0.0413 0.0123 0.0268 0.0699 0.0308 0.0054

VZ 0.0207 0.0236 0.0465 0.0468 0.0222 0.0256 0.0120
V 0.0399 0.0478 0.0079 0.0244 0.0141 0.0569 0.0072

WBA 0.0218 0.0142 0.0106 0.0250 0.0808 0.0202 0.0030
WMT 0.0198 0.0073 0.0101 0.0252 0.1108 0.0252 0.0039
DIS 0.0230 0.0257 0.0086 0.0268 0.0237 0.0288 0.0034

After that, the information entropy (ej) and the entropy weight (wj) of the financial
ratios are determined as shown in Table 5.

Table 5. The information entropy (ej) and the entropy weight (wj) of the financial ratios.

Financial Ratio CR QR DER DAR AT ROA ROE

ej 0.9816 0.9681 0.8271 0.9681 0.9215 0.9403 0.4190
wj 0.0188 0.0328 0.1774 0.0327 0.0806 0.0613 0.5964

Based on Table 5, the information entropy (ej) for CR, QR, DER, DAR, AT, ROA, and
ROE are 0.9816, 0.9681, 0.8271, 0.9681, 0.9215, 0.9403, and 0.4190, respectively. Next, the
entropy weight (wj) of the financial ratios can be determined. Figure 2 displays the entropy
weights of the financial ratios.
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Figure 2. Entropy weights of financial ratios.
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According to Figure 2, the weights of financial ratios are determined using the entropy
weight method. Based on the results, ROE is identified as the most influential financial ratio
in determining the companies’ financial performance. The ROE has the highest weight
of 0.5964. In addition, the DER achieves the second highest weight of 0.1774. The AT
obtained a weight of 0.0806, followed by ROA (0.0613), QR (0.0328), DAR (0.0327), and
finally CR (0.0188).

3.2. Financial Performance Evaluation and Ranking of Companies with the Proposed
Entropy-Fuzzy TOPSIS Model

The financial performance of the companies is assessed by the proposed entropy-fuzzy
TOPSIS model. The initial decision matrix from Table 3 is used to assess the financial
performance and determine the ranking of the companies. Initially, the ratings from Table 3
are converted into TFNs, and then the fuzzy decision matrix is formed. This conversion is
based on where the rating will fall between the intervals of minimum value and maximum
value for each financial ratio. The fuzzy decision matrix for the companies with respect to
all financial ratios is shown in Table 6.

Table 6. The fuzzy decision matrix for the companies with respect to all financial ratios.

Companies CR QR DER DAR AT ROA ROE

MMM (1, 3, 5) (1, 3, 5) (1, 1, 3) (3, 5, 7) (1, 3, 5) (5, 7, 9) (1, 1, 3)
AXP (1, 1, 3) (1, 3, 5) (1, 1, 3) (1, 3, 5) (1, 1, 3) (1, 1, 3) (1, 1, 3)

AMGN (7, 9, 9) (7, 9, 9) (1, 1, 3) (5, 7, 9) (1, 1, 3) (3, 5, 7) (1, 1, 3)
AAPL (1, 1, 3) (1, 3, 5) (1, 1, 3) (1, 3, 5) (1, 3, 5) (7, 9, 9) (1, 1, 3)

BA (1, 1, 3) (1, 1, 3) (7, 9, 9) (1, 3, 5) (1, 3, 5) (1, 1, 3) (1, 1, 3)
CAT (1, 3, 5) (1, 3, 5) (1, 1, 3) (3, 5, 7) (1, 3, 5) (1, 3, 5) (1, 1, 3)
CVX (1, 1, 3) (1, 3, 5) (1, 1, 3) (1, 1, 3) (1, 3, 5) (1, 1, 3) (1, 1, 3)

CSCO (5, 7, 9) (5, 7, 9) (1, 1, 3) (1, 3, 5) (1, 1, 3) (3, 5, 7) (1, 1, 3)
KO (1, 1, 3) (1, 3, 5) (1, 1, 3) (5, 7, 9) (1, 1, 3) (1, 3, 5) (1, 1, 3)

DOW (3, 5, 7) (3, 5, 7) (1, 1, 3) (1, 3, 5) (1, 3, 5) (1, 1, 3) (1, 1, 3)
GS (1, 1, 3) (1, 3, 5) (1, 3, 5) (3, 5, 7) (1, 1, 3) (1, 1, 3) (1, 1, 3)
HD (1, 1, 3) (1, 1, 3) (5, 7, 9) (5, 7, 9) (7, 9, 9) (7, 9, 9) (7, 9, 9)

HON (1, 3, 5) (1, 3, 5) (1, 1, 3) (1, 3, 5) (1, 3, 5) (3, 5, 7) (1, 1, 3)
IBM (1, 1, 3) (1, 3, 5) (1, 1, 3) (3, 5, 7) (1, 3, 5) (1, 3, 5) (1, 1, 3)

INTC (3, 5, 7) (3, 5, 7) (1, 1, 3) (1, 3, 5) (1, 3, 5) (5, 7, 9) (1, 1, 3)
JNJ (1, 3, 5) (3, 5, 7) (1, 1, 3) (1, 1, 3) (1, 3, 5) (3, 5, 7) (1, 1, 3)
JPM (1, 1, 3) (1, 3, 5) (1, 1, 3) (1, 1, 3) (1, 1, 3) (1, 1, 3) (1, 1, 3)

MCD (1, 3, 5) (3, 5, 7) (1, 3, 5) (7, 9, 9) (1, 3, 5) (5, 7, 9) (1, 1, 3)
MRK (1, 3, 5) (1, 3, 5) (1, 1, 3) (1, 3, 5) (1, 1, 3) (1, 3, 5) (1, 1, 3)
MSFT (5, 7, 9) (7, 9, 9) (1, 1, 3) (1, 3, 5) (1, 1, 3) (5, 7, 9) (1, 1, 3)
NKE (5, 7, 9) (3, 5, 7) (1, 1, 3) (1, 1, 3) (5, 7, 9) (5, 7, 9) (1, 1, 3)
PG (1, 1, 3) (1, 1, 3) (1, 1, 3) (1, 3, 5) (1, 3, 5) (1, 3, 5) (1, 1, 3)

CRM (1, 1, 3) (1, 3, 5) (1, 1, 3) (1, 1, 3) (1, 1, 3) (1, 1, 3) (1, 1, 3)
TRV (1, 1, 3) (3, 5, 7) (1, 1, 3) (1, 1, 3) (1, 1, 3) (1, 1, 3) (1, 1, 3)
UNH (1, 3, 5) (3, 5, 7) (1, 1, 3) (1, 3, 5) (5, 7, 9) (1, 3, 5) (1, 1, 3)

VZ (1, 1, 3) (1, 3, 5) (1, 1, 3) (3, 5, 7) (1, 1, 3) (1, 3, 5) (1, 1, 3)
V (1, 3, 5) (3, 5, 7) (1, 1, 3) (1, 3, 5) (1, 1, 3) (5, 7, 9) (1, 1, 3)

WBA (1, 1, 3) (1, 1, 3) (1, 1, 3) (1, 3, 5) (5, 7, 9) (1, 3, 5) (1, 1, 3)
WMT (1, 1, 3) (1, 1, 3) (1, 1, 3) (1, 3, 5) (7, 9, 9) (1, 3, 5) (1, 1, 3)
DIS (1, 1, 3) (1, 3, 5) (1, 1, 3) (1, 3, 5) (1, 3, 5) (1, 3, 5) (1, 1, 3)

For the fuzzy decision matrix, all the financial ratios for each company are translated
into TFNs due to the presence of uncertainty and ambiguity in the data. Next, the nor-
malized fuzzy decision matrix is created by normalizing the fuzzy decision matrix. The
weighted normalized fuzzy decision matrix is formed by multiplying the normalized fuzzy
decision matrix with the entropy weights of the financial ratios. The weighted normalized
fuzzy decision matrix for the companies with respect to their financial ratios is presented
in Table 7.
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Table 7. The weighted normalized fuzzy decision matrix for the companies with respect to all
financial ratios.

Companies CR QR DER DAR AT ROA ROE

MMM (0.002, 0.006,
0.010)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.005, 0.007,
0.011)

(0.009, 0.027,
0.045)

(0.034, 0.048,
0.061)

(0.066, 0.066,
0.199)

AXP (0.002, 0.002,
0.006)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.009, 0.009,
0.027)

(0.007, 0.007,
0.020)

(0.066, 0.066,
0.199)

AMGN (0.015, 0.019,
0.019)

(0.025, 0.033,
0.033)

(0.059, 0.177,
0.177)

(0.004, 0.005,
0.007)

(0.009, 0.009,
0.027)

(0.020, 0.034,
0.048)

(0.066, 0.066,
0.199)

AAPL (0.002, 0.002,
0.006)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.009, 0.027,
0.045)

(0.048, 0.061,
0.061)

(0.066, 0.066,
0.199)

BA (0.002, 0.002,
0.006)

(0.004, 0.004,
0.011)

(0.020, 0.020,
0.025)

(0.007, 0.011,
0.033)

(0.009, 0.027,
0.045)

(0.007, 0.007,
0.020)

(0.066, 0.066,
0.199)

CAT (0.002, 0.006,
0.010)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.005, 0.007,
0.011)

(0.009, 0.027,
0.045)

(0.007, 0.020,
0.034)

(0.066, 0.066,
0.199)

CVX (0.002, 0.002,
0.006)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.011, 0.033,
0.033)

(0.009, 0.027,
0.045)

(0.007, 0.007,
0.020)

(0.066, 0.066,
0.199)

CSCO (0.010, 0.015,
0.019)

(0.018, 0.025,
0.033)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.009, 0.009,
0.027)

(0.020, 0.034,
0.048)

(0.066, 0.066,
0.199)

KO (0.002, 0.002,
0.006)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.004, 0.005,
0.007)

(0.009, 0.009,
0.027)

(0.007, 0.020,
0.034)

(0.066, 0.066,
0.199)

DOW (0.006, 0.010,
0.015)

(0.011, 0.018,
0.025)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.009, 0.027,
0.045)

(0.007, 0.007,
0.020)

(0.066, 0.066,
0.199)

GS (0.002, 0.002,
0.006)

(0.004, 0.011,
0.018)

(0.035, 0.059,
0.177)

(0.005, 0.007,
0.011)

(0.009, 0.009,
0.027)

(0.007, 0.007,
0.020)

(0.066, 0.066,
0.199)

HD (0.002, 0.002,
0.006)

(0.004, 0.004,
0.011)

(0.020, 0.025,
0.035)

(0.004, 0.005,
0.007)

(0.063, 0.081,
0.081)

(0.048, 0.061,
0.061)

(0.464, 0.596,
0.596)

HON (0.002, 0.006,
0.010)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.009, 0.027,
0.045)

(0.020, 0.034,
0.048)

(0.066, 0.066,
0.199)

IBM (0.002, 0.002,
0.006)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.005, 0.007,
0.011)

(0.009, 0.027,
0.045)

(0.007, 0.020,
0.034)

(0.066, 0.066,
0.199)

INTC (0.006, 0.010,
0.015)

(0.011, 0.018,
0.025)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.009, 0.027,
0.045)

(0.034, 0.048,
0.061)

(0.066, 0.066,
0.199)

JNJ (0.002, 0.006,
0.010)

(0.011, 0.018,
0.025)

(0.059, 0.177,
0.177)

(0.011, 0.033,
0.033)

(0.009, 0.027,
0.045)

(0.020, 0.034,
0.048)

(0.066, 0.066,
0.199)

JPM (0.002, 0.002,
0.006)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.011, 0.033,
0.033)

(0.009, 0.009,
0.027)

(0.007, 0.007,
0.020)

(0.066, 0.066,
0.199)

MCD (0.002, 0.006,
0.010)

(0.011, 0.018,
0.025)

(0.035, 0.059,
0.177)

(0.004, 0.004,
0.005)

(0.009, 0.027,
0.045)

(0.034, 0.048,
0.061)

(0.066, 0.066,
0.199)

MRK (0.002, 0.006,
0.010)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.009, 0.009,
0.027)

(0.007, 0.020,
0.034)

(0.066, 0.066,
0.199)

MSFT (0.010, 0.015,
0.019)

(0.025, 0.033,
0.033)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.009, 0.009,
0.027)

(0.034, 0.048,
0.061)

(0.066, 0.066,
0.199)

NKE (0.010, 0.015,
0.019)

(0.011, 0.018,
0.025)

(0.059, 0.177,
0.177)

(0.011, 0.033,
0.033)

(0.045, 0.063,
0.081)

(0.034, 0.048,
0.061)

(0.066, 0.066,
0.199)

PG (0.002, 0.002,
0.006)

(0.004, 0.004,
0.011)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.009, 0.027,
0.045)

(0.007, 0.020,
0.034)

(0.066, 0.066,
0.199)

CRM (0.002, 0.002,
0.006)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.011, 0.033,
0.033)

(0.009, 0.009,
0.027)

(0.007, 0.007,
0.020)

(0.066, 0.066,
0.199)

TRV (0.002, 0.002,
0.006)

(0.011, 0.018,
0.025)

(0.059, 0.177,
0.177)

(0.011, 0.033,
0.033)

(0.009, 0.009,
0.027)

(0.007, 0.007,
0.020)

(0.066, 0.066,
0.199)

UNH (0.002, 0.006,
0.010)

(0.011, 0.018,
0.025)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.045, 0.063,
0.081)

(0.007, 0.020,
0.034)

(0.066, 0.066,
0.199)

VZ (0.002, 0.002,
0.006)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.005, 0.007,
0.011)

(0.009, 0.009,
0.027)

(0.007, 0.020,
0.034)

(0.066, 0.066,
0.199)

V (0.002, 0.006,
0.010)

(0.011, 0.018,
0.025)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.009, 0.009,
0.027)

(0.034, 0.048,
0.061)

(0.066, 0.066,
0.199)

WBA (0.002, 0.002,
0.006)

(0.004, 0.004,
0.011)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.045, 0.063,
0.081)

(0.007, 0.020,
0.034)

(0.066, 0.066,
0.199)

WMT (0.002, 0.002,
0.006)

(0.004, 0.004,
0.011)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.063, 0.081,
0.081)

(0.007, 0.020,
0.034)

(0.066, 0.066,
0.199)

DIS (0.002, 0.002,
0.006)

(0.004, 0.011,
0.018)

(0.059, 0.177,
0.177)

(0.007, 0.011,
0.033)

(0.009, 0.027,
0.045)

(0.007, 0.020,
0.034)

(0.066, 0.066,
0.199)
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The fuzzy PIS (A+) and the fuzzy NIS (A−) for each financial ratio are determined
and shown in Table 8.

Table 8. The fuzzy PIS (A+) and the fuzzy NIS (A−).

Financial Ratio CR QR DER DAR AT ROA ROE

A+ (0.015, 0.019,
0.019)

(0.025, 0.033,
0.033)

(0.059, 0.177,
0.177)

(0.011, 0.033,
0.033)

(0.063, 0.081,
0.081)

(0.048, 0.061,
0.061)

(0.464, 0.596,
0.596)

A− (0.002, 0.002,
0.006)

(0.004, 0.004,
0.011)

(0.020, 0.020,
0.025)

(0.004, 0.004,
0.005)

(0.009, 0.009,
0.027)

(0.007, 0.007,
0.020)

(0.066, 0.066,
0.199)

The fuzzy PIS (A+) and the fuzzy NIS (A−) for each financial ratio in the weighted
normalized fuzzy decision matrix are established. In this study, the fuzzy PIS (A+) for CR,
QR, DER, DAR, AT, ROA, and ROE are (0.015, 0.019, 0.019), (0.025, 0.033, 0.033), (0.059,
0.177, 0.177), (0.011, 0.033, 0.033), (0.063, 0.081, 0.081), (0.048, 0.061, 0.061), and (0.464, 0.596,
0.596) respectively. On the other hand, the fuzzy NIS (A−) for CR, QR, DER, DAR, AT,
ROA, and ROE are (0.002, 0.002, 0.006), (0.004, 0.004, 0.011), (0.020, 0.020, 0.025), (0.004,
0.004, 0.005), (0.009, 0.009, 0.027), (0.007, 0.007, 0.020), and (0.066, 0.066, 0.199), respectively.

For the next step, the extent of each company from the fuzzy PIS and the fuzzy NIS is
computed and presented in Table 9.

Table 9. Extent of all companies with fuzzy PIS and fuzzy NIS.

Companies Extent with Fuzzy PIS Extent with Fuzzy NIS

MMM 0.557 0.193
AXP 0.599 0.151

AMGN 0.553 0.192
AAPL 0.541 0.212

BA 0.720 0.031
CAT 0.583 0.168
CVX 0.574 0.173

CSCO 0.552 0.200
KO 0.600 0.147

DOW 0.573 0.180
GS 0.676 0.101
HD 0.183 0.560

HON 0.562 0.193
IBM 0.585 0.164

INTC 0.538 0.217
JNJ 0.542 0.206
JPM 0.586 0.158

MCD 0.623 0.159
MRK 0.587 0.166
MSFT 0.534 0.218
NKE 0.488 0.262
PG 0.583 0.171

CRM 0.586 0.158
TRV 0.579 0.165
UNH 0.534 0.221

VZ 0.597 0.150
V 0.554 0.198

WBA 0.549 0.205
WMT 0.534 0.217
DIS 0.578 0.177

After that, the closeness coefficients of the companies are determined. The companies’
rankings are determined based on the closeness coefficients achieved. Table 10 presents the
entropy-fuzzy TOPSIS closeness coefficients as well as the ranking of companies.
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Table 10. The entropy-fuzzy TOPSIS closeness coefficients and ranking of companies.

Companies Entropy-Fuzzy TOPSIS Closeness Coefficients Ranking

MMM 0.2578 13
AXP 0.2017 26

AMGN 0.2578 12
AAPL 0.2812 7

BA 0.0418 30
CAT 0.2235 19
CVX 0.2313 17

CSCO 0.2659 10
KO 0.1967 28

DOW 0.2388 15
GS 0.1302 29
HD 0.7534 1

HON 0.2555 14
IBM 0.2191 22

INTC 0.2870 6
JNJ 0.2758 8
JPM 0.2125 23

MCD 0.2030 25
MRK 0.2202 21
MSFT 0.2900 4
NKE 0.3490 2
PG 0.2269 18

CRM 0.2125 23
TRV 0.2216 20
UNH 0.2925 3

VZ 0.2004 27
V 0.2634 11

WBA 0.2718 9
WMT 0.2885 5
DIS 0.2344 16

3.3. Validation of the Proposed Entropy-Fuzzy TOPSIS Model in Portfolio Investment

Finally, the validation of the proposed entropy-fuzzy TOPSIS model in portfolio
investment is performed with a real-world case study on DJIA. Based on the proposed
model, the optimal MV portfolio is determined by the selected companies with good
financial performance. Table 11 presents the summary statistics and performance of the
optimal MV portfolio.

Table 11. Summary statistics and performance of the optimal MV portfolio.

Optimal Portfolio Value

Portfolio mean return 0.0225
Portfolio risk 0.0445

Portfolio performance ratio 0.5056
DJIA index return (Benchmark) 0.0095

According to Table 10, the values of the closeness coefficients are determined based
on the proposed entropy-fuzzy TOPSIS model. A larger value of the closeness coefficients
implies the most performing companies. Based on the results, the closeness coefficients of
the companies range from 0.0418 to 0.7534. Among the companies, HD is identified as the
best company in terms of financial performance, with the largest closeness coefficient of
0.7534. This implies that HD has the closest proximity to the ideal solution, considering
the presence of uncertainty and fuzziness in the data. As a result, HD outperforms other
companies and thus achieves the first ranking based on the proposed entropy-fuzzy TOPSIS
model. The second ranking is obtained by NKE, followed by UNH, MSFT, WMT, INTC,
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AAPL, JNJ, WBA, CSCO, V, AMGN, MMM, HON, DOW, DIS, CVX, PG, CAT, TRV, MRK,
IBM, JPM, CRM, MCD, AXP, VZ, KO, GS, and finally BA. In this study, BA scored the lowest
value of 0.0418. Additionally, this study has indicated that there are ample opportunities for
the companies with low performances to make continuous improvements by considering
the good companies for future benchmarking.

The entropy-fuzzy TOPSIS model is proposed in this paper because the fuzzy analysis
takes the vagueness and uncertainty of the data into account. The results of this study are
converted into TFNs, and then the fuzzy decision matrix is formed. The fuzzy method is
taken into consideration in this study since uncertainty and vagueness of data are involved.
In this paper, the companies’ financial performances are assessed by seven important
financial ratios, which are CR, QR, DER, DAR, AT, ROA, and ROE. After analyzing the
financial ratios with the entropy weight method, the weights and priorities of the financial
ratios are determined. The financial ratio with the highest weight is ROE, followed by DER,
AT, ROA, QR, DAR, and CR. In this research, an entropy-fuzzy TOPSIS model is proposed
to evaluate the financial performances of companies based on liquidity, solvency, efficiency,
and profitability ratios to determine the companies with good financial performance for
portfolio investment.

According to Table 11, the proposed model generates a portfolio mean return of 0.0225
at a portfolio risk of 0.0445. The proposed model gives a portfolio performance ratio of
0.5056. The results of this study show that the optimal MV portfolio of the proposed model
is able to generate a higher mean return (0.0225) than the benchmark DJIA index return
(0.0095). Therefore, it shows the effectiveness of the proposed model, which outperforms
the benchmark DJIA index with a higher mean return. The proposed model provides
insights to the investors in identifying and selecting the good performing companies in
terms of financial performance for portfolio investment.

4. Conclusions

In this paper, an entropy-fuzzy TOPSIS model is proposed to evaluate the financial
performance of companies based on liquidity, solvency, efficiency, and profitability ratios
to determine the companies with good financial performance for portfolio investment. The
proposed entropy-fuzzy TOPSIS model consists of two stages. The first stage involves
Shannon’s entropy weight method to determine the objective weights of the financial ratios,
which are CR, QR, AT, DER, DAR, ROA, and ROE. In this study, ROE and DER are identified
as the influential financial ratios for the financial performance evaluation of companies
which are the components of the DJIA. The second stage includes the fuzzy TOPSIS model
to assess and rank the companies based on their financial performance. Regarding the
ranking of the companies, HD is determined to be the best company, followed by NKE,
UNH, MSFT, WMT, INTC, and AAPL. The companies with good financial performance
have been determined based on the proposed model for portfolio selection.

The validation of the proposed entropy-fuzzy TOPSIS model in portfolio investment
is performed using the MV model. Based on the proposed model, the optimal MV portfolio
is determined by the selected companies with good financial performance. The results
indicate that the proposed model is able to generate an optimal MV portfolio with higher
mean return than the benchmark DJIA index. This implies that the proposed model
outperforms the benchmark DJIA index with a higher portfolio mean return based on
the selection of well-performing companies. This study provides insights to investors
in portfolio investment. The investors can determine an optimal portfolio from the well-
performing companies in terms of financial performance for portfolio investment based on
the proposed model. The limitation of the proposed model is that it does not allow short
selling in portfolio investment.

The companies could embark on making decisions and taking initiatives to enhance
the top financial ratios to improve their financial performance. The financial ratios used in
this research include liquidity, solvency, efficiency, and profitability ratios. Based on the
integration of fuzzy in the proposed model, uncertainties in financial data can be reduced,
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which is important for decision making in financing, expansion, and growth. Future studies
could consider the application of the proposed entropy-fuzzy TOPSIS model for portfolio
investment in other stock markets, such as developed, emerging, or developing markets.
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Abstract: Malaysia has great geo-economic advantages, especially in becoming a major logistics
and investment hub. However, as operational risk events create uncertainties, logistics companies
suffer from supply and demand issues which affect their bottom lines, customer satisfaction and
reputations. This is a pioneer paper to propose the optimization of the efficiency of listed logistics
companies in Malaysia with operational risk factor using a data envelopment analysis (DEA) model.
The basic indicator approach (BIA) is used as an output indicator for the operational risk capital
requirement factor in the proposed model. This paper has practical and managerial implications with
the identification of potential improvements for the inefficient listed logistics companies based on the
optimal solution of the DEA model. This proposed model can be applied in emerging fields such as
finance and project-based construction companies, where operational risk is a high concern.
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1. Introduction

Malaysia has geo-economic advantages in connecting resources to markets for invest-
ments and business developments [1]. This natural privilege has increased the bilateral
and multilateral trade volumes as major logistics companies make Malaysia a focal hub for
their activities [2]. Nevertheless, local logistics companies also contribute to increasing the
logistics performance in Malaysia because of the realization that logistics performance has
significant relationships with the efficiency of a company and the outputs of the country [3].
Logistics companies typically manage a wide range of activities including transportation,
inventories, warehouses, distribution, and information sharing [4]. All these activities
are operational wherein an activity will affect subsequent processes in the logistics chain.
Thus, logistics companies are highly prone to operational risk. Operational risk includes
adverse activities from individuals, internal systems or activities, and some macroeconomic
events [5–7].

Poor inventory management could lead to an inadequate number of safety stocks
for sudden shift in customer demand, which cause the inability for transport planning
and shipment scheduling that prolong lead time, decrease customer satisfaction, and
company image, which will influence the company’s bottom line. On the other hand,
inventory surplus leads to high carrying cost and wastage in times of obsoletion [8]. Many
operational risk events are unrecognized while the consequences are hard to be quantified.
Lochan et al. [9] found that operational risks induced by demand fluctuation and lead
time are the main factors that affect logistics companies financially. This study also found
that natural catastrophe, such as fire or COVID-19, prompting a logistics company to shut
down for a week, could cause its customer to lose more than USD 180 million in revenue.
This shows that logistics companies need to manage their operational risk well because
all the activities and processes are highly interdependent. Gurtu and Johny [10] stated
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that operational and financial risks are the top concerns which cause major disruption in
companies.

The Basel Committee on Banking Supervision (BCBS) presented the basic indicator
approach (BIA) to bring down the adverse effects of operational risk [11]. Under BIA,
companies could carry a capital of at least the mean of a fixed percentage (alpha) of positive
gross income for the last three years [12,13]. BIA has received wide acceptance world-
wide [14,15]. Operational risk has a causal relationship with the efficiency of a company,
especially in terms of financial performance and should be monitored continuously [16,17].
Bai et al. [18] found that operational risk management could help shipping companies
reduce financial risk exposures and increase their efficiency. Th efficiency of the logistics
companies can be optimized with the data envelopment analysis (DEA) model [19,20]. DEA
is non-parametric model which aims to optimize the efficiency of decision-making units
(DMUs) under various inputs and outputs [21,22]. Efficiency is measured by the outputs
over inputs, wherein bigger outputs or smaller inputs contribute to higher efficiency [23].
The efficiency score ranges from 0.0000 to 1.0000 under the variable return to scale (VRS)
model [22,24]. This implies that the highest efficiency score is 1.0000 [17]. DMUs with this
highest efficiency score is on the efficiency frontier while the distance from the frontier
signals the level of inefficiency [22]. The achievement of the highest efficiency score denotes
the full use of inputs for the greatest output generation under the output oriented VRS
model [22].

DEA has been widely employed in the efficiency assessment in hospitals [25,26],
farming [27,28], construction [29], education [30], and the power industry [31,32]. This
study proposes a DEA model to optimize the efficiency of listed logistics companies in
Malaysia by incorporating operational risk factor, which is the BIA. This study is the pioneer
in analyzing the listed logistics companies in Malaysia over a long term with regards to
operational risk factor with the DEA model. The significance of this study includes the
identification of efficient and inefficient listed logistics companies in terms of operational
risk factor through the proposed DEA model. Another notable contribution of this study is
the ability of the DEA model for benchmarking and determining the improvement values
of inefficient listed logistics companies to facilitate them to achieve efficiency score of 1.0000
and become efficient companies. Benchmarking is essential for continuous improvement
especially in managerial decision-making. The flowchart of this study is presented in
Figure 1.

Section 2 discusses the research method of the proposed DEA model. Section 3 presents
the results and discussion. Section 4 concludes the paper with a summary of the results,
limitation, and future directions.
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Figure 1. Research flowchart.

2. Literature Review

The DEA is a linear programming model which assesses the efficiency of the DMUs
with several inputs and outputs [33–35]. One of the strengths of DEA lies in the non-
parametric methodology as DEA does not require assumption in the production function
or distribution [36]. DEA is also powerful in converting multiple inputs to multiple outputs
when assessing the DMUs. DEA was established by Charnes et al. [37] with constant return
to scale assumption [38,39]. Since the change in input does not always cause a proportional
difference in the outputs, Banker et al. [24] then developed the variable return to scale
(VRS) model. The efficiency is the weighted sum of outputs divided by the weighted sum
of inputs [40,41]. In the DEA model, efficiency ranges from 0.0000 to 1.0000 [24,41,42]. The
DMU is classified as efficient if it achieves the efficiency score of 1.0000. On the other hand,
the DMU is classified as inefficient if the efficiency score is below 1.0000 [36,42].
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DEA has been widely applied to assess the efficiency of companies with financial
ratios. When financial ratios complement DEA, the results could serve as an early warning
for inefficiencies for the companies [43–45]. DEA is able to translate the financial ratios
into a single efficiency score for evaluation and comparison [46,47]. Based on the optimal
solution of the DEA model, the weights of the inputs and outputs can also be determined so
that the sources of inefficiency for the inefficient DMUs can be identified [42,48]. Moreover,
DEA also serves as a powerful benchmarking tool as past studies have employed DEA to
determine the references for the inefficient DMUs to enhance their performances and to
determine the potential improvements [46,47].

DEA complements the financial ratios to assess the performances of companies in
many industries. Current ratios (CTR), debt-to-asset ratio (DAR), debt-to-equity ratio
(DER), and ROE, were used to study the food and beverages companies in Europe [42].
The DAR, DER, earnings per share (EPS), ROA, and ROE, were also used to determine
the efficiency of manufacturing companies in Iran [43]. The oil industry has also been
assessed with the DEA model using financial ratios such as ROA and ROE to determine the
strengths and weaknesses of the companies [44]. Kedžo and Lukač [45] noted that financial
ratios could reflect the operations of the manufacturers in Europe when complemented
with DEA. CTR, DAR, DER, EPS, ROA, and ROE have also been used to study financial
institutions in Iran using DEA [49]. Hospitals were also assessed with DEA and financial
ratios such as ROA and ROE [50].

The DEA model has been applied to evaluate the performances of logistics companies.
Chen [51] applied the DEA model to study the companies which provide transporta-
tion, warehousing, and postal services in China. Wohlgemuth et al. [52] assessed the
various types of logistics operators in Brazil with DEA. Zhang and Koutmos [53] used
the DEA model to evaluate the airlines in the United States and Canada with financial
ratios such as weighted average cost of capital (WACC) and return on equity (ROE).
Venkadasalam et al. [54] analyzed the performances of the shipping companies in Southeast
Asia with financial ratios such as return on asset (ROA) and ROE. Li et al. [55] studied
container terminals in China and found the areas of inefficiency to be enhanced. Port
logistics efficiency has also been evaluated with the DEA model and the study found that
the efficiency was low [56]. Besides, the selection of logistics partners in Vietnam was
also done using the DEA model [57]. DEA has also been applied in green logistics and
third-party logistics in China and France, respectively [58,59].

Operational risk, which happens in the daily operations of a company, is caused
by humans, systems, and events. The basic indicator approach (BIA) can be used to
determine the capital requirement needed for operational risk based on the gross income of
a company [60]. WACC involves a mix of debt and equity to finance a company’s operations.
WACC is also the smallest return a company has to make from its operations. A small
WACC indicates low cost of finance, whereas high WACC indicates high operational cost
that would bring up a company’s operational risk. A company that experiences operational
risk event requires greater cost of capital to rectify the problem and regain shareholders’
trust, which causes high volatility in the company’s equity, thus greater WACC [61]. Since
past studies did not incorporate operational risk factor into the DEA model, this paper
intends to fill the gap by proposing a DEA model that incorporates the operational risk
factor for evaluating the efficiency of logistics companies in Malaysia.

3. Materials and Methods

This study aims to propose a DEA model to optimize the efficiency of the listed logistics
companies in Malaysia with the incorporation of operational risk factor via BIA. The DMUs
consist of 27 listed logistics companies on Bursa Malaysia [62]. This study follows the rule
of thumb developed by Bowlin [63] who noted that the number of DMUs must be at least
thrice the number of inputs and outputs [64–66]. There are four inputs and four outputs in
this study. The inputs and outputs contain financial ratios and financial variables [67,68]. A
combination of financial ratios including liquidity, leverage and profitability ratios could
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sufficiently highlight a company’s competitiveness. As such, this paper adopted current
ratios (CTR), debt-to-asset (DAR), debt-to-equity ratios (DER) and weighted average cost
of capital (WACC) as the inputs [44,50,69]. The outputs are earnings per share (EPS),
return on assets (ROA), return on equity (ROE) and BIA [13,50,54]. The period of study is
12 years from 2010–2021 as this period is sufficient to include considerable business and
product lifecycles [70,71]. Table 1 displays the proposed research framework to optimize the
efficiency of the listed logistics companies with operational risk factor using the proposed
DEA model.

Table 1. Proposed research framework.

Objective
To Optimize the Efficiency of the Listed Logistics Companies with
Operational Risk Factor in Malaysia Using Proposed DEA Model

Inputs

Current ratios (CTR)
Debt-to-asset ratios (DAR)
Debt-to-equity ratios (DER)

Weighted average cost of capital (WACC)

Outputs

Earnings per share (EPS)
Return on asset (ROA)
Return on equity (ROE)

Basic indicator approach (BIA)

Decision Making
Units (DMUs)

AIRPORT HUBLINE PRKCORP
BHIC ILB SEALINK

BIPORT LITRAK SEEHUP
CJCEN MAYBULK SURIA

COMPLET MISC SYSCORP
FREIGHT MMCCORP TAS

GCAP NATWIDE TASCO
GDEX POS TNLOGIS

HARBOUR PDZ TOCEAN

Based on Table 1, this study aims to optimize the efficiency of the listed logistics
companies with operational risk factor in Malaysia using the proposed DEA model. CTR,
DAR, DER, and WACC are the inputs while EPS, ROA, ROE, and BIA are the outputs. This
study includes all the 27 listed logistics companies in Malaysia from 2010 to 2021. After
the identification of the objective, inputs, outputs and DMUs, this study shall evaluate and
rank the efficiency of the listed logistics companies with the proposed DEA model. Then,
the inefficient companies can benchmark the efficient companies based on the optimal
solution of the proposed DEA model. After that, this paper shall determine the target
values for the inefficient companies according to the respective optimal coefficients of the
benchmarked efficient companies. Based on the target values of outputs and inputs for
potential improvement, the inefficient companies can achieve the efficiency score of 1.0000
and thus, classified as efficient companies.

The efficiency is the quotient of weighted-sum of outputs to the weighted-sum of
inputs, yielding efficiency of 0.0000 to 1.0000 [22,23]. The DMUs can then be ranked
according to their efficiency. The highest ranking is achieved when the efficiency is 1.0000
because the DMU has garnered the greatest outcomes from its resources. When the DMU
has achieved the highest ranking with 1.0000 efficiency score, this implies that the DMU
is efficient. Conversely, if the efficiency score of the DMU is less than 1.0000, the DMU
is inefficient and can improve based on the optimal solution of the DEA model [24]. The
formulation of the proposed DEA model to optimize the efficiency of the listed logistics
companies with the incorporation of operational risk factor is presented below [22,72,73].

Maximize Ep =
∑m

h=1 thyhp − up

∑n
k=1 wkxkp

(1)
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Subject to
∑m

h=1 thyhp − up

∑n
k=1 wkxkp

≤ 1, p = 1, 2, 3, . . . , q, (2)

th ≥
{

ε, i f h = 1, 2, 3, . . . , m, where h �= BIA;
α, i f h = BIA

(3)

wk ≥ ε, k = 1, 2, 3, . . . , n (4)

where
Ep denotes the efficiency of DMU p,
th denotes the weights of output h,
yhp denotes the value of h output of DMU p,
m denotes the number of outputs,
wk denotes the weights of input k,
xkp denotes the value of k input of DMU p,
n denotes the number of inputs,
ε denotes positive value,
α denotes 15% as set by the Basel Committee on Banking Supervision,
q denotes the number of DMU,
up denotes free variable of DMU p,
BIA denotes the hth output for Basic Indicator Approach.
Equation (1) maximizes the efficiency of the DMUs wherein the efficiency is the

quotient of the weighted-sum of outputs to the weighted-sum of inputs. Equation (2)
constraints the efficiency from 0 to 1. th is the weight of output obtained from the optimal
solution of DEA model for the determination of the contribution of the output among all
outputs to the efficiency of the DMU. Under BIA, companies should have a capital of at
least the mean of a fixed percentage (alpha) of the positive gross income over three years
where alpha is 15% [14,15]. As such, th is set to be at least 0.15 for BIA as shown in (3).
wk is the input weight retrieved from the optimal solution of DEA model to quantify the
contribution of the input among all inputs to the efficiency of the DMU. Since DEA is a
linear programming model, the following transformation applies where the Equations (3)
to (7) are the linear programming forms of the DEA model.

Maximize Ep =
m

∑
h=1

thyhp − up (5)

Subject to

−
m

∑
h=1

thyhp +
n

∑
k=1

wkxkp + up ≥ 0, p = 1, 2, 3, . . . , q, (6)

n
∑

k=1
wkxkp = 1,

Equations (3) and (4).
(7)

The computational work of the proposed DEA model is solved with LINGO [74,75].
The efficient DMUs may form the reference units to be benchmarked by the inefficient
DMUs. The optimal solution of the DEA model will also provide the optimal coefficient
for the calculation of target values for the inefficient DMUs in terms of the outputs and
inputs [76]. The potential improvements show the amount that an input should be reduced
and the value that an output should be increased for the inefficient DMUs in order to
achieve 1.0000 efficiency score and thus classified as efficient DMUs [77].

The target value of the output of inefficient DMU is shown below:

Yhp =
z

∑
g=1

rgvhg, h = 1, 2, 3, . . . , m (8)
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where
Yhp denotes the target value of output h of DMU p,
rg denotes the optimal coefficient of benchmarked DMU g,
vhg denotes the initial value of output h of benchmarked DMU g,
z denotes the number of benchmarked DMU.
The determination of the target value of the output is shown in Equation (8). The target

value can be determined using the summation of the product of the optimal coefficient of
the benchmarked DMU and the initial value of the output of the benchmarked DMU.

The target value of the input of inefficient DMU is shown below:

Xkp =
z

∑
g=1

rgxkg, k = 1, 2, 3, . . . , n (9)

where
Xkp denotes the target value of input k of DMU p,
rg denotes the optimal coefficient of benchmarked DMU g,
xkg denotes the initial value of input k of benchmarked DMU g,
z denotes the number of benchmarked DMU.
For the input, the determination of the target value is shown in Equation (9). The

target value can be computed using the summation of the product of the optimal coefficient
of the benchmarked DMU and the initial value of the input of the benchmarked DMU.
Based on the target value of output and input as presented in the Equations (8) and (9)
respectively for potential improvement, the inefficient DMU can achieve the efficiency
score of 1.0000 and thus, classified as efficient DMU.

4. Results and Discussion

The efficiencies and ranks of the listed logistics companies in Malaysia with the
inclusion of operational risk factor are tabulated in Table 2.

From Table 2, listed logistics companies with efficiency equals to 1.0000 are ranked
first because they are efficient. Out of the 27 listed logistics companies, 15 companies
achieve full efficiency of 1.0000. They are AIRPORT, COMPLET, GDEX, HUBLINE, ILB,
MISC, MMCCORP, NATWIDE, POS, PDZ, PRKCORP, SEEHUP, SYSCORP, TNLOGIS,
and TOCEAN. These 15 listed logistics companies have made full use of their inputs
for the greatest output generation. Since these 15 companies are efficient and lie on the
efficiency frontier, these companies can serve as the benchmarks and reference units for the
remaining inefficient companies. On the other hand, there are 12 listed logistics companies
which have not managed to achieve full efficiency. From higher ranks in descending order,
these companies are SEALINK (0.9906), HARBOUR (0.9860), BIPORT (0.9737), SURIA
(0.9666), BHIC (0.9649), FREIGHT (0.9400), GCAP (0.9026), TASCO (0.8966), CJCEN (0.8889),
LITRAK (0.8875), MAYBULK (0.8497), and TAS (0.6725). SEALINK is very close to the
efficiency frontier since its efficiency is 0.9906 while TAS, with an efficiency of 0.6725,
requires more improvement since it is the furthest from the efficiency frontier. All these
12 listed logistics companies have not maximized their input utilization for the greatest
outputs.

Table 3 presents the summary of the efficiency of the listed logistics companies with
the incorporation of operational risk factor using DEA model.

From Table 3, the percentage of efficiency is 55.56%, which means that 55.56% of listed
logistics companies have achieved full efficiency of 1.0000. This percentage of efficiency is in
line with past studies where the range of efficiency is from 48.00% to 62.00% [50,78,79]. The
average efficiency is 0.9600 and this also in accordance with past studies which have average
efficiency of 0.9220 to 0.9710 [54,66,80,81]. Moreover, out of the 27 companies, 20 companies
(74.07%) managed to achieve above average efficiency [82]. They are AIRPORT, COMPLET,
GDEX, HUBLINE, ILB, MISC, MMCCORP, NATWIDE, POS, PDZ, PRKCORP, SEEHUP,
SYSCORP, TNLOGIS, TOCEAN, SEALINK, HARBOUR, BIPORT, SURIA, and BHIC.

59



Mathematics 2023, 11, 718

Table 2. Efficiencies of the listed logistics companies.

DMUs Efficiency Rank Categorization

AIRPORT 1.0000 1 Efficient
BHIC 0.9649 20 Inefficient

BIPORT 0.9737 18 Inefficient
CJCEN 0.8889 24 Inefficient

COMPLET 1.0000 1 Efficient
FREIGHT 0.9400 21 Inefficient

GCAP 0.9026 22 Inefficient
GDEX 1.0000 1 Efficient

HARBOUR 0.9860 17 Inefficient
HUBLINE 1.0000 1 Efficient

ILB 1.0000 1 Efficient
LITRAK 0.8875 25 Inefficient

MAYBULK 0.8497 26 Inefficient
MISC 1.0000 1 Efficient

MMCCORP 1.0000 1 Efficient
NATWIDE 1.0000 1 Efficient

POS 1.0000 1 Efficient
PDZ 1.0000 1 Efficient

PRKCORP 1.0000 1 Efficient
SEALINK 0.9906 16 Inefficient
SEEHUP 1.0000 1 Efficient
SURIA 0.9666 19 Inefficient

SYSCORP 1.0000 1 Efficient
TAS 0.6725 27 Inefficient

TASCO 0.8966 23 Inefficient
TNLOGIS 1.0000 1 Efficient
TOCEAN 1.0000 1 Efficient

Table 3. Summary of efficiency.

Efficiency

Minimum efficiency 0.6725
Maximum efficiency 1.0000
Average efficiency 0.9600

Percentage of efficiency (%) 55.56
Percentage of inefficiency (%) 44.44

From the optimal solution of the DEA model, the benchmarks which form the reference
units, together with the respective optimal coefficients for the inefficient listed logistics
companies are identified and shown in Table 4. The benchmarks are made up of the efficient
companies.

BHIC, BIPORT, CJCEN, FREIGHT, GCAP, HARBOUR, LITRAK, MAYBULK, SEALINK,
SURIA, TAS, and TASCO are the 12 inefficient listed logistics, thus require improvements.
These 12 companies can benchmark the 15 efficient companies, which include AIRPORT,
COMPLETE, GDEX, HUBLINE, ILB, MISC, MMCCORP, NATWIDE, POS, PDZ, PRKCORP,
SEEHUP, SYSCORP, TNLOGIS, and TOCEAN. Out of the 15 efficient listed logistics com-
panies, only 11 companies serve as benchmarks for these inefficient companies. AIRPORT,
GDEX, NATWIDE, and PDZ do not form the benchmarks for any inefficient companies.
POS appears the most in the reference units of the inefficient companies as POS serves
as the benchmark for nine inefficient companies. This is followed by ILB, MISC and SEE-
HUP which are the benchmarks for seven inefficient companies, respectively. SYSCORP
and TOCEAN only appear as the benchmarks for one company, which are SEALINK and
MAYBULK, respectively.
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Table 4. Benchmarks for inefficient DMUs.

Inefficient
DMUs

Benchmarks (Efficient DMUs)

Complet Hubline ILB MISC Mmccorp POS Prkcorp Seehup Syscorp Tnlogis Tocean

BHIC 0.5682 0.1476 0.0001 0.0025 0.2816
BIPORT 0.1580 0.1239 0.0001 0.0406 0.1368 0.5405
CJCEN 0.0894 0.5247 0.0012 0.3847

FREIGHT 0.2039 0.4376 0.0025 0.3560
GCAP 0.7071 0.0857 0.2072

HARBOUR 0.1507 0.2119 0.0021 0.6353
LITRAK 0.1478 0.0039 0.0375 0.8108

MAYBULK 0.4004 0.1028 0.0032 0.0003 0.4933
SEALINK 0.1194 0.8806

SURIA 0.8525 0.0336 0.0992 0.0147
TAS 0.0379 0.6720 0.2901

TASCO 0.0334 0.3635 0.0022 0.0049 0.5960

From Table 4, BIPORT has six benchmarks in the reference unit, which means that
BIPORT is less efficient compared to these six companies. These six companies are MISC,
MMCCORP, POS, PRKCORP, SEEHUP, and TNLOGIS. The optimal coefficients of these
six companies are then used to compute the target values for the outputs and inputs of
BIPORT based on Equations (8) and (9), respectively. For example, the target value of the
EPS can be computed based on the sum of the product of the optimal coefficients of MISC
(0.1580), MMCCORP (0.1239), POS (0.0001), PRKCORP (0.0406), SEEHUP (0.1368), and
TNLOGIS (0.5405) and the initial values of the EPS of MISC, MMCCORP, POS, PRKCORP,
SEEHUP, and TNLOGIS, respectively.

SEALINK, which is the closest to the efficiency frontier among all the inefficient
companies because of the efficiency of 0.9906, can benchmark two companies, which
are HUBLINE and SYSCORP to improve its efficiency. The target values of the outputs
and inputs for SEALINK shall be based on the optimal coefficients of HUBLINE (0.1194)
and SYSCORP (0.8806) and the initial values of the outputs and inputs of HUBLINE and
SYSCORP, according to Equations (8) and (9), respectively.

Table 5 explains the potential improvements of the inefficient listed logistics companies
based on the reference units and optimal coefficients in Table 4.

Table 5. Potential improvement for inefficient DMUs.

DMU Output/Input Initial Value Target Value
Potential

Improvement

BHIC EPS 0.0690 0.0690 0.0000
ROA 0.0192 0.0192 0.0000
ROE 0.0414 0.0441 0.0027
BIA 0.0545 0.0545 0.0000
CTR 0.9947 0.9598 −0.0349
DAR 0.5779 0.5471 −0.0308
DER 1.8922 1.6809 −0.2113

WACC 0.0733 0.0707 −0.0026
BIPORT EPS 0.3648 0.3648 0.0000

ROA 0.0689 0.0689 0.0000
ROE 0.1501 0.1746 0.0245
BIA 0.1102 0.1102 0.0000
CTR 3.2174 1.2836 −1.9338
DAR 0.5415 0.5273 −0.0142
DER 1.2977 1.2638 −0.0339

WACC 0.0602 0.0586 −0.0016
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Table 5. Cont.

DMU Output/Input Initial Value Target Value
Potential

Improvement

CJCEN EPS 0.1121 0.1145 0.0024
ROA 0.0456 0.0374 −0.0082
ROE 0.0739 0.0722 −0.0017
BIA 0.0116 0.1768 0.1652
CTR 1.8669 1.6569 −0.2100
DAR 0.3959 0.5228 0.1268
DER 0.6771 1.3977 0.7207

WACC 0.0772 0.0612 −0.0160
FREIGHT EPS 0.1018 0.1932 0.0914

ROA 0.0633 0.0641 0.0008
ROE 0.1023 0.1023 0.0000
BIA 0.0160 0.1710 0.1550
CTR 2.1968 2.1162 −0.0807
DAR 0.3794 0.3513 −0.0281
DER 0.6125 0.5900 −0.0225

WACC 0.0731 0.0704 −0.0027
GCAP EPS 0.0362 0.0991 0.0629

ROA 1.1417 1.1417 0.0000
ROE 0.0650 1.8885 1.8235
BIA 0.0049 0.0166 0.0117
CTR 13.9511 3.8790 −10.0721
DAR 5.2244 0.3059 −4.9185
DER 0.5446 0.4934 −0.0513

WACC 0.0775 0.0702 −0.0073
HARBOUR EPS 0.1041 0.1232 0.0191

ROA 0.0550 0.0550 0.0000
ROE 0.0907 0.0911 0.0003
BIA 0.0122 0.0899 0.0777
CTR 1.9375 1.9331 −0.0044
DAR 0.3852 0.3755 −0.0097
DER 0.6587 0.6572 −0.0015

WACC 0.0657 0.0655 −0.0001
LITRAK EPS 0.3192 0.3192 0.0000

ROA 0.0753 0.1150 0.0398
ROE 0.2539 0.2539 0.0000
BIA 0.0608 0.0608 0.0000
CTR 3.0011 1.2042 −1.7969
DAR 0.6972 0.5896 −0.1076
DER 2.9152 1.5080 −1.4072

WACC 0.0603 0.0535 −0.0068
MAYBULK EPS 0.0771 0.0771 0.0000

ROA 0.0668 0.0730 0.0062
ROE 0.1121 0.1121 0.0000
BIA 0.0425 0.0425 0.0000
CTR 2.3389 1.9873 −0.3516
DAR 0.3433 0.2917 −0.0516
DER 0.7257 0.4414 −0.2843

WACC 0.0997 0.0801 −0.0195
SEALINK EPS 0.0122 0.0286 0.0165

ROA 0.0067 0.0129 0.0063
ROE 0.0136 0.0208 0.0071
BIA 0.0034 0.0081 0.0048
CTR 1.0091 1.0004 −0.0088
DAR 0.4391 0.4094 −0.0297
DER 0.8154 0.8083 −0.0071

WACC 0.0719 0.0682 −0.0037
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Table 5. Cont.

DMU Output/Input Initial Value Target Value
Potential

Improvement

SURIA EPS 0.1925 0.1925 0.0000
ROA 0.0439 0.0712 0.0274
ROE 0.0620 0.1157 0.0537
BIA 0.0159 0.0404 0.0245
CTR 2.8923 2.8063 −0.0861
DAR 0.2793 0.2710 −0.0083
DER 0.4018 0.3875 −0.0143

WACC 0.0848 0.0822 −0.0025
TAS EPS 0.0405 0.2532 0.2127

ROA 0.0266 0.0303 0.0037
ROE 0.0450 0.0477 0.0026
BIA 0.0018 0.2577 0.2559
CTR 2.1528 1.5306 −0.6222
DAR 0.5080 0.3612 −0.1468
DER 1.5783 0.6088 −0.9695

WACC 0.1028 0.0731 −0.0297
TASCO EPS 0.1886 0.1886 0.0000

ROA 0.0597 0.0597 0.0000
ROE 0.1032 0.1058 0.0026
BIA 0.0160 0.1463 0.1303
CTR 1.6644 1.5248 −0.1396
DAR 0.4191 0.3840 −0.0351
DER 0.8357 0.6753 −0.1604

WACC 0.0734 0.0672 −0.0062

From Table 5, the inefficient logistics companies can obtain the target values based on
the benchmarks and optimal coefficients as provided by the optimal solution of the DEA
model. Upon obtaining the target values, the potential improvements can be calculated by
the difference between the target values and the initial values. The potential improvements
for the outputs should be at least zero or a positive value because the outputs should be
maximized; for inputs, the potential improvements should be zero or less than zero so
that there can be input reduction [77]. The inefficient listed logistics companies are BHIC,
BIPORT, CJCEN, FREIGHT, GCAP, HARBOUR, LITRAK, MAYBULK, SEALINK, SURIA,
TAS, and TASCO.

For BHIC, in terms of outputs, EPS, ROA and BIA can be kept at the initial values
of 0.0690, 0.0192 and 0.0545, respectively. ROE can be increased by 0.0027 from 0.0414 to
0.0441. However, all the inputs should be reduced to move towards greater efficiency. CTR
of BHIC should be reduced from 0.9947 to a target value of 0.9598, with a difference of
−0.0349. DAR should be brought down by 0.0308 from its initial value of 0.5779 to attain
the target value of 0.5471. Since BHIC has a very high DER of 1.8922, BHIC could bring
down its DER by 0.2116 to 1.6809. WACC can have a reduction of 0.0026 from the initial
value of 0.0733 to reach 0.0707.

TAS has the lowest efficiency of 0.6725. All the outputs should be increased while
all the inputs should be reduced for higher efficiency. EPS and BIA of TAS are very low,
therefore, TAS should increase its EPS by 0.2127 from 0.0405 to 0.2532 while its BIA should
be increased by 0.2559 from the initial value of 0.0018 to the target value of 0.2577. The
initial values of ROA and ROE of TAS are 0.0266 and 0.0450, respectively. The potential
improvements of ROA and ROE of TAS are 0.0037 and 0.0026, so that the ROA and ROE
can reach 0.0303 and 0.0477, respectively. Among all the inputs, TAS has a very high initial
values of CTR and DER amounting to 2.1528 and 1.5783. Therefore, based on the optimal
solution of DEA model, its CTR and DER can be lowered by 0.6222 and 0.9695 to arrive at
the values of 1.5306 and 0.6088, respectively. DAR and WACC of TAS could be reduced
from 0.5080 to 0.3612 and from 0.1028 to 0.0731, respectively.

63



Mathematics 2023, 11, 718

5. Conclusions

This study has successfully optimized the efficiency of the listed logistics companies
in Malaysia with the incorporation of operational risk factor, which is the BIA, using DEA
model from 2010 to 2021. The percentage of efficiency is 55.56% and the efficient companies
are AIRPORT, COMPLET, GDEX, HUBLINE, ILB, MISC, MMCCORP, NATWIDE, POS,
PDZ, PRKCORP, SEEHUP, SYSCORP, TNLOGIS, and TOCEAN. The average efficiency is
0.9600 with 74.07% of the companies managed to achieve above average efficiency. The
potential improvements of the inefficient listed logistics companies, which include BHIC,
BIPORT, CJCEN, FREIGHT, GCAP, HARBOUR, LITRAK, MAYBULK, SEALINK, SURIA,
TAS, and TASCO have also been obtained with the powerful benchmarking ability of the
DEA model.

Based on the optimal solution of the proposed DEA model, the inefficient listed
logistics companies can identify the inputs to be reduced and outputs to be raised. To
increase its EPS, ROA, and ROE, the inefficient companies can reduce its expenses, such
as participating in global sourcing to procure from markets with high quality materials at
lower cost or by lowering its cost of goods sold and expenses through Kaizen costing for
continuous improvement. Besides, the inefficient companies can set aside the respective
capital for operational risk hedging based on the BIA determined by the optimal solution
of the proposed model. A high CTR can reduce the company’s operating capital in the
short term. Therefore, the inefficient listed logistics companies can delay their capital
purchases or restructure their short-term debts to reduce their CTR. For DAR and DER
reduction, the inefficient companies can perform effective inventory management for better
utilization of its assets and equities. It is important for companies to assess their risks as
lower market risks would bring down its cost of equity, thereby lowering WACC for the
inefficient logistics companies.

This paper is highly significant as the benchmarking process could facilitate the
decision-making processes by the top management for financial structure and investment
insights. This proposed model is also the pioneer in including BIA to optimize the efficiency
of listed logistics companies in Malaysia. For the limitation of this research, the proposed
model is only applicable for the efficiency evaluation of listed companies that provide the
annual financial reports for data analysis. In the future, this model can be adopted in various
prominent fields such as finance, project-based construction, engineering, manufacturing,
and retail industries. This proposed model can also be applied in other countries to evaluate
the efficiency of companies.
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Abstract: A machine learning procedure is proposed to create numerical schemes for solutions of
nonlinear wave equations on coarse grids. This method trains stencil weights of a discretization
of the equation, with the truncation error of the scheme as the objective function for training. The
method uses centered finite differences to initialize the optimization routine and a second-order
implicit-explicit time solver as a framework. Symmetry conditions are enforced on the learned
operator to ensure a stable method. The procedure is applied to the Korteweg–de Vries equation. It is
observed to be more accurate than finite difference or spectral methods on coarse grids when the
initial data is near enough to the training set.
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1. Introduction

Numerical methods for nonlinear wave equations have a long history, from the sem-
inal works of Courant, Friedrichs, and Lewy [1] almost a century ago, to more recent
contributions of Fornberg, Trefethen, LeVeque, and many others [2–10]. By and large, these
methods are successful when a sufficiently fine discretization is used. Many classical nu-
merical methods for partial differential equations (PDE) perform poorly on coarse grids, i.e.,
with few data points [11–13]. Recently, a number of authors have used machine learning
to augment numerical solvers in the coarse discretization regime [14–16]. In this work, a
procedure for numerically solving a nonlinear dispersive wave equation is proposed using
a machine learning model to optimize stencil weights. A simple neural network is used,
and the resulting numerical scheme is trained on solutions of the PDE (The method allows
for training on either exact solutions or coarse samples of a highly-resolved numerical solution).
The result is a numerical scheme that can outperform both Fourier collocation and its sister
finite difference scheme when applied on the coarse grid.

The novel numerical method is developed and applied to the Korteweg–de Vries
(KdV) equation. The KdV equation was originally derived as a model for waves in shallow
water [17,18]. Numerous recent works have since used the KdV equation or a modified
version of it in many areas where long, weakly nonlinear waves are of interest [18–29].
The KdV equation has localized traveling wave solutions, or solitons. These localized
waves maintain their shape as they propagate through space and time [30]. This is due to a
balance between the nonlinear and dispersive properties of the equation [31,32]. The KdV
equation is integrable, and the solutions are real. Although the formula of the soliton was
used for debugging, the results in this paper rely on neither the existence of solitary waves
nor integrability. The form of the KdV equation in consideration is

ut + uxxx − 6uux = 0, (1)
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where the subscripts denote the derivative of the respective independent variables. The
closed-form solutions of the KdV equation are

ũ(x, t) = − c
2

sech2
(√

c
2

(x − ct)
)

, (2)

where c is the speed. Figure 1 shows a plot of the wave solution in time and space, using
c = 1, with a time interval length of 3 and spatial domain size of 40.

Figure 1. An example of the traveling waves solution of the Korteweg–de Vries equation, c = 1 in (2),
is plotted as a function of space and time.

Machine learning methods have been applied to PDEs many times [33] and in numer-
ous applications [34,35]. Several recent works have used machine learning methods to find
the underlying PDE [18,20,25,26,36,37]. Many recent works have aimed to improve the accu-
racy of solutions to PDEs [15,19,21–25,38,39]. The machine learning models and approaches
vary throughout these works such as the use of a residual network [37,40], a new proposed
network called PDE-Net [36], a neural network based on Lie groups [27], a multilayer feed-
forward neural network [34], and an unsupervised learning [41] approach [42]. Some ap-
proaches combine deep neural networks with other methods such as regression models [20]
and Galerkin methods [43]. Several works have implemented the physics-informed neural
networks (PINNs) approach [19,21,22,24,25,44,45], as proposed by Raissi et al. [39]. PINNs
incorporate the PDE and boundary conditions into the objective or loss function to preserve
the physics of the equation [19,22,39,46]. Variations within the PINN framework exist
to include the gradient optimized [24] and parareal [47] PINNs. An important note to
make about PINNs is that the machine learning models represent the solution as a neural
network, which are functions of x and t. In this work, a neural network is used to model
the stencil weights as a function of the unknown solution u.

Deep learning models, also known as deep neural networks, are very common ma-
chine learning models used in problems involving PDEs [15,25,33,48]. Historically, deep
neural networks were defined to have more than two hidden layers [49,50]. With today’s
technology, the number of layers can be well into the double digits, so a neural network
with three or four hidden layers may be considered “simple”. Um et al. [33] use a model
with 22 layers. On the lower end, Bar-Sinai et al. [15] use a three-layer neural network.
Raissi et al. [25] use two deep neural networks, one with five layers and the other with
only two. Raissi et al. [48] provide results using different numbers of layers in their
model. The drawbacks to using deep neural networks may include having insufficient
training data, slow training time, and/or overfitting [49,50]. This paper uses a single-
layer neural network, which is considered a simple neural network, and which has 16
unknown coefficients.

The numerical method of this paper uses a fixed stencil width for the spatial dis-
cretization (as opposed to variable as in [15]) and bases the time-stepping algorithm on
a second-order implicit-explicit scheme (IMEX2) so as to have an unbounded stability
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region [11]. Many recent numerical machine learning works use fourth-order Runge–Kutta
(RK4) [21,23,25,39,46], presumably for its temporal accuracy, but we find the stability prop-
erties to be of greater importance for this training procedure, hence IMEX2 [11,51,52]. Other
second-order time-stepping algorithms exist, such as RK2, and could be used in future
studies but may lack the stability properties offered by IMEX2 [11]. In addition to choosing
a time-stepper with an unbounded stability region, the machine learning network is built
in such a way as to preserve the operator’s anti-symmetry, guaranteeing eigenvalues which
live in the stability region of the scheme. The resulting scheme is stable for all time, with no
limitations on the time step size k (time step is limited in [15]).

The machine-learned numerical method is compared in performance against classical
methods, here finite difference and Fourier collocation. Several other works have estab-
lished methodologies that effectively use machine learning to solve various problems asso-
ciated with PDEs but do not compare performance with classical methods [19,21–24,39,44].
The method in this paper is observed to outperform these two classic methods, but comes
with a restriction that the initial data must be close to the training set. This is an expected
trade-off based on how the scheme was designed.

Training and test data sets can be generated in various ways. In several works, an
initial set of data is generated using a classical method such as from finite difference or
spectral methods [20–23,25,36], and the training and test data sets are both taken from that
initial set [22,23,25,43]. Another approach includes generating one set of solutions to train
on and another entirely different set to test on [43]. One last approach is training and testing
on data randomly sub-sampled from several different initial sets of solutions [15]. This
paper first uses a short time interval of a single solution trajectory for training, then tests on
both the long time dynamics of the trained trajectory and those of other initial data. Also
tested were training routines that used short time intervals from two solution trajectories.

The remainder of the paper is organized as follows: Section 2 discusses the architecture
of the scheme, the machine learning model, and the procedure for creating the solutions to
be used for training and testing. Section 3 discusses the outcomes of using different sets of
initial data when training and testing the model and the performance compared to finite
difference and spectral methods. Finally, Section 4 provides conclusions about the use of
this method for approximating solutions to PDEs on coarse grids and future research.

2. Numerical Method

2.1. Initial Data

Both training and testing data was generated via highly-resolved numerical sim-
ulations. The numerical method used for this data was Fourier collocation for spatial
derivatives and an IMEX2 time-stepping scheme, which has the form

un+1 − un−1

2k
=

1
2

g(un+1) +
1
2

g(un−1) + f (un), (3)

where n denotes a point in space and the superscripts denote the solutions evaluated at
the point n, and k is the temporal step size [52]. This scheme uses an implicit scheme
(trapezoidal) for the linear term of the KdV equation, denoted as g(u) in (3), and an explicit
scheme (leap frog) for the nonlinear term, denoted as f (u) in (3). This method is not
self-starting, so for the first time step, a first-order IMEX scheme was used with the form

un+1 − un

k
= g(un+1) + f (un), (4)

which uses the backward Euler method for the linear term and the forward Euler method
for the nonlinear term [52]. For a small nonlinearity, the IMEX2 scheme becomes the
trapezoidal scheme, which is stable on the entire left-half of the λk-plane, to include the
imaginary axis. Since the eigenvalues of the KdV equation are all pure imaginary, the
IMEX2 scheme is linearly stable (with an unbounded stability region [11]).
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All simulations in this work were conducted on a Windows 10 laptop computer
and Mac Pro with macOS Monterey using MATLAB version R2022b. The initial data
are all localized and exponentially decaying. The total number of spatial points was
sampled logarithmically in powers of two. The infinite spatial domain was approximated
by L = 40, 50, and 60. For each domain size, the initial highly-resolved solution sets
consist of 512 spatial steps and 30,001 temporal steps. Spatial and temporal data were
sub-sampled from highly-resolved numerical simulations to build the training and test
data sets for the machine learning model. The temporal data is sampled every 10th time
step and spatial data is sampled to achieve grids with 16, 32, and 64 points for each domain
size. The resulting highly-resolved, but coarsely gridded, data were used for both training
and testing.

2.2. Model Set-Up

Many recent works build numerical methods with a machine learning
component [18–26,36,39,43,46]. In contrast to these previous works, the machine learn-
ing model herein is applied solely to the linear spatial derivative term. In this section, we
describe the construction of this model. The model is built off of a finite difference method
for the third derivative term of the equation, specifically a second-order centered difference
approximation [53], which has the following form:

(uxxx)j ≈
− 1

2 uj−2 + uj−1 − uj+1 +
1
2 uj+2

h3 . (5)

This approximation uses a five-point stencil with coefficients − 1
2 , 1, 0, −1, and 1

2 . Let
b1 = − 1

2 and b2 = 1. Then, Equation (5) can be written as

(uxxx)j ≈
b1uj−2 + b2uj−1 − b2uj+1 − b1uj+2

h3 ,

and the differentiation matrix is the matrix BFD such that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(uxxx)1
(uxxx)2

...

(uxxx)N−1
(uxxx)N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈ 1

h3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −b2 −b1 0 . . . 0 b1 b2
b2 0 −b2 −b1 0 . . . 0 b1
b1 b2 0 −b2 −b1 0 . . . 0
0 b1 b2 0 −b2 −b1 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . 0 b1 b2 0 −b2 −b1 0
0 . . . 0 b1 b2 0 −b2 −b1

−b1 0 . . . 0 b1 b2 0 −b2
−b2 −b1 0 . . . 0 b1 b2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2

...

uN−1
uN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

for j from 1 to N. BFD is a circulant matrix, so the coefficients are the same in every row
since they have no dependence on j [3]. Additionally, BFD is anti-symmetric; that is, a
matrix such that BT = −B where the superscript T denotes the transpose.

In this paper, the coefficients b1 and b2 are replaced with optimal weights found using
machine learning that reduce error on coarse grids. The model function used to find the
weights has the form −−−→

aj(�un) =�b + W1
−−−−−−−−→
σ(W2(Xj�un)), (6)

which is a vector-valued function of length two, where �b is a vector of length two of
unknown coefficients, W1 and W2 are matrices of unknown coefficients with dimensions
2 × 2 and 2 × 5, respectively, and −→σ is an activation function which acts on the input vector
component-wise. Xj is a 5 × N matrix with entries

(Xj)i,l = δ(j−3+i) mod N,l ,
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with mod N accounting for the periodicity, and where δ is the Kronecker delta defined as

δij =

{
1, if i = j,
0, if i �= j,

so that Xj applied to un evaluates the five adjacent function values,

Xj�un =

⎛⎜⎜⎜⎜⎜⎜⎝
un

j−2
un

j−1
un

j
un

j+1
un

j+2

⎞⎟⎟⎟⎟⎟⎟⎠, (7)

thus the model design preserves the support of the finite difference stencil (Equation (7) will
look different when j = 1, 2, N − 1 or N due to periodicity at the boundaries, and this change is
handled explicitly in the definition of Xj).

The differentiation matrix of the machine learning model, denoted BML, is enforced
to be anti-symmetric so that its eigenvalues lie on the imaginary axis. This gives a stable
scheme, but also enforces an added consistency with the PDE. For each j from 1 to N, the
output of the vector function of the machine learning model is

−−−→
aj(�un) =

[
(a1)j
(a2)jt

]
.

Unlike in the finite difference method, the coefficients found using the machine learning
model are different for every row, since they depend on un

j . Therefore, BML has the
following form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 (−a2)1 (−a1)1 0 . . . 0 (a1)N−1 (a2)N

(a2)1 0 (−a2)2 (−a1)2 0 . . . 0 (a1)N

(a1)1 (a2)2 0 (−a2)3 (−a1)3 0 . . . 0

0 (a1)2 (a2)3 0 (−a2)4 (−a1)4 0 . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 (a1)N−5 (a2)N−4 0 (−a2)N−3 (−a1)N−3 0

0 . . . 0 (a1)N−4 (a2)N−3 0 (−a2)N−2 (−a1)N−2

(−a1)N−1 0 . . . 0 (a1)N−3 (a2)N−2 0 (−a2)N−1

(−a2)N (−a1)N 0 . . . 0 (a1)N−2 (a1)N−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This results in a machine learning approximation for the third derivative term as follows:

(uxxx)j ≈
(a1)j−2uj−2 + (a2)j−1uj−1 + (−a2)juj+1 + (−a1)juj+2

h3 . (8)

This approximation is substituted into the IMEX2 scheme, replacing the finite differ-
ence approximation for the third derivative term, which gives

un+1 − un−1

2k
= − 1

2h3 BML(un)un+1 − 1
2h3 BML(un)un−1 + f (un). (9)
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This scheme differs from the IMEX2 scheme in Equation (3) since g now depends on u at
two different time steps. Since this scheme is not self-starting, the following time-stepping
scheme is used for the first time step:

un+1 − un

k
= − 1

h3 BML(un)un+1 + f (un).

2.3. Objective Function and Error

The objective function used for training is the truncation error of Equation (9), evalu-
ated by using the highly-resolved numerical simulations as a proxy for the exact solution.
The nonlinear function f is approximated using a second-order finite difference approx-
imation for first derivatives. Minimization techniques are then applied to the scheme to
optimize the model’s truncation error.

Gradient-based optimization algorithms for the objective function are commonly
used to include stochastic gradient descent [19,24,43], Adam optimizer [19,20,23,42], Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) [27], and Limited-memory BFGS [19,21,22,26,28,39,44].
For this paper, the gradient-based method used to minimize the truncation error is the
steepest descent algorithm. The tolerance for the algorithm is one-tenth of the truncation
error of the corresponding finite difference method (where�b = [− 1

2 ; 1] and W1 and W2 are
matrices whose entries are all zeros). This finite difference method was also used as an
initial guess in the optimization routines.

In addition to the truncation error, the forward error is also used as a measure of
performance. The forward error is calculated by taking the 2-norm of the difference
between the approximated solutions found using each method and the highly-resolved
Fourier solution, uF:

Forward error = ||u − uF||2.

To summarize, the training data from the highly-resolved Fourier simulations is
used as a proxy for the exact solution, then the truncation error of (9) is minimized. The
weights (i.e., the entries of�b, W1, and W2) are optimized via steepest descent. Once these
weights are found, they are used in Equation (9) to evolve new initial data. The results
are compared to finite difference and Fourier collocation using the same time-stepper and
spatial discretization.

3. Results

Two training routines were evaluated. One training method used a single solution
trajectory over a short time interval. The second used two solution trajectories (again over a
short time interval). In both scenarios, the trained numerical method was evaluated against
the parent finite difference method and Fourier collocation both at and near the training
initial data, for short and long times.

In both training routines, the set of initial data trained and tested on is of the form

u(x, 0) = −A
[

c
2

sech2
(√

c
2

x
)]

, (10)

where A is a changeable parameter. When A = 1, this is a soliton solution of the KdV
equation traveling at speed c. For A �= 1, the solution is not a traveling wave, and has a
more complicated trajectory. The model was trained and tested using both traveling wave
and non-traveling wave initial data.

The activation function used in simulations in this paper was the hyperbolic tangent
function, which resulted in the machine learning model function

−−−→
aj(�un) =�b + W1

−−−−−−−−−−→
tanh(W2(Xj�un)). (11)
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This is a common activation function [50] and is used in several other recent works involving
PDEs [15,19–22,25,43–45].

Figure 2 shows an example plot of the truncation error through the training time using
the trained speed c = 1 and trained A = 1. For larger h values, the method converged to
below the threshold of one-tenth the truncation error value for the finite difference method.
For smaller h, the method is unable to converge below this threshold. For these values, the
model may need to be amended by adding more layers or by using a broader stencil. For
the remaining figures shown in this paper, a step size of h = 2.5 is used, which uses a grid
of 16 data points.

Figure 2. Truncation error for the machine learning and finite difference methods at each spatial
step size through training time using trained speed c = 1 and trained A = 1. Blue dashed line with
square markers is the machine learned error with green solid denoting convergence of minimization
algorithm and black outline denoting non-convergence; solid red line with circle markers is the finite
difference error; yellow dotted line with triangle markers is one-tenth the finite difference error.

In Figure 2, the trained scheme significantly outperforms the finite difference method
on coarse grids, but the gains decrease with step size. There is no gain in using this
methodology as h → 0 (nor is any convergence study conducted in the small h limit). The
remainder of the paper considers a fixed model with fixed step size, where the machine-
learned procedure outperforms Fourier collocation and classic finite difference. To decrease
errors beyond those presented, one could consider a convergence study in the number of
layers or the breadth of the layers in the machine learning model. Generally, more layers
in neural networks can provide more accurate approximations [49]; however, the training
cost increases with layer width and depth. The effect of more or broader layers is a future
research avenue.

Figure 3 shows the forward error over time using the trained speed c = 1 and A = 1,
with Figure 3a showing the error through time t = 3. The forward error of the machine
learned model is less than that of the finite difference method for the entire time interval,
even though the method was only trained on a very small portion of the entire time interval,
as shown in Figure 3b.

3.1. Single Solution Trajectory

When the model was trained on a single solution trajectory, one A, c pair from (10),
the training set was the the first 12 consecutive time steps (t0 to t11) of a coarse sampling of
the highly-resolved solution. The model was tested using other initial data (nearby A, c
pairs) and for longer times.
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(a) (b)

Figure 3. Forward error over time training and testing on speed c = 1 and A = 1. Red dashed
line is the finite difference error; blue dotted line is the machine learned error. Dark gray vertical
line indicates the end of the training time interval (a) Error through time t = 3. (b) Error through
time t = 0.2.

Discussion

The model was trained on an initial highly-resolved solution set using a non-solitary
wave, with c = 1 and A = 1.5. Figure 4 shows the forward error rates for each c and A that
were trained and tested on. The forward error rate was calculated by taking the logarithm
of the absolute maximum forward error of the machine learning model over the entire time
interval divided by the absolute maximum forward error of the finite difference model
over the time interval. In Figure 4, the solutions with c and A values within the region
surrounded by the solid black lines performed 10 times better than the finite difference
method. From Figure 4a, a range of solutions found by testing on varying c and A values
around the solution that was trained on, which is indicated by the ‘+’, also have lower
forward errors when using the optimal coefficients found during minimization. The
only areas shown where the machine learning model did not outperform finite difference
methods were for most A values used in combination with speeds less than 0.75.

(a) (b)

Figure 4. Forward error rate plots comparing performance of finite different methods and the machine
learning model. Model trained using c = 1 and A = 1.5, indicated by “+”. Model tested using c and
A values ranging from 0.25 to 3. Contours indicate initial data where the machine learning model
performs 10 times better than (solid), 2 times better than (dotted), and equivalent to (dashed) finite
difference methods. (a) Maximum forward error rate through training time interval. (b) Maximum
forward error rate through time t = 3.

At time t = 3, the machine learning model continued to outperform finite difference
methods for most A, c pairs plotted in Figure 4b; however, the region of solutions that
performed 10 times better than finite difference methods has essentially become non-
existent. A region of A, c pairs still performed at least two times better than the finite
difference method, as indicated by the dotted contours.
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Figure 5 shows the wave solution at time t = 3 using test values c = 1 and A = 0.75
comparing the highly-resolved Fourier method, finite difference method, the machine
learning model, and an under-resolved Fourier model. The machine learning model
outperformed both classical methods in predicting the behavior of the wave solution at
a time well beyond the interval it was trained on and on a coarse grid. The approximate
computation time for each method is as follows: 0.352 s for machine-learned; 0.344 s for
finite difference; and 0.037 s for under-resolved Fourier. Several other initial data were
used for training and testing, both on solitary and non-solitary waves, with similar results.

Figure 5. Time evolution of a wave trained on a non-solitary wave (c = 1 and A = 1.5) and tested
on a different non-solitary wave (c = 1 and A = 0.75). Solution at time t = 3. Solid blue line is the
highly-resolved Fourier; dotted red line with “o” markers is the machine learning model; dotted
yellow line with “x” markers is finite difference; dotted purple line with “Δ ” markers is Fourier on
coarse grid. The machine-learned model relative forward error is 0.1322. The finite difference relative
forward error is 0.3934. The coarse Fourier relative forward error is 0.5663.

It is important to note that the methodology in this paper has been set up so that the
truncation error of the machine learning model will always be less than that of the finite
difference method when the minimization method converges. By the Lax Equivalence
Theorem, the forward error of a method is bounded by the sum of the accumulated
truncation error of that method [2,11,12], e.g.,

‖ũ − un‖ ≤
n−1

∑
j=0

σjkτk(tj). (12)

In (12), σ is the maximal growth rate of errors from one step to the next (stable schemes
have σ ≤ 1), ũ is the exact solution, un is the numerical solution at time tn, and τk(tj) is
the truncation error at time tj. As a consequence of (12), the forward error of the machine
learning model must be less than the accumulated truncation error of the model, and the
forward error of the finite difference method must be less than the accumulated truncation
error of the finite difference method; however, nothing can be said about the ordering of
the forward error of the two methods. In other words, the methodology does not guarantee
that the forward error of the machine learning model will be less than the forward error
of the finite difference method. That said, the spectrum of the linear operators in all cases
(machine learned model, finite difference, and Fourier) lie exactly on the boundary of
the linear stability region of IMEX2, so the growth rates of truncation errors from step
to step are exactly one (σ = 1), and there is no difference in the temporal stability of
these schemes. The proof of the Lax Equivalence Theorem uses the triangle inequality, so
in principle there could be more cancellation in one scheme than another. We, however,
observe that the forward error and the accumulated truncation error are matched closely for
all methods. Even though the machine learned model is trained using the truncation error
as the objective function, it effectively also minimizes the forward error (Direct minimization
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of the forward error would be significantly more expensive as it would require running the scheme
(with its matrix inversions) during each evaluation of the objective function in the training).

3.2. Two Sets of Initial Data

In addition to training on a single solution trajectory, we tested models that were
trained on two sets of initial data simultaneously. The results of this training algorithm
presented here used pairs (A, c) = (1, 1) and (A, c) = (1, 2), so the model is training on two
solitary waves of different speeds. The data from the first seven time steps (t0 to t6) of each
set of solutions were used to train the model. To create the objective function for two sets of
solutions, the truncation error for each is combined to create a multi-objective minimization
problem. The error using each solution is calculated individually then normalized by
dividing by the square of the largest absolute solution from the respective training data
set before being added together to create the objective function. In the steepest descent
algorithm, the threshold is one-tenth of the minimum finite difference truncation error
between the two solutions. This minimization process allows the algorithm to find the
optimal coefficients that minimize both initial sets of data simultaneously.

Discussion

Figure 6 shows the forward error rate plots for training on the two solutions. In
Figure 6a, by training on two initial solutions with different speeds, a larger range of speeds
used in combination with varying A values were able to outperform the finite difference
method by at least 10 times through the training time, as compared to training using only
one solution with one speed, as was performed in Figure 4. As the wave propagates to
time t = 3, there were no areas where the machine learning model outperformed the
finite difference method by 10 times or more, although a majority of (A, c) pairs shown in
Figure 6b resulted in a method that outperformed the classical method.

(a) (b)

Figure 6. Forward error rate plots comparing performance of finite different methods and the machine
learning model. Model trained using speeds c1 = 1 and c2 = 2 and A = 1, indicated by “+”. Model
tested using c and A values ranging from 0.25 to 3. Contours indicate initial data where the machine
learning model performs 10 times better than (solid), 2 times better than (dotted), and equivalent to
(dashed) finite difference methods. (a) Maximum forward error rate through end of training time
interval. (b) Maximum forward error rate through time t = 3.

A wave solution is shown in Figure 7 at time t = 3, which tests the model using c = 1
and A = 0.75. The model outperformed both the finite difference and under-resolved
Fourier methods in predicting the behavior of the highly-resolved solution.
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Figure 7. Time evolution of a wave trained using c1 = 1 and c2 = 2 and A = 1 and tested on a wave
using c = 1 and A = 0.75. Solution at time t = 3. Solid blue line is the highly-resolved Fourier
collocation method; dotted red line with “o” markers is the machine learning model; dotted yellow
line with “x” markers is the finite difference result; dotted purple line with “Δ ” markers are a Fourier
collocation on the coarse grid. The machine-learned model relative forward error is 0.0452. The finite
difference relative forward error is 0.1003. The coarse Fourier relative forward error is 0.1444.

The optimal coefficients found by training on the previous two initial data were tested
using two different sets of data, where (A, c) = (1, 2.25) and (A, c) = (1, 0.75). Figure 8b
shows the collision of the two solitons as they propagate through space and time using the
machine learned model on a coarse grid. Despite the model not being trained on a collision,
it is still able to pick up on the overall dynamics, displaying the new trajectories of each
wave after the collision occurs. Figure 9 shows the time evolution of the waves, comparing
the machine-learned solution to the highly-resolved Fourier at different times throughout
the interval. The model is a bit slow at picking up the trajectories of the waves, but is able
to recognize the collision between the solitons.

(a) (b)

Figure 8. Simulation of a collision between solitons with speeds c = 2.25 and c = 0.75. (a) Highly-
resolved Fourier dynamics. (b) Machine learned dynamics. Coefficients found by training on initial
data (A, c) = (1, 1) and (A, c) = (1, 2); tested using (A, c) = (1, 2.25) and (A, c) = (1, 0.75).
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(a) (b) (c)

Figure 9. The collision of two solitary waves is depicted. The machine learned model was trained
using two single solitary wave trajectories at (A, c) = (1, 1) and (A, c) = (1, 2); the colliding waves in
this test had different amplitudes from the trained trajectories, (A, c) = (1, 2.25) and (A, c) = (1, 0.75),
and the training did not include a collision. The solid blue line is the highly-resolved Fourier; the
dotted red line with “o” markers is the machine learning model; the dotted yellow line with “x”
markers is the finite difference result. The solution at time t = 0 is in panel (a), at t = 2 in panel (b),
and at t = 7 in panel (c).

4. Conclusions

In this paper, machine learning was utilized to optimize the coefficients of a numerical
differencing scheme for the KdV equation. This scheme was trained on a coarse grid and
outperformed two classical methods (finite difference and Fourier). Training procedures
using a single solution trajectory and a pair of trajectories were implemented. The model
was tested on a variety of nearby initial data, both solitary and non-solitary trajectories.
A solitary wave collision was also tested. The methodology is expected to be applicable
to other nonlinear wave equations. Future work could include using the forward error as
the objective function instead of the truncation error; however, this will be more expensive
as a matrix inversion will be required for the time-stepping scheme for each iteration in
the steepest descent algorithm. Other future work could include training the model on
non-consecutive time steps by randomly sampling the initial data to obtain the training and
test data sets as has been carried out in several recent works [19,21–23,25,36,37,39]. This
could also include randomly sampling from several initial data sets. Additionally, more
layers could be added to the model. A different activation function could be used, e.g.,
leaky or standard rectified linear unit [15,44–46]. The method also naturally generalizes to
broader stencils.
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Abstract: Digital twin is the digital representation of an entity, and it drives Industry 4.0. This paper
presents a bibliometric analysis of digital twin in the supply chain to help researchers, industry
practitioners, and academics to understand the trend, development, and focus of the areas of digital
twin in the supply chain. This paper found several key clusters of research, including the designing of
a digital twin model, integration of a digital twin model, application of digital twin in quality control,
and digital twin in digitalization. In the embryonic stage of research, digital twin was tested in the
production line with limited optimization. In the development stage, the importance of digital twin
in Industry 4.0 was observed, as big data, machine learning, Industrial Internet of Things, blockchain,
edge computing, and cloud-based systems complemented digital twin models. Digital twin was
applied to improve sustainability in manufacturing and production logistics. In the current prosperity
stage with high annual publications, the recent trends of this topic focus on the integration of deep
learning, data models, and artificial intelligence for digitalization. This bibliometric analysis also
found that the COVID-19 pandemic drove the start of the prosperity stage of digital twin research
in the supply chain. Researchers in this field are slowly moving towards applying digital twin for
human-centric systems and mass personalization to prepare to transit to Industry 5.0.

Keywords: digital twin; machine learning; Industry 4.0; supply chain; bibliometric analysis; subject area

MSC: 00A06

1. Introduction

Many industries are red oceans, hypercompetitive, and oversaturated [1,2]. Shorter
product lifecycles means that companies are placing more efforts in innovating new ideas
for market launch [3]. Consumers have increased purchasing power as they are offered a
large pool of product and service choices. Meanwhile, consumers are also given greater
empowerment because they can obtain information online easily. Many companies often
rely on market research when developing their products or services. However, market
research is insufficient to bring success to a company as this process only helps companies
to understand consumer demand. To increase sales and revenues, companies have to satisfy
the demand by creating the right products and delivering astonishing services. Typically,
companies can only test their new or upgraded offerings after creating and displaying
them for sampling. This may be a long process as errors and faults could happen during
production and the final product may not meet consumer expectations.

Digital twin shows the virtual representation of a physical entity that changes instan-
taneously with the actual object, process, or system [4,5]. This emerging technology allows
companies to create a virtual manufacturing process to identify defects before the actual
process is conducted [6]. Digital twin also helps to provide various results concurrently as the
inputs are manipulated when testing a product, process, or system [7,8]. Even as the produc-
tion process is ongoing, the production team can halt the process to perform simulations with
various ideas to examine the potential outcomes [9]. This enhances the risk assessment process
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and development of risk mitigation plan [10]. Moreover, the digital twin allows financial data
to be incorporated so that the cost of the entire supply chain can be adjusted from time to time.
As such, companies can save time and cost to deliver their products [11].

After obtaining data on consumer demands and expectations, the first step of develop-
ing a product is designing. The production trend has changed from make to stock to make
to order as consumers are becoming more empowered. Thus, the process of designing
is also becoming more complex to match the individual preferences. Digital twin then
facilitates the translation of the needs of the customers to the product designs where the
parameters, structures, and geometry of the product can be conceptualized in a virtual
setting [12]. With constant data generation, the virtual product can be improved and
optimized [13]. Zhang et al. [14] proposed a digital twin manufacturing cell framework for
smart manufacturing that includes replicas for work in process items, devices, processes,
and environments to simulate and optimize production. Cheng et al. [15] explained that the
concept of smart manufacturing is data-driven to connect the physical and cyber worlds.
Onaji et al. [16] proposed a digital twin framework for manufacturing. This framework
consists of the integration of physical assets and virtual models, creating an intelligent layer
to allow supportive decision making to take place.

The history of digital twin can be traced back to the 1960s when the National Aeronautics
and Space Administration (NASA) created a representation of space vehicles to reflect their
performances and identify faults when on a mission [17]. Then, in the early 2000s, Professor
Michael Grieves presented the digital twin concept in his course [18]. This means that the
research of digital twin in the supply chain only began after Professor Michael Grieves
presented the white paper of digital twin in 2002 with the proposal to develop a product
lifecycle management center [18,19]. This digital twin concept has three components, namely,
the real spaces, virtual spaces, and a linking system to transfer data and information between
the real and virtual spaces [20]. This was then called the “Mirrored Spaces Model” [21].
A year later, Kary Främling suggested an architecture where physical items would have a
virtual representation for more efficient information flow in manufacturing [22]. In 2006,
Hribernik et al. [23] also proposed a similar concept known as “product avatar”. In the same
year, the initial model of Professor Michael Greives was renamed to the “Information Mirroring
Model” to emphasize the importance of two-way information flow and the availability of
more than one virtual space for an individual real space [24].

The name “digital twin” was only widely applied from 2010 when NASA introduced
digital twin in their roadmap. From the first presentation of a digital twin by Professor
Grieves in 2002 until 2010, the application of digital twin was not widely explored as the
concept of digital twin was still in its infancy. In 2012, NASA simulated vehicle management
systems and maintenance to increase the safety and reliability of transportation [25]. Since
then, the aerospace industry has been employing digital twin in research and development.
As Industry 4.0 took place, Internet of Things then drove the advancement of digital twin in
other fields, as large multinational companies such as IBM, Siemens, and General Electric
implemented digital twin for optimization and prediction [4,26–28]. The global market
for digital twin is expected to exceed USD 73 billion by 2027, with a compounded annual
growth rate of greater than 60% [28]. The rapid growth of the digital twin industry will
continue as this industry becomes one of the main drivers for Industry 4.0 [29].

Digital twin was also reflected in the planning, ordering, making, delivering, returning,
and enabling in the supply chain operations reference (SCOR) model, which is a supply
chain performance measurement model [30]. Planning in the supply chain requires past
data for forecasting. Digital twin reduces the time between target setting, data collection
from a large pool of sources, big data analytics, data processing, deriving inferences, and
taking actions for future planning. Researchers can plan instantaneously by using the
synchronized data and making changes in the virtual model with higher accuracy [31]. The
longer the digital twin model runs, the more data it collects, the higher the precision of the
model. Thus, product designs, inventory management, material usage, transportation, and
lead time can be streamlined and optimized with ease and accuracy for profit maximization
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and cost reduction [32]. In the supply chain, digital twin can be found in the designing,
manufacturing, and servicing phases [33]. In designing, digital twin provides information
that could be used for decision making in various design processes. Digital twin can be
used for geometry assurance in the design process for optimization in manufacturing
variation [34]. Each design and dimension will be listed and formed into a locator or
datum position. Digital twin can also provide information on the tolerances of each part in
the design process before they are moved into production. Tao et al. [12] explained that
the virtual model consists of the geometric and physical models of products, consumers,
and the environments. This allows the designers to observe the behaviors of products
and consumer interactions. After that, data from the behaviors, environmental data, or
Internet data can be integrated into the virtual model to be analyzed and visualized using
digital twin’s cognitive abilities. Then, a simulation can take place to observe how the
product would function in the real world. Besides creating a prototype, using virtual reality,
consumers or designers can also interact with the virtual product. At the later stage, based
on the outcomes of the digital twin model, sensors and actuators will be equipped on the
physical item to allow the physical item to adjust itself to changes in the consumers and
environment. Finally, networking technologies and cloud computing allow information
transfer between the physical and virtual models. In short, product designs with digital
twin begin with planning, conceptual designs, embodiment designs, detail designs, and
virtual verifications. Digital twin can also be used for risk management to identify areas
of hazard using the virtual model, especially for events such as natural disasters during
shipping and accidents in ports [35–38].

Zhu et al. [39] reviewed production logistics activities such as transportation, packag-
ing, warehousing, material distribution, and information processing with digital twin. In
transportation, past data embedded in the production logistics of digital twin were used
to highlight the bottlenecks in the entire transport process [40]. A digital twin model of
the transportation system also allows for real-time tracking of the location and condition
of cargoes during transit [41]. Pan et al. [42] proposed a digital twin control architecture
to simulate, analyze, and optimize the production logistics in industrial parks in China.
This digital twin solved the sudden surge in order volume, which could not be handled
with the usual transportation and storage in the industrial parks because the digital twin
model helped in arranging vehicles with optimal routing at the lowest cost. Wu et al. [43]
developed an Industrial Internet of Things and Digital Twin model for finished goods
logistics. This model helped to reduce picking time, detect emergency orders, and optimize
waiting time in packaging. Marmolejo-Saucedo [44] optimized bin-packing issues with
digital twin. This model reduced packaging volumes, lowered operation cost, and mini-
mized servers. Leng et al. [45] used the digital twin system to optimize stacked packing
and storage in a warehouse. A prototype was developed and applied in a tobacco ware-
house that successfully maximized the utilization and efficiency of automated high-rise
warehouse product service systems. Perez and Korth [46] adopted digital twin to establish
a database for compliance in the handling and storage of dangerous goods in warehouses.
Petković et al. [47] proposed a human intention prediction algorithm to estimate a worker’s
path in a warehouse. A very important benefit of digital twin is the ability to integrate all
the production logistics activities for parallel monitoring [48].

Liu et al. [33] reviewed the applications of digital twin and found that digital twin helps
in iterative optimization by integrating past product design with potential improvements
for configuration and execution as digital twin could forecast the outcomes of the products
and allow designers to take preventive measures [49]. This could also help in careful
planning when selecting materials [50]. As virtual prototypes can be created with digital
twin, designers are able to test various product designs under different conditions to find
the best fit and balance between the expected and real functions. Therefore, digital twin is
important to produce an effective product design within a shorter time frame. Currently,
monitoring of the manufacturing process is performed in the physical floor. Digital twin
allows monitoring with the virtual model as all data are integrated into the virtual model.
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It combines past, current, and future data for real-time monitoring and forecasting of the
future outcomes for informed decision making [51,52]. The importance of digital twin
in manufacturing is the ability to visualize the production process and to compare the
physical item with the virtual model to match expectations with realities as personalized
production takes over the traditional manufacturing process [53]. Moreover, as unexpected
events such as slight discrepancies of raw materials and underperformance of machines
might happen, digital twin can adjust the entire manufacturing process quickly to produce
similar results [54]. This reduces manufacturing defects and increases quality consistency
of the produced items. After manufacturing and upon usage, digital twin can detect faults
and perform predictive maintenance for issues that were not identified during the product
design phase. For a large and complex product such as a vessel, digital twin can detect
performance deviations and predict damages [55].

Digital twin is an important advancement in the supply chain during industrialization
and digitalization. Liu et al. [33] reviewed the status, technologies, and application of digital
twin. Holler et al. [56] reviewed 38 papers on digital twin until 2016 to clarify the status of
digital twin during that time. Negri et al. [57] reviewed the definitions of digital twin and
explored smart manufacturing with digital twin. Shekarian et al. [58] reviewed sustainable
supply chain management in manufacturing, design, logistics, procurement, management
information systems, quality assurance, safety, social responsibility, financial management,
structural management, and promotional activities. This current paper aims to present
a bibliometric analysis of digital twin in the supply chain. This bibliometric analysis is
distinct and differs from past publications in which this analysis considers the application of
digital twin in the entire supply chain, including product design, manufacturing, shipping,
warehousing, logistics, port, packaging, distribution, and transportation. This bibliometric
analysis also studied the impact of digital twin in Industry 4.0 and the future research and
application of digital twin in Industry 5.0.

Bibliometric analysis includes performance analysis and science mapping [59]. Perfor-
mance analysis studies the contributions of each research component such as authorship,
publication title, keyword, and region [60,61]. Performance analysis includes performance
metrics such as total publication (TP) and citation metrics such as number of cited pub-
lications (NCPs), total citations (TCs), average citation per paper (C/P), average citation
per cited paper (C/CP), h-index, and g-index [62,63]. Science mapping examines the re-
lationships that exist in each research component such as co-citation, co-occurrence, and
co-authorship [64]. Science mapping visualizes the scientific links and systematic patterns
within the research area to find connected research themes [65–67]. The main focus of a
bibliometric analysis is to identify the scientific research contribution of the authors and
countries [68]. This paper also determined the reputable publication titles for digital twin
publications. Moreover, this paper underlined the topics of digital twin to uncover the
hot topics in this area for potential future studies [69]. Moreover, this paper studied the
evolvement of the research on digital twin over the years. This paper can be a reference to
help researchers, governments, and industry leaders in developing a proper digitalization
framework by including digital twin technology.

Section 2 presents the materials and methods for this bibliometric analysis. Section 3
discusses the findings of this bibliometric analysis. Section 4 concludes the paper with
potential future studies.

2. Materials and Methods

This paper aims to present a bibliometric analysis of digital twin in the supply chain.
The database used was the Web of Science. Owned by Thomson and Reuters, Web of Science
has comprehensive and high-quality multidisciplinary journals and is becoming the most
preferred database for bibliometric analysis [70–72]. Figure 1 presents the flowchart of the
bibliometric analysis of digital twin in supply chain.
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Figure 1. Flowchart of bibliometric analysis of digital twin in the supply chain.

Figure 1 presents the flowchart of the bibliometric analysis of digital twin in the supply
chain. After identifying the keywords, the Web of Science database was queried, and
2652 documents were found to match the criteria for bibliometric analysis. The publication
period was from 2014 to 2023. The data were exported on 10 May 2023. About 60.98%
(or 1708 documents) of the 2652 documents are articles, followed by proceeding papers
(29.95%), review articles (7.64%), editorial materials (0.86%), and book chapters (0.57%).
The document types are described in Table 1.

Table 1. Document types.

Document Types Total Publications (TP) Percentage (%)

Article 1708 60.98
Proceeding paper 839 29.95

Review article 214 7.64
Editorial material 24 0.86

Book chapters 16 0.57

Performance analysis is then performed using Harzing’s Publish or Perish 8 [73–75].
This paper then evaluated the contributions by year, research area, country, and publication
title while identifying the impacts of the most cited publications. VOSviewer, one of the
most popular bibliometric tools, is used to present the visual graphs of the research ele-
ments. The country co-authorship analysis was performed to understand the collaboration
among researchers across countries. Then, to identify the hotspots and trends of research,
the keyword co-authorship diagram was generated. The co-citation analysis was also
conducted to identify the classical publication of digital twin in the supply chain [76–78].
Data processing was carried out using Microsoft Excel 365 [79].
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3. Results

3.1. Publication Trend Analysis

The trends and growth of digital twin can be observed from the total number of
publications (TP) and total citations (TC). From 2014 to 10 May 2023, there was a collection
of 2652 documents on digital twin in the supply chain, with 40,768 total citations. Table 2
tabulates the publication trends of digital twin in the supply chain. Figure 2 demonstrates
the trends of publication and citation for digital twin in the supply chain.

Table 2. Publication trend.

Year TP 1 Percentage (%)
Cumulative

Percentage (%)
NCP 2 TC 3 C/P 4 C/CP 5 h-Index g-Index

2014 2 0.08 0.08 2 71 35.50 35.50 2 2
2015 2 0.08 0.15 2 547 273.50 273.50 2 2
2016 6 0.23 0.38 6 393 65.50 65.50 5 6
2017 34 1.28 1.66 31 3555 104.56 114.68 20 34
2018 101 3.81 5.47 95 5652 55.96 59.49 29 74
2019 244 9.20 14.67 227 8561 35.09 37.71 48 86
2020 399 15.05 29.71 357 9349 23.43 26.19 51 83
2021 654 24.66 54.37 556 8614 13.17 15.52 42 68
2022 880 33.18 87.56 539 3683 4.19 6.83 24 40
2023 330 12.44 100.00 94 343 1.04 3.65 9 13

1 Total publication; 2 number of cited publications; 3 total citations; 4 citations per publication; 5 citations per
cited publication.
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Figure 2. Publication and citation trend.

As shown in Table 2, the first publications listed on the Web of Science database were
produced in 2014. One of the papers was published by Cerrone et al. [80], which modelled
the as-manufactured component geometry, which is a part of the digital twin. This paper
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obtained 69 citations. Another paper published in 2014 was by Scott-Emuakpor et al. [81].
This paper received two citations and the discussed process of obtaining part-specific
geometry and material performance to create a digital twin model for gas turbine engines.
The total number of publications and citations have increased tremendously since 2018. The
number of publications exceeded 100 in 2018, up to 880 in 2022. The number of citations
also crossed 3000 for the publications in 2017, up to 9349 for the publications in 2020. This
indicates that digital twin in the supply chain is becoming more popular.

The highest citation per paper (C/P) and citation per cited paper (C/CP) were
recorded in 2015. There were two listed papers with 547 citations in 2015. The paper
by Rosen et al. [82] titled “About the importance of autonomy and digital twins for the
future of manufacturing” has received 531 citations. This paper then contributed to the
high C/P and C/CP over the years. The highest h-index of 51 was in 2020. This implies
that in 2020, there were 51 publications receiving at least 51 total citations. The highest
g-index of 86 was in 2019. This implies that 86 documents have received an average of 862

or 7396 citations.

3.2. Research Area

There were more than 70 research areas on digital twin in the supply chain. The top
10 research areas were engineering (1681), computer science (847), automation control
systems (345), operations research/management science (265), materials science (249),
telecommunications (198), chemistry (189), science technology other topics (159), physics
(145), and energy fuels (109). Table 3 shows the top 20 research areas on digital twin in the
supply chain.

Table 3. Research area.

Research Areas Total Publication

Engineering 1681
Computer Science 847

Automation Control Systems 345
Operations Research/Management Science 265

Materials Science 249
Telecommunications 198

Chemistry 189
Science Technology Other Topics 159

Physics 145
Energy Fuels 109

Instruments Instrumentation 92
Environmental Sciences Ecology 82

Business Economics 66
Robotics 59

Transportation 59
Mathematics 47

Construction Building Technology 41
Remote Sensing 37

Imaging Science Photographic Technology 25
Metallurgy Metallurgical Engineering 25

Mechanics 23
Thermodynamics 23

3.3. Country Contribution

China had the most publications, with 648 documents on digital twin in the supply
chain. China also had 15,058 total citations, 23.24 citations per publication, and 30.92 cita-
tions per cited publication. This makes China the most productive and impactful country
in terms of digital twin in the supply chain publications. China had a h-index of 59 and
g-index of 110. This implies that 59 documents had at least 59 citations while 110 documents
had an average of at least 1102 or 12,100 citations. Table 4 displays the top 10 countries
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contributing to digital twin in the supply chain. The top 10 countries contributed more
than 87% of the total publications.

Table 4. Top 10 countries contributing to digital twin in the supply chain.

Country TP 1 NCP 2 TC 3 C/P 4 C/CP 5 h-Index g-Index

China 648 487 15,058 23.24 30.92 59 110
Germany 384 270 5771 15.03 21.37 29 69

United States 366 272 5822 15.91 21.40 40 66
Italy 220 150 3305 15.02 22.03 27 53

England 198 149 3105 15.68 20.84 27 51
France 114 86 2288 20.07 26.60 21 47
Spain 112 81 940 8.39 11.60 16 28

Sweden 112 95 1884 16.82 19.83 21 41
South Korea 91 67 1045 11.48 15.60 16 30

India 81 59 1418 17.51 24.03 20 36
1 Total publication; 2 number of cited publications; 3 total citations; 4 citations per publication; 5 citations per
cited publication.

Collaboration between countries is important in order to develop a research domain.
This is reflected in the country co-authorship diagram generated from VOSviewer. Table 5
presents the top 10 countries with the highest collaboration between countries. China (300)
had the highest total link strength, which means that China had the highest collaboration
between countries. This was followed by the United States (241), Germany (209), England
(186), Italy (173), France (122), Sweden (122), Spain (103), India (77), and Switzerland (75).
Figure 3 demonstrates the country co-authorship diagram.

Table 5. Country co-authorship.

Country Total Publication Total Link Strength

China 648 300
United States 366 241

Germany 384 209
England 198 286

Italy 220 173
France 114 122

Sweden 112 122
Spain 112 103
India 81 77

Switzerland 64 75

Figure 3 displays the country co-authorship diagram. China has the largest node size
because China had the highest number of publications. The line between China and the
United States is the thickest, indicating the strongest collaboration between China and the
United States, with a link strength of 49. China and Sweden also have a strong collaborative
relationship, with a link strength of 33. China and England also work well, with a link
strength of 31.

There are six clusters in total. Australia, Bangladesh, Canada, Egypt, India, Iran,
Malaysia, New Zealand, Pakistan, China, Saudi Arabia, Singapore, South Korea, Taiwan,
United Arab Emirates, and Wales make up the largest cluster in red. The second clus-
ter (green) is formed by Austria, the Czech Republic, Finland, Germany, Japan, Latvia,
the Netherlands, Norway, Poland, Romania, Scotland, Slovakia, Sweden, and Ukraine.
Argentina, Croatia, Greece, Israel, Italy, Northern Ireland, Serbia, Slovenia, Spain, and
Switzerland form the third cluster in blue. The fourth cluster is in yellow and has countries
such as England, Estonia, Hungary, Portugal, Russia, the United States, and Vietnam. The
fifth cluster is in purple with countries such as Brazil, Columbia, Denmark, France, Lux-
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embourg, and Morocco. The last cluster (light blue) consists of Belgium, Ireland, Mexico,
South Africa, and Turkey.

 

Figure 3. Country co-authorship.

3.4. Publication Title

The top 10 publication titles are listed in Table 6. Applied Science (impact factor,
IF = 2.838) was the journal with the highest publication for digital twin in the supply chain,
with 100 total publications. IEEE Access (IF = 3.476) was the highest cited publication title,
with 2979 total citations. The highest cited publication under IEEE Access was written
by Qi and Tao [83], which compared big data and digital twin in Industry 4.0. Journal
of Manufacturing Systems (IF = 9.498) and International Journal of Production Research
(IF = 9.018) had the highest impact factors among the top 10 publication titles.

3.5. Citation Analysis

Table 7 reveals the top 10 highly cited publications of digital twin in the supply chain.
The paper “Digital twin-driven product design, manufacturing and service with big data”
published by Tao et al. [13] received 1002 citations since its publication in 2018. This paper
investigated the application methods and frameworks of digital-twin-driven product design,
manufacturing, and service. It is important to implement the digital twin in the supply chain,
particularly in terms of material intelligent tracking and distribution technology. The second
most cited paper is titled “Digital twin in industry: state-of-the-art” authored by Tao et al. [84],
which received 814 citations. This paper reviewed the development and application of digital
twin in industry. In supply chain management, the digital twin provides more accurate
planning and efficient dispatching. The scheduling scheme can be analyzed, evaluated, and
optimized through self-organizing and self-learning. The third most cited paper by Kritzinger
et al. [85] provided a categorical literature review of the digital twin in manufacturing. The
authors found that the main focus of digital twin research in the supply chain is dealing with
production planning and control. Ivanov [86] studied the impacts of epidemic outbreaks on
global supply chain with the example of the coronavirus COVID-19. The study showed that
lead time, speed of epidemic propagation, and the upstream and downstream disruption
durations in the supply chain were major factors that determined the epidemic outbreak
impact on the performance of supply chain based on the simulation results. The next most
cited paper by Qi and Tao [83] studied big data and digital twin in manufacturing as well
as their applications in product design, production planning, manufacturing, and predictive
maintenance. Digital twin could optimize the whole process in the supply chain based on the
cyber–physical closed loop system.
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The sixth most cited paper by Negri et al. [57] explored digital twin in the scientific
literature and identified the role of digital twin for manufacturing in the Industry 4.0 era.
This paper reviewed the concept of digital twin in industrial engineering and the supply
chain. The seventh most cited paper by Rosen et al. [82] focused on the importance of mod-
ularity, connectivity, autonomy, and digital twin in the design of products and production.
This paper addressed the opportunities to apply simulation for improving the production
planning in the supply chain. The next most cited paper by Ghobakhloo [87] reviewed the
Industry 4.0 phenomenon, determined its key design principles and technology trends, and
offered a strategic roadmap as a guide for the process of Industry 4.0 transition. Industry
4.0 enabled an automated creation of products, services, supply, and product delivery. Tao
and Zhang [88] discussed the digital twin shop-floor based on digital twin and its key
components, namely, physical shop-floor, virtual shop-floor, shop-floor service system,
and shop-floor digital twin data. This paper addressed the needs of application of digital
twin in smart manufacturing to improve the supply chain management. The 10th most
cited paper by Schleich et al. [89] presented a comprehensive reference model that serves
as a digital twin of the physical product in design and manufacturing. Model conceptual-
ization, implementation, and application along the product life-cycle in the supply chain
were addressed.

Based on the most cited publications described above, the supply chain management
system tends to be intelligent with the development of information technology. The
use of technology in the supply chain is enhanced by emerging technologies such as
artificial intelligence, digital twin, and big data. According to Xue et al. [90], the future
development of the supply chain should study the impact of emerging technologies for
continuous improvement. Xue et al. [90] conducted a review of supply chain management
and suggested that emerging technologies can be integrated into the supply chain model.
Moreover, the application of block chain and Industry 4.0 in the supply chain has received
great attention. According to Fang et al. [91], the research of intelligent supply chain driven
by new technologies includes block-chain-technology-driven as well as big-data-analysis-
technology-driven research. In line with our study on technology-driven research, our
paper presents a bibliometric analysis of digital twin in the supply chain to help researchers,
industry practitioners, and academics to understand the trend, development, and focus of
the areas of digital twin in the supply chain.

Co-citation analysis studies at least two publications cited by another article. The
co-cited references show the classical research area in the field [79]. The top 10 co-cited
references are listed in Table 8. Among them, eight articles are among the top 10 cited
papers. Figure 4 depicts the reference co-citation analysis diagram.

Table 8. Top 10 co-cited references.

Co-Cited References
Total Link
Strength

Digital twin-driven product design, manufacturing and service with big data [13] 5911
Digital twin in industry: state-of-the-art [84] 4467

Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing [88] 4276
Digital twin in manufacturing: a categorical literature review and classification [85] 4222

Digital twin and big data towards smart manufacturing and Industry 4.0: 360 degree comparison [83] 3811
A review of the roles of digital twin in CPS-based production systems [57] 3718

Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems [92] 3699
Shaping the digital twin for design and production engineering [89] 3548

About the importance of autonomy and digital twins for the future of manufacturing [82] 3493
Digital twin-driven smart manufacturing: connotation, reference model, applications, and research issues [93] 3293
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Figure 4. Co-citation analysis of references.

The top 10 co-cited authors are shown in Table 9, while Figure 5 describes the author
co-citation network. It is worth to note that Tao, F., is an expert in intelligent manufacturing
and authored the papers “Digital twin-driven product design, manufacturing and service
with big data” [13], “Digital twin in industry: state-of-the-art” [84], “Digital twin and big
data towards smart manufacturing and Industry 4.0: 360 degree comparison” [83], and
“Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing” [88],
which received 1002, 814, 569, and 479 citations, respectively. Grieves, M., whose expertise
is in product life cycle management, authored the book chapter “Digital twin: mitigating
unpredictable, undesirable emergent behavior in complex systems” [92], with 1033 citations
on Scopus and 2010 citations on Google Scholar. J. W. Leng’s work focuses on blockchain,
mass individualization, smart manufacturing, and Industry 5.0. He wrote the paper “A
digital twin-based approach for designing and multi-objective optimization of hollow glass
production line” [94], with 208 citations on the Web of Science database.

Table 9. Top 10 co-cited authors.

Co-Cited Authors Affiliations

Tao, F. Beihang University, Beijing, China
Grieves, M. University of Central Florida, Florida, United States
Leng, J. W. Guangdong University of Technology, Guangzhou, China
Qi, Q. L. Beihang University, Beijing, China
Lu, Y. Q. The University of Auckland, Auckland, New Zealand
Negri, E. Politecnico di Milano, Milan, Italy

Schleich, B. University of Erlangen-Nuremberg, Erlangen, Germany
Uhlemann, T. H. J. Bayreuth University, Bayreuth, Germany

Kritzinger, W. Fraunhofer Austria Research GmbH, Vienna, Austria
Glaessgen, E. NASA Langley Research Center Hampton, Virginia, United States
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Figure 5. Co-citation analysis of authors.

The co-citation of publication title is presented in Figure 6. The International Journal of
Advanced Manufacturing Technology (IF = 3.563, Q2); International Journal of Production Research
(IF = 9.018, Q1); Journal of Manufacturing Systems (IF = 9.498, Q1); IEEE Access (IF = 3.476, Q2);
Procedia CIRP, CIRP Annals—Manufacturing Technology (IF = 4.482, Q2); Procedia Manufacturing,
Robotics and Computer-Integrated Manufacturing (IF = 10.103, Q1); Journal of Cleaner Production
(IF = 11.072, Q1); and IFAC Papers-Online are the top 10 co-cited sources.

Figure 6. Co-citation analysis of publication titles.
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3.6. Keyword Analysis

Table 10 shows the top 10 keywords regarding digital twin in the supply chain. Figure 7
describes the keyword co-occurrence map. As shown in Figure 7, the first cluster in
red focuses on the process of designing and building a digital twin model, where the
keywords are made up of architecture, artificial intelligence, big data, blockchain, cloud
computing, cyber–physical system, data models, edge computing, Internet of Things,
security, and sensors. The second cluster, which is green, involves the implementation
and integration of digital twin to increase the efficiency in industrial uses, with keywords
such as augmented reality, building information modeling (BIM), decision-making, discrete
event simulation, industry, integration, logistics, manufacturing system, performance,
resilience, supply chain, sustainability, and virtual reality. The third cluster is in blue
and focuses on digital twin in quality controls and improvements. The keywords in this
cluster are data analytics, deep learning, fault diagnosis, genetic algorithm, intelligent
manufacturing, machine learning, optimization, prediction, predictive maintenance, and
quality. The fourth cluster is in yellow and highlights the contribution of digital twin in
digitalization and industrialization. The keywords are automation, digital manufacturing,
digital transformation, Industry 4.0, modeling, and smart factory.

Figure 7. Keyword co-occurrence analysis.

Figure 8 displays the trends and developments of the keywords in recent years. The
lighter colors show the recent study areas of researchers in digital twin in the supply
chain. They include deep learning, machine learning, data models, edge computing,
artificial intelligence, and supply chain management. Nowadays, researchers are engaging
in integrating digital twin with machine and deep learning. Fischer et al. [95] used the
artificial neural network, which was a part of deep learning, for activity recognition, which
was then used to perform discrete-event simulation. The digital twin technology and
functional block has an application domain for data visualization and analytics, which is a
part of machine learning [96]. The digital twin of an entity is also able to train deep learning
algorithms [97]. There is also a potential research gap for the application of digital twin in a
deep learning architecture for mobile edge computing. Moreover, Yang et al. [98] proposed
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a model with model reduction and deep neural network as a basic to develop digital twin
for nuclear power system but noted that there was still a research gap to increase the
efficiency of the model. Moreover, digital twin is also seen as a driver to speed up the
realization of Industry 5.0 in the future [99].

Table 10. Top 10 keywords.

Keywords Occurrences Total Link Strength

Digital twin 1546 4340
Design 413 1769

Industry 4.0 319 1360
Framework 218 1165

Big data 166 1011
Simulation 289 996

Smart manufacturing 193 848
Optimization 193 806

Cyber–physical systems 140 779
Blockchain 91 523

Figure 8. Keyword overlay analysis.

As the world is moving towards human-centric industrialization, there are also huge
research gaps with the application of digital twin and deep learning, machine learning,
and artificial intelligence to achieve mass personalization through intelligent transforma-
tion [100,101]. In the supply chain where all the logistics processes are interconnected and
would largely impact the next step of operation, there exists a gap between digital twin
applications, deep learning, machine learning, and artificial intelligence for occupational
safety and health to prevent accidents and hazards for the wellbeing of the workers [102].
Digital twin could analyze the potential areas and degree of severity of accidents and
help the companies to visualize a proper floor plan to minimize the adverse effects and
losses due to the potential hazards [103]. Digital twin can also study the movement and
interaction of humans in the workplace to reduce their risk of accident [104,105]. For better
personalized working experience, digital twin can help workers visualize the outcomes of
their actions and design mitigation strategies to enhance their own productivity. All these
are still in the development phase, and there are boundless prospects.
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The sustainable development goals (SDGs) focus on smart yet sustainable industrial-
ization and manufacturing. Therefore, digital twin can be applied for sustainable intelligent
transformation [106–108]. This involves transformation in the equipment, systems, and
services that interconnect with each other. When broken down, the equipment consists
of units and lines; systems start from designing, producing, logistics, and selling, while
services range from innovating, manufacturing, and post-purchase assistances [109]. Mean-
while, digital twin could also help with the maintenance, overhauls, and repairs of complex
systems, products, and equipment [110–112]. Moreover, for optimization in resource al-
location, digital twin can complement edge computing, improve efficiency, and reduce
wastage [113,114]. Various digital twin infrastructures could be explored to support differ-
ent phases in sustainable intelligent transformation with the integration of deep learning,
machine learning, and artificial intelligence.

3.7. Research Evolution

Based on the bibliometric analysis above, the evolution of research trends can be
divided into three stages, namely, the embryonic, developmental, and prosperity stages [90].
In the Web of Science, the research on digital twin in the supply chain began in 2014.
Therefore, the embryonic stage of the research of digital twin in the supply chain is from
2014 to 2017, since the number of publications listed on the Web of Science was still low.
Then, the developmental stage of the research was from 2018 to 2020. The prosperity stage
of the research is from 2021 onwards.

3.7.1. Embryonic Stage (2014–2017)

The embryonic stage of the research of digital twin in the supply chain on the Web of
Science database began years after NASA introduced digital twin in their roadmap. During
this period, about 66% (29 documents) were proceeding papers. In this first stage, several
papers tested out the digital twin concept in the production line. Vachálek et al. [115]
proposed the digital twin concept for the production of pneumatic cylinders by creating
a virtual model of the hydraulic pistons. The changes in the virtual model were almost
instantaneous with a difference of one second. This proposed digital twin model was still
basic with limited optimization, proactive maintenance, and sensors for big data analysis.
Zhang et al. [94] developed a digital twin for the hollow glass production line. Digital
twin started to be involved in the cyber–physical system in the supply chain during this
period. Realizing that small and medium enterprises were not aware of digital twin,
Uhlemann et al. [116] presented a CPS learning concept for real-time data acquisition,
automated optimization, and data capturing. Cai et al. [117] developed a CPS system for
a three-axis vertical milling machine. The digital twin produced was limited to a single
milling machine and only two sensors and low sensory data. For shopfloor planning,
Brenner and Hummel [118] started to build a learning factory and noted that artificial
intelligence such as self-calibrating localizations were part of the future of digital twin. Blum
and Schuh [119] developed a digital twin that was limited to real-time order processing
with potential improvements for big data analytics and integration with other production
logistics activities. In this stage, ideas have also slowly been proposed and explored to
apply digital twin in wider areas of the supply chain such as additive manufacturing and
3D printing [120,121].

3.7.2. Developmental Stage (2018–2020)

This stage highlights the connection of digital twin with components of Industry 4.0.
Tao et al. [13] and Qi and Tao [83] started to emphasize the combination of digital twin
and big data to create cyber–physical data for designs, production, and service in the
supply chain. These papers noted that big data analysis could help users detect the
causes of problems and find solutions in the virtual model that were significant in smart
manufacturing. Integration of digital twin with machine learning also started in this
stage, as Xu et al. [122] developed a digital twin for fault diagnosis with deep transfer
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learning. Several machine learning techniques had also been incorporated into digital
twin [123–125]. Industrial Internet of Things, edge computing, and cloud-based systems
were also introduced in digital twin [126–131]. The security awareness while using digital
twin was enhanced with the application of blockchain for cryptographic hashing algorithms,
decentralization, and immutability [132–135]. In this stage, the need for more sensitive
and efficient sensors for digital twin modeling arose. Jin et al. [136] developed triboelectric
nanogenerator sensors for a soft-robotic gripper system for digital twin models for assembly
lines and automated warehouses. Research in this stage also started to move towards
sustainable digital twin applications [137]. Sustainable designs, productions, logistics, sales,
and services made up the sustainable closed loop for sustainable intelligent manufacturing
in a study by He and Bai [106]. Kaewunruen and Lian [138] constructed a 6D building
information system with digital twin for sustainable railway turnout for economy and
sustainability. Digital twin was also used to develop a sustainable business model for
a comprehensive network that focused on several product life cycles [139]. Digital twin
was also used for sustainable performance assessment of the production system [140].
Wang et al. [141] developed a big-data-driven digital twin to configure sustainable products
and remanufacture processes. Optimal selection of green materials using digital twin was
also established [50].

3.7.3. Prosperity Stage (2021–Present)

The spike in the number of papers in this stage was mainly driven by the COVID-19
pandemic, where industries realized that resiliency was important to manage operating cost
and profit for sustainability during an emergency [142–144]. Digital twin was also used to
perform impact analysis for the food retail supply chain to help the companies cope with the
adverse impacts of COVID-19 [145]. Digital twin as a service started to become a highlight
in this stage as mass individualization became important in manufacturing [101,146,147].
The research of digital twin in the supply chain became more specific as digital twin was
implemented in actual environments such as ports and other maritime operations [148–151].
Big data, deep Q-learning, and generative adversarial networks were also used in digital
twin for traffic prediction [152]. The research on production logistics was also enhanced
with deep neural network and Internet of Things [153]. Sustainability is also a part of the
digital twin research in the supply chain to reduce raw material consumption [154]. In
this stage, research highlighting digital twin as an enabler of Industry 5.0 has started to
emerge, as digital twin is a supporting technology for Industry 5.0 [155–157]. Digital twin
as an enabler in Industry 5.0 consists of seven elements, namely, technologies, humans,
management, organizations, scopes, tasks, and modelling, while the types of digital twin
in the supply chain involve product, process, organization, supply chain, and network-of-
networks [158]. In using digital twin for Industry 5.0, the cyber–physical manufacturing
system has now been shifted to cyber–physical human-centered systems for smart and
sustainable manufacturing [159,160].

3.8. Citation Metrics

Table 11 presents the citation metrics of the publications of digital twin in the supply
chain. A total of 2652 documents have been published from 2014 to 2023 as of 10 May 2023.
In total, 40,768 citations have been obtained from these publications, with a h-index of 87
and a g-index of 153.

Table 11. Citation metrics of digital twin publications in the supply chain.

Items Metrics

Extraction date 10 May 2023
Total publication 2652

Total citation 40,768
Number of years 10
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Table 11. Cont.

Items Metrics

Citation per year 4076.80
Citation per paper 15.37
Citation per author 12,295.62
Papers per author 781.8
Authors per paper 4.33

h-index 87
g-index 153

4. Conclusions

In this bibliometric analysis, 2652 documents published from 2014 to 2023 were
extracted to study the research trend, development, and focus of digital twin in the supply
chain. Digital twin in the supply chain is an emerging field in the midst of Industry 4.0.
As Industry 5.0 is still in its infancy, the development and implementation of digital twin
will accelerate the connection of the physical and digital environments. As such, this
bibliometric analysis serves as an important reference for researchers, academics, and
industry practitioners to understand the development of digital twin in the supply chain.

The total annual publication has been low from 2014 to 2017. From 2018 onwards,
the number of publications rose quickly and reached its peak at 880 publications in 2022.
The citation per publication (273.50) and citation per cited publication (273.50) were the
highest in 2015 as they were contributed to by the paper by Rosen et al. [82] titled “About
the importance of autonomy and digital twins for the future of manufacturing”, which
has received 531 citations. The highest h-index (51) was in 2020, which means that 51
publications in 2020 received at least 51 citations until 10 May 2023.

The publications were mostly articles, proceeding papers, and review articles in
the subjects of engineering, computer science, and automation control systems. China
(650) had the most publications on digital twin in the supply chain. China also had the
highest number of citations, which amounted to about 36% of the total citations of the
2652 publications. China also had the highest h-index (59) and g-index (110). The strongest
country collaborations existed between China and the United States (49), followed by China
and Sweden (33), and China and England (31).

The top publication titles were Applied Science (IF = 2.838, Q2), IFAC PapersOnLine,
and Journal of Manufacturing Systems (IF = 9.498, Q1). IEEE Access (IF = 3.476, Q2) had
the highest total citations for publications on digital twin in the supply chain. The paper
“Digital twin-driven product design, manufacturing and service with big data” published
by Tao et al. [13] was the top cited publication, with 1002 total citations. This paper was
also the highest co-cited reference, while the main author, Tao, F., was also the top co-cited
author, followed by Grieves, M., and Leng, J. W. The International Journal of Advanced
Manufacturing Technology (IF = 3.563, Q2), International Journal of Production Research
(IF = 9.018, Q1), and Journal of Manufacturing Systems (IF = 9.498, Q1) journals were the
top three co-cited publication titles.

In the initial stage of research, the documents revolve around conceptualizing digital
twin in the production line. However, the advantages of digital twin in application were
low as the models could only handle limited data and optimization. Digital twin was
introduced into the cyber–physical system in this initial stage, with prospectives in smart
manufacturing. Then, during the development of digital twin research, the capabilities
of digital twin expanded as some limitations were removed with the integration of the
components of Industry 4.0 such as big data, Industrial Internet of Things, cloud computing,
edge computing, blockchain, and machine learning technologies. Digital twin also helped
to visualize sustainable intelligent manufacturing. After the outbreak of the COVID-19
pandemic, companies realized that resiliency in the supply chain was important for survival
and sustainability during emergency and digital twin was a potential solution. This drove
the spike in the number of research on digital twin in the supply chain. Recently, several
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researchers have begun to explore the application of digital twin in the supply chain for the
future in Industry 5.0.

This bibliometric analysis has several limitations. Firstly, the Web of Science database
is updated regularly. Hence, this bibliometric analysis may be revisited in the future for
the understanding of evolving trends. Secondly, this study focused on the Web of Science
database. Therefore, future studies may consider other databases for the bibliometric
analysis of digital twin in the supply chain.
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Abstract: The popularity and development of social media have made it more and more convenient
to spread rumors, and it has become especially important to detect rumors in massive amounts of
information. Most of the traditional rumor detection methods use the rumor content or propaga-
tion structure to mine rumor characteristics, ignoring the fusion characteristics of the content and
structure and their interaction. Therefore, a novel rumor detection method based on heterogeneous
convolutional networks is proposed. First, this paper constructs a heterogeneous map that combines
both the rumor content and propagation structure to explore their interaction during rumor prop-
agation and obtain a rumor representation. On this basis, this paper uses a deep residual graph
convolutional neural network to construct the content and structure interaction information of the
current network propagation model. Finally, this paper uses the Twitter15 and Twitter16 datasets
to verify the proposed method. Experimental results show that the proposed method has higher
detection accuracy compared to the traditional rumor detection method.

Keywords: false information detection; residual structure; graph neural network

MSC: 68T09

1. Introduction

An important feature of the information age is the emergence of information, which
includes a great deal of disinformation. This disinformation influences people’s decision
making and can trigger social conflict. With the spread of the internet, disinformation often
comes in the form of online rumors. Online rumors usually refer to words spread through
online communication media (such as Weibo, WeChat, forums, etc.), which have no basis
in fact and have an offensive and purposeful nature [1]. Online rumors are often used for
fraud and phishing, which pose a significant threat to the safety and interests of individuals
and society, making the detection of false information increasingly important.

The application scenarios of false information detection are extensive, involving
multiple fields such as news media, social networks, and e-commerce. In the news media
field, false information detection can help news organizations and reporters distinguish and
block fake news, improving the credibility of news reporting. In the social network field,
false information detection can help social network platforms discover and remove false
information in a timely manner, thereby maintaining the health and order of the network
space. In the e-commerce field, false information detection can help consumers identify
fake goods and false advertising and safeguard the rights and interests of consumers.

In false information detection tasks, there are many research results available for refer-
ence. Traditional content-based approaches, which analyze the credibility of individual
tweets or claims separately, ignore the high correlation between tweets and events and do
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not consider information from human–content interaction data. In recent years, many
methods based on deep learning and methods based on novel feature fusion have also
emerged. For example, Ma proposed a method for rumor detection using a tree-structured
recursive neural network, and the results show that the proposed method can achieve
excellent early detection of rumors [2]. However, this method may have some difficulties in
processing long texts and complex syntax structures. Vu proposed a new model based on
graph convolutional networks and propagation embedding for rumor detection in social
media and conducted sufficient experiments on real datasets to prove the effectiveness
of the method [3]. However, this method is aimed at text propagation in social networks
and may not be suitable for cases involving visual or other non-textual information in
the propagation process. In addition, Monti proposed a new type of automatic fake news
detection model based on geometric deep learning, and experiments showed that social
network propagation and structure are important features for the highly accurate detection
of fake news [4]. However, this method may be affected by the sparseness and incom-
pleteness of the data. Social media data often have high dynamicity and noise and lack
complete information labels, which may lead to a decline in the performance of the model.
In addition, since different news data are often interrelated, they are naturally interactive.
Graph neural networks that are good at processing graph structures are also applied to
rumor detection tasks. For example, Lotfi proposed a model that uses graph convolutional
networks to detect rumor conversations, which extracts reply trees and user graphs for
each conversation, achieving better performance compared to the baseline method [5]. Bian
proposed a bidirectional graph model called a bidirectional graph convolutional network
(Bi-GCN) to explore both features through top-down and bottom-up rumor propagation. It
uses a GCN with a top-down directed graph of rumor propagation to learn the patterns
of rumor propagation, and a GCN with a rumor propagation graph in the opposite direc-
tion to capture the structure of rumor propagation, which empirically demonstrated the
superiority of this method over state-of-the-art methods [6]. Qian proposed a hierarchical
multimodal contextual attention network (HMCAN) that uses the Resnet and Bert models
to learn the features of images and text, respectively, and designed a hierarchical coding
network to capture hierarchical semantics for fake news detection [7].

In contrast to existing methods, this article proposes a rumor detection method for
the interaction characteristics of both the content and structure named GCRES, which can
combine content and propagation patterns to characterize rumors. The residual structure,
based on a graph convolutional network, is used to model the content structure correlations
of heterogeneous graphs, thus overcoming the problem of the indistinguishable effects
of adjacent neighbor nodes in the rumor propagation process and effectively realizing
rumor classification. Specifically, the main contributions of this article include the following
three points:

(1) This article constructs a heterogeneous graph to obtain a representation of rumors by
combining post content and rumor propagation patterns, which includes the textual
information of rumors and the initial propagation information.

(2) This article proposes a residual structure based on a graph convolutional network.
This structure uses a skip connection method to effectively overcome the problem of
the indistinguishable effects of adjacent nodes in the rumor propagation process and
obtain the interaction characteristics of heterogeneous graphs.

(3) This article uses the Twitter15 and Twitter16 datasets, which are widely used in rumor
detection for experimental verification. The experimental results show that, compared
with traditional rumor monitoring methods, the proposed GCRES method can achieve
a higher rumor detection accuracy.

2. Related Works

Traditional methods for detecting fake information can be categorized into two types:
rule-based methods and machine learning-based methods. Rule-based methods classify
real and fake information using the differences between them, including features like
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keywords, sentence structures, and sentiment polarities in the text [8]. On the other hand,
machine learning-based methods classify real and fake information by building models,
such as using support vector machines, random forests, or other algorithms to train and
classify data. Ma et al. first used deep learning models to detect rumors on Weibo [9].
In subsequent studies, they proposed two recursive neural network models based on top-
down and bottom-up tree structures to better capture rumor structures and text features.
The results showed that this model achieved high accuracy in detecting early propagating
rumors [2].

Since introducing deep learning methods, the accuracy and efficiency of fake infor-
mation detection have significantly improved. Among them, graph neural networks, as a
powerful representation learning method, have a wide range of applications in fake infor-
mation detection. Graph neural network-based fake information detection methods usually
fall into two categories: node-based methods and graph-based methods.

Node-based methods mainly focus on node features and contextual information,
whereas graph-based methods use the entire graph as input and utilize graph neural
networks to learn graph representations. In node-based methods, the most commonly used
approach is to use the social and content attributes of nodes for fake information detection,
for example, by using features such as user information, text content [2,10], and time
information to determine whether the node is spreading fake information. Y Liu et al.
used recurrent and convolutional networks to construct a time-series classifier to capture
global and local variations in user features on the propagation path, thus detecting fake
news [11]. This method is the first to model the news dissemination path on social media
as multi-dimensional time series and practice fake news detection through a sequence
classifier. Ling Sun et al. discussed a novel joint learning model called HG-SL for the early
detection of fake news. This model uses a hyper-GNN to embed the global relationships
of users, and multi-head self-attention modules to simultaneously learn local contexts
(local context in specific news) during propagation in order to comprehensively capture
the differences between true and false news. The introduction of global node centrality and
local propagation status further highlights user influence and news dissemination ability.
The experiments show that HG-SL is significantly better than the SOTA models in the early
detection of fake news [12]. In addition, some studies have also considered the propagation
behavior of nodes as one of the node features, such as the forwarding and like counts of
nodes [13,14].

In graph-based methods, the main approach is to learn the representation of the en-
tire graph through graph neural networks and then perform fake information detection.
For example, Tian Bian et al. proposed a novel bidirectional graph convolutional network
(Bi-GCN) model, which uses a rumor propagation-directed graph with a top-down struc-
ture to learn the propagation patterns of rumors, and a rumor propagation graph with
a reverse direction to capture the structure of rumor propagation. The influence of the
original post of the rumor is enhanced in the graph structure, and the model achieved
excellent results in fake information detection [6]. K Tu et al. proposed a framework for
rumor representation learning and detection. This framework uses combined text and
propagation structure representation learning to improve rumor detection performance.
The authors proposed a joint graph concept to integrate the propagation structure of all
tweets to alleviate the sparsity issue of the propagation structure in the early stage [15].
Some researchers have also combined graph neural networks with attention mechanisms
to learn graph representations more accurately. For instance, Qi Huang et al. proposed a
meta-path-based heterogeneous graph attention network framework. The heterogeneous
graph is decomposed into tweet word and user subgraphs according to tweet words and
tweet user paths, and node representations are learned using subgraph attention networks
to capture the global semantic relationships of text content and fuse information involved in
source tweet propagation for rumor detection [16]. Chunyuan Yuan et al. proposed a novel
global-local attention network (GLAN) for rumor detection on social media. Their method
combines local semantic relationships with global structural information, uses multi-head
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attention mechanisms to integrate the semantic information of relevant retweets into the
source tweet, generates a better-integrated representation, establishes a heterogeneous
graph using global structural information to capture the complex global information be-
tween different source tweets, and uses global attention for rumor detection. Experimental
results show that the GLAN is significantly better than existing models in rumor detection
and early detection [17]. In addition, Ma et al. used statistical features in three aspects, in-
cluding rumor content language characteristics, user characteristics participating in rumor
transmission, and the propagation network structure to build a feature graph. The authors
integrated entity recognition, sentence reconstruction, and ordinary differential equation
networks into a unified framework called ESODE, which improved the performance of
rumor detection [18].

3. Solution Design

3.1. System Model

A rumor detection dataset X = {x1, x2, . . . xn}, where xi represents the i-th event,
and n represents the total number of events. Each event xi contains two independent
sets: content and propagation structure. In addition, xi = {Pi, Gi}, where Pi and Gi
represent the content and propagation structure of xi, respectively. The propagation struc-
ture Gi is composed of a set of nodes Ci = {ci0, ci1, . . . , ciN} and a set of connections
Ei = {est | s, t = 0, 1, . . . , N}, where ci0 represents the original post, and cij represents the
j-th response post. Let A ∈ {0, 1}N×N be the adjacency matrix, where Ast = 1 if there
exists an edge from node cis to node cit, and Ast=0 otherwise. Moreover, Let A′ be the adja-
cency matrix of the heterogeneous graph that combines both the content and propagation
structure. In this paper, we model the rumor detection task as a supervised classification
problem, where each event has a true label yi, with a value set of {NR, FR, TR, UR}, repre-
senting non-rumors, falsehood rumors, true rumors, and unverified rumors, respectively.
Our goal is to train a classifier f : xi → yi to accurately predict the label of the content and
the propagation structure of a given post.

3.2. Rumor Detection Framework

A heterogeneous graph is a graph in which there are multiple different types of
nodes and multiple types of edges between the different types of nodes. Compared with
traditional homogeneous graphs, heterogeneous graphs have richer structures and more
associated information. In heterogeneous graphs, nodes are divided into different types,
and there is a clear distinction between node types. For example, the heterogeneous
composition of a social network may include user nodes, post nodes, and tag nodes. The
edges between the different node types can represent the follow relationship between
users, the interaction relationship between users and posts, and the association relationship
between posts and tags. Such heterogeneous graphs can more accurately simulate the
complex relationship network in the real world and capture rich correlation information
between different nodes.

As shown in Figures 1 and 2, we propose a rumor detection framework based on
the interaction characteristics of heterogeneous graphs, named GCRES. The framework
consists of three parts: rumor representation, interaction representation learning, and rumor
classification. Firstly, we construct a graph model based on the content and propagation
structure for rumor representation. Specifically, we first use the TF-IDF model to extract
the representation information of the rumor content [19]. Then, we encode the propagation
node vectors using the adjacency matrix, combine the content and propagation information,
and finally embed the joint graph into a low-dimensional space. Secondly, we use a graph
convolutional network (GCN) to learn the initial state of the heterogeneous graph. At the
same time, we use interaction representation learning technology to obtain the interaction
features of the heterogeneous graph. Finally, we use an average pooling layer to cascade
the features of heterogeneous maps and make predictions of rumor categories.
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Figure 1. Rumordetection framework.

Figure 2. Heterogeneousgraph combining rumor content and propagation structure. The red circles
represent the original nodes, and the other colored circles represent the nodes in the propagation path

3.3. Rumor Representation

As shown in Figure 1, we constructed a heterogeneous graph to characterize rumors
by combining the content and propagation structure. Specifically, we used the TF-IDF
method to obtain the representation of the content in each post. First, we filtered out stop
words and constructed a corpus. Then, the word frequency can be represented as:

t fij =
nij

∑k nik
(1)

In the equation, nij represents the number of times the i-th vocabulary appears in the
j-th post. At the same time, inverse document frequency can be represented as:

id fi =
log |D|

1 + |k : ti ∈ pk| (2)

where |D| represents the total number of posts in the corpus, and |k : ti ∈ pk| represents
the number of posts containing the vocabulary ti. Then, the weight of the vocabulary ti can
be represented as:

ti = t fij × id fi (3)

Therefore, the content representation of the j-th post is pj =
[
t1, t2, . . . , t|W|

]
, where

|W| is the total number of vocabulary in the corpus.
On the other hand, since the representation of pj is high dimensional and sparse, we

use an embedding layer to map it to a low-dimensional space to obtain dense real-valued
vectors as the content representation of the j-th post:

vj = Wj pj (4)
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where Wj represents the weight of the embedding layer.
Based on the above framework, we further construct the propagation structure of the

rumor Gj =
{

Cj, Ej, A
}

. Since the adjacency matrix A ∈ {0, 1}N×N reflects the transmission
path of the rumor, the adjacency matrix of the joint rumor content and propagation path
can be obtained from A and vj:

A′
st = Astvj (5)

where Ast represents the weight of the edge from node cjs to node cjt. Based on this,
the initial representation of the rumor rj can be represented as:

rj =
1
M ∑

cjs ,cjt∈Cj

A′
st (6)

where M is the number of edges occupied by the j-th post in the propagation structure.

3.4. Acquiring the Initial State

After obtaining the representation of the rumor, we use a GCN to obtain the initial
state of the heterogeneous graph. Specifically, we first construct the operator Ã of the GCN,
defined as:

Φ = D̃− 1
2 ÃD̃− 1

2 (7)

Ã = A′ + I (8)

where A′ and I are the adjacency matrix and identity matrix of the heterogeneous graph,
respectively, and D̃ is the degree matrix of Ã. Then, the initial state representation of the
joint graph can be represented as:

H(0) = σ
(

ΦrjW(0)
)

(9)

where H(0) represents the initial state of the rumor propagation, W(0) is the weight matrix
of the filter, and σ(·) is the ReLU activation function.

3.5. Interaction Representation Learning

In order to obtain the interaction feature information of the rumor content and propa-
gation graph, we use interaction representation learning to learn the continuous temporal
correlation in the propagation process.

First, we assume that the hidden representations of all nodes are correlated, and we
combine the GCN and residual network (ResNet) methods to learn the embedding repre-
sentations of the nodes. Specifically, we use a two-layer GCN network model to learn the
representation of the propagation graph and extract potential relationships through the
feature information of the nodes themselves, as well as the adjacent nodes. Each GCN layer
first obtains the features of the current node and the adjacent nodes, then uses aggregation
functions to obtain local feature relationships, and finally trains through shallow learning
to obtain high-dimensional features. The propagation relationship between layers can be
represented as:

H(l+1) = σ
(

D̃− 1
2 ÃD̃− 1

2 H(l)W(l)
)

(10)

where Ã = A + I, I is the identity matrix, D̃ is the degree matrix of Ã, and σ(·) is the ReLU
activation function.

On the other hand, we use a structure based on residual networks to cascade four
GCN networks. As the number of model layers in the GCN increases, it is prone to the
problem of over-smoothing, which makes the differentiation of neighboring nodes’ effects
in the rumor propagation process unclear. Therefore, a graph neural network incorporating
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residual networks is designed, adopting skip connection to improve and avoid this problem.
As shown in Figure 1, the output of each residual block can be represented as:

y(l+1) = h(l)
(

x(l)
)
+ F

(
x(l), H(l)

)
(11)

3.6. Rumor Classification

We further use the average pooling operation to aggregate the output of all GCNs,
that is,

H =
1
L

L

∑
l=0

H(l) (12)

where L is the number of GCNs. Then, we use fully connected layers and a softmax layer
for rumor classification, which is:

ŷ = softmax(WFC H + bFC) (13)

where WFC and bFC are the weight and bias of the last hidden layer, and ŷ represents the
predicted probability vector of rumors belonging to each category, which is also the label
for predicting rumor events. Finally, we train the model by minimizing the cross-entropy
between ŷ and the true distribution y and adding L2 regularization to prevent overfitting.

4. Experiment

4.1. Dataset

We conducted experimental validation of the proposed method using two open source
datasets, Twitter15 and Twitter16. Both datasets consist of social media data, each with
1490 and 818 propagation graphs. The labeling of the propagation graphs includes four
types: non-rumor, true rumor, false rumor, and unverified rumor. In addition, the nodes in
the graph represent users, and the edges represent replies and forwarding. Table 1 provides
statistical information on the two datasets.

Table 1. Twitter15 and Twitter16 datasets.

Statistical Information Twitter15 Twitter16

Total number of posts 331,612 204,820
Original post count 1490 818
Non-rumor count 372 205
True rumor count 374 203
False rumor count 370 205

Unverified rumor count 374 205

4.2. Baseline Methods

We used the following seven baseline methods for rumor detection:

(1) DTC [10]: This method uses decision tree classifiers and manually designed features
to extract and analyze tweet information.

(2) RFC [20]: This method uses a random forest classifier to detect rumors by combining
user features, language features, and news structure features.

(3) SVM-TS [12]: This method is based on an SVM classifier, using manually designed
features to form a time-series kernel to identify rumors.

(4) SVM-HK [21] : This method uses a graph kernel to measure the similarity of propaga-
tion structures combined with an SVM classifier for rumor detection.

(5) GRU-RNN [9]: This method relies on a recurrent neural network with GRUs to capture
the contextual changes in relevant posts over time for rumor detection.

(6) BU-RvNNand TD-RvNN [22]: This method adopts a bidirectional tree-structured
recursive neural model, which includes top-down and bottom-up tree-structured
neural networks combined with GRUs to learn and analyze rumor information.
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(7) Rumor2vec [15]: This method uses a CNN-based model to combine the textual
content with the propagation structure to achieve joint representation learning for
rumor detection.

4.3. Experimental Setup

We used a TF-IDF model based on a 5000-word vocabulary to represent the content of
the post. The node and hidden layer embedding sizes were searched in {32, 64, 128, 256}.
The embedding size of the model and the number of samples selected for each training were
both set to 64. At the same time, we divided each dataset into five parts and performed
fivefold cross-validation to ensure the robustness and fairness of the experimental results.
We used the accuracy values for the four categories and the F1 value for each category as
performance indicators. In addition, we used the Adam algorithm for model optimization.
The learning rate was 0.005, and the number of iterations was 100 epochs. Finally, to
prevent overfitting, we stopped training early when the validation stopped decreasing for
10 epochs.

4.4. Analysis of the Results

We used the accuracy and F1 values to evaluate the performance of our proposed
classification model. The accuracy rate helps us understand the accuracy of the classifi-
cation, whereas the F1 value takes into account the accuracy and recall, allowing us to
more comprehensively evaluate the classification effect of the model on different classes.
In Table 2, Acc. represents accuracy, and NR F1, TR F1, FR F1, and UR F1 represent the F1
values of the non-rumor, true rumor, false rumor, and unverified rumor categories.

Table 2. Comparison experiment results.

Method Acc.
NR FR TR UR
F1 F1 F1 F1

Twitter15 dataset
DTC 0.454 0.733 0.355 0.317 0.415
RFC 0.565 0.810 0.422 0.401 0.543

SVM-TS 0.544 0.796 0.472 0.404 0.483
SVM-HK 0.493 0.650 0.439 0.342 0.336

GRU-RNN 0.641 0.684 0.634 0.688 0.571
BU-RvNN 0.708 0.695 0.728 0.759 0.653
TD-RvNN 0.723 0.682 0.758 0.821 0.654
Rumor2vec 0.796 0.883 0.746 0.836 0.723

GCRES 0.853 0.855 0.858 0.903 0.746
Twitter16 dataset

DTC 0.473 0.254 0.080 0.190 0.482
RFC 0.585 0.752 0.415 0.547 0.563

SVM-TS 0.574 0.755 0.420 0.571 0.526
SVM-HK 0.511 0.648 0.434 0.473 0.451

GRU-RNN 0.633 0.617 0.715 0.577 0.527
BU-RvNN 0.718 0.723 0.712 0.779 0.659
TD-RvNN 0.737 0.662 0.743 0.835 0.708
Rumor2vec 0.852 0.857 0.769 0.927 0.850

GCRES 0.888 0.801 0.877 0.912 0.919

Table 2 shows the test results of the proposed method and the seven baseline methods
on Twitter15 and Twitter16. In the table, it can be seen that compared with methods using
manually designed features (DTC, RFC, SVM-TS, and SVM-HK), methods based on deep
learning (GRU-RNN, BU-RvNN, Rumor2vec) and the proposed method achieved higher
accuracy and F1 values. This is because deep learning technology can learn effective high-
dimensional features of rumors. These results prove that deep learning technology can
effectively improve the performance of rumor detection.
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On the other hand, the proposed method achieved the highest accuracy on both
datasets. Specifically, the proposed method achieved accuracies of 85.3% and 88.8% on
Twitter15 and Twitter16, respectively, which were 5.7% and 3.6% higher than the baseline
method Rumor2vec. This is because CNNs cannot handle data with dynamic features, mak-
ing it difficult for Rumor2vec to capture the interaction characteristics of rumor propagation.
These results demonstrate that incorporating interaction features can effectively improve
the performance of rumor detection. It is worth noting that for the non-rumor category,
Rumor2vec outperformed the proposed method. This is because non-rumor posts are often
posted or replied to by more authoritative and credible users, so the propagation path and
content of non-rumor posts are more fixed. Therefore, the interaction characteristics of
non-rumor posts have little impact on the detection performance.

Figures 3 and 4 depict the confusion matrices of the experimental results for the
Twitter15 and Twitter16 datasets, respectively. As shown in Figure 3, for the Twitter15
dataset, the accuracy of our method was high for data that were identified as true rumors
or false rumors. But the accuracy achieved for unverified rumors was only 0.746 due to
the peculiarities of the data in this category. As they were unverified, the samples in this
category could be both true or false, which is very confusing. Therefore, our method is more
suitable for only facticity and falsehood identification of known data, and for unidentified
rumors, there are no features that can be relied on from the data.

As shown in Figure 4, for the Twitter16 dataset, true rumors, false rumors, and unveri-
fied rumors were more accurately identified compared to non-rumors. The reason for this
may lie in the correlation between the rumor sample data and whether a sample was a true
rumor or a false rumor, as some characteristics can be discerned from a textual point of
view (unverified rumors may be true or false). However, for the non-rumor sample, it was
less related to the other three categories, so its classification accuracy was low.

Figure 3. Confusion matrix of Twitter15.
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Figure 4. Confusion matrix of Twitter16.

5. Conclusions

By utilizing the dynamic changes in rumor content, propagation structure, and prop-
agation heterogeneous graph, this paper proposes a novel interaction rumor detection
method based on a graph convolutional network called GCRES. Firstly, a novel hetero-
geneous graph is proposed by combining the rumor content and propagation structure
to obtain accurate rumor representation. Secondly, a residual module consisting of four
cascaded graph convolutional networks is designed using the powerful ability of graph
convolutional networks in dealing with heterogeneous graphs for representation learning,
thus fully mining the interaction characteristics of the heterogeneous graph. Experimental
results show that compared with traditional rumor detection methods, the GCRES method
exhibits better detection performance on both the Twitter15 and Twitter16 datasets.
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Abstract: This paper concerns the development of a machine learning tool to detect anomalies in
the molecular structure of Gallium Arsenide. We employ a combination of a CNN and a PCA
reconstruction to create the model, using real images taken with an electron microscope in training
and testing. The methodology developed allows for the creation of a defect detection model, without
any labeled images of defects being required for training. The model performed well on all tests
under the established assumptions, allowing for reliable anomaly detection. To the best of our
knowledge, such methods are not currently available in the open literature; thus, this work fills a gap
in current capabilities.

Keywords: electron microscope; convolutional neural networks (CNNs); anomaly detection;
principal component analysis (PCA); machine learning; deep learning; neural networks; Gallium
Arsenide (GaAs)

MSC: 68U10

1. Introduction

Electron microscopes use electrons to “take pictures” of incredibly small areas; these
areas so small that one can see the atomic structure of the material. Gallium Arsenide (GaAs)
is a semiconductive material extensively used in a wide variety of modern day technology,
such as cell phones, solar panels, and much more [1]. Minor flaws and imperfections at
the molecular scale can impact the properties of GaAs [2]. However, it is difficult to detect
these defects, as they happen at an incredibly small scale. Ref. [3] developed a machine
learning technique to detect defects within GaAs using simulated data, as real data were
not available. This paper aims to extend the work of [3] with the construction of a machine
learning classifier trained on actual images of GaAs.

The GaAs images used in this work were collected with a Titan 80–300 image spherical
aberration-corrected transmission electron microscope operated at 300 kV, hereby referred
to as “the Titan”. Similar to [3], we employ a combination of principle component analysis
(PCA) and convolutional neural networks (CNNs) to detect defects within GaAs images.
CNNs are a type of neural network that has been shown to perform well on defect detection
tasks across a variety of fields [4–6].

PCA is a method frequently used to reduce the dimensionality of data [7]. In the
data sciences, large data sets often have correlated or redundant factors. When utilizing
PCA, the principle components are calculated with linear combinations of covariates;
these principle components are then used as new features in the analysis. While there
is a slight loss of information, increasing the number of principle components reduces
the percentage of information lost. Once a PCA is trained, it can be used to calculate the
principle components for a specific sample of data. From this point, a PCA reconstruction
of an image can be created. The idea is that the PCA reconstruction resembles the general
pattern of the original data while removing or ignoring anomalies in the data set [8].
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The rest of the paper is organized as follows: First, we discuss the data used in this
project, how they are obtained, and certain limitations that we must address. Section 3
explains the methodology implemented to create, train, and test the model, with the results
being discussed in Section 4. The paper is concluded in Section 5.

2. Data

All the data used in the training of our model are created from a single picture taken
by the Titan. This image is of a “defect free” sample of GaAs (hereby referred to as the
substrate image). While not 100% defect-free, the sample was grown in a way that made
it as close to defect-free as possible. For training, we use the 40-square-nanometer GaAs
image shown in Figure 1. To provide a sense of scale, a single human hair is generally
between 40,000- and 120,000-nanometer-thick.

Figure 1. Example of image from the Titan. The section used to generate data is highlighted in red.

A myriad of issues arise in the electron microscope images of GaAs samples. Even
the “defect free” samples created are not fully defect-free; the number of defects is far
lower than what would usually be seen, but it is likely that there are still defects present
in the samples. Other issues can be caused when the samples are prepared for imaging.
The samples must be ground down to very small thickness, and this process can cause a
minor warping of the samples.

Yet another issue is alignment. In simulated data, the alignment of samples can be
fully controlled and aligned to a precise, preferable angle. With real-world images, this
level of control is not possible. It is important to remember that we are dealing with images
of atoms; while the structure of GaAs is quite consistent, there is very little indication of the
alignment of the atoms before the images are captured. This often leads to the data being
slightly rotated or skewed when compared with the simulated data.

The state of the Titan also impacts image quality, as the characteristics of the electron
beam affect the quality of the image. Also, due to the small scale, the Titan is very sensitive
to outside interference. People walking nearby and even the operator breathing can affect
the quality of the image. Due to these factors, obtaining high-quality images is difficult.

These issues render parts of the training image unusable, with warping from the sam-
ple preparation process and the scale in the corner being the main contributors. Therefore,
only part of the full image is used. The 1800-by-1024-pixel section identified with the red
bounding box in Figure 1 is the substrate section used for the remainder of this paper.
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Samples from this subsection are then taken to create the data set used to train the
model. These samples are 118-by-84-pixel rectangles chosen at random from the 1800-by-
1024 substrate section, allowing over 1.5 million unique samples to be created from a single
electron microscope image. An example of one of these samples is shown in the top-left
corner of Figure 2.

(a) Defect-free sample, reconstruction, and residual

(b) Simulated defect sample, reconstruction, and residual

(c) Actual defect sample, reconstruction, and residual

Figure 2. Examples of the data used in training and testing the model. From right to left: section
taken from microscope image, PCA reconstruction of section, and residual.

During the training of the model, these samples are chosen to be either a defect sample
or a non-defect sample, with a specified probability. For defects, a simulated defect is added
to the section at a random location. The process for simulating defects and further data
preparations are discussed in further detail in Section 3.

The reliance on simulated defects is due to the fact that we do not have any labeled
images of actual defects. The best we have is an image that we know has defects in it
but with no idea how many or where they are. Not only does this force us to generate
simulated data for training the model, but it also makes validating the model nearly
impossible, because there is no way to tell if the predictions are correct.

To overcome this issue, the assumption followed for this paper is that each 84-by-
118 section from the defect image has at least one defect in it. Based on information gathered
when the sample was grown, the subject matter experts are confident this assumption is
true. An example of one of these defect samples can be seen in the bottom left of Figure 2.

Testing Data

Once the model is trained, we perform three different tests, each using a different
data set. The first of these tests is a model validation test and uses defect-free, or substrate,
samples with and without simulated defects. Generators are used to create this test set,
and about 30% of the data contain simulated defects.

The second test is to ensure that the model actually detects defects and does not just
detect samples taken from a different image. The data for this test do not contain any
defects, neither simulated nor real. Half the samples for this are taken from the original
data set, and the other half is taken from a different picture of “defect free” GaAs. Ideally,
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the models predict most of these as defect-free, but they may find a few defects, as even the
“defect free” images may still contain some defects.

The third test is to determine if the model can find actual defects. We currently do not
have a way of detecting and labeling real defects in images, so we do not have a labeled
set of defects for this test. Instead, we have an image of GaAs that definitely contains
defects, we just do not know where. Based off information gathered when the GaAs sample
was created, the subject matter experts are confident that each 84-by-118 section from this
image contains at least one defect. These images comprise half of the data for the third test,
and ideally, the model predicts all of these samples as containing defects. The other half of
the data are original defect-free samples without simulated defects.

3. Methodology

The prior work on this project using simulated data [3] performed well but was never
applied to real-world data. The actual data collected with the electron microscope suffered
minor distortion from sample preparation and other sources. This caused the models
trained on the simulated data to detect this distortion as defects rather than random noise.
The models had to be retrained using real data to compensate for these other non-defect-
related imperfections. Regardless, the methodology is quite similar to the prior work by [3],
with changes to incorporate the recently available data.

The three main pieces are a CNN, PCA, and a data generator. The CNN used is a
standard AlexNet CNN [9], which is a type of neural network commonly used for defect
detection. A summary of the model can be found in Figure 3a, with loss and accuracy
graphs from training in Figure 3b and Figure 3c, respectively. While this style of CNN is
commonly used for defect detection tasks, our CNN is trained on an unusual set of data.
The samples discussed in the previous section are not directly used in training. Before the
samples can be used in training, they go through a process involving a PCA reconstruction.

(a) CNN: summary

(b) Loss by epoch

(c) Accuracy by Epoch

Figure 3. Neural network structure and training results.

The PCA used for this reconstruction is trained on the same 84-by-118-pixel samples
that are discussed in the previous section of this paper. Once trained, this PCA model has
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200 components and accounts for over 90% of the variance (see Figure 4). This PCA is then
used in the last piece: the data generator.

Figure 4. Training PCA: variance explained per number of components.

The data generator is the piece that produces the data used to train the model. This
is where the simulated defects are added and a PCA reconstruction is used to generate a
batch of training samples. Section 3.1 covers the data generation process in further detail.

The rest of this section is divided into two subsections. First, we will discuss the
training of the neural network and how the simulated defects are created. The second
subsection will cover how the model is tested and validated.

3.1. Model Training

The neural network is trained for 100 epochs containing 100 batches of 100 samples.
Unlike many neural networks, our CNN is not trained using a conventional training set.
Instead, a data generator is used, due to the nature of the data available. Pseudo-code for
the generator is provided in Algorithm 1 and is discussed further below.

Algorithm 1: Data Generator

1 function Generator(substrate_array, pca);
Input : 1800 by 1024 section from substrate image, trained PCA
Output : Batch of 100 training images

2 for i = 1 to 100 do

3 sample = Random 84 by 118 section of substrate image;
4 if rand() > de f ect_rate then

5 reconstruction = PCA reconstruction of sample;
6 residual = sample - reconstruction;
7 Add residual to data set, labeled as “non-defect”;
8 else

9 Add simulated defect in a random location on the sample;
10 reconstruction = PCA reconstruction of sample;
11 residual = sample - reconstruction;
12 Add residual to data set, labeled as “defect”;
13 end

14 end

15 Yield batch of 100 training samples
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The generator requires inputs of the substrate section and the training PCA and yields
a batch of 100 samples. First, a random 84-by-118-pixel sample is taken from the substrate
image. From there, the sample is randomly chosen to be either a defect image or a defect-
free image. The probability of choosing a defect can be changed but is set at 50% for training.
If the sample is chosen to be defect-free, its PCA reconstruction is created and subtracted
from the sample, providing the residual, which is then added to the training set and labeled
as defect-free.

However, if the sample is chosen to contain a defect, a simulated defect is added at
a random location. For this model, the simulated defects are circles of three to five pixels
in radius, with a gray-scale color value of 0.8 (light gray), but the size, shape, and color of
the defects can be changed at will. A PCA reconstruction of the simulated defect sample is
then created and subtracted from the simulated defect image. The resulting residual is then
added to the training set and labeled as a defect. A sample with a simulated defect, its PCA
reconstruction, and the residual can be seen in the middle row of Figure 2. These residual
images are what is used to train the CNN.

This process is repeated 100 times to create a batch of 100 residual images. For each
epoch of training, 100 of these random batches are generated, and the model is trained for
100 epochs. The validation data are generated in the same way, except the validation batch
size contains 20 samples.

3.2. Model Testing and Validation

Three different criteria are used to evaluate the performance of the model, using data
from three separate pictures taken with the Titan. The first test is to ensure the model trains
properly. This test uses data simulated in the same way as the training set. The second test
uses data from a different image of the substrate (defect-free) GaAs to ensure that other
defect-free samples are not predicted as containing defects. The final test uses samples
from an image of GaAs containing defects, under the assumption that each sample taken
from the image contains at least one defect. This is the test to determine whether or not we
can detect actual defects. The results of these tests are discussed in the next section.

Originally, the PCA calculated on the training substrate image was used to create
reconstructions for all the data used in the testing of the model. However, when the models
were tested, all samples taken from any set other than the training set were predicted to
contain defects. This indicated that the training PCA was not applicable to the other data
sets. In response to this discovery, a PCA model is trained for each different set of data used
in the testing process. The second substrate PCA explains about 90% of the total variance,
while the defect PCA explains about 80%. The variance explained versus the number of
components graphs for these additional PCA models are shown in Figure 5.

(a) Defect-free test PCA (b) Defect test PCA

Figure 5. Test PCAs: variance explained per number of components.

122



Mathematics 2023, 11, 3428

4. Results

As discussed in Section Testing Data, three tests were performed on the model,
with each test using a different data set and checking different things. The first test
was a model validation test. Data similar to the training data, that is, data with simulated
defects, were fed into the trained model. The purpose of this test was to ensure that the
model trained properly. The defect ratio was also lowered for this test set to ensure that
it had no impact on model accuracy. As seen in the confusion matrix shown in Figure 6a,
the model performed well in this test, predicting only one simulated defect as not a defect.
The distribution of the predicted defect probabilities is shown in Figure 6b.

(a) Validation test: confusion matrix (b) Validation test: prediction distribution

Figure 6. Outputs from the validation test. (a) Confusion matrix: This test had 99.9% accuracy,
with only one simulated defect being classified incorrectly. The cause of this is not clear, but it is not
a major concern. (b) Distribution of predicted probabilities: A histogram showing the number of
samples with the predicted probability of a defect. Probabilities above 0.5 were predicted as defects.

The next test checked for false positives. The data for this test were from a different
substrate sample, meaning that there should have been few to no defects in the sample.
This test was to check if the model actually predicted defects or if it detected something else.
Thus, the “confusion matrix” (shown in Figure 7a) for this test is not a typical confusion
matrix. The top row concerns samples from the original “defect free” substrate image used
in training, while the second row concerns samples from a different “defect free” image.
The model performed well in this test, only predicting eleven samples from the second
substrate image as having defects. These predictions could even be true, since the sample,
while as close to perfect as possible, may still have contained some defects. The distribution
of the predicted probabilities is shown in Figure 7b.

We note that in this test, there were multiple instances of high estimated probabilities
of defects, i.e., estimated probabilities greater than 0.5. The exploration of the substrate
images resulting in these high estimated probabilities is of interest to us. However, this is
out of the scope of the current work.

The final test was performed on samples from the test image containing defects. Recall
that the assumption for this test set was that each sample contained at least one defect.
Under this assumption, the model performed perfectly. To confirm this, the test was
performed ten times, each on a different random set of samples. All ten tests had 100%
accuracy. A confusion matrix and a prediction distribution histogram from one of these
tests are shown in Figure 8.
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(a) Substrate test: confusion matrix (b) Substrate test: prediction distribution

Figure 7. Results of the substrate test. (a) Confusion matrix: The expected result was no defects for
both sets. However, it is likely that both “defect free” images had some defects, so the predicted
defects could be true defects. No defects were detected in the training substrate image because it was
used in training. (b) Distribution of predicted probabilities: A histogram showing the number of
samples with the predicted probability of a defect. Probabilities above 0.5 were predicted as defects.

(a) Defect test: confusion matrix (b) Defect test: prediction distribution

Figure 8. Results of the defect test. (a) Confusion matrix: This test had 100% accuracy, correctly
predicting all samples from the defect sample as defects and all samples from the defect-free image as
no defects. (b) Distribution of predicted probabilities: A histogram showing the number of samples
with the predicted probability of a defect. For this test, all non-defect samples had a predicted
probability under 0.1, and all defect samples had a predicted probability above 0.9.

4.1. Discussion

The results from this set of tests are promising, and the model performed as we hoped.
However, there are certain gaps in our validation process that we cannot currently fill.
The first issue is the lack of a baseline model. As this is the first attempt to accomplish this
specific task, there does not exist another model to use as a comparison. As work continues
in this area, this model can be used as a baseline in the future. The other issue is the lack of
labeled data, thus certain assumptions must be made, as must be done for most real-world
applications. The two main assumptions we made were that the substrate images were
defect-free and that other images of GaAs contained many defects. The subject experts
are confident that our assumption that every 118-by-84 section from the “defect” image
contains at least one defect is correct.

That being said, the model performed well in all tests under our assumptions. It is
still possible that the model detected something other than defects in the defect test data,
leading to these results. As we acquire more data, this will allow for more options for
testing and validating the model. Other validation methods are currently being explored
and will be reported in a subsequent paper.
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4.2. Calibration

Given that the output of our CNN is an estimated probability of a defect on a particular
substrate image, it is also helpful to explore the performance of these probability estimates
further than with accuracy only (or even other metrics like sensitivity, specificity, or F1).
Ideally, probability estimates should be well calibrated. Perfect calibration occurs when

Ep̂

[∣∣∣∣P(ẑ = z| p̂ = p
)
− p

∣∣∣∣] = 0, (1)

where EX is the expectation of some random variable X and P is a (conditional) probability
mass function. In our case, z is the observed class, i.e., defect-free or defected, while ẑ is the
predicted class. p̂ is a probability estimate for the predicted class, and p is the true class
probability. With Equation (1), the implication for defect identification in our substrate
images is that our estimated probabilities are reflective of the true underlying probabilities
of a defect. As an example, we should observe defects, say, in 10% of our observations
(“relative frequency”) where we estimate a 10% defect probability. We can assess calibration
in practice with the use of metrics like empirical calibration error (ECE) or with the use of
reliability plots. We point the interested reader to [10] for more details on these approaches.
We include reliability plots for our two test sets in Figure 9.

(a) Substrate test: reliability plot (b) Defect test: reliability plot

Figure 9. Reliability plots. (a) Reliability for substrate test. (b) Reliability for defect test.

We note the two plots in Figure 9 provide very contrasting results. The poor calibration
performance of the substrate test set is inherently due to its lack of defects; we have a range
of estimated probabilities but only defect-free substrate images. Thus, the images for
which we estimate higher probabilities of defects are never defected, resulting in relative
frequencies of zero. Figure 9b, corresponding to the defect test set, shows near-perfect
calibration, i.e., the points lie exactly along the diagonal. This results from our perfect
classification performance on this test set, as well as the high confidence on whether
images were defect-free or defected; recall from Figure 8b that our collection of estimated
probabilities for this test set were massed near zero and one.
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5. Conclusions

We developed a machine learning method for detecting anomalies in the molecular
structure of Gallium Arsenide. Additionally, this method can be successfully trained
without access to a training set containing labeled defects. This allows us to create a model
to find defects in a substance without any prior knowledge as to what a defect actually
looks like. This method could also be effective in detecting defects in the atomic structure
of other materials, with appropriate alterations to accommodate new data structures.

We note that our results are based on the assumption that each 118-by-84-pixel sample
from the defect image contains at least one defect. Based on the conditions in which the
samples are created, we are confident in this assumption, yet we currently do not have a
way to verify this. With the understanding that a test set with 100%-accurate labels may
never be possible, work on developing alternative ways to validate the results is underway
and will be reported in a follow-on paper.

Although this work mainly constitutes the proof of concept, it demonstrates that it
is possible to detect if a defect is present in a section of Gallium Arsenide, thus filling a
capability gap. The natural next step is to actually locate where the defects are: the where
problem. This will surely be more challenging in the absence of accurate test data and the
lack of educated assumptions.
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Abstract: Spatial Autoregressive (SAR) models are used to model the relationship between variables
within a specific region or location, considering the influence of neighboring variables, and have
received considerable attention in recent years. However, when the impact of exogenous variables
becomes notably pronounced, an alternative approach is warranted. Spatial Expansion, coupled with
the Casetti model approach, serves as an extension of the SAR model, accommodating the influence
of these exogenous variables. This modeling technique finds application in the realm of rainfall
prediction, where exogenous factors, such as air temperature, humidity, solar irradiation, wind speed,
and surface pressure, play pivotal roles. Consequently, this research aimed to combine the SAR
and Spatial Expansion models through the Casetti model approach, leading to the creation of the
Spatial Autoregressive Exogenous (SAR-X) model. The SAR-X was employed to forecast the rainfall
patterns in the West Java region, utilizing data obtained from the National Aeronautics and Space
Administration Prediction of Worldwide Energy Resources (NASA POWER) dataset. The practical
execution of this research capitalized on the computational capabilities of the RStudio software
version 2022.12.0. Within the framework of this investigation, a comprehensive and integrated
RStudio script, seamlessly incorporated into the RShiny web application, was developed so that it is
easy to use.

Keywords: SAR-X; Casetti’s model; climate variables; prediction; RShiny

MSC: 9004; 62M30

1. Introduction

Water is very important for all living organisms, including humans, thereby ranking
as one of the most indispensable resources in the environment [1]. The phenomenon of
climate change and global warming has significantly reshaped numerous environmental
aspects across multiple countries. This transformation carries the potential for profound
consequences, imperiling the populace, agriculture, ecosystems, economy, and industry.
Alterations in precipitation patterns exert a direct impact on the management of water
resources, agricultural practices, hydrological systems, and ecological balance [2]. It is
crucial to acknowledge that the entirety of life-sustaining water on Earth originates from
rainfall. Consequently, comprehending the spatial distribution and fluctuations in this
rainfall is very important. This understanding is pivotal for efficient water resource man-
agement and also for devising strategies for addressing challenges such as anticipating
natural hazards triggered by intense rainfall events [1,3,4]. Delving into the spatial ar-
rangement and variances of rainfall can play a pivotal role in shaping perspective notions
concerning water resources. Furthermore, it aids in formulating measures for upholding
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stable environmental circumstances. It is imperative to acknowledge that trends in rainfall
constitute a pivotal climate determinant with far-reaching implications, encompassing
future factors such as population growth, economic expansion, and enduring climatic shifts.
These factors collectively impact both the temporal and spatial availability of water [1,5,6].

In various spheres of life, the anticipation of rainfall yields indispensable advantages,
encompassing agriculture, water resource management, disaster preparedness, infrastruc-
ture planning, renewable energy, and transportation. Forecasts of rainfall assist farmers
in coordinating their planting and harvesting schedules, allowing for effective irrigation
planning, suitable crop selection according to weather conditions, and a decreased risk of
crop failure [7–9]. Moreover, these predictions contribute to the proficient handling of water
resources, encompassing the regulation of river flow and reservoir management [10,11].
The availability of accurate rainfall information empowers optimal water utilization and
mitigates flood and drought hazards, as well as plays a pivotal role in the management
of natural calamities such as floods and landslides [12–14]. Informed by projected rainfall
data, authorities can implement preventive measures such as early evacuation, timely
alerts, and the construction of robust infrastructure. Additionally, rainfall prediction has
proved vital in the realm of infrastructure planning, guiding the construction of structures
including dams, drainage networks, and irrigation channels [15–17]. By leveraging rainfall
insights, engineers and planners are equipped to devise designs resilient to extreme weather
conditions. Rainfall profoundly affects renewable energy industries, namely hydropower
and solar energy [18]. Forecasts of rainfall facilitate the strategic planning and management
of renewable energy production, thereby optimizing energy potential [19]. The influence
of rainfall extends to transportation planning as well [20]. Intense rainfall impacts road
traffic, transportation speeds, and driver safety. By leveraging rainfall predictions, trans-
portation schedules can be organized more efficiently, ultimately reducing accident risks.
The availability of accurate rainfall information empowers sound decision making and aids
in mitigating the risks and repercussions arising from unforeseen weather fluctuations [21].
Therefore, the precision and accuracy of rainfall prediction are said to be important.

Based on previous research, diverse rainfall predictions have been undertaken, includ-
ing projections of rainfall variability, particularly focusing on the winter and pre-monsoon
rainfall across Pakistan [22]. In Turkey, monthly and seasonal rainfall trend predictions
were calculated through a comparison of three interpolation methods, namely Inverse
Distance Weighted, Completely Regularized Spline, and Ordinary Kriging [23]. A Spatial
Autoregressive model was employed to predict seasonal legume yields for non-irrigated
croplands in the semi-arid region of Mexico, categorized by regular rainy and dry sea-
sons [24]. The rainfall and groundwater patterns along the northeastern coast of Brazil
were predicted, and the monthly rainfall patterns were characterized to mitigate their
impacts during heavy rainfall periods and significant floods, utilizing the Kriging method
and a clustering analysis [25]. Additionally, short-term rainfall forecasts were derived
using a Hierarchical Bayesian model for spatiotemporal data [26]. It is important to note
that the scope of these predictions exclusively pertains to rainfall variability and does not
encompass other climate variables.

One of the outcomes of climate phenomena is La Niña, which triggers heightened
rainfall in the western Pacific region. Based on empirical data from BMKG, La Niña
can amplify the rainfall in West Java by anywhere from 20% to 70% [27]. Rainfall is
intertwined with other climatic factors such as air temperature, humidity, solar irradiation,
wind speed, and surface pressure, all of which fluctuate across different areas [28]. The
climate variables pertinent to specific regions or locations can be effectively modeled
using a spatial analysis approach. Among the spatial models commonly employed, the
Spatial Autoregressive (SAR) model stands out. This is frequently referred to as a mixed
regressive spatial autoregressive model or a spatial lag model [29]. The SAR model, a
statistical tool, is harnessed to depict the relationships between variables within a given
region or location, considering the impacts of surrounding variables. However, the model
falls short in capturing the spatial disparities between locations. To address this gap,
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Casetti [30] developed the Spatial Expansion model, which extends the SAR to encompass
exogenous variables through a linear regression approach. The amalgamation of the SAR
and spatial expansion models, in line with the approach of Casetti, culminates in the Spatial
Autoregressive Exogenous (SAR-X) model. The SAR-X introduces spatial heterogeneity,
thereby enabling the description of distinct parameter values for each spatial observation,
determined by the geographical distances between locations. A notable application of the
SAR-X is evident in gauging the repercussions of climate change on the ecosystem of a
region. For example, when analyzing flood risk prediction within the SAR-X framework,
it becomes imperative to incorporate climate variable factors. In this scenario, the model
serves as a valuable tool, facilitating an elevated spatial perspective of climate effects and
accounting for the spatial influences that shape relationships. In essence, SAR-X modeling
has emerged as a valuable instrument for comprehending the ramifications of climate
change and supporting decision making to tackle these consequences.

The current research on rainfall prediction entails observations across 13 climate-
monitoring stations in the West Java region, utilizing data sourced from the Meteorol-
ogy, Climatology, and Geophysics Agency (BMKG) with location indexing. The research
variables comprised rainfall as the responsive parameter, coupled with exogenous vari-
ables encompassing air temperature, humidity, solar irradiation, wind speed, and surface
pressure. These climate data were procured from the National Aeronautics and Space
Administration Prediction of Worldwide Energy Resources (NASA POWER) dataset. The
application study in this research is supported by computing using the R programming
language. R is a statistical and graphical programming language; currently, R is widely
known as one of the programming languages used for data analysis and data science. R has
advantages, including being open source, having many packages available, finding it easy
to transform and process data, and being able to create interactive applications/web-based
dashboards. In this research, the RStudio software is used, which is an Integrated Develop-
ment Environment (IDE) for R [31]. The custom-built RStudio script can be further evolved
into a web application employing RShiny version 1.7.4, one of the packages of software
specifically designed for creating interactive web interfaces [32]. These web applications,
once deployed, offer a user-friendly platform for data processing. Users can conveniently
upload data for analysis, and the ensuing results are promptly presented on the RShiny
web application interface. In this research endeavor, integrated commands within R script
enable the utilization of the SAR-X model through the RShiny web application, rendering
the process effortlessly accessible.

2. Materials and Methods

2.1. Inverse Distance Weight Matrix

The spatial weight matrix is a matrix that states the proximity relationship between
locations. In this study, the inverse distance weight matrix, also called the distance weight,
is used, which describes the actual distance between locations. The distance between
locations is calculated using the latitude and longitude coordinates of the center point
of the observed location. It is known that a location xij

(
uij, vij

)
with xij is the symbol of

the location i and j, with i = 1, 2, 3 . . . , N and j = 1, 2, 3 . . . , N, while u and v indicate the
latitude and longitude coordinates. If dij is the distance between location i and location j,
and Wij is the inverse value of dij, we use the Euclidean distance and the equation is as
follows [33]:

dij =
√(

xi(ui)− xj
(
uj
))2

+
(
xi(vi)− xj

(
vj
))2 (1)

wij =

{
1

dij
, i �= j

0, i = j
(2)
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Next, if the sum of the distance weights of a row in the inverse distance weight
matrix is not equal to 1, then the distance weights must be standardized, so as to obtain
N
∑

j=1
wij = 1, ∀ i = 1, 2, 3, . . . , N, where:

w∗
ij =

wij
N
∑

j=1
wij

, ∀ i = 1, 2, 3, . . . , N. (3)

In detail:
xij: the symbol of location i and j, with i = 1, 2, 3 . . . , N and j = 1, 2, 3 . . . , N
ui: latitude i − th for i = 1, 2, 3, . . . , N
vi: longitude i − th for i = 1, 2, 3, . . . , N
uj: latitude j − th for j = 1, 2, 3, . . . , N
vj: longitude j − th for j = 1, 2, 3, . . . , N
dij: the distance between location i and location j
In this investigation, the inverse distance weight matrix was employed to calculate

the climate variable data across 13 climate observation stations in the West Java region. The
input coordinates for each location, expressed as latitude and longitude, served to establish
the proximity relationship between these locations.

2.2. Moran Index

One approach to assessing the spatial dependencies among locations is through a
spatial autocorrelation test using the Moran Index statistic. Spatial autocorrelation gauges
the correlation between observation values concerning the location of the same variable.
When a systematic pattern emerges in the distribution of a variable, spatial autocorrelation
is present. This phenomenon underscores the interdependence of the spatial data between
different locations, influenced by their proximity or intersection [29].

I =

n
n
∑

i=1

n
∑

j=1
wij(xi − x)

(
xj − x

)
n
∑

i=1

n
∑

j=1
wij

n
∑

i=1
(xi − x)2

(4)

The hypothesis formulation in this test is as follows:
H0 : I = 0 There is no spatial autocorrelation between locations.
H1 : I �= 0 There is spatial autocorrelation between locations.
The test statistic employed is expressed below:

Z(I) =
I − E(I)√

Var(I)
≈ N(0, 1) (5)

with,

E(I) = − 1
n − 1

(6)

Var(I) =
n2S1 − nS2 + 3S2

0

(n2 − 1)S2
0

− [E(I)]2 (7)

S0 =
n

∑
i=1

n

∑
j=1

wij S1 =
1
2

n

∑
1 �=j

(
wij + wji

)2 S2 =
n

∑
i �=j

(
n

∑
i=1

wij +
n

∑
j=1

wji

)2

where:
I: the Moran Index value
n: the number of observation locations
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xi: the value of the observation variable at location i − th
xj: the value of the observation variable at location j − th
x: the average of the number of variables
wij: the elements of the standardized weight matrix between regions i and j
Decision:
Reject H0 at the significance level α if −Zscore ≤ −Z α

2
or −Zscore ≥ Z α

2
.

The Moran Index was in the range of [−1, 1]. A negative value signified a negative
spatial autocorrelation, while a positive value implied a positive spatial autocorrelation [34].

2.3. Spatial Autoregressive Exogenous (SAR-X)

Spatial regression is a method tailored for data with spatial effects, encompassing
spatial dependency and heterogeneity. Spatial dependence pertains to observations at one
location being influenced by those at another, while spatial heterogeneity arises due to
random location effects. The foundation of spatial regression lies in the classical linear
regression method, evolving to consider the influence of space on the data under scrutiny.
The first Law of Geography by Tobler emphasizes interconnectedness and the greater
influence of nearby entities [29]. The general model of spatial regression can be written as
follows:

y = ρWy + Xβ+ u

u = λWu + ε with
iid
ε∼N

(
0,σ2I

) (8)

In [29], an alternative model derived from Equation (8) was developed. When ρ �= 0
and λ = 0, then the Spatial Autoregressive (SAR) model can be formed as follows:

y = ρWy+Xβ+ ε with
iid
ε∼N(0, σ2I) (9)

The SAR model, an area-based spatial model, encompasses the impact of spatial lag
on the dependent variable [29].

The introduction of the Spatial Expansion model (Casetti, 1972) [30] addresses spatial
heterogeneity, which characterizes diverse parameter values for each spatial observation
based on the distance between locations. The Euclidean distance, such as location coor-
dinates, quantifies the separation between two locations. The Spatial Expansion model,
adopting a linear regression approach, can be formulated as follows:

y = Xβ+ ε with
iid
ε∼N(0, σ2I)

β = ZJβ0

(10)

In this research, a fusion of the SAR and Spatial Expansion models was executed,
utilizing the approach of Casetti on exogenous variables, called the Spatial Autoregressive
Exogenous (SAR-X) model. The SAR-X model could be said to be an extension of SAR,
which encompasses exogenous variables. Referring to [35], the SAR-X model served to
describe and predict independent variables, considering location effects and exogenous
variables. Mathematically, the SAR-X model prediction with the Casetti’s model approach
was derived by substituting Equation (10) into (9), in order to produce the following:

y = ρWy+Xβ+ ε with β = ZJβ0 (11)

Equation (11) is subsequently written as:

y = ρWy+XZJβ0 + ε with
iid
ε∼N(0, σ2I) (12)

with:
y: the vector of the dependent variables of size (n × 1)
ρ: the spatial lag parameter coefficient of the independent variable
W: a spatial weight matrix of size (n × n)
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X: the matrix of the independent variables of size (n × nk)
Z: location information that contains elements Zxi, Zyi with i = 1, . . . , n, representing

the latitude and longitude of each observation, of size (nk × 2nk)
J: the expansion of the identity matrix of size (2nk × 2k)
β: a matrix of size (nk × 1), containing parameter estimators for all the explanatory k

variables at each observation
β0: parameter expressed by βlatitude,βlongitude of size (2k × 1)
⊗: the Kronecker product
ε: an error vector of size (n × 1)
si: the location matrix with i = 1, . . . , n
The matrix form in the model can be written as follows:

y =

⎛⎜⎜⎜⎝
y(s1)
y(s2)

...
y(sn)

⎞⎟⎟⎟⎠, W =

⎛⎜⎜⎜⎝
0 w12 . . . w1n

w21 0 . . . w2n
...

...
. . .

...
wn1 wn2 . . . 0

⎞⎟⎟⎟⎠, X =

⎛⎜⎜⎜⎜⎝
x11 · · · x1k 0 · · · 0 · · · 0 · · · 0

0 · · · 0 x21 · · · x2k 0
... · · · ...

...
. . .

... 0
. . . 0

. . . 0
. . . 0

0 · · · 0 0 · · · 0 0 xn1 · · · xnk

⎞⎟⎟⎟⎟⎠

β =

⎛⎜⎜⎜⎝
β1(s1)
β1(s2)

...
βk(sn)

⎞⎟⎟⎟⎠, ε =

⎛⎜⎜⎜⎝
ε(s1)
ε(s2)

...
ε(sn)

⎞⎟⎟⎟⎠, β0 =

(
βlatitude
βlongitude

)

Z =

⎛⎜⎝Zx1 ⊗ Ik Zy1 ⊗ Ik 0 0 0 0

0 0
. . . . . . 0 0

0 0 0 0 Zxn ⊗ Ik Zyn ⊗ Ik

⎞⎟⎠, J =

⎛⎜⎜⎜⎝
Ik 0
0 Ik
...

...
0 Ik

⎞⎟⎟⎟⎠
2.4. Estimation

The random error variable in the SAR-X model assumed a normal distribution. There-
fore, the parameter estimation in this model followed the SAR parameter estimation
method, employing the Maximum Likelihood Estimation (MLE) technique. The observed
sources for this approach included Ord [36], Smirnov and Anselin [37], Robinson and
Rossi [38], and Feng [39]. Equation (12) can be written as the following equation:

y = ρWy+Aβ0 + ε with A = XZJ (13)

y = ρWy+Aβ0 + ε with
iid
ε∼N(0, σ2I) (14)

The probability density function used is expressed below:

f (y) =
(

1
2πσ2

) n
2

exp

[
− (y − ρWy − Aβ0)

T(y − ρWy − Aβ0)

2σ2

]
(15)

The likelihood function of the dependent variable y is formulated as follows:

L(ρ,β0|y) = f (y|ρ,β0 )

=
(

1
2πσ2

) n
2 exp

[
− (y−ρWy−Aβ0)

T(y−ρWy−Aβ0)
2σ2

]
(16)
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Furthermore, the log-likelihood function is obtained as:

ln L(ρ,β0|ε) = ln
(

1
2πσ2

) n
2 exp

[
− (y−ρWy−Aβ0)

T(y−ρWy−Aβ0)
2σ2

]
= − n

2 ln(2π)− n
2 ln σ2 − (y−ρWy−Aβ0)

T(y−ρWy−Aβ0)
2σ2

(17)

A parameter estimation ρ, β0 is obtained by maximizing the log-likelihood function.
To obtain the MLE estimation of the parameters ρ̂, the first derivative of Equation (17)

for the parameters ρ was expressed as:

∂ ln L( ρ,β0|ε)
∂β0

= − (y−ρWy−Aβ0)
T(−Wy)

2σ2

= (y−ρWy−Aβ0)
T(Wy)

2σ2

(18)

∂ ln L( ρ,β0|ε)
∂ρ

∣∣∣
ρ=ρ̂

= 0, this is further expressed as follows:

(y − ρWy − Aβ0)
T(Wy)

2σ2 = 0 (19)

In Equation (19), multiply by 2σ2(Wy)T to obtain:

(y − ρWy − Aβ0)
T
(

Wy(Wy)T
)
= 0 (20)

Multiply Equation (20) by
(

Wy(Wy)T
)−1

to obtain:

(y − ρWy − Aβ0)
T = 0 (21)

Transpose Equation (21) to obtain:

y − Aβ0 = ρWy (22)

In Equation (22), multiply both segments by (Wy)T , thus obtaining:

(y − Aβ0)(Wy)T = ρWy(Wy)T (23)

From Equation (23), multiply both segments by
(

Wy(Wy)T
)−1

to further obtain:

(y − Aβ0)(Wy)T
(

Wy(Wy)T
)−1

= ρ
(

Wy(Wy)T
)(

Wy(Wy)T
)−1

(24)

ρ̂ = (y − Aβ0)(Wy)T
(

Wy(Wy)T
)−1

(25)

Substitute the equation A = XZJ into Equation (13), in order to determine ρ̂ the
following:

ρ̂ = (y − (XZJ)β0)(Wy)T
(

Wy(Wy)T
)−1

(26)

To obtain the MLE estimation of the parameters β̂0, first determine the first derivative
of Equation (17) for the parameters β0 as follows:

∂ ln L( ρ,β0|ε)
∂β0

= − (y−ρWy−Aβ0)
T(−A)

2σ2

= (y−ρWy−Aβ0)
T(A)

2σ2

(27)
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∂ ln L( ρ,β0|ε)
∂β0

∣∣∣
β0=β̂0

= 0. This leads to the equation below:

(y − ρWy − Aβ0)
TA

2σ2 = 0 (28)

In Equation (28), multiply with 2σ2AT , in order to obtain:

(y − ρWy − Aβ0)
TAAT = 0 (29)

Multiply Equation (29) by
(

AAT
)−1

to obtain:

(y − ρWy − Aβ0)
T = 0 (30)

Transpose Equation (30), in order to obtain the expression below:

Aβ0 = y − ρWy (31)

In Equation (31), multiply both segments by AT to obtain:

(Aβ0)A
T = (y − ρWy)AT (32)

From Equation (32), multiply both segments by
(

AAT
)−1

to obtain the following
expression:

β0

(
AAT

)(
AAT

)−1
= (y − ρWy)AT

(
AAT

)−1
(33)

β̂0 = (y − ρWy)AT
(

AAT
)−1

(34)

Substitute the equation A = XZJ into Equation (13) and derive β̂0 as follows:

β̂0 = (y − ρWy)(XZJ)T
(
(XZJ)(XZJ)T

)−1
(35)

Based on the estimated parameter β̂0 in Equation (35), the value β can be obtained by
substituting into Equation (11):

β=ZJ

(
(y − ρWy)(XZJ)T

(
(XZJ)(XZJ)T

)−1
)

(36)

3. Real Data Application

3.1. Data Description

In this research, secondary data from 13 climate observation stations in West Java were
utilized. These data were sourced from the Meteorology, Climatology, and Geophysics
Agency (BMKG), while climate variable data were extracted from the National Aeronautics
and Space Administration Prediction of Worldwide Energy Resources (NASA POWER)
satellite observations. The climate variable dataset included rainfall, air temperature,
humidity, solar irradiation, wind speed, and surface pressure shown on Table 1.
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Table 1. Climate variable data at 13 climate observation stations in West Java.

No. Locations Latitude Longitude
Rainfall

(mm)

Air Tem-
perature

(◦C)

Humidity
(%)

Solar
Irradiation

(W/m2)

Wind
Speed
(m/s)

Surface
Pressure

(kPa)

1 Balitpa
Sukamandi −6.3 107.65 186.36 25.3 83.45 415.2 1.76 97.86

2 Lanud Atang
Sanjaya Semplak −6.9 106.77 200.74 23.72 87.25 411.23 1.71 95.52

3 LPHP
Tasikmalaya −7.28 108.16 228.2 23.68 89.15 398.29 2.1 96.46

4 SMPK Cirebon −6.72 108.58 189.71 27.7 78.58 418.72 3.67 100.86

5
SMPK

Maranginan
Sukabumi

−7.25 106.25 191.42 25.79 84.61 415.46 3.12 98.84

6 SMPK
Nariewattie −7.25 108 194.57 22.59 87.85 398.29 1.57 93.62

7 SMPK Pacet
Cianjur −6.73 107 176.28 24.7 85.19 415.2 1.46 96.82

8 SMPK Pasir
Sarongge −6.75 107 176.28 24.7 85.19 415.2 1.46 96.82

9 Stage of Bandung −6.92 107.6 203.29 21.41 88.29 415.2 1.51 90.93

10 Stage of
Lembang −6.83 107.62 203.29 21.41 88.29 415.2 1.51 90.93

11 Staklim Darmaga −6.55 106.75 176.28 24.7 85.19 411.23 1.46 96.82

12 Stamet Citeko
Bogor −6.7 106.93 176.28 24.7 85.19 411.23 1.46 96.82

13 Stamet Jatiwangi −6.75 108.27 181.08 26.45 80.97 418.72 2.49 99.66

3.2. RShiny Web Application for SAR-X Model

At this stage, an R script was developed to process the data using the SAR-X model
through the RShiny web application.

A. The process of building an R script for the SAR-X model

The SAR-X modeling process, employing the Casetti model approach, entailed the
following steps:

1. Importing the climate data used for the SAR-X modeling, encompassing 13 climate
observation stations in the West Java region.

2. Constructing vectors and matrices based on the climate data, including:

a. Vector y: defines the rainfall variable at each location.
b. Matrix X: represents the exogenous variables, such as air temperature, humidity,

solar irradiation, wind speed, and surface pressure.
c. Matrix Z: consists of location coordinate entries in latitude and longitude.
d. Matrix J: identity matrix with the size of as many as five exogenous variables,

according to matrix X.
e. Matrix W: the result of calculating the inverse distance weight matrix using the

equation with input location coordinates (latitude and longitude).
f. Kronecker Z: the expression obtained from the multiplication of the kronecker

with the identity matrix of the five exogenous variables (Z ⊗ Ik)
g. Matrix A: the product of matrix X, Z, and J

3. The Moran Index calculation using function “moran.test” and Moran Scatterplot using
function “moran.plot”.
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4. The calculation of parameter estimation ρ̂ and β̂0, obtaining the prediction results
ŷ, absolute error, and MAPE of the SAR-X model prediction with the Casetti model
approach.

5. The SAR-X model prediction data with the Casetti model approach in the form of ŷ

B. Creating and publishing the RShiny web application with the developed script.

At this stage, the R script explicitly built for the SAR-X model was transformed into
an RShiny web application following these steps:

1. Installing packages and call libraries, specifically “shiny” and “shinythemes”, to set
up RShiny.

2. Creating a User Interface (UI) and Server for the Web Application UI scripts managed
the appearance of the web, incorporating headers, images, panel tabs, and more.
Furthermore, the previously crafted R script for the SAR-X model was integrated
into the server script. Running the application involved clicking “Run App.” Suc-
cessful execution prompted progression, while errors in the console necessitated
troubleshooting.

3. Publishing the RShiny Web Application

At this stage, the designed application was published on the https://www.shinyapps.
io platform, accessed on 5 July 2023. The account creation on the site was followed by token
activation. The provided token was copied and inserted into RStudio. The application
could be published by clicking the designated icon.

3.3. Calculation Result of Inverse Distance Weight Matrix

The inverse distance weight was computed by taking into account the actual distances
between each location. The standardized inverse distance weight matrix for the SAR-X
model was then obtained using Equation (2), which produced the following:

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.049832 0.046317 0.054288 0.019748 0.055151 0.093068 0.090447 0.146109 0.200602 0.06479 0.083328 0.096319

0.015477 0 0.008455 0.005307 0.044687 0.010736 0.214639 0.232858 0.025472 0.024137 0.14286 0.267645 0.007726

0.016001 0.009405 0 0.039857 0.005352 0.736974 0.01185 0.012007 0.044065 0.039526 0.007747 0.010561 0.066655

0.050697 0.015956 0.107736 0 0.009246 0.085519 0.021146 0.021139 0.05277 0.056539 0.015629 0.019388 0.544235

0.034948 0.254618 0.027416 0.017521 0 0.032666 0.12011 0.123126 0.051796 0.048721 0.135189 0.130788 0.023102

0.018078 0.01133 0.699231 0.030017 0.00605 0 0.014586 0.014824 0.068909 0.057761 0.009028 0.012802 0.057385

0.000609 0.004519 0.000224 0.000148 0.000444 0.000291 0 0.924044 0.000933 0.000937 0.003895 0.063727 0.000229

0.0006 0.00497 0.00023 0.00015 0.000461 0.0003 0.936838 0 0.000964 0.000959 0.003656 0.05064 0.000232

0.018523 0.010397 0.01617 0.007164 0.003711 0.026651 0.018093 0.018428 0 0.843116 0.008339 0.014411 0.014999

0.025362 0.009825 0.014464 0.007654 0.003481 0.022278 0.018121 0.018288 0.84081 0 0.008556 0.014497 0.016663

0.021581 0.153208 0.007469 0.005574 0.025445 0.009174 0.198412 0.1837 0.02191 0.022542 0 0.342974 0.008011

0.004212 0.043556 0.001545 0.001049 0.003735 0.001974 0.492634 0.386119 0.005746 0.005796 0.052045 0 0.001589

0.065939 0.01703 0.132081 0.398967 0.008937 0.119851 0.023988 0.023994 0.080996 0.09023 0.016465 0.021523 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.4. Calculation Result of Moran’s Index and Scatterplot Moran

The calculation of the Moran Index was employed to assess the existence of spatial
autocorrelation among the observation locations. The Moran Index for each climate variable
was calculated using Equation (4). The results of the Moran index calculations are shown
on Table 2.

Aside from the computation of the Moran Index on Table 2, a Moran Scatterplot
was also utilized to visualize the overall clustering tendency and distinctive attributes of
each region. This visual representation took the form of a four-quadrant graph for each
unit of analysis. The four quadrants showed potential groupings, bounded by mean and
average lines. Areas were considered to have high attributes when their values exceeded
the average, while values below the average indicated low characteristics. The complete
results of the Moran Scatterplot for each climate variable can be seen in Figure 1.
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Table 2. Spatial autocorrelation test using Moran’s Index.

No. Climate Variable p-Value Description

1 y (Rainfall) 0.0168 There is spatial
autocorrelation

2 X1 (Air Temperature) 0.0061 There is spatial
autocorrelation

3 X2 (Humidity) 0.0163 There is spatial
autocorrelation

4 X3 (Solar Irradiation) 0.0013 There is spatial
autocorrelation

5 X4 (Wind Speed) 0.0487 There is spatial
autocorrelation

6 X5 (Surface Pressure) 0.0044 There is spatial
autocorrelation

 
(a) (b) 

 
(c) (d) 

(e) (f) 

Figure 1. Moran’s scatterplot of climate variables: (a) rainfall, (b) air temperature, (c) humidity,
(d) solar ir-radiation, (e) wind speed, and (f) surface pressure.
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3.5. Prediction Result of SAR Model

The estimation of the prediction parameters ρ̂ and β̂ in the SAR model was conducted
using R version 4.2.2. An estimated ρ̂ value of 0.744 was obtained, indicating spatial lag
dependence. This signified the influence of adjacent locations within the West Java region
on the rainfall prediction data. The results of the calculation of the parameter estimate for
β̂ are shown in Table 3.

Table 3. Parameter estimated value β̂.

No. β̂ Parameter Estimated Value

1 β1 −89.56

2 β2 −12.21

3 β3 −0.63

4 β4 27.50

5 β5 36.49

The SAR model equation for each location is presented and can be found in Ap-
pendix A. The predictions of rainfall and absolute errors at each location are shown in
Table 4.

Table 4. Prediction results and error prediction of SAR model.

No. Locations y ŷ Absolute Error

1 Balitpa Sukamandi 186.36 214.49 15.09

2 Lanud Atang Sanjaya Semplak 200.74 215.98 7.59

3 LPHP Tasikmalaya 228.20 260.09 13.98

4 SMPK Cirebon 189.71 217.49 14.64

5 SMPK Maranginan Sukabumi 191.42 226.58 18.37

6 SMPK Nariewattie 194.57 273.16 40.39

7 SMPK Pacet Cianjur 176.28 189.40 7.44

8 SMPK Pasir Sarongge 176.28 189.41 7.45

9 Stage of Bandung 203.29 250.93 23.44

10 Stage of Lembang 203.29 250.81 23.38

11 Staklim Darmaga 176.28 196.39 11.41

12 Stamet Citeko Bogor 176.28 192.96 9.46

13 Stamet Jatiwangi 181.08 228.85 26.38

Based on the results of the absolute error calculation in Table 4, the MAPE (Mean
Absolute Percentage Error) value for prediction using the SAR model amounted to 16.85%.
According to Lewis (1982) in [40], the prediction accuracy level is accurate, as the MAPE
was less than 20%.

3.6. Prediction Result of SAR-X Model

The estimation of the prediction parameters ρ̂ and β̂0 in the SAR-X model was con-
ducted using R software through a web application powered by RShiny. An estimated
ρ̂ value of 1.001973 was obtained, indicating spatial lag dependence. This signified the
influence of adjacent locations within the West Java region on the rainfall prediction data.
The results of the parameter estimate calculation of β̂0 for each β̂latitude and β̂longitude are
shown in Table 5.
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Table 5. Parameter estimated value β̂0 for each β̂latitude and β̂longitude.

No. β̂0 Parameter Estimated Value

1 β̂latitude(x1)
−539.33

2 β̂longitude(x1)
−96.53

3 β̂latitude(x2)
2.93

4 β̂longitude(x2)
139.34

5 β̂latitude(x3)
207.11

6 β̂longitude(x3)
−33.57

7 β̂latitude(x4)
−5.94

8 β̂longitude(x4)
0.17

9 β̂latitude(x5)
8.96

10 β̂longitude(x5)
12.86

Based on the estimated value of β̂0 in Table 5, the value of β̂ was determined using
Equation (38). The calculated values of β̂ are shown in Table 6.

Table 6. Parameter estimated value of β̂.

No. Locations
Parameter Estimated Value of β̂

β̂1 β̂2 β̂3 β̂4 β̂5

1 Balitpa Sukamandi −215.93 −45.51 58.56 −21.52 −0.73

2 Lanud Atang Sanjaya Semplak −31.14 −116.44 −2.56 120.40 43.66

3 LPHP Tasikmalaya 0.16 −20.48 −42.76 29.06 16.71

4 SMPK Cirebon 86.59 3.91 −112.28 −1.67 24.16

5 SMPK Maranginan Sukabumi 80.12 −0.91 38.00 −0.32 11.79

6 SMPK Nariewattie 137.49 36.36 14.27 −49.03 −1.14

7 SMPK Pacet Cianjur 32.06 5.04 −1.21 71.15 24.35

8 SMPK Pasir Sarongge −1.75 343.87 20.79 20.24 −12.06

9 Stage of Bandung −4.98 68.96 −17.38 −1.40 6.13

10 Stage of Lembang −55.57 −2.87 48.79 12.41 8.65

11 Staklim Darmaga 295.90 −58.45 16.20 −30.12 −1.05

12 Stamet Citeko Bogor 60.51 −134.81 −1.27 −50.76 29.39

13 Stamet Jatiwangi −2.62 285.08 18.01 −1.64 −5.17

The SAR-X model equation for each location can be found in Appendix B. The predic-
tions of the rainfall and corresponding errors at each location are shown in Table 7.

Based on the results of the absolute error calculation in Table 7, the MAPE value for
prediction using the SAR-X model amounted to 1.95%. According to Lewis (1982) in [40],
the prediction accuracy level is very accurate, as the MAPE value was less than 10%.
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Table 7. Prediction results and absolute error prediction of SAR-X Model.

No. Locations y ŷ Absolute Error

1 Balitpa Sukamandi 186.36 189.49 1.68

2 Lanud Atang Sanjaya Semplak 200.74 200.78 0.02

3 LPHP Tasikmalaya 228.20 222.30 2.59

4 SMPK Cirebon 189.71 190.80 0.57

5 SMPK Maranginan Sukabumi 191.42 193.36 1.01

6 SMPK Nariewattie 194.57 202.01 3.82

7 SMPK Pacet Cianjur 176.28 175.13 0.65

8 SMPK Pasir Sarongge 176.28 176.62 0.19

9 Stage of Bandung 203.29 193.78 4.68

10 Stage of Lembang 203.29 210.81 3.70

11 Staklim Darmaga 176.28 171.90 2.48

12 Stamet Citeko Bogor 176.28 179.17 1.64

13 Stamet Jatiwangi 181.08 176.87 2.32

3.7. Cross-Validation

In this research, for a cross-validation study, the data collection stage was carried
out through a parameter selection process in the form of climate variable data. Those
used were rainfall, solar irradiance, and wind speed in the West Java region, consisting of
11 regencies/cities shown on Table 8.

Table 8. Climate variable data from 11 regencies/cities in West Java.

No. Locations Latitude Longitude
Rainfall

(mm)

Solar
Irradiation

(W/m2)

Wind Speed
(m/s)

1 Bandung City −6.91486 107.6082 203.29 415.2 1.511

2 Bekasi City −6.24159 106.9924 172.32 411.2 2.492

3 Cirebon City −6.73725 108.5507 189.71 418.7 3.674

4 Sukabumi City −6.9237 106.9287 200.74 411.2 1.706

5 Tasikmalaya City −7.31956 108.203 228.2 398.3 2.099

6 Pangandaran Regency −7.61506 108.4988 210.14 1.816 398.3

7 Bogor Regency −6.59504 106.8166 176.28 411.2 1.456

8 Majalengka Regency −6.83638 108.2274 194.57 418.7 1.575

9 Indramayu Regency −6.32758 108.3249 181.08 418.7 2.495

10 Purwakarta Regency −6.53868 107.4499 186.36 415.2 1.76

11 Kuningan Regency −7.01381 108.5701 184.64 398.3 1.781

An estimated ρ̂ value of 0.8055492 was obtained, indicating spatial lag dependence.
This signified the influence of adjacent locations within the West Java region on the rainfall
prediction data. The results of the parameter estimate calculations of β̂0 for each β̂latitude
and β̂longitude are shown in Table 9.

The results of calculating the estimated value of β̂ are shown in Table 10.
The results of predictions of the rainfall and absolute errors at each location are shown

in Table 11.
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Based on the results of the absolute error calculation in Table 11, the MAPE value
for prediction with the SAR-X model in the cross-validation dataset was 7.09% and the
prediction accuracy level was very accurate, as the MAPE value was less than 10%.

Table 9. Parameter estimated value β̂0 for cross-validation dataset.

No. β̂0 Parameter Estimated Value

1 β̂latitude(x1)
−0.08

2 β̂longitude(x1)
4.04

3 β̂latitude(x2)
−0.01

4 β̂longitude(x2)
0.35

Table 10. Parameter estimated value of β̂ for cross-validation dataset.

No. Locations
Parameter Estimated Value of β̂

β̂1 β̂2

1 Bandung City 0.11 −0.06

2 Bekasi City 2.72 0.08

3 Cirebon City 0.03 3.88

4 Sukabumi City 5.48 0.10

5 Tasikmalaya City 0.08 3.26

6 Pangandaran
Regency 3.79 0.03

7 Bogor Regency 0.12 5.51

8 Majalengka Regency 2.48 0.07

9 Indramayu Regency 0.16 4.32

10 Purwakarta Regency 1.14 0.12

11 Kuningan Regency 0.20 2.59

Table 11. Prediction results and MAPE Prediction of SAR-X Model for cross-validation dataset.

No. Locations y ŷ Absolute Error

1 Bandung City 203.29 206.08 2.79

2 Bekasi City 172.32 177.63 5.31

3 Cirebon City 189.71 203.23 13.52

4 Sukabumi City 200.74 201.40 0.66

5 Tasikmalaya City 228.20 223.60 4.60

6 Pangandaran Regency 210.14 140.21 69.93

7 Bogor Regency 176.28 191.01 14.73

8 Majalengka Regency 194.57 203.28 8.71

9 Indramayu Regency 181.08 183.86 2.78

10 Purwakarta Regency 186.36 190.22 3.86

11 Kuningan Regency 184.64 211.11 26.47

4. Discussion

The procedure for predicting rainfall in West Java, utilizing the SAR-X model with
the Casetti Model approach, was conducted based on data from 13 climate observation
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stations. The entire process was carried out within the RStudio software environment,
leveraging the capabilities of the RShiny web application. The R script constructed for this
purpose encompassed various stages of the SAR-X modeling procedure, ranging from data
import, vector, matrix construction, Moran index, Moran scatterplot calculation, parameter
estimation, prediction result calculation, and MAPE assessment to the publication of the
RShiny web application. It should be noted that the execution time of the script ranged
from 1 to 5 min. The source code is stored in the GitHub directory and the link is included
in Appendix C, which could be valuable for facilitating the replication and verification of
the model and its results by other researchers [41,42].

The result of the Moran index calculation, presented in Table 2, showed a positive
spatial autocorrelation across the 13 observation stations within the West Java region. In
addition, it concurred with the descriptive analysis, indicating that the areas exhibiting
high rainfall tended to be situated in proximity to other high-rainfall areas, and vice
versa. The results of the identification, parameter estimation, and prediction of rainfall,
involving five other climate variable factors in Tables 4 and 7, showed that the MAPE
value of the SAR-X model prediction results was smaller than the MAPE of the SAR model,
with the calculation of the rainfall prediction providing very high results based on the
MAPE value of 1.95%. This shows that the prediction of rainfall using NASA POWER data
from 13 observation stations in the West Java region using the SAR-X model was better
than prediction with the SAR model, because the SAR-X model obtained β̂ parameters
that varied for each exogenous variable at each location. This research aligned with the
discovery of Hermawan [28], highlighting the influential role of five climate variable factors
in shaping rainfall patterns, namely air temperature, humidity, solar irradiation, wind
speed, and surface pressure.

5. Conclusions

In conclusion, the SAR-X model using Casetti’s approach was applied to analyze
the rainfall data and climate variables in West Java, utilizing information from 13 climate
observation stations. These data showed a positive spatial autocorrelation among different
regions. The results highlighted the remarkable accuracy of the prediction outcomes
obtained through the SAR-X model at each observation location. This accuracy was
attributed to the distinct estimated parameter values assigned to each climate variable,
contributing to the high precision of the prediction results.

The summary of this research underscored that the level of rainfall in each region,
based on the data from 13 climate observation stations in West Java, was significantly
influenced by five other climate variable factors. It should be noted that these factors
collectively exhibited a positive spatial autocorrelation across various areas. Therefore, the
recommendation for relevant institutions engaged in rainfall prediction is to thoroughly
consider the diverse aspects of climate variables. This approach enables a comprehensive
understanding of how each climate variable exerts its influence within distinct locations.
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Appendix A

• SAR model for predicting rainfall in Balitpa Sukamandi:

ŷ(s1)
= 0.744

13

∑
i=1

w1iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in Lanud Atang Sanjaya Semplak:

ŷ(s2)
= 0.744

13

∑
i=1

w2iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in LPHP Tasikmalaya:

ŷ(s3)
= 0.744

13

∑
i=1

w3iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in SMPK Cirebon:

ŷ(s4)
= 0.744

13

∑
i=1

w4iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in SMPK Maranginan Sukabumi:

ŷ(s5)
= 0.744

13

∑
i=1

w5iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in SMPK Nariewattie:

ŷ(s6)
= 0.744

13

∑
i=1

w6iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in SMPK Pacet Cianjur:

ŷ(7) = 0.744
13

∑
i=1

w7iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in SMPK Pasir Sarongge:

ŷ(s8)
= 0.744

13

∑
i=1

w8iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in Stage of Bandung:
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ŷ(s9)
= 0.744

13

∑
i=1

w9iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in Stage of Lembang:

ŷ(10) = 0.744
13

∑
i=1

w10iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in Staklim Darmaga:

ŷ(s11)
= 0.744

13

∑
i=1

w11iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in Stamet Citeko Bogor:

ŷ(s12)
= 0.744

13

∑
i=1

w12iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

• SAR model for predicting rainfall in Stamet Jatiwangi:

ŷ(s13)
= 0.744

13

∑
i=1

w13iy(si)
− 89.56X1 − 12.21X2 − 0.63X3 + 27.50X4 + 36.49X5

Appendix B

• SAR-X model for predicting rainfall in Balitpa Sukamandi:

ŷ(s1)
= 1.001973

13

∑
i=1

w1iy(si)
− 215.93X1 − 45.51X2 + 58.56X3 − 21.52X4 − 0.73X5

• SAR-X model for predicting rainfall in Lanud Atang Sanjaya Semplak:

ŷ(s2)
= 1.001973

13

∑
i=1

w2iy(si)
− 31.14X1 − 116.44X2 − 2.56X3 + 120.40X4 + 43.66X5

• SAR-X model for predicting rainfall in LPHP Tasikmalaya:

ŷ(s3)
= 1.001973

13

∑
i=1

w3iy(si)
+ 0.16X1 − 20.48X2 − 42.76X3 + 29.06X4 + 16.71X5

• SAR-X model for predicting rainfall in SMPK Cirebon:

ŷ(s4)
= 1.001973

13

∑
i=1

w4iy(si)
+ 86.59X1 + 3.91X2 − 112.28X3 − 1.67X4 + 24.16X5

• SAR-X model for predicting rainfall in SMPK Maranginan Sukabumi:

ŷ(s5)
= 1.001973

13

∑
i=1

w5iy(si)
+80.12X1−0.91X2 + 38.00X3 − 0.32X4 + 11.79X5

• SAR-X model for predicting rainfall in SMPK Nariewattie:

ŷ(s6)
= 1.001973

13

∑
i=1

w6iy(si)
+ 137.49X1 + 36.36X2 + 14.27X3 − 49.03X4 − 1.14X5
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• SAR-X model for predicting rainfall in SMPK Pacet Cianjur:

ŷ(s7)
= 1.001973

13

∑
i=1

w7iy(si)
+ 32.06X1 + 5.04X2 − 1.21X3 + 71.15X4 + 24.35X5

• SAR-X model for predicting rainfall in SMPK Pasir Sarongge:

ŷ(s8)
= 1.001973

13

∑
i=1

w8iy(si)
− 1.75X1 + 343.87X2 + 20.79X3 + 20.24X4 − 12.06X5

• SAR-X model for predicting rainfall in Stage of Bandung:

ŷ(s9)
= 1.001973

13

∑
i=1

w9iy(si)
− 4.98X1 + 68.96X2 − 17.38X3 − 1.40X4 + 6.13X5

• SAR-X model for predicting rainfall in Stage of Lembang:

ŷ(s10)
= 1.001973

13

∑
i=1

w10iy(si)
− 55.57X1 − 2.87X2 + 48.79X3 + 12.41X4 + 8.65X5

• SAR-X model for predicting rainfall in Staklim Darmaga:

ŷ(s11)
= 1.001973

13

∑
i=1

w11iy(si)
+ 295.90X1 − 58.45X2 + 16.20X3 − 30.12X4 − 1.05X5

• SAR-X model for predicting rainfall in Stamet Citeko Bogor:

ŷ(s12)
= 1.001973

13

∑
i=1

w12iy(si)
+ 60.51X1 − 134.81X2 − 1.27X3 − 50.76X4 + 29.39X5

• SAR-X model for predicting rainfall in Stamet Jatiwangi:

ŷ(s13)
= 1.001973

13

∑
i=1

w13iy(si)
− 2.62X1 + 285.08X2 + 18.01X3 − 1.64X4 − 5.17X5

Appendix C

The source code is stored in the GitHub directory and can be accessed at the following
link: https://github.com/annisanurfalah02/SAR-X-Model, accessed on 15 August 2023.
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Abstract: Dynamical systems are ubiquitous in the physical world and are often well-described by
partial differential equations (PDEs). Despite their formally infinite-dimensional solution space, a
number of systems have long time dynamics that live on a low-dimensional manifold. However, cur-
rent methods to probe the long time dynamics require prerequisite knowledge about the underlying
dynamics of the system. In this study, we present a data-driven hybrid modeling approach to help
tackle this problem by combining numerically derived representations and latent representations
obtained from an autoencoder. We validate our latent representations and show they are dynamically
interpretable, capturing the dynamical characteristics of qualitatively distinct solution types. Fur-
thermore, we probe the topological preservation of the latent representation with respect to the raw
dynamical data using methods from persistent homology. Finally, we show that our framework is
generalizable, having been successfully applied to both integrable and non-integrable systems that
capture a rich and diverse array of solution types. Our method does not require any prior dynamical
knowledge of the system and can be used to discover the intrinsic dynamical behavior in a purely
data-driven way.

Keywords: dynamical systems; autoencoders; latent representation; manifold learning

MSC: 68T99

1. Introduction

Nonlinear partial differential equations (PDEs) are prevalent in physics and engineer-
ing, serving as powerful tools for describing complex phenomena that exhibit nonlinear
behaviors and spatiotemporal chaos. These equations are often very difficult to probe due
to the formally infinite dimensional solution space. Practically, this high dimensionality
often obscures the underlying behavior of a dynamical system, leading to the model being
both difficult to analyze and prohibitively expensive to use for predictions. However,
learning a faithful lower-dimensional representation of the high-dimensional data is not a
trivial task.

Due to the rapid progress in the field of deep learning, the construction of neural
network-based models such as autoencoders has become a popular and powerful tech-
nique for non-linear manifold-based dimensionality reduction of PDEs [1,2]. Consequently,
such progress has spurred significant endeavors to develop techniques that directly learn
low-dimensional dynamical models from time series data [3–7]. Very recently, there has
been some effort to use autoencoder-based architectures to estimate the intrinsic dimen-
sionality of a dynamical system [8–10]. The motivation for this is largely based on the
so-called Manifold Hypothesis, which posits that high-dimensional data often lie on or near
low-dimensional manifolds [11]. The rigorous analysis of a number of physical systems
seems to support this hypothesis [12,13]. Despite the formal infinite dimensionality of
the PDE state space, dissipative systems are hypothesized to exhibit long-term behavior
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that converges to a finite-dimensional invariant manifold [14,15]. Clearly, understanding
this invariant manifold is of critical importance as it plays a crucial role in determining
the system’s overall dynamics over time. However, studying and classifying the long
time dynamics of a dynamical system is a challenging task. In the case of comparatively
simple and deterministic ordinary differential equations (ODEs), the dynamics may exhibit
complicated behavior with strong random features commonly referred to as deterministic
chaos [16–18]. This has prompted the development of many methods to investigate the
cause of such behavior including, but not limited to, hyperbolic theory, bifurcation, and
attractor theory [19–21]. PDEs are even more complex due to the presence of infinite-
dimensional dynamics and require careful and sophisticated analysis methods [15,22,23].
This has led to the production of advanced analysis tools to probe the behavior of dynamical
systems [24–26]. Although these tools offer great utility, they necessitate a prerequisite
understanding of the underlying dynamics in order to effectively achieve the objective of
‘finding what you are looking for’. In this study, we aim to provide a hybrid approach
using the autoencoder architecture and validating the inherent latent representations using
mathematical representations derived from the numerical simulations of the system. We
show that our approach captures the nature of the underlying dynamics for a variety
of solution types. Additionally, we probe the question of what topological features are
preserved in the latent representation with respect to the raw data using methods from
persistent homology. A key part of our framework is that it is purely data-driven, enabling
the technique to be used to discover the intrinsic dynamical behavior of systems without
the need to have prerequisite knowledge about the underlying dynamics.

The structure of the paper is as follows. In Section 2, we introduce the mathematical
models we consider in this study. In Section 3, we probe the long time dynamics of these
models using numerical experiments. In Section 4, we introduce the autoencoder model
architecture and present our results. Finally, in Section 6, we present our discussion.

2. Models

2.1. fKdV Equation

The forced Korteweg–de Vries (fKdV) is used, for example, to model weakly non-linear
flow in a channel with a bump or disturbance in the channel depth [27]. There exists a
number of possible solutions for a given type of disturbance. For simplicity, we will assume
here no disturbance, which is equivalent to setting the forcing term to zero. Under this
assumption, the fKdV can be written as [28]:

6ut + uxxx + (9u − 6(F − 1))ux = 0, (1)

where F is the depth-based Froude number.
Let us assume an initial condition that takes the form u(x, 0) = A cos(kx + φ). Here,

A, k, and φ are amplitude, wavenumber, and phase shift parameters, respectively.
Consider a transformation where v(X, T) = Au(x, t) and where X = kx and T = kt.

We can now re-write the original fKdV in terms of our function v using the chain rule. This
results in:

6vT + k2vXXX + (9Av − 6(F − 1))vX = 0, (2)

where v(X, 0) = cos(X + φ). From Equation (2), we can see that the amplitude parameter
A acts as a direct measure of the strength of the non-linear operator (vvX), whereas the
wavenumber parameter squared (k2) is a measure with the strength of the third-order linear
dispersive term (vXXX). We can define a relative non-linearity term κ where κ = A/k2

from the reformulation given in Equation (2). We expect to be in a dispersive regime for
small values of κ < 1 and to be in a nonlinear regime for κ � 1. The importance of this
reformulation is that it allows us to consider a physically motivated set of initial conditions
rather than some generic functional form. Note that Equation (2) is invariant to phase shifts.
If v(x, t) is a trajectory, so is v(x + φ, t).
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2.2. Kuramoto–Sivashinksy Equation

The Kuramoto–Sivashinsky (KS hereafter) equation is a non-integrable, nonlinear
PDE that can be used to model the evolution of surface waves and pattern formation for a
number of physical systems [29]. The equation can be written as:

ut + uux + uxx + νuxxxx = 0, (3)

where ν is a coefficient of viscosity. The KS equation captures the dynamics of spatio-
temporal instabilities, such as those seen in flame fronts and fluid flows, and, due to
non-integrability, gives rise to a rich array of long time dynamics for different values of ν.
For example, in the case where ν = 16

71 , the KS equation exhibits bursting dynamics [30],
whereas for ν = 16

337 , the KS equation exhibits beating traveling wave dynamics [31].

3. Long Time Dynamics

3.1. fKdV: Effects of Amplitude and Wavenumber

To investigate the nature of the long-term dynamics, we considered the fKdV under
periodic boundary conditions with the domain of −2π ≤ x ≤ 2π (L = 4π), and we
considered an initial condition of the form u(x, 0) = A cos(kx + φ), where we fixed A = 0.5,
k = 1.0 and φ = 1.0. We fixed the value of the Froude number F = 1.5. All integrations
were performed on a grid of 128 points using an explicit RK finite-difference scheme with a
tolerance of 10−6, which was compared to a pseudo-spectral method to ensure accuracy.
To assess the effects of the amplitude and wavenumber, we chose two setups: (i) varying
the amplitude and keeping the wavenumber and phase fixed (varying the phase under
periodic conditions corresponds to a phase shift of the periodic domain and hence does
not affect the dynamics; we also observed this within our simulations); and (ii) varying the
wavenumber and keeping the amplitude and phase fixed. The integrations were performed
for T = 400 units for amplitudes A ∈ (0, 1].

To visualize the trajectories, we consider the evolution of both the speed and distance as
plotted in Figure 1. Interestingly, we observe that, for smallest amplitude case A = 0.25, the
evolution closely resembles a closed orbit, which is expected for a purely periodic motion
(this was verified by running numerical integrations with smaller amplitudes). However,
this characteristic changes significantly with increasing amplitude, where we observe
quasi-periodic motion in speed–distance space. This behavior appears to correlate with the
strength of the amplitude parameter, with larger amplitude initial conditions leading to
non-periodicity. The quasi-periodic motion arises where two or more soliton frequencies
are incommensurate [32]. We note that, for the transformed equation in Equation (2), the
strength of this characteristic appears to correlate with the relative non-linearity term κ.

To further investigate this behavior, we proceeded to fix the amplitude and phase,
then vary the value of the wavenumber k. The results for those numerical simulations are
presented in Figure 2. Here, we observe that, when we increase the wavenumber by a
factor of two, the initial quasi-periodic behavior quickly forms into a more pure periodic
motion resembling circular motion in distance–speed space. This characteristic further
supports the observation that the relative non-linearity essentially measures the strength of
the quasi-periodicity, with weak relative non-linearity leading to pure periodic motion.
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Figure 1. Evolutions of trajectories in distance–speed space for initial conditions evolved under the
fKdV equation for different initial amplitude values. A = 0.25 (upper left panel), A = 0.50 (upper

right panel), A = 0.75 (lower left panel), A = 1.00 (lower right panel).

Figure 2. Evolutions of trajectories in distance–speed space for initial conditions evolved under the
fKdV equation for different initial wavenumber values. k = 1.0 (left panel), k = 2.0 (right panel).

3.2. KS: Long Time Dynamics

We simulate the KS equation on a discretized grid with 64 grid points on a periodic
domain −π ≤ x ≤ π (L = 2π). As with the fKdV setup, we considered an initial condition
of the form u(x, 0) = A cos(kx + φ), where we fixed A = 0.5, k = 1.0, and φ = 1.0. As we
are interested in the long time dynamics, we evolved all models for T = 400 units to ensure
all of the transients have died out. We consider two setups to reproduce the bursting
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dynamics and the beating traveling dynamics of the KS equation, setting ν = 16
71 and

ν = 16
337 , respectively. We plot the long time evolution of the wave profiles in Figure 3.

Figure 3. Long time wave profiles for the KS equation. Bursting dynamics (left panel) where ν = 16
71 ,

and beating traveling wave dynamics (right panel) where ν = 16
337 .

From dynamical systems theory, we know that the bursting dynamics in the KS
equation arise as the state appears to switch between two saddle points that are connected
by four heteroclinic orbits [33]. This can be observed if we project the trajectory onto the
two dominant Fourier modes, which is shown in the left panel of Figure 4. Here, we
observe that this representation indeed captures the two saddle points and four heteroclinic
connections. We observe that the trajectories tend to spend a majority of the time around
the saddle points and appear to travel quickly on the heteroclinic connections pseudo-
randomly, which supports the sudden bursting transitions seen in the wave profiles in
Figure 3.

In the case of the beating traveling wave dynamics exhibited by the KS equation, we
know that this dynamical behavior arises as the traveling period and beating period are
out of phase [31]. This causes the orbit to follow quasi-periodic motion. To see if we are
able to extract a low-dimensional representation that captures this characteristic, we project
the trajectory into the two dominant Fourier modes, as shown in right panel of Figure 4.
We clearly observe a quasi-periodic structure within this Fourier representation, which is
supportive of the fact that the periodic orbit and beating period are incommensurate.

Figure 4. Fourier representation of the long time dynamics on the two leading spatial modes. Bursting
dynamics (left panel) where ν = 16

71 , and beating traveling wave dynamics (right panel) where
ν = 16

337 . Re1 and Re2 represent the real component of the first and second most dominant Fourier
modes, respectively, while Im1 represents the imaginary component of the first dominant mode.
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4. Interpretable Deep Learning-Based Reduced Order Model

Autoencoders have become a popular method for dimensionality reduction within
the scientific community as a technique to obtain reduced order models. Autoencoders
are incredibly versatile architectures. A single-layer autoencoder with a linear activation
function is equivalent to Principal Component Analysis (PCA); however, multi-layered
architectures with non-linear activations can perform complex non-linear dimensionality
reduction. Fundamentally, autoencoders are composed of two deep neural networks, called
the encoder and decoder, which are connected by a latent layer commonly referred to as the
latent space. A schematic of a classical autoencoder is given in Figure 5.

Figure 5. Schematic of the classical autoencoder architecture highlighting the encoder, decoder, and
latent space (green) components.

This latent space is a bottleneck that sets the number of dimensions available to
represent the input data. The encoder maps the inputs to the smaller latent space dz < di,

ΦE(u; θE) : Rdi → Rdz , (4)

where θE represents the parameters defining the encoder. The decoder maps the latent
space back to: Rdi

ΦD(z; θD) : Rdz → Rdi . (5)

The encoder reduces the dimension, and if the composition of these two mappings
is the identity mapping, the decoder is the inverse of the encoder, and the encoding is
one-to-one. For PCA, θE is an orthonormal dz × (di + 1) matrix, ΦE(u) = θE[u 1]T , and
ΦD(u) = [u 1]θT

E . The extra dimension and the vector [u 1] center the fit by adding a
shift. Training the autoencoder on input/output pairs (u, u) minimizes the loss function in
Equation (6) and forces ΦE and ΦD to be approximate inverses:

L(u; θE; θD) = ‖u − ΦD(ΦE(u; θE); θD)‖2
2, (6)

where ‖ · ‖2 is the l2 norm.
While autoencoders have obtained many impressive results, they are inherently data-

driven, often leading to poor interpretability of the latent space. To probe the latent rep-
resentation, we adopt a classical autoencoder architecture where the input data are the
wave profile from our numerical simulation at each time interval ti. In the case of the fKdV
models, this corresponds to input data u ∈ R128, where we consider a latent dimension
dz = 3 that can be used to visualize the representation. For further details about the
autoencoder model architecture and network parameters, please refer to Appendix A.
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4.1. fKdV Latent Representation

A clear characteristic we inferred from the numerical simulations of the fKdV models
presented in Section 3.1 was that the relative non-linearity term κ significantly influenced the
type of long time dynamics, from purely periodic to strongly quasi-periodic. An important
open question we aim to answer is whether the latent space of the autoencoder is able to
capture and hence represent such qualitatively different dynamics. To this end, we construct
the latent representation obtained from the suite of numerical simulations for the fKdV models
with varying amplitudes. To focus on the representation of the long time dynamics, we train
the autoencoder on the simulation data between T = 300 and T = 400. We plot the original
wave profile data with the corresponding latent representations in Figure 6. To our surprise,
the representations obtained from the autoencoder appear to capture the qualitatively different
dynamics, with the representations showing periodic motion for small amplitude models and
quasi-periodic tori for larger amplitude cases (we confirmed this characteristic was present for
the entire suite of numerical simulations we performed). This result is in direct agreement with
the results obtained from analyzing the numerical simulations directly using the representation
in distance–speed space. It is important to state that our autoencoder model is completely
data-driven and has no prior information about the model being considered, yet it is able to
extract representations that are dynamically meaningful.

Figure 6. Original wave profiles (left column) obtained from the numerical simulations of the fKdV
and their corresponding latent space representations (right column) obtained using the autoencoder.
Upper to lower plot: A = 0.11, A = 0.26, A = 0.47.
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4.2. KS Latent Representation

In Section 3.2, we described two dynamically distinct solution types to the KS equation,
namely, the bursting dynamics and beating traveling dynamics. Using a projection onto
the first few Fourier modes, we were able to obtain a low-dimensional representation
that captured the dynamical characteristics of the full order numerical simulation in a
dynamically interpretable way. A natural question we aim to answer in this section is
whether we are able to extract an interpretable latent representation of these more complex
dynamics using our autoencoder architecture. To tackle this question, we consider a similar
approach to that which we used in the case of the fKdV. As we are focused on the long
time dynamics, we train the autoencoder on the simulation data between T = 300 and
T = 400. The wave profiles from the numerical simulation with the corresponding latent
space representations for the bursting and beating traveling dynamics are presented in
Figure 7. Strikingly, we observe that the latent representation from the autoencoder trained
on the bursting dynamics data almost perfectly resembles that of the Fourier representation
we showed in Figure 4. This latent representation obtained from the autoencoder has
captured the characteristics of the two saddle points in addition to the four heteroclinic
connections, which is in direct agreement with the results obtained from the full numerical
simulation. For the case of the beating traveling wave dynamics, the latent representation
obtained from the autoencoder extracts a quasi-periodic representation in the latent space,
which can be observed in the lower right panel of Figure 7. This quasi-periodic latent
representation is in agreement with the dynamical theory and the numerically derived
results in Section 3.2. It is important to note that, although the autoencoder is purely
data-driven, the representation is clearly dynamically interpretable.

Figure 7. Original wave profiles from the numerical simulation (left panels) and their corresponding
latent representations obtained from the autoencoder. Bursting dynamics (upper panels) where
ν = 16

71 and beating traveling wave dynamics (lower panels) where ν = 16
337 .
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5. Topology Preservation

In the previous section, we have shown how we can use an autoencoder to obtain
dynamically interpretable latent space embeddings, motivating the use of this architecture
as a tool to probe the intrinsic dynamics in a purely data-driven way. However, while we
have demonstrated the interpretability, we have not investigated the qualitative properties
captured in the latent space with respect to the raw high-dimensional data. To address this
question, we probe the nature of the topological features in both the raw data and latent
representations using persistent homology. In the following subsection, we provide a very
brief overview of the concepts used in this section to probe the topological features. For a
deeper overview, we refer the reader to [34].

5.1. Persistent Homology

Topological data analysis gives away of classifying point clouds by connecting points
across a range of scales and studying how the topology of the result changes. We give a
broad overview of the technique below. A more detailed overview may be found in [35].

A classical way to represent the topology of discrete structures such as point clouds P
is via simplicial complexes, which are a collection of smaller components called simplices.
A 0-simplex is a single point, a 1-simplex an edge, and a 2-simplex a triangle with higher-
order simplices having well-defined structures. Homology provides topologists with a
formalized method for quantifying the presence of n-dimensional holes within a space [36].
The ith homology group Hi(P) of P contains topological features of dimension i which, for
the cases of d = 0 and d = 1, are connected components and cycles/tunnels, respectively.

Persistent homology is a computational technique used in topological data analysis
that takes in an input of increasing sequences of spaces (P : P0 � P1 � · · · � PL )
referred to as a filtration. The idea behind persistent homology is that it extends the
homology of simplicial complexes by considering the changes in homology groups over
multiple scales of the distance metric, specifically connectivity-based features like connected
components [34,37]. The common way this is done is via the construction of the Vietoris–
Rips (VR) complex [38], which contains all the simplices of the point cloud at a given scale
ε whose elements satisfy dij < ε, where dij is the distance metric between two points in the
point cloud (xi, xj ∈ P). As the construction of the VR complex only requires the distances
between points, it enables us to track changes in the homology groups for different ε
values, up to a maximum value εm, in which the connectivity remains the same. This
enables us to obtain a measure of what homology groups are formed and destroyed at
different ε values. A common way to visualize these features is via a persistence diagram.
The i-dimensional persistence diagram of a VR complex contains coordinates of the form
(b, d), where b refers to the value at which a topological feature of dimension i is ‘birthed’
in the VR complex, and d refers to the value at which it has ‘died’. The intuition is that
relevant topological characteristics, including connected components and voids associated
with the Betti numbers for each simplex in the selected filtration, are monitored. It becomes
possible to observe the duration of persistence of these topological features in the diagram
as the parameter ε increases. Naturally, as the radius ε becomes sufficiently large, all pairs
of points will fall within this radius, resulting in a single connected component and the
absence of voids. To interpret the persistence diagram, each coordinate (b, d) denotes a
topological feature being born at radius b and “dying” at radius d, where the death can
be thought of as a homological feature getting filled in with a lower-dimensional simplex.
From the diagram, one can measure the persistence of a feature that can be defined as d − b.
This value describes how “long”, with respect to radius, a topological feature exists before
it is filled in.

A common way to measure the similarity between persistence diagrams is using the
Wasserstein distance, which is a form of an optimal transport metric. The basic idea is that
we can consider all possible transportation mechanisms for moving the points within one
persistence diagram to the other one, a process called matching. A cost is associated with
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each transportation mechanism, where the distance is the infimum of these cost values [39].
Mathematically, it can be expressed as [40]:

Wp(d1, d2) =

⎛⎝inf
γ

∑
(x,y)∈γ

|‖x‖ − ‖y‖|p
⎞⎠ 1

p

, (7)

where γ ranges over all bijective mappings from persistence diagram d1 to d2.

5.2. Persistence Diagrams

To compute and compare the persistence diagrams of both the raw higher-dimensional
dynamical data and the latent representation obtained from the autoencoder, we restrict
the analysis to homology groups up to the dimension of the latent space (d = 3). We note
that, while we expect higher-dimensional topological features to be present in the raw
higher-dimensional data, these are not captured in the latent representation due to the
reduced dimensionality. Hence, for comparative purposes, we do not consider this analysis.
Figure 8 shows the persistence diagrams for the different dynamical models considered
in this study, in which the left column represents the diagrams obtained from the raw
data and the right column from the latent representation obtained via the autoencoder.
In the case of the traveling wave fKdV data (upper panels), we observe the similarity
in the grouping of distinct homology groups. There appears to be larger number of H1
points from the latent data, but as these lie close to the Birth equals Death line, these are
likely artifacts. More importantly, however, in both the raw and latent diagrams, there
appears to be a single long persistent H1 point showing a topological consistency. (The
long persistent H0 point on all diagrams is just an artifact of the algorithm and has no
topological significance.) For the case of the KS bursting dynamics model, we observe a
qualitatively identical persistence diagram between the raw and latent data. The distinct
homology groupings match exceedingly well and clearly show the two persistent H1 points
in both diagrams. In the bottom panel of Figure 8, we observe the persistence diagrams of
the KS beating dynamics. These diagrams appear slightly more complex compared to the
other models, where the consistency between the raw and latent representations appears to
be less well-defined. Upon closer inspection, we see the vast majority of points for both
cases lie close to the Birth equals Death line and hence arise from noise. In the case of both
the raw and latent representations, we see two long-persisting H1 points, which shows
topological agreement; however, we do notice a short time persistence H2 point in the
latent persistence diagram, which we do not observe in the profile of the raw data. Due to
the short persistence, this feature is likely due to noise.

We then compute the Wasserstein distance between each pair of persistence diagrams
for the different dynamical models. From this, we obtain Wf KdV = 113.4, WKSt = 260.6,
and WKSb = 5.3, where the subscripts correspond to the models being considered, namely
the fKdV, KS beating traveling wave, and KS bursting dynamics. These quantitative metrics
support the qualitative features we observe in the persistence diagrams seen in Figure 8.

We acknowledge here that work has been done to include topology-preserving method-
ologies within the autoencoder architecture using the idea of persistence homology, perhaps
most prominently by [41]. However, while this work proposes a topological loss term based
on the topological differences between persistence diagrams of the input and latent data,
the persistent homology of the vanilla autoencoder was not investigated. Additionally, it
was found in this study that the MSE of the vanilla autoencoder generally outperformed
the topological autoencoder. To our knowledge, the topological properties of the vanilla
autoencoder architecture have not been investigated using persistent homology, and we
believe we are the first to give empirical evidence in this area.
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Figure 8. Persistence diagrams for the point cloud data from different dynamical models: (i) fkdv (up-
per panels); (ii) KS bursting dynamics (middle panels); (iii) KS beating traveling waves (lower panels).
Results for the raw high-dimensional dynamical data (left column) and the latent representation
obtained from the autoencoder (right column).

6. Discussion

In this study, we have developed a hybrid framework to probe the long time dynam-
ics of dynamical systems using a combination of mathematical representations directly
obtained from the numerical simulation data and the latent representation captured within
the latent space of an autoencoder. The autoencoder architecture implemented in this study
is purely data-driven and contains no prior information about the dynamics. In order to
determine whether this framework can be generalized to arbitrary dynamical systems, we

158



Mathematics 2024, 12, 476

applied our methodology to both integrable and non-integrable systems that capture a rich
and diverse array of solution types. Using the results from dynamical systems theory and
mathematically motivated representations of the numerical simulation data, we validated
that the latent representations from the autoencoder are in fact dynamically interpretable
for qualitatively distinct dynamics. We show that the latent representations capture all of
the qualitative dynamical characteristics present within the full order numerical simulation
data though having a dimension significantly less than the full order data. We used this
framework to help classify the long time dynamics of the fKdV equation using a physically
motivated reformulation which, to our knowledge, is the first time this has been done.
Additionally, we investigated the topological features in the latent representation of the
autoencoder with respect to the raw data both qualitatively and quantitatively using per-
sistent homology which, to our knowledge, is a novel contribution. It is important to note
that this framework is generic in nature and provides clear and interpretable insights into
the long time dynamics of PDE-based models without the need for vigorous mathematics.
Additionally, a key part of our framework is that it does not require prior dynamical knowl-
edge of the system being considered and hence can be used to discover the underlying
dynamical behavior in a purely data-driven way. We hope to extend this framework to
incorporate naturally derived geometrical information from PDE-based models, which we
will present in a subsequent study.
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Appendix A. Autoencoder Model Architecture and Parameters

The parameters used in the autoencoder architecture are listed in Table A1. The au-
toencoders are trained using the Adam optimizer with a learning rate of 10−3. All input
data are MinMax scaled, which is why we use a Sigmoid activation function in the final
layer of the decoder. The MSE of the training loss for all of the models presented in this
study was on the order of magnitude of 10−4.

Table A1. Parameters used in neural networks for the autoencoder where di is the input dimension
and dz is the latent dimension. The “Dimension” column describes the dimension of each layer, and
the “Activation” column describes the activation functions between layers. The “Epochs” column
describes the number of epochs used for training.

Component Dimension Activations Epochs

Encoder di:32:64:32:dz Linear:ReLU:Linear:ReLU:Linear 1000

Decoder dz:32:64:32:di Linear:ReLU:Linear:ReLU:Linear:Sigmoid 1000

Appendix B. Bifurcation Classification of the fKdV

Here, we classify the bifurcation for the fKdV equation given in Equation (1) under
the steady state assumption which, to our knowledge, has not been explicitly stated.
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Let us consider the standard form of the fKdV given in Equation (1). In the case
of traveling waves u(x, t) = u(ε) with ε = x − ct and under the assumption of natural
boundary conditions, we can turn this into a two-dimensional system that can be written as:⎧⎨⎩

u′ = v

v′ = 6u(c + F − 1)− 9
2

u2 = h(u)
. (A1)

To find the equilibrium points, we can solve v′(u) = 0, which leads to u0 = 0 and
u1 = 4

3 (c+ F− 1). To classify these equilibrium points, we can solve the linearized equation
Jv = λv. This results in det(J − λ), which can be expressed as:

det
[ −λ 1

h′(u) −λ

]
. (A2)

Hence, the resulting characteristic equation is λ2 − h′(u) = 0.
This results in the eigenvalues λ0 = ±√6(c + F − 1) and λ1 = ±√(−6(c + F − 1)).

The first eigenvalue λ0 is purely imaginary if c + F < 1 and purely real if c + F > 1, which
is converse to the second eigenvalue λ1, which is purely imaginary if c + F > 1 and purely
real if c + F < 1. For the case of the two-equilibrium points u = 0 and u = 4

3 (c + F − 1),
the Jacobian has a double eigenvalue, which implies a Bogdanov–Takens bifurcation [42].
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