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Oliver Ganslandt, et al.

Endovascular Treatment of Intracranial Vein and Venous Sinus Thrombosis—A Systematic
Review
Reprinted from: J. Clin. Med. 2022, 11, 4215, doi:10.3390/jcm11144215 . . . . . . . . . . . . . . . . 130

Radhika Kiritsinh Jadav, Reza Mortazavi and Kwang Choon Yee

Blood Biomarkers for Triaging Patients for Suspected Stroke: Every Minute Counts
Reprinted from: J. Clin. Med. 2022, 11, 4243, doi:10.3390/jcm11144243 . . . . . . . . . . . . . . . . 144

Qian Gao, Kaiyuan Zhen, Lei Xia, Wei Wang, Yaping Xu, Chaozeng Si, et al.

Assessment of the Effect on Thromboprophylaxis with Multifaceted Quality Improvement
Intervention based on Clinical Decision Support System in Hospitalized Patients: A Pilot Study
Reprinted from: J. Clin. Med. 2022, 11, 4997, doi:10.3390/jcm11174997 . . . . . . . . . . . . . . . . 156

Sarah Mubeen, Daniel Domingo-Fernández, Sara Dı́az del Ser, Dhwani M. Solanki,

Alpha T. Kodamullil, Martin Hofmann-Apitius, et al.

Exploring the Complex Network of Heme-Triggered Effects on the Blood Coagulation System
Reprinted from: J. Clin. Med. 2022, 11, 5975, doi:10.3390/jcm11195975 . . . . . . . . . . . . . . . . 167

Francesco Nappi, Omar Giacinto, Mario Lusini, Marialuisa Garo, Claudio Caponio,

Antonio Nenna, et al.

Patients with Bicuspid Aortopathy and Aortic Dilatation
Reprinted from: J. Clin. Med. 2022, 11, 6002, doi:10.3390/jcm11206002 . . . . . . . . . . . . . . . . 183
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A thrombus is a hemostatic plug localized in a blood vessel. This blockage might lead
to partial or complete obstruction of blood flow in arteries, veins, or microcirculation [1].

Acute myocardial infarction (MI) is mainly a consequence of coronary atherosclerosis,
and it is caused by thrombotic occlusion of an arterial lumen [2]. The pathology of my-
ocardial infarction (MI) is divided into ST-elevation MI (STE-MI) and non-ST-elevation MI
(NSTE-MI). MI is a major cause of human death, and more than 3 million people develop
STE-MI every year. Although the worldwide rate of MI-related mortality has decreased,
the incidence of heart failure is still high [3]. Moreover, one of the complications is a throm-
boembolism precipitated by left-ventricular thrombosis based on chronic dysfunction in
this area [4]. One of the ways of reducing the prevalence of MI-related disorders is to iden-
tify high on-treatment platelet reactivity, which is still challenging and often inaccurately
identified [5].

Stroke is also a prevalent vascular disorder that leads to significant morbidity and
mortality of affected individuals. Biomarkers including C-reactive protein, interleukins 6
and 10, low-density lipoprotein cholesterol, total cholesterol, and homocysteine can serve
as predictors of cognitive decline after this ischemic complication [6]. Congenital heart
abnormalities might contribute to microthrombi formation and valvular incompetence,
potentially eventuating in embolization as well [7].

Deep venous thrombosis (DVT) is a blood clot developed in non-superficial veins.
Thus, venous thromboembolism (VTE) refers to an in situ thrombus and a dislodged
thrombus—an embolus occurring predominantly in the lungs and serving as a life- threat-
ening pulmonary embolism (PE) [1]. VTE is the third-most-frequent underlying cause
of death. Its incidence is estimated at 1.43 per 1000 people a year; for DVT, it is 0.93 per
1000 people a year, and for PE, it is 0.50 per 1000 people a year. Due to improvements in
the diagnostics for and treatment of VTE in the last few decades, there has also been a
decrease in VTE-associated deaths, plummeting from 12.8 to 6.5 deaths per 100,000 peo-
ple [8]. However, VTE can lead to further clinical conditions with significant morbidity
and mortality, including the extension of thrombi, recurrence, chronic thromboembolic
pulmonary hypertension, and post-thrombotic syndrome [9].

One of the clinical manifestations of thrombosis at the level of microcirculation is
the pregnancy loss caused by impaired placental blood flow. Such complication might be
caused by various prothrombotic conditions including enhanced platelet activation playing
the role in the pathogenesis of the sticky platelet syndrome [10].

A strategy consisting of D-dimer testing with a borderline increasing with age has
been developed for diagnosing VTE [11]. Assessment of D-dimer levels has a high negative
predictive value, with a negative test indicating an absence of thrombosis in an organ-
ism [12]. Unfortunately, an elevated concentration of D-dimers is nonspecific, especially
in cancer patients. The high prevalence of VTE in this population decreases its negative
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predictive value and undermines pretest probability assessed via the Geneva or Wells
scores otherwise used to guide evaluation for a PE [13].

The Pulmonary Embolism Severity Index (PESI) and its simplified version are designed
to distill clinical information, including vital functions and comorbidities, into a risk score.
The PESI score indicates increased all-cause mortality at 30 days after a diagnosis of PE.
Its simplified form (sPESI) has limited specificity in predicting mortality among high-risk
patients. Risk indicators for PE include serologic markers of right-ventricular dysfunction
and myocardial injury, echocardiography, computed tomography pulmonary angiography
(CTPA), and the evaluation of hemodynamic status via right-heart catheterization [14].

Anticoagulant drugs are used in the acute (the first week), long-term (7 days up to
3 months), and extended (3 months and longer) treatment of VTE. Anticoagulation can
be managed with low-molecular-weight heparin (LMWH), fondaparinux, unfractionated
heparin (UFH), direct oral anticoagulants (DOACs), and/or vitamin K antagonists (VKAs).
Deciding which type of anticoagulant to use depends on the indication, the underlying
condition, the preference of the patient, and bleeding risk [15], as assessed using various
strategies of VTE prophylaxis. For most of these drugs, under specific occasions, we
can test their effectiveness that might be associated with a lower rate of thromboembolic
episodes [16]. Moreover, there are novel treatment options for both arterial and venous
thromboembolic episodes, such as proprotein convertase subtilisin/kexin type 9 (PCSK9)
inhibitors that decrease the levels of lipoprotein (a) [17,18].

Systemic thrombolytic therapy reduces pulmonary arterial pressure and length of
hospitalization [14]. In severe cases of iliofemoral DVT, catheter-directed thrombolytic
systems and mechanical thrombectomy show promising results not only in terms of de-
creasing the risk of PE development and death but also in terms of ameliorating its later
consequences [19]. Such endovascular treatment might be a rescue option for patients with
a deteriorating clinical state or those for whom standard forms of therapy failed or was
associated with contraindications [20].

Along with activated epithelium, neutrophils produce pro-inflammatory cytokines
and chemokines to promote local inflammation. Under the conditions of sustained activa-
tion, aside from the potential effect of circulating free hemoglobin, heme, and iron, they
contribute to the release of neutrophile extracellular traps (NETs) [21,22]. Such NETs are
associated with hypofibrinolysis and correlate with elevated lactate levels that indicate
increased mortality in patients with acute PE [23]. Increased serum lactate levels are also a
promising biomarker of the prognosis of patients with acute mesenteric ischemia [24].

One of the infections associated with inflammation and an increased risk of throm-
boembolic episodes is coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 in-
fection [25]. However, the optimal dose of anticoagulants and the need for additional
antiplatelet treatment for critically ill patients with COVID-19 require further investiga-
tion [26].

We, the Editors, are honored to have received so many high-quality articles address-
ing these and other topics written by recognized experts in the field of thrombosis and
hemostasis. The excellence of these articles was verified by positive reactions and their
increased number of citations to date. Predominantly, we sincerely hope that the informa-
tion included in the articles of this Special Issue will help to improve the management of
patients with thromboembolisms, thus increasing their quality of life. We hope that the
readers will enjoy it as well.
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Abstract: We present a case of a 31-year-old patient, smoker, with no previous medical history, pre-
senting with acute limb ischemia and infarction of the spleen due to peripheral embolism. The source
of embolism was thrombi formations in the left ventricular cavity, located in the area of the regional
wall motions abnormalities. CT and coronary angiography confirmed the total occlusion of the left
anterior descending artery with collateralization. The patient underwent acute bilateral embolectomy
of the iliac, femoral, and popliteal arteries. Subsequently, cardiothoracic surgery was indicated with
coronary bypass surgery and extirpation of left ventricular masses, later confirmed as thrombus by
pathology characteristics. Hematological examinations proved homozygous thrombophilia, and the
patient was indicated for lifelong anticoagulation therapy.

Keywords: myocardial infarction; thrombus; thrombophilia; embolism

1. Introduction

Myocardial infarction (MI) with thrombus formation in the left ventricular cavity is a
rare source of embolism in a young patient. We describe the unique case of a young patient
presenting with acute limb ischemia and spleen infarction due to peripheral embolism of a
thrombus after MI.

2. Case Report

We report a case of a 31-year-old man, smoker, with no previous medical history, with
negative family history of thrombotic and hemorrhagic events, who, in September 2021,
was referred to the emergency department for pain and reduced sensitivity in his lower
limbs. The pain appeared a month earlier and was preceded by chest pain radiating to
his neck and arms. Angiological examination confirmed acute limb ischemia. Ultrasound
and CT angiography showed subtotal occlusion in the distal part of bilateral femoral and
popliteal arteries, subtotal occlusion of the superior mesenteric artery, infarction of the
spleen, and post-infarction change in the kidneys. Blood pressure was 127/92 mmHg. An
ECG showed sinus rhythm, 2 mm ST-segment elevations in leads V2–V3, and Q wave
and negativization of T wave in leads V1–V5. Troponin I levels were elevated (374 ng/L),
NT-pro-B-type natriuretic peptide was 8500 ng/L, and creatine kinase and myoglobin
peaked at 92 ukat/L and 17,107 ug/L, respectively. The complete blood count was normal.
The patient had a low-risk profile for atherosclerosis coronary artery disease.

When searching for a source of embolization, transthoracic and transesophageal
echocardiograms (TTE and TOE) were performed. They revealed flowing structures in the
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left ventricular apex with high embolic potential (Figures 1 and 2), reduced left ventricular
ejection fraction (EF LV 38%), akinesis of the left ventricular apex, hypokinesis of adjacent
segments of the lateral wall, interventricular septum, anterior and inferior wall, and no
significant valvular disease.

 

Figure 1. Thrombi in the left ventricular apex with high embolic potential.

 

Figure 2. Another focus on thrombi in the left ventricular apex by TTE.
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Emergent surgical revascularization was indicated, and the patient underwent bilateral
embolectomy of iliac, femoral, and popliteal arteries. Additional CT angiography and
subsequently selective coronary angiography showed total occlusion of the left anterior
descending artery with collateralization (Figure 3).

 

Figure 3. Selective coronary angiography showed total occlusion of left anterior descending artery
with collateralization (red arrow).

CT examination confirmed two floating structures (20 × 16 × 8 mm and 27 × 11 × 15 mm)
in the area of the interventricular septum and left ventricular apex (Figures 4 and 5).

 

Figure 4. CT finding of first thrombus in the area of left ventricular apex (purple arrow).
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Figure 5. CT finding of second thrombus in the area of interventricular septum (purple arrow).

Cardiothoracic surgery was indicated by the Heart Team. Coronary artery bypass
grafting (left internal mammary artery was used for revascularization of the left anterior
descending artery) and removal of left ventricular masses were performed. Pathology char-
acteristics confirmed the thrombus. Therefore, hematological screening was supplemented.
The examinations positively proved antiphospholipid syndrome. The screening assay
APTT–LA was used, and extended APTT was detected. The lupus anticoagulants testing
was positive and repeated in 12 weeks with persistence of the antibody. Laboratory testing
for anticardiolipin antibodies and anti-β2-glycoprotein I antibodies was not performed.
Moreover, genetic testing assessed 4G/4G homozygosity for the PAI-1 gene. The control
TTE revealed persistent regional wall motion abnormalities, reduced LV EF (38%), and
no significant valvular diseases. The treatment of heart failure was boosted, and lifelong
anticoagulation therapy was indicated. At the 5-month follow-up, there was no evidence
of embolic recurrence.

3. Discussion

Thrombophilia is a common risk factor for venous thromboembolism. Arterial throm-
bosis and the risk of MI, particularly among young people with low atherosclerotic burden,
are associated mainly with the presence of antiphospholipid syndrome. [1] In young pa-
tients with MI and conventional risk factors, the probability of thrombophilia is high.
Thrombophilia may lead to MI in this specific group of patients. [2] The left anterior de-
scending artery is more frequently the culprit artery of MI in young patients. [3] Previous
studies have reported that atrial fibrillation is the underlying disease in patients with coro-
nary embolism (CE). CE has also been detected in the case of concomitant cardiomyopathy,
valvular heart disease, infective endocarditis, antiphospholipid antibody syndrome, au-
toimmune disorders, and malignancy. A total of 26.4% of cases were of unclear etiology [4].
CE is diagnosed with coronary angiography, concomitant CE in multiple locations, or evi-
dence of systemic embolization. The source of embolism should be revealed. An important
step is the identification of a thrombus or intracardiac shunt using echocardiography. CE is
frequently associated with systemic embolism, which should be screened [5]. MI is caused

8
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by CE in 4% to 13% of cases [4,6]. Paradoxical embolism should also be considered in the
presence of thrombophilia and a hypercoagulable risk factor [7–9].

We present a unique case of a young patient without previous medical history who
overcame MI. The known risk factor was smoking. The first symptoms of MI and pe-
ripheral embolization appeared a month before hospitalization. We suppose that due to
the total occlusion of the left anterior descending artery, the thrombi with high embolic
potential were formed in the area of regional wall motions abnormalities. The patient was
admitted to hospital presenting with acute limb ischemia. The source of embolism was
with high probability the thrombi in the left ventricle. The cardiosurgical operation and
removal of the floating thrombi, later confirmed by pathology characteristics, was indicated.
Hematological screening revealed positivity of antiphospholipid syndrome, and genetic
testing assessed 4G/4G homozygosity for the PAI-1 gene. Thrombectomy, sometimes aided
by intracoronary glycoprotein IIb/ IIIa inhibitors or thrombolytic therapy, is performed if
the diagnosis of CE is established during coronary angiography. Coronary stents are not
commonly required. Oral anticoagulation therapy needs to be initiated. A search for risk
factors needs to be conducted. There is no need for routine thrombophilia screening unless
there is clinical suspicion [5].

In the presented case report, we suppose the CE related to thrombophilia and periph-
eral embolism was due to the thrombi formation in the left ventricle. According to the
history of chest pain one month before hospitalization, overcomed MI was diagnosed. The
culprit coronary artery, the left anterior descending artery, was in accordance with previous
trials. The patient was indicated for lifelong anticoagulation therapy. The treatment of
heart failure was also initiated.

In young patients with MI, routine thrombophilia screening is indicated in the case of
clinical suspicion; that was also the case with our patient.

4. Conclusions

The main goal of this case report is to highlight the diagnostic approach in young
patients with arterial thromboembolism. Up-to-date, routine thrombophilia screening is
indicated in the case of clinical suspicion and should be considered in young patients
presenting with myocardial infarction and peripheral embolism.
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Abstract: Background: The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2
virus has resulted in significant mortality and burdening of healthcare resources. While initially noted
as a pulmonary pathology, subsequent studies later identified cardiovascular involvement with high
mortalities reported in specific cohorts of patients. While cardiovascular comorbidities were identified
early on, the exact manifestation and etiopathology of the infection remained elusive. This systematic
review aims to investigate the role of inflammatory pathways, highlighting several culprits including
neutrophil extracellular traps (NETs) which have since been extensively investigated. Method:
A search was conducted using three databases (MEDLINE; MEDLINE In-Process & Other Non-
Indexed Citations and EMBASE). Data from randomized controlled trials (RCT), prospective series,
meta-analyses, and unmatched observational studies were considered for the processing of the
algorithm and treatment of inflammatory response during SARS-CoV-2 infection. Studies without
the SARS-CoV-2 Infection period and case reports were excluded. Results: A total of 47 studies
were included in this study. The role of the acute inflammatory response in the propagation of the
systemic inflammatory sequelae of the disease plays a major part in determining outcomes. Some of
the mechanisms of activation of these pathways have been highlighted in previous studies and are
highlighted. Conclusion: NETs play a pivotal role in the pathogenesis of the inflammatory response.
Despite moving into the endemic phase of the disease in most countries, COVID-19 remains an entity
that has not been fully understood with long-term effects remaining uncertain and requiring ongoing
monitoring and research.

Keywords: SARS-CoV-2 infection; COVID-19; coronary artery thrombosis; neutrophil extracellular
traps (NETs)

1. Introduction

Since the first outbreak of the severe acute respiratory syndrome-coronavirus-2 in-
fection (SARS-CoV-2), patients who developed coronavirus disease 2019 (COVID-19) fre-
quently had cardiovascular involvement [1]. The myocardial injury was associated with
high levels of troponin, especially among hospitalised COVID-19 patients [2]. However,
the myocardial damage revealed by the increase in biomarkers was confirmed by echocar-
diography, which noted damage in 70% of hospitalized patients [3]. Therefore, cardiac
involvement during COVID-19 was a truly probable event, despite the primary manifes-
tation of disease within the lungs. Unfavourable outcome of the disease is likely in these
subjects, which was immediately reported as sequelae of this complication [4]. Given these
significant reports, the scientists’ attention has focused on two main clinical-pathological
entities.
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First, it must be emphasized that only a few patients with COVID-19 have experienced
fulminant myocarditis, suggesting that this complication is rare [5,6]. In the small number of
cases in which clinically suspected myocarditis was diagnosed, infection with SARS-CoV-2
was associated with cardiac inflammation [7].

Second, myocardial ischaemia, attributable to thrombotic coronary obstruction, ap-
pears to be the most likely event at the origin of myocardial damage, however, other causes
such as heart failure, pulmonary embolism, tachycardia, and sepsis cannot be excluded [8].
Acute cardiac injury occurs in patients who experienced severe COVID-19 and confers
serious complications and patient mortality [9].

We know that SARS-CoV-2, in addition to causing severe acute respiratory syndrome,
has been shown to predispose infected patients to thrombotic disease with the involvement
of arterial and venous vascular districts [10]. This complication is assumed to be secondary
to uncontrolled inflammatory process, platelet activation, endothelial dysfunction, and
marked stasis [11].

Recently the attention of several reports has suggested that in patients with severe
organ dysfunction, SARS-CoV-2 infection is associated with excessive formation of neu-
trophil extracellular traps (NETs) with consequent vascular damage [12]. Furthermore, the
autopsies performed in patients with unfavorable outcomes revealed a vascular mechanical
obstruction due to the aggregates of NET, identifying in this process a central moment that
is decisive in the complex pathogenesis of COVID-19 [12,13].

The role of mononuclear cells is decisive, either during myocarditis or coronary
thrombosis due to activation of NETs, thus unearthing the controversial presence of SARS-
CoV-2 in myocardial tissue and its potential for replication within the heart structures (cells
and extracellular matrix). However, the role of mononuclear cell infiltration that induces
increased cytokine expression remains elusive, both in patients who died without the signs
of clinically evident myocarditis and in those who died in the absence of ST-elevation
that characterized the myocardial ischemia due to coronary obstruction [13,14].Given the
critical clinical context in which COVID-19 often occurs, burdened by a high percentage of
deaths, the autopsies have contributed to unveiling many unsolved aspects related to its
pathogenesis [13,15–19]. To foster a wider knowledge of mechanisms leading to myocardial
injury and to provide a guide for clinicians, we herein debate the ongoing evidence basis on
the role of NETs and propose an evidence-based algorithm for the prevention and control
of inflammatory response during COVID-19 infections, Figure 1.

Figure 1. Cont.
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Figure 1. Autopsies substantially contributed to unveiling many unsolved aspects relating to the
pathogenesis revealing the role of mononuclear cell infiltration leading to increased cytokine expres-
sion in patients who died with single or multi-failure organ pathologies. Abbreviations; DAD, diffuse
alveolar damage; IL: interleukine; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2;
RNA, ribonucleic acid; TNF, tumor necrosis factor.

2. Search Method and Systematic Literature Review

In December 2021, databases (MEDLINE; MEDLINE In-Process & Other Non-Indexed
Citations and EMBASE) were searched using the terms “SARS-CoV-2”, “COVID-19”,
“myocarditis”, “myocardial ischemia” and “neutrophil extracellular traps”, coupled with
“inflammation”, mononuclear cell”, “neutrophil cell”, “cytokine”, “cytokine storm”. For
this study, abstracts of included manuscripts were assessed and correlated. The present
review focuses on data from randomized controlled trials (RCT), prospective series, meta-
analyses, and unmatched observational studies that were considered for the processing
of the algorithm and treatment of inflammatory response during SARS-CoV-2 infection.
Data were extracted from the main publication, and searches were performed by two
independent researchers (F.B, SSAS using blind method). A third independent reviewer
estimated pertinence (FN). No funding was received for this study. The review was not
formally registered. The protocol was not prepared. The authors have no conflicts of
interest to declare. Prisma flow diagram for systematic review and Prisma checklist are
reported in Figure 2, Tables 1 and 2.

Table 1. Characteristics of the included studies.

Author/Year Study Period Total Number COVID-19 Study Design Hospitals/Centers Type

Shi (2020) [1]
JAMA

20 January 2020 to
10 February 2020 416 Clinical, laboratory,

radiological, and treatment
Single Center
Wuhan, China Prospective

Guo (2020) [2]
JAMA Cardiology

20 January 2020 to
10 February 2020 187

Clinical laboratory
comorbidities, and
treatments

Single Center
Wuhan, China Observational

Szekely (2020) [3]
Circulation

21 March 2020 to
16 April 2020 100 Echocardiographic Single Center

Israel Prospective

Lala (2020) [4]
JACC

27 February 2020 to
12 April 2020 506 Clinical, laboratory,

Echocardiographic
Single Center
NYC, NY, USA Prospective

Escher (2020) [7]
ESC Heart Fail

3 February 2020 to
26 March 2020 104 Endomyocardial biopsies Multicenter

Germany Prospective

Lindner (2020) [13]
JAMA Cardiology

8 April 2020 to
18 April 2020 39 Autopsy Multicenter

Germany Prospective
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Table 1. Cont.

Author/Year Study Period Total Number COVID-19 Study Design Hospitals/Centers Type

Blasco (2020) [14]
JAMA Cardiology

24 March 2020 to
11 April 2020 55 PCI/Coronary

aspirates, NETs
Single Center
Spain Prospective

Ackermann (2020) [15]
NEJM

2019 †

2009 †† 24 Pulmonary autopsy/
Immune profiling

Multicenter
Germany/USA

Comparative
study

Bryce (2021) [16]
Mod. Pathol.

20 March 2020 to
23 June 2020 100 Pulmonary autopsy/

Immune profiling
Single Center
NYC, NY, USA Prospective

Schaefer (2020) [17]
Mod. Pathol. April 2020 7 Pulmonary autopsy/

Immune profiling
Single Center
Boston, MA, USA Observational

Varga (2020) [18]
Lancet « « « 3 Autopsy/Immune profiling Multicenter

Switzerland/USA Observational

Delorey (2021) [19]
Nature « « « 17 Autopsy/Immune profiling Multicenter USA Comparative

study

Wang (2020) [20]
JAMA

1 January 2020 to
28 January 2020 138 Clinical, laboratory,

radiological, and treatment
Single Center
Wuhan, China Observational

Lucas (2020) [21]
Nature

18 March 2020 to
27 May 2020 113 Immune profiling Multicenter USA Observational

Yang (2020) [22]
J Allergy Clin. Immunol. « « « 50 Immune profiling Multicenter China Observational

Huang (2020) [23]
Lancet

16 December 2019 to
2 January 2020 41 Immune profiling Multicenter China Observational

Liu (2020) [24]
J. Infect.

11 January 2020 to
29 January 2020 245 Immune profiling Multicenter China/UK Observational

Rodriguez (2021) [25]
J. Exp. Med. « « « 124 Autopsy/Immune profiling Multicenter Brasil Observational

Burkhard-Koren
(2021) [26]
J. Pathol. Clin. Res.

May 1918 to April
1919
2009–2020
Until 2020

411 Autopsy/Immune profiling Single center
Switzerland

Comparative
study

Sang (2021) [27]
Cardiovasc. Pathol. Until 2021 50 Autopsy/Immune profiling Single Center

Birmingham, AL, USA Observational

Melms (2021) [28]
Nature Until 2021 26 Autopsy/Immune profiling Multicenter USA Comparative

study

Qin (2020) [29]
Clin. Infect. Dis.

10 January 2020 to
12 February 2020 452 Immune profiling Single Center

Wuhan, China Observational

Wilk (2020) [30]
Nat. Med. March–April 2020 7 Immune profiling Single Center

Stanford, CA, USA Prospective

Wang (2020) [31]
Front. Immunol.

23 January 2020 to
15 March 2020 55 Immune profiling/NETs Multicenter

China/Germany Observational

Al-Aly (2021) [32]
Nature Until 2021 73,435 Clinical, laboratory Single Center

Saint Louis, MO, USA Observational

Xie (2020) [33]
Br. Med. J.

1 January 2017 to
31 January 2019
2 January 2020 to
17 June 2020

16,317 Clinical, laboratory Single Center
Saint Louis, MO, USA

Comparative
study

Piazza (2020) [34]
JACC

13 March 2020 to
3 April 2020 1114

Clinical
Thromboembolic
Complication

Single Center
Boston, MA, USA Observational

Zhang (2020) [35]
J. Thromb. Thrombolysis

23 February 2020 to
3 March 2020 12

Clinical
Thromboembolic
Complication

Multicenter China Prospective

Liu (2020) [36]
J. Transl. Med.

1 February 2020 to
24 February 2020 61 Immune profiling Single Center

Beijing, China Prospective
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Table 1. Cont.

Author/Year Study Period Total Number COVID-19 Study Design Hospitals/Centers Type

Fu (2020) [37]
Thromb. Res.

20 January 2020 to
20 February 2020 75

Immune profiling
Thromboembolic
Complication

Single Center
Suzhou, China

Comparative
study

Webb (2020) [38]
Lancet Rheumatol.

13 March 2020 to
5 May 2020 299 Immune profiling Multicenter USA Observational

Ye (2020) [39]
Respir. Res.

1 January 2020 to
16 March 2020 349

Immune profiling
Thromboembolic
Complication

Multicenter China Prospective

Tatum (2020) [40]
Shock Until 2021 125 Immune profiling Multicenter USA

Multicenter
Prospective
Registry

Yang (2020) [41]
Int. Immunopharmacol.

Until 20 February
2020 93 Immune profiling Multicenter China Observational

Wang (2020) [42]
Int. Immunopharmacol.

15 January 2020 to
2 March 2020 95 Immune profiling Single Center

Wuhan, China Observational

Zhou (2020) [43]
Lancet

29 December 2019 to
30 January 2020 191 Clinical, laboratory,

radiological, and treatment Multicenter China Observational

Klok (2020) [44]
Thromb. Res.

7 March 2020 to
5 April 2020 184 Thromboembolic

Complication
Multicenter
Netherlands Prospective

Tang (2020) [45]
J. Thromb. Haemost.

1 January 2020 to
13 February 2020 448 Thromboembolic

Complication
Single Center
Wuhan, China Observational

Zuo (2020) [46]
Sci. Transl. Med. « « « « 172

Immune profiling
Thromboembolic
Complication/NETs

Multicenter
China/USA Prospective

Carsana (2020) [47]
Lancet Infect. Dis.

29 February 2020 to
24 March 2020 38 Autopsy/Immune profiling Multicenter Italy Observational

Chen (2020) [48]
Lancet

1 January 2020 to
20 January 2020 99 Clinical, laboratory,

radiological, and treatment Multicenter China Observational

Guan (2020) [49]
NEJM

11 December 2019 to
29 January 2020 1099 Clinical, laboratory,

radiological, and treatment Multicenter China Observational

COVIDSurg
Collaborative (2022) [50]
Anaesthesia

10 January 2020 to
30 January 2020 128,013 Thromboembolic

Complication Multicenter Prospective

COVIDSurg
Collaborative (2021) [51]
Anaesthesia

10 January 2020 to
30 January 2020 96,454 Clinical Multicenter Prospective

COVIDSurg
Collaborative (2021) [52]
Br. J. Surg.

10 January 2020 to
30 January 2020 56,589 Clinical/Vaccine

effectiveness Multicenter Prospective

COVIDSurg
Collaborative (2021) [53]
Anaesthesia

10 January 2020 to
30 January 2020 140,231 Clinical Multicenter Prospective

Xie (2022) [54]
Nat. Med.

1 March 2020 to
15 January 2021 153,760 Clinical Multicenter USA Observational

Abbreviations: †, it refers to the flu pandemic; ††, it refers to the flu pandemic.

Table 2. Prisma checklist. n/a = not application.

Section and Topic Item # Checklist Item
Location Where Item
Is Reported

TITLE

Title 1 Identify the report as a systematic review. Title and introduction

ABSTRACT

Abstract 2 See the PRISMA 2020 for Abstracts checklist. Abstract
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Table 2. Cont.

Section and Topic Item # Checklist Item
Location Where Item
Is Reported

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context of
existing knowledge. Introduction

Objectives 4 Provide an explicit statement of the objective(s) or question(s)
the review addresses. Introduction

METHODS

Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and
how studies were grouped for the syntheses. Methods

Information sources 6

Specify all databases, registers, websites, organisations,
reference lists and other sources searched or consulted to
identify studies. Specify the date when each source was last
searched or consulted.

Methods/PRISMA statement

Search strategy 7 Present the full search strategies for all databases, registers and
websites, including any filters and limits used. Methods

Selection process 8

Specify the methods used to decide whether a study met the
inclusion criteria of the review, including how many reviewers
screened each record and each report retrieved, whether they
worked independently, and if applicable, details of automation
tools used in the process.

Methods

Data collection process 9

Specify the methods used to collect data from reports,
including how many reviewers collected data from each report,
whether they worked independently, any processes for
obtaining or confirming data from study investigators, and if
applicable, details of automation tools used in the process.

Methods

Data items

10a

List and define all outcomes for which data were sought.
Specify whether all results that were compatible with each
outcome domain in each study were sought (e.g., for all
measures, time points, analyses), and if not, the methods used
to decide which results to collect.

Methods

10b

List and define all other variables for which data were sought
(e.g. participant and intervention characteristics, funding
sources). Describe any assumptions made about any missing or
unclear information.

Methods

Study risk of bias assessment 11

Specify the methods used to assess risk of bias in the included
studies, including details of the tool(s) used, how many
reviewers assessed each study and whether they worked
independently, and if applicable, details of automation tools
used in the process.

n/a

Effect measures 12
Specify for each outcome the effect measure(s) (e.g., risk ratio,
mean difference) used in the synthesis or presentation
of results.

n/a

Synthesis methods

13a

Describe the processes used to decide which studies were
eligible for each synthesis (e.g., tabulating the study
intervention characteristics and comparing against the planned
groups for each synthesis (item #5)).

Methods

13b
Describe any methods required to prepare the data for
presentation or synthesis, such as handling of missing
summary statistics, or data conversions.

n/a

13c Describe any methods used to tabulate or visually display
results of individual studies and syntheses. Methods

13d

Describe any methods used to synthesize results and provide a
rationale for the choice(s). If meta-analysis was performed,
describe the model(s), method(s) to identify the presence and
extent of statistical heterogeneity, and software
package(s) used.

n/a

13e
Describe any methods used to explore possible causes of
heterogeneity among study results (e.g., subgroup analysis,
meta-regression).

n/a

13f Describe any sensitivity analyses conducted to assess
robustness of the synthesized results. n/a
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Table 2. Cont.

Section and Topic Item # Checklist Item
Location Where Item
Is Reported

Reporting bias assessment 14 Describe any methods used to assess risk of bias due to missing
results in a synthesis (arising from reporting biases). n/a

Certainty assessment 15 Describe any methods used to assess certainty (or confidence)
in the body of evidence for an outcome. n/a

RESULTS

Study selection

16a
Describe the results of the search and selection process, from
the number of records identified in the search to the number of
studies included in the review, ideally using a flow diagram.

Prisma diagram

16b Cite studies that might appear to meet the inclusion criteria, but
which were excluded, and explain why they were excluded. Prisma diagram

Study characteristics 17 Cite each included study and present its characteristics. Table 1

Risk of bias in studies 18 Present assessments of risk of bias for each included study. n/a

Results of individual studies 19

For all outcomes, present, for each study: (a) summary statistics
for each group (where appropriate) and (b) an effect estimate
and its precision (e.g., confidence/credible interval), ideally
using structured tables or plots.

n/a

Results of syntheses

20a For each synthesis, briefly summarise the characteristics and
risk of bias among contributing studies. n/a

20b

Present results of all statistical syntheses conducted. If
meta-analysis was carried out, present for each the summary
estimate and its precision (e.g., confidence/credible interval)
and measures of statistical heterogeneity. If comparing groups,
describe the direction of the effect.

Table 1

20c Present results of all investigations of possible causes of
heterogeneity among study results. n/a

20d Present results of all sensitivity analyses conducted to assess
the robustness of the synthesized results. n/a

Reporting biases 21 Present assessments of risk of bias due to missing results
(arising from reporting biases) for each synthesis assessed. n/a

Certainty of evidence 22 Present assessments of certainty (or confidence) in the body of
evidence for each outcome assessed. n/a

DISCUSSION

Discussion

23a Provide a general interpretation of the results in the context of
other evidence. 3.2

23b Discuss any limitations of the evidence included in the review. n/a

23c Discuss any limitations of the review processes used. n/a

23d Discuss implications of the results for practice, policy, and
future research. 3.2

OTHER INFORMATION

Registration and protocol
24a

Provide registration information for the review, including
register name and registration number, or state that the review
was not registered.

Methods

24b Indicate where the review protocol can be accessed, or state
that a protocol was not prepared. Methods

24c Describe and explain any amendments to information provided
at registration or in the protocol. n/a

Support 25 Describe sources of financial or non-financial support for the
review, and the role of the funders or sponsors in the review. Methods

Competing interests 26 Declare any competing interests of review authors. Methods

Availability of data, code and
other materials 27

Report which of the following are publicly available and where
they can be found: template data collection forms; data
extracted from included studies; data used for all analyses;
analytic code; any other materials used in the review.

n/a
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Figure 2. Prisma FloW Chart 2020 allowed to reach 47 determinant publications for the systematic
review. * Search database; ** excluded for no meet criteria.

3. Results

3.1. Description of the Included Studies and of the Population

A total of 6349 studies was reported of which 412 studies were screened. 47 of these
met the inclusion criteria and were included in the final systematic review (Flowchart).
A total of 28 studies were international and/or multicentre of which 9 were from China
and 6 from the USA; 3 prospective and 1 randomized multicenter clinical trial included
approximately 116 countries. Most of the single-center studies were from China (Table 1).
The number of patients in the individual studies ranged from 3 to 153,760. In clinical
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studies 99 to 153,760, autopsy studies 3 to 411, immune profile studies 7 to 349, and
thromboembolism studies 12 to 1144 (Table 1).

3.2. Evidence from Neutrophil Deployment: Target Organs and Mechanism of Action

Pre-existing cardiovascular disease (CVD) represents a significant risk factor in pa-
tients with SARS-CoV-2 infection who develop COVID-19. Once SARS-CoV-2 infects the
myocardium, it can cause direct or indirect damage. Likewise, in these patients, outcomes
are worse than in patients without CVD [55]. A specific role favoring the post-inflammatory
injury is played by neutrophils that work as major representative cells of the innate im-
mune system. The formation of extracellular neutrophil traps (NETs) is included among
the multiple functions that neutrophils perform [56]. Neutrophil extracellular traps (NETs)
are released by neutrophils to counter infections through the formation of extracellular
webs of chromatin, oxidizing enzymes, and microbiocidal proteins [56].

3.2.1. COVID-19 and Inflammation

The first phase of infection with the development of COVID-19 begins with exposure to
micro-droplets found in the exhalations of infected individuals. SARS-CoV-2 subsequently
progresses to the bronchioles and alveolar spaces [57], where it is trapped in host cells (e.g.,
endothelial, epithelial, and smooth muscle cells) using a metallopeptidase available on the
cell surface as the gateway, which is represented by the angiotensin-converting enzyme 2
(ACE2) [20,58–60]. We know that reaching the lung, SARS-CoV-2 infects alveolar cells
(type I and II pneumocytes and alveolar macrophages) triggering intracellular replication
mechanism in lung tissue. First early defense against the viral attacher is constituted by
the production of type I and III interferons (IFN) which therefore have the role of inducing
a premature defense mechanism to ensure the functional integrity of alveolar cells [57].
Recently, investigators disclosed an inadequate expression of these cytokines, other than the
upregulation of the expression of chemokines and interleukins [61,62]. In normal human
bronchial epithelial cell cultures (NHBE), an inhomogeneous profile affects cytokines. IFN
deficiency is countered by an elevated expression of CCL20, CXC-type chemokines, IL-1β,
IL-6, and tumor necrosis factor (TNF) [63–65]. In cell cultures exposed to SARS-CoV-2, the
lack of IFN types I and III was evident, as despite susceptibility to the antiviral effect of
IFN, SARS-CoV-2 retained the ability to inhibit its induction [62–65].

Likewise, SARS-CoV-2 positivity in cardiac tissue as well as in CD3+, CD45+ and
CD68+ cells in myocardium and gene expression of tumor necrosis growth factor α, in-
terferon γ, chemokine ligand 5, as well as interleukin-6, -8 and -18 were found in cell
cultures from autopsy findings of patients who died from COVID-19 [13]. Regarding the
production of interferon, it seems clear that the reduction may derive at least in part from
the triggering of a mechanism that blocks the activation of the IFN signaling pathway. This
process can occur at an early stage after the nuclear transport of the interferon regulatory
factors (IRF) [66].

We learned that the different inflammation pattern in the involved tissues was related
to the recruitment of leukocytes. This is an imprint of authentication of the inflammatory
response which is firmly linked to the chemokine profile. Therefore, the inflammatory site
can be affected by one cell type over another. This process depends on the profile of the
chemokines that act as drivers, conditioning the different pathologies that characterize the
SARS-CoV-2 infection [67]. The increased presence of monocytes/macrophages is due to
the production of chemokine ligand 2 (CCL2) and CCL8 responsible for their recruitment
while chemokine (C-X-C) ligand 16 (CXCL16) is a powerful chemoattractant for Natural
Killer (NK) lymphocytes. Interleukine 8 (CXCL8) is the main chemoattractant of neutrophils
whereas chemokine CXCL9 and CXCL10 can recruit T cells that recognize these molecules
as specific chemoattractants [67].

A variation between moderate and severe COVID-19 was immediately noticeable and
relies on the different immune characteristics of the patients. These features can change
after ten days of infection whereby individuals with a trend towards worsening symptoms
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experience elevated levels of proinflammatory cytokines [21]. Furthermore, in the forms of
COVID-19 marked by nefarious evolution, the dysregulation of the inflammatory response
to the SARS-CoV-2 infection can be responsible for the cytokine storm syndrome [22,68].
Regarding heart involvement, although unusual cases of COVID-19 fulminant viral my-
ocarditis have been revealed, recent evidence has suggested that some individuals can
exhibit direct damage to the myocardial tissue, albeit in small percentages of cases [13,14].

The cytokine storm syndrome is distinguished by high levels of interleukins, TNF-α,
G-CSF, monocyte chemoattractant protein-1 (MCP-1), and: macrophage inflammatory
protein 1 (MIP-1α), which remain higher in patients needing admission to the intensive
care unit (ICU) than in patients who require this degree of clinical observation [21,23,24].
Furthermore, several studies have revealed that the NOD-like receptor family, pyrin domain
containing 3 (NLRP3) inflammasome, a multiprotein complex crucial for host defense,
maintains a high level of activation in patients with COVID-19. It is important to underline
that prolonged activation of NLRP3 leads to an increase in the levels of IL-1β and IL-
18 which are associated with more severe forms of COVID-19 [25,69,70]. The cytokine
environment orchestrates the recall of immune cells by activating the T helper 1 (Th1)
response, which is configured as type-specific immune response involved in the inhibition
of macrophage activation and stimulation of B cells to produce IgM, IgG1. The most
important function of Th1 cells includes the production of IFN-γ, a signature cytokine
that activates macrophages and DCs to present antigens to T lymphocytes. Th1 cells can
also secrete tumor necrosis factor (TNF), lymphotoxin, and IL-2 which help to give a solid
immunological response in the host. High levels of IL-6 production were recorded and
reliant on the inflammatory monocytes’ activation as the distinct functions of Th1 cells
in the severe form of COVID-19. This interaction supports the cytokine storm event [71],
Figure 3.

Figure 3. Pathogenic Th1 cells and inflammatory monocytes in severe COVID-19. Pathogenic CD4+

Th1 (GM-CSF+IFN-γ+) cells were rapidly activated to produce GM-CSF and other inflammatory
cytokines to form a cascade signature of inflammatory monocytes (CD14+CD16+ with high expression
of IL-6) and their progeny. These activated immune cells may enter the pulmonary circulation in
large numbers and played an immune-damaging role in severe-pulmonary-syndrome patients. The
monoclonal antibodies that target the GM-CSF or interleukin-6 receptor may potentially prevent or
curb immunopathology caused by COVID-19. Abbreviations; GM-CSF, granulocyte-macrophage
colony stimulating factor; IL, interleukine; IFN-γ, interféron gamma; SARS-CoV-2: severe acute
respiratory syndrome-coronavirus-2.
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Lindner et al. found high levels of IFN-γ and TNF in myocardiocytes of patients
who died of COVID-19 suggesting that a Th1 response was elicited. Ref. [13] Huang et al.
revealed that Th2 cytokine levels are detectable in patients with COVID-19 serum and their
production can alter the response by modifying the Th1-inflammatory response [23]. Thus,
as previously revealed by Lee et al. who reported that both inflammatory cytokine levels
and a shift in Th1/Th2 balance worked as prognostic markers for hepatocellular carcinoma,
ref. [72] the chemokine/cytokine environment coupled with the severe inflammatory
response of the host may lead to potentially negative effects on the heart [13,14,55]. On the
other hand, the environment where the chemokines/cytokines operate can constitute a
possible target for the action of specific drugs used in the treatment of COVID-19 [73].

While awaiting the results from studies based on the pathoanatomical analysis of
autopsy findings (heart, lung, kidney, and gastrointestinal system), which have demon-
strated the occurrence of specific damage in the several tissues of deceased COVID-19
patients’, ref. [13,26–28,74] the first reports have documented the substantial variation in
the rate of peripheral blood immune cells (PBMC) in COVID-19 patients’ [20,55]. Several
convincing results have provided detailed answers on both the change in the percentage
of cells of the immune response and the expression of HLA-DR genes [20,21,23,29,30,75].
Lucas et al. performed a longitudinal analysis from a large series of COVID-19 patients
revealing an increased level of monocytes with a reduction of HLA-DR expression in the
blood of infected individuals compared to that of the uninfected control cohort [23]. Evi-
dence from other studies, involving patients with the severe form of COVID-19, disclosed a
numerical reduction of B cells and NK cells associated with severe T-cell depletion. Instead,
the neutrophil population recorded a considerable increase [21,23,29,30,75].

The increase in the rate of neutrophils varies with the worsening of clinical conditions
and was generally observed after the seventh day from the onset of symptoms [31]. We
recently reported a difference in the levels of immune response cells in the autopsy tissues
of patients with poor outcomes [76].

3.2.2. Neutrophils Activation: Crucial in SARS-CoV-2 Cardiac Infection

Xie et al. analyzed data from nearly 154,000 U.S. veterans infected with SARS-CoV-2
providing evidence on the long-term cardiovascular outcomes of COVID-19 [32]. Patients
were monitored during the following year after recovering from the severe form of the
disease and noted to have an increased risk of developing a higher rate of cardiovascular
complications. These included cases of heart rhythm abnormalities, inflammation of the
heart muscles, blood clots, strokes, myocardial infarctions, and heart failure. The most
relevant data emerged at 12-months, showed that the cohort of patients with COVID-19
compared to the control cohort had been associated with an additional 45.29 incidents for
every 1000 people evaluated of any prespecified cardiovascular outcome [32].

The major concern related to the increased risk of long-term cardiovascular outcomes
was the development of a cardiac inflammatory reaction sustained by the neutrophilic
reaction. Neutrophils represent the most abundant immune cells in human blood (50–70%
of all leukocytes). Given their function to serve as fundamental cells in counteracting a
large number of infections, neutrophils play a critical homeostatic role working in the
context of chronic inflammatory diseases [77]. Although these polymorphonuclear cells
and NETs have the distinctive role of arousing a well-defined immune response against
bacterial or fungal infections, their function in the context of viral infections is not entirely
clear, especially with the development of the necroinflammation phenomenon [78,79].

The acute clinical manifestations of COVID-19 have been well characterized by a
systemic inflammation leading to the development of sequelae in several organ systems,
including cardiovascular disorders [20,33]. We learned, from limited evidence, that neu-
trophils improve antiviral response by interconnection with various immune cell popu-
lations. While fulfilling their tasks, the following specific actions have been taken into
consideration: virus internalization and killing mechanism, cytokine release, degranulation,
oxidative burst, and neutrophil extracellular traps (NETs) formation [79,80]. This sequence
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of events can lead to a series of accidents which in the first phase of the disease affect the
respiratory system, but can subsequently extend as a pan-systemic inflammation favoring
the onset of many other sequelae, which include cardiovascular disorders, gastrointestinal
disorders, malaise, fatigue, musculoskeletal pain, nervous and neurocognitive system
disorders, mental health disorders, metabolic disorders, and anemia [33].

The association between the presence of elevated levels of neutrophils at the site of
infection and the development of pulmonary disease associated with acute respiratory
distress syndrome (ARDS) is very frequent and has been documented in both influenza
virus infection and SARS-CoV-1 [81]. Using a bioinformatics analysis method, Hemmat et al.
revealed that neutrophil activation and degranulation were extremely powerful processes
during SARS-CoV infection [82]. Likewise, the recruitment of polymorphonuclear (PMN)
cells have been reported as a crucial hinge-point in the host immune response to COVID-19
associated with critical illness. Again, neutrophilia has been used to gauge the severity of
ARDS and poor outcomes in patients with COVID-19.

In patients who exhibit the severe form of COVID-19, abnormal blood clots were
described in association with pulmonary embolisms in the lungs and deep vein thromboses
localized to the peripheral arterial and venous vascular branches of the legs. Dysregulated
clot assembly leads to strokes or heart attacks [34,35,83]. This event is promoted by the
formation of autoantibodies [84] and it is supported by an alteration of the neutrophil-to-
lymphocyte ratio (NLR), which is one of the most relevant clinical inflammatory biomarkers.
The increased NLR correlates and forecasts severe illness, especially when it emerges in the
early stage of SARS-CoV-2 infection [36–38,85].

Some pooled data [24,39–41,86,87] have suggested that the emergence of severe
COVID-19 was related to higher levels of D-dimer and C-reactive protein (CRP) that
arises after the augmentation in NLR in critically ill COVID-19 cases [39,86]. Likewise,
the corroboration of some comorbidities such as diabetes and CVD [87] associated with
the increasing of NLR has been reported as an independent risk factor for mortality in
hospitalized patients [24,40,41]. In particular, Liu et al. observed that the presence of
diabetes with higher NLR in patients with COVID-19 leads to a more severe clinical picture
with a longer hospital stay [88]. The conclusion of the investigators supported the idea that
sustained chronic inflammation may favor a more severe COVID-19 [40,89].

Wang et al. and Varim et al. independently reported that the involvement of PMN
cells leading to a substantial change in neutrophil/CD4+ lymphocyte index (NCD4LR) and
the neutrophil count to albumin ratio (NAR), thus accounting for worsening progression
of COVID-19 [42,90]. The first study found that although the fluctuation of the NLR
ratio is a very selective diagnostic index of increased inflammatory response in patients
with COVID-19, during SARS-CoV-2 infection the NCD4LR was associated with negative
conversion time (NCT). The investigators have suggested that patients who exhibit elevated
NCD4LR have a poorer immune function and prolonged virus clearance [42], which may be
due to early cardiac complications such as ST elevation myocardial infarction (STEMI) [14].
The second study revealed that the NAR biomarker could be considered a new predictor of
mortality in COVID-19 patients [90].

It may be speculated that NCD4LR and NAR values may also be used as clinical
markers for COVID-19 progression in association with NLR [24] in patients with coronary
artery disease and arterial hypertension, in which an increase of neutrophils is not only
reported in the bloodstream, but also in the lungs and in the heart [18]. In patients with
CVD who succumbed to deterioration of clinical condition following COVID-19 diagnosis,
histological analyses revealed an accumulation of inflammatory cells associated with
endothelium, as well as apoptotic bodies in the heart [18].

We learned that neutrophil infiltration is an unfavorable factor in patients with car-
diovascular complications, the latter behaving readily as a key threat in COVID-19 in
association with lung disease [43,91]. However, the role of neutrophils must be evaluated in
a more organic context that involves angiotensin-converting enzyme 2 receptor (ACE2) and
endothelial cells, since SARS-CoV-2 uses ACE2 as a gateway into the host. This receptor is
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expressed in several organs, including the heart, lung, kidneys, intestines, and endothelial
cells [92]. Although PMN infiltrates are strongly associated with vascular derangements in
COVID-19. However, whether this disequilibrium is due to endothelial cell involvement by
the virus remains uncertain. Our current understanding suggests that human blood vessel
organoids are directly infected by SARS-CoV-2 in vitro [93]. Varga et al. disclosed that
circulatory failure due to myocardial infarction and ST-segment elevation complicated with
right heart failure, cardiac arrest resulted in death were associated with PMN infiltration
and lymphocytic endotheliitis in heart as well as lung, kidney, and liver with evidence
of cell necrosis. The investigator pointed out that the emerged histological evidence of
myocardial infarction was not associated with lymphocytic myocarditis. [18].

Another intriguing point is the discovery of immature phenotype and/or dysfunc-
tional mature neutrophils that have been reported in the severe form of COVID-19 [94,95].
These studies indicate that increased infiltration of immature and/or dysfunctional neu-
trophils leads to an imbalance of the immune response of the lungs in severe cases of
COVID-19, [96,97] in which cardiovascular atherosclerosis involvement and endothelitis
occur [14,18], Figure 4.

Figure 4. The acute clinical manifestations of COVID-19 are well characterized in the first and second
phase, revealing an inflammatory response, endothelial dysfunction and overlapping infection that
can evolve into thromboembolic and pulmonary complications, myocardial infarction and DIC. The
third stage determines the COVID-19 heart condition after SARS-CoV-2 infection in which patients
may reveal a range of increased cardiovascular risks. Abbreviations; CRP, C-reactive protein; DIC;
disseminated intravascular coagulation. Other abbreviations in the previous figures. ↑, increase.

3.2.3. Neutrophils Extracellular Traps in COVID-19: The Hypothesis Takes Shape toward a
Defined Role

Neutrophils extracellular traps are formed after the activation of neutrophils. The first
description of the Nets was provided by Brinkman et al. who gave a new impetus to the
investigation domain of granulocytes [56,98].

The structure of NETs is provided by nuclear chromatin to which nuclear histones
and granular antimicrobial proteins are aggregated. NETs behave as scaffolds and this
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specificity makes them key elements to imprison microbes. Pathogens such as bacteria,
fungi, viruses, and protozoa are killed once trapped [56,98]. This process is finalized inside
the DNA fibers, avoiding the spread of pathogens and facilitating the concentration of
antimicrobial factors at the site of infection [98].

NETosis orchestrates the entire process that leads to the formation of NETs and delin-
eates a specific type of cell death, different from necrosis and apoptosis. Several studies
have ascertained a very distinct role of NETosis in various infectious and non-infectious
pathology such as the involvement in autoimmune diseases, cancer, venous thromboem-
bolism, atherosclerosis, diabetes, etc. [99–101].

Briefly, NETosis is a cell death program that takes place in several stages which
include the translocation of enzymes from the granules to the nucleus which facilitates
chromatin decondensation. Importantly, the rupture of the internal membranes is recorded
with the subsequent cytolysis and the release of the NETs. It should be pointed out that
the main characteristic of NETosis is the disintegration of both the nuclear and granular
membranes, but the integrity of the plasma membrane is preserved. This is a biological
behavior that differentiates it from apoptosis or necrosis. The disruption of the nuclear
wrapper during NETosis leads to the mixing of nuclear and cytoplasmic material, the loss
of internal membranes, and the disappearance of cytoplasmic organelles. In detail, this
process is marked by the absence of the peculiar signs of apoptosis such as the production
of membrane bubbles, exposure to phosphatidylserine, condensation of nuclear chromatin,
and DNA fragmentation [56].

In NETosis the intracellular proteins escape from the cells as both the nuclear and
cytoplasmic membranes lose their integrity, thus delineating a process similar to that of
cell necrosis. In inflammatory processes during the activation of neutrophils, specific
biochemical mechanisms determine the production of reactive oxygen species (ROS), me-
diated by the activation of NADPH oxidase [102]. Nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase promotes the cell death process with the release of NETs.
As regards the specific involvement of reactive oxygen species (ROS) in the release of
NETs, it occurs through a process mediated by neutrophilic elastase and myeloperoxidase.
Elastase translocates from cytoplasmic granules to the nucleus triggering the degradation
of chromatin through histone cleavage [56,98,102]. Instead, myeloperoxidase contributes to
the decondensation of nuclear DNA [56,98,102].

Since NETs participate in various pathological processes either by inhibiting or promot-
ing damage, NETosis in oxidative stress has been carefully reconsidered [102,103]. There is
evidence to reveal that this specific program, triggered during the life of neutrophils, is not
just a path to death. So much so that a second mechanism biologically classified as “vital”
NETosis has been proposed [104]. During the “vital” NETosis the release of NETs is also
necessary. The difference between the two processes, « death » or « vital » NETosis, lies in
the nature of the precipitate stimulus, in the timing and mechanisms used to induce the
release of NETs [104].

Virologists explained this specific ability that viruses have in evading the host’s im-
mune response. This peculiar ability makes them particularly dangerous as promoters
responsible for triggering the processes of NETosis [105–107]. Therefore, many viruses fa-
vor the production of NETs, after activating the neutrophils, with different modalities. First,
the neutrophils release NETs according to the usual biological processes described above.
On the other hand, neutrophils can produce antiviral agents or undertake the transition to
apoptosis. It is important to underline that once the virus-induced NET production has
taken place, with the constitution of double-stranded DNA complexes, histones, and granu-
lar proteins, they can circulate in an uncontrolled way. The resulting relative phenomenon
is the organism’s extreme systemic response to the production of immune complexes,
cytokines, and chemokines, ultimately promoting inflammation. As emerges from recent
studies that have revealed cardiac complications in patients with COVID-19, NETosis
induced by the virus acts on two fronts. While on one front the mechanical entrapment of
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the virus is observed, on the other, the inflammatory and immunological reaction triggered
by the release of the NETs with the induction of potential damage is highlighted [14].

With the advent of COVID-19, NETosis activity of infected patients has garnered
interest to understand whether the clinical course of the disease is as a worsening evolution
or as a clinical recovery, may be conditioned by NETosis, Figure 5.

Figure 5. The mechanism leading to cardiac injury from NETs formation in patients with severe
COVID-19 is determined by vascular inflammation, thrombogenesis and NETOSIS through the insta-
bility of the atherosclerotic plaque. Abbreviations: HMGB1, mobility group box; ISG-15; interferon-
stimulated gene; LDG, low-density granulocytes; NDG, normal density granulocytes; NAD, nicotin
adenin dinucleotide; ROS, reactive oxygen species; SIRT3, Sirtuin 3. Other abbreviations in previous
figure. ↑, increase; ↓, decrease.

Two points should be underlined. The first concerns the fact that NETosis has been
evoked as a well-defined process in the inflammatory response occurring in pulmonary
diseases. In fact, evidence from bronchoalveolar lavage fluid suggested an increased level
of NETs in patients with acute respiratory distress syndrome (ARDS) [108,109], as well as in
patients who disclosed worse clinical condition after developing an acute respiratory failure
secondary to chronic obstructive pulmonary disease (COPD) [110]. Likewise, patients with
clinically severe forms of COVID-19 or who have exhibited worse progressive symptoms,
sustained by the cytokine storm, develop an ARDS-like status with increased NETs [111].
The second point concerns the correlation between NETs release and thrombotic compli-
cations in COVID-19 infection, involving the arterial and venous districts [43,44]. Several
studies have reported marked evidence of micro and macro thrombotic phenomena such
as microangiopathy leading to pulmonary embolism [45], for which antithrombotic and/or
coagulation prophylaxis was in short order initiated [43–45].

Histopathology from lung specimens disclosed fibrin-based blockages in the small
blood vessels in COVID-19 patients’ who died [13,15–19]. This pathoanatomic condition
mimics acquired and potentially life-threatening thrombophilia such as the antiphospho-
lipid syndrome, in which patients develop pathogenic autoantibodies targeting phospho-
lipids and phospholipid-binding proteins (aPL antibodies) such as prothrombin and beta 2
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glycoprotein I (beta 2GPI). These antibodies undertake cell surfaces leading to the activation
of endothelial cells, platelets, and neutrophils [84,112,113]. Ultimately the antibodies affect
the blood-endothelium interface toward thrombosis. These aPL antibodies have recently
been reported in patients who experienced COVID-19 [114,115] as well as many patients
admitted to hospital with the severe form of COVID-19 who displayed NETs in their blood
which may also contribute to the prothrombotic milieu [84,116].

Zuo et al. found eight types of aPL antibodies in serum samples from 172 patients
who required hospitalization for COVID-19 and with a rate ranging between 30% to 52%.
These aPL antibodies included anticardiolipin IgG, IgM, and IgA; anti-β2 glycoprotein
I IgG, IgM, and IgA; and anti-phosphatidylserine/prothrombin (aPS/PT) IgG and IgM.
Three main findings were identified in this study [46]. The first revealed that neutrophil
hyperreactivity was highly dependent on superior titers of aPL antibodies, including
the release of extracellular neutrophil traps (NETs), greater platelet counts, more severe
respiratory disease, and clinically estimated glomerular filtration rate. Second, as was
observed with the presence of a specific IgG activity in patients with antiphospholipid
antibody syndrome, the presence of isolated IgG fractions that favored the release of NETs
from neutrophils isolated from healthy individuals was also recorded in patients with
COVID-19. Third, IgG purified from serum from COVID-19 patients was injected into
two mouse models of mice causing an acceleration of venous thrombosis. The authors
concluded that half of the patients seeking admission for COVID-19 experienced a transient
rise in aPL antibodies; these autoantibodies are potentially pathogenic and can lead to an
increase in NETs [46].

These explained processes are of crucial importance as they outline the role of NETosis
which appears to be substantial in all conditions characterized by venous and arterial
thrombosis. Concerns related to the activity of DNAse I, an enzyme that catalyzes the
digestion of NETs, and the phagocytic activity of macrophages, which profusely infiltrate
the cardiac extracellular matrix in COVID-19 patients with cardiac complications [14],
deserve a more in-depth evaluation. In fact, these are the two main mechanisms for
regulating and self-limiting NETosis [20–43,56–98], show in Figure 6.

Figure 6. SARS-CoV-2 determines the activation of neutrophils mediated by IL-8, G-CSF, resistin,
lipocalin-2, hepatocyte growth factor and NET release. The immune response of NK and T lympho-
cytes contributes to the formation of NETs with the increased level of a completement system (C5 and
C3). The generated microvascular thrombosis leads to organ damage. Abbreviations: C, complement;
GF, grow factor; IL, interleukine; NK; natural killer. Bottom left depict the biochemical reaction for
the formation of NETs Other abbreviations in previous figure. ↑, increase; ↓, decrease.
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4. Insights into the Role of Neutrophil Extracellular Traps and Their Interference in
the Heart Inflammation Process from SARS-CoV-2 Infection

Myocardial injury has a crucial role as greater provider of mortality in COVID-19.
The landmark study of Zhou et al. [43] from Wuhan reported a larger percentage of
mortality reaching 70% of patients hospitalized with elevated cardiac troponin I plasma
levels. Acute inflammation response precipitated by SARS-CoV-2 infection is fitted together
atherosclerotic plaque development and progression. The concern related to SARS-CoV-2
heart infection is directly linked to acute inflammatory stimulus, prompted by virus lo-
calization in the cardiac tissue. The development and destabilization of atherosclerotic
plaque may lead to acute myocardial infarction. Several studies [1,2,13,14,18,94] have
confirmed these data thus highlighting the fundamental role offered by the phenomenon
of the “cytokine storm” in determining ischemic heart disease [21,23,24,68,94]. Virolo-
gists and immunologists have learned that the proinflammatory cytokines elicited by
endothelial cells lead to a change in homeostatic functions with the consequent endothelial
damage, the subsequent destabilization of the atherosclerotic plaque and the evolution
towards thrombosis. Cytokines such as IL-1 α and IL-1β, IL-6, and TNF-α can perturb
all of the protective functions of the normal endothelium so as to enhance pathological
processes [21,23,24,42,68,80–82,94].

Specifically, IL-1 can induce its own gene expression thus leading to an amplification
of the levels of IL1 that trigger the cytokine storm [14,68]. Furthermore, IL-1 promotes
the expression of other proinflammatory cytokines including TNF-α. IL-1 and leukocyte
migration can inspire the production of chemotactic molecules including chemokines
that cause inflammatory cells to penetrate into tissues. Meanwhile, IL-1 stimulates the
production of IL-6. The substantial role of IL-6, whose plasma levels are generally very low,
is to promote a of immune and inflammatory responses. During acute infection, a wide
kind of cells, including macrophages, B and T lymphocytes, work to determine an increase
in the production of IL-6. In addition to local effects, IL-6 provides a proximal stimulus to
the acute phase response [14,23–25,36,68–71,81,82,85].

Again, IL-6 works to support the production of fibrinogen which is the main precursor
of clots and of PAI-1 which is an important inhibitor of endogenous fibrinolytic mediators.
Finally, the action of IL-6 is aimed at increasing the levels of C-reactive protein, a biomarker
of inflammation closely linked to COVID-19 infection. During the infection, a loss of the
barrier function of the endothelium has been proved due to its activation, with a consequent
increased expression of adhesion molecules such as soluble ICAM-1 (intercellular adhesion
molecule 1), of soluble VCAM-1 (molecule vascular cell adhesion 1), and VWF release.
The latter allows for platelet binding and TF expression which activates the coagulation
system [11,34,36–40,86].

The evidence of NETs has been revealed in coronary thrombi from patients who exhibit
STEMI and myocardial infarction as a complication of COVID-19 [14]. To date, there are
no studies that have clarified precisely the intrinsic mechanism of coronary occlusion in
patients with COVID-19 who develop STEMI. In this context, evidence resulting from a
cohort of 55 patients who underwent primary coronary interventions for STEMI suggested
that NETs play a decisive role in the pathogenesis of coronary thrombosis in COVID-19
and the onset of MI. The investigators disclosed NETs in all 5 patients with COVID-19 who
received intracoronary aspirates compared to those (n = 50) without the infectious disease
during the primary percutaneous coronary intervention (PCI) [14].

A relevant finding of this investigation disclosed that the median density of NET
ranged at 61% (95%CI, 43–91%) and this value was remarkably higher than reported in a
previous series. Rather, the investigators found that NETs reached 68% in the sampling
of aspirated coronary thrombus during primary PCI from 34 patients with a median NET
density reported at 19% (95% CI, 13–22%; p < 0.001) [117].

NETs are released by neutrophils and perform the function of trapping pathogens
as they are made up of web-like structures of DNA and proteins (histones, microbicidal
proteins, and oxidizing enzymes). However, dysregulation of NET function is critical in
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initiating and increasing inflammation and thrombosis [46,84]. Cersana et al. studied post
mortem finding from a large series of pulmonary autopsy samples of COVID-19 patients’
revealing an excessive NET formation, responsible for a quickly pulmonary microvessels
occlusion and severe organ damage [47]. Importantly, Blasco et al. observed an abundant
amount of NET in coronary thrombi of COVID-19 patients with complicated STEMI and
MI [117]. Furthermore, the burden of NET was significantly higher than that reported in a
previous series of patients with STEMI but without COVID-19 infection [14,117]. From the
histochemical point of view, all thrombi were constituted by conglomerates of fibrin and
polymorphonuclear cells. An interesting finding suggested the absence of atherosclerotic
plaque fragments that were evident in 65% of the coronary clot aggregates of the control
group who experienced STEMI without infection. The preponderance of atheromatous
plaque fragments supported evidence that already emerged in a previous study by the
same group in 142 patients with STEMI [117].

We learned that coagulation changes associated with COVID-19 suggested the exis-
tence of a hypercoagulable state that can lead to an increase in the risk of thromboembolic
complications [14,46,84,114–117]. We also know that patients with COVID-19 typically
experience an increase in D-dimer concentration, a relatively lowly decrease in platelet
count, and a prolongation of prothrombin time [10]. These perturbations, except for an
increase in Dimer D, are not found in patients showing NET release and STEMI [14,117].
Therefore, the idea is reinforced that neutrophils and NETs play an important role in causing
thrombus formation in coronary arteries of patients with COVID-19 [12,56,98]. Once again,
an association between NET and unfavorable clinical outcomes after STEMI is outlined,
even if no definitive results are available on the specific components of the NET measured
peripherally. NET may help to define an unfavorable prognostic picture in patients with
COVID-19 to which a STEMI contributes to clinical manifestations [14,117].

Lindner et al. described the presence of the viral genome in myocardial tissue from 39
autopsy samples, in which fifteen (38.5%) did not disclose SARS-CoV-2 [13]. Pneumonia
occurred as the cause of death with a rate of 89.7% of individuals (n = 35) and none of
the patients revealed had clinically fulminant myocarditis [13]. This finding corroborates
previous evidence to support the expression of the SARS-CoV-2 spike glycoprotein selective
ACE2 receptor on the surface of myocardial cells [118] as well as the substantial involve-
ment of myocardial tissue in infection [119]. The most revealing findings highlighted by
Lindner after in situ hybridization of myocardial tissue suggests the most likely localization
of SARS-CoV-2 was not found in cardiomyocytes but interstitial cells or macrophages
invading myocardial tissue. The investigators reported the presence of CD3+, CD45+,
and CD68+. However, the cohort that exhibited the viral genome did not record an in-
crease in mononuclear cell infiltrates into the myocardium compared to the cohort without
virus. [13] Particularly, 1/3 of patients with viral load greater than 1000 copies, deemed
clinically significant, revealed signs of viral replication within myocardial tissue. Investiga-
tors documented increased expression in patients with a viral load greater than 1000 copies
where cytokines are currently implicated in the modulation of the inflammatory process.
16 patients had an increased expression of 6 proinflammatory genes related to cytokine
production (tumor necrosis growth factor α, interferon γ, chemokine ligand 5, interleukin-6,
-8, and -18) compared with 15 patients without any SARS-CoV-2 in the heart [13].

This evidence is in line with the findings of Guzik et al. who linked cytokine-induced
organ dysfunction to the disease process [6]. What emerges from Lindner’s study is crucial
in pointing out that patients with SARS-CoV-2 infection and viral replication did not show
associated fulminant myocarditis. In fact, in this study, relevant data is offered by the
lack of significant changes in the transendothelial migration of inflammatory cells in the
myocardium of patients with high viral load compared to those who did not have any virus.
Conversely, several studies reported a correlation between the occurrence of myocardial
inflammation and evidence of clinical myocarditis. Lindner et al., therefore, offered an
explanation supporting the idea that viral replication and myocarditis may not be two joint
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processes. Moreover, their results suggested no increased inflammatory cells in consecutive
COVID-19 cases without clinical myocarditis [13].

The crucial point focuses on the long-term effects of the presence of the virus in
myocardial tissue. Whether the presence of viral activity in the myocardium in the absence
of clinical symptoms of myocarditis remains unknown. However, we know that the
leukocytopenia that characterizes patients with COVID-19 could hinder the migration of
activated mononuclear cells [120]. Among these cells, the scarce presence of macrophages,
responsible for digesting NETs, could play a crucial role in maintaining a high NETs release
level, Figure 7.

Figure 7. SARS-CoV-2 infection determines dysregulations in coagulation system. The coagulopathy
is supported by the DIC, cytokine storm process, and direct action of the virus, inducing damage
and activation of macrophages. RAAS overactivation associated with platelet and complement
overactivation (direct and indirect) leads to fibrinolysis inhibition. Abbreviations are as shown
in previous figures. Arrows explain the increase or decrease of relative component. ↑, increase;
↓, decrease.
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5. Comment: Myocardial Injury and Mortality in Patients with COVID-19

The data available from China, Italy, in the United States are in favor of a COVID-19
which occurs in a relatively mild clinical form in most of the affected individuals, but
in others, COVID-19 can be life-threatening. The experiences gained in these years of
the pandemic support the evidence that the individuals at the highest risk of serious
illness, such as requiring intensive care hospitalization and those at the greatest risk of
mortality, are older individuals, with underlying comorbidities, including cardiovascular
diseases [20,23,48–53,55,121–123]. However, even younger adults have disclosed serious
illnesses for which hospitalization and surgery were necessary with deaths in this age
group reported [50–53,123].

As previously observed in other epidemiological studies focused on the clinical evolu-
tion of influenza and other diseases supported by an acute inflammatory state, patients
who develop COVID-19 in the presence of diagnosed coronary artery disease and those
with risk factors for atherosclerotic cardiovascular disease have an increased risk of experi-
encing acute coronary syndromes during the disease [124–126]. Established acute coronary
events, similar to type 2 myocardial infarction, could be related to the significant increase
in myocardial demand directly related to infection that can lead to myocardial damage or
infarction [127]. However, there is the possibility that an uncontrolled increase in the levels
of circulating cytokines released during intense systemic inflammatory activity can lead
to instability or even rupture of the atherosclerotic plaque. Another possible comparison
with COVID-19 patients concerns patients with heart failure who can manifest an evolution
towards haemodynamic decompensation during stressful conditions related to serious
infectious diseases [50–53,123].

What emerged from the published reports found that patients with underlying cardio-
vascular disease, which are more prevalent in the elderly, are more prone to higher risks
of adverse outcomes and death during the more aggressive forms of COVID-19 sustained
by severe inflammatory states, compared to younger patients. It should be noted that
similar to the Middle East Respiratory Syndrome coronavirus outbreak, acute/fulminant
myocarditis associated with heart failure has been described in SARS-CoV-2 as well.

Two independent Chinese reports [1,2] describing hospital series from Wuhan, have
corroborated these concepts while providing new evidence regarding the incidence and
consequences of myocardial lesions associated with SARS-CoV-2. In the first study [1]
investigators analyzed a cohort of 416 hospitalized patients with COVID-19, using the
highly sensitive reverse transcriptase-polymerase chain reaction technique, confirmed that
19.7% (n = 82) of patients revealed myocardial damage from the increase in troponin I
(TnI) levels. Patients with myocardial damage had a hospital stay with a significantly
higher mortality rate of 51.2% (42 of 82) than 4.5% without myocardial damage (15 of 335).
Furthermore, in patients with myocardial damage, higher levels of TnI elevation were
associated with higher mortality rates.

The second report [2] supports the above with 11 in a cohort of 187 hospitalized
patients with laboratory confirmed COVID-19, of which 27.8% (n = 52) revealed my-
ocardial damage noted by elevated troponin T (TnT) levels, providing additional novel
insights concerning levels of C-reactive protein and N-terminal pro-B-type natriuretic pep-
tide (NT-proBNP). First, investigators pointed to a rate of in-hospital mortality of 59.6%
(31 out of 52) in patients with high TnT levels compared to 8.9% (12 out of 135) in those
with normal TnT levels. Other relevant evidence supported that the highest mortality
rates of 69.4% (25 out of 36) were recorded in individuals with elevated TnT levels where
the underlying cardiovascular disease was noted. Another crucial point suggested that
mortality rates were lower in patients with high TnT levels without prior cardiovascular
history. Second, patients with known cardiovascular disease without elevation of TnT
levels disclosed a mortality rate that was relatively favorable despite a mortality rate of
13.3% (4 of 30). Third, TnT levels were significantly associated with levels of C-reactive
protein and N-terminal pro-B-type natriuretic peptide (NT-proBNP), thus relating myocar-
dial damage to the severity of the inflammatory state and ventricular dysfunction. Both
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TnT and NT-proBNP levels recorded progressive serial increases during hospitalization
in patients with progressively deteriorating clinical courses. Conversely, patients with a
less severe form of the disease and more favorable outcomes with lower levels of these
biomarkers [2].

The studies of Shi et al. and Guo et al. carried out at the beginning of the pandemic on
the Wuhan population have offered us a picture with substantially similar characteristics
in patients with COVID-19 and elevated levels of TnI or TnT, who develop myocardial
damage with adverse outcomes [1,2]. Patients at risk of myocardial damage have more
advanced age and higher comorbidities such as the increased prevalence of hypertension,
coronary artery disease, heart failure, and diabetes compared to the cohorts with normal
levels of TnI or TnT. Evidence of more severe systemic inflammation is indisputable in
patients with myocardial damage, including substantial increases in PMNs, higher levels of
C-reactive protein and procalcitonin as well as high levels of other myocardial biomarkers
injury and stress, such as elevated creatine kinase, myoglobin, and NT-proBNP. A finding
that emerges in patients with COVID-19 and associated myocardial injury concerns the
presence of a greater acuity of the disease, with a higher incidence of acute respiratory
distress syndrome and more frequent necessitation of mechanical ventilatory support
compared to those without myocardial damage. Therefore, the picture that arises from
these two studies, confirmed by other reports based on cardiac autopsy and PCI performed
in patients with COVID-19, is consistent with the history of patients who experienced
the disease. The picture offers older patients who have contracted SARS-CoV-2 with pre-
existing cardiovascular comorbidities and diabetes who are most prone to developing the
disease with greater clinical acuity. These individuals have an associated increased risk of
developing myocardial damage and a significantly higher short-term mortality rate [1,2].

The first report carried out on the Wuhan population represents a window that opens
to further evaluations. For example, Yang and Zin discussed the relationship between
cardiovascular complications during the COVID-19 outbreak in China and the underlying
cardiovascular outbreak that has been studied in China for decades [128]. Investigators
agree with many recent observations that the occurrence of pre-existing cardiovascular
comorbidity leads to the most adverse complications of COVID-19, including death [128].
However, it is important to point out that only with subsequent reports, highlighting sys-
temic inflammation and an uncontrolled coagulopathy in COVID-19, was a more complete
explanation offered those serious infections can destabilize patients with coronary artery
disease or heart failure [49–53,122,123].

The important association between myocardial damage and adverse outcomes has
focused its attention on possible complementary mechanisms such as intense systemic
inflammatory stimuli that favors greater oxygen consumption resulting in demand ischemia
which evolves into myocardial damage or plaque rupture stimulated by SARS-CoV-2
behaves similarly to other coronaviruses as it can elicit the intense release of multiple
cytokine and chemokines [23–53,69–128]. This stage is decisive not only in favoring vascular
inflammation, plaque instability, and inflammation of the myocardium but also in triggering
the release of NETs.

In some patients with or without pre-existing cardiovascular comorbidities, myocardi-
tis may occur as COVID-19 coupled myocardial damage [129]. Again, after the well-
documented case of acute myocarditis following a respiratory infection associated with
COVID-19 in a 53-year-old Italian woman, several studies have documented that direct viral
infection of the myocardium is another possible causal pathway of myocardial damage [5].
However, in cardiac autopsies, the virus was found in interstitial myocardial tissue without
the presence of replication in myocardial cells lacking unequivocal myocarditis [13].

We have learned the existence of the affinity of SARS-CoV-2 to the host angiotensin-
converting enzyme 2 receptor [1,2,128], which has been shown previously for other coro-
naviruses [119], raising the possibility of direct viral infection of vascular endothelium
and myocardium. Although the cardiovascular complications of acute COVID-19 dis-
ease are well described, the post-acute cardiovascular manifestations that characterize
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COVID-19 have not yet been fully elucidated. Al-Aly et al. and Xie et al. using the na-
tional health care database of the United States Department of Veterans Affairs created a
cohort of 153,760 individuals with COVID-19, to which two groups of control cohorts with
5,637,647 (contemporary controls) and 5,859,411 (historical controls) were added [32,54].
The authors using this large population estimated risks and 1-year charges of a set of
pre-specified cardiovascular outcomes. Interestingly Xie et al. noted that beyond the first
30 days of the infectious incident, patients with COVID-19 had an increased risk of car-
diovascular disease-related events affecting several categories, including cerebrovascular
disorders, arrhythmias, ischemic and non-ischemic heart disease, pericarditis, myocarditis,
heart failure, and thromboembolic disease [54].

The results reported by Xie et al. offer a crucial explanation of how these risks
and charges were evident even among individuals for whom hospitalization was not
required during the acute phase of the infection. The risk of developing a cardiovascular
complication gradually increased based on the care setting in which patients were treated
during the acute phase. The risk was lower in non-hospitalized patients, followed by
hospitalized patients, and higher in ICU patients. The findings described in the report by
Xie et al. support evidence that both the 1-year risk and burden of cardiovascular disease
in acute COVID-19 survivors were considerable. COVID-19 is a disease with a high social
impact and particular attention to the care pathways of those who survive the acute episode
of COVID-19 is required. Attention to cardiovascular health and disease should be included
among these [54], Figure 8.

Figure 8. The infection from SARS-CoV-2 caused a variability in the manifestation of the disease.
This explains the different population rates of infection and the distinct mortality rates of manifest
cases in various regions and countries. Inflammatory response, increased age, and bed rest, which are
most frequently seen in severe coronavirus disease 2019 (COVID-19), may contribute to thrombosis
and adverse events resulting from multiorgan involvement. FDA timeline of antivirals approval
and EUAs. Veklury® EUA was formalized in January 2020. Its definitive approval occurred in
October, 2020. Molnupiravir and Paxlovid® EUAs followed in December 2021. Abbreviations: ATE,
arterial thromboembolism.; COVID-19, coronavirus disease 2019; DIC, disseminated intravascular
coagulation; EUA: Emergency Use Authorization; FDA: Food and Drug Administration; NSAIDs,
non-steroid anti-inflammatory drugs; SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2;
VTE, venous thromboembolism.
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6. Future Direction

New challenges await scientific community and among these the rewiring of granu-
lopoiesis can offer a therapeutically relevant implication for trained immunity. In fact, a
crucial role in successfully coping with SARS-CoV-2 infection can be offered by the trained
innate immunity that is induced through the modulation of mature myeloid cells or their
bone marrow progenitors. The bacillus of the Calmette-Guérin tuberculosis vaccine (BCG)
has been shown to protect against certain heterologous infections through a process known
as trained immunity. This type of immunity is probably achieved through the induction
of innate nonspecific immune memory in monocytes and natural killer (NK) cells. Two
recent independent studies revealed that induction of trained immunity is associated with
a tendency to granulopoiesis in bone marrow hematopoietic progenitor cells [130–132].

The first study found that BCG vaccination of healthy humans induced long-lasting
changes in the neutrophil phenotype, characterized by increased expression of activation
markers and antimicrobial function. Evidence has suggested that enhanced human neu-
trophil function persists for at least 3 months after vaccination and is associated with
genome-wide epigenetic modifications in histone 3 lysine 4 trimethylation [130].

In the second study promising evidence emerged on improving antitumor immunity
that can be improved through the induction of trained immunity. Mouse models pre-
treated with β-glucan, a prototype of fungal-derived trained immunity agonist, revealed a
substantial decrease in tumor growth. The antitumor effect of trained immunity induced by
β-glucan, is associated with the transcriptomic and epigenetic rewiring of granulopoiesis
and the reprogramming of neutrophils towards an antitumor phenotype. This process
requires signaling of type I interferon, regardless of adaptive immunity in the host. Adop-
tive transfer of neutrophils from β-glucan-trained mice to untreated recipients suppressed
tumor growth by ROS-dependent action [131,132].

7. Conclusions

The cardiovascular implications of the COVID-19 pandemic have caused significant
morbidity and mortality. The process of understanding the mechanism for the manifestation
of these adverse outcomes is crucial to permit treatment and management options for these
patients. The adverse cardiovascular outcomes manifest in several different manners
from demand-induced ischaemia, coronary obstruction, and direct myocardial infiltration
alongside others. The long-term effects of this pandemic, however, remain uncertain
and require ongoing monitoring and research as the endemic phase of the disease is
embraced. Functional reprogramming of neutrophils by inducing trained immunity could
offer original therapeutic strategies in clinical conditions that could benefit from modulation
of neutrophil effector function.

Author Contributions: Conceptualization, F.N.; methodology, F.N., F.B. and S.S.A.S.; software, F.B.
and S.S.A.S.; validation, F.N., F.B. and S.S.A.S.; formal analysis, F.N. and S.S.A.S.; investigation, F.N.;
data curation, F.N., F.B. and S.S.A.S.; writing—original draft preparation, F.N.; writing—review and
editing, F.N., F.B. and S.S.A.S.; visualization, F.N., F.B. and S.S.A.S.; supervision, F.N., F.B. and S.S.A.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

33



J. Clin. Med. 2022, 11, 2460

Abbreviations

ACE1 angiotensin I-converting enzyme
ACE2 Angiotensin-Converting Enzyme 2
ACEi ACE–inhibitors
aPL antiphospholipid
aPS/PT Ab anti-phosphatidylserine/prothrombin autoantibodies
APS antiphospholipid syndrome
ARDS acute respiratory distress syndrome
AT1R Angiotensin Type 1 Receptor
C complement
CCL chemokine ligand
COPD Chronic Obstructive Pulmonary Disease
COVID-19 Coronavirus disease-2019
CRP C-reactive protein
CXCL chemokine ligand
CXCL8 Interleukine 8
CVD cardiovascular disease
DAD diffuse alveolar damage
DIC disseminated intravascular coagulation
ECM extracellular matrix
FDP fibrinogen derived peptides
G-CSF granulocytes colony-stimulating factor
GF grow factor
GM-CSF granulocyte-macrophage colony stimulating factor
HLA-DR human leucocyte antigen- related D
ICAM-1 intercellular adhesion molecule 1
ICU intensive care unit
IFN interféron
IL interleukine
IP-10 interferon-gamma-induced protein
IRF interferon regulatory factors
ISG-15 interferon stimulated gene 15
LDG low-density granulocytes
mAb monoclonal antibody
MASP2 mannose-binding protein associated serine protease 2
MAS macrophage activation syndrome.
MCP-1 monocyte chemoattractant protein-1
M-CSF macrophage colony-stimulating factor
MIP 1 macrophage inflammatory protein 1
NADPH Nicotinamide adenine dinucleotide phosphate
NAR neutrophil count to albumin ratio
NCD4LR neutrophil/CD4 + lymphocyte index
NCT negative conversion time
NDG normal density granulocytes
NETs neutrophil extracellular traps.
NHBE human bronchial epithelial cell
NLR neutrophil-to-lymphocyte ratio
NLRP3 NOD-like receptor family, pyrin domain containing 3
PAD peptidyl arginine deaminase
PAI platelet activator inhibitor
PBMC peripheral blood immune cells
PMN polymorphonuclear
RAAS renin-angiotensin. -aldosterone system
RE response element
ROS reactive oxygen species
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SARS-CoV-2 severe acute respiratory syndrome-coronavirus-2
Sirtuin 3 SIRT3,
STEMI ST elevation myocardial infarction
TF tissue factor
TFPI tissue factor pathway inhibitor
TGF beta-2 transforming grow factor beta-2
Th T-helper
TNF tumor necrosis factor
TRAP thrombin receptor-activating peptide
β2GPI β2 I glycoprotein
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Abstract: Risk stratification is one of the cornerstones of the management of acute pulmonary em-
bolism (PE) and determines the choice of both diagnostic and therapeutic strategies. The first step
is the identification of patent circulatory failure, as it is associated with a high risk of immediate
mortality and requires a rapid diagnosis and prompt reperfusion. The second step is the estima-
tion of 30-day mortality based on clinical parameters (e.g., original and simplified version of the
pulmonary embolism severity index): low-risk patients without right ventricular dysfunction are
safely managed with ambulatory anticoagulation. The remaining group of hemodynamically stable
patients, labeled intermediate-risk PE, requires hospital admission, even if most of them will heal
without complications. In recent decades, efforts have been made to identify a subgroup of patients
at an increased risk of adverse outcomes (intermediate-high-risk PE), who might benefit from a
more aggressive approach, including reperfusion therapies and admission to a monitored unit. The
cur-rent approach, combining markers of right ventricular dysfunction and myocardial injury, has an
insufficient positive predictive value to guide primary thrombolysis. Sensitive markers of circulatory
failure, such as plasma lactate, have shown interesting prognostic accuracy and may play a central
role in the future. Furthermore, the improved security of reduced-dose thrombolysis may enlarge the
indication of this treatment to selected intermediate–high-risk PE.

Keywords: risk assessment; pulmonary embolism; thrombolysis

1. Introduction

Pulmonary embolism (PE) is the third most frequent cardiovascular disease and is
associated with a high mortality burden, accounting for approximately 300,000 deaths in
Europe every year [1,2]. PE is defined as the obstruction of a pulmonary artery, mostly
resulting from the dislodgement of thrombotic material from the lower limbs. It has
a wide variety of presentations, ranging from an asymptomatic incidental finding to
circulatory collapse and sudden death. Diagnosis of PE often requires a sequential strategy
combining a pre-test probability assessment, D-dimers measurement when indicated and
thoracic imaging. Risk stratification immediately guides the management of acute PE, as it
determines the need for urgent reperfusion therapy (high-risk PE) and identifies patients
who can be safely treated as outpatients (low-risk PE). The remaining group of patients,
called intermediate-risk PE, is highly heterogeneous with most of the patients recovering,
but a significant proportion being at risk of complications. The present article will review
the evidence supporting risk stratification and reperfusion strategies in the management of
PE, with a particular focus on intermediate-risk pulmonary embolism.
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2. Risk Stratification in Acute Pulmonary Embolism

Risk stratification is applied in various medical conditions to stratify patients’ severity
in therapeutic trials or guide specific diagnostic or therapeutic interventions. Risk stratifica-
tion often relies on prognostic scores built on clinical or biological parameters. Traditional
steps in the development of a prognostic tool include derivation, internal and external
validation and impact studies (i.e., studies evaluating the benefit of a risk stratification
strategy). While derivation and validation studies are plentiful, impact studies are scarce [3].
Risk stratification in the setting of acute PE includes three main steps: identification of
patients at a high risk of early mortality, hence, requiring immediate reperfusion treat-
ment; identification of patients at a low risk of complications who can be safely treated
as outpatients; identification of patients with an increased risk of complications requiring
hospitalization for close monitoring and potential primary or rescue reperfusion therapy
(Figure 1) [4].

Figure 1. Step-by-step risk stratification in acute pulmonary embolism.

Nomenclature and definitions slightly differ between the European Society of Cardiol-
ogy (ESC) and American Heart Association (AHA) guidelines; differences are highlighted
in Table 1 [4,5]. This review mainly relies on the principles outlined in the 2019 ESC
guidelines [4].

2.1. Step 1: Identification of High-Risk Patients

The first step in risk stratification of acute PE is the identification of patients at a
high risk of early mortality. The most feared complication of acute PE is right ventricular
overload and dysfunction which may lead to circulatory collapse and death. Therefore,
patients with patent hemodynamic instability are considered as high-risk, according to the
ESC criteria. Hemodynamic instability is defined by a systolic blood pressure (SBP) inferior
to 90 mmHg for more than 15 min in the absence of hypovolemia, sepsis or arrhythmia;
and/or the need of vasopressors in combination with end-organ hypoperfusion. In a recent
systematic review including forty thousand patients with PE, 3.9% had high-risk PE. Short-
term mortality was 19% among patients presenting with unstable PE versus 5.7% among
patients with stable PE (OR 5.9; 95% CI 2.7 to 13.0) [6]. In a recent cohort of 7438 Chinese
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patients, the prevalence of unstable PE was 4.2% and mortality was 15.8% [7]. In high-risk
acute PE, management relies on organ support and prompt reperfusion with thrombolytic
therapies or percutaneous/surgical thrombectomy. The benefit of systemic thrombolysis
has been demonstrated in small randomized controlled trials (RCTs) and large observational
databases [6,8]. In the landmark study by Jerjes-Sanchez et al., eight patients with high-risk
PE were randomized to anticoagulation (AC) alone or in combination with streptokinase [8].
The four patients randomized to AC died and the four patients randomized to thrombolysis
survived. However, this small size, open-label trial was limited by an imbalance between
groups. Recent RCTs evaluating thrombolytic therapy usually excluded high-risk PE [9–11],
while older studies did not separately report outcomes for high-risk PE [12,13]. In a large
North American database including more than two million patients with PE, in-hospital
mortality was 15% among patients with unstable PE receiving TT and 47% among patients
with unstable PE treated with AC alone. However, 70% of unstable patients did not receive
TT [14,15]. This underutilization may be explained by the reluctance of physicians to
administer TT because of its bleeding complications. Moreover, the definition of high-risk
PE in previous ESC criteria, based exclusively on the presence of hypotension, was probably
too simplistic as systolic blood pressure should probably be considered as a continuous
risk marker rather than a dichotomized variable [16]. In the 2019 recommendations, they
have been enriched by evidence of end-organ dysfunction and the exclusion of alternative
contributors of shock [4,17].

Table 1. Nomenclature in current European and American guidelines.

Nomenclature
Hemodynamic

Instability
RVD

Elevated
Troponin

PESI > Class II
or sPESI > 0

European Society of Cardiology (ESC) 2019

High risk + (+) (+) +

Intermediate–high risk − + + + *

Intermediate–low risk − One or none + *

Low risk − − (−) −
American Heart Association (AHA) 2011

Massive + (+) (+) NA

Submassive − One or both NA

Low risk − − − NA
RVD: right ventricular dysfunction; PESI: pulmonary embolism severity index; sPESI: simplified pulmonary
embolism severity index; NA: not assessed. * Presence of RVD despite PESI ≤ 2 or sPESI 0 classifies patients in
intermediate-risk category.

In summary, identification of high-risk patients based on the presence of hemodynamic
instability is recommended for rapid diagnosis and prompt reperfusion therapy.

2.2. Step 2: Outpatient Management of Low-Risk Pulmonary Embolism

Historically, all patients with acute PE were admitted to the hospital. Short-term
mortality prediction rules have, therefore, been developed to identify patients at a low
risk of mortality who could be treated as outpatients. The pulmonary embolism severity
index (PESI) was derived and internally validated in 2005 in a cohort of 15,531 patients.
The PESI score comprises 11 clinical variables and stratifies patients into five severity
classes [18]. A simplified version of the PESI (sPESI) was derived including six clinical
variables, each scoring one point (Supplementary Table S1) [19]. According to a 2012
meta-analysis including 50,021 patients, the area under the curve (AUC) of sPESI was
0.79 for all-cause mortality with a pooled sensitivity of 0.92 and a pooled specificity of 0.38,
which is similar to the original PESI score. The pooled mortality was 2% among patients
with PESI class I or II and 1.8% among patients with 0 points in sPESI (Table 2) [20]. A
non-inferiority interventional study compared PESI-based outpatient management with
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hospital admission [21]. Three hundred and forty-four patients with low-risk PE (PESI
class I-II) were randomly allocated to outpatient versus inpatient management. Ninety-day
mortality was non-inferior in outpatients compared to patients admitted in-hospital (0.6%
in both groups, upper confidence limit (UCL) for difference 2.1%) as well as PE recurrence
(0.6% in outpatients versus 0% for inpatients, UCL 2.7%). At three months, three outpatients
(1.8%), but no inpatients, developed major bleeding (UCL 4.5%).

Table 2. Operative characteristics of original and simplified pulmonary embolism severity index for
early all-cause mortality [22].

Prediction
Index

Validation
Cohorts

(Patients)

Sensitivity
(95% CI)

Specificity
(95% CI)

PLR
(95% CI)

NLR
(95% CI)

PESI 19 (23,997) 0.89
(0.87–0.90)

0.49
(0.44–0.53)

1.72
(1.57–1.89)

0.22
(0.18–0.25)

sPESI 9 (26,610) 0.92
(0.89–0.94)

0.38
(0.32–0.44)

1.47
(1.28–1.68)

0.20
(0.13–0.31)

PESI: pulmonary embolism severity index; sPESI: simplified pulmonary embolism severity index; CI: confidence
interval; PLR: positive likelihood ratio; NLR: negative likelihood ratio.

Interestingly, when a low-risk PESI is combined with the absence of right ventricular
dysfunction (RVD), 30-day mortality decreases even further (0.2–0.3%) [23,24]. In a single
arm study evaluating the early discharge of low-risk PE (normotensive, absence of RVD and
absence of serious comorbidities) treated with rivaroxaban, the rate of major bleeding at
3 months was low (1.2%) [25]. However, this increased sensitivity is obtained at the expense
of a significantly lower proportion of patients identified as low risk [26]. An alternative
approach to identify low-risk patients is the use of the Hestia criteria (Supplementary
Table S2), consisting of a checklist of eleven criteria requiring hospital admission. Home
treatment of patients without these criteria has been shown to be safe and non-inferior to
sPESI-based home treatment [27–29].

In summary, outpatient treatment appears to be safe for low-risk PE patients identified
by PESI, sPESI or Hestia criteria and absence of RVD.

3. Step 3: Further Classification of Intermediate-Risk Pulmonary Embolism

About 4% and 40% of acute pulmonary embolisms are categorized as high risk and
low risk, respectively [30]. The remaining patients (i.e., normotensive patients with PESI
III-V or sPESI ≥ 1) are classified as intermediate-risk PE with an overall 30-day mortality
between 5% and 15% [18,19,31]. This group of patients is highly heterogeneous, with
the vast majority experiencing a favorable outcome with AC alone, and a small, albeit
significant, proportion requiring rescue reperfusion and cardiopulmonary resuscitation.
For this reason, efforts have been made in recent decades to identify a subgroup of patients
at risk of deterioration who might benefit from initial aggressive therapy and/or admission
to a monitored unit. Clinical scores, biological and radiological markers of right ventricular
overload and circulatory failure, alone or in combination, have been proposed to further
stratify intermediate-risk acute PE.

3.1. Clinical Scores

Despite a high sensitivity and negative predictive value, PESI and sPESI lack specificity
to predict early mortality (Table 2). Moreover, these scores rely heavily on demographic
and co-morbid conditions rather than the severity of the acute PE event. PE-attributable
mortality represents less than half of the overall 3-month mortality among patients with
an acute PE [32,33]. Clinical scores alone are, therefore, inadequate to guide admission
to monitored units or to initiate reperfusion therapies. Right ventricular dysfunction
with circulatory collapse is the most common mechanism leading to fatal PE. Various
markers of RVD and circulatory failure have been investigated as potential tools to further
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stratify normotensive patients; they are detailed in the following sections and summarized
in Table 3.

Table 3. Prognostic value of markers of right ventricular dysfunction for short-term mortality.

Marker
Sensitivity
(95% CI)

Specificity
(95% CI)

PLR
(95% CI)

NLR
(95% CI)

Troponin [34] 0.66
(0.61 to 0.70)

0.66
(0.65 to 0.67)

2.13
(1.84 to 2.47)

0.51
(0.40 to 0.60)

BNP [35] 0.88
(0.65 to 0.96)

0.70
(0.64 to 0.75)

2.13
(1.84 to 2.47)

0.51
(0.40 to 0.60)

NT-proBNP [35] 0.93
(0.14 to 1.00)

0.58
(0.14 to 0.92)

2.93
(2.28 to 3.77)

0.17
(0.05 to 0.58)

RVD US [35] 0.70
(0.46 to 0.86)

0.57
(0.47 to 0.66)

1.48
(1.05 to 2.08)

0.82
(0.65 to 1.03)

RVD CT [35] 0.65
(0.35 to 0.85)

0.56
(0.39 to 0.71)

1.63
(1.27 to 2.08)

0.53
(0.31 to 0.89)

CI: confidence interval; PLR: positive likelihood ratio; NLR: negative likelihood ratio; BNP: brain natriuretic pep-
tide; NT-proBNP: N-terminal brain natriuretic peptide; RVD: right ventricular dysfunction; US: ultrasonography;
CT: computer tomography.

3.2. Markers of Right Ventricular Dysfunction

• Cardiac troponin

The prognostic value of Troponin I and T has been evaluated in a meta-analysis
including 1985 patients [36]. Elevated troponin was associated with increased short-term
mortality in the whole cohort and in the subgroup of normotensive patients (OR 5.90,
95% CI 2.68 to 12.95, overall short-term mortality 17.9%). Subsequent meta-analyses
questioned the prognostic value of elevated troponin in normotensive patients (positive
likelihood ratio 2.13, negative likelihood ratio 0.51) and it has been suggested to combine it
with other prognostic factors [34,37].

• Brain natriuretic peptides

Brain natriuretic peptide (BNP) and its N-terminal portion (NT-proBNP) are secreted
by cardiomyocytes in response to ventricular stretching due to volume or pressure over-
load. The prognostic value of natriuretic peptides has been evaluated in at least eight
studies [35,38]. In a meta-analysis, the pooled relative risk for 30-day mortality was
9.5 (95% CI 3.1 to 28.6) for BNP and 8.3 (95% CI 3.6 to 19.3) for NT-proBNP [35]. A meta-
analysis of five more recent studies reported a relative risk for the complicated clinical
course of 5.63 (95% CI 2.77 to 11.43) when the NT-proBNP value was over 1000 pg/mL [39].
Interestingly, troponin and brain natriuretic peptides seem to have an additive prognostic
value [38,40,41].

Other biomarkers, such as serum creatinine, heart fatty acid-binding protein and
copeptin, have been studied but are less extensively validated and/or not available in
clinical practice [42–45].

• Computer tomography pulmonary angiography

CTPA signs of RVD include an elevated RV/left ventricular (LV) end diastolic diameter
ratio (cut-off of 0.9 or 1.0), interventricular septum bowing, pulmonary artery enlargement,
and retrograde reflux of contrast into the vena cava [46]. The right-to-left ventricular ratio
can be easily estimated using the largest transverse diameters which may be measured on
different CTPA slices. Septum bowing has an excellent specificity (98%) but poor sensitivity
(31%), and inter-observer reproducibility limits its clinical utilization [46,47]. CT obstruction
indexes have also been proposed by Qanadli et al. and [48] have shown to be associated
with increased mortality, mostly among patients without comorbidities [49].
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• Bedside echocardiography

Increased right-to-left ventricular ratio, hypokinesis of the free RV wall and the pres-
ence of pulmonary hypertension estimated from tricuspid regurgitation velocity have been
reported to be associated with an increased risk of early complications. More advanced
measures, such as the ratio of tricuspid annular plane systolic excursion to pulmonary
arterial systolic pressure (TAPSE/PASP) are being investigated to stratify the risk among PE
patients, but they are impractical for daily use and bedside stratification [50]. More recently,
additional echocardiographic markers such as left or right ventricular outflow tract velocity
time integral (LVOT and RVOT VTI) and stroke volume index have been reported to be
associated with death or clinical deterioration, with interesting discriminative performance
among intermediate-risk patients [51–54].

Despite a consistent association with short-term mortality, markers of RVD have poor
diagnostic performances when they are used as a stand-alone test (Table 3) [17,35]. They
have, therefore, been combined in current risk stratification guidelines.

3.3. Current Stratification of Intermediate-Risk Pulmonary Embolism

The ESC 2019 risk stratification of patients with acute PE relies on the three-step
process described above, based on the presence of hemodynamic instability, clinical scores
(PESI or sPESI) and the combined presence of two markers of RVD (Figure 1 and Table 1).
This revision of the previously published 2014 criteria allows us to identify a subgroup of
intermediate-risk PE patients at risk of short-term circulatory collapse or mortality, labelled
as intermediate–high risk. These criteria were conceived following expert opinions, and
no impact study has been published to date. In a prospective cohort of 1015 patients with
normotensive acute PE, the ESC 2019 criteria classified 347 (34%), 571 (56%) and 97 (9.6%)
of patients as low, intermediate–low and intermediate–high-risk PE, respectively. All cause
30-day mortality was significantly higher in intermediate–high-risk patients (10%) than in
those with low risk or intermediate–low risk (4%) [55].

4. Reperfusion Therapy for Intermediate–High-Risk Pulmonary Embolism

Systemic thrombolysis using plasminogen activators is the most widely studied reper-
fusion strategy. Tissue plasminogen activators (tPA), such as urokinase, alteplase or
tenecteplase, have a fibrinolytic effect, allowing clot dissolution and improvement of
hemodynamic parameters in patients with high-risk PE [8,13]. Several randomized con-
trolled trials aimed to evaluate their potential benefit among normotensive patients with
elevated markers of RVD. The most informative evidence is provided by the European Pul-
monary Embolism Trombolysis (PEITHO) trial [10]. This large RCT included 1005 patients
with acute PE and RVD on imaging (CTPA or echocardiography) and myocardial injury
(elevated troponin T or I), corresponding to the current intermediate–high-risk category.
Patients were randomly assigned to unfractionated heparin (UFH) plus tenecteplase or
UFH alone. The incidence of the primary outcome (death or hemodynamic collapse within
1 week) was significantly lower among patients allocated to tenecteplase than to UFH alone
(2.6% vs. 5.6%, p = 0.02). This difference was mainly driven by an increased risk in hemo-
dynamic decompensation among patients allocated to UFH (5.0% vs. 1.6%) while mortality
was low and did not significantly differ (1.2% vs. 1.8%). This was counterbalanced by a
significant increase in the risk of both major (11.5% vs. 2.4%) and intracranial bleeding
(2.0% vs. 0.2%). When thrombolysis studies exclusively including acute PE with RVD are
pooled, the uncertain benefit in overall mortality is mitigated by the significant increase in
both major and intracranial bleeding [11]. Of note, the increased risk of major bleeding was
more pronounced in studies using tenecteplase than in those using alteplase, but direct
comparison studies are lacking to confirm this observation [56].
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5. Toward a Better Identification of Thrombolysis Candidates among
Intermediate-Risk Pulmonary Embolism

The current ESC classification seems to have an insufficient positive predictive value to
identify a subgroup of intermediate-risk patients warranting more aggressive therapy. The
benefits of a full-dose systemic thrombolysis are outweighed by bleeding risks, particularly
when using tenecteplase. Two strategies have been identified by researchers to enhance the
benefit-risk ratio: identifying patients at a higher basal risk and improving the safety of TT.

Identifying Patients at Higher Basal Risk: Markers of Circulatory Failure and Alternative Scores

Various alternative prediction rules, including early markers of circulatory failure, have
been studied to identify normotensive patients with a higher risk of hemodynamic collapse.

• Plasma lactate

Plasma lactate is an important prognostic marker of organ dysfunction and is widely
used in patients with sepsis or trauma [57]. Several studies evaluated the prognostic value
of plasma lactate among patients with acute PE [58,59]. A retrospective study including
287 patients with acute PE reported a significant association between plasma lactate levels
above 2 mmol/L and in-hospital mortality (OR 4.6; 95% CI 1.57 to 13.53) [58]. An associa-
tion with 30-day mortality was subsequently observed in a prospective study (HR 11.67;
95% CI 3.32 to 41.03) [59]. Interestingly, this association was independent of shock state, hy-
potension, RVD or elevated troponin. A single center registry of 419 consecutive PE patients
confirmed the association of elevated venous lactate with adverse outcomes, and found that
levels above 3.3 mmol/L had the best predictive performance for in-hospital adverse events
(PPV 0.27 and NPV 0.97) [60]. Moreover, adding venous lactate levels to the ESC 2019
risk criteria allowed us to further fine-tune stratification. Intermediate–high-risk patients
with venous lactate ≥3.3 mmol/L had a 27.5% prevalence of adverse events, versus 6.8% if
lactate was <3.3 mmol/L. Intermediate low-risk patients with lactate levels <2.3 mmol/L
were at a low risk of adverse events (0.6%, versus 12.2% if ≥2.3 mmol/L) [60].

• BOVA score

The Bova score was derived from pooled results of six prospective studies, including
2874 patients with hemodynamically stable acute PE [61]. Model predictors included
heart rate, SBP, biomarkers (cardiac troponin or BNP) and echocardiography (Table 4 and
Supplementary Table S3) [61]. RVD was defined by the presence of RV/LV >0.9 or 1, RV free
wall hypokinesis, RV end-diastolic diameter >30 mm or estimated systolic pulmonary artery
pressure > 30 mmH. The primary composite outcome was PE-related death, hemodynamic
collapse or recurrent PE at 30 days. Thirty-day complications differed significantly across
categories of the model (0–2 points 4.2%; 3–4 points 10.8%; >4 points 29.2%). The area
under the ROC curve was 0.73 (95% CI 0.68–0.77) and 5.8% of patients were classified in
the stage III category. Recently, a meta-analysis including the derivation study and eight
prospective and retrospective external validation cohort studies were conducted [62]. The
pooled cumulative incidence of PE-related complications (PE-related death, hemodynamic
collapse or recurrent PE) at 30 days was 3.8% for stage I, 10.8% for stage II and 19.9% for
stage III (1.9, 5.5 and 12.1 for 30-day PE mortality) with an AUC of 0.73 (Table 4) [63]. In
another retrospective cohort including 994 normotensive patients, 5.9% of patients were
classified in the stage III category. Death or hemodynamic collapse at 7 days occurred in
18.6% of patients in the stage III category. When lactate elevation was incorporated into an
extended Bova score, the proportion of patients in the stage III category increased to 11.2 %,
with a primary outcome rate of 25.9 %. Hemodynamic collapse by day 7 occurred in 15.3%
of patients in the class III category according to the standard BOVA score, compared to
24.1% in the model including lactate elevation [64].

47



J. Clin. Med. 2022, 11, 2533

Table 4. Components of the Bova score.

Predictor Points

SBP 90–100 mmHg 2

Elevated troponin 2

RV dysfunction 2

Heart rate > 100/min 1

• TELOS score

The TELOS score was derived in a prospective cohort of 496 normotensive PE patients.
The primary outcome was PE-related death or hemodynamic collapse within 7 days. A
model including RVD, troponin and plasma lactate elevation resulted in a 17.9% PPV [65].
The TELOS rule was further validated by the same group in a prospective cohort of
994 normotensive patients. A total of 5.9% of patients were allocated to the intermediate–
high-risk category according to the TELOS criteria, with a cumulative incidence of the
primary outcome (death or hemodynamic collapse at 7 days) of 21.1% (Table 5) [64].

Table 5. Prognostic value of stratification scores dichotomized at an intermediate–high-risk level.

Score Sensitivity Specificity PLR PPV Outcome

Scores including Plasma Lactate

ESC 2019 + lactate [60] 0.33
(0.16 to 0.55)

0.95
(0.92 to 0.97)

6.27
(3.11 to 12.66) 0.27 In-hospital adverse outcome

Bova + lactate [64] 0.46
(0.34 to 0.58)

0.91
(0.90 to 0.92)

5.16
(3.55 to 7.13) 0.26 Adverse 7-day outcome

TELOS [64] 0.19
(0.11 to 0.30)

0.95
(0.95 to 0.96)

3.94
(2.04 to 7.15) 0.21 Adverse 7-day outcome

Scores without plasma lactate

Bova [66] 0.48
(0.30 to 0.67)

0.86
(0.82 to 0.90)

3.41
(2.11 to 5.52) 0.19 Adverse 30-day outcome

ESC 2014 [66] 0.80
(0.61 to 0.91)

0.69
(0.64 to 0.73)

2.60
(2.00 to 3.30) 0.15 Adverse 30-day outcome

ESC 2019 [67] 0.52
(0.34 to 0.70)

0.79
(0.77 to 0.82)

2.5
(1.7 to 3.7) 0.07 In-hospital adverse outcome

ESC: European Society of Cardiology; PLR: positive likelihood ratio; PPV: positive predictive value.

• SHIELD score

The SHIELD score was derived from a retrospective monocentric cohort of 554 nor-
motensive patients and was externally validated. Predictors of the model included shock
index ≥1, hypoxemia, lactate elevation and signs of RVD (i.e., elevated troponin, NT-pro
BNP and RV/LV ratio >1 using CTPA) [68]. The risk of 30-day mortality or rescue throm-
bolysis for each tercile was 0.6%, 1.8% and 16.4% (AUC 0.90, 95% CI 0.85 to 0.94) in the
derivation cohort and 0.6%, 1.9% and 15.3% (AUC 0.82; 95% CI 0.75 to 0.87) in the external
validation cohort.

• Other scores

Lankeit et al. derived a clinical prediction rule including heart fatty acid-binding
protein (H-FABP), syncope and heart rate (FAST score). The positive predictive value
was 20.5% and the AUC was 0.85 (95% CI 0.75 to 0.95) [69]. This score was validated in
another cohort of the same center with a positive predictive value of 18.9% and an AUC of
0.82 (95% CI 0.75 to 0.89) [66].
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A prospective study including 268 normotensive PE patients showed an association
between copeptin level >24 pmol/L and 30-day mortality or adverse outcome. The positive
predictive value was 11% (95% CI 7 to 19%) and the negative predictive value was 98%
(95% CI 95 to 99%), suggesting that this biomarker could be combined with markers of
RVD such as NT-proBNP or highly sensitive troponin T [42].

Other scores combining clinical variables, imaging and biomarkers have been studied
with less extensive validation [70,71].

• Between score comparison

Vanni et al. compared the prognostic accuracy of the ESC 2014 criteria, TELOS and
Bova score in a cohort of 994 normotensive patients with PE. The Bova and TELOS scores
classified the same proportion of patients in the intermediate–high-risk category (5.9 and
5.7%) with a similar rate of early adverse events (18.6 and 21.1% 7-day death or hemo-
dynamic collapse), while the ESC criteria classified a higher proportion of patients in
the intermediate–high-risk category (12.5%, p < 0.001) with a lower rate of events (13%
p = 0.18) [54]. Diagnostic performances of several existing scores are summarized in Table 5.
While the risk of adverse events was comprised between 7% and 15% in the intermediate–
high-risk group according to the ESC criteria, recent prediction rules, including markers of
circulatory dysfunction (plasma lactates) or adjunction of plasma lactates to the Bova or
ESC 2019 criteria, appeared to have a promising positive predictive value with event rates
of around 25%. However, some variation in their PPVs was observed across studies, which
is partly explained by variations in the outcome definitions. Moreover, the plasma lactate
cut-off varied across studies and the optimal cut-off remains to be determined.

6. Expected Benefits from a Better Identification of Intermediate–High-Risk Patients

As discussed above, recent prediction rules, including markers of circulatory dys-
function, might allow us to identify a subgroup of patients with a significantly increased
(>25%) risk in adverse events who might benefit from a more aggressive therapy. Fig-
ure 2 illustrates the extrapolated benefits of thrombolytic therapy in a theoretical cohort
of patients with a 17.1% basal risk of adverse outcomes. This basal risk was obtained by
combining the basal risk observed in the PEITHO trial and the positive likelihood ratio of
elevated blood lactates [9]. Net benefits and harms were computed based on the relative
risks reported in our previous meta-analysis on thrombolytic therapy in PE [11]. These
extrapolations are mainly illustrative and should be evaluated in interventional studies, as
bleeding complication risks might also increase among patients with a higher basal risk of
a PE-related adverse event.

Figure 2. Extrapolated effect of full-dose thrombolysis in cohorts of patients with a different basal
risk of an early adverse event. a Basal risk according to PEITHO trial [10], b relative effect according
to Marti et al. [11]. c Basal risk obtained by combining the risk of the PEITHO population and the
prognostic modulation obtained by adding lactate [60].
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7. Improving the Safety Profile: Reduced-Dose Thrombolytic Therapy

Another strategy to optimize the risk-benefit ratio of TT among intermediate–high-
risk PE is the reduction in TT bleeding complications. In this perspective, several trials
investigated reduced-dose systemic thrombolysis regimens. In the Moderate Pulmonary
Embolism Treated with Thrombolysis (MOPETT) trial, 121 patients with acute PE and a high
thrombotic burden were randomized to half-dose tPA and heparin versus heparin alone.
Half-dose thrombolysis was associated with a lower rate of pulmonary hypertension or
recurrent PE at 28 months (16% versus 63% in the AC group) and no significantly increased
risk of bleeding [72]. Similarly, a systematic review including 5 small-size randomized
trials suggested a similar efficacy and reduced bleeding complications when half-dose was
compared to standard dose thrombolysis [73]. These preliminary results based on a limited
sample of patients need to be further confirmed.

Catheter-based thrombolytic therapies, including catheter-released thrombolysis (CRT),
ultrasound-assisted thrombolysis and mechanical fragmentation or aspiration, alone or in
combination, are alternative strategies to reduce bleeding risks associated with systemic
TT [74,75]. Catheter-based therapies are an evolving technology and several devices have
been shown to improve echocardiographic signs of RVD in single-arm studies [75,76]. Their
impact regarding clinically relevant outcomes should be further evaluated in randomized
controlled studies [77]. These alternatives may be proposed to high-risk patients at an in-
creased risk of bleeding. More recently, circulatory support using extracorporeal membrane
oxygenation (ECMO) in combination with surgical embolectomy has been proposed for
high-risk patients with high in-hospital survival rates [78].

8. Evidence to Come: The PEITHO-3 Study

The ongoing PEITHO-3 study is expected to add further evidence for the management
of intermediate–high-risk PE. This ongoing, multicentric, randomized controlled trial aims
to combine the two previously discussed strategies. Identification of patients with a higher
basal risk of adverse events will be obtained based on a retrospective analysis of the
PEITHO population by adding clinical markers of severity (SBP ≤ 110 mmHg, respiratory
rate > 20/min, history of chronic heart failure) to the ESC intermediate–high-risk criteria
with an expected event rate of 11.2% [79,80]. At the same time, a reduced dose of alteplase
(0.6 mg/kg) will be used. The PEITHO-3 trial plans to include 650 patients with, expected to
be completed in September 2025 [80]. The expected benefits in the hypothesized PEITHO-3
population are illustrated in Figure 3, assuming a constant relative effect of treatment and a
constant basal bleeding risk with important uncertainty regarding the increase in bleeding
complications with reduced-dose TT.

Figure 3. Extrapolated effect of half-dose thrombolysis in the hypothesized PEITHO-3 population.
c Basal risk derived from applying the PEITHO-3 inclusion criteria and outcome to the PEITHO
population [79]. d Relative treatment effect of full-dose thrombolysis is applied, and no increased risk
of serious bleeding is assumed, according to a meta-analysis on half-dose thrombolysis [73].

9. Conclusions

The management of patients with acute PE requires an accurate step-by-step risk
stratification. Hemodynamic instability allows to quickly detect high-risk patients who will
benefit from TT; clinical prediction rules, such as PESI or sPESI, allow us to identify low-risk
patients who can be safely treated as outpatients. The intermediate-risk group is composed
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of a highly heterogeneous group of patients, most of whom will experience favorable short-
term outcomes. Individual evaluations by dedicated multidisciplinary PE response teams
may be useful to decide the optimal treatment strategy [81,82]. Several prediction models
combining clinical variables, biomarkers and medical imaging have been developed to
identify the subgroup of patients with a significant risk of early adverse events who might
benefit from early aggressive management. The inclusion of plasma lactate may increase
the performance of risk stratification models, but it needs to be further validated in future
studies. Optimization of reperfusion strategies by using reduced regimens of thrombolysis
or catheter-directed reperfusion techniques might contribute to improving the prognosis of
patients by limiting the side effects. Results of ongoing studies (NCT04430569) will clarify
the benefits of initial reperfusion strategies in this subgroup of patients. While waiting
for these results, current guidelines recommend admitting patients of the intermediate–
high-risk category to a monitored unit for early detection of clinical deterioration and the
potential need for rescue reperfusion.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcm11092533/s1, Supplementary Table S1. Original and simplified
pulmonary embolism severity index (PESI and sPESI); Supplementary Table S2. The Hestia rule;
Supplementary Table S3. Components of several prediction scores.
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M.; Darocha, S.; et al. Pulmonary embolism response team: A multidisciplinary approach to pulmonary embolism treatment.
Polish PERT Initiative Report. Kardiologia Polska 2021, 79, 1311–1319. [CrossRef] [PubMed]

82. Dudzinski, D.M.; Piazza, G. Jd Multidisciplinary Pulmonary Embolism Response Teams. Circulation 2016, 133, 98–103. [CrossRef]
[PubMed]

55



Citation: Otto, C.C.; Czigany, Z.;

Heise, D.; Bruners, P.; Kotelis, D.;

Lang, S.A.; Ulmer, T.F.; Neumann,

U.P.; Klink, C.; Bednarsch, J.

Prognostic Factors for Mortality in

Acute Mesenteric Ischemia. J. Clin.

Med. 2022, 11, 3619. https://doi.org/

10.3390/jcm11133619

Academic Editor: Vanessa Bianconi

Received: 5 May 2022

Accepted: 20 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Prognostic Factors for Mortality in Acute Mesenteric Ischemia

Carlos Constantin Otto 1, Zoltan Czigany 1, Daniel Heise 1, Philipp Bruners 2, Drosos Kotelis 3,4, Sven Arke Lang 1,

Tom Florian Ulmer 1, Ulf Peter Neumann 1,5, Christian Klink 1,6 and Jan Bednarsch 1,*

1 Department of Surgery and Transplantation, University Hospital RWTH Aachen, 52074 Aachen, Germany;
caotto@ukaachen.de (C.C.O.); zczigany@ukaachen.de (Z.C.); dheise@ukaachen.de (D.H.);
svlang@ukaachen.de (S.A.L.); fulmer@ukaachen.de (T.F.U.); ulf.neumann@mumc.nl (U.P.N.);
chirurgie-sp@diakonissen.de (C.K.)

2 Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen,
52074 Aachen, Germany; pbruners@ukaachen.de

3 Department of Vascular Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany;
dkotelis@ukaachen.de

4 Department of Vascular Surgery, University Hospital Bern, 3010 Bern, Switzerland
5 Department of Surgery, Maastricht University Medical Center (MUMC), 6229 HX Maastricht, The Netherlands
6 Department of Surgery, Diakonissen-Stiftungs-Krankenhaus Speyer, 67346 Speyer, Germany
* Correspondence: jbednarsch@ukaachen.de; Tel.: +49-241-80-89501

Abstract: Postoperative mortality in patients undergoing surgical and/or interventional treatment
for acute mesenteric ischemia (AMI) has remained an unsolved problem in recent decades. Here,
we investigated clinical predictors of postoperative mortality in a large European cohort of patients
undergoing treatment for AMI. In total, 179 patients who underwent surgical and/or interventional
treatment for AMI between 2009 and 2021 at our institution were included in this analysis. Associa-
tions between postoperative mortality and various clinical variables were assessed using univariate
and multivariable binary logistic regression analysis. Most of the patients were diagnosed with
arterial ischemia (AI; n = 104), while venous ischemia (VI; n = 21) and non-occlusive mesenteric
ischemia (NOMI; n = 54) were present in a subset of patients. Overall inhouse mortality was 55.9%
(100/179). Multivariable analyses identified leukocytes (HR = 1.08; p = 0.008), lactate (HR = 1.25;
p = 0.01), bilirubin (HR = 2.05; p = 0.045), creatinine (HR = 1.48; p = 0.039), etiology (AI, VI or NOMI;
p = 0.038) and portomesenteric vein gas (PMVG; HR = 23.02; p = 0.012) as independent predictors of
postoperative mortality. In a subanalysis excluding patients with fatal prognosis at the first surgical
exploration (n = 24), leukocytes (HR = 1.09; p = 0.004), lactate (HR = 1.27; p = 0.003), etiology (AI, VI
or NOMI; p = 0.006), PMVG (HR = 17.02; p = 0.018) and intraoperative FFP transfusion (HR = 4.4;
p = 0.025) were determined as independent predictors of postoperative mortality. Further, the risk
of fatal outcome changed disproportionally with increased preoperative lactate values. The clinical
outcome of patients with AMI was determined using a combination of pre- and intraoperative clinical
and radiological characteristics. Serum lactate appears to be of major clinical importance as the risk
of fatal outcome increases significantly with higher lactate values.

Keywords: acute mesenteric ischemia; lactate; morbidity; mortality

1. Introduction

Acute mesenteric ischemia (AMI) is a an often rapidly progressing clinical condition,
which is commonly diagnosed late and associated with dismal outcome after surgical or
endovascular therapy [1–3]. While a rapid diagnosis and subsequent treatment result in
distinctively better outcomes [4,5], the overall mortality rates are high in comparison to
other surgical emergencies [6]. Therefore, patients suspected of AMI should be diagnosed
and treated with high priority to achieve acceptable outcomes [5,7]. Unfortunately, the
lack of specific parameters and often vague early clinical symptoms frequently result in a
notable delay in diagnostic measures and targeted treatment [8].
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A variety of risk factors for adverse outcomes have been identified in the literature,
with a prolonged duration of symptoms before specific treatment being the most prominent
negative predictor, as described previously [9]. Additionally, individual patient charac-
teristics as basic demographics and comorbidities as well as laboratory values have been
under the spotlight of interest in recent decades [10–13]. Interestingly, the group of patients
presenting with AMI is also heterogenous, as the underlying conditions and corresponding
subtypes, e.g., arterial ischemia (AI), venous ischemia (VI) and non-occlusive mesenteric
ischemia (NOMI), display different features and distinct outcomes [14].

Given the highly heterogenous nature of AMI and its relatively rare occurrence,
only a limited number of monocentric series are available for investigating the disease.
Moreover, those studies vary in design, endpoints, and findings [10,15,16], resulting in
overall inconsistent and low-quality evidence. To further explore potential prognostic
factors of surgical morbidity and mortality, we analyzed clinical outcomes in a European
cohort of patients undergoing treatment for AMI.

2. Materials and Methods

2.1. Patients and Definitions

This study comprised one hundred seventy-nine (n = 179) consecutive patients di-
agnosed with AMI and treated with surgery between 2009 and 2021 at a large academic
tertiary referral center (University Hospital RWTH Aachen (UH-RWTH)). Inclusion criteria
were (a) patients undergoing surgical/endovascular treatment after the radiological diag-
nosis of AMI. Exclusion criteria were: (a) no present AMI during surgical exploration and
(b) patients deceasing prior to surgical exploration and (c) patients refusing to undergo
surgical/endovascular treatment. The study was further conducted in accordance with
the requirements of the Institutional Review Board of the RWTH-Aachen University (EK
334/21), the current version of the Declaration of Helsinki, and the good clinical practice
guidelines (ICH-GCP). In this retrospective study, AMI was defined as the occurrence of an
abrupt cessation of the mesenteric blood flow leading to malperfusion of the bowel with
associated and acute symptoms and eventually bowel necrosis [8]. AI was assumed in
cases with arterial obstruction due to atherosclerotic disease, atherothrombosis, arterial
dissection or arterial embolism, while VI was diagnosed in cases with thrombosis of the
mesenterial veins. NOMI was present in patients with low blood states as a consequence of
circulatory failure and no apparent vascular occlusion.

2.2. Standard Clinical Management of AMI Patients

AMI was diagnosed based on the clinical condition of the patient, blood values
and cross-sectional imaging. After diagnosis, treatment was facilitated in terms of an
interdisciplinary approach always involving a team of experienced visceral and vascular
surgeons, as well as interventional radiologists. In cases of AI with acute arterial occlusions
of the superior mesenteric artery (SMA) and/or the celiac trunk (TC), endovascular or
open revascularization was carried out before or after subsequent bowel resection. The
decision for endovascular or open revascularization and the therapeutic sequence was
made on a case-by-case basis. In the endovascular approach, which was executed in the
radiological department, the occluded vessel was recanalized via balloon angioplasty
and balloon-expandable stenting (Formula® 535 Vascular Balloon-Expandable Stent, Cook
Medical; Omnilink Elite Vascular Balloon-Expandable Stent System, MULTI-LINK VISION
RX Coronary Stent System, Herculink Elite®, Abbott Vascular, Chicago, IL, USA) via a
femoral or brachial artery access. In the case of two occluded vessels (usually SMA and
TC), the SMA was preferably recanalized and the TC only if SMA was not possible to be
recanalized, as previously described [17]. Dual antiplatelet therapy with acetylsalicylic
acid and clopidogrel was administered after recanalization. Open revascularization was
usually carried out using conventional thrombectomy via a Fogarty catheter and following
intraoperative local heparin application and/or—if thrombectomy was unsuccessful—
through surgical bypass utilizing autologous vein or prosthetic grafts in an antegrade
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or retrograde fashion on a case-by-case basis (Table 1). In VI, the therapy of choice was
immediate therapeutic anticoagulation and surgical exploration.

Table 1. Patient characteristics with respect to disease etiology.

Variables
Overall Cohort

(n = 179)
Arterial
(n = 104)

Venous
(n = 21)

NOMI
(n = 54)

Demographics

Gender, m/f, n (%) 87 (48.6)/92 (51.4) 46 (44.2)/58 (55.8) 10 (47.6)/11 (52.4) 31 (57.4)/23 (42.6)

Age, years 71 (60–81) 75 (63–82) 65 (49–69) 71 (59–78)

BMI, kg/m2 26 (23–29) 25 (22–28) 29 (27–37) 26 (24–29)

ASA, n (%)

I 1 (0.6) 0 1 (4.8) 0

II 13 (7.3) 8 (7.7) 5 (23.8) 0

III 126 (70.4) 78 (75) 13 (61.9) 35 (64.8)

IV 37 (20.7) 17 (16.3) 2 (9.5) 18 (33.3)

Etiology, n (%)

Embolic 57 (54.8)

Thrombotic 41 (39.4)

Compression 4 (3.8)

Dissection 1 (1)

Unknown 1 (1)

Occluded vessel, n (%)

TC 3 (2.9)

SMA 66 (63.5)

IMA 8 (7.7)

TC+ SMA 19 (18.3)

TC+ IMA 1 (1)

SMA+ IMA 5 (4.8)

TC+ SMA+ IMA 2 (1.9)

Location of occlusion, n (%) *

Proximal 72 (69.2)

Distal 31 (29.8)

Refferal from another hospital, n (%) 53 (29.6) 35 (33.7) 11 (52.4) 7 (13.2)

Radiological characteristics

Pneumatosis intestinalis, n (%) 48 (26.8) 23 (22.1) 1 (4.8) 24 (44.4)

PMVG, n (%) 20 (11.2) 10 (9.6) 0 10 (18.5)

Bowel distension, n (%) 80 (44.7) 42 (40.4) 5 (23.8) 33 (61.1)

Bowel wall thickening, n (%) 99 (55.3) 49 (47.1) 18 (85.7) 32 (59.3)

Pneumoperitoneum, n (%) 21 (11.7) 8 (7.7) 0 13 (24.1)

Ascites, n (%) 56 (31.3) 16 (15.4) 15 (71.4) 25 (46.3)
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Table 1. Cont.

Variables
Overall Cohort

(n = 179)
Arterial
(n = 104)

Venous
(n = 21)

NOMI
(n = 54)

Preoperative laboratory values

Leukocytes, 1/nL 15.2 (10.9–23.5) 14.9 (10.6–22.9) 14.9 (10.9–26.9) 17.4 (10.4–23.8)

C-Reactive-Protein, mg/L 127 (37–230) 127 (25–230) 84 (53–161) 157 (97–197)

Hemoglobin, g/dL 12.0 (9.4–13.7) 12.1 (10.8–14.0) 13.9 (12.6–16.2) 9.0 (8.2–12.0)

Thrombocytes, 1/nL 228 (142–329) 249 (160–354) 294 (175–359) 149 (113–239)

Prothrombin time, % 70 (52–82) 72 (55–85) 71 (54–83) 64 (49–78)

INR 1.25 (1.12–1.53) 1.24 (1.10–1.49) 1.25 (1.10–1.47) 1.30 (1.17–1.59)

Bilirubin, mg/dL 0.7 (0.4–1.2) 0.7 (0.5–1.1) 0.9 (0.3–1.5) 0.8 (0.4–1.5)

AP, U/L 89 (69–129) 87 (67–112) 85 (72–120) 116 (70–174)

GGT, U/I 45 (24–93) 38 (23–87) 49 (23.3–114.3) 59 (34–132)

Albumin, g/dL 2.5 (1.8–3.4) 3.3 (1.9–3.8) 3.0 (2.5–3.6) 2.0 (1.6–2.7)

AST, U/L 44 (26–115) 40 (25–111) 28 (22–37) 88 (37–208)

ALT, U/L 38 (20–102) 31 (18–105) 25 (19–39) 51 (26–216)

Creatinine, mg/dL 1.3 (0.9–2.2) 1.3 (0.9–2.1) 1.1 (0.7 –1.5) 1.5 (1.0–3.2)

Lactate, mmol/L 3.3 (1.8–6.5) 3.3 (1.9–6.4) 2.3 (1.2–3.6) 4.0 (1.9–9.3)

Therapy Characteristics

Extent of bowel resection, n (%)

Small bowel 57 (31.8) 28 (26.9) 20 (95.2) 9 (16.7)

Colon 56 (31.3) 27 (26.0) 0 29 (53.7)

Small bowel and colon 30 (16.8) 20 (19.2) 0 10 (18.5)

No resection 12 (6.7) 11 (10.6) 1 (4.8) 0

Fatal 24 (13.4) 18 (17.3) 0 6 (11.1)

Technique of revascularization, n (%)

Endovascular 27 (15.1)

Open 40 (22.3)

Thrombectomy 30 (17.8)

Bypass, prosthetic, 4 (2.2)

antegrade

Bypass, prosthetic, 4 (2.2)

retrograde

Bypass, autologous vein, 2 (1.2)

retrograde

Combination 4 (2.2)
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Table 1. Cont.

Variables
Overall Cohort

(n = 179)
Arterial
(n = 104)

Venous
(n = 21)

NOMI
(n = 54)

Sequence of therapy

Revascularization before resection 17 (9.5)

Resection before revascularization 20 (11.2)

Simultaneous 18 (10.1)

Enterostomy, n (%) 124 (69.3) 68 (60.6) 15 (71.4) 46 (85.2)

Primary bowel anastomosis, n (%) 14 (7.8) 7 (6.7) 5 (23.8) 2 (3.7)

Intraoperative FFP transfusion, n (%) 34 (19) 12 (11.5) 3 (14.3) 19 (35.2)

Intraoperative blood transfusion,
n (%) 69 (38.5) 38 (36.5) 6 (28.6) 25 (46.3)

Primary treatment time, minutes 130 (99–180) 129 (100–179) 124 (99–179) 140 (95–180)

Time to treatment, minutes 191 (110–363) 162 (100–269) 593 (315–770) 189 (113–339)

Intensive care stay, days 4 (1–15) 3.5 (1–14) 8 (2–28) 4 (1–16)

Postoperative data

Postoperative complications, n (%)

Clavien–Dindo I 0 0 0 0

Clavien–Dindo II 13 (7.3) 8 (7.7) 4 (19.1) 1 (1.9)

Clavien–Dindo IIIa 9 (5) 3 (2.9) 2 (9.5) 4 (7.4)

Clavien–Dindo IIIb 17 (9.5) 11 (10.6) 4 (19.1) 2 (3.7)

Clavien–Dindo IVa 19 (10.6) 10 (9.6) 1 (4.8) 8 (14.8)

Clavien–Dindo IVb 19 (10.6) 10 (9.6) 6 (28.6) 3 (5.6)

Clavien–Dindo V 100 (55.9) 61 (58.7) 3 (14.3) 36 (66.7)

Data presented as median and interquartile range, if not noted otherwise. * Vessel occlusions proximal from the
first branch of the vessel were defined as “proximal”, while occlusions distal to the first branch were defined as
“distal”. ALT, alanine aminotransferase; AP, alkaline phosphatase: ASA, American Society of Anesthesiologists
classification; AST, aspartate aminotransferase; BMI, body mass index; CCI, comprehensive complication index;
FFP, fresh frozen plasma; GGT, gamma glutamyltransferase; IMA; inferior mesenteric artery; INR, international
normalized ratio; NOMI, non-occlusive mesenteric ischemia; PMVG, portomesenteric vein gas; SMA, superior
mesenteric artery; TC, celiac trunk.

In cases of AMI due to NOMI or VI (except for one case with conventional thrombec-
tomy), no revascularization was carried out. Operative exploration was performed in
every patient. All abdominal organs were carefully examined regarding signs of ischemia
and were (partially) resected if no recovery was expected. Primary fascial closure was
always preferred if feasible; however, in cases with elevated abdominal pressure, temporary
abdominal closure with a prosthetic mesh in inlay position was conducted. Further, second
look exploration was carried out per the protocol in every patient after 24 h to ensure
sufficient radicality and treatment success.

2.3. Data Extraction and Quality Management

All relevant patient data were extracted from the electronical case records including
preoperative characteristics, operative procedures, and postoperative outcome. Every
cross-sectional imaging was also re-analyzed for signs of portomesenteric vein gas (PMVG),
pneumatosis intestinalis (PI), ascites, bowel distension, bowel wall thickening and pneu-
moperitoneum by an experienced staff radiologist.
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2.4. Statistical Analysis

The primary endpoint of this study was in-hospital mortality in AMI patients under-
going treatment. Categorial data are shown in the form of numbers and percentages. Data
derived from continuous variables are presented as the median and inter-quartile range.
Associations between perioperative variables and the primary endpoint were assessed
by means of binary logistic regressions. Variables showing a p-value < 0.05 in univariate
analysis were subsequently transferred into a multivariable model and analyzed with
multivariable binary logistic regressions using backward elimination. For this purpose,
nominal and categorical data were recoded into a scaled dummy variable. The level of
significance was set to p < 0.05, and p-values are given for two-sided testing. Analyses were
performed using SPSS Statistics 24 (IBM Corp., Armonk, NY, USA).

3. Results

3.1. Preoperative, Operative and Postoperative Data

A total of 179 patients with a median age of 71 years (range: 61–80) and median body
mass index (BMI) of 26 kg/m2 underwent surgery for AMI at our institution from 2009
to 2021. In the whole cohort, 104 patients (58.1%) presented with AI, 21 (11.7%) with VI
and 54 (30.2%) with NOMI as underlying etiology. Of note, most patients (91.1%, 163/179)
had a preoperative performance status of ASA III or higher, assessed by the attending
anesthesiologist. While in most of the cohort (79.9%, 143/179), bowel resection was carried
out, only 71 patients (39.6%) underwent open or endovascular revascularization. A total
of 100 patients (55.9%) deceased during hospitalization, with 61 patients (58.7%) in the
AI subgroup, 3 patients (14.3%) in the VI subgroup and 36 patients (66.7%) in the NOMI
subgroup. Of note, a relevant subset of these patients (24/179, 13.4%) displayed a com-
plete intestinal ischemia with a dismal prognosis during initial surgical exploration and
were referred for palliative treatment. Almost all patients (177/179) showed postoperative
complications, while a large proportion of the cohort (164/179; 91.6%) experienced ma-
jor postoperative complications (Clavien Dindo ≥ 3). Further, a subanalysis comparing
patients that had been revascularized to patients without revascularization showed no dif-
ference in major morbidity (Clavien Dindo ≥ 3, p = 0.343) or in-hospital mortality (p = 0.963,
Supplementary Table S1). Detailed clinicopathological and perioperative characteristics
are outlined in Table 1.

3.2. Univariate and Multivariable Analysis of Postoperative Mortality

A univariate binary logistic regression was carried out for postoperative mortality
including all available pre- and intraoperative variables (Table 2). Here, age (HR = 1.02;
p = 0.04), ASA (HR = 20.89; p = 0.004), leukocytes (HR = 1.04; p = 0.025), lactate (HR = 1.45;
p < 0.001), hemoglobin (HR = 0.90; p = 0.048), bilirubin (HR = 1.60; p = 0.026), alkaline phos-
phatase (HR = 1.01; p = 0.034), prothrombine time (HR = 0.97; p < 0.001), INR (HR = 2.13;
p = 0.012), etiology (p = 0.001), PI (HR = 2.74; p = 0.007), PMVG (HR = 18.25, p = 0.005),
bowel distension (HR = 1.99, p = 0.03), extent of resection (p = 0.003) and FFP transfusion
(HR = 3.75; p = 0.001) were associated with postoperative mortality (Table 2).

Variables showing a p-value < 0.05 in univariate analysis were further included in a
multivariable binary logistic regression. In this multivariable model, leukocytes (HR = 1.08;
p = 0.008), lactate (HR = 1.25; p = 0.01), bilirubin (HR = 2.05; p = 0.045), creatinine (HR = 1.48;
p = 0.39), etiology (p = 0.038) and PMVG (HR = 23.02; p = 0.012) were determined as
independent predictors of postoperative mortality.

To further explore the validity of predictors of postoperative mortality, a similar
multivariable analysis regarding postoperative mortality was carried out excluding patients
who presented with a dismal situation during initial surgical exploration and, therefore,
referred to palliative care. In the corresponding multivariable model, leukocytes (HR = 1.09;
p = 0.004), lactate (HR = 1.27; p = 0.003), etiology (p = 0.006), PMVG (HR = 17.02; p = 0.018)
and intraoperative FFP transfusion (HR = 4.4; p = 0.025) showed independent significance
(Table 3).
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Table 2. Univariable and multivariable analysis of in-hospital mortality (overall cohort).

Variable

Univariable Multivariable

n Hazard
Ratio

95% CI p-Value
Hazard
Ratio

95% CI p-Value

Sex 0.905

Age 1.02 1–1.05 0.040 0.961

BMI, kg/m2 0.440

ASA 0.004 0.124

I/II 15 1

III/IV 162 20.89 2.68–162.77

Leukocytes, 1/nL 1.04 1.01–1.07 0.025 1.08 1.02–1.15 0.008

C-Reactive-Protein, mg/L 0.808

Lactate, mmol/L 1.45 1.25–1.69 <0.001 1.25 1.05–1.47 0.010

Hemoglobin, g/dL 0.90 0.81–0.99 0.048 0.361

Albumin, g/L 0.832

AST, U/L 0.077

ALT, U/L 0.653

GGT, U/L 0.178

Bilirubin, mg/dL 1.6 1.06–2.41 0.026 2.05 1.02–4.12 0.045

Alkaline phosphatase, U/L 1.01 1–1.01 0.034

Platelet count, 1/nL 0.290

Prothrombin time, % 0.97 0.96–0.98 <0.001 0.377

INR 2.13 1.18–3.85 0.012 0.724

Etiology 0.001 0.038

Arterial 104 1 1

Venous 21 0.12 0.03–0.42 0.12 0.02–0.89

NOMI 54 1.41 0.71–2.8 0.97 0.32–2.97

Pneumatosis intestinalis 0.007 0.774

No 121 1

Yes 48 2.74 1.32–5.68

Portomesenteric vein gas 0.005 0.012

No 149 1 1

Yes 20 18.25 2.38–139.85 23.02 2.01–263.11

Bowel Distension 0.030 0.838

<6 cm 89 1

≥6 cm 80 1.99 1.07–3.69

Bowel wall thickening 0.074

Ascites 0.415

Pneumoperitoneum 0.575

Extent of resection 0.003 0.284
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Table 2. Cont.

Variable

Univariable Multivariable

n Hazard
Ratio

95% CI p-Value
Hazard
Ratio

95% CI p-Value

Small bowel 57 1

Colon 56 1.48 0.7–3.13

Small bowel and colon 30 4.38 1.66–11.53

No resection in primary operation 12 1.14 0.32–4.03

Fatal 24 >10 0–n.a.

Treatment time, minutes 0.655

Blood transfusions 0.190

Intraoperative FFP transfusion 0.004 0.118

No 144 1

Yes 34 3.75 1.54–9.16

Time to treatment 0.128

Referral from another hospital 0.841

Various parameters are associated with postoperative mortality. All variables showing statistical significance in
univariate binary logistic regression were included in a multivariable logistic regression. Hazard ratios are shown
for statistically significant variables. AP was excluded in the multivariable analysis due to low case numbers. Bold
indicates statistical significance. ALT, alanine aminotransferase; AP, alkaline phosphatase: ASA, American Society of
Anesthesiologists classification; AST, aspartate aminotransferase; BMI, body mass index; FFP, fresh frozen plasma;
GGT, gamma glutamyltransferase; INR, international normalized ratio; NOMI, non-occlusive mesenteric ischemia.

Table 3. Multivariable analysis of in-hospital mortality (fatal situation in primary operation excluded).

Variable
Mortality

Hazard Ratio 95% CI p-Value

Age, years 0.961

ASA 0.159

Leucocytes, 1/nL 1.09 1.03–1.15 0.004

Lactate, mmol/L 1.27 1.08–1.48 0.003

Hemoglobin, g/dL 0.361

Bilirubin, mg/dL 0.166

Prothrombin time, % 0.377

INR 0.724

Creatinine, mg/dL 0.710

Etiology 0.024

AI 1

VI 0.08 0.01–0.49

NOMI 0.71 0.24–2.1

Pneumatosis intestinalis 0.774

PMVG 17.02 1.62–178.58 0.018

Bowel distension 0.838

Extent of resection 0.233

Intraoperative FFP transfusion 4.4 1.2–16.11 0.025

All variables showing statistical significance in univariate binary logistic regression were included in a multi-
variable logistic regression. In this analysis, patients with a fatal result in the primary operation were excluded.
Hazard ratios are shown for statistically significant variables. Bold values indicate statistical significance. AI,
arterial ischemia; ASA, American Society of Anesthesiologists classification; INR, international normalized ratio;
NOMI, non-occlusive mesenteric ischemia.; PMVG, portomesenteric vein gas; VI, venous ischemia.
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As lactate showed significance in both multivariable models, we further analyzed
its prognostic role in univariate analysis, dividing the cohort into subgroups according to
preoperative lactate. Here, the preoperative lactate value was strongly associated with the
likelihood of fatal outcome in our cohort (Table 4).

Table 4. Univariable analysis of in-hospital mortality divided in lactate subgroups.

Variable
Mortality

n Hazard Ratio 95% CI p-Value

Lactate, mmol/L

≤2 48 1 <0.001

>2; ≤4 57 2.52 1.09–5.80 0.030

>4; ≤8 34 9.75 3.49–27.23 <0.001

>8 32 45 9.33–217.04 <0.001
Statistical increasing risk of in-hospital mortality with increasing preoperative lactate values demonstrated in
4 subgroups.

All major risk factors for dismal outcome are also graphically presented in Figure 1.

 

Figure 1. Major risk factors for mortality acute mesenteric ischemia. The graphical synopsis sum-
marizes the major risk factors for mortality in acute mesenteric ischemia. Back dots indicate arterial
occlusion, while white clouds indicate PMVG. AI, arterial ischemia; FFP, fresh frozen plasma; PMVG,
portomesenteric vein gas.

4. Discussion

Despite a modern interdisciplinary treatment approach, the management and preven-
tion of perioperative mortality are still challenging in AMI. Here, we aimed to evaluate
the association of various clinico-pathological parameters with perioperative outcomes
in patients with AMI undergoing surgical and/or interventional treatment. By conduct-
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ing multivariate analyses, we identified leucocytes, bilirubin, creatinine and lactate, the
presence of PMVG, AI and the intraoperative application of FFP as the most important
predictors of outcome in our cohort.

In both multivariable models, the importance of lactate as a predictor of poor out-
come was outlined. Although lactate levels have certain limitations for diagnosis pur-
poses [7,8,18,19], an association between elevated lactate and inferior outcomes was de-
scribed previously [11,20]. Here, we could demonstrate that postoperative mortality
changes disproportionately with an increase in preoperative lactate levels (Table 4). Above
8 mmol/L at the time of initial diagnosis, a dismal in-house mortality of 95% was ob-
served in our patients. However, our observation regarding lactate further underlines the
prognostic and diagnostic dilemma in AMI patients. Almost one quarter of the cohort
was diagnosed with AMI, despite lactate being within the physiological reference values
and still displayed an in-house mortality of 25%. According to a meta-analysis from 2013,
L-lactate, the isomer of lactate produced in anaerobic glycolysis, shows a pooled sensitivity
of 86% and specificity of 44% in terms of diagnostic accuracy in patients with suspected
AMI [18]. The latest guideline of the European Society of Vascular Surgery regarding the
management of AMI rates L-lactate as too weak for diagnosing or ruling out an AMI [8]. In
a further meta-analysis form 2017, D-lactate, produced due to bacterial fermentation, had a
pooled sensitivity of 71.7%, but a specificity of 74.2% [19]. However, Nuzzo et al. showed,
in a cross-sectional study from 2021, that D-lactate is not suitable for the differentiation of
patients with AMI from patients with other acute abdominal pathologies [7]. In our cohort,
lactate was measured preoperatively via venous blood gas analysis. Our findings underline
that physiological serum lactate concentrations cannot be used to rule out neither an AMI
nor a fatal outcome completely but if elevated, serum lactate provides a broadly available
and feasible predictive marker.

Although this study did not aim to evaluate the diagnostic capabilities of radiological
imaging for the diagnosis of AMI, we were still able to demonstrate a significant prognostic
value of PVMG in our patients. The role of pathological signs within a CT scan for AMI
has been examined previously. Emile et al. identified various radiological signs (PI, bowel
distention, portomesenteric vein thrombosis and free intraperitoneal fluid) as predictors
of existing bowel necrosis in AMI patients in a meta-analysis [21]. One larger multicenter
study identified PMVG in combination with PI as a strong predictor for mortality inde-
pendently from etiology [22]. In our univariate analysis, bowel distension and PI were
also associated with mortality but did not achieve significance in the multivariable models.
This might be explained by the notable morality in individuals presenting with PMVG
(95.0%). However, the prognostic value is hampered by the relatively low prevalence
(11.2%), indicating that PMVG is associated with a progressed AMI, subsequently resulting
in fatal outcomes.

Despite the known role of lactate, also other laboratory parameters showed relevance
in at least one of our multivariable models. The preoperative leukocyte count was an inde-
pendent predictor for mortality in both multivariate analyses. Interestingly, the relevance of
leukocyte count as prognostic parameter in AMI is not consistent throughout the literature.
Although their prognostic value has been shown in some studies [12,13], other reports
failed to show an association with mortality [23]. Furthermore, we were able to demonstrate
serum creatinine and serum bilirubin as independent factors of postoperative mortality in
our cohort. Renal impairment at initial diagnosis as prognostic factor was already shown in
previous studies [16,24]; however, bilirubin has not been identified as a prognostic marker
in AMI before. Of note, both parameters were not significant in the multivariable model
excluding patients who deceased during primary surgery. This circumstance leads to the
hypothesis, especially for bilirubin, that the elevation of these parameters is a sign of the
onset of organ failure due to the septic constellation more likely than a direct malperfusion
of the liver as a consequence of an accompanying occlusion of the TC. As part of the
SOFA (sequential organ failure assessment) score, bilirubin and creatinine are commonly
associated with higher mortality rates in septic patients independently from etiology [25].
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Another prognostic factor in our analysis was the intraoperative administration of
FFPs. During the study period, FFP was intraoperatively applied in cases of present coagu-
lopathy. FFP transfusion is a known predictor of morbidity and mortality in gastrointestinal
surgery [26]. One explanation might be the effect of transfusion-related immunomodulation.
As such, Sarani et al. found a correlation between the transfusion of FFP and pulmonary or
blood stream infections in critically ill surgical patients [27]. Some investigators speculated
that soluble proteins in FFP may cause similar immunosuppressive effects, as seen in
the case of red blood cell transfusions [27,28]. Potential mechanisms include diminished
antigen processing by macrophages, the upregulation of both T suppressor/regulatory cells
and humoral immunosuppressive mediators, impaired natural killer cell activity and the
production of anti-idiotypic antibodies [28]. This is especially interesting as FFP was only
significant in the secondary multivariable model after the exclusion of patients with fatal
prognosis determined by the initial surgical exploration. Therefore, the above proposed
effects of FFPs might in fact contribute to the inferior outcomes of initially treatable patients.

The importance of etiology subtypes as predictors for different outcomes was already
identified by other groups [6,14]. As in our study, VI patients have a significantly better
postoperative outcome compared to AI and NOMI. Interestingly, this better prognosis was
observed, despite a higher median time to treatment in the VI group compared to other
subtypes. It is, therefore, assumable that the time to irreversible bowel ischemia resulting
in AI and NOMI patients is more rapid compared to the VI patients [29–31]. Interestingly,
the time from diagnosis to treatment did not show prognostic value in our cohort at all,
which is in contrast to previous reports underlining a short time to surgical treatment as
a protective factor [4,5]. However, this might be explained by the small variety in time
to treatment, limiting detectability within our used statical approach. Furthermore, AMI
subtypes determine the extent of bowel resection in our cohort, which is line with the
published literature [1]. In VI cases, the small bowel; in NOMI cases, mostly the colon;
and in patients with AI, both the small intestine and colon in a similar distribution were
evaluated as irreversibly damaged in the primary operation. Although no prognostic
relevancy in multivariable analysis was observed in our patients, it must be considered that
the extent of bowel resection is associated with long-term morbidity in surviving patients
due to short bowel syndrome and high output enterostomies.

As with all retrospective clinical outcome studies, our analysis certainly has some
obvious limitations, which have to be discussed. All data were collected in a retrospective
fashion over a study period of more than ten years. Additionally, the patient treatment was
carried out in accordance with our institutional clinical standards but not based on a defined
study protocol, which carries an increased risk of selection bias and limits our conclusions.
Due to the nature of AMI, a large set of patients deceased during the therapeutical process,
with some patients considered palliative during initial exploration. To address the issue of
these palliative patients within the dataset, we conducted two separate analyses including
and excluding patients who did not undergo a curative treatment approach. Further, we
are not able to elaborate on the time frame between the onset of symptoms and treatment
as these data were not obtainable for a notable number of patients in this retrospective
study. Additionally, our approach to include the full spectrum of AMI (AI, VI, and NOMI)
combined with a limited dataset did not allow us to construct a valid preoperative risk
score to predict outcome and guide treatment decisions.

Notwithstanding the limitations, we identified the degree of organ dysfunction (kidney
and liver) and serum lactate, as well as radiological characteristics, of disease severity
(PMVG), the underlying etiology (AI, NOMI) and intraoperative FFP administration to be of
major importance for the prognosis of patients with AMI. As all these factors, except for FFP
administration, are determined preoperatively and at the time of presentation, prognosis
in these patients appears to be based on pretreatment characteristics. Furthermore, this
underlines the importance of shortening the time to diagnosis of AMI. Unfortunately, the
search for a valid biomarker has been and will be a challenge in upcoming years. In the
above-mentioned cross-sectional study from 2021, D-lactate, intestinal fatty acid-binding
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protein and citrulline as three of the most promising biomarkers for early-stage AMI failed
to distinguish patients with AMI from patients with acute abdominal pain of another
origin [7]. The prevention and early diagnosis of AMI (e.g., through novel biomarkers
and composite risk-assessment scores) seem to be of fundamental importance to improve
outcomes in these patients and should be the focus of further research.
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Abstract: Elevated low density lipoprotein (LDL) cholesterol and lipoprotein(a) (Lp(a)) levels have
an important role in the development and progression of atherosclerosis, followed by cardiovascular
events. Besides statins and other lipid-modifying drugs, PCSK9 monoclonal antibodies are known
to reduce hyperlipidemia. PCSK9 monoclonal antibodies decrease LDL cholesterol levels through
inducing the upregulation of the LDL receptors and moderately decrease Lp(a) levels. In addition,
PCSK9 monoclonal antibodies have shown non-lipid effects. PCSK9 monoclonal antibodies reduce
platelet aggregation and activation, and increase platelet responsiveness to acetylsalicylic acid.
Evolocumab as well as alirocumab decrease an incidence of venous thromboembolism, which is
associated with the decrease of Lp(a) values. Besides interweaving in haemostasis, PCSK9 monoclonal
antibodies play an important role in reducing the inflammation and improving the endothelial
function. The aim of this review is to present the mechanisms of PCSK9 monoclonal antibodies on
the aforementioned risk factors.

Keywords: PCSK9 monoclonal antibodies; inflammation; endothelial dysfunction; haemostasis;
thrombosis; coagulation; fibrinolysis

1. Introduction

Cardiovascular events remain the leading cause of morbidity and mortality in the
Western countries despite new therapeutic options [1]. The underlying pathology of car-
diovascular disease is atherosclerosis [2]. There are abundant epidemiological, genetic
and clinical studies proving a causal link between the development of atherosclerotic
plaques and low density lipoprotein (LDL) cholesterol [3]. LDL carries 60–70% of serum
cholesterol [4]. It transports cholesterol from the liver to the peripheral tissues [4]. The
LDL particle contains an apolipoprotein B-100 (apoB-100) which enables selective binding
of LDL to its receptor [4]. By binding to the LDL receptor in the liver, more than 70%
of LDL is removed from the circulation [4]. Therapies that lower elevated lipid levels
slow the progression of atherosclerosis and reduce cardiovascular events and death [5].
Statins and ezetimibe are the standard of care for the management of high LDL choles-
terol levels [6]. Promising results have been shown with PCSK9 monoclonal antibodies,
inclisiran, bempedoic acid, angiopoietin-like 3 protein (ANGPTL3) inhibitors, peroxisome
proliferator-activated receptor (PPAR) β/δ agonists and liver X receptor (LXR) agonists [6].
Regardless of statins and new lipid-modifying drugs to lower LDL cholesterol, only 54%
of patients have achieved their risk-based LDL cholesterol goal [7]. The main reasons for
failure to achieve LDL cholesterol goals are poor treatment adherence and suboptimal use
of more efficacious lipid-lowering regimens.

Another modifiable risk factor associated with cardiovascular events is lipoprotein(a)
(Lp(a)), a plasma protein that consists of LDL cholesterol, apoB-100 and plasminogen-like
apolipoprotein(a) (apo(a)) [8]. Lp(a) levels are genetically determined by the LPA gene and
have high inter-individually variability, but intra-individually are stable throughout life [8].
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Considering the European guidelines, patients with Lp(a) concentration ≥ 50 mg/dL are at
high risk of developing cardiovascular disease [9].

LDL cholesterol as well as Lp(a) internalize and accumulate in the arterial wall [10].
LDL cholesterol enters the intima via the LDL receptor, whereas Lp(a) are dependent
on Lp(a) plasma concentrations, Lp(a) particle size, blood pressure, and arterial wall
permeability [10,11]. The first one is found mainly in atherosclerotic lesions and the second
accumulates all over the intima, respectively [10]. Both are taken up by macrophages to
produce foam cells and thus promoting the development of atherosclerotic plaques [10].
Nevertheless, Lp(a) carries more atherogenic risk than LDL cholesterol because the former
also consists of all the atherogenic components of LDL cholesterol and apo(a). [12,13]. Lp(a),
due to the homology with plasminogen, competes with it for the same binding sites on
endothelial cells, which promotes intravascular thrombosis and inhibits fibrinolysis [14,15].
PCSK9 induces inflammation in atherosclerosis independently from its hyperlipidemic
effect. In addition to ox-LDL accumulation, PCSK9 can directly induce the expression of
inflammatory cytokines [16].

In the last few years there have been therapies that lower LDL cholesterol as well as
Lp(a), namely PCSK9 monoclonal antibodies and inclisiran. In this review we are focusing
on the former since PCSK9 monoclonal antibodies are known to reduce levels of LDL
cholesterol and Lp(a), and influence cardiovascular morbidity and mortality as well [17,18].
On the other hand, studies with inclisiran are in progress [19].

Various studies indicate that lipid-lowering agents not only reduce lipid levels, but
also have non-lipid effects. They are mainly involved in inflammation, endothelial function
and haemostasis. The latter begins with platelet adhesion and aggregation, followed by the
activation cascade of clotting factors. Therefore, the aim of the present review is to describe
the influence of PCSK9 monoclonal antibodies on the aforementioned risk factors.

2. Inflammation

Chronic inflammation plays an important role in the atherosclerotic process from en-
dothelial dysfunction to plaque formation, its rupture and consequently arterial thrombosis,
leading to acute cardiovascular events [20]. The most well studied biomarker for assess-
ing inflammation and the most used in research and clinical practice is high sensitivity
C-reactive protein (hsCRP) [21]. CRP is produced in the liver in response to proinflam-
matory cytokines such as interleukin (IL) 6, which is secreted by activated cells at the site
of inflammation [22]. Other pro-inflammatory cytokines such as tumor necrosis factor-α
(TNF-α), IL 8 and IL 18 aggravate inflammatory responses including the expression of
adhesion molecules in endothelial cells, whereas anti-inflammatory cytokines such as
IL 10 attenuate the inflammatory response [23]. In general populations without known
cardiovascular disease, CRP was an independent predictor of cardiovascular events [24].
On the other hand, in patients with stable coronary artery disease with optimal medical
therapy, inflammatory cytokine IL 6, but not hsCRP, was independently associated with
future coronary events [25]. Statins are known to have anti-inflammatory effects and de-
creased mortality rates in patients with coronary artery disease. Justification for the Use of
Statins in Primary Prevention (JUPITER) was the first trial which prospectively assessed
the effects of statin versus placebo on rates of cardiovascular events [26]. In more than
17,000 apparently healthy men and women with elevated levels of hsCRP, rosuvastatin
significantly reduced the incidence of major cardiovascular events, despite the fact that
nearly all study participants had lipid levels at baseline that were below the threshold for
treatment according to current prevention guidelines. Statin therapy is associated with a
significant increase in plasma PCSK9 concentrations, irrespective of the type of statin, dose
and treatment duration [27]. PCSK9 plays a crucial role in the indirect regulation of serum
LDL cholesterol concentration by regulating the number of LDL receptors on hepatic cell
surfaces [28]. The role of PCSK9 in the atherosclerotic process is not limited just to lipids
homeostasis, but is also involved in the inflammatory cascade (Figure 1) [29].
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Figure 1. The role of PCSK9 in inflammation process. PCSK9 induces the expression of VEGF-A and
ICAM-1 and, consequently, activates endothelial cells and stimulates monocyte/macrophage migra-
tion. The cascade promotes an inflammatory state and the progression of the atherosclerotic process.
On the other hand, anti-inflammatory cytokines such as IL-10 attenuate the inflammatory response.
PCSK9, proprotein convertase subtilisin/kexin type 9; VEGF-A, vascular endothelial growth factor A;
ICAM-1, intracellular adhesion molecule-1; IL, interleukin; TNF-α, tumor necrosis factor-α.

Several epidemiological studies evaluated the association of PCSK9 with some in-
flammatory markers such as white blood cells and hsCRP [30,31]. In patients with stable
coronary artery disease, PCSK9 was associated with monocyte subsets, especially with inter-
mediate monocytes, which are characterized by CD14++CD16+ on their surface and express
strong pro-inflammatory behaviors [5]. In patients treated with statins, these relationships
were clear, while this was not the case in statin naïve patients, the second group being very
small. In this study, no relationship was found between levels of PCSK9 and hsCRP. On the
other hand, in patients with acute coronary syndrome, PCSK9 levels were associated with
hsCRP [30]. They also found that PCSK9 levels did not predict future coronary events at
one year, but it has to be pointed out that PCSK9 concentration increased over one year,
and only 30% of patients were treated with statins at the time of the event. Contrary to their
findings in association with the PCSK9 Serum Levels and Platelet Reactivity in Patients
With Acute Coronary Syndrome Treated With Prasugrel or Ticagrelor (PCSK9-REACT)
study [32], PCSK9 levels were found to predict future acute coronary events in patients
with very similar baseline characteristics, including the proportion of patients treated with
statins. We have to remember that hepatocytes are not the only source of PCSK9 and that
PCSK9 is also produced in endothelial cells, monocytes and macrophages [29]. PSCK9 is not
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only produced locally, but it acts locally as it is linked to the chronic inflammatory state of
the atherosclerotic plaque, what might be one of the factors involved in plaque progression
and rupture [33]. PCSK9 monoclonal antibodies have no influence on hsCRP levels regard-
less of the PCSK9 inhibitor type, patient characteristics, concomitant treatment or treatment
duration [34]. Similarly, in patients with elevated LDL and Lp(a) levels that were mostly
already treated with statins, additional treatment with the PCSK9 inhibitor evolocumab
did not alter either local inflammation in the arterial wall or systemic inflammation [35].
Contrary to this, in patients with coronary artery disease or familial hypercholesterolemia
who do not take statins due to statin intolerance, treatment with alirocumab attenuates
arterial wall inflammation without changing systemic hsCRP [36]. In both studies, local
inflammation was measured using 18F-fluoro-deoxyglucose positron-emission tomogra-
phy/computed tomography (18F-FDG PET/CT). Arterial 18F-FDG uptake correlates with
arterial macrophage content [35]. The difference between these two studies was higher
Lp(a) levels both at baseline and at the end of the study in the first study. Since Lp(a)-
mediated cardiovascular risk is partly driven by pro-inflammatory oxidized phospholipids
(OxPLs), which are abundant on the apo(a) tail of Lp(a) [12], we can assume that this
difference may explain the persistent arterial wall inflammation. This is supported by
ex vivo data that potent Lp(a)-lowering following AKCEA-APO(a)-LRx, but not modest
Lp(a)-lowering combined with LDL cholesterol reduction following PCSK9 monoclonal
antibodies treatment, reduced the pro-inflammatory state of circulating monocytes in pa-
tients with elevated Lp(a) [37]. The Global Assessment of Plaque Regression With a PCSK9
antibody in a Measured by Intravascular Ultrasound (GLAGOV) trial demonstrated that
the addition of the evolocumab to patients with coronary artery disease already pretreated
with statins had a favorable effect on progression of coronary atherosclerosis as measured
by intravascular ultrasound (IVUS) [38]. The post hoc analysis evaluated the effect of
evolocumab-treated patients according to the baseline hsCRP strata (i.e., patients were
divided into three subgroups based on their hsCRP levels, <1, 1–3 and >3 mg/L) [39]. The
ability of evolocumab to induce the regression of atherosclerotic plaque was not attenuated
by the presence of enhanced systemic inflammation and was equal in all three hsCRP
subgroups. The results showed that in patients treated with statins, which already have
a positive effect on inflammatory parameters, regardless of residual inflammation, an
additional reduction in LDL cholesterol, without affecting inflammatory parameters with
evolocumab, had a positive effect on reducing atherosclerotic plaque. These results were
further confirmed by the High-Resolution Assessment of Coronary Plaques in a Global
Evolocumab Randomized Study (HUYGENS), which showed that evulocumab treatment
increases the stability of the atherosclerotic bed by reducing the lipid core and increasing
the fibrous cap thickness [40].

3. Endothelial Dysfunction

The endothelium is an active inner layer of the blood vessel and is indispensable
for the regulation of vascular tone and the maintenance of vascular homeostasis [41].
Its functional impairment is characterized by an imbalance between vasodilators and
contracting factors [41]. Endothelial dysfunction represents one of the first manifestations of
atherosclerosis and is involved in plaque progression and atherosclerotic complications [41].
The most widely used non-invasive method for assessing endothelial function is with
high-resolution external vascular ultrasound to measure flow-mediated dilatation (FMD)
of the brachial artery during reactive hyperemia [41]. Given the fact that endothelial
dysfunction represents a systemic disorder, the aforementioned technique correlates well
with coronary FMD and strongly predicts future cardiovascular events [42]. The main
reasons for endothelial dysfunction are exposure to oxidative stress and cardiovascular
risk factors, including increased levels of cholesterol [43]. Several studies demonstrated
an improvement in endothelial function after treatment with statins, independent of its
lipid-lowering effects [41].
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Besides statins, studies with PCSK9 monoclonal antibodies to evaluate the effects
on endothelial function were performed. Maulucci et al. showed that in patients after
myocardial infarction already treated with statins at high doses and ezetimibe, two-month
therapy with evolocumab improves endothelial function proportional to LDL cholesterol
reduction (r = 0.69; p = 0.006) [44]. There is no data regarding Lp(a) values in their patients
since it was found that increased Lp(a) values are associated with decreased FMD [45].

Furthermore, Di Minno et al. observed an improvement in endothelial function after
treatment with 140 mg of evolocumab every 14 days for 12 weeks in patients with familial
hypercholesterolemia on top of maximally tolerated lipid lowering therapy [46]. FMD
significantly increased at week 12 (10.63% ± 5.89) from baseline values (4.78% ± 2.27)
(p < 0.001) [46]. At the same time, a parallel improvement in the reactive hyperemia
index and reduction in LDL cholesterol levels was seen [46]. In fact, a decrease of LDL
cholesterol was the only independent predictor for FMD improvement (ß = −0.846;
p = 0.015). The decrease of Lp(a) in their study was 7%, which is statistically important
(p = 0.002), but not predictive for FMD improvement. On the other hand, treatment with
alirocumab for 10 weeks in the ALIROCKS trial showed a nominal amelioration (+41%),
but no significant change of flow-dependent dilatation of the brachial artery [47]. The
sample size and duration of treatment with PCSK9 inhibitors were similar among the
mentioned studies. Differences in the results in the ALIROCKS trial compared with
the previously mentioned two studies may be due to lower baseline values of LDL
cholesterol, although limitations of the FMD method cannot be ignored. In Evaluation of
Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With
Alirocumab (ODYSSEY Outcomes) [48], baseline Lp(a) and LDL cholesterol levels and
their reductions by alirocumab predicted the risk of future coronary events in patients
after recent in secondary prevention. In their study, the mean decrease of Lp(a) was 23%,
the decrease being the greatest in upper quartiles.

A noninvasive magnetic resonance imaging methodology can also be used to assess
endothelial cell function [49]. Leucker et al. measured coronary endothelial function with
magnetic resonance imaging after six weeks of treatment with evolocumab in people living
with human immunodeficiency virus infection and in patients with dyslipidemia with no
human immunodeficiency virus infection [49]. There was a significant increase in coronary
endothelial function in both groups of patients [49]. In addition, LDL cholesterol levels
significantly decreased, but there was no significant change in inflammatory markers in
either group [49].

The exact mechanism by which the PCSK9 inhibitor improves endothelial function
remains unknown. It is possible that its effect is mostly mediated by the reduction of LDL
cholesterol levels, nevertheless other mechanisms can play the same role [44]. Lipid-
lowering treatments ameliorate oxidative stress and improve endothelial nitric oxide
synthase [44]. In addition, the inhibition of PCSK9 induces the up regulation of the
LDL receptors [50]. This might increase the LDL cholesterol binding affinity for the LDL
receptor, leading to an improvement of endothelial function [51]. On the other hand,
PCSK9 is associated with a macrophage-mediated inflammatory response and treatment
with PCSK9 monoclonal antibodies leads to decreased monocyte migratory capacity and
reduced inflammatory response [52,53].

Marques et al. investigated the effects of alirocumab 150 mg every 14 days in patients
with familiar hypercholesterolemia on subendothelial infiltration of leukocytes, a critical
step in the atherogenic process [54]. After an eight-week regimen, the suppressed leukocyte
adhesion to the dysfunctional arterial endothelium was observed [54].

PCSK9 monoclonal antibodies attenuate the proinflammatory activation of endothelial
cells and reduce the apoptosis of endothelial cells, smooth muscle cells and macrophages [55].
Besides that, PCSK9 monoclonal antibodies may have an effect on circulating endothelial
progenitor cells (cEPCs) [56]. The latter are characterized by positivity for CD34, CD133 and
vascular endothelial growth factor receptor-2 (VEGFR-2), and are involved in the vascular
repair as a response to the endothelial injury [56,57]. Itzhaki et al. in their study with the
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ePCSK9 inhibitor showed a decline in LDL cholesterol levels and the activation of cEPCs,
evident by the elevated expression of CD34+/VEGFR-2+ cells [56]. Treatment with PCSK9
inhibitor promotes cECPs activation and differentiation into endothelial cells, independent
of LDL cholesterol regulation [56].

4. Haemostasis

4.1. PCSK9 and Platelets’ Function

It is well known hypercholesterolemia, in particular high native LDL cholesterol
and oxidized LDL cholesterol (oxLDL) levels, is associated with an increased risk of
atherosclerosis and thrombosis due to increased platelet biogenesis, turnover and activ-
ity [58]. Platelets interact with the thrombogenic subendothelial matrix of the ruptured
atherosclerotic plaque and with subsequent activation and aggregation [32]. Platelet
and endothelial cell activation results in increased P-Selectin expression (other name
is CD62P), followed by increased levels of the soluble form of P-Selectin [59]. Besides
P-Selectin, the soluble CD40 ligand and other platelet activation markers also play a role
in inducing a procoagulant effect [60].

Studies implicate not only increased LDL cholesterol but also that PCSK9 levels are
involved in promoting platelet activation and coagulation (Figures 2 and 3) independently
of LDL cholesterol regulation [61–63].

 
Figure 2. The role of PCSK9 in platelets’ activity. High PCSK9 levels enhance platelet activation and
reduce platelet responsiveness to acetylsalicylic acid, thus promoting atherosclerotic events. ASA,
acetylsalicylic acid.
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Figure 3. The role of PCSK9 in coagulation and fibrinolysis. PCSK9 induces the production of tissue
factor, which is responsible for the activation of the extrinsic coagulation pathway and thrombus
formation. TF, tissue factor; PAI-1, plasminogen activator inhibitor-1; F VIII, factor VIII.

In patients with stable coronary artery disease, a positive and independent relationship
between plasma PCSK9 level and platelet count was observed [64]. Not only platelet count
but also platelet activation was found to be associated with PCSK9 levels. In Pastori et al.’s
study, the association between elevated PCSK9 and urinary 11-dehydro-thromboxane B2
(11-dh-TxB2), a stable metabolite of thromboxane A2 levels, suggested a role of PCSK9
in the regulation of platelet activation as well [65]. The potential mechanism underly-
ing the connection between urinary 11-dh-TxB2 and PCSK9 might lead to the possible
involvement of cyclooxygenase (COX)-1, an essential enzyme for thromboxane A2 [66]. In
PCSK9-REACT study, patients with acute coronary syndrome after percutaneous coronary
intervention were treated with prasugrel or ticagrelor [32]. Those with higher PCSK9 levels
had increased platelet reactivity, they were low platelet responders with no difference be-
tween antiplatelet agents used and had a higher incidence of atherothrombotic events after
one year [32]. Increased PCSK9 levels have a role as a predictor of higher platelet activation
and cardiovascular events [66]. PCSK9 directly enhance platelet activation by binding to
platelet CD36 and thus activating the downstream signaling pathways independently of
its effect on lipids [67]. Both PCSK9 inhibitors and aspirin abolish the enhancing effects
of PCSK9 on platelet activation. This data supports the use of aspirin in patients with
increased PCSK9, and on the other hand confirms the antithrombotic effects of PCSK9
monoclonal antibodies.

Beside PCSK9 from plasma platelets, derived PCSK9 plays a significant role in
atherothrombosis as a modulator of platelet activation [41]. Platelets store and release
PCSK9 upon activation, which is enhanced in the presence of LDL cholesterol, not only
ex vivo but also in patients with coronary artery disease. In the presence of PCSK9
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antibodies platelet aggregation was significantly attenuated. As a result, in presence of
PSCK9 antibodies, platelet-dependent thrombus formations significantly reduced [68].
Many studies indicate that statins [69] and PCSK9 monoclonal antibodies [70] have an ef-
fect on the hemostatic system. In approximately a third of patients, platelets show subop-
timal response to antithrombotic therapy that can be linked to hypercholesterolemia [71].
It was shown that treatment with statins in patients with hypercholesterolemia signifi-
cantly increased the aspirin mediated inhibition of platelet aggregation and thrombus
formation, and this was beyond the lipid-lowering effect [71]. Barale et al. showed that
in patients with primary hypercholesterolemia on a background of maximal tolerated
statin and in the presence of concomitant therapy with acetylsalicylic acid, treatment
with alirocumab or evolocumab significantly decreased platelet aggregation and activa-
tion [58]. In all hypercholesterolemia patients, decreased platelet membrane expression
of CD62P and plasma levels of the in vivo platelet activation markers (soluble CD40
Ligand, Platelet Factor-4, and soluble P-Selectin) were observed [58]. Barale et al. in
their study claimed that in patients with hypercholesterolemia the inhibition of PCSK9
with alirocumab or evolocumab results in increased platelet responsiveness to acetyl-
salicylic acid [58]. In the same study, patients with hypercholesterolemia treated with
ASA were shown to have reduced platelet aggregation when stimulated with adeno-
sine diphosphate (ADP), arachidonic acid and collagen compared to healthy subjects.
Hence, we can infer that ASA reduces platelet aggregation in statin-treated patients
with hypercholesterolemia. Patients with hypercholesterolemia who were also treated
with statins but not ASA had increased platelet response to ADP compared to healthy
subjects [58]. Treatment with PCSK9 monoclonal antibodies in patients not treated
with ASA did not affect the response of platelets to the aforementioned substances. In
contrast, treatment with PCSK9 monoclonal antibodies in patients previously treated
with ASA resulted in decreased platelet responsiveness to all three substances. Platelet
aggregation in high shear stress was measured with platelet function analyzer PFA-100.
Closure time (CT) with collagen plus epinephrine did not differ between patients with
hypercholesterolemia not treated with ASA and their healthy peers, while it was pro-
longed in hypercholesterolemic patients treated with ASA [58]. Treatment with PCSK9
monoclonal antibodies prolonged CT only in patients treated with ASA. Since both ther-
apies, statins [72] and PCSK9 monoclonal antibodies, [58] improve the platelet response
to ASA, it could be that a decrease in LDL cholesterol concentration directly affects
platelet aggregation, but we need to consider the option that this effect goes beyond
LDL cholesterol reduction. In addition to sensitizing platelet activation, dyslipidemia
also seems to result in thrombocytosis, which ultimately elevates the risk for adverse
thrombotic events [73]. However, the lowering of LDL cholesterol, regardless of how it
is achieved, followed by a consequent reduction in thrombocytopenic counts, may lead
to a reduced risk of thrombocytopenic events.

4.2. PCSK9 Monoclonal Antibodies and Coagulation and Fibrinolytic Parameters

Thrombosis which is unwanted extension of a haemostasis reaction occurs in both
arterial and venous beds by different mechanisms. In arteries it is due to the atheroscle-
rotic plaque rupture and consequential platelets activation, while in veins due to clotting
activation [74]. PCSK9 monoclonal antibodies beside their main effect on LDL cholesterol
decrease also moderately decrease Lp(a), which can be a common risk factor for arterial
and venous thrombosis. Lp(a) has an effect on the coagulation pathway through the
promotion of the expression of tissue factor (TF). TF initiates activation of the extrinsic
coagulation pathway, which leads to thrombus formation [75]. Lp(a) is believed to
promote atherothrombosis due to its homology with plasminogen. Due to this struc-
tural homology, Lp(a) can bind to plasminogen receptors on the surface of platelets and
prevent the interaction between plasminogen and tissue plasminogen activator (tPA).
Therefore, tPA cannot convert plasminogen to plasmin [76]. In a prespecified analysis
of both ODYSSEY Outcomes [77] and Further Cardiovascular Outcomes Research with
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PCSK9 Inhibition in Subjects with Elevated Risk (FOURIER) [78] clinical trials, they
sought to find an association between venous thromboembolism (VTE) and Lp(a) levels
and the influence of PCSK9 monoclonal antibodies of future VTE. It was shown that
patients with increased Lp(a) but not LDL cholesterol levels have an increased risk for
VTE. In the ODYSSEY Outcomes randomized clinical trial, statin-treated patients with
recent acute coronary syndrome received the PCSK9 inhibitor alirocumab [77]. In a
prespecified analysis, a reduction of the risk of major peripheral artery disease events
after treatment with alirocumab was observed (hazard ratio 0.69, 95% CI 0.54–0.89,
p = 0.004) [77]. The effect was more evident among those with high levels of Lp(a) [77].
A similar but statistically nonsignificant relationship was observed between alirocumab
and the occurrence of venous thromboembolism [77]. On the other hand, a post hoc
analysis of the FOURIER trial treatment with PCSK9 inhibitor evolocumab demonstrated
a 46% relative risk reduction in venous thromboembolism (hazard ratio 0.54, 95% CI
0.33–0.88, p = 0.014) [78]. Greater reductions in Lp(a) levels were associated with greater
decreases in the risk of venous thromboembolism [78]. No relation between baseline
LDL cholesterol levels and the magnitude of venous thromboembolism risk was ob-
served [78]. In 685 consecutive patients with at least one episode of VTE and 266 sex-
and age-matched healthy controls, serum levels of Lp(a) were found to be significantly
higher in patients with previous VTE (49). No other established prothrombotic risk
factors (activated protein C resistance, protein C, protein S, and antithrombin deficiency,
and the factor V G1691A, MTHFR C677T, and prothrombin G20210A mutations) were
found to be significantly combined with increased Lp(a). Elevated Lp(a) levels might
contribute to the penetrance of thromboembolic disease in subjects being affected by
other prothrombotic defects, such as FV G1691A mutation. Several case-control studies
have shown increased VTE risk with elevated Lp(a) concentrations [79–81]. On the
contrary, a population-based prospective study in 2180 middle-aged men without a
history of VTE at the study entry showed no evidence of an association of circulating
Lp(a) with the risk of VTE [82]. These results are similar to previous prospective studies
in different populations [83–86]. No exact mechanism except lowering Lp(a) is known
to be involved in the inhibition of coagulation or increasing of fibrinolysis by PCSK9
monoclonal antibodies. On the other hand, the potent reduction of Lp(a) with antisense
oligonucleotides did not affect ex vivo fibrinolysis in humans [87], therefore, a decrease
in Lp(a) is probably not the only factor influencing the reduction in VTE incidence. In
order to determine the role of PCSK9 monoclonal antibodies in preventing VTE, we
would need a study involving patients after VTE or at high risk of VTE. The research so
far has included patients after a cardiovascular incident in the arterial system in which,
although they share many common risk factors with patients with VTE, there are also
significant differences.

In patients with familial hypercholesterolemia intolerant to statin treatment with either
PCSK9 inhibitor did not decrease D-dimer or fibrinogen, which is one of the most robust
clinical markers for decreased thrombogenicity [88]. An in vitro study showed that PCSK9
in a dose dependent manner induced TF production in peripheral blood mononuclear cells
(PBMC), which can be inhibited with pretreatment with human anti-PCSK9 monoclonal
antibody (mAb) [89]. Most importantly, the increase in TF procoagulant activity (TF PCA)
is PCSK9 dose dependent without evidence of a plateau, and is also inhibited with PCSK9
mAB, while pretreatment with PCSK9 mAb has no effect on baseline TF PCA. The summary
of the studies reviewed here is presented in Table 1.
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5. Conclusions

A majority of the studies are focused on PCSK9 expressed in liver and its local function
on LDLR. But we have to bear in mind that PCSK9 is also expressed in other cells and
tissues [90]. It could be that the most important source of extrahepatic PCSK9 are cells
in the arterial wall, in particular endothelial cells and smooth muscle cells, monocytes
and macrophages. These cells are involved not only in the initiation and progression of
atherosclerosis, but also in plaque rupture and consequent thrombus formation. Hence, not
only local production, but mostly local utilization of PCSK9 is important. PCSK9 activates
platelets, increases inflammation and prevails coagulation/fibrinolysis equilibrium to
coagulation. On the other hand, Lp(a) possess the same properties in the atherosclerotic
process. PCSK9 antibodies (alirocumab and evolocumab) that possess evidence on reducing
cardiovascular morbidity and mortality decrease Lp(a) levels by the mechanisms not fully
known and lower LDL cholesterol by increasing the number of LDLR. It was also found
that both drugs decrease the incidence of VTE, which is associated with the decrease of
Lp(a) values. One of the possible explanations would be that decreased levels of PCSK9 in
circulation, and in particular in or near the atherosclerotic lesion or injured endothelium, are
responsible for the lower incidence of acute arterial and VTE events. In the future it might be
reasonable to measure the concentration of PCSK9 and not only levels of LDL cholesterol an
Lp(a). Due to different mechanisms and the site of action of PCSK9 monoclonal antibodies
and inclisiran in reducing PCSK9, the results of the ORION-4 study will be of particular
interest [91]. ORION-4 is a double-blind randomized trial, which will answer the question
of whether inclisiran reduces the risk of myocardial infarction and stroke in terms of safety
and efficacy regarding hard clinical atherosclerotic cardiovascular disease endpoints. It
would be most interesting to see if the results would be comparable to the results observed
with both PCSK9 monoclonal antibodies. Since no direct comparison between inclisiran
and PCSK9 monoclonal antibodies is to be expected, some answers could be obtained
from the ORION-3 study. The ORION-3 study is an open-label, non-randomized, active
comparator extension trial to assess the efficacy, safety, and tolerability of long-term dosing
of inclisiran and evolocumab given as subcutaneous injections in participants with high
cardiovascular risk and elevated LDL cholesterol (NCT03060577).
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Abstract: The Ottawa score (OS) for predicting the risk of recurrent venous thromboembolism (VTE)
in cancer patients with VTE may help to guide anticoagulant treatment decisions that will optimize
benefit-risk ratios. However, data on its reliability are conflicting. We applied the OS to all cancer
patients with VTE enrolled in the prospective multicenter TROPIQUE study who received low-
molecular-weight heparin over a 6-month period. Of 409 patients, 171 (41.8%) had a high-risk OS.
The 6-month cumulative incidence of recurrent VTE was 7.8% (95%CI 4.2–14.8) in the high-risk OS
group versus 4.8% (95%CI 2.6–8.9) in the low-risk OS group (SHR 1.47; 95%CI 0.24–8.55). The Area
Under the Receiver Operating Characteristic curve (AUROC) of the OS in identifying patients who
developed recurrent VTE was 0.53 (95%CI 0.38–0.65), and its accuracy was 57.9%. Among individual
variables included in the OS, only prior VTE was significantly associated with the 6-month risk of
recurrent VTE (SHR 4.39; 95% CI 1.13–17.04). When pooling data from all studies evaluating this
score for predicting VTE recurrence in cancer patients (7 studies, 3413 patients), the OS estimated
pooled AUROC was 0.59 (95%CI 0.56–0.62), and its accuracy was 55.7%. The present findings do not
support the use of the OS to assess the risk of recurrent VTE in cancer patients.

Keywords: cancer; venous thromboembolism; anticoagulants; recurrence; score

1. Introduction

Monotherapy with low-molecular-weight heparins (LMWHs) has been the standard
of care for the treatment of cancer-associated thrombosis (CAT) for three decades [1,2].
Six recent randomized-control trials (RCTs) compared direct oral anticoagulants (DOACs)
with LMWHs in this clinical setting [3–8]. A pooled analysis of these RCTs reported that
DOACs decreased the 6-month risk of recurrent venous thromboembolism (VTE) by 33%
compared with LMWHs without increasing the risk of major bleeding [9]. However, a
significant increase in the risk of clinically relevant non-major bleeding was observed [9].
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Current clinical practices guidelines (CPGs) reviewed these new pieces of evidence and
now recommend monotherapy with LMWHs or DOACs for at least 3–6 months as first-line
treatment of VTE in medical oncology patients [10–14].

Weight-adjusted LMWHs with a reduction to 75% of the full-dose after the first month
of anticoagulation remain the preferred option in selected cancer patients, including those at
high risk of bleeding, those with gastrointestinal or genitourinary cancers, and those having
a significant risk of drug-drug interactions (DDIs) [10–14]. However, for patients at high risk
of recurrent VTE, LMWHs without dose reduction or DOACs may be a more appropriate
first-line option. Effective clinical tools to assess individual risk of VTE recurrence are
needed to guide anticoagulant treatment decisions that will optimize benefit-risk ratios.

The Ottawa score is currently the only risk assessment model (RAM) available to
assess the risk of recurrent VTE in patients with CAT [15]. This simple point-based RAM
incorporates five readily available clinical variables and can be used dichotomously to
classify patients into high (sum score ≥1) versus low (sum score ≤0) risk for recurrent VTE.
A previous meta-analysis of four studies applying the original Ottawa score (1558 patients)
assessed its ability to discriminate between high- and low-risk patients [16]. The Ottawa
score was reported to have an estimated pooled Area Under the Receiver Operating
Characteristic curve (AUROC) of 0.7 (95% confidence interval (95% CI) 0.6–0.8), a sensitivity
of 70% (95%CI 60–80), and a specificity of 50% (95%CI 50–60) [16]. Patients with a high-risk
Ottawa score (49.3%) had a 6-month pooled crude rate of recurrent VTE of 18.6% (95% CI
13.9–23.9) compared to 7.4% (95%CI 3.4–12.5) for those with a low-risk Ottawa score [16].
However, this score failed to identify patients at high risk of recurrent VTE in two recent
large prospective studies [17,18], thereby questioning its reliability.

Herein, we applied the original Ottawa score to all cancer patient with VTE enrolled
in the multicenter, prospective, observational TROPIQUE study, which was conducted in
65 French centers involved in the care of cancer patients. This analysis aimed to evaluate
the overall discriminatory performance of the Ottawa score in identifying patients with
CAT at high risk of recurrent VTE while receiving long-term treatment with LMWHs. We
also performed an updated systematic review and meta-analysis of all studies evaluating
this score in external validation sets.

2. Materials and Methods

2.1. Study Design and Participants

Full details of the TROPIQUE study design have been published previously [19].
Briefly, patients were eligible if they: (i) were over 18 years old; (ii) had a histologically
or cytologically confirmed diagnosis of solid or hematological cancer; (iii) were receiving
anti-neoplastic treatment or palliative care; (iv) had an objectively diagnosed recent index
VTE including symptomatic deep vein thrombosis (DVT) of the upper or lower limbs,
pulmonary embolism (PE), visceral vein thrombosis (VVT), or central venous catheter
(CVC)-related thrombosis; (v) were initiating long-term treatment with LMWHs according
to current CPGs. The index VTE diagnosis was established by the referring physician
based on the following objective standard routine clinical practice criteria: (i) for DVT: a
non-compressible proximal or distal vein on compression ultrasonography; (ii) for PE: an
intraluminal filling defect in one or more subsegmental or proximal pulmonary arteries
on the spiral computed tomography (CT) scan; an intraluminal filling defect or a sudden
cut-off of vessels more than 2.5 mm in diameter on the pulmonary angiogram; a perfusion
defect of at least 75% of a segment with a local normal ventilation result (high probabil-
ity) on ventilation/perfusion lung scintigraphy; (iii) for VVT: a thrombus detected on a
(staging) abdominal or pelvic CT. Exclusion criteria were: (i) patients already treated with
anticoagulants more than 7 days; (ii) any contraindication to LMWHs’ administration
(hypersensitivity to LMWHs, active bleeding, previous heparin induced thrombocytopenia,
severe renal impairment).

The study was approved by the Ile-de-France I Ethics Committee (Paris, France), and
informed consent was obtained from all participants. The current report adheres to the
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TRIPOD checklist for Prediction Model Validation [20] and to the PROBAST tool on risk of
bias and applicability in prediction model studies [21].

2.2. Data Collection and Study Outcomes

Demographic and clinical data, risk factors for VTE, and ongoing treatments were
collected at study enrollment and during the 3- and 6-month follow-up visits. The Ottawa
score was calculated at study entry, as previously described [15], based on five items: female
sex (+1 point), lung cancer (+1 point), breast cancer (−1 point), local disease (i.e., cancer
TNM stage I, −2 points), and prior VTE (+1 point). An Ottawa sum score ≤0 classified a
patient as being at low risk for recurrent VTE, while an Ottawa sum score ≥1 classified a
patient as being at high-risk for recurrent VTE [15].

For the present analysis, the primary outcome measure was recurrent symptomatic
or incidental objectively confirmed VTE or VTE-related death within 6 months. Recurrent
VTE was defined as objectively documented DVT of upper or lower limbs, PE, VVT or
CVC-related thrombosis. All VTE events were adjudicated based on radiology reports.
Patients were followed-up from inclusion until 6 months (end of follow-up) or earlier if
death or lost to follow-up.

2.3. Statistical Analysis

Statistical analysis was performed using NCSS 2022 (NCSS LLC, Kaysville, UT, USA)
and R (https://www.R-project.org (accessed on 28 February 2022) with the “cmprisk,”
and “riskRegression” packages. All analyses were conducted on the intention-to-treat
population (i.e., all included patients). Missing data were imputed using single imputation
by predictive mean matching. Categorical variables were compared using the chi-square
test or Fisher’s exact test, and continuous variables were compared using the Mann–
Whitney test. The Fine & Gray competing risk model, considering non-VTE-related death
as a competing risk [22], was used to estimate the cumulative incidences of recurrent
VTE in the high-risk and low-risk Ottawa score groups with their corresponding 95% CI.
The individual variables included in the Ottawa score were assessed by estimating the
subdistribution hazard ratios (SHRs) with 95% CI at 6 months in a multivariable model
including all score variables. The overall discriminatory performance of the continuous
Ottawa score to predict recurrent VTE at the 6-month follow-up was assessed by calculating
the Area Under the Receiver Operating Characteristic curve (AUROC, Efron C-index) and
its 95% CI. The variable of interest was the continuous Ottawa score, and the dichotomous
outcome variable was recurrent venous thromboembolism within 6 months.

All tests were 2-sided, and a p-value lower than 0.05 was considered as statistically significant.

2.4. Systematic Review and Pooled Analysis

We then performed a literature search using MEDLINE and EMBASE and the following
key words: “Ottawa score” AND “recurrent venous thromboembolism” AND “cancer” from
1 June 2012 (online publication of the Ottawa score was 7 June 2012) to 19 March 2022.
We used the Covidence software for systematic reviews (Melbourne, Australia) for records
screening. Briefly, 2 reviewers (C.F. and B.C.) independently screened all records identified in
the literature search for study eligibility based on title and abstract. Eligible studies evaluated
the predictive ability of the original Ottawa score for recurrent VTE in cancer patients treated
with any anticoagulant for an index VTE. Any discrepancies in study selection were resolved
by consensus and adjudicated by a third author (D.F.). In case of duplicate publications, only
the most recent publication was considered. The same 2 reviewers independently assessed
study quality and extracted clinical and outcomes data using dedicated forms. The method of
the inverse variance on the arcsine-transformed proportions (random effects model) was used
to calculate the pooled rate of recurrent VTE in each level of clinical probability (high-risk and
low-risk Ottawa score groups). Heterogeneity among studies was assessed using the Cochran
Q statistic, and study consistency was quantified with the I2 statistics. Statistical analysis was
performed using MetaXL (version 5.3).
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3. Results

3.1. Performance of the Original Ottawa Score in the TROPIQUE Study Population

From November 2012 to August 2013, 409 out of 474 patients screened for eligibility
were included in the TROPIQUE cohort at 65 participating centers in France
(Appendix A) [19]. Patients’ baseline characteristics are summarized in Table 1. No patient
was lost to follow-up. During the 6-month follow-up period, 19 patients developed recur-
rent VTE. Of these 19 patients, 5 (26.3%) developed isolated PE; 5 (26.3%) developed isolated
DVT; 1 developed PE and DVT (5.3%); 6 (31.6%) developed isolated CVC-associated throm-
bosis; 1 developed DVT and CVC-associated thrombosis (5.3%); and 1 (5.3%) developed
isolated VVT. Overall, the 6-month cumulative incidence of recurrent VTE was 6.2% (95%
CI 4.0–9.5). Death from any cause occurred in 146 (35.79% (95% CI 31.05–40.34)) patients.
Most deaths were related to cancer progression (87.5%).

Table 1. Baseline characteristics of patients included in the TROPIQUE study.

Patient Characteristics All (n = 409)
Low-Risk Ottawa Score High-Risk Ottawa Score p

(n = 238) (n = 171)

Age (years), mean ± SD 65.0 ± 12.1 63.5 ± 12.9 65.9 ± 10.8 ns
Women, no. (%) 204 (49.8) 90 (35.6) 114 (73.1) <0.0001
BMI (kg/m2), mean ± SD 24.8 ± 5.1 25.2 ± 4.9 24.2 ± 5.3 0.0052
ECOG > 2, no. (%) 49 (11.9) 23 (9.7) 26 (17.1) ns
Missing data 3 2 1
Estimated GFR, no. (%)

ns<60 mL/min/1.73 m2 65 (16.7) 34 (15.4) 31 (20.5)
Missing data 22 17 5
Cancer type, no. (%)
Gastrointestinal 100 (24.4) 60 (25.2) 40 (23.4) ns
Breast 65 (15.9) 57 (23.9) 8 (4.7) <0.0001
Lung 71 (17.4) 7 (2.9) 64 (37.4) <0.0001
Hematological 54 (13.2) 46 (19.3) 8 (4.7) <0.0001
Genitourinaty 38 (9.3) 30 (12.6) 8 (4.7) 0.0088
Other cancers 81 (19.8) 38 (16.0) 43 (25.1) 0.0239
Cancer Stage, no. (%)
Stage I 97 (23.7) 97 (40.8) 0 (0) <0.0001
Stage II 61 (14.9) 29 (12.2) 32 (18.7) ns
Stage III–IV 251 (61.4) 112 (47.1) 139 (81.3) <0.0001
Ongoing cancer treatment at
time of diagnosis *, no. (%)
Chemotherapy 328 (80.2) 186 (78.2) 142 (83.0) ns
Hormonal therapy 26 (6.4) 16 (6.7) 10 (5.8) ns
Radiotherapy 37 (9.0) 24 (10.1) 13 (7.6) ns
Antiangiogenics 22 (5.4) 13 (5.5) 9 (5.3) ns
Targeted therapy 53 (13.0) 34 (14.3) 19 (11.1) ns
Supportive care 32 (7.8) 17 (7.1) 15 (8.8) ns
Risk factors for VTE, no. (%)
Prior VTE 54 (13.2) 17 (7.1) 37 (21.6) <0.0001
Major surgery in previous month 100 (24.4) 68 (28.6) 32 (18.7) 0.0265
CVC 303 (74.1) 179 (75.2) 124 (72.5) ns
Immobilization in previous month 47 (11.5) 23 (9.7) 24 (14) ns
Thrombophilia 6 (1.5) 5 (2.1) 1 (0.6) ns
Index VTE *, no. (%) 145 (35.5) 75 (31.5) 70 (40.9) 0.0264
PE 193 (47.2) 112 (47.1) 81 (47.4) ns
DVT of the lower limb 45 (11.0) 28 (11.8) 17 (9.9) ns
DVT of the upper limb 16 (3.9) 11 (4.6) 5 (2.9) ns
Visceral vein thrombosis 66 (16.1) 45 (18.9) 21 (66) ns
CVC-related thrombosis

* One or more. Abbreviations: BMI, body mass index; CVC, central venous catheter; DVT, deep vein thrombosis;
GFR, glomerular filtration rate; ns, not significant; PE, pulmonary embolism; VTE, venous thromboembolism.

88



J. Clin. Med. 2022, 11, 3729

At study enrollment, 171 patients (41.8% (95% CI 37.0–46.6)) were classified at high-risk
for recurrent VTE and 238 (58.2% (95% CI 53.4–63.0)) patients at low risk. Nine recurrent
VTE occurred in the high-risk Ottawa score group versus ten in the low-risk Ottawa score
group. Six-month cumulative incidences of recurrent VTE did not significantly differ
between the high-risk and the low-risk Ottawa score groups (7.8% (95% CI 4.2–14.8) versus
4.8% (95% CI 2.6–8.9), Gray test p = 0.429; SHR 1.47 (95% CI 0.24–8.55) in competing risk
analysis, p = 0.670; Figure 1). The AUROC of the Ottawa score was 0.53 (95% CI 0.38–0.65;
Figure 2). At the cutoff point defining high-risk (sum score ≥1), the model sensitivity
was 47.4% (95% CI 24.4–71.1), and its specificity was 58.5.6% (95% CI 53.3–63.4). The
corresponding positive and negative predictive values were 5.3% and 98.8%, respectively.
The proportion of patients correctly classified (accuracy) was 57.9%. Excluding CVC-related
thrombosis from the recurrent VTE events did not change the AUROC of the Ottawa score.

Figure 1. Six-month cumulative incidence of recurrent venous thromboembolism in patients with
high- (≥1) and low-risk Ottawa score (≤0).

When evaluating the individual variables used in the Ottawa score in a multivari-
able model, only prior VTE was significantly associated with the 6-month risk of recur-
rent VTE (13.6% (95% CI 6.4–28.8) in patients with previous VTE versus 4.6% (95% CI
2.7–7.9) in patients without previous VTE, Gray test p = 0.020; SHR 4.39 (95% CI 1.13–
17.04) in competing risk analysis, p = 0.033; Table 2 and Supplementary Figure S1). A
classification based on previous VTE alone performed better than the Ottawa score in
identifying patients who developed a recurrent VTE (AUROC 0.63 (95% CI 0.46–0.75);
sensitivity 31.5% (95% CI 12.6–56.5); specificity 87.7% (95%CI 0.84–0.90); positive predictive
value 11.1%; negative predictive value 96.3%; accuracy 85.1%). The 6-month cumula-
tive incidence of recurrent VTE tended to be lower in women (3.3% (95% CI 1.4–7.9))
than in men (8.2% (95% CI 5.0–13.7), Gray test p = 0.05871; SHR 0.50 (95%CI 0.16–1.52);
Supplementary Figure S1 and Table S1). The 6-month cumulative incidence of recurrent
VTE by primary tumor site is shown in Supplementary Figure S1 and Table S1 and tended
to be higher in patients with lung (12.1% (95% CI 3.7–39.9)) and genitourinary (11.2%
(95% CI 5.2–24.1)) cancers compared to other cancers. Finally, the 6-month cumulative
incidence of recurrent VTE tended to be higher in patients with metastatic cancer (7.6%
(95% CI 4.6–12.8)) compared to those with localized cancer (4.5% (95% CI 1.7–11.9), Gray
test p = 0.28339; Supplementary Figure S1 and Table S1).
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Figure 2. Receiver operating curve for the Ottawa score for prediction of recurrent venous throm-
boembolism in the TROPIQUE cohort.

Table 2. Multivariable analyses for recurrent VTE during the 6-month follow-up.

Variables Included in the Ottawa Score SHR (95% CI) p-Value

Sex -
Men Ref
Women 0.499 (0.164–1.52) 0.220

Lung cancer -
No Ref
Yes 2.172 (0.4296–10.98) 0.350

Breast -
No Ref
Yes 0.469 (0.0397–5.55) 0.550

TNM Stage 1 -
No Ref
Yes 0.653 (0.1704–2.50) 0.530

Prior venous thromboembolism -
No Ref
Yes 4.395 (1.1300–17.09) 0.033

3.2. Pooled Analysis of Studies That Evaluated the Original Ottawa Score in Predicting
CAT Recurrence

We performed a systematic review and pooled analysis of all studies that evaluated
the dichotomized original Ottawa score in predicting recurrent VTE in patients with CAT.
The literature search identified 102 potentially relevant citations. Sixteen records were dupli-
cates; 78 were excluded after title and abstract screening; and 12 were assessed for eligibility
(Supplementary Figure S2). Six studies meeting the inclusion criteria [15,17,18,23–25] were
added to the present post-hoc analysis of the TROPIQUE study resulting in a pooled
analysis of 3413 patients (Supplementary Table S2). Patients with a high-risk Ottawa score
(46.7%) had a pooled 6-month rate of recurrent VTE of 13.2% (95% CI 8.5–18.7%; I2 = 89%;
p < 0.001, Figure 3) versus 6.8% (95% CI 4.4–9.6%; I2 = 77%; p < 0.001, Figure 3) for those
with a low-risk Ottawa score. The dichotomized Ottawa score had an estimated pooled AU-
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ROC of 0.59 (95% CI 0.56–0.62), with a sensitivity of 61.5% (95% CI 56.2–66.6), a specificity
of 55.0% (95% CI 53.2–56.8), and an accuracy of 55.7%. When restricting the analysis to
prospective studies including more than 200 patients, the pooled 6-month rate of recurrent
VTE was 8.2% (95% CI 5.6–11.1%; I2 = 50%; p = 0.14) in patients with a high-risk Ottawa
score versus 5.9% (95% CI 2.7–10.0%; I2 = 80%; p = 0.01) in those with a low-risk Ottawa
score (Supplementary Figure S3). The corresponding estimated pooled AUROC was 0.53
(95% CI 0.48–0.57), with a sensitivity, specificity, and accuracy of 48.6% (95% CI 40.4–57.0),
55.82% (95% CI 53.4–58.2), and 55.2%, respectively.

Figure 3. Pooled rates of recurrent venous thromboembolism for the original Ottawa score: (A) High-
risk patients, (B) Low-risk patients.

4. Discussion

The Ottawa score is currently the only RAM available for predicting the risk of VTE
recurrence in cancer patients. Developed by Louzada et al., in 2012 [15], this score has
been assessed in several external validation studies with conflicting results [17,18,23–25].
Applying the Ottawa score to cancer patients enrolled in the prospective TROPIQUE study
who were treated with LMWHs for a confirmed index VTE failed to identify accurately
those who developed recurrent VTE within 6 months, as reflected by an AUROC of 0.53
and an accuracy of 57.9%.

Our results are in line with those from the recent prospective PREDICARE study [17].
In this cohort of 409 patients with CAT who received long-term treatment with LMWHs,
the Ottawa score did not identify those who developed recurrent VTE within 6 months, as
reflected by an AUROC of 0.60 (95% CI 0.55–0.65), a sensitivity of 75.0% (95% CI 55.1–89.3),
and a specificity of 43.3% (95% CI 38.2–48.5). The original Ottawa score was initially derived
to discriminate patients with an a priori risk of VTE recurrence under anticoagulation <7%
from those with an a priori risk for VTE recurrence ≥7% [15]. In the TROPIQUE and
PREDICARE studies, the rates of recurrent VTE were lower than in previous studies, i.e.,
4.6% and 7.0% for TROPIQUE and PREDICARE, respectively, compared to approximately
10% in previous validation studies [16].

Similarly, in a post-hoc analysis of the HOKUSAI-VTE CANCER trial [18], which
included 1046 patients with CAT receiving long-term treatment with either dalteparin or
edoxaban, the Ottawa score had an overall AUROC of 0.52 (95% CI 0.46–0.58). The risk
of recurrent VTE was 9.8% in patients with a high-risk Ottawa score compared to 9.4% in
those with a low-risk Ottawa score (corresponding to a SHR of 1.20 (95% CI, 0.81–1.80)). A
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similar poor discriminatory performance was observed in both the dalteparin (AUROC
0.49 (95% CI, 0.42–0.57)) and the edoxaban groups (AUROC 0.55 (95% CI, 0.46–0.64)). When
pooling the results from these three prospective studies (TROPIQUE, PREDICARE [17],
HOKUSAI-VTE CANCER [18]), the estimated AUROC, sensitivity, specificity, and accuracy
of the Ottawa score were 0.53 (95%CI 0.48–0.57), 48.6% (95%CI 40.4–57.0), 55.82% (95%CI
53.4–58.2), and 55.2%, respectively. Differences in study design (prospective versus retro-
spective), clinical setting, geographical locations, case-mix, follow-up periods, treatment
regimens, and overall rates of recurrent VTE across cohorts may partly explain why these
findings are inconsistent with previous validation studies [18,23–25]. Furthermore, most of
these validation studies, except PREDICARE [17], did not consider the competing risk of
death, which may have led to an overestimation of differences in risk estimates across high
and low Ottawa score groups.

Numerous factors may influence the overall risk of recurrent VTE in patients with
CAT. The original Ottawa score incorporates five items including female sex, lung cancer,
breast cancer, cancer stage I, and prior VTE. In the present study, when these variables
were evaluated individually in a multivariable model, only prior VTE was significantly
associated with the risk of recurrent VTE.

The original Ottawa score derivation study reported that female sex was associated
with a trend towards a lower risk of recurrent VTE (SHR 0.50 (95% CI 0.14–1.52)). Data
regarding gender differences in CAT outcomes are conflicting. A retrospective analysis of
the RIETE registry comparing the rates of recurrent VTE, major bleeding, and mortality
in 5104 women and 5951 men with CAT did not report any gender difference in the
rates of recurrent PE or DVT [26]. On the contrary, a recent analysis of the international,
non-interventional PREFER in the VTE registry of patients with a first episode of acute
symptomatic VTE reported that the rates of recurrent VTE within 12 months were higher
in women with cancer (17.6%) compared to men with cancer (9.1%), with an absolute
difference of 8.6% (95% CI 2.5–19.7%) [27].

It has been widely demonstrated that the site of primary cancer is a major determinant
of the risk of developing a first CAT, but it is also associated with the risk of recurrent
VTE. A post hoc analysis of the CLOT trial [28] first highlighted that lung cancer was
associated with a significantly higher risk of recurrent VTE (HR 3.51, 95% CI 1.62–7.62)
compared to other cancer types, while breast cancer tended to be associated with a lower
risk (HR 0.59, 95% CI, 0.17–2.01). In the Ottawa score derivation study, lung and breast
cancers were significantly associated with the risk of recurrent VTE in multivariate analysis.
Consequently, presence of a lung cancer adds one point to the overall Ottawa score, while a
breast cancer removes one point. A retrospective analysis of 3947 cancer patients included
in the RIETE registry reported that the rate of recurrent VTE was 27 events per 100 patient-
years (95% CI 22–33) in patients with lung cancer compared to 5.6 events per 100 patient-
years (95% CI 3.8–8.1) in patients with breast cancer [29]. Similar to the results of the recent
PREDICARE prospective study [17], we found that neither lung cancer nor breast cancer
was significantly associated with the risk of recurrent VTE. We observed a trend towards a
higher 6-month cumulative incidence of recurrent VTE in patients with lung (12.1% (95%
CI 3.7–39.9)) and genitourinary (11.2% (95% CI 5.2–24.1)) cancers as compared to those
with breast cancer (1.54% (95% 0.22–10.76)). Interestingly, a recent post hoc analysis of the
CARAVAGGIO study found that the absolute risk difference in recurrent VTE in favor of
apixaban was 5.5% in patients with lung cancer, 3.7% in those with genitourinary cancer,
and 0.15% in those with breast cancer, suggesting that DOACs may be a more efficient
option in lung cancer, provided the patients did not have a high risk of bleeding or of
DDIs [30].

In the TROPIQUE study, metastatic cancer was associated with a trend towards a
higher risk of recurrent VTE compared to locally advanced or localized cancers. A recent
post-hoc analysis of the CARAVAGGIO study showed that patients with locally advanced
(HR 2.8, 95% CI 1.1–6.9) and metastatic cancer (HR 3.3, 95% CI 1.4–7.7) have a higher rate
of VTE recurrence than those with localized cancer [31]. However, any anticoagulant type
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should be used with caution in patients with metastases since they are at high risk of major
bleeding [31].

With DOACs or LMWHs as possible first-line options for the treatment of CAT, clini-
cians are now faced with more complex anticoagulant treatment decisions. DOACs or a full
dose of LMWHs can be used throughout the first 6 months of treatment when the risk of
recurrent VTE is high, while in those with a low risk of recurrent VTE, dose de-escalation
of LMWHs (75–80% of full dose) after 1 month, or Vitamin K antagonists (VKAs), may
be more appropriate. Our data suggest that the Ottawa score does not provide sufficient
predictive reliability to guide clinical decision making. Therefore, a personalized approach,
based on individual patient risk factors, a benefit-risk ratio of each drug, physician’s judg-
ment, and patient values and preferences, remains essential in optimizing anticoagulant
treatment decisions.

Major limitations of the present study relate to the population sample size and to the
relatively small number of recurrent VTE events observed during the 6-month follow-up
(4.6%). Since the TROPIQUE study was not initially designed to validate the Ottawa
score [19], there was no sample size calculation for the present analysis. However, in the
PREDICARE study [17], which was specifically designed to validate the Ottawa score in
patients with CAT receiving LMWHs for 6 months, the calculated sample size was at least
392 patients to validate the score with an expect AUROC of 0.70 with a lower limit of its CI
of 0.65. The TROPIQUE cohort included 409 patients [19].

5. Conclusions

The present findings do not support the use of the Ottawa score to personalize the
treatment of CAT during the first 6 month of anticoagulant therapy. A multidisciplinary
patient-centered approach, with close cooperation between oncologists and other specialists,
balancing risk of benefit and harm for each individual patient, and taking account of patient
values and preferences, is required to optimize anticoagulant therapy. According to current
CPGs [10–14], anticoagulant treatment should be reassessed on a regular basis throughout
the course of the disease and continued as long as the cancer is active.
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Abstract: (1) Background: Pulmonary embolism (PE) is the third most frequent acute cardiovascular
condition worldwide. PE response teams (PERTs) have been created to facilitate treatment implemen-
tation in PE patients. Here, we report on the 5-year experience of PERT operating in Warsaw, Poland,
with regard to the characteristics and outcomes of the consulted patients. (2) Methods: Patients diag-
nosed with PE between September 2017 and December 2021 were included in the study. Clinical and
treatment data were obtained from medical records. Patient outcomes were assessed in-hospital, at a
1- and 12-month follow-up. (3) Results: There were 235 PERT activations. The risk of early mortality
was low in 51 patients (21.8%), intermediate–low in 83 (35.3%), intermediate–high in 80 (34.0%) and
high in 21 (8.9%) patients. Anticoagulation alone was the most frequently administered treatment in
all patient subgroups (altogether 84.7%). Systemic thrombolysis (47.6%) and interventional therapy
(52%) were the prevailing treatment options in high-risk patients. The in-hospital mortality was
6.4%. The adverse events during 1-year follow-up included five deaths, two recurrent VTE and two
minor bleeding events. (4) Conclusions: Our initial 5-year experience showed that the activity of
the local PERT facilitated patient-tailored decision making and the access to advanced therapies,
with subsequent low overall mortality and treatment complication rates, confirming the benefits of
PERT implementation.

Keywords: pulmonary embolism; pulmonary embolism response team; PERT; catheter-based therapies

1. Introduction

Pulmonary embolism (PE) is the third most frequent acute cardiovascular condition
worldwide [1]. The incidence is 100–200 per 100,000 inhabitants each year [2], generat-
ing annual costs ranging to EUR 8.5 billion in the European Union alone [3]. The ma-
jor burden of PE to the public health implies the need to optimize the strategies of PE
diagnosis and management.
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Given the diversity of PE clinical manifestation and multiple therapeutic interventions
available in the acute PE [3], implementation of the optimal patient-tailored treatment is of
the utmost importance. The choice of the optimal therapy should take into account the risk
of early mortality and the risk of treatment-associated complications [4]. Generally, systemic
thrombolytic therapy is recommended for patients with high-risk PE. However, the rate of
major bleeding during systemic thrombolysis ranges to 20%, with the rate of intracranial
bleeding up to 3% [5,6]. In addition, there are numerous patients in whom thrombolysis is
initially contraindicated or has failed. In such patients, surgical or percutaneous catheter-
directed therapy are viable alternative treatment options.

Regarding the complex qualification of PE patients for interventional treatment and the
delicate balance between the risk of death due to the disease itself and the risk of treatment-
associated complications [6], the concept of multidisciplinary PE response teams (PERTs)
emerged in 2012 at the Massachusetts General Hospital [5]. By gathering experts from
various disciplines, including interventional cardiology, cardiothoracic surgery, emergency
medicine and intensive care within a rapid real-time consultation, the aim of PERTs is to
optimize and accelerate treatment implementation in PE patients at intermediate–high and
high risk of mortality [5,7].

The first results indicate that the implementation of PERTs improved the efficiency
of treatment initiation and decreased both the hospital length of stay and the generated
costs [6,7], although the clear mortality benefit remains to be demonstrated [6–8]. Following
the European Society of Cardiology (ESC) recommendation to set up the local interdis-
ciplinary PERTs for PE management [1], the Centre for the Management of Pulmonary
Embolism (CELZAT) in Warsaw was established in 2017. The main goal of CELZAT is
to improve patient prognosis by developing a model of interdisciplinary, comprehensive
care for patients with PE, with particular focus on the population of patients with con-
traindications to standard pharmacological treatment, who require complex qualification
for the interventional treatment [9]. Here, we report on the characteristics and outcomes of
patients consulted by CELZAT.

2. Materials and Methods

2.1. Algorithm of CELZAT Activation

CELZAT was created by experts from the Department of Pulmonary Circulation,
Thromboembolic Diseases and Cardiology, European Health Center in Otwock, Poland;
1st Chair and Department of Cardiology, Medical University of Warsaw, Poland; and
Department of Cardiac Surgery, Medicover Hospital, Warsaw, Poland. The CELZAT
project has been implemented in collaboration with Professor Richard Channik from the
Massachusetts General Hospital in Boston, the creator of the world’s first interdisciplinary
model of care for patients with pulmonary embolism, who acts as the Honorary Consultant.

An algorithm of the CELZAT activation consists of four stages (Figure 1). In the
first stage, in patients with suspected acute PE, a thorough clinical assessment and risk
stratification according to Pulmonary Embolism Severity Index (PESI) and simplified PESI
(sPESI) is conducted by the treating physician. Based on the clinical picture, laboratory
parameters and imaging finding, patients at high or intermediate–high-risk of mortality
are identified.

The diagnosis of high- and intermediate–high-risk of mortality PE is followed by
CELZAT activation via a phone call to an emergency number, operating 24 h per day,
7 days per week. Subsequently, an interdisciplinary teleconsultation is performed within
30 min, including the treating physician, interventional cardiologist, clinical radiologist,
intensive care specialist, anesthesiologist and cardiothoracic surgeon. Depending on the
patient’s clinical condition and comorbidities, the expert panel may be extended by other
specialists, such as a neurologist, general surgeon or vascular surgeon.
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Clinical 
assessmen

t

• High risk PE or intermediate-high risk PE with:
• sPESI score > 0 and
• RV dysfunction on echocardiography/CT and
• Increased level of cardiac injury biomarkers (BNP, cardiac 
troponins) 

CELZAT 
activatio

n

• Telephone contact
• Multidisciplinary consilium
• Real-time teleconsultation via the online platform
• Analysis of clinical and imaging data

Intervent
ion

• Verification of indications for mechanical ventilation
• Verification of the indications for extracorporeal life
support

• Pulmonary angiography, if necessary
• Qualification for interventional treatment

CICU/ICU

• Hospitalisation at CICU/ICU
• Heart failure treatment
• Monitoring and management of complications

Figure 1. Activation flowchart of CELZAT. PE—pulmonary embolism, sPESI—simplified Pulmonary
Embolism Severity Index, RV—right ventricle, CT—computed tomography, BNP—brain natriuretic
peptide, CICU—cardiac intensive care unit, ICU—intensive care unit.

The analysis of subsequent patients is conducted with the use of an online telecon-
sultation platform (Invisium MED, Ives-System, Warsaw, Poland). After logging in to
the platform via a standard web browser, the analysis of clinical data and the results
of additional examinations, which had previously been placed on the virtual drive, is
performed during a real-time audiovisual consultation. The decisions made during the
teleconsultation include (i) a possibility of pharmacological treatment optimization, (ii)
indications for respiratory therapy, (iii) the use of extracorporeal membrane oxygenation
(ECMO) and other forms of extra corporeal life support, (iv) indications for further invasive
diagnostics (selective pulmonary angiography) and eventually percutaneous treatment
and (v) indications for surgical treatment.

After the intervention, the patients are hospitalized in the Intensive Care Unit or the
Cardiac Intensive Care Unit to stabilize the general condition, normalize hemodynamic
parameters and monitor and treat the possible complications of the therapy. Particular
emphasis is placed on the potential mechanical complications related to the percutaneous
therapy, such as pulmonary dissection or perforation, cardiac tamponade and vascular
access complications, as well as systemic complications, including contrast-induced acute
kidney injury, arrhythmias, hypotension, hemolysis or bleeding.

2.2. Patient Enrollment and Data Collection

All patients diagnosed with PE who presented to any of the participating centers be-
tween September 2017 and December 2021 were included in the study. Information about
clinical and treatment data was obtained from medical records, including (i) demographic
data; (ii) symptoms and signs at presentation; (iii) risk factors of venous thromboembolism
(VTE); (iv) comorbidities; (v) relevant laboratory and imaging findings (concentrations of
cardiac troponins and natriuretic factors, features of RV overload on echocardiogram or
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computed tomography); (vi) VTE location, including the presence of deep vein thrombosis;
(vii) in-hospital pharmacotherapy and interventional therapy; (vii) the need for endotra-
cheal intubation, ECMO and admission to intensive care unit; and (viii) in-hospital and
1-month outcomes (mortality, recurrent PE or DVT and bleeding complications, as defined
by the International Society of Thrombosis and Hemostasis, ISTH).

2.3. Assessment of PE Severity

The severity of PE was each time categorized into high, intermediate–high, intermediate–
low or low, according to the most recent ESC guidelines [1]. In all patients, the PESI and
sPESI were calculated. High-risk PE was defined as confirmed acute PE with hemodynamic
instability, i.e., clinical symptoms of cardiogenic shock or persistent hypotension (systolic
blood pressure (BP < 90 mmHg or systolic BP drop ≥ 40 mmHg, lasting longer than
15 min and not caused by new-onset arrhythmia, hypovolemia or sepsis). The intermediate–
high-risk group included patients who were hemodynamically stable but had features
of RV overload (dysfunction on echocardiography or dilation on computed tomography
pulmonary angiogram, CTPA) and laboratory marker of myocardial damage (cardiac
troponins level above the institution-specific cut-off values). Intermediate–low-risk was
defined as the presence of RV overload on echocardiography or CTPA, or elevated level
of troponins, or PESI class III or higher, or at least 1 point in sPESI. The low-risk category
involved patients in the PESI class I or II, or 0 points in sPESI.

2.4. Treatment and Outcomes

Therapeutic interventions in hospital were recorded for each patient and involved:
anticoagulation alone, systemic thrombolysis or interventional treatment. Anticoagulation
was defined as the administration of the following: unfractionated heparin (UFH), low
molecular weight heparin (LMWH), vitamin K antagonists (VKA) or direct oral anticoag-
ulants (DOACs) without any additional therapies. Systemic thrombolysis referred to the
intravenous administration of recombinant tissue plasminogen activator (rtPA). Catheter-
directed procedures included catheter-directed thrombectomy (CDT), catheter-directed
thrombolysis (CDL) and surgical embolectomy.

Interventional treatment was applied to patients with cardiogenic shock or signifi-
cant hemodynamic instability who either were non-responsive or had contraindications
to standard thrombolytic therapy. Catheter-directed thrombectomy or thrombolysis were
preferred in patients at high perioperative risk of mortality and those who were disqualified
from pulmonary embolectomy due to logistical reasons (lack of technical possibilities to
transport the patient to the embolectomy-performing center, for example due to hemo-
dynamic instability). Catheter-directed thrombectomy (CDT) was performed using the
AngiojetTM Rheolytic Thrombectomy System (Boston Scientific, Marlborough, MA, USA),
Cleaner XTTM Rotational Thrombectomy System (Argon Medical Devices, Athens, TX,
USA), or Indigo CAT8 XTORQ system (Penumbra, Alameda, CA, USA), depending on the
anatomical conditions and morphology of thromboembolic lesions. The rate of catheter-
directed thrombolysis (CDL), surgical embolectomy, ECMO or inferior vena cava (IVC)
filter placement was also recorded.

Patient outcomes were assessed in-hospital and at 1- and 12-month follow-ups. Follow-
ups included (i) mortality, (ii) stroke, (iii) recurrent PE/DVT and (iv) bleeding complications
as defined by the ISTH.

2.5. Statistical Analysis

Statistical analysis was conducted using IBM SPSS Statistics, version 27.0 (IBM,
Sheffield, UK). Categorical variables were presented as number and percent. Continu-
ous variables were presented as mean and standard deviation or median with interquartile
range, depending on the distribution. A p-value below 0.05 was considered significant.
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3. Results

3.1. Baseline Characteristics

During the 52-month enrollment period, there were 235 CELZAT activations: 104 in
Medical University of Warsaw (44.3%), 116 in European Health Centre Otwock (49.3%)
and 15 Medicover Hospital (6.4%). Patients’ characteristics at admission are presented in
Table 1. The mean age was 60.3 ± 16.8 years, and the majority of patients were men (53.6%).
The most common symptom at admission was dyspnea at minimal exertion (New York
Heart Association [NYHA] functional class III; 42.0%) or at rest (NYHA class IV; 33.3%
patients). Other symptoms included chest pain, syncope, cough and pneumonia, which
were present in 31.9%, 16.6%, 15.7% and 13.2% of patients, respectively. The least common
symptom was hemoptysis in only 5.5% of cases. Malignancy was the most frequent PE
risk factor (34.0%). Besides malignancy, obesity (27.2%) and recent hospitalization (25.5%)
were the most common, followed by smoking (24.7%). Thirty-nine patients had a history
of previous DVT (16.6%), and 13 patients had previous PE (5.5%). Previous COVID-19
infection was risk factor for PE in 14 cases (5.9%).

Table 1. Baseline characteristics of PE patients.

Patients (n = 235)

Baseline characteristics
Age, years (mean ± SD) 60.3 ± 16.8
Sex, male (n, %) 126 (53.6%)

Symptoms on admission

Dyspnea (NYHA; n, %)
I–II 43 (24.7%)
III 73 (42.0%)
IV 58 (33.3%)

Chest pain (n, %) 75 (31.9%)
Syncope (n, %) 39 (16.6%)
Cough (n, %) 37 (15.7%)
Pneumonia (n, %) 31 (13.2%)
Hemoptysis (n, %) 13 (5.5%)

Comorbidities (n, %)

Coronary artery disease 24 (10.2%)
Congestive heart failure 22 (9.4%)
Atrial fibrillation 16 (6.8%)
Arterial hypertension 113 (48.1%)
COPD 11 (4.7%)
Diabetes mellitus 41 (17.4%)
Obesity 64 (27.2%)
Chronic kidney disease 17 (7.2%)
Stroke 15 (6.4%)
Depression 12 (5.1%)
Malignancy 80 (34.0%)
Thrombophilia 12 (5.1%)

Other VTE risk factors (n, %)

Smoking 58 (24.7%)
Indwelling catheter 7 (3.0%)
Hormonal therapy 13 (5.5%)
Reduced mobility 27 (11.5%)
Recent hospitalization 60 (25.5%)
Recent surgery 28 (11.9%)
Recent trauma 14 (6.0%)
Prior PE 13 (5.5%)
Prior DVT 39 (16.6%)
COVID-19 infection 14 (6.0%)

NYHA—New York Heart Association, COPD—chronic obstructive pulmonary disease, VTE—venous throm-
boembolism, DVT—deep vein thrombosis.
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3.2. Characteristics of Pulmonary Embolism

The risk of early mortality was low in 51 patients (21.8%), intermediate–low in 83
(35.3%), intermediate–high in 80 (34.0%) and high in 21 (8.9%) patients (Figure 2). The
vast majority of patients had thrombus located bilaterally (77.4%) and centrally (82.6%).
The central location of the thrombus was defined as the saddle, main pulmonary artery,
lobar artery and intracardiac location. Peripheral location was defined as the segmental
and subsegmental artery. Patients with high-risk PE presented more often with bilateral
PE (95.2%) and central PE (100.0%), compared to other risk categories (Figures 3 and 4).
However, bilateral and central PE was also the most frequent phenotype in all other
subgroups of patients.

Figure 2. Distribution of the early mortality risk groups in the study population.

Figure 3. Pulmonary embolism localization (central vs. peripheral) according to the risk of
early mortality.
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Figure 4. Pulmonary embolism distribution (unilateral vs. bilateral) according to the risk of
early mortality.

The characteristics of PE categorized according to the risk of early mortality are
showed in Table 2. The most common parameter of PE severity was RV overload on
echocardiography or CTPA (67.2%), followed by elevated concentration of natriuretic
peptides (73.6%) and troponins (55.7%). PE was accompanied by DVT in 51.1% of all
patients. Twenty-six patients required endotracheal intubated (11.1%), fifteen high-risk
patients required ECMO (6.4%) and eighty-four patients from intermediate–high and high-
risk of mortality subgroups (83.2% of both subgroups) were admitted to the ICU. One
hundred twenty-six patients were in the PESI class III or higher (53.6%). A high-risk score
(at least 1 point on the sPESI scale) was present in 162 patients (68.9%).

Table 2. Characteristics of PE categorized according to the risk of early mortality.

PE Risk Category
Low

(n = 51)

Intermediate–
Low

(n = 83)

Intermediate–
High

(n = 80)

High
(n = 21)

All
(n = 235)

PE location (n, %)

Bilateral 32 62.7% 57 68.7% 73 91.3% 20 95.2% 182 77.4%
Unilateral 19 37.3% 26 31.3% 7 8.7% 1 4.8% 53 22.6%

Central 35 68.6% 64 77.1% 74 92.5% 21 100.0% 194 82.6%
Peripheral 16 31.4% 19 22.9% 6 7.5% 0 0.0% 41 17.4%

Saddle 1 2.0% 8 9.6% 26 32.5% 9 42.9% 44 18.7%
Main pulmonary artery 19 37.3% 28 33.7% 61 76.3% 16 76.2% 124 52.8%

Lobar artery 33 64.7% 61 73.5% 63 78.8% 19 90.5% 176 74.9%
Segmental artery 43 84.3% 70 84.3% 51 63.8% 14 66.7% 178 75.7%

Intracardiac 0 0.0% 0 0.0% 7 8.8% 2 9.5% 9 3.8%
Parameters of PE severity (n, %)
PE location (n, %)

RV dysfunction (ECHO) 0 0.0% 21 25.3% 70 87.5% 16 76.2% 107 45.5%
RV dilation (CTPA) 0 0.0% 10 12.0% 31 38.8% 10 47.6% 51 21.7%

↑ Troponin 0 0.0% 38 45.8% 80 100.0% 14 66.7% 131 55.7%
↑ Natriuretic peptides 20 39.2% 61 73.5% 74 92.5% 18 85.7% 173 73.6%

DVT 20 39.2% 34 41.0% 54 67.5% 12 57.1% 120 51.1%
PESI class (n, %)
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Table 2. Cont.

PE Risk Category
Low

(n = 51)

Intermediate–
Low

(n = 83)

Intermediate–
High

(n = 80)

High
(n = 21)

All
(n = 235)

I–II 36 70.6% 38 45.8% 34 42.5% 1 4.8% 109 46.4%
III 7 13.8% 15 18.1% 28 35.0% 1 4.8% 51 21.7%
IV 4 7.8% 19 22.9% 10 12.5% 5 23.8% 38 16.2%
V 4 7.8% 11 13.2% 8 10.0% 14 66.6% 37 15.7%

Score (median, IQR) 65 (49–88) 93 (74–113) 89 (71–105) 144 (123–195) 88 (69–114)
sPESI (n, %)

Low risk 32 62.7% 21 25.3% 20 25.0% 0 0.0% 73 31.1%
High risk 19 37.3% 62 74.7% 60 75.0% 21 100.0% 162 68.9%

Clinical severity (n, %)

Intubation 0 0.0% 1 1.2% 13 16.3% 12 57.1% 26 11.1%
ECMO support 0 0.0% 0 0.0% 10 12.5% 5 23.8% 15 6.4%
ICU admission 24 47.1% 37 44.6% 63 78.8% 21 100.0% 145 61.7%

RV—right ventricle, ECHO—echocardiography, CTPA—computed tomography pulmonary angiogram, ECMO—
extracorporeal membrane oxygenation.

3.3. Treatment

The details of in-hospital and post-discharge treatment according to mortality risk
groups are presented in Table 3. Anticoagulation alone was the most frequently adminis-
tered treatment, received by 84.7% of patients and this trend applied to all risk subgroups,
except for high-risk patients, where systemic thrombolysis (47.6%) and interventional
therapy (52%; CDT/CDL 28.6% and surgical embolectomy 23.4%) were the prevailing
treatment options.

Table 3. In-hospital and post-discharge treatment according to mortality risk groups.

PE Risk Category
Low

(n = 51)
Intermediate–Low

(n = 83)
Intermediate–High

(n = 80)
High

(n = 21)
All

(n = 235)

In-hospital (n, %) *

Anticoagulation alone 51 100.0% 81 97.6% 63 78.8% 4 19.0% 199 84.7%
Systemic thrombolysis 0 0.0% 1 1.2% 4 5.0% 10 47.6% 15 6.4%

CDT/CDL 0 0.0% 1 1.2% 2 5.0% 6 28.6% 11 4.7%
Surgical embolectomy 0 0.0% 0 0.0% 10 12.5% 5 23.4% 15 6.4%

IVC filter 1 2.0% 8 9.6% 7 8.8% 3 14.3% 19 8.1%
At discharge (n, %) ** n = 51 n = 80 n = 76 n = 13 n = 220

VKA 3 5.9% 5 6.3% 12 15.8% 2 15.4% 22 10.0%
DOAC 40 78.4% 41 51.2% 37 48.7% 3 23.1% 121 55.0%

LMWH 8 15.7% 34 42.5% 27 35.5% 8 61.5% 77 35.0%

* The number of patients might exceed 235 due to combined therapies applied to some patients (e.g., interventional
therapy on top of anticoagulation or systemic thrombolysis). ** The number of patients at discharge is affected
by in-hospital mortality. CDT—catheter directed thrombectomy, CDL—catheter directed thrombolysis, IVC—
inferior vena cava, VKA—vitamin K antagonists, DOAC—direct oral anticoagulants, LMWH—low molecular
weight heparin.

Systemic thrombolysis was administered in one intermediate–low-risk patient (1.2%)
and four intermediate–high-risk patients (5.0%). Eleven patients (9.4%) were treated with
catheter-directed procedures (seven patients with catheter-directed thrombectomy and
four with catheter-directed thrombolysis. Fifteen patients (6.4%) with intermediate–high or
high-risk PE underwent surgical embolectomy. Nineteen patients (8.1%) received IVC filter.
The high rate of IVC use was due to the characteristics of the patients consulted by CELZAT.
In addition to PE, the consulted patients had comorbidities that are contraindications to
standard anticoagulant therapy. The most common indications for IVC filter were increased
risk of bleeding in the context of malignancy and status after orthopedic surgery for massive
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trauma. In a few cases, the indication for IVC filter implantation was the recurrence of PE
during standard anticoagulation treatment, which occurred most frequently in patients
with oncological metastasis.

Combined therapy was performed in 10 patients. Four patients were treated by
catheter-directed thrombectomy with subsequent transcatheter thrombolysis. Three of
them received systemic thrombolysis followed by surgical embolectomy. In one case the
transcatheter procedure was associated with further systemic thrombolysis and in one case
the transcatheter procedure was followed by surgical embolectomy.

At discharge, the majority of all patients received DOACs (55.0%), followed by
LMWH (35.0%) and VKA (10.0%). Among patients who received LMWH, 46 had a
coexistent malignancy.

3.4. Outcomes

The in-hospital, 1-month follow-up and 12-month follow-up outcome events according
to mortality risk groups are showed in Table 4. The rate of in-hospital mortality was 6.4%
(15/235 patients: 8 in the high-risk subgroup, 4 in the intermediate–high-risk subgroup
and 3 in the intermediate–low-risk subgroup). Three of them suffered from malignancy.
All patients presented with dyspnea NYHA class IV (thirteen patients) or III (two pa-
tients). Thirteen patients were admitted to ICU and eight required endotracheal intubation.
Nine patients received only anticoagulation, in two patients systemic thrombolysis was
implemented, two patients underwent CDT and another two received combined therapy.

Table 4. In-hospital, 1-month and 12-month follow-up outcome events according to the mortality
risk groups.

PE Risk Category
Low

(n = 51)
Intermediate–Low

(n = 83)
Intermediate–High

(n = 80)
High

(n = 21)
All

(n = 235)

In-hospital events (n, %)

Death 0 0.0% 3 3.6% 4 5.0% 8 38.1% 15 6.4%
Stroke 0 0.0% 1 1.2% 0 0.0% 2 9.5% 3 1.3%

Major bleeding 0 0.0% 4 4.8% 1 1.3% 2 9.5% 7 3.0%
Minor bleeding 1 2.0% 7 8.4% 2 2.5% 2 9.5% 12 5.1%

Recurrent PE 0 0.0% 0 0.0% 1 1.3% 0 0.0% 1 0.4%
Recurrent DVT 0 0.0% 1 1.2% 0 0.0% 0 0.0% 1 0.4%

1-month follow-up **

Death 1 2.0% 0 0.0% 0 0.0% 0 0.0% 1 0.4%
Stroke 1 2.0% 0 0.0% 0 0.0% 0 0.0% 1 0.4%

Major bleeding 1 2.0% 0 0.0% 0 0.0% 0 0.0% 1 0.4%
Minor bleeding 0 0.0% 1 1.2% 0 0.0% 0 0.0% 1 0.4%

Recurrent PE 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%
Recurrent DVT 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

12-month follow-up **

Death 1 2.0% 1 1.2% 2 2.6% 2 15.4% 6 2.7%
Stroke 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%

Major bleeding 0 0.0% 0 0.0% 0 0.0% 0 0.0% 0 0.0%
Minor bleeding 0 0.0% 1 1.2% 0 0.0% 1 7.7% 2 0.9%

Recurrent PE 1 2.0% 0 0.0% 0 0.0% 0 0.0% 1 0.4%
Recurrent DVT 0 0.0% 1 1.2% 0 0.0% 0 0.0% 1 0.4%

** The number of patients at follow-up is affected by in-hospital and follow-up mortality.

There were twelve minor bleeding events (5.1%) and four of them required reduced
dosage of anticoagulant therapy. There were seven major bleeding events (3.0%), which
required blood transfusion and the modification of anticoagulation treatment. There were
three strokes (1.3%): one in the intermediate–low-risk patient treated with anticoagulation
only and two in high-risk patients treated with thrombolysis. There was one fatal recur-
rence of PE in the intermediate–high patient treated with systemic full-dose thrombolysis
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and one recurrence of DVT, associated with major bleeding and the modification of antico-
agulant treatment. In the last case, an IVC filter was applied to protect patients during the
next weeks.

At 1-month follow-up, there was one death and one stroke. Two bleeding events were
registered. One of them was minor and did not require future action. Another one was
major and required medical attention. The latter patient died during the 1-year follow-up.
Other adverse events during the 1-year follow-up included five deaths, one recurrent PE,
one recurrent DVT and two minor bleeding events.

4. Discussion

The goal of PERT is to deliver rapid, interdisciplinary care to patients with PE to facili-
tate the access to advanced treatment and improve outcomes. Since the launch of the first
PERT in 2012, the idea of PERT has spread worldwide. The results of hitherto published
observational studies suggest that implementation of PERT increased patients’ access to
advanced therapies (systemic thrombolysis, catheter-directed procedures, surgery) without
increasing the number of bleeding complications [6,7,10]. Moreover, recent studies compar-
ing outcomes in the pre- and post-PERT era showed that the availability of multidisciplinary
PERT was associated with decreased 30-day mortality, especially among high-risk patients,
without incurring additional hospital costs or protracting hospital length-of-stay [11,12].
However, the clear benefits of PERT in terms of mortality have not been confirmed in
all studies [6], which is likely due to the limited sample size and short follow-up time of
patients included in these studies [6–8,10–18]. Hence, there is an unmet need to collect more
data regarding the performance of PERT and share them with the medical community.

The current study is the first report concerning the activity of the local PERT, CELZAT.
CELZAT operates in accordance with the standards outlined in the position paper of
Polish PERT Initiative [19], with the primary objective to deliver care to intermediate–high
and high-risk PE patients. However, in our cohort, less than half of patients presented
with intermediate–high-risk PE (34.0%) and high-risk PE (8.9%). We registered numerous
activations of PERT in the intermediate–low (35.4%) and low-risk (21.7%) subgroups,
which might be due to two reasons. First, substantial efforts have been made to raise the
awareness of the local PERT via journal publications [19], conference presentations and
social media, which prompted the treating physicians to contact PERT experts in case
of any acute PE. Second, the majority of intermediate–low and low-risk patients in our
cohort presented with bilateral and central PE, raising concerns regarding the potential
risk for sudden clinical deterioration and death despite normal hemodynamics at initial
assessment. PERT activation in low-risk patients has been noticed in other papers reporting
PERT activity [8,14], introducing the concept of a “high-risk patient with a low-risk PE” [8].
Further research is required to investigate the clinical benefits and economic efficacy of
PERT activation in low-risk patients. For example, PERT activation might be rational in
order to optimally manage the low-risk patients with contraindications to anticoagulation
or with comorbidities requiring a multidisciplinary approach.

Anticoagulation was the most frequently administered treatment in all risk subgroups
except for high-risk patients (approximately 85% of our cohort), in accordance with pre-
vious reports [8,14]. The most frequently administered anticoagulants at discharge were
DOACs (55.0%), whereas only a minority of patients received VKA (10.0%). LMWH was
received by a substantial number of patients at discharge (35.0%), the majority of whom pre-
sented with a co-existing malignancy. The choice of anticoagulation for cancer-associated
VTE is a major therapeutic challenge due to a delicate balance between the recurrent throm-
boembolic and bleeding events in these patients [20]. LMWH has traditionally been the
standard treatment for cancer-associated VTE due to higher efficacy and comparable safety,
compared to VKA [21]. However, the results of recent trials comparing LMWH to DOAC
showed that DOAC might be more effective than LMWH at preventing recurrent VTE in
cancer patients but at the cost of increased bleeding, especially in patients with gastroin-
testinal (GI) and genitourinary (GU) tract cancer. Consequently, the ISTH International
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Initiative on Thrombosis and Cancer (ITAC) guidelines state that DOACs can be used as
first line treatment for cancer-associated thrombosis in non-GI/GU cancer patients at low
bleeding risk. Among patients with GI/GU cancer-associated thrombosis, LMWH is still
preferred [22]. Accordingly, the ESC guidelines recommend that edoxaban or rivaroxaban
should be considered as an alternative to LMWH, with special caution for patients with
GI cancer [1]. However, as demonstrated in our cohort, clinicians are still reluctant to
prescribe DOAC in cancer patients and more evidence-based data are required to establish
the optimal treatment regimen in this challenging population.

The proportion of patients receiving any advanced therapy (systemic thrombolysis,
surgical embolectomy or catheter-directed procedures) in our study was 15.3% (81.0%
of patients in the high-risk subgroup and 21.3% in the intermediate–high-risk group),
confirming the widespread access of patients to the advanced treatment methods within
PERT. As showed by the National PERT Consortium™ multicenter registry, this proportion
varies between institutions, ranging from 16% to 46%, underlying the need to share the
institutional PERT experiences [8,17]. In the entire cohort, systemic thrombolysis and
surgical embolectomy were the most common advanced therapies (6.4% each group),
followed by catheter-directed procedures (4.7%).

Although the evidence-based data regarding the effect of catheter-directed procedures
on mortality are still pending, catheter-directed therapies has become an important and
less-invasive treatment option both in intermediate–high and high-risk patients, either
to temporarily stabilize the patient before surgical embolectomy or as a final therapy
if hemodynamical stability is restored [23]. Although catheter-directed procedures are
dedicated to intermediate–high and high-risk patients, they have also been applied to one
intermediate–low-risk patient, who deteriorated hemodynamically following the initial
assessment. Among eleven patients treated with catheter-directed procedures, there were
four in-hospital deaths (one due to a stroke) and two major bleeding events. Although the
efficacy and safety of catheter-directed procedures has been shown in other PERT reports,
our data indicate the need for cautious patient qualification for these therapies, as they may
be associated with complications [10,14–18].

The in-hospital mortality rate in our cohort was 6.4%, which is slightly lower than
reported by other studies (8 and 14%) [10,14–18], likely due to the large percentage of low
and intermediate–low-risk patients in our cohort. We registered only one death during the
1-month follow-up period, indicating the efficacy of rapid treatment implementation by
PERT. The mortality rate in high-risk patients was high (38.1%), as compared to relatively
low mortality in other subgroups (0.0% in low-risk, 3.6% in intermediate–low-risk and 5.0%
in intermediate–high-risk). Although the mortality rate in high-risk PE patients remains
unacceptably high, recent trend analyses showed a substantial decrease in mortality due
to high-risk PE from 72.7% in 1999 to 49.8% in 2017 [24,25]. In high-risk PE, systemic
thrombolysis is the first-line treatment and surgical embolectomy is recommended when
systemic thrombolysis is contraindicated or has failed [1]. High-risk patients constituted
approximately 9% of our cohort and were all treated with either systemic thrombolysis
or, in the presence of contraindications, interventional treatment (surgical embolectomy
or catheter-directed procedures). The detailed management of some of these patients has
been previously published [26,27]. The high risk of mortality in high-risk PE patients,
despite multidisciplinary PERT management, underlines the need for further treatment
optimalisation in this challenging population.

Any bleeding occurred in 8.1% and major bleeding in 3.0% of patients, which is lower
than the previously reported bleeding rates, ranging from 11–13% for any bleeding and
4–13% for major events [10,13,15–18]. In our study, in-hospital bleeding events occurred in
all risk groups, and five of the bleeding events occurred following systemic thrombolysis.
These findings remain consistent with previous reports [8]. There were two bleeding
episodes during the 1-month follow-up. However, these findings should be interpreted
with caution due to a very low number of incidents.
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Finally, we observed PERT activation cases in patients with non-thromboembolic
embolism, such as those with iatrogenic PE [28,29]. In these situations, individualized
risk stratification by PERT allowed the determination as to whether an interventional or
conservative approach is more beneficial. Hence, although the primary goal of PERT is to
consult patients with thromboembolism, the availability and expertise of PERT provided
additional clinical benefits in non-thromboembolic, difficult clinical scenarios.

5. Limitations

Our analysis had several limitations. First, over 50% our cohort consisted of low-
and intermediate–low-risk patients. Hence, the reported results are preliminary and
should be confirmed in a larger cohort and in higher risk patients. The large proportion
of low- and intermediate–low-risk patients does not allow an effective assessment of
treatment complications and overall mortality. Further studies should specifically focus
on patients in the intermediate–high- and high-risk groups. Second, we report on the
activity of a single PERT, created at highly specialized academic medical centers with access
to interdisciplinary care. Although different institutional PERTs have similar operating
models, the local factors may affect the individual therapeutic choices, as reflected by
different rates of advanced therapies, depending on the center [10,14–18]. Therefore, our
results cannot be directly extrapolated to other institutions. Third, the efficacy and safety
outcomes are limited to 12-month observation period, which does not allow the deriving of
conclusions regarding the long-term benefits of PERT implementation. Since the goal of
this study was to report on the characteristics and outcomes of patients consulted by the
local PERT, CELZAT, our study design precluded comparison between some subgroups. It
would be useful to compare patient outcomes before and after CELZAT implementation.
Unfortunately, the lack of standardized reporting of patients with PE before CELZAT
implementation made this analysis not feasible. In addition, subanalyses of outcomes in PE
subgroups depend on the initial risk of mortality and/or comorbidities, such as malignancy.
Fourth, because of the lack of data regarding the family history of VTE, we could not
take this risk factor into account, which may be an important cause of VTE, especially in
young patients. Finally, we did not evaluate the cost-efficacy of PERT implementation
(length of hospital stay, costs of PERT activation, patient’s quality of life following the PE
episode). Hence, we cannot derive conclusions regarding the economic effects of PERT
implementation in our institution.

6. Conclusions

We provide the initial experience regarding the 5-year activity of the local PERT
(CELZAT). The implementation of a multidisciplinary PERT enabled patient-tailored deci-
sion making and facilitated the access to advanced therapies, with subsequent low overall
mortality and treatment complication rates. Our findings add to the previously described
experiences derived from other institutional PERTs, confirming the benefits of PERT imple-
mentation. There is a need for multicenter collaboration between the local PERTs to derive
firm conclusions regarding the favorable effect of PERT activity on patient outcomes.
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Abstract: Background: Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is
associated with poor prognosis in cardiovascular diseases. However, the predictive value of TRAIL for
the short-term outcome and risk stratification of acute pulmonary embolism (PE) remains unknown.
Methods: This study prospectively included 151 normotensive patients with acute PE. The study
outcome was a composite of 30-day adverse events, defined as PE-related death, shock, mechanical
ventilation, cardiopulmonary resuscitation, and major bleeding. Results: Overall, nine of 151 (6.0%)
patients experienced 30-day adverse composite events. Multivariable logistic regression showed
that TRAIL was an independent predictor of study outcome (OR 0.19 per SD; 95% CI 0.04–0.90).
An ROC curve revealed that TRAIL’s area under the curve (AUC) was 0.83 (95% CI 0.76–0.88). The
optimal cut-off value for TRAIL was 18 pg/mL, with a sensitivity, specificity, negative predictive
value, positive predictive value, positive likelihood ratio, and negative likelihood ratio of 89%, 69%,
99%, 15%, 2.87, and 0.16, respectively. Compared with the risk stratification algorithm outlined in the
2019 ESC guidelines, our biomarker-based risk stratification strategy (combining TRAIL and hs-cTnI)
has a similar risk classification effect. Conclusion: Reduced plasma TRAIL levels predict short-term
adverse events in normotensive patients with acute PE. The combination of the 2019 ESC algorithm
and TRAIL aids risk stratification in normotensive patients with acute PE.

Keywords: pulmonary embolism; TNF-related apoptosis-inducing ligand; prognosis; risk stratification

1. Introduction

Venous thromboembolism (VTE), including deep vein thrombosis and pulmonary
embolism, contributes a significant burden on health and survival and ranks third among
life-threatening cardiovascular diseases [1]. Acute pulmonary embolism (PE) is the most
severe clinical manifestation of VTE. Most patients with acute PE are normotensive, and
early mortality ranges from 3–7% [2–4]. Early prognostic assessment and risk stratification
for normotensive patients with acute PE is essential for determining appropriate treatment
management approaches. The 2019 European Society of Cardiology (ESC) guidelines sug-
gested that the extensively validated and broadly used simplified pulmonary embolism
severity index (sPESI), combined with right ventricular (RV) dysfunction and laboratory
biomarkers, can be used to classify acute PE patients without hemodynamic instability

J. Clin. Med. 2022, 11, 3908. https://doi.org/10.3390/jcm11133908 https://www.mdpi.com/journal/jcm110



J. Clin. Med. 2022, 11, 3908

into intermediate- or low-risk groups. In addition to clinical parameters and scores, pa-
tients in the intermediate-risk group who display RV dysfunction and elevated cardiac
troponin levels are classified into the intermediate-high-risk category [5]. Previous evidence
demonstrated that a subgroup of normotensive patients with acute PE (i.e., intermediate-
risk group) might benefit from aggressive treatment strategies [6]. Thus, optimizing risk
stratification in normotensive PE is essential to enhance clinical practice.

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is also
known as Apo-2 ligand (Apo-2L) or TNF superfamily 10 (TNFSN10), is a member of the
TNF superfamily of cytokines, which is broadly expressed in various tissues of the human
body [7]. TRAIL is selectively expressed in vascular smooth muscle cells of the pulmonary
artery and aorta [8]. Soluble TRAIL mainly appears to be released by activated leukocytes
such as monocytes and neutrophils [9]. TRAIL is a pro-apoptotic protein which has broad
biological functions. TRAIL may play a crucial role in the pathway linking coagulation
and inflammation elicited by thrombin and mediates the amplification of pro-coagulant
endothelial microparticles released by thrombin and the inflammatory process [10]. Several
clinical studies have shown that reduced TRAIL levels are associated with poor prognosis
in patients with acute myocardial infarction or heart failure, suggesting that TRAIL has
predictive effects in cardiovascular diseases [11–13].

In this study, we hypothesized that TRAIL may be involved in the pathophysiological
mechanism of PE through the interplay between coagulation and inflammation and might
assist in the prognostic assessment of patients with acute PE. Thus, our study aimed to iden-
tify the short-term prognostic assessment and risk stratification of TRAIL in normotensive
patients with acute PE.

2. Materials and Methods

2.1. Study Design and Setting

We conducted a prospective study of normotensive patients with acute pulmonary
embolism from 2015 to 2017 at Beijing Anzhen Hospital in China (NCT 04118634). Based
on the amended Declaration of Helsinki, the study protocol was approved by the Ethics
Committee of Beijing Anzhen Hospital (No. 2018048X), and all patients provided written
informed consent.

2.2. Selection of Participants

As shown in Figure 1, normotensive patients (defined as SBP ≥ 90 mmHg) were
consecutively enrolled if they had acute PE, were aged ≥ 18 years, and the onset of
the illness was ≤14 days ago. Patients with acute PE were objectively confirmed by
computed tomography pulmonary angiography (CTPA) and a ventilation-perfusion lung
scan. The exclusion criteria were the following: [14–16] (1) hemodynamic instability:
(A) cardiac arrest: cardiopulmonary resuscitation required; (B) obstructive shock: systolic
blood pressure (BP) < 90 mmHg or vasopressors required to achieve a BP ≥ 90 mmHg
despite adequate filling status and end-organ hypoperfusion (altered mental status; cold,
clammy skin; oliguria/anuria); (C) persistent hypotension: systolic BP < 90 mmHg or
systolic BP drop ≥ 40 mmHg lasting longer than 15 min and not caused by new-onset
arrhythmia, hypovolaemia, or sepsis; (2) recurrence of PE; (3) chronic thromboembolic
pulmonary hypertension; (4) life expectancy <3 months (i.e., the end stage of diseases);
(5) ongoing pregnancy; (6) renal insufficiency (estimated glomerular filtration rate <30 mL/
min*1.73 m2) or hepatic dysfunction (Child–Pugh class B or C); (7) withdrawal of written
consent for participation in this study; and (8) missing blood samples and troponin data.

2.3. Methods of Measurement

The diagnosis of acute PE was assessed using the Wells clinical probability rule, D-
dimer, and imaging tests by the diagnostic algorithm outlined in the 2019 ESC guidelines [5].
All patients underwent transthoracic echocardiography within 24 h after diagnosis of PE.
The diagnosis of RV dysfunction was based on the following diagnostic criteria [5]: (1) RV
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dilatation at the apical four-chamber view (RV end-diastolic diameter/left ventricular
end-diastolic diameter >1.0), (2) depressed contractility of the RV free wall, (3) tricuspid
regurgitation velocity acceleration, and (4) decreased tricuspid annular systolic excursion
(<17 mm). The electronic medical record system obtained other clinical data, laboratory
findings, and treatment details. According to the risk stratification strategy proposed
in the 2019 ESC guidelines, all normotensive patients with acute PE were classified into
the intermediate-high-, intermediate-low-, and low-risk groups according to their sPESI
score, RV dysfunction, and troponin level. The physicians made treatment decisions while
being unaware of TRAIL levels after carefully considering each patient’s clinical symptoms,
laboratory findings, and imaging tests.

Figure 1. Study participants flow diagram. PE, pulmonary embolism.

Venous plasma samples were collected from patients within 24 h after admission in
vacuum tubes and immediately frozen at −80 ◦C after centrifugation at 3000× g for 10 min.
Plasma TRAIL concentrations were determined using an ELISA kit (Ray Biotech, Inc.
Norcross, GA, USA). Other laboratory tests were completed by the laboratory department
of Beijing Anzhen Hospital.

2.4. Outcome Measures

The study outcome was 30-day adverse composite events, defined as PE-related death
or at least one of the following complications: (1) the need for mechanical ventilation
assistance, (2) the need for catecholamine administration for treatment or prevention,
(3) cardiopulmonary resuscitation, or (4) major bleeding. PE-related death was determined
by (1) autopsy, (2) clinically severe acute PE, and (3) in cases where other causes were
excluded. Major bleeding was defined as clinically overt bleeding accompanied by at
least one of the following: (1) fatal bleeding or bleeding that occurred at critical sites or
organs (intracranial, intraspinal, retroperitoneal, intraocular, and pericardial bleeding);
(2) hemodynamic instability due to bleeding and/or a fall in the hemoglobin level ≥20 g/L,
or bleeding that led to the transfusion of at least two units of blood [17].
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All patients were followed up by pre-trained research staff. We determined the
occurrence of the study outcome by using data collected through a review of the electronic
medical records, clinical visits, and telephone follow-up interviews for up to 30 days.

2.5. Biomarker-Based Risk Algorithm

In the 2019 ESC prognostic strategy, risk assessment for early mortality consists of
seven clinical parameters (sPESI rule), two relevant imaging modalities (TTE or CTPA),
and four cardiac biomarkers (troponin, NT-proBNP, H-FABP, and copeptin). Objective
assessments are relatively time-consuming, labor-intensive, and cost-intensive. Thus, in
this study, a biomarker-based risk algorithm was developed to evaluate the risk assess-
ment of normotensive patients with acute PE. This biomarker-based stratification strategy
was established using TRAIL combined with hs-cTnI levels. According to previous stud-
ies [18–20], hs-cTnI possessed superior negative predictive values (NPV) for short-term
adverse events and could be used as the first step in risk stratification to classify patients
with low-risk acute PE.

2.6. Statistical Analyses

The Kolmogorov–Smirnov test for normal distribution was used for continuous vari-
ables. Skewed continuous variables were expressed as medians (interquartile range [IQR]).
Categorical variables were expressed as absolute numbers or percentages. Comparisons of
continuous variables were analyzed using unpaired Student’s t-tests or Mann–Whitney
U tests, and comparisons of categorical variables were analyzed using Chi-squared or
Fisher’s exact tests. Correlations between continuous variables were analyzed using Spear-
man’s rank correlation coefficient. The prognostic relevance of clinical variables, cardiac
biomarkers, TRAIL levels, and sPESI scores for 30-day adverse events was calculated using
univariate (unadjusted) and multivariate (adjusted) logistic regression analysis, producing
odds ratios (OR) and 95% confidence intervals (CIs). Factors for inclusion in the multivari-
ate analysis were determined after considering the findings from previous publications and
the latest ESC guidelines and significant predictors (p < 0.05) from the univariate analysis.
Receiver operating characteristic (ROC) curve analysis was performed to determine the
area under the curve (AUC) of TRAIL cut-off values for the study outcomes. Youden’s
index was used to identify optimal cut-off values. Sensitivity, specificity, negative predictive
values (NPV), positive predictive values (PPV), negative likelihood ratios (−LR), positive
likelihood ratios (+LR), and the corresponding 95% CIs were calculated. The McNemar–
Bowker test was used to compare the distribution of patients in different risk stratification
strategies (2019 ESC algorithm and biomarker-based approach). Two-tailed p values < 0.05
were considered statistically significant. All statistical analyses were conducted using SPSS
(version 25.0; IBM, Chicago, IL, USA).

3. Results

3.1. Characteristics of Study Subjects

Between January 2015 and December 2017, 221 patients were screened, of whom
70 met the exclusion criteria (flow chart shown as Figure 1). Among the 151 patients who
participated in this study, nine (6%) experienced 30-day adverse composite events. One
patient died directly due to PE; seven patients required catecholamine administration
for treatment or prevention. Two patients required mechanical ventilation, two required
cardiopulmonary resuscitation, and one suffered major bleeding. The clinical and demo-
graphic characteristics of study participants with and without study events are presented
in Table 1. The event group more frequently experienced syncope, RV dysfunction, higher
BNP and hs-cTnI concentrations, and sPESI scores ≥ 1 compared to the non-event group.
Additionally, nine (6.0%) patients received thrombolytic therapy and five (55.6%) experi-
enced adverse outcomes.
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Table 1. Baseline characteristics of normotensive patients with acute pulmonary embolism.

All Patients
(n = 151)

Non-Events
(n = 142)

Events (n = 9) p Value

Age, years 66 (60–73) 66 (60–73) 62 (48–72) 0.453

Male 63 (41.7) 60 (42.3) 3 (33.3) 0.735

Risk factors for VTE

History of VTE 19 (12.6) 19 (13.4) 0 0.603

Immobility 13 (8.6) 12 (8.5) 1 (11.1) 0.566

Recent surgery 8 (5.3) 7 (4.9) 1 (11.1) 0.396

Recent long travel 2 (1.3) 2 (1.4) 0 1.000

Recent fracture 9 (6.0) 8 (5.6) 1 (11.1) 0.434

Comorbidities

Cancer 9 (6.0) 9 (6.3) 0 1.000

COPD 8 (5.3) 7 (4.9) 1 (11.1) 0.396

Coronary heart disease 25 (16.6) 1 (11.1) 24 (16.9) 1.000

Symptoms and signs

Chest pain 39 (25.8) 38 (26.8) 1 (11.1) 0.448

Dyspnea 139 (92.1) 130 (91.5) 9 (100.0) 1.000

Syncope 30 (19.9) 24 (16.9) 6 (66.7) 0.002

SBP, mmHg 124 (114.5–124) 124 (115–138) 120 (113–134) 0.691

SBP < 100 mmHg 4 (2.6) 3 (2.1) 1 (11.1) 0.220

Heart rate, bpm 82 (73–98) 82 (72–96) 97 (84–102) 0.010

Heart rate ≥ 110 bpm 9 (6.0) 7 (4.9) 2 (22.2) 0.092

SaO2 < 90% 15 (9.9) 13 (9.2) 2 (22.2) 0.220

Elevated PASP 49 (32.5) 45 (31.7) 4 (44.4) 0.473

RV dysfunction (on TTE) 15 (9.9) 10 (7.0) 5 (55.6) 0.001

LVEF, % 63 (60–67) 64 (60–68) 60 (56–64) 0.083

Laboratory biomarkers

D-Dimer, ng/mL 2166 (1076–3134) 2114
(1056–3110)

2823
(2389–3134) 0.088

Creatinine, μmol/L 73.5 (61.1–83.7) 73.2 (60.5–83.8) 75.0 (62.6–83.1) 0.75

BNP, pg/mL 141 (46–364) 118
(44.0–310.0)

1000
(653–2054) 0.001

hs-cTnI, ng/mL 0.03 (0.01–0.15) 0.02 (0.01–0.11) 0.27 (0.09–0.91) 0.001

TRAIL, pg/mL 23.1 (15.0–32.3) 23.5 (16.1–32.6) 10.1 (3.6–16.4) 0.001

sPESI ≥ 1 55 (36.4) 47 (33.1) 8(88.9) 0.001

Treatment

Thrombolytic therapy 9 (6.0) 4 (2.8) 5 (55.6) 0.000

Data are presented as median (interquartile range) or number (%). VTE, venous thromboembolism; COPD,
chronic obstructive pulmonary disease; SBP, systolic blood pressure; bpm, beats per minute; SaO2, arterial
oxyhemoglobin saturation; PASP, pulmonary artery systolic pressure; RV, right ventricular; TTE, transthoracic
echocardiography; LVEF, left ventricular ejection fraction; BNP, brain natriuretic peptide; hs-cTnI, high-sensitivity
cardiac troponin I; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand; sPESI, simplified Pulmonary
Embolism Severity Index.
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3.2. Association between TRAIL Levels and Short-Term Prognosis

The median TRAIL concentration was 23.1 pg/mL (IQR 15.0–32.3) in all patients.
Patients in the events group had significantly lower TRAIL levels (median, 10.1 pg/mL
[IQR 3.6–16.4]) than patients in the non-event group (median 23.5 pg/mL [IQR 16.1–32.6],
p = 0.001). The TRAIL concentrations were weakly correlated with BNP (r = −0.28, p = 0.001)
and hs-cTnI (r = −0.24, p = 0.003). The predictors of 30-day adverse composite events were
investigated using a univariate logistic regression analysis (Table 2). Significant predictors
of 30-day adverse composite events in the univariate analysis included syncope (OR = 9.83;
95% CI 2.30–42.08, p = 0.002), RV dysfunction (OR = 16.5; 95% CI 3.82–71.30, p = 0.000), BNP
(OR = 3.60 per SD; 95% CI 1.91–6.78, p = 0.000), TRAIL (OR = 0.18 per SD; 95% CI 0.06–0.56,
p = 0.003), and a sPESI score ≥ 1 (OR = 16.17; 95% CI 1.95–133.11, p = 0.010). Considering
the findings from previous publications and the latest ESC guidelines, significant predictors
from the univariate analysis and cardiac troponin (hs-cTnI) were included in the multivari-
ate logistic regression analysis (Table 2). After adjustment, TRAIL was independently and
significantly associated with 30-day adverse composite events in normotensive patients
with acute PE (OR = 0.19 per SD; 95% CI 0.04–0.90, p = 0.036). As shown in Figure 2, ROC
analysis revealed that the AUC of TRAIL was 0.83 (95% CI 0.76–0.88, p < 0.001) for the
prediction of short-term adverse outcomes, and the optimal cut-off value for TRAIL based
on Youden’s index was 18 pg/mL, at which point the sensitivity, specificity, NPV, PPV, +LR,
and −LR were 89%, 69%, 99%, 15%, 2.87, and 0.16, respectively.

Table 2. Predictors of an adverse 30-day outcome.

OR 95%CI p Value

Univariable analysis a

Age > 80 years 3.43 0.36–32.90 0.286

Cancer - - -

COPD 2.41 0.26–22.05 0.436

Syncope 9.83 2.30–42.08 0.002

SBP < 100 mmHg 5.79 0.54–62.12 0.147

Heart rate ≥ 110 bpm 5.51 0.96–31.57 0.055

SaO2 < 90% 2.84 0.53–15.09 0.222

RV dysfunction (on TTE) 16.5 3.82–71.30 0.000

BNP, pg/mL, per SD 3.60 1.91–6.78 0.000

hs-cTnI, ng/mL, per SD 1.25 0.85–1.85 0.254

TRAIL, pg/mL, per SD 0.18 0.06–0.56 0.003

sPESI ≥ 1 16.17 1.96–133.11 0.010

Multivariable analysis

Syncope 2.48 0.20–31.12 0.481

RV dysfunction (on TTE) 16.47 1.06–256.27 0.045

BNP, pg/mL, per SD 3.68 1.24–10.89 0.019

hs-cTnI, ng/mL, per SD 1.45 0.64–3.32 0.375

TRAIL, pg/mL, per SD 0.19 0.04–0.90 0.036

sPESI ≥ 1 1.09 0.06–21.54 0.956

OR, odds ratio; SD, standard deviation; COPD, chronic obstructive pulmonary disease; SBP, systolic blood pres-
sure; bpm, beats per minute; SaO2, arterial oxyhemoglobin saturation; RV, right ventricular; TTE, transthoracic
echocardiography; BNP, brain natriuretic peptide; hs-cTnI, high-sensitivity cardiac troponin I; TRAIL, tumor necro-
sis factor-related apoptosis-inducing ligand; sPESI, simplified Pulmonary Embolism Severity Index. a Variables
found to significantly predict an adverse 30-day outcome in the univariate analysis are displayed. Additionally,
hs-cTnI levels and all variables included in the sPESI are shown. The logistic regression analysis calculates odds
ratios (ORs) and their respective 95% confidence intervals (CIs) for an adverse 30-day outcome.
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Figure 2. Receiver operating characteristic (ROC) curve for TRAIL concerning an adverse 30-day
outcome. AUC: area under the curve; CI: confidence interval.

3.3. TRAIL’s Role in Risk Stratification

According to the 2019 ESC risk algorithm (Figure 3), 10 (6.6%) patients were classified
into the intermediate-high risk group, 78 (51.7%) into the intermediate-low risk group,
and 63 (41.7%) into the low-risk group. During the follow-up, the 30-day adverse com-
posite events occurred in 5 (50%), 4 (5.1%), and 0 (0%) patients, respectively. The risk
assessment using the biomarker-based strategy based on hs-cTnI and TRAIL is shown
in Figure 3. As with the 2019 ESC risk algorithm, the stepwise biomarker-based strategy
demonstrated strong predictive performance in identifying intermediate-high- and low-risk
group patients (Table 3). Both the biomarker-based strategy and the 2019 ESC algorithm
showed high sensitivity (100%) and NPV (100%) in identifying low-risk patients, while
the biomarker-based strategy had higher specificity than the 2019 ESC algorithm (65% vs.
44%, p < 0.001). When identifying intermediate-high-risk group patients, both strategies
had high specificity (88% vs. 96%, p < 0.001) and the biomarker-based strategy had a
superior trend of sensitivity (89% vs. 56%, p = 0.375). To combine the performance of
the biomarker-based strategy and the 2019 ESC algorithm, we tested whether TRAIL may
improve patients re-classified as belonging to the intermediate-high risk group, as shown in
Figure 4. Using TRAIL < 18 pg/mL to further stratify patients in the intermediate-low risk
group, 28 patients were identified as being at higher risk, with four adverse events. The
prognostic performance of risk assessment using the 2019 ESC algorithm and TRAIL for
the prediction of an adverse 30-day outcome is shown in Table 3, for which the sensitivity,
specificity, NPV, PPV, +LR, and −LR were 100%, 80%, 100%, 24%, 5, and 0, respectively.
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Figure 3. Risk assessment using the biomarker-based strategy based on hs-cTnI and TRAIL. The
number (%) of patients with an adverse 30-day outcome is shown for each strategy. Hs-cTnI levels
>0.04 ng/mL are defined as positive. PE: pulmonary embolism; hs-cTnI, high-sensitivity cardiac
troponin I; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand.

Table 3. Prognostic performance of risk assessment strategies for the prediction of an adverse
30-day outcome.

Biomarker-Based
Algorithm
(95% CI)

2019 ESC
Algorithm
(95% CI)

Combination of
TRAIL and the 2019

ESC Algorithm
(95% CI)

Low-risk vs. intermediate-low- and intermediate-high-risk

Sensitivity, % 100 (66–100) 100 (66–100) 100 (66–100)

Specificity, % 65 (56–73) 44 (36–53) 80 (72–86)

PPV, % 15 (13–18) 10 (9–12) 24 (18–30)

NPV, % 100 100 100

+LR 2.84 (2.3–3.5) 1.80 (1.6–2.1) 5 (3.5–6.8)

−LR 0 0 0

Low-risk and intermediate-low- vs. intermediate-high-risk

Sensitivity, % 89 (52–100) 56 (21–86) -

Specificity, % 88 (82–93) 96 (92–99) -

PPV, % 32 (22–44) 50 (26–74) -

NPV, % 99 (95–99) 97 (94–99) -

+LR 7.42 (4.5–12.3) 15.78 (5.6–44.7) -

−LR 0.13 (0.02–0.8) 0.46 (0.2–1.0) -
ESC, european society of cardiology; CI, confidence interval; TRAIL, tumor necrosis factor (TNF)-related apoptosis-
inducing ligand; PPV, positive predictive values; NPV, negative predictive values; +LR, positive likelihood ratios;
-LR, negative likelihood ratios.
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Figure 4. Risk assessment using the 2019 ESC algorithm and TRAIL. The number (%) of patients with
an adverse 30-day outcome is shown for each strategy. Hs-cTnI levels > 0.04 ng/mL are defined as
positive. PE: pulmonary embolism; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand.

4. Discussion

This study investigated the relationship between plasma TRAIL concentrations and
short-term adverse outcomes and whether TRAIL can optimize the current risk stratifica-
tion. Using a cut-off value of 18 pg/mL, we found that decreased plasma TRAIL levels
had an independently prognostic performance for 30-day adverse outcomes. A stepwise
biomarker-based risk assessment strategy combining hs-cTnI and TRAIL improves pre-
dictive performance in identifying intermediate-high- and low-risk group patients. The
combination of the 2019 ESC algorithm and TRAIL aids risk stratification in normotensive
patients with acute PE.

4.1. The Potential Role of TRAIL in PE

TRAIL exists as either a type II membrane protein or a soluble protein. TRAIL receptors
are expressed in the cardiovascular system in vascular smooth cells and cardiomyocytes,
including osteoprotegerin (OPG). TRAIL has been found to play a role in ischemic vascu-
lar diseases and cardiovascular disease (CVD) [20–24]. Several prospective studies have
demonstrated that lower TRAIL concentrations predicted poor prognosis in patients with
CVD [13,25,26]. In our study, lower TRAIL concentrations were associated with short-
term adverse outcomes. Low levels of TRAIL tend to represent poor prognosis. This is
similar to the findings of several previous studies, in which serum TRAIL levels were
negatively related to the severity of coronary heart disease [27], lower serum TRAIL levels
were associated with worse outcomes in patients with acute myocardial infarction [28],
and higher TRAIL levels in patients with advanced heart failure were associated with an
improved prognosis [12,29]. Despite this, it is unclear how TRAIL can clinically influence
the thrombosis and inflammation process during acute PE. However, it is plausible that
the interaction between TRAIL and its receptors modulates the progression of thromboem-
bolism. The role of inflammation-modulating maladaptive RV remodeling and dysfunction
has been demonstrated. Acute PE leads to a cascade of inflammatory response which might
be followed by leukocyte recruitment to the lesion. TRAIL recruits activated leukocytes
to a particular tissue and initiates apoptosis to terminate the immune response. TRAIL
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promotes the proliferation of vascular smooth muscle cells and neovascularization [28,29].
TRAIL also enhances endothelial nitric oxide synthase phosphorylation, NOS activity,
and NO synthesis; thus, it causes vasodilation [30,31]. Interestingly, there is a negative
correlation between TRAIL and hsCRP, which provides further support for the protective
role of TRAIL in the development of atherosclerosis and acute coronary disease [32].

4.2. The Combination of TRAIL and the 2019 ESC Algorithm for Risk Assessment in Normotensive
Patients with Acute PE

Based on the 2019 ESC guidelines, treatment decisions for normotensive patients with
acute PE need to be based on a risk stratification strategy, with low-risk patients being
considered for early discharge and home treatment, intermediate-low or intermediate-high
risk patients being closely monitored and offered reperfusion therapy if deterioration
occurs. Recent cohort studies developed combination models for the identification of
intermediate-high-risk PE patients (e.g., PREP score, FAST score, and Bova score) [33–35],
and several studies investigated the prognostic value of biomarkers on risk stratification
(e.g., Copeptin and Lipocalin-2) [16,19]. Due to the relatively limited performance of
the 2019 ESC algorithm, we developed a novel and simple stepwise biomarker-based
strategy using TRAIL and hs-cTnI. More patients were re-classified into the low-risk and
intermediate-high risk groups using a biomarker-based algorithm. To combine the perfor-
mance of the biomarker-based strategy and the 2019 ESC algorithm, we also tested whether
TRAIL may improve patients re-classified as belonging to the intermediate-high risk group.
As shown in Table 3 and Figure 4, the prognostic performance of risk assessment was
improved using the 2019 ESC algorithm and TRAIL to predict an adverse 30-day outcome.

There are some limitations in this study that merit mentioning here. First, the included
population came from a single center, and the number of people who experienced an
outcome was low. However, adverse outcomes (6%) were similar to those reported in other
studies [14,15,18,19]. Second, of the 221 patients screened, 31 (14.0%) were excluded due
to missing data. Given the small size and the low event rate of this study, we could not
evaluate if TRAIL has additional value on top of the existing risk stratification. Further large-
scale studies are required in future using independent study cohorts. This study also lacked
multiple consecutive measurements for TRAIL. The mechanism and pathophysiological
process throughout the pulmonary embolism need to be further explored and validated.

5. Conclusions

In conclusion, reduced plasma TRAIL levels predict short-term adverse events in
normotensive patients with acute PE. The combination of the 2019 ESC algorithm and
TRAIL aids risk stratification to assist physicians in the making of treatment decisions and
care of patients.
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Abstract: Sticky Platelet Syndrome (SPS) is a disorder characterized by platelet hyperaggregability,
diagnosed by studying in vitro platelet aggregation with ADP and epinephrine. It is the second most
common cause of thrombophilia in Mexican Mestizos and manifests as an autosomal dominant trait
which, combined with other coagulopathies, contributes significantly to the morbidity and mortality
of patients with primary thrombophilia. It is easily treatable with antiplatelet drugs; however, the
methods for diagnosis are not readily available in all clinical laboratories and the disorder is often
overlooked by most clinicians. Herein, we present the results of more than 20 years of Mexican
experience with the study of SPS in a Mestizo population.

Keywords: thrombophilia; sticky platelet syndrome; hyperaggregability

1. Introduction

In 1995, Mammen and colleagues studied a hereditary condition of hyper adhesive
platelets that clump upon standard surface contact, after studying a family whose members
suffered from rare arterial thrombotic events without identifiable risk factors such as
diabetes or atherosclerosis to predispose them and otherwise normal coagulation laboratory
parameters. Later, they observed the same condition in more than 200 patients who, as
named by Holiday and colleagues, suffer from “Sticky Platelet Syndrome (SPS)”. The
condition is associated with angina pectoris, acute myocardial infarction, cerebral ischemic
attacks or strokes, ischemic optic neuropathy, and recurrent venous thromboembolism,
even while on optimal anticoagulant therapy [1].

We know now that SPS is a qualitative platelet disorder with familial occurrence that
appears to have an autosomal dominant component as well, although not all patients
have relatives with the disorder. It is characterized by increased platelet aggregation
in response to ADP and epinephrine in vitro, and it is one of the most common causes
of arterial thrombosis and pregnancy complications. Patients with SPS usually have
their first thrombotic episode before age 40 and may or not have other acquired risk
factors for thrombophilia. Anticoagulants such as vitamin K antagonists are inefficient,
but some antiplatelet drugs have been shown to be effective at preventing rethrombosis
and diminishing aggregation. An excellent review of the history of the disease and future
perspectives was published by Kubisz and colleagues [2].

It has been considered that the glycoprotein receptors on the platelet surface may be
involved in the pathogenesis of SPS; however, a specific cause of the condition has not been
found [3]. Nonetheless, significant mortality and morbidity occur from these thrombotic
events, such as paralysis, cardiac disability from repeated coronary events, miscarriages,
and loss of vision and mobility. Rodger Bick (1998) mentioned that early diagnosis and
treatment can prevent arterial and venous thrombotic events; however, clinicians and
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laboratories were unaware of the prevalence of the syndrome and thus failed to direct
their diagnosis towards it. After studying 78 patients with said characteristics over a two
year-period, he established that SPS is a common cause for arterial and venous thrombotic
events in otherwise healthy patients [4]. These studies set the precedent for us to pioneer
the study of the Mexican Mestizo population to determine the prevalence, incidence, and
genetic background of SPS, aiming to determine its impact on morbidity and mortality in
our country compared to other ethnic cohorts.

1.1. Primary Thrombophilia and Sticky Platlet Syndrome: The Mexican Experience

Pons-Estel and colleagues defined “mestizo” as those individuals born in Latin Amer-
ica who had both Amerindian and white ancestors, opposed to whites who have all white
European ancestors and Amerindians, who have full autochthonous ancestry [5]. In 2005,
Silva-Zolezzi and colleagues published the results of the first Mexican Genome Diversity
Project (MGDP), which aimed to assess genetic ancestry in Mexicans to develop genomic
medicine and genetic analysis in our country and Latin America. The study showed the
great genetic diversity of Mexicans given by “mestizaje”, which aside from adding to the
cultural richness and beauty of our country, poses a clinical challenge on the study of
diseases and raises a question on whether results obtained from studies on Caucasian or
other populations are truly applicable to ours [6].

Our first study related to the investigation of the primary causes of thrombophilia
in Mexican Mestizos was carried out on 102 persons with clinical features of inherited
thrombophilia, who were tested for the activated protein C resistance (APCr) genotype and
phenotype as well as levels of coagulation proteins C and S, antithrombin, plasminogen,
tissue type plasminogen activator activity, plasminogen activator inhibitor activity, plas-
minogen activator inhibitor type I, anti-phospholipid antibodies and lupus anticoagulants.
While 46% of the patients fit within the normal range for all tests, 39.2% were consistent
with the APCr phenotype and only 4% with the factor V Leiden mutation. This finding
is relevant because studies on Caucasian groups report that 20–60% of cases present such
mutation, whereas in Mexican Indian groups it is almost nonexistent. In this cohort, most
of the cases were acquired or unrelated to the factor V mutation, which led to conclude that
the ethnic composition of Mexican Mestizo ancestry plays an important role in the etiology
of primary thrombophilia [7].

In a continuing study, 37 Mexican Mestizo patients and 50 normal controls were
tested under the same criteria to investigate prevalence of known mutations associated
with primary thrombophilia. Four were heterozygous for the factor V Leiden mutation,
16 for the MTHFR 677 mutation, and 5 for the prothrombin 20,210 mutation. 6 were
homozygous for the MTHFR 677 defect. It was also found that four individuals were
compound heterozygotes for combinations of these mutations. MTHFR mutation alone
is not sufficient to cause thrombophilia unless it is associated with other thrombophilia-
causing conditions. Again, this study showed that the prevalence of mutations in Mexican
Mestizos differs from that reported in Caucasians and paved the way for further analysis of
these genetic differences and their implications on the diagnosis and prognosis of primary
thrombophilia in Mexico [8].

In 2002, 10 patients with clinical characteristics of primary thrombophilia from the
same ethnic group were prospectively studied to assess the prevalence of SPS. Platelet
aggregation was measured from peripheral blood samples with increasing concentrations of
ADP and epinephrine, while other coagulation and hemostasis parameters were measured
as in previous studies [7,8]. Six out of ten patients fit within the SPS abnormality: five of
them displayed other thrombophilia conditions linked to the genetic mutations previously
studied, whereas only one presented SPS as a sole condition. Four of these six patients had a
family history of thrombophilia. The study showed that SPS is frequently found in Mexican
Mestizos with clinical characteristics of thrombophilia along with other genetic conditions
that contribute to a multifactorial disease, changing the way clinicians approach diagnosis
and treatment due to the implications on the health of patients and their families [9].
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Given that few Mexican Mestizo patients with APCr-linked thrombophilia were af-
fected by the FV Leiden mutation, the prevalence of other mutations such as HR2 haplotype,
FV Cambridge, Hong Kong, and Liverpool was also looked at. Thirty-nine patients, re-
gardless of their APCr phenotype status, were accrued for the study; inclusion criteria
considered early-age and recurrent thrombosis, thrombosis at unusual anatomic sites,
resistance to conventional therapy, and at least one episode of venous thrombosis, con-
firmed by phlebography or Doppler. Overall, 10% of patients were heterozygous for the
FV Leiden mutation, 28% displayed the HR2 haplotype, one patient presented the Hong
Kong mutation, and none presented the Cambridge or Liverpool mutations. This study yet
again evidenced the differences in the genetic background of thrombophilia patients across
ethnicities and concluded that the studied polymorphisms are nor relevantly implicated in
thrombophilia in Mexican Mestizos [10].

In 2005, 46 Mexican Mestizo patients were accrued to assess the prevalence of SPS,
protein C resistance, protein C activity and antigen, protein S, antithrombin, plasminogen,
tissue type plasminogen activator activity, IgG and IgM isotypes of antiphospholipid
antibodies, Factor V gene mutations, MTHFR 677 mutation and G20210A polymorphism.
A total of 8% of individuals did not display any abnormality and thus were not counted
for the final evaluation; 12% showed one abnormality and 88% percent presented two to
five co-existing abnormalities; 48% of patients had SPS, 24% aPCR phenotype, 11% the
FV Leiden mutation, 24% antiphospholipid antibodies, 9% protein S deficiency, and 13%
protein C deficiency; 24% patients presented the HR2 haplotype and only one patient
presented the Hong Kong mutation, supporting the results of the previous study [11].
Abnormalities in APCr were not significantly associated with the SPS phenotype in another
study [12].

1.2. Multifactorial Thrombophilia

Hypercoagulability is a major health problem and has a high mortality and morbidity
around the world. Inherited hypercoagulable states are associated with venous thrombosis
rather than arterial problems, which are mostly due to the increased activation of platelets
in the endothelial surface. Although genetic predisposition is unlikely to be the sole cause of
a thrombotic event, people who have inherited more than one thrombophilia are at greater
risk of thrombosis than those who are affected only by a single factor. Other “triggers”
are needed to develop a thrombotic event, for example, atherosclerosis, pregnancy, or the
use of oral contraceptives. This poses a model of “thrombosis threshold”, which is based
on a combination of inherited hypercoagulable states and patient lifestyle [13]. Based on
this, in 2007 we investigated the relationship between clinical markers and thrombophilia
in 100 patients. Overall, 19% of patients presented only one abnormality, while 81%
presented two or more. SPS was found in 57 patients and the presence of other mutations
was consistent with previous studies. Results also showed an association between the
FV Leiden mutation and resistance to activated protein C; meaning that 94% of Mexican
Mestizos that had at least one clinical marker of thrombophilia develop a thrombophilic
condition. However, it is yet more common that the development of these pathologies is
enhanced by two or more coexisting thrombophilia conditions [14].

Moreover, thrombophilia is often concomitant in myeloproliferative disorders (MPDs)
such as polycythemia vera, essential thrombocythemia, idiopathic myelofibrosis, and
chronic leukemias. Since myeloproliferative diseases arise from acquired genetic mutations,
the group studied 77 Mexican Mestizos with primary thrombophilia to look for the JAK2
V617F mutation (commonly associated with MPDs) aiming to find whether underlying
MPDs could be the precipitating factor of thrombotic episodes. None of the patients carried
the mutation and only four were found to have splanchnic thrombosis, concluding that
MPDs are an improbable cause of thrombophilia in this population. It is also noteworthy
that the prevalence of MPDs in Mexican Mestizos is lower than in Caucasians [15].
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Later on, we studied the effect of SPS in pregnancy. A total of 268 Mexican Mestizo
patients were studied, of which 108 female patients were selected for further analysis; 71%
of these patients had been pregnant at some point, and 37% had experienced at least one
spontaneous abortion. Within the subset of patients who suffered from a spontaneous
abortion, 86% had SPS, while the remaining percentage were heterozygous the MTHFR
mutation. At the time, data in Mexico indicated that 12–13% of pregnancies in the gen-
eral population end in a spontaneous abortion, meaning that the relative risk of having
a miscarriage is 2.66 times higher in women with SPS. Timely and efficient treatment
with antiplatelet drugs in these patients could reduce the risk of obstetric complications
significantly. This study evidenced the necessity of further investigating complications
and treatment of SPS in pregnant women [16]. Sokol and colleagues mentioned that SPS is
especially relevant in the clinical management of patients with recurrent abortion [17].

1.3. Subtypes of SPS and Inheritance

It has been proposed that SPS is an autosomal dominant inherited disease that can
manifest in one of three ways: type I, characterized by platelet hyperaggregability with
ADP and epinephrine; type II, where aggregation happens only with epinephrine; and
type III, only with ADP. To further study this observation, the group studied 5 kindreds
of patients with known SPS and previous thrombotic episodes. A complete laboratory
workup for thrombophilia was performed and in all five kindreds, where other relatives
presented SPS. Results showed that family members of patients who carried the MTHFR
mutation also had the mutation, and in one kindred, it was found in members of different
generations [18]. Further on, the group aimed to establish a correlation between SPS pheno-
type and the GPIIIa PL A1/A2 polymorphism, a known marker of hyperaggregability and
thromboembolism. A total of 160 patients with a clinical marker of primary thrombophilia
were studied, of which 95 presented SPS (61 patients with type 1, 6 and 28 with type 2 and
type 3, respectively). Of these patients, 79 had the PL A1/A2 genotype, 15 displayed the
A1/A2 genotype, and 1 showed the PL A1/A2 genotype. In healthy controls, the frequen-
cies were similar; thus, it was inferred that there is no significant association between PL
A1/A2 polymorphisms and SPS phenotype [19].

In another study performed on 86 patients, we found that 65% of the cases were SPS
type I, 10% type II, and 25% type III. Venous thrombosis was more frequent than arterial
with 70% of cases, presenting in the lower limbs, CNS, upper limbs, mesenterial veins, and
retina. There was no association between SPS type and localization of the thrombi, and
no correlation between gender and localization of the episode nor subtype of SPS. Once
again, this showed that there are important epidemiological differences between SPS in
Mexican Mestizos and Caucasians. Caucasians suffer from SPS type II more frequently [20],
whereas type I is more frequently seen in Mexican Mestizos. SPS is also the second most
common cause of thrombophilia in this ethnic group [21]. We also conducted a study to
define the identification of SPS worldwide and found that patients with the condition have
been identified and reported in the five continents [12].

1.4. Insights on the Treatment of SPS

Treatment of SPS consists of diminishing platelet hyperaggregability with antiplatelet
drugs such as aspirin. To evaluate the efficacy of this treatment on the prevention of
rethrombosis and hyperaggregability, 55 patients with at least two assessments of SPS
phenotype were treated and followed for up to 129 months with platelet aggregation
studies. A total of 40 patients were treated with aspirin, 13 with a combination of aspirin
and clopidogrel, and 2 with clopidogrel only. Two of these patients developed another vaso-
occlusive episode in the retinal central artery despite treatment after 52 and 129 months;
however, they showed no additional thrombophilia-causing conditions besides SPS after a
full laboratory workup (Velázquez-Sanchez-de-Cima et al., 2013). Since SPS can contribute
to “multifactorial thrombophilia”, it is important that key laboratory tests are performed.
Nevertheless, it was observed that treatment with common antiplatelet drugs such as
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aspirin and/or clopidogrel was effective in 96.4% of patients with SPS, regardless of the
subtype. The results are in concordance with those obtained in a larger cohort (n = 270)
by Kubisz and colleagues [22]. The findings of this study and observations made in
the Mexican Mestizo population were presented at the 18th International Meeting of
the Danubian League against Thrombosis and Haemorrhagic Disorders in 2015 and this
continues to be the treatment of choice nowadays [23].

To further analyze the features of the treatment of SPS worldwide, we conducted a
meta-analysis of 108 papers containing the term “Sticky Platelet” in the title or the abstract
obtained from PubMed; of these, 43 were selected and 1783 patients with the condition
were identified. We found that 332 patients received antiplatelet drugs, of which 303 were
given aspirin only, 29 received combinations of heparin or coumadin with aspirin, and
2 patients received heparin + alteplase or abciximab. The rate of rethrombosis on these
patients was 1.5%, showing that physicians around the world are aware that the use of
antiplatelet drugs in SPS patients is beneficial. Although the treatment has been proven to
be effective to control the condition, the importance of investigating its pathophysiology
and epidemiology around the world has been deemed extremely important [24].

1.5. Concluding Remarks

Since the first description of Sticky Platelet Syndrome, it has been within our uttermost
interest to contribute to the study of the genetic factors, clinical management, and diagnosis
of the disease; especially given that it seems to be the second most common cause of
thrombophilia in our country. SPS does not usually lead to thrombosis on its own, but
rather needs association with another thrombophilia-causing condition to manifest itself,
such as estrogen use, mutations, other alterations in blood coagulation, and in most recent
times, COVID-19 [25,26]. In some patients, SPS can be so insidious that clinicians often
mislabel thrombotic events as idiopathic. However, in patients with a high level of baseline
genetic hypercoagulability, simple triggers could initiate thrombotic episodes and make
them more likely to recur [11].

Even though the exact pathophysiology of SPS is not fully understood to date, a
detailed review of known platelet function and molecular and genetic features associated
with this syndrome was recently published by García-Villaseñor and colleagues. Some
studies have been performed to assess the implications of microRNAs in platelet function,
as well as to establish the relationship of polymorphisms with SPS complications, most of
which are related to chronic degenerative diseases and infertility [27].

There is an urgent need to identify the cause of SPS, given that it is the most frequent
cause of hereditary thrombophilia in México and probably in other countries as well. The
gold standard to diagnose SPS is aggregometry; but since this technique is not readily
available in most clinical laboratories, it is important to study more specific markers
that could be studied with ease [28]. Many clinical professionals believe that SPS is only a
reflection of “laboratory artifacts”; however, this is not due to lack of proof, but rather lack of
understanding and availability of diagnostic methods. Given that SPS testing needs recently
collected blood specimens, it is not possible to refer samples for testing, highlighting the
need to standardize laboratory protocols and provide trustworthy information to make it
more readily available for patients and clinicians. In Mexico, the topic is worthy of study
since SPS has been proven to go hand-in-hand with other causes of thrombophilia, the most
frequent cause of spontaneous miscarriages in thrombophilic women, and an important
cause of venous thromboembolism. Nonetheless, SPS is an easily treatable condition given
that antiplatelet drugs are cheap, available, and effective. Therefore, knowledge of the
condition implies improving the quality of life for patients with this and other concomitant
disorders; see Box 1 and Figure 1.
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Figure 1. Timeline of the initial studies on Sticky Platelet Syndrome, and subsequent studies con-
ducted and published in México. SPS: Sticky Platelet Syndrome. MTHFR: Methylenetetrahydrofo-
latereductase. (GP)IIIa PL A1/A2: Glycoprotein IIIa. aPCR: activated protein C resistance. Created in
Biorender.com (accessed on 2 July 2022).
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Box 1. Salient features of Sticky Platelet Syndrome.

(1) SPS is a phenotype of platelet hyperaggregability, defined by increased in vitro platelet ag-
gregation after the addition of very low concentrations of adenosine diphosphate and/or
epinephrine. The concentrations and dilutions of the agents are relatively well standardized.

(2) The genotype is currently unknown, but several observations on the genes of platelets proteins
are being studied: platelet glycoprotein IIIa PLA1/A2; platelet glycoprotein 6, growth arrest
specific 6, coagulation factor V, integrin subunit beta 3, platelet endothelial aggregation
receptor 1, serpin family C member 1, serpin family E member 1.

(3) The SPS phenotype is probably the expression of genetic conditions interacting with other
medical conditions or environmental factors, such as diabetes mellitus, hormonal therapy,
and pregnancy.

(4) SPS may lead into both arterial and venous thrombosis, the latter being more frequent.
(5) SPS is a hereditary autosomal dominant trait.
(6) SPS is the most frequent cause of hereditary thrombophilia in México, and probably in

other countries.
(7) Patients with SPS have been identified and treated in all continents of the world.
(8) SPS is a frequent cause of miscarriages and obstetric complications.
(9) SPS usually needs another thrombophilic condition to fully express as a thrombotic episode.

It has recently been described as a risk factor for thrombosis during COVID-19.
(10) The hyperaggregability of SPS reverts to employing antiplatelet drugs and the re-thrombosis

rate of persons with the syndrome is very low while being on treatment. Most patients revert
the hyperaggregability with aspirin, but around one quarter need two antiplatelet drugs. It is
therefore advisable to assess the SPS phenotype after starting the antiplatelet drug, in order to
define further treatment. Treating persons with SPS with oral anticoagulants does not reduce
the re-thrombosis rate

(11) Claiming that SPS is a non-entity indicates that it is not being assessed properly and may also
be detrimental for patients. The treatment is cheap, available and effective, as well as tolerated
by most persons, which is the use of low-doses of aspirin and other antiplatelet drugs.
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Abstract: Background: Cerebral venous sinus or vein thromboses (SVT) are treated with heparin
followed by oral anticoagulation. Even after receiving the best medical treatment, numerous patients
experience neurological deterioration, intracerebral hemorrhage or brain edema. Debate regarding
whether endovascular treatment (EVT) is beneficial in such severe cases remains ongoing. This
systematic review summarizes the current evidence supporting the use of EVT for SVT on the basis
of case presentations, with a focus on patient selection, treatment strategies and the effects of the
COVID-19 pandemic. Methods: This systemic literature review included randomized controlled trials
(RCTs) and retrospective observational data analyzing five or more patients. Follow-up information
(modified Rankin scale (mRS)) was required to be provided (individual patient data). Results:
21 records (n = 405 patients; 1 RCT, 20 observational studies) were identified. EVT was found to be
feasible and safe in a highly selected patient cohort but was not associated with an increase in good
functional outcomes (mRS 0–2) in RCT data. In observational data, good functional outcomes were
frequently observed despite an anticipated poor prognosis. Conclusion: The current evidence does
not support the routine incorporation of EVT in SVT treatment. However, in a patient cohort prone
to poor prognosis, EVT might be a reasonable therapeutic option. Further studies determining the
patients at risk, choice of methods and devices, and timing of treatment initiation are warranted.

Keywords: cerebral venous sinus thrombosis; endovascular therapy; thrombolysis; thrombectomy;
intracerebral hemorrhage; anticoagulation; VITT

1. Introduction

Cerebral venous sinus or venous thrombosis (SVT) is a rare but potentially severe cause
of cerebral hemorrhage or cerebral venous infarction (incidence: 1.32 per 100,000 person-years
(2.78 per 100,000 person-years in women 31–50 years of age)) accounting for approximately
0.5% of all stroke cases [1–3]. Various factors are associated with the development of
SVT [1,4]. Recent publications have reported a considerably higher incidence of SVT in the
COVID-19 pandemic because both COVID-19 (reported incidence: 8.8 per 10,000 infections
over 3 months) and COVID-19 vaccination (leading to vaccine-induced immune thrombotic
thrombocytopenia (VITT)) appear to increase the risk of SVT [5,6]. Figure 1 illustrates the
anatomy of the cerebral dural sinus and the deep cerebral veins.
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Figure 1. Illustration of the anatomy of the cerebral sinus and veins [7].

Outcomes after SVT in general are favorable assuming early diagnosis and treat-
ment initiation [8]. Treatment is challenging, and its success highly depends on rapid
anticoagulation with unfractionated or low-molecular-weight heparin, even in cases of
intracerebral hemorrhage [9,10]. However, probably because of a limited capacity to dis-
solve an extensive intravenous thrombus load, many patients show deterioration, and as
many as 13% eventually die or remain severely disabled despite sufficient anticoagulation
therapy [11–13]. Patients with coma or altered mental status, intracerebral hemorrhage
(ICH), underlying malignancy or an infection of the central nervous system appear to be
at risk [12]. Pregnant or postpartum women, chronic hypertension as well as superior
sagittal sinus and cortical vein involvement seem to be associated with ICH complications
in SVT [14].

Endovascular treatment (EVT) strategies have been proposed to increase the frequency
of good functional outcomes in high-risk or deteriorating patients [15–25]. Initially, en-
dovascular thrombolysis with application of the thrombolytic agent locally and at the site of
the occluded sinus was described [15,16]. Occasionally, the catheter is left in situ for 24 h or
more [16,17]. In addition, several endovascular techniques have been discussed and inves-
tigated: rheolytic catheter thrombectomy, direct aspiration thrombectomy, balloon-guided
thrombectomy or angioplasty and stent retriever thrombectomy [18–37]. Information on
EVT in SVT is sparse and is based primarily on case series and anecdotal data and only
a single published randomized controlled trial (RCT) [19,38–57]. Therefore, the current
guideline recommendations remain vague. Whereas the American Heart Association and
the American Stroke Association have together stated that endovascular therapy “may
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be considered if deterioration occurs despite intensive anticoagulation treatment,” the
European Stroke Organisation has not given any advice at all [58,59].

The goal of this systematic review is to provide an overview on the current evidence
supporting EVT strategies in patients with SVT. We aimed to identify potential selection
criteria for patients who might benefit from an additional EVT. Furthermore, the roles of
SARS-CoV-2 infections and VITT are discussed.

2. Materials and Methods

We performed a systematic literature search in the PubMed (20 May 2022) and Medline
(20 May 2022) databases by using the following search terms: “sinus thrombosis AND
endovascular,” “sinus thrombosis AND thrombectomy,” “[cerebral] venous thrombosis
AND endovascular” and “[cerebral] venous thrombosis AND thrombectomy.” For the
sub-analysis of patients with SVT caused by SARS-CoV-2 infection or after COVID-19
vaccination, additional search phrases were identified: “COVID-19 AND endovascular
(AND thrombosis),” “COVID-19 AND thrombectomy (AND thrombosis),” “vaccination
AND endovascular” and “vaccination AND thrombectomy.” All articles published online
until 20 May 2022 were screened. Two independent raters performed the literature search
(P.B. and H.H.). This review follows the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA 2020) recommendations [60].

All identified publications were required to meet the following predefined inclusion
criteria: (1) RCTs or retrospective studies, case series/case reports including more than five
patients 18 years of age or older; (2) reported information on functional outcomes (modified
Rankin scale (mRS) after discharge (not at the time of discharge)), death and complications
(e.g., symptomatic intracranial hemorrhage or procedural complications); (3) inclusion of
individual patient or study data only once (screening for repeated publications including
identical cases); and (4) publication in English. In the analysis of EVT in patients with
COVID-19 and VITT, only articles and manuscripts evaluating endovascular procedures
(and the respective indications to treat patients) were eligible. We, therefore, did not
consider registry data and meta-analyses reporting the frequency and the number of
interventions without mentioning procedure-specific outcome parameters.

3. Results

A total of 456 records were identified and screened on the basis of the predefined search
criteria (Figure 2). Only 92 were eligible for full-text evaluation. Eventually, 21 records
were eligible for inclusion (reasons for exclusion of records: n = 56—case reports or case
series with fewer than five reported events; n = 14—no follow-up data or data on functional
outcomes; n = 3—not written in English).

Figure 2. Flow diagram visualizing the selection process for the included publications.
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One RCT (Thrombolysis or Anticoagulation for Cerebral Venous Thrombosis; TO-ACT)
compared EVT (n = 33) and standard care (i.e., anticoagulation; n = 34) in patients with
anticipated poor outcomes (Table 1) [38], which were defined as at least one of the following
risk factors: mental status disorder, coma state (Glasgow coma scale (GCS) < 9), ICH or
thrombosis of the deep cerebral venous system. Patients with more than 10 days from
diagnosis to potential randomization, pregnancy (women in the puerperium were eligible),
thrombocytopenia (platelet count < 100 × 109/L), as well as clinical or radiological signs
of impending trans-tentorial herniation were excluded. EVT (mechanical thrombectomy
with an AngioJet (Boston Scientific, Marlborough, MA, USA), stent retriever, aspiration
techniques or microcatheter) in combination with local thrombolytic treatment (urokinase
administered continuously for up to 72 h) did not differ from standard care in terms
of functional outcomes (mRS, 0–1 at 12 months; 67% vs. 68%; risk ratio, 0.99 (95% CI,
0.71–1.18); Table 1 provides details and information on complications).

Nyberg et al. (2017) have retrospectively analyzed their single-center cohort of patients
with SVT and compared outcome data (mRS, 0–2 at 3 months) for patients treated with
additional EVT (n = 29) to those receiving anticoagulation only (n = 37; 5-year time span
(2011–2015)) [39]. The decision on whether to perform EVT was at the discretion of the
treatment team and based on individual decision-making. The two treatment groups did
not differ in outcome parameters (e.g., mRS, 0–2: 22% vs. 30%; mortality, n = 6 vs. n = 5;
p = 1.0).

Prospective case series, retrospective analyses and case series demonstrated the tech-
nical and procedural feasibility and safety of EVT in selected patients (n = 19; details in
Table 1) [19,40–57]. All reported patients were anticoagulated, and those with an expected
poor prognosis (such as ICH or edema, neurological deterioration, coma (e.g., GCS < 9),
progressive thrombus material observed on repeated imaging or signs of elevated intracra-
nial pressure (e.g., papilledema)). Individual decision-making based on local experience
and preferences was used to decide whether to perform EVT.

A total of 25 publications met the search criteria for COVID-19 and VITT-associated
EVT in SVT. Of those, 14 records were excluded (because of lack of reported patient data, re-
view articles and registry data without information on individual patients). Eleven records
were eligible for analysis (Table 2) [61–71], comprising case reports and case series only. Of
those, four case reports and case series presented data for four patients with COVID-19
and EVT [61–64]. The decision to perform EVT was made in cases with suspected poor
prognosis, with criteria comparable to those described above. Aspiration in combination
with local thrombolytic therapy was the preferred endovascular technique [61,62]. The
overall outcome was poor [61–63].

The first reports of SVT caused by VITT emerged in 2021 [65–71]. As of 20 May 2022,
seven records of EVT in 16 VITT patients were identified [65–71]. Most cases (n = 15) were
attributed to the ChAdOx1 nCoV-19 (AstraZeneca, Cambridge, UK) vaccine [65–67,69–71].
Only one case appeared to be associated with an mRNA vaccine (mRNA-1273 vaccine;
Moderna, Cambridge, MA, USA) [68]. Excluding the latter, the time between vaccination
and symptom onset was 4–27 days. Common features (except [68]) were thrombocytopenia,
elevated D-dimer levels, and positivity for platelet factor 4 (PF4) antibodies (Table 2).
Neurological deterioration potentially resulting in poor outcomes facilitated the use of EVT.
The technical strategies described were aspiration plus stent retriever or balloon-guided
thrombectomy in selected cases [65–67,69]. MRS of 0–1 was observed in seven patients
during follow-up [65,66,69]. Three patients died [65,70].
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4. Discussion

The overall outcome after SVT can be unfavorable in terms of functional indepen-
dence and survival [8,11,72]. A total of 75–84% of patients eventually become functionally
independent, with excellent functional recovery (mRS, 0–1) [8,11,72]. However, a con-
siderable number of patients remain functionally dependent or disabled (22.2%) or die
(up to 14.6%) [11,72]. To identify patients prone to poor prognosis, several risk factors
have been identified (independent of treatment strategies): GCS < 9, presence of ICH,
involvement of the deep cerebral venous system, mental status disorder (not specified;
additional conditions such as underlying malignancy, cerebral or systemic infection, and
requirement for hemicraniectomy also apply) [11,72–74]. Neurological deterioration—as
part of the natural course of the disease or due to factors such as heparin resistance—might
necessitate an additional EVT approach to remove the thrombus load [75].

Retrospective and anecdotal data have demonstrated the safety and feasibility of EVT
in selected patients, and have shown satisfying results [19,39–57]. Yet, because of their lack
of a control group and their retrospective nature, those studies have been unable to demon-
strate a treatment effect resulting in an outcome benefit. In addition, inconsistencies in
the timing of the interventions, indications for surgical procedures such as decompressive
hemicraniectomy, etiological considerations (e.g., malignancy or sepsis) and clinical compli-
cations interfering with outcomes (e.g., status epilepticus) make an interpretation difficult.
To our knowledge, only one RCT (TO-ACT) has compared EVT to standard care in patients
with SVT (again, with a suspected unfavorable prognosis, as described above). TO-ACT
did not detect a modification of the treatment effect attributable to EVT (see Table 1 for
inclusion criteria) [38]. The limitations of this trial include its small sample size (due to early
termination recommended by the data and safety monitoring board because of futility),
patient selection based on clinical presentations suspected to (and previously reported to)
negatively influence outcomes and unrestricted use of available endovascular approaches
and devices [38]. Therefore, non-significant but clinically relevant treatment effects as well
as subgroups that might actually show considerable benefits remained undetected. In a
meta-analysis using individual patient data (not including RCT data), EVT was associated
with poor outcomes and mortality [76]. Because each treatment decision was made individ-
ually in each case (no clear indication; suspected poor prognosis), generalizability is limited.
The baseline characteristics were poorer in EVT patients than in controls. Therefore, these
retrospective results must be interpreted very cautiously. Important questions regarding
patient selection (clinical versus imaging characteristics) and the timing of the intervention
remain unanswered. Waiting until a patient is deteriorating might be too late.

Various treatment strategies have been investigated in EVT for SVT. Local thrombolytic
therapy (urokinase or alteplase) was performed in most of the cases [19,38–42,44–49,51–57],
with either a single periinterventional bolus or a continual infusion (locally, via a micro-
catheter) for up to 72 h (or longer, depending on the recanalization success). Yue et al.
(2010) combined intraarterial thrombolysis with an endovascular thrombectomy approach
(balloon-guided) [57]. Several thrombectomy procedures were discussed in the pre-
sented literature: aspiration thrombectomy [19,38–42,46,48,49,51,53–56], stent retriever
thrombectomy [38–42,46–49,54], balloon-guided thrombectomy/angioplasty [19,38–41,44,
47,51,53,54,57], the (rheolytic) AngioJet device [38–40,47,49,50] as well as additional stent-
ing [42,46]. The study by Dashti et al. was the only one performing thrombectomy without
local thrombolysis (AngioJet) [50]. A meta-analysis published in 2019 did not detect
differences in outcomes stratified by treatment approach [77]. Despite poor baseline charac-
teristics, 70–80% of patients eventually achieved mRS scores of 0–2 in the follow-up [78].
Local thrombolysis in combination with EVT has not been associated with the development
or worsening of an ICH (complication rate < 10%) [78]. Further complications observed
were subarachnoid hemorrhage, vessel perforation, and treatment failure [38–42,50,52,54].
Experience and routine (i.e., adherence to a local protocol) might be important because
centers following one specific approach showed higher recanalization rates (independently
of the procedure or the combination of procedures chosen) than centers using various
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combinations of EVT strategies [77]. However, the described inconsistencies in device
allocation and the small number of treated patients make comparisons regarding the su-
periority of any of the treatment strategies impossible. Thus, future trials are needed to
make such a comparison. Endovascular trials in acute ischemic stroke have indicated that
devices are crucial in facilitating treatment effects, recanalization rates, and good functional
outcomes [79].

Both COVID-19 and COVID-19 vaccination have been reported to be associated with
an increase in SVT incidence [5,6]. Patients with COVID-associated SVT (4.2% of all COVID-
associated strokes) appear to be older, do not have specific risk factors and experience
higher in-hospital mortality (up to 16.7%) [80,81]. In a New York cohort study, two of the
12 patients received endovascular local thrombolysis [5]. SVT associated with COVID-19
vaccination may be more severe and has higher reported mortality rates (39.2% as compared
with approximately 2–5% in pre-pandemic SVT) [6]. The mechanism of pathogenesis (VITT;
a prothrombotic state associated with an immunoglobin G reaction against PF4) predomi-
nantly occurs in adenovirus vector-type vaccinations (ChAdOx1 nCov-19 (AstraZeneca);
recombinant adenovirus type 26 vector encoding S glycoprotein of SARS-CoV-2 (Johnson
and Johnson/Janssen)) [6,82]. EVT might be reasonable in selected patients meeting the
TO-ACT inclusion criteria (Table 1) [38,83]. Although observational data and case reports
of EVT in those patients are scarce [65–71], these studies have indicated the feasibility and
safety of EVT and have suggested that EVT can achieve good functional outcomes in a
cohort with overall poor prognosis.

This systematic review is limited by the quality (and sample size) of the available
data. The disadvantages of the TO-ACT trial have already been discussed. Because of the
retrospective design of the remaining data, all the attributed limitations apply (e.g., selection
bias or bias by indication) because the rationale for treatment allocation and the number of
patients who were potentially eligible for treatment but were not considered are unknown.
Therefore, the presented results and the conclusion require very cautious interpretation.

In conclusion, the available data do not support the routine use of EVT strategies
in patients with SVT. In patients with a suspected poor outcome (meeting the TO-ACT
inclusion criteria), EVT can be performed as part of individual healing attempts. EVT
is feasible and safe and might possibly improve functional outcomes. No reasonable
recommendation can be made regarding which endovascular technique to use (and in
which cases). According to our own experience, patients with substantial thrombus material
(without an early response to anticoagulation), those with ICH, those in need of intensive
care, and those with VITT do benefit from EVT. Yet, whether patients with clinical and/or
imaging risk factors might benefit from early treatment initiation (before deterioration
occurs) remains unknown. Further RCTs are warranted to investigate treatment strategies,
patient selection, and the timing of the intervention (using predefined therapeutic strategies
and reproducible inclusion criteria).
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Abstract: Early stroke diagnosis remains a big challenge in healthcare partly due to the lack of reliable
diagnostic blood biomarkers, which in turn leads to increased rates of mortality and disability. Current
screening methods are optimised to identify patients with a high risk of cardio-vascular disease,
especially among the elderly. However, in young adults and children, these methods suffer low
sensitivity and specificity and contribute to further delays in their triage and diagnosis. Accordingly,
there is an urgent need to develop reliable blood biomarkers for triaging patients suspected of stroke
in all age groups, especially children and young adults. This review explores some of the existing
blood biomarkers, as single biomarkers or biomarker panels, and examines their sensitivity and
specificity for predicting stroke. A review was performed on PubMed and Web of Science for journal
articles published in English during the period 2001 to 2021, which contained information regarding
biomarkers of stroke. In this review article, we provide comparative information on the availability,
clinical usefulness, and time-window periods of seven single blood biomarkers and five biomarker
panels that have been used for predicting stroke in emergency situations. The outcomes of this review
can be used in future research for developing more effective stroke biomarkers.

Keywords: stroke; CNS; ischaemic; haemorrhagic; biomarker; panel; young adults; children; triage;
specificity; sensitivity; prediction values

1. Introduction

Stroke is the leading cause of disability and the second most common cause of death
worldwide [1]. Early detection of stroke is essential for implementing timely diagnostic
tests and radio-imaging, as well as subsequent intervention therapies such as thrombolysis
(using tissue plasminogen activator), thrombectomy, or anti-platelet/anti-coagulant treat-
ments [2–6]. However, early detection of stroke is still remaining elusive, and it has been
reported that even in many advanced hospitals, only about one-third of the patients with
ischaemic stroke (IS) are diagnosed early enough for a timely intervention [2].

Early screening tools, such as the Cincinnati Prehospital Stroke Scale (CPSS) or the
Recognition of Stroke in the Emergency Room (ROSIER) scale, have demonstrated their
values in high-risk patients, with a sensitivity between 80% and 85% [2,7]. However,
these tools are less accurate in children and young adults, who account for 10−15% of all
stroke cases [2,8]. Given there are approximately 12 million new cases of stroke diagnosed
globally each year, it is estimated that there are around 1–2 million cases per year that
are not detected appropriately using the current screening tools [9]. In addition, studies
have found that current screening tools have poor performance in distinguishing stroke
from stroke mimics such as migraine, epilepsy, central nervous system (CNS) infections,
Bell’s palsy, and conversion disorders, with a negative predictive value of approximately
20% [2,10].
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The majority of the current screening tools for stroke are based on considering the
patients’ clinical signs and symptoms and demographic risk factors. The downside is that
those patients who do not present with typical symptoms and those who are perceived as
low risk (e.g., children and young adults) may not be consistently identified [8]. Therefore,
we need alternative methods for detecting potential stroke cases which do not depend on
the above-mentioned categorisations. Such screening tools would be a welcome addition
to the diagnostic toolkit of clinicians at emergency departments, neurology departments,
and regional hospitals, as well as paramedics.

The use of blood biomarkers plays an important role in the screening and diagnosis of
some critical illnesses such as ischaemic heart disease. The inclusion of troponin into the
screening/diagnostic protocols of ischaemic heart disease in the early 2000s significantly
improved the clinical approach to this condition, and subsequently has contributed to
remarkable improvements in patient outcomes [11]. Unfortunately, this is not the case with
the screening and diagnosis of stroke.

The brain is a complex tissue comprising different unique cells, including various
neurons and glial cells, as well as extracellular supportive matrices [12]. Therefore, in
the event of a stroke where many neuronal tissues are damaged, a sudden release of
CNS and/or vascular biomarkers into the peripheral blood would be expected. If such
biomarkers are reliably measured in the peripheral blood specimens, then they could be
used for screening or triaging purposes.

In this review, we have mentioned many currently available stroke biomarkers but
have explained seven single blood biomarkers and five biomarker panels in more detail
because of their potential usefulness for the detection or prediction of IS in suspected
patients.

2. Materials and Methods

We performed a narrative review of the literature published in the English language
from 2001 to 2021 using two online databases, PubMed and Web of Science. We used the
search terms “stroke”, “diagnosis”, “biomarker”, “humans”, “sensitivity”, and “specificity”.
We also screened the reference lists of the extracted articles to identify articles not computed
from the original search.

3. Results and Discussion

The initial database search generated 170 results. Three articles were excluded as
duplicates, and after screening the titles and abstracts of the remaining, we included
23 articles for this review (Figure 1 and Table 1).

Table 1. Included studies in this literature review.

Author/s (Year),
Reference
Number

Type of Study,
Country

Numbers of Participants and
Controls, Mean or Median Age
(Age Range When Available)

Type of Stroke
Biomarkers/Biomarker

Panels Studied

Park S. Y., et al.,
(2013) [13] Cohort study, Korea Patients: n = 111, mean age 67;

controls: n = 127, mean age 63 IS H-FABP and S100B

Dambinova S.
A., et al.,

(2012) [14]
Cohort study, USA

Patients: n = 101, median age 62
(26–95); non-stroke patients

(stroke mimics): n = 91, median
age 61 (24–95); healthy controls:
n = 52, median age 59 (29–92)

IS or TIA NR2 peptide

145



J. Clin. Med. 2022, 11, 4243

Table 1. Cont.

Author/s (Year),
Reference
Number

Type of Study,
Country

Numbers of Participants and
Controls, Mean or Median Age
(Age Range When Available)

Type of Stroke
Biomarkers/Biomarker

Panels Studied

Allard L., et al.,
(2005) [15]

Cohort studies; one
European

(Switzerland) and
two American
(USA) cohorts.

European study: patients: n = 36,
mean age 71.3 (25–92); controls:

n = 35 mean age 71.1 (28–91);
American study 1: patients:

n = 53, controls: n = 30 (non-age
or sex-matched); American study
2: patients: n = 533, controls: 100

(age matched with patients).

IS (most of the
patients), TIA, HS PARK7 and NDKA

Zhao X., et al.,
(2016) [16] Cohort study, China Patients: n = 94, mean age 61.8;

controls: n = 37, mean age 47.1 IS APOA1-UP

Park K. Y., et al.,
(2018) [17] Cohort study, USA Patients: n = 172, mean age 68.8;

controls: n = 133, mean age 71.0 IS GPBB

Zhou, S. et al.,
(2016) [18]

Single-centre pilot
study, China

Patients: HS: n = 46, mean age
68.1; IS: n = 71, mean age 69.3; no

control group
HS and IS S100B

Losy, J. and
Zaremba, J.
(2001) [19]

Cohort study,
Poland

Patients: n = 23, mean age 72.2;
controls: n = 15 (age and

sex-matched)
IS MCP-1

Sharma, R.,
et al., (2014) [20] Cohort study, USA

Patients: IS: n = 56, mean age
66.9; HS: n = 32, mean age 64.7;

TIA: n = 41, mean age 63.1;
mimic: n = 37, mean age 61.8

Mixed patient
group (IS, HS, TIA,

and mimics)

A 5-biomarker model was
developed consisting of

eotaxin, EGFR,
metalloproteinase inhibitor-4,

prolactin, and S100A12

Supanc, V.,
et al., (2011) [21]

Cohort study,
Croatia

Patients: n = 110; mean age 70.2
(36–86); controls: n = 93, median

age 70 (47–86)
IS ICAM-1 and VCAM-1

Katan, M.,
Elkind, M. S. V.

(2011) [22]
Review article, USA N/A IS

IL-1, IL-6, MM-9, TNF-alpha,
TNF-a receptor, ICAM-1,

VCAM,
Lipoprotein-associated

phospholipase A2, vWF;
Fibrinogen; D-dimer, BNP,
NT-proBNP, cortisol; PAI-1,

and others

Kamtchum-
Tatuene, J. and
Jickling, G. C.

(2019) [23]

Review article,
Canada N/A IS and HS

S100B, GFAP, MBP, NSE,
H-FABP, anti-NMDA

receptors antibodies, vWF,
D-dimer, fibrinogen, PAI,

Fibronectin, MMP-9,
caspase-3, thrombomodulin,

and others

Abdel-Ghaffar,
W. E. et al.,
(2019) [24]

Cohort study, Egypt Patients: n = 40, age above
65 years old; no control group IS and HS S100B

Sen, J. and Belli,
A. (2007) [25] Review article, UK N/A N/A S100B
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Table 1. Cont.

Author/s (Year),
Reference
Number

Type of Study,
Country

Numbers of Participants and
Controls, Mean or Median Age
(Age Range When Available)

Type of Stroke
Biomarkers/Biomarker

Panels Studied

Kalev-Zylinska,
M. L. et al.,
(2013) [26]

Cohort study, New
Zealand

Patients: n = 48, Mean age 70;
control group 1: health

laboratory workers: n = 46, age
range 30 years of age or younger;
control group 2: healthy blood

donors: n = 50, age range
50 years of age or older

IS Anti-NMDAR antibodies

Lakhan S. E.
et al., (2013) [27] Review article, USA N/A IS MMP-9

Kelly, P. J. et al.,
(2008) [28]

Case–control study,
Ireland

Patients: n = 52; mean age 70.1;
controls: n = 27, mean age 68.2 IS MMP-9 and F2Ips

Castellanos,
et al., (2007) [29] Cohort study, Spain Patients: n = 134, mean age 62;

no control group IS MMP-9

Eldeeb, M. A.
et al., (2020) [30] Case–control, Egypt

Patients: n = 60, mean age 60,
age range 28–88; healthy
controls: n = 30 (age and

sex-matched)

IS Apo-A1

Kawata, K.
et al., (2016) [31] Review article, USA N/A IS and HS

S100B, NSE, MMP-9,
sCD40L, TIMP-1, MDA, and

others

Reynolds, M. A.
(2003) [32] Cohort study, USA

Patients: n = 223 (including 82
patients with IS), age not

available; controls (healthy
donors): n = 214, age not

available

IS and HS (a mixed
patient group)

A 5-biomarker panel was
developed consisting of

S100B, BNGF, vWF, MMP-9,
MCP-1,

Lynch, J. R.
et al., (2004) [33] Cohort study, USA

Patients: n = 65, mean age 62;
controls (non-stroke): n = 157,

mean age 63.3
IS

A 3-biomarker panel was
developed consisting of vWF,

MMP-9, and VCAM

Laskowitz, D. T.
et al., (2005) [34] Cohort study, USA

Patients: n = 130, age not
available; controls: n = 10, age

not available
IS

A 5-biomarker panel was
developed using BNP, CRP,

D-dimer, MMP-9, and S100B.

Moore, D. F.
et al., (2005) [35]

Cohort study,
Canada

Patients (IS): n= 20, mean age
75.5; controls (healthy): n = 20,

mean age 66.0
IS

A 22-gene expression panel
was developed using

peripheral blood
mononuclear cells.

H-FABP, heart-type fatty acid binding protein; S100B, S100 calcium-binding protein B; TIA, transient ischaemic
attack; NR2 peptide, NMDA (N-methyl-d-aspartate) receptor 2 peptide; PARK7, Parkinson disease protein 7;
NDKA, nucleoside diphosphate kinase A; APOA1-UP, apolipoprotein A1 unique peptide: GPBB, glycogen
phosphorylase BB; IS, ischaemic stroke; HS, haemorrhagic stroke; MCP-1, monocyte chemoattractant protein-1;
EGFR, epidermal growth factor receptor; S100A12, S100 calcium-binding protein A12; ICAM-1, inter-cellular
adhesion molecule 1; VCAM-1, vascular cell adhesion molecule 1; IL-1, interleukin 1, IL-6, interleukin 6; MMP-9,
matrix metalloproteinase-9; TNF: tumour necrosis factor; vWF, von Willebrand factor; BNP, brain natriuretic
peptide; NT-pro BNP, N-terminal pro-brain natriuretic peptide; PAI-1, plasminogen activator inhibitor-1; GFAP,
glial fibrillary acid protein; MBP, myelin basic protein; NSE, neuron-specific enolase; Anti-NMDAR, antibody
against N-methyl-d-aspartate receptor; F2Ips, F2-isoprostanes; Apo-A1, apolipoprotein A1; NSE, neuron-specific
enolase; sCD40L, soluble CD40 ligand; TIMP-1, tissue inhibitors of metalloproteinases-1; MDA, malondialdehyde;
BNGF, B-type neurotrophic growth factor; MCP-1, monocyte chemotactic protein-1.
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Figure 1. The literature search process.

3.1. Individual Biomarkers

Over the last 20 years, many biomarkers have been studied for stroke diagnosis;
however, we still do not have a reliable biomarker that can detect stroke with a high
accuracy compared to troponin in the diagnosis of ischaemic heart disease. Nonetheless,
so far, many biomarkers have been identified whose blood levels increase following a
stroke event, especially an acute IS. In general, those biomarkers can be divided into
a few categories based on their origins, namely: (1) the neuronal injury markers (e.g.,
heart-type fatty acid binding protein (H-FABP), NR2 peptide (a degradation product of
N-methyl-d-aspartate receptors found in plasma), Parkinson disease protein 7 (PARK7),
nucleoside diphosphate kinase A (NDKA), apolipoprotein A1 unique peptide (APOA1-UP),
matrix metalloproteinase-9 (MMP-9), glycogen phosphorylase isoenzyme BB (GPBB), and
B-type neurotrophic growth factor (BNGF)) [13,15–17]; (2) the neuronal cell activation
indicators (e.g., S100 calcium-binding protein B (S100B) and monocyte chemoattractant
protein-1 (MCP-1)) [18,19]; (3) the neuroinflammation indicators (e.g., eotaxin and vascular
cell adhesion molecule (VCAM)) [20,21]; (4) the endothelial dysfunction markers (e.g.,
D-dimer, von Willebrand factor (vWF); and (5) the neuro-endocrine markers such as B-type
natriuretic peptide (BNP), and cortisol [22].

Despite the abundance of available biomarkers, only a few of them have demonstrated
a sensitivity above 50% for stroke in clinical trials, which largely limits their clinical appli-
cability [23]. In the process of this literature review, we focused on biomarkers that have
undergone preliminary clinical evaluations. We selected seven individual biomarkers that
have both sensitivity and specificity of more than 50% (Figure 2).

S100B is a member of the S100 protein superfamily. It is an intracellular protein found
in glial cells and Schwann cells and is released into the blood circulation following cellular
activation caused by tissue damage [24,25]. Zhou et al., (2016) reported a sensitivity of
95.7% and specificity of 70.4% for stroke for S100B, as well as an area under the curve (AUC)
of 0.903 in differentiating between IS and intracranial haemorrhage (ICH) [18]. In another
study, this biomarker was found useful in predicting the patient’s short-term functional
outcome after a stroke event [24]. However, the elevations of the plasma levels of this
biomarker in other neurological and neuropsychological disorders such as Alzheimer’s
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disease and schizophrenia means it would be of a reduced value in triaging the suspected
patients for stroke [25].

Figure 2. Single blood biomarkers for stroke. S100B, GPBB, NR2 peptide, and APOA1_UP all have
sensitivities of >90% (highlighted in red). S100B, S100 calcium-binding protein B; GPBB, glycogen
phosphorylase BB; NR2 peptide, a degradation product of N-methyl-d-aspartate receptors; APOA1-
UP, apolipoprotein A1 unique peptide; NDKA, nucleoside diphosphate kinase A; H-FABP, heart-type
fatty acid binding protein; PARK7, Parkinson disease protein 7.

GPBB is a glycogen phosphorylase isoenzyme found in the brain and heart tissues
whose function is to make glucose-1-phosphate by breaking down glycogen, which helps
restore the energy stores, which are depleted during a cerebral ischaemic event [17]. Ac-
cording to Park et al., (2018), increased plasma levels of GPBB have a sensitivity and a
specificity of 93% for detecting stroke within 12 h from the onset of the symptoms [17].
However, this study did not find any correlation between GPBB levels and the severity of
the stroke, infarct volume, or the clinical outcome, which suggests a less suitable position
for this biomarker to be used for predicting the disease prognosis in patients with IS.

NR2 peptide is an N-terminal fragment of N-methyl-D-aspartate (NMDA) receptors,
which can be measured in the plasma sample. Following cerebral ischaemia, NMDA
receptors are released from endothelial cells of the brain’s microvessels which are then
cleaved by serine proteinases and are released into the blood stream as NR2 peptides [14].
In a study undertaken by Dambinova et al., in 2012, it was reported that NR2 peptide has
a sensitivity of 92% and specificity of 96% for ischaemic stroke when measurable at 3 h
post-stroke [14]. Also, it has been found that the plasma levels of anti-NMDA antibodies
are predictive of stroke and a brain lesion size in high-risk patients [26].

MMP-9 is a Zn2+-dependent proteolytic enzyme that is released from different cells
such as neutrophils and has roles in the degradation of the extracellular matrix following IS
and ICH [36]. Experimental studies have shown that systemic inflammation during stroke
causes a neutrophil infiltration of the ischaemic area of the brain which eventually leads to
increased plasma MMP-9 activity in patients with stroke [27]. The studies by Castellanos
et al., (2007) and Kelly et al., (2008) showed that high levels of MMP-9 are predictive
of blood–brain barrier disruption and haemorrhagic transformation after an IS [28,29].
Another benefit of measuring plasma MMP-9 has been reported to be its predictive value
in detecting brain tissue haematoma following tissue plasminogen activator treatment in
patients with IS (sensitivity of 92% and specificity of 74%) [29].
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Apolipoprotein A1 (APOA1) is a major protein component of the high-density lipopro-
tein (HDL) and exhibits anti-inflammatory and antioxidant effects, hence playing an im-
portant role in the protection of the vascular system against oxidative stress. Studies have
shown that the levels of APOA1 decrease in patients with stroke and/or infection [30].
Similarly, decreased levels of APOA1-UP, as a novel biomarker have been reported to have
a high sensitivity (91%) and specificity (97%) for the prediction of IS, nominating it as a
promising independent predictor of IS [16].

PARK7 and NDKA are released from the cerebrospinal fluid into the plasma after
significant brain injury [15]. The study done by Allard et al., (2005) reported a sensitivity of
54% and a specificity of 90% for PARK7 at a cut-off level of 14.1 μg/L, when samples were
taken at 3 h after the onset of the acute stroke. Accordingly, the reported sensitivity and
specificity for NDKA, at a cut-off value of 22 μg/L were 70% and 90%, respectively [15].

H-FABP is a fatty acid binding protein that is released from CNS tissues after an
ischaemic event into the blood. A study by Park et al., found that this protein had a
sensitivity of 59.5%, specificity of 79.5%, and an AUC = 0.71 (p < 0.001) for identifying
IS if the blood samples were collected after 24 h of the stroke onset [13]. Given the long
timeframe and its low sensitivity, this protein might not be a good biomarker for stroke
detection.

Although many of these biomarkers seem promising in the early screening of stroke,
most of the findings are hardly generalisable to larger populations due to the small sample
sizes of the original studies. In addition, because medical interventions need to be per-
formed within a short timeframe to salvage the vulnerable neuronal tissues and minimise
mortality or functional deficits, many of the suggested biomarkers do not seem to be very
useful because of the relatively long time needed for the symptoms’ onset until a reliably
measurable change in the biomarkers’ levels can be detected. Some biomarkers, such as
PARK7, NDKA, and NR2 peptide, are released into the plasma and are detectable within the
first three hours after the stroke onset, which makes them potentially promising biomarkers
to be used in future studies in acute settings [15]. Unfortunately, many other biomarkers
identified in this review have not yet been evaluated for their diagnostic reliability at the
early stages of stroke. Table 2 summarises some of the key aspects of the clinical studies
related to the biomarkers and biomarker panels reviewed in this article.

Table 2. Blood biomarkers for stroke diagnosis.

Biomarker Reference Sample Size (n) Cut-Off
Time from Symptoms

Onset to Sample
Collection (up to)

S100B Zhou et al., (2016) [18] 46 (ICH) 71 (IS) 67 pg/mL 6 h
GPBB Park et al., (2018) [17] 172 (IS) 133 (C) 7.0 ng/mL 4.5 h

NR2 peptide Dambinova et al., (2012) [14] 101 (IS) 91 (C) 1.0 μg/L 3 h

APOA1-UP Zhao et al., (2016) [16] 94 (IS) 37 (C) APOA1-UP/LRP ratio
1.80 72 h

PARK-7 Allard et al., (2005) [15] 622 (S) 165 (C) 9.33 μg/L 3 h
NDKA Allard et al., (2005) [15] 622 (S) 165 (C) 2 μg/L 3 h

H-FABP Park et al., (2013) [13] 111 (IS) 127 (C) 9.70 ng/ml 24 h
Panel A Reynolds et al., (2003) [32] 223 (S) 214 (C) - 6 h
Panel B Lynch et al., (2004) [33] 65 (IS) 157 (C) - 6 h
Panel C Sharma et al., (2014) [20] 167 (S) - 24 h
Panel D Laskowitz et al., (2005) [34] 130 (IS) 10 (C) - 6 h

Panel E Moore et al., 2005 [35] 20 (IS) 20 (C) - <24 h (n = 7), 24–48 h
(n = 10), >48 h (n = 3)

Ischaemic stroke (IS), control (C), intracerebral haemorrhage (ICH), stroke (not specified or a mixed population)
(S), labelled reference peptide (LRP).

As it can be seen from Figure 2, some of these biomarkers (e.g., S100B) have better
sensitivity than others, but are less specific for stroke [37]. In addition, some comorbidities
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and other factors are also found to interfere with the accuracy of these biomarkers. However,
when the biomarkers are combined in a panel, they may offer greater sensitivity and
specificity values compared to individual biomarkers [37].

3.2. Biomarker Panels

Unavailability of single biomarkers with both high sensitivity and specificity has
been a limiting factor in adopting blood biomarkers as stand-alone diagnostic tools in
clinical situations such as stroke. To add to the complexity, patterns of biomarkers changes
may differ depending on the type of stroke (e.g., IS versus ICH) or depending on the
affected brain areas [31]. It has been suggested that by combining several biomarkers
into a biomarker panel more useful information can be obtained particularly by including
biomarkers specific to different areas of the brain [14,16,17,29]. In this review, we have
identified five biomarker panels that have shown both a sensitivity and specificity above
50% (Figure 3). We have named these five biomarker panels as panels A through E
in this review due to the lack of specific trade names for them in the original articles
(Tables 2 and 3).

Figure 3. Panel biomarkers for stroke. Panels A, B and C have sensitivity of 90% or higher, which are
highlighted in red. NB: The reported sensitivity and specificity for panels A, B, D, and E are related
to ischaemic stroke only.

Most of these panels are composed of brain-specific biomarkers (neuronal cell activa-
tion and neuro-endocrine markers) and non-specific biomarkers (MMP-9, C-reactive protein
(CRP), VCAM, vWF, and D-dimer), to represent different parts of the ischaemic cascade
and provide complementary information for the diagnosis of stroke. Although the findings
from those studies are not conclusive, the use of biomarker panels may have opened a
new frontier in the development of highly sensitive and specific biomarkers. Therefore, the
concept of diagnostic biomarker panels is a promising topic for future research.
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Table 3. Panel biomarker composition.

Biomarker Panel Composition of Biomarkers

Panel A (5 proteins) BNGF, MCP-1, MMP-9, S100B, vWF

Panel B (3 proteins) vWF, MMP-9, VCAM

Panel C (5 proteins) Eotaxin, EGFR, S100A12, Metalloproteinase inhibitor-4, Prolactin

Panel D (5 proteins) S100B, MMP-9, D-dimer, BNP, CRP

Panel E (22 genes)

CD163; Hypothetical protein FLJ22662 Laminin A motif; Amyloid β(A4) precursor-like
protein 2; N-acetylneuraminate pyruvate lysase; v-fos FBJ murine osteosarcoma viral

oncogene homolog; Toll-like receptor 2; Ectonucleoside triphosphate diphosphohydrolase 1;
Chondroitin sulfate proteoglycan 2 (versican); Interleukin 13 receptor, α1; CD14 antigen;

Bone marrow stromal cell antigen 1/CD157; Complement component 1, q subcomponent,
receptor 1; Paired immunoglobulin-like type 2 receptor α; Fc fragment of IgG, high-affinity
Ia, receptor for (CD64); Adrenomedullin; Dual-specificity phosphatase 1; Cytochrome b-245,

β polypeptide (chronic granulomatous disease); Leukotriene A4 hydrolase; v-ets
Erythroblastosis virus E26 oncogene homolog 2 (avian); CD36 antigen (thrombospondin

receptor); Baculoviral IAP repeat-containing protein 1 (Neuronal apoptosis inhibitory
protein); and KIAA0146 protein

BNGF, B-type neurotrophic growth factor; MCP-1, monocyte chemoattractant protein-1; MMP-9, matrix
metalloproteinase-9; S100B, S100 calcium-binding protein B; vWF, von Willebrand factor; VCAM, vascular
cell adhesion molecule; EGFR, epidermal growth factor receptor; S100A12, S100 calcium-binding protein A12;
BNP, B-type natriuretic peptide; CRP, C-reactive protein.

Panel A is composed of five protein biomarkers that were studied by Reynolds et al.,
(Table 2) [32]. This panel has shown a sensitivity of approximately 98% and specificity of
about 93% for prediction of IS for samples collected within 6 h from the appearance of
symptoms. This is a significant improvement compared to many individual markers in
previous studies [32]. Panel B includes three protein biomarkers based on a study by Lynch
et al., in 2004. This panel had both 90% sensitivity and specificity where the samples were
obtained within 6 h of the stroke onset [33]. Panel C comprises five protein biomarkers
based on a study by Sharma et al., in which they reported a sensitivity of 90%, specificity
of 84%, a positive predictive value (PPV) of 78%, and a negative predictive value (NPV)
of 93% for stroke detection within 24 h of symptoms’ onset [20]. Panel D, which was
developed in a cohort of 130 patients with acute neurological symptoms, consists of five
protein biomarkers. This panel showed a sensitivity of 81% and a specificity of 70% for
the prediction of IS when the blood specimens were collected within 6 h of the stroke
onset [35]. Given the above information, panels A, B, and D may be clinically useful for
triaging purposes [32,33,35].

Panel E, made by Moore et al., in 2005 was created following a comparative study
of gene expression profiles in confirmed stroke cases (IS; n = 20) versus matched healthy
controls (n = 20) using microarray technology. Accordingly, and after the initial study of
exhaustive gene expression patterns using the RNA samples extracted from peripheral
blood mononuclear cells, they observed a significant change (mainly up-regulations) in
the expression of 190 genes in patients with IS. Next, a panel of 22 genes was chosen for
the derivation of a predictive model for the prediction of stroke using hierarchical cluster
analysis (Table 3). The model was then prospectively validated in another cohort consisting
of 9 stroke patients and 10 healthy individuals. This model showed a sensitivity of 78%
and a specificity of 80% in the validation cohort [35]. These results are promising; however,
the authors were unable to rule out the effects of non-stroke causes in the up-regulation of
the genes. In addition, because of the small sample sizes both for the derivation and the
validation studies, the results need to be validated in larger studies.

The above-mentioned biomarkers have not been approved for clinical diagnostic
use yet due to several reasons, including the lack of large prospective trials, lack of the
standards for measurement, unknown interference in certain population groups, or uncer-
tainties in the time-concentration relationships. We believe that the available data are still
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limited, and explorative investigations such as in vitro studies on stroke biomarkers are
still insufficient. We suggest that before starting large-scale clinical studies, we need to have
a better understanding of the window periods of individual biomarkers for stroke detection
(the time from symptoms’ onset to a detectable change in the blood levels of a biomarker).
As we know, the efficacy for current interventions for acute stroke is time-dependent,
and most of the current guidelines recommend <4.5 h as a key target between the onset
of symptoms and treatment intervention with fibrinolytic, and up to 6 h for mechanical
thrombectomy [38,39]. Therefore, by taking into consideration the time required for radio-
imaging to confirm the diagnosis prior to treatment (which is around 45 min in optimal
settings and up to 1.5 h in average settings), any biomarker that can be reliably detected
within 3 h of the onset of stroke could be a highly valuable diagnostic tool.

In this literature review, we did not allocate a great level of priority for exploring
potential associations between blood levels of biomarkers and the size of brain lesions
(extents of infarcts or bleedings) as our review was more of a diagnostic nature rather than
prognostic. However, we found some limited, yet promising, evidence, which could be
used in future research in those areas. For example, in terms of the IS, Kalev-Zylinska et. al.
(2013) found that plasma levels of anti-NMDA antibodies were predictive of brain lesion’s
size in the patients and a high National Institutes of Health Stroke Scale score. However,
they found this association only in 21 of the 48 patients (44%) studied. Accordingly, they
identified this small sample size and the explanatory nature of their research as limiting
factors for the applicability of their findings [26]. On the other hand, in a study by Park
et al., (2018), the researchers did not find a correlation between GPBB levels and the
clinical outcome or volume of the infarct in patients with IS [17]. In addition, in terms of
the intracerebral haemorrhage, there is some promising evidence. For example, in 2007
Castellanos et al., in a multicentre prospective study reported high sensitivities and negative
predictive values for the levels of serum cellular fibronectin and MMP-9 for the prediction
of haemorrhagic transformation and parenchymal haematoma following thrombolytic
therapy in patients with acute IS. However, they admitted that their small sample size
(n = 134) and the smaller number of patients who developed parenchymal haemorrhage
during the follow-up period were among the limiting factors for their findings. Having
mentioned all the above, and despite the uncertainties in the usefulness of biomarkers in
predicting the lesion size and clinical outcomes, this is a relatively less explored area of
knowledge, and we believe that it is worth researching further.

4. Our Study Limitations

There are a few limitations to this paper. Firstly, we performed a narrative literature
search using studies involving human only and excluded animal studies, which may have
caused us to miss some of the current literature. Secondly, this was not a systematic review;
therefore, we are not sure if we have identified and reported all the appropriate stroke
biomarkers (hence we suggest a systematic review for this purpose). Thirdly, we only
searched for articles published in English; as a result, we may have missed some important
studies published in non-English languages. Lastly, because most of the patients in the
included studies were middle-aged or older adults, some of the conclusions presented here
might not be applicable to children and young adults because of age-related differences in
the pathophysiology of stroke. Accordingly, we suggest that there is an urgent need for
research into the role of blood biomarkers in the detection of stroke in different age groups,
particularly children and young adults.

5. Conclusions

The results of this literature review indicate that there are potential biomarkers (both
as individual biomarkers and as panels) with high-enough sensitivity and specificity that
may serve as early detection tools for stroke diagnosis. However, most of the published
studies had small sample sizes, which makes the clinical applicability of their findings
challenging. Therefore, further research needs to be done in larger cohorts to confirm the
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clinical usefulness of the available data. In addition, most of the proposed biomarkers have
not been examined in very acute patients within the first 3–5 h post-stroke, hence there is a
need for further research in this area.
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Maha Othman, Peter Kubisz and

Angelo Claudio Molinari

Received: 19 June 2022

Accepted: 23 August 2022

Published: 25 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Assessment of the Effect on Thromboprophylaxis with
Multifaceted Quality Improvement Intervention based on
Clinical Decision Support System in Hospitalized Patients:
A Pilot Study

Qian Gao 1,2,3,†, Kaiyuan Zhen 1,2,3,4,†, Lei Xia 5, Wei Wang 6, Yaping Xu 6, Chaozeng Si 7, Zhu Zhang 1,2,3,

Fen Dong 8, Jieping Lei 8, Peiran Yang 9, Jixiang Liu 1,2,3,10, Ziyi Sun 11,12, Tieshan Zhang 7, Jun Wan 13,14,

Wanmu Xie 1,2,3, Peng Liu 15, Cunbo Jia 11,*, Zhenguo Zhai 1,2,3,4,* and Chen Wang 1,2,3,4,10

on behalf of the Chinese Prevention Strategy for Venous Thromboembolism (CHIPS-VTE) Study Group

1 Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine,
China-Japan Friendship Hospital, Beijing 100029, China

2 Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
3 National Clinical Research Center for Respiratory Diseases, Beijing 100029, China
4 Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
5 Medical Affairs Department of China-Japan Friendship Hospital, Beijing 100029, China
6 Department of Nursing, China-Japan Friendship Hospital, Beijing 100029, China
7 Department of Information Management, China-Japan Friendship Hospital, Beijing 100029, China
8 Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
9 Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences,

Peking Union Medical College, Beijing 100730, China
10 Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
11 China-Japan Friendship Hospital, Beijing 100029, China
12 Department of Oncology, Beijing Electric Power Hospital, Capital Medical University, Beijing 100073, China
13 Department of Pulmonary and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University,

Beijing 100029, China
14 Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
15 Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing 100029, China
* Correspondence: jcb1973@163.com (C.J.); zhaizhenguo2011@126.com (Z.Z.)
† These authors contributed equally to this work.

Abstract: Background: To explore the feasibility and effectiveness of multifaceted quality improve-
ment intervention based on the clinical decision support system (CDSS) in VTE prophylaxis in
hospitalized patients. Methods: A randomized, department-based clinical trial was conducted in
the department of respiratory and critical care medicine, orthopedic, and general surgery wards.
Patients aged ≥18 years, without VTE in admission, were allocated to the intervention group and
received regular care combined with multifaceted quality improvement intervention based on CDSS
during hospitalization. VTE prophylaxis rate and the occurrence of hospital-associated VTE events
were analyzed as primary and secondary outcomes. Results: A total of 3644 eligible residents were
enrolled in this trial. With the implementation of the multifaceted quality improvement intervention
based on the CDSS, the VTE prophylaxis rate of the intervention group increased from 22.93% to
34.56% (p < 0.001), and the incidence of HA-VTE events increased from 0.49% to 1.00% (p = 0.366). In
the nonintervention group, the VTE prophylaxis rate increased from 24.49% to 27.90% (p = 0.091),
and the incidence of HA-VTE events increased from 0.47% to 2.02% (p = 0.001). Conclusions: Multi-
faceted quality improvement intervention based on the CDSS strategy is feasible and expected to
facilitate implementation of the recommended VTE prophylaxis strategies and reduce the incidence
of HA-VTE in hospital. However, it is necessary to conduct more multicenter clinical trials in the
future to provide more reliable real-world evidence.

Keywords: Venous thromboembolism; quality improvement; VTE prophylaxis
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1. Introduction

Venous thromboembolism (VTE) includes pulmonary thromboembolism (PE) and
deep vein thrombosis (DVT). The estimated incidence of VTE is 115–269 per 100,000
globally, and the mortality rate is 6.8–32.3 per 100,000 [1,2]. The majority (55–60%) of VTE
events occur during hospitalization or 90 days after discharge, which are considered as
hospital-associated VTE (HA-VTE) [3]. As a major preventable inpatient adverse event, the
incidence of VTE can be effectively reduced by standardized preventive measures such as
the prophylactic use of anticoagulants and mechanical prophylaxis [4–6].

VTE prophylaxis is the key measure in reducing VTE incidence and VTE-related
mortality and morbidity in medical and surgical inpatients. The guidelines in China
recommend that clinicians should adopt various individualized prophylaxis strategies
based on adequate assessment of VTE risk and bleeding risk and adjust prophylaxis
strategies based on dynamic assessment results [7,8]. The American College of Chest
Physicians (ACCP) guidelines for thromboprophylaxis have clearly stated the importance
of anticoagulant prophylaxis and mechanical prophylaxis [9]. Several academic institutions
also have developed guidelines and recommendations on VTE prophylaxis [6,10–12].

Many initiatives have been taken in several countries to prevent VTE in hospitals
with impressive results: In 2010, the National Health Service (NHS) launched the National
Venous Thromboembolism Prophylaxis Programme. The National Institute for Health
and Care Research published guidelines for inpatient VTE prophylaxis. Through the use
of mandatory VTE risk assessment tools, the VTE risk assessment rate increased rapidly
from 50% in 2010 to 90% at the beginning of Q4 2011 and has remained above 95% since
2013, achieving a 10.8% reduction in VTE-related mortality over the same period [11]. In
2008, the Agency for Healthcare Research and Quality Management (AHRQ) published
guidelines for reducing HA-VTE, which were updated again in 2016 [6,13]. In 2012, the New
Zealand Health Quality & Safety Commission also released a national policy document to
prevent HA-VTE [14].

However, there remains a gap between the recommended preventive and measures
clinical practice. Between 2007 and 2016, the incidence of VTE in Chinese inpatients
increased from 3.2 to 17.5 per 100,000, while the in-hospital VTE-related mortality rate
decreased from 4.7% to 2.1% [15]. At the same time, the DissolVE-2 study showed that
VTE prophylaxis rates in China were severely underrepresented at only 19.0% and 9.3%
among surgical and medical inpatients, respectively, with even lower rates of appropriate
prophylaxis [16]. This result was much lower than the 40–60% VTE prophylaxis rates re-
ported by a global multicenter study in 2008 [17]. The gap between the increasing incidence
and the highly inadequate prophylaxis highlights the need to strengthen VTE prophylaxis,
which has become an urgent clinical issue. Recent advances in machines learning and deep
learning based on the increased availability of clinical data have stimulated new interest
in a computerized clinical decision support system (CDSS) [18]. The CDSS shows great
potential in improving health care, improving patient safety, and reducing medical costs.
To facilitate implementation of appropriate thromboprophylaxis, the Chinese Prevention
Strategy for Venous Thromboembolism (CHIPS-VTE) study network developed a system-
wide multifaceted quality improvement strategy based on the CDSS [19]. This single-center
study aims to explore the feasibility and effectiveness of multifaceted quality improvement
intervention based on CDSS in VTE prophylaxis in hospitalized patients.

2. Methods

2.1. Study Design and Participants

In this pilot study, a single-center, department-based, cluster randomized trial was
conducted at the China–Japan Friendship Hospital by comparing VTE prevention-related
performance between departments applying multifaceted quality improvement interven-
tion and those applying regular care. A total of ten medical or surgical units from the
departments of Pulmonary and Critical Care Medicine, Orthopedics, and General Surgery
participated in this study.
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The study included two periods: the baseline period was from 1 October 2019 to 31
December 2019 and the intervention period from 1 April 2020 to 30 June 2020. Patient
information was not collected from 1 January to 31 March 2020 due to the COVID-19
pandemic, during which the clinical care of inpatients was not representative of standard
clinical practice.

Adult patients with a length-of-stay of more than 3 days or receiving surgery under
anesthesia were considered to be included. Patients with hospitalization of less than 3 days
without receiving surgery, diagnosed with VTE before admission or with community-
acquired VTE after admission, with acute myocardial infarction (AMI), atrial fibrillation
(AF), acute stroke (AS), mechanical heart valve replacement, extracorporeal membrane
oxygenation (ECMO), or dialysis in admission were considered to be excluded.

2.2. Cluster Randomization and Intervention

We randomly divided medical or surgical units, based on the prophylaxis rates of
each participating unit at the baseline period, into intervention groups and nonintervention
groups, to reduce the contamination bias within the same clinical unit. Both groups were
asked to include three different units of Orthopedic, Respiratory and Critical Care Medicine,
and General Surgery.

The intervention group was subjected to multifaceted quality improvement inter-
vention based on the CDSS, which included the application of the CDSS with electronic
alertness assistance for VTE prophylaxis, dynamic VTE risk assessment, and prophylaxis.
The CDSS has four fundamental functions: automatic, reminder, correction, and quality
control analysis. The CDSS can automatically collect and analyze patients’ information
from various information platforms in-hospital such as electronic medical record (EMR),
hospital information system (HIS), laboratory information system (LIS), picture archiving
and communication system (PACS), etc. Through extract–transform–load (ETL), natural
language processing (NLP), and other technologies, timely and accurate reminders and
supporting decisions were automatically provided to clinicians according to clinical diagno-
sis and treatment guidelines (Figure 1). The CDSS could automatically analyze the patient
medical records to assist medical staff in making decisions on VTE risk assessment and
appropriate prophylaxis, with error correction and reminder features. Electronic alertness
could automatically and actively remind medical staff to complete the VTE risk assessment
and prophylaxis in a pop-up window in the electronic medical record system when they
failed to complete the risk assessment or prophylaxis. If clinicians disagreed with the
advice made by the CDSS, they could refuse the decisions with plausible explanations.

We established a multidisciplinary VTE prevention expert committee to formulate the
VTE prevention process of the hospital. The units assigned to the nonintervention group
implemented the hospital’s current VTE prophylaxis measures which is according to the
guidelines suggesting that doctors confirm the results of risk assessment conducted by
nurses and make a prophylaxis order without additional interventions such as mandatory
reminders and corrections.

2.3. Statistical Analysis

The primary outcome was the implementation of any VTE prophylaxis measurements
in hospitalized patients. For patients at intermediate or high risk of VTE, VTE prophylaxis
must be used if there were no other relevant contraindications; if there was a high risk of
bleeding, mechanical prophylaxis should be applied; if there was no high risk of bleeding,
pharmacological prophylaxis or pharmacological prophylaxis combined with mechanical
prophylaxis should be applied.

The secondary outcome was HA-VTE events in hospitalization, which was determined
by as follows: (1) admission diagnosis without VTE and discharge diagnosis of new-onset
VTE, with manual verification; (2) patients who already had VTE or were already receiving
anticoagulation for other diseases at admission were not included.
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Normally distributed measurement data are presented as mean ± standard deviation,
and an independent sample t-test was used for comparison between the two groups.
Non-normally distributed measurement data are presented as median (upper and lower
quartiles), and count data are expressed as absolute numbers (N) and percentages (%).
For comparison of differences between groups, Wilcoxon rank sum test was used for non-
normally distributed data, and chi-square test for qualitative data. A two-tailed p < 0.05 was
regarded as statistically significant. SPSS 24.0 was used for statistical analysis in this study.

Figure 1. Process of multifaceted quality improvement intervention based on CDSS. EMR: electronic
medical record; HIS: hospital information system; LIS: laboratory information system; PACS: picture
archiving and communication system; ETL: extract–transform–load; NLP: natural language processing.

3. Results

3.1. Patient Characteristics

A total of 3644 eligible patients were enrolled in the study. Out of that total, 1624 cases
were included in the intervention group, of which 1025 were in the baseline period, and
599 were in the intervention period; 2020 cases were included in the nonintervention group,
of which 1278 were in the baseline period, and 742 were in the intervention period. The
study flow is shown in Figure 2. There was no statistical difference between the two groups
in terms of age more than 40 years and mean length-of-stay (p > 0.05). However, there were
more male patients in the intervention group and a higher proportion of inpatients aged
under 40 and between 61 and 74 in the nonintervention group. A comparison between
patients in the two groups during each period is shown in Table 1.
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Figure 2. Recruitment process and flow through study. LOS: length of stay; AMI: acute myocardial
infarction; AF: atrial fibrillation; AS: acute stroke; ECMO: extracorporeal membrane oxygenation.

Table 1. Characteristics of patients in baseline and intervention period.

Baseline Period
Intervention Period #

Intervention Group Nonintervention Group

(n = 2303) (n = 599) (n = 742)

Male 1088 (47.24%) 349 (58.26%) 339 (45.69%)
Age (Years)

≤40 370 (16.07%) 104 (17.36%) 79 (10.65%)
41–60 758 (32.91%) 180 (30.05%) 219 (29.51%)
61–74 838 (36.39%) 219 (36.56%) 298 (40.16%)
≥75 337 (14.63%) 96 (16.03%) 146 (19.68%)

Medical disease 829 (36.00%) 121 (20.20%) 250 (33.69%)
Malignancy 567 (24.62%) 249 (41.57%) 185 (24.93%)

Surgery 1474 (64.00%) 478 (79.80%) 492 (66.31%)
VTE prophylaxis 548 (23.80%) * 207 (34.56%) 207 (27.90%)

Length of stay (Days) 8 8 8
#: Patients in each group were admitted in the same units in both periods. *: no statistical difference of VTE
prophylaxis was found between the intervention group and nonintervention group during the baseline period
(22.93% vs. 24.49%, p = 0.091).
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3.2. Improvement in VTE Risk Assessment

A total of 3374 (92.59%) patients were given VTE risk assessment, including 2167
(94.09%) patients in the baseline period and 1207 (90.00%) in the intervention period.

For patients of the intervention group, the VTE risk assessment rates were slightly
increased from 93.66% in the baseline period to 94.99% in the intervention period (p = 0.269).
However, the VTE risk assessment rates were found decreased in the nonintervention group
from 93.89% in the baseline period to 83.83% in the intervention period (p < 0.001), as shown
in Figure 3. Among patients who received the VTE risk assessment, 1927 (57.11%) patients
were stratified into intermediate or high risk of VTE.

Figure 3. Improvement in VTE risk assessment in different departments. * p < 0.05.

The rate of VTE risk assessment remained stable in the intervention group in the
departments of Orthopedics, Pulmonary and Critical Care Medicine, and General Surgery
across the study (Figure 3). However, significant decreases were found in nonintervention
group in the departments of Orthopedics and General Surgery (p < 0.001 for both).

3.3. Improvement in VTE Prophylaxis

As for VTE prophylaxis, 962 (26.40%) patients were given VTE prophylaxis in the
study. No statistical differences between intervention and nonintervention groups were
found in the baseline period (22.93% vs. 24.49%, p = 0.091) (Table 1). Although patients in
both groups showed a poor rate of VTE prophylaxis, a significant increase was found in the
intervention group from the baseline period to the intervention period (22.93% to 34.56%, p
< 0.001). In contrast, in the nonintervention group, the VTE prophylaxis rate changed from
21.65% in the baseline period to 27.16% in the intervention period (p = 0.269), as shown in
Figure 4. There was also a statistically significant difference between the two groups in the
intervention period (27.90% vs. 34.56%, p = 0.009).

In the intervention group, significant improvements of VTE prophylaxis were observed
in the departments of Orthopedics, Pulmonary and Critical Care Medicine, and General
Surgery. The corresponding p values were 0.032, 0.003, and 0.005, respectively. No statistical
differences were found in nonintervention group in any department. The corresponding p
values were 0.790, 0.174, and 0.202, respectively (Figure 4).

Among patients receiving VTE prophylaxis, 952 (98.96%) patients had pharmacological
prophylaxis, and 132 (13.72%) patients received mechanical prophylaxis. Low molecular
weight heparin (LMWH) was used the most for pharmacological prophylaxis. However,
both graduated compression stockings (GCS) (n = 33, 25.00%) and intermittent pneumatic
compression (IPC) (n = 31, 23.48%) were used for mechanical prophylaxis.
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Figure 4. Improvement of VTE prophylaxis in different departments. * p < 0.05.

3.4. Change in In-Hospital HA-VTE Incidents

During the baseline period, the intervention group had a total of five hospital-associated
VTE events, with an HA-VTE incidence of 0.49%. During the intervention period, a total of
six in-hospital HA-VTE events were reported in the intervention group, with an HA-VTE
incidence of 1.00%. There was no significant difference in the change in HA-VTE incidence
before and after the intervention (p = 0.366). The nonintervention group registered a total
of 6 HA-VTE events at baseline, with an HA-VTE incidence of 0.47%, and a total of 15
HA-VTE events in the intervention period, with an HA-VTE incidence of 2.02%. For the
nonintervention group, HA-VTE incidence increased significantly between the two periods
(p = 0.001). Figure 5 shows the change of in-hospital HA-VTE events from baseline to the
end of intervention.

Figure 5. Change in in-hospital HA-VTE Event from baseline to the end of intervention. * p < 0.05.

4. Discussion

Multifaceted quality improvement intervention based on the CDSS is a multidisci-
plinary collaborative strategy that integrates a series of effective measures. We conducted
a pilot study to explore the effect of multifaceted quality improvement intervention on
VTE prophylaxis for inpatients. The results of the single-center, department-based, cluster
randomized trial showed feasibility for implementation and positive effect on the improve-
ment of VTE prophylaxis with multifaceted quality improvement intervention based on
the CDSS, which may provide real-world evidence of multifaceted quality improvement
intervention for further development.
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The adoption of the CDSS will help improve quality of healthcare and patient safety,
reduce waste in the healthcare system, and reduce the risk of an overwhelming overload
for clinicians [18]. Current VTE prophylaxis strategies focus on assessing patients’ VTE
risk and bleeding risk and proactively taking the appropriate prophylactic measures based
on these risks [8]. Currently, clinically available VTE risk scoring models are generally
developed based on European and American evidence. Since the risk factors for acquired
VTE in Asian populations are similar to those in European and American populations
among hospitalized patients, these models have also been partially validated in Asian
populations and are gradually being used in clinical practice in China. In our study,
the VTE risk assessment for inpatients was initially performed by the nurses and then
confirmed by the physicians. The assessment results were recorded in the nursing system
and then automatically sent to the attending physicians’ electronic medical record system
for confirmation. The collaboration between nurses and doctors has resulted in a stable
and high rate of VTE risk assessment among inpatients.

The VTE risk assessment rate in the intervention group in our study remained largely
stable from the baseline period (93.66%) to the intervention period (94.99%). There was
a decrease in the VTE risk assessment rate in the general surgery department of the
nonintervention group, which could be due to the COVID-19 pandemic (Figure 1). A study
analyzing inpatient data before and after the implementation of a VTE risk assessment
model (with Padua and IMPROVE risk scales) in hospitals found no significant difference
in the incidence of PE and major bleeding among 413 patients, and only 43.3% of patients
received pharmacological prophylaxis after the use of the VTE risk assessment scale,
compared to 56.7% before [20]. Thus, VTE risk assessment may reduce the medical costs of
VTE prophylaxis while keeping patients safe.

In our study, the VTE prophylaxis rate was approximately the same in the intervention
and nonintervention groups at baseline. After intervention, the VTE prophylaxis rate
increased by 12% in the intervention group with a statistically significant difference, while
in the nonintervention group the rate only increased by 5% with no statistically signifi-
cant difference. Several studies have been conducted to investigate the effectiveness and
safety of multiple interventions in VTE prophylaxis. A Cochrane review included 13 RCT
studies with a total of 35,997 subjects for analysis, and the results support the conclusion
that systematic intervention strategies with proactive reminders can help improve VTE
prophylaxis [21]. Kucher et al. included 2506 patients at high risk for VTE and randomized
them into two groups with or without electronic alerts. The study found that a significantly
greater proportion of patients in the intervention group received mechanical (10.0% vs.
1.5%; p < 0.001) or pharmacological prophylaxis (23.6% vs. 13.0%; p < 0.001) compared with
those in the nonintervention group, and patients in the intervention group had a 41% lower
rate of VTE events within 90 days (HR 0.59 [95% CI 0.43–0.81]; p = 0.001) [22].

Although our study found no decrease in HA-VTE incidence in the intervention group,
a significant increase in the incidence of HA-VTE was found in nonintervention group,
revealing an important role of the intervention in limiting the occurrence of HA-VTE. We
considered the increase in HA-VTE incidence was mainly due to the limitation of patient
activity during the COVID-19 pandemic. Researchers from Johns Hopkins Hospital intro-
duced a mandatory decision support system to facilitate VTE prophylaxis implementation
in their hospital information system and enrolled 1599 patients undergoing trauma surgery
into their analysis. The study showed that implementation of the mandatory decision
support system significantly increased VTE prophylaxis rates in clinical practice (66.2%
vs. 84.4%; p < 0.001). Moreover, the incidence of HA-VTE decreased significantly after
the implementation (1.0% vs. 0.17%; p = 0.04) [23]. The University of Virginia Hospital
adopted the scheme of Johns Hopkins Hospital and introduced a mandatory CDSS in the
implementation of VTE prophylaxis in general surgery patients. The hospital’s 30-day VTE
incidence dropped significantly after implementing (1.25% vs. 0.64%; p = 0.033), which
helped the hospital improve its ranking to the top 10% of 760 hospitals in the National
Surgical Quality Improvement Program (NSQIP) in the United States [24]. After partici-
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pating in the NSQIP, Boston University Hospital also implemented mandatory VTE risk
assessment and stratification, and the CDSS automatically recommended the appropriate
prophylaxis measures and duration based on the Caprini scores. The result was a significant
reduction in the incidence of DVT (from 1.9% to 0.3%) and PE (from 1.1% to 0.5%) in the
hospital, highlighting the contribution of the mandatory alert system to the promotion of
VTE prophylaxis [25].

We acknowledge that the limited number of participating departments in our study
may hinder extrapolation and applicability of the findings, and further validation is needed
in studies with larger populations. The department-based cluster randomization in this
study can reduce intergroup contamination. The quality control approach of real-time mon-
itoring and reminding through a CDSS enables timely implementation of VTE prophylaxis
among multidisciplinary medical staff. Besides the use of different anticoagulant prophy-
laxis, other efficacy outcomes such as fatal events and VTE events after discharge should
also be taken into consideration in evaluating the effect of the VTE prophylaxis in future
study [26]. This study forms a pilot study to provide evidence for the feasibility of future
trials of multifaceted quality improvement intervention strategies for VTE prophylaxis in
multiple centers.

5. Conclusions

The multifaceted quality improvement intervention strategies in clinical practice could
help improve VTE prevention and reduce the VTE-related safety events in hospitalized
patients at risk of VTE. Further study to validation and broader generalization were needed
to solve the insufficient VTE prevention in Chinese inpatients.
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Abstract: Excess labile heme, occurring under hemolytic conditions, displays a versatile modulator
in the blood coagulation system. As such, heme provokes prothrombotic states, either by binding
to plasma proteins or through interaction with participating cell types. However, despite several
independent reports on these effects, apparently contradictory observations and significant knowl-
edge gaps characterize this relationship, which hampers a complete understanding of heme-driven
coagulopathies and the development of suitable and specific treatment options. Thus, the com-
putational exploration of the complex network of heme-triggered effects in the blood coagulation
system is presented herein. Combining hemostasis- and heme-specific terminology, the knowledge
available thus far was curated and modeled in a mechanistic interactome. Further, these data were
incorporated in the earlier established heme knowledge graph, “HemeKG”, to better comprehend the
knowledge surrounding heme biology. Finally, a pathway enrichment analysis of these data provided
deep insights into so far unknown links and novel experimental targets within the blood coagulation
cascade and platelet activation pathways for further investigation of the prothrombotic nature of
heme. In summary, this study allows, for the first time, a detailed network analysis of the effects of
heme in the blood coagulation system.

Keywords: blood coagulation cascade; data mining; heme; hemolysis; knowledge graph; platelet
activation; thrombosis

1. Introduction

Hemolysis-associated thrombosis is a common complication observed in diseases,
such as sickle cell disease (SCD) and paroxysmal nocturnal hemoglobinuria (PNH), or as a
side effect of transfusions [1–3]. The cumulative incidence for thrombosis with ~11–27% in
autoimmune hemolytic anemia, ~17% in SCD, and ~29–44% in PNH is as high as in inher-
ited thrombophilias, such as protein C deficiency (~21%) [4–6]. Thereby, predominantly
venous thrombotic events occur, encompassing deep vein thrombosis and pulmonary
embolism, which can even lead to death in the most severe cases [4,6,7]. Among other
disorder-specific factors, such as glycosylphosphatidylinositol anchor deficiency in PNH or
vessel obstruction by sickle-shaped red blood cells in SCD, the major pathophysiological
event underlying these hypercoagulopathies is intravascular hemolysis, which is character-
ized by an excessive, premature rupture of red blood cells that ultimately leads to a massive
release and accumulation of hemoglobin and heme into the bloodstream [8,9]. Both are
rapidly scavenged and cleared by the respective plasma proteins, involving haptoglobin,
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albumin, and hemopexin [10–14]. However, overwhelming of the heme-binding capacity of
the plasma (~1.2–1.8 mM [15,16]) provokes the accumulation of labile heme. Labile heme,
in turn, has been shown to be capable of binding and functionally affecting a wide range
of plasma proteins, thereby causing most of the observed clinical outcomes in hemolytic
disorders [9]. The underlying signaling pathways were recently contextualized in the Heme
Knowledge Graph (HemeKG), which provided novel mechanistic insights at the molecular
level [17]. Specifically, Toll-like receptor 4 (TLR4) signaling was identified as the main route
for heme-driven proinflammatory action [17–19]. The exact mechanism of the pathway
activation has not yet been unraveled; however, evidence for heme-mediated TLR4 activa-
tion has been associated with increased excretion of proinflammatory cytokines, elevated
complement deposits on endothelial cells, and vasoocclusion [18,20,21]. Furthermore, the
main driver of the complement system, component 3 (C3), binds, among other proteins,
heme, which results in the deposition of activation fragments on endothelial cells and,
thus, complement overactivation, as has been monitored in hemolytic diseases [21–25].
The versatile effects of heme as a modulator in the blood coagulation system have also
been extensively described, -either as a matter of side effects during heme injection for
the treatment of acute intermittent porphyria (AIP) or because of excessive heme release
in hemolytic disorders, such as SCD and PNH [4,26,27]. Thus, initial efforts were made
to investigate the molecular basis of the interference of heme in the coagulation system,
identifying a few proteins that are affected by heme [26]. However, the currently available
data are partially contradictory with respect to the pathophysiological outcome (bleeding
vs. thrombosis) and exhibit conspicuous knowledge gaps with respect to the broad spec-
trum and complexity of the blood coagulation system with its primary (platelet adhesion,
activation, and aggregation) and secondary (enzymatic clotting cascade) pathways.

The present study aimed at mapping and contextualizing the current knowledge
on heme-driven thrombosis. We therefore established a novel knowledge graph, called
“HemeThrombKG”, focusing on heme-driven effects in the blood coagulation system.
A pathway analysis, which includes information from three pathway databases, sheds
light on important effector proteins that were not analyzed in the context of heme so
far, revealing future targets for further exploration of the molecular basis of heme-driven
thrombosis. Finally, the extension of the earlier established HemeKG by the novel heme-
thrombosis knowledge graph provides a large network on heme-driven effects under
hemolytic conditions, comprising a total of more than 800 nodes and 3000 relations, which
is freely accessible and will enable researchers and physicians to independently explore the
heme biology network for future study development.

2. Materials and Methods

2.1. Knowledge Modeling and Inclusion of the Knowledge Graph into HemeKG

An earlier published review article concerning the link between heme and thrombo-
sis [26], which presented knowledge from over 200 articles, formed the basis for the present
study. Therein, knowledge on (1) the side effects observed after heme injection, (2) the
impact of heme intoxication on cells participating in blood coagulation, and (3) the effect of
heme on proteins acting in blood coagulation is depicted in three supplementary tables [26].
This information was used to construct a knowledge graph, specifically focusing on the
relations between heme and the development of coagulation disorders. As previously
described [17], the detailed knowledge was extracted and manually coded into biological
expression language (BEL; Figure 1), incorporating information about the experimental
setting (e.g., dose of heme, type of injection, and cell type) as well as binding affinity data if
applicable. While “heme”, “hemin”, and “hematin” were consistently curated as “heme”,
formulations of heme (e.g., heme arginate and heme-albumin formulations) were excluded,
since these were established to prevent from heme-driven side effects in the treatment of
porphyrias (heme deficiency diseases). The BEL statements were then used to generate
a knowledge graph, designated as “HemeThrombKG” in the following, which models
the different effects caused by heme in the context of thrombosis and/or bleeding and
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thus, was subjected to further analysis. Furthermore, we enriched the earlier established
HemeKG with these coagulation-related data by merging the HemeKG with the novel
HemeThrombKG (Figure 1).

 

Figure 1. Workflow for the generation, progression, and analysis of HemeThrombKG. Using the
knowledge comprehensively collected in a recent review article by the authors [26], the current
information about heme’s interference in the blood coagulation system was extracted and translated
into BEL to generate the novel knowledge graph “HemeThrombKG”. Furthermore, this new network
of heme effects was included in the earlier established knowledge graph “HemeKG” [17], resulting
in the expanded knowledge graph on heme biology “HemeKG 2.0”. Both computational networks
can be used for pathway and causality analysis, which can be applied for e.g., basic research on the
effects of heme but also for the development of suitable drugs for the treatment of hemolysis-driven
pathophysiology, such as thrombosis.

2.2. Analysis of the Crosstalk of Heme with the Blood Coagulation System

First, the relevant pathways for blood coagulation at the molecular level were selected
and extracted from three pathway databases KEGG [28], Reactome [29], and WikiPath-
ways [30], comprising the platelet activation pathway (KEGG, HSA04611), the extrinsic
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pathway of fibrin clot formation (Reactome, R-HSA-140834), the intrinsic pathway of
fibrin clot formation (Reactome, R-HSA-140837), the common pathway of fibrin clot for-
mation (Reactome, R-HSA-140875), the platelet aggregation/plug formation (Reactome,
R-HSA-76009), and the blood clotting cascade (WikiPathways, WP272).

The data from these pathways were combined and explored by using the web applica-
tion PathMe [31], resulting in a network with more than 400 edges (Figure S1). Subsequently,
this network was used to enrich the generated HemeThrombKG by integrating this knowl-
edge into the original knowledge graph, as described earlier [17,32]. The enrichment led to
a network consisting of 848 nodes (including 246 proteins) and 3430 edges. Due to the size
of the graph, the investigation of common components was split into the analysis of com-
mon extracellular plasma proteins and effects on the cellular level with respect to common
membrane-associated and intracellular proteins. For that purpose, the list of 246 pro-
teins was screened for their location (extracellular vs. intracellular and transmembrane
proteins) using annotations available from QuickGO [33]. Subsequently, the extracellu-
lar and the intracellular/membrane-associated proteins from the database network were
independently overlaid with the protein network extracted from HemeThrombKG. In
total, 22 extracellular proteins, 10 transmembrane and membrane-associated proteins (incl.
adhesion proteins, channels, and receptors), and 18 intracellular proteins were found in
the HemeThrombKG, whereas the network extracted from the databases encompassed
54 extracellular proteins, 24 transmembrane and membrane-associated proteins, and 101 in-
tracellular proteins. For clarity, the analysis of the extracellular pathway (i.e., the blood
coagulation cascade) was split into the intrinsic, the extrinsic, and the common pathway,
as provided by Reactome (R-HSA-140834, R-HSA-140837, and R-HSA-140875 [29]). In the
case of membrane-associated proteins and intracellular proteins, a pathway-level analysis
was performed by using HemeKG 2.0 in order to include a greater number of relevant
proteins. Due to the highest overlap, the pathway-level analysis was performed by focus-
ing on the platelet activation signaling pathways as provided by KEGG (HSA04611 [28]).
Common nodes were highlighted, and the node size automatically arranged according to
the abundance in the underlying BEL relations.

3. Results

3.1. HemeThrombKG Illustrates the Knowledge about Heme’s Interference in the Blood
Coagulation System

After the establishment of the first knowledge graph on heme biology (“HemeKG”)
in 2020 [17], in which data regarding heme-driven thrombosis were underrepresented,
the herein introduced knowledge graph “HemeThrombKG” specifically focuses on the
effects of heme on the blood coagulation system. HemeThrombKG is based on extracted
and filtered knowledge from over 200 publications over the last 110 years, which was
comprehensively combined in a recent review [26]. HemeThrombKG contains 151 nodes
and 426 edges with 47 proteins involved (Figure 2A). In addition, contextual information,
such as cell type and heme-binding kinetics, is deposited where applicable. In particular,
lodging of the heme-binding affinity data will allow to rank the proteins for mechanistic
analysis of heme-driven coagulation disorders in the future. Since administered heme for
the treatment of AIP was reported to cause prothrombotic effects (e.g., thrombophlebitis),
clinical symptoms that occur upon heme injection were incorporated in the network as well.

To further extend and network the knowledge contained in the earlier established
HemeKG [17], the relations from HemeThrombKG were incorporated into HemeKG. In the
following, the combined knowledge graph is designated as “HemeKG 2.0” and consists of
868 nodes (incl. 246 proteins) and 3430 edges (Figure 2B).

Finally, to allow researchers global access to the network, the BEL documents of the
curated content have been made publicly available (https://github.com/HemeThrombKG/
HemeThrombKG).
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Figure 2. (A) The novel HemeThrombKG, consisting of 151 nodes and 426 edges, comprises the
current knowledge of heme’s interferences in the blood coagulation system. (B) HemeKG 2.0 displays
the extended knowledge graph of the earlier established HemeKG [17] by inclusion of the relations
of HemeThrombKG. The network combines 868 nodes and 3430 edges. Nodes are colored according
to their different functions in BEL (blue: protein, orange: pathology, green: biological process, red:
miRNA, light green: complex, black: reaction, light orange: gene, light blue: abundance, pink: RNA).

3.2. HemeThrombKG and HemeKG 2.0 Enable the Detailed Analysis of Heme-Triggered
Thrombosis at the Molecular Level

As described earlier [17,34], a knowledge graph is highly conducive to study the
crosstalk of the effects that are driven by heme under hemolytic conditions with pathways
or pathophysiologies of interest. To explore the pathway crosstalk of heme with the un-
derlying pathways of the blood coagulation system, HemeThrombKG was enriched with
the relevant pathways from the three databases KEGG [28], Reactome [29], and WikiPath-
ways [30], which showed the greatest overlap with the process of fibrin clot formation
(blood coagulation cascade) with respect to plasma proteins and platelet activation sig-
naling in the case of membrane-associated and intracellular proteins (Figures 3 and 4).
Thus, the crosstalk analysis focused on these pathways, which is described in detail in the
following subsections.

3.2.1. Crosstalk of Heme and the Plasma Proteins of the Blood Coagulation System

To study the crosstalk of heme-driven signaling with the blood coagulation cascade,
the network of HemeThrombKG was separately superimposed with each of the three
parts (i.e., intrinsic, extrinsic, and common pathway) of the cascade (Figure 3A–C). The
blood coagulation cascade can be initiated by the activation of the coagulation factor XII
(intrinsic pathway) on the one hand and cellular exposure of tissue factor to the bloodstream
(extrinsic pathway) on the other hand. Both pathways culminate in the common pathway,
which finally leads to the formation of a fibrin clot.
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Figure 3. Crosstalk analysis of the blood coagulation cascade and HemeThrombKG. (A) The overlay
of HemeThrombKG (light purple) and the intrinsic pathway (light blue) of the blood coagulation
cascade (Reactome, R-HSA-140837) revealed plasma kallikrein, the coagulation factors VIII, IX, and
XII, as well as APC and VWF as common nodes. (B) When superimposed with the extrinsic pathway
(Reactome, R-HSA-140834; light blue), only TF appeared as a protein affected by heme. (C) In the
common pathway (light blue), crosstalk analysis demonstrated thrombin, APC, coagulation factors V
and VIII, as well as fibrinogen and fibrin as common proteins that are affected in the usual coagulation
process as well as in heme-triggered thrombosis. (D) The superimposition of the complete blood
coagulation cascade (Reactome, R-HSA-140877) with HemeThrombKG demonstrated that heme is
capable of affecting the intrinsic, the extrinsic, and the common pathway of the cascade. Common
effector proteins as found in the crosstalk analysis are highlighted (dark red). Recently, it was shown
that the enzymatic function of thrombin and FXIIIa is not influenced by heme (white). Direct heme
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binding was only demonstrated for APC, FVIII/FVIIIa, and fibrinogen (circles depict the relation of
their plasma concentration and heme-binding affinity; see legend in the figure on the right). Further
search for a correlation of the remaining participating proteins and heme in the literature did not
reveal any further relations, which highlights these effector proteins as interesting future targets. F2:
thrombin, F3: tissue factor, F5: coagulation factor Va, F8: coagulation factor VIII(a), F9: coagulation
factor IXa, F12: coagulation factor XIIa, KLKB1: plasma kallikrein.

 

Figure 4. Heme-affected membrane-associated and intracellular proteins in clotting processes.
(A) The overlay of HemeThrombKG (light purple nodes) and the clotting pathways extracted from
databases (light blue nodes) reveals several membrane-associated (i.e., receptors and integrins) and
intracellular proteins as common nodes (red). (B) HemeKG 2.0 shares distinct proteins with the
platelet activation signaling pathways (HSA04611, KEGG [28]). The pathways with the highest level
of overlap are depicted, with the common proteins highlighted in red. Relevant small molecules, i.e.,
IP3, DAG, PGH2, PGG2, TXA2, NO, and cGMP, Ca2+ ions, as well as essential platelet activation
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processes (e.g., spreading, aggregation) are included. Effector proteins that are not included in
HemeKG 2.0 but reported in the context of heme signaling are marked in light red, whereas molecules
that were not yet described in relation with heme are shown in light blue. AKT: AKT serine/threonine
kinase, Btk: Bruton’s tyrosine kinase, DAG: diacylglycerol, ECM: extracellular matrix, ER: endoplas-
matic reticulum, ERK: extracellular-signal regulated kinase, FCγRIIa: FCγ receptor IIa, FcRγ: Fc
receptor γ, FG: fibrinogen, GPV/Ibα/Ibβ/IX: glycoproteins V/Ibα/Ibβ/IX, GP6/GPVI: platelet gly-
coprotein VI, IP3: inositol trisphosphate, IP3R: inositol trisphosphate receptor, ITGA2B + ITGB3: inte-
grin αIIbβ3, MAPK: mitogen-activated protein kinase, MLC: myosin light chain, MLCK: myosin light
chain kinase, NOS: nitric oxide synthase, PI3K: phosphoinositide 3 kinase, PIP2: phosphatidylinositol-
4,5-bisphosphate, PKC: protein kinase C, PKG: cGMP-dependent protein kinase or protein kinase G,
PLA: phospholipase A, PLCG2/PLCγ2: phospholipase C γ2, PRTN3: proteinase 3, PTGS1: cyclooxy-
genase 1, RASGRP: RAS guanyl releasing protein 1, RhoA: Ras homolog family member A, RIAM:
amyloid beta precursor protein binding family B member 1 interacting protein, ROCK1: Rho kinase 1,
sGC: soluble guanylate cyclase, SLP76: SH2 domain-containing leukocyte protein of 76 kDa; SYK:
spleen-associated tyrosine kinase, TEXAS1: thromboxane A synthase, VWF: von Willebrand factor.

Superimposition of the HemeThrombKG network and the intrinsic pathway (Reac-
tome, R-HSA-140837) revealed the coagulation factors VIII, IX, and XII, the coagulation
inhibitor activated protein C (APC), the adhesive protein von Willebrand factor (VWF),
and plasma kallikrein as common nodes, which were described in the past to bind and/or
to be affected by heme in vitro and partially in vivo [20,35–39] (Figure 3A).

One of the initial intrinsic pathway serine proteases, plasma kallikrein is activated in
the presence of heme (up to 24 nmol), leading to the procoagulant induction of the intrinsic
pathway in plasma samples [35]. In the same context, heme-triggered autoactivation of FXII
has been suggested [35]. However, upon retroorbital injection (up to 35 μmol/kg) into mice,
immunoblockage of FXII did not reduce the heme-triggered coagulation activation, which
is why a role of the proposed FXII-heme interaction in vivo appears questionable [40].

Apart from potential procoagulant effects on these proteins of the intrinsic pathway,
high-affinity heme binding [KD ~1.9 nM (FVIII) and KD ~12.7 nM (FVIIIa)] to FVIII(a)
abolishes its interaction with FIX, which ultimately leads to the inhibition of the clotting
process in vitro [37]. In contrast, persistent FVIII-VWF complex formation and increased
binding of this complex to human platelets in the presence of heme directs again towards
procoagulant signaling [38]. VWF itself has been found to show higher expression levels,
string formation, and secretion from Weibel–Palade bodies upon incubation of endothelial
cells with heme (up to 100 μM; in vitro) and/or heme injection (3.2 μmol/kg) into mice
(in vivo) [20,23]. In vitro, VWF was also capable of the protection of FVIII(a) from its
heme-driven inhibition [37]. Furthermore, heme upregulates proteases (e.g., MMP9), which
regulate VWF digestion, as has been observed in plasma from SCD patients and with
heme (up to 60 μM) incubated endothelial cells [39]. In line with these procoagulant effects
on FVIII and VWF, the function of the natural inactivator of FVIIIa, APC, is completely
abrogated upon direct heme binding (KD ~400 nM) to the serine protease in vitro (up to
100 μM heme), tending towards prothrombotic consequences of heme excess as well [36].

The superimposition of HemeThrombKG with the extrinsic clotting pathway (Reac-
tome, R-HSA-140834) revealed tissue factor (TF) as a common component and, thus, as
the only so far known heme-affected factor in the extrinsic pathway (Figure 3B). Thereby,
heme initiates the extrinsic pathway by induction of TF expression and thus provision of an
increased level of functionally active TF [40–42]. This was observed in different cell types
(i.e., endothelial cells and leukocytes; up to 100 μM heme), ex vivo in blood (30 μM heme),
as well as upon intravenous (100 μmol/kg) or (35 μmol/kg) retroorbital injection in mice
(in vivo) [40–43]. Subsequent steps on the molecular level that are explicitly induced by
heme-driven TF upregulation were so far not analyzed.

Regarding the common pathway (Reactome, R-HSA-140875), the two networks share
the following proteins: APC, FV, thrombin, fibrin, and fibrinogen (Figure 3C). The inhibitory

174



J. Clin. Med. 2022, 11, 5975

effect of heme on APC has been described above. Whether heme prevents APC-mediated
inactivation of the two cofactors, FV and FVIII, from both the intrinsic and the common
pathway, has not yet been explored. In contrast, it is already known that heme can abol-
ish the prothrombinase ([FXa + FVa])-catalyzed reaction, which was attributed to direct
inhibition of the involved cofactor FVa in vivo (4 mg/kg heme injection in an AIP pa-
tient) [44]. The central enzyme of the common pathway, i.e., thrombin, has been suggested
to be affected by strong heme binding in vitro as well, but the earlier reported decrease
in its amidolytic activity in the presence of heme could not be reproduced in a recent
study [36,45]. Although FXIIIa, the fibrin stabilizing factor, has been disproven as a heme-
regulated protein [36], it is well known that fibrinogen itself binds heme in vitro, which
results in fibrinogen binding to platelets as well as crosslinking and polymer formation
in plasma and/or blood samples (up to 500 μM heme applied), ultimately leading to clot
formation [46–48].

As such, direct heme binding has only been described for FVIII(a), fibrinogen, and
APC so far, all possessing heme-binding affinities in the nano- to micromolar range
(Figure 3D) [36,37,48]. In addition, several components of the blood coagulation cas-
cade, which are present in the three databases, were not found in the herein established
HemeThrombKG, e.g., FX(a), FX(a), and several coagulation inhibitors. Therefore, a specific
screening for literature reports of these proteins in the context of heme signaling was
conducted by entering the respective queries in PubMed, as this knowledge might not be
covered in HemeThrombKG. However, no further relations were identified, proving the
quality of the new knowledge graph and revealing novel targets for studying the effect of
heme on the blood coagulation cascade (Figure 3D).

3.2.2. Crosstalk of Heme within the Pathways of Platelet Activation

The crosstalk of heme with intracellular signaling pathways of the blood coagulation
system was analyzed by superimposition of HemeKG 2.0 with the membrane-associated
and intracellular proteins involved in the selected pathways from the databases KEGG [28],
Reactome [29], and WikiPathways [30], revealing two receptors (Glycoprotein VI and
thrombomodulin), one integrin (αIIbβ3), and eight intracellular proteins as common nodes
(Figure 4A). The greatest overlap occurred between the HemeKG 2.0 network and a part
of the platelet activation signaling pathways as extracted from KEGG (HSA04611, [28];
Figure 4B).

Initiation of platelet adhesion and activation is mediated either by adhesion proteins
of the extracellular matrix (e.g., collagen and VWF) through interaction with integrins,
glycoproteins on the platelet surface and/or by stimulation of receptors through agonists
(e.g., ADP and thromboxane A2) [49–51]. As a result of intracellular signaling, the cytosolic
level of Ca2+ ions increases and finally induces the change in platelet shape, secretion of
granule content, and activation of the integrin αIIbβ3, which enables “communication”
with plasma proteins, such as fibrinogen [51]. This, in turn, potentiates platelet adhesion,
activation, aggregation, and spreading with the result of clot formation and retraction [51].

Superimposition of the HemeKG 2.0 network and the underlying pathways of these
platelet activation mechanisms revealed that the two proteins of the extracellular matrix,
collagen and VWF, as well as the glycoprotein VI, the integrin, αIIbβ3 and the intracellular
proteins spleen-associated tyrosine kinase (Syk), AKT serine/threonine kinase (Akt), nitric
oxide synthase (NOS), phospholipase C γ2 (PLCγ2), and protein kinase C (PKC) were
common (Figure 4B). In contrast, several other effector proteins, which were found in the
respective pathways in the KEGG database (part of HSA04611; [28]), were not found in
HemeKG 2.0 (e.g., glycoprotein V, cGMP-dependent protein kinase or protein kinase G, or
the extracellular-signal regulated kinase (ERK); Figure 4B). Thus, specific literature screen-
ing for reports of these effector proteins in the context of heme signaling was performed in
the same way as described for the plasma proteins above (see Section 3.2.1).

As a result, Fc receptor γ (FcRγ), phosphoinositide 3 kinase (PI3K), myosin, cSrc, and
ERK were additionally found and highlighted in the network as well (Figure 4B; Table S1).
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In the initial phase of heme-induced platelet activation, collagen and VWF seem to
play a crucial role (Figure 4B). As already described herein (Section 3.2.1), heme excess (up
to 100 μM tested) causes elevated VWF expression and string formation in vitro and in vivo,
which might coordinate platelet adhesion to the vessel wall [20,23]. In an ex vivo model
(mouse aorta), heme (1 mM)-triggered endothelial collagen expression was associated with
increased platelet aggregation [52]. Until now, however, only the relevance of these proteins
for platelet adhesion to the extracellular matrix and platelet aggregation caused by heme-
driven upregulation of their expression has been described. Our analysis revealed that
there is an indication for their contribution to heme-triggered platelet activation pathways
as well (Figure 4B). In case of the pathway that follows platelet adhesion to collagen, its
counterpart protein, GPVI, has been already described to bind heme with a rather low
affinity (KD ~29.4 μM), which induces platelet aggregation upon heme exposure in vitro (up
to ~115 μM) [53]. The participation of FcRγ, which is intracellularly associated with GPVI,
has also been suggested to participate in this process [54]. Usually, GPVI crosslinking or
platelet adhesion to collagen induces phosphorylation of FcRγ, leading to recruitment and
activation of intracellular signaling proteins, such as Syk, PI3K, and PLCγ2 [50,53]. Since
heme seems to be capable of inducing platelet activation by targeting both collagen and
GPVI, this might account for a direct and indirect activation of this pathway (Figure 4B) and,
thus, an amplification of the observed effects. Syk and PLCγ2 phosphorylation in platelets
was associated with heme (up to 50–115 μM) exposure as well [53,55]. This has been
attributed to GPVI and C-type lectin-like receptor 2 (CLEC2) activation by heme [53,55].
CLEC2 itself is found in HemeThrombKG in relation to heme as well but did not occur as a
common node in the crosstalk analysis since it is not yet curated into the database platelet
activation signaling pathways.

In contrast to Syk and PLCγ2, the intermediary effector protein PI3K did neither
occur in HemeThrombKG nor in HemeKG 2.0, because it has not yet been found in the
context of heme and coagulation processes. Literature screening revealed that PI3K was
identified as a mediator of heme-induced PLC phosphorylation in neutrophils (up to 30 μM
heme tested) [56], which may apply for heme-driven intracellular platelet signaling as
well. Activated PLCγ2 usually catalyzes phosphatidylinositol-4,5-bisphosphate (PIP2)
hydrolysis to inositol trisphosphate (IP3) and diacylglycerol (DAG), leading to calcium
mobilization and protein kinase C (PKC) activation [51]. A heme-induced increase in
IP3 and DAG levels has not yet been described; however, elevated intracellular calcium
levels and mobilization in platelets as well as PKC activation in neutrophils has already
been monitored (in the presence of up to 20 μM heme) [46,57,58]. In general, calcium
mobilization enables contractile activity through myosin, which leads to the characteristic
shape change of activated platelets [50]. The calcium–myosin axis has not been highlighted
in the context of heme signaling, but heme-induced oxidation of myosin in human skeletal
muscle fiber segments and platelet shape change has been shown in vitro (up to 300 μM
heme applied) [46,59]. Several of the other involved effector proteins (e.g., IP3 receptor,
myosin light chain kinase, and RAS guanyl releasing protein 1) were not recognized and/or
reported in the context of heme signaling (Figure 4B) and, thus, display suitable targets for
future investigation of the underlying pathways of heme-triggered platelet activation.

Under conditions of heme excess, platelet aggregation through fibrinogen binding to
platelets was observed (~11 μM heme applied) [46], proposing a heme-induced αIIbβ3-
fibrinogen “communication”, since both components evolved in our crosstalk analysis as
common nodes (Figure 4B). Furthermore, this integrin is capable of intracellular signaling
induction. This, in turn, promotes platelet spreading, which also occurred as a node in
HemeThrombKG. From the involved effector proteins, only the tyrosine kinase Src was
already described to be activated by heme, but only in epithelial cells so far and not in
platelets [60]. Src, in turn, can phosphorylate the FCγ receptor IIa (FCγRIIa) and induce
Syk signaling (Figure 4B) [51]. This indicates that this pathway may be affected by heme as
well, although FCγRIIa has not yet been reported in the context of heme signaling.
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Apart from PLC activation (see above), PI3K can catalyze Akt phosphorylation, ex-
plaining its activation in platelets upon incubation with heme (2.5 μM) [57]. Heme-triggered
platelet activation along with Akt phosphorylation was demonstrated to be dependent on
TLR4 [57]. Although the TLR4 signaling pathway is highly pronounced in the HemeThrom-
bKG network, it did not emerge during crosstalk analysis, since it is not yet recognized
for its contribution to procoagulant processes in the databases. This pathway has been
previously highlighted in the context of heme-driven inflammation and suitable future
targets from this signaling were already pointed out [17].

Akt phosphorylation can further lead to eNOS activation in platelets, a hemoprotein,
whose production has been reported to be influenced by heme [61,62]. Many of the
subsequent effector proteins of this pathway have not yet been described in relation to
heme signaling, but ERK has been found to contribute to heme signaling in other cell types
(e.g., neutrophils) (Table S1) [43,57,63]. Furthermore, an interrelation of heme with the
messenger molecules cyclic guanosine monophosphate (cGMP; in vivo), arachidonic acid,
and thromboxane A2 (in vitro) in platelets has already been reported [46,64–66], suggesting
the induction and progression of the respective pathways in the presence of heme.

In contrast to the collagen/GPVI-mediated platelet activation signaling, the pathway
induced by platelet adhesion to VWF is largely unexplored as a potential route for heme
signaling. None of the proteins of the GPIb-IX-V complex were mentioned in context with
heme-mediated platelet activation. However, the pathway shares several effector proteins
with the collagen/GPVI-initiated signaling, which could be activated by heme as part of
the VWF-associated signaling pathway as well.

4. Discussion

The high prevalence of thrombosis in hemolytic disorders and the associated harmful
complications emphasize the importance of the in-depth investigation of the molecular
basis of heme-driven prothrombotic effects.

Thus, a mechanistic model of heme signaling in the context of blood coagulation is
presented herein. “HemeThrombKG” represents the contextualization of the current knowl-
edge about the interference of heme in the blood coagulation system. Furthermore, the
analysis of the complex interrelations by enrichment and superimposition with information
available from databases provides novel insights into underlying pathways with a focus on
the enzymatic coagulation cascade and platelet activation signaling. In addition, crucial
knowledge gaps were identified and highlighted that need to be targeted in future research.

In the past, several components of the blood coagulation cascade were reported to
be affected by heme with contradictory outcome (anticoagulant (e.g., FV and FVIII) vs.
procoagulant (e.g., APC and fibrinogen) signaling) but to date only three proteins (i.e.,
APC, fibrinogen, and FVIII(a)) out of this complex network were shown to bind heme
in vitro. The heme-binding affinities along with the plasma levels of the coagulation
factors (Figure 3D) could enable a temporal and heme concentration-dependent ranking
of the processes in the blood coagulation system. The highest heme-binding affinity
of the so far known heme-binding coagulation proteins exhibit FVIII (12.7 nM)/FVIIIa
(1.9 nM) and APC (~400 nM), whereas fibrinogen possesses a moderate heme-binding
affinity (~3.3 μM) [36,37,47]. However, while FVIII/FVIIIa and APC occur only in very
low amounts in the plasma (subnano- to nanomolar range), fibrinogen is the clotting factor
with the highest plasma concentration (micromolar range). Thus, it is highly probable that
fibrinogen will be in the first line affected by heme, whereas APC and FVIII might only
be regulated under conditions of heme excess. Still, several participating proteins have
not yet been analyzed for these heme-binding characteristics, which were outlined in this
study (e.g., FX, FXI, and various coagulation inhibitors). These should be analyzed for their
potential heme-binding capacity in the future to enable a complete understanding of the
temporal and spatial hierarchy of heme-triggered effects in the blood coagulation cascade
and, thus, evaluation of the progression of hemolysis-driven thrombotic complications.
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Beyond the effects on the coagulation cascade, heme has been associated with cellular
events, including platelet adhesion, activation, and aggregation [46,53,55,57,67]. However,
the underlying intracellular signaling pathways and, in particular, the interrelations of the
already described effector proteins, are largely unexplored. To enable a more comprehen-
sive analysis of potential intracellular signaling pathways, HemeKG 2.0, a combination
of the previous (HemeKG [17]) and the novel (HemeThrombKG) heme knowledge graph,
were used for the analysis of cellular signaling pathways. Thereby, the platelet activa-
tion signaling pathways were highly pronounced, emphasizing the importance of the
collagen/GPVI signaling route for heme-driven platelet activation. As pointed out in this
study, several effector proteins of this signaling pathway (e.g., Btk, SLP76, IP3R, MLCK,
RASGRP, and Rap1) have not yet been described in the context of heme biology and should
thus be experimentally investigated as potential heme-induced signaling proteins. The
same applies for the VWF/GPIb-XI-V signaling route, where only VWF and messenger
molecules were reported to be influenced under conditions of heme excess. However, it
should be noted that a few of the herein included effector proteins (e.g., PLCγ2) have not
yet been reported to be activated and/or induced by heme in platelets but only in other cell
types, such as endothelial cells and leukocytes, which thus requires future experimental
investigation in platelets. Beside the different cell types, the different heme concentrations
that were used for the studies impede a direct comparison of the results. Furthermore, our
analysis emphasizes the need for suitable and comparable in vivo studies that support the
in vitro results and observations.

Beyond the herein described components of the blood coagulation system, other
proteins occurred in the HemeThrombKG network that participate in the prothrombotic
reactions, including receptors (TLR4, CLEC2 and thrombomodulin), adhesion proteins
(selectin E, selectin P, ICAM1, and VCAM1), and several intracellular proteins (e.g., MAPK1,
NLRP3, GGT1, and actin). Future analysis should include these proteins to generate a more
complete picture of the procoagulant effects of heme.

The high complexity of the actions of heme as a modulator in the blood coagulation
system is further evident by indirectly triggered prothrombotic mechanisms, such as LDL
oxidation by heme or heme-released iron followed by endothelial cell damage [68]. These
links were not analyzed in the present study but are already (at least partially) included in
HemeKG 2.0 and are, thus, also available for further exploration.

Finally, HemeThrombKG as well as the combined HemeKG 2.0 were curated with
standard vocabularies (e.g., from ChEBI [69] and MeSH [70]) using BEL, which makes it
linkable to public databases. The networks and analyses performed on these networks have
been made available at https://github.com/HemeThrombKG/HemeThrombKG, to allow
the public to interactively explore the knowledge graphs and gain additional mechanistic
insights [71]. Thus, researchers can easily inspect further relations and dependencies in
the herein provided networks on their own. As such, the networks can be used to predict
suitable drugs and their response in hemolytic disorders (e.g., SCD and PNH) in the
future, supporting the selection of suitable drug candidates for the targeted treatment of
hemolysis-associated thrombosis.

5. Conclusions

In conclusion, this study emphasizes the importance and relevance of the blood coag-
ulation cascade and platelet activation signaling pathways for the reported prothrombotic
effects of heme as occurring in hemolytic disorders. Furthermore, several effector proteins
are highlighted for future studies, which will allow for a more detailed characterization of
the pathophysiological outcome on the molecular level and, thus, establishment of novel
perspectives for targeted treatment options of prothrombotic complications in patients with
hemolytic disorders.

178



J. Clin. Med. 2022, 11, 5975

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11195975/s1, Figure S1: Overview of the extracted knowledge
from the common pathway databases; Table S1: Evidence for heme relations in the platelet activation
signaling pathways from additional literature screening.

Author Contributions: Conceptualization, D.I. and M.-T.H.; methodology, S.M., S.D.d.S. and D.D.-F.;
validation, D.D.-F., D.M.S. and M.-T.H.; resources, M.H.-A.; data curation, S.M., S.D.d.S., D.M.S. and
M.-T.H.; writing—original draft preparation, S.M. and M.-T.H.; writing—review and editing, all
authors; visualization, S.M. and M.-T.H.; supervision, D.D.-F., A.T.K., M.-T.H. and D.I. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under the project number: 507218303 (to M.-T.H.) and the STEP4 program of the
University of Bonn (to D.I.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The herein established knowledge graph (HemeThrombKG) and its in-
clusion into HemeKG (HemeKG 2.0) are publicly accessible at https://github.com/HemeThrombKG/
HemeThrombKG.

Acknowledgments: Financial support by the University of Bonn (to M.-T.H. and D.I.) is acknowledged.

Conflicts of Interest: D.D.-F. received salary from Enveda Biosciences and the company has no
competing interests with the published results. The rest of the authors declare that they have no
conflict of interest.

References

1. Shet, A.S.; Lizarralde-Iragorri, M.A.; Naik, R.P. The Molecular Basis for the Prothrombotic State in Sickle Cell Disease. Haematolog-
ica 2020, 105, 2368–2379. [CrossRef] [PubMed]

2. van Bijnen, S.T.A.; van Heerde, W.L.; Muus, P. Mechanisms and Clinical Implications of Thrombosis in Paroxysmal Nocturnal
Hemoglobinuria. J. Thromb. Haemost. 2012, 10, 1–10. [CrossRef] [PubMed]

3. Panch, S.R.; Montemayor-Garcia, C.; Klein, H.G. Hemolytic Transfusion Reactions. New Engl. J. Med. 2019, 381, 150–162.
[CrossRef] [PubMed]

4. Delvasto-Nuñez, L.; Jongerius, I.; Zeerleder, S. It Takes Two to Thrombosis: Hemolysis and Complement. Blood Rev. 2021,
50, 100834. [CrossRef]

5. Srisuwananukorn, A.; Raslan, R.; Zhang, X.; Shah, B.N.; Han, J.; Gowhari, M.; Molokie, R.E.; Gordeuk, V.R.; Saraf, S.L. Clinical,
Laboratory, and Genetic Risk Factors for Thrombosis in Sickle Cell Disease. Blood Adv. 2020, 4, 1978–1986. [CrossRef]

6. Naik, R.P.; Streiff, M.B.; Haywood, C.; Nelson, J.A.; Lanzkron, S. Venous Thromboembolism in Adults with Sickle Cell Disease: A
Serious and under-Recognized Complication. Am. J. Med. 2013, 126, 443–449. [CrossRef]

7. Nouraie, M.; Lee, J.S.; Zhang, Y.; Kanias, T.; Zhao, X.; Xiong, Z.; Oriss, T.B.; Zeng, Q.; Kato, G.J.; Gibbs, J.S.R.; et al. The
Relationship between the Severity of Hemolysis, Clinical Manifestations and Risk of Death in 415 Patients with Sickle Cell
Anemia in the US and Europe. Haematologica 2013, 98, 464–472. [CrossRef]

8. Roumenina, L.T.; Rayes, J.; Lacroix-Desmazes, S.; Dimitrov, J.D. Heme: Modulator of Plasma Systems in Hemolytic Diseases.
Trends Mol. Med. 2016, 22, 200–213. [CrossRef]

9. Rother, R.P.; Bell, L.; Hillmen, P.; Gladwin, M.T. The Clinical Sequelae of Intravascular Hemolysis and Extracellular Plasma
Hemoglobin. J. Am. Med Assoc. 2005, 293, 1653. [CrossRef]

10. Samuel, P.P.; White, M.A.; Ou, W.C.; Case, D.A.; Phillips, G.N.; Olson, J.S. The Interplay between Molten Globules and Heme
Disassociation Defines Human Hemoglobin Disassembly. Biophys. J. 2020, 118, 1381–1400. [CrossRef]

11. Andersen, C.B.F.; Stødkilde, K.; Sæderup, K.L.; Kuhlee, A.; Raunser, S.; Graversen, J.H.; Moestrup, S.K. Haptoglobin. Antioxid.
Redox Signal. 2017, 26, 814–831. [CrossRef] [PubMed]

12. Alayash, A.I.; Andersen, C.B.F.; Moestrup, S.K.; Bülow, L. Haptoglobin: The Hemoglobin Detoxifier in Plasma. Trends Biotechnol.
2013, 31, 2–3. [CrossRef]

13. Kumar, S.; Bandyopadhyay, U. Free Heme Toxicity and Its Detoxification Systems in Human. Toxicol. Lett. 2005, 157, 175–188.
[CrossRef] [PubMed]

14. Soares, M.P.; Bozza, M.T. Red Alert: Labile Heme Is an Alarmin. Curr. Opin. Immunol. 2016, 38, 94–100. [CrossRef]
15. Noé, R.; Bozinovic, N.; Lecerf, M.; Lacroix-Desmazes, S.; Dimitrov, J.D. Use of Cysteine as a Spectroscopic Probe for Determination

of Heme-Scavenging Capacity of Serum Proteins and Whole Human Serum. J. Pharm. Biomed. Anal. 2019, 172, 311–319. [CrossRef]
[PubMed]

179



J. Clin. Med. 2022, 11, 5975

16. Pires, I.S.; Govender, K.; Munoz, C.J.; Williams, A.T.; O’Boyle, Q.T.; Savla, C.; Cabrales, P.; Palmer, A.F. Purification and Analysis
of a Protein Cocktail Capable of Scavenging Cell-free Hemoglobin, Heme, and Iron. Transfusion 2021, 61, 1894–1907. [CrossRef]
[PubMed]

17. Humayun, F.; Domingo-Fernández, D.; Paul George, A.A.; Hopp, M.-T.; Syllwasschy, B.F.; Detzel, M.S.; Hoyt, C.T.; Hofmann-
Apitius, M.; Imhof, D. A Computational Approach for Mapping Heme Biology in the Context of Hemolytic Disorders. Front.
Bioeng. Biotechnol. 2020, 8, 74. [CrossRef]

18. Figueiredo, R.T.; Fernandez, P.L.; Mourao-Sa, D.S.; Porto, B.N.; Dutra, F.F.; Alves, L.S.; Oliveira, M.F.; Oliveira, P.L.;
Graça-Souza, A.V.; Bozza, M.T. Characterization of Heme as Activator of Toll-like Receptor 4. J. Biol. Chem. 2007, 282,
20221–20229. [CrossRef]

19. Janciauskiene, S.; Vijayan, V.; Immenschuh, S. TLR4 Signaling by Heme and the Role of Heme-Binding Blood Proteins. Front.
Immunol. 2020, 11, 1964. [CrossRef]

20. Belcher, J.D.; Chen, C.; Nguyen, J.; Milbauer, L.; Abdulla, F.; Alayash, A.I.; Smith, A.; Nath, K.A.; Hebbel, R.P.;
Vercellotti, G.M.; et al. Heme Triggers TLR4 Signaling Leading to Endothelial Cell Activation and Vaso-Occlusion in Murine
Sickle Cell Disease. Blood 2014, 123, 377–390. [CrossRef]

21. Merle, N.S.; Paule, R.; Leon, J.; Daugan, M.; Robe-Rybkine, T.; Poillerat, V.; Torset, C.; Frémeaux-Bacchi, V.; Dimitrov, J.D.;
Roumenina, L.T. P-Selectin Drives Complement Attack on Endothelium during Intravascular Hemolysis in TLR-4/Heme-
dependent Manner. Proc. Natl. Acad. Sci. USA 2019, 116, 6280–6285. [CrossRef] [PubMed]

22. Roumenina, L.T.; Chadebech, P.; Bodivit, G.; Vieira-Martins, P.; Grunenwald, A.; Boudhabhay, I.; Poillerat, V.; Pakdaman, S.;
Kiger, L.; Jouard, A.; et al. Complement Activation in Sickle Cell Disease: Dependence on Cell Density, Hemolysis and Modulation
by Hydroxyurea Therapy. Am. J. Hematol. 2020, 95, 456–464. [CrossRef] [PubMed]

23. Frimat, M.; Tabarin, F.; Dimitrov, J.D.; Poitou, C.; Halbwachs-Mecarelli, L.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement
Activation by Heme as a Secondary Hit for Atypical Hemolytic Uremic Syndrome. Blood 2013, 122, 282–292. [CrossRef]

24. Pawluczkowycz, A.W.; Lindorfer, M.A.; Waitumbi, J.N.; Taylor, R.P. Hematin Promotes Complement Alternative Pathway-
Mediated Deposition of C3 Activation Fragments on Human Erythrocytes: Potential Implications for the Pathogenesis of Anemia
in Malaria. J. Immunol. 2007, 179, 5543–5552. [CrossRef] [PubMed]

25. Frimat, M.; Boudhabhay, I.; Roumenina, L.T. Hemolysis Derived Products Toxicity and Endothelium: Model of the Second Hit.
Toxins 2019, 11, 660. [CrossRef]

26. Hopp, M.-T.; Imhof, D. Linking Labile Heme with Thrombosis. J. Clin. Med. 2021, 10, 427. [CrossRef]
27. Conran, N.; De Paula, E.V. Thromboinflammatory Mechanisms in Sickle Cell Disease—Challenging the Hemostatic Balance.

Haematologica 2020, 105, 2380. [CrossRef]
28. Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New Perspectives on Genomes, Pathways, Diseases and

Drugs. Nucleic Acids Res. 2017, 45, D353–D361. [CrossRef]
29. Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; et al.

The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [CrossRef]
30. Slenter, D.N.; Kutmon, M.; Hanspers, K.; Riutta, A.; Windsor, J.; Nunes, N.; Mélius, J.; Cirillo, E.; Coort, S.L.; Digles, D.; et al.

WikiPathways: A Multifaceted Pathway Database Bridging Metabolomics to Other Omics Research. Nucleic Acids Res. 2018, 46,
D661–D667. [CrossRef]

31. Domingo-Fernández, D.; Mubeen, S.; Marín-Llaó, J.; Hoyt, C.T.; Hofmann-Apitius, M. PathMe: Merging and Exploring
Mechanistic Pathway Knowledge. BMC Bioinform. 2019, 20, 243. [CrossRef] [PubMed]

32. Hoyt, C.T.; Domingo-Fernández, D.; Aldisi, R.; Xu, L.; Kolpeja, K.; Spalek, S.; Wollert, E.; Bachman, J.; Gyori, B.M.; Greene, P.; et al.
Re-Curation and Rational Enrichment of Knowledge Graphs in Biological Expression Language. Database 2019, 2019, baz068.
[CrossRef] [PubMed]

33. Huntley, R.P.; Binns, D.; Dimmer, E.; Barrell, D.; O’Donovan, C.; Apweiler, R. QuickGO: A User Tutorial for the Web-Based Gene
Ontology Browser. Database 2009, 2009, bap010. [CrossRef] [PubMed]

34. Hopp, M.T.; Domingo-Fernández, D.; Gadiya, Y.; Detzel, M.S.; Graf, R.; Schmalohr, B.F.; Kodamullil, A.T.; Imhof, D.; Hofmann-
Apitius, M. Linking COVID-19 and Heme-Driven Pathophysiologies: A Combined Computational–Experimental Approach.
Biomolecules 2021, 11, 644. [CrossRef]

35. Becker, C.G.; Wagner, M.; Kaplan, A.P.; Silverberg, M.; Grady, R.W.; Liem, H.; Muller-Eberhard, U. Activation of Factor XII-
Dependent Pathways in Human Plasma by Hematin and Protoporphyrin. J. Clin. Investig. 1985, 76, 413–419. [CrossRef]

36. Hopp, M.-T.; Alhanafi, N.; Paul George, A.A.; Hamedani, N.S.; Biswas, A.; Oldenburg, J.; Pötzsch, B.; Imhof, D. Molecular
Insights and Functional Consequences of the Interaction of Heme with Activated Protein, C. Antioxid. Redox Signal. 2021, 34,
32–48. [CrossRef]

37. Repessé, Y.; Dimitrov, J.D.; Peyron, I.; Moshai, E.F.; Kiger, L.; Dasgupta, S.; Delignat, S.; Marden, M.C.; Kaveri, S.V.;
Lacroix-Desmazes, S. Heme Binds to Factor VIII and Inhibits Its Interaction with Activated Factor IX. J. Thromb. Haemost. 2012,
10, 1062–1071. [CrossRef] [PubMed]

38. Green, D.; Furby, F.H.; Berndt, M.C. The Interaction of the VIII/von Willebrand Factor Complex with Hematin. Thromb. Haemost.
1986, 56, 277–282.

39. Hunt, R.C.; Katneni, U.; Yalamanoglu, A.; Indig, F.E.; Ibla, J.C.; Kimchi-Sarfaty, C. Contribution of ADAMTS13-independent VWF
Regulation in Sickle Cell Disease. J. Thromb. Haemost. 2022, 20, 2098–2108. [CrossRef]

180



J. Clin. Med. 2022, 11, 5975

40. Sparkenbaugh, E.M.; Chantrathammachart, P.; Wang, S.; Jonas, W.; Kirchhofer, D.; Gailani, D.; Gruber, A.; Kasthuri, R.; Key, N.S.;
Mackman, N.; et al. Excess of Heme Induces Tissue Factor-Dependent Activation of Coagulation in Mice. Haematologica 2015, 100,
308–313. [CrossRef]

41. Setty, B.N.Y.; Betal, S.G.; Zhang, J.; Stuart, M.J. Heme Induces Endothelial Tissue Factor Expression: Potential Role in Hemostatic
Activation in Patients with Hemolytic Anemia. J. Thromb. Haemost. 2008, 6, 2202–2209. [CrossRef] [PubMed]

42. Souza, G.R.; Fiusa, M.M.L.; Lanaro, C.; Colella, M.P.; Montalvao, S.A.L.; Saad, S.T.O.; Costa, F.F.; Traina, F.; Annichino-Bizzacchi, J.M.;
de Paula, E.V. Coagulation Activation by Heme: Evidence from Global Hemostasis Assays. Blood 2014, 124, 455. [CrossRef]

43. May, O.; Yatime, L.; Merle, N.S.; Delguste, F.; Howsam, M.; Daugan, M.V.; Paul-Constant, C.; Billamboz, M.; Ghinet, A.;
Lancel, S.; et al. The Receptor for Advanced Glycation End Products Is a Sensor for Cell-free Heme. FEBS J. 2021, 288, 3448–3464.
[CrossRef] [PubMed]

44. Glueck, R.; Green, D.; Cohen, I.; Ts’ao, C. Hematin: Unique Effects on Hemostasis. Blood 1983, 61, 243–249. [CrossRef] [PubMed]
45. Green, D.; Reynolds, N.; Klein, J.; Kohl, H.; Ts’ao, C.H. The Inactivation of Hemostatic Factors by Hematin. J. Lab. Clin. Med. 1983,

102, 361–369. [PubMed]
46. Neely, S.M.; Gardner, D.V.; Reynolds, N.; Green, D.; Ts’ao, C. Mechanism and Characteristics of Platelet Activation by Haematin.

Br. J. Haematol. 1984, 58, 305–316. [CrossRef]
47. Ke, Z.; Huang, Q. Haem-Assisted Dityrosine-Cross-Linking of Fibrinogen under Non-Thermal Plasma Exposure: One Important

Mechanism of Facilitated Blood Coagulation. Sci. Rep. 2016, 6, 26982. [CrossRef]
48. Hou, T.; Zhang, Y.; Wu, T.; Wang, M.; Zhang, Y.; Li, R.; Wang, L.; Xue, Q.; Wang, S. Label-Free Detection of Fibrinogen Based on

Fibrinogen-Enhanced Peroxidase Activity of Fibrinogen-Hemin Composite. Analyst 2018, 143, 725–730. [CrossRef]
49. Bergmeier, W.; Hynes, R.O. Extracellular Matrix Proteins in Hemostasis and Thrombosis. Cold Spring Harb. Perspect. Biol. 2012,

4, a005132. [CrossRef]
50. Nieswandt, B.; Pleines, I.; Bender, M. Platelet Adhesion and Activation Mechanisms in Arterial Thrombosis and Ischaemic Stroke.

J. Thromb. Haemost. 2011, 9, 92–104. [CrossRef]
51. Li, Z.; Delaney, M.K.; O’Brien, K.A.; Du, X. Signaling During Platelet Adhesion and Activation. Arterioscler. Thromb. Vasc. Biol.

2010, 30, 2341–2349. [CrossRef] [PubMed]
52. Woollard, K.J.; Sturgeon, S.; Chin-Dusting, J.P.F.; Salem, H.H.; Jackson, S.P. Erythrocyte Hemolysis and Hemoglobin Oxidation

Promote Ferric Chloride-Induced Vascular Injury. J. Biol. Chem. 2009, 284, 13110–13118. [CrossRef] [PubMed]
53. Oishi, S.; Tsukiji, N.; Otake, S.; Oishi, N.; Sasaki, T.; Shirai, T.; Yoshikawa, Y.; Takano, K.; Shinmori, H.; Inukai, T.; et al. Heme

Activates Platelets and Exacerbates Rhabdomyolysis-Induced Acute Kidney Injury via CLEC-2 and GPVI/FcRγ. Blood Adv. 2021,
5, 2017–2026. [CrossRef] [PubMed]

54. Tsuji, M.; Ezumi, Y.; Arai, M.; Takayama, H. A Novel Association of Fc Receptor γ-Chain with Glycoprotein VI and Their
Co-Expression as a Collagen Receptor in Human Platelets. J. Biol. Chem. 1997, 272, 23528–23531. [CrossRef]

55. Bourne, J.H.; Colicchia, M.; Di, Y.; Martin, E.; Slater, A.; Roumenina, L.T.; Dimitrov, J.D.; Watson, S.P.; Rayes, J. Heme Induces
Human and Mouse Platelet Activation through C-Type-Lectin-like Receptor-2. Haematologica 2020, 106, 626–629. [CrossRef]

56. Porto, B.N.; Alves, L.S.; Fernández, P.L.; Dutra, T.P.; Figueiredo, R.T.; Graça-Souza, A.V.; Bozza, M.T. Heme Induces Neutrophil
Migration and Reactive Oxygen Species Generation through Signaling Pathways Characteristic of Chemotactic Receptors. J. Biol.
Chem. 2007, 282, 24430–24436. [CrossRef]

57. Annarapu, G.K.; Nolfi-Donegan, D.; Reynolds, M.; Wang, Y.; Kohut, L.; Zuckerbraun, B.; Shiva, S. Heme Stimulates Platelet
Mitochondrial Oxidant Production to Induce Targeted Granule Secretion. Redox Biol. 2021, 48, 102205. [CrossRef]

58. Graça-Souza, A.V.; Arruda, M.A.B.; de Freitas, M.S.; Barja-Fidalgo, C.; Oliveira, P.L. Neutrophil Activation by Heme: Implications
for Inflammatory Processes. Blood 2002, 99, 4160–4165. [CrossRef]

59. Alvarado, G.; Tóth, A.; Csősz, É.; Kalló, G.; Dankó, K.; Csernátony, Z.; Smith, A.; Gram, M.; Akerström, B.; Édes, I.; et al.
Heme-Induced Oxidation of Cysteine Groups of Myofilament Proteins Leads to Contractile Dysfunction of Permeabilized Human
Skeletal Muscle Fibres. Int. J. Mol. Sci. 2020, 21, 8172. [CrossRef]

60. Yao, X.; Balamurugan, P.; Arvey, A.; Leslie, C.; Zhang, L. Heme Controls the Regulation of Protein Tyrosine Kinases Jak2 and Src.
Biochem. Biophys. Res. Commun. 2010, 403, 30–35. [CrossRef]

61. da Guarda, C.C.; Santiago, R.P.; Pitanga, T.N.; Santana, S.S.; Zanette, D.L.; Borges, V.M.; Goncalves, M.S. Heme Changes HIF-α,
ENOS and Nitrite Production in HUVECs after Simvastatin, HU, and Ascorbic Acid Therapies. Microvasc. Res. 2016, 106, 128–136.
[CrossRef] [PubMed]

62. Chen, P.F.; Tsai, A.L.; Wu, K.K. Cysteine 184 of Endothelial Nitric Oxide Synthase Is Involved in Heme Coordination and Catalytic
Activity. J. Biol. Chem. 1994, 269, 25062–25066. [CrossRef]

63. Arruda, M.A.; Rossi, A.G.; de Freitas, M.S.; Barja-Fidalgo, C.; Graça-Souza, A.V. Heme Inhibits Human Neutrophil Apoptosis:
Involvement of Phosphoinositide 3-Kinase, MAPK, and NF-KB. J. Immunol. 2004, 173, 2023–2030. [CrossRef]

64. Peng, L.; Mundada, L.; Stomel, J.M.; Liu, J.J.; Sun, J.; Yet, S.-F.; Fay, W.P. Induction of Heme Oxygenase-1 Expression Inhibits
Platelet-Dependent Thrombosis. Antioxid. Redox Signal. 2004, 6, 729–735. [CrossRef] [PubMed]

65. Peterson, D.A.; Gerrard, J.M.; Rao, G.H.; Mills, E.L.; White, J.G. Interaction of Arachidonic Acid and Heme Iron in the Synthesis
of Prostaglandins. Adv. Prostaglandin Thromboxane Res. 1980, 6, 157–161.

66. Green, D.; Ts’ao, C. Hematin: Effects on Hemostasis. J. Lab. Clin. Med. 1990, 115, 144–147.

181



J. Clin. Med. 2022, 11, 5975

67. NaveenKumar, S.K.; SharathBabu, B.N.; Hemshekhar, M.; Kemparaju, K.; Girish, K.S.; Mugesh, G. The Role of Reactive Oxygen
Species and Ferroptosis in Heme-Mediated Activation of Human Platelets. ACS Chem. Biol. 2018, 13, 1996–2002. [CrossRef]

68. Nagy, E.; Eaton, J.W.; Jeney, V.; Soares, M.P.; Varga, Z.; Galajda, Z.; Szentmiklósi, J.; Méhes, G.; Csonka, T.; Smith, A.; et al. Red
Cells, Hemoglobin, Heme, Iron, and Atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1347–1353. [CrossRef]

69. Hastings, J.; de Matos, P.; Dekker, A.; Ennis, M.; Harsha, B.; Kale, N.; Muthukrishnan, V.; Owen, G.; Turner, S.; Williams, M.; et al.
The ChEBI Reference Database and Ontology for Biologically Relevant Chemistry: Enhancements for 2013. Nucleic Acids Res.
2012, 41, D456–D463. [CrossRef]

70. Lipscomb, C.E. Medical Subject Headings (MeSH). Bull. Med Libr. Assoc. 2000, 88, 265–266.
71. Hoyt, C.T.; Domingo-Fernández, D.; Hofmann-Apitius, M. BEL Commons: An Environment for Exploration and Analysis of

Networks Encoded in Biological Expression Language. Database 2018, 2018, bay126. [CrossRef] [PubMed]

182



Citation: Nappi, F.; Giacinto, O.;

Lusini, M.; Garo, M.; Caponio, C.;

Nenna, A.; Nappi, P.; Rousseau, J.;

Spadaccio, C.; Chello, M. Patients

with Bicuspid Aortopathy and Aortic

Dilatation. J. Clin. Med. 2022, 11, 6002.

https://doi.org/10.3390/jcm11206002

Academic Editor: Lucia Stančiaková
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Abstract: (1) Background: Bicuspid aortic valve (BAV) is the most frequent congenital cardiac disease.
Alteration of ascending aorta diameter is a consequence of shear stress alterations due to haemody-
namic abnormalities developed from inadequate valve cusp coaptation. (2) Objective: This narrative
review aims to discuss anatomical, pathophysiological, genetical, ultrasound, and radiological as-
pects of BAV disease, focusing on BAV classification related to imaging patterns and flux models
involved in the onset and developing vessel dilatation. (3) Methods: A comprehensive search strategy
was implemented in PubMed from January to May 2022. English language articles were selected
independently by two authors and screened according to the following criteria. (4) Key Contents and
Findings: Ultrasound scan is the primary step in the diagnostic flowchart identifying structural and
doppler patterns of the valve. Computed tomography determines aortic vessel dimensions according
to the anatomo-pathology of the valve. Magnetic resonance identifies hemodynamic alterations. New
classifications and surgical indications derive from these diagnostic features. Currently, indications
correlate morphological results, dissection risk factors, and genetic alterations. Surgical options vary
from aortic valve and aortic vessel substitution to aortic valve repair according to the morphology
of the valve. In selected patients, transcatheter aortic valve replacement has an even more impact
on the treatment choice. (5) Conclusions: Different imaging approaches are an essential part of BAV
diagnosis. Morphological classifications influence the surgical outcome.

Keywords: bicuspid aortic valve; aortopathy; classification; diagnosis; treatment

1. Introduction

Bicuspid aortic valve (BAV) is the most frequent congenital cardiac pathology; has a
prevalence of 1–2% [1], a high incidence of adverse outcomes, especially aortic stenosis
(AS) and aortic regurgitation (MR) [2]; and is at least three times more common in males
than females [3].

Bicuspid aortopathy, reported in 50% of BAV patients, consists of the aorta enlarge-
ment starting from the aortic root and involving the aortic arch and depends on blood
flux turbulences characterized by power vectors directed against the aortic toot and the
convexity of the vessel [4–7]. Recently, micro-RNA (miRNA) has been studied regarding
post-transcriptional regulation of genes in aortopathy manifestation. [8,9]. This paper
aims to discuss the current knowledge about anatomical, pathophysiological, genetical,
ultrasound, and radiological aspects of BAV disease, focusing on BAV classification related
to imaging patterns and flux models involved in the onset of aortic dilatation and its de-
veloped process. We present the following article in accordance with the narrative review
reporting checklist.
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2. Methods

This narrative review was carried out from January 2022 to May 2022. The following
search strategy was implemented on PubMed: (BAV OR bicuspid aortopathy OR bicuspid
aortic valve) AND (ultrasound OR computed tomography OR magnetic resonance OR US
OR CT or MR). Published articles were evaluated from database inception up to search
date. Only articles in the English language were included. Details are reported in Table 1.

Table 1. Narrative review searching strategies.

Items Specification

Date of Search (specified to date, month and year) From January 2022 to May 2022
Databases and other sources searched PubMed

Search terms used (including MeSH and free text
search terms and filters)

(BAV OR bicuspid aortopathy OR bicuspid
aortic valve) AND (ultrasound OR
computed tomography OR magnetic
resonance OR US OR CT or MR)

Time frame Up to May 2022
Inclusion and exclusion criteria (study type,
language restrictions, etc.) English language

Selection process Two authors independently selected
articles after screening for duplicates.

3. Genetics and Molecular Biology

Estimating mutation genes and their inheritance patterns is challenging [7] because
locus 9q34.3 alteration causes mutations in regulators NOTCH1 with secondary pathologi-
cal aortic valve development [10,11]; gene damages on 18q, 5q, and 13q induces BAV [12];
and finally, damages to the smooth muscle alfa actine (ACTA 2) gene produce BAV and
aortic aneurysms [13].

There is a tight linkage between BAV expression and other congenital pathologies
such as the coarctation of the aorta. Concerning BAV phenotype, Shone’s syndrome with
a left-sided lesion that can cause inflow and outflow obstruction, Turner’s syndrome
with aortic coarctation, and William’s syndrome involving supravalvular stenosis may be
observed. Moreover, ventricular septal defect, atrial septal defect, patent ductus arteriosus,
and coronary vessels, which may mainly involve single coronary and reversal coronary
dominance, have been reported [14–16].

Micro-RNAs (MiRNAs) need to be considered in biochemical and molecular changes
in BAV and aorthopathy (Table 2). MiRNAs are small, single-stranded, noncoding RNA
molecules that determine the post-transcriptional regulation of gene expression. The
effects of miRNAs are the result of base pairing with complementary sequences within
mRNA molecules that are silenced by cleavage of the mRNA strand, destabilization of the
mRNA by shortening its tail, and less efficient translation into proteins by ribosomes [17].
MiRNA expression profiling studies show that the expression levels of certain miRNAs
change in diseased human hearts, suggesting their involvement in cardiomyopathies.
MiR-712 is a potential predictor of atherosclerosis, has blood flow-dependent expression,
and miR-712 is also upregulated in endothelial cells exposed to naturally occurring d-
flow in the greater curvature of the aortic arch [18]. Several studies have investigated
the cooperation of miRNA, metalloproteinases (MMP), and tissue inhibitor of matrix
metalloproteinases (TIMP) in aorthopathy secondary to morphological alteration of the
aortic valve. miRNAs related to dilation of the thoracic aorta (TA) are upregulated in
transcriptional and epigenetic ways: different levels of MMP-2, MMP-9, TIMP-1, and
TIMP-9 were observed [19]. A high level of MMP-2 and increased levels of miR-17 and
miRNAs with the same genetic features as miR-17 were found in a comparative study
involving patients with mild and severe aorta dilation, with a decreased level of TIMP -1,
TIMP-2, and TIMP-3, thus hypothesizing a continuous development of TA influenced by
BAV [20]. A recent study showed a relationship between miR-133a and TIMP-1 and TIMP-2
without reporting a statistically significant association between miR-143 and MMP-2 [21].
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Table 2. Gene expression involved in valve and aortic diseases. ACTA 2: alfa actine 2, AXIN: gene
encodes a cytoplasmic protein that contains a regulation of G-protein signaling (RGS) domain and a di-
sheveled and axin (DIX) domain, BAV: bicuspid aortic valve, ENG: Endoglin, FBN1: fibrillin 1, GATA
(sequence for transcription factors for zinc proteins’ binding DNA sequence), NOS3: nitric oxide
synthase 3, NOTCH1 (gene encoding transmembrane proteins), PDIA2: protein disulfide isomerase
family A member 2, PECAM-1: platelet endothelial cell adhesion molecule-1, TGF: transforming
growth factor, TIMP: tissue inhibitor of matrix metalloproteinases.

Gene Expression Pathology

miR-146-5p BAV, aortic aneuurysm (convex region)
miR-21-5p BAV, aortic aneuurysm (convex region)
miR-17 Aoritc anurysm
miR 21 Aortic aneurysm
miR-34 a Aortic aneurysm
miR-122 BAV
miR 130 a BAV
miR-133a TIMP1,TIMP2, aortic aneurysm
mi-R 143 Aortic aneurysm
mi-R 145 Aortic aneurysm
miR 146-5p Aortic aneurysm
miR-200 Endothelial-mesenchimal/epithelial mesenchimal
miR-423-5p BAV, aortic aneurysm

miR-424-3p downregulation Cell proliferation, apoptosis, endothelial cells
alterations, aortic anuerysm

miR-486 BAV
miR-494 PECAM
miR-712 Atherosclerosis, aortic aneurysm
miR-718 Aortic aneurysm
ACTA2 BAV. Aortic aneurysm
AXIN1-PDIA2 BAV
ENG BAV
FBN 1 BAV
GATA4/GATA5/GATA6 BAV
NOS3 BAV
NOTCH1 (9q34.3) BAV, outflow tract malformation
TGFb1/TGFb2 Sporadic BAV, Loeys-Dietz syndrome
18q BAV
5q BAV
13q BAV

Plasma exosomal miR-423-5p regulates TGF-β signaling by targeting “similar mothers
against decapentaplegic Drosophila gene” 2 (SMAD2), exerting functions in the initiation
and development of BAV disease and its complication, bicuspid aortopathy [22,23]. Cir-
culating miRNAs may reflect remodeling processes in the proximal aorta in patients with
bicuspid aortopathy, and a recent study found a significant association between miRNA
expression in peripheral blood and aortic tissue, as levels of miR-21, miR-133a, miR-143,
and miR-145 were associated with dilated aorta [24].

Since abnormalities in vascular smooth muscle cells (VSMCs) may influence the devel-
opment of TA dilation, primarily when contractile function converts to secretory function,
this molecular situation causes cell apoptosis, in which the role of miRNA regulation
may play a crucial role. Specifically, the convex part of ascending thoracic aorta (ATA)
in BAV has increased miR-146-5p and miR-21-5p and reduced miR-133a-3p levels [25];
miR-424-3p and miR-3688-3p are downregulated in Hippo, ErbB, and TGF-beta signalling
pathways, an epiphenomenon of cell proliferation and apoptosis [26]; and, finally, en-
dothelial cells may have alterations due to abnormal flux patterns and genetic factors.
This last alteration results in a less resistant vessel wall and can start a process of aortic
dilation. Moreover, miR-494 is associated with platelet endothelial cell adhesion molecule
(PECAM) and microparticles derived from endothelial cells [26], and the decreased ex-
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pression of the miR-200 group can determine the involvement of the miR-200 family in
endothelial–mesenchymal/epithelial–mesenchymal transition (EndMT/EMT) [27].

Observing the role of miRNAs as aortopathy biomarker of aortic dilation and in-
creasing aortic dilation, it has been observed that miR-133a has a special linkage with the
aneurysms’ incidence [28]; miR-122, miR-130a, and miR-486 are expressed in BAV; and
miR-718 is used to predict aneurysms [29] similar to miR-34a [30].

Fibrillin 1 (FBN1) mutations have been found in BAV and aortic dilation. This gene
encodes a glycoprotein of extracellular matrix (ECM), which manteins elastic fibers, and is
also involved in the linkage of epithelial cells to interstitial matrix. A downregualtion of this
gene has been associated with BAV [31]. GATA (sequence for transcription factors for zinc
proteins’ binding DNA sequence) variations are involved in BAV: a missense p. Arg202Gln
in GATA5 and three synonymous variants—p. Cys274 and p. His302 in GATA4, and p.
Asn458 in GATA6 [32]. Alterations in nitric oxide synthase 3 (NOS3) are also associated
with BAV. A single nucleotide polymorphism (SNP) is present in aneurysmal and non-
aneurysmal BAV [33]. A haplotype within the AXIN-1-protein disulfide isomerase family
A member 2 (AXIN1-PDIA2) locus and in the Endoglin (ENG) gene has been found to be
linked to BAV [34]. Cilia and excyst have a main role in regulate mitogen-activated protein
kinase (MAPK) signaling. An alteration of this mechanism is the cause of an activation of
MAPK and the formation of BAV and calcified aortic stenosis [35].

4. Classification and Nomenclature

Since 1970, several classifications of BAV, derived from pathology, US scan, CT scan,
and MR patterns (Table 3), have been proposed [36]. Recently, an international consensus
statement developed a classification based on the progression of cusps fusion and geometry
of commissurae [37], with particular attention to surgical indications and techniques.

Table 3. BAV classifications (adapted from Michelena HI et al./European Journal of cardio-thoracic
surgery). Abbreviations; BAV, bicuspid aortic valve; BAVCon, bicuspid aortic valve consortium; LN,
left non-coronary fusion; RL, right–left fusion; RN, right non-coronary fusion.

Author Nomenclature

Roberts [36] 1970
Anterior–posterior cusps
Right–left cusps
Presence of raphe

Brandenburg et al. [38] 1983

Clock-face nomenclature:
Commissures at 4–10 o’clock with raphe at 2
o’clock (R-L)
Commissures at 1–6 o’clock with raphe at 10
o’clock (RN)
Commissures at 3–9 o’clock without raphe (L-N)

Angelini et al. [39] 1989
Anterior–posterior cusps
Right–left cusps
Presence of raphe

Sabet et al. [40] 1999

RL
RN
LN
Presence of raphe

Sievers and Schmidtke [41] 2007

Type 0 (no raphe): anteroposterior or lateral
cusps (true BAV)
Type 1 (1 raphe):
R-L, RN, L-N
Type 2 (2 raphes): L-R, RN
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Table 3. Cont.

Author Nomenclature

Schaefer et al. [42] 2008

Type 1: RL
Type 2: RN
Type 3: LN
Presence of raphe
Aorta:
Type N: normal shape
Type E: sinus effacement
Type A: ascending aorta dilatation

Kang et al. [43] 2013

Anteroposterior orientation:
type 1: R-L with raphe type; 2: R-L without
raphe
Right–left orientation:
Type 3: RN with raphe
Type 4: L-N with raphe
Type 5: symmetrical cusps with 1 coronary
artery originating from each cusp
Aorta:
Type 0: normal
Type 1: dilated root
Type 2: dilated ascending aorta
Type 3: diffuse involvement of the ascending aorta
and arch

Michelena et al. [44] 2014

BAVCon nomenclature:
Type 1: R-L
Type 2: RN
Type 3: L-N
Presence of raphe

Jilaihawi et al. [45] 2016

Tricommissural: functional or acquired
bicuspidity of a trileaflet valve
Bicommissural with raphe
Bicommissural without raphe

Sun et al. [46] 2017
Dichotomous nomenclature:
R-L
Mixed: (RN or L-N)

Murphy et al. [47] 2017

Clock-face nomenclature:
Type 0: partial fusion/eccentric leaflet?
Type 1: RN, RL, LN
partial fusion/eccentric leaflet?
Type 2: RL and RN, RL and LN, RN and LN partial
fusion/eccentric leaflet?

From this consensus statement, three BAV patterns related to the fusion of cusps
and the number of sinuses may be observed. Every pattern should be considered like a
schematic-based US short-axis scan at the base of the heart; the ideal circumference of the
aortic valve is subdivided into parts like the face of a clock, in which the points over the
watch are the coordinates of the anatomical features of the BAV.

In normal cardiogenesis, endothelium-derived nitric oxide syntethase (eNOS) ex-
pression is related to endocardial cells and is dependent upon the shear stress [48,49].
Nitric oxide is the promotor of podokinesis. In this way, cardiac jelly is populated by
endocardil cells to make endocardil cushions [50]. In a study on mice, eNOS deficency
may cause an alteration of cell migration with impairment in the development of valvular
cushions, and an alteration of the function of cardiac neural crest cells has a role in this
pathogenetic pattern [7,51].

The first pattern related to embryological events is defined as the fused bicuspid aortic
valve (Figure 1) and diagnosed in 90–95% of cases [44] and presents three subtypes defined
according to the cusps involved.
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Figure 1. Fused bicuspid aortic valve. (A) Represents short-axis normal tricuspidal aortic pattern
with anatomical proximities. Cusps’ fusion patterns seen in short heart axis: right-left coronary fusion
(B), right-non coronary fusion (C). All BAVs have three sinuses. Raphe structure is between the
fused cusps. Non-fused cusp is prominent in respect to the fused ones. The commissure angle of the
non-fused cusp has a degree < 180◦. Abbreviations: LA, left atrium; LC, left cusp; LCA, left coronary
artery; MV, mitral valve; NC, non-coronary cusp; PA, pulmonary artery; RA, right atrium; RC, right
cusp; RCA, right coronary artery; RV, right ventricule; TV, tricuspidalic valve. Licenses Centre
Cardiologique du Nord; order date 8 September 2022; order number 5384080341542; publication
NEJM; Title: Mitral valve Repair for Mitral valve prolapse.

In normal conditions, valve cushions are modelled by an excavation process resulting
in fusion of the cusps in case of process alteration [51–55]. It is possible to distinguish
three sinuses and the fusion of two of the three cusps. In contrast, the non-fused cusp
commissure has an angle of different degrees and generally is more prominent than the
fused cusps, as occurs for its sinus compared to the other two sinuses. A fibrous raphe,
a predictor of further development of AS [56] between the two fused cusps, has been
frequently observed [40,57]. The right–left cusp fusion, observed in 70–80% of patients [58]
and often associated with AS and aortic regurgitation (AR) [44], is derived from a mild
alteration in the outflow tract septation during embryogenesis and is linked to the formation
of aneurysms in every section of the aorta (aortic root, ascending aorta, aortic arch) and
frequently characterized by root dilation. An association has also been observed between
right–left cusp fusion and aortic coarctation. The right–left cusp fusion is common in
genetic syndromes, such as Turner’s one and Shone’s complex and people with Down
syndrome [59]. In 20–30% of BAV cases, a proper non-coronary cusp fusion is present, more
common among the Asian population [60] and frequently associated with AS in adults [56].

Moreover, it may be observed combined with an alteration of the process involved
in the formation of the endocardial cushion, an independent predictor of AR [61]. In
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children, this phenotype may induce a more rapid development of AS and AR [62,63]. Left
non-coronary cusp fusion is only present in 3–6% of patients [37].

The second type of BAV is referred to as the two sinuses BAV type (Figure 2).

Figure 2. Two-sinus bicuspid aortic valve. Figure represents two cusps’ non-fusion patterns seen
in the short heart axis. Aortic valves have two sinuses with two leaflets non-derived from fusion
mechanisms. (1) Coronary arteries originate from the two sinuses with two lateral leaflets. The
opened valve in systole phase has the oval-ball image. (2a) In this position, coronary arteries originate
from the anterior sinus (right coronary artery) and posterior sinus (common left stem). (2b) Right
coronary artery and common left stem both originate from anterior sinus. Abbreviations; A, anterior;
L, lateral P, posterior.

Its incidence ranges between 5 and 7% of cases [40,44,64]. In this pattern, it is possible
to identify two cusps corresponding to homologous sinuses, not depending upon fusion
but upon the abnormal embryological constitution. Typically, the cusps are the same in
size, a raphe is not present, and the aortic orifice is divided into two portions: laterolateral
(Figure 2(1)) and anteroposterior (Figure 2(2a,2b)). In the laterolateral pattern, coronary
setup is from each sinus; in the anteroposterior type, coronaries may originate from each
sinus or the anterior one. Embryological alteration involved in the laterolateral pattern is
secondary to abnormal endocardial cushion formation and positioning. The aetiology of the
anteroposterior model is due to abnormal outflow tract septation. The same mechanism in
the fused aortic bicuspid valve type is present in this second morphological pattern, but the
two-sinus valve may constitute a more severe embryological development alteration [37].

The third BAV type is a partial fusion bicuspid aortic valve (Figure 3), with an un-
known prevalence [65].

Morphological features are similar to a tricuspid valve with symmetry of the cusps,
and the aortic orifice area is less comprehensive than the normal surface. A raphe is
localized at the base of each commissure, causing a fixed portion of the cusp to the artic
wall. For this reason, this phenotype is also called form fruste aortic valve [66–68]. An
alteration of normal embryological processes may be identified. Therefore, it is assumed
that a mild defect in outflow tract septation and remodelling of aortic valve cushions
are present.
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Figure 3. Partial fusion aortic valve. Figure represents three cusps with partial leaflets fusion seen in
the short heart axis (left). In this case, the opened (right) aortic valve is similar to the normal valve
but with a more narrow area.

The above classifications (Table 3) have implications for daily clinical practice. Siever’s
classification is still the most important for diagnosis and surgical indication. The classifica-
tions with the determination of the leaflets and the fusion patterns of the commissures are
crucial for the development of aortic dilatation [69]. Even aortic valve morphology, flow
changes, and prognostic evaluation are well determined by models derived from fusion
pattern classification.

5. BAV Geometry Types and Surgical Implications

In every subtype of the previous classification, we can identify the BAV geometrical
pattern by evaluating the position of commissures related to the aortic orifice, their angle in
the coaptation zone, the presence of raphe, and the morphology and the area of the cusps.
In the fused BAV type, it is relevant to establish the relationships between the fused cusps
and non-fused cusp and the angle of the commissures of the non-fused cusps (Figure 4).

Figure 4. Symmetry of fused bicuspid aortic valve (adapted from Michelena HI et al./European
Journal of cardio-thoracic surgery). Figure represents the angles determined by aortic valve leaflets
fusion patterns. The length of raphe causes the retraction of fused leaflets and the non-physiological
coaptation of the non-fused leaflet with fused leaflets. The geometry of the three patterns can
be summarized as symmetrical, asymmetrical, and very asymmetrical The degree of the angle is
important for surgical technique.

When the two fused cusps are retracted over the raphe, AR may develop. Therefore,
the coaptation line and angle must be described mainly for surgical indications and practice.
The coaptation angle may vary from 180◦ to less than 150◦; to ensure a higher probability
of valve repair, the ideal angle should range between 180◦ and 160◦. When the angle ap-
proximates 140◦, valve sparing and repairing is more complex [70]. Pre-cardiopulmonary
bypass transoesophageal echocardiography establishes the coaptation model and commis-
sural angle.

The two-cusp fusion model, more frequent in AS, has the two cusps/two sinuses
feature, and the commissural angle is nearly close to 180◦ [37]. In partial fusion, the
commissural angle resembles the one present in the normal aortic valve.
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Surgical valve-preserving techniques are indicated by the commissural geometry of
the aortic valve, as mentioned by a recent paper that also considers the relationship of the
aortic root from the virtual basal ring (VBR) to the sinitubular junction [71].

6. Pathophysiology

Histological and hemodynamic features have a critical role in understanding BAV
development. Histological changes in the aortic wall structure may be ascribed to cystic
medial necrosis. The process involved in smooth muscle cells’ regulatory pathways is
well known. Extracellular matrix fibrillin 1, abnormally processed by smooth muscle
cells, causes the separation of smooth muscle cells from the extracellular matrix layer.
After that, MMPs are activated with consequences on the fragmentation of elastin and
cellular apoptosis, and the media tunica becomes less prone to flexibility than normal
aortic wall [72–74].

Hemodynamic implications cooperate with histological patterns in developing aor-
topathy in BAV. Biophysics may significantly confirm pathological evidence, given the
relationship between hemodynamic and histological patterns. Analysis of the flux, espe-
cially in fused bicuspid valves, helps understand the way of aortic dilation, remembering
that even a normofunctioning bicuspid valve may cause a flux alteration. A notable con-
tribution to these aspects is due to cineMR of the heart and ascending thoracic aorta [75]:
assessing the development of aortic dilation and its complications, such as the dissection,
allows for considering flux modification rather than the normal one. For this purpose,
the Wall Shear Stress (WSS), peak velocity, normalized flow displacement, and in-plane
rotational flow (IPRF) should be observed (Figure 5).

Figure 5. (A,B). Representation of morphologic chacteristic of the bicuspid aortic valve influencing
the pattern of aortopathy. The fusion pattern of the aortic valve cusps is responsible for changes
due to shear stress on the aortic wall and in the resulting flow pattern. (A) In the right–left fu-
sion model, the jet is directed towards the right anterior wall of the ascending aorta, where it
moves in a right-hand helical direction to promote dilation predominantly of the ascending aorta.
(B) In contrast, in the model characterized by a fusion of the right and non-coronary cusps, the jet is
directed towards the posterior wall of the aorta, so the model of shear stress of the wall it causes can
favor aortic expansion at the internal proximal arch. Licenses Centre Cardiologique du Nord; order
date 27 July 2022; order number 5357160571198; publication NEJM; Title: Aortic Dilatation in Patients
with Bicuspid Aortic Valve.

Given that the morphology of BAV influences WSS, this should be evaluated consider-
ing its two main axial and circumferential components. Especially in fused patterns and a
particular portion of the aorta, WSS may be incidental in aortic dilation (Figure 5). In this
case, two distinct models of aortic dilation may be identified: the tubular aortic dilation
and the root dilation. The R-L fusion type (Figure 5A) causes more WSS to the root and
the outer curvature of the proximal part of the ascending aorta with a lower influence
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upon the upper tubular portion of the aorta itself; instead, R non-cusp fusion (Figure 5B)
exerts a stronger WSS on the convexity of ascending aorta with involvement of the aortic
arch [76,77]. Moreover, WSS is also dependent on the degree of AS, given its contribution
to a more abnormal flux pattern and the consequent possibility of developing hybrid forms
of aortic dilation.

Root aneurysms may be associated with tubular aortic and arch enlargement. This
type of aortic dilation is called root phenotype extended [37,78]. Root phenotype is more
frequently associated with aortic dissection, especially in patients who have previously
undergone aortic valve replacement (AVR). This is determined by WSS and genetic fac-
tors [79]. The ascending phenotype is determined from WSS and the significant curvature
of the tubular portion, which can determine a more substantial power of WSS [80,81]. In
this context, Sigovan et al. described how the flow jet angle (FJA) and normalized flow dis-
placement (NFD) might act upon the aortic wall, causing dilation [82]. In-plane rotational
flow (IPRF), determined in MR imaging, is valuable for measuring rotation flow through a
surface. In this sense, the vorticity (ω) and circulation (Γ) are calculated by the integral of
vorticity related to a sectional area [83]. Flow volumes are registered as the time integral
of forward and backward flow measurements through the aortic surface, thus allowing
for the calculation of the systolic flow reversal ratio (SFRR) [84]. Together with biophysical
considerations, these parameters are instrumental for a deep CT and RM imaging reading.
They may be used during patients’ follow-up, especially in those for whom stratifying the
risk of developing and increasing an abnormal aortic diameter is needed. Combining these
features with risk factors control and pharmacological approach may be helpful in primary
and secondary prophylaxis of aortic dilation.

7. Imaging Diagnostic

7.1. Echocardiographic Imaging

The role of transesophageal echocardiography (TTE) in diagnosing BAV and its se-
quelae is well known [38,85–87] and mandatory in particular conditions such as AS. It has
been estimated that TTE has a sensitivity of 78%, a specificity of 96%, and an accuracy of
93% [38]. In patients with AS, ECG-gated CT is recommended.

TTE determines the morphology of the valve, the connected hemorheology, the
anatomical features of the root system, the diameter and the wall alteration of ascend-
ing aorta, and conditions like the aortic coarctation associated with BAV. In aortic root
determination, TTE allows for measuring the sinotubular junction (STJ), especially in some
aortopathy related to BAV (Figure 6).

Figure 6. TTE shows enlargement of the sinotubular junction related to R-L cusp fusion.
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It is performed using a parasternal short-axis and subcostal short-axis 2D scan, in
which the first parameter helps detect two aortic valve cusps. A long axis may be used to
investigate the doming in the systolic phase of the fused cusps.

To describe patterns in BAV classification, a short-axis 2D scan is the best US view
because it allows for detecting all the aortic orifices and characterizing cusps fusion and
position. It is helpful to determine the presence of raphe and the calcification of the
structures related to the components of the aortic valve. Furthermore, TTE, combined with
a TC scan, supports determining the relations between cusps, or the angle of commissures,
which is important for surgical methods and the width of the sinuses (Figure 7).

Figure 7. (A) TTE. Right non-coronary cusps fusion. (B) In the picture from operation theater, it is
possible to appreciate the fusion between the right cusp and the non-coronary cusp. Three sinuses
are still viewed. Commissural geometrical juxtaposition forms a 180-degree angle.

Deeping the role of the US in determining BAV features, the evaluation of the symmetry
of the fused cusps related to non-fused cusps is fundamental. Generally, the fused cusps
form a new structure that is greater and asymmetrical than the non-fused cusp, while the
sinus corresponding to the non-fused cusp is larger than the other two sinuses [88].

The valvular function should be well established since flux alterations are present in
BAV patterns. Normal functioning valves have to be studied, considering that many of
them may evolve into stenosis or regurgitation. Recognizing valves with systolic relevant
bending strain, systolic flow models [89], and transaortic fluximetry (peak velocity Doppler)
is mandatory. The left ventricular outflow tract (LVOT) is studied with a continuous
equation and generally has a larger surface than normal valves. Guidelines recommend
employing the peak systolic velocity and mean gradient where the normal ejection fraction
is registered [90].

In AR, every part of the aortic valve and STJ may be investigated. Prolapse of one
or both cusps may be observed, usually associated with dilation of the annulus and root
system [91]. TTE may contribute to determining the mechanism of regurgitation and
establishing if the valve may be repaired or not; in case of positive indication, TTE supports
the identification of repair measurements. To obtain a coaptation zone without residual
insufficiency, the commissure angle should reach not less than 160◦. It is also relevant to
determine the presence of calcification and the mobility of the cusps [86].

Furthermore, through the parasternal long-axis and short-axis images derived by TTE,
it is possible to measure the diameter of the ascending aorta segments. In particular, the
parasternal long axis may not represent the actual diameter of the aorta correctly [92],
but, since aortic diameters are orthogonal to blood flow and X-rays form a 90◦ angle with
vectors of blood flow, the CT scan is valuable in determining every single diameter in
aortic segments. Furthermore, TTE registers aortic wall measurements at the end-diastolic
phase, taking them from the leading edge to the leading edge. This technique allows for
identifying aortic enlargement related to the single patterns of BAV.
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Since there is an agreement of no greater than 2 mm between echocardiography and
CT or MR measurements (difference not more than 2 mm), TTE has a primary role during
follow-up. It may be performed every 3–5 years if the diameter is normal, every 12 months
if the diameter is 40–49 mm, and every 24 months if the stability should be assessed. In the
presence of a diameter ranging from 50 to 54 mm, TTE must be repeated every 12 months.
The function of the aortic valve should be considered for indication of surgery [93].

7.2. Cardiac Computed Tomography

Cardiac computed tomography (CCT) complements US scans in BAV diagnosis. It is
relevant in determining aortic dilation, the anatomical edges and correlation with closer
structures, and discovering other pathologies correlated with BAV, such as aortic coarctation.
Therefore, the radiological protocol is scheduled to determine those features useful for
surgeons in the act of choosing traditional surgical approach or transcatheter aortic valve
replacement (TAVR) [94] (Figure 8).

Figure 8. (A,B). CT scan in R-L cusp fusion. (A) Three sinuses are represented. (B). Opening
mechanism in fusion pattern. Abbreviations; R, right coronary cusp; L, left coronary cusp; NC,
non-coronary cusp.

In order to diagnose BAV, a 64-slice CT with a venous infusion of 50–100 mL of
iodine contrast medium is usually performed. It is helpful to evaluate both systolic and
diastolic ECG gating phases, and in the case of BAV, a true commissure or a raphe should
be determined [95]. The systolic phase shows the opening pattern of the valve and helps
to register the size of the annulus and the leaflets. In the diastolic phase, the edges of the
leaflets, their hinge to the aortic wall, the way they close the left ventricle outflow, and the
presence of calcifications on their surfaces may be evaluated; coronaries’ imaging should
also be evaluated keeping a strict monitoring of heart rate. The role of CCT in determining
coronary origin in BAV deserves special mention. Eccentricity of the ostium of the right
coronary artery is more frequent (> 20◦) than the origin of the left coronary artery. In 95.5%
of BAV patients, the obstruction of the right coronary artery is located at the border between
the right cusp and the non-coronary cusp. It is also possible to assess the right and left
cusps and the right and left coronary midlines. In 97% of BAV patients, the right and left
cusps are slightly displaced from the commissure. In 93% of BAV patients, a displacement
of less than 20◦ was noted between the right and left coronary cusps and between the right
and left coronary arteries as centered lines [96].

Virtual Basal Ring (VBR) software estimates the size and anatomical features [95],
especially the anatomical region between the plane passing across the ventricle outflow
where this muscular structure encounters leaflets nadir and STJ. The cylindrical geometrical
figure can be developed into a rectangular shape, where it is possible to identify hinge
regions, sines, and interleaflet triangles. This multiplanar reconstruction (MPR) is particu-
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larly significant for surgical technical choices. To have a correct profile of the entire valve,
aortic wall measurements should be taken by tracing curved lines in the inner surface of
the aorta.

Every BAV pattern may be localized through a CT scan given the capacity to determine
the exact anatomical coordinates as in the echocardiography. The valve orifice may be
divided into parts like a clock face, while coronary cusps and non-coronary cusps have the
same place as in the TTE.

Fusion patterns, the presence of raphe, leaflets coaptation, and commissure angles
may be identified according to the general classification [37].

A recent radiological classification considering a morphological and geometrical
approach derived from the valve, commissural orientation, and the aortic annulus shape
was developed with the help of a CT scan [97]. The elliptical index of the annulus is
measured related to the angle formed by commissure coaptation. Using this approach,
three pattern types can be identified. The first type has a low elliptical index (more circular
than the others) with a coaptation angle of 160◦–180◦. The second pattern has a moderate
ellipse eccentricity with a coaptation angle estimated between 140◦ and 159◦. Finally, the
third type has a very elliptical annulus and a commissural orientation angle of 120◦–139◦.

According to the BAV classification, aneurysm phenotypes may be identified on
CCT. The RL cusps’ fusion pattern is better linked to root dilation and the initial portion
of the tubular thoracic ascending aorta. RN cusp fusion is involved in the dilation of
ascending aorta and aortic arch. CCT enables to measure the diameter of the thoracic aorta
at different levels, the structure of the aortic wall, the presence of other aortic pathologies,
and aortic wall destabilization/intramural hematomas/dissections. The diameter should
be measured from the inner wall to the inner wall in the diastolic phase to correctly estimate
the magnitude of ascending aorta.

7.3. Magnetic Resonance

The contribution of the MR is relevant in those cases in which the echocardiography
cannot estimate the morphology of the aortic valve and root and the diameter of ascending
aorta and arch (Figure 9). It also has a complementary role in determining the aortic
wall structure and the viability of myocardial muscle. It has a main role in determining
scarry zones inside a healthy myocardium and the efficiency of cardiac chambers. EF may
be estimate with this technique. These features should be matched with other decision
elements derived from other imaging techniques to identify the proper surgical indication
and forecast the patients’ prognosis. These factors make MR more useful in clinical practice
than CT scan regarding functional evaluation [98] (Figure 9).

For hemorheological aspects secondary to BAV, MR is crucial. Time-resolved three-
dimensional phase-contrast cardiovascular magnetic resonance (CMR 4D-flow) is necessary
for optimal investigation. It allows us to study peak velocity, jet angle, normalized flow
displacement, and in-plane rotational flow [75].

Velocity measured through the plane passing along the aortic valve may be associated
with its vector figure. Ideally, the angle between the velocity vector and the valve plane
is approximately equal to 90◦. However, in the presence of BAV, this condition is altered.
Therefore, it is necessary to investigate how the velocity vector and the power vector
determined by the left ventricular ejection effort influence the blood flux and, consequently,
the impact on the aortic wall. This biophysical model considers two particular BAV patterns:
The R-L fusion causes a displacement of power against the root portion and to the convex
line of the aorta. In contrast, the R-non cusp model shows vector forces directed in the
posterior part of the ascending aorta. Interestingly, these power lines are modified in
pathological patterns relating to the normal aortic valve, assuming a wider spectrum of
action in the CMR 4D flow phase.
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Figure 9. Calcific bicuspid aorta Sievert Type 2 with fusion of the two coronary cusps for a raphe
(red arrow). The patient had a transvalvular gradient of 40 mmHg. The ascending thoracic aorta is
dilated above the Valsalva sinuses with a maximum diameter of 53 mm measured at the intersection
with the right pulmonary artery (yellow arrow).

MR also contributes to evaluating IPRF and SFRR [75] through a right-handed circular
model that describes the geometry of the flux in BAV. IPRF seems higher in R-N-cusp
than in the R-L pattern in mid and distal sections of ascending aorta [75,99–102] and has a
higher value even in BAV with the dilated aorta. Higher IPRF values in ascending aortic
aneurysm pattern than in the root pattern have also been observed. Rotational flux impacts
the circular WSS because it may be possible, in this case, for the conjunction of powers with
power vectors effort in double action on the aortic wall. SFRR has higher values in the BAV
pattern than healthy persons without no difference between R-L and RN cusp patterns.
SFRR levels are higher in ascending thoracic aorta than in the root pattern. In IPRF and
SFRR, alterations of effort vectors with alteration of WSS may be observed.

MR imaging helps determine the geometrical and biophysical ascending aorta (AA)
features. So far, the morphology of AA is connected to the diameter measure. A retrospec-
tive study [103] presented an AA segmentation from the aortic annulus to the emerging of
the brachio-cephalic vessel-specific using a 3D segmentation MR software platform to relate
the aortic vessel to an idealized cylinder. MR values in every segment were added to repro-
duce a volume pattern, and the volumetric growth index was determined by comparing
baseline and follow-up measurements.

Interestingly results highlighted a difference between diameter measure and volume
calculation. In this latter case, the growth index of the aorta was greater than diame-
ter enhancement. Volume representation is more helpful in achieving information from
every segment of the aorta than diameter measure, giving a synchronic vision of the
idealized cylinder.

AA segmentation by 4D flow MR is a unique technique employed to investigate
biophysical aortic features, such as flow rate, distensibility, local strain, and stiffness [104].
Pulse wave velocity (PWV) is determined in aortic regions from Valsalva’s sinuses to the
descending aorta (DA). The flow rate is obtained by multiplying the average velocity by the
area of a single aortic section. PWV is influenced by diameter expansion, Young’s elastic
module, and reduced elasticity (E). PWV decreases when the diameter is larger than a
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normal aorta diameter and changes when stiffness is greater in pathological patterns than
in normal situations.

8. Assessment and Treatment

The patterns of aortic involvement guide the surgical choice, and it can be classified
into three types (Figure 10).

Figure 10. (A–D). Depict patterns of bicuspid aortopathy revealing the biologic features of the aorta
and the three types of bicuspid aortopathy. The three morphological types reported provide a substan-
tial contribution to the best surgical procedure to be used for the treatment of the bicuspid aortopathy.
Licenses Centre Cardiologique du Nord; order date 27 July 2022; order number 5357160571198;
publication NEJM; title: Aortic Dilatation in Patients with Bicuspid Aortic Valve.

Type 1 (B) is the most common type involving dilatation of the tubular ascending aorta
with particular regard along its convexity, associated by varying degrees of aortic-root
dilatation. Patients who develop this type of morphology have an older age at diagnosis
(>50 years). Valvular stenosis and a preferentially RL fusion pattern are disclosed [6,90–92].
Type 2 (C) offers as typical feature an isolated involvement of the tubular ascending aorta
associated to a relative sparing of the aortic root. Frequently, the morphological type 2 can
be extended into the transverse aortic arch, and it has been associated with the presence of
the RN fusion pattern [6,63,90–92]. Finally, type 3, due to its substantial characteristics, is
called the root phenotype, and involves an isolated dilation of the aortic root (D). Its rarity
is to be underlined as well as the frequent manifestation in a younger age at diagnosis
(<40 years), in the male sex, and the occurrence of aortic regurgitation. Morphological type
3 has been referred to as the form of bicuspid aortopathy that is most likely to be associated
with a genetic cause [6,58,64].

An early diagnosis of bicuspid aortopathy is likely offered by the use of TTE [42,105–108].
Although TTE is substantially a method for assessing the morphology of the aortic root and
proximal ascending aorta, it is known that the correct visualization of the mid-distal portion
of ascending aorta and the arch may present some difficulty in adults. In these cases, both
computed tomographic (CT) and MR investigation may be offered a better visualization
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with a global evaluation of the ascending aorta. In patients who have contraindications
to CT or MR, a TTE is suitable for reaching the diagnosis [43,105,109,110]. Likewise, in
scheduling serial surveillance, it is more convenient to use MR than CT since it avoids
extensive radiation exposure. (Figure 11)

Figure 11. (A–C). Depicts representative findings on echocardiography and computed tomography
(CT). In (A), the transthoracic echocardiogram shows normal dimensions of the sinuses of Valsalva
(arrow) and a dilated ascending aorta. Ascending aorta denotes proximal ascending aorta, and LV
denotes left ventricle. In (B,C), the CT images reveal dilatation of the aortic root and dilatation of
the ascending aorta and proximal arch, respectively. Licenses Centre Cardiologique du Nord; order
date 27 July 2022; order number 5357160571198; publication NEJM; Title: Aortic Dilatation in Patients
with Bicuspid Aortic Valve.

8.1. Decision-Making Algorithm for Treatment Option

In patients suffering from bicuspid aortopathy, some risk factors, such as smoking and
hypertension, require crucial attention. From a pharmacological point of view, the recent
ACC/AHA guidelines recommend using antihypertensive drugs such as beta-adrenergic
blockers, angiotensin-converting enzyme inhibitors, and angiotensin-receptor blockers. The
use of beta-adrenergic blockers may offer the theoretical advantage of reducing the shear
stress phenomenon of the aortic wall, thus avoiding the risk of rupture [111]. Conversely,
angiotensin-receptor blockers favor decreasing the aortic growth rate in patients with
Marfan syndrome [112].

Scheduling a continuous evaluation of the aorta diameter may be indicated in patients
with bicuspid aortopathy. If the size of the aortic or ascending root aorta reaches a diameter
between 45 and 48 mm, a CT or an MR scan is recommended [43,105,108]. It is important
to emphasize that if concomitant indications exist to perform aortic valve correction or as-
sociated CABG surgery, a personalized surgical approach is evaluated considering rigorous
parameters such as the pattern of aortopathy, the perioperative risk, the skill of the surgeon,
and the experience of the referral center [109,113]. In patients in whom the lesion assumes
the main characteristic of dilation of the tubular ascending aorta, the various surgical
options are directed towards a more or less aggressive approach. The surgeon may choose
between isolated supracoronary replacement of the ascending aorta or, in patients with a
substantial aortic valve dysfunction associated with aortic root dilation, a replacement of
the aortic valve, aortic root, or ascending aorta [114–122]. The surgical approach differs
substantially in those patients who exhibit bicuspid aortopathy involving dilation of the
ascending aorta in association with an aortic arch expansion. The treatment option may
be the replacement of the aortic valve combined with the supracoronary replacement of
the ascending aorta and with the involvement of the aortic hemiarch. Again, in case of
the involvement of this distal part of the aorta, surgical treatment requires more or less
deep hypothermia with the circulatory arrest that may be associated with the use of an
anterograde or retrograde cerebral perfusion approach [114–122].

In patients with isolated aortic root involvement, the surgical option is directed to-
wards the Bentall procedure, which includes aortic valve and aortic root replacement using
a mechanical or biological composite valve conduit. A conservative surgical repair revealed
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excellent results in cases that present an ideal patho-anatomy of bicuspid aortopathy, al-
though patients must be addressed to expert referral centers [120,121,123–125]. Indication
of the combined aortic valve and ascending aorta replacement surgery should consider
nonsurgical factors integrated into the final decision-making process. Therefore, the pa-
tient’s lifestyle, the need for long-term anticoagulants, and future reproductive plans in the
case of female patients should be considered. A Ross procedure may represent the ideal
option for special populations because it uses the pulmonary autograft, which constitutes a
living tissue [111,126–130].

Patients with no indication for valve replacement and who reveal dimensions of the
aortic root or ascending aorta with a diameter ranging from 45 to 50 mm should be referred
for surgery only if they have substantial high-risk characteristics such as a family history
of aortic dissection, evidence of sudden rupture, and evidence-based imaging of an aortic
growth rate greater than 5 mm per year [115,117–119,122,131]. On the other hand, the ratio
of aortic area to body height greater than 10 cm2 per meter is also effective for patients with
short body stature [109,110,132]. If these conditions are insufficient to establish a correct
clinical evaluation, an annual reassessment of risk stratification using CT or MR should
be reconsidered.

Current ACC/AHA guidelines and the position papers of professional societies rec-
ommend a threshold of 5.5 cm and a more individualized approach. COR I and LOE
A of ACC/AHA state that in asymptomatic or symptomatic BAV patients with a diam-
eter of the aortic sinuses or ascending aorta higher than 5.5 cm, operative intervention
to replace the aortic sinuses, and/or the ascending aorta is recommended. In asymp-
tomatic patients with an aortic root or ascending aorta with a diameter ranging between
5.0 and 5.5 cm and an additional risk factor for dissection (COR 2a, LOE B-NR), surgery is
recommended [111,113,133].

In other specific clinical conditions, different approaches may be adopted. For asymp-
tomatic BAV patients with low surgical risk and a diameter of the aortic sinuses or ascending
ranging from 5.0 to 5.5 cm without additional risk factors for dissection, surgery to replace
the aortic sinuses and/or the ascending aorta may be considered if the surgery is performed
at a comprehensive valve center (COR 2b, LOE B-NR) [115,117–120,122,131,133,134]. BAV
patients who meet the criteria for replacement of the aortic sinuses may be considered
for valve-sparing surgery when the surgery is performed at a comprehensive valve cen-
ter (COR 2b LOE C-LD) [114]. European guidelines recommend the aortic replacement
in patients who experience a diameter of the aortic root or ascending aorta at 5.0 cm or
more and when patients have associated risk factors that include coarctation of the aorta,
systemic hypertension, family history of dissection, or an increase in the aortic diameter
of more than 2 mm per year [93]. International guidelines recommend ascending aortic
replacement surgery in patients with a lower threshold (aortic diameter: 45 mm) for whom
there is an indication for aortic valve surgery and when valve repair can be performed
in an expert center [93,111]. As for patients who received an AVR related to BAV disease
and presented with an aortic sinus or ascending aortic diameter greater than 4.0 cm, serial
surveillance with lifelong aortic imaging is advisable [135,136].

Finally, the Canadian guidelines recommend the surgical option for an aortic diameter
threshold that ranges between 5 and 5.5 cm, also considering the body surface and specific
patient risk factors as fundamental criteria, such as the time when the procedure is per-
formed and the nature of the elective aortic replacement [137,138]. Prophylactic surgery
is recommended for patients with a lower threshold limit of 50 mm and substantial risk
factors for developing an aortic complication, such as rapid aortic growth, concomitant
aortic valve disease, and disorders related to connective tissue or genetic syndromes. How-
ever, the prophylactic surgery option is not recommended in patients with an increased
risk of complications during surgery. Canadian guidelines assume that, since the aortic
complications represent a long-term risk that increases with time, they may be prevented if
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patients undergo elective aortic valve replacement and when aortic surgery is executed in
centers with a mortality rate less than 1% [137] (Figure 12).

Figure 12. Decision-making algorithm for the management of the bicuspid aortopathy. Abbreviations;
AVR, aortic valve replacement; CT, computed tomography; MRI, magnetic resonance imaging; TTE,
transthoracic echocardiography.

8.2. Special Populations

During pregnancy, women who experience a bicuspid aortic valve with concomi-
tant aortic dilatation may record changes in hemodynamics and the level of the tunica
media of the aorta leading to an increased risk of complications. In women who reveal
a bicuspid aortic valve associated with an aortic diameter greater than 4.5 cm, general
guidelines recommend discontinuing pregnancy. For athletes with aortic root or ascending
aortic dilatation greater than 45 mm diameter, regardless of valve dysfunction, guidelines
recommend participating in low-intensity events.

For patients who experience symptomatic BAV with severe AS, the transthoracic
aortic valve replacement (TAVR) procedure may be considered a valid alternative to AVR
after evaluation of patient-specific procedural risks, values, trade-offs, and if executed in a
comprehensive valve center (ACC/AHA; COR 2b, B-NR) [139–141]. Finally, the familiarity
with bicuspid aortic disease, such as that which occurs in the first degree of kinship, should
involve marked surveillance for early detection of an asymptomatic bicuspid aortic valve
and aortic disease [93,111,142].

8.3. Surgery in Special Population

The Ross procedure with Pulmonary Autograft (PA) is a valuable option for treating
bicuspid aortopathy in young or middle-aged patients. PA implanted in an aortic position
offers a lasting solution, especially in pregnant women [123,130,143–152]. Patients who
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underwent the Ross operation disclosed a retrieval of normal life expectancy, reaching an
excellent quality of life with a low number of valve-related complications [127–130]. The
Ross procedure is particularly recommended for women who plan pregnancy because
prolonged administration of anticoagulant drugs is not necessary [153–156]. Consequently,
the use of PA as a substitute for the diseased aortic valve has a reduced risk of developing
valve thrombosis, thromboembolism, and bleeding compared to the use of mechanical
valve prosthesis [157,158]. Furthermore, several studies revealed the superiority of the
Ross procedure over other surgical options for AVR in the long term [123,143–151,159,160];
nevertheless, ESC/ESCTS does not consider the Ross procedure as a recommendation
among surgical options (Class IIb) [93]. Conversely, AHA/ACC guidelines (COR IIb LOE
C) recommend using the Ross procedure in patients who require a replacement of the aortic
valve [66]. The guidelines support the use of PA in aortic valve and/or aortic root surgery in
specific conditions, such as patients no older than 50 years, with non-disabling comorbidity
and an aortic stenosis anatomical pattern, and with a small or normal-sized aortic ring.
Finally, an experienced surgeon should be involved in the use of pulmonary autograft in
young patients with bicuspid aortopathy when AVK anticoagulation is contraindicated
or undesirable. We are unaware of any randomized studies comparing the use of Ross
operation with cryopreserved aortic homograft for infectious BAV and it is unlikely that
such a study will be conducted. Therefore, the current recommendation for the treatment
of endocarditis in patients with BAV is based on observational data. Again, evidence from
RCTs is lacking for patients who are suitable to receive surgical treatment for a BAV and
asymptomatic for a functional or degenerative disorder of mitral valve but who have severe
mitral regurgita-tion without a left ventricular dysfunction or dilation, atrial fibrillation,
or pulmonary hy-pertension. These patients should undergo early combined mitro-aortic
surgery [160–164] (Figure 13).

Figure 13. Algorithm for patient special population selection for aortic valve replacement. Ross
procedure or conventional mechanical/biological prosthesis may be used according with interna-
tional guidelines. Abbreviations; ACC, American College of Cardiology; AHA, American Heart
Association; BAV, bicuspid aortic valve; COR, class of recommendation; ESCTS, European Society
of Cardiothoracic Surgery; ESC, European Society of Cardiology; LOE, level of evidence; TAVR,
transthoracic aortic valve replacement.
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9. Conclusions

BAV remains challenging in everyday clinics. Since patients may present a broad
spectrum of anatomy, pathophysiological, clinical, and surgical features, disease classifica-
tion is complex. A synthetic classification should help elucidate fusion patterns and the
geometry of the valve commissures to distinguish valves considered for reparation from
valves needing a classical substitution. In the diagnostic field, biophysics may be integrated
into regular clinical activity, especially for patients who have no surgical indications but
need monitoring to predict the developing enlargement and control risk factors related to
dilation velocity.

In the surgical approach, international guidelines focus on the coexistence of the
structural pathology and risk factors for aortic dissection and rupture. Therefore, in the
new clinical procedures, the alteration of valve structure and aortic enlargement should be
considered two aspects of the same disease.
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Abbreviations

ATA Ascending thoracic aorta
ACTA Alfa actine
AS Aortic stenosis
AR Aortic regurgitation
AV Aortic valve
AVK Anti-vitamin K
AVR Aortic valve replacement

AXIN
gene encodes a cytoplasmic protein, which contains a regulation of G-protein
signaling (RGS) domain and a disheveled and axin (DIX) domain

BAV Bicuspid aortic valve
CABG Coronary artery bypass grafting
CCT Cardiac computed tomography
CineMR Cine magnetic resonance
CMR 4D-flow Time-resolved three-dimensional phase-contrast cardiovascular magnetic resonance
COR Class of recommendation
CT Computed tomography
DA Descending aorta
E Young’s elastic module
EMT Epithelial–mesenchymal transition
EndMT Endothelial–mesenchymal transition
ENG Endoglin
eNOS Endothelium-derived nitric oxide synthetase
Erb Tyrosine kinase receptor
FBN 1 Fibrillin 1
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FJA flow jet angle
GATA sequence for transcription factors for zinc proteins’ binding DNA sequence
IPRF In-plane rotational flow
LOE Level of evidence
LVOT Left ventricular outflow tract
MAPK Mitogen-activated protein kinase
miRNA Micro-RNA
MMP Metalloproteinases
MR Magnetic resonance
MRI Magnetic resonance Imaging
NFD normalized flow displacement
NOTCH1 gene encoding transmembrane proteins
NOS3 nitric oxide synthase 3
PA pulmonary autograft
PDIA2 Protein disulfide isomerase family A member 2
PECAM Platelet endothelial cell adhesion molecule
PWV Pulse wave velocity
SFRR systolic flow reversal ratio
SMAD 2 similar mothers against decapentaplegic Drosophila gene 2
SNP single nucleotide polymorphism
STJ Sinotubular junction
TA Thoracic aorta
TAVR Transcatheter aortic valve replacement
TEE transesophageal echocardiography
TGF Transforming growth factor
TIMP Tissue inhibitor of matrix metalloproteinases
TTE Transthoracic Echocardiography
VSMCs Vascular smooth muscle cells
VBR Virtual Basal Ring
WSS Wall Shear Stress
Γ circulation
ω vorticity
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Abstract: Direct oral anticoagulants (DOAC) are currently the drug of choice for drug prevention
of stroke or systemic embolism in patients with atrial fibrillation (AF). However, repeated ischemic
stroke or systemic embolism and bleeding while on DOAC is still a challenging clinical phenomenon
in the management of future long-term anticoagulation. It is not known whether tailoring the DOAC
therapy to achieve optimal therapeutic drug levels could improve the clinical course of DOAC
therapy. To be able to tailor the therapy, it is necessary to have a valid laboratory method for DOAC
level assessment, to be aware of factors influencing DOAC levels and to have clinical options to tailor
the treatment. Furthermore, the data regarding clinical efficacy/safety of tailored DOAC regimes are
still lacking. This article reviews the current data on tailored direct oral anticoagulation in patients
with AF.

Keywords: direct oral anticoagulants; tailored medicine; DOAC laboratory monitoring; atrial
fibrillation; adverse thrombotic and hemorrhagic events

1. Introduction

Direct oral anticoagulants (DOAC) (Table 1), drugs directly inhibiting thrombin
(dabigatran) or activated coagulation factor X (apixaban, edoxaban and rivaroxaban),
are currently the drugs of choice for the pharmacological prevention of stroke or systemic
embolism [1] in patients with atrial fibrillation (AF). Thrombosis (ischemic stroke or sys-
temic embolism) and bleeding while on DOAC is still a challenging clinical phenomenon
in the management of future long-term anticoagulation. Patients with ischemic stroke on
DOAC have a high 90-day mortality (35.1% reported in previous study), with the majority
of deaths due to the stroke itself [2]. The unfavorable clinical course can also be seen in
DOAC-treated patients who suffer from adverse bleeding. For example, adjusted one-year
mortality is significantly higher in patients who suffered from gastric bleeding on DOAC
therapy compared with those who did not [3]. In addition, previous studies have demon-
strated that these adverse events correlate with in-optimal plasma levels of DOAC [4–6].
The question is whether tailoring the DOAC therapy to achieve optimal therapeutic drug
levels could improve the clinical course of DOAC therapy. The aim of this article is to
review the current data about tailored direct oral anticoagulation in patients with AF.
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Table 1. Direct oral anticoagulants: targets, indications, and pharmacology.

Parameter Apixaban Dabigatran Edoxaban Rivaroxaban

Target Factor Xa Thrombin
(Factor IIa) Factor Xa Factor Xa

FDA-approved
indications

Nonvalvular AF, VTE
(treatment *, secondary

prevention,
prophylaxis ‡)

Nonvalvular AF, VTE
(treatment ||,

secondary prevention,
prophylaxis)

Nonvalvular AF, VTE
(treatment §)

Nonvalvular AF, VTE
(treatment *, secondary

prevention,
prophylaxis ‡)

Safety in nonvalvular
AF

Lower risk of major
bleeding than with

warfarin

Higher risk of GI
bleeding than with

warfarin

Lower risk of major
bleeding than with

warfarin; higher risk of
GI bleeding

(60 mg dose) than with
warfarin

Higher risk of GI
bleeding than with

warfarin

Specific reversal agent
Andexanet alpha

(specific for all factor
Xa inhibitors)

Idarucizumab
Andexanet alpha

(specific for all factor
Xa inhibitors)

Andexanet alpha
(specific for all factor

Xa inhibitors)

Half-life (hours) 12 8–15 10–14 7–11

Renal clearance (%) 25 80 50 33

Dialyzable No Yes No No

Prodrug No Yes No No

Bioavailability (%) 60 6 62 60–80

Time to peak effect
(hours) 1–2 1–3 1–2 2–4

Gene polymorphism
studied ABCB1 CES1, ABCB1 ABCB1, SLCO1B1 ABCB1

Non-pharmacologic
interactions

Age, reduced body
weight, reduced GFR

(only if two conditions
are simultaneously
present), probably

severe liver damage

Age, reduced GFR
(do not use if

eGFR < 30 mL/min/
1.73 m2)

Reduced GFR (do not
use if eGFR < 15

mL/min/1.73 m2),
probably severe liver

damage

Age (although dose
reduction is not
recommended),

reduced GFR (do not
use if eGFR < 15

mL/min/1.73 m2),
probably severe liver

damage

Drug interactions

Avoid apixaban with
concomitant use of

dual P-gp and
moderate CYP
3A4 inhibitors

Dose reduces
dabigatran with

concomitant P-gp
inhibitor, be cautious
when gastric acidity
reducing drugs are

administered

Avoid concomitant use
of rifampin; No
adjustments for

concomitant P-gp
inhibitors

Avoid rivaroxaban with
concomitant use of

dual P-gp and
moderate CYP
3A4 inhibitors

AF—atrial fibrillation; CYP—cytochrome P450; eGFR/GFR—(estimated) glomerular filtration rate, FDA—food and
drugs administration; GI—gastrointestinal; P-gp—glycoprotein P; VTE—venous thromboembolism. * Twice daily
for the first 21 days of VTE treatment; once daily for other indications for rivaroxaban or twice daily for apixaban.
‡ Approved for VTE prophylaxis after knee or hip surgery only. § Prophylaxis of VTE in adult patients hospitalized
for an acute medical illness and for extended use. || After 5–10 days of parental anticoagulant treatment only.

2. In-Optimal DOAC Levels and the Risk of Future Adverse Events

As mentioned, currently there are quite convincing data regarding the association
between the risk of future adverse events and in-optimal (too low or too high) plasma
levels of DOAC in AF patients on long-term DOAC therapy. First, a sub-analysis of the
RE–LY trial showed that, in this trial, the occurrence of stroke and adverse bleeding cor-
related with dabigatran plasma levels. In this trial, on average, individuals who had a
major hemorrhagic event had higher trough and post-dose dabigatran levels than indi-

212



J. Clin. Med. 2022, 11, 6369

viduals who did not experience a bleeding event. In the multivariate analysis of ischemic
stroke/systemic embolism, there was an inverse relation between dabigatran trough levels
and the probability of an event. Second, Testa et al. reported in their studies [5,6] that
bleeding during DOAC therapy was more frequent in AF patients with high peak drug
levels [5] and thrombotic events developed in individuals who had low baseline trough
drug levels [6]. Third, looking at the drug levels at the time of the bleeding or ischemic
event [7,8], patients with a DOAC therapy-related bleeding had significantly higher and
patients with a stroke despite taking DOAC had significantly lower DOAC levels at the time
of this event compared to individuals tolerating the DOAC therapy without any adverse
events. Finally, in a recent observational study performed by Siedler et al. [9] patients who
suffered from early ischemic stroke recurrence despite the use of DOAC had low DOAC
plasma levels (this was demonstrated for apixaban and dabigatran after propensity score
matching). In summary, the current evidence suggests an association between DOAC
plasma levels and the risk of future adverse events, and that monitoring the DOAC levels
may help to identify patients with increased risk for these events. The following questions
should be answered: what method should be used for DOAC laboratory assessment and
what are the optimal therapeutic levels for effective and safe DOAC therapy?

3. How to Measure DOAC Levels in AF Patients on Long-Term DOAC Therapy?

Although liquid chromatography-mass spectrometry (LC-MS) is still honored as a
standard laboratory method for DOAC levels quantification [10–12], especially in the
settings of preclinical/clinical research, there is a general consensus that the method is
not very useful for the assessment of DOAC levels in routine clinical practice [13], mostly
due to its limitations, such as bad availability, the need for specially equipped laboratory
with specially skilled staff and time demands. Furthermore, standard coagulation test
(prothrombin time, activated partial thromboplastin time, thrombin time) do not have
sufficient sensitivity for DOAC levels assessment, especially when low DOAC levels are
expected [10,13], and this could probably also be applied to standard reagents of novel
viscoelastic hemostatic assays [14]. Therefore, DOAC-specific coagulation assays (ecarin
clotting time assay or diluted thrombin time assays for dabigatran, and drug-specific
chromogenic anti-Xa assays for apixaban, edoxaban and rivaroxaban) are arguably the
most appropriate tests from the currently available laboratory methods for routine DOAC
levels assessment (Table 2), as the assays demonstrated good correlation with LC-MS [11,12]
and good clinical utility in previous post-marketing studies [15–17]. Nevertheless, the
assays could be inaccurate at very low DOAC levels [10], and clinicians should always
be aware of the limitations of DOAC laboratory testing when interpreting the results and
choosing future strategies [13]. Although preliminary experience with novel thrombin
generation assays [18] or novel automated thromboelastography [19] are promising, there
is currently no sufficient evidence to recommend the use of these assays to guide clinical
decisions in DOAC-treated patients [13].

The next, clinically important but yet not fully answered point is the question of
the optimal timing of blood sampling for DOAC levels testing. As the majority of the
published studies to date have reported an association between trough (pre-drug dose)
and/or peak (post-drug-dose) drug levels with the risk of adverse events, it is quite
reasonable to assess both drug levels. Trough drug level should definitely be measured in
individuals with severe renal function impairment, with extremely high body weight (body
mass index > 40 kg/m2), in those with advanced age (elderly ones), and if a new DOAC-
levels-modifying drug interaction is expected [13]. As all commercially available DOAC
reach their drug steady-state within the first two days after starting therapy, it is probably
reasonable to test DOAC levels on the forth to fifth day after the drug initiation (after five
or more intakes), and to repeat the measurement whenever needed (new adverse bleeding
or thrombosis, new decrease in renal/hepatic function, new possible drug interaction,
questionable patient drug compliance, etc.). However, this recommendation is only based
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on the data from pharmacokinetic studies and on expert opinion [13], and more research in
this area is still warranted.

Table 2. Specific assays for determination of DOAC levels/activity.

Test Dabigatran Rivaroxaban Apixaban Edoxaban Note

Liquid
chromatography-

mass spectrometry
(LC-MS)

↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑
Standard method for preclinical/clinical

research, the most accurate method
(especially when low levels are expected);

limited usefulness in clinical practice

Diluted thrombin
time assay ↑↑ x x x

Good correlation with LC-MS, lower
accuracy if drug levels are low; good

usefulness in clinical research/practice

Ecarin clotting
time assay ↑↑ x x x

Good correlation with LC-MS, lower
accuracy if drug levels are low; good

usefulness in clinical research/practice

Drug-specific
chromogenic

anti-Xa assays
x ↑↑ ↑↑ ↑↑

Good correlation with LC-MS, lower
accuracy if drug levels are low; good

usefulness in clinical research/practice

Thrombin
generation assays ↑↑ ↑↑ ↑↑ ↑↑ Promising method, but not validated;

usefulness in clinical research

Automated throm-
boelastography

with drug-specific
reagents

↑↑ ↑↑ ↑↑ not known/
not examined

Promising method, but not validated;
usefulness in clinical research

↑—sensitivity (↑↑—good, ↑↑↑—excellent), x—not sensitive.

4. Optimal DOAC Plasma Levels for Long-Term Anticoagulation

Another issue which should be resloved prior to recommending a tailored DOAC
strategy is the issue of optimal therapeutic DOAC plasma levels for long-term anticoagula-
tion. Therapeutic drug levels can probably be established, in part, for dabigatran. In the
aforementioned sub-analysis of the RE–LY trial [4] which showed a correlation between
dabigatran plasma levels and the risk of adverse events, patients with trough dabigatran
levels > 210 ng/mL had a two-fold higher risk of dabigatran-related bleeding. Thus, dabiga-
tran plasma level 210 ng/mL can likely be used as the upper limit for safe anticoagulation.
Going further, patients with dabigatran trough levels < 28 ng/mL had a two-fold higher
risk of adverse thrombosis; therefore, dabigatran plasma levels of at least 28 ng/mL appear
to be necessary for efficient anticoagulation. Nevertheless, these levels were established
based on the results of a sub-analysis of a single phase III clinical trial, as no other study
dealing with this issue is currently available. Testa et al. were not able to establish cut-off
limits for the risk of adverse ischemic [6] or bleeding [5] events due to the low patient
sample and low rate of adverse events. In our previous studies, which aimed to establish
DOAC plasma levels at the time of an adverse event, in dabigatran-treated patients with
bleeding, dabigatran levels of 261.4 ± 163.7 ng/mL were determined on average [7]. In
patients with embolic stroke, average dabigatran plasma levels of 40.7 ± 36.9 ng/mL were
found [8]. This observation probably supports the upper reference range of 210 ng/mL in
terms of safety, but questions the lower reference range of 28 ng/mL in terms of efficacy.

This issue remains unexplained for apixaban, edoxaban and rivaroxaban at present.
Sakaguchi et al. [20] showed, in their analysis of Japanese rivaroxaban-treated patients
with bleeding complications, higher peak rivaroxaban levels (anti-Xa activity), and peak
rivaroxaban levels independently predicted bleeding. In another interesting retrospective
study, rivaroxaban trough deficiency (defined as trough rivaroxaban levels < 12 ng/mL) was
associated with an increased risk of thrombotic events (but not bleeding) in Chinese patients
with AF [21]. Additionally, Sin et al. [17] showed, in their prospective study enrolling
rivaroxaban-treated AF patients with different stages of chronic kidney disease (Stage 1–3),
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that rivaroxaban trough levels in those with hemorrhage were higher (59.9 ± 35.6 ng/mL)
than in those who were free from a bleeding episode (41.1 ± 29.2 ng/mL; p < 0.05). This
study enrolled only 92 patients. In our previous analyses [7,8], there were significantly
higher rivaroxaban levels at the time of bleeding compared to the trough levels of patients
who did not have complications during rivaroxaban administration (245.9 ± 150.2 ng/mL
versus 52.5 ± 36.4 ng/mL; p < 0.001), and rivaroxaban levels tended to be lower in those
experiencing embolic stroke (42.7 ± 31.9 ng/mL); however, the variability in drug plasma
levels was the highest in rivaroxaban-treated patients. For apixaban, Limcharoen et al. [22]
reported an association between apixaban trough levels and the risk of bleeding. In
apixaban-treated patients with bleeding, apixaban trough levels of 139.15 ng/mL were
reported. These levels are lower than our previous observation of apixaban levels of
311.8 ± 142.5 ng/mL at the time of a bleeding event [7]. It is interesting that, in the
study performed by Limcharoen et al., almost all the patients presented apixaban plasma
levels within the expected range, which was defined as a range of 34.0–230.0 ng/mL for
trough and 69.0–321.0 ng/mL for peak drug levels [22]. The ranges were derived from a
pharmacokinetic study with apixaban [23]. Unfortunately, there is no other study dedicated
to the relationship between apixaban plasma levels and the risk of adverse ischemic or
bleeding events (except for the previously mentioned ones performed by Testa et al. [5,6]),
and no such study for edoxaban.

Summarizing this issue, the determination of optimal DOAC plasma levels for long-
term anticoagulation still needs further research (especially for rivaroxaban, apixaban and
edoxaban); nevertheless, levels derived from pharmacokinetic studies should probably
not be used, as these data report only the expected drug level when a defined dose of
the drug is taken, but do not correlate with the risk of bleeding or thrombosis during
long-term therapy.

5. Factors Influencing DOAC Plasma Levels

When deciding on a tailored DOAC strategy (Figure 1), one should be aware of clinical
features/factors that could possibly influence DOAC plasma levels (Table 1). Looking at the
currently available data [24], DOAC levels could be changed (increased) in patients with a
reduced glomerular filtration rate (to a lesser extent in case of apixaban administration),
in elderly individuals (increased, especially when dabigatran is used) [25–27], and there
are several relevant drug interactions [28] leading either to a change in gastric pH, which
is important for the absorption of dabigatran [29], or to changed P-glycoprotein (P-gp) or
cytochrome P450 (CYP) activity, which could, in theory, affect the pharmacokinetics of all
the available DOAC (P-gp) or the pharmacokinetics of oral factor Xa inhibitors (CYP) [28].
At present, it is not entirely clear whether extreme body weight (extremely high or extremely
low) affects DOAC plasma levels. In their retrospective analysis, Piran et al. [30] reported
that most of the patients with body weight over 120 kg had peak plasma levels higher than
the median trough level for each of the three DOAC (apixaban, dabigatran, rivaroxaban);
but 21% of patients had a peak plasma concentration that was below the usual on-therapy
range. On the other side, the authors of another prospective study showed that patients
with extreme obesity (mean body mass index 44.4 kg/m2) and AF who were receiving
DOAC therapy had DOAC plasma levels, within the expected range [31]. Obesity did
not affect the plasma levels of apixaban and rivaroxaban in another prospective study (in
patients with venous thromboembolism) [32], and plasma levels of apixaban in a previously
published case of morbidly obese patient treated for AF [33]. Data from post-marketing
studies regarding the DOAC levels in patients with extremely low body weight are still
lacking. In addition, several studies suggested a possible role of genetic polymorphism in
several candidate genes (CES1 gene encoding plasmatic esterase for dabigatran; ABCB1
gene encoding P-gp for apixaban, dabigatran, rivaroxaban and edoxaban; and SLCO1B1
gene encoding organic anion transporter protein 1B1 for edoxaban); however, the results of
the studies published to date are controversial [34–38].
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Figure 1. A proposed scheme for tailored direct oral anticoagulation. DOAC—direct oral anticoag-
ulants; INR—international normalized ratio; LC-MS—liquid chromatography-mass spectrometry;
SPC—summary of product characteristics; VKA—vitamin K antagonists. * severe renal/hepatic
function impairment, extremely high body weight, advanced age, drug interactions. ** embolic
stroke/systemic embolism or bleeding on labeled DOAC therapy. *** new adverse bleeding or
thrombosis, new decrease in renal/hepatic function, new possible drug interaction, questionable
patient drug compliance. **** LC-MS (if available) or drug-specific coagulation assays; test for trough
(pre-drug dose) and peak (post-drug dose) levels. + VKA with target INR 2-3 or left atrial appendage
(surgical/transcatheter) occlusion. ++ by optimizing drug dose or switch strategy or by modification
of (modifiable) factors influencing DOAC drug levels.

6. How to Tailor DOAC Therapy

Another issue is the question of optimal approach for tailoring the DOAC ther-
apy. In theory, DOAC therapy might be tailored by optimizing the drug dose (increas-
ing/decreasing) or by switching the drug. None of these approaches have been validated
in clinical trials. The strategy of tailoring the drug dose has a possible disadvantage in the
use of a drug dose that is higher than the dose tested in clinical trials (for example if there
is a need to increase the dose in a patient already taking dabigatran 150 mg twice daily
or apixaban 5 mg twice daily). Similarly, if there is a need to reduce the dose in a patient
already taking a reduced drug dose (for example, the need to reduce drug dose in a patient
taking 15 mg of rivaroxaban or 30 mg of edoxaban daily), the second reduction will lead
to a drug dosing thatwas not previously tested in the settings of prevention of stroke or
systemic embolism related to AF. Therefore, the second strategy (switch strategy) seems to
be more favorable, as it does not have the disadvantage of off-label drug dosing. On the
other hand, in a recent study performed by Suwa et al. [39], a laboratory monitoring based
an off-label underdosing of rivaroxaban and apixaban in selected patients did not lead to
an increased risk of bleeding or thromboembolic events during follow up, and achieved
acceptable peak drug levels (155–400 ng/mL for rivaroxaban, 90–386.4 ng/mL for apixaban,
respectively). Nevertheless, only 73 patients used off-label underdosed rivaroxaban and
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only 46 patients used off-label underdosed apixaban, and there is a strong risk of selection
bias. All these disadvantages should be taken into account when interpreting the results of
this study. Another possible way of tailoring DOAC therapy is to try to modify the modifi-
able factors influencing DOAC drug levels. For example, DOAC levels could be optimized
by the reduction of possible food and drug interactions. In addition, non-pharmacologic
procedures, such as left atrial appendage occlusion, could be further use to reduce the risk
of stroke if pharmacological prophylaxis is difficult to manage [1].

7. Is It Possible to Improve DOAC Therapy by a Tailored Strategy?

To answer this question, it is important to validate the hypothesis that tailoring the
DOAC therapy according to DOAC plasma levels detected by a laboratory monitoring
would lead to reduced incidence of future thromboembolic and bleeding events in a
randomized clinical trial. That trial should randomize AF patients with the need for
long-term anticoagulation, fulfilling criteria for DOAC administration to either standard
treatment regimen (fixed dosing according to drug summary of product characteristics,
without any laboratory assessment of drug levels) or to a tailored treatment regimen (with
laboratory assessment of DOAC dosing and either modifying the drug dose or switching
to other DOAC if in-optimal DOAC levels are detected). The primary outcome of the
trial should be the incidence of stroke or systemic embolism and bleeding during the
follow- up period. To date, no study with this design is on-going or planned. Therefore,
there is no direct evidence that a tailored DOAC strategy would lead to improved clinical
outcomes of long-term DOAC therapy, and the question: “Is it possible to improve DOAC
therapy by a tailored strategy?” remains unanswered. However, as several factors that
may significantly affect DOAC plasma levels have been identified, the tailored regime can
be considered in selected risk patients, such as those experiencing stroke despite labeled
DOAC anticoagulation, those with repeated bleeding while on DOAC therapy, those with
a need for combined antiplatelet and anticoagulant therapy and those with multiple risk
factors for in-optimal DOAC drug levels [24,40]. However, the risk/benefit ratio should be
carefully evaluated before making the decision to use a tailored DOAC strategy.

8. Conclusions

Considering the aforementioned data, unanswered issues and possible limitations,
at present, tailored DOAC therapy should not be recommended as a routine strategy in
clinical practice. The tailored regime should be used with caution, only in selected patients,
and after an appropriate evaluation of the risk/benefit ratio. However, further research of
tailored DOAC strategy should definitely be advocated.
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dabigatran therapy using Hemoclot(®) Thrombin Inhibitor assay in patients with atrial fibrillation. J. Thromb. Thrombolysis 2015,
39, 95–100. [CrossRef]
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Abstract: Sticky platelet syndrome (SPS) is a thrombophilia caused by the increased aggregability of
platelets in response to the addition of low concentrations of epinephrine (EPI) and/or adenosine
diphosphate (ADP). Some of the single nucleotide polymorphisms (SNP), alleles and haplotypes of
platelet glycoprotein receptors were proved to have a role in the etiology of thrombotic episodes
When comparing SPS and the control group, in VEGFA rs3025039, the p value for both CC vs. TT
and CT vs. TT analyses was <0.001. Interestingly, no minor TT genotype was present in the SPS
group, suggesting the thrombotic pathogenesis of recurrent spontaneous abortions (RSA) in these
patients. Moreover, we found a significant difference in the presence of AT containing a risky A allele
and TT genotype of ALPP rs13026692 (p = 0.034) in SPS patients when compared with the controls.
Additionally, we detected a decreased frequency of the GG (CC) genotype of FOXP3 rs3761548 in
patients with SPS and RSA when compared with the control group (p value for the CC (GG) vs. AA
(TT) 0.021). This might indicate an evolutionary protective mechanism of the A (T) allele in the SPS
group against thrombotic complications in pregnancy. These results can be used for antithrombotic
management in such pregnant patients.

Keywords: sticky platelet syndrome; DNA analysis; polymorphisms; antithrombotic treatment

1. Introduction

Sticky platelet syndrome (SPS) represents an autosomal dominant platelet function
disorder associated with platelet hyperaggregability in platelet-rich plasma (PRP) with
adenosine diphosphate (ADP) and/or epinephrine (EPI). Increased aggregability after
the addition of both of these substances is defined as SPS type I, hyperaggregability after
EPI alone as type II and increased aggregability only after the addition of ADP is SPS
type III [1].
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SPS can manifest as arterial thrombosis, such as acute myocardial infarction, angina
pectoris, transient cerebral ischemic attack, stroke, peripheral arterial thrombosis, retinal
thrombosis, or venous thromboembolism—frequently recurrent despite anticoagulant
therapy or pregnancy complications (e.g., fetal growth retardation and fetal loss) [1–5].
Moreover, it has been reported that women with SPS have significantly more spontaneous
abortions than patients in the general population [6].

Several mutations of genes encoding platelet glycoprotein receptors and further pro-
teins associated with platelet function have been studied as potential etiopathogenetic
factors of recurrent pregnancy loss (RPL) in women with SPS.

Single nucleotide polymorphisms (SNPs) rs9550270 and rs7400002 of the GAS6 gene
responsible for the function of alpha2-adrenergic and ADP receptors and activating en-
dothelial and vascular smooth muscle cells are more common in women with SPS and
pregnancy loss [7,8].

Moreover, SNPs 1,671,153, 1,613,662 and 1,654,419 of GP6 as the gene encoding the
receptor for collagen are more frequent in women with SPS and pregnancy loss. A signifi-
cantly increased occurrence of CTGAG in haplotype 5 and CGATAG in haplotype 6, an
increased presence of SNPs rs1671152, rs1654433, rs1654416, rs2304167 and rs1671215 in
patients with platelet hyperaggregability and previous pregnancy loss and a significantly
higher frequency of ccgt in GP6_3reg haplotype, acgg and aagg in GP6_5reg haplotype,
SKTH and PEAN in GP6_PEAN haplotype and gg and ta in GP6_REG haplotype in this
population have been confirmed [7,9–13].

Patients with SPS and spontaneous abortion had an increased prevalence of SNPs
rs12566888 and rs12041331 of the PEAR1 gene responsible for platelet contact [8].

Increased expression of platelet microRNA (miR-96) is expressed in patients with
SPS and pregnancy complications [14]. Conclusively, different mutations of one or more
genes might lead to a similar SPS phenotype. Additionally, platelets of individuals with
atherosclerosis, renal and autoimmune diseases have hyperaggregability after EPI or other
agonists, highlighting the possible existence of acquired forms of SPS [2,7].

In spite of several studies investigating the role of platelet glycoproteins in the activa-
tion and aggregation of platelets, the exact underlying defect causing the syndrome has not
been fully elucidated [15].

In most patients, low doses of antiplatelet agents (usually 80–100 mg of acetylsalicylic
acid (ASA) per day) lead to normalization of platelet hyperaggregability [15] and improve-
ment of pregnancy outcome in comparison with SPS patients without such treatment [16].
However, in risky situations, such as a history of thromboembolic episodes or the presence
of prothrombotic changes in hemostasis associated with RPL, both low-molecular-weight
heparin (LMWH) and ASA are recommended, as also indicated by Bick and Hoppen-
steadt [17]. Therefore, pregnant patients in our study used a combination of ASA and
LMWH to prevent further complications.

The term ‘recurrent pregnancy loss’ (RPL) is recommended for the description of
repeated pregnancy demise and recurrent miscarriage (recurrent spontaneous abortion,
RSA) when all pregnancy losses are confirmed as intrauterine miscarriages by histology or
ultrasound [18,19]. A pregnancy loss is a spontaneous pregnancy demise before the fetus
reaches viability—i.e., until 24 gestational weeks [20].

There is also a variation in the quantity defining recurrent miscarriage. It ranges
from two miscarriages reported by the European Society of Human Reproduction and
Embryology and the American Society for Reproductive Medicine to three subsequent
pregnancy losses, as defined by the Royal College of Obstetricians and Gynaecologists [21].

In general, RPL affects approximately 2–5% of couples. Frequent causes are uterine
anomalies, hormonal and metabolic disorders, antiphospholipid syndrome and genetic
abnormalities. Further etiological factors that have been investigated include inherited
thrombophilia, luteal phase deficiency, chronic endometritis and high sperm DNA frag-
mentation level [22]. However, it has been proved that approximately 55% of recurrent
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miscarriages are due to prothrombotic defects inducing infarction and thrombosis of pla-
cental vessels [23].

The vascular endothelial growth factor A (VEGF-A) gene encompasses 14 kb and is
localized on the human chromosome 6, consisting of eight exons [24]. It is a member of the
platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF) family.
VEGFA encodes a heparin-binding protein inducing proliferation and migration of vascular
endothelial cells. It is thus critical for physiological and pathological angiogenesis [25].
Additionally, VEGFA is essential for embryonic vasculature development, stimulation of
trophoblast proliferation and both fetal and maternal blood cell growth in the course of
early pregnancy. VEGF in general is also important for the implantation of the embryo into
the placental wall, so its genetic defects have been studied in association with RPL [24]. A
decrease in VEGF expression in first-trimester tissues can even indicate its involvement in
RPL [26].

The alkaline phosphatase, placental (ALPP) gene encodes an alkaline phosphatase, a
metalloenzyme catalyzing the hydrolysis of phosphoric acid monoesters. One of its main
sources is the liver. However, in pregnant women, it is primarily expressed in placental
and endometrial tissue. Strong ectopic expression of ALPP has been confirmed in ovarian
adenocarcinoma, serous cystadenocarcinoma and further ovarian cancer cells [27].

Fork head box protein 3 (FOXP3) is an X-linked gene that codes a master transcription
regulatory protein controlling the development and function of immunosuppressive T
regulatory cells. These cells are key mediators of maternal fetal tolerance [28]. A decrease
in T regulatory cells in peripheral blood and decidua leads to a decrease in FOXP3 gene
expression, which affects the development and function of CD4+ CD25+ T regulatory
cells [29,30]. The protein encoded by the FOXP3 gene represents a member of the fork
head/winged-helix family of transcriptional regulators. Diseases associated with FOXP3
include polyendocrinopathy, immunodysregulation, X-linked enteropathy and nonimmune
and X-linked hydrops fetalis [31].

Based on this knowledge, the authors aimed to investigate the relationship between
SPS, recurrent spontaneous abortions (RSA) and further thromboembolic complications
and selected polymorphisms rs3025039 in VEGFA, rs2010963 in VEGF, rs13026692 in ALPP
and rs3761548 in FOXP3 genes.

2. Materials and Methods

2.1. Patients and the Control Group

A total of 53 pregnant women of Caucasian origin with a sticky platelet syndrome,
21 pregnant patients with a history of unprovoked or estrogen-related thromboembolic
complications and 53 pregnant women with a history of RSA receiving antithrombotic
thromboprophylaxis were included in the study.

SPS was diagnosed in patients before their inclusion in the study via light transmission
aggregometry with the analysis of responsiveness of platelet-rich plasma to three different
concentrations of adenosine diphosphate (ADP) and epinephrine (EPI) according to the
criteria of Mammen and Bick [7] (Table 1). We suspect this diagnosis when the patient has
a history of thromboembolic episodes and proved platelet hyperaggregability after mixing
of the sample with 1 concentration of 1 of these reagents. The diagnosis of SPS is confirmed
when the patient has one of the combinations of these situations:

- A history of thromboembolic episodes and hyperaggregability after the use of 2 con-
centrations of 1 reagent;

- A history of thromboembolic episodes and hyperaggregability after the use of 1 con-
centration of both reagents (ADP and EPI);

- A history of thromboembolic episodes and hyperaggregability after the use of 1 con-
centration of 1 reagent, but repeatedly tested [7].
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Table 1. Diagnostic criteria of SPS.

Platelet Aggregation after the Addition of

ADP EPI

Concentration (μM) 0.58 1.17 2.34 0.55 1.1 11
Reference range of

aggregation (%) 0–12 2–36 7.5–55 9–20 15–27 39–80

Legend: ADP—adenosine diphosphate, EPI—epinephrine, SPS—sticky platelet syndrome.

As mentioned above, the form of primary thromboprophylaxis in SPS is the use of ASA;
however, in the case of the development of prothrombotic changes in hemostasis during
pregnancy (e.g., significantly increased FVIII activity or decrease in free PS), combined
antithrombotic prophylaxis composed of ASA and LMWH had to be used.

Due to the increased risk of bleeding during the use of such prophylaxis, pregnant
patients with the following clinical conditions predisposing to bleeding were excluded
from the study: a history of hemorrhagic stroke, disorder of blood coagulation or other
diseases contributing to bleeding (severe thrombocytopenia, history of thrombocytopenia
developed after the use of anticoagulant drugs, active gastroduodenal ulcerations, severe
renal insufficiency (creatinine clearance <30 mL/min.), acute infective endocarditis and a
history of severe allergic reaction to antithrombotics).

RSA was confirmed by a gynecologist with the exclusion of further causes of this
complication, such as anatomic, hormonal or genetic changes or infections. Mean age was
31.93 years (age range 19–46 years), and the number of RSA varied from 2 to 8. Inclusion of
patients was carried out from January 2014 to March 2019.

During clinical examination, data about family and personal history, drugs, allergies
and gynecological history (previous abortions, interruptions, deliveries or thromboembolic
complications) were collected.

The control group comprised 58 healthy non-pregnant women without any personal
or family history of thromboembolism and no history of pregnancy complications, such as
placental abruption, RPL in general, fetal demise, intrauterine growth restriction (IUGR) or
VTE during pregnancy. These subjects did not take any agents that could have an impact
on hemostasis—anticoagulant drugs, antiplatelet agents or oral contraceptives. The mean
age was 29.05 years (age range 18–45 years).

We compared the frequency of genotypes of particular SNPs between four groups—
the results of pregnant women with SPS (designated S in the figures and tables), of those
with a history of RSA (group A in the figures and tables), of those with a history of
thromboembolism (T) and of the control group (C).

2.2. Processing of Blood Samples for Genotyping

For genotyping, 10 mL of antecubital venous blood was obtained from each fasting
pregnant woman included in the study and each fasting woman from the control group.

Blood was collected in Vacutainer® blood collection tubes with ethylenediaminete-
traacetic acid (EDTA) as an anticoagulant, then immediately stored at 4 ◦C and further
processed within 6 h. Centrifuging of the blood samples was carried out at 3000 rpm at
4 ◦C for 10 min to separate the serum plasma and buffy coat containing white blood cells,
and then frozen at −20 ◦C for DNA extraction and genotyping.

Genomic DNA was isolated from buffy coat using a DNeasy Blood and Tissue Kit
(Qiagen, Germany). All DNA samples were diluted to 20 ng per μL and were used as a
template for genotyping.

The AB 7500 Fast Real-Time PCR system (Applied Biosystems, USA) was used to
analyze polymorphisms rs3025039 in VEGFA (assay ID: C__16198794_10), rs2010963 in
VEGF (assay ID: C__8311614_10), rs13026692 in ALPP (assay ID: C__11531497_10) and
rs3761548 in FOXP3 (assay ID: C__27476877_10). Each TaqMan genotyping assay mix
contained a forward and reverse primer, one probe with perfect matching to the wild-type
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sequence variant labeled with VIC and the other probe labeled with FAM with perfect
matching to the mutant sequence variant. TaqMan allelic discrimination real-time PCR
was performed in a 20 μL volume, containing 0.5 μL TaqMan genotyping assay mix, 10 μL
TaqMan Genotyping Master Mix (Applied Biosystems, Waltham, MA, USA), 7.5 μL DNase-
free water and 2 μL of diluted genomic DNA. The real-time PCR conditions were as follows:
an initial step at 95 ◦C for 10 min, followed by 50 cycles of denaturation at 92 ◦C for 15 s and
annealing/extending at 60 ◦C for 1 min and 30 s. The genotypes were detected according
to the strength of the fluorescent signals from VIC/FAM labeled probes.

2.3. Statistical Analysis

The role of this study was to explore how exactly the selected SNPs can predict the
probability of the tested person belonging to one of the following groups: SPS/RSA/control
group/thromboembolism. Therefore, we used multinomial logistic regression analysis,
and the result was expressed as the significance of particular alleles of all SNPs and odds
ratio (OR). The response was the group, and the predictors were all four SNPs.

For each of the SNPs, we made a contingency table showing the relationship genotype
vs. study group. To obtain a summary contingency table, we performed a Chi-squared test
and G-test of independence between genotype and study group. Cramér V was used for
an effect size measurement in the contingency table. In cases where H0 was refused for
any of the SNPs, we carried out pair post hoc tests (pair comparisons of particular levels
of factor in the groups). A p value < 0.05 was considered statistically significant. We also
adjusted the p value based on Holm’s method and the Bonferroni correction.

Moreover, we calculated the estimated marginal means of frequencies of the alleles for
each SNP and each group.

The control group was taken as the reference level in the group analysis. In each SNP,
the minor allele was taken as the reference.

Not all pregnant women included in the study were treated with ASA or LMWH
uniformly, so we performed a multivariate analysis to exclude the effect of antiplatelet
drugs/anticoagulants on pregnancy outcomes or the occurrence of thromboembolism as po-
tential confounding factors. For the same reason, we also analyzed the effect of the presence
of concomitant thrombophilia in our pregnant patients as another confounding factor.

Statistical analysis was performed using the jamovi project, version 2.3, and the data
were explored and analyzed in R (R), version 4.1 [32–35].

3. Results

3.1. Clinical Data

Family history in the form of thromboembolic and pregnancy complications (preeclamp-
sia, RPL in general or intrauterine fetal death) was positive in 15 cases. SPS type I was
detected in 16 patients and type II in 37 women; we did not include any pregnant woman
with SPS type III. The most common dose of ASA used on patients was 100 mg taken daily
(60%), while the minimal dosage confirmed as effective before the initiation of the study
and used by patients was 50 mg (taken by 16.67%). The maximal dose of ASA was 150 mg
daily for one woman.

Two patients with SPS were directly allergic to ASA and thus used only LMWH, while
29.13% of all included patients reported allergic reactions in the form of redness, resistances
and local irritation of the skin at the site of administration of LMWH. For this reason, they
switched between LMWH products, usually from nadroparin to enoxaparin.

In addition to SPS detected in the 53 mentioned patients, further thrombophilic states
diagnosed in at-risk pregnant women were: antithrombin deficiency (n = 5), hyperhomo-
cysteinemia (n = 8), factor V Leiden mutation present in the homozygous form (n = 2),
heterozygous form (n = 17), prothrombin variant G20210A in the heterozygous form (n = 7),
heterozygous form of mutation of βFbgc.−39–424 G > A (n = 24), homozygous form (n = 2),
PAI 4G/5G homozygous (n = 7) and heterozygous form (n = 7), mutation FXI c.1481-188
C > T (n = 4), SNP FXI rs2289252 (n = 2), variant FXII C46T in the homozygous form
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present in 2 patients and in heterozygous women (n = 1), CYP4V2 homozygous form of
mutation (n = 3), homozygous form of mutation FXIII Val34Leu (n = 1) and the presence of
antiphospholipid antibodies (n = 6).

No renal or liver function impairment developed. None of the included pregnant
patients developed HELLP syndrome or heparin-induced thrombocytopenia. During the
study, we did not detect any thromboembolic episode in the included patients.

The control group was composed of healthy non-pregnant women (mean age 29.42 years,
age range 18–45 years). Based on the anamnestic data, none of them were pregnant or in
menopause during the study.

3.2. Results of Genotyping

In the case of VEGFA rs2010963, the possible genotypes are GG, GC and CC. For
VEGFA rs2010963 in our studied population, the global frequency of the GG genotype was
53%, while that of GC was 40% and that of CC 7% (Figure 1, Table 2).

Figure 1. Plot with the frequency of the particular genotypes of VEGFA rs2010963 in the studied
groups. Legend: group A—recurrent spontaneous abortions, group C—controls, group S—sticky
platelet syndrome, group T—thromboembolism, VEGFA—vascular endothelial growth factor A.

Table 2. Contingency table showing the frequency of genotypes of VEGFA rs2010963 in the studied
population.

Group
Rs2010963

Total
CC CG GG

A
Observed 4 22 27 53

% within row 7.5% 41.5% 50.9% 100.0%

C
Observed 4 23 31 58

% within row 6.9% 39.7% 53.4% 100.0%

S
Observed 4 20 29 53

% within row 7.5% 37.7% 54.7% 100.0%

T
Observed 1 9 11 21

% within row 4.8% 42.9% 52.4% 100.0%

Total
Observed 13 74 98 185

% within row 7.0% 40.0% 53.0% 100.0%
Legend: group A—recurrent spontaneous abortions, group C—controls, group S—sticky platelet syndrome,
group T—thromboembolism, VEGFA—vascular endothelial growth factor A.
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VEGFA rs3025039 has the possible genotypes CC, CT and TT. The general frequency
of the CC genotype in SNP VEGFA rs3025039 was 70.8%, the CT genotype was present in
27% of the women included in the study and the TT genotype was detected only in 2.2%
(Figure 2, Table 3).

Figure 2. Plot with the frequency of the particular genotypes of VEGFA rs3025039 in the studied
groups. Legend: group A—recurrent spontaneous abortions, group C—controls, group S—sticky
platelet syndrome, group T—thromboembolism, VEGFA—vascular endothelial growth factor A.

Table 3. Contingency table showing the frequency of genotypes of VEGFA rs3025039 in the studied
population.

Group
rs3025039

CC CT TT Total

A
Observed 37 15 1 53

% within row 69.8% 28.3% 1.9% 100.0%

C
Observed 39 17 2 58

% within row 67.2% 29.3% 3.4% 100.0%

S
Observed 41 12 0 53

% within row 77.4% 22.6% 0.0% 100.0%

T
Observed 14 6 1 21

% within row 66.7% 28.6% 4.8% 100.0%

Total
Observed 131 50 4 185

% within row 70.8% 27.0% 2.2% 100.0%
Legend: group A—recurrent spontaneous abortions, group C—controls, group S—sticky platelet syndrome,
group T—thromboembolism, VEGFA—vascular endothelial growth factor A.

ALPP rs13026692 has the possible genotypes AA, AT and TT. In the case of this
polymorphism in our study, the frequency of the AA genotype was 44.9%, AT was present
in 46.5% and TT only in 8.6% (Figure 3, Table 4).
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Figure 3. Plot with the frequency of the particular genotypes of ALPP rs13026692 in the studied
groups. Legend: ALPP—alkaline phosphatase, placental, group A—recurrent spontaneous abortions,
group C—controls, group S—sticky platelet syndrome, group T—thromboembolism.

Table 4. Contingency table showing the frequency of genotypes of ALPP rs13026692 in the studied
population.

Group
rs13026692

AA AT TT Total

A
Observed 27 21 5 53

% within row 50.9% 39.6% 9.4% 100.0%

C
Observed 27 23 8 58

% within row 46.6% 39.7% 13.8% 100.0%

S
Observed 23 28 2 53

% within row 43.4% 52.8% 3.8% 100.0%

T
Observed 6 14 1 21

% within row 28.6% 66.7% 4.8% 100.0%

Total
Observed 83 86 16 185

% within row 44.9% 46.5% 8.6% 100.0%
Legend: ALPP—alkaline phosphatase, placental, group A—recurrent spontaneous abortions, group C—controls,
group S—sticky platelet syndrome, group T—thromboembolism.

SNP FOX3 rs3761548 has the possible genotypes CC, CA and AA. For SNP FOXP3
rs3761548 in our included women, the GG genotype was detected in 34.6% of the women,
GT in 47% and TT in 18.4% (Figure 4, Table 5).
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Figure 4. Plot with the frequency of the particular genotypes of FOX3 rs3761548 in the studied
groups. Legend: FOX 3—fork head box protein 3, group A—recurrent spontaneous abortions, group
C—controls, group S—sticky platelet syndrome, group T—thromboembolism.

Table 5. Contingency table showing the frequency of genotypes of FOX3 rs3761548 in the studied
population.

Group
rs3761548

GG TG TT Total

A
Observed 20 23 10 53

% within row 37.7% 43.4% 18.9% 100.0%

C
Observed 21 29 8 58

% within row 36.2% 50.0% 13.8% 100.0%

S
Observed 14 24 15 53

% within row 26.4% 45.3% 28.3% 100.0%

T
Observed 9 11 1 21

% within row 42.9% 52.4% 4.8% 100.0%

Total
Observed 64 87 34 185

% within row 34.6% 47.0% 18.4% 100.0%
Legend: FOX 3—fork head box protein 3, group A—recurrent spontaneous abortions, group C—controls, group
S—sticky platelet syndrome, group T—thromboembolism.

Using multinomial logistic regression—group vs. SNPs—when taking into considera-
tion the comparison of the SPS and the control group, in VEGFA rs3025039, both CC vs. TT
and CT vs. TT analyses showed significant results (p value for both of them was < 0.001)
(Table 6).

228



J. Clin. Med. 2022, 11, 6532

Table 6. Multinomial logistic regression—group vs. SNPs.

95% Confidence Interval

Group Predictor Estimate SE Z p Odds
Ratio

Lower Upper

A-C Intercept −0.593 1.575 −0.377 0.707 0.5527 0.0252 12.11
rs2010963:

CG–CC −0.159 0.785 −0.202 0.84 0.8531 0.1832 3.972
GG–CC −0.271 0.774 −0.350 0.727 0.7629 0.1673 3.479

rs3025039:
CC–TT 0.657 1.287 0.51 0.61 1.929 0.1548 24.039
CT–TT 0.557 1.306 0.427 0.669 1.7459 0.1351 22.556

rs13026692:
AA–TT 0.464 0.642 0.722 0.47 1.5903 0.4517 5.599
AT–TT 0.405 0.655 0.618 0.536 1.4993 0.4154 5.411

rs3761548:
GG–TT −0.272 0.587 −0.464 0.643 0.7617 0.2413 2.405
TG–TT −0.404 0.563 −0.718 0.473 0.6675 0.2215 2.011

S-C Intercept −14.105 0.765 −18.446 <0.001 7.49 × 10−7 1.67 × 10−7 3.35 × 10−6

rs2010963:
CG–CC −0.347 0.82 −0.424 0.672 0.7065 0.1417 3.522
GG–CC −0.382 0.803 −0.475 0.635 0.6827 0.1414 3.296

rs3025039:
CC–TT 13.961 0.422 33.1 <0.001 1.16 × 106 506,157.2 2.64 × 106

CT–TT 13.383 0.469 28.544 <0.001 648,812 258,843.3 1.63 × 106

rs13026692:
AA–TT 1.224 0.859 1.424 0.155 3.3993 0.6306 18.323
AT–TT 1.819 0.86 2.116 0.034 6.1658 1.1435 33.246

rs3761548:
GG–TT −1.320 0.594 −2.223 0.026 0.2671 0.0834 0.856
TG–TT −0.847 0.54 −1.568 0.117 0.4286 0.1486 1.236

T-C Intercept −3.057 2.239 −1.365 0.172 0.047 5.84 × 10−4 3.79
rs2010963:

CG–CC 0.31 1.208 0.257 0.798 1.3633 0.1277 14.555
GG–CC 0.293 1.197 0.244 0.807 1.34 0.1282 14.005

rs3025039:
CC–TT −0.205 1.338 −0.154 0.878 0.8143 0.0591 11.211
CT–TT −0.169 1.372 −0.123 0.902 0.8448 0.0574 12.434

rs13026692:
AA–TT 0.611 1.163 0.525 0.599 1.8418 0.1886 17.988
AT–TT 1.536 1.123 1.367 0.172 4.6452 0.5139 41.99

rs3761548:
GG–TT 0.979 1.16 0.844 0.399 2.6613 0.2738 25.869
TG–TT 0.973 1.138 0.855 0.393 2.6457 0.2841 24.634

Legend: group A—recurrent spontaneous abortions, group C—controls, group S—sticky platelet syndrome, group
T—thromboembolism, p—p value, SE—standard error, SNP—single nucleotide polymorphism, Z—Z-score.

For SNP ALPP rs13026692, the comparison between genotypes AT and TT was sig-
nificant (p = 0.034) as well. For SNP FOXP3 rs3761548, GG vs. TT analysis also showed a
significant value (p = 0.026). Thus, subjects with the GG genotype are at a four times lower
risk of having SPS than subjects with the TT genotype (OR = 0.27). However, the decrease
in risk is estimated with a low precision—the 95% confidence interval (95%CI) for odds
ratio (OR) was (0.08, 0.86).

In the other group comparisons, we did not obtain significant data.
According to the results of estimated marginal means (estimates of the probability of

the particular allele), for SNP FOXP3 rs3761548, the TT (AA) genotype in the group of the
patients with thromboembolism has a significant probability of presence (p value = 0.0439).
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Using post hoc tests, when analyzing VEGFA rs3025039 in the SPS group, the compar-
isons of the occurrence of genotypes CC vs. TT and CT vs. TT were statistically significant
(p values < 0.001 and 0.002, respectively) (Table 7).

Table 7. Post hoc comparisons—rs3025039.

Response
Groups

Comparison
Difference SE z p pBonferroni pholm

rs3025039 rs3025039

A
CC CT −0.02288 0.0794 −0.2881 0.775 1 1

CC TT 0.00906 0.246 0.0368 0.971 1 1

CT TT 0.03195 0.2503 0.1277 0.899 1 1

C
CC CT −0.05383 0.0793 −0.6788 0.503 1 1

CC TT −0.23849 0.2587 −0.9219 0.365 1 1

CT TT −0.18466 0.2625 −0.7035 0.488 1 1

S
CC CT 0.09291 0.0655 1.4191 0.167 0.502 0.167

CC TT 0.31276 0.0585 5.3437 <0.001 <0.001 <0.001

CT TT 0.21986 0.0654 3.3641 0.002 0.007 0.005

T
CC CT −0.01620 0.0392 −0.4135 0.683 1 1

CC TT −0.08334 0.1501 −0.5552 0.583 1 1

CT TT −0.06715 0.1517 −0.4427 0.661 1 1

Legend: group A—recurrent spontaneous abortions, group C—controls, group S—sticky platelet syndrome, group
T—thromboembolism, p—p value, SE—standard error, SNP—single nucleotide polymorphism, Z—Z-score.

In the case of ALPP rs13026692, the comparison between AT and TT genotype in the
SPS group was also significant (p = 0.022) (Table 8).

Table 8. Post hoc comparisons—rs13026692.

Response
Groups

rs13026692 rs13026692 Difference SE z p pBonferroni pholm

A AA AT 0.0824 0.075 1.099 0.282 0.845 0.845
AA TT 0.0313 0.1276 0.245 0.808 1 1
AT TT −0.0511 0.1271 −0.402 0.691 1 1

C AA AT 0.0728 0.0789 0.923 0.364 1 0.54
AA TT −0.1507 0.1338 −1.126 0.27 0.81 0.54
AT TT −0.2235 0.1348 −1.658 0.109 0.327 0.327

S AA AT −0.0695 0.0488 −1.424 0.166 0.497 0.309
AA TT 0.0976 0.0666 1.465 0.155 0.464 0.309
AT TT 0.1671 0.0688 2.43 0.022 0.066 0.066

T AA AT −0.0857 0.0618 −1.385 0.177 0.532 0.532
AA TT 0.0218 0.0675 0.323 0.749 1 0.749
AT TT 0.1075 0.0835 1.287 0.209 0.627 0.532

Legend: group A—recurrent spontaneous abortions, group C—controls, group S—sticky platelet syndrome, group
T—thromboembolism, p—p value, SE—standard error, SNP—single nucleotide polymorphism, Z—Z-score.

Similarly, for SNP FOXP3 rs3761548, in the SPS study group, the comparison between
GG and TT genotype was evaluated as statistically significant (p = 0.021) (Table 9).
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Table 9. Post hoc comparisons—rs3761548.

Response
Groups

rs3761548 rs3761548 Difference SE z p pBonferroni pholm

A GG TG 0.0457 0.0793 0.5765 0.569 1 1
GG TT −0.00977 0.1095 −0.0892 0.93 1 1
TG TT −0.05547 0.1055 −0.5259 0.603 1 1

C GG TG 0.004 0.086 0.0466 0.963 1 1
GG TT 0.06965 0.1155 0.6032 0.551 1 1
TG TT 0.06565 0.1097 0.5986 0.554 1 1

S GG TG −0.05293 0.0395 −1.3417 0.191 0.573 0.229
GG TT −0.15178 0.0618 −2.4573 0.021 0.062 0.062
TG TT −0.09885 0.0606 −1.6315 0.114 0.343 0.229

T GG TG 0.00322 0.0559 0.0577 0.954 1 0.954
GG TT 0.09189 0.0714 1.2866 0.209 0.628 0.503
TG TT 0.08867 0.0625 1.4181 0.168 0.503 0.503

Legend: group A—recurrent spontaneous abortions, group C—controls, group S—sticky platelet syndrome, group
T—thromboembolism, p—p value, SE—standard error, SNP—single nucleotide polymorphism, Z—Z-score.

In the case of VEGFA rs2010963, there were not any significant results between the
probability of the presence of two studied genotypes. Moreover, the p value in the Chi-
squared test for this SNP was 0.999.

However, R2McF was 0.0469—this generally indicates a poor prediction ability of the
studied SNPs.

When investigating the association between thromboembolism/recurrent spontaneous
abortions and SNP, the p value for VEGFA rs2010963 polymorphism was 0.7486, and
Pearson’s Chi-squared test (X-squared) was 0.57917. For VEGFA rs3025039, the p value
was 0.69, and Pearson’s Chi-squared test with Yates’ continuity correction (X-squared) was
0.15906. Regarding SNP ALPP rs13026692, the p value reached 0.47, and Pearson’s Chi-
squared test (X-squared) was 1.51. For SNP FOXP3 rs3761548, p was 0.233, and Pearson’s
Chi-squared test (X-squared) was 2.9136.

A multivariate analysis to evaluate the effect of ASA and LMWH on pregnancy
outcome in terms of RSA or on the presence of thromboembolism is outlined in Table 10.
The effect of concomitant thrombophilic state on the data obtained in the study is assessed
in Table 10. In Table 10, we also tested the influence of the age of the patients on the results.
Last but not least, post hoc comparisons for particular genotypes of selected SNPs in our
study are provided in Tables 11–14.

Table 10. Model results of log likelihood ratio tests.

X2 df p

rs2010963 1.22835 2 0.541
rs3025039 0.39821 1 0.528

rs13026692 1.50814 2 0.47
rs3761548 3.13461 2 0.209

age 0.12124 1 0.728
ASA and LMWH 29.34294 4 <0.001

other thrombophilia 0.00841 1 0.927
Legend: ASA—acetylsalicylic acid, df—degrees of freedom, LMWH—low molecular weight heparin, p—p value,
X2—Chi-squared test.
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Table 11. Post hoc comparisons—rs2010963.

Comparison

rs2010963 rs2010963 exp (B) SE z p pBonferroni pholm

CC CG 0.217 0.482 −0.689 0.491 1.000 0.982

CC GG 0.652 1.296 −0.215 0.830 1.000 0.982

CG GG 3.001 3.134 1.053 0.293 0.878 0.878

Legend: exp(B)—exponential value of B, p—p value, SE—standard error, z—Z-score.

Table 12. Post hoc comparisons—rs3025039.

Comparison

rs3025039 rs3025039 exp (B) SE z p pBonferroni pholm

CC CT 2.02 2.32 0.613 0.540 0.540 0.540

Legend: exp(B)—exponential value of B, p—p value, SE—standard error, z—Z-score.

Table 13. Post hoc comparisons—rs13026692.

Comparison

rs13026692 rs13026692 exp (B) SE z p pBonferroni pholm

AA AT 1.19 1.17 0.17855 0.858 1.000 1.000
AA TT 5.84 × 108 7.25 × 1012 0.00163 0.999 1.000 1.000
AT TT 4.90 × 108 6.08 × 1012 0.00161 0.999 1.000 1.000

Legend: exp(B)—exponential value of B, p—p value, SE—standard error, z—Z-score.

Table 14. Post hoc comparisons—rs3761548.

Comparison

rs3761548 rs3761548 exp (B) SE z p pBonferroni pholm

GG TG 6.96 9.17 1.473 0.141 0.422 0.341

GG TT 10.66 15.95 1.582 0.114 0.341 0.341

TG TT 1.53 1.94 0.337 0.736 1.000 0.736

Legend: exp(B)—exponential value of B, p—p value, SE—standard error, z—Z-score.

Post hoc comparisons of ASA vs. LMWH and those taking into account the influence
of other thrombophilia are outlined in Tables 15 and 16.
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Table 15. Post hoc comparisons—ASA_LMWH.

Comparison

ASA_LMWH ASA_LMWH exp(B) SE z p pBonferroni pholm

ASA ASA 3.14 × 108 3.07 × 1012 0.00200 0.998 1.000 1.000

ASA ASA, LMWH 1.01 × 109 4.30 × 1012 0.00487 0.996 1.000 1.000

ASA LMWH 0.344 0.334 −1.10018 0.271 1.000 1.000

ASA LMWH a ASA 5.04 × 10−10 3.16 × 10−6 −0.00341 0.997 1.000 1.000

ASA ASA, LMWH 3.223 34367.226 1.10 × 10−4 1.000 1.000 1.000

ASA LMWH 1.10 × 10−9 1.07× 10−5 −0.00211 0.998 1.000 1.000

ASA LMWH a ASA 2.22 × 10−16 2.58 × 10−12 −0.00353 0.997 1.000 1.000

ASA, LMWH LMWH 3.40 × 10−10 1.45 × 10−6 −0.00512 0.996 1.000 1.000

ASA, LMWH LMWH a ASA 2.22 × 10−16 1.68 × 10−12 −0.00555 0.996 1.000 1.000

LMWH LMWH a ASA 1.46 × 109 9.20 × 10−6 −0.00324 0.997 1.000 1.000

Table 16. Post hoc comparisons—other thrombophilia.

Comparison

Other_Thrombophilia Other_Thrombophilia exp(B) SE z p pBonferroni pholm

no yes 0.898 1.06 −0.0915 0.927 0.927 0.927

Legend: exp(B)—exponential value of B, p—p value, SE—standard error, z—Z-score.

4. Discussion

It was confirmed that particularly rs1570360 (−1154G/A) (OR 1.51 (95%CI 1.13–2.03)),
rs3025020 (−583C > T), rs833061 (460T/C), rs2010963 (−634G/C) and rs3025039 (+ 936C/T)
VEGF genetic polymorphisms increase the probability of RSA or RPL [36–41]. The last two
mentioned SNPs are even associated with an increased risk of preeclampsia in various
ethnic groups [42].

In the case of SNP VEGF rs1570360 (−1154G > A), the variant allele A was significantly
more common in patients with RPL (0.41) than in controls (0.19) (p < 0.0001). In VEGF-583 C
> T, the CT genotype was significantly associated with this pathological state (p = 0.003) [43].

RPL is frequent in the population with VEGF-1154G/A (70.04%) and p53 Arg72Pro
polymorphism (66.46%). The homozygous recessive genotype of VEGF and p53 thus
exhibits significant association between these polymorphisms and RPL [44].

In VEGF 634 G > C, the allele C and CC genotype are significantly more frequent
in individuals with RPL than in the control group (p < 0.0001) [43]. Thus, the frequency
of idiopathic RSA can be dependent on the GC and CC genotype of rs2010963 VEGF
polymorphism [45].

Moreover, placental −634 GC and CC genotypes might be involved in the development
of preeclampsia and also in its severe form [46], with OR 1.85 (95%CI 1.25–2.75) and OR
1.90 (95%CI 1.28–2.83) in the maternal and fetal dominant model [47].

The C allele of SNP rs3025039 is associated with an increased risk of preeclampsia,
and the T allele seems to have the opposite effect [48]. Interestingly, based on the results
of the meta-analysis of 24 studies, rs2010963 polymorphism significantly contributes to
the development of hypertensive disorders of pregnancy in the Caucasian and African
population and rs3025039 in Asian women [49].

In our studied population, the GG genotype of VEGFA rs2010963 was most commonly
found in the SPS group (54.7%). The less risky - minor CC genotype was more frequent in
the group of pregnant patients with SPS and in the women with a history of RSA (7.5% in
both of them) than in the group with a history of thromboembolism and the control group
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(4.8% and 6.9%, respectively). However, the p value in the Chi-squared test for this SNP
was 0.999. This means the absence of a significant relationship between VEGFA rs2010963
and the study group and, thus, a poor predictive value.

The CC genotype of the SNP VEGFA rs3025039 was detected most commonly in the
SPS group (77.4%). When compared with the controls, this was proved to be statistically
significant (p value for the comparison of CC vs. TT genotype < 0.001), as outlined in
Tables 6 and 7. By contrast, interestingly, the minor TT genotype was not present in the SPS
group. This finding confirms an increased frequency of the major (risky) genotype in the
SPS population and suggests the thrombotic pathogenesis of RSA in this group of patients.

The T/T (Leu/leu) genotype of ALPP showed a protective effect for in vitro fer-
tilization (IVF) failure and primary RSA (RR 0.438 (0.232–0.828, p 0.002) and RR 0.532
(0.291–0.974, p 0.016)). In the case of secondary RSA, the heterozygous genotype may be a
risk factor with an RR of 2.226 (1.383–3.583, p = 0.0031) [50].

Our study confirmed an increased frequency of the protective TT genotype in the
control group (13.8%) and its lower incidence in the group of patients with SPS and a
history of RSA (3.8%). These results were proven to be statistically significant (p value for
the comparison of AT vs. TT genotype in the SPS group was 0.022) (Table 8). Moreover, for
the SPS vs. control group in the multinomial logistic regression analysis, when comparing
AT and TT genotype, the p value was 0.034 (Table 6). Such findings also correlate with
an increased frequency of the risky AA genotype in the group of recurrent spontaneous
abortions (50.9%) when compared with the controls (46.6%).

FOXP3 rs3761548 polymorphism (−3279 C > A) is associated with a reduced expres-
sion of full-length FOXP3 protein in patients with unexplained RSA [28], and rs3761548
A/C polymorphism might be a significant risk factor for RPL [51,52]. Additionally, a po-
tential relationship between further variants of FOXP3 rs5902434, rs2232365 and rs2294021
and idiopathic recurrent miscarriage was confirmed [52,53].

Wu et al. suppose that functional polymorphisms of the Foxp3 gene can represent an
important factor of unexplained RSA in Chinese Han women, probably by altering Foxp3
expression and/or its function [52].

In addition to this relationship, FOXP3 rs3761548 polymorphism was also tested for
its association with preeclampsia. However, this causal link was not confirmed by Varshini
et al. [54]. On the other hand, it was suggested that the A allele of this polymorphism might
be protective against preeclampsia, and the C allele predisposes to this clinical condition in
a dose-dependent manner [55].

We detected a decreased frequency of the GG (CC) genotype of FOXP3 rs3761548
polymorphism in our study group of patients with SPS and RSA when compared with
the control group (p value for the CC (GG) vs. AA (TT) genotype in these two study
groups = 0.021) (Table 9). This may indicate an evolutionary protective mechanism of the
occurrence of the A (T) allele in the SPS group providing protection against thrombotic
complications associated with pregnancy (preeclampsia or RSA).

Using a generalized linear model for logistic regression for the assessment of age
as a potential factor, the p value of the likelihood ratio test was 0.728, whereas in the
case of consideration of treatment as a potential confounding factor, it was <0.001. When
taking into consideration the presence of other thrombophilia, the p value was 0.927, so the
addition of this predictor to logistic regression does not improve the prediction regardless
of whether the particular patient might be included in the group of thromboembolism or
RSA (Table 10).

Thus, age does not have a significant influence on the results of our study. Moreover,
after performance of post hoc tests, we did not find any significant difference between the
genotypes of particular SNPs analyzed in our study (Tables 11–14). Regarding the influence
of treatment with ASA or LMWH and the impact of the presence of concomitant throm-
bophilia on our results, we did not obtain any significant data, either (Tables 15 and 16).

However, when looking at the data of rs3761548, the comparison of the GG and
TT genotype is close to statistical significance before the correction for multiple testing

234



J. Clin. Med. 2022, 11, 6532

(p value = 0.114). Therefore, patients with the GG (CC) genotype are approximately 11 times
more at risk of thromboembolism than those with the TT (AA) genotype. This correlates
with the above-described increased risk of RSA and RPL in carriers of A/C polymorphism
and the increased risk of preeclampsia in the carriers of the C allele, as all these clinical
states (RSA, RPL and preeclampsia) might be developed on the basis of thrombosis or
vascular impairment in uteroplacental circulation. These results need to be confirmed
using data from a higher number of patients, so we will continue to include further at-risk
pregnant women to confirm our presumptions.

5. Conclusions

Our study confirmed the most frequent occurrence of the risky CC genotype of VEGFA
polymorphism rs3025039, particularly in SPS patients (p value < 0.001), in comparison
with the TT genotype and the control group. Moreover, we found a significant difference
in the presence of AT containing the risky A allele and TT genotype of ALPP rs13026692
polymorphism (p = 0.034) in SPS patients when compared with the control group.

This might indicate that a diagnostic approach using genetic analysis of the presence
of particular SNPs can predict clinically manifesting pregnancy complications developed
on the basis of thrombotic events in uteroplacental circulation.

We are self-critically aware of the several limitations of our study—the fact that non-
pregnant women were used as the control group, and the limited number of pregnant
patients included because of health or personal issues. However, we will continue includ-
ing patients to our study to contribute to improved knowledge in this field of research.
Nevertheless, our study might be regarded as unique because, to the best of our knowledge,
only our work has performed a genetic analysis of these selected polymorphisms associ-
ated with pregnancy complications in the specific population of at-risk pregnant women
with SPS.

To conclude, we sincerely hope that our study might be useful and enrich the general
knowledge around sticky platelet syndrome, helping in the management of at-risk pregnant
women with SPS.
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Abstract: Novel P2Y12 ADP receptor blockers (ADPRB) should be preferred in dual-antiplatelet therapy
in patients with acute coronary syndrome. Nevertheless, there are still patients who do not respond
optimally to novel ADP receptor blocker therapy, and this nonoptimal response (so-called “high on-
treatment platelet reactivity” or “resistance”) could be connected with increased risk of adverse ischemic
events, such as myocardial re-infarction, target lesion failure and stent thrombosis. In addition, several
risk factors have been proposed as factors associated with the phenomenon of inadequate response on
novel ADPRB. These include obesity, multivessel coronary artery disease, high pre-treatment platelet
reactivity and impaired metabolic status for prasugrel, as well as elderly, concomitant therapy with beta-
blockers, morphine and platelet count for ticagrelor. There is no literature report describing nonoptimal
therapeutic response on cangrelor, and cangrelor therapy seems to be a possible approach for overcoming
HTPR on prasugrel and ticagrelor. However, the optimal therapeutic management of “resistance” on
novel ADPRB is not clear and this issue requires further research. This narrative review article discusses
the phenomenon of high on-treatment platelet reactivity on novel ADPRB, its importance in clinical
practice and approaches for its therapeutic overcoming.

Keywords: prasugrel; ticagrelor; cangrelor; high on-treatment platelet reactivity; stent thrombosis;
acute coronary syndrome

1. Introduction

Novel P2Y12 ADP receptor blockers (ADPRB), namely prasugrel, ticagrelor and can-
grelor, have emerged as a potent therapeutic approach for ADP signaling pathway inhi-
bition in patients with acute coronary syndromes (ACSs), with [1–3] or without planned
percutaneous coronary intervention (PCI) [3], or patients who undergo PCI without oral
ADPRB pre-treatment [4]. This therapy should be considered, especially in those patients
who do not respond optimally to clopidogrel (patients with clopidogrel high on-treatment
platelet reactivity = “clopidogrel resistance”) [5]. Nevertheless, there are still patients who
do not respond optimally to novel ADPRB therapy, and this nonoptimal response could be
connected with increased risk of adverse ischemic events, such as myocardial re-infarction,
target lesion failure and stent thrombosis [6,7]. This article discusses the phenomenon of
“resistance” (high on-treatment platelet reactivity) on novel-generation ADPRB (the latest
ADPRB available in clinical practice), its importance in clinical practice and approaches for
its therapeutic overcoming.

J. Clin. Med. 2022, 11, 7211. https://doi.org/10.3390/jcm11237211 https://www.mdpi.com/journal/jcm239



J. Clin. Med. 2022, 11, 7211

2. Methods

The aim of this article is to provide a brief traditional (narrative) review, which
summarizes current data regarding the prevalence and clinical significance of HTPR on
novel-generation ADPRB, namely prasugrel, ticagrelor and cangrelor, in patients with
acute coronary syndrome. To achieve this aim, the most relevant medical scientific liter-
ature databases—Web of Science, PubMed and Scopus—were searched, using selected
keywords: “high on treatment platelet reactivity” or “resistance” or “insufficient response”
and “prasugrel” or “ticagrelor” or “cangrelor” and “acute coronary syndrome” or “my-
ocardial infarction” or “STEMI” or “NSTEMI” or “unstable angina”. If needed, additional
keywords, such as “major adverse cardiac event” or “stent thrombosis” or “stent failure”
or “target lesion failure” were added, and the literature was researched. The authors
non-systematically identified relevant articles matching their aim. Subsequently, a review
of findings from these articles was provided, together with a discussion of the clinical
implications of published observations.

3. Insufficient Response to ADPRB and the Risk of Future Events in Patients with ACS

ADPRB treatment failure is a major risk factor for stent thrombosis and early PCI fail-
ure [8]. Patients with high on-treatment platelet reactivity (HTPR) have an approximately
2–3-fold higher risk of adverse ischemic events and stent thrombosis than those without
HTPR. Moreover, ADPRB HTPR has been observed in patients with ACS previously in-
dependently associated with unfavorable in-hospital clinical outcome [9], with increased
risk of long-term thrombotic events in patients with implanted drug-eluting stents [10,11],
connected with frequent recurrent angina and left ventricular failure [12] and predicted
future cardiovascular events after PCI for ACS [13]. A previous observational study [14]
showed that clopidogrel resistance was present in 72.5% of patients admitted for repeated
ACS, which suggests that HTPR likely plays an important role in recurrent ACS. Addition-
ally, the phenomenon was reported as a leading cause of stent thrombosis (including left
main-chain and multi-vessel stent thrombosis) in several clinical cases [15–19].

Despite the abovementioned evidence, there is still an ongoing discussion about the
association between antiplatelet drugs HTPR and major adverse cardiovascular events
(MACE), and the clinical implication of antiplatelet therapy HTPR is not fully determined.
Several factors could be responsible for this ambiguity. First, the results of so-far published
studies are controversial (especially for aspirin HTPR), and there are studies that did not
confirm the relation between HTPR and the risk of future ischemic adverse events [20–23].
Second, a MACE in a patient after previous coronary intervention is a complex phe-
nomenon, which could be associated with stent failure itself (due to either stent thrombosis
or stent restenosis) or due to “de novo” atherothrombotic events, which could develop due
to progression of plaque instability or due to platelet activation or both mechanisms can
be involved. Additionally, stent thrombosis, for example, could be connected with HTPR,
stent malposition, inadequate stent expansion, stent undersizing, small stent diameter,
stent fracture, edge dissection or drug non-compliance [24,25]. Therefore, one needs to
understand that HTPR on ADPRB therapy is just one risk factor in a complex clinical
problem. Third, there is still no definite answer for how to deal with HTPR, as multiple
previously tested approaches failed to improve clinical outcomes [26–28]. Considering
the fact that failure to reduce platelet reactivity in the settings of HTPR seems to be an
independent predictor of future MACE [29], the issue of not having an optimal algorithm
for HTPR-guided intensification of platelet inhibition could definitely play an important
role in these uncertainties.

Fourth, there is an issue in laboratory testing for HTPR detection. In fact, various
platelet function tests (PFTs) with different test principles have been tested (and validated)
for the detection of HTPR [30]. Some of them are designed as point-of-care tests, others
require complex laboratory equipment and skilled staff to perform the examination. Light
transmission aggregometry (LTA) with a specific inducer (adenosine diphosphate—ADP)
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is still recognized as a standard laboratory test for PFT, which also includes the detection
of HTPR, while the Vasodilator-Stimulated Phosphoprotein phosphorylation (VASP-P) by
flow cytometric analysis is probably the most specific test for assessing the rate of P2Y12
ADP signaling pathway inhibition [31]. Both tests have important limitations (especially
in the settings of daily clinical practice, including the need for measuring the antiplatelet
drug response in a 24/7 ACS program), such as the need for special equipment, skilled
staff, time demand and, in the case of LTA, the need to process the sample immediately
(within first hour from blood sampling). Therefore, several point-of-care assays, namely
Multiplate®, VerifyNow®, PFA-100® and platelet mapping thromboelastography® (TEG®),
have been designed. Multiplate® (Roche Diagnostics, Indianapolis, IN, USA) is a point-of-care
assay, which tests citrated whole blood samples using the electrical impedance aggregometry
principle. The assay uses platelet stimulation with specific inducers (ADP) to activate platelet
aggregation. Once the aggregated platelets attach the sensor wires in the Multiplate® device,
electrical resistance (impedance) is detected and displayed as aggregation units (AUs) against
time (area under the curve = AUC) [32]. VerifyNow® (Werfen, Barcelona, Spain) assay is
performed as a point-of-care test using a citrated whole blood sample. In this turbidimetry-
based assay, ADP induction is used to initiate platelet aggregation on fibrinogen-coated
beads. Platelet aggregation is determined by the percentage of the light transmission and
expressed in P2Y12 reaction units (PRUs). Low PRU indicates the high P2Y12 receptor
inhibition and better response to P2Y12 ADPRB. VerifyNow® assay is a rapid test, which can
be performed even at the bedside within 5 min, which is an advantage when compared with
LTA and VASP-P assays. Moreover, the examination itself (due to a simple technique) and the
interpretation of results can be carried out easily (there is no need for skilled staff to perform
and/or evaluate the results). Both assays have been used for PFT in post-marketing studies,
including randomized ones [26,30,32]. Platelet function assay-100 = PFA-100® (Siemens
Medical Solutions, Malvern, PA, USA) is another point-of-care assay, which can be used to
monitor the effect of P2Y12 ADPRB. The assay uses citrated whole blood sample and measures
the platelet aggregation and effect of antiplatelet agents under higher shear stress. This test
can be performed rapidly (in less time) and, similarly to VerifyNow® assay, has a simple test
technique, which is an added advantage when compared with conventional PFT. PFA-100®

has collagen-coated, epinephrine-coated and ADP-coated cartridges. If ADPRB is present in
a sample, the blood will flow under higher shear rate through the capillary and through a
small aperture of the PFA-100® analyzer. Subsequently, platelets will aggregate and form the
ADP-induced platelet plug by blocking the aperture. The time taken for complete occlusion
of the aperture is recorded as closure time (CT). Prolonged CT indicates a better response
to ADPRB [32]. PFA-100® assay has been used in clinical studies mostly for the detection of
aspirin resistance [33,34]; however, there are data to show that the test can be used also for
the determination of response to ADPRB [35]. On the other side, it is questionable whether
the use of point-of-care assays (compared to traditional PFT) has an impact (negative) on
the clinical utility of PFT studies, as these assays are criticized for their limited sensitivity
and/or specificity [36,37]. Additionally, it is possible that a single PFT will not reliably detect
HTPR, and that confirmation of suspected HTPR with another PFT might be needed for
establishment of final diagnosis (confirmation of results obtained from a point-of-care test by a
laboratory-based test). Finally, there is an issue of inconsistent cut-off values for the detection
of HTPR, especially when point-of-care assays are used for its determination. For example,
for the VerifyNow® assay, cut-off values of >280 PRU, >272 PRU, >235 PRU and >230 PRU
have been used to define HTPR in previously published studies [26,30]; for Multiplate®, at
least two cut-off values (468 AUC, 450 AUC) have been reported. All these unclosed issues
could explain the ongoing discussion regarding the clinical implication of HTPR.

Nonetheless, considering the fact that, with clopidogrel, ADP-induced platelet aggre-
gation remains significantly high in ACS patients, even after 48 h from standard loading [38],
it is unsurprising that a novel generation of ADPRB (Table 1) with more rapid and more
potent platelet inhibitory effects has been developed and introduced to clinical practice,
especially for the treatment of patients with ACS.
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Table 1. Novel-generation ADP receptor blockers in current clinical practice.

Drug Route of Administration Dosing Bioavailability Receptor Inhibition
Time to Peak

Platelet Inhibition
Clinical

Application
HTPR

(Prevalence)

Prasugrel

Oral
Loading dose of 60 mg followed by

10 mg once daily
(5 mg in elderly and low

body weight)

Prodrug Irreversible 0.5–2 h ACS with PCI

Described
(1.6–25%; higher if

time from drug
administration to
blood sampling is

too short)

Ticagrelor

Oral
Loading dose of 180 mg followed by

90 mg twice daily
(60 mg twice daily in CAD)

Direct-acting Reversible 1.5–2 h
ACS

High ischemic risk
CAD

Described
(8.6–13.7% if tested
30 to 90 days post

drug loading;
0.0–1.9% on

long-term therapy)

Cangrelor

Intravenous
Bolus injection of 30 ug/kg followed
by continuous intravenous infusion

of 4 ug/kg/min.

Direct-acting Reversible 2 min
PCI

(if not pretreated
with oral agent)

Not described

ACS—acute coronary syndromes; CAD—coronary artery disease; HTPR—high on-treatment platelet reactivity;
PCI—percutaneous coronary intervention.

4. Novel-Generation ADPRB

4.1. Prasugrel

Prasugrel is an irreversible, 3rd-generation thienopyridine P2Y12 ADPRB, which is
indicated for combined (with aspirin) antiplatelet therapy in PCI-treated patients with
ACS [1,2,39]. Prasugrel [39] provides more consistent inhibition of the P2Y12 ADP receptor
and has lower intraindividual variability in efficacy compared with clopidogrel. It is
hydrolyzed by plasma esterases, then metabolized by cytochrome P450 (CYP) 3A4 and 2B6
enzymes to form an active metabolite and has a plasma half-life of 7.4 h. The inactivation
of the active metabolite is mediated trough drug S-methylation and drug conjugation. The
inactive metabolites are excreted by urine (68%) and stool. The response to prasugrel is not
affected by CYP 2C19 inhibition, loss of CYP 2C19 gene function or decreased function of
P-glycoprotein (P-gp). Loading doses of 60 mg of prasugrel reach, in theory, full antiplatelet
effects 15–30 min after administration. The benefit of prasugrel therapy seems to be the
highest in patients with diabetes mellitus [1]. Prasugrel therapy was repeatedly used to
overcome clopidogrel resistance [15,19].

4.2. Ticagrelor

Ticagrelor is a reversible, 3rd-generation non-thienopyridine P2Y12 ADPRB, approved for
combined antiplatelet therapy in patients with ACS (with or without PCI) and for long-term
combined antiplatelet therapy in coronary artery disease (CAD) patients with high ischemic
and low bleeding risk [3,40]. Ticagrelor offers rapid and consistent inhibition of the P2Y12
ADP signaling pathway, which is independent of previous metabolic activation and P-gp
function. Ticagrelor reaches its maximal plasma activity approximately 1.5 h after ingestion
and has a plasma half-life of 8.5 h. However, it undergoes metabolism, which is mediated by
CYP 3A4 and, therefore, strong inducers/inhibitors of this enzyme complex could affect the
concentrations of ticagrelor and lead to unexpected drug activity. Ticagrelor is, after metabolic
transformation, eliminated by hepatic and renal excretion. A loading dose of 180 mg followed
by a maintenance dose of 90 mg twice daily are recommended for patients with ACS, while
a dose of 60 mg twice daily is recommended for long-term antiplatelet prophylaxis in high-
ischemic-risk CAD patients [5,39,40]. Although a recent randomized study suggested better
efficacy (with similar safety profile) of prasugrel compared to ticagrelor in ACS patients
undergoing PCI [2], ticagrelor therapy had been repeatedly described as an effective approach
for overcoming clopidogrel resistance [5,41,42] and is still preferred in those ACS patients
who could not receive prasugrel.
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4.3. Cangrelor

Cangrelor is a reversible, parenteral, 3rd-generation non-thienopyridine P2Y12 AD-
PRB, which is indicated for combined antiplatelet therapy in patients undergoing PCI
(both for ACS and stable CAD) who are not pre-treated with oral ADPRB [4]. Cangrelor
reaches the maximal antiplatelet effect within 2 min after bolus injection (30 ug per kg
of body weight) and has a very short plasma half-life (2.6–3.3 min) requiring continuous
intravenous infusion (4 ug per kg of body weight per minute) to maintain adequate ADP
receptor inhibition. Cangrelor does not require metabolic transformation to form an active
metabolite and is independent of CYP and P-gp activity. Cangrelor is deactivated by
plasmatic de-phosphorylation; the inactive metabolite is eliminated by urine (58%) and
stool (35%). Normal platelet function is restored within 1 h after stopping the cangrelor
infusion [43]. Cangrelor administration could be, in theory, used as a bailout option for
overcoming clopidogrel resistance in patients presenting with stent thrombosis [44].

5. Prasugrel Resistance in Patients with ACS

In one of the first studies examining the prevalence of insufficient response on pra-
sugrel, Bonello et al. [45] reported that a significant portion of patients undergoing PCI for
ACS did not achieve optimal platelet inhibition. In this study, with 301 patients receiving a
prasugrel loading dose of 60 mg, 25.2% of patients had HTPR. Patients who experienced a
thrombotic event after PCI had significantly higher residual platelet activity measured with
VASP-P compared with those free of adverse thrombotic events. In our previous prospec-
tive study, which aimed to map the platelet reactivity in novel ADP receptor-blocker-treated
patients with acute ST elevation myocardial infarction (STEMI), 60.9% of prasugrel-treated
patients did not achieve sufficient platelet inhibition after a loading dose of 60 mg (mea-
sured 1.6 ± 0.7 h after loading dose administration) and 8.7% of prasugrel-treated patients
remained non-responders in second blood sampling performed after 20.4 ± 2.6 h from load-
ing dose administration [46]. In addition, Aradi et al. [47] tested platelet reactivity with LTA
and whole blood impedance aggregometry (Multiplate®) in 103 consecutive, high-risk ACS
patients 12 to 24 h after administration of loading dose (60 mg) of prasugrel. The authors of
this study reported significant inter-patient variability in platelet reactivity after all doses
of prasugrel, and the prevalence of HTPR was significantly higher during the maintenance
dose administration. On the other side, another study enrolling PCI-treated ACS patients
receiving prasugrel reported HTPR (defined as VASP-P index > 50%) 2 to 4 weeks after
hospital discharge only in 6.8% of patients [48]. Similarly, only 9.1% of acute STEMI patients
was identified as a non-responders on prasugrel (defined as VASP-P index > 50% 6 to 12 h
after prasugrel loading dose administration) in a previous prospective study performed
by Laine et al. [49]. A previous meta-analysis of 14 studies with 1822 patients reported
the HTPR in 9.8% of prasugrel-treated patients [50]; Siller-Matula et al. [51] reported that
only 3% of prasugrel-treated patients had HTPR in the maintenance phase of treatment. In
another single-center retrospective analysis of 809 PCI-treated ACS patients, the prevalence
of prasugrel HTPR was even lower and only 1.6% of prasugrel-treated patients fulfilled
the criteria for HTPR [52]. However, this study measured platelet reactivity with whole
blood impedance aggregometry. In a more recent analysis, Verdoia et al. [53,54], in their
prospective studies, reported that HTPR on prasugrel was observed in 10% and 12.3% of
patients, respectively. In these studies, whole blood impedance aggregometry was used for
determination of HTPR.

Based on these data (Table 2), one could conclude that, although with significantly
lower prevalence (compared to clopidogrel), HTPR on prasugrel exists, and its prevalence
varies from 1.6 to approximately 25% of treated patients (depending on platelet function
test used and chosen time from loading dose to blood sampling). In addition, if the time
interval from drug administration to blood sampling is too short, the number of patients
with inadequate response can be even higher [46]. Nevertheless, it seems that the phe-
nomenon of prasugrel HTPR is connected with adverse ischemic events. This observation
was repeatedly reported in previous prospective studies, including sub-analyses of ran-
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domized studies [45,55,56]. Aradi et al. [56], for example, reported, in a pre-specified
exploratory analysis of the TROPICAL-ACS trial, that, although infrequent, prasugrel
HTPR was connected with increased risk of thrombotic events. The association between
prasugrel HTPR and the higher risk of adverse ischemic events post PCI is also supported
by multiple reported clinical cases of prasugrel “resistance”, which consistently reported
serious adverse thrombotic events, including repeated cases of stent thrombosis [6,57,58].
Hence, the HTPR on prasugrel could probably be considered as a risk factor for adverse
ischemia/thrombosis, similarly to clopidogrel HTPR.

Table 2. Summary of studies reporting prasugrel HTPR.

Study Type of Study Studied Population
Number of

Patients
Test for HTPR Cut Off Main Results

Bonello et al. [45]
Prospective
multicenter

(non-randomized)
PCI for ACS 301 VASP-P VASP-P:

PRI > 50%

HTPR
in 25.2%

of patients;
significantly higher
PRI in those with
thrombotic events

Škorňová et al. [46]
Prospective

single-center
(non-randomized)

STEMI with
primary PCI 44 LTA with ADP

induction, VASP-P

LTA:
>50%,

VASP-P:
PRI > 50%

HTPR
in 8.7% of patients

Aradi et al. [47]
Prospective
multicenter

(non-randomized)
high risk ACS 104 LTA, Multiplate®

LTA:
>46%,

Multiplate®: >47 AU

inter-patient
variability after

prasugrel loading
dosing; no effect of
PPI on prasugrel

activity

Cayla et al. [48]

Prospective two
high-volume

centers
(non-randomized)

ACS with PCI 444
VASP-P,

VerifyNow®,
LTA

VASP-P: PRI ≥ 50%,
VerifyNow®:
≥235 PRU,

LTA:
≥46.2%

HTPR
in 3.2–6.8% of

patients according
to method used for

detection

Laine et al. [49]
Prospective

single-center
(randomized)

STEMI with
primary PCI 44 VASP-P VASP-P:

PRI ≥ 50%
HTPR

in 9.1% of patients

Lemesle et al. [50] Meta-analysis (14
studies included) CAD 1822 VASP-P,

VerifyNow®

VASP-P:
PRI ≥ 50%, different cut

off for VerifyNow in
included studies
(208–235 PRU)

HTPR
in 9.8% of patients

Siller-Matula et al.
[51]

Prospective
single-center

(non-randomized)
ACS 200 Multiplate® Multiplate®: >46 AU HTPR

in 3% of patients

Selhorst et al. [52] Retrospective
single-center

ACS with primary
PCI 809 Multiplate® Multiplate®:

>468 AUC
HTPR in 1.6% of

patients

Verdoia et al. [53]
Prospective

single-center
(non-randomized)

ACS with PCI 190 Multiplate® Multiplate®:
>417 AUC

HTPR
in 10% of patients

Verdoia et al. [54]
Prospective

single-center
(non-randomized)

ACS with PCI 105 Multiplate® Multiplate®:
>417 AUC

HTPR
in 12.3% of patients

ACS—acute coronary syndrome; ADP—adenosine diphosphate; AU—aggregation units; AUC—area under the
curve; CAD—coronary artery disease; HTPR—high on treatment platelet reactivity; LTA—light transmission
aggregometry; PCI—percutaneous coronary intervention; PRI—platelet reactivity index; PRU—P2Y12 reactivity
units; VASP-P—Vasodilator-Stimulated Phosphoprotein phosphorylation.

A question regarding the mechanism of prasugrel HTPR could be posed. In fact,
right now, no satisfactory answer to this question exists, as there is no study examining
this problem. Theoretically, several factors could be responsible for this insufficient drug
response (Figure 1). Prasugrel HTPR can be caused by decreased bioavailability—either
due to decreased absorption or increased drug elimination, by impaired drug metabolism
(either due to genetic polymorphism or drug interactions), leading to decreased formation
of an active metabolite, due to ineffective inhibition of the platelet P2Y12 ADP receptor via
an active metabolite or due to impaired response on ADP receptor inhibition on the level
of the post-receptor signaling pathway [59].
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Figure 1. Possible mechanism of HTPR on novel-generation ADPRB [59]. ADP—adenosine diphos-
phate; ADPRB—P2Y12 ADP receptor blockers; CYP—cytochrome P450 enzyme; HTPR—high on-
treatment platelet reactivity.

6. Ticagrelor Resistance in Patients with ACS

Although first observations reported no risk of HTPR on ticagrelor [60,61], Laine et al. [62]
subsequently reported, in their multicenter prospective observational study enrolling 115
ticagrelor-treated patients, that platelet inhibition post 180 mg of ticagrelor loading dose is
not uniform and that 3.5% of patients had HTPR (defined as VASP-P index > 50%, blood
sampling was performed 6 to 24 h post drug loading). In our previously mentioned analysis
of STEMI patients planned for primary PCI [46], platelet inhibition after 180 mg of ticagrelor
loading dose was not sufficient in 42.9% of patients in a sample taken 1.4 ± 0.6 h and in 14.3%
of patients in a sample taken 21.0 ± 2.0 h post drug loading, respectively. In other studies,
the range of ticagrelor HTPR after loading dose administration ranged from 1.5 to 60.2%,
depending on studied patient population, method used for HTPR detection and timing of
blood sampling [50,51,63–67]. Although Verdoia et al. reported in their studies [54,68,69] 8.6 to
13.7% prevalence of ticagrelor HTPR on maintenance dosing (tested 30 to 90 days post drug
loading), it seems that a longer duration of ticagrelor therapy probably achieves sufficient
platelet inhibition in the majority of patients, as the majority of so-far published studies,
including meta-analyses, reported very low rates (0.0–1.9%) of ticagrelor HTPR (Table 3) on
long-term therapy [49,52,70–76]. This prevalence practically limits the occurrence of ticagrelor
HTPR to occasional clinical cases. However, although the evidence is still limited and the
phenomenon of ticagrelor resistance is relatively rare, ticagrelor HTPR seems to be connected
with a higher risk of adverse ischemic events [67], very similarly to clopidogrel HTPR and
prasugrel HTPR. Additionally, Musallam et al. reported a case of a patient with subacute
stent thrombosis in whom ticagrelor HTPR was verified [7], and Malik [77] described a case
of stent thrombosis 22 days after successful drug eluting coronary stent implantation in a
62-year-old man with diabetes who did not respond adequately to ticagrelor therapy. In this
particular case, intravascular imaging with optical coherence tomography was performed,
and stent underexpansion, stent strunt mal-apposition and edge dissection were excluded.
Finally, Jariwala et al. [78] described a case of subacute stent thrombosis after uncomplicated
implantation of sirolimus-eluting coronary stent, which developed despite ticagrelor therapy
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(in this case, authors were unable to verify HTPR with laboratory testing). In summary,
current evidence suggests that ticagrelor HTPR exists, but its prevalence is lower compared to
clopidogrel and prasugrel HTPR. Nevertheless, this phenomenon seems to be connected with
a higher risk of ischemic adverse events, including stent throcccmbosis.

Table 3. Summary of studies reporting ticagrelor HTPR.

Study Type of Study Studied Population
Number

of Patients
Test for HTPR Cut Off Main Results

Alexopoulos et al. [60]
Prospective

single-center
(randomized)

ACS with PCI and
HTPR on

clopidogrel
44 VerifyNow® VerifyNow®:

≥235 PRU

HTPR
in 0%

of patients

Alexopoulos et al. [61]
Prospective

single-center
(randomized)

ACS with PCI and
T2D 30 VerifyNow® VerifyNow®:

≥230 PRU
HTPR

in 0% of patients

Laine et al. [62]
Prospective
multicenter

(non-randomized)
ACS with PCI 115 VASP-P VASP-P:

PRI ≥ 50%
HTPR

in 3.5% of patients

Škorňová et al. [46]
Prospective

single-center
(non-randomized)

STEMI with
primary PCI 44 LTA with ADP

induction, VASP-P

LTA:
>50%,

VASP-P:
PRI > 50%

HTPR
in 14.3% of patients

Lemesle et al. [50] Meta-analysis (14
studies included) CAD 1822 VASP-P,

VerifyNow®

VASP-P:
PRI ≥ 50%,

different cut off for
VerifyNow

in included studies
(208–235 PRU)

HTPR
in 1.5% of patients

Siller-Matula et al. [51]
Prospective

single-center
(non-randomized)

ACS 200 Multiplate® Multiplate®: >46
AU

HTPR
in 2% of patients

Laine et al. [63]
Prospective

single-center
(randomized)

ACS with PCI and
T2D 100 VASP-P VASP-P:

PRI ≥ 50%
HTPR

in 6% of patients

Verdoia et al. [64]
Prospective

single-center
(non-randomized)

ACS 190 Multiplate® Multiplate®:
>417 AUC

HTPR
in 11% of patients

Barbieri et al. [65]
Prospective

single-center
(non-randomized)

PCI 537 Multiplate® Multiplate®:
>417 AUC

HTPR
in 12.7% of patients

Li et al. [66]
Prospective

single-center
(non-randomized)

ACS 176 TEG® TEG®:
MA > 47 mm

HTPR
in 3.98% of patients

Laine et al. [67]
Prospective
multicenter

(non-randomized)
ACS with PCI 530 VASP-P VASP-P:

PRI ≥ 50%
HTPR

in 5.3% of patients

Verdoia et al. [54]
Prospective

single-center
(non-randomized)

ACS with PCI 105 Multiplate® Multiplate®:
>417 AUC

HTPR
in 8.6% of patients

Verdoia et al. [68]
Prospective

single-center
(non-randomized)

ACS with PCI 195 Multiplate® Multiplate®:
>417 AUC

HTPR
in 13.3% of patients

Verdoia et al. [69]
Prospective

single-center
(non-randomized)

ACS with PCI 432 Multiplate® Multiplate®:
>417 AUC

HTPR
in 11.4% of patients

Laine et al. [49]
Prospective

single-center
(randomized)

STEMI with
primary PCI 44 VASP-P VASP-P:

PRI ≥ 50%
HTPR

in 0% of patients

Selhorst et al. [52] Retrospective
single-center

ACS with primary
PCI 809 Multiplate® Multiplate®:

>468 AUC
HTPR

in 1.9% of patients

Alexopoulos et al. [70]
Prospective

single-center
(non-randomized)

ACS with PCI 512 VerifyNow® VerifyNow®:
>208 PRU

HTPR
in 0% of patients

Alexopoulos et al. [71] Meta-analysis (8
studies included)

CAD or ACS
(with or without

PCI)
445 VerifyNow® VerifyNow®:

>230 PRU
HTPR

in 0% of patients
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Table 3. Cont.

Study Type of Study Studied Population
Number

of Patients
Test for HTPR Cut Off Main Results

Gaglia et al. [72]
Prospective

single-center
(non-randomized)

ACS and black rase 29
LTA,

VASP-P,
VerifyNow®

LTA:
>60%,

VASP-P:
PRI > 50%,

VerifyNow®:
>208 PRU

HTPR
in 0% of patients

Sweeny et al. [73]

post-hoc analysis of
prospective

multicenter study
(randomized)

ACS (troponin
negative) with PCI 100 VerifyNow® VerifyNow®:

>208 PRU
HTPR

in 5.9% of patients

Liu et al. [74]
Prospective
multicenter

(randomized)
NSTE ACS 278 VASP-P VASP-P:

PRI ≥ 50%

HTPR
in 3.1–5.3% of patients
(according to ticagrelor

loading dose)

Wen et al. [75] Meta-analysis (14
studies included) ACS 2629 VASP-P,

VerifyNow®

VASP-P:
PRI ≥ 50%,

VerifyNow®:
≥208 PRU or ≥230

PRU

HTPR
in 0.66–2.67% of patients

(according to method
used for detection)

Dai et al. [76] Meta-analysis (25
studies included) ACS 5098

VASP-P,
VerifyNow®,
Multiplate®

Not reported

low incidence of HTPR
on ticagrelor

maintenance dosing
(exact rate was not

reported)

Musallam et al. [7] Case report
stent thrombosis

on ticagleror
therapy

1 VerifyNow® - HTPR (339 PRU) at the
time of stent thrombosis

Malik [77] Case report
stent thrombosis

on ticagleror
therapy

1 TEG® TEG®:
MA > 47 mm

HTPR (MA of 66 mm) at
the time of stent

thrombosis

Jariwala et al. [78] Case report
stent thrombosis

on ticagleror
therapy

1 Not tested -

stent thrombosis on
ticagrelor—stent-related
complication excluded

by intravascular
coronary imaging

ACS—acute coronary syndrome; ADP—adenosine diphosphate; AU—aggregation units; AUC—area under
the curve; CAD—coronary artery disease; HTPR—high on treatment platelet reactivity; LTA—light trans-
mission aggregometry; MA—maximum amplitude; NSTE—non-ST segment elevation; PCI—percutaneous
coronary intervention; PRI—platelet reactivity index; PRU—P2Y12 reactivity units; T2D—type 2 diabetes;
TEG®—thromboelastography; VASP-P—Vasodilator-Stimulated Phosphoprotein phosphorylation.

Looking at the mechanism of ticagrelor HTPR, it is obvious that impaired (pro)drug
conversion (metabolism) does not play a role, as ticagrelor is an active metabolite, which
does not require metabolic transformation to achieve its drug activity. In theory, all the
other possible mechanisms discussed in connection with prasugrel HTPR (Figure 1) could
be responsible [59]. Nevertheless, similarly to prasugrel HTPR, there is no study specifically
examining the mechanism of this HTPR; therefore, clarification of this matter is still open
for future research.

7. Cangrelor Resistance in Patients with ACS

Looking at the currently available data, there is no study examining the prevalence
of cangrelor HTPR in patients with acute coronary syndrome, no study describing this
phenomenon or clinical case report describing a case of ischemic adverse post-PCI event re-
lated to failure of cangrelor therapy. Moreover, cangrelor seems to be a promising agent for
treatment (overcoming) prasugrel HTPR [79,80] or to bridge the gap until optimal platelet
inhibition with ticagrelor is achieved [81]. Nevertheless, cangrelor has been approved for
clinical use in patients undergoing PCI relatively recently; thus, it might be possible that
the phenomenon of cangrelor HTPR just awaits its description.

8. Risk Factors of Novel ADPRB Resistance

The next question should be what are the risk factors for HTPR on novel-generation
ADPRB? Searching the literature, several factors have been proposed as factors associ-
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ated with this phenomenon. For prasugrel, obesity (BMI > 30 kg/m2) [48,82–84], mul-
tivessel coronary artery disease [48], carrying a CYP 2C19*2 or 2C19*17 loss-of-function
allele [85,86], high pre-treatment platelet reactivity and smoking status [87] and impaired
metabolic status (with higher levels of glycosylated hemoglobin and low-density lipopro-
tein cholesterol) [53] have been reported as factors independently predicting HTPR. Several
other clinical factors, namely chronic kidney disease [53], type 2 diabetes [88], elderly and
proton pump inhibition co-therapy [47], were studied, but an association was not found.
For ticagrelor, in a previous study, age and BMI positively and smoking negatively affected
on-treatment platelet reactivity [71]. Verdoia et al. [68] reported that, using multivari-
able analysis, age (≥70 years), concomitant therapy with beta-blockers and platelet count
independently predicted HRPR on ticagrelor. In another prospective study in ticagrelor-
treated ACS patients, Adamski et al. reported that the presence of ST-segment elevation
and morphine co-administration were the strongest predictors of ticagrelor HTPR [89].
Other clinical factors, such as chronic kidney disease, diabetes or proton pump inhibitor
co-administration, probably do not affect the efficacy of ticagrelor therapy [88,90,91].

9. How to Manage Insufficient Response to Novel ADPRB?

In theory, novel-generation ADPRB HTPR can be managed by modification of drug
dosing (either with re-loading or increasing the maintenance dosage) [92], by adding
other antithrombotic agents, to bridge the time until the drug achieves its full activity
(glycoprotein IIb/IIIa inhibitor or parenteral ADPRB—cangrelor) [93] or to achieve more
potent platelet inhibition in long-term therapy (cilostazol or low-dose rivaroxaban) [94], or
by switching the novel-generation ADPRB (prasugrel to ticagrelor in prasugrel HTPR and
ticagrelor to prasugrel in ticagrelor HTPR) [54,95]. One must say that each of the strategies
has its disadvantages and that none of them was tested in a randomized trial. For example,
adding the third antithrombotic agent to long-term therapy can increase the risk of bleeding,
while the effect on a reduction in adverse thrombotic events remains unclear. In addition,
increasing the drug dose leads to long-term drug dosing, for which efficacy and safety were
not previously tested in clinical trials. Furthermore, cangrelor has been approved only in
ADPRB-naïve patients who are planned for PCI, and the safety of its administration in
those who already received ADPRB loading (although with insufficient platelet response)
remains unclear. In the majority of so-far published cases [6,7,57,58,77,78], the authors used
a switch strategy, either alone or with bridging the ineffective antiplatelet response with
adding glycoprotein IIb/IIIa inhibition. This strategy appears to be safe and effective, as
there were no reports of repeated ischemic or serious bleeding adverse events in these cases.
However, the evidence for any approach is still limited to a small number of clinical cases,
and further research on the issue of optimal management of HTPR on novel-generation
ADPRB is definitely needed.

10. Conclusions

Based on the limited evidence discussed in this review article, we can conclude that
the phenomenon of HTPR or resistance on novel-generation ADPRB therapy might exist.
The prevalence of novel-generation ADPRB HTPR is lower compared to clopidogrel HTPR.
Additionally, several studies suggested that this phenomenon could be connected with
a high risk of adverse ischemic events; however, the evidence for this association is still
limited. Therefore, there is a need for future research dedicated to clinical impact and
optimal management of this phenomenon.

Author Contributions: P.B., M.S., T.B. and L.S. designed the study; P.B., M.S. and T.B. drafted the
manuscript; I.Š., M.J.P. and J.J. performed the search of the literature, analyzed and interpreted the
data; L.S., J.J., J.S. and M.M. revised the manuscript critically. All authors have read and agreed to the
published version of the manuscript.

248



J. Clin. Med. 2022, 11, 7211

Funding: This study was supported by project APVV (Slovak Research and Development Agency)
16-0020, by projects of Research Agency of Slovak Ministry of Education, Science and Sports (VEGA)
1/0090/20 and 1/0549/19.

Institutional Review Board Statement: This research was conducted according to ethical standards.
There is no need for formal consent for this type of study (a narrative review article).

Informed Consent Statement: Not applicable.

Data Availability Statement: All the source data are available from the corresponding author upon
reasonable request.

Acknowledgments: This study was supported by project APVV (Slovak Research and Development
Agency) 16-0020, by projects of Research Agency of Slovak Ministry of Education, Science and Sports
(VEGA) 1/0090/20 and 1/0549/19.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wiviott, S.D.; Braunwald, E.; McCabe, C.H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.-J.; Ardissino, D.; De Servi,
S.; Murphy, S.A.; et al. Prasugrel versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2007, 357,
2001–2015. [CrossRef] [PubMed]

2. Schüpke, S.; Neumann, F.J.; Menichelli, M.; Mayer, K.; Bernlochner, I.; Wöhrle, J.; Richardt, G.; Liebetrau, C.; Witzenbichler, B.;
Antoniucci, D.; et al. Ticagrelor or Prasugrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2019, 381, 1524–1534.
[CrossRef] [PubMed]

3. Wallentin, L.; Becker, R.C.; Budaj, A.; Cannon, C.P.; Emanuelsson, H.; Held, C.; Horrow, J.; Husted, S.; James, S.; Katus, H.; et al.
Ticagrelor versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2009, 361, 1045–1057. [CrossRef]

4. Bhatt, D.L.; Stone, G.W.; Mahaffey, K.W.; Gibson, C.M.; Steg, P.G.; Hamm, C.W.; Price, M.J.; Leonardi, S.; Gallup, D.; Bramucci, E.; et al.
Effect of platelet inhibition with cangrelor during PCI on ischemic events. N. Engl. J. Med. 2013, 368, 1303–1313. [CrossRef] [PubMed]
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15. Samoš, M.; Šimonová, R.; Kovář, F.; Duraj, L.; Fedorová, J.; Galajda, P.; Staško, J.; Fedor, M.; Kubisz, P.; Mokáň, M. Clopidogrel
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Abstract: The coronavirus SARS-CoV2 disease (COVID-19) is connected with significant morbidity
and mortality (3.4%), disorders in hemostasis, including coagulopathy, activation of platelets, vascular
injury, and changes in fibrinolysis, which may be responsible for an increased risk of thromboem-
bolism. Many studies demonstrated relatively high rates of venous and arterial thrombosis related to
COVID-19. The incidence of arterial thrombosis in severe/critically ill intensive care unit–admitted
COVID-19 patients appears to be around 1%. There are several ways for the activation of platelets
and coagulation that may lead to the formation of thrombi, so it is challenging to make a decision
about optimal antithrombotic strategy in patients with COVID-19. This article reviews the current
knowledge about the role of antiplatelet therapy in patients with COVID-19.

Keywords: antiplatelet therapy; aspirin; arterial thrombosis; COVID-19

1. Introduction

The coronavirus SARS-CoV2 disease (COVID-19) is known to be associated with
significant morbidity and mortality. Globally, there are approximately 616 million COVID-
19 cases reported to date, with a mortality of 3.4%. Studies have highlighted an astonishing
rate of venous thromboembolism (VTE) and pulmonary embolism (PE) in patients with
a severe form of COVID-19 reaching 42% and 17%, respectively [1]. However, arterial
thrombotic events have also been described at various sites, such as coronary arteries,
cerebral arteries, and peripheral arteries [2,3]. A pharmacologic thromboprophylaxis is
recommended in all hospitalized patients with COVID-19 unless the risk of bleeding on
prophylactic anticoagulation is higher than the risk of thrombosis. In non-hospitalized
patients with COVID-19, pharmacological prevention of VTE is not recommended, unless
the patient has other indications for the therapy or participates in a clinical trial [4,5].
Nevertheless, the incidence of arterial thrombosis (AT) in severe/critically ill COVID-
19 patients admitted to intensive care units (ICU) across the five cohort studies was 4.4%
(95% confidence interval [CI] 2.8–6.4) [6]. Thus, this raises a question about the need for
antiplatelet therapy (APT) in these patients. In this article, we review the current knowledge
about the use of APT and its efficacy and safety in COVID-19 patients.

2. COVID-19 and Arterial Thrombosis

The clinical manifestations of COVID-19 disease are variable, and the risk of AT seems
to be dependent on the severity of the disease [7,8].

2.1. COVID-19 and the Incidence of Arterial Thrombosis

The incidence of VTE in COVID-19 patients ranged from 1.7 to 16.5% in 35 obser-
vational studies reported worldwide [9]. In a multicenter, cohort, retrospective database
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analysis of COVID-19 patients (with 3531 patients), the reported incidence of VTE was
6.68% [10]. However, reports describing the incidence of AT are inconsistent [11,12]. In
a retrospective analysis of the RECOVER database, which enrolled 26,974 patients, the
incidence of AT was 0.13% in COVID-19-positive patients. These patients experienced a
greater proportion of AT in peripheral arteries [13]. In a retrospective U.S. cohort study, a
comparison between a hospital stay due to COVID-19 and a hospital stay due to influenza
showed a higher risk for venous, but not arterial, thrombotic events in the former [14]. On
the other hand, in a recently published study analyzing 909,473 COVID-19 cases, AT ranged
from 0.1% to 0.8% and increased to 3.1% among those who needed in-hospital admission.
The occurrence of VTE and AT in patients with COVID-19 carried an increased risk of
death (adjusted hazard ratios [HR] for VTE 4.42 [3.07–6.36] for those not hospitalized and
1.63 [1.39–1.90] for those hospitalized; and adjusted HR for AT 3.16 [2.65–3.75] and 1.93
[1.57–2.37], respectively) [15]. In summary, based on the latest available data, the incidence
of AT in patients with COVID-19 is thought to be around 1% [13–15].

2.2. Pathophysiology of Arterial Thrombosis in COVID-19 Patients

COVID-19 is known to be associated with several abnormalities in hemostasis, in-
cluding coagulopathy, activation of platelets, vessel injury, and alterations in fibrinolysis,
which may be responsible for thrombosis related to this disease [1,16]. Such pathophys-
iological changes may cause AT or VTE, especially in patients with a severe course of
the disease. These events occur more frequently in the lung, where both macro- and
microthrombi have been reported [17]. In a post-mortem study, fibrin- and platelet-rich
thrombi in pulmonary arterioles were reported together with congestion in capillaries and
alveolar bleeding [18,19]. Subsequently, there is a greater chance of platelet aggregation
and activation of the coagulation system due to COVID-19-related endothelial dysfunc-
tion. Furthermore, COVID-19 is related to platelet activation which has been repeatedly
described in patients suffering from this disease [20–22]. Yatim et al. [20] reported that
elevated soluble P-selectin (a marker of platelet activation) was associated with disease
severity and in-hospital mortality and predicted the need for intubation and mechanical
ventilatory support. Another observational, prospective study performed by Jakobs et al.
on a sample of hospitalized patients with COVID-19 showed that adenosine diphosphate-
(ADP), thrombin receptor activator peptide 6- (TRAP), and arachidonic acid- (AA) induced
platelet reactivity was significantly higher in those with COVID-19 [22]. In addition, there
is a dysregulation of the renin-angiotensin system due to SARS-CoV-2-induced consump-
tion of the angiotensin-converting enzyme 2 (ACE-2) resulting in an intensive immune
response that might lead to further endothelial damage [23], and aggravate the risk of AT
development. There are several pathways of platelet-coagulation system activation with
subsequent thrombus formation; therefore, it is challenging to make an optimal decision
regarding the antithrombotic strategy in COVID-19 patients.

Additionally, the pro-thrombotic state in COVID-19 patients has been linked to the
increased formation of neutrophil extracellular traps (NETs) [24]. Although the exact
mechanisms and signaling pathways involved in neurophil/platelet interaction which
leads to increased NETs formation are not fully understood, it is known that platelets can
activate neutrophils to form NETs and that NETs themselves can be detected in thrombi,
which points to a possible interaction between inflammatory cells (neutrophils), platelets,
and thrombosis [25]. This interaction had also been described in COVID-19-related arte-
rial thrombosis [26]. Interestingly, Petito et al. [27] observed in their prospective study
on COVID-19-related thrombosis that NETs, but not platelet activation, correlated with
disease activity and predicted thrombosis. However, it is not currently known whether
the formation of NETs can be modified (reduced) by the administration of antiplatelet (or
anticoagulant) therapy as there is no study dealing with this issue.

255



J. Clin. Med. 2023, 12, 2038

3. COVID-19 and the Response to Aspirin

Aspirin (Acetylsalicylic acid) is one of the most commonly used drugs worldwide [28]
for its anti-platelet, analgesic, anti-inflammatory, and anti-pyretic effect. Aspirin exerts
its major activity by inhibiting the cyclooxygenase enzyme (COX), which exists in two
forms: COX-1 and COX-2 [29]. As a result, it inhibits the conversion of arachidonic acid
into prostaglandins and thromboxane. Its activity expands to several other target structures
leading to a number of anti-inflammatory and anti-thrombotic effects [28,29].

Endothelial inflammation and the exposure of von-Willebrand factor to sub-endothelial
collagen in COVID-19 patients, in turn, precipitate thrombus formation manifesting as AT
or VT [30].

A previous study suggested that aspirin could, in theory, offer protection against
the severe form of COVID-19 infection [30]. This theory was examined in a retrospective
study, which included 35,370 patients with and also without active aspirin prescriptions
prior to becoming infected with SARS-CoV-2. Aspirin significantly reduced the risk of
mortality in this study by 32%. After propensity score matching and confounding covariate
adjustments, mortality decreased from 6.3 to 2.5% at 14 days and from 10.5 to 4.3% at 30 days
in the propensity-matched cohorts [31]. Confounding covariate adjustments included age,
gender, comorbidities, and the Care Assessment Needs [CAN] 1-year mortality score.
In the RECOVERY trial [32], 14,892 patients were eligible for randomization to aspirin
(7351 patients) or usual care alone (7541 patients). In this trial, 150 mg of aspirin did not
reduce 28-day mortality, and among patients who were not receiving invasive mechanical
ventilation at randomization, aspirin therapy did not reduce the probability of progression
to the composite outcome of invasive mechanical ventilation or death. Aspirin therapy
was associated with an increase in the rate of being discharged alive within 28 days, but
the magnitude of the effect was small (1% absolute difference). Afterwards, Chow et al.
published the results of a retrospective cohort study assessing COVID-19 patients, who
received aspirin within the period of one week before admission involving the first day
of hospital stay as well. After adjustment to sex, ethnicity, age, body mass index (BMI),
comorbidities, and beta-blocker use, patients taking aspirin showed a reduced risk of
intensive care unit (ICU) admission, mechanical ventilation, and in-hospital mortality [33].
Furthermore, a study carried out by Meizlish et al. analyzed the efficacy of aspirin in
patients with SARS-CoV-2 infection. In this study, using multivariate analysis, patients
taking aspirin had a lower cumulative incidence of in-hospital death [34]. A meta-analysis
evaluating 12 retrospective studies in SARS-CoV-2 positive patients demonstrated a clear
benefit of aspirin therapy in preventing a fatal course of COVID-19 disease [35].

Despite the fact that many studies have demonstrated the benefit of aspirin in SARS-
CoV-2 patients, there is also a certain degree of evidence in the literature arguing against
its use. In a recently released single-center, open-label, randomized controlled trial,
900 COVID-19 patients (with positive PCR), who needed in-hospital treatment were ran-
domized to receive either atorvastatin 40 mg, aspirin 75 mg, or both (N = 225) added
to standard care for 10 days or until discharge, whichever came first, or only standard
therapy (N = 226). The primary endpoint was clinical deterioration to the level ≥ 6 of the
WHO Ordinal Scale for Clinical Improvement. There was no difference in the primary
endpoint across the study groups (p = 0.463); hence, aspirin treatment in this study did not
prevent clinical deterioration [36]. Another randomized, double-blind, placebo-controlled
phase two clinical trial in adult patients with adult respiratory distress syndrome assigned
patients randomly at a 1:1 ratio to aspirin (75 mg) or placebo, for a maximum of 14 days.
The primary endpoint was defined as the value of the oxygenation index (OI) on day seven.
In this study, no significant difference in day 7 OI was found (aspirin group: 54.4 ± 26.8;
vs. placebo group: 42.4 ± 25; mean difference, 12.0; 95% CI, -6.1 to 30.1; p = 0.19) [37].
Finally, in a meta-analysis of 34 studies, including randomized controlled trials (3 trials),
prospective cohort studies (4 studies), or retrospective studies (27 studies) on associations
between aspirin or other antiplatelet therapy administration and all-cause mortality in
COVID-19 patients performed by Su et al. [38], aspirin showed no significant effect on
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all-cause mortality in randomized controlled trials, decreased all-cause mortality by 15% in
prospective studies, and reduced all-cause mortality by 20% in retrospective studies.

In summary, the anti-platelet, anti-inflammatory, anti-pyretic, and analgesic effects of
aspirin seem to be promising in COVID-19 patients; however, the results of available studies
are still controversial (Table 1). More studies are needed to better define recommendations
for aspirin treatment in COVID-19 patients.

Table 1. Aspirin therapy in patients with COVID-19 [31–38].

Author Study Design
ICU
Care

Number
of Patients

Conclusion

Osborne T.F et al., 2021
[31] Retrospective, cohort Not reported 32,836

Aspirin was strongly associated
with decreased mortality rates for

Veterans with COVID-19.

RECOVERY
Collaborative Group

2022, [32]

Randomised,
open-label, platform

trial

Not reported
(non-invasive or

invasive respiratory
support in 33% of

patients)

14,892

Aspirin did not reduce 28-day
mortality, and in patients who

were not on invasive ventilation at
randomisation, aspirin did not
reduce the probability of the

composite outcome of mechanical
ventilation or death

Chow J.H. et al. 2022,
[33] Observational, cohort

No (patients with
moderate disease
severity included)

112,269
Early aspirin use was associated

with lower odds of 28-day
in-hospital mortality.

Meizlish M.L. et al.,
2021 [34] Retrospective study Not reported 2785

Aspirin therapy was associated
with a lower incidence of

in-hospital death

Kow C.S.
et al., 2021 [35]

Meta-analysis of
retrospective studies Not reported 14,377

Significantly reduced risk of a fatal
course of COVID-19 with the use

of aspirin in patients with
COVID-19.

Ghati N.
et al., 2022 [36]

Randomized,
open-label, controlled Not reported 900

Aspirin treatment among patients
admitted with mild to moderate

COVID-19 infection did not
prevent clinical deterioration

Toner P.
et al., 2022 [37]

Randomized,
placebo-controlled Yes 49

Aspirin did not improve oxygen
index or other physiological

outcomes.

Su W.
et al., 2022

[38]

Meta-analysis of
randomized controlled,

prospective cohort,
and retrospective

studies

Not reported 233,796

Aspirin reduced all-cause
mortality in prospective and

retrospective studies; no impact in
randomized controlled studies

4. COVID-19 and the Response on P2Y12 ADP Receptor Blockers

As previously mentioned, the increased risk of AT and VT observed during moderate-
to-severe COVID-19 disease is associated with the increased morbidity and mortality of
these patients [8,9]. In addition, patients with COVID-19 were demonstrated to require
lower amounts of thrombin for the aggregation of platelets compared to healthy con-
trols [39,40]. Furthermore, as mentioned, there is a study demonstrating ADP-, TRAP-,
and AA-induced platelet hyper-reactivity in COVID-19 [22]. This (ADP-induced) platelet
hyperreactivity could be, in theory, affected by treatment with P2Y12 ADP receptor blockers
(ADPRB). However, there is limited information about the efficacy of P2Y12 ADPRB in
patients with COVID-19 (Table 2). A small case-control study was performed enrolling
five patients with severe respiratory failure as a result of SARS-CoV-2 infection. These
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patients required helmet continuous positive airway pressure (CPAP) and received a dose
of 25 μg/kg/body weight of tirofiban as bolus infusion, followed by a continuous infusion
of 0.15 μg/kg/body weight per minute for 48 h. Prior to the tirofiban infusion, patients
received 250 mg of aspirin and 300 mg of clopidogrel. Both antiplatelet drugs continued
at a dose of 75 mg daily for 30 days. All controls received a prophylactic or therapeutic
dose of heparin, according to local standard operating procedures. Patients consistently
experienced a mean (SD) reduction in A-a O2 gradient of −32.6 mmHg (61.9, p = 0.154),
−52.4 mmHg (59.4, p = 0.016), and −151.1 mmHg (56.6, p = 0.011; p = 0.047 vs. controls)
at 24, 48 h, and 7 days after treatment [41]. This study included a very limited number of
patients (only five patients were enrolled), and this should definitely be taken into consid-
eration when interpreting these results. An open-label, bayesian, adaptive randomized
clinical trial was designed to evaluate the benefits and risks of adding a P2Y12 ADPRB
(ticagrelor/clopidogrel) to anticoagulant treatment among non-critically ill patients hos-
pitalized for COVID-19. In this trial, patients were randomized to a therapeutic dose of
heparin and a P2Y12 ADPRB (N = 293 [ticagrelor = 63.2%/clopidogrel = 36.8%]) or a thera-
peutic dose of heparin only (usual care, N = 269) in a 1:1 ratio for 14 days or until hospital
discharge. The composite primary outcome was organ support-free days evaluated on an
ordinal scale that combined in-hospital death and the primary safety outcome was a major
bleeding event within the first 28 days. The median number of organ support-free days
was 21 days (interquartile range [IQR], 20–21 days) among patients in the P2Y12 ADPRB
group and 21 days (IQR, 21–21 days) in the standard treatment group (adjusted OR, 0.83
[95% credible interval (CrI), 0.55–1.25]), and a major bleeding event occurred in six patients
(2.0%) in the P2Y12 ADPRB group and in two patients (0.7%) in the control group; so no
benefit of P2Y12 ADPRB was found in a group of non-critically ill COVID-19 patients with
a higher risk of bleeding [42]. Likewise, in the REMAP-CAP trial (Randomized, Embedded,
Multifactorial Adaptive Platform Trial), 1557 critically ill adult COVID-19 patients were
enrolled and randomized to receive either open-label aspirin (N = 565), a P2Y12 ADPRB (N
= 455), or no antiplatelet therapy (control group; N = 529). The median for organ support-
free days was 7 (IQR, −1 to 16) in both antiplatelet and control groups (median-adjusted
OR, 1.02 [95% CrI, 0.86–1.23]; 95.7% posterior probability of futility) and among survivors,
the median for organ support-free days was 14 in both P2Y12 ADPRB group and control
group [43]. Thus, no benefit of the addition of P2Y12 ADPRB (clopidogrel or ticagrelor)
was found in non-critically ill and critically ill SARS-CoV-2 patients. Furthermore, in the
COVD-PACT (Prevention of Arteriovenous Thrombotic Events in Critically-ill COVID-
19 Patients Trial) trial [44], a multi-center randomized trial, 290 patients who required
intensive care unit level of care for COVID-19 were randomly assigned to clopidogrel
(300 mg orally once on the day of randomization, followed by 75 mg orally once daily on
subsequent days of in-hospital stay) or no antiplatelet therapy in addition to the standard
or full-dose anticoagulation. The primary efficacy end-point of the study was a composite
of venous and arterial thrombosis and the primary safety end-point was a composite of
fatal or life-threatening bleeding. In this randomized trial, there were no differences in
the primary efficacy or safety end-points with clopidogrel versus no antiplatelet therapy.
On the other hand, in a recently published international multicenter prospective registry,
COVID-19 patients were treated with aspirin (oral or venous), clopidogrel, ticlopidine,
prasugrel, and ticagrelor, either with single or dual antiplatelet therapy and were compared
with patients without antiplatelet therapy. Patients who received antiplatelet therapy had a
shorter duration of mechanical ventilation (8 ± 5 days vs. 11 ± 7 days, p = 0.01); and lower
mortality (log-rank p < 0.01, RR 0.79, 95% CI 0.70 to 0.94) compared to patients who did
not receive antiplatelet agents [45]. There are no available data about the use of cangrelor
in COVID-19 patients. In summary, a limited number of published studies on the role
of P2Y12 ADPRB in SARS-CoV-2 infection have shown controversial results. Therefore,
further studies will be needed in future.
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Table 2. P2Y12 ADPRB therapy in patients with COVID-19 [41–45].

Author Study Design
ICU
Care

Number
of Patients

Conclusion

Veicca M. et al., 2020
[41] Prospective, case series Yes 5

Improvement in blood oxygenation
with combined antiplatelet therapy

(including P2Y12 ADPRB)

Berger J.S. et al., 2022
[42]

Open-label, bayesian,
adaptive randomized

clinical trial
No 562

P2Y12 ADPRB therapy did not result in
an increased odds of improvement in

organ support–free days during
hospitalization

Bradbury C.A. et al.,
2022 [43]

Prospective, adaptive
platform trial Yes 1824

P2Y12 ADPRB therapy did not result in
an increased odds of improvement in

organ support–free days during
hospitalization

Bohula E. A. et al., 2022
[44]

Open-label,
randomized, controlled

trial
Yes 292 No effect of P2Y12 ADPRB on

thrombotic complications

Santoro F. et al., 2022
[45]

Multicentre
international

prospective registry

No
(only 9% of

enrolled patients
were admitted to

ICU)

7824

Antiplatelet therapy (including
P2Y12 ADPRB) was associated with

lower mortality and shorter duration of
mechanical ventilation

5. COVID-19 and the Response to Glycoprotein (GP) IIb/IIIa Inhibitors

Glycoprotein (GP) IIb/IIIa inhibitors (GPIIb/IIIaI) are potent, rapid, and selective
blockers of platelet aggregation. These agents might, in theory, facilitate the dissolution of
blood clots and prevent the formation of new clots in COVID-19 patients [46,47]. Addition-
ally, patients with COVID-19 and acute ST-segment elevation myocardial infarction (STEMI)
were shown to have higher rates of multivessel thrombosis, stent thrombosis, and higher
modified thrombus grade post-first-device implantation with consequently a higher use of
glycoprotein IIb/IIIa inhibitors and thrombus aspiration compared to COVID-19 negative
patients [46]. There is little evidence about the benefit of the use of GPIIb/IIIaI in patients
with COVID-19 (Table 3), which comes from a case describing a successful outcome of
GPIIb/IIIaI administration in a patient with a severe form of COVID-19 viral pneumonia
and non-ST-elevation myocardial infarction (NSTEMI) [47]; and from the above-mentioned
study including five patients with a laboratory-confirmed SARS-CoV-2 infection, severe
respiratory failure, who received tirofiban infusion (together with dual antiplatelet therapy)
and who consistently experienced a reduction in blood gas oxygen gradient [41]. Although
several cases showed a possible benefit of GPIIb/IIIaI in patients with COVID-19, right
now there is no study examining the specificity of GPIIb/IIIaI use in COVID-19 versus
non-COVID-19 cardiac patients. Furthermore, to date, there is no prospective, random-
ized trial to confirm this benefit, and further studies will be needed to adopt any final
recommendations.

Table 3. GPIIb/IIIaI therapy in patients with COVID-19.

Author Study Design
ICU
Care

Number
of Patients

Conclusion

Veicca M. et al., 2020
[41] Prospective, case series Yes 5

Improvement in blood oxygenation with
combined antiplatelet therapy (including

GPIIb/IIIaI)

Merrill P.J. and
Bradburne R.M., 2021

[47]
Case report Yes 1 Successful use of GPIIb/IIIaI for NSTEMI
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6. The Effect of Time of Antiplatelet Agent Admission on COVID-19-Related
Outcomes

Another possible question is whether there is a difference between patients already on
antiplatelet therapy before admission and those randomly assigned to antiplatelet drugs or
placebo on top of anticoagulation after admission.

Looking at the studies in which antiplatelet therapy was started at the time of patient
admission (patients who used antiplatelet therapy prior to admission were
excluded) [32,34,36,37,43,44], only a single observational study performed by Meizlish
et al. [34] showed a reduced risk of in-hospital death in patients receiving aspirin. In the
rest of the studies, no overall benefit of antiplatelet therapy (either with aspirin or with a
P2Y12 ADPRB) was shown.

In contrast, in studies which included patients with pre-event antiplatelet
therapy [31,35,45], antiplatelet therapy reduced mortality [31], the risk of a fatal course of
COVID-19 [35] and the risk of mortality or the duration of mechanical ventilation [45]. This
observation could suggest that previous antiplatelet therapy could be more beneficial than
starting the therapy after the estimation of the diagnosis of COVID-19, or that pre-existing
antiplatelet therapy should not be stopped after the diagnosis of COVID-19. However,
due to different study designs, it is difficult to compare their results, and these differences
should be interpreted with caution until a study directly comparing pre-event antiplatelet
therapy with an on-admission one is performed and published.

Summarizing, although the results of trials published so far indicate that antiplatelet
agents might protect against the development of AT complications of severe COVID-
19 disease, current recommendations [4,5] state that in non-hospitalized patients with
symptomatic COVID-19, the initiation of antiplatelet therapy is not effective (does not
reduce risk of hospitalization, arterial or venous thrombosis, or mortality) [48]. Among
non-critically ill patients hospitalized for COVID-19, there is a strong recommendation
against the addition of an antiplatelet agent. Adding an antiplatelet agent to prophylactic
anticoagulation might be considered in selected critically ill patients (although the selection
of patients is not well established). Nevertheless, only randomized studies with a minimum
sample size of 100 patients and observational studies with a minimum sample size of
400 patients were included in the preparation of these recommendations [5]. As repeatedly
discussed within the article, the majority of studies on antiplatelet agents had limited
patient samples and therefore were not included in current recommendations. In addition,
there is a report showing that the addition of an antiplatelet agent (aspirin) might be
beneficial in frail cardiovascular patients, as was shown, for example, in the HOPE COVID-
19 registry [49]. Going further, right now there is no satisfactory explanation for the
differences between the results observed in the randomized and non-randomized clinical
studies. One should consider the usual disadvantages of non-randomized and retrospective
studies, such as selection bias or missing data; however, non-randomized studies might
better copy the settings of real-world clinical practice and so far, available randomized trials
also have their limitations (mostly relatively low sample sizes, exclusion criteria limiting
the ability to enroll the patients in the highest risk, etc.). Therefore, the role of antiplatelet
therapy in patients with COVID-19 disease should be probably re-questioned in future
treatment recommendations.

7. Conclusions

The results of trials published so far indicate that antiplatelet agents (especially if ad-
ministered prior to the development of the disease) might protect against AT complications
of COVID-19; however, this evidence comes mostly from non-randomized studies and is
not in line with current recommendations. Randomized controlled trials (with sufficient
patient samples) are highly required to investigate whether pre-existing or newly added
antiplatelet therapy might be beneficial in SARS-CoV-2 infection.
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Abstract: Introduction: Apart from the well-known fact that hyperthyroidism induces multiple
prothrombotic disorders, there is no consensus in clinical practice as to the impact of hyperthyroidism
on the risk of thrombosis. The aim of this study was to examine the various hemostatic and im-
munologic parameters in patients with hyperthyroidism. Methods: Our study consists of a total
of 200 patients comprised of 64 hyperthyroid patients, 68 hypothyroid patients, and 68 euthyroid
controls. Patient thyroid status was determined with standard tests. Detailed hemostatic parameters
and cardiolipin antibodies of each patient were determined. Results: The values of factor VIII
(FVIII), the Von Willebrand factor (vWF), fibrinogen, plasminogen activator inhibitor-1 (PAI-1), and
anticardiolipin antibodies of the IgM class were significantly higher in the hyperthyroid patients than
in the hypothyroid patients and euthyroid controls. The rate of thromboembolic manifestations was
much higher in hyperthyroid patients (6.25%) than in hypo-thyroid patients (2.9%) and euthyroid
controls (1.4%). Among hyperthyroid patients with an FVIII value of ≥1.50 U/mL, thrombosis was
recorded in 8.3%, while in hyperthyroid patients with FVIII value ≤ 1.50 U/mL the occurrence of
thrombosis was not recorded. The incidence of atrial fibrillation (AF) was significantly higher (8.3%)
in the hyperthyroid patients compared to the hypothyroid patients (1.5%) and euthyroid controls
(0%). Conclusions: High levels of FVIII, vWF, fibrinogen, PAI-1, and anticardiolipin antibodies along
with other hemostatic factors contribute to the presence of a hypercoaguable state in patients with
hyperthyroidism. The risk of occurrence of thrombotic complications is especially pronounced in
patients with a level of FVIII exceeding 150% and positive anticardiolipin antibodies of the IgM class.
Patients with AF are at particularly high risk of thrombotic complications due to a hyperthyroid
prothrombotic milieu.

Keywords: hyperthyroidism; prothrombotic; risk of thrombosis

1. Introduction

The significance of the data on hyperthyroidism as a probable prothrombotic condition
has not been sufficiently implemented in clinical practice, nor are large studies consistent
in asserting the association between elevated thyroid hormone values and thrombotic
events [1,2]. The results of a new meta-analysis and the findings of other authors indicate
that the prothrombotic milieu induced by hyperthyroidism contributes to the increased risk
of venous thromboembolism (OR 1.322, 95% CI: 1.278–1.368) [1]. It is believed that the emer-
gence of a prothrombotic (hypercoagulable and hypofibrinolytic) state in hyperthyroidism
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is significantly contributed to by an elevated level of factor VIII (FVIII), von Willebrand
factor (vWF), fibrinogen, and plasminogen activator inhibitor-1 (PAI-1), the level of which
increases gradually with the level of thyroid hormones [2–5]. Atrial fibrillation (AF)—as a
special risk factor for cerebral and peripheral thromboembolism—is registered in 5–15%
of patients with hyperthyroidism. Besides the unquestionable position that AF itself is a
risk for thromboembolism even in non-thyroid patients, the existence of a prothrombotic
state in hyperthyroidism and its correlation with thromboembolic complications is not
mentioned in the most important recommendations or marked as controversial (American
College of Cardiology/American Heart Association 2014 (ACC/AHA 2014), European
Society of Cardiology 2020 (ESC 2020)).

The most important and most frequently applied risk scores for the occurrence of
cerebral infarction (stroke) and peripheral thromboembolism (CHADS2-VASc, GARFIELD-
AF, ATRIA, ABC-stroke) do not include the existence of hyperthyroidism as a risk factor
for the occurrence of thromboembolic events [6–9].

Considering hemostatic prothrombotic factors in patients with thyroid dysfunction,
some authors emphasize the possibility of the influence of elevated levels of anticardiolipin
antibodies (aCLA) on the occurrence of a prothrombotic state in hyperthyroid patients [10].

The aim of this study was to examine the various hemostatic and immunologic pa-
rameters in patients with hyperthyroidism and compare them with the parameters of the
patients with hypothyroidism as well as with the euthyroid controls.

2. Materials and Methods

2.1. The Studied Population

The study is prospective and included 200 participants. The study was conducted in
the University Clinical Center of Serbia, Belgrade, between March 2022 and April 2023.

The diagnosis of hyperthyroidism was established in those patients with decreased
TSH levels below the reference range and elevated levels of fT4 [11]. The diagnosis of overt
(clinically manifested) hypothyroidism was established in those with elevated TSH levels
above the reference range and decreased levels of fT4.

A standard clinical and electrocardiographic examination was performed on all subjects.
The exclusion criteria included the presence of infection, malignancy, moderate to

severe renal insufficiency, other significant comorbidities, oral contraceptive therapy, and
other medications that could potentially affect the analyses.

2.2. Laboratory Analysis

Laboratory analyses were conducted in the morning before meals. Tests for detecting
thrombophilia, including antithrombin (AT), protein C (PC), protein S (PS), and lupus
anticoagulants (LA), were performed outside the acute thrombotic phase of the disease.

The value of T4 was determined using the radioimmunoassay (RIA) method. Detection
of thyroid hormone levels (fT4, TSH) was performed on a gamma counter from LKB 1272
CLINIGAMA. CIS tests were used. The reference range for T4 is 55–160 nmol/L. The fT4
value was determined using the CIS RIA method, with reference values of 7–18 ng/L. The
TSH value was determined using the immunoradiometric (IRMA) method, with reference
values of 0.15–5.9 mU/L.

The assessment of hemostasis was conducted using standard laboratory tests that in-
cluded the analysis of prothrombin time (PT), activated partial thromboplastin time (APTT),
PC, PS, antithrombin, fibrinogen, and PAI-1. These analyses were performed on a “Dade
Behring BCS XP System; Siemens Healthtineers; 91301 Forchheim; Germany” apparatus.

For the determination of coagulation activity of FVIII and vWF activity, a coagulo-
metric method was employed using IL tests on an “Instrumentation Laboratory ACL 6000;
Beckman; Brea-California; USA” apparatus.

To detect the presence of lupus anticoagulants, the following tests were used:

1. Activated partial thromboplastin time using IL cephaloplastin reagent, with reference
values of 24–36 s. The test was performed on the ACL 6000 apparatus.
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2. Dilute Russell’s Viper Venom Time (DRVVT) using IL Test LAC Screen and IL Test
LAC Confirm. The test result is calculated as the ratio of LAC Screen to LAC Confirm.
Reference value: 0.8 to 1.2; a value higher than 1.2 indicates the presence of lupus
anticoagulants [12,13].

Anticardiolipin antibodies were determined using a commercial ELISA test (Binding
Site UK) on a spectrophotometer. Reference values for the aCLA IgG class are less than
10 GPL U/mL, and for the aCLA IgM class, values are less than 10 MPL U/mL.

The semiquantitative negativity of anticardiolipin antibodies (0) is defined as a value
below the upper limit of the reference range. Semiquantitative weak positivity of anticardi-
olipin antibodies is defined as a value one to two times higher than the upper reference limit.
Semiquantitative strong positivity is defined as a value two times higher than the defined
upper limit of normal values. The same methodology was applied for the semiquantitative
description of aCLA IgG and IgM classes.

2.3. Statistical Analysis

In the first phase of data processing, a database was formed, followed by sorting,
grouping, and tabulating the results based on the examined characteristics of both the
study and control groups. Categorical variables were presented as absolute values and
percentages, and comparisons were made using the χ2 test and Fisher’s exact test for
probabilities. Continuous variables were presented as mean values with standard deviation
(SD). Continuous variables with a normal distribution were compared using the Student’s
t-test, while those without a normal distribution were compared using the Mann–Whitney
U test. To assess the significance of differences among three continuous variables, analysis
of variance (ANOVA) was used for variables with a normal distribution, and the Kruskal–
Wallis test was used for variables without a normal distribution. A p-value less than 0.05
was considered statistically significant. All statistical analyses were conducted using an
IBM SPSS Statistics V.20.0 software package.

3. Results

The prospective study included 200 participants overall. Of these, 68 were patients
with hypothyroidism, 64 patients with hyperthyroidism, and 68 healthy euthyroid partici-
pants of equivalent age.

The average age of the entire group (including hypothyroid, hyperthyroid, and eu-
thyroid individuals) was 45.17 years ± 14.86 years. The youngest patient was 16, and
the oldest was 83 years old. Although the average age was highest in the hypothyroid
group, no statistically significant difference in age was found among the examined groups
(p = 0.129), Table 1.

The mean body-mass index (BMI) in hypothyroid patients was significantly higher
than that in euthyroid participants and hyperthyroid patients. There was no statistically sig-
nificant difference in mean BMI between hyperthyroid and euthyroid participants—Table 1.

In the total study population, there were 51 males (25.5%) and 149 females (74.5%).
In each of the three groups, the female gender was more represented. The difference
in gender distribution among the examined groups was statistically highly significant
(p < 0.001)—Table 1.

The analysis of patients with hypothyroidism, hyperthyroidism, and euthyroid con-
trols in relation to the presence or absence of absolute arrhythmia, and their mutual
comparison, is shown in Table 1.

Atrial fibrillation was significantly more common in patients with hyperthyroidism
than in patients with hypothyroidism and euthyroid controls (p = 0.022). Patients with
hyperthyroidism and electrocardiographically documented AF were significantly older
(average age 62.2 ± 17.4 years) than patients with hyperthyroidism without absolute
arrhythmia (average age 41.63 ± 12.3 years) (p = 0.012).
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Table 1. Clinical characteristics and immunologic parameters of patients in relation to thyroid status.

Variable
Hyperthyroidism

n = 64
Hypothyroidism

n = 68
Euthyreosis

n = 68
p

Age, years ± SD 43.23 ± 13.77 48.09 ± 13.63 44.06 ± 14.86 0.129
BMI, kg/m2 ± SD 23.16 ± 3.74 27.21 ± 6.08 24.37 ± 3.84 >0.05

Female, % 82.8 85.3 55.9 0.000
Atrial fibrillation, % 8.3 1.5 0.0 0.022

Thrombotic events, % 6.3 2.6 1.5 0.313
aCLA IgG p.o., % 5.9 10.6 0.0 0.113
aCLA IgG p.s., % 0.0 5.3 0.0 0.113
aCLA IgG p.m., % 5.9 5.3 0.0 0.113
aLCA IgM p.o., % 37.6 5.6 0.0 0.000
aLCA IgM p.s., % 18.8 5.6 0.0 0.000
aCLA IgM p.m., % 18.8 0.0 0.0 0.000

BMI—body-mass index, aCLA—anticardiolipin antibodies, p.o.—positive overall, p.s.—positive strong,
p.m.—positive mildly.

During the follow-up, through the active phase of the disease, thrombotic manifesta-
tions occurred in the group of hyperthyroid patients with the highest frequency (6.3%) (one
with myocardial infarction, two with cerebrovascular infarction, one with pulmonary em-
bolism) compared to 2.9% of patients with hypothyroidism (two patients with myocardial
infarction) and 1.5% of euthyroid patients (one patient with myocardial infarction). De-
spite the evident differences between the groups, due to the small number of patients with
thromboses, a statistically higher frequency of thrombosis in hyperthyroid and hypothyroid
patients compared to euthyroid control subjects was not proven.

Among five patients with AF and hyperthyroidism, two had thrombotic episodes (one
had a cerebrovascular infarction, and the other had a pulmonary embolism). Three patients
with AF and hyperthyroidism did not have thrombotic manifestations. Out of 59 patients
with hyperthyroidism without AF, 2 patients had thrombotic episodes.

Semiquantitative analysis of aCLA of the IgG class found that in the group of hypothy-
roid patients, 89.5% were negative, 5.3% were weakly positive, and 5.3% were strongly
positive. In the hyperthyroid patient group, 94.1% of participants were negative, while
5.9% were weakly positive. There were no patients with strong positivity for the aCLA IgG
class in the hyperthyroid patient group (0%). In the euthyroid group, all participants were
negative for the presence of aCLA IgG (100%). Statistical analysis did not find a significant
difference in the examined groups regarding semiquantitative analysis of anticardiolipin
antibodies of the IgG class (p = 0.113).

Semiquantitative analysis of anticardiolipin antibodies of the IgM class revealed that
in the group of hypothyroid patients, 94.4% were negative, 5.6% were strongly positive,
and there were no patients with weak positivity (0%). In the hyperthyroid patient group,
62.2% were negative, 18.8% were weakly positive, and 18.8% were strongly positive. In
the euthyroid group, all participants were negative for the presence of the aCLA IgM
class. Statistical analysis found a significant difference among the examined groups in a
semiquantitative analysis of anticardiolipin antibodies of the IgM class (p = 0.000).

The values of fibrinogen and natural anticoagulants (antithrombin III, PC, PS) in
relation to thyroid status are presented in Table 2 and Figure 1. By comparing fibrinogen
values between defined groups, it was found that patients with hyperthyroidism had a
significantly higher mean fibrinogen value compared to patients with hypothyroidism and
control euthyroid subjects (p = 0.000). Additionally, it was established that patients with
hyperthyroidism more frequently had a fibrinogen value above 4.1 g/L compared to the
euthyroid participant group.

Patients with hyperthyroidism had significantly higher levels of FVIII and vWF com-
pared to those patients with hypothyroidism and euthyroid individuals. The rate of FVIII
values over 1.5 U/mL was significantly higher in patients with hyperthyroidism (79.4%)
than in patients with hypothyroidism (17.6%) and in euthyroid individuals (2.9%).

In the group of hyperthyroid patients, the mean value of PC was significantly lower com-
pared to the group of hypothyroid patients and the control euthyroid group (p = 0.000)—Table 2,
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Figure 1. The representation of PC values below the lower limit of normal (<69%) was
similar among the examined groups.

Table 2. Hemostatic parameter characteristics in relation to thyroid status.

Variable
Hyperthyroidism

n = 64
Hypothyroidism

n = 68
Euthyreosis

n = 68
p

Fibrinogen (g/L), mean ± SD 3.74 ± 0.79 3.41 ± 1.06 2.96 ± 0.74 0.000

Antithrombin III (%), mean ± SD 110.60 ± 14.50 91.65 ± 16.68 105.41 ± 10.67 0.000

FVIII (U/mL), mean ± SD 1.67 ± 0.78 0.93 ± 0.40 0.95 ± 0.24 0.000

FVIII (U/mL) ≥ 1.5 U/mL, % 79.4 17.6 2.9 0.000

vWF (%), mean ± SD 115.8 ± 20.3 81.6 ± 19.6 91.0 ± 12.8 0.000

Protein C (%), mean ± SD 104.84 ± 24.10 123.91 ± 22.90 121.30 ± 21.45 0.000

Protein S (%), mean ± SD 99.33 ± 20.88 114.52 ± 21.65 98.48 ± 26.26 0.001

Plasminogen (%), mean ± SD 97.67 ± 20.39 119.28 ± 19.28 107.23 ± 18.51 0.000

PAI-1 (U/mL), mean ± SD 5.08 ± 1.94 3.62 ± 2.13 4.81 ± 1.56 0.001

Fibrinogen > 4 g/L, % 30.4 18.3 10.6 0.022

Antithrombin > 75%, % 98.1 86.5 100.0 0.001

Protein C < 69%, % 2.0 0.0 0.0 0.326

Protein S < 65%, % 4.8 2.3 9.7 0.266

Plasminogen > 75%, % 90.4 100.0 97.0 0.068

PAI-1 > 3.5 U/mL, % 73.0 53.6 73.8 0.133

FVIII—factor VIII, vWF—Von Willebrand factor, PAI-1—plasminogen activator inhibitor-1.

Figure 1. Fibrinogen and Natural Anticoagulant Values in Relation to Thyroid Status.

A significantly lower mean value of PS was found in the group of hyperthyroid patients
and the group of euthyroid participants compared to the group with hypothyroidism
(p = 0.001)—Table 2, Figure 1. The representation of PS values below the lower limit of
normal (<65%) was similar among the examined groups.

The mean value of antithrombin III was significantly higher in the group of hyperthy-
roid patients in comparison to the euthyroid control and group of hypothyroid patients
(p = 0.001)—Table 2 and Figure 1. Furthermore, patients with hypothyroidism had an-
tithrombin III values below the lower limit of normal (<75%) significantly more frequently
than patients with hyperthyroidism and participants from the euthyroid control group.

The values of plasminogen and PAI-1 in relation to thyroid status are presented in
Table 2 and Figure 2. Although a higher percentage of patients with hyperthyroidism had
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plasminogen values below the reference limit (<75%) compared to euthyroid patients and
patients with hypothyroidism, this difference was not statistically significant. However, by
comparing the mean values of plasminogen, a significantly lower value was found in the
group of patients with hyperthyroidism compared to the value in the group of hypothyroid
patients and the value in the group of euthyroid participants (p = 0.000).

Figure 2. Fibrinolytic System Parameter Values in Relation to Thyroid Status.

The PAI-1 value above the lower limit of normal (>3.5 U/mL) did not significantly
differ among the examined groups. However, by comparing the mean values of PAI-1 in
the defined groups, a significantly higher value of this parameter was found in the group
of hyperthyroid patients compared to the mean value in the group of hypothyroid patients
(p < 0.001) and a not-significantly higher mean value compared to euthyroid participants.

4. Discussion

4.1. Changes in FVIII Values in Hyperthyroid Patients

Patients with hyperthyroidism had significantly higher levels of FVIII and vWF com-
pared to those patients with hypothyroidism and euthyroid individuals. When interpreting
the significance of the increase in FVIII values, it should be kept in mind that FVIII, together
with FV, is a key procoagulant factor capable of dramatically increasing FIXa activity and
catalyzing FX activation in a dose-dependent manner, noting that small changes in FVIII
concentration can have a critical impact [14]. Elevated levels of the mentioned coagulation
factors become normalized after appropriate thyroid-suppressive therapy [15]. Several
studies indicate that patients with hyperthyroidism in comparison to euthyroid controls
show a significant increase in the levels of fibrinogen, FVIII, FIX, and vWF [5,15].

In our study, among hyperthyroid patients with an FVIII value of ≥1.50 U/mL, throm-
bosis was recorded in 8.3%, while in hyperthyroid patients with an FVIII value ≤1.50 U/mL
the occurrence of thrombosis was not recorded. The existence of data indicating a 3–6 times
higher relative risk of venous thrombosis and the impact on the occurrence of recurrent
venous thrombosis in individuals with FVIII values above 1.5 U/mL (over 150%), as well as
the role of FVIII in the pathogenesis of atherothrombosis, highlights the significance of these
findings in inducing a prothrombotic state, atherothrombotic complications, and venous
thromboembolism in patients with hyperthyroidism [16,17]. Several authors observe a
positive correlation between the concentration of FVIII and serum T4 [18,19], while others
argue that, among all examined coagulation factors (FV, FVII, FVIII, FIX, FXI, FXII), FVIII is
the most sensitive to changes in thyroid hormone concentration and plays a crucial role in
thrombus formation during the hyperthyroid stage of the disease [19].

269



J. Clin. Med. 2024, 13, 1756

4.2. Changes in vWF Values in Hyperthyroid Patients

In our study, values of vWF were significantly higher in hyperthyroid patients than in
patients with hypothyroidism and euthyroid controls. It is considered that elevated levels
of vWF, FVIII, and fibrinogen, along with reduced fibrinolytic activity and decreased levels
of plasminogen, contribute to the presence of a hypercoagulable state and a predisposition
to thromboembolism and vascular diseases in patients with hyperthyroidis [20].

4.3. Changes in the Concentration of Fibrinogen

In our study, patients with hyperthyroidism had significantly higher levels of fib-
rinogen compared to both the hypothyroid group and the euthyroid subjects. In studies
by other authors, the level of fibrinogen, a well-known acute-phase reactant, is higher in
patients with hyperthyroidism compared to euthyroid control subjects [21].

Many studies have confirmed the connection between plasma fibrinogen concentration
and coronary heart disease, indicating that elevated fibrinogen is an independent predictor
of both initial and recurrent coronary events [22–24]. Fibrinogen is a risk factor not only
for cardiovascular diseases but also for stroke, transient ischemic attack, and mortality in
middle-aged men and men older than 65 years (with little evidence suggesting it as a risk
factor in older women) [15].

4.4. Hyperthyroidism and Dysfunction of the Fibrinolytic System

In our study, hyperthyroid patients had significantly lower levels of plasminogen than
hypothyroid patients and euthyroid subjects. Despite the well-known physiological role
of plasminogen in the fibrinolysis system and the expectation that defects in plasminogen
synthesis reduce clot lysis and contribute to a prothrombotic tendency [25], only a small
number of authors find clinical expression of thrombosis in patients with severe hypoplas-
minogenemia [25–27]. Plasminogen deficiency is considered a rare cause of thrombophilia,
and as an individual defect, it does not represent a strong thrombotic risk factor [28].

In our study, even though the mean values of PAI-1 in hyperthyroid patients were
higher than those of the euthyroid group (4.81 ± 1.56 U/mL), statistical analysis did not
reveal a significant difference between these two groups. The activity of the endogenous
fibrinolytic system depends on the balance between plasminogen activators and inhibitors,
with PAI-1 being the most significant. It is considered that elevated plasma PAI-1 con-
centrations alongside fibrinolysis suppression and findings of increased plasma levels of
FVIII, vWF, fibrinogen, t-PA, and D-dimer lead to an additional risk of the occurrence of
myocardial infarction [5,29]. Dysfunction of the fibrinolytic system may also play a role
in the pathogenesis of venous thromboembolism. Increased concentrations of PAI-1 are
observed in over 40% of patients with venous thromboembolism [30].

4.5. Anticardiolipin Antibodies and Thrombosis

Considering hemostatic prothrombotic factors in patients with thyroid dysfunction,
some authors emphasize the possibility of the influence of elevated levels of anticardiolipin
antibodies on the occurrence of a prothrombotic state in hyperthyroid patients [15]. In our
study, patients with hyperthyroidism had a significantly higher rate of positive titer of aCLA
in the IgM class compared to hypothyroid patients and euthyroid controls. Some authors
consider aCLA of the IgM class, especially when present in low titers, to be nonpathogenic,
unlike the findings of IgG or IgA class aCLA, which are persistently found at higher titers in
patients with thromboembolic diseases. However, there are studies that also link IgM aCLA
to the occurrence of thrombotic events [31]. Despite the possible explanation that elevated
levels of IgM class anticardiolipin antibodies represent an epiphenomenon reflecting the
immune background of hyperthyroidism, it is also possible that this factor may contribute to
the development of a prothrombotic tendency in patients with hyperthyroidism. Elevated
levels of anticardiolipin antibodies, whether in high or low titers, are associated with the
occurrence of myocardial infarction and cerebrovascular insult, while only high positive
titers of anticardiolipin antibodies are associated with the development of deep vein
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thrombosis [32]. In our study, among patients with hyperthyroidism there was a low rate of
positive IgG anticardiolipin antibodies, and no significant differences were found compared
to the hypothyroid patients.

4.6. Atrial Fibrillation in Patients with Hyperthyroidism

In our study, AF was significantly more common in patients with hyperthyroidism
than in patients with hypothyroidism and euthyroid controls. In a Danish registry with
over 40,000 patients with hyperthyroidism, as in our study, AF or Afl was registered in
8.3% of patients within 30 days of the hyperthyroidism diagnosis (11). In studies by other
authors, AF is recorded in 10–30% of patients with thyrotoxicosis of all age groups [33,34].
The data indicating that our patients with hyperthyroidism and electrocardiographically
registered AF were significantly (p = 0.012) older (average age 62.2 ± 17.4 years) than
patients with hyperthyroidism without AF (average age 41.63 ± 12.3 years) are consistent
with well-established facts that the incidence of AF in hyperthyroid individuals increases
with age. In certain studies, the incidence of AF in hyperthyroid patients older than 60 years
has been estimated to be between 25–45% in these individuals [33–35]. Highlighting the
data on the danger of thyrotoxic AF in older individuals should not overshadow the risk of
complications in younger patients with the same disease. Results from a study involving
3176 adults with hyperthyroidism and 25,408 euthyroid young adults (18–44 years old),
monitored over 5 years, indicate a 1.44 times higher risk of ischemic stroke among the
thyrotoxic population. Hyperthyroidism is associated with a prothrombotic state and
ischemic stroke independently of AF or flutter findings. Undocumented paroxysmal AF
may also contribute to embolic phenomena [8,34].

Various studies estimate the incidence of thrombosis in hyperthyroid states ranging
from 8% to 40%, with cerebral embolization being the most commonly registered event [8].
Findings from other authors indicate that thyrotoxic AF is associated with an increased risk
of embolization compared to non-thyrotoxic AF [33,34,36–38]. The rate of thromboembolic
episodes in patients with hyperthyroidism varies from 8.5% to 18.1% in the Hurley et al.
study [33,35]. Of the overall of thromboembolic episodes, 53% are cerebral embolism [33].
In our study group, two patients (3.1%) experienced cerebral infarctions—one hyperthyroid
patient with AF and one patient with hyperthyroidism in a sinus rhythm. Results from
certain studies indicate the association between hyperthyroid prothrombotic conditions
and ischemic stroke independently of registered atrial tachycardia, despite the possibility
that certain episodes of paroxysmal AF remain undiagnosed [8].

Although AF is a known risk factor for cardio-embolism, the presence of the hy-
percoagulability parameters in hyperthyroidism further contributes to the occurrence of
thrombotic complications [39]. In other words, the thromboembolic potential of patients
depends not only on their predisposition to thromboembolic complications with AF, but is
significantly enhanced by the endogenous prothrombotic biochemical milieu resulting from
high levels of thyroid hormones [39]. In addition to the mentioned data on cerebral and
peripheral arterial thromboembolism in patients with hyperthyroidism, certain studies also
indicate the risk of venous thromboembolism in patients with hyperthyroidism. A large
population study of 53,418 patients registers that in patients with hyperthyroidism, the risk
of pulmonary embolism is 2.31 times higher than the control group during a 5-year follow-
up after adjusting for confounding factors [40]. A meta-analysis that included 15 studies
up until October 2022 found an increased risk of venous thromboembolism (VTE) even in
patients with subclinical hyperthyroidism (OR 1.33, 95% CI: 1.29–1.38) [1].

5. Study Limitations

Our study was conducted on a relatively small number of patients, so it would be
advisable to perform the investigation on a larger sample. The presence of AF was detected
through clinical examination and routine electrocardiographic findings, so the number of
patients with AF might be higher if continuous ECG monitoring were used for detection.
Correlations of other coagulation and hemostasis parameters not investigated in this study
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might reveal additional risks of thromboembolism. The use of more sensitive techniques
for the diagnosis of ischemic stroke, such as NMR, and high-quality CT diagnostics could
further establish the association between fibrinogen levels, other coagulation factors, and
ischemic stroke or other thromboembolic events.

6. Conclusions

The results of our study indicate the presence of a prothrombotic milieu, in patients
with hyperthyroidism, that could potentially lead to an increased incidence of thrombotic
complications. The risk of thromboembolism is not only higher in older individuals but
also in younger people with hyperthyroidism. High levels of hemostatic factors can lead to
multiple clinical forms of thromboembolism, especially in the active phase of the disease.
The risk of occurrence of a thrombotic complication is especially pronounced in patients
with levels of FVIII exceeding 150%, as well as in patients with positive anticardiolipin
antibodies of the IgM class.

Given the lack of clear evidence, despite the fact that ACC/AHA from 2006 classified
hyperthyroidism as a moderate risk factor, and considering the omission of this classifi-
cation in later recommendations, due to a larger number of studies and congruent data
indicating a prothrombotic tendency induced by hyperthyroidism, it seems reasonable to
recommend starting anticoagulant therapy along with adequate thyrostatic therapy when
there are no contraindications. New evidence-based studies would be needed to clarify
this clinically important issue.

Author Contributions: Conceptualization, N.A. and D.M. (Dagan Matic); Investigation N.A., D.M.
(Dragan Matic), Z.L., B.B., D.M. (Danijela Mikovic), M.M., B.J. and L.B.; Data curation, A.U., M.M.
and Z.L.; Writing—original draft preparation, N.A. and D.M. (Dragan Matic); Writing—review and
editing, N.A., D.M. (Dragan Matic), B.B., D.M. (Danijela Mikovic) and B.J.; Visualization N.A. and
D.M. (Dragan Matic); Supervision, N.A. and D.M. (Dragan Matic); Project administration, N.A. and
D.M. (Dragan Matic). All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The ethics committee of the University Clinical Center of Serbia
approved this study. The number of the approval: 837/9-1. Date of the approval: 25 January 2024.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Wang, Y.; Ding, C.; Guo, C.; Wang, J.; Liu, S. Association between thyroid dysfunction and venous thromboembolism: A
systematic review and meta-analysis. Medicine 2023, 102, e33301. [CrossRef]

2. Elbers, L.P.B.; Fliers, E.; Cannegieter, S.C. The influence of thyroid function on the coagulation system and its clinical consequences.
J. Thromb. Haemost. 2018, 16, 634–645. [CrossRef] [PubMed]

3. Stuijver, D.J.; van Zaane, B.; Romualdi, E.; Brandjes, D.P.; Gerdes, V.E.; Squizzato, A. The effect of hyperthyroidism on proco-
agulant, anticoagulant and fibrinolytic factors: A systematic review and meta-analysis. Thromb. Haemost. 2012, 108, 1077–1088.
[PubMed]

4. Debeij, J.; van Zaane, B.; Dekkers, O.M.; Doggen, C.J.; Smit, J.W.; van Zanten, A.P.; Brandjes, D.P.; Büller, H.R.; Gerdes, V.E.;
Rosendaal, F.R.; et al. High levels of procoagulant factors mediate the association between free thyroxine and the risk of venous
thrombosis: The MEGA study. J. Thromb. Haemost. 2014, 12, 839–846. [CrossRef]

5. Davis, P.J.; Mousa, S.A.; Schechter, G.P. New Interfaces of Thyroid Hormone Actions with Blood Coagulation and Thrombosis.
Clin. Appl. Thromb. Hemost. 2018, 24, 1014–1019. [CrossRef] [PubMed]

6. Fuster, V.; Rydén, L.E.; Cannom, D.S.; Crijns, H.J.; Curtis, A.B.; Ellenbogen, K.A.; Halperin, J.L.; Le Heuzey, J.Y.; Kay, G.N.; Lowe,
J.E.; et al. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: Full Text: A report of the
American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of
Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 guidelines for the management of patients

272



J. Clin. Med. 2024, 13, 1756

with atrial fibrillation) developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society.
Europace 2006, 8, 651–745. [PubMed]

7. Klein, I.; Danzi, S. Thyroid disease and the heart. Circulation 2007, 116, 725–735. [CrossRef]
8. Traube, E.; Coplan, N.L. Embolic risk in atrial fibrillation that arises from hyperthyroidism: Review of the medical literature. Tex.

Heart Inst. J. 2011, 38, 225–228. [PubMed]
9. Petersen, P. Thromboembolic complications in atrial fibrillation. Stroke 1990, 21, 4–13. [CrossRef]
10. Versini, M. Thyroid Autoimmunity and Antiphospholipid Syndrome: Not Such a Trivial Association. Front. Endocrinol. 2017,

8, 175. [CrossRef]
11. Bithell, T.C. The diagnostic approach to the bleeding disorders. In Wintrobe’s Clinical Hematology; Lee R.G. Lea & Febiger:

Philadelphia, PA, USA; London, UK, 1993; pp. 1301–1328.
12. Bithell, T.C. Blood coagulation; fibrinolysis. In Wintrobe’s Clinical Hematology; Lee R.G. Lea & Febiger: Philadelphia, PA, USA;

London, UK, 1993; pp. 592–615.
13. Kellett, H.A.; Sawars, J.S.; Boulton, E.F.; Cholerton, S.; Park, B.K.; Toft, A.D. Problems of anticoagulation with warfarin in

hyperthyroidism. Q. J. Med. 1986, 225, 43–51.
14. Horne, K.M.; Singh, K.K.; Rosenfeld, G.K.; Wesley, R.; Skarulis, C.M.; Merryman, K.P.; Cullinane, A.; Costelo, R.; Patterson, A.;

Eggerman, T.; et al. Is thyroid hormone suppression therapy prothrombotic? J. Clin. Endocrinol. Metab. 2004, 89, 4469–4473.
[CrossRef]

15. Tracy, P.R.; Arnold, M.A.; Ettiinger, W.; Fried, L.; Meilahn, E.; Savage, P. The relationship of fibrinogen and factor VII and VIII to
incident cardiovascular disease and death in the elderly: Result from the cardiovascular health study. Arterioscler. Thromb. Vasc.
Biol. 1999, 19, 1776–1783. [CrossRef]

16. Klein, I.; Levey, G.S. Unusual Manifestation of hypothyroidism. Arch. Intern. Med. 1984, 144, 123–128. [CrossRef]
17. Li, Y.; Chen, H.; Tan, J.; Wang, X.; Liang, H.; Sun, H. Impaired release of tissue plasminogen activator from the endothelium in

Graves’ disease-indicator of endothelial dysfunction and reduced fibrinolytic capacity. Eur. J. Clin. Investig. 1998, 28, 1050–1054.
[CrossRef]

18. Homoncik, M.; Alois, G.; Bernd, J.; Heinrich, V. Altered platelet plug formation in hyperthyroidism and hypothyroidism. J. Clin.
Endocrinol. Metab. 2007, 92, 3006–3012. [CrossRef]

19. Thögersen, M.A.; Jansson, J.H.; Boman, K.; Nilsson, K.T.; Weinehall, L.; Huhtasaari, F.; Hallmans, G. High plasminogen activator
inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women.
Evidence for the fibrinolytic system as an independent primary risk factor. Circulation 1998, 98, 2241–2247. [CrossRef]

20. Thompson, S.G.; Kienast, J.; Pyke, S.D.; Haverkate, F.; van den Loo, W.C. Hemostatic factors and the risk of myocardial infarction
or sudden death in patients with angina pectoris. N. Engl. J. Med. 1995, 332, 635–641. [CrossRef] [PubMed]

21. Desforges, J.F. Hematologic manifestations of endocrine disorders. In Hematology; Basic Principles and Practice, 2nd ed.; Hoffman,
A., Benz, E.J., Shattil, S.J., Furie, B., Cohen, J.H., Silberstein, L.E., Eds.; Churchill Livingstone: New York, NY, USA, 1995;
pp. 2155–2156.

22. Ma, J.; Hannekens, H.C.; Ridkrer, P.M.; Stamfer, J.M. A prospective study of fibrinogen and risk of myocardial infarction in the
physicians Health study. J. Am. Coll. Cardiol. 1999, 33, 1347–1352. [CrossRef] [PubMed]

23. Dörr, M.; Wolf, B.; Robinson, M.D.; John, U.; Lüdeman, J.; Meg, W.; Felix, B.S.; Wölzke, H. The association of thyroid function
with cardiac mass and left ventricular hypertrophy. J. Clin. Endocrinol. Metab. 2005, 90, 673–677. [CrossRef] [PubMed]

24. Triplett, D.A. Protein S deficiency. In Disorders of Haemostasis and Thrombosis; Goodnight, S.H., Hathaway, W.E., Eds.; The
McGraw-Hill Companies: New York, NY, USA, 2001; pp. 374–380.

25. Squizzato, A.; Romualdi, E.; Büller, H.R.; Gerdes, V.E. Clinical review: Thyroid dysfunction and effects on coagulation and
fibrinolysis: A systematic review. J. Clin. Endocrinol. Metab. 2007, 92, 2415–2420. [CrossRef]

26. Bovill, E.G. Fibrinolytic defects and thrombosis. In Disorders of Haemostasis and Thrombosis; Goodnight, S.H., Hathaway, W.E., Eds.;
The McGraw-Hill Companies: New York, NY, USA, 2001; pp. 389–396.

27. Kohler, P.H.; Grant, J.P. Plasminogen-activator inhibitor type 1 and coronary artery disease. N. Engl. J. Med. 2000, 342, 1792–1801.
[CrossRef]

28. Tofler, G.H.; D’Agostino, R.B.; Jacques, P.F.; Bostom, A.G.; Wilson, P.W.; Lipinska, I.; Mittleman, M.A.; Selhub, J. Association
between increases homocysteine levels and impaired fibrinolytic potential: Potential mechanism for cardiovascular risk. Thromb.
Haemost. 2002, 88, 799–804.

29. Hamsten, A.; Walldius, G.; Szamosi, A.; Blombäck, M.; de Faire, U.; Dahlén, G.; Landou, C.; Wiman, B. Plasminogen activator
inhibitors in plasma: Risk factor for recurrent myocardial infarction. Lancet 1987, 8549, 3–9. [CrossRef]

30. Bauer, K.A. Hypercoagulable states. In Hematology: Basic Principles and Practice; Hoffman, R., Benz, E.J., Shattil, S.J., Furie, B.,
Cohen, H.J., Silberstein, L.E., McGlave, P., Eds.; Elsevier Churchill Livingstone: Philadelphia, PA, USA, 2005; pp. 2197–2224.

31. Rand, J.H.; Senzel, L. Antiphospholipid antiboidies and the antiphospholipid syndrome. In Haemostasis and Thrombosis: Ba-
sic Principles and Clinical Practice; Colman, R.W., Clowes, A.W., Goldhaber, S.Z., Marder, V.J., George, J.N., Eds.; Lippincott
Williams&Wilkins: Philadelphia, PA, USA, 2006; pp. 1621–1636.

32. McCrae, K.R.; Feinstein, D.I.; Cines, D.B. Antiphospholipid antibodies and the antiphospholipid syndrome. In Haemostasis and
Thrombosis: Basic Principles and Clinical Practice; Colman, R.W., Hirsh, J., Marder, V.J., Clowes, A.W., George, J.N., Eds.; Lippincott
Williams&Wilkins: Philadelphia, PA, USA, 2001; pp. 1339–1356.

273



J. Clin. Med. 2024, 13, 1756

33. Petersen, P.; Hansen, M.J. Stroke in thyrotoxicosis with atrial fibrilation. Stroke 1989, 19, 15–18. [CrossRef]
34. Sheu, J.J.; Kang, J.H.; Lin, H.C.; Lin, H.C. Hyperthyroidism and risk of ischemic stroke in young adults: A 5-year follow-up study.

Stroke 2010, 5, 961–966. [CrossRef] [PubMed]
35. Staffurth, J.S.; Gibberd, M.C.; Fui, S.N. Arterial embolism in thyrotoxicosis with atrial fibrillation. Br. Med. J. 1977, 2, 688–690.

[CrossRef] [PubMed]
36. Parker, L.J.; Lawson, D.H. Death from thyrotoxicosis. Lancet 1973, 2, 894–895. [CrossRef]
37. Parle, V.J.; Maisonneuve, P.; Sheppard, C.M.; Boyle, P.; Franklyn, A.J. Prediction of all-cause and cardiovascular mortality in

elderly people from one low serum thyrothropin result: A 10-year cohort study. Lancet 2001, 358, 861–865. [CrossRef]
38. Siu, C.W.; Pong, V.; Zhang, X.; Siu, C.W.; Pong, V.; Zhang, X.; Chan, Y.H.; Jim, M.H.; Liu, S.; Yiu, K.H.; et al. Risk of ischemic

stroke after new-onset atrial fibrillation in patients with hyperthyroidism. Heart Rhythm 2009, 6, 169–173. [CrossRef] [PubMed]
39. Rietveld, I.M.; Lijfering, W.M.; le Cessie, S.; Bos, M.H.A.; Rosendaal, F.R.; Reitsma, P.H.; Cannegieter, S.C. High levels of

coagulation factors and venous thrombosis risk: Strongest association for factor VIII and von Willebrand factor. J. Thromb.
Haemost. 2019, 17, 99–109. [CrossRef] [PubMed]

40. Lin, H.C.; Yang, Y.; Kan, H. Increased risk of pulmonary embolism among patients with hyperthyroidism: A 5-year follow-up
study. J. Thromb. Haemost. 2010, 8, 2176–2181. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

274



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Journal of Clinical Medicine Editorial Office
E-mail: jcm@mdpi.com

www.mdpi.com/journal/jcm

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-1180-9


