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Preface

In recent years, significant advancements have been made in the fields of artificial intelligence

(AI) and machine learning (ML), and we witnessed their evolution from theoretical concepts and

experimental prototypes to powerful technologies that are applied in almost every domain. One of

the most notable trends in this evolution is the increasing number of AI and ML practical applications.

While theoretical research is important, there has been a significant shift towards applying AI and ML

models to address real-world problems. Various domains employ AI and ML to drive innovation,

from healthcare and finance to speech recognition and speech and music generation.

Since 2012, the ML methodologies have drastically changed, switching from manually

engineered/hand-crafted features to the development of models capable of automatically learning

the relevant features from data (convolutional neural networks, recurrent neural networks, and

transformers). These approaches enable models to extract meaningful representations directly from

the input data without the need for explicit feature engineering. Another observable trend is

that different domains, such as computer vision, natural language processing, or structured data

processing, adopted similar models. For example, transformers were initially proposed in the field of

natural language processing, and over time, they have started to be extensively used in the fields of

computer vision (Vision Transformer, SWIN Transformer, SegFormer, etc.) and structured data analysis

(TabFormer). The widespread usage of similar models across various fields proves their effectiveness

in capturing complex relationships and extracting representative features from diverse types of data.

The present reprint contains the 26 articles accepted and published in the Special Issue “Artificial

Intelligence and Machine Learning Based Methods and Applications, 2023” of the MDPI Mathematics

journal, which covers a wide range of topics related to the theoretical aspects of artificial intelligence

(AI) and machine learning (ML), and their practical applications. The chapters contain theoretical

advancements, such as model compression through knowledge distillation, time series analysis,

or effective augmentation techniques, but the majority of the works are related to applications of

machine learning algorithms. This is proof of the efficiency and power of deep learning models and

their potential to drive advancements in various research and application domains. The applications

presented in the chapters of this reprint include medical image processing for mammography or lung

cancer detection, text analysis for predicting the difficulty of a text or text authorship prediction,

speech recognition for young children, and solid deformation resistance analysis.

The compilation of articles in this Special Issue not only shows the amplitude of recent research

works in the fields of AI and ML, but it is also a starting point for researchers and AI enthusiasts to

understand the landscape of possible real-world AI/ML applications. Moreover, the interdisciplinary

nature of the contributions demonstrates the capacity of AI/ML models to go beyond isolated

research areas and to foster cross-disciplinary and collaborative research projects.

As Guest Editors of this Special Issue, we express our gratitude to the authors for their

high-quality contributions, the reviewers for their insightful comments that helped the authors

improve the quality of the submitted manuscripts, and the administrative team at MDPI publications

for their assistance in fulfilling this project. Last but not least, a special thank you to Ms. Caitlynn

Tong, the Section Managing Editor of the Special Issue, for her exceptional collaboration and

invaluable assistance.

Adrian Sergiu Darabant and Diana-Laura Borza

Editors

xi





Citation: Camacho-Urriolagoitia, F.J.;

Villuendas-Rey, Y.; López-Yáñez, I.;

Camacho-Nieto, O.; Yáñez-Márquez,

C. Correlation Assessment of the

Performance of Associative

Classifiers on Credit Datasets Based

on Data Complexity Measures.

Mathematics 2022, 10, 1460. https://

doi.org/10.3390/math10091460

Academic Editors: Anatoliy

Swishchuk, Christoph Frei,

Catalin Stoean, Diana-Laura Borza

and Adrian Sergiu Darabant

Received: 15 February 2022

Accepted: 18 April 2022

Published: 26 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Correlation Assessment of the Performance of Associative
Classifiers on Credit Datasets Based on Data Complexity Measures

Francisco J. Camacho-Urriolagoitia 1, Yenny Villuendas-Rey 1,*, Itzamá López-Yáñez 1, Oscar Camacho-Nieto 1 and

Cornelio Yáñez-Márquez 2,*

1 Instituto Politécnico Nacional, Centro de Innovación y Desarrollo Tecnológico en Cómputo,
Av. Juan de Dios Bátiz s/n, Nueva Industrial Vallejo, GAM, Mexico City 07700, Mexico;
fcamachou1300@alumno.ipn.mx (F.J.C.-U.); ilopezy@ipn.mx (I.L.-Y.); ocamacho@ipn.mx (O.C.-N.)

2 Instituto Politécnico Nacional, Centro de Investigación en Computación, Av. Juan de Dios Bátiz s/n,
Nueva Industrial Vallejo, GAM, Mexico City 07738, Mexico

* Correspondence: yvilluendasr@ipn.mx (Y.V.-R.); cyanez@cic.ipn.mx (C.Y.-M.)

Abstract: One of the four basic machine learning tasks is pattern classification. The selection of the
proper learning algorithm for a given problem is a challenging task, formally known as the algorithm
selection problem (ASP). In particular, we are interested in the behavior of the associative classifiers
derived from Alpha-Beta models applied to the financial field. In this paper, the behavior of four
associative classifiers was studied: the One-Hot version of the Hybrid Associative Classifier with
Translation (CHAT-OHM), the Extended Gamma (EG), the Naïve Associative Classifier (NAC), and
the Assisted Classification for Imbalanced Datasets (ACID). To establish the performance, we used the
area under the curve (AUC), F-score, and geometric mean measures. The four classifiers were applied
over 11 datasets from the financial area. Then, the performance of each one was analyzed, considering
their correlation with the measures of data complexity, corresponding to six categories based on
specific aspects of the datasets: feature, linearity, neighborhood, network, dimensionality, and class
imbalance. The correlations that arise between the measures of complexity of the datasets and the
measures of performance of the associative classifiers are established; these results are expressed with
Spearman’s Rho coefficient. The experimental results correctly indicated correlations between data
complexity measures and the performance of the associative classifiers.

Keywords: supervised classification; meta-learning; associative classification; finances

MSC: 68T05

1. Introduction

Numerous classification models have been developed in the scientific literature, with
different theoretical foundations. One of the pioneers is the k-nearest neighbors (kNN)
classifier [1], which is based on neighborhood criteria. Other well-known classifiers are
based on probabilistic approaches, such as naïve Bayes [2], whereas others use information
theory as part of their foundation (for example, ID3 [3] and C4.5 [4]).

From another perspective and focusing on finding hyperspaces where decision classes
are separated, support vector machine (SVM) models have been developed [5]. Models of
the human nervous system have also been used for classification tasks through the proposal
of artificial neural networks (ANN) [6].

On the other hand, in Mexico, the associative approach has been developed, with the
Alpha-Beta associative models [7] and their derivatives, for classification tasks. Among
these derived models are the Smallest Normalized Distance Associative Memory (SNDAM)
method [8] and the Hybrid Associative Classifier with Translation (HACT) method [9], also
known as CHAT for its Spanish acronym, and its derivative, the CHAT-OHM classifier [10].

Mathematics 2022, 10, 1460. https://doi.org/10.3390/math10091460 https://www.mdpi.com/journal/mathematics1
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Another classification model within this approach is the Gamma classifier [11], with
its versions of weight adjustments with differential evolution (CAG-ED) [12], its version for
handling mixed and incomplete data (the Extended Gamma associative classifier, EG) [13],
and the version of the latter which uses weight adjustment with differential evolution
(Modified Associative Gamma Classifier, CAGM-ED) [14].

In addition to the previous models, the Naïve Associative Classifier (NAC) [15] stands
out, with its disambiguation variants (NACe) [16] NACe-kVotes and NACe-kMajority [17]
and its variant for the classification of data streams (Naïve Associative Classifier for Online
Data, NACOD) [18].

Alpha-Beta associative models and their derivatives have shown satisfactory perfor-
mance in numerous classification tasks from different fields. Among these, the medical [19],
financial [20], social [14], productive [21], educational [22,23], and environmental [24] fields
can be highlighted.

However, with so many different models available, how can one know which model
will offer the best classification for a specific problem? The focus of our research is on
the behavior of associative classifiers in the financial field. Several studies indicate that
associative-based classifiers have shown good performance for finance-related datasets,
outperforming several of the well-known supervised classifiers such as support vector ma-
chines, neural networks, decision trees, statistical-based classifiers, and others [15,16,25,26].
This is where the topic of interest for this paper appears and why we decided to focus on
associative-based classifiers.

The algorithm selection problem (ASP) is a challenging learning task, focused on
selecting proper classification algorithms for a given problem [27]. ASP has been the focus
of various studies in the machine learning community, and for the supervised classification
domain, meta-learning has shown ample achievements in solving the ASP. However, even
though numerous studies have been conducted using diverse classifiers in the literature,
to the knowledge of the authors of this study, there has been no comparative study that
critically analyzes, summarizes, and evaluates the performance of associative classifiers
derived from Alpha-Beta models, that allows the identification of the measures of data
complexity that influence the good or bad performance of these models, considering their
correlation with the data complexity measures.

This paper addresses a problem of which the solution would be beneficial for re-
searchers in artificial intelligence, pattern recognition, and related areas: How can we know,
in advance, in which dataset(s) a specific classifier will exhibit good (or bad) performance?
The innovative and scientific contribution of this paper consists in the analysis of the
performance of associative classifiers, considering their correlation with the measures of
data complexity, corresponding to six categories based on specific aspects of the datasets.

In this study, we intended to make use of different complexity measures that will
help to understand how some of the mentioned associative-based classifiers behave in
the financial field, based on the data of the problem to be solved. The experimental
results correctly indicate the existing correlations between complexity measures and the
performance of the associative classifiers.

2. Background

Ho and Basu attribute the complexity of supervised classification problems to a
combination of three main factors: the ambiguity of the classes, the scarcity and dimension
of the data, and the complexity of the limit that separates the classes [28].

To determine the presence of such factors, several data descriptors have been intro-
duced, based mainly on the geometric and statistical properties of the data. The data
complexity measures proposed by Ho and Basu [28] are dedicated to computing the com-
plexity of the boundary needed to separate binary classification problems (later extended
for multiclass problems. Ho and Basu split their measures into three categories: individual
feature value overlap measures; class separability measures; and geometry, topology, and
density measures of multiple measures.
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Ho and Basu’s work was instrumental in determining the complexity of a given
dataset using data descriptors. Furthermore, Mansilla and Ho [29] studied the competence
domains of the XCS classification system (the learning classifier system type) in the area of
complexity measures and found that difficult problems for this system are characterized
by a large number of samples located in the decision boundaries, the presence of a high
number of adherence subsets, a high dispersion of class samples, and a high level of
nonlinearity in the shapes of classes and boundaries.

A couple of years later, Sánchez et al. [30] analyzed how the complexity of the train-
ing data affects the kNN classifier and showed that the performance of this classifier is
very susceptible to class overlapping and class density; in addition, they found that high
dimensionality also affects the performance of kNN. Sanchez et al. also pointed out that
measures are domain-dependent. That is, the performance of the classifier will depend on
the characteristics of the problem.

In their studies, Luengo and Herrera presented two rules that are “simple, interpretable,
and precise” to describe the good and bad performance of the FH-GBML method [31].
Two years later, they conducted another study [32]. They computed five data complexity
measures and class separability measures to obtain ranges of such metrics for which the
method performed significantly well or poorly.

The competence domains of the semi-naïve Bayes network classifiers (BNC) have also
been studied by Flores, Gómez and Martínez [33]. They define the general attributes of
ideal datasets for classification with BNCs. They also provide an automatic method to find
the best BNC (in terms of prediction errors) given a particular dataset.

One year later, Luengo and Herrera [34] proposed a method of automatically extracting
the competence domains for classifiers using measures of data complexity. The objective
was to recognize whether the classification problem was good or bad for each classifier and
obtain intervals of good performance for the classifiers based on data complexity measures.
Their results showed that the domains of competence obtained were general enough to
find the right datasets for the classifiers.

Years later, Morán-Fernández et al. [35] studied micro-array data, showing that the
classification performance can be predicted by complexity measures and observed that
attribute selection can reduce the complexity of the data.

In 2018 Barella [36] and collaborators studied data complexity measures for imbalanced
classification tasks. They showed that several of the existing data complexity measures do
not consider the difficulty of imbalanced classification problems. Therefore, they improved
some data complexity measures to assess classes one by one and focus on the minority
class. However, they also showed that data complexity measures mainly approximate
majority class difficulty, which can be misleading, especially for imbalanced tasks with
high class overlap. In addition, Barella suggested evaluating the difficulty of both classes
in understanding the full classification problem, although minority class difficulty is often
the main challenge in imbalanced tasks.

A year later, Lorena et al. [37] reviewed the main measures of data complexity in the
literature and concluded that these measures allow one to characterize the complexity
of a classification problem considering a geometrical approach and the distribution of
data within or between classes. In 2020 Khan and collaborators [38] produced a survey
about meta-learning for classifier selection. Using this approach, they deeply analyzed
the problem of recommending a classification algorithm based on meta-learning. Their
in-depth analysis showed that meta-learning was successful in the automatic algorithm
recommendation process.

A recent study by Maillo et al. [39] analyzed redundancy and complexity measures
for big data. The authors emphasized that it is possible to obtain similar or better results in
several big data tasks by using a small set of quality data.

Since no classifier can regularly obtain the best performance for each classification
problem, an effect proved in the no free lunch theorems [40], the analysis of data complexity

3
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measures allows us to understand the situations in which a certain classifier is successful
and in which it fails.

3. Materials and Methods

This section describes the most important data complexity measures and some associa-
tive classifiers derived from the Alpha-Beta associative models that will be tested against
different datasets for the development of this area of research.

3.1. Data Complexity Measures

Some of the most widely used data complexity measures are those proposed by Ho
and Basu [28] and later extended in [30,41] to deal with multiclass classification problems.
Ho and Basu [28] split the data complexity measures into three groups: (1) individual
characteristic value overlap measures; (2) class separability measures; and (3) geometry,
topology, and manifold density measurements. Likewise, Sotoca et al. [42] divided com-
plexity measures into the following groups: (1) overlap measures, (2) class separability
measures, and (3) geometry and density measurements.

Subsequently, Lorena et al. [37] classified complexity measures into six categories:

1. Feature-based measures;
2. Linearity measures;
3. Neighborhood measures;
4. Network measures;
5. Dimensionality measures; and
6. Class imbalance measures.

In this work, we use five of the six types of measures mentioned above. To compute the
measures, we assume that we have a learning dataset “T” that contains pairs of instances
(xi, yi), where xi = (xi1, . . . , xim) and yi ∈ {1, . . . , nc}. That is, each instance xi is described
by m attributes and also has a class label yi of one of the nc classes.

Most data complexity measures assume that the attributes are numeric and complete
(no missing values). Categorical values need to be codified into numeric ones, and missing
values must be deleted or imputed. An additional assumption is that linearly separable
problems are simpler than nonlinear classification problems.

Table 1 presents the data complexity measures used in this study. The measures used
consisted of three feature-based measures (F1, F2, and F3), two linearity measures (L1
and L2), four neighborhood-based measures (N1, N2, N3, and N4), one network measure
(T1), and one dimensionality measure (T2). We did not consider class-imbalance-related
measures in this study. All the data complexity measures used here were presented in a
review by Lorena et al. [37].

Table 1. Complexity measures used.

Measure Equation

Maximum Fisher’s Discriminant Ratio
(F1)—Complementary formulation [37] F1 = 1

1+maxm
i=1r f i

Volume of overlap region (F2)

F2 = ∏m
i

overlap(fi)
range (fi) = ∏m

i
max{0, minmax(fi)− maxmin(fi)}

maxmax(fi)− minmin(fi)
,

where minmax(fi) = min(max
(

fic1
)

, max
(

fic2
)
),

maxmin(fi) = max(min
(

fic1
)

, min
(

fic2
)
),

maxmax(fi) = max(max
(

fic1
)

, max
(

fic2
)
),

minmin(fi) = min(min
(

fic1
)

, min
(

fic2
)
)

and max
(

ficj
)

and min
(

ficj
)

are the maximum and minimum values of each feature
in the class cj ∈ {1, 2}, respectively.

4
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Table 1. Cont.

Measure Equation

Maximum Individual Feature Efficiency
(F3)—Complementary formulation [37]

F3 = minm
i=1

no(fi)
n

, where

no(fi) =
n
∑
j

I(xji > maxmin(fi) ∧ xji < minmax(fi))

Sum of the Error Distance by Linear
Programming (L1)

L1 = 1 − 1
1 + SumErrorDist

=
SumErrorDist

1 + SumErrorDist
, where

SumErrorDist = 1
n ∑n

i=1 εj. The εj values are determined by optimizing an SVM

Error rate of linear classifier (L2) L2 = ∑n
i=1 I(h(xi) �=yi)

n where h(x) is the linear classifier.

Nonlinearity of a Linear Classifier (L3)
L3 = 1

l ∑l
i=1 I(hT(x́i) �= ýi) where hT(x) is the linear classifier induced using the

original dataset T, and l in the number of interpolated examples x́i and ýi are the
corresponding labels.

Fraction of Borderline Points (N1)
N1 = 1

n ∑n
i=1 I(

(
xi, xj

) ∈ MST ∧ yi �= yj), where MST is a Minimum Spanning Tree
obtained over the interpolated data.

Ratio of Intra/Extra Class Nearest
Neighbor Distance (N2) N2 = 1 − 1

1+intra _extra = intra_extra
1+intra _extra , where intra_extra = ∑n

i=1 d(xi,NN(xi)∈yi)

∑n
i=1 d(xi,NN(xi)∈ yj �=yi)

Error Rate of the Nearest Neighbor
Classifier (N3) N3 = ∑n

i=1 I(NN(xi) �=yi)
n

Nonlinearity of the Nearest Neighbor
Classifier (N4) N4 = 1

l

l
∑

i=1
I(NNT(x

,
i) �= y,

i)

Fraction of Hyperspheres Covering Data
(T1)

T1 =
#Hyperspheres(T)

n , where #Hyperspheres(T) is the number of hyperspheres
needed to cover the dataset, considering that only points of the same class can be

inside the same hypersphere.

Average Number of Features per
Dimension (T2) T2 = m

n

In addition, the complexity measures presented here are available for computation in
KEEL software [43], which is an open software environment designed for experimentation
with supervised classification.

3.2. Associative Classifiers
3.2.1. CHAT-OHM

The Hybrid Associative Classifier with Translation (HACT or CHAT by its Spanish
acronym) is a classification algorithm proposed by Santiago-Montero [9], which has shown
good results in supervised classification [25]. It has two phases: association (in which the
classifier is trained) and recovery (in which the classes of the instances to be classified are
obtained). This classifier assumes that the dataset does not contain absences of information
and that all attributes are numeric. Furthermore, it assumes that the class values are
consecutive integers.

This classification algorithm was refined in 2014, with the development of a “One-Hot”
version (CHAT-OHM) [10]. The first modification arises in the training phase and consists
of a new way of coding the classes. In this case, the classes are formed by binary vectors of
size p (instead of vectors of size m as in HACT), and the components of said vectors have

the form yμ
i =

{
1 if i = μ

0 otherwise
.

The second modification consists of using the majority vote rule in the classification
process. To accomplish this, the CHAT-OHM classification phase has three steps:

1. Translate the instance to classify o, considering the mean of the training instances, as
ô ← o − x̂ .

5
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2. For each class k ∈ {1, 2, . . . , m}, create a masking vector mvk of size p, of which

the components are mvk
μ =

{
1 if x̂μ ∈ k
0 otherwise

and obtain the output pattern zo, as

zo =
[
α∑

p
μ=1 yμ

(
x̂μT)]ô. Then, for each class obtain a counter vector cvk = zo ∧mvk

3. Compute the components of the output vector (class) for the instance to classify ô

as yo
i =

⎧⎨⎩1 if ∑
p
j=1 cvi

j = max
h=1..m

[
∑

p
j=1 cvh

j

]
0 otherwise

. Thus, the class of the input instance xμ

will be returned if and only if the obtained vector has a one in the μ-th component
and zero in the remaining components.

Although HACT does not handle mixed or incomplete data, it has achieved good
performance in the financial field [25].

3.2.2. Extended Gamma

López-Yáñez introduced the Gamma associative classifier as a model designed to pre-
dict time series [44]. It has been applied to several supervised classification tasks [11,21,24].
However, the same as HACT, it assumes that the dataset is numeric and complete. To
address this drawback, the Extended Gamma (EG) classifier was proposed [13].

Let be X and P the training and test sets, respectively, from a universe of data U, where
each instance x ∈ X, p ∈ P is described by a set of features A = {A1, A2, · · · , Am}; and
each attribute Ai has associated a definition domain dom(Ai), which can be numeric or
categoric. If the value of an attribute Ai in an instance x is missing, it is denoted as xi = ‘?’.
Extended Gamma considers the data to belong to a set of classes K = {K1, . . . , Kc}.

EG has the same training phase as its predecessor, and for the classification phase, it
replaces the gamma similarity operator with the extended gamma similarity operator, γext.
To determine the class value of an instance, its average similarity with respect to all classes
is computed as:

ckl
=

∑n
i=1 ∑m

j=1 wj∗γext

(
xi

j , pj

)
n

(1)

where xi
j is the value of the j-th attribute in the i-th instance belonging to the class kl, wj

is the weight associated with the j-th attribute, and n is the number of instances in the
training set having kl as the class value. If there is a unique maximum in the values of ckl

,
the process ends. Otherwise, an iterative process is carried out [13].

The definition of the extended gamma similarity operator allows for the handling
of mixed continuous and categorical attributes and missing values. When the value of a
feature is unknown, it is assumed that the values are similar, and in the case of categorical
features, the patterns will only be similar if the values of the features are equal. For the case
of continuous attributes, a definition equivalent to the original operator definition is used.

Extended Gamma has been applied effectively to solve problems of a social nature
with mixed and incomplete data, such as electoral predictions [14].

3.2.3. Naïve Associative Classifier

Another associative classifier that is able to deal with mixed and incomplete data is
the Naïve Associative Classifier (NAC), which has also been applied to solve finance-related
problems [15,26]. This classifier has the properties of being transparent and transportable [15].

The training of NAC includes the computation of the standard deviation of each
numeric feature. Such values will be used below for classification. To do so, NAC uses a
mixed and incomplete similarity operator to compute the similarity between patterns. This
operator can deal with both continuous and categorical attribute values and incomplete
information in the data. As was the case for Extended Gamma, NAC computes the average
similarities to each class kl for the instance to classify p. If there is a unique maximum, the
corresponding class is returned. Otherwise, ties are broken randomly.
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NAC has several variants: NACe, which includes a procedure to disambiguate
classes [16]; NACe kVotes, and NACe MajoritykVotes [17], which use neighborhoods in
the disambiguation process; and NACOD, which allows the handling of data streams [18].
NAC has shown good performance in solving finance-related problems and has been found
to be robust to data imbalance [20].

3.2.4. Assisted Classification for Imbalanced Datasets

The Assisted Classification for Imbalanced Datasets (ACID) classifier was also de-
signed [19] for mixed and incomplete classification problems. In the training phase, ACID
includes an optional procedure to compute attribute weights via differential evolution.
ACID also deals with class disjoints, by performing clustering, and with class imbalance.
Additionally, it uses data aggregation to diminish the influence of class overlapping and
noisy or mislabeled instances [19].

In this section, we have detailed the most frequently explored data complexity mea-
sures in the literature and the associated classifiers. We found no works that analyzed how
data complexity, beyond the analysis of data imbalance, affects the performance of the
associative classifiers of the Alpha-Beta approach.

4. Results and Discussion

This section describes the datasets used in this study to obtain the complexity measures
described in the previous chapter, as well as some of the performance measures obtained
from the described classifiers.

4.1. Datasets

Several datasets containing credit data were used. All of these are related to some of
the credit process phases: granting, promotion and recovery. Some of the datasets were
obtained from the UCI Machine Learning Repository [45]. The datasets that were used in
the experiments are:

• Australian credit approval data (Australian, https://archive.ics.uci.edu/ml/datasets/
statlog+(australian+credit+approval) accessed on 15 June 2021);

• German credit data (German, https://archive.ics.uci.edu/ml/datasets/statlog+(german+
credit+data), accessed on 15 June 2021)

• Japanese credit approval data (Japanese, https://archive.ics.uci.edu/ml/datasets/
Credit+Approval, accessed on 15 June 2021);

• Iranian (Iranian), which was introduced in [46] and was shared by Hassan Sabzevari.
• Polish bankruptcy data (Polish_year1 to Polish_year5, https://archive.ics.uci.edu/

ml/datasets/Polish+companies+bankruptcy+data, accessed on 15 June 2021);
• The PAKDD 2009 dataset (the PAKDD, https://www.cs.purdue.edu/commugrate/

data/credit_card/, accessed on 15 June 2021); and
• Qualitative bankruptcy data (Qualitative, https://archive.ics.uci.edu/ml/datasets/

qualitative_bankruptcy, accessed on 15 June 2021).

These datasets (Table 2) included numerical and categorical attributes, and missing
data (four mixed and eight with missing values). They also contained class imbalances, due
to 8 of the 11 having IR > 1.5. The number of attributes ranged between six and 64 features,
whereas the number of instances was between 250 and 20,000. All datasets corresponded
to good and default clients; they only contained two classes.

Table 2. Description of the datasets used.

Dataset Instances
Attributes Missing

Values
Imbalance

RatioContinuous Categorical

Australian 690 8 6 No 1.25
German 1000 7 13 No 2.33
Iranian 1002 28 0 Yes 19.04
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Table 2. Cont.

Dataset Instances
Attributes Missing

Values
Imbalance

RatioContinuous Categorical

Japanese 690 6 9 Yes 1.21
Polish_year1 7027 64 0 Yes 24.93
Polish_year2 10,173 64 0 Yes 24.43
Polish_year3 10,503 64 0 Yes 20.22
Polish_year4 9792 64 0 Yes 18.01
Polish_year5 5910 64 0 Yes 13.41
Qualitative 250 0 6 No 1.34

The PAKDD 20,000 10 9 Yes 4.12

4.2. Performance Measures

In the following, we address the performance measures [47] we used in this study,
which have been proven to be robust for imbalanced problems [48]. The measures were
based on a two-class confusion matrix, as shown in Figure 1.

Figure 1. Confusion matrix for a two-class problem.

Three basic performance measures for two-class problems are precision, recall (also
known as sensitivity and the true positive rate), and the true negative rate. Other measures,
such as the F-score, geometric mean, and the area under the ROC curve, are based on those
measures. Table 3 summarizes the performance measures used in this study.

Table 3. Performance measures used.

Measure Equation

Precision P =
TP

TP + FP

Recall R = TPR =
TP

TP + FN

True Negative Rate TNR =
TN

TN + FP

F-score F = 2 ∗ P ∗ R
P + R

Geometric Mean GM =
√

P ∗ R

Area under the ROC curve AUC =
TPR + TNR

2

In this study, the F-score, the geometric mean, and the area under the ROC curve were
considered in order to evaluate the performance of the classifiers.

4.3. Complexity Measures in the Selected Datasets

Table 4 shows the results of the complexity measures computed for the selected
datasets. We used KEEL software [43] to obtain these measures. KEEL software auto-
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matically stores all data in numeric arrays; therefore, it includes the imputation of the
missing values and the conversion of the categorical values of the datasets into numeric
values. In addition, KEEL uses the original definition for F1 and F3 measures [28], and
therefore, in Table 4, small values of F1 and F3 denote complex problems (inverse relation).
Consequently, all remaining complexity measures are proportional to the values; that is,
small values correspond to less complex problems.

Table 4. Complexity measure values for the datasets used.

Dataset F1 F2 F3 L1 L2 L3 N1 N2 N3 N4 T1 T2

Australian 2.28 0.00 0.03 0.30 0.14 0.14 0.32 0.56 0.20 0.16 1.00 39.43
German 2.45 0.01 0.03 0.28 0.14 0.13 0.32 0.57 0.20 0.17 1.00 36.48
Iranian 0.36 0.64 0.01 0.83 0.24 0.33 0.46 0.85 0.31 0.30 1.00 40.00

Japanese 0.35 0.00 0.21 0.10 0.05 0.50 0.12 0.31 0.07 0.37 1.00 28.57
Qualitative 9.51 0.00 0.78 0.60 0.00 0.00 0.03 0.10 0.01 0.00 0.95 33.33

The PAKDD 0.11 0.05 0.00 0.39 0.20 0.50 0.26 0.15 0.06 0.45 1.00 842.11
Polish_year1 0.03 0.00 0.03 0.08 0.04 0.50 0.09 0.57 0.06 0.45 1.00 87.84
Polish_year2 0.01 0.00 0.02 0.08 0.04 0.50 0.11 0.63 0.08 0.47 1.00 127.16
Polish_year3 0.04 0.00 0.03 0.09 0.05 0.50 0.12 0.64 0.08 0.47 1.00 131.29
Polish_year4 0.06 0.00 0.02 0.11 0.05 0.50 0.13 0.63 0.09 0.45 1.00 122.40
Polish_year5 0.18 0.00 0.04 0.14 0.07 0.50 0.15 0.71 0.10 0.39 1.00 73.88

As can be seen, for measure F1 the simplest dataset was the qualitative dataset, and the
most difficult ones were the Polish datasets. The F2 measure did not offer much information
since it assigned 0.0 to all datasets but the Iranian (0.64), German (0.01), and the PAKDD
(0.05) datasets. For measures L1 and L2, the most complex dataset was the German. The L3
measure gave a high complexity to the Japanese, the PAKDD, and the Polish datasets, all of
which had values of 0.5.

Regarding measures N1, N2m and N3, again, the German database offered the greatest
complexity. According to measure N4, the most complex databases were Polish_year2 and
Polish_year3. The T1 measure did not offer much information since it assigned complexities
equal to 1.00 for all datasets except the qualitative one. Finally, the T2 measure considered
that the most complex dataset was the PKDD09 set.

4.4. Performance of the Classifiers

To establish the performance of the associative classifiers under study, we used a
five-fold cross-validation procedure because some datasets were imbalanced. As for per-
formance measures, we used the AUC, F-score, and the geometric mean, as described in
Section 4.2. Tables 5–7 present the performance results of each classifier according to the
measures mentioned above.

Table 5. Area under the ROC curve of the compared classifiers. The best results are indicated in bold.

Dataset ACID CHAT-OHM EG NAC

Australian 0.86 0.59 0.84 0.83
Japanese 0.85 0.66 0.82 0.83
German 0.57 0.64 0.68 0.69
Iranian 0.56 0.64 0.68 0.50

Qualitative 0.93 0.95 0.99 0.99
The PAKDD 0.77 0.58 0.61 0.61
Polish_year1 0.58 0.52 0.76 0.50
Polish_year2 0.56 0.50 0.71 0.50
Polish_year3 0.56 0.53 0.74 0.50
Polish_year4 0.54 0.55 0.75 0.53
Polish_year5 0.65 0.62 0.79 0.62
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Table 6. F-score of the compared classifiers. The best results are indicated in bold.

Dataset ACID CHAT-OHM EG NAC

Australian 0.86 0.59 0.84 0.83
Japanese 0.86 0.66 0.82 0.84
German 0.58 0.63 0.67 0.67
Iranian 0.60 0.58 0.63 0.49

Qualitative 0.93 0.95 0.99 0.99
The PAKDD 0.78 0.57 0.59 0.59
Polish_year1 0.58 0.51 0.64 0.50
Polish_year2 0.55 0.50 0.62 0.53
Polish_year3 0.57 0.52 0.64 0.51
Polish_year4 0.55 0.53 0.64 0.54
Polish_year5 0.66 0.57 0.68 0.61

Table 7. Geometric mean of the compared classifiers. The best results are indicated in bold.

Dataset ACID CHAT-OHM EG NAC

Australian 0.86 0.59 0.83 0.83
Japanese 0.85 0.65 0.82 0.83
German 0.49 0.63 0.68 0.68
Iranian 0.26 0.63 0.63 0.00

Qualitative 0.93 0.95 0.99 0.99
The PAKDD 0.75 0.57 0.61 0.61
Polish_year1 0.42 0.51 0.76 0.05
Polish_year2 0.39 0.50 0.71 0.04
Polish_year3 0.39 0.53 0.74 0.10
Polish_year4 0.32 0.55 0.75 0.20
Polish_year5 0.57 0.61 0.79 0.55

According to the AUC results, the best-performing classifier was EG, which performed
the best in seven of the 11 datasets. The ACID and NAC classifiers showed good behavior
for the Australian, Japanese, German, and qualitative datasets. Nevertheless, their perfor-
mance for the remaining datasets was poor, except for the PAKDD dataset, in which ACID
showed the best performance. On the other hand, CHAT-OHM demonstrated relatively
good performance for the qualitative and German datasets. Equivalent results were shown
for the F-score measure.

As for geometric mean, EG was the best in eight of the compared datasets. ACID
remained the best in the Australian, Japanese, and PAKDD datasets. In addition, for
the qualitative datasets, it displayed satisfactory results. However, the performance was
poor for the remaining datasets because the classifier was biased toward one class, with
geometric mean values ranging from 0.26 to 0.57.

NAC exhibited a behavior similar to ACID (except for the German dataset, in which
NAC performed well), showing bias towards the majority class, with values ranging from
0.0 (Iranian) to 0.55 (Polish_year5). CHAT-OHM obtained average results for most of the
compared datasets.

In summary, the ACID classifier showed a good performance for most of the databases,
and we observed that it exceeded 0.5 for almost all the measures, except for some databases
with a greater number of instances. On the other hand, the CHAT-OHM classifier achieved
excellent classification performance for the “qualitative-bankruptcy” database. Neverthe-
less, in the other datasets it failed to obtain performance percentages greater than 0.7, which
made it one of the classifiers with the lowest ranking average for this set of databases.

EG was another classifier with good performance (mostly exceeding percentages of
0.6), making it the classifier with the best results in this study. The EG classifier had an
almost perfect classification performance for the qualitative database and relatively good
performance for the Australian and Japanese databases.
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Finally, in terms of the classification results, the NAC classifier, similarly to the EG,
exhibited an almost perfect classification performance with the qualitative-bankruptcy
database and a very good performance with the Australian and Japanese databases. How-
ever, we can also observe that it showed a certain weakness in the case of databases such as
the Polish datasets, in which it classified practically an entire class incorrectly. Moreover,
its performance was slightly less efficient compared to the EG classifier.

4.5. Correlation Analysis

Another aim of this study was to analyze in-depth and establish the relationship
between complexity measures and associative classifiers. This aspect can be investigated
in detail by calculating the correlations that arise between the measures of complexity
of the datasets and the measures of performance of the associative classifiers. To accom-
plish this, intensive use of Spearman’s Rho coefficient was made. Spearman’s Rho is a
nonparametric measure of dependence in which the mean rank of the observations is
calculated [49], and the differences are squared and incorporated into the formula. In other
words, a classification is assigned to the observations of each variable, and the dependency
relationship between two given variables is studied. The interpretation of Spearman’s
coefficient depends on its values. It ranges between −1 and +1, indicating negative or
positive associations. Respectively, values close to zero indicate no correlation but not
independence. To carry out the correlation tests, two hypotheses were used in all cases:

H0: There is no correlation between the measures of data complexity and the performance of the
analyzed classifiers.

H1: There is a correlation between the measures of data complexity and the performance of the
analyzed classifiers.

We set a significance value α = 0.05, for a 95% confidence level. Table 8 shows the
correlations obtained. In these results, the text “cc” represents the value of the correlation
coefficient, whereas “p” is the probability value of the test. If p ≤ α, we reject the null
hypothesis H0 and accept the alternative hypothesis H1; that is, in these scenarios, there is
a correlation between the data complexity measures and the performance achieved by the
classifiers. These results are shown in bold in the tables. In bold and italics are the results
in which the null hypothesis was rejected within a 90% confidence level instead of 95%.

The results obtained for the ACID classifier allowed us to reject the null hypothesis
for the measures F1, N2, N4, L1, L3, and T1. The measures F1, N4, and L3 significantly
correlated with the performance measures of the F-score, geometric mean, and AUC for the
ACID classifier using Spearman’s rho coefficient, with 95% confidence. On the other hand,
the L1 measure showed a significant correlation with the F-score performance measure,
with the geometric mean with 95% confidence, and with the AUC measure with 90%. The
N2 measure showed significant correlations with the F-score performance measure with
90% confidence, and T1 showed a significant correlation with the F-score performance
measure, with 95% confidence.

The results obtained for the CHAT-OHM classifier allowed us to reject the null hy-
pothesis for the measurements F1, N4, L1, L3, T1, and T2. Furthermore, the measures F1,
N4, L1, L3, and T2 significantly correlated with the performance measures of the F-score,
geometric mean, and AUC for the CHAT-OHM classifier using Spearman’s rho coefficient,
with 95% confidence.

On the other hand, the T1 measure showed a significant correlation with the perfor-
mance measures of the F-score, geometric mean, and AUC with 90% confidence.

The results obtained for the EG allowed us to reject the null hypothesis for the mea-
sures F1, F3, N4, L3, and T2. The N4 and L3 measures showed a significant correlation
with the F-score, geometric mean, and AUC performance measures for the EG classifier
using Spearman’s rho coefficient, with 95% confidence. On the other hand, the F1 measure
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showed a significant correlation with the F-score performance measure with 95% confi-
dence; the F3 measure showed a significant correlation with the geometric mean and AUC
measures with 90%, and finally, the T2 measure showed a significant correlation with the
F-score measure with 90% confidence

Table 8. Correlation analysis of the data complexity measures and the performance measures.

Complexity
Measure

Ro

F-Score Geometric Mean AUC

ACID
CHAT-
OHM

EG NAC ACID
CHAT-
OHM

EG NAC ACID
CHAT-
OHM

EG NAC

F1
cc 0.864 0.991 0.764 0.782 0.682 0.945 0.482 0.800 0.655 0.936 0.482 0.800
p 0.001 0.000 0.006 0.004 0.021 0.000 0.133 0.003 0.029 0.000 0.133 0.003

F2
cc 0.282 0.391 −0.018 0.227 0.164 0.364 −0.364 0.291 0.109 0.327 −0.364 0.245
p 0.401 0.235 0.958 0.502 0.631 0.272 0.272 0.385 0.750 0.326 0.272 0.467

F3
cc 0.418 0.336 0.436 0.055 0.173 0.400 0.564 0.027 0.291 0.473 0.564 0.064
p 0.201 0.312 0.180 0.873 0.612 0.223 0.071 0.937 0.385 0.142 0.071 0.853

N1
cc 0.236 0.364 0.218 0.409 0.273 0.282 −0.109 0.427 0.173 0.218 −0.109 0.427
p 0.484 0.272 0.519 0.212 0.417 0.401 0.750 0.190 0.612 0.519 0.750 0.190

N2
cc −0.564 −0.246 0.036 −0.100 −0.345 −0.200 −0.127 −0.173 −0.445 −0.273 −0.127 −0.082
p 0.071 0.467 0.915 0.770 0.298 0.555 0.709 0.612 0.170 0.417 0.709 0.811

N3
cc −0.036 0.246 0.409 0.309 0.055 0.173 0.145 0.245 −0.045 0.109 0.145 0.318
p 0.915 0.467 0.212 0.355 0.873 0.612 0.670 0.467 0.894 0.750 0.670 0.340

N4
cc −0.809 −0.909 −0.818 −0.691 −0.645 −0.845 −0.618 −0.709 −0.645 −0.836 −0.618 −0.700
p 0.003 0.000 0.002 0.019 0.032 0.001 0.043 0.015 0.032 0.001 0.043 0.016

L1
cc 0.682 0.809 0.509 0.800 0.673 0.755 0.136 0.827 0.573 0.691 0.136 0.809
p 0.021 0.003 0.110 0.003 0.023 0.007 0.689 0.002 0.066 0.019 0.689 0.003

L2
cc 0.236 0.327 0.045 0.327 0.218 0.273 −0.291 0.355 0.127 0.218 −0.291 0.336
p 0.484 0.326 0.894 0.326 0.519 0.417 0.385 0.285 0.709 0.519 0.385 0.312

L3
cc −0.727 −0.853 −0.811 −0.863 −0.769 −0.748 −0.642 −0.863 −0.727 −0.705 −0.642 −0.863
p 0.011 0.001 0.002 0.001 0.006 0.008 0.033 0.001 0.011 0.015 0.033 0.001

T1
cc −0.670 −0.563 −0.326 −0.251 −0.363 −0.530 −0.381 −0.326 −0.451 −0.600 −0.381 −0.251
p 0.024 0.071 0.328 0.456 0.273 0.093 0.247 0.328 0.164 0.051 0.247 0.456

T2
cc −0.573 −0.764 −0.600 −0.355 −0.255 −0.773 −0.436 −0.318 −0.300 −0.809 −0.436 −0.345
p 0.066 0.006 0.051 0.285 0.450 0.005 0.180 0.340 0.370 0.003 0.180 0.298

Finally, the results obtained for the NAC allowed us to reject the null hypothesis for
the measures F1, N4, L1, and L3. The measures F1, N4, L1, and L3 showed a significant
correlation with the performance measures of the F-score, geometric mean, and AUC for
the NAC classifier using Spearman’s rho coefficient, with 95% confidence.

It is important to note that F1 showed a stronger correlation than the other feature-
based complexity measures. Finding the reasons behind this behavior requires deeper
research, including numerical simulations using synthetic data, to be able to bound the
factors that may intervene. However, in our opinion, this may be due to the formulation of
the feature discriminant ratio. As a result, less complex problems have features that can be
used to separate the classes, whereas complex problems are overlapping.

Similarly, N4 and L3 showed a stronger correlation than the other neighborhood-
based and network-based measures, respectively. Again, further research is needed to fully
understand the reason behind the high correlation between these measures. Our intuition
tells us that N4 was again highly correlated because it considers the nonlinearity of the
nearest neighbor classifier, focusing on class overlapping, and L3 also uses the notion of
nonlinearity for a linear classifier. In our future work, we intend to address this behavior
in depth.

The experimental results correctly indicated the existing correlations between com-
plexity measures and the performance of the associative classifiers. The comparison was
evaluated and studied, resulting in positive correlation coefficients in regard to different
complexity measures for each associative classifier.
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The comparative results indicate that our correlation study will depend entirely on the
complexity of the problems to be solved and how each associative classifier was created,
which leads us to return to the no-free-lunch theorem (NFL), as the ACID, CHAT, and
EG classifiers are the ones that presented the highest correlations in terms of performance
measures versus complexity measures in the selected datasets. In contrast, the NAC classi-
fier turned out to be the classifier that presented the lowest correlation in its performance
against complexity measures.

4.6. Comparison with Other Supervised Classifiers

In this subsection, we present the comparison of the associative-based classifiers with
respect to other supervised classifiers in the literature. For this purpose, we again used the
area under the ROC curve.

To execute the literature algorithms, with the exception of the nearest neighbor ap-
proach, we again used the KEEL environment because it enabled the implementation of
naïve Bayes (NB), multilayer perceptron with backpropagation (MLP), and support vector
machines (SVM). It is important to mention that all supervised classifiers (associative–based
and others) used the same partitions of the five-fold cross-validation procedure, and no
algorithm was particularly tuned. No weighing scheme was performed for associative
classifiers, and for the literature classifiers, we used the default parameters offered by KEEL.
However, those default parameters corresponded to the best values reported in previous
studies, and therefore, we can consider the algorithms from the literature to be somewhat
optimized. For the nearest neighbor (NN) classifier, we used EPIC software [50,51] with
the HEOM dissimilarity function [52]. For the associative-based classifiers, we also used
EPIC software. Table 9 shows the results regarding the AUC for the compared algorithms.
Best results for each dataset are highlighted in bold.

Table 9. Area under the ROC curve for associative-based and other supervised classifiers.

Dataset ACID CHAT-OHM EG NAC NB NN MLP SVM

Australian 0.86 0.59 0.84 0.83 0.85 0.71 0.85 0.85
Japanese 0.85 0.66 0.82 0.83 0.86 0.72 0.86 0.86
German 0.57 0.64 0.68 0.69 0.68 0.52 0.53 0.66
Iranian 0.56 0.64 0.68 0.50 0.61 0.64 0.58 0.50

Polish_year1 0.58 0.52 0.76 0.50 0.61 0.54 0.50 0.50
Polish_year2 0.56 0.50 0.71 0.50 0.55 0.50 0.50 0.50
Polish_year3 0.56 0.53 0.74 0.50 0.61 0.52 0.50 0.50
Polish_year4 0.54 0.55 0.75 0.53 0.63 0.54 0.50 0.50
Polish_ year5 0.65 0.62 0.79 0.62 0.76 0.55 0.53 0.50
Qualitative 0.93 0.95 0.99 0.99 0.98 1.00 0.99 1.00

The PAKDD 0.77 0.58 0.61 0.61 0.51 0.53 0.52 0.50
Times Best 2 0 6 1 1 0 1 2

We did not include classifier ensembles such as the well-known random forest [53] in
the comparison for two main reasons. First, we considered that, since associative classifiers
are base (single) classifiers, it would be unfair to compare the algorithms with respect to
classifier committees composed of several supervised classifiers. Second, neither KEEL nor
EPIC software includes classifier committees in their selection of supervised classifiers.

The results presented in Table 9 showed that the best-performing algorithm was
Extended Gamma (EG), which exhibited the best results in five of the datasets, followed
by ACID and SVM (which showed the best results in two datasets). The poor results of
CHAT-OHM and NN resulted from the class overlapping of the datasets, and those of NAC
resulted from the lack of feature weighting. It was shown in [26] that automatic feature
weighting improves the performance of NAC. In addition, the ACID classifier also includes
an optional feature weighting procedure [19], which was not applied here.
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Regarding the interpretability of the supervised classifiers compared in this study,
in our opinion, both Extended Gamma (EG) and Naïve Associative Classifier (NAC)
was highly interpretable [15]. ACID was also interpretable [19], although it was not as
straightforward as EG and NAC. However, these three classifiers were transparent and
transportable. On the other hand, the CHAT-OHM classifier obtained an association matrix,
which is not easy to interpret. Regarding the other supervised classifiers compared, the
nearest neighbor classifier was interpretable, the naïve Bayes was somewhat interpretable,
and MLP and SVM were not easy to interpret due to their training process.

5. Conclusions

In this paper, we used meta-learning, in the context of ASP, to analyze the correla-
tions that arise between the measures of complexity of the datasets and the measures of
performance of the associative classifiers under study. We observed correlations between
complexity measures and the performance of the associative classifiers.

The comparison was evaluated and studied, resulting in positive correlation coeffi-
cients in different complexity measures for each associative classifier. The comparative
results indicate that our correlation studies will depend entirely on the complexity of the
problems to be solved and the way in which each associative classifier was created, which
leads us to return to the no-free-lunch theorem (NFL), and the ACID, CHAT, and EG
classifiers are the ones that presented the highest correlations in terms of performance mea-
sures versus complexity measures in the selected datasets. In contrast, the NAC classifier
turned out to be the classifier that presented the lowest correlation in its performance with
complexity measures.

In future work, we intend to explore why some complexity measures showed a
stronger correlation than others for the compared associative classifiers.
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Abstract: Prognostics and health management (PHM) are gradually being applied to production
management processes as industrial production is gradually undergoing a transformation, turning
into intelligent production and leading to increased demands on the reliability of industrial equipment.
Remaining useful life (RUL) prediction plays a pivotal role in this process. Accurate prediction results
can effectively provide information about the condition of the equipment on which intelligent
maintenance can be based, with many methods applied to this task. However, the current problems
of inadequate feature extraction and poor correlation between prediction results and data still affect
the prediction accuracy. To overcome these obstacles, we constructed a new fusion model that extracts
data features based on a broad learning system (BLS) and embeds long short-term memory (LSTM)
to process time-series information, named as the B-LSTM. First, the LSTM controls the transmission
of information from the data to the gate mechanism, and the retained information generates the
mapped features and forms the feature nodes. Then, the random feature nodes are supplemented by
an activation function that generates enhancement nodes with greater expressive power, increasing
the nonlinear factor in the network, and eventually the feature nodes and enhancement nodes are
jointly connected to the output layer. The B-LSTM was experimentally used with the C-MAPSS
dataset and the results of comparison with several mainstream methods showed that the new model
achieved significant improvements.

Keywords: remaining useful life (RUL) prediction; broad learning system (BLS); long short-term
memory (LSTM); feature extraction

MSC: 68T20

1. Introduction

Remaining useful life (RUL) is the length of time that an equipment component or
system can operate from the current point in time until the point in time at which it is
no longer able to perform a specific function [1]. During the operation of equipment,
internal and external factors such as high temperature and corrosive working environment,
overload operation and illegal operation will cause the performance and health of its
components to deteriorate gradually. If appropriate maintenance measures are not taken
before components lose their function, not only will the normal operation of the equipment
be affected, but there is a risk of damage to the equipment due to damaged components.
By continuously monitoring and analyzing the equipment’s operating data, RUL prediction
helps managers make maintenance or replacement decisions before parts are damaged,
ensuring the reliability and safety of system operation and reducing economic losses.
Therefore, accurate prediction is essential for maintaining normal production. There
are three main types of prediction methods: (1) physics-based methods; (2) data-driven
methods; and (3) methods that integrate these two approaches [2,3]. In physics-based
methods, a mathematical model is usually constructed to describe the failure mechanism

Mathematics 2022, 10, 2066. https://doi.org/10.3390/math10122066 https://www.mdpi.com/journal/mathematics17



Mathematics 2022, 10, 2066

based on a particular piece of equipment and combined with the empirical knowledge of
that equipment and the defect growth equation [4,5] to predict the RUL of the equipment.
A model-based prognostic method was developed to overcome the influence of the number
of sensors on the prediction results. The method is not only an innovation in prediction
methods, but also demonstrated the superiority of the approach in reducing the sensor
set [6]. Model-based approaches have been shown to be robust in limited sensing scenes.
In addition, a method was proposed for online evaluation in cases where little is known
about the degradation process and extreme cases are considered: the entire degradation
process from start of operation to failure is not observed [7]. El Mejdoubi et al. [8] considered
aging conditions in predicting the RUL of supercapacitors where the posterior values of
capacitance and resistance are predicted by means of particle filters. Gears are important
transmission components and accurate RUL prediction is very important to determine the
condition of gearing systems. The accuracy of prediction using the digital twin method was
significantly improved due to its comprehensive health indicators [9]. However, physics-
based methods require corresponding degradation models based on specific objects and
usually are not universal. In addition, as the complexity of the equipment increases, it
becomes difficult to model the failure of system objects, limiting the development of RUL
prediction methods by model construction.

There are two important branches of data-driven methods, namely, statistical data-
driven methods and machine-learning(ML)-based methods, that are the current mainstream
methods for RUL prediction [10]. Statistical data-driven approaches are used to predict
system status based on monitoring data through statistical models without making as-
sumptions or empirical estimates of physical parameters. Park and Padgett [11] provided a
new model of accelerated degeneracy, mainly for faults in geometric Brownian motion or
gamma processes, with approximation operations using Birnbaum–Saunders and inverse
Gaussian distributions. Chehade and Hussein [12] proposed a multioutput convolutional
Gaussian process (MCGP) model that captures the cross-correlation between the capacities
of available battery cells and is very effective for long-term capacity prediction of lithium-
ion (Li-ion) batteries. Van Noortwijk et al. [13] proposed a method that combines two
stochastic processes to assess reliability over time. In [14], a degradation model based on
the Wiener process and using recursive filters to update the drift coefficients was developed
to predict the RUL. The prediction accuracy of physics-based methods depends on the
choice of degradation model, but the degradation models are distinctive for different types
of equipment. By contrast, statistical data-driven methods are valid in overcoming the
problems associated with model selection.

Recently, ML has matured in applications such as data mining, speech recognition,
computer vision, fault diagnosis and RUL prediction due to its powerful data processing
capabilities. ML-based prediction methods can overcome the problem of unknown degra-
dation models, as the input is not limited by the type of data but can be many different
types of data. ML used to predict RUL can be divided into shallow ML and deep learning
(DL) methods. The common shallow ML prediction methods are back-propagation (BP),
extreme learning machines (ELMs), support vector machines (SVMs) and relevance vector
machines (RVMs). BP-based neural networks have good long-term predictive capabilities.
Gebraeel et al. [15] established neural-network-based models to train the vibration data of
the bearings to obtain the expected failure time of the bearings. Since a single BP neural
network faces the problem of the weights falling into local optima and slow convergence
during training, some approaches combining other methods with BP algorithms have
been proposed. In [16], Wang et al. predicted the distribution of RUL of cooling fans by
building a time-series ARIMA model; the combination with a BP neural network model
improved the feature extraction ability of the model and improved the prediction accuracy.
ELMs have features such as fast learning speed and high generalization ability, and these
advantages are used in RUL prediction to feed the extracted features into ELM models for
training, thus improving the prediction accuracy [17]. Maior et al. [18] presented a method
combining empirical mode decomposition and SVM for degradation data analysis and
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RUL prediction. Improving the accuracy of prediction under uncertainty is a problem that
urgently needs to be solved. Wang et al. [19] extended the RVM to the probability manifold
to eliminate the negative impact of the RVM evidence approximation and underestimation
of hyperparameters on the prediction. Although some studies corroborate the effectiveness
of shallow ML in the field of RUL prediction, traditional shallow ML algorithms rely heavily
on the prior knowledge of experts and signal processing techniques, making it difficult to
automatically process and analyze large amounts of monitoring data.

By contrast, DL models aim to build deep neural network architectures that com-
bine low-dimensional features of the data to form more abstract high-level attributes with
strong feature learning capabilities. In 2006, the greedy layer-wise pretraining method
was proposed achieved a theoretical breakthrough in DL [20]. Subsequently, DL has had a
wide range of applications in several fields, such as image recognition [21], speech recog-
nition [22], fault diagnosis [23] and RUL prediction [24]. Deutsch et al. [25] combined
the feature extraction capabilities of DBNs with the superior predictive capabilities of
feedforward neural networks (FNNs) in predicting the RUL of rotating equipment. Based
on this approach, to obtain the probability distribution of the remaining lifetime, DBN was
effectively combined with particle filtering to further improve the prediction accuracy [26].
Deep neural networks (DNNs) have poor long-term prediction accuracy and need to be
combined with other methods for better performance. A convolutional neural network
(CNN) is a classical feedforward neural network with excellent characteristics such as pa-
rameter sharing and spatial pooling. In [27], a deep convolutional neural network (DCNN)
and time window approach were utilized for sample preparation and demonstrated the
extraction of more efficient features. To facilitate the fusion of comprehensive information,
a RUL prediction method was proposed that learns salient features automatically from
multiscale convolutional neural networks (MSCNN) and reveals the nonsmoothness of
bearing degradation signals through time–frequency representation (TFR) [28]. In contrast
to CNNs, recurrent neural networks (RNNs) are feedforward neural networks contain-
ing feedforward connections and internal feedback connections. Their special network
structure allows the retention of data information of the implicit layer at the previous
moment to be preserved and is often used to process monitoring vector sequences with
interdependent properties. Heimes [29] realized the prediction of the RUL based on the
RNN structure. However, due to the problems of vanishing and exploding gradients,
RNNs processing long-term monitoring sequences produce large prediction bias [30]. To ef-
fectively address long-term sequence problems, LSTM was used on top of RNN, which
made some improvements and allowed the gate structure to determine the information
features passed under optimal conditions [31]. Zhao et al. [32] constructed a hybrid model
based on the capsule neural network and long short-term memory network (Cap-LSTM)
to extract multivariate time-series sensor data, where the model is feature sensitive and
feature information is fully utilized resulting in improved prediction accuracy. A number
of variants have been proposed based on typical LSTM networks. The attention mechanism
can highlight key parts of time-series information and improve accuracy when predicting.
The local features of the original signal sequence were extracted by a one-dimensional
convolutional neural network, combined with a LSTM network and attention mechanism
to analyze sensor signals and predict RUL, improving the robustness of the model and
obtaining higher prediction accuracy [33]. DL is widely used for RUL prediction due to
its feature representation being stronger than shallow ML and its ability to handle large
amounts of data.

In addition, hybrid approaches based on physics-based and data-driven approaches
were developed, such as the method of Sunet et al. [34], where empirical model decomposi-
tion, Wiener processes and neural networks were combined to take full advantage of both
physical models and data-driven approaches. However, it is not easy to design a structure
that reflects the advantages of both methods; thus, the use of hybrid methods to predict
RUL is uncommon.

19



Mathematics 2022, 10, 2066

Although current ML algorithms perform well in the field of RUL prediction, and in
particular LSTM is effective in handling time-series data, there are still some drawbacks to
overcome when applying ML to RUL prediction. First of all, the existing methods suffer
from inadequate feature representation in RUL prediction, which affects their accuracy.
Secondly, the existing prediction models have to reconstruct the whole model and retrain
the parameters when a new data input is available, which is less efficient. To address this
problem, a new LSTM-based BLS algorithm is proposed. On the one hand, the BLS has
powerful feature representation and prediction capabilities and can accurately represent the
relationship between data characteristics and predicted outcomes. Meanwhile, compared
with DL, the BLS has a simple structure, a high training speed and the advantage of
incremental learning. When the network does not reach the expected performance, only
incremental learning is required and only the incremental part needs to be computed
without rebuilding the entire network. This significantly improves the efficiency of data
processing. In addition, LSTM can effectively process time-series data and avoid problems
such as parameter setting and single-time prediction randomness. On the other hand,
we hope to broaden the theoretical study of BLS networks by constructing a new fusion
network and applying it to practical production scenarios to create economic benefits.

We propose a method for predicting RUL that takes into account both feature extraction
and time-series information. It is hoped that sufficient feature extraction can improve the
prediction performance, and appropriately broaden the theory and application of the BLS.
Specifically, the main contributions and innovations of the work we have conducted are
listed below:

(1) A new LSTM-based BLS prediction method is proposed to extract the time-series
features of the data based on feature extraction, improving the ability of the prediction
results to represent the data features and enhancing the RUL prediction accuracy.

(2) The mechanism of model construction represents another innovation. Instead of
directly splicing the two methods, the new method is embedded by modifying the
internal structure and avoiding the redundancy of the model.

(3) The adaptation on the basis of a BLS enriches the practical significance of the BLS
framework, extends the scope of theoretical research and enables the achievement of
better results by integrating the BLS with other methods.

The rest of the paper is structured as follows. The constructed B-LSTM model and the
required related basics are introduced and presented in Section 2. Section 3 presents the
experimental data required and the experimental design. Section 4 applies the dataset for
validation of the model performance and comparison with other methods. A summary of
the model and possible future research directions are shown in Section 5.

2. Related Work

2.1. Broad Learning System (BLS)

With the continuous development of deep learning, deep networks are widely used in
various research fields, but the disadvantages are also more obvious. In order to achieve
higher accuracy, the number of network layers has to be gradually increased; however,
this consumes more computational resources and causes overfitting to occur in small
sample data processing. A BLS is built based on a single hidden layer neural network
and uses lateral scaling to improve accuracy and avoid complex hyperparameters. The
unique feature node and enhancement node structure also provides a strong guarantee for
adequate feature extraction.

The BLS was established by C. L. Philip Chen on the basis of a random vector
functional-link neural network (RVFLLNN) and compensated for its shortcomings in
handling large-volume and time-varying data [35]. In addition, the multiple variants
proposed in the course of subsequent research showed flexibility, stability and remarkable
results in classification and regression of semi-supervised and unsupervised tasks [36]. The
structure of the BLS is shown in Figure 1. The network structure is constructed using the
following steps. First, the mapping of input data to feature nodes is established, and then
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the enhancement nodes are formed through a nonlinear activation function. Eventually,
the feature nodes and the enhancement nodes are combined as outputs, and the output
weight can be directly found through pseudo-inverse ridge regression.

Figure 1. Structure of the BLS network. The Yellow ellipse on the left is the calculation formula for
converting input data into feature nodes, the earthy yellow circle on the left is the generated feature
nodes, the green rectangle on the right is the calculation formula for converting the left feature nodes
into enhancement nodes, the light yellow circle on the right is the generated enhancement nodes, and
the blue circle on the top is the output.

The BLS is constructed as follows:
The given data are subjected to a random weight matrix for feature mapping to obtain

a feature matrix with the aim of dimensionality reduction and feature extraction. The ith
mapped feature is:

Zi = φi(XWei + βei), i = 1, 2, . . . , n (1)

Here, the parameters Wei and the bias βei are randomly initialized. We denote
Zn � (Z1, Z2, . . . , Zn) as the collection of groups of feature nodes. Then, they are sent
to the enhancement nodes.

Similarly, the jth group enhancement nodes are:

Hj = ξ j(ZnWhj + βhj), j = 1, 2, . . . , m (2)

By introducing a nonlinear activation function, the feature nodes are mapped non-
linearly to a higher dimensional subspace and the nonlinear element in the network is
enhanced. In addition, the outputs of the enhancement layer are denoted as
Hm � (H1, H2, . . . , Hm).

Finally, the output of the BLS consists of feature nodes and enhancement nodes
together, which can be expressed as follows:

Y = [Z1, . . . , Zn

∣∣∣ξ(ZnWh1 + βh1), . . . , ξ(ZnWhj + βhj)]Wm
n

= [Z1, . . . , Zn|H1, . . . , Hm]Wm
n

= [Zn|Hm]Wm
n

= Am
n Wm

n

(3)

Wm
n are the weights that connect the feature nodes and the enhancement nodes to

the output and Wm
n = [Zn|Hm] +Y, where the pseudo-inverse [Zn|Hm] + can be directly

calculated by ridge regression.

2.2. Long Short-Term Memory (LSTM)

The LSTM network structure is built on top of the RNN. The memory cell structure is
illustrated in Figure 2. In dealing with the problem of long-term sequences, a cell state is
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added, which determines whether past and present information can be added through a
gating mechanism, overcoming the “gradient vanishing” and “gradient explosion” prob-
lems of the RNN. LSTM has three gates to control the flow of information in the network.
The forget gate ft controls how much of the previous state ct−1 can be retained. The input
gate it determines whether to use the current input to update the information of the LSTM.
The output gate ot determines which parts of the current cell state need to be outputted to
the next layer for iteration.

ft = σ(W( f )xt + V( f )ht−1 + b f ) (4)

it = σ(W(i)xt + V(i)ht−1 + bi) (5)

ot = σ(W(o)xt + V(o)ht−1 + bo) (6)

ct = ft ⊗ ct−1 + it ⊗ tanh(W(c)xt + V(c)ht−1 + bc) (7)

ht = ot ⊗ tanh(ct) (8)

where xt is the data entered into the memory cell for training and ht is the output in each
cell. In addition, W, V and b are the weight matrix and biases, respectively, σ is the sigmoid
activation function used to control the weight of the message passing through and ⊗ is the
dot product.

Figure 2. Long short-term cell structure. The blue circle at the bottom is the input data of a cell of the
LSTM. The orange rectangular part is the forget gate, input gate and output gate. The yellow part is
the calculation formula for generating forget gate, input gate and output gate. The orange circular
part is the operator for generating forget gate, input gate and output gate.

Specifically, the update process of a cell state can be divided into the following steps:
(1) determine what useless information is discarded from the state of the previous time
step; (2) extract the valid information that can be added to the state cell at the current time
step; (3) calculate the state unit of the current time step; and (4) calculate the output of the
current time step.

Variants of LSTM as part of a prediction model that take full advantage of LSTM in
processing time-series information are also a common approaches in current research.
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2.3. LSTM-Based Broad Learning System (B-LSTM)

For RUL prediction, more accurate predictions are always obtained by fully learn-
ing both the time-series information and feature information of the given data. When
performing time-series forecasting, the serial information of the data cannot be learned
simply by constructing a framework of mapped features. Therefore, in order to construct
a prediction model with comprehensive coverage, a model based on BLS and introduc-
ing LSTM is proposed, named B-LSTM. The intuitive idea is to enhance the extraction
of time-series information based on the extraction of feature information. The flow is
shown in Algorithm 1. In the original BLS framework, each attribute xi ∈ X ∈ RD must
be independent of the others, and due to this independence, each matrix can learn the
features through the variation of different weights. The construction mechanism of the
B-LSTM is shown in Figure 3. In this figure, unlike the standard BLS, the raw data are
first fed into the LSTM to learn the time-series information. The resulting output is then
transformed nonlinearly to generate enhancement nodes that extract deeper features and
increase the nonlinear fitting capability of the model. Finally, the state output of the LSTM
is connected to the output as a feature layer and an enhancement node. The feature matrix
and enhancement matrix of the B-LSTM structure are represented as:

Zi = oi ⊗ tanh(ci), i = 1, 2, . . . , n (9)

Hj = ξ j(ZnWhj + βhj), j = 1, 2, . . . , m (10)

where Zn � (Z1, Z2, . . . , Zn) is the collection of n groups of feature nodes obtained by the
calculation of the LSTM network. Finally, the connections of all of the mapped features and
the enhancement nodes are sent to the output layer. The dynamic equation of B-LSTM is
shown below:

Y = [Z1, . . . , Zn

∣∣∣ξ(ZnWh1 + βh1), . . . , ξ(ZnWhj + βhj)]Wm
n (11)

Figure 3. Structure of the B-LSTM network. Multiple orange circles in the left rectangle are the input
data. The upper part in the middle indicates that the feature nodes of the new model are replaced
by LSTM, the yellow circle in the LSTM part is the input data, the green circle is the feature nodes
output by the new model, the lower part in the middle is the enhancement nodes generated by the
feature nodes generated by LSTM, the feature nodes and enhancement nodes are connected to the
output together, and the red circle on the right is the output of the model.
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Algorithm 1: B-LSTM Model

Input: Training data X, Y;
Output: the output weights W;
1: for i = 1; i <= n; i ++do

2: Calculate ct = ft ⊗ ct−1 + it ⊗ tanh(Wcxt + Vcht−1 + bc);
3: Calculate Zi = oi ⊗ tanh(ci), i = 1, 2, . . . , n;
4: end for

5: Set Zn � (Z1, Z2, . . . , Zn);
6: for j = 1; j <= m; j ++do

7: Random Whj, βhj;
8: Calculate Hj = ξ j(ZnWhj + βhj), j = 1, 2, . . . , m;
9: end for

10: Set Hm � (H1, H2, . . . , Hm);
11: Set Am

n and calculate (Am
n )

+ Equation (11);
12: Calculate W

3. Experimental Procedure and Analysis

3.1. C-MAPSS Dataset

The C-MAPSS dataset contains aircraft turbofan engine degradation simulation data,
including simulated sensor data generated by different turbofan engines over time; this
dataset was selected for training and evaluation of the effectiveness of the proposed model.
Table 1 shows that the dataset consists of four sub-datasets, FD0001, FD0002, FD0003
and FD0004, where both the FD001 and FD003 datasets contain 1 operational condition
and contain 1 and 2 fault types, respectively, whereas FD002 and FD004 both contain 6
operational conditions and contain 1 and 2 fault types, respectively. These sub-datasets
consist of engine numbers, serial numbers, configuration items and sensor data obtained
from 21 sensors, simulating the progressive degradation of the engine from a healthy state
to failure for different initial conditions.

Table 1. Parameters of the dataset.

Sub-Dataset
C-MAPSS

FD001 FD002 FD003 FD004

Training trajectories 100 260 100 249
Testing trajectories 100 259 100 248

Operating conditions 1 6 1 6
Fault modes 1 1 2 2

Each of the four sub-datasets contains a training set and a test set in which the actual
RUL values of the test engine are also included. The training set includes all data from the
start of the turbofan engine’s operation until its degradation and failure. In the test set,
however, the data start from a healthy state and are subsequently arbitrarily truncated; the
operating time periods up to the point of system failure were calculated from these data.

3.2. Performance Measures

To quantitatively assess the performance of the model, we compared the prediction
results of the new model and the predictions of this model were compared with those
of other network structures. Two objective evaluation metrics, namely, RMSE and Score,
are introduced in this paper, where d = Rpred − Ractual ; when the prediction error d is 0,
RMSE and Score are both the minimum values of 0. As the absolute value of d increases,
the two evaluation indices are increased. The difference is that when d > 0, Score gives
different penalty weights for model prediction lag and prediction advance. If the predicted
value is smaller than the true value, it means that the prediction is ahead and the penalty
coefficient is smaller, and conversely, lagging brings more serious consequences and the
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penalty coefficient is larger. Predicting the RUL value earlier allows for earlier maintenance
planning and avoidance of potential losses.

RMSE =

√
∑n

i=1 (d)
2

n
(12)

Score =

⎧⎨⎩∑n
i=1 e−( d

13 ) − 1, d < 0

∑n
i=1 e−( d

10 ) − 1, d ≥ 0
(13)

3.3. Experimental Setup

Our experimental equipment was a personal computer with an Intel Core i5 CPU, 16GB
RAM and NVIDIA GTX 1080ti GPU. The operating system was Windows 10 Professional
and the programming platform was MATLAB R2019b.

First, data filtering was performed on the dataset, and in each dataset, a single sampled
data sample consisted of 26 variables, of which the first 2 variables represented the engine
sequence number and the cycle sequence number, the last 3 variables represented the
operation setting items and the remaining 21 variables represented the detection values
obtained by the 21 sensors. The third position of the operation setting term and the sensor
values with sequence numbers 1, 5, 6, 10, 16, 18 and 19 were unchanged and had no effect
on the prediction results, so they were filtered out. Then, since the sensors were of different
types and the selected data were of different magnitudes, we made the range of values
uniform across the data by data normalization. Finally, we divided the data into training
and validation sets proportionally, set the training parameters and inputted the processed
training and validation sets into the model for model training.

4. Results and Discussion

4.1. RUL Prediction

To verify the performance of the B-LSTM model, we inputted the datasets into the
model and roughly determined whether the model can effectively predict based on the
fit between the true and predicted values of the RUL. The prediction results are shown in
Figure 4. The red solid line indicates the true RUL value, whereas the green scatter plot
indicates the predicted value. As can be seen from the figure, the B-LSTM was able to depict
the trend of RUL variation for each test set. This shows that the improved structure of
extracting time-series information and feature information can be more effective in making
predictions. In addition, in the FD001 and FD003 datasets, the B-LSTM model made better
predictions compared to the other two datasets because in these two sub-datasets the failure
modes and operating conditions were relatively simple. Although the operating conditions
and failure modes in the FD002 and FD004 test sets were more complex, they basically
described the changing trend of the equipment RUL.

We can see that the true value of RUL in the FD003 sub-dataset in the prediction result
plot continued to be constant at the beginning; this is because after our practical verification,
due to the smoother operating conditions, the RUL in FD003 remained basically stable at
the beginning of the operation and can be considered as constant, and only at a later stage
did a linear decline occur as the RUL of the device did not change uniformly with time.
In order to make better predictions of RUL, we processed the labels of FD003 training data.
The RUL was set to a fixed value when the operating cycle of the device was less than 60,
and decreased gradually with the growth of the operating cycle when the operating cycle
was greater than 60, as the device gradually declined.
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Figure 4. B-LSTM-based prediction results.

4.2. Performance Evaluation

To verify the performance of the model, we compared the proposed method with other
existing RUL prediction methods, including MLP [37], SVR [37], CNN [37], LSTM [38],
ELM [39], and BiLSTM [40]. The comparison results are shown in Table 2. From Figure 5,
we can see that the RMSE of the proposed method was smaller than the other methods
in all four sub-datasets, especially in FD001 and FD003, where it achieved good results.
Similarly, in Figure 6 it is clear that the Score of the new method improved as compared
to the other methods. The comparison results show that the method we constructed can
fully extract the features of the data and, thus, obtain more accurate prediction results.
In addition, the FD001 and FD003 datasets performed better for each prediction method
compared to the other two datasets because the turbine engines in the FD001 and FD003
datasets have fewer operating conditions and can maintain smooth operating conditions
during the operating period.

Table 2. Model performance comparison on the C-MAPSS dataset.

Method
RMSE/Score

FD001 FD002 FD003 FD004

MLP 37.56/18,000 80.03/7,800,000 37.39/17,400 77.37/5,620,000
SVR 20.96/1380 42.0/590,000 21.05/1600 45.35/371,000
CNN 18.45/1290 30.29/13,600 19.82/1600 29.16/7890
LSTM 16.14/338 24.49/4450 16.18/852 28.17/5550
ELM 17.27/523 37.28/498,000 18.47/574 30.96/121,000

BiLSTM 13.65/295 23.18/41,300 13.74/317 24.86/5430
Proposed method 12.45/279 15.36/4250 13.37/356 16.24/5220
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Figure 5. The results of RMSE comparison among different methods.

Figure 6. The results of Score comparison among different methods.

5. Conclusions

There are a variety of methods for predicting RUL in the existing research, but these
methods can have some problems in actual prediction, such as ignoring time-series features,
features not being sufficiently extracted, etc. We proposed a new method for predicting
RUL and demonstrated that the method improves prediction performance. Specifically,
a new BLS network integrated with LSTM, named B-LSTM, is essential for enriching the
theoretical knowledge of RUL prediction.

Theoretically, this network retains the time-series information in the input data while
performing sufficient feature extraction so that the output of the model remains strongly
correlated with the input data and the interpretability and accuracy of the model is en-
hanced. In addition, when the model performance was validated using the C-MAPSS
dataset, the results obtained were significantly better than other models. Therefore, the
B-LSTM performed well in both theoretical construction and data validation. Although
this study achieved ideal conclusions, the experimental results of one dataset may be
serendipitous; therefore, in the following research, we will use more different datasets to
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verify the scientificity and generalizability of the proposed model. In addition, this research
did not pay too much attention to the training time of the model. In later work, we will
focus on further optimizing the model structure to shorten the training time so that the
model can be processed quickly and, at the same time, achieve a satisfactory accuracy.
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Abstract: This paper introduces the extended description of a database that contains emotional speech
in the Russian language of younger school age (8–12-year-old) children and describes the results of
validation of the database based on classical machine learning algorithms, such as Support Vector
Machine (SVM) and Multi-Layer Perceptron (MLP). The validation is performed using standard
procedures and scenarios of the validation similar to other well-known databases of children’s
emotional acting speech. Performance evaluation of automatic multiclass recognition on four emotion
classes “Neutral (Calm)—Joy—Sadness—Anger” shows the superiority of SVM performance and
also MLP performance over the results of perceptual tests. Moreover, the results of automatic
recognition on the test dataset which was used in the perceptual test are even better. These results
prove that emotions in the database can be reliably recognized both by experts and automatically
using classical machine learning algorithms such as SVM and MLP, which can be used as baselines
for comparing emotion recognition systems based on more sophisticated modern machine learning
methods and deep neural networks. The results also confirm that this database can be a valuable
resource for researchers studying affective reactions in speech communication during child-computer
interactions in the Russian language and can be used to develop various edutainment, health care,
etc. applications.

Keywords: speech emotion recognition; child speech; younger school age

MSC: 68T10

1. Introduction

Speech Emotion Recognition (SER) systems are currently being intensively used
in a broad range of applications, including security, healthcare, videogaming, mobile
communications, etc. [1]. The development of SER systems has been a hot topic of research
in the field of human-computer interaction for the past two decades. Most of these studies
are focused on emotion recognition from adult speech [2–5], and only a few are from
children’s speech [6–9]. This follows from the fact that sizable datasets of children’s speech
with annotated emotion labels are still not publicly available in the research community,
which leads most researchers to focus on SER for adults.

The reason is that it is difficult to get a wide range of emotional expressions in chil-
dren’s speech due to the following. Children, especially those of primary school age, find
it difficult to pronounce and read long texts, and it is more difficult for children than
adults to express emotions in acting speech if a child has not experienced these emotions
before. School-age children commonly demonstrate a limited range of emotions when
interacting with unfamiliar adults due to differences in social status and with regard to
training. Generally, children show vivid emotions when interacting with peers, but this
situation is usually accompanied by strong noise and overlapping voices. Due to ethical
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standards, the provocation of vivid negative emotions, such as fear, sadness and anger
should be allowed by an informed consent to be signed by the parents. However, not all of
them are ready to provide such consent.

However, children are potentially the largest class of users of educational and enter-
tainment applications with speech-based interfaces.

The characteristics of a child’s voice are significantly different from those of an adult’s
voice. The child’s voice’s clarity and consistency of speech are low compared to an adult [10],
while acoustic and linguistic variability in children’s speech is high, which creates chal-
lenges for emotion recognition. Another severe problem is the paucity of publicly available
transcribed linguistic resources for children’s speech. Moreover, research on SER faces
the problem that most available speech corpora differ from each other in important ways,
such as methods of annotation and scenarios of interaction [11–13]. Inconsistencies in these
methods and scenarios make it difficult to build SER systems.

All of the above-mentioned problems make the task of developing automatic emotion
recognition in children’s speech non-trivial, especially taking into account variations of
acoustic features within genders, age groups, languages, and developmental characteris-
tics [14]. For example, the authors of [15] report that the average accuracy of emotional
classification is 93.3%, 89.4% and 83.3% for male, female, and child utterances, respectively.

Our analysis of databases of children’s emotional speech created over the past 10 years
has shown that they cover mainly monolingual emotional speech in such languages as
English, Spanish, Mexican Spanish, German, Chinese, and Tamil. The only database of
children’s emotional speech in Russian is EmoChildRu [16], which was used to study
manifestations of the emotional states of three- to seven-year-old children in verbal and
non-verbal behavior [17].

Children of three to seven years of age were selected for their ability to maintain a
communication with an adult while expressing more pure natural emotions than older
children. The socialization of children in accordance with cultural norms and traditions
mostly begins with schooling which, in the Russian Federation, starts at six to seven years
old. This period characterizes the end of the preschool age.

Nevertheless, other databases we have analyzed consist mostly of children’s speech of
the younger school age group. The particular qualities of the primary school children are,
on the one hand, the partial mastery of accepted cultural norms of emotional manifestations;
while on the other hand, they represent the presence of natural spontaneous emotional
manifestations characteristic of children of this age.

It is highlighted in [18] that the expansion of existing corpora of child-machine com-
munications is necessary for building more intricate emotional models for advanced speech
interactive systems designed for children. These new corpora can include other languages
and age groups, more subjects, etc. Therefore, our recent works have included the collect-
ing of children’s emotional speech of younger school age (8–12-year-olds) in the Russian
language, as studies of children’s emotion recognition by voice and speech in Russian are
sparse, especially for the younger school age group.

There are several key features of our corpus. Firstly, this is the first large-scale corpus
dealing with Russian children’s speech emotions, which includes around 30 h of speech.
Secondly, there are 95 speakers in this corpus. Such a large number of speakers makes it
possible to research techniques for speaker-independent emotion recognition and analysis.
To validate the dataset [19,20], a subset of 33 recordings was evaluated by 10 Russian ex-
perts [21] who conducted manual tests to understand how well humans identify emotional
states in the collected dataset of emotional speech of Russian speaking children. Results of
manual evaluation validate the database reliability compared with other databases and the
ability of native-speaking experts to recognize emotional states in children’s speech in the
Russian language with above chance performance.

In this article we report the results of experiments on SER conducted using our propri-
etary database and state-of-the-art machine learning (ML) algorithms. Such experiments
are usually conducted to validate the ability to recognize emotional states in children’s

31



Mathematics 2022, 10, 2373

speech on specific databases in automatic mode with above chance performance. The
article presents the results of the experiments and compares them both with results of SER
in manual mode and results of SER in automatic mode from other authors for the same age
group and the same ML algorithms.

It is noted in [22] that neural networks and Support Vector Machine (SVM) behave
differently, and each have advantages and disadvantages for building a SER; however, both
are relevant for the task. Multi-Layer Perceptron (MLP) is the “basic” example of a neural
network. Therefore, to get a general impression of our dataset, we conducted baseline
speech emotion recognition experiments using two of the state-of-the-art machine learning
techniques most popular in emotion recognition, these being SVM and MLP [23,24]. These
classifiers have already been used to validate several databases of emotional speech [25]
and have shown superior classification accuracy on small-to-medium size databases.

The main contributions of this study are as follows:

1. An extended description of the Russian Younger School Children Emotional Speech
(SCES-1) database is provided.

2. Validation of the SCES-1 dataset in automatic mode based on SVM and MLP algorithms
to recognize above chance emotional states in the speech of Russian children of the
younger school age group (8–12-year-old) is undertaken.

The remainder of this paper is structured as follows. In Section 2, the various existing
corpora and both features and classifiers used in the literature for SER are discussed.
Section 3 provides a detailed description of our proprietary dataset. In Section 4 we
define the experimental setup describing our choice of tools to extract feature sets, tools to
implement classifiers and evaluate the results of classification and procedures for training
and testing. In Section 5, we provide the experimental results. Finally, Section 6 presents
the discussion and conclusions, and topics for future research are discussed.

2. Related Work

There are a lot of studies on emotion manifestations in the voice and other biometric
modalities. Recently, attention to research on automatic methods of emotion recognition in
speech signals has increased due to the development of new efficient methods of machine
learning, the availability of open access corpora of emotional speech and high-performance
computing resources.

In the last decade, many SER systems have been proposed in the literature. There are
numerous publications and reviews on three traditional SER issues: databases, features,
and classifiers. Swain et al. [11] reviewed studies on SER systems in the period from 2000 to
2017 with a strong emphasis on databases and feature extraction. However, only traditional
machine learning methods were considered as a classification tool, and the authors missed
neural networks and deep learning approaches. The authors of [26] covered all the major
deep learning techniques used in SER, from DNNs to LSTMs and attention mechanisms.

In this section, we summarize some of the most relevant recent research on SER,
focusing on children’s speech. In doing so, we pay special attention to those approaches
that use the same feature extraction (FE) and machine learning (ML) methods used in
this article.

2.1. Children’s Emotion Speech Corpora

Over the past three decades, many emotional datasets and corpora have been created
in audio or audiovisual modalities [12,26–28]. Some of them are related to natural emotions
(spontaneous emotions from real-life situations), while others are related to acted (simu-
lated, for example, by actors) or elicited (induced/stimulated through emotional movies,
stories, and games) emotions. Spontaneous emotions are preferable, but they are difficult to
collect. Therefore, most of the available emotional speech corpora contain acted emotional
speech. Moreover, the emotional corpora are mainly related to adult speech.

Corpora related to children’s speech have also been created over the past three
decades [29], but they are not so numerous, and only a few of them are related to children’s
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emotional speech. Most of the corpora are in the English language, but some of them are in
the German, French, Spanish, Mandarin, Sesotho, Filipino, and Russian languages. More-
over, these corpora vary not only by language but also by children’s age range, different
specific groups like specific language impairment [30], autism spectrum disorder [31], etc.

We briefly describe the eight most famous corpora with children’s emotional speech
in Table 1.

• MESD (Mexican Emotional Speech Database) [15,32], presented in 2021. A part of
the MESD with children’s speech has been uttered by six non-professional actors
with mean age of 9.83 years and a standard deviation of 1.17. The database contains
288 recordings of children’s speech with six different emotional categories: Anger,
Disgust, Fear, Happiness, Sadness, and Neutral. The results of the evaluation of
the database reliability based on machine learning analysis showed the accuracy of
83.3% of emotion recognition on children’s voices. An SVM was used as a classifier
together with a feature set with prosodic, voice quality and spectral features. MESD is
considered a valuable resource for healthcare, as it can be used to improve diagnosis
and disease characterization.

• IESC-Child (Interactive Emotional Children’s Speech Corpus) [18], presented in 2020.
A Wizard of Oz (WoZ) setting was used to induce different emotional reactions in
children during speech-based interactions with two Lego Mindstorm robots behav-
ing either collaboratively or non-collaboratively. The IESC-Child corpus consists of
recordings of the speech spoken in Mexican Spanish by 174 children (80 girls and
94 boys) between six and 11 years of age (8.62 mean, 1.73 standard deviation). The
recordings included 34.88 h of induced speech. In total, eight emotional categories
are labeled: Anger, Disgust, Fear, Happiness, Sadness, Surprise, Neutral, and None
of the above. The research on building acoustic paralinguistic models and speech
communication between a child and a machine in Spanish utilized the IESC-Child
dataset with prominent results.

• EmoReact (Multimodal Dataset for Recognizing Emotional Responses in Children) [33],
presented in 2016. A multimodal spontaneous emotion dataset of 63 (31 males, 32 fe-
males) children ranging between four and 14 years old. It was collected by down-
loading videos of children who react to different subjects such as food, technology,
YouTube videos and gaming devices. The dataset contains 1102 audio-visual clips
annotated for 17 different emotional categories: six basic emotions, neutral, valence
and nine complex emotions.

• CHEAVD (Chinese Natural Emotional Audio–Visual Database) [34], presented in 2016.
A large-scale Chinese natural emotional audio–visual corpus with emotional segments
extracted from films, TV plays and talk shows. The corpus contains 238 (125 males,
113 females) speakers from six age groups: child (<13), adolescent/mutation (13–16),
youth (16–24), young (25–44), quinquagenarian (45–59), and elder (≥60). Over 141 h
of spontaneous speech was recorded. In total, 26 non-prototypical emotional states,
including the basic six, are labeled by four native speakers.

• EmoChildRu (Child emotional speech corpus in Russian) [16,17], presented in 2015.
This contains audio materials from 100 children ranging between three and seven
years old. Recordings were organized in three model situations by creating different
emotional states for children: playing with a standard set of toys; repetition of words
from a toy-parrot in a game store setting; watching a cartoon and retelling the story,
respectively. Over 30 h of spontaneous speech were recorded. The utterances were
annotated for four emotional categories: Sadness, Anger, Fear, Happiness (Joy). The
data presented in the database are important for assessing the emotional development
of children with typical maturation and as controls for studying emotions of children
with disabilities.

• ASD-DB (Autism Spectrum Disorder Tamil speech emotion database) [35], presented
in 2014. This consists of spontaneous speech samples from 25 (13 males, 12 females)
children ranging between five and 12 years old with autism spectrum disorder. The
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children’s voices were recorded in a special school (open space) using a laptop with
a video camera. Recordings were taken in wav format at a sampling rate 16,000 Hz
and a quantization of 16 bits. The emotion categories included Anger, Neutral, Fear,
Happiness, and Sadness. The database was validated using MFCC features and an
SVM classifier.

• EmoWisconsin (Emotional Wisconsin Card Sorting Test) [36], presented in 2011. This
contains spontaneous, induced and natural Spanish emotional speech of 28 (17 males,
11 females) children ranging between 7 and 13 years old. The collection was recorded
in a small room with little noise using two computers, a desktop microphone and a
Sigmatel STAC 9200 sound card. Recordings are mono channel, with 16 bit sample size,
44,100 kHz sample rate and stored in WAV Windows PCM format. We recorded 11.38 h
of speech in 56 sessions, two sessions per child over seven days. The total number of
utterances was 2040, annotated for seven emotional categories: Annoyed, Confident,
Doubtful, Motivated, Nervous, Neutral, and Undetermined. For the database valida-
tion based on categorical classification we used an SVM algorithm with 10-fold cross
validation. The results of the validation showed a performance above chance level
comparable to other publicly available databases of affective speech such as VAM
and IEMOCAP.

• FAU-AIBO (Friedrich-Alexander-Universität corpus of spontaneous, emotionally col-
ored speech of children interacting with Sony’s pet robot Aibo) [37,38], presented in
2006. The corpus was collected from the recordings of children interacting with Sony’s
pet robot Aibo. It consists of spontaneous, emotionally colored German/English
speech from 51 children (21 males, 30 females) ranging between 10 and 13 years old.
The total number of utterances is 4525 with a total duration of 8.90 h. The audio was
recorded by using a DAT recorder (16-bit, 16 kHz). Five annotators labeled each word
individually as Neutral (default) or using one of the other ten emotions: Angry, Bored,
Joyful, Surprised, Emphatic, Helpless, Touchy (=Irritated), Motherese, Reprimand-
ing, Rest (non-Neutral, but not belonging to the other categories). The final label
was defined using the majority voting procedure. For the database validation based
on classification we used a neural network. The results of validation showed that
the performance of speech emotion classification on the FAU-AIBO corpora is above
chance level.

Table 1. Corpora of children’s emotional speech—main features.

Corpus Subjects Language Age Groups

MESD [15,32] 8 Spanish 8–11
IESC-Child [18] 174 Spanish 6–11
EmoReact [13] 63 English 4–14
CHEAVD [34] 3; 5 Chinese <13; 13–16

EmoChildRu [16,17] 100 Russian 3–7
ASD-DB [35] 25 Tamil 5–12

EmoWisconsin [36] 28 Spanish 7–13
FAU Aibo [37,38] 51 German 10–13

The results of the analysis of the available children’s emotion speech corpora show that
they are all monolingual. The corpora contain mainly emotional speech of the school age
group, with the exception of EmoChildRu (preschool age group) and CHEAVD (adolescence
and adult age groups). All of the corpora were validated using manual perceptual tests
and/or automatic SVM/MLP classifiers with different feature sets. The results of validation
showed that performance of speech emotion classification on all the corpora is well above
chance level.
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2.2. Speech Emotion Recognition: Features and Classifiers

The classic pattern recognition task can be defined as the classification of patterns
(objects of interest) based on information (features) extracted from patterns and/or their
representation [39]. As noted in [40], a selection of suitable feature sets, design of proper
classification methods and preparation of appropriate datasets are the key concerns of
SER systems.

In the feature-based approach to emotion recognition, we assume that there is a set of
objectively measurable parameters in speech that reflect the emotional state of a person. The
emotion classifier identifies emotion states by identifying correlations between emotions
and features. For SER, many feature extraction and machine learning techniques have been
extensively developed in recent times.

2.2.1. Features

Selecting the best feature set powerful enough to distinguish between different emo-
tions is a major problem when building SER systems. The power of the selected feature set
has to stay stable in the presence of various languages, speaking styles, speaker’s charac-
teristics, etc. Many models for predicting the emotional patterns of speech are trained on
the basis of three broad categories of speech features: prosody, voice quality, and spectral
features [5].

In emotion recognition the following types of features are found to be important:

• Acoustic features of prosodic: pitch, energy, duration.
• Spectral features: MFCC, GFCC, LPCC, PLP, formants.
• Voice quality features: jitter, shimmer, harmonics to noise ratio, normalized amplitude

quotient, quasi-open quotient.

Most of the well-known feature sets include pitch, energy and their statistics, which
are widely used in expert practice [21].

For automatic emotion recognition, we have used three publicly available feature sets:

• INTERSPEECH Emotion Challenge set (IS09) [41] with 384 features. It was found
that the IS09 feature set provides good performance of children’s speech emotion
recognition. Nevertheless, we conducted some experiments with other feature sets.

• Geneva Minimalistic Acoustic Parameter Set (GeMAPS) and the extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS). They are popular in the field of
affective computing [42]. The GeMAPS family features include not only prosody
but also spectral and other features. The total GeMAPS v2.0.0 feature set contains
62 features and the eGeMAPSv02 feature set contains 26 extra parameters, for a total
of 88 parameters.

• DisVoice feature set. This is a popular feature set that has shown good performance in
such tasks as recognition of emotions and communication capabilities of people with
speech disorders and issues such as depression based on speech patterns [43]. The
DisVoice feature set includes glottal, phonation, articulation, prosody, phonological,
and features representation learning strategies using autoencoders [43]. It is well
known that prosodic and temporal characteristics have often been used previously to
identify emotions [5]. Therefore, our next experiments were with the DisVoice prosody
feature set.

2.2.2. Classifiers

Many different classification methods are used to recognize emotions in speech. There
are a lot of publications on using different classifiers in SER [23,25]. The most popular
are classical machine learning (ML) algorithms, such as Support Vector Machines (SVM),
Hidden Markov Models (HMM), Gaussian Mixture Models (GMM), Neural Networks
(NN), and Multi-Layer Perceptron (MLP) as the “basic” example of NN. Currently, we
see the massive application of deep learning (DL) in different fields, including SER. DL
techniques that are used to improve SER performance may include Deep Neural Networks
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(DNN) of various architectures [26], Generative Adversarial Networks (GAN) [44,45],
autoencoders [46,47], Extreme Learning Machines (ELM) [48], multitask learning [49],
transfer learning [50], attention mechanisms [26], etc.

The choice of a classification algorithm depends mainly on the properties of the data
(e.g., number of classes), as well as the nature and number of features. Taking into account
the specifics of children’s speech, we must choose a classification algorithm that could be
effective in multidimensional spaces on a relatively small-to-medium database size and
with low sensitivity to outlier values.

The analysis of the literature shows that the best candidates are SVM and MLP classi-
fiers, where SVM is a deterministic and MLP is a non-deterministic supervised learning
algorithm for classification. SVM and MLP are baseline classifiers in numerous studies on
emotion speech recognition.

First of all, traditional ML algorithms could provide reliable results in the case of
small-to-medium size of training data [51–53]. Second, SVM and MLP classifiers often
demonstrate better performance than others [22,23,54]. Some experiments have shown a
supercity of SVM and MLP for emotion recognition over classical Random Forest, K-NN,
etc. classifiers [54] and also over different deep neural network classifiers [55]. The failure
of neural network classifiers in emotion recognition can be explained by the small size of
available emotional databases, which are insufficient for training deep neural networks.

We chose to work with an SVM model to evaluate the validity of an emotional database,
as it is capable of producing meaningful results with small-to-medium datasets (unlike
algorithms such as deep neural networks) and its ability for handling high-dimensional
spaces [1]. In [55], it was shown that the SVM classifier outperforms Back Propagation
Neural Networks, Extreme Learning Machine and Probabilistic Neural Networks by 11 to
15 percent, reaching 92.4% overall accuracy. In [56] it was also shown that SVM works
systematically better than Logistic Regression and LSTM classifiers on the IS09 Emo-
tion dataset.

MLP is the “basic” example of NN. It is stated in [22] that MLP is the most effective
speech emotion classifier, with accuracies higher than 90% for single-language approaches,
followed closely by SVM. The results show that MLP outperforms SVM in overall emotion
classification performance, and even though SVM training is faster compared to MLP, the
ultimate accuracy of MLP is higher than that of SVM [57]. SVM has a lower error rate than
other algorithms, but it is inefficient if the dataset has some noise [57].

The use of SVM and MLP classifiers allows us to compare the performance of emotion
recognition on our database with the performance of the same classifiers on other known
databases of children’s emotional speech.

Moreover, the results of classification by SVM and MLP can be used as a baseline point
for comparison with other models, such as deep neural networks (CNN, RNN, etc.), to see
if they provide better performance for SER.

3. Corpus Description

To study emotional speech recognition of Russian typically developing children aged
8–12 years by humans and machines, a language-specific corpus of emotional speech
was collected. The corpus contains records of spontaneous speech and acting speech of
95 children with the following information about children: age, place and date of birth, data
on hearing thresholds (obtained using automatic tonal audiometry), phonemic hearing and
videos with facial expressions and the behavior of children.

3.1. Place and Equipment for Speech Recording

The place for speech recording was the room without special soundproofing.
Recordings of children’s speech were made using a Handheld Digital Audio Recorder

PMD660 (Marantz Professional, inMusic, Inc., Sagamihara, Japan) with an external hand-
held cardioid dynamic microphone Sennheiser e835S (Sennheiser electronic GmbH & Co.
KG, Beijing, China). In parallel with the speech recording, the behavior and facial ex-
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pressions of children were recorded using a video camera Sony HDR-CX560E (SONY
Corporation, Tokyo, Japan). Video recording was conducted as part of studies on the
manifestation of emotions in children’s speech [16] and facial expressions [58].

The distance from the child’s face to the microphone was in the range of 30–50 cm. All
children’s speech and video recordings were included in the corpus. All speech files were
saved in .wav format, 48,000 Hz, 16 bits per sample. For each child, the recording time was
in the range of 30–40 min.

3.2. Speech Recording Procedure

Two types of speech were recorded—natural (spontaneous) speech and acting speech.
Dialogue between the children and the experimenters were used to obtain recordings

of the children’s natural speech. We hypothesized that semantically different questions
could induce different emotional states in children [26]. A standard set of experimenter’s
questions addressed to the child was used. The experimenter began the dialogue with a
request for the child to tell his/her name and age. Further questions included:

• What lessons at school do you like and why?
• Who are your friends at school?
• What do you play at breaks between lessons?
• What are your hobbies?
• What movies and cartoons do you like to watch?
• Can you remember are funny stories?
• Which teachers you don’t like and why?
• Do you often fight with other children? Are you swearing?
• Do you often get angry? What makes you angry?
• Do you often get sad? What makes you sad?

Children’s acting speech was recorded after dialogue recording sessions. The children
had to pronounce speech material—sets of words, words and phrases, as well as mean-
ingless texts demonstrating different emotional states “Neutral (Calm)—Joy—Sadness—
Anger”. Children were trained to pronounce sets of words, words and phrases, as well
as meaningless texts. Before recording the acting speech, each child was asked to pro-
nounce the proposed speech material two to three times depending on the age of the child.
Children eight to nine years of age had difficulty pronouncing meaningless texts, so they
were instructed to practice to fluently read the whole meaningless text out, rather than
articulating individual words.

Two experts estimated how well the children could express different emotional states
in their vocal expressions during the training and speech recording sessions. The experts
asked a child to repeat the text if the child was distracted, showed an emotion that did not
correspond to the given task, or made mistakes in the pronunciation of words.

The selection of this list of emotions was based on the assumption [40] that there is
no generally acceptable list of basic emotions, and even though the lists of basic emotions
differ, Happiness (Joy, Enjoyment), Sadness, Anger, and Fear appear in most of them. In [59]
it was also noted that categories such as Happiness, Sadness, Anger, and Fear are generally
recognized with accuracy rates well above chance. In [34] it is noted that regarding the
emotion category, there is no unified basic emotion set. Most emotional databases address
prototypical emotion categories, such as Happiness, Anger and Sadness.

A number of emotion recognition applications use three categories of speech: emo-
tional speech with positive and negative valence, and neutral speech. In practice, collecting
and labeling a dataset with such three speech categories is quite easy, since it can be done
by naive speakers and listeners rather than professional actors and experts. As an extension
of this approach, some SER [60–63] use four categories of emotional speech, positive (Joy
or Happiness), neutral, and negative (Anger and Sadness). In this case it is also quite easy
to collect a dataset, but to label the dataset we need experts.

The set of words and set of words and phrases were selected according to the lex-
ical meaning of words /joy, beautiful, cool, super, nothing, normal, sad, hard, scream,
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break, crush/ and phrases /I love when everything is beautiful, Sad time, I love to beat
and break everything/. The meaningless sentences were pseudo-sentences (semantically
meaningless sentences resembling real sentences), used e.g., [64] to reduce the influence
of linguistic meaning. A fragment of “Jabberwocky”, the poem by Lewis Carroll [65]
and the meaningless text (sentence) by L.V. Shcherba “Glokaya kuzdra” [66] were used.
Children had to utter speech material imitating different emotional states “Joy, Neutral
(Calm), Sadness, Anger”.

After the completion of the sessions recording the children’s speech, two procedures
were carried out: audiometry, to assess the hearing threshold, and a phonemic hearing test
(repetition of pairs and triple syllables by the child following the speech therapist).

All procedures were approved by the Health and Human Research Ethics Committee
of Saint Petersburg State University (Russia), and written informed consent was obtained
from parents of the participating children.

Speech recording was conducted according to a standardized protocol. For automatic
analysis, only the acting speech of children was taken.

3.3. Process of Speech Data Annotation

After the raw data selection, all speech recordings are split into segments which
contain emotions and are manually checked to ensure audio quality. The requirements for
the segments are as follows:

a. Segments should not have high background noise or voice overlaps.
b. Each segment should contain only one speaker’s speech.
c. Each speech segment should contain a complete utterance. Any segment without an

utterance was removed.

The acting speech from the database was annotated according the emotional states
manifested by children when speaking: “neutral—joy—sadness—anger”. The annotation
was made by two experts based on the recording protocol and video recordings. The speech
sample is assigned to the determined emotional state if the accordance between two experts
is 100%.

2505 samples of acting speech (words, phrases, and meaningless texts) were selected as
a result of annotation: 628 for the neutral state, 592 for joy, 646 for sadness, and 639 for anger.
In contrast to other existing databases, the distribution of the emotions in our database is
approximately uniform.

4. Experimental Setup

4.1. Features and Classifiers

To generate the features vector (eGeMAPS feature set) we have used the openSMILE
toolkit v2.0.0 (audEERING GmbH, Gilching, Germany) [67], which is an open-source C++
feature extractor. The code is freely available and well documented.

To implement SVM and MLP classifiers, we have used the Scikit-learn machine learn-
ing library. A multiclass version of the SVM model [68] with a linear kernel and default
values of all other parameters was chosen. We also used an MLP model that optimizes
the log-loss function using LBFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno)
or stochastic gradient descent algorithms. As it is noted in [69], the stochastic gradient
descent solvers work rather well on datasets with thousands of training samples or more
in terms of both training time and validation score. However, in our case, we have a
small dataset, so we used LBFGS (an optimizer in the family of quasi-Newton methods)
because it converges faster and works better for small datasets. To do this we set the pa-
rameter solver = ‘lbfgs’. After some experiments, we set the parameters alpha = 1 × 10−5,
hidden_layer_sizes = (64,16), max_iter = 500, and the other parameter values are by default.
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4.2. Training and Testing Setup

A total of 2505 Russian emotional speech samples were used. We separated the data into
80% (2004 samples) for training and 20% (501 samples) for testing our classification models.

For cross-validation we have used the Stratified K-Folds cross-validator [70]. It pro-
vides a greater balance of classes, especially when there are only a few speakers. Due to the
small size of the dataset, we used Stratified K-Folds cross-validation with K = 6 (5:1).

4.3. Evaluation Setup

As a tool for evaluation of classification models, we have used a multi-class confusion
matrix library PyCM written in Python [71].

In our experiments, we used such evaluation metrics as the per class Accuracy, Pre-
cision, Recall, and F1-score. Due to the unequal number of samples in each test class
(unequal priors), we have analyzed the results using Unweighted Average Recall (UAR)
for multiclass classifiers, closely related to the accuracy as a good or even better metric to
optimize when the sample class ratio is imbalanced [72]. UAR is defined as the average
across the diagonal of the confusion matrix.

5. Experimental Results

First, we analyzed the results of automatic emotion recognition in children’s speech
with two state-of-the-art ML classification algorithms, SVM and MLP. Then, following [73],
we compared results of manual and automatic speech emotion recognition to understand
how well the emotional state in emotional speech is recognized by humans and machines.

5.1. Results of Automatic Emotion Recognition on Extended Feature Set

From Figure 1 and Tables 2 and 3 we can see that performance of SVM and MLP
classifiers is approximately the same. For all individual emotions, both classifiers perform
noticeably above chance. This is consistent with the results of monolingual emotion
recognition in the Russian language [74].

These results are comparable to evaluations in other languages. For example, Sowmya
and Rajeswari [75] reported that they achieved an overall accuracy of 0.85 for automatic
children’s speech emotion recognition in the Tamil language with an SVM classifier on
prosodic (energy) and spectral (MFCC) features. Rajan et al. [13] reported that they achieved
an Average Recall of 0.61 and Average Precision of 0.60 in the Tamil language using a DNN
framework, also on prosodic and spectral features.

Table 2. Per-class scores in multi-class classification, eGeMAPS feature set.

Classifier SVM MLP

Emotion Anger Joy Neutral Sad Anger Joy Neutral Sad

Accuracy 0.929 0.915 0.882 0.888 0.928 0.923 0.894 0.897
Recall 0.875 0.823 0.750 0.780 0.848 0.846 0.796 0.796

Precision 0.851 0.817 0.772 0.785 0.866 0.832 0.784 0.804
F1-score 0.863 0.820 0.761 0.783 0.857 0.839 0.790 0.800

Table 3. Average scores in multi-class classifications, eGeMAPS feature set.

Classifier SVM MLP

Overall Accuracy 0.903 0.911
Unweighted Average Recall 0.807 0.822

Unweighted Average
Precision 0.806 0.822
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Figure 1. Confusion matrices for SVM and MLP classifiers, eGeMAPS feature set, a dataset of Russian
children’s emotional speech with 2505 samples for training and testing.

5.2. Results of the Subjective Evaluation of Emotional Speech Recognition

In our first experiment on the subjective evaluation of emotional speech recogni-
tion [21], 10 native Russian experts with a mean age of 37.8 years (standard deviation ±
15.4 years) and lengthy (mean ± SD = 14.2 ± 10.3 years) professional experience as experts
in the field of speech science manually recognized Happiness/Joy, Anger, Sadness, and
Neutral emotional states in children’s speech from the dataset consisting of 16 samples
of meaningless text from “Jabberwocky” [65] and “Glokaya kuzdra” [66]). There was no
preliminary training of experts. The experts were given the task of recognizing emotional
states (selected from a list of four emotions) of children while listening to the test sequence.
Different utterances were separated by a pause of 7 s, and each utterance was repeated
once. This subjective evaluation was conducted to understand how well humans identify
emotional states in the acting emotional speech of Russian children. The experts used
perceptual evaluation and spectrographic analysis [21] of four samples for each emotional
state, with 16 samples in total. The results of this subjective evaluation are shown in
Figure 2 and Tables 4 and 5.
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Figure 2. Confusion matrix of subjective evaluation of emotions in acting children’s speech in Russian
language by Russian experts.

Table 4. Per-class scores in multi-class classification, expert’s feature set with 16 samples in total.

Metrics
Emotion

Anger Joy Neutral Sad

Accuracy 0.925 0.940 0.845 0.880
Recall 0.700 0.980 0.650 0.850

Precision 1.000 0.817 0.707 0.720
F1-score 0.824 0.891 0.677 0.780

Table 5. Overall scores in multi-class classification, expert’s feature set with 16 samples in total.

Metrics Accuracy

Overall Accuracy 0.898
Unweighted Average Recall 0.795

Unweighted Average Precision 0.811

From Figure 2 and Table 4 we can see that experts recognize all emotions noticeably
above chance (0.25 for 4-class classification). This is consistent with the results of perception
tests for adult emotion speech. For example, Rajan et al. [13] reported comparable results of
subjective evaluation using a perception test with an overall accuracy of 0.846 in recognizing
emotional states—happiness, anger, sadness, anxiety, and neutral—from acted emotional
speech in the Tamil language.

In this article, we present the results of an extended experiment with the dataset that
consists of 16 samples of meaningless text supplemented with 17 samples of words and
phrases, for 33 samples in total. The results of this subjective evaluation are shown in
Figure 3 and Tables 6 and 7.

Table 6. Per-class scores in multi-class classification, extended expert’s feature set with 33 samples in total.

Metrics
Emotion

Anger Joy Neutral Sad

Accuracy 0.925 0.938 0.844 0.881
Recall 0.700 0.975 0.650 0.850

Precision 1.000 0.813 0.703 0.723
F1-score 0.824 0.886 0.675 0.782
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Figure 3. Confusion matrix of subjective evaluation of emotions in acting children’s speech in the
Russian language by Russian experts on the extended dataset.

Table 7. Overall scores in multi-class classification, extended expert’s feature set with 33 samples in total.

Metrics Accuracy

Overall Accuracy 0.897
Unweighted Average Recall 0.794

Unweighted Average Precision 0.810

From the normalized confusion matrices in Figures 2 and 3 it can be seen that the
diagonal values of the matrix in Figure 3 are distributed more evenly than the diagonal
values of the matrix in Figure 2, but the overall scores in both cases are approximately the
same; see Tables 4–7.

5.3. Comparison of the Subjective Evaluation and Automatic Emotional Speech Recognition

Figure 4 shows the confusion matrices for the SVM and MLP classifiers. The training
dataset consists of 2505 samples of the acting emotional speech of Russian children. The
test set for automatic evaluation consists of 33 separate samples of acting emotional speech
of Russian children used in perception tests [21]. Both classifiers were trained based on the
eGeMAPS feature set [72].

The results of automatic classification are shown in Tables 8 and 9. Both SVM and MLP
classifiers recognize emotional states with comparable performance, which is noticeably
above chance. Their overall accuracy is comparable to the overall accuracy of the subjective
evaluation, achieving an overall accuracy of 0.833 in automatic emotion recognition for
both SVM and MLP classifiers, and the overall accuracy of 0.898 in the subjective evaluation
of Russian children’s emotional speech.

Table 8. Per-class scores in automatic multi-class classification, eGeMAPS feature set, testing on
33 samples from subjective evaluations.

Classifier SVM MLP

Emotion Anger Joy Neutral Sad Anger Joy Neutral Sad

Accuracy 0.939 0.939 0.909 0.909 0.939 0.939 0.909 0.909
Recall 0.778 1.000 0.750 0.875 0.889 0.875 0.625 1.000

Precision 1.000 0.800 0.857 0.778 0.889 0.875 1.000 0.727
F1-score 0.875 0.889 0.800 0.824 0.889 0.875 0.769 0.842
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Figure 4. Confusion matrices for SVM and MLP classifiers, a dataset of Russian children’s emotional
speech with 2505 samples for training, an eGeMAPS feature set, and an additional 33 samples from
subjective evaluations for testing.

Table 9. Overall scores in automaticmulti-class classification, eGeMAPS feature set, testing on 33
samples from subjective evaluations.

Metrics
Classifier

SVM MLP

Overall Accuracy 0.924 0.924
Unweighted Average Recall 0.851 0.847

Unweighted Average Precision 0.859 0.873

As a result of the comparison of the subjective evaluation and automatic emo-tional
speech recognition, we can conclude:

1. Humans are able to identify emotional states in Russian children’s emotional speech
above chance. Following [13], this ensures the emotional quality and naturalness of
the emotions in the collected corpus of Russian children’s emotional speech.

2. The performance of automatic emotion recognition using state-of-the-art ML algo-
rithms/classifiers trained on the collected corpus is at least comparable to the perfor-
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mance of perception tests. This also proves that the collected corpus can be used to
build automatic systems for emotion recognition in Russian children’s emotion speech.

6. Discussion and Conclusions

Our experiments were conducted on our proprietary dataset of children’s emotional
speech in the Russian language of the younger school age group [21]. To our knowledge,
this is the only such database.

We have conducted a validation of our dataset based on classical ML algorithms, such
as SVM and MLP. The validation was performed using standard procedures and scenarios
of the validation similar to other well-known databases of children’s emotional speech.

First of all, we demonstrated the following performance of automatic multiclass
recognition (four emotion classes): SVM Overall Accuracy = 0.903, UAR = 0.807, and also
MLP Overall Accuracy = 0.911, UAR = 0.822 are superior to the results of the perceptual
test with Overall Accuracy = 0.898 and UAR = 0.795. Moreover, the results of automatic
recognition on the test dataset, which consists of 33 samples used in the perceptual test, are
even better: SVM Overall Accuracy = 0.924, UAR = 0.851, and also MLP Overall Accuracy
= 0.924, UAR = 0.847. This can be explained by the fact that for the perceptual test we
selected samples with clearly expressed emotions.

Second, a comparison with the results of validation of other databases of children’s
emotional speech on the same and other classifiers showed that our database contains
reliable samples of children’s emotional speech which can be used to develop various
edutainment [76], health care, etc. applications using different types of classifiers.

The above confirms that this database is a valuable resource for researching the
affective reactions in speech communication between a child and a computer in Russian.

Nevertheless, there are some aspects of this study that need to be improved.
First, the most important challenge in the applications mentioned above is how to

automatically recognize a child’s emotions with the highest possible performance. Thus, the
accuracy of the speech emotion recognition must be improved. The most prominent way to
solve the problem is use deep learning techniques. However, one of the significant issues in
deep learning-based SER is the limited size of the datasets. Thus, we need larger datasets
of children’s speech. One of the suitable solutions we suggest is to study the creation of
a fully synthetic dataset using generative techniques trained on available datasets [77].
GAN-based techniques have already shown success for similar problems and would be
candidates for solving this problem as well. Moreover, we can use generative models to
create noisy samples and try to design a noise-robust model for SER in real-world child
communications including various gadgets for atypical children.

Secondly, other sources of information for SER should be considered, such as children’s
face expression, posture, and motion.

In the future, we intend to improve the accuracy of the automatic SER by

• extending our corpus of children’s emotional speech to be able to train deep neural
networks of different architectures;

• using multiple modalities such as facial expressions [58], head and body move-
ments, etc.
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30. Grill, P.; Tučková, J. Speech Databases of Typical Children and Children with SLI. PLoS ONE 2016, 11, e0150365. [CrossRef]

[PubMed]
31. Matin, R. Developing a Speech Emotion Recognition Solution Using Ensemble Learning for Children with Autism Spectrum

Disorder to Help Identify Human Emotions. Unpublished Thesis, Texas State University, San Marcos, TX, USA, 2020. Available
online: https://digital.library.txstate.edu/handle/10877/13037 (accessed on 20 April 2022).

32. Duville, M.M.; Alonso-Valerdi, L.M.; Ibarra-Zarate, D.I. Mexican Emotional Speech Database (MESD). Mendeley Data 2021, V2,
1644–1647. [CrossRef]

33. Nojavanasghari, B.; Baltrušaitis, T.; Hughes, C.; Morency, L. EmoReact: A Multimodal Approach and Dataset for Recognizing
Emotional Responses in Children. In Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI),
Tokyo, Japan, 12–16 November 2016; pp. 137–144. Available online: http://multicomp.cs.cmu.edu/wp-content/uploads/2017/0
9/2016_ICMI_Nojavanasghari_Emoreact.pdf (accessed on 20 April 2022). [CrossRef]

34. Li, Y.; Tao, J.; Chao, L.; Bao, W.; Liu, Y. CHEAVD: A Chinese natural emotional audio–visual database. J. Ambient Intell
Hum. Comput 2017, 8, 913–924. Available online: http://www.speakit.cn/Group/file/2016_CHEAVD_AIHC_SCI-Ya%20Li.pdf
(accessed on 20 April 2022). [CrossRef]

35. Ram, C.S.; Ponnusamy, R. Recognising and classify Emotion from the speech of Autism Spectrum Disorder children for Tamil
language using Support Vector Machine. Int. J. Appl. Eng. Res. 2014, 9, 25587–25602.

36. Pérez-Espinosa, H.; Reyes-García, C.; Villaseñor-Pineda, L. EmoWisconsin: An Emotional Children Speech Database in Mexican
Spanish. In Proceedings of the 4th International Conference on Affective Computing and Intelligent Interaction (ACII), Memphis,
TN, USA, 9–12 October 2011; pp. 62–71. [CrossRef]

37. Batliner, A.; Hacker, C.; Steidl, S.; Nöth, E.; D’Arcy, S.; Russell, M.; Wong, M. “You Stupid Tin Box”—Children Interacting
with the AIBO Robot: A Cross-linguistic Emotional Speech Corpus. In Proceedings of the Fourth International Conference
on Language Resources and Evaluation (LREC), Lisbon, Portugal, 26–28 May 2004; pp. 171–174. Available online: http:
//www.lrec-conf.org/proceedings/lrec2004/pdf/317.pdf (accessed on 20 April 2022).

38. FAU Aibo Emotion Corpus. Available online: https://www5.cs.fau.de/en/our-team/steidl-stefan/fau-aibo-emotion-corpus/
(accessed on 20 April 2022).

39. Pattern Recognition. Available online: https://www.sciencedirect.com/topics/engineering/pattern-recognition (accessed on 20
April 2022).

40. Basharirad, B.; Moradhaseli, M. Speech Emotion Recognition Methods: A Literature Review. AIP Conf. Proc. 2017, 1891,
020105-1–020105-7. [CrossRef]

41. Schuller, B.; Steidl, S.; Batliner, A. The INTERSPEECH 2009 Emotion Challenge. In Proceedings of the 10th Annual Conference
of the International Speech Communication Association (INTERSPEECH), Brighton, UK, 6–10 September 2009; pp. 312–315.
[CrossRef]

46



Mathematics 2022, 10, 2373

42. Eyben, F.; Scherer, K.R.; Schuller, B.W.; Sundberg, J.; Andre, E.; Busso, C.; Devillers, L.Y.; Epps, J.; Laukka, P.; Narayanan, S.S.; et al.
The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing. IEEE Trans. Affect.
Comput. 2016, 7, 190–202. [CrossRef]

43. Disvoice’s Documentation. Available online: https://disvoice.readthedocs.io/en/latest/index.html (accessed on 20 April 2022).
44. Chatziagapi, A.; Paraskevopoulos, G.; Sgouropoulos, D.; Pantazopoulos, G.; Nikandrou, M.; Giannakopoulos, T.; Katsamanis, A.;

Potamianos, A.; Narayanan, S. Data Augmentation Using GANs for Speech Emotion Recognition. In Proceedings of the 20th
Annual Conference of the International Speech Communication Association (INTERSPEECH), Graz, Austria, 15–19 September
2019; pp. 171–175. [CrossRef]

45. Eskimez, S.E.; Dimitriadis, D.; Gmyr, R.; Kumanati, K. GAN-based Data Generation for Speech Emotion Recognition. In
Proceedings of the 21th Annual Conference of the International Speech Communication Association (INTERSPEECH), Shanghai,
China, 25–29 October 2020; pp. 3446–3450. [CrossRef]

46. Ying, Y.; Tu, Y.; Zhou, H. Unsupervised Feature Learning for Speech Emotion Recognition Based on Autoencoder. Electronics 2021,
10, 2086. [CrossRef]

47. Andleeb Siddiqui, M.; Hussain, W.; Ali, S.A.; ur-Rehman, D. Performance Evaluation of Deep Autoencoder Network for Speech
Emotion Recognition. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 606–611. [CrossRef]

48. Cai, X.; Yuan, J.; Zheng, R.; Huang, L.; Church, K. Speech Emotion Recognition with Multi-Task Learning. In Proceedings of the
22th Annual Conference of the International Speech Communication Association (INTERSPEECH), Brno, Czechia, 30 August–3
September 2021; pp. 4508–4512. [CrossRef]

49. Han, K.; Yu, D.; Tashev, I. Speech emotion recognition using deep neural network and extreme learning machine. In Proceedings
of the 15th Annual Conference of the International Speech Communication Association (INTERSPEECH), Singapore, 14–18
September 2014; pp. 223–227.

50. Padi, S.; Sadjadi, S.O.; Sriram, R.D.; Manocha, D. Improved Speech Emotion Recognition using Transfer Learning and Spectrogram
Augmentation. In Proceedings of the 2021 International Conference on Multimodal Interaction (ICMI); Montréal, QC, Canada, 18–22
October 2021, pp. 645–652. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=932172 (accessed on 20
April 2022). [CrossRef]

51. Rumagit, R.Y.; Alexander, G.; Saputra, I.F. Model Comparison in Speech Emotion Recognition for Indonesian Language. Procedia
Comput. Sci. 2021, 179, 789–797. [CrossRef]

52. Ali Alnuaim, A.; Zakariah, M.; Kumar Shukla, P.; Alhadlaq, A.; Hatamleh, W.A.; Tarazi, H.; Sureshbabu, R.; Ratna, R. Human-
Computer Interaction for Recognizing Speech Emotions Using Multilayer Perceptron Classifier. J. Healthc. Eng. 2022, 6005446,
1–12. [CrossRef] [PubMed]

53. Poojary, N.N.; Shivakumar, G.S.; Akshath Kumar, B.H. Speech Emotion Recognition Using MLP Classifier. Int. J. Sci. Res. Comput.
Sci. Eng. Inf. Technol. 2021, 7, 218–222. [CrossRef]

54. Kaur, J.; Kumar, A. Speech Emotion Recognition Using CNN, k-NN, MLP and Random Forest. Lect. Notes Data Eng. Commun.
Technol. 2021, 58, 499–509. [CrossRef]

55. Yang, N.; Dey, N.; Sherratt, R.S.; Shi, F. Recognize Basic Emotional States in Speech by Machine Learning Techniques Using
Mel-Frequency Cepstral Coefficient Features. J. Intell. Fuzzy Syst. 2020, 39, 1925–1936. [CrossRef]

56. Goel, S.; Beigi, H. Cross Lingual Cross Corpus Speech Emotion Recognition. arXiv 2020, arXiv:2003.07996v1.
57. Chugh, V.; Kaw, S.; Soni, S.; Sablan, V.; Hande, R. Speech Emotion Recognition System Using MLP. J. Emerg. Technol. Innov. Res.

2021, 8, 222–226.
58. Lyakso, E.; Frolova, O.; Matveev, Y. Chapter 14—Facial Expression: Psychophysiological Study. In Handbook of Research on Deep

Learning-Based Image Analysis Under Constrained and Unconstrained Environments; Raj, A., Mahesh, V., Nersisson, R., Eds.; IGI
Global: Pennsylvania, PA, USA, 2021; pp. 266–289. [CrossRef]

59. Laukka, P.; Elfenbein, H.A. Cross-Cultural Emotion Recognition and In-Group Advantage in Vocal Expression: A Meta-Analysis.
Emot. Rev. 2021, 13, 3–11. [CrossRef]

60. Rajoo, R.; Aun, C.C. Influences of languages in speech emotion recognition: A comparative study using malay, english and
mandarin languages. In Proceedings of the IEEE Symposium on Computer Applications Industrial Electronics (ISCAIE), Penang,
Malaysia, 30–31 May 2016; pp. 35–39. [CrossRef]

61. Heracleous, P.; Yoneyama, A. A comprehensive study on bilingual and multilingual speech emotion recognition using a two-pass
classification scheme. PLoS ONE 2019, 14, e0220386. [CrossRef]

62. Latif, S.; Qadir, J.; Bilal, M. Unsupervised Adversarial Domain Adaptation for Cross-Lingual Speech Emotion Recognition. arXiv
2020, arXiv:1907.06083v4.

63. Latif, S.; Qayyum, A.; Usman, M.U.; Qadir, J. Cross lingual speech emotion recognition: Urdu vs. western languages. arXiv 2020,
arXiv:1812.10411.

64. Gilam, G.; Hendler, T. Deconstructing Anger in the Human Brain. Curr Top Behav Neurosci. 2017, 30, 257–273. [CrossRef]
65. Carrol, L. Through the Looking-Glass and What Alice Found There; Macmillan and Co.: London, UK, 1872.
66. GLOKAYA KUZDRA. Available online: http://languagehat.com/glokaya-kuzdr (accessed on 20 April 2022).
67. openSMILE Python. Available online: https://github.com/audeering/opensmile-python (accessed on 20 April 2022).
68. Support Vector Machines. Available online: https://scikit-learn.org/stable/modules/svm.html#svm (accessed on 20 April 2022).

47



Mathematics 2022, 10, 2373

69. Multi-Layer Perceptron Classifier. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.
MLPClassifier.html (accessed on 20 April 2022).

70. Stratified K-Folds Cross-Validator. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.StratifiedKFold.html (accessed on 20 April 2022).

71. Haghighi, S.; Jasemi, M.; Hessabi, S.; Zolanvari, A. PyCM: Multiclass confusion matrix library in Python. J. Open Source Softw.
2018, 3, 729. [CrossRef]

72. Schuller, B.W.; Weninger, F. Ten recent trends in computational paralinguistics. Lect. Notes Comput. Sci. 2012, 7403, 35–49. Available
online: https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/deliver/index/docId/72653/file/72653.pdf (accessed on 20
April 2022). [CrossRef]

73. Werner, S.; Petrenko, G.K. A Speech Emotion Recognition: Humans vs Machines. Discourse 2019, 5, 136–152. [CrossRef]
74. Verkholyak, O.V.; Kaya, H.; Karpov, A.A. Modeling Short-Term and Long-Term Dependencies of the Speech Signal for Paralin-

guistic Emotion Classification. Tr. SPIIRAN 2019, 18, 30–56. [CrossRef]
75. Sowmya, V.; Rajeswari, A. Speech emotion recognition for Tamil language speakers. Adv. Intell. Syst. Comput. 2020, 1085, 125–136.

[CrossRef]
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Abstract: In this paper, we focus on training a support vector machine (SVM) online with a single
pass over streaming data.Traditional batch-mode SVMs require previously prepared training data;
these models may be unsuitable for streaming data circumstances. Online SVMs are effective tools for
solving this problem by receiving data streams consistently and updating model weights accordingly.
However, most online SVMs require multiple data passes before the updated weights converge
to stable solutions, and may be unable to address high-rate data streams. This paper presents
OSVM_SP, a new online SVM with a single pass over streaming data, and three budgeted versions
to bound the space requirement with support vector removal principles. The experimental results
obtained with five public datasets show that OSVM_SP outperforms most state-of-the-art single-pass
online algorithms in terms of accuracy and is comparable to batch-mode SVMs. Furthermore, the
proposed budgeted algorithms achieve comparable predictive performance with only 1/3 of the
space requirement.

Keywords: online learning; support vector machine; minimum enclosing ball

MSC: 68T30

1. Introduction

Support vector machine (SVMs) is a well-known binary classifier trained offline
with supervised datasets [1]. The central idea is to find a hyperplane in the reproducing
kernel Hilbert space (RKHS) that splits the data into different classes as well as possible
and achieves a maximal margin. Based on the substantial foundations of the Vapnik–
Chervonenkis (VC) dimension and the structural risk minimization (SRM) principle [2],
SVM has shown its superiority in the literature [3–6].

For traditional batch-mode methods, the data for model training need to be prepared
beforehand. This is mainly because once the training process starts, the optimization
problem usually requires the cycling of training data many times in order to find the
optimal solutions in the data space. In other words, traditional batch-mode models require
the data to be prepared beforehand and to be accessible at any time. Traditional batch-
mode models usually fail to deal with streaming data that arrive sequentially over time
and usually never end. For scenarios in which data arrive in streams individually at a
very high rate, every time new data arrive, a batch-mode SVM has to be retrained from
scratch to exploit both the previous and new data. Because a batch-mode SVM is typically
formulated as a quadratic programming problem with time complexity O(N3) (where N
represents the number of training data points), it is not suitable for streaming data due
to the required time efficiency and computational capability [7,8]. Therefore, the training
set increases consistently and changes dynamically, and is nearly unusable for learning
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with batch-mode methods. Fortunately, online SVM is an alternative type of algorithm that
directly addresses the streaming data issue.

Thanks to the consistent interest of the online learning community, numerous online
SVM algorithms have been proposed in the literature [9–11]. Online SVM algorithms do
not initially hold all the data; instead, they receive streams of data one at a time and update
the model weights with respect to specified instantaneous objective functions. Most online
models adapt the streaming data scenario, in which samples arrive one by one. When
one sample arrives as a representative of a new concept, the model can update itself to
immediately account for this sample. One benefit of processing singular instead of multiple
data is that the model can learn in a timely fashion without the need to wait until a fixed
number of samples have been gathered. In addition, if the model is ideally updated in
the right direction, a alrge number of samples arriving afterward can be avoided in the
online learning process. Many online SVM algorithms [12–14] require multiple passes
over the data before the updated weights converge to reasonable solutions. For instance,
the algorithm in [12] continues passing through the training data to look for better solutions
until a certain stopping criterion is met. In [13], a series of SVM models were trained
periodically based on the training set extracted from historical streaming data; all of them
needed many passes over the training data to find the appropriate solutions for each model.
New data arriving during this period must wait until they can be processed. Therefore,
the necessity of multiple passes over the training data hinders these algorithms from being
timely and lightweight for fairly high data streaming rates. Recently, a handful of online
SVM algorithms have been proposed that require only a single pass over the data [15–18].
Motivated by the work of [16], in this paper, we present a new single-pass online SVM
based on the minimum enclosing ball (MEB) problem and three budgeted versions of the
proposed algorithm to control the space requirement. We validated our methods on six
public datasets, and our experimental results show the effectiveness and superiority of our
methods compared to the present state-of-the-art.

The remainder of this paper is organized as follows: In Section 2, we review related
works on online SVM algorithms; in Section 3, we provide a brief introduction to the
formulation of batch-mode SVMs and MEBs, as well as their equivalence, which is closely
related to our methods; in Section 4, we elaborate our proposed methods; in Section 5, we
present experimental evaluations and analyses; finally, our conclusions are presented in
Section 7.

2. Related Work

There are many online SVM algorithms that can handle streaming training data and
achieve good results. Matsushima et al. [12] provided an algorithm for training linear
SVMs that utilizes a dual coordinate descent procedure based on blocks of data. Their
algorithm performs multiple passes through the training data until a certain stopping
criterion is met. Wang et al. [13] presented an online algorithm that automatically extracts
one representative set for each class from the historical stream of data and retrains the
SVM periodically based on the data from these sets. Zheng et al. [14] provided an online
incremental algorithm that learns prototypes and continuously adjusts to the streaming
data, and that trains new SVMs periodically based on learned prototypes and old support
vectors (SVs). These algorithms suffer from a similar issue in that a series of quadratic
optimization problems must be solved in order to obtain intermediate solutions, which
requires multiple passes of the chosen training data.

The optimization problem for SVM has several equivalent geometric formulations [19].
Moreover, many of these can be easily adapted to streaming learning scenarios. Several
single-pass SVM algorithms have been studied in the literature. Liu et al. [15] presented a
single-pass online algorithm based on the polytope distance problem in the computational
geometry literature. The central idea of their algorithm is based on an interpretation
in which finding the hyperplane with the maximum separating margin is equivalent to
finding the shortest distance between two points on the convex hull of two classes of
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training data, and the latter is equivalent to finding the shortest distance between the origin
and a point on the convex hull of the Minkowski difference [20] of two convex hulls. They
provided theoretical guarantees regarding the constant time and space requirements of their
algorithm. However, their algorithm was proposed for hard margin classification problems,
and the data of the two classes ought to be completely separated; this requirement may
not always be satisfied. Rai et al. [16] provided another single-pass online algorithm
based on a geometric interpretation in which a �2-SVM has an equivalent formulation
in terms of the MEB problem. Therefore, solving the optimization problem for the �2-
SVM is equivalent to finding the ball of the minimum radius enclosing the feature vectors
mapped by the training data. Their algorithm initializes a ball with radius zero for the
first sample. For any incoming point outside of the ball, the algorithm moves the center
towards it and simultaneously enlarges the radius in order to cover both the point and the
previous ball. However, their algorithm may suffer due to the rapid expansion of the ball
leading ti convergence on a suboptimal solution. Motivated by the above, we present a
new single-pass online algorithm.

In addition to algorithms based on geometric formulations, Crammer et al. [17] pro-
vided an online algorithmic framework that formalizes the trade-off between the correct
classification of new data with a sufficiently high margin and the amount of information
retained from old data. In light of hard margins and soft margins with �1 and �2 losses,
the authors provide three variants of online algorithms in such frameworks. Our work is
compared with all three works in the experimental section, and empirically, our algorithm
performs better in most cases.

3. Preliminaries

In this section, we introduce the primal and dual formulations of the batch-mode SVM
and MEB, as well as their equivalence, all of which are closely related to our methods.

3.1. Support Vector Machine

Let {(xi, yi)|xi ∈ Rd×1, yi ∈ {1,−1}, i = 1, · · · , N} be a training set with N labeled
samples. The primal optimization problem for unbiased �2-regularized �2-loss SVMs for
binary classification is provided in Equation (1):

min
ω,ξ,ρ

1
2
‖ω‖2 − ρ +

C
2
‖ξ‖2 (1a)

s.t. yiω
′φ(xi) � ρ − ξi, i = 1, · · · , N. (1b)

Here, ξ = [ξ1, · · · , ξN ]
′ ∈ RN×1 is a vector consisting of slack variables, C is a penalty

parameter used to control the trade-off between �2 regularization and �2 loss, φ(·) denotes
the kernel mapping function, which maps x into a higher-dimensional feature vector φ(x)
in RKHS, and φ(·) corresponds to a chosen kernel function kφ : Rd × Rd → R, with
kφ(xi, xj) = φ(xi)

′φ(xj).
Note the variable ρ ∈ R in the optimization problem, which means that the boundaries

of the margin are ω′φ(xi) = ±ρ. The problem in Equation (1) is denoted as the “primal
ρ-SVM” in order to differentiate it from the corresponding batch-mode “SVM” with re-
spect to StreamSVM in [16], which does not contain the variable ρ and has the constant 1
instead. When parameter C is set to 2/N, ρ-SVM shares a formulation with the unbiased
�2-regularized �2-loss υ-SVM [21], with parameter υ being equal to 1. Because υ can be seen
as the lower bound of the ratio of SVs, almost every sample in the training set is recognized
as an SV for ρ-SVM.
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According to the Karush–Kuhn–Tucker (KKT) theorem [22], solving the primal ρ-SVM
is equivalent to solving the dual problem listed in Equation (2), which is denoted as the
“dual ρ-SVM”.

max
α

−
N

∑
i=1

N

∑
j=1

αiαjyiyj(kφ(xi, xj) +
δij

C
) (2a)

s.t. α � 0, α′1 = 1. (2b)

Here, α = [α1, · · · , αN ]
′ ∈ RN×1 is a vector consisting of Lagrange multipliers.

The transformation of solutions α of the dual ρ-SVM to solutions ω, ξ, and ρ of the primal
ρ-SVM is provided in the following equation:

ω =
N

∑
i=1

αiyiφ(xi). (3a)

ξ = α/C. (3b)

ρ = yk

N

∑
i=1

αiyikφ(xi, xk) + αk/C, ∀αk �= 0. (3c)

For a random sample x, ρ-SVM predicts its label as follows:

y = sig(ω′φ(x)) = sig(
N

∑
i=1

αiyikφ(xi, x)). (4)

Derivations of Equations (3) and (4) have been listed in Appendix A for reference.

3.2. Minimum Enclosing Ball

An MEB is known as a hard margin support vector data description
(SVDD) [23,24], the central idea of which is to find a minimum ball enclosing all the data.
Let {xi ∈ Rd×1|i = 1, · · · , N} be a training set with N samples. The primal optimization
problem of the MEB is denoted as the “primal MEB”, as follows [25]:

min
c,r

r2 (5a)

s.t.‖c − ϕ(xi)‖2 � r2, i = 1, · · · , N. (5b)

Here, we utilize ϕ(·) to denote the kernel mapping function employed in the primal
MEB. Likewise, kϕ : Rd × Rd → R denotes the kernel function corresponding to ϕ(·).
A hypersphere is represented by (c, r), where the center c is a high-dimensional feature
vector in RKHS and r ∈ R+ denotes the radius.

According to the KKT theorem, the corresponding dual optimization problem is
denoted as the “dual MEB”, as follows [25]:

max
α

N

∑
i=1

αikϕ(xi, xi)−
N

∑
i=1

N

∑
j=1

αiαjkϕ(xi, xj) (6a)

s.t. α � 0, α′1 = 1. (6b)

The transformation of solutions α ∈ RN×1 of the dual MEB to solutions c and r of the
primal MEB is as follows [25]:
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c =
N

∑
i=1

αi ϕ(xi). (7a)

r =

√√√√κϕ − 2
N

∑
i=1

αikϕ(xi, xk) +
N

∑
i=1

N

∑
j=1

αiαjyiyjkϕ(xi, xj), ∀αk �= 0. (7b)

For a random sample x, the MEB predicts whether it is inside or outside the ball
according to the following inequality:

‖c − ϕ(x)‖2 � r2. (8)

3.3. Equivalence of the SVM and MEB

The supervised ρ-SVM classification problem can be equivalently reformulated as
an unsupervised MEB problem by encoding the label yi of sample xi in feature vector
ϕ(xi). Specifically, the optimization problems of the dual ρ-SVM in Equation (2) and the
dual MEB in Equation (6) are equivalent to each other if the following two conditions are
satisfied [16,25]:

1. ϕ(xi) = [yiφ(xi); ei/
√

C]
2. kφ(xi, xi) = κφ, ∀xi

Here, ei denotes the N-dimensional one-hot column vector in which the ith element is
1 and all other elements are 0, while κφ denotes a constant related to the kernel mapping
function φ(·).

When the kernel utilized by the MEB is kϕ, the center c and radius r of the MEB can
be represented by kϕ and the mapping function ϕ according to Equation (7) in Section 3.2.
Moreover, when these two conditions are satisfied, kϕ and ϕ can be substituted by another
kernel kφ and mapping function φ. Therefore, the center c and radius r can be represented
by kφ and φ after substitution, as listed in Equation (9). In other words, for any αk �= 0,
the center c and radius r of the primal MEB can be represented by the solutions α of ρ-SVM.
The equivalence of ρ-SVM and the MEB are shown in Figure 1.

Figure 1. Equivalence of the SVM and MEB.

c = [
N

∑
i=1

αiyiφ(αi);
1√
C

N

∑
i=1

αiei]. (9a)

r =

√√√√κφ +
1
C
− 2(yk

N

∑
i=1

αiyikφ(xi, xk) +
αk
C
) +

N

∑
i,j=1

αiαjyiyj(kφ(xi, xj) +
δij

C
). (9b)
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4. Methodology

4.1. Motivation

According to Section 3, when the two conditions (see Section 3.3) are satisfied, a batch-
mode classifier learned offline by the supervised convex optimization of the SVM can be
attained by solving an unsupervised convex optimization of the MEB. In other words,
a classifier can be equivalently transformed by a minimum enclosing ball. In view of such
equivalence, a series of online SVM/MEB methods have been proposed in the literature to
deal with the data in streams.

Taking the StreamSVM method in [16] as an example, a ball is constructed dynamically
by enclosing all the streaming data. When a new sample arrives, StreamSVM learns a
minimal ball enclosing both the sample and the current ball. Figure 2 illustrates the ball
learned by StreamSVM when the third sample arrives outside. Although the enclosure
of the whole current ball (the ball in black) instead of the old data (the first and second
samples) prevents multiple passes of the data, it may lead to excessive enlargement of the
ball (see the two colored balls for comparison). Because the ball of online methods often
grows in an irreversible way, it ought to be enlarged cautiously in order to avoid enclosing
any dispensable regions (e.g., the area with vertical lines as the background) as much as
possible.

Figure 2. Motivation from StreamSVM [16] in learning the MEB.

Therefore, we attempt to learn a new ball online under the constraint of a minimal
radius with a single pass over the streaming data. To achieve this, we choose to relax the
constraint of enclosing all data instead of the constraint of the minimal radius utilized
by StreamSVM to avoid multiple passes. A new ball is required to enclose both the new
sample and majority regions of the current ball, while the minority regions (e.g., the gray
area in Figure 2) of the current ball are discarded, which are the regions most dissimilar to
the new sample. On this basis, a new online method is proposed in the following section.

4.2. OSVM_SP

In Section 3.3, we introduce the equivalence between the MEB and ρ-SVM and show
that the solutions (c, r) of the MEB can be equivalently represented by the solutions α of
the ρ-SVM according to Equation (9). In other words, if we can find a way to learn the MEB
online, we can obtain its corresponding online classifier. The online learning of a decision
hyperplane is equivalently transformed into the online learning of an MEB.

In this section, we present OSVM_SP, a new online SVM algorithm with a single pass
over the streaming data. The basic idea of OSVM_SP is as follows: a ball is initialized
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by taking the first sample to arrive as the center and 0 as the radius; when a new sample
arrives that is outside of the current ball, a new ball is learned to enclose both the sample
and the majority of the region of the current ball with a radius increment that is as small as
possible. To accomplish this, we record the latest sample that leads to the current ball being
enlarged. Then, a diameter segment (see Figure 3) that crosses the recorded sample and
the center of the current ball can be determined to represent the boundary of the majority
of the region that must be enclosed in the new ball. Therefore, the new ball is created to
enclose both the new sample and the diameter segment with a minimum radius.

Figure 3. Basic idea of OSVM_SP.

Before we elaborate on OSVM_SP, it is necessary to clarify the variables to be learned
and the parameters required during the learning process. When the ith sample (xi, yi)
arrives, i = 1, 2, · · · is first mapped into zi = ϕ(xi) according to the first condition in
Section 3.3. Let the current ball be (ci−1, ri−1) and (ci, ri) be the new ball to be learned.
According to Equation (7a), the center ci can be represented as ci = ∑i

j=1 αi
jzj for each i.

We use pi−1 and qi−1 to indicate two endpoints of the diameter segment (see Figure 4c–f),
which can be universally expressed as pi−1 = ∑i−1

j=1 βi
jzj and qi−1 = ∑i−1

j=1 γi
jzj. Therefore,

when the ith sample (xi, yi) arrives, online learning of the new ball (ci, ri) is equivalent to
learning αi, βi, γi and ri based on αi−1, βi−1, γi−1, ri−1 and sample (xi, yi).

When i = 1 and (xi, yi) is the first sample to arrive, we can easily initialize the MEB
(ci, ri) to enclose the sole point zi by letting the center ci coincide with zi and the radius ri

equal 0 (see Figure 4a). In addition, zi is recorded by considering pi as the sole end point,
and qi is not available at the moment. See Steps 5–6 in Algorithm 1 for details.

d(zi, ci−1) =

√√√√ i−1

∑
j,k=1

αi−1
j αi−1

k yjyk(kφ(xj, xk) +
δjk

C
)− 2yi

i−1

∑
j=1

αi−1
j yjkφ(xj, xi) + κφ +

1
C

. (10)

When the ith sample (xi, yi) arrives for i � 2, we first calculate the distance d(zi, ci−1)
in Equation (10) and compare it with the radius ri−1 to determine whether zi is inside of
the current ball (ci−1, ri−1). If it is, neither the ball nor the end points need to be adjusted,
and they all inherit from the old ones (see Steps 24–26 in Algorithm 1); if not, a new
ball (ci, ri) should be learned that encloses sample zi as well as the current end point(s).
Derivations of Equation (10) have been listed in Appendix B for reference.

If zi is an outsider and the end point qi−1 is unavailable, the new ball must enclose
two points of end point pi−1 and sample zi, which can be easily learned by letting the
center ci be the midpoint of these two points and letting ri equal half the distance between
them (see Figure 4b). Additionally, sample zi is recorded by qi, and pi inherits from pi−1 in
preparation for the next update. In this case, αi, βi, γi and ri are computed by Equation (11).
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αi
j =

{
1
2 βi−1

j , ∀j = 1, · · · , i − 1.
1
2 , j = i.

(11a)

βi
j =

{
βi−1

j , ∀j = 1, · · · , i − 1.

0, j = i.
(11b)

γi
j =

{
0, ∀j = 1, · · · , i − 1.
1, j = i.

(11c)

ri =
1
2

d(zi, pi−1). (11d)

Algorithm 1 OSVM_SP

1: Input: (xi, yi)i=1,··· ,N , regularization parameter C, kernel function kφ(xi, xj) with kernel
parameter σ.

2: Output: Lagrange multiplier α ∈ RN×1.
3: for i = 1 to N do
4: Map sample (xi, yi) into zi according to zi = ϕ(xi) = [yiφ(xi); ei/

√
C].

5: if i = 1 then
/*Initialization, see Figure 4a*/

6: α1
1 ← 1, β1

1 ← 1, γ1 ← NaN, r1 ← 0.
7: else if i � 2 then
8: Compute d(zi, ci−1), the distance of zi to the center ci−1 of the current MEB,

according to Equation (10).
9: if d(zi, ci−1) > ri−1 then

10: if γi−1 = NaN then
/*See Figure 4b*/

11: Compute αi
j, βi

j, and γi
j , ∀j = 1, · · · , i, and ri according to Equation (11).

12: else if γi−1 �= NaN then
13: Compute d(zi, pi−1) and d(zi, qi−1), the distances of zi to the two end points

of pi−1 and qi−1.
14: if d(zi, pi−1) � d(zi, qi−1) then

/*Exchange β and γ*/
15: β � γ.
16: end if
17: Compute cos θ according to the cosine rule w.r.t. triangle pi−1qi−1zi with side

lengths of d(zi, pi−1), d(zi, qi−1) and 2ri−1.
18: if cos θ � 0 then

/*See Figure 4c–e*/
19: Compute αi

j, βi
j, and γi

j , ∀j = 1, · · · , i, and ri according to Equation (11).
20: else if cos θ > 0 then

/*See Figure 4f*/
21: Compute αi

j, βi
j, and γi

j , ∀j = 1, · · · , i, and ri according to Equation (12).
22: end if
23: end if
24: else if d(zi, ci−1) � ri−1 then

25: αi
i ← 0, βi

i ← 0, γi
i ← 0. αi

j ← αi−1
j , βi

j ← βi−1
j , γi

j ← γi−1
j , ∀j = 1, · · · i − 1.

26: end if
27: end if
28: end for
29: return α = [αN

1 ; · · · ; αN
N ].
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Update of the MEB according to OSVM_SP. A ball is initialized when the first sample comes
in (a), and enlarged when the second sample comes in (b). When the ith sample comes outside later,
the ball is enlarged with respect to different values of θ. (c) θ = π; (d) θ ∈ (π/2, π); (e) θ = π/2; (f)
θ ∈ (π/2, π/4).

If zi is an outsider and the end point qi−1 is available, the new ball must enclose all
three points of pi−1, qi−1 and zi. We assume that pi−1 is the end point that is not less
near sample zi than near qi−1. If otherwise, we exchange the values of βi−1 and γi−1 to
satisfy the assumption. Let θ be ∠pi−1qi−1zi, with θ ∈ (0, π]. According to the value of θ,
the construction of a new ball and the update process for the end points are divided into
the following four subcases:

1. θ = π. The three points are collinear, and qi−1 is between them (see Figure 4c).
Therefore, the new ball (ci, ri) is constructed with the center being the midpoint of
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pi−1 and zi, and with the radius being equal to half their distance. Then, sample zi is
recorded by qi, and pi inherits from pi−1. All these steps are performed according to
Equation (11).

2. θ ∈ (π/2, π). The three points constitute an obtuse triangle (see Figure 4d). A ball
that encloses the two points pi−1 and zi can enclose qi−1 as well. Therefore, we can
replicate the steps in the first subcase to fulfill the task.

3. θ = π/2. The three points constitute a right triangle (see Figure 4e). The ball
constructed in the first subcase is simply the circumscribed sphere of the right triangle.
Therefore, we can replicate the steps in the first subcase to fulfill the task.

4. θ = (0, π/2). The three points constitute an acute triangle (see Figure 4f), and the new
ball should be its circumscribed sphere. Therefore, ci and ri are set as the circumcenter
and circumradius, respectively. Then, sample zi is recorded by qi. As ci must be the
midpoint of pi and qi, pi can be obtained accordingly. Therefore, αi, βi, γi and ri are
computed by Equation (12).

γi
j =

{
0, ∀j = 1, · · · , i − 1.
1, j = i.

(12a)

ri =
d(zi, pi−1)

2 sin θ
, βi

j = 2αi
j − γi

j. (12b)

αi
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 −

√
(ri)2−(ri−1)2 cos θ

ri−1 sin θ
)αi−1

j

+

√
(ri)2−(ri−1)2(d(zi ,qi−1) cos θ−ri−1)

ri−1 sin θd(zi ,qi−1)
γi−1

j , ∀j = 1, · · · , i − 1.√
(ri)2−(ri−1)2

sin θd(zi ,qi−1)
, j = i.

(12c)

The online learning process of OSVM_SP is provided in Algorithm 1. Whenever there
is a label prediction requirement, an optimal hyperplane equivalent to the current ball can
be generated accordingly by Equation (4).

The most time-consuming steps in Algorithm 1 are the distance computations in
Steps 8 and 13. Among them, the distance to center d(zi, ci−1) in Step 8 must be computed
for every upcoming zi, whereas d(zi, pi−1) and d(zi, qi−1) in Step 13 need to be computed
only under certain conditions (see Steps 9 and 12). Note that the space requirement of
OSVM_SP grows without limit as the data continue to arrive, which might be infeasible in
high-rate data streams.

4.3. Budgeted OSVM_SP

For the aforementioned reason, we propose three budgeted versions of OSVM_SP to
decrease the boundless space requirement. Specifically, a budget of fixed size is utilized
as the upper bound of the storage space. When this budget is exceeded, it is necessary to
remove an SV learned beforehand to make space for the new SV. Therefore, our budgeted
algorithms all have constant space complexity. The core of budgeted algorithms is the
method of choosing the SV to remove. We employ three widely used SV removal princi-
ples [26,27] to remove either a randomly selected SV (-Ran), the oldest SV (-Old), or the
least important SV (-Min). Here, the importance of an SV is measured by the value of its
corresponding multiplier. Accordingly, the three proposed budgeted versions of OSVM_SP
are denoted OSVM_SP-Ran, OSVM_SP-Old, and OSVM_SP-Min.

4.4. Complexity Analysis

The respective time and space complexities of OSVM_SP are O(N2) and O(N2 + Nd).
Let B be the size of the budget; then, the time complexity of our three budgeted algorithms
(OSVM_SP-Ran, OSVM_SP-Old, and OSVM_SP-Min) is O(NB) and the space complexity
is O(B2 + Bd), a constant unrelated to the number of samples N.

Note that when the linear kernel is employed in OSVM_SP, both the center and the two
end points can be explicitly computed and stored for computing the distances in Steps 8
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and 13. In such a case, OSVM_SP has O(d) space complexity, which is unrelated to the
sample number N or time complexity O(N). Table 1 lists the computational complexity of
all the methods.

Table 1. Computational complexity of the proposed methods.

Method Time Space

OSVM_SP O(N2) O(N2 + Nd)

Three Budgeted OSVM_SPs O(NB) O(B2 + Bd)

OSVM_SP with linear kernel O(N) O(d)

4.5. Comparison of OSVM-SP with StreamSVM

When the first training sample arrives, OSVM-SP and StreamSVM both initialize a
ball of (zi, 0). When the first sample arrives and is outside of the current ball, OSVM-SP
and StreamSVM both construct a new ball of (midpoint, distance/2) to replace the current
ball. When the third or later sample arrives outside, however, the balls of OSVM-SP and
StreamSVM may coincide with each other in certain cases, although most of the time they
differ from each other.

Figure 5 illustrates a comparison of OSVM-SP with StreamSVM in the construction
of new balls, while zi denotes the third or later sample coming outside of the current
ball (ci−1, ri−1) (the ball in black); hence, d(zi, ci−1) > ri−1. For convenience of analysis,
the distance d(zi, ci−1) is equal to a constant dconst; therefore, the trajectory of all the possible
zi is a ball denoted (ci−1, dconst) (the ball in green). Because the trajectory is bilaterally
symmetric, only the left or right half of the trajectory must be considered. Moreover, if we
continue to assume that qi−1 is the end point closer to sample zi than pi−1, then only a
quarter of the trajectory (the green ball with the gray background) is distinguished for
consideration.

Figure 5a–e illustrates five different cases in which the new sample zi may appear
in the trajectory, divided according to the value of angle θ. When θ = π and sample zi
is co-linear to the endpoints (see Figure 5a), new balls of OSVM-SP (the ball in red) and
StreamSVM (the ball in dotted blue) coincide with each other; otherwise, these two balls
are different (see Figure 5b–d). In particular, when θ = π/4 and the distances from sample
zi to those end points are equal (see Figure 5e), the new ball of OSVM-SP is enclosed by the
new ball of StreamSVM.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e)

Figure 5. Comparison of OSVM-SP and StreamSVM in the MEB update [16] with respect to different
values of θ. (a) θ = π; (b) θ ∈ (π/2, π); (c) θ = π/2; (d) θ ∈ (π/2, π/4); (e) θ = π/4.

5. Experiments

5.1. Benchmark Datasets

Six binary datasets (australian, fourclass, banknote, svmguide1, EGSSD, and occupation)
were employed to validate the performance of our methods; they are all publicly avail-
able from the following websites (https://archive.ics.uci.edu/ml/datasets, accessed on
1 January 2022; https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets, accessed on
1 January 2022). Each dataset had already been scaled featurewise to (−1,1) according
to min–max normalization. All of the datasets contained only one set of data, except for
svmguide1, which contained two sets of training and testing data. We merged these two
sets into a single set for unified management during the following experiments, making
svmguide1 the same as the remaining datasets. The specifications of the datasets are listed
in Table 2, showing the number of features, sample size, and percentage of the majority class
contained in each dataset. The missing data issue does not exist in these six datasets as the
online methods we focus on in this paper are not able to handle the missing data problem,
although this might be an interesting and promising research direction in future work.
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Table 2. Specifications of the public datasets.

Dataset # Features #Instances Majority%

australian 14 690 55.51
fourclass 2 862 64.39
banknote 4 1372 55.54

svmguide1 4 7089 56.43
EGSSD 13 10,000 63.80

occupation 5 20,560 76.90

5.2. Baseline Methods

The proposed method is denoted as OSVM_SP, while OSVM_SP-Ran, OSVM_SP-Old,
and OSVM_SP-Min are three budgeted versions of OSVM_SP that respectively remove
a randomly selected SV, the oldest SV, and the least important SV when the budget is
exceeded. The methods for comparison can be divided into three groups: “nonbudgeted
online”, “budgeted online”, and “offline”. The nonbudgeted online group consists of five
methods (StreamSVM, PA, PA-I, PA-II, and AMM-online), which are mainly compared
with the proposed OSVM_SP. Meanwhile, the two budgeted online representatives (BSGD
and BPA-S) are compared with OSVM_SP-Ran, OSVM_SP-Old, and OSVM_SP-Min. The
two offline batch methods (SVM and ρ-SVM) are listed as the baselines. Nine comparable
methods are briefly introduced below.

- StreamSVM [16]: StreamSVM is a nonbudgeted online method that leverages the
equivalence of SVM and MEB (see Section 3.3), which is similar to our OSVM_SP
method. For any incoming point outside of the ball, the StreamSVM algorithm moves
the center towards it and simultaneously enlarges the radius to cover both the point
and the previous ball. OSVM_SP is different from StreamSVM in that the center
moves in different directions and the radius grows according to different strategies;
see Figure 4d–f. Taking Figure 4e as an example, the two directions ci−1 to zi (in
StreamSVM) and ci−1 to (pi−1 + zi)/2 (in OSVM_SP) are very different from each
other.

- PA, PA-I, and PA-II [17]: PA, PA-I, and PA-II are three nonbudgeted online algorithms
operating under the same framework provided in [17], which formalizes the trade-off
between the correct classification of new data with a sufficiently high margin and the
amount of information retained from old data. Among them, PA is a hard margin
classifier while PA-I and PA-II are soft margin classifiers with losses of �1 and �2,
respectively.

- AMM-online [28]: another nonbudgeted algorithm, AMM-online is an online version
of AMM that consists of a set of hyperplanes; each hyperplane is assigned to one class.
We employ the implementation of AMM-online in the BudgetedSVM toolbox [29].
Note that the default setting of AMM-online in the toolbox is required to run five
training epochs, which deviates from the restriction of single-pass online learning.
In fact, we tried to run AMM-online in one epoch; however, its performance declined
rapidly. Therefore, the performance of AMM-online with five epochs is listed in all
the following experimental results.

- BSGD [27]: BSGD is a class of budgeted versions of online SVM algorithms that belong
to the SGD family. We employ the implementation of BSGD in the same BudgetedSVM
toolbox with two budget maintenance strategies, “-removal” and “-merging”, which
are based on the removal and merging of support vectors during the training process.
The experimental results based on our six datasets show that there is a minor difference
between these methods.

- BPA-S [26]: BPA-S is a budgeted version of PA-I. When the budget is exceeded, BPA-
S removes an SV to make room for the new sample, while the multipliers of the
remaining SV remain unchanged.
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- ρ-SVM & SVM: ρ-SVM is the respective offline batch method corresponding to our
OSVM_SP, introduced in Section 3.1. We implemented the dual ρ-SVM in Equation (2)
with convex optimization (CVX) [30,31], a package for specifying and solving convex
programs. The SVM indicates the corresponding offline model of StreamSVM, which
is a transformation of ρ-SVM in which the variable ρ is set to a constant value of 1.

5.3. User-Specified Parameters

For simplicity, we utilize the Gaussian kernel k(xi, xj) = exp(‖xi − xj‖2/σ) for all the
kernelized methods, as it satisfies the 2nd condition in Section 3.3. Therefore, the penalty
parameter C and kernel parameter σ must be set for StreamSVM, PA, PA-I, PA-II, SVM,
ρ-SVM, and the proposed OSVM_SP, OSVM_SP-Ran, OSVM_SP-Old, and OSVM_SP-Min.
As the SVM and ρ-SVM are the corresponding batch versions of StreamSVM and OSVM_SP,
they share the same objective functions. Therefore, SVM is utilized to choose the optimal
parameter values for StreamSVM as well as itself, and ρ-SVM is utilized both for itself and
the proposed four methods. The optimal group (C∗, σ∗) is chosen by performing a grid
search with {2−10, 2−9, · · · , 29, 210} × {2−10, 2−9, · · · , 29, 210}. Because there is no explicit
batch-mode optimization problem for PA, PA-I, or PA-II, there is no corresponding batch
model in the experiments. The values of parameters C and σ within these three methods
are set according to the SVM.

The parameter values corresponding to the best performance were chosen as the
optimal values, and are listed in Table 3 for each dataset. Each dataset was randomly
divided into training and testing sets according to two-fold cross-validation. A series of
SVM and ρ-SVM models were learned based on the training set with different parameter
values, and their classification accuracies were measured based on the testing set.

Table 3. Optimal parameter values after grid search.

SVM ρ-SVM

C∗ σ∗ C∗ σ∗

australian 2−9 20 2−1 21

fourclass 2−10 2−8 2−10 2−6

banknote 20 2−3 21 2−1

svmguide1 26 2−3 2−2 2−3

EGSSD 20 21 2−2 21

occupation 2−3 2−5 2−6 2−4

The experiments in the following subsections were all conducted as follows: each
dataset was randomly divided into equal-sized training and testing sets; every method in
Section 5.2 was trained with the former set and validated with the latter set; we ran each
method five times with randomized permutations, and reported the mean results (along
with the standard deviation in several subsections) from the experiments.

5.4. Classification Accuracy

First, we validated the predictive performance of all the methods based on six datasets.
This paper focuses on training online models over streaming data, which means that
training samples arrive one by one or chunk by chunk. Whenever a new sample arrives,
the current model may require a timely update to fit the new sample. Therefore, online
models usually change dynamically and frequently during the whole training process.
The trend in the performance of an online model is of great importance, as it clearly reflects
whether, or even how, the model adapts to the new data. The performance comparison
of online models with respect to different sizes of training data is an easy way of dis-
playing the trends, and is widely utilized by many state-of-the-art online learning-related
methods [32–35]. Figure 6 shows the classification error with respect to different amounts
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of training data, while Table 4 lists the classification accuracy attained at the end of the
training process.
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Figure 6. Classification error with varying amounts of training data.

OSVM_SP obtains the highest accuracy among the six nonbudgeted online methods
for nearly all the datasets, with the exception of banknote, for which it is surpassed by PA,
PA-I, and PA-II with a slight accuracy loss (0.2%). In addition, PA, PA-I, and PA-II share the
highest accuracy with OSVM_SP based on the fourclass dataset. The budgeted versions
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of OSVM_SP, OSVM_SP-Ran, OSVM_SP-Old, and OSVM_SP-Min converge steadily to
OSVM_SP in predictive performance for all six datasets. In fact, there is a slight accuracy
loss for OSVM_SP-Min based on fourclass and EGSSD compared with OSVM_SP, which
seems reasonable as OSVM_SP-Min must occasionally remove SVs in order to make room
for the new sample. Despite the accuracy loss, OSVM_SP-Min surpasses the other budgeted
online methods (BSGD and BPA-S) most of the time. OSVM_SP-Old beats OSVM_SP-Min
and even OSVM_SP based on the australian dataset, achieving the best performance
only this once. The superiority of OSVM_SP-Ran does not appear obvious, indicating
that an SV removal principle with more explicit intentionality might be more helpful
than randomization. The difference in accuracy between the two batch-mode algorithms,
the SVM and ρ-SVM, is negligible for most of the datasets. The error of PA increases and
then decreases for the australian dataset, while PA-I and PA-II behave much more steadily
for all six datasets. PA-I and PA-II are soft margin classifiers that enable misclassification
of several training samples, whereas the hard margin classifier, PA, does not. Therefore,
we suspect that PA might be sensitive to noise in the data. StreamSVM obtains the best
results for fourclass, although it fails for the remaining datasets. Moreover, the performance
of StreamSVM remains at a nearly static level, with no further improvement during the
training process for the remaining five datasets. This result is analyzed in Section 5.5.

Table 4. Classification accuracy (mean ± STD, %) with best results shown in bold.

Methods Datasets

Australian Fourclass Banknote Svmguide1 EGSSD Occupation

non-budgeted online

StreamSVM 70.8 ± 8.0 99.8 ± 0.2 86.4 ± 11.0 88.6 ± 2.3 90.8 ± 0.8 94.5 ± 1.6
PA 81.0 ± 2.9 99.8 ± 0.2 99.9 ± 0.1 95.8 ± 0.3 96.9 ± 0.4 84.4 ± 0.3

PA-I 86.0 ± 0.5 99.8 ± 0.2 99.9 ± 0.1 95.8 ± 0.3 96.9 ± 0.7 84.4 ± 0.3
PA-II 85.7 ± 0.7 99.8 ± 0.2 99.9 ± 0.1 95.8 ± 0.3 97.1 ± 0.5 84.4 ± 0.3

AMM-online 80.2 ± 8.3 72.4 ± 7.1 94.2 ± 2.8 92.6 ± 1.5 89.8 ± 2.0 98.5 ± 0.3
OSVM-SP 86.4 ± 0.9 99.8 ± 0.2 99.7 ± 0.2 96.7 ± 0.1 98.8 ± 0.1 99.1 ± 0.0

budgeted online

BSGD 76.2 ± 13.1 76.3 ± 3.0 92.4 ± 3.7 93.6 ± 1.8 91.4 ± 4.8 97.8 ± 2.1
BPA-S 85.9 ± 2.0 96.3 ± 1.5 99.9 ± 0.1 96.3 ± 0.2 96.6 ± 1.6 99.1 ± 0.1

OSVM-SP_Ran 85.2 ± 2.5 98.8 ± 0.9 99.7 ± 0.3 96.4 ± 0.4 96.0 ± 2.1 99.0 ± 0.1
OSVM-SP_Old 86.6 ± 1.4 98.9 ± 0.9 99.7 ± 0.3 95.7 ± 0.5 96.1 ± 1.3 99.0 ± 0.1
OSVM-SP_Min 79.8 ± 5.3 99.2 ± 0.7 99.7 ± 0.3 96.7 ± 0.4 96.8 ± 0.8 99.1 ± 0.1

offline
SVM 86.0 ± 1.6 99.8 ± 0.2 99.7 ± 0.3 96.5 ± 0.3 88.6 ± 1.1 84.3 ± 0.4

ρ-SVM 86.2 ± 1.9 99.9 ± 0.2 100.0 ± 0.0 96.5 ± 0.2 79.6 ± 1.5 90.7 ± 0.3

5.5. Percentage of Support Vectors

Our second experiment examined the computation and memory requirements of
each method by counting the percentage of SVs in the training data during the whole
training process. As the proposed OSVM_SP and its three budgeted versions along with
the majority of the compared methods are kernelized, the number of SVs can be considered
one of the most important indicators of computation and memory consumption. Here,
an SV is denoted as a training sample with a nonempty Lagrange multiplier. Figure 7
depicts the number of SVs with respect to different amounts of training data.
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Figure 7. Number of SVs with varying amounts of training data.

For most unbudgeted online methods, the number of SVs increases with the amount
of training data. The curve for OSVM-SP varies greatly between different datasets. When
the amount of training data approaches 100%, however, the number of SVs for OSVM-SP
remains less than (see Figure 7a,c,d,f) or as much as (see Figure 7b) the SV numbers of
the SVM and ρ-SVM in most cases. In combination with the accuracy results in Table 4,
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the effective predictive performance of SVM and ρ-SVM is acquired at a cost of nearly
100% of the training data, as the SVs (see Figure 7a–d) can consume enormous amounts of
memory and time latency in both the model training and label prediction processes. Com-
pared with SVM and ρ-SVM, OSVM-SP is more lightweight while attaining a comparable
predictive performance. Sometimes, OSVM-SP even achieves higher accuracy (10.2–19.2%,
see Table 4) than the batch methods, although at the cost of more SVs (see Figure 7e). PA
generates fewer SVs than PA-II and/or PA-I most of the time (see Figure 7a,c,e,f), which is
to be expected as the SVs of the hard margin method PA consist of only the misclassified
data, while the SVs of the soft margin methods PA-I and PA-II are constructed using both
the misclassified data and those that are classified correctly and are within the margin.
StreamSVM maintains a small number of SVs based on five datasets, with the exception of
fourclass. In combination with the accuracy results of StreamSVM in Table 4, the reason
for this might be that the corresponding MEB of StreamSVM expands excessively to cover
most of the training data arriving afterwards without triggering any further updates.

For the budgeted online methods, the number of SVs initially increases with the
amount of training data. When it grows to the size of the budget (one-third of the training
size), it remains constant through the various SV removal principles utilized. The number
of SVs for OSVM_SP-Ran, OSVM_SP-Old, and OSVM_SP-Min is controlled in keeping with
the size of the budget. Compared with the nonbudgeted OSVM_SP, it can bes observed that
decreasing the memory requirement by approximately two-thirds leads to only a 0.6–2.0%
loss in accuracy. In other words, OSVM_SP-Ran, OSVM_SP-Old, and OSVM_SP-Min offer
great potential for efficiency and effectiveness in budgeted online learning.

5.6. Radius of the Minimum Enclosing Ball

Our third experiment compared the radii of the MEBs corresponding to the proposed
nonbudgeted online method (OSVM_SP), the three budgeted online methods (OSVM_SP-
Ran, OSVM_SP-Old and OSVM_SP-Min), and the corresponding batch-mode method
(ρ-SVM). Figure 8 shows the radii with respect to different amounts of training data.

The methods can be sorted in ascending order of radii, that is, ρ-SVM, OSVM_SP,
OSVM_SP-Min, OSVM_SP-Old, and OSVM_SP-Ran, on each dataset. The batch-mode
method, ρ-SVM, achieves the minimum radius, as it can iteratively search for the smallest
ball among those covering all the training data. OSVM_SP falls between the batch-mode
ρ-SVM and the three budgeted online methods. In Figure 4f, the ball with respect to
OSVM_SP can be determined by three points represented by two real samples (qi and
zi) and one fake sample (pi), which we believe incurs an expanding radius as well as a
loss in accuracy. The budgeted online methods obtain a larger radius than OSVM_SP, as
one SV must be removed whenever the budget is exceeded. Because the center of the
ball is linearly represented by the SVs, the center drifts away from the location it had
after the removal. Therefore, these methods have to enlarge their radii to cover the new
data. In addition, the degree of drift varies for different removal principles. Among these
budgeted online methods, OSVM_SP-Min achieves the minimal radius mostly by removing
the least important SV, while OSVM_SP-Ran or OSVM_SP-Old achieves the maximal radius
by removing a randomized SV or the oldest SV. There is occasionally a minor difference in
their radius lengths.
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Figure 8. Radius with varying amounts of training data.

5.7. Effect of Budget Size

Our last experiment verified the effect of different budget sizes on the performance of
the three proposed budgeted methods, OSVM_SP-Ran, OSVM_SP-Old, and OSVM_SP-Min.
The size of the budget was set to be a range of percentages of the training data, with the
percentage chosen by a grid search with (5%, 10%, · · · , 95%, 100%). Note that when the
percentage equals 100%, OSVM_SP-Ran, OSVM_SP-Old, and OSVM_SP-Min are identical
to OSVM_SP, which means that the budget is able to store all the training data without any
SVs needing to be removed.
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Figure 9 depicts the classification error with respect to different budget sizes as well
as different amounts of training data. The error decreases with increasing the budget
size percentage, and ultimately converges to the error of OSVM_SP. First, the error of the
budgeted methods decreases much more quickly when the percentage is small (e.g., less
than 20%), which means that a few new data points are not sufficient for learning; the
performance of our proposed algorithms can thus be greatly improved by remembering
more data. The rate of decrease slows when the percentage is above 40%, which implies that
it is not necessary to remember all the old SVs in order to achieve comparable predictive
performance. The experimental results in the above section show that when the budget
size is set to one-third, the three budgeted algorithms can achieve predictive performance
comparable to that of a classifier as well as a radius length comparable to that of the MEB.
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Figure 9. Cont.

68



Mathematics 2022, 10, 3113

10 20 30 40 50 60 70 80 90 100

Budget size (%)

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

T
ra

in
 d

at
a 

(%
)

5

10

15

20

25

30

Error (%)

(m) _Ran for EGSSD

10 20 30 40 50 60 70 80 90 100

Budget size (%)

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

T
ra

in
 d

at
a 

(%
)

5

10

15

20

25

30

35

40

Error (%)

(n) _Old for EGSSD

10 20 30 40 50 60 70 80 90 100

Budget size (%)

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

T
ra

in
 d

at
a 

(%
)

3

4

5

6

7

8

9

10

11

12

Error (%)

(o) _Min for EGSSD

10 20 30 40 50 60 70 80 90 100

Budget size (%)

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

T
ra

in
 d

at
a 

(%
)

1

1.2

1.4

1.6

1.8

2

Error (%)

(p) _Ran for occupation

10 20 30 40 50 60 70 80 90 100

Budget size (%)

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

T
ra

in
 d

at
a 

(%
)

1

1.2

1.4

1.6

1.8

2

Error (%)

(q) _Old for occupation

10 20 30 40 50 60 70 80 90 100

Budget size (%)

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

T
ra

in
 d

at
a 

(%
)

1

1.2

1.4

1.6

1.8

2

Error (%)

(r) _Min for occupation

Figure 9. Error with varying budget size and training data.

6. Discussion

This paper presents OSVM_SP, a single-pass online algorithm for streaming data.
Moreover, OSVM_SP-Ran, OSVM_SP-Old, and OSVM_SP-Min are proposed as three
budgeted online algorithms to bound the space requirement using support vector removal
principles. This section discusses the superiority and limitations of the proposed methods.

The proposed methods are superior in three distinct ways:

1. OSVM_SP has the most effective predictive performance in the family of nonbudgeted
online methods and is lightweight compared to batch-mode methods.

2. The budgeted OSVM_SP-Ran, OSVM_SP-Old, and OSVM_SP-Min all converge steadily
to the nonbudgeted OSVM_SP in their predictive performance. Compared with
OSVM_SP, a decrease in the memory requirement of approximately two-thirds leads
to a loss in accuracy of only about 2.0%.

3. For OSVM_SP-Ran, OSVM_SP-Old, and OSVM_SP-Min, the error decreases with
the increase in the budget size, and ultimately converges to the error of OSVM_SP.
Moreover, the error decreases quickly/slowly when the budget size is small/large; 20–
40% of the training size seems to be a proper range for the budget size.

The limitations are three-fold as well:

1. Similar to the other kernelized methods, the proposed OSVM_SP has to save all of the
SVs during the whole online learning process, which can become a heavy burden in
restricted memory scenarios.

2. OSVM_SP and its three budgeted versions are all proposed for binary classification
problems. For multiple classification problems, it is possible to build a series of binary
models according to one-versus-one or one-versus-rest techniques. In other words,
when new samples arrive, several models have to be learned to maintain updates,
which may be computationally burdensome.

3. Class imbalance and missing data issues are not fully considered in this paper. Ways of
adapting the proposed methods to streaming data with missing features/labels from
imbalanced classes is an interesting and promising direction for future
research.

7. Conclusions

In this paper, we present OSVM_SP, a new online SVM algorithm for streaming
data, and three budgeted versions of OSVM_SP to bound the space requirement. All of
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these approaches are based on the online MEB problem and require a single pass over
the streaming data. The experimental results obtained for five public datasets show that
OSVM_SP outperforms most state-of-the-art single-pass online algorithms in terms of
accuracy and is comparable to batch-mode SVMs and MEBs in both accuracy and radius.
Our budgeted algorithms reduce the space requirement by two-thirds with only a slight
loss in accuracy (0.7–5.7%).
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Appendix A. Derivation of Equations (3) and (4)

The Lagrange function of Equation (1) is listed as follows:

L(ω, ξ, ρ, α) =
1
2
‖ω‖2 − ρ +

C
2
‖ξ‖2 −

N

∑
i=1

αi(yiω
′φ(xi)− ρ + ξi)

According to the KKT Theorem: (a) the partial derivative of the Lagrange function
L(ω, ξ, ρ, α) with respect to all the variables ω, ρ, and ξi, ∀i = 1, · · · , N of Equation (1) is
required to be zero; and (b) ∑N

i=1 αi(yiω
′φ(xi) − ρ + ξi) = 0, which leads to the follow-

ing solutions.
(a.1) ∂L/∂ω = ω − ∑N

i=1 αiyiφ(xi) = 0 ⇔ ω = ∑N
i=1 αiyiφ(xi); thus, Equation (3a)

holds.
(a.2) ∂L/∂ξi = Cξi − αi = 0, ∀i ⇔ ξi = αi/C, ∀i ⇔ ξ = α/C; thus, Equation (3b)

holds.
(a.3) ∂L/∂ρ = −1 + ∑N

i=1 αi = 0 ⇔ ∑N
i=1 αi = 1 ⇔ α1 = 1.

(a.4) ∑N
i=1 αi(yiω

′φ(xi) − ρ + ξi) = 0 ⇔ αi(yiω
′φ(xi) − ρ + ξi) = 0, ∀i ⇔ ρ =

ykω′φ(xk) + ξk, ∀αk �= 0; with Equations (3a) and (3b), ρ = yk ∑N
i=1 αiyikφ(xi, xk) + αk/C,

∀αk �= 0. Thus, Equation (3c) holds.
Becuase the SVM in this paper indicates the unbiased linear function in RKHS,

the classifier learned by SVM can be represented by y = sig(ω′φ(x)). In conjunction
with Equation (3a), we can find that y = sig(ω′φ(x)) = sig(∑N

i=1 αiyikφ(xi, x)), as listed in
Equation (4).

Appendix B. Derivation of Equation (10)

zi = ϕ(xi), according to the definition of zi.
zi =

[
yiφ(xi); ei/

√
C
]
, according to the first condition in Section 3.2.

ci−1 =
[
∑i−1

j=1 αi−1
j yjφ(xj); ∑i−1

j=1 αi−1
j ej/

√
C
]
, according to Equation (9a).

d(zi, ci−1) =
∥∥zi − ci−1

∥∥, according to the definition of d.

d(zi, ci−1) =
∥∥∥[yiφ(xi)− ∑i−1

j=1 αi−1
j yjφ(xj); (ei − ∑i−1

j=1 αi−1
j ej)/

√
C
]∥∥∥,

=

√∥∥∥yiφ(xi)− ∑i−1
j=1 αi−1

j yjφ(xj)
∥∥∥2

+
∥∥∥ei − ∑i−1

j=1 αi−1
j ej

∥∥∥2
/C,

=

√
‖yiφ(xi)‖2 +

∥∥∥∑i−1
j=1 αi−1

j yjφ(xj)
∥∥∥2 − 2yiφ(xi)′ ∑i−1

j=1 αi−1
j yjφ(xj) + (‖ei‖2 +

∥∥∥∑i−1
j=1 αi−1

j ej

∥∥∥2 − 2 ∑i−1
j=1 αi−1

j e′jei)/C,

=
√

κφ + ∑i−1
j,k=1 αi−1

j αi−1
k yjykkφ(xj, xk)− 2yi ∑i−1

j=1 αi−1
j yjkφ(xj, xi) + (1 + ∑i−1

j=1(α
i−1
j )2)/C,
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according to the second condition in Section 3.2.

=

√
∑i−1

j,k=1 αi−1
j αi−1

k yjyk(kφ(xj, xk) +
δjk
C )− 2yi ∑i−1

j=1 αi−1
j yjkφ(xj, xi) + κφ + 1/C.

Thus, Equation (10) holds.
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Abstract: Identifying possible research gaps is a main step in problem framing, however it is increas-
ingly tedious and expensive considering the continuously growing amount of published material.
This situation suggests the critical need for methodologies and tools that can assist researchers
in their selection of future research topics. Related work mostly focuses on trend analysis and impact
prediction but less on research gap identification. This paper presents our first approach in auto-
mated identification of feasible research gaps by using a double-threshold procedure to eliminate
the research gaps that are currently difficult to study or offer little novelty. Gaps are then found by
extracting subgraphs for the less-frequent co-occurrences and correlations of key terms describing
domains. A case study applying the methodology for electronic design automation (EDA) domain is
also discussed in the paper.

Keywords: research gap; natural language processing; co-occurrence matrix; double-thresholding
method

MSC: 68T50

1. Introduction

Identifying potential research gaps is one of the main steps leading toward success-
ful problem framing and then fruitful research achievements. It is rooted in the sys-
tematic and comprehensive review of the scientific literature and other related material.
With the exponential growth in the number of publications and published work, this
activity becomes increasingly laborious and time-consuming, indicating a critical need
for automatic tools to assist researchers when selecting their future research themes.

In an effort to automatize research gaps identification, natural language processing (NLP)
provides an effective starting point in extracting valuable information from the published body
of knowledge, such as by employing term co-occurrence analysis techniques [1]. Such techniques
are able to map entire scientific fields to offer cues for identifying unexplored, insufficiently
investigated, and mature/well-explored areas [2], hence orienting research towards new and
potentially hot topics.

Present NLP research does not directly tackle research gap identification, as it is mainly
focused on identifying research trends and fronts. For this, three basic scientometric approaches,
as well as their diverse combinations, are employed [3]: (a) exploring the dynamics of scientific
production in order to model the growth of scientific knowledge within a given domain [4],
a representative example in this respect being the identification of the research trends in the field
of tourism based on the areas of dispersion and concentration of the scientific information, coupled
with the investigation of the scientific influence and productivity of publications [5]; (b) citation
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network analysis that traces the interest and relevance of a topic within the scientific community,
based on the evolution and dynamics in the number of citations, including its diverse forms
like patent citation analysis [6] or co-citation analysis [7]; (c) content analysis. To investigate which
scientific areas are rising in popularity using content analysis, a widely used approach is to employ
co-word analysis [8,9] and topic modeling to extract the main topics from a relevant scientific
document corpus and to explore their time evolution [10–14].

Even though the mentioned research directions have offered unique insights into
research domain dynamics, they do not address the discovery of new research gaps and
problems. Trend analysis predicts the likely evolution of a research domain and its impact,
including the number of citations that a published paper is expected to receive. However,
traditional trend analysis does not study the potential connections across different domains
and trends, even though many current research needs have a cross-disciplinary nature.

To the best of our knowledge, this work provides the first attempt to automatize
the identification of feasible research gaps by analyzing the correlations between a chosen
set of key terms (specific to the scientific domain of interest), followed by a double-threshold
procedure to discard the research gaps that are difficult to study with the existing knowl-
edge or may offer little novelty. To discover feasible research gaps from a given scientific
domain described as an undirected graph of key terms, the method extracts the subgraphs
characterized by less-frequent and hence unsolidified links, or, in other words, by key term
co-occurrences lying in a particular interval that assures the needed levels of expected
novelty and likely success of the research topic.

This paper makes the following contributions:

• A formalization of the feasible research gap identification problem using graph theory
and term co-occurrences. Considering that any given scientific domain can be repre-
sented as an undirected weighted graph characterized by a finite set of nodes (i.e., key
terms) and its corresponding cost adjacency matrix in the form of co-occurrence matrix
extracted from publication corpus, this paper is the first that formalizes the feasible
research gap discovery process as a subgraph extraction problem driven by novelty
and success expectations concepts.

• A NLP methodology to solve this problem by using term co-occurrence analysis and
a carefully tailored double-threshold method able to retain only the research gaps that
are characterized by adequate novelty and success expectations.

• An illustrative case study on applying the proposed methodology for the electronic
design automation (EDA) domain.

The rest of the paper is structured as follows. Section 2 formalizes the feasible research
gap discovery problem. Sections 3 and 4 present a new double-threshold method and
the proposed methodology to solve this problem, respectively. In Section 5 a case study
for extracting feasible research gaps within a specified scientific area from EDA is presented.
Finally, conclusions are summarized in Section 6.

2. Problem Formulation

Our goal is to automatically identify research gaps that have the potential to be
studied with current theories, methods, and technologies to produce a novel contribution.
A set of key terms (e.g., keywords) describes the scientific area where the research gap
identification process is focused. We formulated this problem as a graph theoretic problem,
as follows.

Let us consider a weighted undirected graph G = (V , E , w), where each of the n
key terms describing a scientific area is a vertex from the set V = {KTi | i = 1, . . . , n},
E ⊂ V × V is the set of edges, and weight w : E → R associates the correlation of a pair
of key terms with the corresponding edge. Research gap identification finds all the induced
connected subgraphs of a specified order s of graph G that assure a correlation between
key terms that can provide sufficient novelty and success expectations.

Co-occurrence is a popular solution in natural language processing (NLP) research
to model the correlation between terms [15,16]. It refers to the frequency of the simultaneous
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presence of two terms in the documents of a corpus [17]. The higher the co-occurrence
value, the stronger the expected semantic relationship between terms. Similarly, using
term co-occurrences, we described the weighted undirected graph G = (V , E , w) by its
symmetric cost adjacency matrix in the form of the co-occurrence matrix M of order n,
where n is the number of the selected key terms that characterize the scientific domain
under investigation. Each element M(i, j) is the number of documents in which both key
terms KTi and KTj occur, normalized by the total number of documents in the considered
corpus. Thus, M(i, j) ∈ [0; 1] and can be interpreted as the average frequency in which
the two terms appear in the same document.

Solving research gap identification required the addressing of two related subproblems:
(a) finding a suitable condition for the correlation between two key terms to suggest
feasibility in the suggested research themes (i.e., sufficient novelty and success expectations);
(b) extracting the feasible research gap proposals by finding all the induced connected
subgraphs [18], where the feasibility condition, identified by the first subproblem, is
met for all edges. The next section proposes a solution to the first subproblem, while
an integrated research gap identification methodology is presented in Section 4.

3. Double-Threshold Method to Identify Potential Research Gaps

Since not every research gap is a viable starting point for new research projects, it is
important to identify the research gaps that provide enough scientific novelty at a given
time moment using the available methods and materials. To address this issue, we proposed
a new double-threshold method to identify the feasible research gaps based on the term
co-occurrence matrix.

3.1. Modeling

To develop a method for identifying feasible research gaps based on the NLP approach,
we first analyzed the underlying information behind the co-occurrence M(i, j) of two key terms,
denoted by KTi and KTj, in a document corpus. We observed the following two aspects:

1. A very low value for M(i, j) not only indicates that the two terms are hardly encoun-
tered in the same document but may also suggest that the current state of knowl-
edge is not well developed to link them or that the two terms may be incompatible.
Hence, selecting terms with a co-occurrence lower than threshold α may likely result
in an unfeasible research theme, in this sense α playing the role of “critical mass”. We
denoted this threshold as success threshold since M(i, j) > α is expected to offer a more
likely successful ratio. Note that the successful integration of the two terms KTi and
KTj in a new research topic gets higher when raising the M(i, j) co-occurrence value.

2. A very high value of M(i, j) generally indicates that the link between the two terms
KTi and KTj is strong as the two terms were often encountered together in the same
document. This situation may derive from an intensively studied term connection,
suggesting that including the two terms in the newly framed research topic might
likely be a lesser source of novelty. Thus, selecting terms that have a co-occurrence
higher than threshold β may result in a research theme with small novelty. We named
β as the novelty threshold, where M(i, j) < β may provide an acceptable novelty.
Note that the potential novelty induced by the two terms KTi and KTj inside a new
research topic is continuously decreasing for M(i, j) over the [0; 1] interval contrary
to the success ratio that is continuously increasing over the same interval.

3.2. Double-Threshold Method

We argue that in the co-occurrence matrix for selected terms only the elements M′(i, j)
belonging to the interval [α; β] must be retained, where α is the indicator for the expected
success rate of a research theme and β is the novelty threshold. Table 1 summarizes
the procedure to identify feasible research gaps based on the double-threshold method
using the co-occurrence matrix for the selected context terms and the key term. For
β < M(i, j) ≤ 1, the research gap is valueless since its novelty prospects are reduced,
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while for 0 ≤ M(i, j) < α, the research gap cannot be likely tackled using existing theories,
materials, and methods.

Table 1. Double-threshold approach for identifying feasible research gaps.

0 ≤ M(i, j) < α α ≤ M(i, j) ≤ β β < M(i, j) ≤ 1

Succes low high high

Novelty high high low

Research Gap Type Unfeasible Feasible None

Term co-occurrences are corpus-dependant. For example, a document corpus that char-
acterizes a broader scientific domain offers lower M(i, j) co-occurrence values for the same
pairs of key terms KTi and KTj. Consequently, the selection of the novelty and success
thresholds needs to be a result of an exploratory corpus analysis.

3.2.1. Success and Novelty Thresholds Selection

Given a statistically significant document corpus of size N , the novelty and success
threshold values can be found using the following three-step procedure:

I. Extract the key term topics from the document corpus using appropriate NLP topic
modeling techniques, and then identify the most relevant p key terms within each
of the r topics.

II. Compute all r × p × (p − 1)/2 co-occurrences between the most relevant p key
terms within each of the r topics. These co-occurrences, denoted by M(i, j), are
calculated in the same way as M(i, j), i.e., the number of documents in which
both key terms KTi and KTj occur, normalized by the total number of documents
in the considered corpus.

III. Select the success threshold α and the novelty threshold β by trimming the ends
of the M(i, j) distribution.

To identify a suitable procedure to select the two thresholds, we analyzed the probability
distribution of the M values within the considered statistically significant document corpus
of size N . We found that the terms co-occurrence M(i, j) values have two important properties:
(i) considering the way they are computed, M(i, j) may take only particular values inside
[0, 1] interval, namely multiples of 1/N ; (ii) their distribution is heavily skewed to zero, with no
negative values and few observations deviating far from zero. Thus, we can model the distribution
of the term co-occurrences M(i, j) as an exponential-like distribution, where α and β act as two
thresholds producing a two-sided trimmed exponential distribution (Figure 1). Neglecting the null
values of M(i, j), we may select α and β such that each of the thresholds filters out approximately
10–30% of the M values, a practical selection being α = Q1 and β = Q3, with Q1 and Q3 being
the first and third quartiles.

Using the success and novelty thresholds, we retain only the M(i, j) values inside
the interval [α, β], which are considered in the acceptance range.

It is noteworthy to mention that our double-threshold approach can be tailored to cope
with the researcher’s risk profile. For this, similar to the definition of financial risk tolerance [19],
we could define research risk tolerance as being the maximum amount of uncertainty that a re-
searcher is willing to accept when framing a new research theme. According to the researcher’s
risk tolerance, we can classify research theme framing in three categories, each of them being
characterized by a chosen pair of success and novelty thresholds {α; β}:

1 Conservative framing—low research risk described by {αc; βc};
2 Moderate framing—median research risk described by {αm; βm};
3 Aggressive framing—high research risk described by {αa; βa}.

Here, the success threshold values hold αa < αm < αc, while the novelty threshold
values hold βa ≤ βm ≤ βc. All six threshold values must be selected using the third step
of the above thresholds selection procedure.

76



Mathematics 2022, 10, 3115

0 1



2



3


... 1

Co-occurrence values 

N
u
m

b
e
r 

o
f 

a
p
p
e
a
ra

n
c
e
s

exponential distribution

success threshold (α)

novelty threshold (β)

trimmed zone

Figure 1. Distribution of terms co-occurrence values M(i, j) in a corpus of size N .

4. Proposed Methodology

The methodology proposed to automatically recommend feasible research gaps ex-
tracted from a given scientific area described by a chosen set of key terms V is as follows:

1 Select a suitable document corpus D to identify the research gaps. For this, top-tier
journal or conference papers within the scientific domain that encapsulates the given
set of key terms V are suitable options.

2 Calculate the co-occurrence matrix corresponding to the set of key terms V to de-
scribe the weighted undirected graph G = (V , E , w). A recent subset of documents
from corpus D can be used, e.g., no older than two years for timely research gaps.

3 Apply the double threshold procedure described in Section 3 to drop all edges
from G = (V , E , w) for which M(i, j) lays outside the [α, β] interval. By this, a new
graph G′ = (V , E′, w′), with the corresponding adjacency matrix M′, is obtained. In or-
der to derive the success threshold α and the novelty threshold β, the entire document
corpus D is used to obtain more statistically significant values.

4 Provide the list of feasible gap recommendations using the double-thresholded version
of the co-occurrence matrix M′ to extract all induced connected subgraphs [18] of order
s from G′, where s is the number of key terms considered to adequately depict a feasible
research gap.

To help rank the recommendations, for each feasible gap the mean co-occurrence value
μ (i.e., average co-occurrence for the induced connected subgraph of order s) is computed
using the following formula:

μ =
∑i<j M′(i, j)

0.5 × s × (s − 1)
, (1)

where the summation includes only the co-occurrences M′(i, j) for the induced connected
subgraph edges that describe the feasible research gap, and the denominator is the number
of all possible edges within the subgraph. The higher this metric is, the higher the success
is and the lower the novelty.

At the end of this methodology, a set of feasible research gap proposals (i.e., sets of key
terms), ranked by corresponding the mean co-occurrence values, is offered to the user, and
the researcher is invited to drop all unrealistic gaps (such as gaps with no meaning) and
to select one based on his/her goals and expertise.
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5. Case Study

We evaluated the proposed methodology for research gap identification for the elec-
tronic design automation (EDA) scientific domain. Research in this area can be described
by a set of key terms V containing the following elements: ‘machine learning’, ‘energy
efficiency’, ‘internet of things’, ‘approximate computing’, ‘fault tolerant’, ‘biological neural
networks’, and ‘optimization problem’. Other similar sets can be found as well. Details
about each of the four steps of the methodology are presented next.

1 We selected IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems (TCAD), a top tier EDA journal, to build a suitable document corpus for our
methodology. After extracting journal paper metadata from the IEEEXplore database,
a compound abstract was produced for each journal paper by concatenating its title,
keywords, and abstract. All compound abstracts were transformed in sequences of rel-
evant terms (i.e., processed abstracts) by using the TagMe entity linking tool [20] with
the link-probability parameter set to 0.1.

2 We computed the co-occurrence matrix M corresponding to the set of seven key
terms V using the processed abstracts of TCAD papers from 2019 and 2020. Figure 2
presents the M matrix as a heatmap, while Figure 3 presents the corresponding graph
G as a chord diagram.

3 To apply the double threshold procedure described in Section 3, we first derived
the success threshold α and the novelty threshold β using the entire document corpus
D (i.e., TCAD papers from 2010 to 2020). For this, we performed a latent Dirichlet
allocation (LDA) topic modeling [21] for r = 4 topics, and selected the most rele-
vant p = 30 terms within each of the topics to obtain the M(i, j) co-occurrences.
The histogram of the M(i, j) co-occurrences and the selection of the α = 0.000317
and β = 0.003 thresholds according to the procedure described in Section 3.2.1 are
presented in Figure 4.
Using these threshold values we computed the double-thresholded version M′ of the co-
occurrence matrix. The matrix M′ is presented as a heatmap in Figure 5, while the cor-
responding graph G′ is depicted in Figure 6.

4 Assuming that a set of four key terms are appropriate to characterize a potential
research gap, we extracted the following list of feasible research gaps (i.e., all induced
connected subgraphs of order s = 4), ranked by their corresponding μ value:

(a) ‘machine learning’, ‘energy efficiency’, ‘internet of things’, ‘approximate com-
puting’; μ = 0.00174574.

(b) ‘machine learning’, ‘energy efficiency’, ‘internet of things’, ‘biological neural
networks’; μ = 0.00164017.

(c) ‘machine learning’, ‘energy efficiency’, ‘approximate computing’, ‘biological
neural networks’; μ = 0.0013756.

(d) ‘machine learning’, ‘energy efficiency’, ‘internet of things’, ‘optimization prob-
lem’; μ = 0.0012169.

(e) ‘machine learning’, ‘energy efficiency’, ‘approximate computing’, ‘optimization
problem’; μ = 0.0011639.

(f) ‘energy efficiency’, ‘internet of things’, ‘approximate computing’, ‘biological
neural networks’; μ = 0.00100549.

(g) ‘machine learning’, ‘internet of things’, ‘approximate computing’, ‘biological
neural networks’; μ = 0.00084652.

(h) ‘energy efficiency’, ‘internet of things’, ‘biological neural networks, ‘optimiza-
tion problem’; μ = 0.000740740.

(i) ‘energy efficiency’, ‘approximate computing’, ‘biological neural networks’,
‘optimization problem’; μ = 0.0006348836.

From these research gap recommendations, we selected two potential research topics,
and we offer their textual descriptions in Table 2.
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Figure 2. Heatmap visualization of the co-occurrence matrix M.

Figure 3. The original graph G of key terms.
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Figure 4. Histogram of the M co-occurrences and threshold values selection.
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Table 2. Potential research topics in the EDA domain.

No. Feasible Research Gap Terms Research Theme Description μ

1.
KT1: machine learning

KT3: internet of things

KT4: approximate computing

KT6: biological neural networks

Biological neural network inspired

algorithms for approximate computing

in ML for IoT applications.

0.00084652

2.
KT1: machine learning

KT2: energy efficiency

KT3: internet of things

KT7: optimization problem

Design of integrated circuits for IoT

applications optimized for energy

efficiency by means of ML.

0.0012169
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If we consider the researcher risk categories described in the last paragraph of Section 3.2
(i.e., conservative framing {αc = 0.001; βc = 0.003}; moderate framing {αm = 0.0004; βm = 0.003};
aggressive framing {αa = 0.0001; βa = 0.003}) and the number of terms to characterize pos-
sible research gaps s ∈ {3, 4}, a sample of recommendations was produced, as presented
in Table 3.

Table 3. Research topic examples considering research risk.

No. Feasible Research Gap Terms Research Theme Description Scenario

1.
KT1: machine learning

KT2: energy efficiency

KT3: internet of things

Using ML for energy-efficient IoT. conservative

2.
KT1: machine learning

KT3: internet of things

KT4: approximate computing

KT6: biological neural networks

Biological neural network inspired

algorithms for approximate computing

in ML for IoT applications.

moderate

3.
KT1: machine learning

KT2: energy efficiency

KT3: internet of things

KT7: optimization problem

Design of integrated circuits for IoT

applications optimized for energy

efficiency by means of ML.

moderate

4.
KT1: machine learning

KT4: approximate computing

KT5: fault tolerant

KT7: optimization problem

Approximate computing for solving

optimization problems in fault

tolerant ML.

aggressive

5.
KT1: machine learning

KT2: energy efficiency

KT5: fault tolerant

KT6: biological neural networks

Biological neural network inspired

methods for fault tolerant and energy-

efficient ML.

aggressive

6. Conclusions

Identifying potential research gaps is a main step toward successful problem framing
and hence fruitful research achievements. This activity has become very cumbersome due
to the increase in the number of publications and published papers. Hence, automatic tools
are necessary to assist researchers to select their future research themes. Related techniques
can explore research trends by mapping scientific fields’ unexplored or insufficiently
investigated areas, but do not study potential connections across different domains and
trends, even though current research needs are often cross-disciplinary in nature.

This paper discusses a method for automated identification of feasible research gaps by
graph-theoretic analysis of the correlations between key terms (specific to the scientific domain
of interest), followed by a double-threshold procedure to discard the research gaps that are
difficult to study with the existing knowledge or may offer little novelty. The method extracts
the subgraphs for the less-frequent graph links to express research key terms that are likely
to be part of problem descriptions of expected novelty and likely success. A case study uses
the proposed method to find research gaps for the electronic design automation (EDA) domain.
Starting from a document corpus based on IEEE TCAD, the method extracted subgraphs for less-
frequent co-occurring keywords for different researcher risk profiles. The subgraphs were then
utilized for research gap description.

Future work will focus on extending the method by devising algorithms to automat-
ically select the parameters of the methods, such as the co-occurrence distributions, and
the two threshold values. We also plan to enhance our method by including a citation
analysis component and to use other publication corpora for EDA, as well as experiment
with different domains.
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Abstract: Resistance value (R-value) is one of the basic subgrade stiffness characterizations that express
a material’s resistance to deformation. In this paper, artificial intelligence (AI)-based models—especially
M5P, support vector machine (SVM), and Gaussian process regression (GPR) algorithms—are built for
R-value evaluation that meets the high precision and rapidity requirements in highway engineering.
The dataset of this study comprises seven parameters: hydrated lime-activated rice husk ash, liquid
limit, plastic limit, plasticity index, optimum moisture content, and maximum dry density. The available
data are divided into three parts: training set (70%), test set (15%), and validation set (15%). The output
(i.e., R-value) of the developed models is evaluated using the performance measures coefficient of
determination (R2), mean absolute error (MAE), relative squared error (RSE), root mean square error
(RMSE), relative root mean square error (RRMSE), performance indicator (ρ), and visual framework
(Taylor diagram). GPR is concluded to be the best performing model (R2, MAE, RSE, RMSE, RRMSE,
and ρ equal to 0.9996, 0.0258, 0.0032, 0.0012, 0.0012, and 0.0006, respectively, in the validation phase),
very closely followed by SVM, and M5P. The application used for the aforementioned approaches for
predicting the R-value is also compared with the recently developed artificial neural network model in
the literature. The analysis of performance measures for the R-value dataset demonstrates that all the
AI-based models achieved comparatively better and reliable results and thus should be encouraged in
further research. Sensitivity analysis suggests that all the input parameters have a significant influence on
the output, with maximum dry density being the highest.

Keywords: resistance value; M5P; support vector machine; Gaussian process regression; expansive
soil; subgrade

MSC: 68T09

1. Introduction

A flexible pavement structure is composed of several layers, the lowest of which is
known as the pavement foundation or subgrade. The strength and stiffness of the subgrade
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are critical for pavement design, construction, and performance. California bearing ratio,
resistance value (R-value), and resilient modulus are all terms used to describe subgrade
strength and stiffness. In this study, R-value is used to represent subgrade strength and/or
weakness. A soil’s deformation resistance is expressed as a function of the applied vertical
pressure to lateral pressure ratio. The R-value, which ranges from 0 to 100, represents
soil strength and stiffness, with 100 representing the highest strength [1]. The resulting
pavement may be overdesigned if a low subgrade R-value is used in its design, despite the
fact that the actual subgrade is not weak. If a high R-value is utilized in the design while
the actual subgrade is weak, the subsequent pavement structure may be too thick to protect
the weaker subgrade soil from traffic stresses [2,3]. The R-value is an important parameter
in pavement design because the thickness of each layer is determined by the R-value and
traffic index (expected level of traffic loading). It can be measured through a particular test
called the stabilometer test in the laboratory. This test actually measures the resistance of
soil/aggregate sample to the vertically applied load under particular conditions. Usually,
foundation material suffers lateral deformation due to subjected vertical loading [4,5].
Rafiqul et al. [6] demonstrated from elastic analysis that increasing subgrade R-values can
significantly reduce compressive strain at the top of the subgrade. Subgrade treatment can
help to reduce stress and strains in weak subgrade.

This test was first used by Caltron for the purpose of pavement design, replacing the
California bearing ratio test. In some areas, R-value testing is used for the road aggregate and
subgrade soil. The R-value of a soil stratum can be defined as the ability of a soil medium to
resist lateral spreading due to applied vertical load. In the case of pavement, tire load is applied
as vertical load. The base course contains well-graded crushed stone with dense gradation
bearing R-value of 80+ while silts attain 15–30. For robust pavement design, accurate prediction
of the mechanical index of geomaterials is necessary [7]. There are certain parameters on which
the pavement design is dependent, one of which is the R-value of the soil [5]. The R-value
of a material is determined when the material is saturated to the point where water will be
expelled from the compacted test specimen when a 16.8 kN (2.07 MPa) load is applied. Because
it is not always possible to prepare a test specimen that will exude water at the specified load,
a series of specimens prepared at different moisture contents must be tested [6]. The R-value
can be measured using a laboratory stabilometer following the ASTM D 2844, AASHTO T 190,
and California Test CT 301 and the following formula [6]:

R = 100 − 100
(2.5/D)[(Pv/Ph)− 1] + 1

(1)

where D denotes the displacement of stabilometer fluid required to increase the horizontal
pressure from 5 to 100 psi (34.5 to 689.5 kPa), Pv denotes the applied vertical pressure of
160 psi (1103 kPa), Ph denotes the transmitted horizontal pressure of 160 psi (1103 kPa),
and R denotes the resistance value. The R-value can also be calculated empirically using
soil classification and index properties.

The New Mexico Department of Transportation (NMDOT) uses a field empirical
method to estimate the R-value, which involves first determining the American Association
of State Highway and Transportation Officials (AASHTO) soil classification and the plastic-
ity index, and then referencing the R-value from a standard estimated table of values [8].
It is a very complex and time-consuming process to determine the R-value in the labora-
tory [9]. In a similar manner, complications can also occur in the case of expansive soil for
strength improvement and needs stabilization [5,9,10]. Onyelowe et al. [11] used 121 data
points of expansive soil treated with recycled and activated composites of rice husk ash to
predict the behavior of soil-strength parameters, such as R-value using the evolutionary
hybrid algorithms of an artificial neural network (ANN). The results demonstrated that the
aforementioned model can obtain the measured R-value with acceptable performance.

In the last 10 years, artificial intelligence (AI) techniques have been widely used to solve
real-world problems, particularly in civil engineering. AI techniques have been successfully
applied to a wide range of real-world scenarios, paving the way for a number of promising
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opportunities in civil engineering and other fields, such as environmental [12], geotechnical
and geological [13–26], and other sciences [27–30] including R-value prediction [11,31]. These
studies provided new concepts and ways for predicting R-value. However, this field is still
being researched. This paper focuses on the use of AI-based models—especially M5P, support
vector machine, and Gaussian process regression—to analyze the prediction of R-value for
hydrated lime-activated rice husk ash (HARHA)-treated expansive soil, emphasizing accuracy
and efficiency, as well as the ability of each technique to deal with experimental data. This
study uses seven input parameters—HARHA, liquid limit (LL), plastic limit (PL), plasticity
index (PI), optimum moisture content (OMC), clay activity (AC), and maximum dry density
(MDD)—assessed for the estimation of output R-value. The accuracy of the models was
compared with previously developed models in the literature using performance indices of
coefficient of determination, mean absolute error, relative squared error, root mean square error,
relative root mean square error, and performance indicator.

The first section of this research paper contains the introduction, the second section
details about the dataset, Pearson’s correlation analysis, and a short literature review on
soft computing techniques for estimation of the R-value. The third section has thorough
discussion of the results, and the last section summarizes the whole study and presents the
conclusions and future prospects.

2. Materials and Methods

2.1. Data Collection

The dataset acquired from Onyelowe et al. [11] was organized into three parts: training,
testing, and validation. The total dataset was divided such that the training dataset is 70%
(85) of the total dataset and the remaining 30% (36) dataset was equally divided between
testing and validation. The complete database is available in Table A1 in Appendix A. In the
Onyelowe et al. [11] study, a number of tests were conducted on prepared expansive soil. Both
treated and untreated soil specimens were used for determination of the dataset. The seven
input parameters—HARHA (X1), LL (X2), PL (X3), PI (X4), OMC (X5), AC (X6), and MDD
(X7)—were assessed for estimation of output R-value (Y). A hybrid geometrical binder called
HARHA was prepared from blending of rice husk with 5% hydrated lime Ca(OH)2, and the
mix then remained for 24 h for complete activation reaction. The hydrated lime acted as alkali
activator, while the rice husk was obtained from rice-processing mills. Basically, rice husk is an
agro industrial waste. The rice husk mass was turned into ash by direct combustion to obtain
rice husk ash (RHA) [32]. The HARHA was also used to treat the soil in varying proportions
ranging from 0.1 to 12. Therefore, in this study, these seven input parameters were used to
develop the proposed models for comparison. The descriptive statistics of each input and
output are listed in Table 1 and the histograms are presented in Figure 1.

Table 1. Statistical analysis of the input and output parameters.

Dataset Statistical
Parameters

Input and Output Parameters

X1 (%) X2 (%) X3 (%) X4 X5 (%) X6 X7 (g/cm3) Y

Minimum 0.00 39.30 14.90 24.30 16.00 1.10 1.25 11.70
Maximum 8.40 66.00 21.00 45.00 19.00 2.00 1.90 23.50

Training Mean 4.20 54.02 18.38 35.65 18.11 1.56 1.57 18.41
SD 2.47 7.79 1.76 6.07 0.88 0.25 0.19 3.63

COV 58.77 14.43 9.57 17.03 4.87 16.33 12.01 19.74

Minimum 8.50 35.50 14.90 20.40 17.84 0.86 1.91 23.60
Maximum 10.20 39.00 15.20 24.00 18.20 1.00 1.98 25.30

Testing Mean 9.35 37.06 15.04 22.01 18.07 0.97 1.96 24.37
SD 0.53 0.96 0.09 0.98 0.14 0.05 0.02 0.50

COV 5.71 2.60 0.61 4.43 0.77 4.74 1.10 2.04

Minimum 10.30 27.00 12.80 14.00 17.10 0.60 1.95 25.40
Maximum 12.00 34.60 14.90 19.70 17.79 0.84 1.99 27.00

Validation Mean 11.15 30.47 13.61 16.87 17.56 0.72 1.98 26.51
SD 0.53 2.18 0.55 1.69 0.20 0.07 0.01 0.59

COV 4.79 7.15 4.07 10.00 1.13 9.19 0.75 2.23

SD = standard deviation, COV = coefficient of variation.
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Figure 1. Cont.
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(g) (h)

Figure 1. Histograms of the input (in green) and output (in yellow) variables used in this study.

2.2. Pearson’s Correlation Analysis

In order to determine the linear relationship between input and output parameters, this
study employed Pearson’s correlation coefficient [33]. The Pearson correlation coefficient
(ρ) was used to determine the correlations between each pairwise variable. For random
variables (p, q), the following equation was used:

ρ(p, q) =
cov(p, q)

σpσq
(2)

where σp and σp are the standard deviations of p and q, respectively, while cov represents
the covariance.

Table 2 clearly summarizes the correlation of all parameters according to the ρ (absolute
value), where |ρ| > 0.8 represents a strong relationship among each pairwise variable,
values between 0.3 and 0.8 represent medium relationship, and |ρ| < 0.30 represents weak
relationship [34]. It can be easily figured out from Table 2 that the HARHA (X1) is strongly
correlated with R-value (|ρ| = 0.9844), while the optimum moisture content (X5) is slightly
correlated with R-value (|ρ| = 0.3639).

Table 2. Pearson correlation coefficients for inputs and the target output.

Parameter X1 X2 X3 X4 X5 X6 X7 Y

X1 1
X2 −0.9972 1
X3 −0.9893 0.9915 1
X4 −0.9965 0.9994 0.9865 1
X5 0.2014 −0.1435 −0.1749 −0.1348 1
X6 −0.9939 0.9975 0.9846 0.9981 −0.1204 1
X7 0.9858 −0.9818 −0.9770 −0.9803 0.2394 −0.9742 1
Y 0.9844 −0.9721 −0.9695 −0.9700 0.3639 −0.9659 0.9728 1

2.3. Machine-Learning Algorithms
2.3.1. Gaussian Process Regression (GPR)

GPR is a purely probability-based method. It is used for regression and classification
problems [35,36]. This method has attracted the interest of many researchers in different
scientific areas [37,38]. It gives good results in cases of nonlinear data modeling. Nonlinear-
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ity may be due to kernel functions [39]. In addition to regression, it gives a very effective
response to input parameters [40].

For the computation and assessment of the training data, the input parameter is
assumed as D =

{
(xi, yi)

∣∣ i = 1, . . . , n}, X ∈ RD×n and the output desired parameter is
y ∈ Rn. In GPR computation of the output parameter can be calculated from the function
y = f (x) + ε, where ε ∼ N(0, σ2

n) ∈ R is the equal noise variance for all xi samples [40].
Gaussian process regression number of observations n considered a single point

instance in the y = {y1, . . . , yn} vector of the Gaussian multivariable distribution. Moreover,
it is assumed that this distribution has zero mean value. Covariance is a function that
shows the dependence of one observation on another. In GPR, to approximate functions,
the square of the covariance determiner is commonly used, which is as follows [35]:

k(x, x′) = σ2
f × exp

[
− (x − x′)2

2l2

]
+ σ2

nδ(x, x′) (3)

When the values of x and x′ are so close to each other, the value of k(x, x′) is equal to the
maximum allowable covariance. As a result, the values of f (x) and f (x′) are approximately
the same. l is the length of the kernel function. In addition, δ(x, x′) is called the Kronecker
product, which is defined as follows:

δij = 1 if i = j and δij = 0 if i �= j

In the case of the training dataset, for a new input pattern, the prediction of y∗ as an
output value is the final objective. In order to obtain the desired objective, three covariance
matrices need to be developed:

K =

⎡⎢⎢⎢⎢⎣
k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

k(xn, x1) k(xn, x2) · · · k(xn, xn)

⎤⎥⎥⎥⎥⎦ (4)

K∗ =
[

k(x∗, x1) k(x∗, x2) · · · k(x∗, xn)
]

K∗∗ = k(x∗, x∗)
(5)

Data from Gaussian multivariable distribution are assumed:[
y
y∗

]
∼ N

(
0,
[

K KT∗
K∗ K∗∗

])
(6)

From Gaussian multivariable distribution, the approximate average and variance of
the predicted output are obtained:

E(y∗) = K∗K−1y

var(y∗) = K∗∗ − K−1KT∗
(7)

2.3.2. M5P

Wang and Witten [41] rebuilt and presented the M5P algorithm from the M5 algorithm
initially proposed by Quinlan [42], with the addition of a linear regression function to the
leaves nodes.

The M5P could perform better on datasets than M5 by trimming the tree size. Typically,
M5P consists of the following three steps:

(i) Creating a model tree: Using the dividing criterion, the entered space was divided into
numerous subspaces. The predicted error at the node was reduced by applying the
standard deviation reduction factor (SDR). The SDR equation is displayed as follows:
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SDR = sd(H)− ∑
i

|Hi |
|H| × sd(Hi),

sd(H) =

√
N
∑
1

(Hi−H)
2

N−1 ,

H =
N
∑
1

Hi
N .

(8)

where Hi is the set that is obtained from a divided node according to a given attribute, sd is
the standard deviation of Hi, and H is the instance dataset that stretches the node.

(ii) Pruning tree: In each subspace, a classifying and regression tree is introduced to
overfit the problem and improves classification performance. Any errors encountered
in the learning data will be removed during the pruning process.

(iii) Smoothing step: The nearby linear models may experience abrupt discontinuities
as a result of the pruning tree. Therefore, all of the leaf models will be integrated
from the leaf to the root to create the final model in order to tackle this problem. The
anticipated value is then filtered all the way back to the root. By combining the current
value with the expected value from the linear regression, the final value is smoothed
using the following equation:

T′ = Nt + KA
N + K

(9)

where T′ is the predicted value shift to the higher level of the next node, Nt is the
predicted value shifted from the lower node to the present node, N is the total number
of training instances that shift to the next lower node, A is the predicted value by the
node at this node, and K is a constant value.

2.3.3. Support Vector Machine (SVM)

SVM can be used for regression analysis but is typically employed for classification
tasks. SVM exhibits the data points displayed on the plane, resulting in fewer close errors,
and describes a hyperplane between groups to assure the maximum difference between
the two classes. There would be a nonlinear separation of the training data [43]. Next, a
nonlinear separable boundary needs to be constructed. The original space must be mapped
to a high dimension to produce a nonlinear border. How to map the space in a specific input
space is determined by a kernel function. For the model’s optimization, a penalty factor (C)
for misclassification was added. By adding up the negative effects of each misclassification,
the overall penalty in plotting is calculated. The groundwater and hydrological engineering
fields have identified several beneficial applications of the SVM approach [44–46].

2.4. Model Evaluation and Comparison

To validate and compare the models, the six quantitative statistics—coefficient of
determination (R2), mean absolute error (MAE), relative squared error (RSE), root mean
square error (RMSE), relative root mean square error (RRMSE), and performance indicator
(ρ)—were used. The mathematical expressions of the statistical measures are presented in
Equations (9)–(14).

R2 =

⎡⎣ ∑n
i=1 (ei − ei)∑n

i=1(mi − mi)√
∑n

i=1 (ei − ei)
2∑n

i=1(mi − mi)
2

⎤⎦2

(10)

MAE =
∑n

i=1|ei − mi|
n

(11)

RSE =
∑n

i=1(mi − ei)
2

∑n
i=1(ei − ei)

2 (12)
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RMSE =

√
∑n

i=1 (ei − mi)
2

n
(13)

RRMSE =
1
|e|

√
∑n

i=1(ei − mi)
2

n
(14)

ρ =
RRMSE

1 + r
(15)

where ei and mi are the nth actual and expected output of the ith sample, respectively. e
and mi represents the average values of the experimental and expected output, respectively.
The number of total datasets is represented by n. The R2 value ranges from 0 to 1. A
higher R2 value indicates a more efficient model. A model is considered to be effective if
its R2 value is greater than 0.8 and near to 1 [47]. The mean squared difference between
the projected output and targets is the criterion of RMSE, and the mean magnitude of the
error is the criterion MAE. RRMSE is calculated by dividing RMSE by the average value
of the measured data. Model accuracy is considered excellent when RMSE < 10%, good
if 10% < RMSE < 20%, fair if 20% < RMSE < 30%, and poor if RMSE > 30% [48]. Relative
squared error (RSE) normalizes the total squared error of predicted values by dividing it by
the total squared error of measured values. The RSE index ranges from 0 to infinity, with 0
being the ideal. Lower-value RMSE, RRMSE, and RSE indicate better model calibration. A
performance indicator (ρ) is proposed to assess the model’s performance as a function of
both the RRMSE and the coefficient of correlation (r) value [49]. The value of ρ ranges from
0 to positive infinity, with a lower value (close to zero) indicating better model performance.
A schematic diagram of the methodology for applying machine learning (ML) algorithms
to predict the R-value is illustrated in Figure 2.

Collection of 
laboratory test 

data

Input and output 
parameters

Machine learning 
model

Model 
performance 

indices

HARHA (%)
LL (%)
PL (%)
PI (%)
OMC (%)
Ac (%)
MDD (%)
R-value

R2

RMSE
RRMSE

MAE
RSE

  

Training

Testing

Validation

121 tests 
carried out on 
expansive soil 
treated with 

HARHA 

 

Figure 2. Flowchart for applying ML algorithms to predict the R-value.

3. Results and Analysis

3.1. Hyperparameter Optimization

In the field of ML, hyperparameters control the performance of the model. Multiple
runs on training data are used to optimize hyperparameters. Smaller RMSE and MAE
values indicate that the modeling methods are closer to the experimental data. Larger
R2 values indicate a better match of trends in experimental data by model predictions.
This technique tends to point out the optimized setting for the proposed modeling, i.e.,
GPR, SVM, and M5P, to achieve the best possible prediction. Implementing SVR and GPR
techniques requires the selection of an appropriate kernel function that works internally
to map the given data to a high-dimension feature space for processing. To achieve a fair
comparison in SVM and GPR models, a value of regularization parameter (C = 0.52) in
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SVM and Gaussian noise (0.3) in GPR is established and Pearson VII Function kernel (PUK)
function is chosen based on modeling performance. The parameter σ controls Pearson
width and ω is a tailing factor of the peak in PUK that must be determined based on
prediction precision. Both SVM and GPR techniques are used to tune the models for
these kernel-specific parameters. Calibration of models in M5P was accomplished by
changing the value of the number of instances allowed at each node. The selected primary
hyperparameters of the modeling approaches are presented in Table 3.

Table 3. Optimized hyperparameters.

Algorithm Function Hyperparameters Optimal Value

GPR PUK kernel

Noise 0.3

σ 0.4

ω 0.4

SVM PUK kernel

C 0.52

σ 1

ω 1

M5P - Instances 4

3.2. Model Performance Evaluation

In the field of ML, models must be evaluated in order to validate the performance of
learned models. Different models employ various evaluation methodologies. Following
the development of ML models for R-value prediction, the next critical step is to assess
the predictive ability of the built ML models. The accuracy of the applied ML models’
prediction of R-value was confirmed in this work by comparing the predicted and mea-
sured values of R. Figure 3 depicts the comparison of the predicted and measured R-value
values in the training, testing, and validation sets. All proposed models demonstrated
very good predictive potential (R2 > 0.9) in training, test, and validation stages with less
dispersion, with the exception of the ANN model developed in literature displaying a
slightly worse result (i.e., R2 = 0.87) in the training stage. Figure 4 shows line graphs of
the accuracy of the predicted R-value of different models in the training set, testing set,
and validation set. The predicted R-value of the training set, test set, and validation set
is in the range of 11.72–26.98, and the predicted value and actual value of the training
set, test set, and validation set have a good fitting effect on the whole, with only a few
points with large errors in the test set and validation set, e.g., in the test set, the mea-
sured value of R-value was about 11.70 and the predicted value was as high as 11.92.
However, minor differences in individual data points have no effect on the GPR model’s
overall predictive ability, i.e., the GPR model can accurately estimate the R-value. The
results show that all the models predicted R-value with a high level of accuracy. Table 4
presents performance measures of the developed models and the ANN model. In the
training stage, all three models performed equally as well as the SVM model (such as
R2 = 0.9999, MAE = 0.0364, RSE = 0.0002, RMSE = 0.0560, RRMSE = 0.0030 and ρ = 0.0015) fol-
lowed by M5P and GPR with parameters (such as R2 = 0.9999, MAE = 0.0453, RSE = 0.0002
and RMSE = 0.05612, RRMSE = 0.0031 and ρ = 0.0015) and (such as R2 = 0.9999, MAE = 0.0399,
RSE = 0.0003, RMSE = 0.0592, RRMSE = 0.0032 and ρ = 0.0016), respectively. Similarly, in
the testing stage, the SVM model holds best results (such as R2 = 0.9998, MAE = 0.0056,
RSE = 0.0004, RMSE = 0.0100, RRMSE = 0.0004, and ρ = 0.0002) and outclassed the GPR (such
as R2 = 0.9998, MAE = 0.0221, RSE = 0.0035, RMSE = 0.0287, RRMSE = 0.0012, and ρ = 0.0006)
followed by M5P (such as R2 = 0.9947, MAE = 0.0374, RMSE = 0.0106, RMSE = 0.0496,
RRMSE = 0.0020, and ρ = 0.0010). The GPR performance measures had better characteris-
tics: their R2 value was high, while their MAE value, RSE value, RSME value, RRMSE value,
and ρ were low in the validation stage.
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Figure 3. Comparison of measured R-value and predicted R-value in (a) training set, (b) testing set,
and (c) validation set.
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Figure 4. Line graphs showing accuracy of predicted R-value of different models in (a) training set,
(b) testing set, and (c) validation set.

Table 4. Comparison of statistical parameters for performance evaluation of the GPR, SVM, M5P, and
ANN models.

Dataset Model
Statistical Parameters for Performance Evaluation

Reference
R2 MAE RSE RMSE RRMSE ρ

Training

GPR 0.9999 0.0399 0.0003 0.0592 0.0032 0.0016

Present studySVM 0.9999 0.0364 0.0002 0.0560 0.0030 0.0015

M5P 0.9999 0.0453 0.0002 0.0562 0.0031 0.0015

ANN 0.8700 0.5700 0.0000 4.3200 0.2300 0.1200 [11]

Testing

GPR 0.9998 0.0221 0.0035 0.0287 0.0012 0.0006

Present studySVM 0.9998 0.0056 0.0004 0.0100 0.0004 0.0002

M5P 0.9947 0.0374 0.0106 0.0496 0.0020 0.0010

ANN 0.9900 0.3500 0.0096 4.9300 0.2000 0.1000 [11]

Validation

GPR 0.9996 0.0258 0.0032 0.0325 0.0012 0.0006

Present studySVM 0.9955 0.0268 0.0092 0.0551 0.0021 0.0010

M5P 0.9939 0.0325 0.0122 0.0636 0.0024 0.0012

ANN 0.9900 0.0380 0.0097 1.1900 0.0400 0.0200 [11]

In general, it can be stated that the proposed models are good for the prediction of the
R-value, but the GPR model outperforms the SVM, M5P, and ANN models in the validation
stage. The advantage of GPR over other models is that it has few parameters to tune and
can thus be trained with a small training dataset [50]. The primary benefits of SVM is its
ability to deal with overlearning and high dimensionality, which can lead to computational
complexity and local extrema [51]. Furthermore, only a few hyperparameters must be tuned
or adjusted, giving SVM a simple structure and ease of implementation [52]. However,
because SVMs are sensitive to noise, their predictive ability endures when the dataset used
is significantly noisy. Pruning in M5P can reduce tree size and the risk of overfitting [53].
Similarly, the ANN is computationally expensive and relies heavily on the capabilities of
available hardware [54]. In comparison with previously published ANN model results [11],
the results of this modeling study show that some data points are associated with very
large model prediction errors (Figure 4), which can be attributed to the large deviations
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and high correlation between input and output variables of the data used (Table 2). As a
result, it is suggested that these models (GPR, SVM, and M5P) be tested and validated on
larger datasets with lower variable correlation for improved performance.

3.3. Rank Analysis

The simplest and most popular technique for evaluating the efficacy of constructed
models and contrasting their robustness is rank analysis. The ideal values of the statistical
parameters, which serve as the benchmark, are used to determine the score value in this
study. Using one or more models is appropriate. The outcomes model with the best
performance receives the highest score, and vice versa. It is possible that two models with
similar results will have similar ranking ratings. The comparison of the testing stage results
for the performance measures R2, MAE, RSE, RMSE, RRMSE, and ρ is shown in Table 5. In
addition, in this table, the ranking procedure proposed by Zorlu et al. [55] was used. The
ranking system is very easy to understand. The most accurate performance index is ranked
first in this system. According to Table 5, the model with the highest accuracy was GPR,
which also had the highest rank value (i.e., 24). The SVM was the second most accurate
model, with a total rank value of 18, followed by M5P, with a total rank value of 11. The
least accurate was the ANN model, with a total rank value of 9.

Table 5. Modeling results for the validation set of GPR, M5P, and SVM, and ANN models.

Model
Performance Measures Rank

Reference
R2 MAE RSE RMSE RRMSE ρ R2 MAE RSE RMSE RRMSE ρ Total

GPR 0.9996 0.0258 0.0032 0.0325 0.0012 0.0006 4 4 4 4 4 4 24 Present
studySVM 0.9955 0.0268 0.0092 0.0551 0.0021 0.0010 3 3 3 3 3 3 18

M5P 0.9939 0.0325 0.0122 0.0636 0.0024 0.0012 2 2 1 2 2 2 11

ANN 0.9900 0.038 0.0097 1.1900 0.0400 0.0200 3 1 2 1 1 1 9 [11]

3.4. Sensitivity Analysis

Sensitivity analysis is used to identify each input parameter’s individual impact on
the output parameter (i.e., R-value). To determine which of the seven input parameters—
HARHA (X1), LL (X2), PL (X3), PI (X4), OMC (X5), AC (X6), and MDD (X7)—had an impact
on the anticipated R-value (Y), sensitivity analysis was used in this work. The goal of the
sensitivity analysis was to identify the crucial input variable that has the greatest impact on
the R-value. In this present study, the cosine amplitude method was used to determine the
sensitivity analysis of the problem [56,57]. This method has been utilized in a number of
studies [58–63], and it is stated as follows:

Rij =
∑n

t=1(yit × yot)√
∑n

t=1 yit
2∑n

t=1 yot2
(16)

where n is the number of data values (this study used 85 data values), yit and yot are
the input and output parameters. The Rij value ranged from zero to one for each input
parameter, and the highest Rij values suggested the most efficient output parameter (which
was R-value in this study). The findings of the sensitivity analysis, shown in Figure 5,
show that the maximum and minimum relative strength effect on the R-value of soil was
obtained for X7 (0.9964) and X4 (0.9375), respectively. The remaining input parameters
have moderate effect on R-value of the soil. The greater the value of Rij, the greater the
effect of that particular input variable on output (i.e., R-value). Hence, the maximum dry
density, MDD (X7), has the greatest influence, while the plasticity index, PI (X4), has the
least influence in predicting R-value.

Taylor [64] introduced Taylor diagrams to visually demonstrate how closely an es-
timated output (or set of estimated outputs) matches observations. The correlation and
standard deviation of the estimated and observed datasets are used to visualize them. It is
particularly helpful when assessing numerous aspects of complex models or comparing the
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relative skill of numerous models (e.g., [65]). Therefore, a model’s efficiency can further be
evaluated by constructing a Taylor diagram (see Figure 6). The point (red) is the reference
point for all developed models. The loser the developed models to the reference point, the
greater will be the performance of the model. In our case, all the models are closer to the
reference point, but more significantly, the GPR and SVM models have almost conceded
totally to the reference point, indicating best prediction capabilities.

0.9417 0.9458 0.9402 0.9375

0.9878 0.9899 0.9964

0.80

0.85

0.90

0.95

1.00

X1 X2 X3 X4 X5 X6 X7

R
ij

Input parameters

Figure 5. Relative strength effect of input parameters in predicting R-value.

Figure 6. Taylor diagram of GPR, SVM, and M5P predicted models.

The proposed models of GPR, SVM and M5P can efficiently predict the R-value of the
subgrade. This is strictly limited to the range of parameter values that was used to train
and develop the model. The predicted accuracy of the model is also strictly dependent on
the distribution of the parameter values and significantly affected by the parameter values
used for training and development. For instance, the provided proportion of HARHA
must be limited to 0–12%. In simple words, this provides the accuracy of the particular
developed model.
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4. Conclusions

In this study, three machine-learning models (i.e., GPR, M5P, and SVM) were used to
predict R-value. The predictive capabilities of the aforementioned models were evaluated
using statistical measure criteria of R2, MAE, RSE, RMSE, RRMSE and ρ. In order to
assess robustness, the proposed models were also evaluated with an ANN model from the
literature. The ML models developed in this research study performed well in the validation
stage, but the GPR model (R2 = 0.9996, MAE = 0.0258, RSE = 0.0032, RMSE = 0.0012, RRMSE
= 0.0012, and ρ = 0.0006) was the most viable when compared to other machine-learning
models. Statistical analysis revealed that the GPR model shows enhancement in model
accuracy by minimizing the error difference between measured and predicted values.
Sensitivity analysis revealed that maximum dry density, MDD (X7) has the highest Rij
values, showing that this particular input parameter has greater effect in predicting the
R-value. It can therefore be inferred that the GPR model is a promising method for
predicting R-value, which can be extended to predict other significant basic subgrade
stiffness/strength characterizations, such as California bearing ratio or resilient modulus.
Thus, the application of GPR in the field of predicting the subgrade physical properties
is appropriate, and can be seen as an alternative and suitable approach. For a better
understanding and prediction of the R-value, several artificial intelligence techniques, such
as fuzzy logic and recurrent neural network response surface methodology, may also be
used. Furthermore, more experimental data should be gathered in future studies in order
to enhance the performance outcomes of prediction models.
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Appendix A

Table A1. Data for prediction modeling of R-value.

S. No. X1 (%) X2 (%) X3 (%) X4 (%) X5 (%) X6 X7 (g/cm3) R-value GPR M5P SVM

1 0 66 21 45 16 2 1.25 11.7 11.9 11.7 11.7
2 0.1 66 21 45 16 1.98 1.25 11.7 11.8 11.7 11.7
3 0.2 65.7 20.9 44.8 16.1 1.96 1.27 11.7 11.7 11.7 11.7
4 0.3 65.6 20.9 44.7 16.3 1.96 1.27 11.7 11.8 11.7 11.7
5 0.4 65.3 20.8 44.5 16.3 1.93 1.28 11.8 11.9 11.8 11.8
6 0.5 65 21 44 16.4 1.9 1.30 12 12.1 12 12
7 0.6 64.8 20.8 44 16.4 1.88 1.31 12.2 12.2 12.1 12.2
8 0.7 64.5 20.8 43.7 16.45 1.88 1.31 12.2 12.2 12.3 12.2
9 0.8 64.1 20.8 43.3 16.47 1.87 1.33 12.3 12.4 12.4 12.4

10 0.9 63.5 20.9 42.6 16.49 1.85 1.33 12.6 12.6 12.5 12.6
11 1 63 21 42 16.5 1.8 1.35 13.1 13.2 13.1 13.1
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Table A1. Cont.

S. No. X1 (%) X2 (%) X3 (%) X4 (%) X5 (%) X6 X7 (g/cm3) R-value GPR M5P SVM

12 1.1 62.5 20.6 41.9 16.6 1.8 1.35 13.3 13.3 13.3 13.3
13 1.2 62.1 20.3 41.8 16.7 1.81 1.36 13.5 13.5 13.5 13.5
14 1.3 61.9 20.2 41.7 16.8 1.8 1.37 13.6 13.7 13.6 13.7
15 1.4 61.7 20.1 41.6 17 1.81 1.38 13.8 13.9 13.8 13.9
16 1.5 61.5 20 41.5 17.2 1.8 1.38 14.2 14.3 14.2 14.3
17 1.6 61.4 20 41.4 17.2 1.8 1.39 14.4 14.4 14.5 14.4
18 1.7 61.3 20 41.3 17.3 1.79 1.39 14.8 14.7 14.7 14.6
19 1.8 61.3 20.1 41.2 17.5 1.81 1.40 14.8 14.9 14.9 14.8
20 1.9 61.2 20.1 41.1 17.7 1.8 1.41 15 15.1 15.1 15.1
21 2 61 20 41 17.8 1.8 1.41 15.3 15.3 15.3 15.3
22 2.1 60.9 19.9 41 17.9 1.8 1.42 15.6 15.6 15.5 15.5
23 2.2 60.7 19.7 41 17.9 1.8 1.42 15.7 15.7 15.7 15.6
24 2.3 60.6 19.6 41 18 1.8 1.43 15.8 15.8 15.9 15.8
25 2.4 60.4 19.4 41 18.2 1.8 1.43 16 16 16.1 16.1
26 2.5 60 19 41 18.3 1.8 1.43 16.2 16.3 16.3 16.3
27 2.6 59.8 19 40.8 18.35 1.79 1.44 16.5 16.5 16.5 16.5
28 2.7 59.7 19.1 40.6 18.4 1.77 1.45 16.8 16.8 16.7 16.7
29 2.8 59.5 19.1 40.4 18.45 1.75 1.46 17 17 16.9 16.9
30 2.9 59.2 19 40.2 18.5 1.72 1.46 17.1 17.2 17.1 17.1
31 3 59 19 40 18.5 1.7 1.46 17.3 17.3 17.3 17.3
32 3.1 58.8 19.2 39.6 18.55 1.7 1.47 17.4 17.4 17.5 17.5
33 3.2 58.4 18.9 39.5 18.6 1.7 1.48 17.7 17.7 17.7 17.7
34 3.3 57.9 19.1 38.8 18.7 1.71 1.48 18 18 18.1 18
35 3.4 57.4 19 38.4 18.75 1.69 1.48 18.3 18.3 18.3 18.3
36 3.5 57 19 38 18.8 1.7 1.49 18.5 18.5 18.5 18.5
37 3.6 56.8 18.9 37.9 18.85 1.69 1.50 18.7 18.7 18.7 18.7
38 3.7 56.7 19 37.7 18.9 1.65 1.51 18.9 18.9 18.9 18.9
39 3.8 56.5 18.9 37.6 18.93 1.64 1.51 19.1 19.1 19.1 19.1
40 3.9 56.3 19 37.3 18.98 1.61 1.52 19.2 19.2 19.3 19.3
41 4 56 19 37 19 1.6 1.52 19.4 19.4 19.4 19.4
42 4.1 55.7 19 36.7 19 1.59 1.53 19.5 19.5 19.5 19.5
43 4.2 54.9 18.7 36.2 19 1.57 1.54 19.6 19.6 19.6 19.6
44 4.3 54.1 18.5 35.6 19 1.55 1.55 19.7 19.7 19.7 19.7
45 4.4 53.6 18.4 35.2 19 1.52 1.56 19.7 19.7 19.8 19.7
46 4.5 53 18 35 19 1.5 1.57 19.8 19.8 19.8 19.8
47 4.6 52.8 18 34.8 18.98 1.5 1.58 20 19.9 19.9 19.9
48 4.7 52.7 18 34.7 18.96 1.5 1.59 20 20 20 20
49 4.8 52.6 18.1 34.5 18.93 1.5 1.60 20.1 20.1 20.1 20.1
50 4.9 52.3 18 34.3 18.91 1.5 1.61 20.2 20.2 20.3 20.2
51 5 52 18 34 18.9 1.5 1.61 20.4 20.3 20.3 20.3
52 5.1 51.5 17.7 33.8 18.88 1.48 1.62 20.4 20.4 20.4 20.4
53 5.2 51.1 17.7 33.4 18.86 1.46 1.63 20.5 20.5 20.5 20.5
54 5.3 50.8 18.1 32.7 18.84 1.43 1.64 20.5 20.5 20.5 20.5
55 5.4 50.3 18 32.3 18.82 1.41 1.65 20.6 20.6 20.6 20.6
56 5.5 50 18 32 18.8 1.4 1.65 20.6 20.6 20.6 20.6
57 5.6 49.9 18 31.9 18.78 1.4 1.66 20.7 20.7 20.7 20.7
58 5.7 49.6 17.9 31.7 18.75 1.41 1.67 20.8 20.8 20.8 20.8
59 5.8 49.4 17.9 31.5 18.71 1.42 1.67 20.8 20.8 20.8 20.8
60 5.9 49.1 17.7 31.4 18.65 1.41 1.68 20.9 20.9 20.9 20.9
61 6 49 18 31 18.6 1.4 1.69 20.9 20.9 21 20.9
62 6.1 48.6 17.8 30.8 18.55 1.38 1.70 21 21 21 21
63 6.2 48.3 17.6 30.7 18.48 1.37 1.71 21.1 21.1 21.1 21.1
64 6.3 47.7 17.3 30.4 18.6 1.35 1.72 21.2 21.2 21.1 21.2
65 6.4 47.2 17 30.2 18.44 1.33 1.73 21.4 21.4 21.5 21.4
66 6.5 47 17 30 18.4 1.3 1.74 21.5 21.5 21.6 21.5
67 6.6 46.8 17.1 29.7 18.4 1.31 1.75 21.6 21.6 21.7 21.6
68 6.7 46.5 16.8 29.7 18.41 1.31 1.76 21.8 21.7 21.8 21.7
69 6.8 45.6 15.9 29.7 18.4 1.3 1.77 21.9 21.8 21.9 21.9
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Table A1. Cont.

S. No. X1 (%) X2 (%) X3 (%) X4 (%) X5 (%) X6 X7 (g/cm3) R-value GPR M5P SVM

70 6.9 45.2 15.9 29.3 18.41 1.3 1.78 22 22 21.9 22
71 7 45 16 29 18.4 1.3 1.78 22 22 22 22.1
72 7.1 44.8 16.3 28.5 18.39 1.29 1.79 22.1 22.1 22.1 22.2
73 7.2 44.3 16.1 28.2 18.37 1.27 1.80 22.3 22.3 22.2 22.3
74 7.3 43.7 15.9 27.8 18.35 1.26 1.81 22.4 22.4 22.3 22.4
75 7.4 43.4 16 27.4 18.32 1.23 1.83 22.5 22.5 22.4 22.5
76 7.5 43 16 27 18.3 1.2 1.84 22.6 22.6 22.5 22.6
77 7.6 42.8 15.9 26.9 18.29 1.19 1.85 22.7 22.7 22.6 22.7
78 7.7 42.4 16 26.4 18.28 1.18 1.86 22.8 22.7 22.7 22.8
79 7.8 41.8 15.4 26.4 18.26 1.16 1.87 22.8 22.8 22.8 22.8
80 7.9 41.5 15.4 26.1 18.23 1.14 1.87 22.9 22.9 22.9 22.9
81 8 41 15 26 18.2 1.13 1.88 22.9 22.9 23 22.9
82 8.1 40.7 14.9 25.8 18.2 1.12 1.88 23 22.9 23.1 23
83 8.2 40.3 15 25.3 18.2 1.11 1.89 23.2 23.2 23.2 23.2
84 8.3 39.8 15.1 24.7 18.2 1.11 1.90 23.3 23.3 23.3 23.3
85 8.4 39.3 15 24.3 18.21 1.1 1.90 23.5 23.2 23.4 23.4
86 8.5 39 15 24 18.2 1 1.91 23.6 23.6 23.6 23.6
87 8.6 38.8 15 23.8 18.2 1 1.92 23.7 23.7 23.7 23.7
88 8.7 38.3 14.9 23.4 18.2 1 1.93 23.8 23.8 23.8 23.8
89 8.8 37.9 15.2 22.7 18.2 1 1.94 23.9 23.9 23.9 23.9
90 8.9 37.5 15.2 22.3 18.2 1 1.95 24 24 24 24
91 9 37 15 22 18.2 1 1.96 24 24 24 24
92 9.1 37 15 22 18.19 1 1.96 24.1 24.1 24.1 24.1
93 9.2 37 15 22 18.18 1 1.96 24.2 24.2 24.2 24.2
94 9.3 37 15 22 18.16 1 1.97 24.3 24.3 24.3 24.3
95 9.4 37 15 22 18.13 1 1.97 24.4 24.4 24.4 24.4
96 9.5 37 15 22 18.1 1 1.97 24.5 24.5 24.5 24.5
97 9.6 36.8 15.1 21.7 18 0.99 1.97 24.6 24.6 24.6 24.6
98 9.7 36.7 15.1 21.6 17.92 0.98 1.97 24.7 24.7 24.7 24.7
99 9.8 36.5 15.1 21.4 17.93 0.97 1.98 24.8 24.8 24.8 24.8
100 9.9 36.3 15.2 21.1 17.91 0.94 1.98 24.8 24.8 24.9 24.8
101 10 36 15 21 17.9 0.9 1.98 24.9 24.9 25 24.9
102 10.1 35.7 14.9 20.8 17.88 0.88 1.98 25.1 25.1 25.1 25.1
103 10.2 35.5 15.1 20.4 17.84 0.86 1.98 25.3 25.2 25.2 25.3
104 10.3 34.6 14.9 19.7 17.79 0.84 1.98 25.4 25.5 25.3 25.4
105 10.4 33.3 14 19.3 17.73 0.82 1.99 25.4 25.5 25.5 25.4
106 10.5 33 14 19 17.7 0.8 1.99 25.5 25.6 25.7 25.6
107 10.6 32.8 14 18.8 17.7 0.79 1.99 25.8 25.8 25.9 25.8
108 10.7 32.4 13.9 18.5 17.71 0.78 1.99 26.2 26.2 26.1 26
109 10.8 31.5 13.9 17.6 17.71 0.75 1.99 26.3 26.3 26.3 26.3
110 10.9 31.1 14 17.1 17.7 0.72 1.99 26.5 26.5 26.5 26.5
111 11 31 14 17 17.7 0.7 1.99 26.8 26.8 26.8 26.7
112 11.1 30.7 13.9 16.8 17.68 0.7 1.99 26.8 26.8 26.8 26.8
113 11.2 30.3 13.7 16.6 17.63 0.71 1.99 26.8 26.8 26.8 26.8
114 11.3 29.8 13.4 16.4 17.57 0.71 1.99 26.9 26.9 26.9 26.9
115 11.4 29.4 13.2 16.2 17.53 0.71 1.98 26.9 26.9 26.9 26.9
116 11.5 29 13 16 17.5 0.7 1.97 26.9 26.9 26.9 26.9
117 11.6 28.7 12.8 15.9 17.5 0.69 1.97 26.9 26.9 26.9 26.9
118 11.7 28.5 13 15.5 17.4 0.67 1.96 27 27 27 27
119 11.8 27.8 13 14.8 17.3 0.65 1.96 27 27 27 27
120 11.9 27.6 13.2 14.4 17.2 0.62 1.95 27 27 27 27
121 12 27 13 14 17.1 0.6 1.95 27 27 27 27
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Abstract: Speaker embeddings represent a means to extract representative vectorial representations
from a speech signal such that the representation pertains to the speaker identity alone. The embed-
dings are commonly used to classify and discriminate between different speakers. However, there is
no objective measure to evaluate the ability of a speaker embedding to disentangle the speaker iden-
tity from the other speech characteristics. This means that the embeddings are far from ideal, highly
dependent on the training corpus and still include a degree of residual information pertaining to
factors such as linguistic content, recording conditions or speaking style of the utterance. This paper
introduces an analysis over six sets of speaker embeddings extracted with some of the most recent and
high-performing deep neural network (DNN) architectures, and in particular, the degree to which
they are able to truly disentangle the speaker identity from the speech signal. To correctly evaluate the
architectures, a large multi-speaker parallel speech dataset is used. The dataset includes 46 speakers
uttering the same set of prompts, recorded in either a professional studio or their home environments.
The analysis looks into the intra- and inter-speaker similarity measures computed over the different
embedding sets, as well as if simple classification and regression methods are able to extract several
residual information factors from the speaker embeddings. The results show that the discriminative
power of the analyzed embeddings is very high, yet across all the analyzed architectures, residual
information is still present in the representations in the form of a high correlation to the recording
conditions, linguistic contents and utterance duration. However, we show that this correlation,
although not ideal, could still be useful in downstream tasks. The low-dimensional projections of
the speaker embeddings show similar behavior patterns across the embedding sets with respect to
intra-speaker data clustering and utterance outlier detection.

Keywords: speaker embeddings; x-vectors; deep representations; deep embeddings; speaker disentangle-
ment; speaker recognition; residual information; neural architectures; deep learning; artificial intelligence

MSC: 68T01

1. Introduction

Recorded speech is an inherently complex signal including information related to
the linguistic contents, prosodic or style factors (such as rhythm and intonation), as well
as speaker characteristics (such as physiological traits, gender, ethnicity or social back-
ground). Humans have the ability to disentangle almost all of these factors and extract
their abstractions, being able to reproduce and recognize similar patterns across spoken
data from different sources. An essential part of the speech signal with a multitude of
downstream applications is related to the disentanglement of the speaker identity. Such
an accurate representation of the speaker identity would make it extremely useful in tasks
such as speaker recognition and verification applications, text-to-speech synthesis and
voice cloning [1], anonymization or generating new, unseen speaker identities [2]. There is
already a large number of published works which focus on speaker discrimination, mean-
ing that their task is to estimate if two or more acoustic signals pertain to the same speaker
identity. However, in terms of accurately representing the speaker for generative processes
(such as text-to-speech or voice cloning), to date, there are no published methods which
can accurately solely represent the speaker identity and disregard other factors related to
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the acoustic signal, such as recording conditions or linguistic contents, although many of
these applications use the derived representations as input or conditioning. It is therefore
essential to perform an analysis of how well the current speaker representations model the
speaker identity.

As a result, in this paper, the focus is on finding out how much residual information
(i.e., not pertaining to the speaker identity) is present in various deep speaker embeddings.
Six open source, easy-to-use, readily available implementations were selected. The imple-
mentations report the state-of-the-art results for speaker classification and diarization tasks.
A first evaluation carried out in this work aimed at directly comparing the architectures’
performances with respect to their intended use, i.e., speaker discrimination. The equal
error rates (EER) and inter- and intra-speaker similarity measures were computed over a
large multi-speaker parallel dataset. In the second step of the evaluation, the architectures’
derived speaker embeddings were analyzed in terms of the amount of residual informa-
tion present within them, such as the utterance duration, signal-to-noise ratio, linguistic
contents and recording conditions. Simple classification and regression algorithms were
employed in an attempt to extract this information from the representations. The results
show that, to a large extent, the embeddings exhibit a high dependency on these factors,
and as such, the speaker identity is not truly disentangled. Based on these initial results, we
then attempted to explore if this residual information could still be useful in downstream
tasks. The derived speaker embeddings were plotted in a low-dimensional representation
to verify if they exhibit similar patterns with respect to clustering different recording ses-
sions and background conditions, as well as to separate utterance outliers and ill-behaved
speakers. Such information could be exploited for selecting the appropriate speakers and
a set of samples for a text-to-speech synthesis system or data augmentation process in
multi-speaker systems.

The contributions of this paper can be summarized as follows:

• Six of the most recent speaker embedding deep neural networks are directly compared
with respect to their discriminative and generative characteristics;

• The analysis is carried out over a parallel dataset consisting of 46 speakers uttering
the same prompts;

• The equal error rates (EER) and inter- and intra-speaker similarity measures for the
six architectures are evaluated;

• Decision trees and light gradient boosting machine algorithms are employed to evalu-
ate the amount of residual information present in the embeddings;

• Low-dimensional tSNE-based representations of the embedding space for the six archi-
tectures are evaluated in terms of outlier detection and intra-speaker data clustering.

The paper is organized as follows: Section 2 presents some of the previous studies
which address the development of accurate speaker embeddings, as well as their use in
voice cloning and text-to-speech synthesis systems. Section 3 describes the audio data and
speaker embedding architectures adopted in this work. The results of the evaluation are
shown in Section 4, while the conclusion and discussions are introduced in Section 5.

2. Related Work

Speaker recognition has been the focus of the research community for quite a long time
now, as it is essential for identification, verification and diarization tasks. Speaker identi-
fication refers to determining the identity of a spoken utterance from a set of predefined
speakers. Speaker verification aims to predict if two utterances pertain to the same speaker
or not, while speaker diarization is targeted at separating the different speaker identities
present in a larger audio clip and assigning each audio segment to the corresponding
speaker. Although these three sub-tasks of speaker recognition seem different in principle,
they all share the common component of extracting the numeric representations able to
accurately depict individual speaker identities.

Some of the first methods for speaker recognition were based on spectral and template
matching, commonly using Mel-Frequency Cepstral Coefficients [3,4], Linear Prediction
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Coefficients (LPC) [5,6] or Perceptual Linear Prediction (PLP) Coefficients [7,8]. Starting
with the 1990s, Gaussian Mixture Models (GMM) [9,10] became more prevalent. The models
estimated the statistics of various speech signal representations for each individual speaker
within the dataset. The verification or recognition was performed by computing the
distance between the target speaker and each of the probability distribution functions
within the GMMs set. With the addition of the Universal Background Model (UBM) [11]
and Support Vector Machines (SVM) [12], the performances of speaker recognition methods
kept improving. Yet, the evaluations were performed on small, curated, clean datasets and
more than often in text-dependent scenarios. Dimensionality reduction techniques were
subsequently applied so as to extract the axes of maximum variation among the speakers
of interest. Within this area, Principal Component Analysis (PCA) [13] and i-vectors [14]
rapidly gained popularity.

The major improvements in speaker recognition, as in many other application fields,
came from the introduction of deep learning architectures able to abstractize the information
present in the speech signal benefiting from a large amount of spoken data. The first step
toward the DNN-based representations was simply to use the deep architecture’s posterior
probabilities instead of the GMM-based ones [15]. Similar to the PCA technique in traditional
speaker recognition models, DNN-based bottleneck features became popular [16], being called
d-vectors and extracted at the frame level. D-vectors are part of a larger category of DNN-based
representations, called embeddings. X-vectors are also embeddings extracted with Time-Delay
Neural Networks (TDNN) [17–19] at the segment level, and they became the standard method
for speaker recognition applications. Some other deep architectures employed in speaker
recognition are RawNet [20,21] and ResNet [22–24]. These types of embeddings are extracted
in an end-to-end manner, meaning that the network is in charge of both finding adequate
representations as well as determining the final decision related to the speaker-related task.
Previous methods used either the Probabilistic Linear Discriminant Analysis (PLDA) or cosine
similarity to estimate the similarities or dissimilarities between the output representations.
Some recent studies even attempted to adapt other speech-based neural representations for
speaker recognition [25]. An extended overview of the deep learning-based speaker embedding
representations can be found in [26,27].

As more and more methods were published, a common evaluation benchmark was
required to correctly compare their individual results. Several speaker recognition work-
shops and challenges have been organized, such as the NIST Speaker Recognition Evalu-
ation (https://www.nist.gov/itl/iad/mig/speaker-recognition, accessed on 18 October
2022), Odyssey (http://www.odyssey2022.org/, accessed on 18 October 2022) or VoxSRC
(https://www.robots.ox.ac.uk/~vgg/data/voxceleb/ interspeech2022.html, accessed on
18 October 2022). Within the 2022 VoxSRC challenge, there were two main tracks related to
speaker verification (open and closed sets) and speaker diarization. The best performing
systems included ResNet and ECAPA-TDNN architectures augmented with self-supervised
learned (SSL) representations of the audio signal [28–31].

Although the methods described above are aimed solely at speaker recognition, verifi-
cation and diarization applications, their findings can be applied to other speech-related
tasks. One of the most important and widely used is that of speech synthesis and voice
cloning. Speaker embeddings extracted from networks trained on a large number of speak-
ers can be used to condition multi-speaker synthesis models. Using externally learned
embeddings enables the models to perform a fast or zero-shot adaptation for unseen speak-
ers [32–36]. And it is for these tasks that a more elaborate analysis of the embeddings’
accuracy is extremely important.

3. Experimental Setup

3.1. Speech Data

A problematic part of the speaker embeddings’ evaluation is the fact that the spoken
data across the speakers may vary. This means that there is a possibility that the num-
ber and linguistic content of each speaker’s utterance subset may influence the results.
Therefore, in this study, we used one of the largest parallel spoken datasets available.
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The dataset is the extended version of the SWARA corpus [37]. The initial version of
the corpus—which will be referred to as SWARA1.0—includes 18 speakers recorded in
a professional studio. Each speaker read aloud between 921 and 1493 utterances. This
dataset was recently extended with an additional 28 speakers—we will refer to this subset
as SWARA2.0. However, due to the COVID-19 pandemic, the recordings were performed
in the speakers’ home environments with semi-professional equipment. The speakers read
between 1597 and 1797 utterances. As the SWARA2.0 was recorded in home conditions, we
expect the background noise and reverberation to affect the performance of the embeddings
extracted from this dataset.

In both SWARA1.0 and SWARA2.0 subsets, the speakers were provided with the
same text prompts to be read aloud. However, due to the lack of control, especially
in the SWARA2.0 scenario, only 712 utterances are truly parallel across all 46 speakers.
This means that for the rest of the utterances, the speakers either made deletions, insertions
or substitutions with respect to the prompt or did not record some of the prompts at all.
There are 24 female speakers and 22 male speakers in the combined datasets, which amount
to 32.752 utterances with a total duration of 38 h and 29 min. All data were resampled at
16 kHz and start and end silence segments were trimmed.

3.2. Speaker Embedding Networks

Numerous studies focused on extracting deep learning-based representations for speaker
characteristics. Most of these studies are, of course, aimed at discriminating between speakers
and performing accurate recognition and diarization tasks. For our evaluation, we targeted
the DNN-based architectures which are open source, easily accessible and usable and also
provide good pre-trained models. The following architectures were selected:

(1) Pyannote (https://github.com/pyannote/pyannote-audio, accessed on 18 October
2022) is an open-source toolkit written in Python for speaker diarization [38,39]. It uses a
SincNet [40] architecture, followed by a series of TDNN layers and an average pooling layer.
It also includes the implementations for Speech Brain and NeMo Titanet architectures, but
we did not use them in this study.

(2) Speech Brain’s [41] speaker verification network (https://github.com/speechbrain/
speechbrain, accessed on 18 October 2022) is based on the ECAPA-TDNN [42] model. It includes
a sequence of convolutional and residual blocks, using the additive margin softmax loss as
training objective. The speaker embeddings are formed using attentive statistical pooling.

(3) Clova AI [22,23] uses a ResNet-like architecture, (https://github.com/clovaai/
voxceleb_trainer, accessed on 18 October 2022) and similarly averages the frame-level
representations in the final embeddings. The difference is in the change in objective
function and the use of training data augmentation.

(4) NeMo Titanet (repository for all NeMo architectures is available here: https:
//github.com/NVIDIA/NeMo/, accessed on 18 October 2022) uses the Titanet architec-
ture [43] which is based on ContextNet [44]. The model uses 1D depth-wise separable
convolutions with squeeze-and-excitation layers. The output embeddings are obtained by
averaging the statistics of the intermediate variable-length representations.

(5) NeMo SpeakerNet uses an ASR architecture’s encoder, namely QuartzNet [45], as
a high-level feature extractor and averages these features within a pooling layer so as to
capture the time-independent speaker features.

(6) NeMo ECAPA-TDNN is similar to the Speech Brain architecture and uses the
ECAPA-TDNN structure [46]. The difference is that, instead of the residual blocks, the
NeMo implementation uses group convolution blocks of single dilation.

Because we aim to use the embeddings in speech synthesis systems, no fine-tuning was
performed over the available pre-trained models. Fine-tuning would imply that any time a
new dataset is used for synthesis, the embedding networks would need to be re-trained,
which would not be feasible. Therefore, we explore the architecture’s behavior as is and as
their authors made them available for the wide research community.
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4. Evaluation

We base our evaluation on a set of analyses which we consider relevant for the
use of the speaker embeddings in downstream tasks, outside the speaker recognition
or discrimination applications. The following subsections introduce the results of the
evaluation scenarios.

4.1. EER, Intra- and Inter-Speaker Similarity

Being derived from neural architectures aimed at speaker recognition, thus in a
discriminative-oriented task, the speaker embeddings’ performance is commonly evaluated
in terms of the equal error rate (EER). The EER is defined as the point on the ROC curve
where the false acceptance rate (FAR) is equal to the false rejection rate (FRR). The threshold
to compute the EER is generally based on the cosine similarity between pairs of speaker
embeddings, defined as:

cos(e1, e2) =
e1e2

‖e1‖‖e2‖ =
∑n

i=1 e1,ie2,i√
∑n

i=1 (e1,i)2
√

∑n
i=1 (e2,i)2

(1)

Because we are using a new speech dataset, it is essential to first evaluate the targeted
performance of the selected architectures. Therefore, the first step of our analysis involved
the computation of the EER results across the architectures, speakers and sets of speakers. A
set of 46,000 random pairs of utterances were selected. The random pairs were chosen such
that each speaker is present in 1000 pairs, of which 200 are same-speaker pairs. The EER
results are shown in Table 1. We evaluate the results over the entire set of 46,000 pairs
and separately for pairs containing only samples for the female speakers, male speakers,
speakers from the SWARA1.0 subset and speakers from the SWARA2.0 subset. It can be
noticed that all architectures achieve an EER below 1% and that female speakers are better
discriminated than male speakers. The same is true for the SWARA1.0 speakers versus the
SWARA2.0 speakers. The best results are obtained by the NeMo Titanet architecture.

Table 1. EER values for the different speaker embedding architectures and speaker subsets. Arrows
mark the direction of best performance. Best results are highlighted in boldface.

Architecture All↓ Female↓ Male↓ SWARA1.0↓ SWARA2.0↓
Pyannote 0.040 0.055 0.039 0.024 0.047
Speech Brain 0.025 0.027 0.031 0.011 0.031
Clova AI 0.055 0.060 0.081 0.031 0.073
NeMo Titanet 0.018 0.014 0.027 0.005 0.024
NeMo SpeakerNet 0.039 0.045 0.051 0.024 0.048
NeMo ECAPA-TDNN 0.032 0.035 0.041 0.023 0.038

NeMo Titanet is also the best performing architecture for each individual speaker (see
Figure 1). However, speakers bvl, mgl and pbl have significantly higher EER values than
the rest of the speakers. When analyzing these speakers’ recordings, we noticed that indeed the
background conditions are considerably poorer than for the other speakers and that, in some
cases, the segmentation of the waveform is performed after or before the end of the utterance.
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Figure 1. EER values for the individual speakers across the embedding architectures.

The EER gives the optimum threshold for which the FAR is equal to the FRR, but
it does not detail the accuracy of the representation. For downstream tasks, the inter-
and intra-speaker similarity measures would be more informative. This means that the
discrimination between speakers can be translated into high intra-speaker similarity and
low inter-speaker similarity, while any intermediate values should ideally represent per-
ceptually similar speakers. The intra-speaker similarity values are presented in Figure 2.
The similarity was computed over all pairs of utterances from the same speaker averaged
by their number. It can be noticed that the Clova AI architecture exhibits the highest
intra-speaker similarity measure, and that again, speakers bvl, mgl and pbl have the
lowest intra-speaker similarity. The least performing architecture is Pyannote. In Table 2,
we average the above scores at the system-level and also across the different speaker
subsets. The Clova AI, Female and SWARA1.0 speakers exhibit the highest intra-speaker
similarity measures.

Figure 2. Intra-speaker cosine similarity for each speaker and embedding architecture.
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Table 2. Average intra-speaker cosine similarity across the different speaker embedding architectures
and different speaker subsets. Arrows mark the direction of best performance. Best results are
highlighted in boldface.

Architecture All↑ Female↑ Male↑ Swara1.0↑ Swara2.0↑
Pyannote 0.554 0.557 0.550 0.589 0.531
Speech Brain 0.640 0.651 0.629 0.686 0.610
Clova AI 0.788 0.790 0.786 0.810 0.774
NeMo Titanet 0.702 0.711 0.695 0.750 0.672
NeMo SpeakerNet 0.651 0.658 0.644 0.693 0.623
NeMo ECAPA-TDNN 0.658 0.670 0.647 0.696 0.635

For the inter-speaker similarity, we use the 46,000 random pairs of utterances used
to evaluate the EER and select only those which pertain to different speaker identities.
We then compute the average cosine similarities between each pair of speakers. In this
scenario, we would expect the architectures to exhibit very low values so as to maximize
the discriminative characteristics of the representation. In Table 3, we introduce these
results averaged across the architectures and speaker subsets. Although NeMo Titanet
seemed to show the best performance in the previous tasks, in terms of discriminative
power, NeMo ECAPA-TDNN is the most efficient (with an exception for the inter-male
speakers where Pyannote is best). We show the inter-speaker similarity matrix for the
NeMo ECAPA-TDNN architecture in Figure 3. The closest speakers based on these scores
are htm and mar, with a similarity of 0.42, followed by cmm and cau at a 0.40 similarity.
These pairs are female speakers and do indeed have perceptually similar voices.

In this section, we looked at common measures to evaluate speaker embedding archi-
tectures while aiming to extract additional information that may be useful for downstream
tasks. For example, inter-speaker similarity could be used to train speech synthesis systems
in limited data scenarios, where data augmentation can be performed by using speech from
a different, yet similar sounding speaker.

Table 3. Average inter-speaker cosine similarity across the different speaker embedding architectures
and different speaker subsets. Arrows mark the direction of best performance. Best results are
highlighted in boldface.

Architectures All↓ Female↓ Male↓ Swara1.0↓ Swara2.0↓
Pyannote 0.127 0.195 0.129 0.139 0.127
Speech Brain 0.122 0.188 0.143 0.139 0.118
Clova AI 0.133 0.188 0.157 0.142 0.135
NeMo Titanet 0.132 0.187 0.156 0.143 0.135
NeMo SpeakerNet 0.195 0.272 0.226 0.199 0.198
NeMo ECAPA-TDNN 0.107 0.151 0.140 0.136 0.110
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Figure 3. Inter-speaker similarity matrix for the NeMo ECAPA-TDNN architecture.

4.2. Speaker Identity Disentanglement

The previous set of results are definitely aimed at providing the best representation
for speaker classification tasks. However, in many downstream applications of the speaker
embeddings, this is not enough. And this is true especially in speech synthesis systems,
where the embeddings are used as additional input, while information related to the
linguistic content and prosodic patterns are the main inputs. Therefore, if information
pertaining to other aspects of the speech is present in the embeddings, this can lead to
unwanted effects and bias within the training procedure. Starting from the above statement,
in this section, we want to explore how much residual information is present within the
speaker embeddings, and thus if the speaker identity is truly disentangled from all other
speech factors.

A simple method to determine the presence of residual information is to see if simple
machine learning algorithms are able to extract this information from the embeddings. We adopt
two separate algorithms, depending on the task: a decision tree for the classification tasks and
a LightGBM [47] for the regression tasks. The two algorithms were chosen as they are some
of the simplest, yet most powerful traditional machine learning methods, and their results are
comparable across tasks and datasets. The same parameters were used across the tasks, and the
speech dataset was randomly split into 80% training and 20% test sets.

Table 4 shows the results expressed in F1-scores for the classification of speaker gender
and speaker identity. For these two targets, the results are supposed to be high, as the
embeddings should incorporate this information. Two other targets shown in the table
are the text length—expressed in number of characters—and the recording conditions.
The recording condition is encoded as a binary classification for the two subsets, SWARA1.0
and SWARA2.0. For these two columns, the accuracy of the predictions should be limited,
as information about these two targets should not be easily extracted from the embeddings.
For the text length, the results are as expected, and the number of characters present in the
utterance cannot be extracted from the embeddings. Yet, an interesting result occurs in the
recording conditions column, where the prediction accuracy is rather high. This means that
the additional spectral artefacts present in the home recordings are indeed influential for
the final embeddings across all embedding architectures.
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Table 4. F1-scores for various classification tasks. Arrows mark the direction of best performance.
Best results are highlighted in boldface.

Architecture Speaker ID↑ Gender↑ Utterance
Duration↓

Recording
Condition↓

Pyannote 0.76 0.94 0.016 0.87
Speech Brain 0.84 0.96 0.011 0.90
Clova AI 0.85 0.98 0.015 0.92
NeMo Titanet 0.90 0.97 0.010 0.95
NeMo SpeakerNet 0.85 0.96 0.014 0.91
NeMo ECAPA-TDNN 0.87 0.96 0.015 0.95

For the regression tasks, we look at the utterance duration (measured in seconds),
the signal-to-noise ratio (SNR) and the linguistic contents. The SNR was computed with
the WADA [48] algorithm. For the text contents, we are only looking at the utterance id,
assuming that similar characteristics would be present across speaker embeddings for
the same linguistic contents. The accuracy of the LightGBM is measured in terms of the
Spearman Rank Correlation Coefficient (SRCC) of the predicted values versus the target
values. Table 5 shows the results, and they are not encouraging. All the architectures show
a high correlation factor (>0.7) with respect to the evaluated targets. This means that this
type of information is not efficiently disentangled from the resulting speaker embedding.

A separate regression task looked into the prediction of the average F0 value at the
utterance level (the last column in Table 5). The correlations are rather high and the average
mean squared error for the six architectures is 12 Hz.

Table 5. LightGBM-based SRCC results for various regression tasks. Arrows mark the direction of
best performance. Best results are highlighted in boldface.

Architecture
Utterance
Duration↓ SNR↓ Linguistic

Contents↓ F0↑

Pyannote 0.830 0.771 0.723 0.958
Speech Brain 0.734 0.749 0.742 0.959
Clova AI 0.750 0.791 0.734 0.976
NeMo Titanet 0.704 0.747 0.798 0.964
NeMo SpeakerNet 0.796 0.758 0.709 0.958
NeMo ECAPA-TDNN 0.862 0.787 0.775 0.962

The results in this section showed that although the task of the embedding architectures
is to represent the speaker identity as accurately as possible, residual information is still
present within them and that more work should be performed to find a more suitable
representation for the downstream tasks. In the following section, we would like to explore
how we can use this residual information to the benefit of other tasks by using visual
representations of the embeddings.

4.3. Visual Representations

Visually examining high-dimensional data is not feasible. However, in most cases, vi-
sual representations of the data are more informative to the developer than just percentages
and numbers. As such, we employed a t-SNE dimensionality reduction technique [49] and
plotted the speaker embeddings obtained from the six architectures into a two-dimensional
space. The algorithm was applied over the entire set of embeddings from each individual
architecture, ran over 1000 steps and a perplexity of 30 was used. Figure 4 shows these
t-SNE plots for each architecture. It can be noticed that, with some minor exceptions, the
speakers are clustered nicely. Moreover, it does not seem that any of the speaker embedding
architectures shows a better performance in terms of grouping the speakers. It appears that
for some of the speakers, sub-clusters of the embeddings are formed, and in a few cases,
outliers are to be observed. By examining the individual speech samples, we noticed that
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the outliers commonly pertain to the short utterances, reaffirming the previous result of the
correlation between the embeddings and the duration of the audio. For the sub-clusters,
most speakers recorded the entire set of prompts in at least two recording sessions. Between
the sessions, there were differences in the background noise, distance from the microphone,
speaking rhythm and vocal effort. The formed t-SNE clusters are indeed consistent with the
different recording sessions. It can be noticed that these clusters are more common within
the SWARA2.0 subset containing the home recordings. Among the different embedding
architectures, it appears that all of them are able to detect these sub-clusters, while NeMo
SpeakerNet and Pyannote seem to be more affected by the duration of the audio and
present more outliers than the other systems. This means that these two architectures
would be more suitable in pre-processing a speaker dataset for downstream applications.

However, when we zoom in on these low-dimension visualizations, we notice some
interesting patterns. Figures 5 and 6 show the speaker-level t-SNE representations for the
two data subsets, i.e., SWARA1.0 and SWARA2.0, respectively.

Figure 4. t-SNE representations of the speaker embeddings extracted from the different architectures.
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Figure 5. Speaker-level t-SNE plots of the different embedding architectures—SWARA1.0 subset.
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Figure 6. Speaker-level t-SNE plots of the different embedding architectures—SWARA2.0 subset.

113



Mathematics 2022, 10, 3927

5. Conclusions and Future Work

In this paper, we attempted to evaluate some of the most recent and high-performing
deep speaker embeddings with respect to their intended use, i.e., speaker discrimination,
as well as with respect to their drawbacks in terms of residual information present in
the embeddings. The selected architectures are Pyannote, Speech Brain, Clova AI, NeMo
Titanet, NeMo SpeakerNet and NeMo ECAPA-TDNN, and they were evaluated over a
large multi-speaker parallel dataset containing over 38 h of spoken data.

In a first set of experiments, the architectures were evaluated in terms of the EER and
inter- and intra-speaker similarity measures. With respect to the EER, the best discrimi-
nation was obtained by NeMo Titanet. However, in terms of the intra-speaker similarity,
the architecture which was able to better cluster the speakers was Clova AI, while NeMo
ECAPA-TDNN performed best at maximizing the distance between the speakers’ represen-
tations. This set of evaluations also looked into the different subsets of the audio data, i.e.,
the male vs. female and studio recordings vs. home recording subsets. The results showed
that the female and studio-recorded speakers achieve lower EER and higher intra-speaker
cosine similarity measures. In addition, the male and home-recorded speakers exhibit
larger inter-speaker cluster distances.

A second set of experiments measured the amount of residual information present in
the six sets of speaker embeddings. Simple classification and regression algorithms were
employed. These algorithms were supposed to achieve high accuracy measures when
different speech factors were present in the embeddings. The examined factors were: the
utterance duration in terms of the number of characters and signal duration, recording
conditions, signal-to-noise ratio and linguistic contents. All six architectures showed high
correlations to the length of the signal and recording conditions, including the SNR. The
least amount of residual information pertaining to the recording conditions was present
in the Pyannote architecture. With respect to the utterance duration and SNR, NeMo
Titanet-based embeddings were less correlated to these factors, and NeMo SpeakerNet
embeddings had the smallest correlation factor with the linguistic contents of the utterance.
However, the differences between the six architectures are minimal, and we posit that, to
this point, none of them have truly obtained a disentangled speaker representation.

Given the results of the residual information’s presence in the embeddings, a third
set of experiments looked into how these residual factors could be exploited in further
downstream applications of the speaker embeddings. Low-dimensional t-SNE-based
representations of the six sets of embeddings were plotted. With respect to global speaker
representations, all the architectures showed a similar performance with well-behaved
clusters, with the exception of NeMo ECAPA-TDNN for which the clusters had larger
distributions. When zooming in on these t-SNE representations at the speaker level, all
deep representations exhibited sub-clusters pertaining to different recording sessions, as
well as outlier utterances correlated to short utterances. This means that this information
present in the embeddings’ projections could in fact be used, for example, in the data
selection process for text-to-speech or voice cloning applications. Outlier utterances could
be removed from the training set, and ill-behaved speaker datasets could be further curated
or removed altogether. This is in fact one of the next steps to extend the work presented in
this paper. We plan to examine how different text-to-speech architectures are affected by the
variability of certain speakers and if removing utterance outliers enhances the performance
of the output synthesized speech. Another important result of this work pertains to the use
of embedding-based similar speakers for data augmentation in TTS systems, meaning that
using the most similar speaker with respect to the target speaker will indeed improve the
naturalness and speaker similarity of the resulting system.

Moreover, given the availability of the speaker embedding networks, we are planning
to use the findings of this study in a task of multi-speaker text-to-speech synthesis system
training and determine the most efficient manner to input these embeddings into the
synthesis networks, as well as to verify how the embeddings are affected by the synthetic
output and how they can be adjusted to better represent the various speaker identities.

114



Mathematics 2022, 10, 3927

Funding: The work carried out in this paper was partially funded by Zevo Technology under grant
agreement no. 21439. The APC was funded by the Technical University of Cluj-Napoca.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable.

Data Availability Statement: The processed datasets and experiment flows used in this paper can
be obtained from the author.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Jia, Y.; Zhang, Y.; Weiss, R.J.; Wang, Q.; Shen, J.; Ren, F.; Chen, Z.; Nguyen, P.; Pang, R.; Lopez-Moreno, I.; et al. Transfer Learning
from Speaker Verification to Multispeaker Text-To-Speech Synthesis. CoRR 2018, Available online: http://xxx.lanl.gov/abs/1806.04558
(accessed on 18 October 2022).

2. Stanton, D.; Shannon, M.; Mariooryad, S.; Skerry-Ryan, R.; Battenberg, E.; Bagby, T.; Kao, D. Speaker Generation. In Proceedings
of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore,
23–27 May 2022; pp. 7897–7901. [CrossRef]

3. Luck, J.E. Automatic speaker verification using cepstral measurements. J. Acoust. Soc. Am. 1969, 46, 1026–1032. [CrossRef]
[PubMed]

4. Furui, S. Cepstral analysis technique for automatic speaker verification. IEEE Trans. Acoust. Speech Signal Process. 1981, 29, 254–272.
[CrossRef]

5. Ye, W.; Wu, D.; Nucci, A. Experimental Study on GMM-Based Speaker Recognition. In Proceedings of the SPIE—The International
Society for Optical Engineering, Orlando, FL, USA, 28 April 2010. [CrossRef]

6. Chandra, M.; Nandi, P.; Kumari, A.; Mishra, S. Spectral-Subtraction Based Features for Speaker Identification. Adv. Intell. Syst.
Comput. 2015, 328, 529–536._58. [CrossRef]

7. McLaren, M.; Scheffer, N.; Graciarena, M.; Ferrer, L.; Lei, Y. Improving speaker identification robustness to highly channel-
degraded speech through multiple system fusion. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6773–6777. [CrossRef]

8. Plchot, O.; Matsoukas, S.; Matejka, P.; Dehak, N.; Ma, J.; Cumani, S.; Glembek, O.; Hermansky, H.; Mallidi, S.; Mesgarani, N.;
et al. Developing a speaker identification system for the DARPA RATS project. In Proceedings of the 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6768–6772. [CrossRef]

9. Reynolds, D.A. A Gaussian Mixture Modeling Approach to Text-Independent Speaker Identification. Ph.D. Thesis, Georgia
Institute of Technology, Atlanta, GA, USA, 1992.

10. Reynolds, D.; Rose, R. Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Trans.
Speech Audio Process. 1995, 3, 72–83. [CrossRef]

11. Reynolds, D.A.; Quatieri, T.F.; Dunn, R.B. Speaker Verification Using Adapted Gaussian Mixture Models. Digit. Signal Process.
2000, 10, 19–41. [CrossRef]

12. Campbell, W.; Sturim, D.; Reynolds, D. Support vector machines using GMM supervectors for speaker verification. IEEE Signal
Process. Lett. 2006, 13, 308–311. [CrossRef]

13. Zhang, W.; Yang, Y.; Wu, Z. Exploiting PCA classifiers to speaker recognition. In Proceedings of the International Joint Conference
on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 1, pp. 820–823. [CrossRef]

14. Dehak, N.; Kenny, P.J.; Dehak, R.; Dumouchel, P.; Ouellet, P. Front-End Factor Analysis for Speaker Verification. IEEE Trans.
Audio Speech Lang. Process. 2011, 19, 788–798. [CrossRef]

15. Chen, K.; Salman, A. Learning Speaker-Specific Characteristics with a Deep Neural Architecture. IEEE Trans. Neural Netw. 2011,
22, 1744–1756. [CrossRef]

16. Hinton, G.E.; Salakhutdinov, R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [CrossRef]
17. Snyder, D.; Garcia-Romero, D.; Sell, G.; Povey, D.; Khudanpur, S. X-Vectors: Robust DNN Embeddings for Speaker Recognition.

In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018; pp. 5329–5333. [CrossRef]

18. Garcia-Romero, D.; Snyder, D.; Sell, G.; McCree, A.; Povey, D.; Khudanpur, S. x-Vector DNN Refinement with Full-Length
Recordings for Speaker Recognition. In Proceedings of the INTERSPEECH 2019, Graz, Austria, 15–19 September 2019.

19. You, L.; Guo, W.; Dai, L.; Du, J. Multi-Task Learning with High-Order Statistics for x-Vector Based Text-Independent Speaker
Verification. arXiv 2019, arXiv:1903.12058.

20. Jung, J.W.; Heo, H.S.; Kim, J.H.; Shim, H.J.; Yu, H.J. RawNet: Advanced End-to-End Deep Neural Network Using Raw Waveforms
for Text-Independent Speaker Verification. arXiv 2019, arXiv:1904.08104.

21. Jung, J.W.; Kim, S.B.; Shim, H.J.; Kim, J.H.; Yu, H.J. Improved RawNet with Feature Map Scaling for Text-Independent Speaker
Verification Using Raw Waveforms. arXiv 2020, arXiv:2004.00526.

22. Chung, J.S.; Huh, J.; Mun, S.; Lee, M.; Heo, H.S.; Choe, S.; Ham, C.; Jung, S.; Lee, B.J.; Han, I. In defence of metric learning for
speaker recognition. arXiv 2020, arXiv:2003.11982.

115



Mathematics 2022, 10, 3927

23. Kwon, Y.; Heo, H.S.; Lee, B.J.; Chung, J.S. The ins and outs of speaker recognition: Lessons from VoxSRC 2020. In Proceedings
of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON,
Canada, 6–11 June 2021.

24. Thienpondt, J.; Desplanques, B.; Demuynck, K. The IDLAB VoxCeleb Speaker Recognition Challenge 2020 System Description.
arXiv 2020, arXiv:2010.12468.

25. Vaessen, N.; Van Leeuwen, D.A. Fine-Tuning Wav2Vec2 for Speaker Recognition. In Proceedings of the ICASSP 2022—2022
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 7967–7971.
[CrossRef]

26. Bai, Z.; Zhang, X.L. Speaker recognition based on deep learning: An overview. Neural Netw. 2021, 140, 65–99. [CrossRef]
[PubMed]

27. Ohi, A.Q.; Mridha, M.F.; Hamid, M.A.; Monowar, M.M. Deep Speaker Recognition: Process, Progress, and Challenges. IEEE Access
2021, 9, 89619–89643. [CrossRef]

28. Makarov, R.; Torgashov, N.; Alenin, A.; Yakovlev, I.; Okhotnikov, A. ID R&D System Description to VoxCeleb Speaker Recognition
Challenge 2022; ID R&D Inc.: New York, NY, USA, 2022.

29. Cai, Q.; Hong, G.; Ye, Z.; Li, X.; Li, H. The Kriston AI System for the VoxCeleb Speaker Recognition Challenge 2022. arXiv 2022,
arXiv:2209.11433.

30. Suh, S.; Park, S. The ReturnZero System for VoxCeleb Speaker Recognition Challenge 2022. arXiv 2022, arXiv:2209.10147.
31. Zhao, Z.; Li, Z.; Wang, W.; Zhang, P. The HCCL system for VoxCeleb Speaker Recognition Challenge 2022. 2022. Available online:

https://www.robots.ox.ac.uk/~vgg/data/voxceleb/data_workshop_2022/reports/zzdddz_report.pdf (accessed on 18 October 2022).
32. Casanova, E.; Shulby, C.; Gölge, E.; Müller, N.M.; de Oliveira, F.S.; Junior, A.C.; Soares, A.d.S.; Aluisio, S.M.; Ponti, M.A.

SC-GlowTTS: An Efficient Zero-Shot Multi-Speaker Text-To-Speech Model. arXiv 2021, arXiv:2104.05557.
33. Cooper, E.; Lai, C.I.; Yasuda, Y.; Fang, F.; Wang, X.; Chen, N.; Yamagishi, J. Zero-Shot Multi-Speaker Text-To-Speech with

State-Of-The-Art Neural Speaker Embeddings. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 6184–6188. [CrossRef]

34. Zhou, Y.; Tian, X.; Li, H. Language Agnostic Speaker Embedding for Cross-Lingual Personalized Speech Generation.
IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 3427–3439. [CrossRef]

35. Hu, Q.; Bleisch, T.; Petkov, P.; Raitio, T.; Marchi, E.; Lakshminarasimhan, V. Whispered and Lombard Neural Speech Synthesis.
In Proceedings of the 2021 IEEE Spoken Language Technology Workshop (SLT), Shenzhen, China, 19–22 January 2021; pp. 454–461.
[CrossRef]

36. Zhang, M.; Zhou, Y.; Zhao, L.; Li, H. Transfer Learning From Speech Synthesis to Voice Conversion with Non-Parallel Training
Data. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 1290–1302. [CrossRef]

37. Stan, A.; Dinescu, F.; Tiple, C.; Meza, S.; Orza, B.; Chirila, M.; Giurgiu, M. The SWARA Speech Corpus: A Large Parallel Romanian
Read Speech Dataset. In Proceedings of the 9th Conference on Speech Technology and Human-Computer Dialogue (SpeD),
Bucharest, Romania, 6–9 July 2017.

38. Bredin, H.; Yin, R.; Coria, J.M.; Gelly, G.; Korshunov, P.; Lavechin, M.; Fustes, D.; Titeux, H.; Bouaziz, W.; Gill, M.P. Pyannote.audio:
Neural building blocks for speaker diarization. In Proceedings of the ICASSP 2020, IEEE International Conference on Acoustics,
Speech, and Signal Processing, Barcelona, Spain, 4–8 May 2020.

39. Bredin, H.; Laurent, A. End-to-end speaker segmentation for overlap-aware resegmentation. arXiv 2021, arXiv:2104.04045.
40. Ravanelli, M.; Bengio, Y. Speaker Recognition from Raw Waveform with SincNet. In Proceedings of the 2018 IEEE Spoken

Language Technology Workshop (SLT), Athens, Greece, 18–21 December 2018. [CrossRef]
41. Ravanelli, M.; Parcollet, T.; Plantinga, P.; Rouhe, A.; Cornell, S.; Lugosch, L.; Subakan, C.; Dawalatabad, N.; Heba, A.; Zhong, J.;

et al. SpeechBrain: A General-Purpose Speech Toolkit. arXiv 2021, arXiv:2106.04624.
42. Desplanques, B.; Thienpondt, J.; Demuynck, K. ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN

Based Speaker Verification. In Proceedings of the Interspeech 2020, Shanghai, China, 25–29 October 2020; pp. 3830–3834. [CrossRef]
43. Koluguri, N.R.; Park, T.; Ginsburg, B. TitaNet: Neural Model for speaker representation with 1D Depth-wise separable

convolutions and global context. In Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Singapore, 23–27 May 2022.

44. Han, W.; Zhang, Z.; Zhang, Y.; Yu, J.; Chiu, C.C.; Qin, J.; Gulati, A.; Pang, R.; Wu, Y. ContextNet: Improving Convolutional Neural
Networks for Automatic Speech Recognition with Global Context. arXiv 2020, arXiv:2005.03191.

45. Koluguri, N.R.; Li, J.; Lavrukhin, V.; Ginsburg, B. SpeakerNet: 1D Depth-wise Separable Convolutional Network for Text-
Independent Speaker Recognition and Verification. arXiv 2020, arXiv:2010.12653.

46. Dawalatabad, N.; Ravanelli, M.; Grondin, F.; Thienpondt, J.; Desplanques, B.; Na, H. ECAPA-TDNN Embeddings for Speaker
Diarization. arXiv 2021, arXiv:2104.01466.

47. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision
Tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Long Beach, CA, USA,
4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 3149–3157.

48. Kim, C.; Stern, R. Robust signal-to-noise ratio estimation based on waveform amplitude distribution analysis. In Proceedings of
the Interspeech 2008 Incorporating SST 08, Brisbane Australia, 22–26 September 2008; pp. 2598–2601. [CrossRef]

49. van der Maaten, L.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

116



Citation: Marwah, G.P.K.; Jain, A.;

Malik, P.K.; Singh, M.; Tanwar, S.;

Safirescu, C.O.; Mihaltan, T.C.;

Sharma, R.; Alkhayyat, A. An

Improved Machine Learning Model

with Hybrid Technique in VANET for

Robust Communication. Mathematics

2022, 10, 4030. https://doi.org/

10.3390/math10214030

Academic Editors: Adrian Sergiu

Darabant and Diana-Laura Borza

Received: 11 September 2022

Accepted: 25 October 2022

Published: 30 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Improved Machine Learning Model with Hybrid Technique
in VANET for Robust Communication

Gagan Preet Kour Marwah 1, Anuj Jain 1, Praveen Kumar Malik 1, Manwinder Singh 1, Sudeep Tanwar 2,*,

Calin Ovidiu Safirescu 3,*, Traian Candin Mihaltan 4, Ravi Sharma 5 and Ahmed Alkhayyat 6

1 School of Electronics and Electrical Engineering, Lovely Professional University, Jalandhar 144411, India
2 Department of Computer Science and Engineering, Institute of Technology, Nirma University,

Ahmedabad 382481, India
3 Environment Protection Department, Faculty of Agriculture, University of Agricultural Sciences and

Veterinary Medicine Cluj-Napoca, Calea Mănăs, tur 3-5, 400372 Cluj-Napoca, Romania
4 Faculty of Building Services, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
5 Centre for Inter-Disciplinary Research and Innovation, University of Petroleum and Energy Studies,

Dehradun 248001, India
6 College of Technical Engineering, The Islamic University, Najaf 54001, Iraq
* Correspondence: sudeep.tanwar@nirmauni.ac.in (S.T.); calin.safirescu@usamvcluj.ro (C.O.S.)

Abstract: The vehicular ad hoc network, VANET, is one of the most popular and promising technolo-
gies in intelligent transportation today. However, VANET is susceptible to several vulnerabilities that
result in an intrusion. This intrusion must be solved before VANET technology can be adopted. In
this study, we suggest a unique machine learning technique to improve VANET’s effectiveness. The
proposed method incorporates two phases. Phase I detects the DDoS attack using a novel machine
learning technique called SVM-HHO, which provides information about the vehicle. Phase II miti-
gates the impact of a DDoS attack and allocates bandwidth using a reliable resources management
technique based on the hybrid whale dragonfly optimization algorithm (H-WDFOA). This proposed
model could be an effective technique predicting and utilizing reliable information that provides
effective results in smart vehicles. The novel machine learning-based technique was implemented
through MATLAB and NS2 platforms. Network quality measurements included congestion, transit,
collision, and QoS awareness cost. Based on the constraints, a different cost framework was designed.
In addition, data preprocessing of the QoS factor and total routing costs were considered. Rider
integrated cuckoo search (RI-CS) is a novel optimization algorithm that combines the concepts of the
rider optimization algorithm (ROA) and cuckoo search (CS) to determine the optimal route with the
lowest routing cost. The enhanced hybrid ant colony optimization routing protocol (EHACORP) is
a networking technology that increases efficiency by utilizing the shortest route. The shortest path
of the proposed protocol had the lowest communication overhead and the fewest number of hops
between sending and receiving vehicles. The EHACORP involved two stages. To find the distance
between cars in phase 1, EHACORP employed a method for calculating distance. Using starting
point ant colony optimization, the ants were guided in phase 2 to develop the shortest route with the
least number of connections to send information. The relatively short approach increases protocol
efficiency in every way. The pairing of DCM and SBACO at H-WDFOA-VANET accelerated packet
processing, reduced ant search time, eliminated blind broadcasting, and prevented stagnation issues.
The delivery ratio and throughput of the H-WDFOA-packet VANET benefitted from its use of the
shortest channel without stagnation, its rapid packet processing, and its rapid convergence speed.
In conclusion, the proposed hybrid whale dragonfly optimization approach (H-WDFOA-VANET)
was compared with industry standard models, such as rider integrated cuckoo search (RI-CS) and
enhanced hybrid ant colony optimization routing protocol (EHACORP). With the proposed method,
throughput could be increased. The proposed system had energy consumption values of 2.00000 mJ,
latency values of 15.61668 s, and a drop at node 60 of 0.15759. Additionally, a higher throughput
was achieved with the new method. With the suggested method, it is possible to meet the energy
consumption targets, delay value, and drop value at node 60. The proposed method reduces the drop
value at node 80 to 0.15504, delay time to 15.64318 s, and energy consumption to 2.00000 mJ. These
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outcomes demonstrate the effectiveness of our proposed method. Thus, the proposed system is more
efficient than existing systems.

Keywords: VANET; support vector machine; rider optimization algorithm; cuckoo search; whale
optimization algorithm; dragonfly; DDoS attack

MSC: 68M10

1. Introduction

In recent years, the vehicular ad-hoc network (VANET) has gained prominence in the
networking world. It is a mobile ad hoc network (MANET) primarily utilized for vehicle-to-
vehicle and vehicle-to-roadside-unit communication. Data is shared via vehicle-to-vehicle
(V2V), vehicle-to-infrastructure (V2I), and vehicle-to-everything (V2X) communications.
VANET applies to various areas such as traffic control, traffic congestion monitoring, and
driver safety programs [1,2]. However, VANET has its disadvantages, such as in dynamic
behavior. This issue is rectified by an effective and efficient routing protocol that broadcasts
the data. As cars may not be able to communicate information without an efficient routing
method, they will lose all the benefits of sophisticated VANET technology [3].

Recently, many efforts have been made to adapt software-defined network (SDN)
ideas to vehicular networks to benefit from the SDN’s flexibility and programmability. The
ultimate objective of this adaption is to improve VANET performance and make it more
suitable for certain services and applications [4]. The software-defined network (SDN) is
one of the emerging revolutionary network concepts utilized in data centers and operator
networks to satisfy the growing demands of future networks [5]. Network programmability,
centralized management control, and interface openness are some features of SDN. It also
substantially simplifies network administration and improves networkability [6,7]. SDN
is divided into three layers: data, control, and application. Routers, switches, vehicles,
and wireless gadgets are all part of the data layer. According to the controller, which
would be the SDN’s brain and resides in the control plane, devices in the data layer are
responsible for packet transmission. It determines how data layer devices send and receive
data and how the flow is managed. The network layer consists of software initiatives that
manage the network’s programming. SDN and VANET techniques are not without their
flaws. Despite their numerous advantages and excellent performance, they are subject to
attack risk, namely from DoS and DDoS, just as in traditional wireless networks. However,
SDN features make it simpler to identify and respond to DoS attacks, and the openness of
the data plane creates favorable conditions for additional DoS attacks [8]. A distributed
DoS (DDoS) assault occurs when a DoS attack is launched from several vehicles dispersed
throughout the network. The targeted system cannot handle any incoming requests due
to the breach, and the entire system crashes [9]. In such assaults, the hacker compromises
thousands of hosts, including PCs, servers, and IoT devices, and exploits them all at once
to overwhelm the victim’s resources with traffic. This traffic suspends network users and
defending against it is quite difficult [10]. A system administrator can detect a potential
threat but cannot handle the simultaneous attacks in real-time. As a result, the SDN
controller must be subjected to particular security constraints. Additionally, automatic
attack detection systems are required to ensure an optimum level of service quality and to
detect suspicious intrusions [11].

The detection of DDoS attacks includes various challenges, including identifying the
characteristics of attack traffic; lack of cooperation among the nodes of a coherent network;
modification in attack tools; usage of a fake IP address; and short attack duration and
limited response time [12]. To deal with these issues, we need a system that can detect
intrusions and store data in communication while ensuring data integrity. The ultimate
purpose of the intrusion detection method is to identify intrusion before it causes damage
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to a targeted server and to stop attacks as close to their source as possible [13]. Machine
learning (ML) techniques provide a framework frequently employed in VANETs to evaluate
large amounts of data and generate efficient rules for attack detection, classification, and
prediction [14]. The ML approaches apply not only to intrusion detection but also in
fields such as speech recognition, recommendation systems, medical diagnosis, and traffic
prediction. It also offers a desirable approach for detecting intrusions in VANETs ahead of
time with acceptable speed and accuracy [15].

There are four different forms of communication in VANETs.

• In-vehicle communication: the in-vehicle domain is becoming increasingly crucial in
VANET research. Driver and public safety are both improved when in-car communi-
cation systems can detect issues such as driver fatigue and drowsiness.

• To better assist drivers, V2V communication can facilitate the exchange of information
and warning messages between vehicles.

• Virtual-to-individual (V2I) communication in VANETs is an emerging research area.
Through vehicle-to-infrastructure (V2I) communication, drivers can access real-time
traffic and weather updates and participate in environmental sensing and monitoring.

• Wireless broadband technology, such as 3G/4G, may be used for vehicle-to-vehicle
(V2V) communication. With more traffic data, monitoring information, and entertain-
ment options available in the internet cloud, this type of connectivity will be beneficial
for active driver assistance and vehicle tracking.

The primary goal of public safety technology is to improve the overall safety of
transportation systems. Real-time traffic conditions, post-crash alerts, traffic monitoring,
collision mitigation, and other safety applications are available. Non-public security appli-
cations aim to improve driver comfort by offering value-added information, such as nearby
petrol stations, hotels, workshops, and restrooms, among other things. It is often advisable
to use public safety technology than non-public safety technology. Numerous applications
are used in many nations, including Germany, Europe, and Switzerland, to make roads and
automobiles safer. Convenience applications are mainly used to handle traffic congestion
scenarios, such as available parking spaces, route diversions, and electronic toll collection,
among other things. New elements to the services mentioned above that focus on convert-
ing traffic jam time into constructive work, such as reading on the internet while waiting in
a vehicle for someone, are known as productive activities. Additionally, fuel is saved when
the average toll booth wait time is decreased to 1–2 min [16].

The following are the main contributions of the current study:

• The primary objective of this paper was to use a machine learning-hybrid optimization
strategy to detect DDoS attacks and allocate bandwidth within the VANET.

• Algorithms and models based on machine learning can support robust communication
analysis and resource management, as well as the increasing communication and
computation demands of emerging networking applications.

• Security-based modified SVM with HHO technique was utilized to identify DDoS
attacks. The SVM-HHO technique demonstrated the most outstanding feature se-
lection and parameter optimization capabilities compared with other well-known
metaheuristic algorithms. Using H-WDFOA, the impact of a DDoS attack on the
VANET was diminished (H-WDFOA-VANET).

• The combination of DF optimization and WOA increased bandwidth. The condition
was repeated until all available bandwidth had been allocated. The H-WDFOA was
utilized to achieve effective bandwidth allocation and optimal vehicle routing.

• For the stability of the vehicular network, swift and efficient communication was
established once the predicted information had been validated.

• Utilizing performance indicators such as energy consumption, throughput, latency,
and packet delivery ratio, the performance of the proposed method was evaluated.
The implementation was accomplished using MATLAB software.
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2. Literature Review

Poongodi et al. [17] proposed a trust-based methodology for determining the dis-
tributed denial of service (DDoS) attack in VANET. The residual energy, trust policy, data
factor, statistics, such as frequency value, and true hypothesis were used to create the trust
elements. These trust elements were utilized to generate the trust evaluation matrix. The
deterrence design of the trust evaluation approach was incorporated with a clustering
method to identify the attacker in a proficient manner.

For identifying DDoS assaults on VANET, Adhikary et al. [18] used a hybrid technique.
These hybrid approaches were developed using ANOVA Dot and RBF Dot SVM kernel
methodology. Features such as collision, jitter, and packet drop were used to replicate a
real-time network communication scenario. As a result, the hybrid algorithm-based model
was superior at detecting DDoS attacks.

To identify DDoS assaults on VANET, Kolandaisamy et al. [19] devised a multivariant-
stream analysis (MVSA) method. The network was protected from distributed denial of
service attacks by keeping multiple levels active. This tactic’s success hinges on the ability
of individual cars to talk to one another through the Road Side Unit.

Using big data technology, Marwah et al. [20] provided a method for detecting DDoS
attacks. The real-time network traffic-collecting module and traffic-detection module are
two components of the described technique. In addition, spark and HFSA-VANET were
also used to speed up data processing and store significant suspicious attacks.

Hind Bangui et al. [21] suggested a machine learning approach that combined tra-
ditional methods with more modern ones (IDS) to boost the effectiveness of intrusion
detection systems. The IDS was a potential tool for thwarting VANET attacks in advance.
Consequently, the coreset was utilized to enhance detection accuracy, and the random
forest (RF) was implemented to boost IDS functionality. For VANET, Tang et al. [22] im-
plemented a centralized routing mechanism with mobility prediction (CRS-MP), using
a software-defined network (SDN) controller. The Road Side Unit (RSU) or Base Station
(BS) determined the average latency and transmission probability of each request from the
vehicle based on the mobility forecast. Information was gathered by the SDN controller via
RSU, whereas the BS was viewed as mere switches.

Zhang and Zhu [23] presented VANET’s PML-CIDS. In this study, the authors used
the alternating direction multiplier method (ADMM) to a set of empirical risk minimization
(ERM) problems. Differential privacy was used to acquire the PML-CIDS privacy notation,
and the NSL-KDD dataset was used for the evaluation. An improved VANET routing
model was developed by Gnanasekar and Samiappan [24], which accounted for congestion,
travel, collision, and QoS awareness cost. An updated pricing scheme was developed in
light of the restrictions. When calculating the optimal route, the authors considered the
total cost and quality of service (QoS) component, which was fuzzy-calculated. The optimal
routing in VANET was achieved at the lowest possible routing cost by developing a novel
RI-CS optimization approach, which was built by fusing the ideas of ROA and CS.

To improve the effectiveness of the routing procedure in VANETs, Ramamoorthyet
al.proposed a new routing protocol, EHACORP, which was presented in [25]. At EHACORP,
the combination of DCM and SBACO shortened the time it took for ants to find their
way around, increased the rate at which they converged, eliminated the need for blind
broadcasting packets, expedited packet processing, and prevented bottlenecks. EHACORP
increased its packet delivery ratio (PDR) and throughput by avoiding bottlenecks, rapidly
processing packets, and quickly converging.

In [26], the authors presented a study on the split delivery vehicle routing problem
that arises in the distribution of fresh agricultural products. A mathematical model was
developed to find an optimal solution for the problem by considering travel costs, fixed
costs, service costs, refrigeration costs, carbon emission costs, and customer satisfaction.
This paper added time-varying road network constraints to the model, and multiple time
windows were set for each customer. A variable neighborhood search, combined with
the non-dominated sorting genetic algorithm II (VNS-NSGA-II), and techniques for order
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preference by similarity to an ideal solution (TOPSIS) was proposed and applied to solve
this problem.

In [27], the authors proposed a scale-adaptive mathematical morphology spectrum
entropy (AMMSE) to improve the scale selection. To support the proposed method, two
properties of the mathematical morphology spectrum (MMS), namely non-negativity and
monotonic decreasing, were shown. It could be concluded from the two properties that
feature loss of MMS decreased with the increase in scale. Based on this conclusion, two
adaptive scale selection strategies were proposed to automatically determine the scale by
reducing the feature loss of MMS. The presented method was applied to identify fault
degree on a CWRU-bearing data set and evaluate performance degradation onan IMS-
bearing data set. The experiment results showed that AMMSE had better results in both
experiments with the same parameters.

3. Proposed Methodology for Robust Communication through Machine
Learning Algorithm

The VANET’s dynamic condition was developed in this section to select the suitable
routing of each node. Furthermore, allocating the bandwidth of each node was obtained for
accurate routing. In VANET, the optimization approach SVM-HHO-VANET was developed
to select a route based on clustering to provide precise bandwidth allocation for proper
routing. Here, the proposed methodology was halved into two phases. Security-based
modified SVM was used to find DDoS attacks early on. In the next stage, the HHO
optimization approach for the VANET dynamic scenario was used to achieve effective
bandwidth allocation. This research included cluster selection, accurate cluster node
communication, detecting DDoS attacks, route prediction, bandwidth allocation between
the cluster nodes, distance, velocity, speed, bandwidth, number of nearby vehicles, and
throughput parameters for QoS analysis. Additionally, evaluation metrics such as energy
consumption, delay, and drop were considered for QoS performance analysis. In this
work, several nodes in the vehicle were analyzed based on distance, speed, velocity, and
bandwidth. The location of the vehicle was determined in each iteration, according to
fitness. When the node’s position was less than 0.5 and the nearby vehicle was greater
than or equal to 1, the best location was updated. If the present iteration was higher than
the maximum iteration, the target vehicle’s position was considered the best location. To
achieve a maximum optimal solution, the DF approach was integrated with WOA.

Furthermore, the dragonfly solution was initialized and determined the bandwidth
by QoS value according to the objective function. The maximum iteration was utilized
until the process continued to enhance the bandwidth. Finally, energy consumption,
delay, and drop were considered based on the QoS parameter for accurate routing. The
proposed approach was accurate in allocating bandwidth compared with other existing
techniques. This study is robust and fast in predicting DDoS attacks and allocating the
bandwidth using the H-WDFOA technique, in the best position after validating for stability
in vehicular networks.

4. Background of HHO, SVM, and DDoS Attack

4.1. Harris Hawks Optimization (HHO)

Harris hawks optimization (HHO) is an optimization method that uses a swarm
intelligence approach. The primary focus of HHO is on simulating cooperative hunting
and successful prey escape strategies employed by hawks in the wild to solve the problem
of a single target [28]. Hawks are search agents in HHO, and the best position is that of
the prey. The demonstration of the HHO is described in full detail below and depicted in
Figure 1.
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Figure 1. HHO phase [1].

In this approach, hawks locate their prey depending on the positions of the genuine
members (the total number of hawks defined by N and represented by Equation (1).

Xi(t + 1) =
{(

Xprey(t)− Xm(t)− Y
)
, q < 0.5

)
(Xrand(t)− |Xrand(t)− 2r2 X(t)|, q ≥ 0.5) (1)

The next iteration shows that the revised position of hawks, t, is represented by
Xi(t + 1); Xrand(t) represents the current location of the hawks; and r1, r2, r3, r4, and
q denote random numbers inside the collection of hawks (0,1). The position of prey is
represented by Xprey(t). Xm(t) defines the total average positions of all hawks, which is
calculated using Equation (2).

Xm(t) =
∑N

i=1 Xi(t)
N

(2)

Y = r3(LB + r4 (UB − LB) stands for the gap between the maximum and minimum
values of a variable.

4.2. Support Vector Machine (SVM)

The SVM has been validated as a powerful paradigm for classification. SVM provides a
crucial mathematical model for use in classification and regression. Twin SVM, Lagrangian
SVM, least-square SVM, decision tree SVM, directed acyclic graph SVM, and multi-kernel
SVM are only some of the SVM variants that have emerged during the past few decades [29].
In support vector machines (SVM), multi-class categories are typically translated into a
large number of binary variants using either OvO (one vs. one) or OvR (one vs. many or
one vs. rest) [30]. SVM classifies data by translating it into multidimensional space and
creating a higher dimension of hyperplanes. This hyperplane refers to the decision planes
in Figure 2.
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Figure 2. Hyperplane supporter in SVM plan.

4.3. DDoS Attack

As per Figure 3, DDoS attacks are network security threats that aim to overload tar-
get networks with malicious traffic. Though several statistical methods exist for DDoS
attack detection, the development of a real-time detector that requires minimal processing
resources remains to be a fundamental challenge [31]. This paper discusses recent develop-
ments in cloud-based DDoS mitigation technologies. In particular, we provide a detailed
analysis of the characterization, prevention, detection, and mitigation strategies used in
these attacks.

Figure 3. Attack by DDoS.
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The flowchart of the proposed methodology is illustrated in Figure 4. First, we
initialized the dataset, where 70% of data were utilized in the training phase and 30% in
the testing phase. However, the DDoS attack was analyzed and detected by modified SVM.
Due to a DDoS attack, node performance was reduced, and bandwidth attracted more
attenuation. In addition, based on the number of nodes, hybrid WDFOA was initialized
for allocating bandwidth. For allocation, the QoS value was separately analyzed based on
bandwidth, distance, speed, and vehicle velocity. The capacity of the node to transfer data
was established by running condition assessment if the node’s bandwidth is less than a
predetermined threshold. To enhance the bandwidth, DF optimization was integrated with
WOA. This condition was repeated until the termination of bandwidth was allocated.

START

Dataset Modified SVM

DDosInitialize H-WDFOA 
based on number of nodes

Analysis of the Qos value

If
      Qos       (Bandwidth       
               termination)

Allocate the bandwidth

Update

STOP

Training 30

Training 70

YesNo

Figure 4. Flowchart for proposed methodology.
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5. Simulated Steps for Proposed Methodology

At a fixed location, utilizing 1000 vehicles, VANET was randomly implemented and
placed in 1000 × 1000 m. The placement of vehicles is tabulated in Table 1. In a defined
area, VANET was randomly placed.

Table 1. Vehicle placement in the VANET.

# # At Random Places, Vehicles Are Places to Create VANET

� In Total − Vehicles, For each x
� Va(x) = 1000 ∗ run i f (1)
� Vb(x) = 1000 ∗ run i f (1)
� Fix (V a(x), V b(x))
� End For

a and b are the coordinatesof the vehicle, denoted by Va and Vb. To randomly position a car at positions a and b,
R-studio was used to incorporate the random function run if (1).

5.1. Dataset Production

The data set called the “DDoS attack-based SDN Network Dataset” used deep learn-
ing and machine learning techniques that were publicly accessible and used by many
researchers. There were 104,345 traffic flows in 23 features in this dataset. The usual attack
traffic class label used a dataset comprising UDP, ICMP, and TCP traffic.

5.2. Phase: 1—Security-Based Modified SVM

This study used the modified support vector machine (MSVM) to identify the attack
on SDN-based VANETs by DDoS. Here, SVM utilized kernel function to transfer non-linear
data to a high-dimensional space based on Harris hawks optimization (HHO). In the SVM
classifier, the optimal kernel was selected based on HHO, known as modified SVM. Thus,
the kernel-based MSVM was suggested in this paper to identify DDoS attacks.

The architecture of the suggested hybrid detection is shown in Figure 5. The VANET
setup consisted of 1000 vehicles in the first module. The second module produced the infor-
mation needed to develop a training and testing procedure. Finally, a hybrid method was
used to make predictions based on data collected during training and testing. Predictions
consisted of binary values“0 or 1” for indicating efficient behavior or DDoS attack.

 

Simulated VANET Dataset production

Predict of Attack

Modified SVM

Figure 5. Basic architecture for detection method.

5.2.1. Modified Support-Vector Machine

SVM generalization is the most significant margin classifier and is said to be the
best method for categorization difficulties. When comparing two data sets, the margin
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is the line closest to either set. A flat affine subspace in an x-dimension space forms an
x−1 dimension [32] in a hyperplane. In a hyperplane, the following equation determines
two dimensions.

α0α1y1+α2y2 = 0 (3)

Here, in the hyperplane, Y = (Y1, Y2)
T is a point and α0, α1, and α2 are the parameters.

Equation (1) can be extended, for n-dimensional space.

α0 + α1y1 + α2y2 + . . . + αnyn = 0 (4)

If Y = (Y1, Y2, . . . Yn)
T , Y lies on the hyper plane. The left side of the hyperplane is

represented by x in the Equation (3), and is more than zero, whereas if it is on the other
side, it is less than zero. A hyperplane reveals which side a point is on in this way.

The SVC can determine which side of the hyperplane an observation from the test
space lies on and classify it accordingly. As shown in Figure 6, some data points fell outside
of the hyperplane’s boundaries. The equation expresses the SVM’s working principle,

Maximizeα0,α1......αn ,ε1......εn (5)

 

Figure 6. Concept of support vector machine (SVM).

A circumstance where
∑n

i=1 a2
i = 1 (6)

fx(α0 + α1y1 + α2y2 . . . . . . . . . + αnyn) ≥ W(1 − εx) (7)

εx ≥ 0, ∑n
x=1 ∈x≤ T (8)

In this case, the positive tuning parameter is denoted by T. The width of the margin
is represented by W. A slack variable is εx, this enables for an observation on the margin’s
wrong side. The sign of α0 + α1y1 + α2y2 . . . . . . . . . + αnyn is classified as an observation.
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To transfer non-linear data, SVM used kernel function based on HHO, known as
MSVM. To detect DDoS attacks, MSVM is employed. Hence, the optimal kernel-HHO is
detailed in the following section.

5.2.2. Selection of Optimal Kernel Based on Harris Hawks Optimization (HHO)

HHO is defined by a meta-heuristic technique based on a natural population. Harris
hawks cooperative hunting behavior is for prey such as rabbits. Exploration, transformation,
and exploitation are the three steps included in the HHO optimization technique.

• Initialization Phase

The initial hawk population initializes the solution for this phase. The number of near-
est vehicles (n1, n2, . . . , nN) encompasses the population. Here, the number of populations
are denoted as N. The execution of the technique was done by cluster vehicle (ncl). The
cluster and nearby vehicles are denoted as “hawks”, whereas the destination vehicle is
referred to as prey (rabbit). For all cars, the fitness function was determined in this phase.
The fitness of jth vehicle was calculated as follows,

f (nj) = {∑ D, M, δ, K} (9)

Here, the fitness function is developed as mobility (M), direction (D), vehicle state
(δ), and availability of spectrum (K). Binary values ‘0’ and ‘1’ are described as vehicles’
direction. The fitness of the vehicle is enhanced if target and cluster vehicles are in the same
direction, so that D = 1 or 0. Furthermore, to enrich the computation fitness, the mobility
will be mapped as 0 and 1. When M = 0 or 1, mobility of nj is higher than average mobility.
For data transmission K = 0 or 1, if nj has an available channel. The function of evaluation
metrics is represented as follows:

δ=
P + DR

D
(10)

The throughput function of δ is nj (P) for nj, delay (D), and data rate (DR). For
data transmission, the optimal path can be achieved by the deciding factor δ of compu-
tation fitness with effective channel estimation. In the population, for all vehicles, f (nj)
was computed.

Exploration, transformation, and exploitation are the three phases of HHO. These
three phases are described as follows:

• Exploration Phase

During this phase, the process of waiting, searching, and detecting prey is carried out.
The following is an example of a hawk’s position: The V represents the current iteration
and V + 1 represents the next iteration. Hawks can be found at the locations γ1,γ2, γ3, and
γ4, with the range [0, 1] expressing the random integer y. nja is the average location of
the hawk.

nj (V + 1 ) =
{

njrand(V)− γ1
∣∣njrand(V)− 2 njγ2(V)

∣∣ i f m ≥ 0.5njq (V)nja (V)− γ3 (l1 + γ4(vb − l1)) i f m < 0.5 (11)

nja (V) =
1
N ∑N

i=1 nj(V) (12)

• Transformation Phase

In the exploitation phase, the exploration phase is transformed into the exploitation
phase. The energy of the prey degrades from the evading behaviour. Equation (17) defined
the transformation phase.

ωprey= 2ω0 (1 − V
Vmax

) (13)

where ω0 shows the initial energy state of prey, V represents the current iteration numbers,
and Vmax represents the maximum number of iterations.

• Phase of Exploitation
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The hawk’s attack in the previous step serves as a barometer for the quality of the
picked prey. In this stage, we tested four distinct approaches: soft besiege, hard besiege,
soft besiege with advancing fast dives, and hard besiege with advanced rapid dives. The
occurrence of hard and soft relies on the energy level, where

∣∣ωprey
∣∣ ≥ 0.5 and

∣∣ωprey
∣∣ < 0.5,

respectively.
Attack on a Soft Target:
The attack on a soft target known as a soft besiege and this method may be chosen if∣∣ωprey
∣∣ ≥ 0.5 and γ ≥ 0.5. It is described as:

nj (V + 1) = Δnj
(
V)− ωprey

∣∣ζnj
(
V − nj(V)

)∣∣ (14)

In this case, the evading method for jump intensity (ζ) is established by ζ = 2(1 − γ5)
and Δnj (V) = nprey(V)− nj(V).

Besiege for Hard Target:
If γ ≥ 0.5 and

∣∣ωprey
∣∣ < 0.5, the hard besiege method can be chosen. is the formula is

indicated below:
nj (V + 1)= nprey(V)− ωprey

∣∣ Δnj · (V) | (15)

Besiege for Soft with High Progressive Dives:
If γ < 0.5 and

∣∣ωprey
∣∣ ≥ 0.5, the soft besiege approach can be chosen. It is determined

as follows:
� = nj(M)− ωprey

∣∣ ζnprey
(
V − nj(V)

)∣∣ (16)

The next moving stride (�) of the hawks is calculated. In addition, when hawks dive,
the following equation is used to attack the prey.

Dn= � + R ∗ LF (d) (17)

As the dimension d of levy flight is specified as LF (d), the random vector is also
written as R. The updated location is as follows:

nj (V + 1)=
{

�i f f (�) < f
(
nj(V)

)
Dni f f (Dn) < f

(
nj(V)

)
(18)

Besiege for Hard with High Progressive Dives:
If γ < 0.5 and

∣∣ωprey
∣∣ < 0.5, the mild besiege strategy may be chosen. It is determined

by the updated location:

nj (V + 1)=
{

�i f f (�) < f
(
nj(V)

)
Dni f f (Dn) < f

(
nj(V)

)
(19)

As a result of this, the following equation is derived by �,

� = yprey(V)− ωprey
∣∣∣∣ ζnprey

(
V − nja(V)

)∣∣∣∣ (20)

The population based on fitness is updated on the location of prey, based on the HHO
approach. Thus, the detection of DDoS attacks is effectively classified utilizing MSVM.

5.3. Phase: 2—Reliable Resource Management Using H-WDFOA-VANET

This paper uses hybrid whale–dragonfly optimization-based VANET (H-WDFOA-
VANET) for reliable resource management to allocate bandwidth. The proposed H-WDFOA
approach is explained, then the background of WOA and DF optimization techniques
are individually discussed. In a dynamic VANET scenario, a combination of whale and
dragonfly optimization algorithms is represented as H-WDFOA. To achieve bandwidth
allocation and obtain routing of the vehicle, the H-WDFOA was employed. Protocol
routing also initiated latency and bandwidth utilization to get the designation path. It was
difficult during a safety-related and critical time. As a result, to solve this issue, the efficient
H-WDFOA technique was utilized to allocate bandwidth and routing protocol.

In a dynamic VANET environment, to see the effect of QoS value, meta-heuristic-
based WOA and DF techniques are coupled in this proposed methodology. The hunting
behaviour of humpback whales was considered for the whale optimization algorithm
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(WOA) generation. The humpback whale’s current best strategy is to check its prey’s
location and encircle it, whereas WOA thinks its prey is a target. After reviewing the
current best solution, the best search agent is considered. The different vehicle parameters,
such as throughput, number of nearby vehicles, speed, velocity, distance, and speed, were
used as the initial population during the start-up phase. The mathematical version of this
operation is represented as follows.

M = |V·P∗(t)− X(t)| (21)

P(t + 1) = P∗(t)− B·M (22)

where t represents iteration, B and V are coefficient vectors, P* is the position vector of best
solution, and P is the position vector

When determining the best solution, P* of every iteration is periodically updated,

B = 2x ∗ r − x (23)

V = 2·x (24)

Here, r is a random number which range from 0,1.
During the exploitation and exploration phases, the range of the variable is reduced

from 2 to 0. At the interval [−1, 1], the phase showed major differences. It was possible
for the vehicle to move from its original position to a new position. In the 2D space of the
interval [−1, 1], X and Y to X* and Y* were the possible achieved positions. Furthermore, the
position was accomplished by updating the procedure, and mathematically represented as:

M = |V·Prand − P| (25)

P(t + 1) = Prand − B·M (26)

The spiral updating technique can be constructed to analyze the distance of vehicles
with one other. This process is determined by the following equation:

P(t + 1) = M′·esr·cos cos(2πr) + P∗(t) (27)

Here, M′ is the distance of one vehicle P(t) towards another vehicle P*(t), t is the
iteration, s denotes the shape of the logarithmic spiral, and r represents a random number
in range [−1, 1].

P(t + 1) =
{

P∗(t)− B·V i f p< 0.5 M′·esr·cos cos(2πr) + P∗(t) i f p >0.5
}

(28)

To update vehicle position, 50% probability was chosen for the shrinking encircling
mechanism or spiral model. Here, r denoted a random number between the range [0, 1].

To get the maximum optimal solution, the dragonfly optimization approach was
hybridized with the whale optimization algorithm to allocate the bandwidth.

The dragonfly’s [33] population was initialized in terms of vehicle nodes of nj
∗.

nj
∗= n1

∗, n2
∗, . . . , nn

∗Here, j = 1, 2, . . . , n. (29)

In an inquiry space and development reproduction, the dragonfly’s artificial position
was updated, i.e., position (X) and step (ΔV). The progression vector demonstrates the
development of the dragonfly and characters.

ΔXt+1= (wWi + mAi + nCi + pFi + qEi)+w ΔXt (30)

Here, weight separation is w, weight aliment is m, and n is the cohesion weight, food
factor is p, the enemy factor is q, inertia weight is w, and count iteration is t.

Position vector could be determined as follows:

Xt+1= Xt+ΔXt+1 (31)
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In the enhancement phase, various explorative and exploitative processes are accom-
plished. By Cauchy mutation probability, the dragonfly’s situation is refreshed at the point
where there is no neighbouring solution. The position vector X is determined by,

Xt+1= Xt+NpXt (32)

In the entire swarm at any moment, food source and enemies are determined by the
entire arrangement. Thus, the accurate vehicle node is selected, and bandwidth allocation
is achieved. A brief flowchart is visualized below.

In Figure 7, the flowchart of the hybrid WDFOA-based VANET is visualized. Initially,
the whale optimization parameters were initialized based on the search agent. In this
work, several nodes in the vehicle were analyzed based on distance, speed, velocity, and
bandwidth. The fitness parameter in each iteration determined the current position of the
vehicle. If the node’s position was less than 0.5, and the nearby vehicle was equal to or
greater than 1, the best location was updated. If the current iteration was higher than the
maximum iteration, the target vehicle’s position was best. DF was coupled with WOA to
obtain optimum optimality.

Figure 7. Flowchart for H-WDFOA-VANET.
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Furthermore, the dragonfly solution was initialized, and the QoS value determined the
bandwidth according to the objective function. The maximum iteration was used until the
process is completed and the bandwidth was upgraded. Finally, energy consumption, delay,
and drop were considered based on QoS parameters for accurate routing. The proposed
approach was valid in allocating bandwidth compared with other existing techniques.
This study was robust and fast in predicting DDoS attacks using MSVM and giving the
bandwidth using the H-WDFOA technique in the best position after validation for stability
in vehicular networks.

6. Results and Discussions

6.1. Dataset Description and Evaluation Metrics

The SDN dataset was created using the Mininet simulator, which was used to classify
traffic using machine and deep learning methods [34]. This study began with ten topologies
in the Mininet emulator, each of which connected these switches to a single Ryu controller.
The network simulators used ICMP, UDP, and TCP traffic, with hostile traffic consisting
of a combination of UDP Flood, TCP Sync, and ICMP attacks. The dataset contained a
total of 23 features, some of which were collected from switches and others that were
estimated. The retrieved features (duration in nan seconds) included Byte count, switch
ID, duration, packet count, and duration (in n sec). The sum of duration-sec and duration-
nsec was equal to the entire duration. The total number of bytes commuted from the
switch port was determined by the destination IP, source IP, port number, and Tx-bytes.
Rx-bytes was the total number of bytes received over the switch port. The time and date
were transformed into numbers in the dt field, and flow was monitored at 30 s intervals.
Furthermore, calculated features such as packet per-flow and byte per-flow counted packets
as a single flow. The packet rate was calculated by dividing the total packets per flow by
the total number of packets sent per second. Tx-kbps and Rx-kbps were data reception
and transmission rates, respectively, and the sums of port bandwidth were Tx-kbps and
Rx-kbps. The class labels present in the columns refer to whether the type of traffic was
malicious or benign. However, labels 0 and 1 respectively indicate benign and malicious
traffic. The duration of the network simulation was 250 min and the row of data possessed
was 104,345.

Along with the detailed interval, the simulation of data was authenticated. The dataset
was split into two halves for testing and training: 30 and 70%, respectively. The full training
process took 42 s to complete [35–37].

The proposed platform was MATLAB 2020a, along with system requirements, which
are listed in Table 2.

Table 2. Configuration of Simulation.

System Requirements

Tool NS2, MATLAB 2020a

Computer Windows 10 PRO

Processor Intel core with high end configuration

RAM 16 GB

6.1.1. Performance Metrics (Ref. [2])

• Efficiency

The efficiency (throughput) parameter defines the total number of packets generated
by the sending node in a certain time interval in relation to the quantity of data established
via the receiving node in packets. It is represented as:

E f f iciency(throughput) = number o f received data packet × 8/number o f data packet transmission period

• Packet Delivery Ratio

131



Mathematics 2022, 10, 4030

This is a method for analyzing incoming and outgoing network data packets in the
most efficient way possible. It is calculated based on the ratio of packets generated by the
source to data received by the vehicle. The formula utilized to calculate the PDR is:

PDR =
ReceivedPackets

GeneratedPackets
∗ 100

• Drop of packet

During a denial-of-service attack, this parameter tracks the number of packets that
were lost because of the malicious behaviour of a single node.

Drop Ratio =
number o f send packet − number o f received packet

number o f send packet

• Latency (delay)

It takes time for a package to get from its origin to its destination.

delay =
length

bandwidth

6.1.2. Performance Analysis

The performance of proposed approaches is described in this part using measures such
as energy consumption, drop, delay, throughput, packet delivery ratio, and fairness index.

(1) PHASE 1:

Phase I detected the DDoS attack using a novel machine learning technique called
SVM-HHO, which provided vehicle information. This section describes the analysis, and
the proposed performance is detailed below.

Performance measurements were primarily used to assess the model’s ability to
identify DDoS attacks and allocate bandwidth in VANET situations. From Table 3, it is
shown that the proposed modified machine learning-based hybrid optimization technique
is more effective compared with existing approaches. In node 60, the proposed methodology
attained energy consumption of 0.35 J, delay ratio of 50, and drop ratio of 14.6785. In
addition, the suggested approach attained an efficiency of 1710 in comparison with the
existing method that attained efficiency of 794.

Table 3. Performance of proposed approach.

Node
Energy Consumption

(Joules)
Drop Delay

Throughput (kilo
Bytes/sec)

Network
Lifetime

Packet Delivery
Ratio (PDR)

Fairness
Index (FI)

Proposed Method

20 0.25 1.6531 97 1278 339.52 20 4.2477

40 0.32 9.9854 37 1920 664.32 33 2.4125

60 0.35 14.6785 50 1710 524.00 48 1.7961

80 0.43 50.5456 95 1345 370.81 59 1.5752

100 0.51 57.1534 68 1209 307.71 64 1.3947

• Consumption of Energy

The total energy consumption of the proposed approach is shown in Figure 8, based
on the data in Table 3. The rate of energy consumption of each node is noted. At node 100,
the energy consumption of 0.5 is habited. The increase in nodes is accompanied with an
increase in energy consumption.
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Figure 8. Energy consumption of proposed method.

• Data Rate-Based Energy Consumption

From Table 4, the energy consumption of the proposed method is tabulated at each
node with the data set. Nodes with data set values are marked in Table 4.

Table 4. Energy consumption based on data rate.

Node Data Rate at 4 Data Rate at 6 Data Rate at 8 Date Rate at 10 Data Rate at 12 Data Rate at 14

20 0.8 1.2 1.6 2.1 2.5 2.9

40 0.4 0.6 0.8 1.1 1.2 1.5

60 0.5 0.8 1.0 1.2 1.6 1.8

80 0.7 1.1 1.5 1.9 2.3 2.6

100 0.9 1.3 1.8 2.3 2.7 3.2

Figure 9 shows the data rate-based energy consumption ratio of the suggested ap-
proach. If the data packet rates are high, the energy is at a peak; if not, the energy produces
lower data rates. From Table 4, we can see that at node 20, energy consumption is 0.8,
obtained at a data rate of 4, 1.2 is attained at a data rate of 6, 1.6 is acquired in a data rate of
8, and 2.1 is obtained at a data rate of 10. At a data rate of 12, 2.5 is gained, and at a data
rate of 14, energy consumption is 2.9. Similarly, in node 40, energy consumption is 0.4 at a
data rate of 4, 0.6 at a data rate of 6, 0.8 at a data rate of 8, 1.1 at a data rate of 10, 1.2 at a
data rate of 12, and 1.5 at a data rate of 14. Moreover, at node 60, energy consumption is 0.5
at a data rate of 4, 0.8 at a data rate of 6, 1.0 at a data rate of 8, 1.2 at a data rate of 10, 1.6 at
a data rate of 12, and 1.8 at a data rate of 14. In addition, at node 80, energy consumption
is 0.7 at a data rate of 4, 1.1 at a data rate of 6, 1.5 at a data rate of 8, 1.9 at a data rate of
10, 2.3 at a data rate of 12, and 2.6 at a data rate of 14. Furthermore, at node 100, energy
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consumption is 0.9 at a data rate of 4, 1.3 at a data rate of 6, 1.8 at a data rate of 8, 2.3 at a
data rate of 10, 2.7 at a data rate of 12, and 3.2 at a data rate of 14.

Figure 9. Consumption of energy based on data set.

• Lifetime of the Network

The overall network lifetime of the suggested method from Table 3 is plotted and
detailed in Figure 10.

 
Figure 10. Network lifetime of proposed method.
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The lifetime of the network of the suggested approach is shown in Figure 10. The
lifetime of the network for each node was noted. At node 100, the network lifetime of 307.71
was habited. The increase in nodes was accompanied with an increase in network lifetime.

• Data Rate-Based Network Lifetime

From Table 5, the network lifetime of the proposed method was tabulated at each node
with the data set. Nodes with data set values are marked in the Table 5.

Table 5. Lifetime of network.

Node Date Rate at 4 Date Rate at 6 Date Rate at 8 Date Rate at 10 Date Rate at 12 Date Rate at 14

20 1339.5 896.1 675.3 500.2 392.2 388

40 2250 1575 1230.1 963 650 600

60 1854.2 1246.5 916.3 669.8 550 500

80 1370.2 932.6 619.1 500.9 400.2 395.4

100 1100 759 530.8 438.5 318 300

Figure 11 demonstrates the proposed system’s network lifetime. If the data packet
rate is low, the network lifetime appears high. From Table 5, we can see that at node 20, the
network lifetime of 1339.5 is obtained at a data rate of 4, 896.1 is attained at a data rate of
6, 675.3 is acquired at a data rate of 8, and 500.2 is accomplished at a data rate of 10. At a
data rate of 12, 392.2 is gained, and at a data rate of 14, network lifetime is 388. Similarly, in
node 40, the network lifetime is 2250 at a data rate of 4, 1575 at a data rate of 6, 1230.1 at a
data rate of 8, 963 at a data rate of 10, 650 at a data rate of 12, and 600 at a data rate of 14.
Moreover, at node 60, network lifetime is 1854.2 at a data rate of 4, 1246.5 at a data rate of 6,
916.3 at a data rate of 8, 669.8 at a data rate of 10, 550 at a data rate of 12, and 500 at a data
rate of 14. In addition, at node 80, network lifetime is 1370.2 at a data rate of 4, 932.6 at a
data rate of 6, 619.1 at a data rate of 8, 500.9 at a data rate of 10, 400.2 at a data rate of 12,
and 395.4 at a data rate of 14. Furthermore, at node 100, the network lifetime is 1100 at a
data rate of 4, 759 at a data rate of 6, 530.8 at a data rate of 8, 438.5 at a data rate of 10, 318 at
a data rate of 12, and 300 at a data rate of 14.

Figure 11. Network lifetime.
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• Throughput

The overall efficiency(throughput) of the suggested approach is shown in Figure 12.
The rate of throughput of each node is noted. At node 100, a throughput of 1209 was
habited. An increase in nodes is accompanied with an increase in throughput.

Figure 12. Throughput of the proposed method.

• Data Rate-Based Throughput

In Table 6, the throughput of the suggested approach is tabulated at each node with
the data set. Nodes with data set values are marked in Table 6.

Table 6. Throughput based data set.

Node Data Rate at 4 Data Rate at 6 Data Rate at 8 Data Rate at 10 Data Rate at 12 Data Rate at 14

20 12,700 19,180 25,570 31,960 38,350 44,740

40 19,200 28,800 38,400 48,000 57,600 67,280

60 17,100 25,650 34,200 42,750 51,300 61,700

80 13,450 20,170 26,890 33,620 40,340 47,060

100 12,090 18,140 24,180 30,230 36,280 42,320

Figure 13 demonstrates the throughput ratio of the proposed system. If the data packet
rates were low, then the throughput ratio also decreased. The throughput of the proposed
technique was reached by 42,320 in node 100 at a data rate of 14 packets/sec. At node
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20, 12,700 throughputs were obtained at a data rate of 4. At node 20, 19,180 throughputs
were attained at a data rate of 6. At node 20, 25,570 throughputs were acquired at a data
rate of 8. At node 20, 31,960 throughputs were accomplished at a data rate of 10. At node
20, 38,350 throughputs were gained at a data rate of 12. At node 20, 44,740 throughputs
were fetched at a data rate of 14. Similarly, in node 40, there were 19,200 throughputs at
a data rate of 4, 28,800 throughputs at a data rate of 6, 38,400 throughputs at a data rate
of 8, 48,000 throughputs at a data rate of 10, 57,600 throughputs at a data rate of 12, and
67,280 throughputs at a data rate of 14. At node 60, there were 17,100 throughputs at a
data rate of 4, 25,650 throughputs at a data rate of 6, 34,200 throughputs at a data rate of 8,
42,750 throughputs at a data rate of 10, 51,300 throughputs at a data rate of 12, and 61,700
throughputs at a data rate of 14. In addition, at node 80, there were 13,450 throughputs at a
data rate of 4, 20,170 throughputs at a data rate of 6, 26,890 throughputs at a data rate of 8,
33,620 throughputs at a data rate of 10, 40,340 throughputs at a data rate of 12, and 47,060
throughputs at a data rate of 14. Furthermore, at node 100, there were 12,090 throughputs
at a data rate of 4, 18,140 throughputs at a data rate of 6, 24,180 throughputs at a data rate
of 8, 30,230 throughputs at a data rate of 10, 36,280 throughputs at a data rate of 12, and
42,320 throughputs at a data rate of 14.

Figure 13. Plot for throughput.

• Packet Delivery Ratio (PDR)

Figure 14 illustrates the packet delivery ratio. To optimize incoming and outgoing
network packets, the PDR was evaluated to assess the process. In the VANET scenario, the
packet deliver ratio represents the greater presentation of the system.
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Figure 14. Ratio of packet delivery.

(2) PHASE 2:

To better anticipate mobility in VANET, a second phase presented the outcomes
of the suggested and implemented approaches for enhancing machine learning with a
hybrid optimization strategy. The project’s implementation (H-WDFOA-VANET) was
analyzed and compared with modern standards (RI-CS, EHACORP). Measured values for
the delay, energy consumption, drop, throughput, and fairness index was computed and
compared with both proposed (RI-CS) and existing (EHACORP) approaches. In addition,
the suggested technique was tested on both the NS2 and MATLAB platforms.

• Results Obtained Through Node

Comparisons were made between the node of the proposed approach and existing
techniques in terms of latency, energy consumption, drop, throughput, and fairness index
(Figures 15–19). In the table below, we can see the actual values that were measured. Node
values for both existing and proposed methods are displayed in Table 7. The major purpose
of these performance measures was to evaluate the suggested model’s capacity for mobility
prediction in VANET. Results from a comparison of the proposed method with state-of-
the-art approaches to mobility prediction in VANET are shown in Table 7, which shows
that the proposed approach is superior. As such, the performance metrics indicated the
proposed model’s capacity for mobility prediction in VANET. Table 7 shows that, compared
with other methods used to predicting mobility in VANET, the suggested technique, which
uses a hybrid optimization strategy to improve machine learning, performs better. Better
throughput is achieved using the proposed method. The suggested system achieved
2.00000 mJ of energy consumption, 15.61668 s of latency, and 0.15759 drop in node 60.
Furthermore, the throughput attained by the new approach was higher than that of existing
methods. There was also a reduction in energy use.
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Figure 15. Plots of nodes vs. delays in the suggested approach and existing approaches.

Figure 16. Plots of nodes vs. drop in the suggested approach and existing approaches.
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Figure 17. Plots of nodes vs. energy consumption in the suggested approach and existing approaches.

Figure 18. Plots of nodes vs. fairness index in the suggested approach and existing approaches.
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Figure 19. Plots of nodes vs. throughput in the suggested approach and existing approaches.

Table 7. Comparison with existing approaches through nodes.

Performance Parameters Techniques
Nodes

20 40 60 80

Delay (s)

H-WDFOA-VANET 0.299063 10.05305 15.61668 15.64318

RI-CS 10.22709 29.63915 46.23192 46.03685

EHA-CORP 6.942181 17.167577 20.178139 19.568945

Energy consumption (mJ)

H-WDFOA-VANET 7 3 2 2

RI-CS 8 5 4 3

EHA-CORP 8 4 3 2

Drop

H-WDFOA-VANET 0.66674 0.17871 0.15759 0.15504

RI-CS 0.99904 0.6142 0.4456 0.3898

EHA-CORP 0.99293 0.521614 0.340694 0.308867

Throughput (Bps)

H-WDFOA-VANET 41,661 27,995 30,560 40,095

RI-CS 13,582 18,785 202,302 22,299

EHA-CORP 25,022 22,043 26,556 31,937

Fairness Index (FI)

H-WDFOA-VANET 66 17 15 15

RI-CS 99 61 44 38

EHA-CORP 99 52 34 30

141



Mathematics 2022, 10, 4030

• Results Obtained by Varying the Speed Parameter

The proposed and existing methods were compared and contrasted in terms of speed
with delay, energy consumption, drop, throughput, and fairness index (Figures 20–24).
The measured values are displayed in Table 8. The estimated speeds of existing and
prospective methods are listed in Table 8. Below is a graphical depiction of the speed
of other metrics, such as throughput, drop, energy and fairness index, and delay. An
evaluation of the suggested method at speed 20 yielded an energy consumption of 1320 mJ,
delay of 90.180295 s, and drop value of 13.334678.

Figure 20. Plots of speed vs. delay in the suggested approach and existing approaches.

 

Figure 21. Plots of speed vs. energy consumption in the suggested approach and existing approaches.
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Figure 22. Plots of speed vs. drop in the suggested approach and existing approaches.

Figure 23. Plots of speed vs. throughput in the suggested approach and existing approaches.
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Figure 24. Plots of speed vs. fairness index in the suggested approach and existing approaches.

Table 8. Comparative analysis of suggested approach with existing approaches at different speeds.

Performance Parameters Techniques
Speed

20 40 60 80

Delay (s)

H-WDFOA-VANET 90.180295 395.189005 924.638246 1227.591591

RI-CS 138.843616 686.703072 1210.68834 1565.515813

EHA-CORP 100.98126 502.120993 1037.0019 1251.455006

Energy consumption (mJ)

H-WDFOA-VANET 1320 680 900 1200

RI-CS 1980 2440 2640 3040

EHA-CORP 1980 2080 2040 2400

Drop

H-WDFOA-VANET 13.334678 7.151254 9.450511 12.405151

RI-CS 19.80027 24.58287 26.7894 31.195048

EHA-CORP 19.858595 20.86455 20.441628 24.709388

Throughput (Bps)

H-WDFOA-VANET 199 24 14 10

RI-CS 16 5 2 1

EHA-CORP 96 21 10 6

Fairness Index (FI)

H-WDFOA-VANET 3 2 1 1

RI-CS 4.0746 2.819775 2.0302 1.672425

EHA-CORP 6 3 2 2

Additionally, the throughput achieved by the new approach is higher than that of the
existing approaches. One key difference between the proposed and existing approaches
is that the proposed technique includes a fairness score. With the suggested method, the
values for energy consumption, delay, and drop at speed 40 were 680 mJ, 395.189005 s, and
7.151254, respectively. In addition, greater throughput could be achieved using the new
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method than existing methods. The proposed method reduces energy usage to 900 mJ,
delay to 924.638246 s, and drop value to 9.450511 when traveling at 60 mph.

7. Conclusions

This study’s findings mainly centered on detecting DDoS attacks and allocating band-
width in the VANET, based on a machine learning-hybrid optimization approach. DDoS
attack detection was performed using the SVM-HHO technique, i.e., a modified SVM. Then,
the impact of DDoS attacks in the VANET was mitigated using a hybrid whale dragonfly
optimization technique (H-WDFOA-VANET). Using a unique optimization method called
the hybrid whale dragonfly optimization approach (H-WDOA-VANET), which hybridizes
the notion of rider integrated cuckoo search, this study found the best route selection with
minimal routing costs (RI-CS). To utilize the predicted information after validation, fast and
reliable communication was achieved for stability in vehicular networks. Energy consump-
tion, throughput, latency, and packet delivery ratioswere a few performance indicators
used to gauge performance of the suggested approach. To increase the effectiveness of the
routing process in VANETs, a new protocol, H-WDFOA-VANET, was introduced.

The DCM and SBACO pairing at H-WDFOA-VANET sped up packet processing,
decreased ant search time, and eliminated blind broadcasting packets while preventing
stagnation issues. The packet delivery ratio and throughput benefit from H-WDFOA-
VANET allowed for the use of the shortest channel without stagnation, due to its rapid
processing of packets and fast convergence speed. Finally, the suggested hybrid whale
dragonfly optimization approach (H-WDFOA-VANET) was evaluated in comparison with
industry standard models, such as rider integrated cuckoo search (RI-CS) and enhanced
hybrid ant colony optimization routing protocol (EHACORP). The H-WDFOA-VANET
system had values of 2.00000 mJ for energy consumption, 15.61668 s for latency, and 0.15759
for drop at node 60. A higher throughput was achieved using the new approach as well.
With the suggested method, the energy consumption target, delay value, and drop value at
node 60 may be attained. At node 80, the suggested approach minimized the drop value
to 0.15504, delay time to 15.64318 s, and energy consumption to 2.00000 mJ. These results
demonstrate the efficacy of the proposed H-WDFOA-VANETapproach. Therefore, the
efficiency of the proposed system was greater than that of existing systems.
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Abbreviations

Abbreviations Full Form

ADMM Alternating Direction Multiplier Method
AMMSE Adaptive Mathematical Morphology Spectrum Entropy
ANN Artificial Neural Network
CRS-MP Centralized Routing Memechanism with Mobility Prediction
CS Cuckoo Search
CNN Convolutional neural network
DCM Distance Calculation Method
DDoS Distributed Denial of Service
DF Dragon Fly
DNS Domain Name System
EHACORP Enhanced Hybrid Ant Colony Optimization Routing Proctocal
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Abbreviations Full Form

ERM Empirical Risk Minimization
GPS Global Positioning System
HHO Harris Hwaks Optimization
H-WDFOA Hybrid Whale Dragonfly Optimization Algorithm
ICMP Internet Control Messge Protocal l
IDs Intrusion Detections
MANET Mobile Adhoc Network
ML Machine Learning
MMS Mathematical Morphology Spectrum
MSVM Multiclass Support Vector Machine
MVSA MultivariantStream Analysis
NSL-KDD Network Security Laboratory Knowledge Discovery Dataset
NTP Network Time Protocal
PML-CIDS Privacy-preserving Machine-learning BasedCollaborative Intrusion Detection
PPS Packets Per Second
QoS Quality of Service e
RI-CS Rider Intergration Cuckoo Search
ROA Rider Optimization Algorithm
RPS Requests per Seconds
RSU RoadSide unit
SBACO Source-based Ant Colony Optimization
SDN SoftwareDefined Networking
SVC Support Vector Classifier r
SVM Support Vector Machine
TCP Transmission Control Protocol
TOPSIS Technique for Order Performance by Similarity to Ideal Solution
UDP User Datagram Protocol
V2I Vehicle to Infrastructure
V2V Vehicle to Vehicle
V2X Vehicle to Everything
VANET Vehicle Adhoc Network
VNS-NSGA Virtual Network System Nondominated Sorting Genetic Algorithm
WAVE Waveform Audio File Format
WOA Whale Optimization Algorithm
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Abstract: Lung ultrasound images have shown great promise to be an operative point-of-care test for
the diagnosis of COVID-19 because of the ease of procedure with negligible individual protection
equipment, together with relaxed disinfection. Deep learning (DL) is a robust tool for modeling
infection patterns from medical images; however, the existing COVID-19 detection models are
complex and thereby are hard to deploy in frequently used mobile platforms in point-of-care testing.
Moreover, most of the COVID-19 detection models in the existing literature on DL are implemented
as a black box, hence, they are hard to be interpreted or trusted by the healthcare community. This
paper presents a novel interpretable DL framework discriminating COVID-19 infection from other
cases of pneumonia and normal cases using ultrasound data of patients. In the proposed framework,
novel transformer modules are introduced to model the pathological information from ultrasound
frames using an improved window-based multi-head self-attention layer. A convolutional patching
module is introduced to transform input frames into latent space rather than partitioning input
into patches. A weighted pooling module is presented to score the embeddings of the disease
representations obtained from the transformer modules to attend to information that is most valuable
for the screening decision. Experimental analysis of the public three-class lung ultrasound dataset
(PCUS dataset) demonstrates the discriminative power (Accuracy: 93.4%, F1-score: 93.1%, AUC:
97.5%) of the proposed solution overcoming the competing approaches while maintaining low
complexity. The proposed model obtained very promising results in comparison with the rival
models. More importantly, it gives explainable outputs therefore, it can serve as a candidate tool for
empowering the sustainable diagnosis of COVID-19-like diseases in smart healthcare.

Keywords: explainable artificial intelligence; interpretable deep learning; convolutional networks;
vision transformers; COVID-19; ultrasound image

MSC: 68T01; 68T05; 68T07; 68T09; 68T20; 68T30

1. Introduction

By the beginning of 2020, human beings were conquered by the SARS-CoV-2 virus.
That virus caused a pandemic infectious disease called COVID-19. The outbreak of
COVID-19 has had a catastrophic impact on global health infrastructure, leading to mil-
lions of infected cases and thousands of deaths [1]. In clinical practice, real-time reverse
transcriptase-polymerase chain reaction (RT-PCR) is used as a standard test to detect
COVID-19 infection [2]. However, research studies demonstrated that RT-PCR suffers from
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high false-positive rates because the clinical practice is strictly impacted by a variety of
aspects such as appropriateness of specimen, phase of infection, specimen categories, and
specimen conduct, containing sample acquisition time from the inception of COVID-19.
Moreover, the fast proliferation of COVID-19 has led to a deficiency of RT-PCR test kits
for the discovery of COVID-19. Another obvious shortcoming of this test involves direct
interaction between medical staff and patients. This, in turn, made the medical staff more
prone to infection, which caused a high death rate in the healthcare community. As a
remedy to the above issues, doctors and scholars showed that medical images can be used
as an effective tool to detect the presence of COVID-19. X-rays and computed tomography
(CT) are broadly used in this respect [3]. Accordingly, the research moved from manual
diagnosis of COVID-19 toward computer-aided diagnosis.

Ultrasound imaging is a non-invasive method that has already begun to replace X-rays
in pulmonary disease. There has been a surge in demand for point-of-care ultrasound,
which is supported by clinical facts and research findings. The advantages of point-of-care
ultrasonography (POCUS) include its low cost, ease of mobility, and bedside convenience
for patient safety. It is presently underutilized due to a lack of training options and an
appreciation of the research supporting this approach. It was discovered that it enhances
conventional diagnostic procedures and the technology is rapidly evolving. For wider
use, it was also suggested that POCUS be introduced into urgent and core medicine curric-
ula [4]. The latest epidemic of the COVID-19 pandemic forced the healthcare community
to utilize ultrasound imaging in emergency departments [5–7]. Discoveries indicated that
ultrasound imaging could help in both identifying COVID-19 cases and following up on
their states during the hospitalization phase. Nevertheless, lung ultrasound offers just
local pathological information on the status of the lung area. Thus, it is critical to thor-
oughly specify the necessary volume and distribution of lung regions to be scanned. This
way, multi-institutional studies are designed to search for an ideal trade-off between a
rapid and precise assessment to be performed [8]. For COVID-19 diagnosis, a twelve-area
methodology was proposed to signify an optimum trade-off between precision, speed, and
exam complication [9]. When it comes to evaluating patients’ states from ultrasound data,
both pathological information (i.e., pleural line, consolidations, opacities), and sonographic
artifacts (i.e., B-lines and A-lines) come to be significant. Nevertheless, identifying this
information and appropriately interpreting it demands extremely experienced doctors.
Therefore, to date, lung ultrasound data are not broadly accepted, even though their ca-
pacity would be somewhat recommended, especially in the face of urgent requirements
occurring in screening patients in the COVID-19 pandemic [10].

Deep learning (DL) as a subfield of machine learning (ML) was demonstrated as a key
enabler for almost all medical image analysis tasks and computer-aided diagnosis systems.
In this regard, convolutional neural networks (CNNs) are showing great capability for
extracting valuable representations from medical images [11]. For COVID-19 diagnosis,
CNNs are showing great promise in the detection and segmentation of infection and were
demonstrated to be very robust tools for achieving many interesting responsibilities, partic-
ularly in the realm of image perception. Given an adequate amount of training samples
and enough computing power, complex DL could even surpass doctors’ performance on
particular diagnosis tasks [12]. Research efforts are developing in the way of applying
CNNs to ultrasound data. However, training data are difficult to obtain, which is a com-
mon issue in medical image analysis and makes it challenging to effectively train these
complicated models. Unfortunately, the majority of DL solutions for COVID-19 diagnosis
are designed as a black-box model, which means that the model just provides us with
the final decision without justifying the reason behind it [13]. In other words, the doctors
are unable to interpret the internal working methodology of the DL model, thereby they
cannot trust the diagnosis results obtained from the DL model [14]. Generally speaking,
the opaque nature of DL models constrains the ability to integrate them into real-world
healthcare applications. These constraints come to be more serious in the case of critical or
pandemic diseases.
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1.1. Research Gaps

When it comes to the diagnosis of COVID-19 from ultrasound images using DL, many
research gaps are encountered, making it challenging to do well in combating COVID-19
either in or after the outbreak. By investigating the recent literature, this study considers
the following open gaps:

• Efficiency: In clinical practice, the task of detecting COVID-19 from lung ultrasound
data (either images or videos) necessitates high experience from doctors. Similarly, DL
should be able to effectively model the disease representations from the ultrasound
data in such a way that enables discriminating between the manifestations of COVID-
19 and other kinds of pneumonia with the lowest possible error rate. The healthcare
system does not tolerate any errors, especially in the diagnosis of pandemic diseases,
making the accuracy of the model an essential requirement [15];

• Complexity: Deep models are demonstrated as robust tools for learning inherent
features and diagnostic cues from medical image analysis. These models usually have
a complicated building structure so that they can model different representations
from large-sized and multi-dimensional training datasets. This complexity, in turn,
necessitates the model training to be performed on powerful and computationally
efficient machines, making it challenging to effectively detect COVID-19 from lung
ultrasound data. Another challenge to be considered in this respect is that the complex
models are unable to do well when trained on limited training data, which is a typical
scenario when dealing with COVID-19 lung data [16,17];

• Opaqueness: As stated above, the deep models are characteristically composed of
multiple building blocks and layers with several nonlinear interconnected interactions.
Even if one is to inspect all these layers and describe their relations, it is unfeasible
to fully comprehend how the neural network came to its decision. Therefore, DL
is often considered a ‘black box’. To properly understand how the model made its
choice, one would need to examine all of these constituting layers and define their
relationships. This is practically infeasible, leading the community to declare the
DL model as a “black box” model. There is growing concern that these black boxes
might exhibit some unobserved bias in making their decisions [13,14,18]. This can
have far-reaching repercussions, especially in medical applications. When it comes
to COVID-19 detection, the same problem exists; however, the dangerousness of
the disease even after the outbreak means that doctors have no chance to trust such
opaque models. Marginal mistakes in the diagnostic decision may cause catastrophic
consequences. Explainable artificial intelligence (XAI) is an evolving subfield to
provide a good explanation if it gives insight into how a neural network came to its
decision and/or can make the decision understandable.

1.2. Contributions

In response to the above challenges and gaps, this work presents a novel DL solution
that affords and is interpretable and efficient in the detection of COVID-19 from ultrasound
data. The main contributions of this work are pointed out as follows:

• First, a lightweight convolutional transformer network for flexible and robust model-
ing of COVID-19 from ultrasound data is designed, while dissipating the nightmare of
“data-hungry” models by being able to effectively learn from scratch and attain high
screening performance on small-size data.

• Second, two parallel transformer modules are designed with window-based and
shifted-window multi-head self-attention layers, respectively, aiming to improve the
representational power of the model, while maintaining a few numbers of parameters.

• Third, the convolutional patching module is integrated to empower image tokenization
to sustain local spatial representations by encoding relationships between patches.

• Fourth, a weighted pooling module is presented to get rid of the necessity for class to-
kens and by scoring the sequential embeddings of the disease representations captured
by the transformer modules to better relate information across the input frames.

150



Mathematics 2022, 10, 4153

• A gradient activation mapping integrated after-weighted pooling to empower
the proposed model visually explains its decided class for a given input frame,
which is achieved by highlighting the contribution of different biomarkers in the
ultrasound frame.

• Finally, an experimental evaluation of the public lung ultrasound dataset demonstrates
the ability of the proposed solution to precisely screen COVID-19, while generating a
visual explanation for the generated decisions.

1.3. Organization

The remaining part of this work is systematically organized as follows. Section 2
discusses the literature studies relevant to COVID-19 detection. Section 3 argues the
methodology of the proposed solution. In addition, the experimental setting of this study
is discussed in Section 4. Then, the results, analysis, and findings are given in Section 5.
Finally, Section 6 concludes this work.

2. Related Work

DL was demonstrated to be effective in a variety of imaging tasks spanning semantic
segmentation, object detection, etc. Inspired by these achievements, more recently, DL
has been progressively applied in medical applications, such as pneumonia detection,
localization, and segmentation from chest X-rays. This in turn shows that DL can be used
to help and automate preliminary diagnosis, which is of enormous importance to the
medical profession.

2.1. Deep Learning for COVID-19 Screening

The literature contains a lot of studies for the screening of COVID-19 from different
modalities of medical images, among them the lung ultrasound gains the least research
attention despite its demonstrated promise for screening and follow-up diagnosis. For
example, Born et al. [19] proposed a convolutional model, called POCOVID-net, which is
dedicated to identifying COVID-19, healthy, and bacterial pneumonia from lung ultrasound
frames and videos. The POCOVID-net was accompanied by a class activation map (CAM)
as an interpretability technique for localizing the spatiotemporal pulmonary manifesta-
tions, which are regarded as valuable for human-in-the-loop circumstances in medical
studies. Similarly, Diaz-Escobar et al. [20] applied many pre-trained models (i.e., VGG19,
InceptionV3, Xception, and ResNet50) to finetune them on lung ultrasound frames to detect
COVID-19 and pneumonia patients. Awasthi et al. [21] presented a lightweight convo-
lutional model, termed Mini-COVIDNet [21], for detecting COVID-19 from ultrasound
images, where the model can be deployed and used in resource-constrained applications
making it ideal for a point-of-care situation. The Mini-COVIDNet was trained to optimize
focal loss function to lessen the impact of class imbalance. Moreover, Frank et al. [22] pro-
posed a DL framework that combines domain knowledge into deep networks by feeding
anatomical representations and ultrasound artifacts as an extra channel comprising vertical
and pleural artifact masks in addition to original lung ultrasonic frames. They claimed
that the direct inclusion of this domain knowledge enables the deep networks to achieve
different diagnosis tasks using ultrasonic imagery quickly and efficiently. Additionally, the
framework was enabled to learn from both convex as well as linear probes and it shows
good performance on the COVID-19 severity assessment task, as well as the semantic
segmentation model. In addition, Muhammad et al. [17] proposed screening COVID-19
from ultrasound images using a lightweight convolutional model of consisting of five major
building convolutional blocks with a small number of trainable parameters. Then, the
feature maps from each block are fused to generate a representation vector to be fed into a
fully connected layer (FCL), where the final decision is made.

151



Mathematics 2022, 10, 4153

Moreover, Marco et al. [23] presented a DL system for screening COVID-19 from
ultrasound data using a pre-trained and residual convolutional model, which is trained
(using transfer learning and data augmentation techniques) to quantify the severity of
infection as well. In another approach, Xue et al. [24] developed a multimodal approach
for assessing the severity of COVID-19 from two types of modality data (ultrasound data
and clinical information), where a dual-level supervised multiple-instance learning was
applied to combine the zone-associated features and patient-associated representations
from heterogeneous training data, hence resulting in discriminatory features. The model
aligned the two modalities using a contrastive learning module while maintaining the
discriminatory representations of each of them. Furthermore, Roy et al. [15] proposed a
spatial transformer network, that concurrently forecasts the degree of severity of COVID-19
in ultrasound frames and localizes pathological artifacts in a weakly supervised manner.
The authors also developed a lightweight technique for the efficient aggregation of scores
of frames at the video level.

2.2. Explainable Medical Image Analysis

With the increased acceptance of DL solutions in medical image diagnosis, explain-
ability becomes an inevitable requirement to effectively use these solutions in real-world
healthcare. To this end, many studies have recently emphasized developing explainable
models for COVID-19 screening. For example, Wu et al. [25] proposed a multi-task DL
framework that jointly classifies COVID-19 and segment infections from a CT scan with
the main aim of using the segmentation results to provide an explanation for the screen-
ing decisions. In a similar way, Wang et al. [26] proposed a joint learning framework,
called DeepSC-COVID, for the screening and segmentation of COVID-19 lesions from 3D
CT scans. In particular, the DeepSC-COVID model is composed of three sub-networks,
namely the cross-task feature sub-network, segmentation subnetwork for segmenting 3D
COVID-19 lesions, and classification subnetwork for identifying COVID-19, pneumonia,
and non-pneumonia cases. The latter one contains a multi-layer visualization method
to produce evidential masks that include tiny and imprecise lesions for making the task
screening of COVID-19 explainable. During the training of DeepSC-COVID, a task-aware
loss was developed based on our visualization method for effective collaboration between
classification and segmentation. Though the integration of segmentation and classification
tasks in the single model help provide an explainable diagnosis, it makes the model very
complex and has a very large number of parameters. In addition, Shi et al. [27] presented
an explainable attention transfer model network to automatically screen COVID-19 from
chest X-ray and CT scans, which consisted of a teacher model and a student model. The
former models the global representation and uses a deformable attention module to distill
the infection lesions to intensify the reaction to lesions and restrain noise in unrelated areas
with an extended reception field. Next, an image fusion unit was proposed to integrate
attention knowledge transmitted from teacher to student with the necessary representa-
tions in the original input. The student model was designed to concentrate on sporadically
formed lesion areas to learn discriminatory features. In [28], the Gradient-weighted CAM
(Grad-CAM) algorithm was employed for debugging the convolutional models to provide
explainability of its classification decision in chest X-rays.

3. Research Methodology

This section introduces and discusses the proposed framework for screening COVID-
19 from lung ultrasound data. To obtain a better interpretation of the proposed framework,
an illustration of its structural design is presented in Figure 1. As observed, the proposed
framework consists of six main building modules and we are going to dive into the details
of each of them in the next subsections.
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Figure 1. Illustration of the proposed explainable convolutional transformer network for screening
pneumonia from lung ultrasound data.

3.1. Convolutional Patching

The conventual language Transformer was designed to accept input in form of a
one-dimensional sequence of token embeddings. This seems inappropriate when dealing
with 2D ultrasound frames, therefore the input frame x ∈ RH×W×C is reshaped into a
sequence of compressed 2D patches xp ∈ RN×((p×p)·C), whereby H × W represents the
spatial dimensions of the original frame, C represents the number of channels, p × p
denotes the spatial dimensions of each patch, and N denotes the number of patches (it is
calculated as follows N = HW

P2 ) , denoting the length of the input sequence of Transformer
modules. Each of these modules utilizes a fixed size latent vector D, hence, the generated
frame patches are mapped to d dimensions through learnable linear projection, as shown
in Equation (1).

z0 =
[

xclass, x1
pE, x2

pE, · · · xN
p E
]
+ Epos,E ∈ RN×((p×p)·C), Epos ∈ R(N+1)×(d) (1)

where the generated output z0 of this projection can be referred to as patch or token em-
beddings. The patch embeddings were supplied by one-dimensional position embeddings
Epos ∈ R(N+1)×(D) to preserve spatial pathological information in ultrasound frames.

To establish an inductive bias in the proposed model, the standard image patching,
as well as token embedding, are replaced with a straightforward convolutional mod-
ule. The design of a convolutional module consists of a depth-wise convolutional layer
(DWConv2D) activated by LeakyReLU (LReLU) function and followed by a max-pooling
layer. In doing so, the above formula can be formulated as:

z0 = MaxPool(LReLU(DWConv2D(x))) (2)

where the DWConv2D layer contains a number of d filters, equal to the embedding dimen-
sion in Equation (1). Two convolutional modules are stacked to generate convolutional
patching. This convolutional patching makes the model more flexible and simpler than the
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standard vision transformer. In particular, the convolutional modules are introduced to
embed the input ultrasound frames into a latent representation, which is more efficient for
modeling pathological information in subsequent layers. Variations in the size of image size
do not have an effect on the number of parameters but impact the length of the sequence
and consequently the required computing. Even though the standard patching operation
necessitates that the dimensions of input frames be dividable by the size of the patch. The
convolutional modules enabled the model to accept input of various sizes of data with no
requirement for clipping or padding as it alleviates the necessity of uniformly partitioning
an image into patches. Another advantage of the proposed model lies in the fact that
convolution and max pool layer could be overlapping, enabling the sequence length to
become increased but conversely, improving screening performance by infusing inductive
bias. Obtaining these convolutional patches enables the model to hold the local spatial
pathological information eliminating the need for positional embedding as it achieves a
very decent performance.

3.2. Transformer Modules

The project sequence of embeddings z0 are then passed to a stacked transformer
module. Each of these modules consists of alternating layers of multiheaded self-attention
(MHA) and Feed Forward Network (FNN) blocks.

The traditional self-attention (SA) [29] attention layer is commonly used to calculate
the attention score for each head on a global receptive field, leading to quadratic compu-
tations in terms of the number of tokens, which makes it inappropriate for ultrasound
frames/videos that require a huge set of tokens for modeling pathological information.
To address that, window-based or local SA is adopted to calculate SA for local windows,
where windows are disposed to uniformly divide the image in a non-overlapping way.
Given that the window includes M × M non-overlapping patches, SA is computed locally
within the window.

For each instance in patch embedding z ∈ RN×D, a weighted summation is calculated
for all values v in the sequence. Then, the attention scores are calculated according to
pairwise correspondence between two embedding elements and the corresponding query
qi and key kj representations.

[q, k, v] = zUqkv, Uqkv ∈ RM2×dh (3)

a = so f tmax
(

qkT
√

dh
+ B

)
, a ∈ RN×N (4)

H(z) = a·v (5)

where H represents the attention head; q, k, v ∈ RM2×dh represent the query, key, and
value matrices; dh denotes the query/key dimension, M2 represents the number of window
patches and B ∈ RM2×M2

represents the relative position bias [16].
The MHA is an expansion of the above calculations by calculating the SA for multiple

heads concurrently and then concatenating the output of each of them, and later projecting
this concatenation in FFN.

MHA(z) = concat
[

H0, H1, · · · , Hh−1
]

(6)

Layer norm (LN) is applied at the beginning of each module, while the residual
connection is applied to the MHA and FNN layers in each module.

By calculating window-based SA, the computational complexity of a global MHA and
a window-based MHA (WMHA) over an image containing h × w patches are formulated
as follows:

Ω(MHA) = 4hwC2 + 2(h × w)2C (7)

Ω(WMHA) = 4hwC2 + 2M2(h × w)C (8)
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where the first formula is quadratic with respect o the number of patches h × w, and the
other formula is linear when M is constant. Therefore, the global SA calculation is mostly
unreasonable for a large number of patches, while the local SA is usable. However, local
SA does not have connections among windows, limiting its representation power [16]. As a
remedy, the network requires the application of cross-window connectivity while retaining
the effective calculation of non-overlapping windows. This is achieved by designing two
parallel transformer modules, one uses WMHA and the other use cross-window-based
MHA (CWMHA). Mathematically speaking, the flow of information in the first transformer
modules could be formulated as follows:

z̃I
l = WMHA

(
LayerNormalize

(
zI

l−1

))
+ zI

l−1, l = 1 · · · L (9)

zI
l = FFN

(
LayerNormalize

(
z̃I

l−1

))
+ z̃I

l−1, l = 1 · · · L (10)

In a similar way, the flow of information in the other transformer module is calculated
as below:

z̃I I
l = CWMHA

(
LayerNormalize

(
zII

l−1

))
+ zII

l−1, l = 1 · · · L (11)

zI
l = FFN

(
LayerNormalize

(
z̃I I

l−1

))
+ z̃I I

l−1, l = 1 · · · L (12)

Like language models [30], a trainable embedding was prepended to the sequence of
embedded patches (z0 = xclass), whose status at the output of the transformer modules (zL)
serves as the frame/video representation y, as shown in Equation (4).

y = LayerNormalize(zL) (13)

During either fine-tuning or pre-training, the classification module accompanies the
zL. The classification module is implemented with FNN composed of a single hidden layer.

3.3. Down-Sampling Module

In order to generate a hierarchical representation, the number of tokens is reduced
by down-sampling modules, introduced to reduce the number of tokens as the depth of
the network increases. In the earlier patch-merging module, the features of each set of
g × g neighboring patches are concatenated and then passed to a convolutional 1 × 1 layer.
This way, the number of tokens is decreased by a multiple of g × g (i.e., down-sampling),
and the dimension of the output is turned into 2C. The same process is applied after each
transformed module and by the end, the stacked modules jointly generate a hierarchical
representation with the same dimensions as the feature map generated from standard
convolutional networks.

3.4. Weighted Pooling

To encode the sequential outcomes into a singular class index, rather than applying
a class token (as commonly performed in common transformer networks), the proposed
model presents a weighted pooling layer. Simply, the outputs of the transformer modules
are pooled over the whole sequence of data because they include appropriate representation
across various sections of the ultrasound frames. Mathematically speaking, the sequential
pooling operation can be declared as the mapping function M : Rb×n×d → Rb×d given as:

xL = f(x0) ∈ Rb×n×d (14)

where xL represents the feature maps generated from L-th of the transformer module
and b, n, d denote the size of the mini-batch, length of the sequence, and embedding
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dimension. Hence, xL maps are passed to a linear layer with So f tMax activation to
generate the following:

x′L = so f tmax
(

g(xL)
T
)
∈ Rb×1×n (15)

Following this, the obtained probability scores are used to calculate the pooled output
as follows:

z = x′L × xL = so f tmax
(

g(xL)
T
)
× xL (16)

The design of weighted pooling enables the model to score the sequential embeddings
of latent representations generated from transformer modules and robustly relate data
throughout the input data. This behavior is similar to the process of attention to sequential
data. This pooling layer can be implemented in either trainable or non-trainable manner;
however, the latter case is more efficient for the reason that every embedded patch includes
a different quantity of entropy. Accordingly, the network is capable of assigning higher
scores to input patches that comprise more pathological information valuable for the
screening of pneumonia or of COVID-19. Furthermore, the weighted pooling enables the
model to improve by using information from heterogeneous sources.

3.5. Classification Module

Given the output of the weighted pooling, the model calculates the final screening
decision in the classification module consisting of two fully connected layers, the first
with 64 neurons and containing three units corresponding to three classes, i.e., COVID-19,
pneumonia, and normal. The last layer is normally activated with SoftMax activation. The
parameters of the model-optimized categorical focal loss (SFL) function [31] help lessen the
impact of class imbalance on the final classification performance.

CFL = −
n=3

∑
i=1

αi(i − pi)
γ log pi (17)

The hyperparameter γ enables fine-tuning of the weight of various samples. If γ = 0,
this signifies the categorical cross-entropy. Given a higher value of γ, a small set of simply
categorized ultrasound frames participate in calculating the training loss, while frames
belonging to the minority class are assigned a higher weight. αi represents a balance factor.

3.6. Explainability Module

When it comes to explaining the DL model, CAM is a popular approach for generating
an activation map for every input sample signifying pixel-wise donation to the decision,
or disease type in our case. The discriminative ability of CAM stems from the fact that it
generates class-aware activation maps offering more analysis at the class level. However,
CAM suffers from primary limitations that it adds to the Softmax layer, hence, performing
re-training, which might cause the performance to degrade [32]. Grad-CAM++ [18] is
integrated to calculate activation maps with no modification to the DL model. They also
require a weight matrix to bring together feature maps. This could be accomplished by
initially estimating the gradient of a given class with respect to each feature map and
then applying global average pooling on the derivatives to obtain a weight matrix. This
way, Grad-CAM++ prevents adding up additional layers, thereby eliminating performance
degradation and re-training problems. The calculation of weights w(c)

k in Grad-CAM++ can
be formulated as follows:

w(c)
k =

H

∑
i=1

W

∑
j=1

α
(c)
k (i, j).ReLU

(
∂Y(c)

∂Ak(i, j)

)
, (18)
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where Y(c) represent the model estimated probability for class c immediately prior to
the SoftMax layer and α

(c)
k (i, j) represent weighting factors for class-specific pixel-wise

gradients calculated as follows:

α
(c)
k (i, j) =

1

∑i,j
∂Y(c)

∂Ak(i, j)

=

∂2Y(c)

(∂Ak(i, j))2

2. ∂2Y(c)

(∂Ak(i, j))2 + ∑a,b Ak(a, b). ∂3Y(c)

(∂Ak(i, j))3

(19)

where (i, j) and (a, b) represent the iterators over the same activation map Ak and were
applied to evade disorientation. The final saliency map can be calculated as follows:

L(c)
Grad−CAM++(x, y) = ReLU

(
∑
k

w(c)
k Ak(x, y)

)
(20)

where Ak(x, y) is the activation of node k in the intended network layer at the loca-
tion (x, y).

4. Experimental Design

This section defines the design settings of proof-of-concept experiments in terms of im-
plementation setup, evaluation metrics, and the dataset adopted for training and evaluations.

4.1. Implementation Setup

To set up the experimentations in this work, a TensorFlow 2.6 running over Python
3.8 virtual environment is employed for implementing the deep models. All experiments
are performed on a Dell workstation armed with RAM (256 GB) and CPU (Intel ® Xe®(R)
CPU E5-2670 0@ 2.60 GHz). The training of that models was accelerated by NVIDIA
Quadro graphical processing unit (GPU). All the experiments are performed using five-fold
cross-validations strategies.

4.2. Evaluation Metrics

For evaluating the detection performance of the proposed method and the competing
ones, a set of popular multi-class classification metrics calculated as a function of false
positive (FB), false negative (FN), true negative (TN), and true positive (TP) samples are
opted for and defined as follows:

Accuracy (A) =
TP + TN

TP + TN + FP + FN
× 100, (21)

Sentivity (Se) =
TP

TP + FN
× 100, (22)

Speci f icity (Sp) =
TN

TN + FP
× 100, (23)

F1 − score (F1) =
2TP

2TP + FP + FN
× 100, (24)

Beyond the above metrics, the Area Under the Curve (AUC) is adopted to assess the
detection capability of the model.

4.3. Data Description

To train and evaluate the proposed method, a public and open-source LUS dataset
is used, which is known as the POCUS dataset. The dataset consists of image and video
samples belonging to three classes of infection, namely COVID-19, viral pneumonia, and
bacterial pneumonia, in addition to samples from healthy individuals. The dataset contains
a total of 261 recordings (202 videos + 59 images) captured from a total of 216 patients with
either linear or convex probes. The distribution of samples across different classes is given
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in more detail in Table 1. Linear probes have high frequency, leading to a superior resolution
that enables improved investigation of irregularities near the pleural line [22]. However, the
linear probe penetrates the lung tissue less than the convex probe, which could make it hard
to tell the difference between B-line artifacts (a major lung artifact) and hidden tissue. The
images and videos in the POCUS dataset were aggregated from a variety of sources, such as
clinical data obtained from academic ultrasound courses, hospitals, scientific publications,
public medical repositories, and health-tech corporations. The complete details of different
sources of data in the POCUS dataset can be found in reference [19]. The COVID-19 cases
were confirmed by RT-PCR. The dataset is supplemented by a comprehensive metadata file
encapsulating the anonymized patient identifier, source URL, source identifier, sex, age,
symptoms, pathological manifestations, video frame rate, image resolution, and the total of
frames per video. The length and type of videos are a varied (160 ± 144 frames) dataset,
whereas they have a frame rate of 25 ± 10 Hz. Outstandingly, all samples in the dataset
were reported to be revised and confirmed by one medical expert with more than 10 years
of clinical experience and an academic instructor. Figure 2 shows some examples of 2D
ultrasound frames for COVID-19, pneumonia, and healthy patients.

Figure 2. Examples of lung ultrasound images for different pulmonary diseases: (A) COVID-19,
(B) Pneumonia, (C) normal case.
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Table 1. The class distribution of the POCUS dataset.

COVID-19
Bacterial

Pneumonia
Viral

Pneumonia
Healthy Total

CONVEX
Videos 64 49 3 66 182

Images 18 20 / 15 53

LINEAR
Videos 6 2 3 9 20

Images 4 2 / / 6

Total 92 73 6 90 261

4.4. Data Preparation

As the usual step in developing a DL solution, data need to be pre-processed before
going to the training stage. In this regard, the convex ultrasound probes are used for
training models in all experimentations. Owing to the small number of samples belonging
to the viral pneumonia class (3 convex videos), the data are pre-processed by eliminating the
data of that class and the training is performed using only the other three classes. Moreover,
all convex ultrasound samples (179 videos and 53 images) were physically pre-processed by
dividing the videos into separate images at a 3 Hz frame rate (i.e., maximum of 30 frames
per video) resulting in a dataset comprising a total of 1204 COVID-19 images, 704 bacterial
pneumonia images, and 1326 images of normal cases. Moreover, the generated image
samples are cropped into a quadratic window, eliminating artifacts, ration bars, and text,
and then they are resized into 224 × 224 pixels. Different from hold-out testing data, all the
presented stated results in this work are attained from five-fold cross-validation stratified
by the count of examples in each class. The image samples were divided at the patient
level; therefore, it is guaranteed that the frames of one video are existing only per one-fold
and that the number of videos per class is almost the same for all folds. All models were
trained to classify images as COVID-19, pneumonia, and non-infected. Furthermore, the
data were augmented by applying image flipping, rotations

[−10
◦
, 10

◦]
and translations

(up to 10%, which in turn differentiate the data and help avoid overfitting).

5. Results and Analysis

5.1. Comparative Analysis

To evaluate the competitiveness of the proposed model, detection performance is
fairly compared against the cutting-edge COVID-19 models, namely CNN [17], POCOVID-
Net [19], Mini-COVIDNet [21], Residual Net [23], and Inception [20]. To assure that
comparison is very fair, the results of the competing methods are reproduced in the same
experimental environment, settings, and training data. During the experiments, an overfit-
ting issue was observed in the case of Mini-COVIDNet, therefore we had to apply some
regularization methods to assure the results remain real and representative. Table 2 shows
the results obtained from comparative experiments by calculating the mean and standard
deviation (std) over different validation folds. Moreover, the comparison also includes the
number of parameters of each model to give an intuitive understanding of the model’s
complexity. It is notable that the pre-trained Residual Net [23] shows the lowest screen-
ing performance (accuracy: 71.5%) despite its large number of parameters. Moreover,
POCOVID-Net [19] and Mini-COVIDNet [21] show relative improvement in COVID-19
screening performance with an accuracy of 82.1% and 82.7%, respectively. However, they
exhibit a large number of parameters. Notably, CNN [17] achieved the most competitive
performance across all evaluation metrics, while maintaining a small number of parameters
compared with the above methods. More significantly, the proposed model demonstrated
robust detection performance across all performance metrics (accuracy: 93.4% F1-score:
93.1%, AUC: 97.5%), overcoming the competing methods with large margins. As ob-
served, the number of parameters of the proposed model is surprisingly smaller than all
the competing methods, which can be attributed to the elegant design of building blocks,
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i.e., convolutional patching and window-based attention. The lightweight nature of the
proposed model makes it a time- and space-efficient solution that can be easily integrated
into the real-world healthcare system.

Table 2. Comparison of the 5-Fold cross-validation performance (mean ± std) of the proposed
methods and competing models for COVID-19 screening from a frame-based lung ultrasound dataset.
The Precision, Recall, F1-score, and AUC metrics are reported for each class.

METHOD
ACCURACY

(%)
NO.

PARAMS
CLASS

PRECISION
(%)

RECALL (%)
F1-SCORE

(%)
AUC (%)

COVID-19 93.8 ± 4.75 91.9 ± 2.00 92.8 ±2.8 96.8 ± 3.68

Pneumonia 95.1 ± 2.90 96.2 ± 1.73 95.6 ± 2.2 97.2 ± 5.59CNN [17] 90.3 ± 5.13 389,540

Normal 80.1 ± 5.87 75.6 ± 5.2 77.8 ± 5.5 83.1 ± 10.5

POCOVID-
NET
[19]

82.1 ± 11.6 14,747,971

COVID-19 84.6 ± 6.80 88.1 ± 10.8 86.3 ± 8.3 95.3 ± 1.19

Pneumonia 93.9 ± 4.20 91.5 ± 2.10 92.7 ± 2.8 97.3 ± 1.57

Normal 56.2 ± 8.22 51.9 ± 2.90 54.0 ± 4.3 68.2 ± 2.74

COVID-19 81.9 ± 3.92 91.8 ± 9.65 86.6 ± 5.6 95.3 ± 6.54

Pneumonia 82.4 ± 4.56 90.3 ± 5.32 86.2 ± 4.9 95.7 ± 9.13
MINI-

COVIDNET
[21]

82.7 ± 10.2 3,361,091

Normal 62.3 ± 9.50 44.7 ± 11.5 52.1 ± 10.4 63.1 ± 7.63

RESIDUAL
NET [23] 71.5 ± 13.5 23,851,011

COVID-19 76.4 ± 8.21 85.2 ± 6.26 80.6 ± 7.1 89.2 ± 5.88

Pneumonia 89.7 ± 9.76 63.1 ± 9.08 74.1 ± 9.4 82.5 ± 4.82

Normal 33.2 ± 11.7 37.3 ± 10.7 35.1 ± 11.2 55.6 ± 8.62

COVID-19 85.6 ± 4.79 80.9 ± 8.27 83.2 ± 6.1 93.1 ± 7.01

Pneumonia 80.2 ± 3.43 81.2 ± 3.10 80.7 ± 3.3 91.9 ± 7.33
INCEPTION

[20] 83.3 ± 7.71 20,867,625

Normal 67.3 ± 15.4 60.7 ± 7.71 63.8 ± 10.3 72.6 ± 4.51

PROPOSED 93.4 ± 3.46 290,891

COVID-19 95.8 ± 2.58 94.5 ± 1.22 95.1 ± 1.7 98.1 ± 2.30

Pneumonia 95.1 ± 3.84 94.8 ± 1.34 94.9 ± 2.0 98.8 ± 1.68

Normal 91.2 ± 3.73 87.7 ± 3.43 89.4 ± 3.6 95.7 ± 1.33

5.2. Statistical Analysis

To further investigate whether the achieved results are statistically significant from
those obtained from the competing DL methods, the Friedman omnibus test is applied as a
common, popular way of contrasting the performance given by ML models. Hence, the
Friedman test is applied to the stratified five-fold cross-validation results and the calculated
p-values are presented in Table 3. The Python library SciPy is used to implement the
Friedman test with threshold σ = 0.05. It could be noted that all p-values are less than
the threshold, implying the rejection of the null hypothesis. This means that the results
of the proposed model statistically differ from those of the competing methods across
different metrics.

Table 3. The statistical results obtained from the Friedman test with a significance threshold σ = 0.05.

Method Accuracy F1-score AUC

Proposed vs. CNN [17] 6.25 × 10−3 5.22 × 10−8 5.03 × 10−3

Proposed vs. POCOVID-Net [19] 7.40 × 10−5 6.98 × 10−3 9.90 × 10−4

Proposed vs. Mini-COVIDNet [21] 5.96 × 10−3 5.96 × 10−6 7.63 × 10−3

Proposed vs. Residual Net [23] 2.06 × 10−4 4.76 × 10−3 8.89 × 10−7

Proposed vs. inception [20] 9.84 × 10−6 5.50 × 10−5 2.54 × 10−5
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5.3. Ablation Analysis

To deep dive into the building blocks of the proposed model, a group of ablation
experiments is performed to analyze the role and the contribution of each building block to
the total screening performance. The results of the ablation experiments are presented in
Table 4. In these experiments, a shallow version of the standard vision transformer is used
as a baseline model and achieved 89.6% accuracy, 89.2% F1-score, and 94.8% AUC. Moving
forward, the inclusion of the transformer module with WMHA is shown to be beneficial
for improving the COVID-19 screening performance (accuracy: 90.7%, F1-score: 90.8%,
AUC: 95.1%). In the same way, the inclusion of the transformer module with SWMHA is
observed to lead to similar improvements. More interestingly the parallel integration of the
above modules in our model significantly improved the classification performance across
all metrics (accuracy: 92.5%, F1-score: 91.9%, AUC: 97.1%). This explains the importance
of both features in separate windows and cross-windows being essential to improving
the representation power of the model. Finally, the integration of the proposed weighted
pooling module is obviously improving the classification performance.

Table 4. Ablation experiments of the proposed model under 5-fold cross-validation.

METHOD ACCURACY F1-SCORE AUC

BASELINE 88.1 ± 2.96 87.3 ± 4.99 94.2 ± 2.45

+CONVOLUTIONAL
PATCHING 89.6 ± 1.74 89.2 ± 3.09 94.8 ± 2.68

+WMHA 90.7 ± 3.73 90.8 ± 2.16 95.1 ± 1.08

+SWMHA 90.9 ± 2.35 90.3 ± 2.24 95.6 ± 1.52

+ (WMHA||SWMHA) 92.5 ± 3.16 91.9 ± 1.93 97.1 ± 2.39

+WIGHTED POOLING 93.4 ± 3.46 93.1 ± 2.43 97.5 ± 1.77

5.4. Explainability Analysis

To understand and interpret the screening decision obtained from the proposed model,
the class-related saliency maps for some COVID-19 and pneumonia cases are presented in
Figure 3A,B, correspondingly.

It could be seen that the GRAD-CAM++ shades the significant lung areas in the
ultrasound frame, contributing to making the prediction of the output classes. It is also
observable that the model activates diverse zones in the input frame corresponding to
different biomarkers to be learned and considered during the screening. These diverse
zones adopted for screening are learned intrinsically in the model. Moreover, it is notable
that the regions of activations vary from one frame to another, even though they both belong
to the same class of infection, hence, these activations can be further enhanced by using
more ultrasound data from the same class. For the pneumonia frame, one may observe the
presence of pleural consolidations, which is a common biomarker for that disease [33,34].
On the other hand, COVID-19 was demonstrated to show abnormal pleural lines together
with upright artifacts in lung ultrasound frames/videos. Figure 3A highlights the location
of the lung infection lesions where it is obvious that our model is considering the area in
close proximity to the pleural lines for screening the COVID-19 class. This assessment also
establishes that the proposed solution could promptly identify the cases suffering from
considerable lung abnormalities displayed as B-lines, which enables improved screening of
COVID-19 patients.
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Figure 3. Illustration of visual explanation maps generated by Grad-CAM++ for some of the samples
of lung ultrasound frame images after visualization. (A) COVID-19-infected lung, (B) Pneumonia-
infected lung.

6. Conclusions and Future Work

This work presents a lightweight and explainable convolutional transformer model
for the efficient screening of COVID-19 from ultrasound data. The representation power
of the model is further improved by convolutional patching and parallel window-based
transformation modules. The findings demonstrate that the proposed solution considerably
improves COVID-19 detection performance with high information compactness, meaning
that it achieves both efficiency (high detection accuracy) and effectiveness (a small number
of trainable parameters). Beyond and above this, the classification decisions obtained from
the proposed solution can be visually explained so they can be easily interpreted and
trusted by medical staff. These competitive advantages of the proposed solution render it a
candidate for improving the quality of ultrasonic diagnosis in smart healthcare systems
during and after the pandemic.

This work can be extended in three ways in the future. First, in coping with the
sustainable development strategy in Egyptian Vision 2030, the proposed solution will be
extended to be provided as a sustainable diagnosis service/system that can be collabora-
tively trained using ultrasound data from different Egyptian hospitals. By doing so, the
Egyptian Ministry of Healthcare will have great management of COVID-19-like pandemics
with automated, efficient, interpretable, and effective tools. Second, the proposed solution
will be extended to take advantage of 5G and B5G communication to deliver the patients’
data and corresponding diagnosis decisions in real time. This direction will specifically
focus on the responsiveness of our system as an essential requirement of the sustainability
of the Egyptian healthcare system. Third, the proposed solution will be extended to learn
from different modalities of data to improve the quality and functionality of COVID-19
diagnosis in the healthcare system.
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Abstract: Large-scale deep learning models have achieved impressive results on a variety of tasks;
however, their deployment on edge or mobile devices is still a challenge due to the limited available
memory and computational capability. Knowledge distillation is an effective model compression
technique, which can boost the performance of a lightweight student network by transferring the
knowledge from a more complex model or an ensemble of models. Due to its reduced size, this
lightweight model is more suitable for deployment on edge devices. In this paper, we introduce
an online knowledge distillation framework, which relies on an original attention mechanism to
effectively combine the predictions of a cohort of lightweight (student) networks into a powerful
ensemble, and use this as a distillation signal. The proposed aggregation strategy uses the predictions
of the individual students as well as ground truth data to determine a set of weights needed for
ensembling these predictions. This mechanism is solely used during system training. When testing
or at inference time, a single, lightweight student is extracted and used. The extensive experiments
we performed on several image classification benchmarks, both by training models from scratch (on
CIFAR-10, CIFAR-100, and Tiny ImageNet datasets) and using transfer learning (on Oxford Pets and
Oxford Flowers datasets), showed that the proposed framework always leads to an improvement
in the accuracy of knowledge-distilled students and demonstrates the effectiveness of the proposed
solution. Moreover, in the case of ResNet architecture, we observed that the knowledge-distilled
model achieves a higher accuracy than a deeper, individually trained ResNet model.

Keywords: online knowledge distillation; ensemble learning; attention aggregation; deep learning

MSC: 68T01; 68T07; 68T20; 68T30

1. Introduction

State-of-the-art machine learning models considerably improve the performance of var-
ious image understanding tasks, but they still fail to meet the non-functional requirements
necessary for deployment on real-world test scenarios (inference time, latency, performance,
throughput). Model compression techniques—such as quantization, pruning, low-rank
approximation, knowledge distillation, and neural architecture search—aim to control the
inference cost of neural networks [1].

There are numerous situations in which a trained neural network should be de-
ployed on mobile devices (take, for example, the concrete case of an object identifica-
tion/classification applet, which instead of sending the input to a dedicated server, runs
the classification task on the user’s device). In order to achieve this, knowledge distillation
serves the purpose of a compression tool. By means of KD, the “knowledge” of a large
trained model is transferred to a smaller student model. In this way, the lightweight
model’s accuracy on the test set is boosted, while preserving a low computational and
memory footprint.

Knowledge distillation (KD) [2] is an effective technique to boost the accuracy of a
lightweight network, by training it under the guidance of a more powerful network or an
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ensemble of networks. In the context of machine learning, knowledge typically refers to the
learned weights of a network. Various distillation techniques have been proposed, in which
the student mimics different knowledge sources of the teacher: the decision boundary
(logits), intermediate feature maps, or intra-data relationships.

The classical formulation of KD [2,3], offline KD, involves a pre-trained teacher model
with fixed weights when distilling knowledge to the student network. Despite its simplicity,
this method involves two training steps (one for the teacher and one for the student). A
large-capacity model might not always be available, and its training is resource consuming
and cumbersome. In addition, the knowledge transfer is one-way (from the teacher to the
student), as the teacher’s weights are “frozen” during the second training stage. Finally,
two-stage KD involves more parameters, which results in higher computational costs.

Online distillation frameworks [4–7] propose an alternative solution to the monolithic,
large-capacity teacher, and simplify the training process by simultaneously training several
peer students and learning from their combined predictions. One issue with online KD
is related to the strategy of building the ensemble based on the students’ individual
predictions. Simply aggregating the students’ logits affects the diversity of the student
peers and, therefore, limits the effectiveness of online learning [8].

In this paper, we propose an effective online knowledge distillation framework to
improve the generalization and learning capacity of a neural network architecture, while
avoiding the increase in inference cost. Our main contribution is an original aggregation
strategy inspired by attention mechanisms: The individual predictions of the peer student
networks are combined via an attention module that assigns a weight to each network, and
the ensemble is computed on the fly as the weighted average of the students’ predictions.
This ensemble is used throughout the training process as a distillation signal.

The remainder of this manuscript is organized as follows: In Section 2, we discuss
other knowledge distillation frameworks, and in Section 3, we present the details of the
proposed solution. Next, the experimental results and ablation studies are reported in
Sections 4 and 5. Finally, Section 6 concludes this work.

2. Related Work

Knowledge distillation [3] was proposed as an effective and elegant compression
technique to derive a lighter and faster network (student) from a more complex one
(teacher), by penalizing the difference between their logits. Later, this mechanism was
formalized by [2] to distill the “dark-knowledge” from the teacher to the student. The
authors noticed that a powerful and confident teacher does not bring more knowledge
than ground truth data, as its prediction tends to be a narrow probability distribution
with a single peak for the ground truth class. To alleviate this issue, the teacher’s logits
are “softened” by a temperature scaling factor of the softmax activation. In such a manner,
the lightweight network can infer what other classes were found similar by the teacher
network. More formally, this can be expressed as

ζτ(zi) =
ezi/τ

∑j ezj/τ
(1)

where τ is the temperature of the softmax function (equation from [2]). When τ is greater than
1, the small probabilities of the softmax function are increased and the output is “softened”.

In the classical setup, during training, a Kullback–Libeler divergence loss term is
employed to ensure that the student network mimics the teacher’s softened predictions.
Other methods proposed using the root-mean-square error loss [9] or distilling from hard-
labels [10].
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2.1. Online KD

Online KD frameworks constitute an effective substitute for classical two-stage offline
KD: instead of using a “good” pre-trained teacher network, a cohort of student peers are
trained and share their knowledge.

In Deep Mutual Learning (DML) [5], several peer student networks mutually exchange
information through a Kullback–Liebler loss term. In this framework, each student plays the
role of the teacher for all the other peers. The main drawback of DML is that the predictions
of the peer networks can conflict with each other (and even with the ground truth).

On-the-fly Native Ensemble (ONE) [4] is an online KD framework in which an ensem-
ble is formed by adding several auxiliary branches over some shared low-level network
layers. A gating component is used to assemble the knowledge of the branches into a
more powerful prediction, which is, in turn, distilled back to all branches. This method is
applicable only to branches with the same architecture, and the knowledge transfer occurs
only at the branch layers.

In [6], the authors proposed a method for collaborative learning based on a hierar-
chical multiple branch network. The classifier heads provide different views on the data
to improve generalization but also act as a regularization term. In addition, backpropa-
gation rescaling was used to avoid gradient explosion and to provide supervision for the
shared layers.

A similar approach to the proposed solution is the Knowledge Distillation method
via Collaborative Learning (KDCL) [7]; it trains a pool of students together and aggregates
their logits to generate soft targets for knowledge distillation. Four methods for assembling
the students’ predictions were proposed and compared. To ensure the diversity of the peers,
each network applied a different set of augmentations to the training data. [11] combined
online ensembling and network collaboration into a unified framework. The architecture
consists in a multi-branch network, where each branch denotes a peer. To improve the
quality of the KD, two teachers were computed online: the peer ensemble teacher, which
distills knowledge from an online high-capacity teacher to each peer, and the peer mean
teacher, which distills knowledge among peers. Random augmentations were performed
multiple times on peer inputs.

In [12], Feature Fusion Learning (FFL) was proposed as an online distillation frame-
work for intermediate feature maps. In this framework, several parallel sub-networks are
trained together and a fusion module combines their feature maps into a more meaningful
one. This is passed to a fused classifier, which performs the overall classification but also
delivers its knowledge to each sub-network.

2.2. Attention-Based KD

Inspired by the human visual system, which can effectively focus on salient visual
features of complex scenes, attention mechanisms have been integrated into various deep
learning architectures, especially in the field of computer vision. The main idea is to
redistribute the weights of a feature map according to a computed attention-mask.

SeNets [13] introduced an attention mechanism to perform a channel-wise feature
re-calibration process by computing a weight for each channel in the feature maps. Inspired
by this mechanism, in [14], the channel attention information is transferred from the teacher
to the student. Channel attention weights are computed for the teacher’s and student’s
intermediate feature maps, and the student is guided to learn the attention information of
each channel.

In [15], the authors proposed an attention-based feature distillation mechanism, in
which a meta-network employs a query-key attention component [16] to identify similarities
between the student’s and teacher’s feature map. The resulting attention vector is used to
transfer the teacher’s knowledge selectively to student features. The query-key attention
mechanism computes the similarities for all possible combinations between the teacher and
student networks; so, the training process is computationally expensive.
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Online Knowledge Distillation with Diverse peers (OKDDip) [17] applies a two-level
KD using multiple auxiliary peers and one group leader. In the first level, group-based
learning is achieved via an attention-based mechanism, while in the second level, the
knowledge in the ensemble of peers is transferred to the group leader (the model used
for inference). The main drawback of this method is that it involves a complex training
strategy and more parameters are used during training.

3. Proposed Approach

The following notation will be used throughout this manuscript: N is the number of
peer student networks trained within the proposed KD framework, C is the number of
categories for the classification problem, P̂k

i ∈ RC are the non-normalized logits of the ith

student network for the kth image, Gk is the one-hot encoding of the ground truth data
associated with the kth sample, σ(·) is the sigmoid function, ζ(·) is the softmax function, and
ReLU(·) is the Rectified Linear Unit activation function. Table 1 organizes these notations
in tabular form.

Table 1. Notations used throughout this manuscript.

Notation Meaning

N number of peer students
C number of categories for the classification problem

σ(·) sigmoid function
ζ(·) softmax function

ReLU(·) Rectified Linear Unit activation function
P̂k

i non-normalized logits of the ith student network for the kth sample
Gk one-hot encoding of the ground truth data of kth sample

3.1. Research Methodology

Online KD methods are preferred to classical offline KD frameworks because they
involve a simplified one-stage training process, in which all the models are treated as
students that gain extra knowledge from each other’s predictions or feature representations.
This study investigates the problem of online KD and, more specifically, how the students’
predictions can be combined to obtain an effective knowledge distillation signal. To this
end, we propose a framework in which several student models are trained simultane-
ously, and an original attention-based aggregation mechanism is employed to combine
their predictions into a powerful ensemble. The proposed method was tested on several
image classification benchmarks using various network architectures. To demonstrate the
effectiveness of the solution, we first train an individual model (“vanilla” model) on a clas-
sification benchmark using the classical cross-entropy loss function. Then, using the same
training schedule and data processing techniques, we train several models with the same
network architecture within the proposed KD framework. Throughout the training process,
the predictions of the models are combined using the proposed attention mechanism and
the “knowledge” of this ensemble guides the student models via an additional KD loss. For
testing, a single knowledge-distilled student is selected—the one with the highest accuracy
on the test set. To validate the proposed method, we compare the accuracy of the “vanilla”
student with the accuracy of the knowledge-distilled student. The experimental results
show that the accuracy of the knowledge-distilled model is always improved, regardless of
the network architecture, classification benchmark, or training setup (from scratch or by
using transfer learning).
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3.2. Solution Outline

The outline of the proposed solution is depicted in Figure 1. A group of lightweight
student peers is simultaneously trained into an online distillation framework and their
predictions are aggregated into a more powerful ensemble based on an attention mechanism
inspired by [18].

+

Figure 1. Solution outline. The proposed framework simultaneously trains a group of student peers
and learns from the peers’ predictions. The red arrows indicate the loss terms applied to each output:
Ldata—the standard cross-entropy loss; LKD—the knowledge distillation loss.

The output of the attention aggregation module is a list of weights w (one for each
peer network), used to ensemble the predictions (Ê):

Ê =
∑N

i=1 wi · Pi

∑N
i=1 wi

. (2)

The ensemble output (Ê) will be used as a distillation signal throughout the train-
ing process.

All the models are trained in an end-to-end manner, with a multi-task loss function (L):

L = Ldata(G, Ê) +
N

∑
i=1

(Ldata(G, P̂i) + λLKD(Ê, P̂i, τ)) (3)

where λ is the distillation strength and τ is the softmax temperature. The students and the
ensemble’s output logits are trained with the standard cross-entropy loss [19] (Ldata):

Ldata(G, P̂) = − ∑
x∈χ

G(x) · log(ζ(P̂(x))). (4)

In addition, the ensemble’s output is used as a distillation signal for all of the students,
through a Kullback–Liebler [20] loss term (LKD):

LKD(G, P̂, τ) = ∑
x∈χ

τ2DKL(ζτ(Ê), ζτ(P̂)), (5)
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where τ is the softmax temperature parameter; Ê and P̂ are the ensemble’s and student-
softened predictions, respectively; and DKL is the Kullback–Liebler divergence between
two distributions p1 and p2 defined on the probability space χ:

DKL(p1, p2) = − ∑
x∈χ

p1(x) · log
p2(x)
p1(x)

. (6)

During the inference phase, a single knowledge-distilled student is used; in all the
experiments, we report the accuracy of the most accurate student.

3.3. Ensembling Strategy

The question that remains is as follows: “how could the individual predictions of the
student networks be combined into a more powerful ensemble used as a distillation signal?” To this
end, we extract three features based on the predictions of the students, which are then fed
to a channel attention mechanism (Figure 2) inspired by [18] to establish the ensembling
weights (Equation (2)).

The proposed solution is directly influenced by the attention mechanism proposed
in [18]; therefore, it will be described in detail. In [18], the authors proposed the Convolu-
tional Block Attention Module (CBAM), an effective attention mechanism that computes
attention maps across the channel and spatial dimensions of intermediate feature maps.
The channel attention mechanism is used to ensure the model’s focus on relevant features
in the input volume; it starts with two pooling operations to aggregate the spatial infor-
mation of each channel. These pooled features are then forwarded to a shared multi-layer
perceptron with a single hidden layer. The output layer uses sigmoid activation to compute
the weights for each channel in the input volume. Mathematically speaking, the channel
attention mechanism [18] determines the weights w as follows:

w = σ(MLP(GAP(F)) + MLP(GMP(F))) (7)

where MLP denotes the shared multi-layer perceptron, GAP(·) and GMP(·) represent
the Global Average and Max pooling operations, F is the input feature map, and σ is the
sigmoid activation function.

In the proposed method, the extracted features rely on global pooling operators and
are then fed to a multi-layer perceptron, summed together, and passed through a sigmoid
activation to determine the attention weights. The aggregation process is also guided by
the ground truth data, as it is solely used during training. In the beginning, the individual
predictions of the students are stacked into a single tensor Pk ∈ RN×C. The entire process is
detailed in Figure 2.

+

ReLu( z)z +
P

Figure 2. Ensembling strategy. The logits of the peer networks are assembled by an attention
mechanism. P are the stacked logits of the sub-networks, and G represents the one-hot encoded
ground truth data. Three features (F1, F2, and F3) are computed and then passed through a multi-layer
perceptron to compute the assembling weights of the ensemble.

The first extracted feature F1
k ∈ RN is related to each student’s prediction confidence

for the ground truth class:
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F1
k = GMP(Pk · Gk) (8)

where GMP is the Global Maximum Pooling operator. By multiplying the predictions with
the one-hot encoding of ground truth, all except the ground truth class predictions will be
set to zero. After applying the global maximum pooling operator, each network will be
assigned either a strictly positive value (its confidence on the ground truth class) or a 0 (if
its confidence for the ground truth class is less than 0).

The other features account for the students’ predictions for the other classes. Let us
define zi

k = (Pi
k − max(Pi

k · Gi
k)) as difference between the ith student’s prediction and its

prediction for the ground truth class. If the value on position j in zi
k vector is positive, then

the student’s prediction for the jth class is larger than for the ground truth class (i.e., the
network is more confident on the jth class than on the actual class).

The second feature F2
k accounts for the magnitude of the differences between the

student’s confidence in the actual class versus the other classes. By applying the ReLu
activation function on the negative of zk, all the classes on which the classifier was more
confident than on the actual class will be assigned to zero, while for the other classes, the
difference between the classifier’s confidence in the actual class and the current class will
be preserved. More formally, the second feature F2

k can be expressed as

F2
k = GAP(ReLU(−zk)) (9)

where GMP is the Global Maximum Pooling operator and ReLU(·) is the Rectified Linear
Unit activation function.

Lastly, the third feature F3
k is related to the number of classes that have smaller

confidence than the actual class. Similarly to F2
k , we take the ReLU on the negative of zk but

we also divide the result by −zk. In this way, all classes with smaller confidence than the
ground truth class will be assigned to one.

F3
k = GAP

ReLU(−zk)

−zk + ε
(10)

where ε is a small constant to avoid division by zero.
Finally, as in [18], each of these descriptors (F1, F2, and F3) are forwarded through

a multi-layer perceptron with a single hidden layer. Then, to compute the combination
weights, the outputs are merged using element-wise summation and passed through a
sigmoid function. The ensemble’s output is computed as the weighted average of the
students’ logits and these weights.

4. Experimental Results

In this section, we report the results of a series of experiments conducted to evaluate
the proposed knowledge distillation framework on several image classification datasets.
We evaluate our method on CIFAR-10, CIFAR-100, and TinyImageNet image classifica-
tion benchmarks.

As the purpose of this study is to improve the accuracy of a lightweight model via
knowledge distillation, without increasing its number of parameters, we employed the
following evaluation strategy for a model. We first obtain the “vanilla” version of the
model by training independently and evaluate it using the accuracy metric. Then, we train
several models with the same architecture within the proposed knowledge distillation
framework. For inference/deployment, we select the knowledge-distilled student with the
highest accuracy on the test set and evaluate it. As we are interested in the improvement
obtained after knowledge distillation, the metric that we are interested in is the gain in
accuracy, which we compute as follows:

KD_Gain = ACCKD − ACCVanilla (11)
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where ACCKD is the accuracy of the knowledge-distilled student and ACCVanilla is the
accuracy of the “vanilla”, independently trained student.

The CIFAR-10, CIFAR-100, and TinyImageNet datasets are generic image classification
benchmarks and have balanced testing sets; so, we report only the accuracy metric.

4.1. CIFAR-10 and CIFAR-100 Datasets

CIFAR-10 and CIFAR-100 datasets [21] comprise 60000 RGB-images with 32 × 32 im-
age resolution, split into training (50,000 images) and validation (10,000 images) subsets.
The images of CIFAR-10 are divided into 10 classes, while in CIFAR-100 each image is
annotated with a “coarse” label (20 super-classes) and the actual class label (100 categories).

All the models were trained from scratch for 200 epochs, using a batch size of 32, with
Adam optimizer and different variants of the ResNet architecture [22]. The initial learning
rate was set to 10−3 and decayed by 0.1 at epochs 80, 140, and 170. In addition, a learning
rate reducer was applied to reduce the learning rate by a factor of

√
0.1 if learning stagnates

for 5 epochs. For experiments, N = 3 peer networks were trained, the softmax temperature
τ was set to 3, and the knowledge distillation strength was set to λ = 1. (See the ablation
studies in Section 5 for more information on varying this hyper-parameter.)

Table 2 reports the results on the CIFAR-10 and CIFAR-100 image classification bench-
marks. Vanilla refers to the accuracy of the independently trained student and KD to the
accuracy of the knowledge-distilled student. MFLOPS represents the number of mega
FLOPS (floating point operations per second) of the model, and Params. represents the
number of parameters of the model.

Table 2. Results on CIFAR-10 and CIFAR-100 datasets.

Dataset Model MFLOPS Params. Vanilla KD KD Gain

CIFAR-10 ResNet-20 82.298 274,442 92.1% 92.96% 0.86
ResNet-32 139.325 470,218 92.77% 93.88% 1.11

CIFAR-100
ResNet-20 82.309 280,292 67.54% 69.73% 2.19
ResNet-32 139.337 476,068 69.60% 72.76% 3.16
ResNet-50 224.877 769,732 71.35% 73.93% 2.58

The knowledge-distilled network always surpasses an independently trained network.
Moreover, the results show that the knowledge-distilled student has a higher accuracy
than the immediately larger ResNet version (i.e., a knowledge-distilled ResNet-20 student
surpasses an individually trained ResNet-32 network). As a detailed example, in the
CIFAR-100 setup, a 0.19 accuracy improvement (0.19 = 92.96 − 92.77) is attained with a
41.12% decrease in parameters (from 470,218 to 274,442) and 40.93% decrease in the number
of FLOPS (from 139.325 MFLOPS to 82.298 MFLOPS).

4.2. TinyImageNet Dataset

TinyImageNet [23] is a subset of the ImageNet [24] benchmark with 200 class cate-
gories; each category has 200 training images, 50 validation images, and 50 test images. In
addition, the resolution of the images was reduced to 64 × 64.

For this setup, the networks were trained from scratch for 100 epochs with Adam
optimizer. The initial learning rate was set to 10−3 and decayed by 0.1 at epochs 30, 60, and
90. To prevent overfitting, several geometrical augmentation techniques (horizontal flips,
width and height shifts, rotations) as well as cutout [25] were applied to the training data.
Similar to the CIFAR training setup, the hyper-parameters of the framework were set to
N = 3, τ = 3 and λ = 1.

Table 3 reports the results on the TinyImageNet classification benchmark. A 1.43% gain
in accuracy is achieved when training the network in the proposed framework.
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Table 3. Results on TinyImageNet dataset.

Model MFLOPS Params. Vanilla KD KD Gain

ResNet-20 329.277 325,192 52.92% 54.35% 1.43%

4.3. Transfer Learning

Collecting a large-scale dataset required for training an accurate deep model is a
challenging and cumbersome task, if not impossible for some tasks for which a limited
amount of data are available. Nowadays, as a wide variety of pre-trained models are
publicly available, transfer learning is the norm. In this section, we experiment with transfer
learning on two classification benchmarks (Oxford Pets and Oxford Flowers datasets)
with a limited amount of training data and higher resolution images than CIFAR and
TinyImageNet datasets.

Oxford pets [26] contains 37 cat and dog breed categories, with approximately 200 im-
ages per class. The images feature large variations in size, lighting, and pose. Oxford
flowers [27] is a 102 flower category dataset, and each class contains between 40 and 258
images. Both datasets are already split into training, validation, and test sets. For this
experiment, we used the same splits as provided in the datasets. Oxford Flowers comprises
1020 training images, 1020 validation images, and 6149 test images, while Oxford Pets
comprises 3680 training images and 3699 test images.

For the transfer learning setup, all peer student networks share the same “frozen” back-
bone (weights remain fixed during training) initialized with ImageNet weights [24], and
only their final classification layers were trained. The weights of the architectures trained
on the ImageNet dataset were retrieved from the tensorflow machine learning framework
https://www.tensorflow.org/api_docs/python/tf/keras/applications, accessed on 25 Au-
gust 2022. The final trainable classification layers were initialized using Xavier uniform
initialization [28]. This process is depicted in Figure 3.

+ 

Figure 3. Transfer learning setup: The peer student networks share the same “frozen” backbone,
initialized with ImageNet weights.

All the models were trained for 32 epochs, using RMSProp optimizer [29] with a
learning rate of 10−3. The data pre-processing step involved padding the images to square
shape by duplicating the edge features and then resizing them to 224 × 224. Table 4 reports
the results obtained when using transfer learning on Oxford Pets and Oxford Flowers
datasets. We experimented with several neural network architectures: DenseNet [30],
ResNet [22], NASNet [31], and MobileNet [32]. In this table, the column Vanilla indicates
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the accuracy of an independently trained, “vanilla” student, the column KD reports the
accuracy of a knowledge-distilled student, and KD Gain is the accuracy improvement
obtained when training a network in the proposed KD framework.

Table 4. Transfer learning results on Oxford Pets [26] and Oxford Flowers datasets [27].

Model
Oxford Pets Oxford Flowers

Vanilla KD KD Gain Vanilla KD KD Gain

DenseNet 90.51 90.89 0.38 85.66 86.11 0.45
ResNet-50 87.66 88.87 1.21 85.31 85.51 0.20
NASNet 87.44 87.63 0.19 69.36 69.85 0.49

MobileNet 88.43 88.98 0.55 82.04 82.68 0.64

The knowledge-distilled student always surpasses the accuracy of the vanilla-trained
network; however, in this case, the improvement is lower than by training the networks
from scratch. This is expected, as only the final layer benefits from knowledge distillation
because the rest of the weights in the peer student networks are frozen.

4.4. Comparison with State of the Art

In this section, we provide a comparison of the proposed KD framework with similar
methods for the literature. It is noteworthy that a direct numerical comparison is not
always relevant, as other methods use different training schedules, optimizers, and model
architectures, all of which have an impact on the networks’ performance. However, as
we are dealing with the process of KD (in which we want to improve an individually
trained model by making it benefit from the knowledge of a more powerful model), we
are actually interested in the gain of the knowledge distillation process (i.e., difference
between the accuracy of the knowledge-distilled student and the individually trained
model). Consequently, when interpreting the results, we rely on the accuracy improvement
of a knowledge-distilled student over an independently trained student.

Table 5 compares the results obtained on CIFAR-10 classification benchmark.

Table 5. Comparison with state-of-the-art works on CIFAR-10 database using ResNet-32 [22] as
student network.(best gain represented in bold).

Method Vanilla KD KD Gain

ONE [4] 93.07% 94.01% 0.94%
CLCNN [6] 93.17% 94.14% 0.97%
OKDDip net. [17] 93.66% 94.38% 0.72%
OKDDip br. [17] 93.66% 94.42% 0.76%
PCL [11] 93.26% 94.33% 1.07%

Proposed 92.77% 93.88% 1.11%

The improvement of the knowledge-distilled students over the independently trained
student is marginal (around 1% for all the methods); however, these accuracy levels are
close to the reported human accuracy on CIFAR-10 [33].

When compared with other works, the proposed method achieves a higher accuracy
gain after knowledge distillation. As opposed to the proposed method, in ONE [4] and
CLCNN [6], the low-level layers of the student networks are shared, which could limit the
discriminative power and diversity of peer networks.

In Table 6, we compare the proposed solution with other knowledge distillation
frameworks on the CIFAR-100 dataset.
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Table 6. Comparison with state-of-the-art works for ResNet-32 architecture trained on CIFAR-
100 dataset.

Method Vanilla KD KD Gain

DML [5] 68.99% 71.19% 2.20%
KDCL [7] 71.28% 73.76% 2.48%
OKDDip net. [17] 71.24% 74.60% 3.36%
OKDDip br. [17] 71.24% 74.37% 3.13%
SAD [15] 75.32% 77.47% 2.15%
PCL [11] 71.28% 74.14% 2.86%

Proposed 69.6% 72.76% 3.16%

For a fair comparison, the results of KDCL [7] were retrieved from [11], in which the
KDCL framework was trained on three parallel peer networks.

The proposed method surpasses DML [5] by almost 0.96% accuracy gain. In DML, a
cohort of student networks is trained together with mutual distillation and the parameters
of the network are updated in a multi-stage setting. Furthermore, we surpass SAD [15], an
offline attention-based KD framework by over 1% accuracy gain. In SAD, a pre-trained
teacher network is used together with an attention module that learns the similarities
between the teacher’s and the student’s feature maps, and then applies them to control the
distillation intensities of all possible pairs.

Compared with other online KD frameworks [7,11,17], the proposed method attains
comparable if not better results. OKDDip [17] can be implemented either in a branch-based
setting (the low-level layers of the students are shared)—denoted br. in Table 6, or in
a network-based setting (each student is an individual network)—denoted net. in the
table. The OKDDip in-network approach slightly surpassed the proposed method by 0.2%;
however, it uses more parameters for training and a more complex training strategy.

5. Ablation Studies

In this section, we perform a series of ablation studies to investigate further properties
of the proposed method. All the experiments reported in this section use ResNet-20 [22] as
peer student networks trained on the CIFAR-100 dataset. For all studies—except Section 5.1,
where N varies from 2 to 5—the number of student networks is set to N = 3.

5.1. Number of Student Networks

In the proposed KD framework, the “teacher” is computed on the fly as the weighted
average of the N peer student networks. Table 7 reports the impact of this hyper-parameter
N over the accuracy of the knowledge-distilled student and the ensemble. The first row
from the table accounts for the accuracy of a vanilla-trained student.

Table 7. The effect of the number of students N on the distillation performance.(best results repre-
sented in bold).

N KD Ensemble KD Gain

1 67.54% N/A N/A
2 69.30% 72.28% 1.76
3 69.73% 73.32% 2.19
4 69.01% 73.61% 1.47
5 69.9% 73.69% 2.36

It should be noted that the ensemble is used only as a training component (the “teacher”
from which the knowledge is distilled) and cannot be used for inference on real-world
data because the ground truth data are required when computing the attention features
(Section 3.3). Nevertheless, we report its accuracy on the test data to analyze the relationship
between the teacher’s accuracy and the accuracy of the knowledge-distilled students.
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As the number of peer student networks N increases, the accuracy of the ensemble
increases as well. The accuracy of the knowledge-distilled students follows the trend, but
there is an exception for the case of N = 4 students, where we obtained a slightly lower
and out-of-order gain in accuracy than the other configurations. Still, in all cases, when
training a network in the proposed KD framework we obtain a higher accuracy (with an
accuracy boost ranging from 1.47 when N = 4 to 2.36 when N = 5) than by independently
training it. Continuously increasing the number of students would not continually improve
the performance of the best student as their knowledge absorption is not boundless.

5.2. Ensembling Features

The main contribution of this paper is the attention-based ensembling strategy that
is used to compute the distillation signal across the training process. To compute the
ensembling weights, we extracted three features based on the students’ logits and the
ground truth data (as described in Section 3.3). In Table 8, we analyze the impact of these
features on the accuracy of the knowledge-distilled student and the ensemble.

Table 8. Ensembling features.(best results represented in bold).

Features KD Ensemble KD Gain

Vanilla 67.54% N/A N/A
F1 67.89% 71.66% 0.35
F2 68.76% 72.74% 1.22
F3 67.29% 71.57% -0.25

F1F2 69.59% 75.5% 2.05
F1F3 68.34% 72.39% 0.80
F2F3 68.98% 72.64% 1.44

F1F2F3 69.73% 73.32% 2.19

The first column indicates which features are used by the attention mechanism when
computing the ensembling weights. Feature F2 has the most discriminative power. The
experiments show that the best results are obtained when using all the proposed features
F1, F2, and F3. The ensemble with the highest accuracy is the one obtained using features
(F1, F2) at 75.5%. However, this is not the setup yielding the best knowledge-distilled
student. Feature F3 used individually brings a negative gain. However, when combined
with either F1 or F2, it increases their respective induced gains behaving like a catalyst.
When used in combination (F1, F2, F3), F3 keeps its catalytic effect, helping this combination
of features achieve the largest improvement.

5.3. Distillation Strength

Finally, we analyze the impact of the knowledge distillation loss weight λ (Equation (3))
over the accuracy of the knowledge-distilled students (Table 9). The first row from the table
represents the accuracy of an independently trained student.

Table 9. Impact of the KD loss weight.(best results represented in bold).

λ KD KD Gain

Vanilla 67.54% N/A
0 68.01% 0.47

0.1 68.69% 1.15
1 69.73% 2.19
2 69.41% 1.87
3 68.94% 1.40

Even when the knowledge distillation weight is disabled (λ = 0), we observe a slight
improvement over the independently trained “vanilla” student; so, just by training a model
in the proposed framework without any KD loss (Equation (5)), a small boost in accuracy is

176



Mathematics 2022, 10, 4285

observed. This is due to the regularizing effect of training the cohort of students together.
As we increase the value of λ towards 1, the accuracy of the knowledge-distilled students
increases; however, for larger values, the accuracy starts to decrease. Within the proposed
framework, the student networks are influenced by two loss functions (Equation (3)): the
classification loss Ldata and the knowledge distillation loss (Kullback–Liebler divergence)
LKD. As λ increases, the weight of the latter also increases, while the weight of the
classification loss remains the same. These results indicate that the classification loss still
plays an important role in the proposed framework and that the students benefit from
the ground truth data. Moreover, the classification loss is important because the teacher
ensemble relies on the predictions of the individual students.

As future work, we also plan to experiment by varying the λ parameter during the
training process.

6. Conclusions and Future Work

This work tackled the problem of knowledge distillation, a teacher–student training
setup in which a lightweight student network is guided by the knowledge of a teacher
network formed from lightweight students to improve its accuracy while maintaining a
low computational cost. As opposed to offline KD, where a pre-trained powerful teacher
is required, the proposed method simultaneously trains a group of student models and
learns from peers’ predictions, which are aggregated into an ensemble via an attention
mechanism. The attention mechanism is employed solely throughout the training process
and, for inference, a single lightweight network is selected and used. The main advantage
of this work is that by training a model in the proposed online KD framework, its accuracy
is boosted, without adding any additional parameters. In addition, the learning process is
end-to-end, and the teacher’s (ensemble) logits are computed on the fly using an original
attention-based mechanism.

The proposed method was evaluated on several image classification benchmarks,
both by training the networks from scratch and by transfer learning. We proved that the
proposed method can be generically used to improve the accuracy of image classification
problems. The results show that by training a network in this framework, the performance
of the knowledge-distilled student is consistently improved when compared with the
vanilla-trained networks. Moreover, for the ResNet architecture, a knowledge-distilled
student exceeds the performance of the immediately larger ResNet model trained on the
vanilla configuration. Our method was compared with several state-of-the-art works on
multiple image classification benchmarks, and the experimental results shows that it attains
comparable if not better results. Although the “gain” is not significant in absolute terms,
its magnitude is on par with the results from the state of the art. The main contribution is
to achieve better accuracy using the same network architectures by slightly changing the
training process. Thus, the same known network architectures will obtain better results
using KD techniques on the same datasets.

As for all online knowledge distillation methods, one limitation of the present study is
the exact mechanism that leads to the accuracy improvement of knowledge distillation over
other approaches has not been fully understood [8]. Moreover, the training process has a
higher computational resource footprint, as it involves optimizing several peer students
at once. However, as opposed to offline KD methods, the training process occurs in a
single step.

As future work, we plan to incorporate attention mechanisms to also distill knowledge
from intermediate feature maps and to extend the framework for other vision tasks.
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The following abbreviations are used in this manuscript:
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GAP Global Average Pooling
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KD Knowledge distillation
KL Kullback–Leibler divergence
ReLU Rectified Linear Unit
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Abstract: Unsupervised image segmentation is one of the most important and fundamental tasks in
many computer vision systems. Mixture model is a compelling framework for unsupervised image
segmentation. A segmented image is obtained by clustering the pixel color values of the image with
an estimated mixture model. Problems arise when the selected optimal mixture model contains a
large number of mixture components. Then, multiple components of the estimated mixture model
are better suited to describe individual segments of the image. We investigate methods for merging
the components of the mixture model and their usefulness for unsupervised image segmentation. We
define a simple heuristic for optimal segmentation with merging of the components of the mixture
model. The experiments were performed with gray-scale and color images. The reported results
and the performed comparisons with popular clustering approaches show clear benefits of merging
components of the mixture model for unsupervised image segmentation.

Keywords: mixture models; parameter estimation; clustering; unsupervised image segmentation

MSC: 68U10; 94A08; 62H35; 68T45

1. Introduction and Background

Intelligent computer vision systems are becoming increasingly popular. They are
very useful tool in many applications that aid the decision making process, for example,
agriculture [1], structural health monitoring [2], robotics [3], surveillance [4], product
quality and manufacturing [5], self-driving-vehicles [6], medicine [7], and so on.

Image segmentation can be viewed as a useful partitioning of the image. As such, it is
a central task in many computer vision systems, and one of most difficult ones [8–11]. It
can be supervised or unsupervised, as pointed out by Refs. [12,13]. In supervised image
segmentation, we want to partition the image into semantically coherent regions on the
image. This can also be referred to as semantic segmentation [3,14]. As such, it is usually
based on classification methods [13,15,16]. In unsupervised image segmentation, we are
interested in extracting similar segments based on pixel positions and color intensity values
with respect to a criterion [17]. As such, clustering algorithms are mostly used [11,12,17,18].

For supervised image segmentation, we usually need very large datasets for training a
classification model, e.g., a deep neural network [2,14]. In unsupervised image segmenta-
tion, we perform a clustering algorithm directly on the image under consideration [12,17].
Consequently, unsupervised image segmentation based on a clustering algorithm is weaker
in performance than classification. However, they do not require large training datasets, are
faster, require less computational power, and, most importantly, can be used in conjunction
with newer classification methods [3,12,13]. They are also much more useful than their
supervised counterparts for certain domain-specific tasks where prior knowledge is lacking,
whether due to a lack of plausible training images or other factors [12,13,19,20].

A mixture model is a compelling framework for many pattern recognition
tasks [21–24]. Traditionally, it is used in machine learning as a clustering tool and, therefore,
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in computer vision for unsupervised image segmentation [22,25–27]. Mixture models can be
seen as blob detectors, aimed at detecting regions of interest with similar colors or intensities
in an image [9,25,28]. In this respect, similar to the fuzzy clustering algorithms [10,12,29],
they are very promising for unsupervised image segmentation and as such can be useful
for further feature extraction and detection of region of interests [8,19].

Obtaining a useful segmentation with the mixture models is a delicate process. First,
the right mixture model must be chosen, i.e., Gaussian, Gamma, Weibul, or another that can
capture the detail correctly [11,25,30,31]. Next is the choice of model selection criterion [32].
Finally, the algorithm for estimation can be problematic [9]. All of the above-mentioned
can result in either under-segmentation problems (too few regions detected) or over-
segmentation (too many segments detected) [9,28,33]. An over-segmented image can be
regarded as noisy, while an under-segmented image as incomplete and thus inappropriate
for use. To tackle this issue, in this paper, we investigate the usefulness of a clearly
over-segmented solution, provided by the estimated mixture model, and the methods for
merging different detected regions to obtain a more useful segmentation.

Every component of the estimated mixture model represents a segment of the image, in
order to reduce the number of unwanted segments. We are interested in merging different
components of the mixture model [33]. By doing so, we are remedying the problems
that arose as a result of an inappropriate type of mixture model, the deficiency of model
selection criteria, and, to some extent, drawbacks of the estimation algorithm [33–35]. We
are investigating if many-to-one mapping as a one-to-one relationship between a mixture
model component and a cluster may be insufficient [9,33].

This paper is summarized as follows. We start with an explanation of mixture models
and their application in clustering and image segmentation in Section 2. Section 3 is reserved
for the derivation of merging procedures and criteria for merging. Section 4 describes the
estimation algorithm. Section 5 discuses the optimal segmentation. Section 6 introduces
the needed constants for evaluation and in Section 7 we provide the experimental results.
In Section 8 we provide some fruitful discussions of the experimental results, and Section 9
finalizes our work and concludes this paper.

2. Mixture Models

Let Y = {y1, y2, . . . , yn} be a d-dimensional observed dataset of n continuous observa-
tions yj = {y1, y2, . . . , yd}. Each observation yj is assumed to follow the probability density
function (PDF):

f (yj|c, w, Θ) =
c

∑
l=1

wl fl(yj|Θl). (1)

Equation (1) gives the PDF of a mixture model. The PDF of a mixture model consists of
weighted c components that follow simple parametric probability distribution, such as
Gaussian distribution, Weibull distribution, and similar [36,37]. Component distribution
PDF is given by the fl and has the parameters Θl . For example, PDF of multivariate
Gaussian distribution is

fl(yj|Θl) =
1√

(2π)ddet(Σl)
exp

(
−1

2
(yj − μl .)Σ

−1
l (yj − μl)

T
)

. (2)

Component parameters Θl are distribution specific. For the Gaussian mixtures, those
are the mean vector μl and covariance matrix Σl . Weights wl have the properties of the
convex combination wl ≥ 0 ∧ ∑c

l=1 wl = 1 [38]. Thus, we can arrange the mixture model
parameters in a set Θ

Θ = {w1, w2, . . . , wc, Θ1, Θ2, . . . , Θc}, (3)

or concisely and more conveniently

Θ = {w, Θ}. (4)
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The estimation of the parameters involves estimation of component weights w and
component parameters Θ. Usually, we denote the estimations as Θ̂. The easiest way to
estimate the mixture model parameters is via the maximum likelihood. In other words, the
parameters Θ̂ yielding the maximum of

L(Y |Θ = Θ̂) =
n

∏
j=1

f (yj|ĉ, ŵ, Θ̂). (5)

It is often more convenient to maximize the log-likelihood function

log L(Y |Θ) =
n

∑
j=1

log

(
c

∑
l=1

wl fl(yj|Θl)

)
, (6)

and, the estimation can be written as

Θ̂ = argmax
Θ

log L(Y |Θ). (7)

The maximization problem described with Equation (7) has many inconvenient as-
pects, mainly because the number of components c in the mixture model is not known
in advance. First, it is known that the likelihood value increases with the increase in the
number of components due to the overall better fit [28,39]. Second, without knowing
the number of components, it is impossible to derive the (6) to obtain the solution to the
maximization problem. Lastly, the use of global optimization algorithm is not convenient
due to the large number of optimization parameters involved in a mixture model [38].
Thus, some type of model selection procedure is commonly involved in the estimation
process [38].

2.1. Model Selection

Usually, we are interested in estimating the number of components ĉ and the accom-
panying parameters Θ̂; however, in some cases, the number of components is known [38],
in which case the model selection procedure is not needed—this occurs in the minority of
cases. In the majority of cases, we are faced with a ubiquitous problem of the maximization
of (6) when the number of components is unknown. Nonetheless, to derive Equation (6),
we need to know the number of components c. Therefore, it is a common practice to try
out different numbers of components and estimate the fit. Thus, it is quite common and
justified to denote the mixture model in relation to the number of components c,

Θ(c) = {w(c), Θ(c)}. (8)

Additionally, because the likelihood function increases with the increase in the number of
components, the selection of the optimal model based solely on maximum likelihood can
be misleading. Therefore, there is a need to introduce different model criteria to choose
the best fit. Generally, those are called information criteria [38]. We will denote those as IC.
The model selection procedure is described with Algorithm 1 [28,39].

In summary, we estimate the optimal mixture model Θ̂ for different numbers of
components c. If the number of components is known, we can solve Equation (7) using,
for example, the algorithm EM (expectation–maximization) denoted by the EM function in
line 4 of the Algorithm 1. EM is a local optimization algorithm mainly used to estimate the
maximum likelihood parameters of mixture models when some initial parameter estimates
are known in advance [38]. The optimal model is obtained for each number of components,
and the best model is selected from among them. The model giving the optimal selected
ICopt is thus the best model available. ICF in line 5 of Algorithm 1 represents the generic
function for estimating the chosen information criterion.
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Algorithm 1: Model selection procedure

Input: dataset Y and initialize set C = {c1, c2, . . . };
Output: optimal mixture model parameters wopt, Θopt;
1: ICopt = ∞, wopt = {}, Θopt = {}, copt = 0;
2: foreach c ∈ C do:
3: Initialize wini(c), Θini(c);
4: w(c), Θ(c) = EM(Y , wini(c), Θini(c));
5: Estimate criterion IC = ICF(Y , w(c), Θ(c));
6: if IC < ICopt:
7: ICopt = IC, copt = c, wopt = w(c), Θopt = Θ(c);
8: end
9: end

The importance of using a model selection procedure is illustrated in Figure 1. Different
models were estimated for different numbers of components c. For each model, a Bayesian
information criterion (BIC) was calculated [40]. The BIC is defined as

BIC = −2 log L + M log n, (9)

where M is the number of parameters in the model. It is quite obvious that the term
M log n, given that the M increases with the number of components c, is a balance factor
to compensate for the increase in log-likelihood value with the increase in number of
components c.

c=2

200

400

600

800

1000

2 4 6 8 10
c

BI
C

c=4

c=10

Figure 1. Model selection illustrated.

BIC is also one of the most commonly used information criteria [41]. Choosing the
model with the optimal value of BIC should provide the best solution [33,34]. Although
every estimated model yields one of the local optima of log-likelihood function from (6),
different models provide less or more of the information needed. For example, a model
with two components clearly is an under-fit, while a model with ten components gives an
over-fit. In contrast, a model with five components seems to be the best selection, at least
when the BIC criterion is used.

2.2. Mixture Model-Based Clustering and Image Segmentation

In a mixture model framework, it is generally considered that each component in a
model represents one homogeneous unit [42]. In other words, that homogeneous unit rep-
resents a sub-population of the whole population. In a clustering sense, that homogeneous
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unit represents the cluster. A cluster is a group of observations from a dataset that share
similar characteristics. Thus, every observation that arose from a certain component in a
mixture model is considered to form a cluster. For every observation yj in dataset Y , we
can estimate the posterior probability

τjl =
wl fl(yj|Θl)

∑c
l̃=1 wl̃ fl̃(yj|Θl̃)

, (10)

that it arose from the lth mixture model component. The cluster assignment is made
according to the maximum a posteriori (MAP) rule

lj = argmax
l̃=1,...,c

τjl̃ ∀j ∈ {1, . . . , n}. (11)

We are interested in labeling all of the observations in dataset Y : ergo, a clustering
scheme or simply clustering. Image segmentation is a similar process. We want to identify
k partitions of the image, which are coherent in some way. This is illustrated in Figure 2.
The original image in Figure 2a comes from the Berkeley dataset [43] and the second image
(Figure 2b) is the human segmentation provided by the participants in study.

(a) Image. (b) Segmentation.

Figure 2. Image segmentation task.

Many clustering algorithms are used for image segmentation [44]. Image segmentation
with a mixture model can be conducted using pixel intensity and position; however, using
the pixel position values in the estimation of the mixture model often degrades the results,
due to their non-random nature. Thus, we are interested only in modeling the PDF of pixel
intensity; accordingly, we produce a clustering (scheme). Additionally, for the component
distribution, the Gaussian distribution is usually used [9,31]. This is a popular choice
because the multivariate extension is straightforward; thus, images with multiple channels
(color images opposed to monochrome images) can be segmented. Furthermore, the
mixtures of Gaussian distributions are the easiest and most straightforward to estimate.
However, using Gaussian distribution as the component distribution brings many problems.
The first is that the pixel intensity is bounded, while the Gaussian distribution is not. The
second problem arises from the fact that the Gaussian PDF is symmetric around the mode.
Because of the non-symetricity of the mode (i.e., the left and right tails are not equal),
multiple Gaussian components are estimated to compensate for this. This leads to many
clusters, which then leads to many segments, which are not actually present. Although
these problems generally arise with the Gaussian mixture model, the problem of estimating
too many components in other mixture models is also present, especially when estimating
the PDF of an image.

3. Merging of Redundant Components in Mixture Model-Based Clustering

Let us look at the quite famous old faithful geyser dataset [45]. The dataset contains
272 observations on two continuous variables, the first named eruptions and the second
named waiting, as illustrated on plots in Figure 3. The first variable, eruptions, gives
the geyser eruption time in minutes, whilst the second one, waiting, gives the waiting
time to next eruption, also in minutes. Figure 3a gives the visualization of the dataset
without identified clusters while Figure 3b,c give the clustering solution obtained from the
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estimated two-component Gaussian mixture model and the three-component Gaussian
mixture model.

(a) (b) (c)

Figure 3. Old faithful dataset with two and three clustering schemes from estimated two- and three
component Gaussian mixture models (GMM). (a) Old faithful dataset. (b) Two-component GMM.
(c) Three-component GMM.

It occurs quite naturally that the two-component clustering solution is true. Not even
by looking at the solution on plot Figure 3b and only by observing non-colored points
in plot Figure 3a there is some convincing evidence that there are two groups of points.
However, let us examine the obtained values of the IC criteria in Table 1. Even though
the difference in IC values is not so dramatic, the three-component solution is the optimal
solution judging by two different IC, namely AIC (Akaike information criterion [46]) and
BIC. Judging by their value, the three-component solution seems to be a preferred solution.
In contrast, the ICL (integrated classification likelihood [42]) criterion had a lower value
for the two-component mixture, meaning that this model would be selected as optimal.
This is expected because the ICL criterion favors the solution that is more probable to be
the optimal clustering solution. The sole reason for the derivation of the ICL criterion is
to bypass the somewhat tricky nature of BIC to favor the model that is not an optimal
clustering solution.

Table 1. Values of BIC for estimated Gaussian mixture model with different numbers of components.

Gaussian Mixture Model Two Component Solution Three Component Solution

AIC 2284 2274
BIC 2320 2314
ICL 2320 2357

3.1. Entropy-Based Merging

While the ICL criterion seems to be sufficient for the old geyser dataset and gives an
optimal clustering solution, it is far from bulletproof. Mainly, the problem is that it can
provide a clustering solution with too few clusters in highly overlapping situations [34].
In image segmentation, such situations are frequent. Another point is provided in [34].
Although the number of components in the mixture model is well met by, e.g., the BIC
criterion, the number of components in that scenario is well suited for the underlying PDF
of a dataset but not necessarily for clustering. That may well mean that some clusters in the
clustering are not well-presented with only one component of the mixture model, meaning
that a one-to-one scenario is not practical. This goes hand in hand with many density-based
clustering approaches, especially the likes of mean-shift or modal-based EM algorithm [47].

To propose a solution, Baudry et al. [34] developed a merging procedure based on the
estimation of entropy of soft clustering: in other words, posterior probabilities. Starting
with a number of components c in the mixture model that fits the dataset well and an equal
number of clusters k = c as the number of components in the mixture model, the idea is
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to build a sequence of clusterings with merged pairs of clusters. Thus, the newly created
clustering schemes contain k − 1 clusters. At each stage, merging happens between each
and every pair of clusters and the most promising pair for creating the k − 1 clustering
scheme is the one for which the newly obtained k − 1 clustering scheme maximizes a
criterion

Ell̃ = −
n

∑
j=1

(
τjl log τjl + τjl̃ log τjl̃

)
+

n

∑
j=1

τjl∪l̃ log τjl∪l̃ , (12)

where the τjl gives the posterior that the jth observation belongs to lth component/cluster,
τjl̃ gives the posterior that the jth observation belongs to l̃th component/cluster, and the

τjl∪l̃ is the posterior of the merged cluster combined from components/clusters l and l̃. The
posterior τjl∪l̃ can be simply calculated as

τjl∪l̃ = τjl + τjl̃ , (13)

and obvious condition l �= l̃ should be met. The number of combinations is therefore equal
to (

k
2

)
=

k!
2(k − 2)!

=
k(k − 1)

2
, (14)

when the current number of components/clusters is k.
The final selected merged clustering scheme fits the data as well as the first solution

provided by the c mixture model components, since it is based on the same mixture model
and the likelihood does not change. Only the number and definition of clusters are different.
In contrast, the likelihood of the mixture model selected by the ICL criterion can be worse.
The method described above yields just one suggested set of clusters for each k, and the
user can choose between them on substantive grounds. For example, the number of clusters
in the final clustering scheme can be selected to match the number of components in the
mixture model selected with the ICL criterion. Otherwise, because in each merging step
we obtain the entropy of merged pair of clusters from the previous clustering scheme, the
elbow method can be employed on graphical results of the entropy variation against the
number of clusters to select the final number of clusters k [34].

3.2. Merging Based on Directly Estimated Mis-Classification Probabilities

The second method is described by [35]. As the previous method described, this
method depends on soft clustering or, in other words, posterior probabilities τl j and hard
clustering or indicator value 1l j. Indicator value 1l j is a binary variable giving the indicator
if the observation yj belongs to lth component/cluster. However, we are not interested
in the probability of observation being clustered to the lth component/cluster but the
misclassification probability between two components of the mixture model pll̃ . The
misclassification probability pll̃ can be summarized as the distance between two probability
distributions, e.g., for two Gaussian distributions, a Bhattacharyya distance [35], but in a
more generalized fashion and additionally more focused on clustering application. The
misclassification probability can be estimated as

p̂ll̃ =
∑n

j=1 τl j1(l̃ j)

∑n
j=1 τl j

, (15)

where the τl j is the soft clustering for the lth component/cluster and 1(l̃ j) is the hard
clustering for the l̃th component. It is also important to say that the p̂ll̃ is not symmetric,
meaning that p̂ll̃ �= p̂l̃l ; however, this can be violated. Thus, the most optimistic criterion is
the

q = max
(

p̂ll̃ , p̂l̃l
)
, (16)
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and should be used to select the merging pair of components/clusters. Again, it is quite
obvious that the merged pair will result in equal posterior probabilities τjl∪l̃ as for the
previous described method (Equation (13)).

Merely by observing the merging criteria in both methods, it is sufficient to say that
both procedures will results in different final clustering schemes. Nonetheless, they share
several similarities, given that the ∑k

l=1 τl j = 1 must hold for any number of clusters
k ≤ c. The most important similarity, at least for the image segmentation task, is the
obvious merging of overlapping components. Namely, two components, not overlapped
significantly, will obey the rule of τl j >> τl̃ j ∀j ∈ {1, . . . , n} or vice versa. In other words,
one component will have posterior probabilities close to 1, while the other will have close to
0. Thus, both criteria (Equations (12) and (16)) will be close to 0, suggesting the component
should not be merged. Otherwise, if the significant overlap between components exists,
both criteria will yield significantly higher values, suggesting that the components should
be merged. Simply, the methods will progress to the solution that will minimize the overlap
between the posterior probabilities. If the overlap between the mixture model components
is not high both methods will yield similar solutions; however, in the presence of high
overlap between the components of the mixture model, both methods will give different
results.

3.3. Component Merging Mechanism Inside Mixture Model

An advantage of both selected merging methods and criteria is in the fact that they can
be used for any component distribution in the mixture model, as they both are distribution
parameter independent [35]. Instead of recalculating the best possible merging pair based
on distribution component parameters, we are calculating the best possible merging pair
based on posterior probabilities τl j and clustering labels (indicator values) 1l j. Thus, both
methods have a wider range of application. Furthermore, instead of recalculating new
component parameters for new merged pairs, we simply store the merging tree, and
only update the posterior probabilities with Equation (13) to reflect the current/desirable
number of clusters. Cluster indicator values for new merged clusters can be obtained
merely by summing the indicator values of previously merged pair of clusters:

1jl∪l̃ = 1jl + 1jl̃ , (17)

and cluster labels by the union of cluster labels of cluster pairs to be merged. Essentially,
we are performing a form of hierarchical clustering on mixture model components. By
doing so, we maintain the flexibility of a merged cluster being defined by multiple mixture
model components.

4. REBMIX Algorithm and Connection with Image Segmentation

This section develops the connection of the REBMIX (Rough-Enhanced-Bayes mixture
estimation) algorithm and its usefulness in image segmentation. We will not cover details
about the REBMIX algorithm already described in many papers [24,36,37,48,49]. As already
indicated by [28], the REBMIX algorithm is a heuristic useful for the estimation of mixture
model parameters based on empirical density estimation. The first step in the multi-step
procedure employed is the pre-processing step in which the empirical density estimation is
carried out. This empirical density estimate can be made with different techniques; however,
we are interested in the histogram, which is, in essence, how the pixel density values in an
image can be naturally compressed. Given that the digital images are represented by single
(gray scale) or multiple channels (color, RGB or otherwise), which are vectors of integers,
the input parameter for the REBMIX algorithm pre-processing step is known in advance.
For the different bit depths of digital image, this parameter varies; e.g., for 4-bit images this
parameter is K = 24 = 16 and for the 8-bit it is K = 28 = 256 and so on. Given that the 8-bit
digital images are predominantly used, K = 256 can be adopted most of the time, because
the pixel intensity is an integer value between 0 and 255. However, as pointed out in [28],
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this parameter can lead to the overflowing of estimated mixture model components, which
again emphasizes the merging of components in the mixture model.

5. Optimal Image Segmentation

In revising the merging criteria, we have already given some of the heuristics men-
tioned in [34,35] that indicate when is optimal to stop merging the mixture components and
yield final clustering solution. We will revise them here and propose some more practical
ones, especially with respect to image segmentation. As mentioned before, one could aim
that the final number of clusters after merging is equal to the number of components of
the mixture model selected with the ICL criterion. On the other hand, the merging process
could be stopped if the merging criterion is lower than a predetermined lower bound for
that specific merging criterion. For example, [35] gives the lower bound for the DEMP
merging criterion q∗ = 0.05 in his experiments. The introduction of new hyperparameters
seems, at least to us, somewhat problematic. They might work in one situation and not in
another. Their values vary considerably for different examples, leaving a lot of leeway to
the user. This can be encouraging and annoying at the same time. We would like to avoid
this. In addition, they are usually difficult to automate. The best we can do is to use the
elbow method to determine the optimal value. In other words, the heuristic here is the
knee of a curve obtained by plotting the values of the merging criterion and the number
of clusters. In clustering, we justify this with the notion of loss of explanation due to sub-
sequent merging. We further note that using the elbow method for our purposes leads to
the following problem. The digitized nature of the image intensities may result in multiple
elbows (or knees), leading to multiple plausible stops, making this heuristic unappealing.
Finally, we may also want to use a different metric that does not depend on the mixture
model and is more focused on the current application, namely image segmentation.

Measuring entropy has proven to be a useful metric in many artificial intelligence
image applications [50–53]. The entropy of an image is simply defined as

H = −∑
j

pj log pj, (18)

where j is the unique color in the image and pj is the probability of its occurrence. Segment-
ing the image using the mixture model with c components yields the entropy estimate

H = −
c

∑
l=1

wl log wl . (19)

It is trivial to see that subsequently merging the mixture components reduces the
estimated entropy, since Ĥ → 0 when c → 1 due to the property of mixture components
weights is ∑c

l=1 wl = 1. Therefore, to approach a practical solution, we propose an average
of the image segmentation entropy of the form

E(H) = −
c

∑
l=1

w2
l log wl . (20)

Finally, it should be noted that this average of the image segmentation entropy is in no
way related to the average entropy of [54], where the goal is the average entropy estimate
of a continuous random variable. The optimal image segmentation can therefore be chosen
to maximize the average of the image segmentation entropy or max E(H).

6. Experimental Setup

In this section, we further describe the experiments, experimental algorithm settings,
different algorithms used, and metrics used for the results evaluation. Experiments are
conducted on digital images. Digital images can have multiple channels. Usually, color
digital images have three or more channels. Each channel represents one of the primary
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colors and its intensity. However, monochrome digital images (gray-scale) have only one
channel, which contains only the amount of light, i.e., the intensity.

Color digital images carry much more information; thus, they are more demanding
for processing. In contrast, monochrome images are easier to process, as they have less
information. Some algorithms used for image processing are also only capable of processing
gray-scale images. Therefore, color images need to be transformed into gray-scale. A
mixture model-based approach is capable of handling color images and, therefore, also
gray-scale images. Because gray-scale processing requires fewer parameters to be estimated,
it has a better prognosis on gray-scale images. Nonetheless, the results for color images can
be promising, as seen in [28].

Thus, the mixture model approach for clustering to both gray-scale and color images
will be used to obtain segmentation. For the mixture model, we will use the Gaussian
mixture model. For the information criterion, we will use BIC; for the model selection
estimation strategy, we will use single REBMX and EM from rebmix R package. The
strategy is fully described in [39]. In essence, we are combining both REBMIX and EM
algorithms to obtain the best possible estimations while keeping the computation overhead
minimal, by providing the smoothing parameter K to the REBMIX pre-processing step. The
value of parameter K = 256 is described in the previous section. The maximum number
components to consider in model selection procedure is cmax = 15. The merging of mixture
model components with the entropy criterion, explained in Section 3.1, is referred to as ENT,
and the merging of mixture model components with directly estimated misclassification
probabilities, explained in Section 3.2, is referred to as DEMP. In addition, a single REBMX
and EM strategy with ICL criterion is used as a baseline approach for optimal image
segmentation with Gaussian mixture models. We refer to this as ICL.

We will use several useful external clustering metrics to quantitatively evaluate various
image segmentation results.

Remark 1. For completeness, we reiterate that the terms segmentation and clustering are used
interchangeably, as they are equivalent in this context and refer to the same thing. For aesthetic
reasons, we use the term segmentation when we want to emphasize the clustering application of
image partitioning.

We use precision P, recall R , Dice score F1 , Jaccard score, adjusted rand index ARI,
and adjusted mutual information AMI. Precision and recall are self-explanatory. The
former is the frequency of correctly predicted positives among all predicted positives and
the latter is the frequency of correctly predicted positives among all correctly predicted
positives. The Dice score is the harmonic mean between Precision and Recall, and the
Jaccard score or better known as Intersection over Union is the frequency of correctly
predicted positives among all true positives and predicted positives. Formally we define
them with following equations

P =
TP

TP + FP
(21)

R =
TP

TP + FN
(22)

F1 =
2 · TP

2 · TP + FP + FN
(23)

F =
TP

TP + FP + FN
(24)

where in clustering

• True positives (TP) is the number of pairs of points belonging to the same cluster in
predicted and true clustering;

• False positives (FP) is the number of pairs of points belonging to the same cluster in
true clustering but they are in different clusters in predicted clustering;
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• False negatives (FN) is the number of pairs of points belonging to the same cluster in
predicted clustering but they are in different clusters in true clustering;

• True negatives (TN) is the number of pairs of points that do not belong to the same
cluster in predicted and true clustering.

These four metrics give several meaningful aspects of segmentation quality with
different clustering algorithms compared to ground truth (i.e., perfect or true segmentation).
On the other hand, we use ARI and AMI to provide a measure of agreement between
two clustering solutions, i.e., predicted and true clustering, that takes into account the
randomness of cluster assignments. This is especially important when the number of
clusters in the predicted and true clustering is different and when the number of predicted
clusters is large. ARI is defined in the range [−1, 1], with values less than 0 indicate that
clustering is worse than performing clustering at random, while values greater than zero
generally define the degree of agreement between clusters. AMI is defined in the range
[0, 1], with values closer to 0 indicating largely independent clusters between the predicted
and true clustering, and values closer to 1 indicating stronger agreement between clusters in
the predicted and true clustering. The equations for ARI and AMI are somewhat unwieldy,
and to avoid further repetition and unnecessary lengthening of the text, we omit them here.
Interested readers may wish to consult them in [55], for example.

Finally, a note on clustering algorithms used alongside mixture modeling. There are
many clustering algorithms, but the most popular ones, and thus the ones we use for
comparison here, are discussed in more detail in the following two groups.

1. EM algorithm with Gaussian mixtures denoted as GMM [38], K-means denoted as
KMEANS [56], and Fuzzy C-means denoted as FCMEANS [57],

2. and Meanshift denoted as MS [58], Density-based clustering denoted as DBSCAN [59],
and Ordering Points To Identify the Clustering Structure denoted as OPTICS [60].

In the first group of clustering algorithms, the number of clusters must be determined
in advance. We will use these algorithms for the experiments if we want to obtain the
clustering solution with the desired number of clusters (segments). The second group of
clustering algorithms estimates the optimal number of clusters based on internal criteria,
providing the optimal clustering. We will use these algorithms for optimal segmentation
of images. For their implementation, we use the scikit-learn library for the Python pro-
gramming language [61]. To use them in the context of image segmentation, we followed
the procedure of [44]. First, we used the SEEDS (Superpixels Extracted via Energy-Driven
Sampling) superpixel algorithm [62] (from OpenCV library) and reduced the number of
pixels in the image. In addition, we tried different values of the required parameters to
obtain the best possible segmentation on several images. Once we were satisfied, we kept
these values for further evaluation.

7. Experiments

In this section, we further report the results obtained by applying different clustering
algorithms to digital images from different datasets. We use these for comparative studies of
the discussed merging criteria and the optimal clustering obtained based on the heuristics
we proposed in Section 5.

7.1. Crack Image Segmentation

In the first experiment, we will investigate the usefulness of our proposal for the
problem of segmenting crack images (see Figure 4). This is a widely known and studied
problem in the literature [63]. The goal is to extract the pixels from the digital images that
belong to the observed crack on the digital image, essentially a foreground/background
segmentation. The images examined are monochromatic (gray-scale) because the crack
on the image usually manifests as an area of lower intensity (darker). Many thresholding
methods commonly used for this problem fail because the gray density distributions
representing the background and foreground are not normal or appear as quasi-unimodal
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functions [64]. In addition to thresholding methods, a clustering approach is also useful. It
can be considered as a two-cluster problem, but may fail because the background and/or
foreground object are not optimally estimated with a single distribution and thus require
subsequent merging.

Figure 4. Segmentation of crack images with different clustering algorithms. First row: gray-scale
image; true segmentation; GMM; KMEANS. Second row: FCMEANS; OTSU; ENT; DEMP.

For this task, we examined 250 different images that can be found on online dataset
repositories. Most of them are from previous studies of crack image segmentation, such
as Ref. [63]. The qualitative results can be found in Figure 4. The quantitative results are
presented in Figure 5 in the form of boxplots, and the summary average values of the four
metrics studied can be found in Table 2. We chose to examine only Precision, Recall, Dice,
and Jaccard score because we knew exactly how many segments the optimal segmentation
should contain, namely two segments.

Table 2. Averaged metric values obtained on crack segmentation dataset. The best values are in bold.

Metric↓/Algorithm→ GMM KMEANS FCMEANS OTSU ENT DEMP

Precision (P) 45.6 39.0 28.2 38.9 78.4 70.9
Recall (R) 88.5 92.6 94.4 92.6 63.4 73.7
Dice (F1) 54.4 45.3 34.8 45.2 61.9 65.3

Jaccard (J) 42.6 36.1 26.6 36.0 49.7 54.1

From the reported results, it is clear that merging the components with either ENT
or DEMP criteria results in much better segmentation than the compared algorithms. For
clarity, we have also included the famous Otsu thresholding method (OTSU), although it is
not a clustering method. It is also worth noting that we are dealing with an unbalanced
problem, which is why the recall value is slightly exaggerated. This is because the cracks
only occupy a small portion of the image. Even if the returned segmentation contained
only one segment (i.e., no crack was detected), the percentage of correctly returned pixels
out of all positively returned segments is still high. On the other hand, the precision is low
because the false-positive pixels may exceed the true-positive ones. Judging by the Dice and
Jaccard score, the ENT and DEMP algorithms that use mixture merging are far superior.

191



Mathematics 2022, 10, 4301

Dice Jaccard

Precision Recall

GMM

KMEANS

FCMEANS

OTSU
ENT

DEMP
GMM

KMEANS

FCMEANS

OTSU
ENT

DEMP

0

25

50

75

100

0

25

50

75

100

Algorithm

Sc
or

e 
[%

]

Figure 5. Boxplots of the metric distribution using different clustering algorithms for the crack image
segmentation dataset.

7.2. Natural Image Segmentation

The second experiment is natural image segmentation. This is the most common
application of image segmentation methods. The goal is to obtain a meaningful segmen-
tation of the image that indicates the different coherent regions in the image. The first
experiment is considered a simpler task, so we used only gray-scale variants of the images.
The second experiment is much more challenging, as the variations of the different objects
on the natural image are harder to distinguish. Therefore, we are forced to use all three RGB
channels of a digital color image. All images used are available as a part of the Berkeley
image segmentation dataset [43].

7.2.1. Recovering the True Segmentation by Manually Selecting Optimal Number
of Segments

We will first present the comparative results of segmentation with merging the compo-
nents of the mixture model versus estimating one mixture component per segment. In other
words, we are interested in whether merging multiple components of the mixture model
per segment proves to be better. To extend the comparisons a bit, we added other clustering
algorithms from the first group, where we also need to choose the desired number of
components (number of clusters in KMEANS and FCMEANS). To make these comparisons
more illustrative and also more fair, we selected five simple images from the Berkeley
image segmentation dataset and relabeled them so that their true segmentation is more
homogeneous in color. This was necessary because first, the true segmentation from the
Berkeley image segmentation dataset is more semantically oriented. Second, it lets us
know how many segments should be included in the resulting segmentation so that we
can specify the desired number of segments for each algorithm to be compared. Selected
images are provided in Figure 6.
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Figure 6. Selected images from the Berkley image segmentation dataset. Image identifiers are: 35058,
24063, 97033, 353013, 361084.

In the first image, we target two segments, a green background and a red ladybug.
In the second image, 24063, we target three segments: house (white), door and balcony
(brown), and sky (blue). The third image, 97033, would ideally have four segments, house
(brown), snow (white), forest (green), and sky (blue). In the fourth image, 353013, there
are five distinguishable colors (table, flowerpot, earth, flower, and background), so five
segments, and in the fifth image there are six (earth, elephants, jockeys, blankets, forest,
and sky). We summarized all qualitative results in Figure 7 and quantitative results in
Table 3. For the quantitative results, we only report Precision P, Recall R, Dice score F1,
and Jaccard score J because the true segmentation and the predicted segmentation contain
the same number of segments. They seem to be sufficiently informative.

Figure 7. Image segmentation with different clustering algorithms. First column: True segmentation;
Second column: GMM; Third column: KMEANS; Fourth column: FCMEANS; Fifth column: ENT;
Sixth column: DEMP.

From the reported qualitative and quantitative results, it is evident that the merging
of the mixture components leads to a better segmentation of the image, both by the highest
obtained metric value and by the visual inspection of the segmentation. Moreover, it
is clear that the merging of numerous components circumvents the problems caused
by the representation of the segment by one component (or cluster for KMEANS and
FCMEANS), which are mostly caused by obtaining the locally optimal cluster solution.
The algorithms used here would inevitably find a more suitable local clustering solution
if we further perturb the initial parameters. However, this could become impractical and
computationally infeasible.
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Table 3. Quantitative results of segmentation quality of selected images with different clustering
algorithms. The best values are in bold.

Precision score (P)
Algorithm GMM KMEANS FCMEANS ENT DEMP

Image

35058 94 94.2 94.2 96.8 96.8
24063 91.1 95.7 80.3 81.7 96.4
97033 73.4 68.7 67.9 83.7 83.7
353013 77.0 58.4 58.4 65.7 69
361084 76.6 53.1 51.1 80.9 75.7

Recall score (R)
Algorithm GMM KMEANS FCMEANS ENT DEMP

Image

35058 50.4 54.4 54.3 99.9 99.9
24063 91.1 95.7 80.3 81.7 96.4
97033 73.4 68.7 67.9 83.7 83.7
353013 64.8 63.7 56.8 84.7 85.1
361084 73.0 57.0 45.8 76.5 69.4

Dice score (F1)
Algorithm GMM KMEANS FCMEANS ENT DEMP

Image

35058 65.6 69.0 68.9 98.3 98.3
24063 81.8 93.9 78.9 84.8 95.7
97033 55.7 49.4 48.8 67.0 67.0
353013 70.4 60.9 57.6 74.0 76.2
361084 74.7 55.0 48.3 78.6 72.4

Jaccard score (J)
Algorithm GMM KMEANS FCMEANS ENT DEMP

Image

35058 48.8 52.6 52.5 96.7 96.7
24063 69.3 88.5 65.2 73.6 91.8
97033 38.6 32.8 32.3 50.3 50.3
353013 54.3 43.8 40.4 58.7 61.6
361084 59.7 37.9 31.9 64.8 56.7

7.2.2. Optimal Segmentation Results on Berkley Image Segmetation Dataset

In the second part of the experiment, we are interested in empirically investigating
the optimal segmentation that results from the heuristic described in Section 5. In the first
part of the experiment, we manually determined the optimal number of segments based on
the image under study. Thus, we limited ourselves to a smaller number of images for com-
parison. Here, the heuristic selects the optimal segmentation, i.e., the number of segments
is determined automatically; therefore, it is plausible to analyze it on the entire dataset.
The empirical study was enriched by comparisons with, in addition to the segmentation
results obtained with the ICL criterion and the BIC criterion without subsequent merging,
the clustering algorithms of the second group (MS, DBSCAN, and OPTICS), which can also
provide optimal segmentation.The qualitative results of segmentation by using different
algorithms is provided in Figure 8 and Table 4. We have also added some qualitative results
in Figure 9 to further illustrate the segmentation of different algorithms. Table 4 shows
the averaged metrics for each algorithm over the entire dataset . A better representation is
provided by the boxplots for each algorithm and metric in Figure 8, which we can also use
to examine scatter.
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Table 4. Averaged metrics obtained with the Berkley image segmentation dataset. The best values
are in bold.

Metric↓/Algorithm→ BIC ICL ENT DEMP MS DBSCAN OPTICS

Precision (P) 58.3 53.6 50.2 51.4 44.4 51.1 41.6
Recall (R) 30.2 50.1 53.8 57.4 78.9 66.8 75.7
Dice (F1) 36.1 46.7 47.5 49.8 52.7 53.7 49.5
Jaccard (J) 22.9 32.2 32.8 34.9 38.4 39.5 35.1

ARI 22 26.8 26.8 29.3 24.7 31.4 17.3
AMI 36.9 37.2 37.9 38.4 28.1 36.2 25.2
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Figure 8. Boxplots of the metric distribution using different clustering algorithms for the Berkley
image segmentation dataset.

The results reported here are similar and mostly better than the values in [44]. This
could be due to the different setting of the experimental parameters and the different im-
plementation of the algorithm, but we find it interesting. Since the BIC and ICL algorithms
returned many segments, and generally more than the other methods studied, which
can be further verified in Figure 9, the precision value was high and the recall value was
low, as expected. Since the clustering algorithms MS, DBSCAN, and OPTICS preferred a
smaller number of segments, the recall value was high and the precision was low. This
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clustering was also highly dependent on the superpixels obtained. First, the superpixels
greatly reduced the number of pixels (we chose about 1000 superpixels), reducing the color
variations of small objects while preserving the variations of larger objects. This can also
be seen in Figure 9. The ladybugs in Figure 9c or the house in Figure 9b, or rather, their
respective segments are missing and were merged with others. The merging algorithms
were mostly in the middle, with DEMP consistently better than ENT. The AMI value was
the best of all with the DEMP algorithm. ARI’s slightly higher scores with the DBSCAN
algorithm than with DEMP are due to the fact that many images contain a large portion of
the scene with background that was correctly segmented in most cases. Again, both the
merging algorithms and the heuristics were inadequate because the optimal segmentation
favored more than one segment for the background. Finally, examination of the scatter
of the metric values from Figure 8 suggests that the BIC algorithm has the least variation
(i.e., the box with the lowest height). This, in turn, could be related to the fact that the BIC
algorithm always had the highest number of segments. Therefore, it is expected that the
values of the metrics obtained for different images would vary less. On the other hand,
with fewer segments, the values may vary greatly from the expected values, resulting in
very different metric values for different images.

(a)

(b)

(c)

Figure 9. Segmentation results on different images from Berkley image segmentation dataset. First
row: BIC, ICL, DEMP, and ENT algorithm. Second row: MS, DBSCAN, and OPTICS algorithm. Last
image in second row is true segmentation. (a) Segmentation results of different algorithms on image
24063. (b) Segmentation results of different algorithms on image 97033. (c) Segmentation results of
different algorithms on image 35008.
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7.3. Comparisons of Computational Times

The final reports address the computation time required for each algorithm. Theo-
retically, the algorithms used here should be evaluated until the maximum number of
iterations is exhausted, as noted in Refs. [28,39]. In this case, their time complexity is
polynomial. Empirically, however, it turns out that these algorithms perform differently
due to their slightly different implementations or approximations used, etc. Here, we focus
on the empirical results obtained during runtime. Since the gray-scale images have only
one value per pixel and the color images have three, we split the results to obtain a better
understanding of the differences.

We provide the results again in the form of boxplots of the computation times for
each algorithm and both datasets, one representing the gray-scale images and the other
the color images, in Figure 10 and the average computation times over both datasets in
Table 5. For the gray-scale images, it can be seen that the single REBMIX and EM strategy
with K = 256 used for mixture estimation in the R package rebmix yields similarly fast
results as the Gaussian mixture implementation of sklearn, although it estimates at least 15
more candidate mixture models, as indicated by the parameter cmax. This is also true for
the KMEANS and FCMEANS algorithms used. OTSU was significantly faster, but this was
to be expected due to its simple calculations. On the other hand, when comparing the color
images, it looks like the mixture model approaches are abundantly exhaustive compared to
their counterparts MS, DBSCAN, and OPTICS. It should be noted that the MS, DBSCAN,
and OPTICS algorithms ran on largely shrunken data sets with only 1000 values obtained
by SEEDS superpixel, as opposed to the mixture approach which ran on the full image
resolution. The image resolution was 480 × 320, giving 153,600 pixel values, which means
that the data sets for the mixture model were 150 times larger. One of the main reasons
why the superpixels are used at all is that the MS, DBSCAN and OPTICS algorithms would
not provide segmentation in an acceptable time to even consider them here. Therefore,
the direct comparison of the computation times obtained is somewhat unfair, yet the time
performance of the mixture model for color images is definitely not pleasing. Finally, ENT
merging seems to be somewhat slower, at least for the gray-scale images. This is somewhat
unexpected, since the number of operations is the same for DEMP and ENT merging. The
only difference we think is plausible is that ENT merging requires repeated log calculation,
which could cause this overhead.
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Figure 10. Boxplots of the distribution of computational time using different clustering algorithms
for the two datasets used (the dataset for crack segmentation is referred to as gray-scale images and
the dataset for Berkley image segmentation is referred to as color images).
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Table 5. Average value of computation time over for each algorithm.

Gray-scale images

Algorithm GMM KMEANS FCMEANS OTSU ENT DEMP
Computation time (s) 0.786 2.671 2.272 0.139 2.267 1.375

Color images

Algorithm BIC ICL ENT DEMP MS DBSCAN OPTICS
Computation time (s) 32.82 33.75 33.86 32.83 0.429 0.145 0.591

8. Discussion

Merging components of a mixture model based on entropy or misclassification criteria
seems to be a very useful approach to quickly improve image segmentation. Indeed,
using a model selection procedure and a non-clustering information criterion such as BIC
allows greater flexibility in image segmentation than simply using a clustering information
criterion, e.g., ICL. The explanation for this lies in the fact that the segment-wise distribution
differs from the Gaussian distribution for many images. However, the Gaussian distribution
is interesting because of its simple definition and straightforward application. The segment
color distribution of a given image may be multimodal or skewed, and the BIC criterion
would be sufficient to model the underlying PDF of the image, but the cost is the large
number of components. ICL reduces the number of components by penalizing highly
overlapping components. The price, however, is that such components may not be well
suited for modeling individual segments. We have seen that neither of them is capable
of handling image segmentation on its own. Merging components fixes this problem and
improves image segmentation and thus the application of the mixture model.

However, upon visual inspection of the segmentation, we noticed that the two merge
criteria introduced seem to suffer from the obvious drawback of hierarchical merging of
components. More precisely, only one pair of components is merged in each stage of the
merging process. In this way, the merge estimation is simplified because in each stage
the merge criterion is recalculated for the remaining untouched and merged components.
However, this presents an obvious problem when the final clustering solution is not just a
few stages away from the original clustering solution. Both criteria clearly focus on merging
smaller components with larger ones, and likewise on merging smaller clusters with larger
ones. At each stage, they increase the size of the already large cluster, so to speak. For
example, if the final merge is 10 stages away from the original solution, the smaller but
informative cluster has already been merged because of its size. The smaller cluster will
not be merged with the larger one only if its centroid is far apart in the feature space. The
optimal segmentation heuristic presented here naively fixes this, as the maximum value of
Equation (20) favors more clusters of equal size. However, by using multiple merges in
each stage, the problem could be circumvented. This should be considered more critically,
however, as it could lead to further undesirable artifacts.

Here we have dealt with unsupervised segmentation of images using only color pixel
values. It is also known that using the spatial information, i.e., pixel positions, can enrich
the segmentation, especially when the image is contaminated with a lot of noise, see [12]
for example. However, including this information as two additional vectors does not lead
to better results, since pixel positions are not random variables. They must be explored
through well-defined neighborhood systems with spatial interactions. As a starting point,
we decided to explore merging only for the color pixel values, since the additional inclusion
of the spatial information through a well-defined theory, such as the hidden Markov
random fields [38], can only improve the results.

Finally, we would like to discuss the high computational cost of estimating the mixture
model. Using the predefined value K = 256 for the pre-processing step does not reduce
the size of the dataset, but only makes it more compact. We obtained sufficiently fast
results for gray-scale images, but the speed was not satisfactory for color images. The value
K = 256 for three-dimensional space results in 16,777,216 bins. Most of these are empty
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and we always obtain a smaller number of non-empty bins than the number of pixels in the
image. However, most bins contain only one pixel. Decreasing the value of K also decreases
the size of the dataset and affects the mixture estimation, especially with the algorithm
EM. On the other hand, if we reduce the value of K to K = 50, we obtain significantly
better computation times than all other algorithms. Nevertheless, the reduction should be
critically evaluated and some guidelines need to be given, which we will further focus on
in the future.

9. Conclusions

The mixture model is a compelling framework for unsupervised image segmentation.
The introduction of merging components of the mixture model further improves segmenta-
tion results. Moreover, the introduction of the optimal segmentation heuristic preserves
the most relevant segments. We have conducted a series of experiments on gray-scale
and color images, which confirm the above statements. Tables 2–4 and the Figures 5 and 8
show that the reported metrics do indeed indicate better image segmentation, which can be
further evidenced by looking at the qualitative segmentation in Figures 4, 7 and 9. Further
improvements should also be carefully considered in the future. First, the inadequacy of the
hierarchical merging process discussed in the previous section could be improved. Second,
pixel positions should also be included in the segmentation process in an appropriate
framework. Thus, the similarity of two mixture components can be further increased or
decreased by introducing spatial relationships, enriching the merging process.
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Abstract: The latest achievements in the field of reinforcement learning have encouraged the devel-
opment of vision-based learning methods that compete with human-provided results obtained on
various games and training environments. Convolutional neural networks together with Q-learning-
based approaches have managed to solve and outperform human players in environments such as
Atari 2600, Doom or StarCraft II, but the niche of 3D realistic games with a high degree of freedom
of movement and rich graphics remains unexplored, despite having the highest resemblance to
real-world situations. In this paper, we propose a novel testbed to push the limits of deep learning
methods, namely an OpenAI Gym-like environment based on Dark Souls III, a notoriously difficult
role-playing game, where even human players have reportedly struggled. We explore two types
of architectures, Deep Q-Network and Deep Recurrent Q-Network, providing the results of a first
incursion into this new problem class. The source code for the training environment and baselines is
made available.

Keywords: Deep Q-Network; Deep Recurrent Q-Network; Dark Souls III; video games; visual-based
reinforcement learning; neural networks

MSC: 68T07; 68T40

1. Introduction

Learning can take various forms, but the primary source of information still remains
our interaction with the environment. A significant fraction of the inputs we receive comes
in the form of visual signals that are processed and decoded and later reasoned upon.
With the latest developments in processing power, computers are now able to process and
refine more raw data than before [1], yet humans still have the major advantage of better
retaining and organizing the information they accumulate over time, combining it in novel
ways to solve problems that arise dynamically [2]. This difference between humans and
computer models is even more pronounced when it comes to developing strategies in
complex environments that are changing fast and are rich in details. Neural networks have
been applied successfully to a wide range of tasks [3,4], making them a potentially strong
contender for solving current real-world problems.

Several models have been proposed over time to address this gap; however, the first
success story in visual learning is represented by Deep Q-Network (DQN) architectures [5,6]
that have managed to achieve human-level performance in several Atari 2600 games. This
was made possible by framing the problem as a Markov decision process (MDP) [7]
and employing convolutional neural networks (CNNs) to build a control policy using
a Q-Learning variant [8]. The neural network thus obtained has managed to learn the
mappings between input states and relevant actions and their corresponding values with
the help of stochastic gradient descent, experience replay mechanisms and exploration and
exploitation techniques.
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This breakthrough marked an important milestone, as previous methods assumed
complete knowledge about the environment, its rules and states and were fine-tuned for
particular scenarios, but the DQN solution was a step towards tackling more generic prob-
lems closer to real-world environments. Encouraged by this development, new variants of
DQNs appeared, and new test environments were proposed to further push the limits of
Q-Learning. An important limitation is related to the problem of observability. Most real
world problems involve partial knowledge about the global state of the environment, and,
in most cases, the observations that can be recorded are available for a limited time only.
Hence, reasoning upon longer sequences of events becomes harder, with detecting recipes
that span over longer periods of time being very costly if not impossible.

To mitigate such shortcomings, a new DQN variant was proposed: Deep Recurrent
Q-Network (DRQN) [9]. The changes made to the original DQN model were minimal
and localized, and the convolutional layers remained unchanged; however, the first fully-
connected layer was replaced with a recurrent one containing LSTM cells. This new
addition yielded a model able to better integrate information over time, thus making it a
more suitable contender for problems that involve longer sequences of actions and a better
generalization power for partially observable scenarios. This increase in performance, on
the other hand, came with more training time and higher hardware requirements.

Dark Souls III [10] is one of the most notoriously difficult role-playing games even for
human players, with statistics collected across the entire user base showing only 83.9% of
the players that acquire the game manage to pass the entry zone and only 3.6% finish the
game with all the achievements [11]. Their experiences with the challenges vary depending
on past encounters with similar games, but nonetheless, all players must familiarize
themselves with different warrior classes and enemies with complex movements. The
game combines difficult boss battles, layered environments with many hidden secrets and
diverse combat strategies that vary with each new enemy encountered.

Our work comes to address the research gap between existing training and testing
environments created for deep reinforcement learning. Previously implemented gyms were
based on simple games, often with 2D imagery, lacking the challenges agents must face in
the real world, which is rich in details and offers a high degree of movement in a refined
manner. To the best of our knowledge, this paper provides the first environment created
having in mind the main limitations of existing training environments in terms of graphics
and degrees of movement for the agents, attempting to boost the work done in problems
approaching the real-world level in visual deep learning.

In the next sections, we present our initial results obtained by training an agent to
defeat the first major boss, Iudex Gundyr, using DQNs and DRQNs in an OpenAI-type
gym. Being a closed-source game, extracting all the necessary information for creating
the mission as well as assigning proper rewards requires the implementation of helper
programs and scripts to access and modify the data stored in RAM and map the location of
each relevant entry. Our results are promising, with the time required to defeat the enemy
being comparable to the times obtained by players new to this genre.

This paper makes the following contributions:

• An analysis of existing training and testing environments for deep reinforcement
learning in problems that can be modeled with the help of games in a pursuit of
reaching lifelong learning;

• A complete training and testing environment, including all the Python source files
for the gym, automated RAM address retrieval in the form of Cheat Engine scripts,
.dll files needed for a complete interaction between the agent and the game, and
documentation on how to use different components and their relationship;

• The implementation of state-of-the-art baselines that match the performance of human
newcomers to the game genre, showing that value-based methods can be deployed
successfully even for more visually complex problems, and opening the path at the
same time for further research using different deep learning approaches.
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In the following section, we discuss the state-of-the-art training and testing envi-
ronments available for researchers pursuing to create agents for reinforcement learning
problems. Then, selected baselines are detailed, together with the main components and
functional details of the novel proposed gym and mission. These are followed by the initial
experimental results obtained for the first mission that players face in normal game mode,
and future improvements and conclusions round the analysis. The source code for the train-
ing environment and baselines can be found at: https://github.com/Bo-roman/DSIII-RL
(accessed on 12 October 2022).

2. Related Work

DQNs have been first applied successfully to Atari 2600 games [5,6] and later similar
methods were implemented to solve more complex tasks with good results. To improve on
the convergence during training, a series of methods have been applied, such as experience
replay mechanisms [12], separating the target network to reduce overestimation of the
Q-values, reducing the action space and compressing the input by clipping and conversion
to grayscale. However, a large number of the games comprised in this environment ensure
total state observability and can be completed within short timespans, rendering it a good
starting benchmark [13].

Later, a more realistic training environment was proposed, based on the first-person
shooter video game called Doom. Unlike Atari 2600, this platform provided a first-person
perspective and more realistic 3D imagery with customizable mechanisms, offering a higher
degree of flexibility than previous environments [14]. The agents still had to make decisions
based only on the visual information provided by the game, but a series of tasks with
various difficulties were proposed over the years, further proving the versatility of DQN
approaches: Basic scenarios [14,15], with simple primitive movements and enemy con-
frontation, Maze navigation [16,17], which requires escaping from custom made complex
mazes, Defend the center [18], in which the agent is spawned in the middle of a room and
must defend only by performing rotations, DeathMatch scenarios [19–22], which prompted
agents to kill as many opponents as possible within a fixed time frame, etc.

Another challenging environment proposed during the same period is represented
by the StarCraft family of games [23], providing denser state spaces and a stronger focus
on multi-agent tasks. By organizing a high number of bot competitions, the environment
gained more popularity, and hence encouraged a constant improvement of the proposed
models each year [24]. The full game requires players to gather resources, construct build-
ings and create an army, and finally eliminate the opponents. The decisions taken at each
step influence long term outcomes and the duration of a game can vary. Initial solutions
focused on solving either the micro level, namely multi-unit collaboration problems [25],
or the macro level, tackling decision-making issues within big state spaces [26]. Later,
hierarchical solutions emerged combining the targets previously separated and solved in
isolation [27,28].

In recent years, with the creation of the MALMO platform [29], a new horizon has
been opened in terms of training and testing environments. Built on top of the open world
game called Minecraft, a series of OpenAI Gym-type environments [30] emerged focusing
on a variety of tasks, which were not analyzed before, allowing researchers to build agents
for long horizon missions, collaborative, and creative problems. The game offers a high
degree of freedom in creating missions in an environment which follows the laws of the real
world, and with crowd sourced datasets the range of approaches that can be implemented
was widened [31,32].

At the same time, a new research direction in the last two years was focused around
the topic of coordination in multi-agent scenarios, modeled and experimented with as an
instance of the popular card game Hanabi [33]. Games have proved to be important testing
and training environments for studying how complex decision making problems can be
attempted, and Hanabi forces players to plan ahead, reason at higher levels about beliefs
and tactics to achieve a common goal, under time and communication restrictions. The
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open-source learning environment has gained popularity fast and is now considered a
benchmark for machine learning coordination solutions [34,35].

While existing environments enable researchers to test and implement a wide variety
of methods for a significant number of missions, starting from simple tasks to scenarios
suitable for lifelong learning investigations, they still are strongly anchored in the virtual,
and hence cannot model the continuous nature of visual transitions and phenomena from
the real world, due to the graphics and movement rules of different entities. The new
environment that is proposed comes to address these issues with its 3D immersive graphics
and continuous movements, additionally providing starting baselines that can he enhanced
in the future.

3. Proposed Methodology

3.1. Mission Description

The first important confrontation within the game is represented by the Cemetery of
Ash mission, where the players are facing the entity called Iudex Gundyr. At the start, this
enemy has a tall humanoid form with heavy armor and a long halberd; however, after his
health is lowered below a certain threshold, the entity will transform into a black monster
that is significantly bigger and has a new set of attacks. Initially, the players are confronted
with the unique fighting style of the enemy, using a wide range of attacks and combinations
that must be dodged or sidestepped in order to survive. During the second phase, the
speed and range of the entity are further increased, making it even more difficult to defeat.

Players can choose from 10 warrior classes with various stats, such as endurance,
vitality, strength, dexterity, intelligence, faith, defense, resistance, etc., having a great impact
on what type of actions the players can take in the first parts of the game. As a starting class,
most players recommend either selecting a ranged type, allowing players to attack from
farther away and thus avoid the damage caused by most attacks, or the Knight class, as it
comes with the most durable armor and shield, as well as a melee weapon in the form of a
sword. For our experiments, we have opted for the Knight class, but, to raise the difficulty
of the task, we have removed from the list of available actions the parry commands (see
Figure 1).

Figure 1. The Knight class warrior battling with Iudex Gundyr in the first phase (left) and in the
second phase (right) [10].

Under normal circumstances, the camera can be pointed in any direction with the
help of the mouse, but, to allow the agent to better focus on the mission, we have opted
for a Lock Target mechanism which will keep the camera pointed towards the enemy, thus
freeing the agent from having to manage that as well.

3.2. Retrieving Attributes for Training

As a first step, to be able to train agents, the relevant parameters from the game must
be identified. There are two entities involved: the player or agent and the enemy. In a
normal game mode, these classes have a larger set of attributes that are read and updated
repeatedly; however, for training purposes, we have opted to reduce these to the bare
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minimum set that enables us to reinitialize the scenario, grant appropriate rewards, and
provide the relevant metrics to the agent.

In order to build the scenario, we need access to:

• The player’s health. To start the mission, the health attribute of the player must be
reduced to zero to trigger the initialization cycle, which teleports the player to the
last checkpoint and resets the map and the attributes of the entities that are present,
including the player. This operation is usually performed as part of the environment
reset function from the API, and this is the fastest way to achieve it from an operational
point of view;

• The player’s position along the three axes (X, Y, Z). The last checkpoint is farther than
our targeted enemy; hence, by manipulating the coordinates, we can ensure that the
agent is moved closer, within the range of the entity. This operation reduces the time
wasted between fights, allowing a better use of the available computational resources,
and the agent can focus on the actual combat part as opposed to wandering connecting
paths with no added bonus;

• The enemy’s state: defeated or encountered. In order to trigger the start of the
confrontation, the enemy’s state must be set to encountered, however, after the ini-
tialization cycle, this attribute has a different value, and the player would have to go
through numerous interactions to alter it. Therefore, to reduce the time needed to set
up the mission, we overwrite this attribute automatically to the desired value.

For awarding the rewards, we have decided to take into account the health points
of the player and the enemy, and the player’s endurance. For every successful attack,
the health of the enemy will be reduced, hence resulting in positive rewards, with the
maximum amount when the enemy is killed; if the agent does not retreat to a safe area from
attacks, their health attributes are reduced, resulting in negative rewards and ultimately
their death scoring the most severe penalty.

These attributes are not directly accessible, as the game does not have an API for
parameter and entity manipulations such as existing gyms; hence, they must be extracted
and overwritten directly in the RAM memory. Exploring the RAM memory for relevant
information is hindered by the protection mechanisms built within the operating system
such as Address Space Layout Randomization [36], which makes previously identified
memory locations no longer useful at the next training session when we restart the game
or the gym. To overcome that, static offsets have to be identified each time, and this
can be achieved automatically with the help of the open-source application called Cheat
Engine [37].

Cheat Engine provides basic functionalities, such as scanning and modifying the
memory zones of running processes within the system, but it also provides more advanced
features, such as creating scripts with the help of the integrated Lua interpreter to automate
many of the tasks that would otherwise have to be done manually at each run. Previously
identified memory zones, offsets, and scripts are stored in a cheat table, and, to identify
new locations, methods such as a value scan and a pointer scan can be deployed. The
memory locations for certain attributes are easy to find, as their values are shown in the
graphical user interface of the game; however, other parameters require extensive search
and even interactions with the keys to alter the values and hence aid the search.

3.3. Gym Creation

To build our training environment, we have opted for a standardized formatting;
namely, we have extended the Env interface from the OpenAI Gym libraries. Most of the
methods within the class require a form of interaction with the environment, but, given
the nature of the underlying game, in our case, this is only possible via intermediaries,
such as Cheat Engine, which functions to retrieve attributes and alter the state of the game,
and a community-provided .dll file to allow us to emulate physical key presses from the
keyboard with software instructions. The communication between these components is
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realized with the help of sockets, with the data being structured into JSON bursts in a
custom-built formatting.

The list of selected actions for a mission is provided via a configuration file, but
definitions within the gym allow users to select from various types of movement, rolls,
attacks, and interactions with objects. Within the same configuration file, hyperparameter
values, limits, and sizes can be specified, allowing researchers to have full control over the
problem and be able to adapt it to their needs (see Figure 2).

Figure 2. System architecture highlighting main software components for the training and testing
environment, as well as main functions and attributes.

3.4. Methods Considered for the Analysis

Given the success of DQN-based architectures in previous training environments, we
have considered 2 main approaches for this analysis, namely vanilla and recurrent DQN
models. The vanilla network architecture is based on the one proposed by Mnih et al. [5,6]
for solving Atari 2600 games, while the recurrent one is closer to the model proposed by
Hausknecht et al. [9] (see Figure 3).

Figure 3. Architectural overview of the models implemented as baselines. The black components are
part of both models, while the red LSTM cells are included only in the DRQN variant.

The input images are captured and rescaled to a smaller size while still keeping the
main elements visible and distinguishable. Due to the color palette of the game, we have
opted to keep the RGB formatting, as after the conversion to grayscale, certain important
game elements blended into the background, making it hard to detect them on time.
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The feature map extraction was done by 3 consecutive convolutional layers, followed by
fully-connected layers to compute the approximation for the Q-values.

To reduce computational costs, gather more system state related information, and
build better policies, we have implemented a frame-skipping mechanism with a factor of
4 [38]. To balance exploration and exploitation, we have opted for an ε-greedy approach
that will prompt the agent to select a random next step with a probability of ε and require a
deliberate choice otherwise. The starting value was set to 1 and was then annealed to 0.1 to
encourage long-term exploration as well.

To ensure convergence, an experience replay memory buffer was used that stores
entries as tuples in an SQL Light database. We have opted for this solution as it enables
us to store and conveniently load samples of experiences at runtime faster; it offers better
control of the training process in case of interruptions.

4. Experiments and Results

As described in previous sections, we have selected the first boss battle from the game
that begins in the area called Cemetery of Ash. The player enters the region through a
narrow passageway and is confronted by an unmoving entity sitting in the middle of a
stone circle. The area is surrounded by impassable large stone remnants of walls and
hallways, trees with dense overhanging roots, and parts of an ancient cemetery, except for
the western region, which is an open edge over a cliff (see Figure 4).

Figure 4. Mission main battle region.

In order to win, the agent has to defeat the enemy; however, they are at disadvantage,
as the entity has much higher health, speed, agility, and attack strength and range, while the
agent can also fall over the cliff either by making a wrong choice or getting hit by the entity.

One of the main limiting factors for the player’s strategy is represented by the en-
durance attribute. This stat has a direct impact on the amount of stamina the player has to
execute actions, such as dodging and swinging weapons, and it also influences damage
resistance. During initial experiments, due to exhausting the endurance attribute in early
phases of the mission, the agent overfitted to running away from the entity as opposed to
rationing the stamina better by alternating attacks with recharging. Hence, to reduce the
difficulty of the task, we have set the endurance to an infinite amount, so the agent can
focus more on the combat aspect of the mission.

The rewards and penalties we have considered for this mission can be classified into
2 main categories: primary—they represent the main goal of the agent: every successful
attack and the defeat of the enemy will yield a positive reward, while every damage
accumulated by the agent, including their death, will be punished with negative rewards,
and auxiliary—introduced during training to correct unwanted behaviors: if the agent
performs a certain number of consecutive movement/attack actions above a threshold, a
small penalty is issued to motivate the agent to perform more attacks/dodge and retreat
movements. Defeating the entity in its phase 1 form is an important milestone, as when it
morphs into its next evolutionary step, the behavior is changed, and the agent has to learn
new tactics.

The models receive 4 input images that were scaled down to 150× 93 frames while still
keeping the RGB formatting. They are then processed by the 3 consecutive convolutional
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layers, followed by a variable number of fully connected layers for the DQN architecture
and LSTM cells, followed by fully connected layers for the DRQN model.

For the DRQN model, the initial experiments allowed the agent to select from the
complete set of actions, and we have implemented a reward-clipping method. The agents
trained with this setup have shown a high preference for movement-type actions, resulting
in longer episodes with little damage done to the entity and no wins. For the following
experiments, we have reduced the action set to movements along the axes, dodges and
attacks, increased the training time and changed the reward proportions, obtaining the
first win (see Table 1).

Table 1. DRQN model architecture details.

Layer Type Input Size Activation Output Size

Conv1 150 × 93 × 12 ReLU 36 × 22 × 32
Conv2 36 × 22 × 32 ReLU 17 × 10 × 64
Conv3 17 × 10 × 64 ReLU 15 × 8 × 64
LSTM 7680 - 1024

Output 1024 ReLU No. of actions

For the first model type, we have given a higher reward (double) for attack type
actions, as the life of the entity is almost 4 times higher than the one of the agent and to
prevent an overfitting on evasive moves, such as those the previous versions did (DRQN-1).
This approach resulted in fairly fast wins as opposed to later models; however, they also
obtained a lower score, as this aggressive choice also resulted in the agent losing more life
points while attacking repeatedly.

The second type was a mirror of the previous model, though this time the evasive
moves gained more importance, having in mind that every health unit from the agent is
more valuable (DRQN-2); this time the agent had learned combos (chains of actions) that
human players also perform in similar scenarios, but it still did not manage to avoid certain
type of attacks from the enemy that would have required multiple dodges and putting
bigger distance between the agent and Iudex.

The most successful model type (DRQN-3) had 10% more reward for attack moves and
had obtained the first victory around the 900-episode milestone, averaging at 10 wins every
500 episodes in the last phases of training (episodes 3000–4500). The agent also managed
to reach phase 2 with an increasing tendency, on average in 50 out of every 500 episodes
(episodes 1500–4500), see Table 2.

Table 2. Reward table for the DRQN models.

Architecture
Type

Frames Trained
Reward for
Successful

Attack

Reward for
Taking Damage

from Enemy

Absolute Value
for Win/Death

DRQN-1 500,000 +200 −100 2000
DRQN-2 500.000 +100 −200 2000
DRQN-3 500.000 +60 −50 2000

All of these models had 512 LSTM type cells and 2 fully connected layers. The training
sessions contained 4500 episodes (training unit lasting from the first state to the ending
state), adding up to roughly 500,000 frames for each type.

The DQN model, on the other hand, did not provide such good results. Three architec-
ture types were analyzed: two with a single fully connected layer, but with different sizes,
and one with four fully connected layers, mimicking the recurrent model. The first two
types managed to reach the second phase in later episodes but never managed to defeat
the enemy. The last type succeeded in killing the entity once during episode 1650 in a
battle that lasted 50 s and reached the second phase on average 3 times every 500 episodes.
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These models were trained on the reduced action set with reward clipping, going through
approximately 300,000 frames.

The experiments were performed using an NVIDIA GeForce RTX 2080 Ti GPU and
an AMD Ryzen 9 5900X processor, thus marking the hardware requirements at the low-
to-medium end of the implementation cost spectrum for machine learning applications.
The time complexity of the analyzed models is consistent with the models proposed in
the original papers [5,6,9], with an additional ∼5% overhead due to frame preprocessing
and experience replay storing. The GPU load percentage was monitored during training,
and the average time for an inference was 104.985 milliseconds for the DRQN model and
1.001 milliseconds for the DQN model (see Tables 3 and 4).

Table 3. DQN model architecture details.

Layer Type Input Size Activation Output Size

Conv1 150 × 93 × 12 ReLU 36 × 22 × 32
Conv2 36 × 22 × 32 ReLU 17 × 10 × 64
Conv3 17 × 10 × 64 ReLU 15 × 8 × 64

FC1 7680 ReLU 128
FC2 128 ReLU 64
FC3 64 ReLU 32

Output 32 ReLU No. of actions

Table 4. Highest reward and fastest win for the most successful models.

Architecture Time until Win (s) Total Reward Episode Reached

DRQN-1 31.8 1500 1991
24.9 1450 1867

DRQN-2 37.6 1670 1130
24.3 1450 3031

DRQN-3 63 1900 3436
45 1590 4177

DQN 48.7 1650 2147

With only the game running and the agent in an idle state, the GPU utilization revolves
around 6%, with a minimal memory utilization around 3%. Once the episode is reset, both
the game and the gym must make several steps to prepare the next session; hence, the
utilization will rise above 20%, and the memory is also pushed around 13%. During the
inference period (during decision making within the episode), the parameters move to
around 37% for the GPU load and 25% for the memory. Given these measurements, we
can also conclude that less performant GPUs, such as GTX 1050 Ti, are still able to fulfill
the minimal requirements for running our proposed gym and the baseline models (see
Figure 5).

Figure 5. GPU utilization parameters during an episode.
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5. Conclusions and Future Work

The currently available training and testing environments for visual learning provide
the means for research in specific problem classes, but the niche of more immersive and
realistic environments was not yet explored, although they come closer to the way humans
perceive visual stimuli. Another important aspect is related to the movement of the agent:
in most of the existing environments, actions are performed relative to an existing square
grid, which is either hidden by the graphics and existing in the background or revealed,
such as in Minecraft, but in the real world, our perception has a more continuous and free
nature. The training environment proposed in this paper addresses these two main points,
providing the means for a new direction for future research in the field.

The two baselines we have implemented show promising results. During training,
both agent types have managed to learn useful combinations of primitive actions that
resulted in successful attacks at optimal locations and to avoid many of the long range
attacks either by dodging, hiding behind the enemy, or retreating right after a number of
successful attacks, thus exploiting weaknesses within the enemy mechanics.

In this paper, we have presented the results obtained by a first incursion into the
immersive world of graphically intensive games; however, there are certain aspects to the
gym design and models that can be improved in the future.

The player class which we have selected for our experiments has certain advantages
and disadvantages compared to the other available options; however, by restricting the list
of actions to the basic movements and attacks that all the classes possess, our approach
can be easily extended to any of the remaining player types without problems. A more
in-depth analysis should be further conducted into the impact of different agent classes on
the speed of learning and what attributes impact the success rate the most.

Furthermore, in our current implementation, we have used vanilla ε-greedy, but in
recent years improved versions for this approach were presented [39], as well as more
complex methods to address the problem of exploitation vs. exploration [40]. Similarly, for
sampling among gathered experiences, a number of different methods have emerged [41,42]
that could aid the training process when the number of available actions is large and the
rewards are sparse.

Finally, to automatically point the camera towards the enemy entity, we have employed
a target lock mechanism, but this creates certain problems, as Iudex Gundyr in the second
phase morphs into a very large entity that is no longer able to fit into the field of view of
the agent, which, hence, cannot detect certain attack types in time. Additionally, when the
agent is facing the enemy with their back towards the edge of the cliff, choosing an action
of the retreat type will inevitably result in the agent dying from falling into the void, as
they cannot always see the edge. A better method should be implemented to automatically
move the camera to regions of interest.
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Abstract: Fuzzy information granulation transfers the time series analysis from the numerical plat-
form to the granular platform, which enables us to study the time series at a different granularity. In
previous studies, each fuzzy information granule in a granular time series can reflect the average,
range, and linear trend characteristics of the data in the corresponding time window. In order to get
a more general information granule, this paper proposes polynomial fuzzy information granules,
each of which can reflect both the linear trend and the nonlinear trend of the data in a time window.
The distance metric of the proposed information granules is given theoretically. After studying the
distance measure of the polynomial fuzzy information granule and its geometric interpretation, we
design a time series prediction method based on the polynomial fuzzy information granules and
fuzzy inference system. The experimental results show that the proposed prediction method can
achieve a good long-term prediction.

Keywords: polynomial fuzzy information granule; fuzzy inference system; time series prediction

MSC: 68T30; 68T27

1. Introduction

Time series prediction has been a classic machine learning task widely studied in
recent years, and it has been applied to many fields, such as business [1], engineering [2],
energy [3], and so on. It is hoped that some prediction methods can be used to find the
internal association rules of the time series to predict the future changes.

Popular time series prediction methods include classical time series models, such
as linear regression, autoregression, and moving average [4,5], as well as artificial intel-
ligence methods, such as support vector regression (SVR) [6], artificial neural networks
(ANNs) [7], nonlinear autoregressive (NAR) [8], recurrent neural networks (RNNs) [9,10],
long short-term memory (LSTM) networks [11,12], and so on. The classical time series
models usually require the data to be analyzed to meet the ergodicity, stationarity, and
other assumptions [13], and these strict conditions may not always hold for real world
data. Although many intelligent methods such as SVR and ANNs come with the ability to
capture the nonlinear relationship between the input and output variables, and have been
applied to solve many real-word problems [14–17], the quality of their prediction depends
very much on the data set to be processed [18]. These numerical prediction methods are
computationally expensive and more suitable for a short-term prediction. In addition, the
lack of interpretability of these numerical methods has become the main barrier in their
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wide acceptance in time series prediction applications. These methods, as well as their
results, are not easy to be understood by humans.

The fuzzy information granulation of the time series [19,20] is one of the feasible
methods to solve the above shortcomings. In this method, a time series is firstly divided
into some meaningful time windows in the time dimension, and then a fuzzy information
granule (FIG) is established on each time window. In this way, a time series is transformed to
a sequence of FIGs, each of which is a fuzzy set, and the time series can be now analyzed at
the granular level by directly manipulating the FIGs. The combination of an FIG with fuzzy
reasoning [21], a support vector machine [22], and other artificial intelligence algorithms
for data mining [23–25] has become one of the research hotspots in recent years.

An FIG is usually represented by a fuzzy set, whose membership function is defined
on the real number axis. Common forms of the membership functions of FIGs include the
interval membership function, triangular membership function, and Gaussian membership
function [26–28], and the corresponding FIGs are called Interval FIG(IFIG), Triangular
FIG(TFIG), and Gaussian FIG(GFIG) in this paper, respectively. These types of FIGs can
reflect the characteristics of the average and range of the temporal data in a time window,
but fail to reflect the trend characteristic of the data.

As a modification, the linear fuzzy information granule (LFIG) [29] is represented by
a fuzzy set whose membership function is defined both on the real number axis and the
time axis. Like the LFIG, the polar fuzzy information granule (polar FIG) [30] defines its
membership function in two-dimensional polar coordinates. Compared with the FIG, the
added dimension in the membership functions of the LFIG and the polar FIG makes them
possible to express the linear changing trends of the samples in the time window. However,
both modifications failed to reflect the nonlinear trends of the samples.

In [31], a novel Gaussian-type time-variant FIG, named the generalized zonary time-
variant FIG (GZTFIG), was proposed which can reflect the nonlinear trend of data changing.
However, the form of the GZTFIG is a bit complex. In addition, GZTFIGs have a lack of
specificity [32], that is, their semantics are not so clear.

To solve this problem, based on [29,31], this paper introduces a novel FIG, namely,
the polynomial fuzzy information granule (PFIG), which represents the temporal samples
in a time window by three kinds of parameters: (1) the length of the time window, (2) a
polynomial center line, and (3) the degree of data deviation from the center line. Temporal
samples can be reasonably characterized by the polynomial center line with an adjustable
order. In the sense of the Hausdorff distance, the distance formula of the PFIG is derived
theoretically. In particular, we prove that the distance of the two Gaussian PFIGs has a
concise formula expression and intuitive geometric interpretation. Therefore, the PFIG
is a well-defined information granule with a good distance property, which is hopeful to
become an effective tool in time series granulation and prediction.

The remainder of this paper is organized as follows. Section 2 introduces traditional
fuzzy information granules and their distance measure. Section 3 introduces PFIGs as well
as their distance measure. It can be proved that the distance of Gaussian PFIGs have a
simple formula, which corresponds to a reasonable geometric interpretation. Section 4
presents a long-term prediction method for the time series based on the distance measure
of PFIGs and fuzzy inference system with an interpolation scheme. Section 5 describes
three experiments to verify the effectiveness and feasibility of the proposed model. Finally,
Section 6 provides the conclusions and offers some thoughts on future studies.

2. Fuzzy Information Granules and Their Distance

In this section, we briefly introduce the construction method of some common FIGs
along with their distance measurement. These concepts are useful for defining the novel
type of granule (PFIG) given in Section 3.
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2.1. Fuzzy Numbers and Their Distance Measurement

A fuzzy set (class) A in X is characterized by a membership (characteristic) function
fA(x) which associates with each point in X a real number in the interval [0,1] [33]. Fuzzy
numbers are special fuzzy sets. A fuzzy set A is called a fuzzy number if its membership
function A(x) satisfies the following conditions [34]:

(a) A is normal: there exists a number x0 ∈ R, such that A(x0) = 1;
(b) A is convex: A(ωx1 + (1 − ω)x2) ≥ min{A(x1), A(y2)}, ∀ω ∈ [0, 1], ∀x1,x2 ∈ R;

(c) A is upper semicontinuous: ∀ε > 0, ∃δ > 0, if x ∈ .
U(x0, δ), then A(x)− A(x0) < ε.

(d) A is compactly supported: the closure of the set {x|A(x)〉0} is compact.

Figure 1 shows examples of one-dimensional and two-dimensional fuzzy numbers.

  
(a) (b) 

Figure 1. Fuzzy numbers. (a) a one-dimensional fuzzy number; (b) a two-dimensional fuzzy number.

Fuzzy numbers generalize classical real intervals. Accordingly, the distance of the
fuzzy numbers can also be extended from the Hausdorff distance of the real number
intervals. Named after Felix Hausdorff, the Hausdorff distance is a generalized metric in
the family of closed sets, which measures the maximum distance of a set to the nearest
point in the other set [35]. Let A(λ) = {x ∈ R|u(x) ≥ λ} be the λ-level set (or called λ-cut)
of fuzzy number A. Since the λ-level sets A(λ) and B(λ) of fuzzy numbers A and B are
classical real intervals, their Hausdorff distance can be written as:

d(A(λ), B(λ)) = max

{
sup

x∈A(λ)

inf
y∈B(λ)

d(x, y), sup
y∈B(λ)

inf
x∈A(λ)

d(x, y)

}
, (1)

where d(x, y) represents the distance of real numbers x and y. Based on such a distance for
real sets, the Hausdorff distance of fuzzy numbers A and B can be defined as [36]:

d(A, B) =
∫ 1

0
d(A(λ), B(λ))dλ. (2)

2.2. Fuzzy Information Granules and Their Distance

Constructing an FIG A to represent a group of temporal data y = {y1, y2, · · · , yn}
should comply with the following two fairly conflicting conditions [32]. The first condition
is called representativeness, that is, A should embrace enough data in y. In another word,
the total membership of y belonging to A, ∑ n

i=1 A(yi), should be as large as possible, so that
A has a good data coverage. The second condition is called specificity, that is, A should be
specific enough. This is accomplished by keeping the support of A as compact (small) as
possible, so that A has a better semantic clarity [32]. According to the types of membership
functions, FIGs can be divided into Interval FIGs (IFIGs), Triangular FIGs (TFIGs), Gaussian
FIGs (GFIGs), etc. Denote the membership function of an FIG A as A(x; γ), where γ is the
parameter set of the membership function of the corresponding type. The optimal value of
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γ can be determined by optimizing both the representativeness and the specificity of the
FIG A(γ) through the optimization methods described below [32].

2.2.1. Interval Fuzzy Information Granules and Their Distance

An IFIG, denoted as AI(a, b) or I(a, b), comes with the following membership function:

AI(x; a, b) = I(x; a, b) =
{

1, x ∈ [a, b],
0, else.

(3)

Let γ = {a, b} be the parameter set of this membership function, a and b are the
left and right boundary points of the interval-type membership function, which can be
determined by the following optimization model:

max
a,b

∑yi
(2 · I(yi; a, b)− 1)

|b − a| . (4)

The numerator part of Equation (4) is related to the number of data y that belong to the
IFIG I(a, b). Maximizing the numerator part can make I(a, b) achieve the best data coverage
or representativeness. The denominator part of Equation (4) is related to the support of A.
Minimizing the denominator part can make I(a, b) achieve the best specificity.

As far as the distance of two IFIGs is concerned, according to Equations (1) and (2),
the distance of I1(a1, b1) and I2(a2, b2) can be written as:

d(I1, I2) = max{|a1 − a2|, |b1 − b2|}. (5)

2.2.2. Triangular Fuzzy Information Granules and Their Distance

A TFIG, denoted as AT(a, m, b) or T(a, m, b), comes with the following membership function:

AT(x; a, m, b) = T(x; a, m, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x − a
m − a

, a < x < m,
x − b
m − b

, m ≤ x < b,

0, else.

(6)

Let γ = {a, m, b} be the parameter set of T(a, m, b), where a, m, and b are called the
“left extreme point”, the “normal point”, and the “right extreme point”, respectively. m can
be determined as the median of y, and the extreme points a and b can be determined by the
following optimization model [37]:

max
a,b

∑yi≤m
yi−a
m−a

m − a
+

∑yi>m
b−yi
b−m

b − m
. (7)

The numerator part of Equation (7) is related to the total membership degrees of y
belonging to A, which reflects the representativeness of T(a, m, b) to y. Maximizing the
numerator part can make T(a, m, b) achieve the best representativeness. The denominator
part of Equation (7) is related to the support of A. Minimizing the denominator part can
make T(a, m, b) achieve the best specificity.

As far as the distance of two TFIGs is concerned, according to Equations (1) and (2),
the distance of T1(a1, m1, b1) and T2(a2, m2, b2) can be written as:

d(T1, T2) =
1
2

max{|(a1 − a2) + (m1 − m2)|, |(b1 − b2) + (m1 − m2)|}. (8)
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2.2.3. Gaussian Fuzzy Information Granules and Their Distance

A GFIG, denoted as AG(μ, σ) or G(μ, σ), comes with the following membership function:

AG(x; μ, σ) = G(x; μ, σ) = exp

(
− (x − μ)2

2σ2

)
. (9)

Let γ = {μ, σ} be the parameter set of G(μ, σ), where μ and σ can be estimated by the
mean value and standard deviation of y, respectively. The GFIG has a clear meaning, and
compared with the TFIG, the GFIG has less parameters with simpler parameter determina-
tion methods. According to the extension principle [38], the linear operation of GFIGs has
a concise calculation property. That is:

Theorem 1 ([29]). For any two GFIGs G1(μ1, σ1), G2(μ2, σ2) and any two real numbers
ω1, ω2 ∈ R, we have

ω1G1(μ1, σ1) + ω2G2(μ2, σ2) = G(ω1μ1 + ω2μ2, ω1σ1 + ω2σ2). (10)

Furthermore, the Hausdorff distance of two GFIGs G1(μ1, σ1) and G2(μ2, σ2) can be
concisely written as [29]:

d(G1, G2) = Δu +

√
2π Δσ

2
, (11)

where Δμ = |μ1 − μ2| and Δσ = |σ1 − σ2|.
3. Polynomial Fuzzy Information Granules and Their Distance Metric

3.1. Polynomial Fuzzy Information Granules

Suppose we are going to granulize a time series y = {(t, yt), t = 1, 2, · · · , τ} as shown
in Figure 2a. The IFIG, TFIG, and GFIG obtained by the corresponding granulation meth-
ods given by Equations (4), (7), and (9) in Section 2 are shown in Figure 2b–d, respec-
tively. Because the membership functions of the IFIG, TFIG, and GFIG (as shown in
Equations (3), (6), and (9)) are time-independent, their membership values of (t, yt) depend
only on yt. As a result, these FIGs can properly reflect the average and range informa-
tion of y. However, they fail to reflect the changing trends of the time series, since the
time-varying relationship between yt and t is ignored.

  
(a) (b) 

  
(c) (d) 

Figure 2. Different types of fuzzy information granules. (a) time series data; (b) interval fuzzy infor-
mation granule; (c) triangular fuzzy information granule; (d) Gaussian fuzzy information granule.
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One way to remedy this defect is to add the time variable t to the membership functions
of the FIGs. The two-dimensional membership function of an FIG can be obtained by
shifting the one-dimensional membership function in Figure 2 along the time axis. Follow
this mechanism, the LFIGs [29] accomplish this goal by making the membership function
of the GFIG (as shown in Figure 2d) change linearly over time. The two-dimensional
membership function of the LFIG is shown in Figure 3.

 
Figure 3. A linear fuzzy information granule.

Motivated by the time variant LFIG, we define a novel class of FIG called polynomial
fuzzy information granules (PFIG) in this paper. In order to fully reflect the time-varying
characteristics of the data in the time window, a reasonable PFIG should contain three types
of parameters:

• The length of the time series y, i.e., the size of time window, τ;
• A time-variant p-order center (regression) curve line yt = f (t, β) = β0 + β1t+ · · ·+ βptp

that reflects the changing of the time series;
• The parameters reflecting the deviation degree of the temporal data from the center line.

Definition 1. (PFIG) For a time series y = {(t, yt), t = 1, 2, · · · , τ}, a fuzzy information granule
P(β, τ, γ) representing y is called a PFIG of order p, if its membership function P((t, x); β, τ, γ)
has a center curve line:

f (t, β) = β0 + β1t + · · ·+ βptp, t ∈ [0, τ], (12)

and P((t, x); β, τ, γ) can be written as:

P((t, x); β, τ, γ) = A( f (t, β); γ), t ∈ [0, τ], (13)

where A is a fuzzy number, A(x, γ) is its membership function, γ is a parameter set of the PFIG
that reflects the deviation degree of the data from the center line, and the length of the time series τ
is called the granularity of the PFIG.

Recently, Luo proposed a novel generalized zonary time-variant FIG (GZTFIG) in [31],
which is able to reflect the nonlinear trends of the time series. The membership function of
a GZTFIG is defined as:

f
(

x; βn, βn−1, · · · β1, β0, σ, β
0
, β0, τ

)
= f

(
x; βntn + βn−1tn−1 + · · ·+ β1t + β0, σ

)
= exp

(
− (x−(βntn+βn−1tn−1+· · ·+β1t+β0))

2

2σ2

)
, β0 ∈

[
β

0
, β0

]
,

where
[

β
0
, β0

]
reflects the data fluctuation interval in the current time window.

[
β

0
, β0

]
can be determined by making all the data in y locate in the zonary area between the upper
boundary βntn + βn−1tn−1 + · · ·+ β1t + β0, and the lower boundary βntn + βn−1tn−1 +
· · ·+ β1t + β

0
.
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Different from the GZTFIGs proposed in [31], the proposed PFIG no longer restricts its
membership function to be Gaussian. Users can choose any appropriate type of membership
function to construct a PFIG according to the characteristics of the time series. For the
following three reasons, the PFIG uses the center curve line, instead of the zonal central
region in the GZTFIG to reflect the changing trends of a time series. First, the width of the
zonal region β0 − β

0
is to reflect the degree of data deviation from the center line. However,

this feature can also be reflected by the parameter γ in the PFIG, which is more concise.
Secondarily, compared with GZTFIGs, the process of determining the zonary area is to
avoid being in the PFIG. Thus, the construction of the PFIG is simpler. Last but not the
least, the central zonary area of a GZTFIG is determined by translating the central line
upward and downward, so that all the data are included in the zonary area. This operation
increases the representativeness of the GZTFIG but decreases its specificity.

Using the definition of PFIGs, we can give the definitions for three special kinds of
PFIGs, namely interval-type PFIGs (IPFIGs), triangular-type PFIGs (TPFIGs), and Gaussian-
type PFIGs (GPFIGs).

Definition 2. (IPFIG). A PFIG P(β, τ, γ) = Ip(β, τ, r) is called an IPFIG of order p, if its
membership function P((t, x); β, τ, γ) can be written as:

Ip((t, x); a(β, t, r), b(β, t, r)) =
{

1, x ∈ [a(β, t, r), b(β, t, r)],
0, else,

where a(β, t, r) = f (t, β)− r and b(β, t, r) = f (t, β) + r are the left and right boundary points of
the interval-type membership function at t ∈ [0, τ], respectively; f (t, β) = β0 + β1t + · · ·+ βptp

represents the center curve line of PFIG; and r is the radius of this interval.

Definition 3. (TPFIG): A PFIG P(β, τ, γ) = Tp(β, τ, r1, r2) is called a TPFIG of order p if its
membership function P((t, x); β, τ, γ) can be written as:

Tp((t, x); a(β, t, r1), m(β, t), b(β, t, r2)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x − a
m − a

, a(β, t, r1) < x < m(β, t),
x − b
m − b

, m(β, t) ≤ x < b(β, t, r2),

0, else,

where m(β, t) = f (t, β) = β0 + β1t + · · ·+ βptp represents the center curve line of the PFIG,
and a(β, t, r1) = m(β, t)− r1 and b(β, t, r2) = m(β, t) + r2 are the left and right extreme points
of the triangular membership function at t ∈ [0, τ], respectively.

Definition 4. (GPFIG): A PFIG P(β, τ, γ) = Gp(β, τ, σ) is called a GPFIG of order p if its
membership function P((t, x); β, τ, γ) can be written as:

Gp((t, x); β, τ, σ) = exp

(
− (x − μ(t, β))2

2σ2

)
, (14)

where μ(t, β) = f (t, β) is the center line of PFIG, and σ is the standard deviation that reflects the
degree of data deviation from the center line.

The construction of a GPFIG is straightforward. The center line μ(t; β) can be estimated
by the polynomial regression of the temporal data y = {(t, yt), t = 1, 2, · · · , τ}, and σ can
be estimated by:

σ2 =
1
τ

τ

∑
t=1

(yt − μ(t; β))2. (15)

According to the above definitions, the temporal data in Figure 2a can be represented
by a second order GPFIG as shown in Figure 4. Compared with the IFIG, TFIG, and GFIG
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shown in Figure 2b–d, the GPFIG can better reflect the changing trends in the temporal
data, as shown in Figure 2a.

 
Figure 4. A Gaussian PFIG.

When the order of a PFIG is 0, the PFIG degenerates into the same type of FIGs
introduced in Section 1, and when the order of a GPFIG is 1, the center line of the GPFIG
becomes a linear function f (t, β) = β0 + β1t. Accordingly, the GPFIG degenerates into the
LFIG proposed by [29]. Therefore, PFIGs, including GPFIGs, are a generalization of LFIGs.

A GPFIG is an information granule with good properties. From its definition, it can
be found that the number of parameters of a GPFIG is small, its meaning is clear, and the
Gaussian-type FIG has excellent operation properties, as shown in Theorem 1. In addition,
the GPFIG is also easy to understand, given a GPFIG Gp((t, x); β, τ, σ), we can imagine a
time series of length τ, distributed around a center curve line f (t, β), t ∈ [0, τ], with σ as
the deviation degree of the temporal data from the center line. Therefore, the GPFIG is a
good tool to construct the information granule to describe a group of temporal data. For
this reason, our experiments in Section 5 will focus only on the GPFIG.

3.2. Distance Metric of Polynomial Fuzzy Information Granules

By comparing Figures 4 and 1b, we can find that the PFIG is a special type of two-
dimensional fuzzy set. For a PFIG P(β, τ, γ), its membership function is a two-dimensional
convex surface. As shown in Figure 5, the λ-level set of P(β, τ, γ) is:

P(λ) = {(t, x)|P((t, x); β, τ, γ) ≥ λ}, (16)

which can be regarded as a two-dimensional closed interval in the time-number plane
(t-x plane).

 

-level set  

Figure 5. The λ-level set of a PFIG.

Similar to Equation (2), define the distance of two PFIGs P1(β1, τ, γ1) and P2(β2, τ, γ2)
as the sum of all the distances of the λ-level sets [36]:

d(P1, P2) =
∫ 1

0
d(P1(λ), P2(λ))dλ, (17)
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where d(P1(λ), P2(λ)) is the Hausdorff distance of two-dimensional closed intervals P1(λ)
and P2(λ), which can be written as:

d(P1(λ), P2(λ)) = max

{
sup

z1∈P1(λ)

inf
z2∈P2(λ)

d(z1, z2), sup
z2∈P2(λ)

inf
z1∈P1(λ)

d(z1, z2)

}
, (18)

where z1 = (t1, x1) ∈ P1(λ) and z2 = (t2, x2) ∈ P2(λ).
The calculation of Equation (18) is very complex and is computationally difficult to im-

plement. To solve this problem, we should redefine d(P1(λ), P2(λ)) based on the following
considerations. The Hausdorff distance is mainly used for the distance measurement of the
general multidimensional real intervals, where every dimension is usually independent
of the other dimensions. However, since the temporal data (1, y1), (2, y2), · · · , (τ, yτ) are
special two-dimensional data, where yt can be regarded as a function of the time t, these
temporal data should have a distance definition different from Equation (18).

As shown in Figure 6, cut the λ-level set P(λ) at t = t0, we get a cutting segment L(λ, t0):

L(λ, t0) = {(t, x)|t = t0, (t, x) ∈ P(λ)}, (19)

which is a one-dimensional closed interval.

Figure 6. The cutting segment of the λ-level set in a PFIG.

According to Equation (1), the Hausdorff distance of two cutting segments L1(λ, t)
and L2(λ, t) at time t is:

d(L1(λ, t), L2(λ, t)) = max

{
sup
x∈L1

inf
y∈ L2

d(x, y), sup
y∈ L2

inf
x∈L1

d(x, y)

}
. (20)

Then, the distance between P1(λ) and P2(λ) can be regarded as the sum of the distances
of all these cutting segment pairs at all t′s, that is:

d(P1(λ), P2(λ)) =
∫ τ

0
d(L1(λ, t), L2(λ, t))dt. (21)

In this way, the distance of two PFIGs can be found by substituting Equation (21)
to Equation (17). The distance of any different type of PFIGs can be calculated when
the corresponding membership function P((t, x); β, τ, γ) in Equation (13) is selected. In
particular, the distance of two Gaussian PFIGs have the following expression.

Theorem 2. (Distance of GPFIGs): the Hausdorff distance of two GPFIGs, namely Gp1(β1, σ1, τ)
and Gp2(β2, σ2, τ), can be written as the area between their center lines f1(t, β1) and f2(t, β2),
and a term proportional to the difference of σ1 and σ2, that is:

d
(
Gp1, Gp2

)
=
∫ τ

0
|μ1(t, β1)− μ2(t, β2)|dt +

√
2π|σ1 − σ2|

2
τ, (22)
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where μ(t, β) = f (t, β) is the center line of the GPFIG.

Proof. According to Equation (14), the λ-level set of GPFIG Gp(β, σ, τ) can be written as:

P(λ) = {(t, x)|P((t, x); β, τ, γ) ≥ λ}
= {(t, x)|G−

r ≤ x ≤ G+
r , 0 ≤ t ≤ τ},

where G−
λ = μ(t, β)−√2 ln(1/λ)σ, and G+

λ = μ(t, β) +
√

2 ln(1/λ)σ. By Equation (19),
the cutting segment of P(λ) at time t can be written as L(λ, t) =

[
G−

λ , G+
λ

]
. Substitute it

into Equations (20) and (21) and we can get the following distance metric for λ-level sets
P1(λ) and P2(λ).

d(P1(λ), P2(λ)) =
∫ τ

0 d(L1(λ, t), L2(λ, t))dt

=
∫ τ

0

(
|μ1(t, β1)− μ2(t, β2)|+

∣∣∣∣∣
√

2 ln
(

1
λ

)
σ1 −

√
2 ln

(
1
λ

)
σ2

∣∣∣∣∣
)

dt

=
∫ τ

0 |μ1(t, β1)− μ2(t, β2)|dt +

√
2 ln

(
1
λ

)
|σ1 − σ2|τ.

Substitute it into Equation (17) and the distance between Gp1(β1, σ1, τ) and Gp2(β2, σ2, τ)
can be written as:

d
(
Gp1, Gp2

)
=
∫ 1

0 d(P1(λ), P2(λ))dλ

=
∫ 1

0

(∫ 1
0 |μ1(t, β1)− μ2(t, β2)|dt +

√
2 ln

(
1
λ

)
|σ1 − σ2|τ

)
dλ

=
∫ 1

0 |μ1(t, β1)− μ2(t, β2)|dt +
√

2πτ

2
|σ1 − σ2|.

�
Obviously, the first term of Equation (22) is the integral of the distance difference

between two center lines f1(t, β1) and f2(t, β2) in [0, τ], which represents the distance
caused by the center lines. As illustrated in Figure 7, the geometric meaning of this term
is the area between the two center lines. The second term is

√
2πτ/2 times of |σ1 − σ2|,

which represents the distance caused by data deviations. Therefore, the distance between
two GPFIGs is determined by their center lines on the one hand, and the data deviations
on the other. This is consistent with our intuition.

 
(a) (b) 

Figure 7. The area between the two center lines. (a) The area of two center lines when they have no in-
tersection between [0,τ], (b) the area of two center lines when they have an intersection between [0,τ].

223



Mathematics 2022, 10, 4495

When PFIGs degenerate into LFIGs, the distance given by Equation (22) is consistent
with the distance of LFIGs given in [29], i.e.,

d
(
Gp1(β1, σ1, τ), Gp2(β2, σ2, τ)

)
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2

τ2Δβ1 + τΔβ0 +

√
2πτ

2
Δσ, if t∗ < 0,

Δβ0
2

2Δβ1
+

(Δβ0 − τΔβ1)
2

2Δk
+

√
2πτ

2
Δσ, if t∗ ∈ [0, τ],

−1
2

τ2Δβ1 + τΔβ0 +

√
2πτ

2
Δσ, if t∗ > τ,

where β1 = (β10, β11), β2 = (β20, β21), and f (t, β1) = β10 + β11t, f (t, β2) = β20 + β21t
are the center lines of the two LFIGs, respectively. Δβ0 = |β10 − β20|, Δβ1 = |β11 − β21|,
and t∗ = −(β10 − β20)/(β11 − β21) represents the intersection of the two center lines.
Δσ = |σ1 − σ2| is the difference of two data deviations.

4. Granular Time Series Prediction Method Based on Fuzzy Inference

4.1. Granule Based Fuzzy Inference

Given a time series y = {(t, yt), t = 1, 2, · · · , N}, divide it into n consecutive time
windows, and then construct an FIG on each time window, and we can obtain a granular
time series {A1, A2, · · · , An}. Such a granular time series can induce a fuzzy inference
system (FIS) by the following way.

Select q + 1 consecutive FIGs: At, At+1, · · · , At+q−1, At+q, and take the first q FIGs
as the antecedents of a fuzzy rule, and the last one as the consequent, then these q + 1 FIGs
imply a q-input 1-output fuzzy rule:

Rule t : At, At+1, · · · , At+q−1 → At+q.

A time series containing n FIGs can form a total of n − q rules. These rules constitute
the rule base of the FIS.

As shown in Figure 8, when we use the last q FIGs An−q+1, · · · , An−1, An of this
granular time series as the inputs, then the output of the FIS, namely Ân+1, can be used to
predicted the future values of the original time series. Similar to the process of a Mamdani-
type FIS, Ân+1 can be written as a linear combination of all the consequents of the rules,
that is:

Ân+1 =

n−q

∑
t=1

ωt At+q, (23)

where ωt is the weight of rule t, which can be measured by the Hausdorff distance between
the FIS’ inputs An−q+1, · · · , An−1, An, and the antecedents of the t-th rule, At, · · · , At+q−2,
At+q−1. That is, ωt can be written as:

ωt =
1

D
(

An−q+1, At
) 1

D
(

An−q+2, At+1
) · · · 1

D
(

An−1, At+q−1
) , t = 1, 2, · · · , n − q.

Normalize these weights, then Ân+1 can be computed from the granular time series
by Equation (23).

After obtaining a future FIG (data) Ân+1, it is incorporated into the original time series
to form a new time series

{
A1, A2, · · · , An, Ân+1

}
to predict the next FIG (data) Ân+2.

Through this closed loop forecasting process, we can predict the values of any length in
the future by using the previous predictions as the input. Closed loop forecasting allows
us to predict an arbitrary number of time steps, but this can easily lead to large errors
because the previous predictions are not the true values during the forecasting process,
and the forecasting errors from a previous process can cumulatively affect the subsequent
forecasting processes.
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Figure 8. Fuzzy inference system.

4.2. Flow Chart of the Proposed Algorithm

The pseudo-code of the time series prediction algorithm combining FIS and GPFIGs is
given in Algorithm 1 as follows:

Algorithm 1: Time series prediction algorithm based on FIS and GPFIGs.

Input: A numerical time series y = {(t, yt), t = 1, 2, · · · , N} of length N; the granularity (length
of time window) τ and the polynomial order p of PFIG. Number of antecedents q of the fuzzy
rules in the FIS.
Output: the next FIG Ĝp,n+1.

(1) Delete the first N − mod(N, τ) elements, i.e., let y = y(N − mod(N, τ) : end);
(2) Determine the length of granular time series, i.e., let n = length(y)/τ;
(3) For i = 1 : n;
(4) [βi, σi] = pth − OrderPolynomialFitting(y(iτ + 1 : (i + 1)τ), p);
(5) End

(6) Construct a granular time series
{(

i, Gp,i(βi, τ, σi)
)

, i = 1, 2, · · · , n
}

;

(7) For i = 1 : n − q;
(8) ωi =

1
D(Gp,n−q+1,Gi)

· 1
D(Gp,n−q+2,Gi+1)

· · · · · 1
D(Gp,n−1,Gi+q−1)

;

(9) End;

(10) Ĝp,n+1 =
n−q
∑

i=1

(
ωi

∑
n−q
t=1 ωt

Gi+q

)
.

5. Experimental Research

To test the effectiveness of the perdition algorithm combining an FIS and GPFIGs
(GPFIG-FIS), the forecasting results of the proposed method are compared with eight
competing models in this section.

5.1. Data Description and Experimental Scheme

Three kinds of time series with a pseudo periodicity are selected for the experiment
in this section. These data include: (1) the time series of the daily minimum temperature
in Melbourne from 1981 to 1990 (this time series is from: https://www.kaggle.com/
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datasets/sayedathar11/minimum-daily-temperatures-in-melborne19811990, accessed on
15 August 2022); (2) Tetouan city power consumption time series (this time series is from:
https://archive.ics.uci.edu/ml/datasets/Power+consumption+of+Tetouan+city, accessed
on 15 August 2022); and (3) American Heart Association electrocardiograms (ECG) time
series (this time series dataset is purchased from: https://www.ecri.org/american-heart-
association-ecg-database-usb, accessed on 1 June 2020).

Two kinds of indexes, the root mean-square error (RMSE) and symmetric mean
absolute percentage error (SMAPE), are used to measure the effect of the time series
prediction methods:

• Root mean-square error:

RMSE =

√
∑n

t=1(ŷ(t)− y(t))2

n
.

• Symmetric mean absolute percentage error:

SMAPE =
1
n

n

∑
t=1

|ŷ(t)− y(t)|
1
2 (|ŷ(t)|+ |y(t)|) × 100.

where n indicates the number of data to be predicted, and y(t) and ŷ(t) indicate the true
and predicted values of the time series at time t, respectively.

The following eight prediction methods are selected for a comparison with the GPFIG-
FIS method proposed in this paper, among which the first four methods are numerical
prediction methods, and the last four methods are methods based on ordinary FIGs and FIS:

• AR(q): Numerical q-order auto regressive model (auto regressive, AR):

y(t) = φ1y(t − 1) + φ2y(t − 2) + · · ·+ φqy(t − q) + εt,

where φ1, φ2, · · · , φq can be calculated from the training data by linear regression.

• NAR(q): the q-order NAR is a q-input 1-output feedforward network, whose input is a

vector xt
def
= {y(t − 1), y(t − 2), . . . , y(t − q)} consisting of q data before time t in the

given training sequence, and output is the datum in time t, yt = y(t). The NAR uses
a sigmoid transfer function in the hidden layer and a linear transfer function in the
output layer. The number of hidden neurons as well as the number of hidden layers is
set to 10.

• SVR(q): numerical q-order support vector machine regress model (support vector
regress, SVR) [39]:

ŷ(t) = w1y(t − 1) + w2y(t − 2) + · · ·+ wqy(t − q) + b,

where parameters w =
(
w1, w2, · · · , wq

)
and b are determined by the following support

vector machine regression model:

min
w

1
2

wTw + C
1
l

l

∑
t=1

(ξt + ξ∗t ),

s.t.
(

wTxt + b
)
− yt ≤ ε + ξt,

yt −
(

wTxt + b
)
≤ ε + ξ∗t ,

ξt, ξ∗t ≥ 0,

where l is the number of training samples, xt and yt are the same as in NAR(q);

• LSTM: a sequence-to-sequence regression LSTM network, where the responses are
the training sequences with values shifted by one time step. The LSTM updates the
cell and hidden states using the hyperbolic tangent function and uses the sigmoid
function as the gate activation function. The number of hidden units is set to 128.
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• IFIG-FIS: the FIS prediction method based on the IFIG. Equations (4) and (5) are used
to granulate the time series, and the FIS with q-input is used for the prediction.

• TFIG-FIS: the FIS prediction method based on the TFIG. Equations (7) and (8) are used
to granulate the time series, and the FIS with q-input is used for the prediction.

• GFIG-FIS: the FIS prediction method based on the GFIG. The average and standard
deviation of the corresponding window data are used as the parameters in constructing
the GFIG, and the FIS with q-input is used for the prediction.

• LIFG-FIS: the FIS prediction method based on the LFIG. The linear regression line and
the estimate of the error variance are used as the parameters in constructing the LIFG,
and the FIS with q-input is used for the prediction.

5.2. The Experimental Results
5.2.1. Daily Minimum Temperature Dataset

The time series of daily maximum temperature in Melbourne City from 1981 to 1990 is
shown in Figure 9. The time series contains a total of 3650 data, and the first 2928 data are
selected as the training samples to predict the daily maximum temperature for the next 183,
366, and 549 days (i.e., days after 2928).

Figure 9. Time series of daily maximum temperature.

For each prediction method, the number of FIS input q is set to three. Since this time
series has a natural time cycle, in constructing the granular time series, the size of the time
window is set to 183 days, which is about half a year. Additionally, the order of the GPFIG
is set as three. Table 1 shows the RMSE and SMAPE indexes by the GPFIG-FIS and other
methods for a long-term forecasting.

Table 1. Comparison of the prediction indexes of daily minimum temperature.

Index
Time
(Day)

AR NAR SVR LSTM IFIG-FIS TFIG-FIS GFIG-FIS LFIG-FIS GPFIG-FIS

RMSE
2929–3112 9.83 6.79 6.49 4.30 8.76 6.67 6.45 4.44 4.19
2929–3295 14.76 7.01 6.54 4.25 7.57 6.39 6.18 4.27 4.14
2929–3478 17.23 6.83 6.4 4.25 7.86 6.31 6.11 4.19 4.04

SMAPE
2929–3112 42.02 27.58 24.74 14.32 28.14 21.67 22.38 14.66 14.11
2929–3295 62.34 30.63 27.23 15.51 24.48 21.27 21.97 14.71 14.48
2929–3478 74.18 29.9 26.73 14.87 25.85 21.74 22.47 14.66 14.28

Note: a value in bold font indicates that the corresponding method achieves the best index among all the methods.
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For brevity, Figure 10 shows the predicted values of several prediction methods with
better prediction results. It can be found that compared with the numerical prediction
methods, the LFIG-FIS and GPFIG-FIG get better prediction results. Because of the length
of the time window, which is about half a year, it has a clear meaning in this experiment,
the FIGs constructed by the LFIG-FIS and GPFIG-FIG can reflect the main characteristics of
the data in each time window very well, which is beneficial to eliminate the influence of
random noises in this time series. When these FIGs are regarded as linguistic variables to
construct fuzzy inference rules, a reasonable FIS can be obtained. However, since numerical
prediction methods are easily disturbed by noise, they cannot get accurate results for a
long-term prediction.

Figure 10. Daily maximum temperature forecast results.

Note that the time series used in this experiment has a clear increasing or decreasing
trend in each time window. Because of this, both the LFIG-FIS and GPFIG-FIS that contain
trend parameters could accurately reflect these changing trends. Therefore, compared
with the other FIG-based prediction methods, the LFIG-FIS and GPFIG-FIS can get better
prediction results. Among them, the GPFIG-FIS is slightly better than the LFIG-FIS because
it can more accurately reflect the changing trends in each time window.

5.2.2. Power Consumption Time Series

The average power consumption data of the three urban areas every 10 min are
collected in the two weeks from 16 to 30 December 2017 in Tetuan, Morocco. As shown in
Figure 11, this time series contains 2016 data, and the previous 1920 data are used as the
training data set, to predict the last 96 data.

Set the number of FIS input q = 3 for the various methods. The length of the time
window is set as 16, about one ninth of a day, in constructing various kinds of FIGs.
Additionally, the polynomial order of the PFIG is set as three. Table 2 shows the RMSE and
SMAPE indexes of various methods in predicting the data in the last six time windows
(96 points altogether).
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Figure 11. Time series of average power consumption in Tetuan.

Table 2. Comparison of the prediction indexes of electricity consumption in Tetuan.

Index
Time
(10 min)

AR NAR SVR LSTM IFIG-FIS TFIG-FIS GFIG-FIS LFIG-FIS GPFIG-FIS

RMSE

1909–1926 3479 3128 5556 2934 1630 1155 1033 1087 692
1927–1944 2800 2749 4130 2909 1647 1394 1306 854 565
1945–1962 3030 3896 3415 3522 1394 1146 1077 718 482
1963–1980 3803 4765 3347 3343 1790 1701 1676 1141 691
1981–1998 6020 6815 4504 3755 1687 1603 1547 1101 744
1999–2016 6500 7273 4526 3828 1823 1657 1617 1065 754

SMAPE

1909–1926 19.11 16.68 32.89 16.87 8.27 5.55 5.12 5.17 3.36
1927–1944 13.77 13.35 20.14 14.79 7.64 6.22 5.99 3.68 2.62
1945–1962 14.92 18.04 14.94 17.29 6.12 4.42 4.33 2.88 2.07
1963–1980 16.89 21.15 13.29 15.36 7.08 5.48 6.38 4.21 2.7
1981–1998 22.99 27.07 17.05 16.61 6.66 5.33 5.81 4.16 2.95
1999–2016 25.47 29.38 17.38 16.65 6.97 5.68 6.11 4.08 3.02

Note: a value in bold font indicates that the corresponding method achieves the best result among all the methods.

For brevity, Figure 12 shows the predicted values of four prediction methods with
better prediction results. Figure 12 and Table 2 show that, compared with the numerical
prediction methods, the FIG-based prediction methods, namely the IFIG-FIS, TFIG-FIG,
LFIG-FIS, and GPFIG-FIG can have more accurate prediction results, among which the
LFIG- and GPFIG-based methods can reflect the time-varying trend very well. Therefore,
they have better RMSE and SMAPE indexes when dealing with long-term prediction. In
predicting the values of different time periods in the future, the GPFIG-FIS always has
the best RSME and SMAPE indexes. A reason for this result is that, compared with the
previous experiment, the power consumption time series display more complex trend
changes in each time window, and the GPFIG with a high-order polynomial center line can
better describe these changes. Consequently, the prediction indexes of the GPFIG-FIS are
also significantly better than other methods such as the LFIG-FIS.
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Figure 12. Electricity consumption forecast results of Tetuan city.

5.2.3. American Heart Association Electrocardiogram Time Series

The American Heart Association (AHA) ECG datasets collect voltage values at a sam-
pling rate of 250 Hz. A complete ECG waveform contains about 250 sampling points. So,
when constructing various FIGs, the length of the time window is set as 25, which is about
one-tenth of a whole waveform. Figure 13 plots a time series containing 4250 sampling points.
The first 4000 sampling points (including about 16 waveforms) are used as the training set
to predict the last 250 sampling points (about 1 waveform).

Figure 13. Electrocardiogram time series.

Set the number of the FIS input q = 10 for each prediction method. Due to the
complexity of the ECG waveform, the polynomial order of the PFIG is set as four. Table 3
shows the RMSE and SMAPE indexes of the various prediction methods.
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Table 3. Comparison of the prediction indexes of ECG time series.

Index
Time (4
ms)

AR NAR SVR LSTM IFIG-FIS TFIG-FIS GFIG-FIS LFIG-FIS GPFIG-FIS

RMSE

4001–4025 87.91 22.74 41.06 26.83 7.33 7.43 7.7 7.2 7.96
4026–4050 99.24 40.4 48.48 22.58 8.61 10.67 13.03 12.01 11.84
4051–4075 102.95 52.92 51 94.60 12.23 12.34 13.82 12.93 12.1
4076–4100 102.58 67.47 50.23 85.65 12.68 12.85 14.2 12.27 11.31
4101–4125 124.51 129.95 83.39 114.43 70.03 64.81 64.07 59.72 30.74
4126–4150 131.99 164.89 93.48 130.28 107.32 80.48 76.25 65.06 29.18
4151–4175 122.86 163.78 89.79 139.07 100.47 76.09 72.11 60.88 28.41
4176–4200 127.1 154.01 111.27 157.61 95.37 73.1 69.92 60.01 28.8
4201–4225 121.25 160.38 105.42 149.67 93.44 69.98 66.71 56.75 27.4
4226–4250 117.79 169.45 100.35 142.36 88.9 66.46 63.34 53.9 26.14

SMAPE

4001–4025 95.44 22.32 45.72 28.70 6.48 6.75 6.36 6.31 7.43
4026–4050 106.77 39.06 52.28 22.25 7.59 9.55 11.5 10.69 10.63
4051–4075 111.88 52.56 55.11 59.09 10.77 11.42 12.75 11.87 11.2
4076–4100 113.48 67.23 54.62 56.81 11.84 12.38 13.52 11.25 10.38
4101–4125 114.54 91.74 60.64 66.26 25.84 23.55 24.93 27.62 19.71
4126–4150 113.47 127.12 56.93 81.95 70.16 26.25 32.58 33.95 19.31
4151–4175 106.49 164.82 67.18 150.81 71.01 31.95 37.2 35.64 23.8
4176–4200 109.68 149.17 81.82 160.37 67.17 32.85 37.63 36.3 24.15
4201–4225 107.33 174.87 79.45 152.83 73.07 37.05 40.11 35.21 23.45
4226–4250 107.68 190.28 74.94 141.83 68.52 34.43 36.93 32.6 22.05

Note: A value in bold font indicates that the corresponding method achieves the best result among all the
methods.

For brevity, Figure 14 shows the predicted values of several prediction methods
with better results. It can be found from Figure 14 and Table 3 that, compared with
numerical prediction methods, the prediction methods based on the FIG and FIS have
better prediction results.

Figure 14. Electrocardiogram prediction results.

The changing trends of the ECG time series are more complex than previous experi-
ments. As is shown in Figure 14, this time series is very stable in the first four time windows,
and then there are sharp fluctuations from the fifth time window. Correspondingly, in the
first four time windows, the RSME and SMAPE indexes of the GPFIG-FIS are almost the
same with those of the other FIS-based methods. However, from the fifth time window,
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the predictive indexes of the GPFIG-FIS are significantly better than the other prediction
methods. The main reason for this result is that GPFIG can accurately describe the changing
trends in the ECG data through its high-order polynomial center line. In summary, for the
ECG time series with complex changing trends, the GPFIG-FIS method can obtain better
long-term prediction results.

6. Summary

The PFIGs can accurately describe the key time-varying nonlinear trends of the
time series, and thus are a suitable type of FIGs in granulating a time series. A PFIG
has three parameters, namely the length of the time window, the centerline of the adjustable
order polynomial, and the degree of the data deviation, which have a good interpretability
and are easy to understand.

The distance metric of PFIGs is derived theoretically. It shows that the distance of
two Gaussian PFIGs can be reasonably interpreted as the sum of the area between their
central polynomial lines, and the difference in their data deviation degrees, which has a
good geometric meaning.

This paper also designs a fuzzy inference prediction method based on the GPFIG and
their distance metric to verify the effectiveness of the proposed GPFIG. The experiments
show that for those time series with pseudo periods, the proposed GPFIG-FIS method can
achieve better prediction results compared with some numerical prediction methods such
as the AR, NAR, SVR and LSTM, and some fuzzy inference methods based on other types
of FIG. This conclusion shows that the proposed GPFIG has a good practicability.

The PFIG time series constructed in this paper is composed of several PFIGs of an
equal granularity. A question associated with the granulation method in this paper is how
to choose the optimal granularity of these PFIGs. Without sufficient periodic knowledge
of the time series to be transformed in advance, it may be difficult to determine the
best granularity.

A further generalization of the PFIG can improve the ability of the granular time series
in representing the complicated time series. How to use this new PFIG to deal with a
real-world prediction problem may be a subject of future research.
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dataset composed of texts written in the Romanian language on which we have run the algorithms.
The compared methods are artificial neural networks, multi-expression programming, k-nearest
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1. Introduction

Automated authorship attribution (AA) is defined in [1] as the task of determining
authorship of an unknown text based on the textual characteristics of the text itself. Today
the AA is useful in a plethora of fields: from the educational and research domain to
detect plagiarism [2] to the justice domain to analyze evidence on forensic cases [3] and
cyberbullying [4], to the social media [5,6] to detect compromised accounts [7].

Most approaches in the area of artificial intelligence treat the AA problem by using
simple classifiers (e.g., linear SVM or decision tree) that have bag-of-words (character
n-grams) as features or other conventional feature sets [8,9]. Although deep neural learning
was already used for natural language processing (NLP), the adoption of such strategies for
authorship identification occurred later. In recent years, pre-trained language models (such
as BERT and GPT-2) have been used for finetuning and accuracy improvements [8,10,11].

The challenges in solving the AA problem can be grouped into three main groups [8]:

1. The lack of large-scale datasets;
2. The lack of methodological diversity;
3. The ad hoc nature of authorship.

The availability of large-scale datasets has improved in recent years as large datasets
have become widespread [12,13]. Other issues that relate to the datasets are the language
in which the texts are written, the domain, the topic, and the writing environment. Each of
these aspects has its own particularities. From the language perspective, the issue is that
most available datasets consist of texts written in English. There is PAN18 [9] for English,
French, Italian, Polish, and Spanish; or PAN19 [14] for English, French, Italian, and Spanish.
However, there are not very many datasets for other languages and this is crucial as there
are particularities that pertain to the language [15].
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The methodological diversity has also improved in recent years, as it is detailed in [8].
However, the ad hoc nature of authorship is a more difficult issue, as a set of features
that differentiates one author from the rest may not work for another author due to the
individuality aspect of different writing styles. Even for one author, the writing style can
evolve or change over a period of time, or it can differ depending on the context (e.g.,
the domain, the topic, or the writing environment). Thus, modeling the authorial writing
style has to be carefully considered and needs to be tailored to a specific set of authors [8].
Therefore, selecting a distinguishing set of features is a challenging task.

We propose a new dataset named ROST (ROmanian Stories and other Texts) as there
are few available datasets that contain texts written in Romanian [16]. The existing datasets
are small, on obscure domains, or translated from other languages. Our dataset consists of
400 texts written by 10 authors. We have elements that pertain to the intended heterogeneity
of the dataset such as:

• Different text types: stories, short stories, fairy tales, novels, articles, and sketches;
• Different number of texts per author: ranging from 27 to 60;
• Different sources: texts are collected from 4 different websites;
• Different text lengths: ranging from 91 to 39,195 words per text;
• Different periods: the time period in which the considered texts were written spans

over 3 centuries, which introduces diachronic developments;
• Different mediums: texts were written with the intention of being read from paper

medium (most of the considered authors) to online (two contemporary authors). This
aspect considerably changes the writing style, as shorter sentences and shorter words
are used online, and they also contain more adjectives and pronouns [17].

As our set is heterogeneous (as described above) from multiple perspectives, the
authorship attribution is even more difficult. We investigate this classification problem by
using five different techniques from the artificial intelligence area:

1. Artificial neural networks (ANN);
2. Multi-expression programming (MEP);
3. K-nearest neighbor (k-NN);
4. Support vector machine (SVM);
5. Decision trees (DT) with C5.0.

For each of these methods, we investigate different scenarios by varying the number
and the type of some features to determine the context in which they obtain the best results.
The aim of our investigations is twofold. On one side, the result of this investigation is to
determine which method performs best while working on the same data. On another side,
we try to find out the proper number and type of features that best classify the authors on
this specific dataset.

The paper is organized as follows:

• Section 2 describes the AA state of the art by using methods from artificial intelligence;
details the entire prerequisite process to be considered before applying the specific AI
algorithms (highlighting possible “stylometric features” to be considered); provides
a table with some available datasets; presents a number of AA methods already
proposed; describes the steps of the attribution process; presents an overview and a
comparison of AA state-of-the-art methods.

• Section 3 details the specific particularities (e.g., in terms of size, sources, time frames,
types of writing, and writing environments) of the database we are proposing and we
are going to use, and the building and scaling/pruning process of the feature set.

• Section 4 introduces the five methods we are going to use in our investigation.
• Section 5 presents the results and interprets them, making a comparison between the

five methods and the different sets of features used; measures the results by using
metrics that allow a comparison with the results of other state-of-the-art methods.

• Section 6 concludes with final remarks on the work and provides future possible
directions and investigations.
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2. Related Work

The AA detection can be modeled as a classification problem. The starting premise is
that each author has a stylistic and linguistic “fingerprint” in their work [18]. Therefore, in
the realm of AI, this means extracting a set of characteristics, which can be identified in a
large-enough writing sample [8].

2.1. Features

Stylometric features are the characteristics that define an author’s style. They can be
quantified, learned [19], and classified into five groups [20]:

1. Lexical (the text is viewed as a sequence of tokens grouped into sentences, with each
token corresponding to a word, number, or punctuation mark):

• Token-based (e.g., word length, sentence length, etc.);
• Vocabulary richness (i.e., attempts to quantify the vocabulary diversity of a text);
• Word frequencies (e.g., the traditional “bag-of-words” representation [21] in

which texts become vectors of word frequencies disregarding contextual infor-
mation, i.e., the word order);

• Word n-grams (i.e., sequences of n contiguous words also known as word collocations);
• Errors (i.e., intended to capture the idiosyncrasies of an author’s style) (requires

orthographic spell checker).

2. Character (the text is viewed as a sequence of characters):

• Character types (e.g., letters, digits, etc.) (requires character dictionary);
• Character n-grams (i.e., considers all sequences of n consecutive characters in

the texts; n can have a variable or fixed length);
• Compression methods (i.e., the use of a compression model acquired from one

text to compress another text; compression models are usually based on repeti-
tions of character sequences).

3. Syntactic (text-representation which considers syntactic information):

• Part-of-speech (POS) (requires POS tagger—a tool that assigns a tag of morpho-
syntactic information to each word-token based on contextual information);

• Chunks (i.e., phrases);
• Sentence and phrase structure (i.e., a parse tree of each sentence is produced);
• Rewrite rules frequencies (these rules express part of the syntactic analysis,

helping to determine the syntactic class of each word as the same word can have
different syntactic values based on different contexts);

• Errors (e.g., sentence fragments, run-on sentences, mismatched use of tenses)
(requires syntactic spell checker).

4. Semantic (text-representation which considers semantic information):

• Synonyms (requires thesaurus);
• Semantic dependencies.

5. Application-specific (the text is viewed from an application-specific perspective to
better represent the nuances of style in a given domain):

• Functional (requires specialized dictionaries);
• Structural (e.g., the use of greetings and farewells in messages, types of signatures,

use of indentation, and paragraph length);
• Content-specific (e.g., content-specific keywords);
• Language-specific.

The lexical and character features are simpler because they view the text as a sequence
of word-tokens or characters, not requiring any linguistic analysis, in contrast with the
syntactic and semantic characteristics, which do. The application-specific characteristics
are restricted to certain text domains or languages.
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A simple and successful feature selection, based on lexical characteristics, is made by
using the top of the N most frequent words from a corpus containing texts of the candidate
author. Determining the best value of N was the focus of numerous studies, starting
from 100 [22], and reaching 1000 [23], or even all words that appear at least twice in the
corpus [24]. It was observed, that depending on the value of N, different types of words
(in terms of content specificity) make up the majority. Therefore, when the size of N falls
within dozens, the most frequent words of a corpus are closed-class words (i.e., articles,
prepositions, etc.), while when N exceeds a few hundred words, open-class words (i.e.,
nouns, adjectives, verbs) are the majority [20].

Even though the word n-grams approach comes as a solution to keeping the contextual
information, i.e., the word order, which is lost in the word frequencies (or “bag-of-words”)
approach, the classification accuracy is not always better [25,26].

The main advantage of character feature selection is that they pertain to any natural
language and corpus. Furthermore, even the simplest in this category (i.e., character types)
proved to be useful to quantify the writing style [27].

The character n-grams have the advantages of capturing the nuances of style and
being tolerant to noise (e.g., grammatical errors or making strange use of punctuation), and
the disadvantage is that they capture redundant information [20].

The syntactic feature selection requires the use of Natural Language Processing (NLP)
tools to perform a syntactic analysis of texts, and they are language-dependent. Addition-
ally, being a method that requires complex text processing, noisy datasets may be produced
due to unavoidable errors made by the parser [20].

For semantic feature selection an even more detailed text analysis is required for
extracting stylometric features. Thus, the measures produced may be less accurate as more
noise may be introduced while processing the text. NLP tools are used here for sentence
splitting, POS tagging, text chunking, and partial parsing. However, complex tasks, such
as full syntactic parsing, semantic analysis, and pragmatic analysis, are hard to be achieved
for an unrestricted text [20].

A comprehensive survey of the state of the art in stylometry is conducted in [28].
The most common approach used in AA is to extract features that have a high dis-

criminatory potential [29]. There are multiple aspects that have to be considered in AA
for selecting the appropriate set of features. Some of them are the language, the literary
style (e.g., poetry, prose), the topic addressed by the text (e.g., sports, politics, storytelling),
the length of the text (e.g., novels, tweets), the number of text samples, and the number of
considered features. For instance, lexical and character features, although more simple, can
considerably increase the dimensionality of the feature set [20]. Therefore, feature selection
algorithms can be applied to reduce the dimensionality of such feature sets [30]. This also
helps the classification algorithm to avoid overfitting on the training data.

Another prerequisite for the training phase is deciding whether the training texts are
processed individually or cumulatively (per author). From this perspective, the following
two approaches can be distinguished [20]:

1. Instance-based approach (i.e., each training text is individually represented as a separate
instance in the training process to create a reliable attribution model);

2. Profile-based approach (i.e., a cumulative representation of an author’s style, also known
as the author’s profile, is extracted by concatenating all available training texts of one
author into one large file to flatten differences between texts).

Efstathios Stamatatos offers in [20] a comparison between the two aforementioned
approaches.

2.2. Datasets

In Table 1, we present a list of datasets used in AA investigations.
There is a large variation between the datasets. In terms of language, there are usually

datasets with texts that are written in one language, and there are a few that have texts written
in multiple languages. However, most of the available datasets contain texts written in English.
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The Size column is generally the number of texts and authors that have been used in
AA investigations. For example, PAN11 and PAN12 have thousands of texts and hundreds
of authors. However, in the referenced paper, only a few were used. The datasets vary in
the number of texts from hundreds to hundreds of thousands, and in terms of the number
of authors, from tens to tens of thousands.

Table 1. Datasets used for author attribution detection; Author(s) are names of individuals who
created the dataset (for a group consisting of more than two, only the name of the first person is
provided in the list, followed by “et al.”); Paper is the first paper that introduced that dataset or that is
recommended by its creator(s) to be used for citing the dataset; Language is the language in which
the texts in the database were written; Size is the dimension of the dataset; Features stands for the
types of features that can be or were used on that specific dataset (however, the information here
is only indicative and should not be taken literally); No. of features, is also more an indicative value
for possible feature set dimensions; Name or link provides the name by which that specific dataset is
known and, when available, links are provided.

Author(s) Paper Language Size Features No. of Features Name or Link

Sanda-Maria
Avram this paper Romanian 400 texts;

10 authors

conjunctions,
prepositions,
and adverbs

27 + 85 + 670 =
782 ROST

Shlomo
Argamon and
Patrick Juola

[31] English
42 literary texts

and novels;
14 authors

words,
characters,
n-grams

>3000

PAN11 https:
//pan.webis.de
/data.html#pan

12-attribution
[32]

Patrick Juola [33] English
42 literary texts

and novels;
14 authors

words,
characters,
n-grams

>3000

PAN12 https:
//pan.webis.de
/data.html#pan

12-attribution

Mike
Kestemont et al. [9]

English, French,
Italian, Polish,

Spanish.

2000 fanfiction
texts;

20 authors

char n-gram,
word n-gram,

stylistic, tokens
>500

PAN18 https:
//pan.webis.de
/data.html#pan
18-authorship-
attribution [34]

Mike
Kestemont et al. [35] English, French,

Italian, Spanish.

2997 cross-topic
fanfiction texts;

36 authors

char n-gram,
word n-gram,

tokens
>300

PAN19 https:
//pan.webis.de
/data.html#pan
19-authorship-
attribution [14]

Mike
Kestemont et al. [8] English

443,000
cross-topic

fanfiction texts;
278,000 authors

char n-gram,
word n-gram,

tokens
>300

PAN20 https:
//pan.webis.de
/data.html#pan
20-authorship-

verification [36]

Daniel Pavelec
et al. [37] Portuguese 600 articles;

20 authors
conjunctions
and adverbs 77 + 94 = 171 −

Paulo Varela
et al. [38] Portuguese 600 articles;

20 authors

conjunctions,
adverbs, verbs
and pronouns

77 + 94 + 50 +
91 = 312 −

Yanir Seroussi
et al. [39] English

1342 legal
documents;
3 authors

unigrams,
n-grams >2000 Judgment

Yanir Seroussi
et al. [40] English

79,550 movie
reviews;

62 authors

unigrams,
n-grams >200 IMDb62
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Table 1. Cont.

Author(s) Paper Language Size Features No. of Features Name or Link

Yanir Seroussi
et al. [41] English

204,809 posts,
66,816 reviews;

22,116 users

unigrams,
n-grams >1000 IMDB1M

Efstathios
Stamatatos [42] English

5000 newswire
documents;
50 authors

unigrams,
n-grams >500 CCAT50

Efstathios
Stamatatos [43] English

444 articles,
book reviews;

13 authors

words,
characters,

3-grams
>10,000 Guardian10

Efstathios
Stamatatos English

1000 CCTA
industry news;

10 authors

words,
characters,

3-grams
>500

C10 https:
//pan.webis.de
/data.html#c10

-attribution

Efstathios
Stamatatos English

5000 CCTA
industry news;

50 authors

words,
characters,
n-grams

>500

C50 https:
//pan.webis.de
/data.html#c50

-attribution

Jonathan Schler
et al. [44] English

over 600,000
posts; 19,000

bloggers
tokens, n-grams >200

Blogs50
https://www.
kaggle.com/d
atasets/rtatma
n/blog-authors

hip-corpus

Jade Goldstein
et al. [45] English 756 documents;

21 authors tokens, n-grams > 600 CMCC

Project
Gutenberg English 29,000 books;

4500 authors tokens, n-grams >60,000
Gutenberg

https://www.
gutenberg.org/

2.3. Strategies

According to [46], the entire process of text classification occurs in 6 stages:

1. Data acquisition (from one or multiple sources);
2. Data analysis and labeling;
3. Feature construction and weighting;
4. Feature selection and projection;
5. Training of a classification model;
6. Solution evaluation.

The classification process initiates with data acquisition, which is used to create the
dataset. There are two strategies for the analysis and labeling of the dataset [46]: labeling
groups of texts (also called multi-instance learning) [47], or assigning a label or labels to each
text part (by using supervised methods) [48]. To yield the appropriate data representation
required by the selected learning method, first, the features are selected and weighted [46]
according to the obtained labeled dataset. Then, the number of features is reduced by
selecting only the most important features and projected onto a lower dimensionality. There
are two different representations of textual data: vector space representation [49] where the
document is represented as a vector of feature weights, and graph representation [50] where
the document is modeled as a graph (e.g., nodes represent words, whereas edges represent
the relationships between the words). In the next stage, different learning approaches are
used to train a classification model. Training algorithms can be grouped into different
approaches [46]: supervised [48] (i.e., any machine learning process), semi-supervised [51]
(also known as self-training, co-training, learning from the labeled and unlabeled data, or
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transductive learning), ensemble [52] (i.e., training multiple classifiers and considering them
as a “committee” of decision-makers), active [53] (i.e., the training algorithm has some role
in determining the data it will use for training), transfer [54] (i.e., the ability of a learning
mechanism to improve the performance for a current task after having learned a different
but related concept or skill from a previous task; also known as inductive transfer or transfer
of knowledge across domains), or multi-view learning [55] (also known as data fusion or data
integration from multiple feature sets, multiple feature spaces, or diversified feature spaces
that may have different distributions of features).

By providing probabilities or weights, the trained classifier is then able to decide a class
for each input vector. Finally, the classification process is evaluated. The performance of
the classifier can be measured based on different indicators [46]: precision, recall, accuracy,
F-score, specificity, area under the curve (AUC), and error rate. These all are related to
the actual classification task. However, other performance-oriented indicators can also be
considered, such as CPU time for training, CPU time for testing, and memory allocated to
the classification model [56].

Aside from the aforementioned challenges, there are also other sets of issues that are
currently being investigated. These are:

• Issues related to cross-domain, cross topic and/or cross-genre datasets;
• Issues related to the specificity of the used language;
• Issues regarding the style change of authors when the writing environment changes

from offline to online;
• The balanced or imbalanced nature of datasets.

Some examples which focus on these types of issues, alongside their solutions and/or
findings, are presented next.

Participants in the Identification Task at PAN-2018 [9], investigated two types of classi-
fications. The corpus consists of fan-fiction texts written in English, French, Italian, Polish,
and Spanish, and a set of questions and answers on several topics in English. First, they
addressed the cross-domain AA, finding that heterogeneous ensembles of simple classifiers
and compression models outperformed more sophisticated approaches based on deep
learning. Also, the set size is inversely correlated with attribution accuracy, especially for
cases when more than 10 authors are considered. Second, they investigated the detection of
style changes, where single-author and multi-author texts were distinguished. Techniques
ranging from machine learning ensembles to deep learning with a rich set of features have
been used to detect style changes, achieving the accuracy of up to nearly 90% over the
entire dataset and several reaching 100%.

The issue of cross-topic confusion is addressed in [57] for AA. This problem arises
when the training topic differs from the test topic. In such a scenario, the types of errors
caused by the topic can be distinguished from the errors caused by the detection of the
writing style. The findings show that classification is least likely to be affected by topic
variations when parts of speech are considered as features.

The analysis conducted in [58] aimed to determine which approach, such as topic or
style, is better for AA. The findings showed that online news, which have a wide variety
of topics, are better classified using content-based features, while texts with less topical
variation (e.g., legal judgments and movie reviews) benefit from using style-based features.

In [59] it is shown that syntax (e.g., sentence structure) helps AA on cross-genre texts,
while additional lexical information (e.g., parts of speech such as nouns, verbs, adjectives,
and adverbs) helps to classify cross-topic and single-domain texts. It is also shown that
syntax-only models may not be efficient.

Language-specific issues (e.g., the complexity and structure of sentences) are addressed
in [15] in relation to the Arabic language. Ensemble methods were used to improve the
effectiveness of the AA task.

The authors of [60] propose solutions to address the many issues in AA (e.g., cross-
domain, language specificity, writing environment) by introducing the concept of stacked
classifiers, which are built from words, characters, parts of speech n-grams, syntactic depen-
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dencies, word embeddings, and more. This solution proposes that these stacked classifiers
are dynamically included in the AA model according to the input.

Two different AA approaches called “writer-dependent” and “writer-independent”
were addressed in [37]. In the first approach, they used a Support Vector Machine (SVM) to
build a model for each author. The second approach combined a feature-based description
with the concept of dissimilarity to determine whether a text is written by a particular
author or not, thereby reducing the problem to a two-class problem. The tests were
performed on texts written in Portuguese. For the first approach, 77 conjunctions and 94
adverbs were used to determine the authorship and the best accuracy results on the test
set composed of 200 documents from 20 different authors were 83.2%. For the second
approach, the same set of documents and conjunctions was used, obtaining the best result
of 75.1% accuracy. In [38], along with conjunctions and adverbs, 50 verbs and 91 pronouns
were added to improve the results obtained previously, achieving a 4% improvement in
both “writer-dependent” and “writer-independent” approaches.

The challenges of variations in authors’ style when the writing environment changes from
traditional to online are addressed in [17]. These investigations consider changes in sentence
length, word usage, readability, and frequency use of some parts of speech. The findings show
that shorter sentences and words, as well as more adjectives and pronouns, are used online.

The authors of [61] proposed a feature extraction solution for AA. They investigated
trigrams, bags of words, and most frequent terms in both balanced and imbalanced samples
and showed with 79.68% accuracy that an author’s writing style can be identified by using
a single document.

2.4. Comparison

AA is a very important and currently intensively researched topic. However, the
multitude of approaches makes it very difficult to have a unified view of the state-of-the-art
results. In [10], authors highlight this challenge by noting significant differences in:

• Datasets

– In terms of size: small (CCAT50, CMCC, Guardian10), medium (IMDb62, Blogs50),
and large (PAN20, Gutenberg);

– In terms of content: cross-topic (×t), cross-genre (×g), unique authors;
– In terms of imbalance (imb): i.e., standard deviation of the number of documents

per author;
– In terms of topic confusion (as detailed in [57]).

• Performance metrics

– In terms of type: accuracy, F1, c@1, recall, precision, macro-accuracy, AUC, R@8,
and others;

– In terms of computation: even for the same performance metrics there were
different ways of computing them.

• Methods

– In terms of the feature extraction method,

* Feature-based: n-gram, summary statistics, co-occurrence graphs;
* Embedding-based: char embedding, word embedding, transformers
* Feature and embedding-based: BERT.

The work presented in [10] tries to address and “resolve” these differences, bringing
everything to a common denominator, even when that meant recreating some results. To
differentiate between different methods, authors of [10] grouped the results in 4 classes:

• Ngram: includes character n-grams, parts-of-speech and summary statistics as shown
in [57,62–64];

• PPM: uses Prediction by Partial Matching (PPM) compression model to build a
character-based model for each author, with works presented in [28,65];
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• BERT: combines a BERT pre-trained language model with a dense layer for classifica-
tion, as in [66];

• pALM: the per-Author Language Model (pALM), also using BERT as described in [67].

The results of the state of the art as presented in [10] are shown in Table 2.

Table 2. State of the art macro-accuracy of authorship attribution models. Information collected
from [10] (Tables 1 and 3). Name is the name of the dataset; No. docs represents the number of
documents in that dataset; No. auth represents the number of authors; Content indicates whether the
documents are cross-topic (×t) or cross-genre (×g); W/D stands for words per document, representing
the average length of documents; imb represents the imbalance of the dataset measured by the standard
deviation of the number of documents per author.

Dataset Macro-Accuracy (%) for Investigation Type

Name No. Docs No. Auth Content W/D Imb Ngram PPM BERT pALM

CCAT50 5000 50 - 506 0 76.68 69.36 65.72 63.36
CMCC 756 21 ×t ×g 601 0 86.51 62.30 60.32 54.76

Guardian10 444 13 ×t ×g 1052 6.7 100 86.28 84.23 66.67
IMDb62 62,000 62 - 349 2.6 98.81 95.90 98.80 -
Blogs50 66,000 50 - 122 553 72.28 72.16 74.95 -
PAN20 443,000 278,000 ×t 3922 2.3 43.52 - 23.83 -

Gutenburg 29,000 4500 - 66,350 10.5 57.69 - 59.11 -

As can be seen in Table 2, the methods in the Ngram class generally work best. However,
BERT-class methods can perform better on large training sets that are not cross-topic and/or
cross-genre. The authors of [10] state that from their investigations it can be inferred that
Ngram-class methods are preferred for datasets that have less than 50,000 words per author,
while BERT-class methods should be preferred for datasets with over 100,000 words per author.

3. Proposed Dataset

The texts considered are Romanian stories, short stories, fairy tales, novels, articles,
and sketches.

There are 400 such texts of different lengths, ranging from 91 to 39,195 words. Table 3
presents the averages and standard deviations of the number of words, unique words, and
the ratio of words to unique words for each author. There are differences up to almost
7000 words between the average word counts (e.g., between Slavici and Oltean). For
unique words, the difference between averages goes up to more than 1300 unique words
(e.g., between Eminescu and Oltean). Even the ratio of total words to unique words is a
significant difference between the authors (e.g., between Slavici and Oltean).

Eminescu and Slavici, the two authors with the largest averages also have large
standard deviations for the number of words and the number of unique words. This means
that their texts range from very short to very long. Gârleanu and Oltean have the shortest
texts, as their average number of words and unique words and the corresponding standard
deviations are the smallest.

There is also a correlation between the three groups of values (pertaining to the words,
unique words, and the ratio between the two) that is to be expected as a larger or smaller
number of words would contain a similar proportion of unique words or the ratio of the
two, while the standard deviations of the ratio of total words to unique words tend to be
more similar. However, Slavici has a very high ratio, which means that there are texts in
which he repeats the same words more often, and in other texts, he does not. There is also
a difference between Slavici and Eminescu here because even if they have similar word
count average and unique word count average, their ratio differs. Eminescu has a similar
representation in terms of ratio and standard deviation with his lifelong friend Creangă,
which can mean that both may have similar tendencies in reusing words.
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Table 3. Diversity of the considered dataset in terms of the length of the texts (i.e., number of words).
Author is the author’s name (the last name is in bold); Average is the mean number of words per text
written by the corresponding author; StdDev is the standard deviation; Average-Unique is the mean
number of unique words; StdDev-Unique is the standard deviation on unique words; Average-Ratio is
the mean number of the ratio of total words to unique words; StdDev-Ratio is the standard deviation
of the ratio of total words to unique words.

Author Average StdDev
Average-
Unique

StdDev-
Unique

Average-
Ratio

StdDev-
Ratio

Ion Creangă 3679.34 3633.42 1061.90 719.38 3.01 0.94
Barbu Ştefănescu Delavrancea 4166.39 3702.33 1421.34 948.41 2.66 0.58
Mihai Eminescu 5854.52 7858.89 1656.96 1716.08 2.92 0.87
Nicolae Filimon 2734.32 2589.72 1040.09 729.81 2.42 0.50
Emil Gârleanu 843.05 721.06 411.19 234.71 1.88 0.32
Petre Ispirescu 3302.80 1531.36 1017.73 340.37 3.10 0.49
Mihai Oltean 553.75 484.00 282.56 201.18 1.79 0.31
Emilia Plugaru 2253.88 2667.38 756.70 581.88 2.54 0.64
Liviu Rebreanu 2284.12 1971.88 889.70 550.92 2.36 0.44
Ioan Slavici 7531.54 8969.77 1520.42 1041.40 3.96 1.62

Table 4 shows the averages of the number of features that are contained in the texts
corresponding to each author. The pattern depicted here is similar to that in Table 3, which
is to be expected. However, standard deviations tend to be similar for all authors. These
standard deviations are considerable in size, being on average as follows:

• 4.16 on the set of 56 features (i.e., the list of prepositions),
• 23.88 on the set of 415 features (i.e., the list of prepositions and adverbs),
• 25.38 on the set of 432 features (i.e., the list of prepositions, adverbs, and conjunctions).

This means that the frequency of feature occurrence differs even in the texts written
by the same author.

Table 4. Diversity of the considered dataset in terms of the number of occurrences of the considered
features in the texts. Author is the author’s name (the last name is in bold); Average-P is the average
number of the occurrence of the considered prepositions in the texts corresponding to each author;
StdDev-P is the standard deviation for the occurrence of the prepositions; Average-PA is the average
number of the occurrence of the considered prepositions and adverbs; StdDev-PA is the standard
deviation of the number of the occurrence of the considered prepositions and adverbs; Average-PAC
is the average number of the occurrence of the considered prepositions, adverbs, and conjunctions;
StdDev-PAC is the standard deviation of the number of the occurrence of the considered prepositions,
adverbs, and conjunctions.

Author Average-P StdDev-P Average-PA StdDev-PA Average-PAC StdDev-PAC

Ion Creangă 19.90 4.94 79.21 30.11 88.34 31.86
Barbu Ştefănescu Delavrancea 19.14 3.67 73.43 27.79 81.82 29.81
Mihai Eminescu 21.85 7.18 80.04 34.11 90.04 36.22
Nicolae Filimon 18.26 3.52 61.94 18.12 70.50 19.25
Emil Gârleanu 14.65 3.01 48.12 16.11 53.21 17.19
Petre Ispirescu 19.93 3.14 79.60 17.32 89.63 18.52
Mihai Oltean 11.88 3.82 33.16 17.51 37.69 18.96
Emilia Plugaru 16.13 3.61 69.83 22.62 77.48 23.58
Liviu Rebreanu 17.25 4.07 73.88 25.65 82.62 27.37
Ioan Slavici 21.29 4.72 96.08 29.48 105.87 31.09

The considered texts are collected from 4 websites and are written by 10 different
authors, as shown in Table 5. The diversity of sources is relevant from a twofold perspective.
First, especially for old texts, it is difficult to find or determine which is the original version.
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Second, there may be differences between versions of the same text either because some
words are no longer used or have changed their meaning, or because fragments of the text
may be added or subtracted. For some authors, texts are sourced from multiple websites.

Table 5. List of authors (the author’s last name is in bold), the number of texts considered for each
author (total number is in bold), and their source (i.e., the website from which they were collected).

Author No. of Texts
https://www.

povesti.org
https://povesti-
ro.weebly.com/

https:
//ro.wikisource.

org/wiki/

https://www.
povesti-pentru

-copii.com/

Ion Creangă 28 4 24
Barbu Ştefănescu Delavrancea 44 2 28 14
Mihai Eminescu 27 21 6
Nicolae Filimon 34 31 3
Emil Gârleanu 43 34 9
Petre Ispirescu 40 2 1 37
Mihai Oltean 32 32
Emilia Plugaru 40 40
Liviu Rebreanu 60 60
Ioan Slavici 52 3 39 10

TOTAL 400 32 41 193 134

The diversity of the texts is intentional because we wanted to emulate a more likely
scenario where all these characteristics might not be controlled. This is because, for future
texts to be tested on the trained models, the text length, the source, and the type of writing
cannot be controlled or imposed.

To highlight the differences between the time frames of the periods in which the authors
lived and wrote the considered texts, as well as the environment from which the texts were
intended to be read, we gathered the information presented in Table 6. It can be seen that the
considered texts were written in the time span of three centuries. This also brings an increased
diversity between texts, since within such a large time span there have been significant
developments in terms of language (e.g., diachronic developments), writing style relating to
the desired reading medium (e.g., paper or online), topics (e.g., general concerns and concerns
that relate to a particular time), and viewpoints (e.g., a particular worldview).

Table 6. List of authors, time spans of the periods in which the authors lived and wrote the considered
texts and the medium from which the readers read their texts. Author is the author’s name (the last
name is in bold); Life is the lifetime of the author; Publication is the publication interval of the texts
(note: the information presented here was not always easily accessible and some sources would
contradict in terms of specific years, however, this information should be considered more as an
indicative coordinate and should not be taken literally, the goal being that the literary texts be tempo-
rally framed in order to have a perspective on the period in which they were written/published);
Century is a coarser temporal framing of the periods in which the texts were written; Medium is the
environment from which most of the readers read the author’s texts.

# Author Life Publication Century Medium

0 Ion Creangă 1837–1889 1874–1898 19th paper
1 Barbu Ştefănescu Delavrancea 1858–1918 1884–1909 19th–20th paper
2 Mihai Eminescu 1850–1889 1872–1865 19th paper
3 Nicolae Filimon 1819–1865 1857–1863 19th paper
4 Emil Gârleanu 1878–1914 1907–1915 20th paper
5 Petre Ispirescu 1830–1887 1882–1883 19th paper
6 Mihai Oltean 1976– 2010–2022 21th paper and online
7 Emilia Plugaru 1951– 2010–2017 21th paper and online
8 Liviu Rebreanu 1885–1944 1908–1935 20th paper
9 Ioan Slavici 1848–1925 1872–1920 19th–20th paper
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The diversity of the texts also pertains to the type of writing, i.e., stories, short stories,
fairy tales, novels, articles, and sketches. Table 7 shows the distribution of these types of
writing among the texts belonging to the 10 authors. The difference in the type of writing
has an impact on the length of the texts (for example, a novel is considerably longer than
a short story), genre (for example, fairy tales have more allegorical worlds that can require
a specific style of writing), the topic (for example, an article may describe more mundane
topics, requiring a different type of discourse compared to the other types of writing).

Table 7. List of authors and types of writing of the considered texts. Author is the author’s name (the
last name is in bold); Article ∗ include, in addition to articles written for various newspapers and
magazines, other types of writing that did not fit into the other categories, but relate to this category,
such as prose, essays, and theatrical or musical chronicles. Total number of texts per type are in bold.

# Author Novel Story
Short
Story

Fairy Tale Article * Sketch

0 Ion Creangă 5 12 11
1 Barbu Ştefănescu Delavrancea 37 7
2 Mihai Eminescu 1 1 4 7 14
3 Nicolae Filimon 6 5 3 20
4 Emil Gârleanu 43
5 Petre Ispirescu 1 1 38
6 Mihai Oltean 32
7 Emilia Plugaru 40
8 Liviu Rebreanu 46 14
9 Ioan Slavici 14 38

TOTAL 12 113 171 55 35 14

Regarding the list of possible features, we selected as elements to identify the author of
a text inflexible parts of speech (IPoS) (i.e., those that do not change their form in the context of
communication): conjunctions, prepositions, interjections, and adverbs. Of these, we only
considered those that were single-word and we removed the words that may represent
other parts of speech, as some of them may have different functions depending on the
context, and we did not use any syntactic or semantic processing of the text to carry out
such an investigation.

We collected a list of 24 conjunctions that we checked on dexonline.ro (i.e., site that
contains explanatory dictionaries of the Romanian language) not to be any other part
of speech (not even among the inflexible ones). We also considered 3 short forms, thus
arriving at a list of 27 conjunctions. The process of selecting prepositions was similar to
that of selecting conjunctions, resulting in a list of 85 (including some short forms).

The lists of interjections and adverbs were taken from:

• https://ro.wiktionary.org/wiki/Categorie:Interjec%C8%9Bii_%C3%AEn_rom%C3%
A2n%C4%83, accessed on 20 October 2022

• https://ro.wiktionary.org/wiki/Categorie:Adverbe_%C3%AEn_rom%C3%A2n%C4%
83, accessed on 20 October 2022

To compile the lists of interjections and adverbs, we again considered only single-word
ones and we eliminated words that may represent other parts of speech (e.g., proper nouns,
nouns, adjectives, verbs), resulting in lists of 290 interjections and 670 adverbs.

The lists of the aforementioned IPoS also contain archaic forms in order to better
identify the author. This is an important aspect that has to be taken into consideration
(especially for our dataset which contains texts that were written over a time span of
3 centuries), as language is something that evolves and some words change as form and
sometimes even as meaning or the way they are used.

From the lists corresponding to the considered IPoS features, we use only those that
appear in the texts. Therefore, the actual lists of prepositions, adverbs, and conjunctions
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may be shorter. Details of the texts and the lists of inflexible parts of speech used can be
found at reference [68].

4. Compared Methods

Below we present the methods we will use in our investigations.

4.1. Artificial Neural Networks

Artificial neural networks (ANN) is a machine learning method that applies the
principle function approximation through learning by example (or based on provided
training information) [69]. An ANN contains artificial neurons (or processing elements),
organized in layers and connected by weighted arcs. The learning process takes place by
adjusting the weights during the training process so that based on the input dataset the
output outcome is obtained. Initially, these weights are chosen randomly.

The artificial neural structure is feedforward and has at least three layers: input,
hidden (one or more), and output.

The experiments in this paper were performed using fast artificial neural network
(FANN) [70] library. The error is RMSE. For the test set, the number of incorrectly classified
items is also calculated.

4.2. Multi-Expression Programming

Multi-expression programming (MEP) is an evolutionary algorithm for generating
computer programs. It can be applied to symbolic regression, time-series, and classification
problems [71]. It is inspired by genetic programming [72] and uses three-address code [73]
for the representation of programs.

MEP experiments use the MEPX software [74].

4.3. K-Nearest Neighbors

K-nearest neighbors (k-NN) [75–77] is a simple classification method based on the
concept of instance-based learning [78]. It finds the k items, in the training set, that are
closest to the test item and assigns the latter to the class that is most prevalent among these
k items found.

The source code of k-NN used in this paper is written by us and is available at
https://github.com/sanda-avram/ROST-source-code, (accessed on 8 November 2022)
along other scripts and programs we wrote to perform the tests.

4.4. Support Vector Machine

A support vector machine (SVM) [79] is also a classification principle based on machine
learning with the maximization (support) of separating distance/margin (vector). As in
k-NN, SVM represents the items as points in a high-dimensional space and tries to separate
them using a hyperplane. The particularity of SVM lies in the way in which such a
hyperplane is selected, i.e., selecting the hyperplane that has the maximum distance to any
item.

LIBSVM [80,81] is the support vector machine library that we used in our experiments.
It supports classification, regression, and distribution estimation.

4.5. Decision Trees with C5.0

Classification can be completed by representing the acquired knowledge as decision
trees [82]. A decision tree is a directed graph in which all nodes (except the root) have
exactly one incoming edge. The root node has no incoming edge. All nodes that have
outgoing edges are called internal (or test) nodes. All other nodes are called leaves (or
decision) nodes. Such trees are built starting from the root by top–down inductive inference
based on the values of the items in the training set. So, within each internal node, the
instance space is divided into two or more sub-spaces based on the input attribute values.
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An internal node may consider a single attribute. Each leaf is assigned to a class. Instances
are classified by running them through the tree starting from the root to the leaves.

See5 and C5.0 [83] are data mining tools that produce classifiers expressed as either
decision trees or rulesets, which we have used in our experiments.

5. Numerical Experiments

To prepare the dataset for the actual building of the classification model, the texts
in the dataset were shuffled and divided into training (50%), validation (25%), and test
(25%) sets, as detailed in Table 8. In cases where we only needed training and test sets, we
concatenated the validation set to the training set. We reiterated the process (i.e., shuffle and
split 50%–25%–25%) three times and, thus, obtained three different training–validation–test
shuffles from the considered dataset.

Table 8. List of authors (the author’s last name is in bold); the number of texts and their distribution
on the training, validation, and test sets. The total number of texts per author, per set, and grand total
are in bold.

# Author No. of Texts TrainSet Size ValidationSet Size TestSet Size

0 Ion Creangă 28 14 7 7
1 Barbu Ştefănescu Delavrancea 44 22 11 11
2 Mihai Eminescu 27 15 6 6
3 Nicolae Filimon 34 18 8 8
4 Emil Gârleanu 43 23 10 10
5 Petre Ispirescu 40 20 10 10
6 Mihai Oltean 32 16 8 8
7 Emilia Plugaru 40 20 10 10
8 Liviu Rebreanu 60 30 15 15
9 Ioan Slavici 52 26 13 13

TOTAL 400 204 98 98

Before building a numerical representation of the dataset as vectors of the frequency of
occurrence of the considered features, we made a preliminary analysis to determine which
of the inflexible parts of speech are more prevalent in our texts. Therefore, we counted
the number of occurrences of each of them based on the lists described in Section 3. The
findings are detailed in Table 9.

Table 9. The occurrence of inflexible parts of speech considered. IPoS stands for Inflexible part of speech;
No. of occurrence is the total number of occurrences of the considered IPoS in all texts; % from total
words represents the percentage corresponding to the No. of occurrence in terms of the total number of
words in all texts (i.e., 1,342,133); No. of files represents the number of texts in which at least one word
from the corresponding IPoS list appears; Avg. per file represents the No. of occurrence divided by the
total number of texts/files (i.e., 400); and No. of IPoS represents the list length (i.e., the number of
words) for each corresponding IPoS.

IPoS No. of Occurrence
% from Total

Words
No. of Files Avg. per File No. of IPoS

conjunctions 119,568 8.90 400 298.92 27
prepositions 176,733 13.16 400 441.83 85
interjections 6614 0.49 356 16.53 290

adverbs 127,811 9.52 400 319.52 670

Based on the data presented here, we decided not to consider interjections because
they do not appear in all files (i.e., 44 files do not contain any interjections), and in the
other files, their occurrence is much less compared to the rest of the IPoS considered. This
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investigation also allowed us to decide the order in which these IPoS will be considered in
our tests. Thus, the order of investigation is prepositions, adverbs, and conjunctions.

Therefore, we would first consider only prepositions, then add adverbs to this list,
and finally add conjunctions as well. The process of shuffling and splitting the texts into
training–validation–test sets (described at the beginning of the current section, i.e., Section 5)
was reiterated once more for each feature list considered. We, therefore, obtained different
dataset representations, which we will refer further as described in Table 10. The last
3 entries (i.e., ROST-PC-1, ROST-PC-2, and ROST-PC-3) were used in a single experiment.

Table 10. Names used in the rest of the paper refer to the different dataset representations and their
shuffles. Only the first 9 entries (with the Designation written in bold) were used for the entire set of
investigations.

# Designation Features to Represent the Dataset Shuffle

1 ROST-P-1 prepositions #1
2 ROST-P-2 prepositions #2
3 ROST-P-3 prepositions #3

4 ROST-PA-1 prepositions and adverbs #1
5 ROST-PA-2 prepositions and adverbs #2
6 ROST-PA-3 prepositions and adverbs #3

7 ROST-PAC-1 prepositions, adverbs and conjunctions #1
8 ROST-PAC-2 prepositions, adverbs and conjunctions #2
9 ROST-PAC-3 prepositions, adverbs and conjunctions #3

10 ROST-PC-1 prepositions and conjunctions #1
11 ROST-PC-2 prepositions and conjunctions #2
12 ROST-PC-3 prepositions and conjunctions #3

Correspondingly, we created different representations of the dataset as vectors of
the frequency of occurrence of the considered feature lists. All these representations (i.e.,
training-validation-test sets) can be found as text files at reference [68]. These files contain
feature-based numerical value representations for a different text on each line. On the last
column of these files, are numbers from 0 to 9 corresponding to the author, as specified in
the first columns of Tables 6–8.

5.1. Results

The parameter setting for all 5 methods are presented in Appendix A, while
Appendix B contains some prerequisite tests.

Most results are presented in a tabular format. The percentages contained in the
cells under the columns named Best, Avg, or Error may be highlighted using bold text or
gray background. In these cases, the percentages in bold represent the best individual
results (i.e., obtained by the respective method on any ROST-*-* in the dataset, out of the
9 representations mentioned above), while the gray-colored cells contain the best overall
results (i.e., compared to all methods on that specific ROST-X-n representation of the
dataset).

5.1.1. ANN

Results that showed that ANN is a good candidate to solve this kind of problem and
prerequisite tests that determined the best ANN configuration (i.e., number of neurons on
the hidden layer) for each dataset representation are detailed in Appendix B.1. The best
values obtained for test errors and the number of neurons on the hidden layer for which
these “bests” occurred are given in Table 11. These results show that the best test error rates
were mainly generated by ANNs that have a number of neurons between 27 and 49. The
best test error rate obtained with this method was 23.46% for ROST-PAC-3, while the best
average was 36.93% for ROST-PAC-2.
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Table 11. ANN results on the considered datasets. On each set, 30 runs are performed by ANNs
with the hidden layer containing from 5 to 50 neurons. The number of incorrectly classified data is
given as a percentage (the best results obtained by ANN on any ROST-*-* dataset representation are
in bold). Best stands for the best solution (out of 30 runs on each of the 46 ANNs), Avg stands for
Average (over 30 runs), StdDev stands for Standard Deviation, and No. of neurons stands for the number
of neurons in the hidden layer of the ANN that produced the best solution. The best result obtained
by ANN compared to all methods for a given ROST-X-n dataset representation is in a gray cell.

Dataset Best Avg StdDev No. of Neurons

ROST-P-1 61.22% 76.70% 6.30 46
ROST-P-2 60.20% 80.27% 10.58 36
ROST-P-3 57.14% 80.95% 10.30 28

ROST-PA-1 24.48% 45.03% 8.15 40
ROST-PA-2 24.48% 41.73% 5.78 45
ROST-PA-3 26.53% 47.82% 9.82 27

ROST-PAC-1 24.48% 38.16% 5.11 49
ROST-PAC-2 24.48% 36.93% 4.80 40
ROST-PAC-3 23.46% 37.21% 4.96 41

5.1.2. MEP

Results that showed that MEP can handle this type of problem are described in
Appendix B.2.

We are interested in the generalization ability of the method. For this purpose, we
performed full (30) runs on all datasets. The results, on the test sets, are given in Table 12.

Table 12. MEP results on the considered datasets. A total of 30 runs are performed. The number of
incorrectly classified data is given as a percentage (the best results obtained by MEP on any ROST-*-*
dataset representation are in bold). Best stands for the best solution (out of 30 runs), Avg stands for
Average (over 30 runs) and StdDev stands for Standard Deviation. The best result obtained by MEP
compared to all methods for a given ROST-X-n dataset representation is in a gray cell.

Dataset Best Avg StdDev

ROST-P-1 54.08% 61.32% 4.11
ROST-P-2 52.04% 62.51% 4.46
ROST-P-3 48.97% 58.84% 4.16

ROST-PA-1 29.59% 36.49% 4.52
ROST-PA-2 20.40% 27.95% 3.87
ROST-PA-3 29.59% 39.93% 4.53

ROST-PAC-1 27.55% 33.84% 2.86
ROST-PAC-2 26.53% 34.89% 4.58
ROST-PAC-3 23.46% 34.38% 4.54

With this method, we obtained an overall “best” on all ROST-*-*, which is 20.40%, and
also an overall “average” best with a value of 27.95%, both for ROST-PA-2.

One big problem is overfitting. The error on the training set is low (they are not given
here, but sometimes are below 10%). However, on the validation and test sets the errors
are much higher (2 or 3 times higher). This means that the model suffers from overfitting
and has poor generalization ability. This is a known problem in machine learning and is
usually corrected by providing more data (for instance more texts for an author).

5.1.3. k-NN

Preliminary tests and their results for determining the best value of k for each dataset
representation are presented in Appendix B.3.

The best k-NN results are given in Table 13 with the corresponding value of k for
which these “bests” were obtained. It can be seen that for all ROST-P-*, the values of k were
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higher (i.e., k ≥ 8) than those for ROST-PA-* or ROST-PAC-* (i.e., k ≤ 4). The best value
obtained by this method was 29.59% for ROST-PAC-2 and ROST-PAC-3.

Table 13. k-NN results on the considered datasets. In total, 30 runs are performed with k varying
with the run index. The number of incorrectly classified data is given as a percentage (the best results
obtained by k-MM on any ROST-*-* dataset representation are in bold). Best stands for the best
solution (out of the 30 runs), k stands for the value of k for which the best solution was obtained.

Dataset Best k

ROST-P-1 53.06% 8
ROST-P-2 54.08% 23
ROST-P-3 48.97% 11

ROST-PA-1 31.63% 1
ROST-PA-2 32.6% 1
ROST-PA-3 35.71% 1

ROST-PAC-1 33.67% 2
ROST-PAC-2 29.59% 1
ROST-PAC-3 29.59% 4

5.1.4. SVM

Prerequisite tests to determine the best kernel type and a good interval of values for
the parameter nu are described in Appendix B.4, along with their results.

We ran tests for each kernel type and with nu varying from 0.1 to 1, as we saw in
Figure A6 that for values less than 0.1, SVM is unlikely to produce the best results. The best
results obtained are shown in Table 14.

Table 14. SVM results on the considered datasets. The number of incorrectly classified data is given
as a percentage (the best results obtained by SVM on any ROST-*-* dataset representation are in bold).
Best stands for the best test error rate (out of 30 runs with nu ranging from 0.001 to 1), and nu stands
for the parameter specific to the selected type of SVM (i.e., nu-SVC). Results are given for each type
of kernel that was used by the SVM. The best result obtained by SVM compared to all methods for a
given ROST-X-n dataset representation is in a gray cell.

Linear Kernel Polynomial Kernel Radial Basis Kernel Sigmoid Kernel
Dataset Best nu Best nu Best nu Best nu

ROST-P-1 43.87% ≥0.6 65.30% 0.5 59.18% 0.4 58.16% 0.4
ROST-P-2 55.10% ≥0.6 70.40% 0.2, 0.4 67.34% 0.4 68.37% 0.2, 0.4
ROST-P-3 43.87% ≥0.6 65.30% 0.5 59.18% 0.4 58.16% 0.4

ROST-PA-1 31.63% 0.5 51.02% 0.5 44.89% 0.3 45.91% 0.3
ROST-PA-2 26.53% 0.5 55.10% ≥0.6 44.89% ≥0.6 44.89% ≥0.6
ROST-PA-3 28.57% 0.4 54.08% 0.2, 0.3 51.02% 0.2 51.02% 0.2

ROST-PAC-1 23.46% 0.2 54.08% 0.2 50.00% 0.5 50.00% 0.5
ROST-PAC-2 24.48% 0.5 51.02% ≥0.6 39.79% ≥0.6 39.79% ≥0.6
ROST-PAC-3 26.53% 0.5 51.02% 0.4 41.83% 0.5 42.85% 0.5

As can be seen, the best values were obtained for values of parameter nu between
0.2 and 0.6 (where sometimes 0.6 is the smallest value of the set {0.6, 0.7, . . . , 1} for which
the best test error was obtained). The best value obtained by this method was 23.46% for
ROST-PAC-1, using the linear kernel and nu parameter value 0.2.

5.1.5. Decision Trees with C5.0

Advanced pruning options for optimizing the decision trees with C5.0 model and
their results are presented in Appendix B.5. The best results were obtained by using −m
cases option, as detailed in Table 15.
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Table 15. Decision tree results on the considered datasets. The number of incorrectly classified
data is given as a percentage (the best results obtained by DT with C5.0 on any ROST-*-* dataset
representation are in bold). Error stands for the test error rate, Size stands for the size of the decision
tree required for that specific solution and cases stands for the threshold for which is decided to have
two more that two branches at a specific branching point (cases ∈ {1, 2, . . . , 30}). The best result
obtained by DT with C5.0 compared to all methods for a given ROST-X-n dataset representation is in
a gray cell.

Dataset Error Size Cases

ROST-P-1 51.0% 18 8
ROST-P-2 51.0% 46 3
ROST-P-3 57.1% 99 1

ROST-PA-1 31.6% 13 12
ROST-PA-2 26.5% 57 1
ROST-PA-3 29.6% 31 3

ROST-PAC-1 28.6% 39 2
ROST-PAC-2 24.5% 12 14
ROST-PAC-3 26.5% 13 14

The best result obtained by this method was 24.5% on ROST-PAC-2, with −m 14 option,
on a decision tree of size 12. When no options were used, the size of the decision trees was
considerably larger for ROST-P-* (i.e., ≥57) than those for ROST-PA-* and ROST-PAC-*
(i.e., ≤39).

5.2. Comparison and Discussion

The findings of our investigations allow for a twofold perspective. The first perspective
refers to the evaluation of the performance of the five investigated methods, as well as to
the observation of the ability of the considered feature sets to better represent the dataset
for successful classification. The other perspective is to place our results in the context of
other state-of-the-art investigations in the field of author attribution.

5.2.1. Comparing the Internally Investigated Methods

From all the results presented above, upon consulting the tables containing the best
test error rates, and especially the gray-colored cells (which contain the best results while
comparing the methods amongst themselves) we can highlight the following:

• ANN:

– Four best results for: ROST-PA-1, ROST-PA-3, ROST-PAC-2 and ROST-PAC-3 (see
Table 11);

– Best ANN 23.46% on ROST-PAC-3; best ANN average 36.93% on ROST-PAC-2;
– Worst best overall 61.22% on ROST-P-1.

• MEP:

– Two best results for ROST-PA-2 and ROST-PAC-3 (see Table 12);
– Best overall 20.40% on ROST-PA-2; best overall average 27.95% on ROST-PA-2;
– Worst best MEP 54.08% on ROST-P-1.

• k-NN:

– Zero best results (see Table 13);
– Best k-NN 29.59% on ROST-PAC-2 and ROST-PAC-3;
– Worst k-NN 54.08% on ROST-P-2.

• SVM:

– Four best results for: ROST-P-1, ROST-P-3, ROST-PAC-1 and ROST-PAC-2 (see
Table 14);

– Best SVM 23.44% on ROST-PAC-1;
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– Worst SVM 52.10% on ROST-P-2.

• Decision trees:

– Two best results for: ROST-P-2 and ROST-PAC-2 (see Table 15);
– Best DT 24.5% on ROST-PAC-2;
– Worst DT 57.10% on ROST-P-2.

Other notes from the results are:

• Best values for each method were obtained for ROST-PA-2 or ROST-PAC-*;
• The worst of these best results were obtained for ROST-P-1 or ROST-P-2;
• ANN and MEP suffer from overfitting. The training errors are significantly smaller

than the test errors. This problem can only be solved by adding more data to the
training set.

An overview of the best test results obtained by all five methods is given in Table 16.

Table 16. Top of methods on each shuffle of each dataset, based on the best results achieved by each
method. The gray-colored box represents the overall best (i.e., for all datasets and with all methods).

Dataset 1st Place 2nd Place 3rd Place 4th Place 5th Place

ROST-P-1 SVM DT k-NN MEP ANN
43.87% 51.0% 53.06% 54.08% 61.22%

ROST-P-2 DT MEP k-NN SVM ANN
51.0% 52.04% 54.08% 55.10% 60.20%

ROST-P-3 SVM k-NN,MEP DT,ANN
43.87% 48.97% 57.14%

ROST-PA-1 ANN MEP SVM,DT,k-NN
24.48% 29.59% 31.63%

ROST-PA-2 MEP ANN SVM,DT k-NN
20.40% 24.48% 26.53% 32.6%

ROST-PA-3 ANN SVM MEP,DT k-NN
26.53% 28.57% 29.59% 35.71%

ROST-PAC-1 SVM ANN MEP DT k-NN
23.46% 24.48% 27.55% 28.6% 33.67%

ROST-PAC-2 SVM,DT,ANN MEP k-NN
24.48% 26.53% 29.59%

ROST-PAC-3 MEP,ANN SVM,DT k-NN
23.46% 26.53% 29.59%

ANN ranks last for all ROST-P-* and ranks 1st and 2nd for ROST-PA-* and ROST-
PAC-*. MEP is either ranked 1st or ranked 2nd on all ROST-*-* with three exceptions, i.e.,
for ROST-P-1 and ROST-PAC-2 (at 4th place) and for ROST-PAC-1 (at 3rd place). k-NN
performs better (i.e., 3rd and 2nd places) on ROST-P-*, and ranks last for ROST-PA-* and
ROST-PAC-*. SVM is ranked 1st for ROST-P-* and ROST-PAC-* with two exceptions: for
ROST-P-2 (ranked 4th) and for ROST-PAC-3 (on 3rd place). For ROST-PA-* SVM is in
3rd and 2nd places. Decision trees (DT) with C5.0 is mainly on the 3rd and 4th places,
with three exceptions: for ROST-P-1 (on 2nd place), for ROST-P-2 (on 1st place), and for
ROST-PAC-2 (on 1st place).

An overview of the average test results obtained by all five methods is given in Table 17.
However, for ANN and MEP alone, we could generate different results with the same
parameters, based on different starting seed values, with which we ran 30 different runs.
For the other 3 methods, we used the best results obtained with a specific set of parameters
(as in Table 16).

Comparing all 5 methods based on averages, SVM and DT take the lead as the two
methods that share the 1st and 2nd places with two exceptions, i.e., for ROST-P-2 and
ROST-P3 for which SVM and DT, respectively, rank 3rd. k-NN usually ranks 3rd, with four
exceptions, when k-NN was ranked 2nd for ROST-P-2 and ROST-P-3, for ROST-PA-1 for
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which k-NN ranks 1st together with SVM and DT, and for ROST-PA-2 for which k-NN
ranks 4th. MEP is generally ranked 4th with one exception, i.e., for ROST-PA-2 for which it
ranks 3rd. ANN ranks last for all ROST-*-*.

For a better visual representation, we have plotted the results from Tables 16 and 17 in
Figure 1.

Table 17. Top of methods on average results on each shuffle of each dataset. For k-NN, SVM, and
DT we do not have 30 runs with the same parameters, so for these methods, the best values are
presented here. The gray-colored box represents the overall best average (i.e., on all datasets and
with all methods).

Dataset 1st Place 2nd Place 3rd Place 4th Place 5th Place

ROST-P-1 SVM DT k-NN MEP ANN
43.87% 51.0% 53.06% 61.32% 76.70%

ROST-P-2 DT k-NN SVM MEP ANN
51.0% 54.08% 55.10% 62.51% 80.27%

ROST-P-3 SVM k-NN DT MEP ANN
43.87% 48.97% 57.14% 58.84% 80.95%

ROST-PA-1 SVM,DT,k-NN MEP ANN
31.63% 36.49% 45.03%

ROST-PA-2 SVM,DT MEP k-NN ANN
26.53% 27.95% 32.6% 41.73%

ROST-PA-3 SVM DT k-NN MEP ANN
28.57% 29.59% 35.71% 39.93% 47.82%

ROST-PAC-1 SVM DT k-NN MEP ANN
23.46% 28.6% 33.67% 33.84% 38.16%

ROST-PAC-2 SVM,DT k-NN MEP ANN
24.48% 29.59% 34.89% 36.93%

ROST-PAC-3 SVM,DT k-NN MEP ANN
26.53% 29.59% 34.38 37.21%

(a)

(b)
Figure 1. Top of methods on each shuffle of each dataset. Lower values are better. (a) Top of best
results obtained by all methods (b) Top of average results, when applicable (i.e., over 30 runs for
ANN and MEP).
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We performed statistical tests to determine whether the results obtained by MEP and
ANN are significantly different with a 95% confidence level. The tests were two-sample,
equal variance, and two-tailed T-tests. The results are shown in Table 18.

Table 18. p-values obtained when comparing MEP and ANN results over 30 runs. No. of neurons used
by ANN on the hidden layer represents the best-performing ANN structure on the specific ROST-*-*.

Dataset
p-Value (ANN vs. MEP

Results)
No. of Neurons Used by

ANN on the Hidden Layer

ROST-P-1 1.98 × 10−15 46
ROST-P-2 4.23 × 10−11 36
ROST-P-3 3.86 × 10−15 28

ROST-PA-1 1.14 × 10−5 40
ROST-PA-2 6.57 × 10−15 45
ROST-PA-3 3.07 × 10−4 27

ROST-PAC-1 2.47 × 10−4 49
ROST-PAC-2 1.07 × 10−1 40
ROST-PAC-3 2.80 × 10−2 41

The p-values obtained show that the MEP and ANN test results are statistically sig-
nificantly different for almost all ROST-*-* (i.e., p < 0.05) with one exception, i.e., for
ROST-PAC-2 for which the differences are not statistically significant (i.e., p = 0.107).

Next, we wanted to see which feature set, out of the three we used, was the best
for successful author attribution. Therefore, we plotted all best and best average results
obtained with all methods (as presented in Tables 16 and 17) on all ROST-*-* and aggregated
on the three datasets corresponding to the distinct feature lists, in Figure 2.

(a)

(b)
Figure 2. Results on the best solutions obtained on the considered datasets. The percentage of
incorrectly classified data is plotted. Best stands for the best solution, Avg stands for Average and the
Standard Deviation is represented by error bars. (a) Best, Average and Standard Deviation are computed
on the values from Table 16; (b) Best, Average, and Standard Deviation are computed on the values
given in Table 17.
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Based on the results represented in Figure 2a (i.e., which considered only the best
results, as detailed in Table 16) we can conclude that we obtained the best results on ROST-
PA-* (i.e., corresponding to the 415 feature set, which contains prepositions and adverbs).
However, using the average results, as shown in Figure 2b and detailed in Table 17 we infer
that the best performance is obtained on ROST-PAC-* (i.e., corresponding to the 432-feature
set, containing prepositions, adverbs, and conjunctions).

Another aspect worth mentioning based on the graphs presented in Figure 2 is related
to the standard deviation (represented as error bars) between the results obtained by all
methods considered on all considered datasets. Standard deviations are the smallest in
Figure 2a, especially for ROST-PA-* and even more so for ROST-PAC-*. This means that the
methods perform similarly on those datasets. For ROST-P-* and in Figure 2b, the standard
deviations are larger, which means that there are bigger differences between the methods.

5.2.2. Comparisons with Solutions Presented in Related Work

To better evaluate our results and to better understand the discriminating power of
the best performing method (i.e., MEP on ROST-PA-2), we also calculate the macro-accuracy
(or macro-average accuracy). This metric allows us to compare our results with the results
obtained by other methods on other datasets, as detailed in Table 2. For this, we considered
the test for which we obtained our best result with MEP, with a test error rate of 20.40%.
This means that 20 out of 98 tests were misclassified.

To perform all the necessary calculations, we used the Accuracy evaluation tool available
at [84], build based on the paper [85]. By inputting the vector of targets (i.e., authors/classes
that were the actual authors (i.e., correct classifications) of the test texts) and the vector of
outputs (i.e., authors/classes identified by the algorithm as the authors of the test texts), we
were first given a Confusion value of 0.2 and the Confusion Matrix, depicted in Table 19.

Table 19. Confusion Matrix (on the right side). Column headers and row headers (i.e., numbers from 0
to 9 that are written in bold) are the codes 1 given to our authors, as specified on the left side.

Code Author 0 1 2 3 4 5 6 7 8 9

0 Ion Creangă 0 6 0 0 0 0 0 0 0 0 1
1 Barbu Ştefănescu Delavrancea 1 0 4 0 3 1 0 1 0 0 2
2 Mihai Eminescu 2 0 0 6 0 0 0 0 0 0 0
3 Nicolae Filimon 3 0 1 1 6 0 0 0 0 0 0
4 Emil Gârleanu 4 1 1 0 0 6 0 0 0 1 1
5 Petre Ispirescu 5 0 0 0 0 0 10 0 0 0 0
6 Mihai Oltean 6 0 0 0 0 0 0 8 0 0 0
7 Emilia Plugaru 7 0 1 0 0 1 0 0 8 0 0
8 Liviu Rebreanu 8 0 1 0 0 0 0 1 0 12 1
9 Ioan Slavici 9 0 0 0 0 0 0 0 0 1 12

1 The authors’ codes are the same as those specified in the first columns of Tables 6–8.

This matrix is a representation that highlights for each class/author the true positives
(i.e., the number of cases in which an author was correctly identified as the author of the
text), the true negatives (i.e., the number of cases where an author was correctly identified
as not being the author of the text), the false positives (i.e., the number of cases in which
an author was incorrectly identified as being the author of the text), the false negatives (i.e.,
the number of cases where an author was incorrectly identified as not being the author
of the text). For binary classification, these four categories are easy to identify. However,
in a multiclass classification, the true positives are contained in the main diagonal cells
corresponding to each author, but the other three categories are distributed according to
the actual authorship attribution made by the algorithm.

For each class/author, various metrics are calculated based on the confusion matrix.
They are:

• Precision—the number of correctly attributed authors divided by the number of in-
stances when the algorithm identified the attribution as correct;
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• Recall (Sensitivity)—the number of correctly attributed authors divided by the number
of test texts belonging to that author;

• F-score—a combination of the Precision and Recall (Sensitivity).

Based on these individual values, the Accuracy Evaluation Results are calculated. The
overall results are shown in Table 20.

Table 20. Accuracy evaluation Results. The macro-accuracy and corresponding macro-error are in
bold.

Metric Value (%)

Average Accuracy 88.8401
Error 11.1599

Precision (Micro) 79.9398
Recall (Micro) 97.251
F-score (Micro) 87.7498

Precision (Macro) 79.9398
Recall (Macro) 96.8525
F-score (Macro) 87.5871

Metrics marked with (Micro) are calculated by aggregating the contributions of all
classes into the average metric. Thus, in a multiclass context, micro averages are preferred
when there might be a class imbalance, as this method favors bigger classes. Metrics
marked with (Macro) treat each class equally by averaging the individual metrics for each
class.

Based on these results, we can state that the macro-accuracy obtained by MEP is
88.84%. We have 400 documents, and 10 authors in our dataset. The content of our texts is
cross-genre (i.e., stories, short stories, fairy tales, novels, articles, and sketches) and cross-topic
(as in different texts, different topics are covered). We also calculated an average number
of words per document, which is 3355, and the imbalance (considered in [10] to be the
standard deviation of the number of documents per author), which in our case is 10.45. Our
type of investigation can be considered to be part of the Ngram class (this class and other
investigation-type classes are presented in Section 2.4). Next, we recreated Table 2 (depicted
in Section 2.4) while reordering the datasets based on their macro-accuracy results obtained
by Ngram class methods in reverse order, and we have appropriately placed details of our
own dataset and the macro-accuracy we achieved with MEP as shown above. This top is
depicted in Table 21.

Table 21. State of the art macro-accuracy of authorship attribution models. Information collected
from [10] (Tables 1 and 3). Name is the name of the dataset; No.docs represents the number of
documents in that dataset; No. auth represents the number of authors; Content indicates whether the
documents are cross-topic (×t) or cross-genre (×g); W/D stands for words per documents, being the
average length of documents; imb represents the imbalance of the dataset as measured by the standard
deviation of the number of documents per author.

Dataset Investigation Type

Name No. Docs No. Auth Content W/D Imb Ngram PPM BERT pALM

Guardian10 444 13 ×t ×g 1052 6.7 100 86.28 84.23 66.67
IMDb62 62,000 62 − 349 2.6 98.81 95.90 98.80 −

ROST 400 10 ×t ×g 3355 10.45 88.84 − − −
CMCC 756 21 ×t ×g 601 0 86.51 62.30 60.32 54.76
CCAT50 5000 50 − 506 0 76.68 69.36 65.72 63.36
Blogs50 66,000 50 − 122 553 72.28 72.16 74.95 −
PAN20 443,000 278,000 ×t 3922 2.3 43.52 − 23.83 −

Gutenburg 28,000 4500 − 66,350 10.5 57.69 − 59.11 −
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We would like to underline the large imbalance of our dataset compared with the first
two datasets, the fact that we had fewer documents, and the fact that the average number
of words in our texts, although higher, has a large standard deviation, as already shown
in Table 3. Furthermore, as already presented in Section 3, our dataset is by design very
heterogeneous from multiple perspectives which are not only in terms of content and size,
but also the differences that pertain to the time periods of authors, the medium they wrote
for (paper or online media), and the sources of the texts. Although all these aspects do not
restrict the new test texts to certain characteristics (to be easily classified by the trained
model), they make the classification problem even harder.

6. Conclusions and Further Work

In this paper, we introduced a new dataset of Romanian texts by different authors.
This dataset is heterogeneous from multiple perspectives, such as the length of the texts,
the sources from which they were collected, the time period in which the authors lived
and wrote these texts, the intended reading medium (i.e., paper or online), and the type
of writing (i.e., stories, short stories, fairy tales, novels, literary articles, and sketches).
By choosing these very diverse texts we wanted to make sure that the new texts do not
have to be restricted by these constraints. As features, we wanted to use the inflexible
parts of speech (i.e., those that do not change their form in the context of communication):
conjunctions, prepositions, interjections, and adverbs. After a closer investigation of their
relevance to our dataset, we decided to use only prepositions, adverbs, and conjunctions,
in that specific order, thus having three different feature lists of (1) 56 prepositions; (2) 415
prepositions and adverbs; and (3) 432 prepositions, adverbs, and conjunctions. Using these
features, we constructed a numerical representation of our texts as vectors containing the
frequencies of occurrence of the features in the considered texts, thus obtaining 3 distinct
representations of our initial dataset. We divided the texts into training–validation–test sets
of 50%–25%–25% ratios, while randomly shuffling them three times in order to have three
randomly selected arrangements of texts in each set of training, validation, and testing.

To build our classifiers, we used five artificial intelligence techniques, namely artificial
neural networks (ANN), multi-expression programming (MEP), k-nearest neighbor (k-NN),
support vector machine (SVM), and decision trees (DT) with C5.0. We used the trained
classifiers for authorship attribution on the texts selected for the test set. The best result
we obtained was with MEP. By using this method, we obtained an overall “best” on all
shuffles and all methods, which is of a 20.40% error rate.

Based on the results, we tried to determine which of the three distinct feature lists
lead to the best performance. This inquiry was twofold. First, we considered the best
results obtained by all methods. From this perspective, we achieved the best performance
when using ROST-PA-* (i.e., the dataset with 415 features, which contains prepositions
and adverbs). Second, we considered the average results over 30 different runs for ANN
and MEP. These results indicate that the best performance was achieved when using
ROST-PAC-* (i.e., the dataset with 432 features, which contains prepositions, adverbs, and
conjunctions).

We also calculated the macro-accuracy for the best MEP result to compare it with other
state-of-the-art methods on other datasets.

Given all the trained models that we obtained, the first future work is using ensemble
decision. Additionally, determining whether multiple classifiers made the same error (i.e.,
attributing one text to the same incorrect author instead of the correct one) may mean that
two authors have a similar style. This investigation can also go in the direction of detecting
style similarities or grouping authors into style classes based on such similarities.

Extending our area of research is also how we would like to continue our investigations.
We will not only fine-tune the current methods but also expand to the use of recurrent
neural networks (RNN) and convolutional neural networks (CNN).
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Regarding fine-tuning, we have already started an investigation using the top N most
frequently used words in our corpus. Even though we have some preliminary results, this
investigation is still a work in progress.

Using deep learning to fine-tune ANN is another direction we would like to tackle.
We would also like to address overfitting and find solutions to mitigate this problem.

Linguistic analysis could help us as a complementary tool for detecting peculiarities
that pertain to a specific author. For that, we will consider using long short-term memory
(LSTM) architectures and pre-trained BERT models that are already available for Romanian.
However, considering that a large section of our texts was written one or two centuries ago,
we might need to further train BERT to be able to use it in our texts. That was one reason
that we used inflexible parts of speech, as the impact of the diachronic developments of the
language was greatly reduced.

We would also investigate the profile-based approach, where texts are treated cumula-
tively (per author) to build a profile, which is a representation of the author’s style. Up to
this point we have treated the training texts individually, an approach called instance-based.

In terms of moving towards other types of neural networks, we would like to achieve
the initial idea from which this entire area of research was born, namely finding a “finger-
print” of an author. We already have some incipient ideas on how these instruments may
help us in our endeavor, but these new directions are still in the very early stages for us.

Improving upon the dataset is also high on our priority list. We are considering adding
new texts and new authors.
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The following abbreviations are used in this manuscript:

AA Authorship Attribution
ANN Artificial Neural Networks
MPE Multi Expression Programming
k-NN k-Nearest Neighbour
SVM Support Vector Machines
DT Decision Trees
RMSE Root Mean Square Error
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FANN Fast Artificial Neural Network
MEPX Multi Expression Programming software
LIBSVM Support Vector Machine library
C5.0 system for classifiers in the form of decision trees and rulesets
PoS Part of Speech
IPoS Inflexible Part of Speech
ROST ROmanian Stories and other Texts
ROST-P-1 ROST dataset using prepositions as features, shuffle 1
ROST-P-2 ROST dataset using prepositions as features, shuffle 2
ROST-P-3 ROST dataset using prepositions as features, shuffle 3
ROST-P-* ROST-P-1 and ROST-P-2 and ROST-P-3
ROST-PA-1 ROST dataset using prepositions and adverbs as features, shuffle 1
ROST-PA-2 ROST dataset using prepositions and adverbs as features, shuffle 2
ROST-PA-3 ROST dataset using prepositions and adverbs as features, shuffle 3
ROST-PA-* ROST-PA-1 and ROST-PA-2 and ROST-PA-3
ROST-PAC-1 ROST dataset using prepositions, adverbs, and conjunctions as features, shuffle 1
ROST-PAC-2 ROST dataset using prepositions, adverbs, and conjunctions as features, shuffle 2
ROST-PAC-3 ROST dataset using prepositions, adverbs, and conjunctions as features, shuffle 3
ROST-PAC-* ROST-PAC-1 and ROST-PAC-2 and ROST-PAC-3
ROST-PC-1 ROST dataset using prepositions and conjunctions as features, shuffle 1
ROST-PC-2 ROST dataset using prepositions and conjunctions as features, shuffle 2
ROST-PC-3 ROST dataset using prepositions and conjunctions as features, shuffle 3
ROST-*-* ROST-P-* and ROST-PA-* and ROST-PAC-*
NLP Natural Language Processing
BERT Bidirectional Encoder Representations from Transformers
GPT Generative Pre-trained Transformer
PPM Prediction by Partial Matching
pALM per-Author Language Model
AUC Area Under the Curve
×t cross-topic
×g cross-genre
CCTA Consumer Credit Trade Association

Appendix A. Parameter Settings

ANN parameters are presented in Table A1. We decided to use a fairly simple ANN
architecture, using only 3 layers as we saw from the literature (e.g., [9]) that simple classifiers
outperformed more sophisticated approaches based on deep learning in the case of cross-
domain authorship attribution. We varied the number of neurons on the hidden layer to
find a suitable ANN architecture for building our classification model.

Table A1. ANN parameters.

Parameter Value

Activation function SIGMOID
Maximum number of training epochs 500
Number of layers 3 (1 input, 1 hidden, and 1 output)
Number of neurons on hidden layer from 5 to 50
Number of inputs 56, 415, 432 (corresponding to the considered sets)
Number of outputs 10 (corresponding to authors)
Error on training and validation RMSE
Error on test percent of incorrectly classified items
Desired error on validation 0.001

MEP parameters are detailed in Table A2. These parameters were obtained mostly
through experimentation. We thought that small errors on the training set would also lead
to small errors on the test set. However, we were wrong: the main problem we encountered
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was overfitting and poor generalization ability of the model. Thus, other sets of parameters
can also generate similar results on the test set even if the training error will be higher.

Table A2. MEP parameters.

Parameter Value

Subpopulation size 300
Number of subpopulations 25
Subpopulations architecture ring
Migration rate 1 (per generation)
Chromosome length 200
Crossover probability 0.9
Mutation probability 0.01
Tournament size 2
Functions probability 0.4
Variables probability 0.5
Constants probability 0.1
Number of generations 1000
Mathematical functions +,−,*, /, a<0?b:c, a<b?c:d
Number of constants 5
Constants initial interval randomly generated over [0, 1]
Constants can evolve? YES
Constants can evolve outside the initial interval? YES
Constants delta 1

The k-NN considers only training and test data. Thus, we have training sets of
302 items, while the test contains 98 items. During the tests, we varied the value of k from 1
to 30. This is because we observed (as is depicted in Figure A1) that with higher values we
would not obtain better results, as the results tend to deteriorate as the value of k increases.
However, this depends on the number of features, as the results become bad faster for a
consistent number (>100) of features, as for ROST-PC-*, compared to the evolution of the
results for ROST-P-*, where the results do not deteriorate so fast by increasing the value of
k in the case of a smaller number (<100) of features. To calculate the distance between the
test value and the ones in the training set, we used Euclidean distance.

Figure A1. Evolution of error in k-NN for k values from 1 to 100.

Support vector machines also consider only training and test data. Therefore, the
training sets consist of 302 items, while the test sets contain 98 items. We experimented
with the type of kernel and nu parameters, selecting values that varied through all possible
kernel types and values from 0.001 to 1 for nu. For the type of kernel, the best results were
obtained for linear. For nu we had different values that gave better results depending on
the dataset. However, even though we tried with values starting from 0.001, the best results
were obtained for nu ≥ 0.2. We also changed the seed for the random function with no
effect on the results. The SVM parameters are given in Table A3.
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Table A3. SVM parameters.

Parameter Value

Type of SVM nu-SVC
Type of kernel function linear
Degree in kernel function 3
Gamma in kernel function 1/num_ f eatures
Coef0 in kernel function 0
nu from 0.1 to 1
Cache memory size in MB 100
Tolerance of termination criterion (epsilon) 0.001
Shrinking heuristics, 0 or 1 1
Whether to train an SVC model for probability estimates, 0 or 1 0

As with k-NN and SVM, the decision trees with the C5.0 algorithm also use only
training and test data. Thus, there are 302 items in the training sets and 98 items in the
tests. All considered features/attributes, which in our case are: prepositions, adverbs,
and conjunctions, are set for the Decision Trees with C5.0 as “continuous” because they
are numerical float values between 0 and 1 representing the frequency of occurrence in
terms of the total number of words in the file in which they occur. For authors, we set
explicit-defined discrete values from 0 to 9 for the 10 authors (as specified in the first
columns of Tables 6–8). To improve our results, we experimented with advanced pruning
options. These parameters along with others we used for decision trees with C5.0 are
shown in Table A4. Apart from these parameters we also used the option −I seed, to set
the random seed, with seed ∈ {1, 2, . . . , 9, 10, 20, . . . , 100}, without any effect on the results.

Table A4. Parameters for decision trees with C5.0.

Parameter Value

No. of attributes 57, 416, 433 (corresponding to the considered
sets plus one more attribute for the author )

Global tree pruning w and w/o (option −g)
Pruning confidence option −c CF, with CF ∈ {10, 20, . . . , 100}
Minimum 2 branches for ≥ cases option −m cases, with cases ∈ {1, 2, . . . , 30}

Appendix B. Prerequisite Tests and Results

Appendix B.1. ANN

As a prerequisite, we are interested in seeing how ANN evolves while training on the
data. The ANN error evolution on a training set is shown in Figure A2.

Figure A2. ANN error evolution on a training set.
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It can be seen here that within 20 epochs, the training error drops below 0.1, while
within 60 epochs, it reaches 0. Thus, ANN can be used to solve this kind of problem.

Next, we want to find a good value for the number of neurons on the hidden layer. In
total, 30 runs were performed with the number of neurons (on the hidden layer) varying
from 5 to 50.

The results for the 9 ROST-*-* are presented in Figure A3.

Figure A3. ANN results on the considered datasets. On each set, 30 runs are performed by ANNs
with the hidden layer containing from 5 to 50 neurons. The percentage of incorrectly classified data is
plotted. Best stands for the best solution (out of 30 runs), Avg stands for Average (over 30 runs), and
the Standard Deviation is represented by error bars.

These graphics show that, using only 56 features (i.e., ROST-P-*) tests errors were very
high, while with an increased number of features: i.e., 415 (i.e., ROST-PA-*) and 432 (i.e.,
ROST-PAC-*), respectively, test errors are significantly reduced. Moreover, it appears that
the test error values tend to stabilize between 40 and 50 neurons on the hidden layer.

Appendix B.2. MEP

We are interested to see if MEP is able to discover a classifier and then to see how well
it performs on new (test) data. The evolution of MEP error on a training set is shown in
Figure A4. One can see that the error rapidly drops from over 65% to 15%. This means that
MEP can handle this type of problem.
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Figure A4. MEP error evolution on a training set.

Appendix B.3. K-NN

With k-NN we ran tests with k varying from 1 to 30. The results for all 9 ROST-*-* are
plotted in Figure A5. It can be seen that the results for the 3 ROST-P-* have worst values
than the values obtained for ROST-PA-* or ROST-PAC-*.

Figure A5. K-NN results on the considered datasets. In total, 30 runs are performed with k varying
with the run index. The percentage of incorrectly classified data is plotted.

Appendix B.4. SVM

Initially, we tried to obtain the best kernel type for our tests, and as we have already
read in the literature (e.g., in [37]) it seems that the linear type is the best for these types
of problems (i.e., the classification for authorship attribution). We obtained significantly
better results for this type as well. With this kernel type, we tried the find the best value for
the nu parameter. Therefore, we run tests on all our ROST-*-* with nu values between 0.001
to 1. The results are shown in Figure A6.

Figure A6. SVM results on the considered datasets. In total, 30 runs are performed with nu varying
from 0.001 to 1. The percentage of incorrectly classified data is plotted.
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Appendix B.5. DT

To optimize this method, we tried the advanced pruning options. For this we tried
3 options:

• −g, which disables the global tree pruning mechanism that prunes parts (of an initially
large tree) that are predicted to have high error rates.

• −c CF, changes the estimation of error rates. This affects the “severity of pruning”.
CF stands for confidence level and is a percentage. We chose values from 10 to 100 for
the CF parameter.

• −m cases, which influences the construction of the decision tree by having at least
2 branches at each branch point for which there are more than cases training items.
The default value for cases is 2. We have selected values from 1 to 30 for the cases
parameter.

The results obtained using decision trees with C5.0 are detailed in Table A5.

Table A5. Decision tree results on the considered datasets. The number of incorrectly classified data is
given as a percentage. Result sets are grouped into columns of Error, Size, and sometimes a parameter.
The first set of Error, Size columns represent the results obtained with no options. −g stands for global
tree pruning is disabled, −c CF stands for setting the confidence level via the CF parameter, and −m
cases stands for controlling how the decision tree is built by using the cases parameter. Error stands for
the test error rate, Size stands for the size of the decision tree required for that specific solution, CF
stands for “confidence level” (CF ∈ {10, 20, . . . , 100}), and cases stands for the threshold for which is
decided to have two more that two branches at a specific branching point (cases ∈ {1, 2, . . . , 30}).

−g −c CF −m Cases
Dataset Error Size Error Size Error Size CF Error Size Cases

ROST-P-1 58.2% 60 58.2% 60 58.2% 60 ≥10 51.0% 18 8
ROST-P-2 53.1% 57 54.1% 61 53.1% 57 ≥10 51.0% 46 3
ROST-P-3 69.4% 64 69.4% 64 69.4% 56 =10 57.1% 99 1

ROST-PA-1 35.7% 39 35.7% 42 35.7% 39 ≥10 31.6% 13 12
ROST-PA-2 28.6% 38 27.6% 42 27.6% 43 >20 26.5% 57 1
ROST-PA-3 30.6% 38 30.6% 40 30.6% 38 ≥10 29.6% 31 3

ROST-PAC-1 28.6% 39 28.6% 41 28.6% 39 ≥10 28.6% 39 2
ROST-PAC-2 25.5% 37 25.5% 39 25.5% 37 ≥10 24.5% 12 14
ROST-PAC-3 32.7% 38 33.7% 41 32.7% 38 ≥10 26.5% 13 14

Using the −g option, it can be seen that most of the trees have become larger (as
expected since global tree pruning was disabled by this option). Changes in the results are
marked in the table with the values in the boxes. However, most results remained the same,
two worsened (i.e., for ROST-P-2 from 53.1% to 54.1% and for ROST-PAC-3 from 32.7% to
33.7%), while only one result improved (i.e., for ROST-PA-2 from 28.6% to 27.6%).

When using the −c CF option, almost all results were similar to those obtained without
using any option. The exceptions (marked with boxes), i.e., for ROST-PA-2 better results
(i.e., 27.7% vs. 28.6% and the same as using the −g option) were obtained by using a larger
tree (i.e., 43 compared to 38; in this case larger than using the −g option, which had a tree
size of 42). In the case of ROST-P-3, only the tree size was optimized from 64 to 56 for
CF = 10. For CF > 20, both the error and the tree size remained the same as without using
any option, while for CF = 20, the tree size was slightly reduced (i.e., 63 from 64), but the
error was higher (i.e., 70.4% from 69.4%).

Using the −m cases option, we obtained improvements, as shown in Table A5. All error
rates were improved, while the improvement in the tree size, although in some cases was
significant (i.e., from 60 to 18, from 39 to 13, from 37 to 12, or from 38 to 14), in other cases the
tree size increased or remained large (i.e., for ROST-P-3 from 64 to 99, for ROST-PA-2 from
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38 to 58, and for ROST-PAC-1 it remained the same as when no option was used). For these
three ROST-*-* mentioned above for which the tree size increased or remained large, the
value of the cases parameter was very low (i.e., 1 or 2). For ROST-P-2 and ROST-PA-3, there
is cases = 3 and the tree size did not change that much (i.e., from 38 to 31) and remained the
same, respectively. For ROST-P-1, ROST-PA-1, ROST-PAC-2, and ROST-PA-3, cases ≥ 8, and
the three decision trees have greatly reduced in size to values ≤ 18.

To show the evolution of the error rates for the three datasets considered, we plotted
the results of the decision trees obtained using C5.0 with the −m option, with cases varying
from 1 to 30. The results are shown in Figure A7.

Figure A7. DT results on the considered datasets. In total, 30 runs are performed with the cases
parameter (introduced by the −m option) varying from 1 to 30. The percentage of incorrectly classified
data is plotted.
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Abstract: Dense breast tissue is a significant factor that increases the risk of breast cancer. Cur-
rent mammographic density classification approaches are unable to provide enough classification
accuracy. However, it remains a difficult problem to classify breast density. This paper proposes
TwoViewDensityNet, an end-to-end deep learning-based method for mammographic breast density
classification. The craniocaudal (CC) and mediolateral oblique (MLO) views of screening mam-
mography provide two different views of each breast. As the two views are complementary, and
dual-view-based methods have proven efficient, we use two views for breast classification. The
loss function plays a key role in training a deep model; we employ the focal loss function because
it focuses on learning hard cases. The method was thoroughly evaluated on two public datasets
using 5-fold cross-validation, and it achieved an overall performance (F-score of 98.63%, AUC of
99.51%, accuracy of 95.83%) on DDSM and (F-score of 97.14%, AUC of 97.44%, accuracy of 96%) on
the INbreast. The comparison shows that the TwoViewDensityNet outperforms the state-of-the-art
methods for classifying breast density into BI-RADS class. It aids healthcare providers in providing
patients with more accurate information and will help improve the diagnostic accuracy and reliability
of mammographic breast density evaluation in clinical care.

Keywords: breast density classification; mammography; craniocaudal (CC) view; mediolateral
oblique (MLO) view; BI-RADS; convolutional neural network (CNN); loss function

MSC: 68T07

1. Introduction

Breast density is a significant risk factor for breast cancer because it indicates the
proportion of fibroglandular tissue to fat tissue in the breast [1–4]. Breast tissue has varied
X-ray attenuation qualities, resulting in a different mammographic density. Fat tissue is
dark (radiolucent), while fibroglandular tissue is white (radiopaque) in appearance [5].
American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-
RADS) results from the reporting system describe density levels [6]. According to the
BI-RADS 5th edition, the distribution of parenchymal density based on the relative mod-
ulating factor hard negatives are the appearance of breast tissue is classified into four
categories: BI-RADS I: fatty (0–25%), BI-RADSII: scattered density (26–50%), BI-RADSIII:
heterogeneously dense (51–75%), BI-RADSIV: extremely dense (76–100%). Figure 1 presents
examples of each type of BI-RADS mammogram from the Digital Database for Screening
Mammography (DDSM). Mammographic breast density classification focuses significantly
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on breast cancer prevention and risk assessment in breast cancer studies. Many researchers
in medical imaging recently applied deep-learning models to address this issue, although
their performance is low and may not be for clinical application [7–10].

Figure 1. Examples of BI-RADS breast composition categories of breast density in increasing order of
density from left to right [11].

The craniocaudal (CC) and mediolateral oblique (MLO) views of screening mam-
mography provide distinct breast views. Due to the complementing characteristics of
these two views, the dual view can be used for better performance because the dual-view
strategy achieves a more promising performance than using a single view. We introduce
a method for automatically classifying mammographic density from the two views that
provide more information predicting breast cancer risk. The Digital Database for Screening
Mammography (DDSM) dataset was used to test the system. The main contributions of
this study can be summarized as follows:

• We proposed an end-to-end deep learning-based model—TwoViewDensityNet—for
the classification of breast density using dual mammogram views, i.e., craniocaudal
(CC) view and mediolateral oblique (MLO) view. It combines the CC and MLO views
by leveraging the relationship between views and using a CNN as the backbone model.
First, it extracts the complementary information from each view using a CNN model,
fuses them using a concatenation layer, and finally, predicts the density class using an
FC layer with SoftMax activation.

• We evaluated different preprocessing techniques to enhance the mammogram image
before feeding it to the CNN model and found the one that is best suited for the
proposed model.

• We employed different loss functions and their valuable characteristics to tackle the
class-imbalance problem.

The remainder of this paper is organized as follows. Section 2 presents previous works
related to breast density classification. Section 3 describes the proposed system of four
BI-RADS categorizations. We present evaluation protocols in Section 4. Experimental
results, as well as their interpretation and discussion, are presented in Section 5. Finally, we
end up with the conclusions in Section 6.

2. Related Work

Many researchers have focused their attention on the challenge of classifying breast
density into BI-RADS classifications. These approaches were tested with benchmark
datasets such as the Digital Database for Screening Mammography (DDSM), INbreast, and
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Private datasets. Several methods that use deep learning have been proposed, including
single-view-based and multi-view-based, reviewed in the following sections. A summary
of these studies in the recent literature is presented in Table 1.

Table 1. The comparison with different state-of-the-art methods for breast density classification.

References Model Dataset ACC (%) AUC (%) F1-Score (%)

Single View

Li et al. [7] (2021)
ResNet50 + DC + CA

(DC: dilated convolutions.
CA:channel-wise attention)

Private 88.70 97.40 87.10

INbreast 70 84.70 63.50

Jian et al. [14] (2020)

Inception-V4-SE- Attention Private 92.17 - -

ResNeXt-SE-Attention and Private 89.97

DenseNet-SE-Attention Private 89.64

Yi et al. [8] (2019) ResNet-50 DDSM 68 - -

Lehman et al. [10] (2019) ResNet-18 Private 77 - -

Gandomkar et al. [13] (2019) Inception-V3 Private 83.33 - 77.50

Mohamed et al. [15] (2018) AlexNet Private - 92 -

Multi-View

Zhao et al. [12] (2021)
BASCNet (ResNet)

(Bilateral-view adaptive spatial and
channel attention network)

DDSM 85.10 91.54 78.92

INbreast 90.51 99.09 78.11

Li et al. [7] (2021)
ResNet50 + DC + CA

(DC: dilated convolutions. CA:
channel-wise attention)

Private

92.10 98.1 91.2

92.50 98.2 91.7

75.20 93.6 67.9

Timothy and Lakshman
[16] (2020) DualViewNet CBISDDSM - 89.70 -

Wu et al. [9] (2018) VGG Net Private 69.40 84.20 -

Li et al. [7] developed a CNN model based on dilated and attention-guided residual
learning for the mammography density classification task. In addition, a multi-stream archi-
tecture was designed specifically to analyze multi-view mammograms. They achieved an
accuracy of 88.7% and 70.0%, respectively. Yi et al. [8] developed deep convolutional neural
networks (DCNNs) based on ResNet-50 to categorize two-dimensional mammography im-
ages, determine breast laterality, and assess breast tissue density. Their approach achieved
68% accuracy with breast density classification. Wu et al. [9] proposed a multi-view three-
layer CNN to categorize breast density into the four density categories or superclasses
(dense and non-dense), using all four mammography views as input. It gave an accu-
racy of 82.5% for superclasses and a macAUC (macro average) of 0.934 (Class 0: 0.971,
Class 1: 0.859, C2: 0.905, and Class 3: 1) for the four-density classification. Lehman et al. [10]
proposed deep learning based on ResNet-18 for dense and non-dense and BI-RADS density
classification. They showed good agreement (kappa value = 77%) for four BI-RADS catego-
rizations with radiologists in the test set. Zhao et al. [12] proposed a bilateral-view adaptive
spatial and channel attention network (BASCNet) based on ResNet-50 as a backbone for
fully automated breast density classification by integrating left and right breast information
and adaptively capturing distinguishing features in space and channel dimensions. The
method achieved accuracies of 85.10% and 90.51%. Gandomkar et al. [13] addressed the
fine-tuning of the Inception-V3 model for the classification of breast density (i) fatty or
dense, (ii) BI-RADS I, BI-RADS/II, and (iii) BI-RADS III/BI-RADS IV. The method achieved
an accuracy of 83.33% and a Cohen’s kappa of 0.775 for four BI-RADS categorizations.
Jian et al. [14] developed an attention strategy in which the SE-Attention mechanism is
combined with the CNN framework to classify four BI-RADS. This method achieved accu-
racies of 92.17%, 89.97%, 89.64%, and 89.20% for Inception-V4-SE- Attention, Inception-V4,
ResNeXt, and DenseNet models, respectively. Mohamed et al. [15] designed an end-to-end
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CNN model using improved AlexNet to classify breast density into BI-RADS categories. II
and BI-RADS.III. The method achieved an AUC of 0.9421.

The preceding review of state-of-the-art approaches demonstrates that breast density
classification requires additional research. All the methods discussed above use the cross-
entropy function, which is often used for classification problems. We used different loss
functions, such as focal and sum square error loss, to boost the CNN model’s classification
accuracy. Additionally, by utilizing different preprocessing approaches to improve the
training data provided to the CNN, it is possible to learn various density features. The pre-
ceding review of state-of-the-art approaches demonstrates that breast density classification
requires additional research. Unilateral mammography images may not contain enough
information to accurately classify breast density [7,9,12]. The classification accuracy will be
improved by incorporating image information from contralateral or multi-view mammog-
raphy. Previous studies have based their criteria on multi-view (i.e., four views including
left MLO, right MLO, left CC, right CC) or two-view (i.e., similar for two MLO-view or
two CC-view). In addition, the training data provided to the CNN requirement of previous
studies were based on input images of size 224 × 224, whereas we used input images of
size 336 × 224 to accommodate the regular aspect ratio of mammograms.

Timothy and Lakshman [16] developed DualViewNet for density classification similar
to our method. The proposed model classifies MLO and CC mammograms taken from the
same breast. It gave an AUC of 89.70%. The main difference between this method and our
approach is the architecture of the deep models. The method in [16] extracts features using
convolutional layers of two deep models, concatenates them, and classifies them; As the
features from the convolutional layers are concatenated directly, so the dimension of the
feature space becomes very high, which leads to classification layer with a huge number of
learnable parameters. It restricts the use of only the CNN models with a reduced number
of parameters, such as MobileNetV2, to avoid overfitting. On the contrary, our method first
extracts features using the convolutional layers of deep models, then reduces the dimension
of the feature space using global average pooling (GAP) layers and concatenates them. In
this way, the dimension of the feature space is significantly reduced, and the parameter
complexity of the classification layer remains very low. It allows using any pretrained CNN
model as a backbone avoiding the fear of overfitting. Moreover, we first extract the breast
area, unlike the method in [16], to emphasize the breast density, not just color mapping to
magma and resizing to 336 × 224.

3. Proposed Method

In mammography, two views, i.e., CC and MLO, of the ipsilateral breast (i.e., two-view
analysis) and the corresponding views of the contralateral breast (i.e., bilateral analysis)
are captured to analyze the breast for detecting possible abnormalities. Both views have a
complementary relationship and reveal signs of an abnormality better than a single view.
Various multi-view approaches were proposed to improve the detection of breast abnormal-
ities in mammograms. Multiple views of the right and left breasts in CC and MLO views
are used to derive the information for these procedures. The ipsilateral analysis is based on
combining the different projection views of the same breast, and bilateral analysis is based
on combining the same projection view of the left and right breast [17–21]. This observa-
tion has been employed in different techniques for mass classification [22–24] and density
classification. These studies reveal that multi-views result in better performance than a
single view. Inspired by this, we propose a prediction model for breast density classification
into four BI-RADS categories based on dual views, as shown in Figure 2. The proposed
technique is an end-to-end deep learning-based model (we call it TwoViewDensityNet)
that takes two views, i.e., two mammogram images of size 336 × 224 as input and predicts
the label of the density type of the breast according to BI-RADS classification. It consists
of two branches, one for each view. First, each branch preprocesses the corresponding
view and extracts hierarchical features using a convolutional neural network (CNN) as a
backbone model. The features from the two views are fused by the concatenation layer
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and passed to an FC layer, which serves as a classifier and yields the prediction label of the
input mammographic views.

Figure 2. Proposed density classification system. GAP stands for global average pool.

The precise specification of this method relies on three important design decisions:
(i) which preprocessing technique is suitable, (ii) which backbone CNN model is suited for
this task, and (iii) which loss function helps to train the model so that it has good general-
ization. Each of these design decisions is discussed in detail in the following subsections.

3.1. Preprocessing

Breast tissue is crucial for discrimination between different breast density classes; it
must be adequately separated from the background. Removing all artifacts from the image
leaves only the breast tissue area for the model to learn from. In the first step, we used the
threshold value 200 to generate a binary mask, where 0 (black) is the background pixel, and
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1 (white) is the breast region, artifact, or noise pixel. Afterward, a morphological opening
operator is applied to the binary image with a disk-type structuring element of size 9 × 9
to extract the breast tissue area; it is more prominent than any object; it is binarized as a
single region. As a result, the most significant contours are retained, and the remainder is
discarded. Then, we overlay this mask to eliminate mammography artifacts and keep only
the breast tissue area. Then, the bounding box of the breast tissue is used to crop each view
so that it mainly contains the breast tissue.

Furthermore, we use magma color mapping from 16-bit grayscale to 24-bit RGB, as
used in [16]; it enhances the perceptual quality [25,26] of the fibroglandular tissue and fat
tissue. In addition, it maps the gray-level mammogram image on an RGB image, which can
be passed easily to pretrained CNN models, which are usually pretrained on RGB pictures
from ImageNet [27]. Figure 3 illustrates the whole preprocessing process.

Figure 3. Preprocessing method for mammogram image.

3.2. Backbone Convolutional Neural Network (CNN) Model

The TwoViewDensityNet model employs two convolutional neural networks for
feature extraction from each view. Greater depth in CNN models allows for extracting
discriminative features, improving classification performance. Various widely used deep
convolutional models, such as ResNet50 [28], EfficientNetb0 [29], and DenseNet201 [30],
etc., can be exploited for feature extraction. We used ResNet-50 pretrained on ImageNet [27];
its architecture is based on residual learning, which allows increasing the depth of a CNN
model that prevents the problem of gradient vanishing [31] and degradation [32,33].

3.3. Concatenation Layer

Different techniques combine the extracted deep features from the two views, such as
concatenation and element-wise operations. In our proposed method, the features from the
two views are fused by the concatenation layer. The output of the global average pooling
(GAP) of ResNet-50 in the left branch is x1 = [α1, α2, . . . , α2048]

T , and the right branch
is x2 = [β1, β2, . . . , β2048]

T . To fuse features from both views, we concatenate them in x
where x = [α1, α2, . . . , α2048, β1, β2, . . . , β2048].
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3.4. Classification Layer

The last layer of the model is the classification layer; it is a fully connected layer with
four output neurons to classify the input views into one of the four breast density categories;
each neuron represents a different BI-RADS class. The output FC layer employs a SoftMax
function as an activation function because it is the most commonly used activation function
in the output layer; it converts the numerical output of a convolutional neural network to
class-specific probability values. The predicted class of the input views is the one for which
the posterior probability is maximum. The difference between the predicted class and the
actual label is then calculated using a loss function at each training iteration.

3.5. Training the TwoViewDensityNet

The training of the network is an iterative process, and it depends on how accurately
the error made by the network is measured, i.e., how the loss function is defined. First, we
discuss the loss functions and then describe the optimization method used for training.

3.5.1. Loss Functions

The critical component of a deep-learning algorithm is the loss function; it indicates
how much error a neural network makes in recognizing the input image. A sample’s
involvement in the optimization problem is measured using a loss function, which assigns
a numerical value to each input instance, i.e., the loss. The model parameters are updated
so that the loss is minimum. We adopt some well-known loss functions.

Weighted cross-entropy loss (WCE) [34].
Let K be the number of classes and N the number of training instances in a batch.

Further, let yni be the predicted posterior probability of nth training example in the batch
that belongs to ith class, then the weighted cross-entropy loss function is calculated as
follows in Equation (1):

Loss = − 1
N

N

∑
n=1

K

∑
i=1

wiTni ln yni (1)

where Tni is the true posterior probability of nth training example in the batch that belongs
to an ith class (in one-hot encoding vector), and wi is the prior of the ith class. Further, if the
total batch size is N and the number of instances of the ith class is mi, then wi = mi

N .
Focal loss (FL) [35].
Let K be the number of classes and N the number of training instances in a batch.

Further, let yni be the predicted posterior probability of nth training example in the batch
that it belongs to ith class, then the focal loss function is calculated as follows in Equation (2):

Loss = − 1
N

N

∑
n=1

K

∑
i=1

Tniα(1 − yni)
γ ln yni (2)

where Tni is the true posterior probability of nth training example in the batch that belongs
to an ith class, and γ is the focusing parameter where γε[0, 0.5].

Sum square error loss (SSE) [36].
Let K be the number of classes and N the number of training instances in a batch.

Further, let yni be the predicted posterior probability of the nth training example in the
batch that belongs to the ith class, then the sum square error loss function is calculated as
follows in Equation (3):

Loss = − 1
N

N

∑
n=1

K

∑
i=1

(yni − Tni)
2 (3)

where Tni is the true posterior probability of nth training example in the batch that belongs
to an ith class.
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3.5.2. Algorithms Used for Training

Fine-tuning involves various hyper-parameters: the optimization algorithm, learning
rate, batch size, and the number of training epochs. We attempt different options to
determine the best values of the hyperparameters. We tested three optimizers (Adam, SGD,
and RMSprop), a learning rate between 1 × 10−4 and 1 × 10−2, four batch sizes (16, 32, 64),
and the number of epochs between 50 and 100. Early stopping is performed with patience
of seven iterations to further reduce overfitting. Finally, we have decided on stochastic
gradient descent (SGD) optimizers to fine-tune the models with a momentum of 0.9 and
an initial learning rate of 1 × 10−4. The training epoch is 50, and the batch size is 64; this
would result in approximately 3–4 h of runtime.

3.5.3. Datasets

To verify the proposed system’s efficiency and robustness, we employed two publicly
available mammographic benchmark datasets:

Digital Database for Screening Mammography (DDSM) [11]. The DDSM database
consists of 2620 mammography screening cases containing a total of 10,480 mammograms
with a resolution of 4000 × 6000 pixels. Moreover, they are stored in portable gray map
(PGM) format with 16 bits; every case includes two views of bilateral breasts craniocaudal
(CC), mediolateral oblique (MLO), breast laterality (right vs. left), and Breast Imaging
Reporting and Data System (BI-RADS) breast density (four categories: almost entirely fatty,
scattered area of fibroglandular density, heterogeneously dense, and extremely dense). We
selected two views of each breast density category, totaling 5406 images, and the image
distribution over the four categories presented in Figure 4a. Five-fold cross-validation is
used to train and test models. Figure 4b shows the data distribution for each fold.

(a) (b)

Figure 4. (a) Data distribution of the DDSM dataset over the four classes; (b) data distribution of the
DDSM dataset for each fold.

INbreast [37] is taken from the Breast Centre at the University of Hospital de São João,
Portugal. It contains 115 cases comprising digital images converted to DICOM format
with a resolution of either 3328 × 4084 or 2560 × 3328 pixels. Each case includes both
craniocaudal (CC) and mediolateral oblique (MLO) views and breast laterality (right vs. left)
annotated with contour points of the ROIs. The density labels are annotated by radiologists
as BI-RADS I, BI-RADS II, BI-RADS III, and BI-RADS IV. Out of the total number of BI-
RADS categories, 136 belong to BI-RADS I, 147 to BI-RADS II, 99 to BI-RADS III, and 28 to
BI-RADS IV. Furthermore, 5-fold cross-validation is used to train and test models.
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3.5.4. Data Augmentation

Training a CNN model on a large number of training instances typically yields good
results and high-performance values. Additionally, data imbalances may be alleviated
with the use of augmentation techniques. To reproduce a large number of breast density
variations in mammogram images, we used rotation (θ = 180◦) and random horizontal and
vertical flipping.

4. Evaluation Protocol

We randomly divided the data into a training set (80%), a validation set (10%), and a
test set (10%) and used a 5-fold cross-validation technique to evaluate the proposed system.
The cross-validation concept is based on partitioning the dataset into k equal-sized folds.
Then, k − 1 folds will be used to train and validate, with the remaining fold to test the
classification models. The final result is calculated as the average of overall classes [38].

Using the confusion matrix in Table 2, a model’s classification performance is evaluated
primarily in terms of overall class accuracy (OCA), individual class accuracy (ICA), recall
(RC), precision (PR), F1-score, Cohen’s kappa [39–41]. The definitions of these performance
measures are described with the help of Equations (4)–(8), as shown below:

Overall Classification Accuracy (OCA.) =
Correct predictions

Total predictions
(4)

Individual Classification Accuracy (ICA.) =
Correct predictions belong to a specific class

Total predictions belong to a specific class
(5)

Precision =
Tp

TP + FP
Recall =

Tp
TP + FN

(6)

F1 Score = 2 × Precision × Recall
Precision + Recall

(7)

Table 2. Confusion matrix.

Confusion Matrix Actual Positive Actual Negative

Predicted Positive TP 1 FP 3

Predicted Negative FN 4 TN 2

1 The number of true positives (TPs): the prediction was positive when the sample was malignant. 2 The number
of true negatives (TNs): the prediction was negative when the sample was benign. 3 The number of false positives
(FPs): the prediction was positive when the sample was benign. 4 The number of false negatives (FNs): the
prediction was negative when the sample was malignant.

Cohen’s kappa is calculated using the following:

Kappa = (Po−Pe)
(1−Pe)

Pe =
(TP+FN)×(TP+FP)+(FP+TN)×(FN+TN)

(TP+TN+FP+FN)2 ; Po =
TP+TN

TP+TN+FP+FN
(8)

Additionally, the breast density classifier’s performance was measured using the area
under the ROC curve (AUC). The area under the receiver operating characteristic (AUC-
ROC) curve is used to evaluate the effectiveness of classification problems with varying
thresholds [42,43]. AUC is the separability measure, while ROC is a probability curve. It
reveals the extent to which the model can differentiate between different types of data. The
multiclass classifier considers the AUC between each class and all other classes (a one vs.
all approach).

The system was implemented, and all experiments were performed in MATLAB
R2021b version 9.11 with a deep-learning toolbox on AMD Ryzen Threadripper 3960X
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24-core processor, 3.79 GHz, RAM 128 GB, and Nvidia graphics processing units (GPU)
based in Santa Clara, CA, USA, GeForce RTX 3090 24 GB.

5. Experimental Results and Discussion

5.1. Ablation Study

This section conducts different ablation tests to validate the proposed system struc-
ture’s efficiency.

5.1.1. Which Backbone Model?

The question of which CNN model to use as the system’s backbone is emerging. The
DDSM dataset was used to test three state-of-the-art CNN models. Based on the obtained
results illustrated in Table 3, the selected backbone model for the breast density classification
task was the ResNet-50. This decision was made because ResNet-50 outperformed other
models in terms of overall classification accuracy. The variation in performance amongst
the investigated CNN models can be attributable to the different design choices.

Table 3. The performance comparison on the DDSM dataset using different convolutional neural
networks (CNN).

Model Overall Classification Accuracy (OCA %)

ResNet 50 [28] 74.94
DenseNet201 [30] 69.58

EfficientNet b0 [29] 64.06

5.1.2. Which Preprocessing Operation?

Breast tissue characteristics in digital mammographic images will be more apparent
after image enhancement, increasing the early breast cancer classification rate. A custom-
tailored image processing technique will likely be needed to best display different image
characteristics. Additionally, different breast density may benefit from specific algorithms
and the performance disparities between the image preprocessing methods. As a result, we
decided on magma color mapping, as presented in Table 4. An overview of different image
preprocessing tasks is shown in Figure 5.

Table 4. The effect of preprocessing full mammograms on the DDSM test performance.

Model Preprocessing (OCA %)

ResNet50

Without 66.83

Contrast-limited adaptive histogram equalization (CLAHE) 67.41

Histogram equalization 65.23

Magma color mapping 74.94

5.1.3. Single View or Dual View?

Comparing the results utilizing dual-view mammography inputs to those using single-
view mammography input, it can be observed that the dual-view mammography inputs
setting is beneficial to the density classification task, and improved statistics were ob-
tained by all of the investigated models, including the backbone model ResNet50, as
shown in Table 5.
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Figure 5. A comparison of the visual effects of different image preprocessing tasks.

Table 5. The effect of overall classification accuracy of the single view vs. dual View of the DDSM test.

Model Overall Classification Accuracy (OCA %)

Single View

ResNet 50 74.94
DenseNet201 69.58

EfficientNet b0 64.06

Dual View

ResNet 50 91.36
DenseNet201 86.16

EfficientNet b0 73.97

5.1.4. Which Loss Function?

As mentioned in Section 3.5.1, We considered three loss functions: cross-entropy, focal,
and SSE. We used the pretrained ResNet50 model as the backbone CNN model to test the
effect of these loss functions. Figures 6 and 7 show the results of the three-loss function on
the DDSM dataset. The focal loss function yields the best results in terms of all performance
metrics because focal loss does this by decreasing the weight given to simple examples
in the loss function, hence focusing on more hard examples. Table 6 shows the results.
In Table 7, we provide the confusion matrix produced from the best experiment result to
explore the classification behavior of the model.
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Figure 6. The effect of different loss functions of the DDSM test on overall classification accuracy.

Figure 7. The effect of different loss functions of the DDSM test individual classification accuracy.

Table 6. The effect of different loss functions of the DDSM test.

Loss Function OCA ICB−I ICAB−II ICAB−III ICAB−IV

ResNet-50 CE loss 91.36 ± 3.29 96.28 ± 3.29 96.29 ± 20 89.44 ± 2.10 77.70 ± 16.4
ResNet-50 focal loss 95.83 ± 3.63 94.25 ± 5.72 99.14 ± 0.98 93.17 ± 6.95 93.83 ± 5.86
ResNet-50 SSE loss 94.01 ± 3.61 94.55 ± 5.98 98.10 ± 1.17 92.67 ± 4.76 85.38 ± 9.96
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Table 7. Confusion matrix of 5-folds of the best test (* OCA) and (** ICA).

Confusion Matrix
Accuracy (%)

Fold
Predicted

B-I B-II B-III B-IV OCA ICB−I ICAB−II ICAB−III ICAB−IV

Fold 1

A
ct

ua
l B-I 63 8 0 0

94.03 88.73 98.10 93.17 89.61
B-II 4 206 0 0
B-III 1 6 150 4
B-IV 0 1 7 69

Fold 2

A
ct

ua
l B-I 69 0 0 0

99.38 100 100 100 96.20
B-II 0 210 0 0
B-III 0 0 161 0
B-IV 0 1 2 76

Fold 3

A
ct

ua
l B-I 61 8 0 0

91.89 88.41 98.10 88.20 85.90
B-II 4 206 0 0
B-III 0 0 142 19
B-IV 0 1 10 67

Fold 4

A
ct

ua
l B-I 69 0 0 0

100 100 100 100 100
B-II 0 210 0 0
B-III 0 0 161 0
B-IV 0 0 0 78

Fold 5

A
ct

ua
l B-I 66 4 0 0

93.83 94.29 99.52 84.47 97.44
B-II 1 209 0 0
B-III 0 0 136 25
B-IV 0 0 2 76

* OCA: overall classification accuracy. ** ICABI−RADS: individual classification accuracy for BI-RADS
(I, II, III, IV).

5.2. Comparison with State-of-the-Art Methods for Breast Density Classification

The method of Zhao et al. [12] has been introduced to compare related methods of
the DDSM dataset with a four-view. The bilateral adaptive spatial and channel attention
network (BASCNet) integrates the information of the left and right breasts. Li et al. [7]
added dilated convolution and the channel attention mechanism to the ResNet network
architecture with multi-view inputs (i.e., four-view, as well as two CC views or two MLO
views of the left and right breasts). Wu et al. [9] used a VGG Net with four views as input.
Our proposed method TwoViewDensityNet significantly outperforms the state-of-the-art
methods since we used two views, CC and MLO, from the same breast.

Additionally, we applied different loss functions to improve performance accuracy.
Our proposed method attained the highest accuracy of 95.83 on the DDSM, respectively,
when TwoViewDensityNet used ResNet-50 as the backbone model with focal loss function;
this is significantly higher than the existing methods. The findings were compared using a
dual-view input. With a single-view input, it is evident that the dual-view input option is
beneficial to the classification task and the ResNet50 backbone produced those improved
metrics. Compared to Zhao et al. [12] on DDSM, our proposal outperformed w.r.t. all
evaluation metrics, as presented in Table 8. To be precise, our model increased classification
accuracy by 10% and 5% F1 score by 20% and 19% on the DDSM and INbreast, respectively,
for dual-view inputs.
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Table 8. The comparison with different state-of-the-art methods for breast density classification.

References Model Dataset ACC (%) AUC (%) F1-score (%) Kappa (%)

Single View

Li et al. [7], 2021
ResNet50 + DC + CA

(DC: dilated convolutions.
CA:channel-wise attention)

INbreast 70 84.70 63.50 -

Yi et al. [8], 2019 ResNet-50 DDSM 68 - - -

Lehman et al. [10], 2019 ResNet-18 INbreast 63.80 81.20 48.90 -

Gandomkar et al. [13], 2019 Inception-V3 INbreast 63.90 82.10 53.10 -

Mohamed et al. [15], 2018 AlexNet INbreast 59.60 82 35.4 -

Multi-View

Zhao et al. [12], 2021
BASCNet (ResNet)

(Bilateral-view adaptive spatial and
channel attention network)

DDSM 85.10 91.54 78.92 -

INbreast 90.51 99.09 78.11 -

Proposed system TwoViewDensityNet
DDSM 95.83 99.51 98.63 94.37

INbreast 96 97.44 97.14 94.31

5.3. Discussion

Utilizing the dual-view approach, we built and tested a system for classifying breast
density tissue as B-I, B-II, B-III, or B-IV using the DDSM benchmark dataset as guidance. An
end-to-end CNN model was utilized as the backbone model in the method. We combined
the information from two views and learned which complementary information is essential
in each view. When we fine-tune this backbone for left and right, each view’s weight
and complementary information are classified. Among the well-known CNN models, we
investigated (ResNet-50, DenseNet-201, and Efficient-b0) and determined that ResNet-50 is
the most suitable model for the system. That might be residual learning extracting global
(high-level) features that effectively pay more attention to the semantics of fibroglandular
tissue, which enables accurate discrimination of the four BI-RADS categories.

This study has some limitations. However, for the mammography dataset used in
this study, the accessible images were limited, resulting in a severely uneven distribution
across the four categories. Training a classification network with these datasets is quite
difficult. Furthermore, breast density is a critical clinical characteristic used to determine a
woman’s risk of developing breast cancer. Our proposed system is well classified between
non-dense breasts (fatty or scattered density) and dense breasts (heterogeneously dense or
extremely dense). It is simple to differentiate between fatty and highly dense breasts in the
clinical setting.

On the other hand, radiologists have difficulty visually and consistently distinguishing
between the scatter density and heterogeneously dense categories [44]. According to our
findings, the heterogeneously dense or extremely dense classification results are better than
the fatty or scattered density; this might be because of the similar characteristic between
fatty and heterogeneously dense or scattered density and extremely dense.

The performance of TwoViewDensityNet for the four BI-RADS classification tasks
on the DDSM dataset is (F-score of 98.63%, AUC of 99.51%, accuracy of 95.83%) and the
INbreast dataset is (F-score of 97.14%, AUC of 97.44%, accuracy of 96%).

6. Conclusions

We addressed the challenging problem of discriminating mammographic breast den-
sity and, by leveraging advances in deep learning, developed a system for this problem that
leverages the complementary relationship between the craniocaudal (CC) and mediolateral
oblique (MLO) views to improve the differentiation of BI-RADS class. We extensively tested
the system on the benchmark datasets DDSM and INbreast and discovered that it out-
performs the state-of-the-art approaches. ResNet-50 achieves better results as a backbone
model for the system when focal loss is used for training. We will continue investigating
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deep-learning mammography models and develop more robust models. This would help
radiologists enhance the current clinical breast density assessment. The proposed model
can be used for other similar applications, which will be our future work.
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Abstract: Long short-term memory neural networks have been proposed as a means of creating
accurate models from large time series data originating from various fields. These models can further
be utilized for prediction, control, or anomaly-detection algorithms. However, finding the optimal
hyperparameters to maximize different performance criteria remains a challenge for both novice
and experienced users. Hyperparameter optimization algorithms can often be a resource-intensive
and time-consuming task, particularly when the impact of the hyperparameters on the performance
of the neural network is not comprehended or known. Teacher forcing denotes a procedure that
involves feeding the ground truth output from the previous time-step as input to the current time-
step during training, while during testing feeding back the predicted values. This paper presents a
comprehensive examination of the impact of hyperparameters on long short-term neural networks,
with and without teacher forcing, on prediction performance. The study includes testing long short-
term memory neural networks, with two variations of teacher forcing, in two prediction modes, using
two configurations (i.e., multi-input single-output and multi-input multi-output) on a well-known
chemical process simulation dataset. Furthermore, this paper demonstrates the applicability of a
long short-term memory neural network with a modified teacher forcing approach in a process state
monitoring system. Over 100,000 experiments were conducted with varying hyperparameters and in
multiple neural network operation modes, revealing the direct impact of each tested hyperparameter
on the training and testing procedures.

Keywords: long short-term memory (LSTM); recurrent neural network (RNN); teacher forcing;
prediction; performance analysis; benchmarking; machine learning; Tennessee Eastman process;
time series

MSC: 68T07; 68T09

1. Introduction

Machine learning algorithms, nowadays, are a “go-to” for solving a plethora of real-life
problems in various domains, from healthcare [1], finance [2], and manufacturing [3] all the
way to agriculture [4]. On a larger scale, machine learning can be regarded as an umbrella
term incorporating a wide range of algorithms and models proposed for specific tasks,
including medical diagnosis [5], predictive maintenance [6], text authorship attribution [7],
human race recognition [8], and anomaly detection [9].

One specific subclass of machine learning includes neural networks. Since the first
mention of artificial neurons almost 80 years ago [10], neural networks have constantly
evolved and have been widely applied in numerous areas and domains, from economics [11]
to medicine [12–14] to industrial domains [15]. Long short-term memory (LSTM) neural
networks [16] are a special type of recurrent neural networks, initially proposed as a so-
lution to the vanishing and exploding gradient problem. As predictors, LSTM neural
networks are efficient in learning long- and short-term spatio-temporal dependencies in
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time series data. In the scientific literature, LSTMs have been proposed for prediction tasks
on time series data in a multitude of papers [17–20]. Moreover, LSTMs have also been used
for other task as well, such as text classification [21], phoneme classification [22], time series
classification [19,23], electroencephalogram (EEG) classification [24], remaining useful life
prediction [25], and sentiment analysis [26,27].

One major difficulty when working with neural networks is discovering the optimal
hyperparameters [28] or the best-suited model for optimal performance. To this day,
optimizing the hyperparameters involves finding the best values for specific datasets
and for specific network architectures. Among the well-known optimization techniques,
we find the grid search method [29], a blackbox hyperparameter optimization method
involving finding the best values from a finite set. An alternative to grid search is random
search [29], which involves randomly sampling hyperparameter values based on a search
budget. Another popular optimization technique is Bayesian optimization [29], a technique
that involves using a surrogate model to approximate a complex function and an acquisition
function to determine the next point to evaluate. It operates through an iterative process,
with the surrogate model and acquisition function being updated at each step.

The performance of neural networks has been analyzed by numerous researchers
in diverse domains and on a multitude of datasets [30–39]. The classification and prediction
performance of neural networks has been shown to be influenced by various factors, such as
the architecture, the hyperparameters, and the dataset. While optimization techniques aid in
discovering the best hyperparameters for such models, oftentimes an in-depth performance
analysis is needed to observe and understand how different hyperparameters actually
affect the functionality of the neural networks. Moreover, considering the high usability
of neural networks by expert and novice users alike, oftentimes running an optimization
algorithm (which can be time- and resource-consuming) is not enough without observing
the model behavior.

This paper focuses on a prediction performance comparison between standard LSTMs
and LSTMs trained with two variants of teacher forcing (TF) used for time series prediction
in a process state monitoring system. The two variants of TF include the one proposed
in [40] for anomaly-detection tasks (LSTMTF) and, as originally proposed in [41], for long-
term forecasting (LSTMTFC).

By using an empirical approach, this paper analyzes the effects of different hyperpa-
rameters, such as the input sequence length, the number of time delays, the mini-batch size,
the learning rate, and the number of hidden units, while training and testing the LSTM
variants on time series data originating from an industrial process, namely, on the Tennessee
Eastman process dataset [42,43]. Additionally, this paper also analyzes different neural
network configurations, namely, multi-input single-output (MISO) and multi-input multi-
output (MIMO) on two prediction modes, that is, many-to-many (M2M) and many-to-one
(M2O). The performance analysis focuses on both the training and inference.

The prediction performance of different variants of LSTM was compared with the
nonlinear auto-regressive neural networks with exogenous inputs (NARXNN). The authors
of some large-scale studies, such as those in [30–32,35], performed thousands of experiments
in this direction. For this study, approximately 100,000 neural networks were trained and
tested using a wide range of hyperparameters, configurations, and prediction modes.

To the best of our knowledge, this is the first study focusing on time series prediction
benchmarking of LSTM neural networks trained with TF compared to standard LSTMs.
Furthermore, this paper also studies the exposure bias effect [44,45] for neural networks
trained with TF in its original form. While exposure bias can affect the prediction perfor-
mance of neural networks, we will also discuss the gained advantages of using LSTMs
with TF for anomaly-detection tasks.

The remainder of the paper is organized as follows. Section 2 describes related studies,
with special emphasis on concepts such as TF; the similarities between TF, NARXNN, and
other recurrent neural networks; and hyperparameter optimization methods. The proposed
approach is presented in Section 3. This is followed by Section 4, where the experimental
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assessment is presented. Section 5 describes the experimental results. Discussions, final
remarks, and future work proposals are included in Section 6.

2. Related Work

An examination of the literature reveals a multitude of papers addressing the issues
discussed throughout this paper. Thus, the related work section is split in three subsections.
First, a background on teacher forcing is presented. Second, studies and benchmark
papers on the topic of LSTM neural networks and recurrent neural networks (RNNs) are
presented, addressing both predictive and classification tasks. Last, several highly cited
hyperparameter optimization papers are investigated, while some proposed techniques
from these papers are experimentally validated in the results section.

2.1. Teacher Forcing Background

We observed numerous similarities between LSTM with TF, Jordan neural networks [46],
and NARXNN [35,47]. For a better understanding of the rest of this paper, the current
section describes the similarities and differences between the previous terms as well as
their applicability.

Recurrent neural networks, or RNNs, are neural networks that map sequence inputs
to sequence outputs statefully. This means the output prediction depends not only on
the input, but also on the hidden state of the system, which is updated as the sequence is
processed over time [44,48,49]. Adding feedback loops to a feedforward neural network
can be carried out using two fundamental approaches. The first approach is adding a
feedback loop from the hidden layer to itself (or to the input layer); this resembles the
Elman architecture, as originally proposed in [50]. Such an approach emphasizes, to a
larger degree, the sequence of input values. The second approach is adding a feedback
loop from the output layer to the input layer. This approach was first proposed in the
Jordan neural network (JNN) architecture [46]. Compared to the Elman neural networks,
this approach emphasizes the sequence of output values to a larger degree [48]. In the case
of JNN, the previous output with only one time delay is fed back.

NARXNN denotes a special type of feedforward neural network where static back-
propagation can be used for training, reducing the training phase time and resources
compared to recurrent neural networks. One similarity between JNN and NARXNN is
that both network architectures take exogenous variables as inputs, together with previous
outputs as additional inputs. In the case of NARXNN, multiple time-steps from the output
can be added as input. Additionally, NARXNN can take the exogenous variables as inputs
with additional time delays (e.g., lags). NARXNNs are usually used in the engineering
field for such tasks as dynamic system modeling, system identification, and particularly in
the field of time series analysis.

TF was first proposed in [41], where the authors describe a training method that
involves feeding back the current ground truth values as input in the subsequent time-
steps. This way forces the neural network to remain as close as possible to the ground
truth sequences. In recent years, several variants of TF have been proposed [51–55], most
of them offering variations of this method for training recurrent neural networks (RNNs).
In Goodfellow’s book [44], TF was also introduced as a neural network training technique,
applicable to recurrent neural networks that have output to hidden connections. This
technique originates from the maximum likelihood criterion, where during the training
phase, the neural network receives the ground truth value of the output as input at the
next time-step.

Moreover, Goodfellow et al. in [44] state that TF is also applicable to models that have
hidden-to-hidden connections as well. In this scenario, training is carried out using both
TF and backpropagation through time (BPTT) [56–58].

TF has been applied in several domains for solving diverse problems [59–65] (in order
of appearance). Apart from the original version of the algorithm, several variations have
also been proposed, a large majority of them for training RNNs.
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Toomarian et al. [59] patented, for NASA, a variant of TF for fast temporal neural
learning applied in circular trajectory learning. The patent proposes a continuous form of
TF that modifies the activation dynamics of additive neural networks, where rather than
the actual value of the output variable, the error between the desired output and the actual
output is fed back to the neural network in real time.

In the same direction of trajectory learning, Toomarian and Barhen [65] also proposed
a methodology for supervised temporal learning in nonlinear neural networks. Their work
incorporates TF and adjoint operators for fast circular trajectory learning. This version of
TF is applied similarly to the one in [59] by feeding back the error between the actual and
predicted value.

To avoid exposure bias when training models with TF, Taigman et al. [51] proposed a
modification to the TF algorithm, where, during training the neural network does not take
the previous observed value as input, but rather, an average between the observed value
and the previous network outputs with the addition of random noise. Their solution is
proposed as a text-to-speech method for mimicking voices from samples originating from
the wild.

Moving towards the field of language modeling, we find the work of Drossos et al. [52].
Here, the authors propose a sound event detection recurrent neural network capable of
learning language models. TF is applied here using a scheduled sampling approached, that
is, during the training process, gradually, based on a probability, the observed values are
replaced by the outputs of the model.

A multi-domain (e.g., language modeling, vocal synthesis, image, and handwriting
generation) proposed solution using a generative adversarial network with a variation
of TF is the work of Lamb et al. [66], namely, Professor forcing. Their approach entails
training additional discriminators to differentiate free running from forced hidden states.
This approach assures that the dynamic of the network will remain similar when using
observed and freely sampled values during the training procedures.

Moving towards NARXNN-based proposed solutions, we find the work of Mas-
saoudi et al. [55] with a photovoltaic power forecasting technique. Their solution en-
compasses a hybrid model consisting of an LSTM neural network and an NARXNN.
The NARXNN gathers data and generates a residual error vector. This vector is then fed
into an LSTM neural network as additional input, allowing the LSTM to produce both
point-by-point and sequence forecasts. This combination of the NARXNN model and the
LSTM allows for the generation of accurate and reliable forecasts.

A popular solution that highlights the similarities between neural networks with TF
and NARXNN is Amazon’s DeepAR [67]. DeepAR is a probabilistic forecasting technique
that uses autoregressive RNNs to make predictions. It works by incorporating likelihoods
and using nonlinear data transformation techniques, as learned by a neural network,
to accurately forecast future outcomes. DeepAR is built upon an RNN where the input
of the model consists of a combination of lagged target values and covariates. The model
outputs either a point-by-point prediction with a standard loss function or a probabilistic
prediction using the parameters of a probability density function (e.g., the mean and
standard deviation value).

Other applications of NARXNN-based techniques, most of them in the energetic
field, include: building temperature and energy forecasting [68,69], daily solar radiation
prediction [70], load forecast for residential low-voltage distribution networks [71], hydrom-
eteorological drought forecasting in hyper-arid climates [72], transformer oil-dissolved gas
concentration prediction [73], electrical grid short-term load forecasting [74], lithium-ion
battery state of health (SoH) estimation [75], and wind power prediction [76].

2.2. Neural Network Benchmarking Papers and Studies

Thomas Brueuel, from Google’s research team, studied the behavior and performance
of LSTM classifiers in [30]. This study analyses the behavior of LSTMs for different hyper-
parameters, but also how the choice of non-linearities affects performance. Among the
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tested hyperparameters we find the learning rate, number of hidden units, and mini-batch
size. The study focused on digit classification on two popular benchmarking datasets,
namely, MNIST, which is an isolated digit handwriting classification dataset, and UW3,
which is an OCR evaluation database. The results showed that the performance of LSTM
classifiers mostly depends on learning rates, batching had little to no effect on performance,
softmax training yielded better results compared to the least square training, and LSTMs
without peephole connections obtained the best performance in comparison to LSTMs
with peepholes.

Another large-scale study, on the performance of LSTM, is the work of Greff et al. [31].
Their study, named “LSTM: A search space odyssey”, analyzed the performance of eight
LSTM variants on three tasks: speech recognition, handwriting recognition, and polyphonic
music modeling. The studied LSTM variants included No input gate, No forget gate, No
output gate, No input activation function, No output activation function, Coupled input and forget
gate, No peepholes, and Full gate recurrence. As for activation functions, the standard approach
was followed, namely using the sigmoid and the hyperbolic tangent functions. The authors
also studied the effects of hyperparameters on the performance of the neural networks,
hyperparameters such as the hidden layer size, learning rate, momentum, and input noise.
However, the hyperparamter effects were not tested on entire ranges of possible values,
but rather using random searches in specific ranges. The findings of this study show that
the learning rate had the largest effect on the experiments, followed by the hidden layer
size, and an interesting finding showed that adding noise to the inputs decreased the
performance and increased the training time. One unexpected result, as the authors state,
was that momentum had no effect on the performance or the training time of any of the
eight tested LSTM variants. One conclusion of the study reveals that the standard LSTM
variant (i.e., VLSTM) performed equally well in comparison to the other tested variants.

In a more recent study, Siami-Namini et al. [32] analyzed the time series forecasting
performance of unidirectional LSTMs and bidirectional LSTMS (BiLSTMs). The authors
compared the performance of auto-regressive integrated moving average (ARIMA) models,
LSTMs, and BiLSTMs in the context of predicting financial time series data. One inter-
esting aspect of this research is the prediction performance when the time series data are
learned in both directions (i.e., past-to-future and future-to-past). Their results showed
that BiLSTM’s training time was slower, but outperformed the unidirectional LSTM and
ARIMA models in terms of prediction accuracy. Nonetheless, the authors provided no
architectural or hyperparameter information about the tested neural networks, or whether
the two architectures were trained and tested with the same set of hyperparameters.

Farzad et al. [33] examined the classification performance of LSTMs with various
activation functions for the forget, input, and output gates. In their paper, the authors tested
23 activation functions for a Vanilla LSTM with a single hidden layer with various hidden
units on three distinct datasets, namely, IMDB, Movie Review, and MNIST. Their results
illustrate that on these three datasets, on average the less-known activations functions (e.g.,
Elliott, modified Elliott, and softsign) produced better results compared to the commonly
used activation functions from the literature. Additionally, their results also show that
activation functions with the range [−0.5, 1.5] can produce better results and using a wider
range for the codomain can yield a better performance.

In the direction of forecasting multivariate time series data, we find the work of
Khodabakhsh et al. [34]. Here, the forecasting accuracy of an LSTM neural network was
tested on a dataset originating from an industrial system, namely, a petrochemical plant.
The authors measured the training time and the values of the loss function regarding the
size of the hidden layers (two hidden layers were used). Moreover, the influence of the
mini-batch size and number of features on the forecasting accuracy was also measured.
Their results show that on this specific dataset, increasing the number of features yielded
better results for all mini-batch sizes. Most of the training information and hyperparameter
values are not mentioned, and it is not clear what features were used or how they were
selected; the authors only mention that they increased the number of features.
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Moving towards NARXNN performance analysis papers, we find the work of Menezes
and Barreto [35]. This paper presents an empirical evaluation of long-term time series
prediction performance of NARXNNs on two real-world datasets, namely, the chaotic laser
time series and a variable-bit-rate video traffic time series. In this paper, two variants of
NARXNN (i.e., series–parallel and parallel architectures) are compared with an Elman
neural network [50] and a time delay neural network (TDNN) [36]. On the first dataset,
their results show that, when running with the same configuration and using the standard
gradient-based backpropagation algorithm, the NARXNN obtains better results than the
TDNN and the Elman network. Similar results were obtained on the second dataset, where
the variants of NARXNN outperformed both the TDNN and Elman networks when trained
and tested with the same configuration. This paper, however, used fixed values for the
hyperparameters for all experiments, without measuring the performance of the three
neural networks on other values.

More recently, Kumar and Murugan [37] published another NARXNN performance
analysis paper using various training functions. In this paper, various NARXNN architec-
tures were trained and tested on the Bombay Stock Exchange (BSE100) closing stock index
of the Indian stock market. As performance metrics, the authors used the mean square
error (MSE) and the symmetric mean absolute percentage error (SMAPE), the complexity of
the neural network with respect to the number of neurons in the hidden layer, the training
time, and the convergence speed (measured in epochs). The results illustrate that resilient
backpropagation and train one-step secant yielded better results in comparison with the
other ten compared functions in terms of SMAPE and training time. The Levenberg Mar-
quadrt method, however, outperformed all other training functions in terms of convergence
speed and SMAPE. Conversely, the paper proposes the optimal number of neurons on
the hidden layer for an improved prediction accuracy and reduced over-fitting. As pre-
viously mentioned for the other analyzed papers, the findings are only applicable to this
specific dataset.

2.3. Neural Network Hyperparameter Optimization

A popular guide on hyperparameter optimization is the work of Yoshua Bengio [28].
In this paper, the author offers practical recommendations towards selecting the optimal
hyperparameter values, in the context of backpropagated gradient and gradient-based
optimization for large-scale and deep neural networks. Among the discussed hyperparam-
eters, the author identifies the initial learning rate as the most important one, in most of
the cases, with values in the range (10−6, 1), with the default value (e.g., 0.01) typically
working for standard multi-layer neural networks. In terms of mini-batch size, the author
identifies smaller values, even the default value of 32, to be efficient. As the author states,
the impact of the mini-batch size should be mostly computational, affecting the training
time and not the testing performance. This has been observed by other authors as well:
Masters and Luschi in [77] experimentally proved that using smaller batch sizes, often as
small as two, offers the best training stability and generalization performance. Moving
on to the number of hidden units, in [28] the author proposes selecting the number of
units to be larger than the input vector, as larger values would not affect the generalization
performance but would require more computation power. For initialization, the author
suggests that the biases can usually be initialized to zero and introduces several options
for initializing the rest of the weights. The paper also describes two popular optimization
techniques for searching the optimal hyperparameter values, namely, grid-search and
random sampling.

In a different direction, Smith et al. in [38] proposed increasing the mini-batch size
instead of decaying the learning rate. The authors tested their theory on two convolutional
neural networks (i.e., Inception-ResNet-V2 and ResNet-50) on image classification tasks,
namely, on the ImageNet dataset. Their results illustrate that in this scenario, on this
dataset, they can achieve the same performance with reduced training time by increasing
the mini-batch size.
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Makoto et al. in [39] investigated several mini-batch creation strategies for neural
machine translation models. This paper analysed mini-batch creation strategies such as
sorting by length of source and target sentences. Their results suggest that the mini-batch
size affects both the training speed and the accuracy of the model, with larger mini-batch
sizes yielding better results.

While many papers are addressing the influence of different hyperparameters on the
performance of neural networks, we believe one strong point of the current paper is an
in-depth analysis and comparison of the performance of LSTMs trained with both TF and
backpropagation through time. This study also tested using two variants of TF compared
to standard LSTMs (i.e., VLSTMs) and to the classical TF approach. To the best of our
knowledge, this is the first paper offering such a detailed analysis on LSTMTF, and on TF
in general, on time series data.

3. Proposed Approach

The current section first offers a short overview of LSTMs and TF. Second, the con-
figurations, hyperparameters, and prediction modes of the tested neural networks are
described. Finally, this section introduces the performance evaluation metrics used in this
paper, together with the feature-selection methods.

3.1. Long Short-Term Memory Neural Networks

This subsection concisely describes the concepts of LSTM with and without TF, to-
gether with the mathematical equations behind them.

The LSTM neural network can be defined as an enhanced version of an RNN, capable
of capturing long- and short-term dependencies from data sequences, while also solving the
exploding and vanishing gradient problem [78]. In this paper, the standard LSTM neural
network will further be named Vanilla LSTM (VLSTM). The standard LSTM layers include
LSTM units, as shown in Figure 1. These units take the current input vector, denoted as
X(t), together with the previous hidden state vector of the layer, further denoted as h(t).
The cell state vector, denoted as C(t), is updated using three gates, namely, the input gate
I(t), the forget gate f (t), and the output gate o(t).

Figure 1. LSTM generic unit (left) together with an LSTM unit with teacher forcing (right). This
figure originates from [40].

From an architectural point of view, these three gates can be viewed as three different
layers included in the LSTM cell, where each gate regulates the information flow from and
to the memory cell. The forget gate is responsible for determining what information is to be
removed from the cell state, the input gate regulates what new information is to be stored
in the cell state, and finally, the output gate controls the output of the LSTM unit, namely,
the hidden state. At each time-step t, the hidden state vector h(t) and the cell state vector
C(t) are transmitted to the next time-step t + 1. Here, the hidden state also denotes the
output of the LSTM unit at time t, and it represents the short-term memory of the unit,
while the cell state C(t) denotes the long-term memory.
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The following equations describe the operations of the Vanilla LSTM units:

f (t) = sigm(W f X(t) + U f h(t − 1) + b f ), (1)

I(t) = sigm(WI X(t) + UIh(t − 1) + bI), (2)

C(t) = tanh(WCX(t − 1) + UCh(t − 1) + bC), (3)

C(t) = f (t) · C(t − 1) + l(t) · C(t), (4)

o(t) = sigm(WoX(t) + Uoh(t − 1) + bo), (5)

h(t) = o(t) · tanh(C(t)). (6)

In Equations (1)–(6), W , U , and b denote the weight matrices for the inputs, outputs,
hidden layer, and bias vector. In the same equations, (·) denotes the elementwise multipli-
cation operation. The two activation functions are the sigmoid, denoted as sigm, and the
hyperbolic tangent, denoted as tanh. The two activation functions are computed as follows:

sigm(x) =
1

1 + ex ,

sigm(x) ∈ (0, 1),
(7)

tanh(x) =
ex − e−x

ex + e−x ,

tanh(x) ∈ (−1, 1).
(8)

3.2. Long Short-Term Memory Networks with Teacher Forcing

Let X(t), of size n, denote the input vector at time t, where x1(t), x2(t), . . . , xn(t)
represents the individual inputs (e.g., predictor variables) at time t. Let y(t) be the ground
truth value (i.e., the observed value) of the output variable (i.e., the response variable).
In short, the LSTM represents a nonlinear function of the previous inputs and hidden states.
As previously mentioned, applying the original version of TF involves altering the training
procedures by adding, at each time-step, an extra input, which is the previous ground truth
value y(t − 1). This extra input needs to be present during both training and inference.
In the original version of TF, and in subsequent papers proposing modified versions of TF,
it is assumed that this extra input or inputs (i.e., the previous ground truth value) is not
available after training; thus, it is replaced by the previous predicted value, denoted as
ŷ(t − 1) and computed on the output layer as follows:

ŷ(t − 1) = Wŷh(t − 1) + bŷ. (9)

In a process state monitoring system, the measured outputs are available [40]; thus, we
proposed such a modification of the LSTM neural network for anomaly detection. In such a
scenario, the extra input for the neural network is the previous ground truth value, denoted
as y(t − 1).

As this paper analyses the performance of LSTMs with TF with the output variable
fed back as input with multiple time delays, Y(1 : τ) denotes the vector of output variables,
with τ delays. Namely, if Y(t − 1) = (y1(t − 1), y2(t − 1), . . . , ym(t − 1)), where y1(t − 1),
y2(t − 1), . . . , ym(t − 1) denotes m output variables with one time delay, then Y(1 : τ) =
(y1(t − 1), y1(t − 2), . . . , y1(t − τ), y2(t − 1), y2(t − 2), . . . , y2(t − τ), . . . , ym(t − 1), ym(t −
2), . . . , ym(t − τ)) denotes m output variables with τ time delays.
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If we separate the input vector into the external inputs X(t) and the previous ground
truth value of the output variable Y(1 : τ), the previous equations, from Section 3.1, can be
rewritten as follows:

f (t) = sigm(WX
f X(t) +WY

f Y(1 : τ) + U f h(t − 1) + b f ), (10)

I(t) = sigm(WX
I X(t) +WY

I (1 : τ) + UIh(t − 1) + bI), (11)

C(t) = tanh(WX
C X(t − 1) +WY

C Y(1 : τ) + UCh(t − 1) + bC), (12)

o(t) = sigm(WX
o X(t) +WY

o Y(1 : τ) + Uoh(t − 1) + bo). (13)

These equations describe the forward pass during training for both LSTMTF and
LSTMTFC, and the forward pass during inference for LSTMTF. For LSTMTFC, during in-
ference, as the previous predicted values Ŷ(1 : τ) with τ time delays are fed back as inputs
to the current time-step, the equations become:

f (t) = sigm(WX
f X(t) +W Ŷ

f Ŷ(1 : τ) + U f h(t − 1) + b f ), (14)

I(t) = sigm(WX
I X(t) +W Ŷ

I Ŷ(1 : τ) + UIh(t − 1) + bI), (15)

C(t) = tanh(WX
C X(t − 1) +W Ŷ

C Ŷ(1 : τ) + UCh(t − 1) + bC), (16)

o(t) = sigm(WX
o X(t) +W Ŷ

o Ŷ(1 : τ) + Uoh(t − 1) + bo). (17)

TF, as applied to LSTMTF and LSTMTFC, does not introduce additional recurrent
connections or weights from the output layer to the input layer; thus, the backwards
propagation equations remain unchanged. Further details about BPTT and VLSTMs can be
found in [56–58].

As described in [44], training models with the original version of TF can lead to poor
prediction results, as during inference the model might be exposed to different data. This is
referred to as exposure bias.

Exposure bias occurs when a machine learning model is not exposed to a diverse
enough range of data during training. This can lead to poor performance and incorrect
predictions when the model is used on data that do not match the characteristics of the
training data. Essentially, exposure bias happens when the distribution of data seen by the
model during training does not accurately reflect the distribution of data it will encounter
in the real world.

Due to exposure bias, the LSTM’s predictions can be unreliable and inaccurate when
the previous predicted value is fed back as input during inference. However, feeding back
the actual (i.e., observed) value, during both training and inference, is not possible if the
observed values are no longer available after training. This issue was also highlighted by
other researchers as well [45,45].

As LSTMTF feeds back the previous output ground truth value (i.e., observed value)
during both training and inference, this phenomenon should be avoided in comparison to
LSTMTFC. This holds under the assumption that the observed value is available during
inference, as proposed in [40], in a process state monitoring system. In this scenario, any
change in the previous values of the monitored variable should be reflected in the current
output and subsequently in the prediction errors. This, in turn, would be advantageous
when such a model is used for anomaly-detection tasks, by monitoring the change in the
prediction errors of the model.
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3.3. Neural Network Architectures and Prediction Modes

The performance and predictive capabilities of the three neural networks (i.e., VL-
STM, LSTMTF, and LSTMTFC) are tested using two distinct configurations and in two
operation modes.

First, in terms of the number of inputs and outputs, the neural networks are tested as
multi-input single-output (MISO) and multi-input multi-output (MIMO). The MISO configura-
tion involves predicting one variable using multiple input variables. Conversely, the MIMO
configuration involves predicting multiple variables using multiple input variables.

Second, in terms of prediction modes, two approaches are followed, namely, M2O and
M2M. In the case of M2O, the neural networks will take as input a sequence of Xt

n inputs;
here, t denotes the number of time-steps (in other words, the length of the input sequence)
and n denotes the number of input variables and will output only the final predicted value
of the sequence. To exemplify, for every sequence of ten input values, the neural network
will output the next value in the sequence.

In the case of M2M, the neural networks similarly take as input a sequence of Xt
n

values and output another sequence of values of size t, the first prediction starting at t0 + 1.
Here, t0 denotes the time of the first value in the input sequence.

To observe the influence of different hyperparameters on the training process and on
the prediction capabilities, for all neural networks, in both MISO and MIMO configurations
and in both M2O and M2M prediction modes, the following hyperparameters are analyzed:

• Input Sequence Length (ISL): The input sequence length denotes the number of
time-steps of the input variables fed to the neural network as a single sequence.

• Teacher Forcing Lags (time-delays): For a given output variable, the number of lags
denotes how many previous time-steps of said output variable will be fed back as
input at the current time-step t. As previously mentioned, the number of lags is
denoted as τ, where τ ≥ 1.

• Mini-Batch Size (MBS): The mini-batch represents a subset of the training dataset
used to evaluate the gradient of the loss function and update the weights of the
model [77].

• Learning Rate (LR): The learning rate is a hyperparameter that controls the rate of
change for the weights after each optimization step. If the learning rate is too small,
the model will learn slowly and training will take longer. If it is too high, the model
may not find the optimal solution or may even diverge.

• Number of Hidden Units (HU): The dimensionality of the LSTM hidden state. The hid-
den units represent the information that is retained by the layer from one time-step to
the next, referred to as the hidden state.

The previous hyperparameters are divided into two categories: internal (LR, HU) and
external (ISL, Lags, MBS) hyperparameters.

3.4. Performance Evaluation Metrics

To measure the performance, the following performance metrics are used:

1. Training Convergence Time (epochs). Convergence refers to the epoch at which the
network’s performance on the training data stops advancing. This often occurs after
the network’s weights and biases have been adjusted so that the network’s output is
as near to the desired output as feasible for a particular input. This value is computed
by identifying the epoch after which the loss value does not increase or decrease by a
percentage, further denoted as ε, for P consecutive epochs.

2. Training Final Loss Value. The final value of the training loss function after the
maximum number of training epochs.

3. Training Loss Mean Value. The mean value of the training loss function, computed
over all the training epochs.

4. Testing Mean Absolute Error Value (MAE).The mean average absolute error value
computed on the testing set, as shown in Equation (18).
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5. Testing Error Standard Deviation Value. The standard deviation of the absolute
error computed on the testing set.

MAE =
1
N

N

∑
i=1

|yi − ŷi|, (18)

In Equation (18), N denotes the total number of predictions and yi and ŷi denote the
i-th observed and predicted value, respectively.

3.5. Feature Selection

The feature-selection methodology for the MISO configuration involves selecting the
subgroup of inputs based on correlation coefficient scores computed between the selected
output variable and the candidates for the input variables. Given one or more output
variables, the Pearson correlation coefficient is computed. Next, from the list of possible
input variables, those that exhibit the highest positive and negative coefficient scores are
selected. This feature-selection methodology has been proposed and successfully applied
in [40].

Let X denote the set of n available candidates for the input variables. Let Y denote the
set containing the m selected output variables, where Y = (y1, y2, . . . , ym). If we consider K
to be the number of observations for each variable, then for a given input variable x and an
output variable y, Pearsons’s correlation coefficient is obtained using:

PC(x, y) =
∑K

j=1(xj − x)(yj − y)√
∑K

j=1(xj − x)2
√

∑K
j=1(yj − y)2

, (19)

where x and y represent the average values of x and y, respectively.
For the MIMO configuration, all the available input candidates are selected, thus

substantially increasing the complexity of the neural network and subsequently increasing
the training involution. Nonetheless, the experimental assessment should reveal if this
methodology yields better or worse results in comparison to the first proposed feature-
selection method.

4. Experimental Assessment

This section describes the dataset used in the experimental assessment, the configu-
rations, the hyperparameter values, and the performed experiments. The chosen dataset
originates from a well-known, publicly available [43] benchmarking chemical process
simulation, namely, the Tennessee Eastman process (TEP) [42]. This process has been
proposed for various studies including plant-wide control strategy design, multivariate
control, education, anomaly detection, and fault diagnosis.

The experimental assessment was performed in MATLAB R2022b running on a Lenovo
Legion laptop with an AMD Ryzen 5 5600H CPU, 32 GB RAM DDR4, running Windows 10
PRO. The assessment results are showcased in the next chapter.

4.1. Dataset Description and Data Preprocessing

The Tennessee Eastman process (TEP), originally proposed by Downs and Vogel in
1992 [42], is a model of an industrial chemical process with the purpose of designing,
researching, and assessing process control technologies. The TEP encompasses five major
units, namely, the product condenser, the separator, the compressor, and the product
stripper. As described in the original paper, the TEP outputs two liquid products and two
byproducts from four input reactants. The chemical reactions are both irreversible and
exothermic while the reaction rates are a function of temperature. In terms of reactant
concentrations, the reactions are roughly first-order. The model described in the paper
consists of 52 measurements (of which 41 are measurements for process variables together
with 11 measurements for manipulated variables), and 20 fault types.
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Now, the dataset selected for the experiments consists of four subsets, namely, fault-
free training, fault-free testing, faulty testing, and faulty training. In this study, only the
fault-free versions of the dataset were used (i.e., training and testing subsets), as only
the prediction performance was analyzed and not the anomalous detection capabilities.
The training subset consists of 500 simulations, each simulation having 500 observations,
in total 250,000 observations. For each simulation, the variables were sampled every 3 min,
while the simulation ran for 25 h in the case of the training subsets and for 48 h in the
case of the testing subsets. The testing fault-free dataset consists of 500 simulations, each
simulation having 960 observations, summing up to 480,000 data points. Each subset of the
original dataset contains 55 columns. The complete list of variables is available in the
original TEP paper [42]. Meanwhile, the datasets are publicly available for download [43].
For this study, a new subset was created for training by randomly selecting 10 simulations
from the 500 available ones, the final training dataset containing 5000 observations, which
equals 250 h of measurements.

In terms of preprocessing, the two datasets were normalized using the feature scaling
method (i.e., bringing all values into the [0, 1] range), as shown in Equation (20).

x′ = x − xmin
xmax − xmin

,

x′ ∈ [0, 1],
(20)

where x′ is the normalized value for a given feature x and xmin, xmax denote the min-
imum and maximum values of x, respectively. Furthermore, the scaling is performed
independently for each feature. Both the training and testing set were normalized using
the maximum and minimum values from the training set for each feature.

As there were no constant or duplicate columns, missing values, or obvious outliers,
no further preprocessing was performed.

4.2. Neural Network Architectures

The neural networks are trained using the Adam optimizer [79]. Additionally, they
contain one hidden layer, this way reducing their complexity, similarly to [80]. The experi-
mental assessment should reveal if such reduced architectures can model the relationship
between signals originating from industrial processes. As pointed out in [31,44], increasing
the number of layers increases the complexity of the model (e.g., time and memory), while
models with at least one hidden layer can represent an approximation of any function
conditioned by the number of hidden units. A complete list of the selected inputs and
outputs for both MISO and MIMO configurations is presented in Table 1.

Table 1. The list of selected inputs and outputs for the MISO and MIMO configurations. A detailed
description of the variables can be found in the original TEP paper [42,43].

Configuration Output Variables Input Variables

MISO Product Analysis F (Stream 11)

A Feed (stream 1)
A and C Feed (Stream 4)
Product Separator Pressure
Stripper Pressure
Stripper Temperature
Stripper Steam Flow
Reactor Cooling Water Outlet Temperature
Reactor feed Analysis B
Reactor feed Analysis E
A feed flow (Stream 1)
Reactor Cooling Water Flow

MIMO Product Analysis F (Stream 11)
Purge gas analysis (Stream 9)

All Continuous Process Measurements
All Process Manipulated Variables
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4.3. Experiments

The following subsection describes the performed experiments and measurements.
These experiments were performed on the following neural networks, namely, VLSTM,
LSTMTF, and LSTMTFC in both prediction modes, namely, many-to-many and many-
to-one. The neural networks were tested in two configurations, namely, multi-input
single-output (MISO), that is, multiple output variables and one input variable, and multi-
input multi-output (MIMO), that is, multiple input and multiple output variables. Table 2
shows the complete list of fixed and varying hyperparameter values for the first three
experiments. The selected hyperparameters for the fourth experiments are detailed in the
text, in Section 4.3.4. For computing the training convergence time, the following values
were selected: ε = 1% and P = 5.

Table 2. The complete list of fixed and varying hyperparameter values for Experiments 1–3 for all the
tested neural network architectures.

Experiment
Hidden
Layers

Sequence
Input

Length

Hidden
Units

Learning
Rate

Mini-Batch
Size

Epochs Lags

1 1 [10, 500] 16 0.01 32 100 [1, 50]

2 1 40 16 0.01 [1, 128] 100 1

3 1 40 [1, 128] [0.00001, 0.1] 32 100 1

4.3.1. Experiment 1

The first experiment measures the influence of the input sequence length and the
number of lags (i.e., the number of time delays of the output variable that are fed back as
input variables) on the performance of the LSTM architectures. Here, the networks are
trained and tested with different values for both the sequence length and the number of
lags. In this experiment, we used the same sequence length for training and testing.

4.3.2. Experiment 2

The second experiment focuses on measuring the influence of the mini-batch size on
the overall performance of the LSTM neural networks. Similarly to the first experiment,
most of the hyperparameters are fixed, and the networks are trained and tested with
multiple mini-batch sizes.

4.3.3. Experiment 3

While the previous two experiments focused on external hyperparameters, we wanted
to see how certain internal hyperparameters influence the performance of the analyzed
neural networks. In this experiment, all the external hyperparameters are fixed while the
networks are trained with varying learning rates and number of hidden units on the LSTM
layer. Additionally, here, the training and testing times are compared between the MISO
and MIMO configurations.

4.3.4. Experiment 4

As mentioned earlier, we observed some similarities between NARXNN and TF. In this
experiment, the prediction performance of NARXNN is also analyzed. A NARXNN model
is trained and tested on the same dataset using a series–parallel configuration and is
tested in two configurations, namely, parallel and series–parallel. As for hyperparame-
ters, the values chosen for this model are the following: 16 neurons on the hidden layer,
the symmetric sigmoid transfer function for the hidden layer, one delay for the output
feedback. Subsequently, the hyperparameters for the LSTM neural networks are as follows:
an input sequence length of 40, 16 hidden units on the hidden layer, one delay for the
output feedback, a mini-batch size of 16, 0.01 learning rate, and 100–1000 training epochs.
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4.3.5. Experiment 5

The fifth experiment analyzes the performance of the models when using additional
validation data during training. As mentioned in [44], the use of validation datasets during
training can aid in avoiding model overfitting. Here, the authors state that, typically,
the training dataset is split into two disjoint subsets, one for training and one for validation
during training. Furthermore, the authors suggest using 80% of the training dataset for
training and 20% for validation. In this experiment, the performance of the neural networks
is analyzed using the same ranges as above for all the hyperparameters, with a lag value of
one. Additionally, we use the early stopping method, which implies stopping the training
procedures or saving and returning the best parameters once the validation error starts
increasing [44].

5. Results

This section describes the experimental assessment results and is organized as follows:
for each configuration (i.e., MISO, MIMO) and for each prediction mode (i.e., M2M, M2O),
the results for each experiment for each of the three neural network architectures are
presented in a side-by-side approach. For LSTMTF and LSTMTFC, as the training process is
identical, there is only one figure with the loss values. Additionally, for the M2O prediction
mode, as the neural networks output only the final value of the sequence (without the rest
of the values in the sequence), LSTMTFC cannot be applied in this scenario; thus, only
LSTMTF and VLSTM are showcased for the M2O prediction mode.

5.1. Multi-Input Single-Output Configuration
5.1.1. Experiment 1

For the first experiment, measuring the performance based on the input sequence
length and on the number of lags, the entire training process, in terms of the loss values for
the 100 training epochs, is presented in Figures 2 and 3.

Figure 2. Illustration of the training loss for Experiment 1, LSTMTF (left) and VLSTM (right), using a
many-to-many prediction mode. For each architecture, the lines with the same colors represent the
loss for networks trained with the sequence length in the range [1:500]. The highlighted thick lines
represent the training loss for a sequence length of 1.

In terms of final loss values, for the M2M prediction mode, after 100 training epochs,
the values for LSTMTF were between 0.0008 and 0.0020 for input sequence lengths between
1 and 100 and between 0.0013 and 0.0022 for input sequence lengths between 100 and 500,
with the final loss value increasing with the sequence length for sequence lengths in the
range [1, 100]. In the case of VLSTM, the final loss values were higher for sequence lengths
between 1 and 100, with values in the [0.0026, 0.0033] range, decreasing with the length of
the input sequence. For sequence lengths in the [100, 500] the range of the final loss value
was [0.0026, 0.0029].
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Compared to the M2M prediction mode, for the M2O prediction mode, the final loss
value decreased inversely proportional to the input sequence length for both architectures,
from an average of 0.0025 for a sequence length of 10 to an average of 0.0005 for a sequence
length of 500, for both LSTMTF and VLSTM.

Figure 3. Illustration of the training loss for Experiment 1, LSTMTF (left) and VLSTM (right), using
a many-to-one prediction mode. For each architecture, the lines with the same colors represent the
loss for networks trained with the sequence length in the range [1:500]. The highlighted thick lines
represent the training loss for a sequence length of 1.

For ε = 1% and P = 5 epochs, the training convergence times for LSTMTF, in regard to
the number of lags, can be seen in Table 3. Here, the minimum, average, and maximum
values are shown for both prediction methods, computed for different numbers of lags.
In the same table, it can be observed that for the M2M prediction mode, the minimum
and average number of epochs until convergence increased from 86 for 1 lag to 97 for
50 lags. The maximum values for both prediction modes were equal to 100.

Similarly, in the M2O prediction mode, the average number of epochs increased from
65 for 1 lag to 87 for 50 lags, with overall smaller average values for M2O in comparison to
M2M. In comparison to M2M, the minimum values for M2O were also smaller, ranging
from 16 epochs when LSTMTF was trained with 1 lag to 41 in the case where LSTMTF
was trained with 50 lags. As was the case for M2M, here, the maximum values were
also equal to 100 for all experiments. Overall, the training convergence times, measured
in epochs, for different sequence lengths were larger for LSTMTF compared to VLSTM,
in both prediction modes; this is illustrated in Table 4.

Table 3. The training convergence time (epochs) for LSTMTF, computed with respect to the number
of lags, for ε = 1% and P = 5.

Many-to-Many Many-to-One

Min Avg Max Min Avg Max

1 Lag 41 86 100 16 65 100

10 Lags 26 91 100 16 72 100

20 Lags 46 95 100 21 73 100

30 Lags 46 95 100 21 73 100

40 Lags 46 96 100 26 71 100

50 Lags 46 97 100 41 87 100

The loss average value for LSTMTF increased with the length of the input sequence
for values between [1, 100] from 0.0013 to 0.0042, afterward remaining at an average of
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0.0028 for sequence lengths between [101, 500] when trained with one lag. Overall, the loss
average values increased for all sequence lengths with the addition of time delays, with an
average of 0.004 for 10 lags, 0.005 for 20 lags, and 0.006 for 40 lags. In the case of VLSTM,
no significant influence from the sequence length was observed on the average loss values.

Table 4. The average training convergence time (epochs) for LSTMTF and VLSTM, computed with
respect to the input sequence length, for ε = 1%, P = 5, and 1 lag for LSTMTF.

LSTMTF VLSTM

ISL Many-to-Many Many-to-One Many-to-Many Many-to-One

[10, 100] 70 83 32 38

[100, 200] 73 69 36 51

[200, 300] 86 82 44 57

[300, 400] 93 82 66 74

[400, 500] 90 86 80 79

In terms of final loss values, for M2M, after 100 training epochs, the values for LSTMTF
were between 0.0008 and 0.0020 for input sequence lengths between 1 and 100 and between
0.0013 and 0.0022 for input sequence lengths between 100 and 500, the final loss value
increasing with the sequence length for sequence lengths between [1, 100]. In the case
of VLSTM, the final loss values were higher for sequence lengths between 1 and 100,
with values in the [0.0026, 0.0033] range, decreasing with the length of the input sequence.
For sequence lengths in the [100, 500] the range the final loss value was [0.0026, 0.0029].

Compared to the M2M prediction mode, for M2O the final loss value decreased
inversely proportional to the input sequence length, for both architectures, from an average
of 0.0025 for a sequence length of 10 to an average of 0.0005 for a sequence length of 500,
for both LSTMTF and VLSTM.

The MAE computed with respect to the input sequence length and number of lags
on the test set for the three architectures is illustrated in Figures 4 and 5.

In the case of M2M for LSTMTF, the best results were obtained for sequence lengths
in the range of [1, 100] with the worst results for larger sequence lengths (in the range
[400–500]). In the case of VLSTM, the MAE remained almost constant, in the range of
[0.058, 0.061], for all sequence lengths. Conversely, LSTMFC obtained the worst results,
30 times larger than LSTMTF and 25 times larger than VLSTM.

Figure 4. Illustration of the testing mean absolute error value for Experiment 1, LSTMTF (left),
VLSTM (middle), and LSTMTFC (right), using a many-to-many prediction mode.

The same behavior was observed in terms of testing error standard deviation values,
with values in the range of [0.037, 0.042] for LSTMTF for input sequence lengths in the
range of [1, 100] and [0.0435, 0.046] for VLSTM for all input sequence lengths.
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Figure 5. Illustration of the testing mean absolute error value for Experiment 1, LSTMTF (left) and
VLSTM (right), using a many-to-one prediction mode.

In the case of M2O, LSTMTF and VLSTM obtained similar results, with a minimum
value of 0.038 obtained by the LSTMTF with 50 time delays and a minimum of 0.038
obtained by VLSTM. As illustrated in Figure 5, the average of the testing MAE increased
with the sequence length for the LSTMTF and VLSTM architectures.

Overall, in terms of the convergence time and MAE, for the first experiment, the results
show that LSTMTF performed best with 1 lag and with an input sequence length in the
range [1, 100] and showed no significant deviations with longer sequence lengths when
using M2M mode, see Figure 4. In an M2O mode, however, increasing the input sequence
length yielded the worst results outside the [1, 100] range, see Figure 5. The performance
of the VLSTM in M2M mode was subtly affected by the input sequence length; however,
the training convergence times increased with the sequence length. In the case of VLSTM
in M2O mode, similarly to the case of LSTMTF, the MAE increased with the increasing
sequence length. For LSTMTFC, the testing MAE was clearly influenced by the input
sequence length, yielding the worst results for sequence lengths in the [1, 100] range.

5.1.2. Experiment 2

The training loss values for the second experiment based on different mini-batch sizes
are illustrated in Figures 6 and 7. Additionally, the training convergence time for both
architectures can be observed in Table 5.

Table 5. The training convergence time (epochs) for LSTMTF and VLSTM, computed with respect to
the mini-batch size, for ε = 1% and P = 5.

LSTMTF VLSTM

MBS Many-to-Many Many-to-One Many-to-Many Many-to-One

2 100 46 12 66

8 51 31 16 41

16 86 41 41 32

32 100 51 46 56

64 86 56 51 56

128 100 56 51 57

The loss final value after 100 training epochs was smaller for mini-batch sizes between
2 and 32, with values in the range of [0.0007, 0.0018] for LSTMTF in an M2M prediction
mode, while for mini-batch sizes between 32 and 128 the final values were in the [0.0013,
0.0023] range. In the case of M2O, for the same LSTMTF, the range of the final loss values
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was [0.0005, 0.0036] for mini-batch sizes between 2 and 32. For mini-batch sizes in the [32,
128] range, the final loss values were between 0.0014 and 0.0032. In the case of VLSTM,
the final loss values for M2M were between 0.0022 and 0.0031 for mini-batch sizes between
2 and 32, and more constant in the [32, 128] mini-batch size range, with values between
0.0026 and 0.0028. Similarly to LSTMTF, for M2O, the range of the final loss values was
[0.0001, 0.0023] for mini-batch sizes between 2 and 32 and between 0.0014 and 0.0019 for
mini-batch sizes over 32.

Figure 6. Illustration of the training loss for Experiment 2, LSTMTF (left) and VLSTM (right), using
a many-to-many prediction mode. For each architecture, the lines with the same colors represent
the loss for networks trained with mini-batch size in the [2:128] range. The highlighted thick lines
represent the training loss for a mini-batch size of 2.

Figure 7. Illustration of the training loss for Experiment 2, LSTMTF (left) and VLSTM (right), using a
many-to-one prediction mode. For each architecture, the lines with the same colors represent the loss
for networks trained with the training mini-batch sizes in the [2:128] range. The highlighted thick
lines represent the training loss for a mini-batch size of 2.

Moving on to the testing performance, Figures 8 and 9 illustrate the computed MAE
for all architectures in both prediction modes. In Figure 8 it can be observed that overall
the MAE is smaller for LSTMTF in an M2M prediction mode, for all mini-batch sizes,
in comparison with the VLSTM. The best results were obtained by LSTMTF with mini-
batch sizes in the range of [2, 32], with MAE values in the [0.030, 0.045] range, while the
computed MAE for VLSTM was in the [0.058, 0.061] range for all mini-batch sizes. Similarly
to the first experiment, the MAE for LSTMTFC was 50 times higher for mini-batch sizes in
the [2, 32] range.

303



Mathematics 2023, 11, 1432

Figure 8. Illustration of the testing mean absolute error value for Experiment 2, LSTMTF (left),
VLSTM (middle), and LSTMTFC (right), using a many-to-many prediction mode.

Figure 9. Illustration of the testing mean absolute error value for Experiment 2, LSTMTF (left) and
VLSTM (right), using a many-to-one prediction mode.

Conversely, in the case of M2O, VLSTM outperformed LSTMTF in almost all experi-
ments; this can be observed in Figure 9. The only exception here was the case of LSTMTF
with 10 lags, where the testing MAE was in the range of [0.05, 0.06] in comparison to
VLSTM, where the MAE was in the range of [0.055, 0.062].

Overall, for the second experiment, LSTMTF yielded the best results with mini-batch
sizes in the [2, 32] range, while in the same mini-batch range LSTMTFC obtained the worst
results, as illustrated in Figure 8. The performance of VLSTM, in both prediction modes,
was influenced to a lesser extent by the mini-batch size, yielding constant results for all
mini-batch sizes.

5.1.3. Experiment 3

In the third experiment, the neural networks were trained and tested with various
learning rates and numbers of hidden units. The results, in terms of mean loss values,
for both LSTMTF and VLSTM are illustrated in Figures 10 and 11. Additionally, the com-
puted training convergence times with respect to the learning rate and to the number of
hidden units are shown in Tables 6 and 7.

The final loss values for LSTMTF in an M2M prediction mode were in the [0.001,
0.003] range, with no significant changes based on the values of the learning rate. However,
the number of hidden units had more of an influence on the final loss values, with values
ranging from 0.0015 to 0.003 for hidden units between 2 and 16 and values ranging from
0.001 to 0.0012 for hidden units between 16 and 128, with small changes for hidden units
in the [16, 128] range. The final loss values for VLSTM in an M2M prediction mode were
in the [0.002, 0.003] range for all experiments, with no visible trend given by the values of
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the learning rate or the number of hidden units. For the M2O prediction mode, the results
in terms of the final loss values for both LSTMTF and VLSTM were similar, in the [0.0001,
0.0004] range.

As for the mean loss values computed over all 100 training epochs, it can be observed
in Figure 10 that in the case of LSTMTF and VLSTM in an M2M mode, the number of
hidden units had an influence on the mean loss values, with higher values for hidden
units in the [2, 16] range in comparison to the [32, 128] range. For the M2O mode, for both
LSTMTF and VLSTM the influence of the number of hidden units was obvious for hidden
units in the [2, 7] range, as can be observed in Figure 11.

Figure 10. Illustration of the mean loss value for Experiment 3, LSTMTF (left) and VLSTM (right),
using a many-to-many prediction mode.

As shown in Table 6, the average convergence time increased with the number of
hidden units only in the case of LSTMTF in an M2O prediction mode. Here, the number
of epochs increased from 38 for 2 hidden units to 47 for 128 hidden units. The remaining
results for the average convergence time, for all architectures, are shown in the same table.
By analyzing the results shown in Table 7, we observe that the learning rate had little to no
influence on the training convergence time.

Figure 11. Illustration of the mean loss value for Experiment 3, LSTMTF (left) and VLSTM (right),
using a many-to-one prediction mode.
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Table 6. The training convergence time (epochs) for LSTMTF and VLSTM, computed with respect to
the number of hidden units, for ε = 1% and P = 5.

LSTMTF VLSTM

HU Many-to-Many Many-to-One Many-to-Many Many-to-One

2 81 38 30 38

8 73 40 25 44

16 76 43 24 43

32 79 47 22 44

64 77 44 22 42

128 58 47 23 47

Table 7. The training convergence time (epochs) for LSTMTF and VLSTM, computed with respect to
the learning rate, for ε = 1% and P = 5.

LSTMTF VLSTM

LR Many-to-Many Many-to-One Many-to-Many Many-to-One

[0.0001, 0.02] 71 46 23 45

[0.02, 0.04] 71 44 23 44

[0.04, 0.06] 71 44 23 44

[0.06, 0.08] 71 45 23 45

[0.08, 0.1] 71 44 23 44

The MAE computed on the testing dataset, for the third set of experiments, is illus-
trated in Figures 12 and 13. As can be seen in Figure 12, for LSTMTF in an M2M prediction
mode, the learning rate had little influence over the testing MAE, and all the trained
LSTMTF predicted similarly regardless of the learning rate values. In the same figure,
the influence of the number of hidden units is visible, namely, hidden units in the [2, 16]
range yielded larger values for the MAE, with values in the [0.04, 0.06] range. For 16 to
128 hidden units, the prediction MAE was in the [0.030, 0.036] range.

In the case of VLSTM, in an M2M prediction mode, it can be observed that the number
of hidden units and learning rate influenced the testing MAE to a smaller degree, with
the prediction MAE remaining in the [0.058, 0.061] range, in comparison to LSTMTF
and LSTMTFC.

Figure 12. Illustration of the testing mean absolute error value for Experiment 3, LSTMTF (left),
VLSTM (middle), and LSTMTFC (right), using a many-to-many prediction mode.

For LSTMTFC using an M2M prediction method, the number of hidden units seem
to have an inverse influence compared to LSTMTF, namely, for hidden units in the [2, 16]
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range the prediction MAE was in the [0.04, 0.07] range. Conversely, for hidden units in the
[16, 128] range, the prediction MAE was in the [0.08, 0.71] range, following an ascending
trend in relation to the number of hidden units.

Figure 13 illustrates the M2O prediction mode. Here, the learning rate and number of
hidden units had a smaller influence on the prediction MAE in comparison to M2M. In the
same figure it can be observed that over all experiments, on average, the MAE was similar
for both LSTMTF and VLSTM, with MAE values in the [0.055, 0.066] range. These results,
in terms of MAE, for the M2O prediction mode, are consistent with the results for the first
two experiments.

The testing error standard deviation values followed a similar trend as the testing MAE
for all neural networks. For LSTMTF, in a, M2M prediction mode, the testing error standard
deviation values for hidden units in the [0, 16] range were between 0.004 and 0.0045, while
for hidden units between 16 and 128, the standard deviation values were between 0.0355
and 0.0358. For VLSTM, the standard deviation values were in the [0.044, 0.046] range.
Finally, for LSTMTFC, the values for hidden units between 2 and 16 were in the [0.03, 0.1]
range, while for 16 to 128 hidden units, the standard deviation values were between 0.1 to
0.59, increasing with the number of hidden units.

Figure 13. Illustration of the testing mean absolute error value for Experiment 3, LSTMTF (left) and
VLSTM (right), using a many-to-one prediction mode.

Overall, for the third experiment, for all the tested LSTM variants, the learning rate
had no significant influence on the testing MAE and on the training convergence time,
as shown in Figure 12 and in Table 7. In terms of hidden units, for LSTMTF, the best results
were obtained in the [16, 128] range, while for LSTMTFC the best results were obtained
with hidden units in the [2, 16] range. VLSTM’s performance was not significantly affected
by the number of hidden units. In terms of convergence time, similar values were obtained
for all LSTM variants with hidden units in the [2, 128] range, as illustrated in Table 6.

5.2. Multi-Input Multi-Output Configuration
5.2.1. Experiment 1

The evolution of the training loss values for the MIMO configuration for the first set of
experiments, is illustrated in Figures 14 and 15. Here, the loss values over the 100 training
epochs are similar to the MISO configuration for both LSTMTF and VLSTM.
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Figure 14. Illustration of the training loss for Experiment 1, LSTMTF (left) and VLSTM (right),
using a many-to-many prediction mode. The highlighted thick lines represent the training loss for a
mini-batch size of 2.

Figure 15. Illustration of the training loss for Experiment 1, LSTMTF (left) and VLSTM (right),
using a many-to-one prediction mode. The highlighted thick lines represent the training loss for a
mini-batch size of 2.

Figures 16 and 17 illustrate the testing prediction MAE for the MIMO configuration.
Similarly to the results for the MISO configuration, here the testing MAE values of LSTMTF
were in the [0.027, 0.040] range, and were smaller in comparison to the VLSTM MAE,
which were in the [0,037, 0.038] range. These, however, were smaller compared to the
MISO LSTMTF, where the MAE was in the [0.03, 0.06] range for all performed experiments.
Another difference between MISO LSTMTF and MIMO LSTMTF is that the overall testing
MAE values were larger for input sequence lengths in the range of [1, 100], as can be
seen in Figure 16. The overall MAE was smaller for the MIMO configuration for all the
tested models; for example, in the case of VLSTM the MAE decreased from [0.058, 0.061]
to [0.038, 0.039].

308



Mathematics 2023, 11, 1432

Figure 16. Illustration of the testing mean absolute error value for Experiment 1, LSTMTF (left),
VLSTM (middle), and LSTMTFC (right), using a many-to-many prediction mode.

Figure 17. Illustration of the testing mean absolute error value for Experiment 1, LSTMTF (left) and
VLSTM (right), using a many-to-one prediction mode.

5.2.2. Experiment 2

For the MIMO configuration, the results for the second set of experiments exhibit
numerous similarities to the MISO configuration, both in the training loss values and in
the prediction MAE. The training loss values are illustrated in Figures 18 and 19, while the
prediction MAE is shown in Figures 20 and 21.

Figure 18. Illustration of the training loss for Experiment 2, LSTMTF (left) and VLSTM (right), using
a many-to-many prediction mode.
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Figure 19. Illustration of the training loss for Experiment 2, LSTMTF (left) and VLSTM (right), using
a many-to-one prediction mode.

Compared to the MISO configuration, here, the overall testing MAE for all three
neural networks, namely, LSTMTF, LSTMTF, and VLSTM, running in both prediction
modes, namely, M2M and M2O, has shown a decrease for all mini-batch sizes. This can be
seen in Figures 8, 9, 20 and 21.

Figure 20. Illustration of the testing mean absolute error value for Experiment 2, LSTMTF (left),
VLSTM (middle), and LSTMTFC (right), using a many-to-many prediction mode.

Figure 21. Illustration of the testing mean absolute error value for Experiment 2, LSTMTF (left) and
VLSTM (right), using a many-to-one prediction mode.

The MAE values for M2M LSTMTF were in the [0.024, 0.036] range, for M2M VLSTM
in the [0.07, 0.09] range, and for M2M LSTMTFC in the [0.05, 1] range, with smaller values
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for mini-batch sizes between 2 and 32. Similarly to the MISO configuration, for VLSTM in a
MIMO configuration, the mini-batch size had no significant influence on the testing MAE.

5.2.3. Experiment 3

Figures 22 and 23 illustrate the mean loss values for the MIMO configuration for the
third set of experiments. As shown in these two figures, the mean training loss values were
smaller for LSTMTF compared to VLSTM. For LSTMTF the mean loss values were in the
[0.0019, 0.026] range, while for VLSTM these values were in the [0.0019, 0.08] range. These
differences are similar, in terms of value ranges, for both prediction modes.

Figure 22. Illustration of the mean loss value for Experiment 3, LSTMTF (left) and VLSTM (right),
using a many-to-many prediction mode.

Figure 23. Illustration of the mean loss value for Experiment 3, LSTMTF (left) and VLSTM (right),
using a many-to-one prediction mode.

The testing MAE is showcased in Figures 24 and 25. Similarly to the previous experi-
ments, the behavior of the neural networks was similar to the MISO configuration, namely,
the learning rate had no significant influence on the testing MAE. In the case of LSTMTF,
the number of hidden units, in the [2, 16] range, yielded higher overall values for the MAE,
while in the case of VLSTM the influence of the learning rate and the number of hidden
units on the MAE was comparably smaller, as illustrated in the two figures.
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Figure 24. Illustration of the testing mean absolute error value for Experiment 3, LSTMTF (left),
VLSTM (middle), and LSTMTFC (right), using a many-to-many prediction mode.

Figure 25. Illustration of the testing mean absolute error value for Experiment 3, LSTMTF (left) and
VLSTM (right), using a many-to-one prediction mode.

The training and testing running times, measured in milliseconds, for the tested neural
networks, on 50,000 data points, are shown in Table 8. As can be observed, the training
time, when switching from the MISO to the MIMO configuration, increased on average by
21%, while the testing time increased on average by 28%.

Table 8. The actual training and testing times for 50,000 data points, measured in milliseconds,
for LSTMTF and VLSTM.

LSTMTF VLSTM

Time [ms] Many-to-Many Many-to-One Many-to-Many Many-to-One

MISO Training 1820 1831 1810 1870

MISO Testing 46.55 49.70 47.13 45.72

MIMO Training 2209 2294 2208 2236

MIMO Testing 57.27 63.08 60.74 61.71

5.2.4. Experiment 4

Figure 26 illustrates the results for Experiment 4. Here, the observed and the predicted
values are shown for the MISO configuration using an M2M prediction mode for the three
LSTM variants (i.e., LSTMTF, LSTMTFC, VLSTM) and for the two NARXNN variants (i.e.,
parallel and series–parallel).
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Figure 26. Illustration of the prediction performance for experiment 4. Subfigures (a,b,d–f) showcase
the observed/predicted values on an entire cycle of 500 observations. Subfigure (c) showcases the
observed/predicted values for LSTMTF using an M2O prediction mode for 5000 observations.

During training, the NARXNN models received the ground truth value of the output
from the previous time-step as input for the next time-step. Similarly, during testing,
the parallel architecture received the ground truth output value as input. In contrast,
the series–parallel variant received the predicted value from the previous time-step as
input for the next step during testing. These two operation modes are similar to LSTMTF
and LSTMTFC.

As illustrated in Figure 26a, the LSTMTF’s predicted values closely resemble the
observed values, while for the LSTMTFC, Figure 26b, the prediction slowly deviates from
the observed value, starting from the 60th time-step. These results further illustrate the
exposure bias effect in the case of LSTMTFC.

In terms of MAE, for the testing dataset, the results are as follows (in increasing
order) LSTMTF: 0.038, LSTMTF M2O: 0.054, VLSTM: 0.059, NARXNN Series–Parallel
(1000 Epochs): 0.084, NARXNN Parallel (1000 epochs): 0.110, ARXNN Series–Parallel
(100 Epochs): 0.113, NARXNN Parallel (100 epochs): 0.123, and LSTMTFC: 0.551.

5.2.5. Experiment 5

During the fifth experiment, the neural networks underwent training with a separate
validation set that accounted for 20% of the original training set. The remaining 80% of
observations were utilized for actual training purposes.

The results for the MISO configuration, in the case of LSTMTF using an M2M predic-
tion mode, in regard to the sequence length, were as follows: for sequence lengths between
1 and 100 the MAE was in the [0.03, 0.045] range, increasing with the sequence length,
and in the [0.04, 0.044] range for sequence lengths between 100 and 500, following a similar
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pattern as the results of Experiment 1. For the M2O prediction mode, the results were in
the [0.052, 0.085] range, with the same pattern as the results of Experiment 1.

In the case of VLSTM, using an M2M mode, the MAE results were in the [0.058,
0.06] range, with no significant deviations in relation to the length of the input sequence.
The results for the M2O prediction mode yielded MAE values in the [0.053, 0.14] range;
the highest value of 0.14 was obtained for a sequence length of 470. LSTMTFC obtained
similar results to those from Experiment 1, with large MAE values for sequence lengths
between 1 and 100, with values up to 0.8, and values between 0.059 and 0.06 for larger
sequence lengths.

While measuring the MAE for various mini-batch sizes (i.e., in the [2, 128] range),
the following results were obtained: for LSTMTF using an M2M prediction mode, the MAE
was in the [0.031, 0.053] range, while for the M2O mode it was in the [0.053, 0.06] range.
The results followed a similar pattern to those of Experiment 2.

The VLSTM network obtained the following results: for the M2M prediction mode,
the MAE was between 0.058 and 0.06, while for the M2O prediction mode, the MAE was
between 0.052 and 0.058. Finally, LSTMTFC yielded MAE values between 0.04 and 0.065 for
mini batch-sizes in the [2,32] range and MAE values in the [0.059, 0.25] range for mini-batch
sizes above 32.

Moving on to the results for various numbers of hidden units and learning rates.
LSTMTF using an M2M prediction mode obtained MAE values between 0.032 and 0.058;
these values decreased inversely proportionally to the number of hidden units. Conversely,
the same LSTMTF in an M2O prediction mode obtained MAE values in the [0.053, 0.063]
range. Similarly to Experiment 3, there were no significant changes in the MAE with regard
to the learning rate values.

In the same experiment, VLSTM using an M2M prediction mode obtained MAE values
between 0.058 and 0.059 and MAE values between 0.053 and 0.063 when using an M2O
prediction mode. The MAE values did not show significant fluctuations as the number
of hidden units or learning rate values increased. Similarly to Experiment 3, LSTMTFC
obtained better results for fewer hidden units, with an average of 0.06 MAE for 2 hidden
units, over all learning rates. The MAE values increased with the number of hidden units,
with the highest value of 1.69 obtained with 114 hidden units.

Regarding the input sequence length, the outcomes for the MIMO configuration were
the following. LSTMTF in an M2M prediction mode produced MAE values between 0.024
and 0.028 while the M2O prediction mode yielded values between 0.03 and 0.06. The values
for the M2M prediction mode were smaller in comparison to the ones from Experiment 1
while the values for the M2O prediction mode were larger.

VLSTM in a MIMO configuration yielded MAE values between 0.037 and 0.038 over
all sequence lengths when used in an M2M prediction mode, and MAE values between 0.03
and 0.06 when used in an M2O prediction mode. The results for LSTMTFC yielded MAE
values between 0.2 and 0.8. The largest MAE values between 0.47 and 0.8 were obtained
for sequence lengths between 1 and 100.

When testing the performance, for various mini-batch sizes, using the MIMO con-
figuration, the following results were obtained. LSTMTF in an M2M prediction mode
yielded MAE values in the [0.023, 0.024] range for mini-batch sizes between 2 and 32 and
between 0.024 and 0.032 for mini-batch sizes between 32 and 128. Here, the MAE displayed
an upward trend with the increase in the mini-batch size. In the M2O prediction mode,
the results for LSTMTF, in terms of MAE, were between 0.035 and 0.044.

The VLSTM using an M2M prediction mode yielded MAE values between 0.037
and 0.039 and, using an M2O prediction mode, MAE values between 0.035 and 0.038.
LSTMTFC’s prediction MAE results were in the [0.034, 0.77] range, with higher MAE values
between 0.15 and 0.77 for mini-batch sizes between 2 and 64.

In the MIMO configuration, with regard to the number of hidden units and learning
rate, the models obtained the following results. LSTMTF using an M2M prediction mode
yielded MAE values in the [0.024, 0.036] range and, using an M2O prediction, the MAE
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values were in the [0.034, 0.041] range. The MAE in regard to the number of hidden
units and learning rate values was similar to the results from MIMO Experiment 3. Here,
with hidden units in the [2,16] range, the computed MAE was between 0.028 and 0.036.
The MAE gradually decreased while increasing the number of hidden units.

In the case of M2M VLSTM, the range of the MAE was smaller with values between
0.037 and 0.038 with no visible effect from the number of hidden units or learning rate
values. For VLSTM with an M2O approach, the MAE values were in the [0.034, 0.042]
range for this experiment. Finally, LSTMTFC yielded MAE values between 0.04 and 0.25 for
hidden units in the [2,16] range. In the [32,128] hidden unit range, the MAE for LSTMTFC
was between 0.27 and 0.71, increasing with the number of hidden units. Similarly to the
previous experiments, the change in the learning rate values had no visible impact on the
prediction MAE.

6. Discussion, Conclusions, and Future Work

This paper offered an in-depth analysis of LSTM neural networks trained with and
without teacher forcing. Teacher forcing was applied in two variants, with the actual
(observed) value fed back as input during both training and testing, as proposed for
anomaly-detection tasks (e.g., LSTMTF), and as originally proposed, with the predicted
values fed back during testing (e.g., LSTMTFC). Additionally, the paper also introduced
training and testing time measurements for the tested architectures.

The datasets used for the experimental assessment are publicly available, and originate
from the well-known Tennessee Eastman chemical process simulation. The training and
testing procedures were performed using a wide range of both internal and external
hyperparameters, while the results were analyzed using various performance metrics. All
the neural network architectures were tested in multiple configurations, namely, multi-
input single-output and multi-input multi-output using two prediction modes: many-to-
many and many-to-one. For reproducibility, all the tested neural network configurations,
hyperparameters, and datasets were documented throughout this paper.

In both configurations, MISO and MIMO, the VLSTM (i.e., the standard LSTM without
teacher forcing) obtained better results in terms of training convergence time for the M2M
prediction method; however, in terms of prediction MAE, LSTMTF obtained better results.
Out of the three neural networks, LSTMTFC obtained the worst results in terms of testing
MAE using the M2M approach.

As pointed out by other researchers, feeding the observed value during training and
the predicted value during testing may lead to unexpected and unreliable results reflected
in the prediction values due to exposure bias. This behavior was observed and presented
in the final experiment. The large differences between LSTMTF and LSTMTFC make
the former a suitable candidate for anomaly-detection tasks, as proposed in [40], where
any intervention in the process yields significant differences in the prediction error as the
measured output is fed back, compared to LSTMTFC, where the prediction is fed back as
additional input. Moreover, the ranges that yielded the best results, for all LSTM variants,
were identified in the results section. In the case of M2O, the differences between the
LSTMTF and VLSTM were not very significant in any of the performed experiments. While
in this scenario, on this specific dataset, the overall results were better when using an
M2M prediction mode, M2O modes might yield better results on other datasets and in
different scenarios.

In every experimental scenario, there was a small decrease in the prediction error
when switching from the MISO to the MIMO configuration on the same neural network
type. However, the time taken for training and testing increased by 21% for training and
28% for testing when using the MIMO configuration. Overall, the input sequence length,
mini-batch size, number of hidden units, and number of lags influenced the training and
testing performance. Conversely, the learning rate’s influence appeared to be smaller in all
the experiments for all neural network architectures.
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Experiment 5 yielded an intriguing outcome when utilizing the early stopping tech-
nique to train neural networks. The findings indicated that employing this approach did
not result in any significant improvement in the MAE values across various scenarios or
configurations. Nevertheless, despite the lack of a significant reduction in the prediction
MAE, the comparable results to previous experiments suggest that neural networks can
be trained with fewer data points and still perform similarly well for this dataset. It is
important to note that in Experiment 5, only 80% of the original training set was used
for training, with the remaining 20% serving as the validation set. Overall, for this set of
experiments, LSTMTF generally outperformed the other models that were tested.

Among the performance metrics used in this paper, we included the MAE and the
testing error standard deviation. These metrics can be useful, for example, in detection
approaches such as the one in [40]. One potential alternative to using MAE as an evaluation
metric is to consider the mean squared error (MSE) instead. Unlike MAE, which treats all
errors equally, MSE gives greater weight to larger errors. This can be useful in situations
where it is important to capture the magnitude of the error in the model’s predictions.

As illustrated by the experimental results, the architecture of LSTMs can be signifi-
cantly reduced, while still maintaining prediction performance. This was observed while
using fewer features for the MISO architecture, while still obtaining similar results to the
MIMO architecture. Moreover, by using TF, it was shown that the models can be trained
with a reduced number of samples while using only one hidden layer and still outperform
other models. The reduced architecture (i.e., number of inputs, one hidden layer, and num-
ber of hidden units) and the possibility of training models with fewer samples make such
models suitable candidates for real-time operations and on resource-constrained devices.

As future work, we intend to further extend this research to include various other
datasets originating from other industrial processes. One important possible future direc-
tion includes an in-depth analysis of the effects of missing measurements and variable
sampling rates when dealing with time series data.

While this work presented an in-depth performance analysis of LSTMs, we intend to
extend this work to include other models and on other prediction modes as well. An inter-
esting architecture worth including in future work is the Encode-Decoder model, which
operates differently from the models analyzed in this paper. Additionally, the results from
this study, and from future extensions, can aid in developing new anomaly-detection, fault-
detection, process control, and predictive maintenance techniques. Such methods could
also be applied in other fields as well, for example, in healthcare monitoring and prediction.
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Abbreviations

The following abbreviations are used in this manuscript:

HU Number of Hidden Units
ISL Input Sequence Length
JNN Jordan Neural Network
LSTM Long Short-term Memory Neural Network
LSTMTF Long Short-term Memory Neural Network with Teacher Forcing as proposed in [40]
LSTMTFC Long Short-term Memory Neural Network with the original Teacher Forcing algorithm
M2O Many-to-One Prediction Mode
M2M Many-to-Many Prediction Mode
MAE Mean Absolute Error
MBS Mini-Batch Size
MIMO Multi Input Multi Output Configuration
MISO Multi Input Single Output Configuration
MSE Mean Squared Error
NARXNN Nonlinear Auto-Regressive Neural Networks with eXogenous (external) inputs
RNN Recurrent Neural Network
SMAPE Symmetric Mean Absolute Percentage Error
SOH State of Health
TEP Tennessee Eastman Process
TF Teacher Forcing
VLSTM Vanilla Long Short-term Memory Neural Network
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Abstract: Artificial intelligence, particularly machine learning, has begun to permeate various real-
world applications and is continually being explored in automatic music generation. The approaches
to music generation can be broadly divided into two categories: rule-based and data-driven methods.
Rule-based approaches rely on substantial prior knowledge and may struggle to handle large datasets,
whereas data-driven approaches can solve these problems and have become increasingly popular.
However, data-driven approaches still face challenges such as the difficulty of considering long-
distance dependencies when handling discrete-sequence data and convergence during model training.
Although the diffusion model has been introduced as a generative model to solve the convergence
problem in generative adversarial networks, it has not yet been applied to discrete-sequence data.
This paper proposes a transformer-based diffusion model known as MelodyDiffusion to handle
discrete musical data and realize chord-conditioned melody generation. MelodyDiffusion replaces
the U-nets used in traditional diffusion models with transformers to consider the long-distance
dependencies using attention and parallel mechanisms. Moreover, a transformer-based encoder is
designed to extract contextual information from chords as a condition to guide melody generation.
MelodyDiffusion can automatically generate diverse melodies based on the provided chords in
practical applications. The evaluation experiments, in which Hits@k was used as a metric to evaluate
the restored melodies, demonstrate that the large-scale version of MelodyDiffusion achieves an
accuracy of 72.41% (k = 1).

Keywords: melody generation; conditional generation; diffusion model; transformer

MSC: 68T99

1. Introduction

In recent years, significant advancements have been achieved in the automatic music
generation field due to the development of machine learning, with numerous algorithms
and techniques having been developed to produce high-quality original music [1,2]. Music
generation methods can be broadly classified into rule-based and data-driven approaches.

Initially, owing to a lack of computational recourse and massive data support, rule-
based approaches relying on predefined rules and constraints were used to generate music
in various styles, such as classical, jazz, and pop music. These approaches often use musical
knowledge representation systems to encode musical concepts and rules, such as tonality,
rhythm, and harmony [3–6]. However, analyzing and encoding music theory into artificial
features using rule-based approaches is difficult. Furthermore, even if rules are defined, it
is challenging to apply them to other genres, styles, and instruments.

Data-driven approaches can utilize large amounts of data more efficiently than rule-
based methods owing to the large increase in data volume. Data-driven approaches employ
deep learning techniques to analyze and generate music based on datasets. Generative
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adversarial networks (GANs) have significantly advanced the music generation field.
For example, continuous recurrent neural networks with adversarial training (C-RNN-
GAN) [7], which are composed of long short-term memory (LSTM)-based generators
and bidirectional LSTM-based discriminators, generates classical music by learning from a
training dataset. SeqGAN [8] is another GAN-based model that uses reinforcement learning
(RL) for sequential generation. It can be trained using data that consist of sequences of
discrete tokens. SeqGAN models a generator using a stochastic policy in RL to bypass the
generator differentiation problem and perform gradient policy updates directly. SeqGAN
is specifically designed for sequence generation and can be trained on various data types.
The goal of OR-GAN [9] is to improve the quality of the samples generated by SeqGAN.
OR-GAN combines adversarial training with expert-based rewards and RL to generate
samples that maintain information learned from data. In this manner, the sample diversity
is retained, and the desired metrics are improved. The effectiveness of these approaches has
been demonstrated in the generation of molecules encoded as text sequences and musical
melodies. However, long-distance sequential data cannot be handled via these approaches
owing to the backpropagation process through the time of the LSTM.

In addition to the combination of RNNs and GANs, MidiNet [10] generates music
in the symbolic domain using a convolutional neural network (CNN)-based GAN model,
allowing it to generate realistic symbolic music. The model incorporates a conditional
mechanism to generate original melodies based on a chord sequence or via conditioning
based on previously used melody bars. MuseGAN [11] is another GAN model based on
CNNs that generates symbolic multitrack music. It includes the jamming, composer, and
hybrid models, which are designed to address the unique challenges of music generation,
such as its temporal nature and the interdependence of multiple tracks. Inco-GAN [12] is
a type of polyphonic music that uses a CNN-based inception model for the conditional
generation of polyphonic music that can be freely adjusted in terms of length. In addition,
ChordGAN [13] is a chord-conditioned melody generation approach that uses a conditional
GAN architecture and appropriate loss functions, similar to image-to-image translation
algorithms. It can be used as a tool for musicians to learn compositional techniques for
different styles using the same chords and automatically generate music.

Although the use of CNNs has improved the ability of models to extract local features,
the issue of gradient vanishing that occurs when processing long-distance sequences has
not been addressed. Moreover, balancing the generator and discriminator during dynamic
learning is difficult, making it challenging to guarantee the convergence of the GANs
during training.

The denoising diffusion probabilistic model (DDPM) [14] is a type of probabilistic
generative model that includes the forward and reverse processes. A key benefit of DDPM
is that it can be used to denoise data without explicit labels or supervision. This makes it
particularly useful for denoising data in unsupervised learning, in which it is difficult or
impossible to obtain labeled data. This model can help to address convergence issues in
generative models and has achieved promising results in the generation of high-quality
images. Moreover, the transformer module, which is used extensively in language mod-
eling, allows the model to focus directly on all input words simultaneously and measure
their importance using the attention mechanism. Thus, the model can efficiently capture
the long-term dependencies and make more accurate predictions. Transformers also apply
parallel processing, making them more efficient and faster to train than RNNs.

This paper proposes a method for chord-conditioned melody generation using a
transformer-based diffusion model known as MelodyDiffusion. The following three mod-
ifications are made to the traditional diffusion model. First, in the forward process, the
inputs of MelodyDiffusion are not continuous image-like data, but they are rather dis-
crete sequences, and no pre-trained variational autoencoder (VAE) is required to map
the discrete data to a continuous latent space. Second, in the reverse process, the U-nets
of the traditional diffusion model are replaced with transformers, thereby enabling the
model to handle discrete sequences and to consider long-distance dependencies. Finally, a
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transformer-based encoder is used to embed the conditions for guiding the reverse process,
which allows for chord-conditioned music generation.

The main contributions of this paper are summarized as follows: (1) a novel diffusion
model that operates directly on discrete data is designed, such that the diffusion model is
not limited to image generation. (2) MelodyDiffusion uses transformers instead of U-nets to
handle discrete sequences. Furthermore, a transformer-based encoder is developed to real-
ize chord-conditioned melody generation. (3) The experiments reveal that MelodyDiffusion
can generate diverse melodies based on the given chords.

2. Related Work

Researchers have started using transformers and diffusion models for music genera-
tion. Several representative approaches are described in the following subsections.

2.1. Transformer-Based Music Generation Approaches

As transformers are based on the attention mechanism, they offer more advantages
than RNNs in processing sequential data. Some representative studies on the use of trans-
formers for music generation are summarized as follows. CMT [15] is a chord-conditioned
melody transformer model for generating K-pop melodies. The model produces the
rhythm and pitch separately based on a given chord progression and is trained in two
phases. This approach has exhibited promising results for chord-conditioned melody gener-
ation. MusicFrameworks [16] is a hierarchical music structure representation and multistep
generative process for creating full-length melodies in a manner guided by long-term
repetitive structure, chord, melodic contour, and rhythm constraints. The system organizes
the full melody into sections and phrases. It generates a melody in each phrase by first
generating the rhythm and basic melody using two separate transformer-based networks
and then generating the melody in a way which is conditioned on the basic melody, rhythm,
and chords. This approach allows for customization and variety by altering the chord, basic
melody, and rhythm structures in the music framework. A music generation network based
on transformers and guided by music theory has been proposed [17]. This network uses
a transformer decoding block to learn the internal information of single-track music and
cross-track transformers in order to learn the relationships among tracks involving different
musical instruments. A reward network based on music theory is used to optimize network
training and produce high-quality music. MELONS [18] is based on a graphical represen-
tation of music structure. It uses a multistep generation method with transformer-based
networks to factor melody generation into the structure and structure-conditional melody
generation. MRBERT [19] uses a pre-trained model that is based on the understanding of
melody and rhythm to generate and fill in the melody and chords.

Therefore, in general, transformers have replaced RNNs in music generation tasks
and achieved promising results.

2.2. Diffusion Model-Based Music Generation Approcaches

Owing to the remarkable achievements of diffusion models in image generation,
researchers have attempted to apply them to waveform data, which are image-like, to
accomplish music generation. The text-to-audio system has gained attention for its ability
to synthesize general audio based on text descriptions. To address the issues of high
computational costs and limited generation quality in previous studies, a diffusion-model-
based text-to-audio system called AudioLDM [20] has been proposed. This system can
learn continuous audio representations from contrastive language-audio pretraining latent
spaces. By using pre-trained models, text embeddings can be used as conditions during
sampling while audio mel-spectrogram embeddings are provided to train AudioLDM.
Conversely, ERNIE-Music [21] is a diffusion model-based text-to-waveform method that
uses lyrics in a textual format as input to control the music generation in waveform format.
This is a multimodal generation approach that demonstrates the effective combination of
discrete text data and continuous waveforms.
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The above two approaches respectively represent music as mel-spectrograms and
waveforms, which are continuous image-like data. However, music can also be represented
as a discrete sequence composed of notes with specific durations, and transformers can be
used to consider the long-distance dependencies between them. This not only extends the
training data of diffusion models beyond audio-format music, but also allows for symbolic
musical data to be used. A representative approach [22] was proposed for use to train
diffusion models on symbolic music data by parameterizing the discrete domain in the
continuous latent space of a pre-trained variational autoencoder. This research attempted
to use a diffusion model with transformers to generate symbolic music. This enabled the
models to generate sequences of latent embeddings through a reverse process and provided
parallel generation with a fixed number of refinement steps. Similarly, in the latter work
on scalable diffusion models with transformers [23], transformers were used as the main
architecture for image generation, replacing U-nets. Furthermore, an autoencoder was used
to embed the input into a continuous latent space.

However, the previous approach used a pre-trained biLSTM-based MusicVAE to map
a discrete sequence onto a continuous latent space, as well as to decode a discrete sequence
from the continuous latent space that is output by the diffusion model. In contrast, the
method proposed herein aims to directly embed discrete sequences into the diffusion
model, without requiring any intermediate process for conversion into continuous features.
Furthermore, a transformer-based encoder is designed to extract contextual information
from chords to realize chord-conditioned melody generation.

3. Chord-Conditioned Melody Generation Method

This paper proposes a method for chord-conditioned melody generation using a
transformer-based diffusion model known as MelodyDiffusion. We first describe the
representations of the melody and chords. Subsequently, we explain the structure and
operation of the transformer-based diffusion model.

3.1. Date Representation

The music corpus OpenEWLD [24], which is a dataset consisting of lead sheets in
XML format, is used during training. As illustrated in Figure 1, a piano roll is obtained
from a lead sheet using the Python library pypianoroll. In the piano roll, each measure
is divided into 40 parts. Therefore, each part is a 0.025 measure length; for example,
“Duration: 0.25” indicates that a pitch takes up a 0.25 measure length. In a musical
instrument digital interface, each pitch is defined with a unique index ranging from 0 to
127, thereby representing 128 types of pitches; for example, the index of “Pitch: C4” is 60.
Thus, “Pitch: C4 Duration: 0.25” represents the sequence “60, 60, 60, 60, 0”. It is worth
noting that the end of this sequence is replaced with 0 given that the “offset” of the pitch
must be clearly indicated. Supposing “Pitch: F4 Duration: 0.25” is followed by “Pitch: F4
Duration: 0.5”, if the “offset” is not indicated, it will be difficult to distinguish these from
“Pitch: F4 Duration: 0.75”.

When a melody sequence is generated, the chord sequence can be obtained by simply
supplementing the chord index in the corresponding position. A total of 446 chords have
been detected and assigned an index in OpenEWLD, with the index 0 indicating “offset”.

During training, eight consecutive measures are randomly extracted from any lead
sheet in the dataset. The melody and chord sequences, both with a length of 320 (8 × 40),
are obtained using the representation method described above.

3.2. Transformer-Based Diffusion Model

MelodyDiffusion includes forward and reverse processes. As shown in Figure 2, the
forward process adds noise to the original melody based on time steps. The reverse process
includes a denoising model and a pre-trained encoder, where the denoising model takes
the noisy melody generated by the forward process as an input with which to eliminate the
original melody. The pre-trained encoder extracts hidden features from the chords and is
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connected to the transformers in the denoising model through a cross-attention module
to guide the denoising process. The forward and reverse processes are explained in more
detail in the following sections.

Figure 1. Example of melody and chord sequences converted from a piano roll. In the piano roll, a
portion of the corresponding melody and chord were truncated. The black dotted box represents the
truncated melody section, while the purple represents the truncated chord. The truncated melody
and chord are converted to melody and chord sequences, with each segment between two dotted
lines representing the length of one measure.

Figure 2. Model structure of MelodyDiffusion.
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3.2.1. Notations

This section introduces the notation used in describing the forward and reverse
processes, as shown in Table 1. In the forward process, time steps t ∈ (1, T) are used to
control adding the noise z on original melody x0, where the noise z follows a Gaussian
distribution. The reason for using Gaussian noise is that the noise must conform to a
regular distribution, otherwise the diffusion model is unable predict it. Furthermore,
Gaussian noise has been widely used in various diffusion models and has been proven to
be effective. In addition, Gaussian noise has a wide range of applications and foundations
in statistics and natural sciences; therefore, its use in diffusion models can better simulate
real-world noise.

Table 1. Notations and their descriptions.

Notations Description

t Time steps
T Max time step
z Noise follows a Gaussian distribution
x0 Original melody

x1, x2, . . . , xt, . . . , xT Melodies with noise added based on time steps t ∈ (1, T)
β Parameter that increases as time step t increases

εθ(·) Denoising model, where 1θ represents the weights in the model
ρϕ(·) Encoder, where 2 ϕ represents the weights in the encoder

c1, c2, . . . , cn Chords that are input as the condition to the encoder
h1, h2, . . . , hn Hidden features output by the encoder

1,2 θ and ϕ represents the weights in εθ(·) and ρϕ(·), and θ is updated during the training of the diffusion model,
while ϕ is frozen.

x1, x2, . . . , xt, . . . , xT represent noisy melodies with noise added based on different
time steps t. β varies with t and serves as the parameter for controlling the level of noise
added. εθ and ρθ represent the denoising model and encoder, respectively, in the reverse
process. c1, c2, . . . , cn represents the chords that are input as conditions to the encoder.
h1, h2, . . . , hn represents the hidden features output by the encoder.

3.2.2. Forward Process

The forward process follows the time steps 1 to T, recursively adds noise z to the
original melody x0, and saves the noising results of each time step, x1, x2, . . . , xt, . . . , xT .
Noise is added to the melody at time step t using Equation (1), where β increases as t
increases. Therefore, a larger t value indicates that more noise z is added to x0.

xt =
(√

1 − βt

)
xt−1 +

√
βtzt, t ∈ (1, T) (1)

By recursively applying Equation (1), the noisy melody xt at any time step t can be
obtained based on the original melody x0, as shown in Equation (2).

xt =

(√
1 − βt

)
x0 +

√
βtzt, t ∈ (1, T) (2)

Specifically, each pitch in the melody sequence is embedded using one-hot encoding.
As the pitch ranges from 1 to 128, the size of the one-hot encoded vector is 128. Subsequently,
each vector undergoes noise processing, whereby the noise follows a Gaussian distribution
and is controlled by the parameter βt. Figure 3 presents the overall process of adding
Gaussian noise to the melody sequences. A melody with a length of 320 is embedded into
a 320 × 128 matrix through one-hot encoding. Thereafter, Gaussian noise of the same size
as the one-hot encoded melody is generated. Finally, the Gaussian noise is added to the
one-hot encoded melody using Equation (2) to obtain the noisy melody.
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Figure 3. Adding Gaussian noise to the melody sequence.

3.2.3. Reverse Process

In the reverse process, the goal of denoising model εθ is to infer x0 recursively from
xt. During the recursive process, Gaussian noise z′t added to xt−1 is predicted based on
xt according to Equation (3). After z′t is predicted, x′t−1 can be obtained easily by using
Equation (4), which follows the inverse process of adding noise. Through training, x′t−1
gradually approximates the known xt−1 from the forward process. εθ(·) represents the
denoising model. ρϕ(·) represents the pre-trained encoder, which is composed of trans-
formers using self-attention. It is differentiated from the denoising model εθ(·) given that is
a pre-trained model which uses frozen weights during the training of the diffusion model.
Moreover, c represents the chord sequence input to the encoder as a conditional input.

z′t ∝ εθ

((√
1 − βt

)
x0 +

√
βtzt, t

)
ρϕ(c) (3)

xt−1 ≈ x′t−1 ∝
1√

1 − βt

⎛⎝xt − βt√
βt

z′t

⎞⎠ (4)

Subsequently, the loss is calculated based on z′t and zt. In the reverse process, the noise
z′t is predicted based on xt. In the forward process, the noise zt added to xt−1 is known. The
loss for updating the denoising model and encoder is obtained by calculating the difference
between z′t and zt, and the loss function uses the mean squared error (MSE) as defined
in Equation (5).

loss =‖ z′t − zt ‖2 (5)

As illustrated in Figure 2, the reverse process comprises two parts: the denoising
model and a pre-trained encoder for inputting the chord information. The denoising
model is composed of transformer blocks that use both self-attention and cross-attention
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mechanisms. The query, key, and value in the self-attention layer originate from the current
input. Conversely, in the cross-attention layer, only the query originates from the previous
layer, and the key and value are obtained through cross-attention. The structure of the
encoder is similar to that of the denoising model, except that all cross-attention layers are
replaced with self-attention layers. Its structure is similar to that of BERT [25], and it is
pre-trained using the masked language modeling method [25]. The pre-training process is
completed in advance. Specifically, chord sequences are randomly masked and fed into the
encoder, which learns deeper representations in the process of recovering the masked parts.

As shown in Figure 4, the denoising model is connected to the pre-trained layer
through cross-attention. The pre-trained encoder receives the chord sequence c1, c2, . . . , cn
as an input and outputs the hidden features h1, h2, . . . , hn of the contextual information.
Subsequently, these hidden features are fed into each transformer in the denoising model
via cross-attention.

 

Figure 4. Pipeline of the conditioned-denoising in reverse process.

Algorithm 1 shows the training of MelodyDiffusion, while Algorithm 2 shows the
method of sampling new melodies using Gaussian noise and conditional chords after the
model has converged.

Algorithm 1 Training

1 : repeat

2 : x0 = f one−hot(melody sequence)
3 : c = chord sequence
4 : t ∈ Uni f orm({1, . . . , T})
5 : zt ∼ N (0, I)
6 : Take gradient descent step on :

7 : �θ ‖ εθ

((√
1 − βt

)
x0 +

√
βtzt, t

)
ρϕ(c)− zt ‖2

8 : until converged

Algorithm 2 Sampling

1 : xT ∼ N (0, I)
2 : for t in (1, . . . , T) :

3 : x′t−1 = 1√
1−βt

(
xt − βt√

βt

z′t
)

4 : return x′0
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4. Experiments

Hits@k [26] was used as the metric with which to evaluate the quality of the generated
melodies. Hits@k is a commonly used evaluation metric for the recommendation models
and returns the top k results from the generated list, the latter being sorted by the softmax
probability distribution. It represents the average percentage of rankings with a value
lower than k in the generated samples. First, MelodyDiffusion-large was designed as a
comparison to demonstrate the impact of changes in the hyperparameters of the transformer
on the results. Second, “w/o encoder” was used for an ablation experiment. Here, “w/o
encoder” represents MelodyDiffusion that did not use an encoder with chord conditions as
an input. Finally, the stable diffusion model [27] was reproduced as a baseline, which is a
conditional generative model based on U-nets. To adapt discrete data to the stable diffusion
model, the input format was set to be slightly different from that of the transformer-based
diffusion models.

4.1. Dateset

The Enhanced Wikifonia Leadsheet Dataset (EWLD) is a music lead sheet dataset.
OpenEWLD [23] was used in the experiments reported in this paper. It was extracted from
EWLD and only contained lead sheets in the public domain. Each lead sheet in OpenEWLD
contains the melodies and chords that are required for training. These data were divided
into 13,884 sample pairs consisting of eight measures for training and evaluation.

4.2. Experimental Environment

Table 2 lists the hyperparameters that were used during training in the forward process.
Number of time steps signified that the maximum value for time step T was 500. βstart
and βend indicated that the minimum value for βt in Equations (1) and (2) was 0.0001
and the maximum value was 0.02, with β increasing linearly over time t. The proposed
method’s models and the comparative models, which consisted of “w/o encoder”, and
stable diffusion model [27], used the same forward process in the experiment.

Table 2. Hyperparameters used in the forward process.

Hyperparameters Values

Number of time steps T 500
Schedule of βt Linear

βstart 0.0001
βend 0.02

Table 3 shows the hyperparameters of the encoder and denoising model in both the
base and large versions of the MelodyDiffusion model. The hyperparameter settings of
both the base and large versions were based on BERT-base and -large [25], which are
types of transformer-based pre-trained model used for representation learning in natural
language processing. In this paper, we attempted to use the transformer blocks of BERT
as the main architecture of a diffusion model. The encoder and denoising model used the
same structure, except that cross-attention was enabled in the denoising model.

Table 4 lists the hyperparameters used by the baseline model. The stable diffusion
model was replicated as the baseline. The melody was added as one channel and input into
the model in the form of a grayscale image. The model consisted of 12 blocks wherein 6
had functions of down-sampling and 6 had functions of up-sampling. Each block received
hidden states extracted from the chords through cross attention from the encoder. The
encoder used here was the same as the encoder used in MelodyDiffusion.
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Table 3. Hyperparameters of encoder and denoising model in both the base and large versions of
MelodyDiffusion.

Hyperparameters MelodyDiff. (Base) MelodyDiff. (Large)

Number of layers 12 24
Input size

(Length; Embedded dimension) 320 × 128 320 × 128

Hidden size 768 1024
FFN inner hidden size 3072 4096

Attention heads 12 16
Attention head size 64 64

Table 4. Hyperparameters of the baseline model.

Hyperparameters Stable Diffusion

Number of U-net blocks 12
Input size

(Channel; Height; Width) 1 × 128 × 320

Output channel of blocks 128, 128, 256, 256, 512, 512

Table 5 displays the hyperparameters used in the training strategy, including global
dropout to prevent overfitting, as well as parameters related to the optimizer AdamW
and learning rate. A dropout value of 0.1 was globally used in the reverse process model.
The AdamW optimizer was selected to update the model and its learning rate was set to
1 × 10−4. The parameters relating to the optimizers, namely β1 and β2, were set to 0.9
and 0.98, respectively. The warm step, which indicates that the learning rate gradually
increases from 0, reached its peak at 500 iterations and then decreased back to 0, following
a cosine function.

Table 5. Hyperparameters of the training strategy.

Hyperparameters Stable Diffusion

Dropout 0.1
AdamW ε (Learning rate) 1 × 10−4

AdamW β1 0.9
AdamW β2 0.98
Warm steps 500

Schedule of the learning rate cosine

4.3. Displays of Training

Figure 5 illustrates the melodies with added noise at different time steps during the
forward process. In the original melody x0, the melody was clearly defined. As the time step
t increased to 100, the noisy melody x100 became increasingly difficult to recognize. When
the time step t increased from 250 to 500, the melody became completely unrecognizable,
and the measures were indistinguishable. This demonstrated that noise was gradually
added during the forward process. As time steps increased, noise gradually dominated
the melody, resulting in a gradual blurring until it became unrecognizable. This further
confirms the importance of noise, which provides models with more creativity and diversity,
resulting in the generation of more interesting melodies. In the MelodyDiffusion model, by
randomly generating Gaussian noise distributions, different styles and qualities of melody
generation results can be obtained.
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Figure 5. Examples of noise-added melodies at different time steps.

Figure 6 shows the change in MSE loss during the first 250 iterations of training for
the MelodyDiffusion base and large models, as well as for the “w/o encoder” and the
baseline stable diffusion models during the warm-up phase. Due to the larger number of
parameters, the large model had a higher initial loss than the base model. In contrast to
the transformer-based models, the stable diffusion model had a low initial loss given that
it can predict the noise distribution based on local features by rapidly using convolution.
However, as training continued, the transformer models began to excel at predicting noise
on discrete data by considering the contextual information in both forward and backward
directions. After 100 iterations, the MSE loss between the predicted noise and the actual
noise distribution for all four models converged to approximately the same loss.

Figure 6. Change in MSE loss during training.
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GANs can generate new samples based on noise. However, the goal of GANs is to
restore the original sample x0 from Gaussian noise distribution xT , which is a challenging
task. In contrast, MelodyDiffusion only infers xt−1 based on xt. As shown in Figure 5, it is
challenging to directly restore x0 from x500, making it difficult for the generator of a GAN
to update based on the feedback from the discriminator. However, it is relatively easier to
predict x499. Furthermore, to make the model converge faster, the training method of the
denoising diffusion implicit model (DDIM) [28] was used instead of the traditional DDPM.
The reason DDIM was chosen is that the forward process of the diffusion model can include
hundreds of steps, and as the DDPM based on Markov chains needs to traverse all time
steps to generate a single sample. In DDIM, the forward process can be a non-Markov
process and can be accelerated by subsampling.

4.4. Hits@k Evaluation Results

Table 6 presents the evaluation results of the generated melodies using Hist@k. In the
restoration process of noisy melodies, which added Gaussian noise at time step T (T = 500)
on the basis of the chords given, the reverse process was used to run T recursive denois-
ing operations on the noisy melodies, and the probability distributions of the restored
melodies were output through softmax. For Hist@k, k was set to 1, 3, 5, 10, and 20, and
the average percentage of the pitch in the original melodies among the top k pitches in
the softmax probability distribution was calculated. When k = 1, only the pitch with the
highest probability in the softmax probability distribution was considered to evaluate the
performance of the restoration, which was the key metric in this. The performance of
the base version of MelodyDiffusion was slightly lower than that of the baseline stable
diffusion model, being lower by 1.43%; meanwhile, the large version with a similar number
of parameters had a performance which was 0.63% higher. However, the performance of
the w/o encoder model, which did not use chords as auxiliaries, was worse than that of the
other three conditional models. When k > 3, the Hist@k score of the stable diffusion model
was higher than that of the MelodyDiffusion models. After analyzing the generated results,
it was apparent that the section of the melody with significant changes in pitch affected the
transformer’s judgment in the restoration process given that it tended to make predictions
based on contextual features. In contrast, the stable diffusion model, which utilized a CNN,
could restore this section based on local features.

Table 6. Evaluation results of the generated melodies obtained using Hist@k.

HITS@1 (%) HITS@3 (%) HITS@5 (%) HITS@10 (%) HITS@20 (%)

MelodyDiff.
(base) 70.35 83.13 87.03 90.52 92.95

MelodyDiff.
(large) 72.41 84.40 87.12 90.49 92.88

w/o encoder 66.78 80.99 86.98 89.66 91.87
StableDiff. 71.78 82.97 88.45 91.72 93.01

4.5. Comparison of Generated and Real Melodies

Figure 7 illustrates the generated melodies of the original melody (A) and those gener-
ated by the base (B) and large (C) versions of MelodyDiffusion, the stable diffusion model
(D), and the w/o encoder (E). These melodies were generated by the models based on using
random Gaussian noise as an input and utilizing the same chords as the condition (except
for w/o encoder). The analysis of the results showed that all models could recognize the
measures (with a duration of 40 for each measure). Second, there were obvious noise pat-
terns in the background of (D); these occurred since the stable diffusion model, using CNN,
could not eliminate interference based on contextual features. Finally, the three generated
melodies in (E) were extremely similar, particularly in the case of the first two measures.
This also indicated that the chords could provide diversity to the generated melodies.
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Figure 7. Visual comparison of the Softmax probability distribution of original and generated
melodies. (A) Original melodies; (B) generated melodies based on the base version of MelodyDiffu-
sion; (C) generated melodies based on the large version of MelodyDiffusion; (D) generated melodies
based on the stable diffusion model; (E) generated melodies based on the w/o encoder system.

5. Conclusions

This paper proposed a chord-conditioned melody generation method using Melody-
Diffusion, which is a diffusion model based on transformers. MelodyDiffusion consists
of forward and reverse processes. In the forward process, Gaussian noise is added to
melodies following the time step. In the reverse process, the noise is reduced through the
denoising model, using the given chords as conditions. Following training, this model
could effectively predict the noise distribution from noisy melodies. Hits@k was used as a
metric to evaluate the generated melodies. The experimental results showed that the per-
formance of the proposed method reached 70.35% and 72.41% (k = 1) for the base and large
versions, respectively, in restoring noisy melodies, with the large version outperforming
the baseline model (stable diffusion) by 0.63%. Additionally, the visual comparison showed
that MelodyDiffusion could generate more diverse melodies under the condition of given
chords compared to the unconditional diffusion model.

Currently, MelodyDiffusion can only generate monophonic melodies based on chords.
Considering the practicality of polyphonic music composed of multiple instrument com-
binations, future research directions include identifying chords and melodies from poly-
phonic music, which mainly comprises multi-track polyphonic music, without distin-
guishing chords and melodies compared to datasets with paired chords and melodies.
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Moreover, it is necessary to explore the application of MelodyDiffusion to other forms of
musical data and generate polyphonic music containing multiple instruments based on
these considerations are necessary.

Moreover, the diffusion model was originally proposed and used in the field of image
generation; thus, although its main structure was replaced with transformers to handle
discrete data with temporal properties in MelodyDiffusion, a limitation on the length of
the generated samples exists. While increasing the processing length of transformers can
generate longer samples, it also leads to higher training costs. A feasible approach is to
guide the generation of subsequent melodies by treating previous melody patterns as
conditional inputs, similar to what occurs in the conditioning of chord inputs.
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Abstract: Federated Learning (FL) is a newly emerged federated optimization technique for dis-
tributed data in a federated network. The participants in FL that train the model locally are classified
into client nodes. The server node assumes the responsibility to aggregate local models from client
nodes without data moving. In this regard, FL is an ideal solution to protect data privacy at each
node of the network. However, the raw data generated on each node are unlabeled, making it
impossible for FL to apply these data directly to train a model. The large volume of data annotating
work prevents FL from being widely applied in the real world, especially for online scenarios, where
the data are generated continuously. Meanwhile, the data generated on different nodes tend to be
differently distributed. It has been proved theoretically and experimentally that non-independent
and identically distributed (non-IID) data harm the performance of FL. In this article, we design a
semi-federated active learning (semi-FAL) framework to tackle the annotation and non-IID problems
jointly. More specifically, the server node can provide (i) a pre-trained model to help each client node
annotate the local data uniformly and (ii) an estimation of the global gradient to help correct the
local gradient. The evaluation results demonstrate our semi-FAL framework can efficiently handle
unlabeled online network data and achieves high accuracy and fast convergence.

Keywords: network data; federated learning; unlabeled data; heterogeneous data

MSC: 68T09

1. Introduction

Along with the explosion of data in devices and network terminals, an ever-increasing
number of AI applications and services relying on these devices/terminals are emerging.
Nevertheless, subject to laws on data privacy protection, the traditional centralized or
decentralized training paradigm of the AI model is no longer feasible in many scenarios [1].
The phenomenon that devices/terminals are unwilling to share their private data which
hinders the centralized training is called “data island”. To this end, Federated Learning
(FL) [2], a novel AI model training and inference framework, is promoted and introduced
in many network edge intelligence applications, e.g., network anomaly detection [3] and
internet traffic classification [4]. As an effective solution to deal with the “data island”
problem and protect data privacy, FL aggregates various network nodes and uses their
local parameters or gradient information. Therefore, it trains

a global model together without data moving and sharing. It is practical with respect
to protecting data privacy.

In an FL application, the task is defined before learning begins, making FL a typical
task-driven learning paradigm. Thus, as a task-driven approach [5], supervised learning is
widely used to train a model with explicit functions in FL. For example, models for anomaly
detection and attack classification in cybersecurity [6] are all trained via supervised learning.
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Note that model training through supervised learning usually needs a large amount of
labeled data, whereas data generated in most network nodes lack labels. Consequently, FL
cannot be directly applied for secure model training with network data.

In previous work, efforts have been made to address the typical challenges of FL,
i.e., communication efficiency, heterogeneous data, limited computation, incentive mecha-
nism, etc. Unfortunately, almost all of the previous works have assumed that the local data
of each node are perfectly ready to be used for training. Network data are unprocessed
and unlabeled, while model training is completed via supervised learning with labeled
data in most scenarios. Thus, it is impractical to execute model training directly with local
unlabeled data.

Due to the particular characteristics of network data, we face several challenges when
applying FL to network data. First, it is hard to label all the data (namely data annotation)
in network applications. For those online network applications, e.g., network anomaly de-
tection [3], data are constantly being generated, making accurate data annotation extremely
costly. Thus, it is critical and challenging to minimize the cost of data annotation while
maximizing the model benefit. Second, due to the independence of data annotation on each
node, the annotated labels could be inconsistent, i.e., different labels may appear for the
same data class. For example, in labeling the types of network attacks, the denial of service
can be marked as “DoS” in a node, while “DDoS” is used as the label in another node.
This issue could bring trouble to FL model training since the standard and uniform label is
required for single-task model training. Nevertheless, besides the challenges of annotating
data, non-IID data are another crucial challenge in FL, especially in scenarios where local
data are unlabeled. As one of the basic technologies in the field of cyberspace security,
internet traffic classification is also affected by non-IID data [4]. In addition, experimental
studies in [7] show that even the existing state-of-the-art FL algorithms could not be optimal
in all scenarios of non-IID data.

In summary, although FL learning could solve the “data island” problem and protect
the privacy of data, it suffers from the gradient variance intensified by non-IID data. In
addition, the pre-trained model and the global gradient estimation require the server to
prepare the task-related data in advance. However, in reality, the local data are constantly
generated and unable to be fully labeled, which deviates from the assumption of much state-
of-art research. The above challenges have inspired us to design a new FL framework that
could jointly address data annotation and non-IID issues. In this way, the new framework
is expected to be used for network data. More specifically, we aim to answer the following
significant questions in this work: (i) Is it possible to reduce the annotation workload by
screening out the most crucial instances in current model training? (ii) Combined with
data annotation, is there any way to address the issue caused by non-IID data during the
federated optimization?

In this work, we pursue fast convergence of model training and high accuracy of
model inference with unlabeled non-IID network data. The paper makes the following
major contributions:

• To reduce the cost of data annotation, we introduce the idea of active learning [8]
that a pre-trained model is used to test current unlabeled data and the instances with
the wrong test result are selected to annotate manually. These manually annotated
instances are used to train and update the pre-trained model.

• To eliminate the negative impact of non-IID data, we consider designing a gradient
correction mechanism in which an unbiased estimation of the global gradient is used
to correct the local gradient so that the gradient variance caused by non-IID data can
be eliminated.

• Combining the advantages of active learning and FL, we design an accelerated semi-
federated active learning (semi-FAL) optimization framework to handle the unlabeled
and non-IID issues of local data using existing public historical data. The experiment
result shows the higher accuracy, faster convergence and robustness of the proposed
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framework semi-FAL compared with the other two typical federated learning frame-
works.

The rest of the article is organized as follows. The following section reviews related
literature. Next, the architecture design of semi-federated active learning is presented.
Following that, operation details of semi-FAL are given. Then, the proposed architectures
and mechanisms are evaluated in a case study. The discussion section compares our
method with others. We also discuss future work in this section. The final section concludes
the article.

2. Related Work

This section reviews existing solutions for training with unlabeled data in FL. Then, several
representative methods are introduced to reduce the negative impact of heterogeneous data.

2.1. Solutions of Unlabeled Data Challenge

Data annotation is a practical challenge for the implementations of FL since the cost
of annotation is generally high. Some studies have been conducted to find solutions for
training with unlabeled data [9–11]. Federated Active Learning (F-AL) [9] is proposed
to reduce the annotation cost through active learning and sample strategies. In F-AL,
instances would be scored by an auxiliary model trained via FL and the instances with the
highest scores would be annotated. Unsupervised learning is introduced in [10] and the
federated of unsupervised learning method (FedUL) is proposed. In FedUL, the unlabeled
client data are transformed into surrogate labeled data and the client model is modified to
form a surrogate supervised FL task so that existing FL methods can be used. Dong et al.
expected to make efficient use of distributed unlabeled medical data via a robust federated
contrastive learning framework [11].

2.2. Solutions of Statistical Challenge

The statistical heterogeneity caused by non-IID data is a crucial factor, which impacts
the practical application of FL. Currently, the performance of most FL algorithms can be
better guaranteed with the IID data [2], while the convergence would be slowed down
in non-IID settings [12]. A lot of studies have been conducted to tackle this issue [13–25].
These solutions are proposed from three aspects, i.e., local data, server setting and update
rule. Zhao et al. expected to improve the local non-IID data by sharing a small subset
dataset globally in [13]. Jeong et al. applied distillation and augmentation to improve
the data distribution structure [14]. In addition, local batch normalization is also used to
alleviate the feature shift caused by non-IID data in [16]. Instead of making an effort on
local data, Xie et al. propose a multi-center FL framework where clients are divided into
several groups according to the distribution of their local data [18]. In this multi-center
framework, each center trains a global model. Since clients in the same group have similar
distribution data, the global model trained in each center would not be heavily impacted by
non-IID data. This multi-center FL framework applies a kind of clustering idea. Based on
the clustering idea, more methods have been proposed, such as federated attentive message
passing [21], the experience-driven control framework, FAVOR [22]. Moreover, some novel
update rules have been designed to address the non-IID issue, such as SCAFFOLD [17],
FedProto [19], FedPD [25], ASO-Fed [24]. In SCAFFOLD, control variates are used to
reduce the impact of non-IID data. Instead of aggregating model parameters or gradients,
FedProto transmits and aggregates prototypes. FedPD is designed from the primal-dual
optimization perspective. An asynchronous update strategy is applied in ASO-Fed to tackle
the heterogeneous issue.

All the above solutions are proposed under the assumption that local data have been
annotated with the uniform rule, i.e., local data could be used to train the local and global
models directly. However, data are often unlabeled after being generated in practice,
especially in online scenarios. Motivated by the requirement to handle the challenges
of data annotation and heterogeneous data together, we design an accelerated federated

338



Mathematics 2023, 11, 1972

optimization framework, semi-FAL, for unlabeled data in the online network. In our
semi-FAL, a server is expected to supply the pre-trained model and the global gradient
estimation for clients. For this target, a task-driven federated network building architecture
is designed to find a node with sufficient computing and data resources as the server
from the global perspective. Focus on the local of each node in the federated network, the
data-driven collaborative annotation and computation architecture is designed to address
the data annotation and non-IID data issues. Then, we propose two-phase model training
operations under the two designed architectures, respectively. In phase I, we strategically
match the data of network nodes with the task, choosing an optimal node with task-related
historical data and plenty of computing resources as the server and other nodes possessing
task-related data to form a client set. Accordingly, a basic network of semi-FAL consists
of a server node and several client nodes. In phase II, within the basic network formed in
phase I, the server would provide a pre-trained model to help select crucial instances and
clients would annotate these instances with the unified standard. In addition, an unbiased
estimation of the global gradient would be computed and delivered by the server to clients
to reduce the gradient variance caused by non-IID data.

3. Framework Design of Semi-Federated Active Learning

3.1. Framework Overview and Design Requirements

In the past decade, the scale of the network (e.g., IoT) has increased dramatically,
resulting in massive network data. As the essential part of understanding, managing and
operating modern wide-area, data-center and cellular networks [26], most of these data
would be unlabeled and non-IID. To realize the effective use of these data, we design a
novel FL framework to apply these unlabeled and non-IID data to train a model with fast
convergence and high accuracy, as illustrated in Figure 1. Specifically, the framework could
be divided into two phases: federated network building and collaborative learning. These
two phases have their focus. The former focuses on selecting suitable nodes from the global
network to construct the federated network. At the same time, the significant points of
the latter are the operations on each node to realize the collaborative data annotation and
model training with unlabeled non-IID data. In the design, some basic requirements need
to be followed.

Figure 1. Semi-Federated Active Learning Framework: (a) task-driven servers and client selection;
(b) server operation; (c) client operation.

• Data Privacy Protection. As the most critical point in data development and utiliza-
tion, data privacy protection is the most important in our framework. To eliminate the
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risk of privacy leakage, the raw data of each network node would be only processed
and used locally. Moreover, the model and the gradient transmitted between the
server and the client would be encrypted.

• Robustness for different data and models. The models and data used to complete
the task are different in different scenarios. Thus, the framework we designed needs
to be able to deal with different datasets and models in various scenarios.

3.2. Global Perspective: Task-Driven Federated Network Building

Instead of randomly selecting a group of network nodes to build a federated network,
we adopt a task-driven server and client selection strategy. Generally speaking, by releasing
the task in the global network, we could receive the response from the target group where
various network nodes would be contained, such as mobile phones, smart cars, enterprises,
etc., as illustrated in Figure 1a. As the base of our semi-FAL, we would like to select a
node having sufficiently idle computing resources and task-related labeled data to be the
server of the federated network. Nodes with good infrastructures, such as enterprises, base
stations and edge servers, usually have more computing resources than those primarily
used to provide applications. In addition, data are produced constantly. For historical data,
it is made to be a public dataset, deleted or stored in some nodes. For example, historical
data that are related to the business would be accessible and found in an enterprise node.
Thus, an optimal node with plenty of computing resources and historical data could be
found among the target group as the server.

Note that the data stored in the server are expected to be labeled and IID so that
the model pre-trained by the server could distinguish each class of data and the global
gradient estimated by the server could be approximately unbiased. The IID data could
be constructed via data augmentation [27], such as flipping, translation, rotation, etc. In
some extreme scenarios, it may be hard to find a node with all data classes to construct
an IID dataset. Multiple nodes could be selected as a server group to pre-train a model
federatively. In addition, the performance of the pre-trained model would be limited since
the data used are just historical data; that is, the pre-training model can only be used as
a coarse-grained model to correctly identify the part of unlabeled data. In the following
section, we disclose more details on how to use the data in the server to help the data
annotation locally and to improve the performance of the final model. In this article, we
name the task-driven server and client selection mechanism phase I operation toward the
semi-FAL.

3.3. Local Perspective: Data-Driven Collaborative Annotation and Computation

As mentioned before, the server of our federated network would not just play a
role in delivering, collecting and aggregating models but also supply some necessary
computation with the data in the server to address the challenges of local unlabeled non-
IID data. To reduce the cost of data annotation and improve the performance of the model
effectively, we further design the collaborative annotation and computation architecture
for FL. Specifically, a data-driven collaborative annotation and computation architecture is
proposed to realize the unified annotation of local data and reduce the impact of non-IID
data on model training. Note that data annotation and model training are interleaved so
that this architecture would still be effective in online network settings.

The architecture and detailed design of a data annotation and training system in the
server and the client are shown in Figure 1b and Figure 1c, respectively. The design includes
two major components: the server and the client.

The Server: As the core of the federated network, the server would continue to under-
take the same basic tasks as the server in general FL: global model design and initialization,
global model broadcast, local model collection and local model aggregation. However,
unlike the server in general FL, the server in our design possesses an IID dataset with
labeled data. Thus, the initial model could be trained with this dataset before broadcasting
the global model to the client. In addition, an unbiased estimation of the gradient for the
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current global model would be computed with the dataset. Then, this gradient would be
delivered with the global model to the client together in each round. This global gradient
would play a significant role in reducing the gradient variance caused by non-IID data.

The Client: The client nodes are usually the terminal devices that are closest to the
users. The data of the client are often raw and produced constantly. To make use of the
data, it is necessary to annotate them first. However, manual annotation is costly; that is, it
would be unreasonable to annotate all the new data generated in each round manually. In
addition, although the cost of automatic annotation via a trained model is low, the effect
of annotation would be inferior. Thus, we draw on the idea of active learning. In each
round of training, the global model is first used to test the local data and then the instances
with wrong test results would be screened out to be annotated manually. After local data
annotation, local training is ready to be executed.

With the support of the above data annotation and model training mechanism, FL
could be executed with unlabeled and non-IID data. More details on the computing of semi-
FAL are disclosed below. Specifically, we name the data-driven collaboration annotation
and computation mechanism phase II operation toward the semi-FAL in this article.

4. Operations of Semi-Federated Active Learning

In this section, we first introduce relevant entities involved in the designed architec-
tures and then present details about the aforementioned two key phases in achieving the
semi-FAL.

4.1. Involved Entities

Cloud Server: A cloud server is selected to complete the overall coordination of the
framework. As illustrated in Figure 1, the cloud server is mainly used to choose suitable
nodes from the global network to build the federated network so that the training task can
be completed. Additionally, the construction of the federated network would directly affect
the total effect of the task with the network data.

Computation-intensive Nodes: The computation-intensive nodes mainly denote net-
work nodes with a well constructed computing environment, such as base stations, edge
servers and enterprises. In addition to sufficient computing resources, some historical data
would be stored in these nodes. The above conditions fit our requirements for the server in
our semi-FAL. Thus, these nodes are the primary candidates for the server in our federated
network. The filtering of these nodes could be done through the feedback of nodes after
releasing the task.

Terminal devices: Terminal devices are the main force of data generation and usually
play the role of the client in a federated network. They are closest to users and the real
environment of various applications. The model trained via FL or our semi-FAL would
finally be deployed in terminal devices to supply the intelligent services. Thus, these nodes
often have the most relevant data for target model training. However, data processing
and model training are both energy-intensive processes and the terminal device, especially
mobile devices, tends to have limited battery storage. The quality of user experience (QoE)
provided by the terminal device is determined by the service response and battery life of
the device. Thus, to ensure a good QoE, the computations performed locally are preferably
lightweight and fast so as not to occupy and consume too many computing and battery
resources. A meaningful way to reduce the cost of model training with unlabeled data is
that only the critical instances are selected to be annotated and used to train the local model.

4.2. Phase I: Establishment of Federated Network

Nodes Sets: To build a federated network for the current task, the first step is to
identify all nodes that are willing and able to participate in the task. According to the actual
conditions of these nodes and the requirements for the server in our semi-FAL, they could
be divided into two sets: the server set dominated by computation-intensive nodes and the
client set dominated by terminal devices. More factors, such as the connectivity with the
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other nodes, the cost to set this node as the server, etc., need to be considered for the server
node. For the client node, whether it could provide the manual annotation of the data also
needs to be considered.

Federated Network: A general federated network consists of a server and several
clients. Given the above two sets of nodes for building the federated network, an optimal
server node is expected to be selected to connect to as many client nodes as possible so
that more network data can be used federatively to optimize the global model. Thus, the
optimal server node would be selected from the server set through careful consideration
of task-related data reserves, idle computing resources, communication resources and
connectivity in the network.

Further Considerations: We also consider some practical constraints in building the
federated network. First, historical data are rare in some emerging fields, so it is hard to
find a node with plenty of computing and data resources as a server. At this point, we
could find a node in the client set via some incentives to serve as a server. Second, the scale
of the client is so large that a server is not enough to sustain the network. Our framework
still works when multiple servers are involved in building the federated network.

4.3. Phase II: Collaborative Data Annotation and Model Training

As we make use of the historical data for the model pre-training, the discrimination
accuracy of the model to fresh unlabeled data cannot be high. Therefore, in phase II,
we leverage the local data to federatively optimize the global model via iterating data
annotation, local training and global aggregation operations, thus further improving the
inference accuracy of the model.

Data Annotation (Minimize the Annotation Cost): In each client, to reduce the man-
ual annotation cost as much as possible, we need to find the critical instances for local
training in each round. As illustrated in Figure 2a, the global model accepted by the client
would be used to annotate local unlabeled data automatically at first. This process is equal
to the model test; that is, input the unlabeled instance into the model and then output
the label of the instance. After outputting the label of all local data, the owner of these
data would determine whether these labels are correct. In this process, the data of the
same label would be presented to the owner in the form of a batch so that the mislabeled
data can be easily detected. These mislabeled instances are the critical instances in this
round of training. Therefore, these instances would be selected and annotated manually
as shown in Lines 5–6 of Algorithm 1. Furthermore, this process could be replaced by
some intelligent methods, such as setting the probability thresholds of model output for a
different label. Note that this would lead to the worse non-IID issue where only the key
instances of each client are used to execute the local training. Thus, we design a gradient
correction mechanism to reduce the negative impact of non-IID data.

Model Training (Reduce the Impact of Non-IID Data): The essence of model training
is to continuously optimize model parameters to adapt to training instances. Thus, different
distributed data would correspond to different optimization directions. In other words, non-IID
data would cause gradient variance, which would make the model deviate from the global
optimal. The essence of reducing the negative impact of non-IID data is to eliminate the gradient
variance. Therefore, we design a novel gradient descent strategy as illustrated in Figure 2b.
After completing the data annotation, for an arbitrary node j, a local gradient estimation g∗j
would be computed with the key instances and the global model. In each epoch of local training,
the gradient descent could be formulated as the following:

wj,r+1 ← wj,r − ηt(∇ f (xr, wj,r)− g∗j + g̃)

where wj,r+1 denotes the local model in epoch r + 1, ηt is the learning rate, f j denotes the
local loss function, xr denotes the data instance and g̃ is the global gradient estimation.
Intuitively, we use the global gradient estimation g̃ calculated in the server as the main
body and the difference between the real, local gradient and the local gradient estimation
(∇ f (xr, wj,r)− g∗j ) as the increment to update the local model as illustrated in Figure 2c.
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The track in yellow is on behalf of the training process of local model wj,r toward wj,r+1 in
the general scenario. The grey line close to it denotes the local gradient estimation g∗j . The
red arrows between the two tracks are key updates for the local model. The dotted line in
grey represents the global gradient estimation g̃. The dotted line in blue is the direction
of using the global gradient. The semi-FAL tries to add the difference (red arrows) to the
global gradient to relieve the gradient variance and preserve the update feature of each
client. Therefore, the local model wj,r is conducted to be wj,r+1. In this way, the model in
each client node would be optimized in a uniform direction so that no gradient variance
would be generated. The update rule of global gradient g̃ and other calculation details are
given in Algorithm 1.

Algorithm 1 Semi-FAL: Semi-Federated Active Learning with Unlabeled Data

1: Input learning rate ηt for clients, learning rate αt for server, model w̃ and global gradient
g̃

2: for each iteration t = 1, 2, . . . , T do
3: St ← (sample a set of devices randomly)
4: for each device j ∈ St in parallel do
5: Yj = w̃(Xj)
6: x∗j ← (select the fault instances manually via Yj)
7: Picks x∗j and computes the local gradient g∗j
8: g∗j = ∇ f (x∗j , w̃)

9: wj,1 = w̃
10: for each local round r = 1, 2, . . . , R do
11: wj,r+1 ← wj,r − ηt(∇ f (xr, wj,r)− g∗j + g̃)
12: end for
13: Δwj = wj,R − w̃
14: end for
15: server aggregation:
16: w̃ ← w̃ + αt

1
|St | ∑j∈St Δwj

17: g̃ = g̃ + 1
|St | ∑j∈St g∗j

18: end for

Figure 2. Detailed design of the collaborative data annotation and model training architecture in
each client. (a) The annotation process of semi-FAL. The mislabeled data would be picked and
labeled manually after being labeled by the model. (b) The model training process of semi-FAL. The
semi-FAL uses gradient correction to direct the local gradient. (c) The update direction of local model.

Further Considerations: We further consider some practical considerations during the
data annotation and the model training operations. Even if the semi-FAL could accelerate
the process that experts label the new data, it still requires the expert to browse all labeled
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results generated via the model. Moreover, the framework needs to exchange information
between the server node and client nodes. This might arouse the risk of being attacked.
Security assurance and communication efficiency are essential to the implementation of FL
in reality. To address these issues, we propose some ideas.

First, to ensure that each round of training could be completed quickly, the maximum
amount of data to be annotated in each client should be determined by the local computing
power. Second, as the model and the global gradient are delivered to the client, the cost of
communication in our framework would be higher. Thus, the compression of the global
model and the global gradient should be executed via lossless compression techniques,
such as Sparse Ternary Compression [28] and Sparse Dithering [29], before broadcast. Third,
due to the data of the server being historical data, as new data are generated, the global
gradients calculated using the data of the server would be biased. Therefore, we could
consider computing an unbiased global gradient estimation in a client node with IID data.

5. A Case Study

5.1. Experimental Setting

Scenario: In this case study, we consider completing online image classification tasks
with a federated network consisting of 1 server and 100 clients. A small IID dataset is
pre-deployed in the server to simulate the historical data and this dataset is labeled. For the
client, we control the increase of the local data in each round and these data are unlabeled.
To make the experiment more realistic, the data added to each client node in each round
would match the distribution of the local historical data.

Datasets: We choose two classical image classification datasets, MNIST (http://yann.
lecun.com/exdb/mnist/, accessed on 26 August 2022) and Fashion-MNIST (https://github.
com/zalandoresearch/fashion-mnist, accessed on 26 August 2022), to evaluate the perfor-
mance of our semi-FAL. MNIST is a handwritten digit dataset containing 60,000 train-
ing instances and 10,000 test instances. The Fashion-MNIST dataset consists of 60,000
28 × 28 greyscale images in 10 classes, with 6000 images per class. To investigate the ro-
bustness of our proposed framework for non-IID data, two data setting schemes are given: (1)
IID setting: an equal amount of data is allocated to each client randomly. (2) Non-IID setting:
to simulate non-IID data, the dataset is always divided and distributed to clients manually. In
our design, the data are sorted via labels and then two classes of data are assigned to each
client. Note that, to simulate the sequential data in an online network, we control the local
data of each client increasing constantly.

Model: We design two models, logistic regression (LR) for MNIST and convolutional
neural network (CNN) for Fashion-MNIST, in our experiments. Specifically, the CNN is
designed with two 5 × 5 convolution layers (the first with 32 channels, the second with 64,
each followed with 2 × 2 max pooling), a fully connected layer with 512 units and ReLu
activation and a final softmax output layer (1,663,370 total parameters).

Benchmarks: We compare the performance of our semi-FAL with two typical FL
frameworks, FedAvg [2] and SCAFFOLD (Stochastic Controlled Averaging algorithm) [17].
To ensure the fairness of the comparison, the pre-trained model is set as the initial model
in each setting. Specifically, the model test accuracy from the following four settings
is compared:

• Semi-FAL(UD): The model is trained with unlabeled data (UD) and local training is
executed with the key instances.

• Semi-FAL(LD): The model is trained with labeled data (LD) and local training is
executed with all local data.

• FedAvg: The model is trained with all local labeled data and local models are directly
aggregated via weighted average without gradient correction.

• SCAFFOLD: The model is trained with all locally labeled data through SCAFFOLD. It
uses a control variance to correct the ’client-drift’ in its local updates.
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5.2. Results and Analysis

Semi-FAL yields higher accuracy with benchmarks. Figure 3 summarizes the per-
formance of semi-FAL compared with benchmarks. Figure 3a shows the result of applying
different FL models using MNIST, LR. The four models using semi-FAL, no matter whether
it is non-IID or IID and unlabeled data or labeled data, could obtain the highest accuracy
after 100 iterations. Other contrast methods behave much worse than semi-FAL. The basic
model FedAvg using non-IID data achieves the lowest accuracy. This means simply taking
the average of the gradient generated from each client node might be inefficient when
data are non-IID; more iterations should occur to increase the accuracy. Figure 3b is the
result of using Fashion-MNIST, CNN also through 100 iterations. Under this scenario, all
of the models behave relevantly unstably. Semi-FAL still obtains the best performance.
Figure 3a,b both show that under the same model and dataset, the performance of the
model trained via semi-FAL with unlabeled non-IID data is close to that of the model
trained with unlabeled IID data. This strongly proves the effectiveness of the gradient
correction mechanism in overcoming non-IID data issues.ming non IID data issues.

(a) MNIST, LR (b) Fashion-MNIST, CNN

Figure 3. The result of the case study: test accuracy vs. iteration rounds for the MNIST, LR and
FEMNIST, CNN in IID and non-IID data settings.

Semi-FAL achieves faster convergence. In the MNIST, LR scenario, the semi-FAL(UD)
using IID data could obtain high accuracy over 0.8 within 20 iterations but FedAvg and
SCAFFOLD are unable to obtain the proximate performance even beyond 100 iterations. In
the Fashion-MNIST, CNN scenario, the dotted lines show other methods need many more
iterations than semi-FAL if they want to achieve accuracy at the same level. In addition, as
is shown in the graph, the semi-FAL even performs better in unlabeled data than in labeled
data scenarios. That is because semi-FAL could achieve faster convergence and high test
accuracy with unlabeled data than with labeled data. The difference between these two
settings is that a critical instance selection process would be executed before local training
with unlabeled data and only the critical instances would be annotated and used to train
the local model, while all labeled data would be used to train the model directly in the
setting of labeled data. This scheme can select the most helpful instances for current global
model training. In fact, this scheme can also be used in labeled data settings to accelerate
the convergence of the model.

The performance of semi-FAL is robust to the model and data. We apply two dif-
ferent models, LR and CNN, and two different datasets, MNIST and Fashion-MNIST, to
execute the empirical studies. The results in Figure 3 demonstrate that semi-FAL could
achieve the best performance among all benchmarks under different model and data condi-
tions. Note that, in all scenarios of our case study, the local data of each node are added
constantly to simulate the online situation. Our semi-FAL is also robust to the online
network data. However, it is shown that when applying MNIST, LR semi-FAL could
achieve much higher accuracy than applying Fashion-MNIST, CNN after 100 iterations.
This is common for all frameworks; the possible reason might be that the efficiency of
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the CNN is impacted by federated learning and needs more iterations to obtain higher
accuracy. The results inspire us to do more research on applying semi-FAL to different
models and datasets.

6. Discussion

In the experiments, we compared semi-FAL with two typical FL frameworks. The results
show the efficiency of semi-FAL. There are seldom other methods that struggle to combine
active learning and FL. Ref. [30] assumes the participating users are willing to share requested
data between neighbor users. This puts emphasis on using active learning to select critical data
that helps achieve balanced data distribution. However, if the requested data are sensitive, it
would violate the principle of FL. Ref. [31] applies federated active learning on medical images.
However, the goal of the work is to accelerate the training phase of federated learning but it
ignores the impact of non-IID data. Furthermore, it only uses the extant active learning method
and federated learning method, while semi-FAL designs a new method to solve the gradient
variance. Ref. [32] also attaches importance to the application of federated active learning rather
than the improvement of the method. Although ref. [33] touches upon the phenomenon of
non-IID data, the authors do not solve it explicitly. Our semi-FAL is a universal framework that
could be treated as the complement of these methods.

Future work. There are some possible constraints as discussed in Sections 4.2 and 4.3;
we would try to solve them in the next step. In addition, We use typical datasets and
models in the experiments while there are lots of new investigations that use deep learning
methods to process complex images, e.g., [34]. We could do further research concerning
applying semi-FAL on various different models and datasets to check its consistent effi-
ciency. Through our investigation, we found that federal learning is applied to different
scenarios: intrusion detection [33], network traffic prediction [4,35], etc. Our semi-FAL
shows its superiority on the benchmarks, but its performance in the real environment is
still unknown. The gap between reality and experiment is considerable. The predictable
challenges derive from the inherent characteristics of FL and we should make further
improvements in communication efficiency. In the future, we would use the proposed
framework to solve practical problems in reality and test its robustness.

7. Conclusions

In this article, we propose the semi-federated active learning framework to realize
accelerated federated optimization for online network data. It is an FL framework designed
for training with unlabeled network data. The global model annotates the unlabeled local
data automatically. The mislabeled data are viewed as critical instances and they are used
to train the local model. The server would estimate the global gradient and use it to correct
the local gradient to reduce the negative impact of non-IID data. Results from a case study
demonstrate that semi-FAL is effective in dealing with the data annotation and non-IID
data issues to realize the fast convergence and high accuracy of model training.
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Abstract: Accurate measurement of micro-climates that include temperature and relative humidity
is the bedrock of the control and management of plant life in protected cultivation systems. Hence,
the use of a large number of sensors distributed within the greenhouse or mobile sensors that can be
moved from one location to another has been proposed, which are both capital and labor-intensive.
On the contrary, accurate measurement of micro-climates can be achieved through the identification
of the optimal number of sensors and their optimal locations, whose measurements are representative
of the micro-climate in the entire greenhouse. However, given the number of sensors, their optimal
locations are proven to vary from time to time as the outdoor weather conditions change. Therefore,
regularly shifting the sensors to their optimal locations with the change in outdoor conditions is cost-
intensive and may not be appropriate. In this paper, a framework based on the dense neural network
(DNN) is proposed to predict the measurements (temperature and humidity) corresponding to the
optimal sensor locations, which vary relative to the outdoor weather, using the measurements from
sensors whose locations are fixed. The employed framework demonstrates a very high correlation
between the true and predicted values with an average coefficient value of 0.91 and 0.85 for both
temperature and humidity, respectively. In other words, through a combination of the optimal
number of fixed sensors and DNN architecture that performs multi-channel regression, we estimate
the micro-climate of the greenhouse.

Keywords: greenhouse; temperature; relative humidity; optimal sensor locations; multi-channel
regression; dense neural network

MSC: 68T20

1. Introduction

Agricultural products are crucial to the sustenance of humans and livestock. However,
their production is faced with several challenges such as extreme weather conditions,
soil erosion, pests, and disease outbreaks, which all have far-reaching effects on crop
productivity and growth rate [1,2]. Protected cultivation systems such as greenhouses
offer optimal production of agricultural products throughout the year by the appropriate
control of micro- and macro-environments suitable for plant growth [3]. Furthermore,
protected cultivation systems result in higher income compared to open-field cultivation as
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a result of their higher returns per unit area [4]. Hence, their adoption is increasing across
continents [5]. Despite these benefits, the operation of greenhouses is non-linear in nature
due to changing atmospheric conditions [6] and therefore requires intricate monitoring
and control to obtain optimal yield. In other words, maintaining suitable temperature,
which directly affects the humidity, is essential in greenhouse environmental control as
these affect crop growth as well as quality and quantity [7–9]. Specifically, while effective
temperature control improves plant growth and minimizes the energy consumed by the
system, an appropriate relative humidity range is required to prevent fungal infection and
control transpiration [10].

To facilitate monitoring and control in protected cultivation systems, the integration
of different advanced sensing technologies becomes eminent [4,11,12]. Basically, sensors
installed in greenhouses range from those used to monitor and control micro-climatic
conditions such as temperature and relative humidity to soil-related parameters such as
moisture, PH, and several others, which are vital for maintaining optimal conditions for
favorable crop productivity and growth. In terms of micro-climates, previous studies have
shown that monitoring and controlling the temperature and relative humidity within a
greenhouse is complex and challenging due to drastic variations in daily and seasonal
atmospheric conditions [13].

Generally, sensors are installed arbitrarily in protected systems based on factors such
as grower resources, the size of the facility, and technical know-how [14]. Furthermore,
in conventional settings, as many sensors as possible are usually installed to facilitate
the necessary measurements. However, the use of multiple randomly/inappropriately
placed sensors fails to provide measurements that are true estimates of greenhouse micro-
climates. In addition, employing a large number of sensors results in large quantities of
data that require efficient data management. In other words, the quality of information
and consequently the estimation accuracy of micro-climates depend heavily on the number
of sensors and their locations/placements. Therefore, optimizing the number of sensors
and their locations, though a challenging task, is crucial as it forms the basis for accurate
measurement of micro-climates and consequently optimal control of the cultivation system.
Additionally, it reduces the overall operating cost of protected cultivation systems.

In the literature, methods have been proposed based on approximate models of partial
differential equations (PDEs), such as the error covariance matrix of the Kalman filter
or the finite difference method [15,16]. However, these methods were applied without
any general systematic procedure to linear systems modeled based on a small number
of sensors. Meanwhile, it is important to know that distributed processes, such as in
protected cultivation systems, are intrinsically non-linear with infinite dimensions. There-
fore, such methods are not appropriate for highly non-linear protected cultivation systems
that feature high-dimensional representations. Consequently, different methods, such as
genetic algorithms [17,18], Harris hawks optimization [19], the Fisher information ma-
trix [20], the exponential-time exact algorithm [21], the system reliability criterion [22], and
Bayesian optimization [23], have been proposed for optimal sensor placement in different
application domains.

In terms of optimal sensor placement in protected cultivation systems (greenhouses),
Yeon Lee et al. [14] proposed a combination of an error-based and entropy-based approach
for the optimal location of temperature sensors. In the work, based on the reference tem-
perature obtained by averaging the temperature data obtained from all the measurement
locations, sensor locations with measurements statistically close to reference values were
selected. Furthermore, the entropy method was used to realize locations that are greatly
influenced by external environmental conditions. Based on these two methods, optimal
sensor locations that provide representative data of the entire greenhouse condition, as well
as understanding regions with high variations in temperature, were realized. In order to
maximize the coverage area (a non-occlusion coverage scheme) in a vegetable-cultivating
greenhouse, Wu et al. [24] proposed a hierarchical cooperative particle swarm optimiza-
tion algorithm for directional sensor placement. Specifically, the decision variables were
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modeled in terms of the global effective coverage of each sensor and consequently the
orientation angles of each sensor. The model demonstrated the capability to avoid occlu-
sion between covered objects and also improved sensor utilization in general. However,
the limitation of the aforementioned works is that their investigations were performed for
a limited period of time and do not capture all the different planting seasons as well as
different weather conditions. Recently, Uyeh et al. [25] proposed a reinforcement learning
(RL)-based approach for optimal sensor location in greenhouses using a robust dataset
that covers different planting seasons. From the analysis, it was evident that the optimal
locations for temperature and relative humidity are different. Specifically, the RL-based
model was able to rank the sensor locations based on their importance in estimating the
greenhouse micro-climates, for each temperature and relative humidity. However, it was
also reported that the ranking of sensor locations for effective measurement of greenhouse
micro-climates varies during the different months of the year with the change in the external
weather conditions.

Although the assertion that the optimal sensor locations change from month to month
is intuitive and supported by a number of recent literature [26,27], the implication is
that it would be required to move the sensors every month throughout the growing
seasons or to have a huge number of sensors within the cultivation system. This need
to relocate the sensors every month is tedious, expensive, and not ideal for a typical
grower. Hence in this paper, based on the data collected from a greenhouse used to
cultivate strawberries in [25], a framework based on the multi-channeled dense neural
network (DNN) is proposed to be used to predict temperature and relative humidity
values corresponding to the optimal sensor locations of each month without the need of
moving the sensor from one location to another. Specifically, temperature and relative
humidity values measured from the fixed locations (say the optimal locations of February)
are used to predict the temperature and relative humidity values corresponding to the
optimal locations of the other months referred to as target months (March, April, May,
June, July, and October). The prediction of the temperature and relative humidity values
corresponding to the optimal locations corresponding to the target month will help better
estimate the micro-climates of the greenhouse. The effectiveness of the proposed model
to predict temperature and relative humidity is demonstrated in terms of the resulting
RMSE values. Furthermore, it is shown that the true and predicted sensor values are
highly correlated based on Pearson’s correlation coefficient. Overall the results obtained
show that the proposed framework is efficient and applicable in predicting micro-climates
within protected cultivation systems and also comes with the advantage of cost reduction.In
addition, as the prediction is performed for each month using the same fixed locations,
the proposed framework alleviates the issue related to shifting of the sensors with the
change in the external weather conditions. In other words, the novel framework proposed
in this paper becomes an initiative basis in the research community for modeling dynamic
optimal sensor placement in cultivation systems based on fixed sensors. Finally, it is
important to note that the choice of the multi-channel DNN employed in this work is
motivated by its simplicity in terms of implementation and deployment since it is well
suited to several low-precision hardware for deep learning compared to other variants.

The rest of this paper is organized as follows: In Section 2, a review of related works
is presented. Section 3 gives a brief description of the dataset and the associated pre-
processing stages. In Section 4, the proposed framework and the associated model are
presented. Section 5 presented the results and discussions, and finally, in Section 6 conclu-
sions and future works are highlighted.

2. Review of Related Works

The prediction of micro-climates in protected cultivation systems under different
setups has been studied in the literature [9,28–30]. The prediction models often employed
range from very basic deterministic models [28] to more advanced learning networks such
as ANN [9], multi-layer perceptron neural network (MLP-NN) [29], and extreme learning
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machine (ELM) [30]. Although these works propose the use of learning or determinis-
tic models for micro-climate predictions, most of them applied these models to achieve
different goals. For example, the deterministic model proposed in [28] was aimed at pre-
dicting crop temperature from measured air temperature, air density, and other related
sensor-measured environmental conditions. The authors argued that rather than the air
temperature, the crop temperature is responsible for crop growth and development. In [31],
a dynamic model based on energy and mass transport processes, such as the mechanism of
conduction, convection, radiation, etc., was employed to realize a prediction model capable
of predicting the temperature of air in plant communities. Although the use of such models
is very dependent on the structure of the greenhouse model, the authors claimed that
the proposed model can be extended for a general greenhouse micro-climate prediction
model. In terms of the use of learning networks, Liu et al. [30] proposed the use of ELM
for predicting temperature and relative humidity from historical samples of indoor tem-
perature and humidity. In order words, the learning model is aimed at predicting current
micro-climates based on previously sampled or measured micro-climates. This is beneficial
in situations where the cost of continually measuring micro-climates in terms of energy and
communication protocols is high and needs to be minimized. In [9,29], where MLP-NN
and ANN were employed, respectively, the aim of the models was to predict indoor or
internal micro-climates based on measured external micro-climates such as temperature,
relative humidity, wind speed, etc. Although the aforementioned works have considered
the prediction of micro-climates in the greenhouse setting, the aims of their predictions
are different from ours, where we predict the measurements of micro-climates at varying
optimal sensor locations using input data from fixed-placed sensors.

Generally, it can be observed that most of the aforementioned models are relatively
not computationally expensive. This is because the choice of model or learning networks
for such applications is usually motivated by the nature of the underlying data (real-valued
vectors) and the need for quick prediction or low inference time. In a similar fashion, we
employ a simple multi-channel learning model that extracts global features from all the
input data, which are consequently fed into the channels’ response for extracting local
features corresponding to micro-climate measurements from different sensor locations.

3. Data Description and Pre-Processing

The dataset [25] employed in the current work contains sensor readings corresponding
to internal temperature and relative humidity from 56 two-in-one sensors distributed
within a greenhouse used to cultivate strawberries in Daegu, South Korea. The readings
were collected for seven months (February, March, April, May, June, July and October).
In [25], the same dataset was used to rank the sensor locations corresponding to each of the
seven months. A more detailed description of the protected cultivation facility in terms of
size and materials from which the data were collected, the type of sensors used, and how
the 56 sensors were distributed within the greenhouse are provided in [25].

In Figure 1, the overall layout of the sensors in the considered greenhouse is provided.
In addition, the sensor locations corresponding to temperature (T) and relative humidity
(RH) corresponding to each month are ranked based on their ability to estimate the micro-
climates of the greenhouse [25]. Due to space constraints, we only present the top 10 ranked
sensor locations for each month in Table 1. A detailed ranking of the 56 sensors for each
month can be found in [25].

In the current work, we assume that N1 sensors are fixed at N1 top-ranked locations
(referred to as optimal locations) corresponding to the month of February, as shown in
Table 1. It should be noted that the optimal locations corresponding to temperature
and relative humidity are different. Therefore, the fixed sensor locations for measuring
temperature and relative humidity would be different. By observing the measurements
obtained at these fixed locations, the goal is to develop a model that can predict the
measurements corresponding to the N2 optimal locations of the target month (say March).
By doing so, the micro-climates of the greenhouse in the month of March, the target month,
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is accurately estimated without shifting the locations of the sensors. In other words, one
prediction model is developed corresponding to each target month (March, April, May,
June, July, and October). Therefore, the prediction accuracy of the models determines the
precision of micro-climates estimation.

Table 1. Locations of 10 top-ranked sensors corresponding to different months for temperature (T)
and relative humidity (RH).

Rank

Optimal Locations

February March April May June July October

T RH T RH T RH T RH T RH T RH T RH

1 E3 B4 G1 D6 A4 E4 D1 B2 E7 E2 B4 D3 A4 E4
2 F7 F5 C7 G6 E7 D2 B2 A3 C7 E6 D5 B6 E7 D2
3 D1 A1 B6 C4 F7 E3 F5 F6 F6 B2 G7 C3 F7 E3
4 D7 C1 A3 A2 A1 A2 C1 F7 D7 F7 G6 D6 A1 A2
5 E2 C5 D1 D3 E6 E6 D7 G6 G1 H3 E1 D7 E6 E6
6 C4 F2 E2 E6 D2 E5 A7 E3 E1 G6 E7 F5 D2 E5
7 H2 F3 D2 E1 F6 A4 C5 B4 G7 H1 D7 A3 F6 A4
8 E7 H5 B3 F4 G7 D3 F2 H1 B2 B1 G1 C2 G7 D3
9 G1 E2 C1 B4 G6 A5 F3 B1 A2 A6 F7 F4 G6 A5
10 E1 F1 E1 A5 D6 F2 A3 D7 E3 E4 A1 G3 D6 F2

Figure 1. Layout of the 56 two-in-one sensors within the greenhouse: (a) Front view; (b) Side view.

Since the model is expected to predict the values corresponding to the sensors at
the N2 optimal locations in the target months based on measurements from February, it
is important to ensure consistency in comparison across the various months. Therefore,
considering that the number of days in February is less, the length of the entire data samples
is limited to those available in the month of February. Furthermore, the rows with missing
sensor values were removed across all corresponding input and target months.

In terms of implementing the learning networks, the datasets were divided into train-
ing, validation, and test sets. The training and test set consists of 80 percent and 20 percent
of the entire data, respectively, and 20 percent of the training data were used as the vali-
dation set. In order words, the dataset was divided, with 64%, 16%, and 20% of the entire
dataset used for training, validation, and testing, respectively. Table 2 provides a summary
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of the length of the training, test, and validation dataset. Furthermore, to ensure a faster
convergence of the model, normalization of the input data based on the mean and standard
deviation was performed. In the context of predicting sensor values, the input variable x is
a N1-dimensional vector comprising readings from N1 temperature or relative humidity
sensors for each case. The output y are N2 real values corresponding to temperature or
relative humidity values for the target months.

Table 2. Number of instances in train, validation, and test data.

Predicted Month
Temperature Data Humidity Data

Train Test Validate Train Test Validate

March 16,711 5223 4178 16,252 5080 4064
April 16,283 5089 4071 16,516 5162 4130
May 16,639 5200 4160 16,343 5108 4086
June 15,264 4771 3816 15,270 4772 3818
July 14,954 4674 3739 15,160 4738 3791
October 15,549 4860 3888 16,031 5010 4008

4. Methodology

4.1. Dense Neural Network (DNN)-Based Regression Model

Considering that the output is an N2-dimensional vector where each element repre-
sents the sensor values corresponding to each of the N2 optimal locations for the target
month, a multi-channel DNN regression model is employed. In [32], a generalized ap-
proach to formalize any NN-based model can be found. In Figure 2, a generalized overview
of the DNN architecture, where N1 and N2 are corresponding to the number of sensor
locations considered at the input and output, respectively, is presented. Based on the
target month, say March, the input to the networks is the temperature or relative humidity
measurements taken at the N1 optimal locations of February, which are considered as
the fixed locations throughout the whole study. The input is passed through a series of
4 dense layers, namely, dense_0, dense_1 dense_2, and dense_3, as shown in Figure 2,
which extract global features from all the N1 input sensor values. These global features are
then fed into N2 different dense channels, the output of which represents the predicted
sensor values corresponding to the N2 optimal locations of the target month, March. Each
of these N2 dense channels helps extract the local features corresponding to each of the
sensor locations. These dense channels consist of a single dense layer of 64 units with Relu
activation functions and, consequently, a single-unit, dense layer as the output layer. Using
the N1 fixed locations, the learning model corresponding to each target month is trained
for 200 epochs with a batch size of 64. The predicted values based on the proposed model
are favorably compared with the real values corresponding to the target month in terms of
the root mean square error (RMSE) and correlation coefficients.

4.2. Evaluation Metrics

To evaluate the proposed framework, we used two metrics, namely, root mean -squared
error (RMSE) and Pearson’s correlation coefficient (R), as expressed in Equations (1) and (2),
respectively.

RMSE =

√√√√ 1
N

N

∑
j=1

(et)
2 (1)

where N is the number of test samples and et is the error between the true and predicted
sensor values.

R =
∑(xi − x̄)(yi − ȳ)√
∑(xi − x̄)2(yi − ȳ)2

(2)

where xi is the ith true sensor value, x̄ is the mean of the true sensor values, yi is the ith
predicted sensor value, and ȳ is the mean of the predicted sensor values.
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Figure 2. Architecture of proposed deep-neural-network-based multi-channel regression model for
efficient micro-climate prediction using fixed sensor locations.

In addition, to evaluate the efficiency of the proposed framework, we provide RMSE
values between the measured values (temperature and relative humidity) from the fixed
sensor locations and the true measurements corresponding to the N2 optimal sensors of
the target month. In other words, we present the RMSE values, assuming that there exists
no prediction model, as the one proposed in the current work. In addition, we present the
percentage reduction in the RMSE values by comparing the RMSE values with and without
the proposed DNN model.

5. Results and Discussion

The proposed model in this work was implemented and evaluated using Python
and Keras installed on a computer with an Intel(R) Core(TM) i7, 2.60 GHz, 16 GB RAM,
running Windows 10, 64-bit. The results from the experiments are presented in this
section accordingly.

5.1. Temperature and Humidity Prediction RMSE

Based on different values of N1 and N2, the results of temperature prediction for all the
six months are presented in Table 3 in terms of RMSE. Furthermore, the table includes the
resulting RMSE of the sensor readings without the DNN model as well as the percentage
error margin incurred with the DNN model compared with those without the DNN model.
The resulting RMSE values, as presented in Table 3, is indicative that the error associated
with the proposed DNN-based prediction of the temperature values from the optimal
sensor locations in each month is significantly lower than those measured without the
DNN model. Specifically, the proposed framework, which is based on the DNN model
results in a 68.67% reduction in the average RMSE over all the five months compared to
those obtained without the DNN model.
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In [25], the optimal sensor locations were identified based on the ranking of all the 56
sensors distributed within the greenhouse. Consequently, N2 = 10 sensors were selected.
However, there was no clear analysis to justify why only N2 = 10 sensors were selected
as the optimal number of sensors. Since the DDN-based prediction of the greenhouse
micro-climates is superior to those without the DNN model, we provide further analysis
based on the DNN model. Specifically, to show the effect of using different numbers of
input (N1) and output (N2) sensors, we present a graphical illustration of the percentage
reduction in error incurred with the DNN model for N1 = N2 = 1, 5, 10, 15, and 20 for each
month, respectively, in Figure 3. From the figure, it is clear from the error curves that the
knee or saturation point is the N1 = N2 = 10 for all the months. This is because a drastic
increase in error reduction is observed from N1 = N2 = 1 to N1 = N2 = 10. However, as the
values of N1 = N2 > 10, the percentage improvement saturates. This might be because of
the fact that adding more sensors may not provide any extra information that can help
better estimate the micro-climates of the greenhouse. This validates the selection of 10
highly ranked sensors as optimal in [25].

In Table 4, the results of humidity prediction for all the associated months are presented
in terms of RMSE. The table further includes the resulting RMSE of the sensor readings
obtained without the DNN model. In terms of the RMSE, the results show that there is
a 46.21% overall reduction in error of the predicted humidity values based on the DNN-
based framework compared to those obtained without the DNN model. In addition,
the percentage improvement in the measurement error of relative humidity follows a
similar pattern to the temperature, as shown in Figure 3.

(a) (b) (c)

(d) (e) (f)

Figure 3. Percentage reduction in error corresponding to temperature measurement using different
N1 and N2 for (a) March, (b) April, (c), May (d), June (e), July, and (f) October.
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5.2. Correlation Coefficients

Correlation results based on Pearson’s correlation coefficients between the real sensor
value readings and predicted sensor value readings are shown in Table 5. From the
table, it can be observed that the predicted sensor values are highly correlated with the
true sensor values by an average correlation value of 0.91 and 0.85 for temperature and
humidity, respectively. These average correlation values are comparable with those from
the literature, where the correlation coefficients generally range between 0.977 to 0.980 and
0.825 to 0.967 for temperature and relative humidity, respectively [9,33].

Table 5. Performance comparison of proposed DNN framework for different N1 and N2 in terms of
Pearson correlation coefficient.

Predicted Month

Correlation Coefficients

N1 = 1, N2 = 1 N1 = 5, N2 = 5 N1 = 10, N2 = 10 N1 = 15, N2 = 15 N1 = 20, N2 = 20

Temperature Humidity Temperature Humidity Temperature Humidity Temperature Humidity Temperature Humidity

March 0.87 0.85 0.93 0.93 0.96 0.94 0.96 0.94 0.95 0.95
April 0.82 0.89 0.92 0.91 0.95 0.93 0.95 0.95 0.95 0.94
May 0.69 0.76 0.82 0.78 0.89 0.82 0.89 0.84 0.9 0.86
June 0.79 0.76 0.87 0.80 0.92 0.81 0.92 0.82 0.91 0.82
July 0.56 0.66 0.78 0.72 0.82 0.75 0.85 0.79 0.84 0.78

October 0.73 0.8 0.85 0.83 0.911 0.84 0.92 0.84 0.92 0.84

Furthermore, both temperature and humidity show a similar correlation trend, where
the highest values of 0.95 and 0.94 are obtained in the month of March, while the lowest
values of 0.82 and 0.75 are obtained in the month of July, respectively. This can be attributed
to how the optimal sensor locations of March and July are distributed relative to the fixed
sensor locations. In Figure 4, the fixed sensor locations (green) and optimal sensor locations
of target months (March and July) are highlighted (glue) for both temperature and humidity
to show the effect of the respective locations in the overall percentage of error reduction.
In addition, the optimal locations of the target month (March and July) that overlap with
some of the fixed locations are depicted in red.

As depicted in Figure 4a,b, the target months of March and July have four and five
overlapping temperature sensor locations with respect to the fixed locations, respectively.
Furthermore, as shown in the figure, the sensor locations of March compared to the fixed
locations are closer, and for each of the fixed locations, there are also representative locations
in March in the same region. However, in July, the sensor locations are much farther from
those of the fixed locations when compared with those in March. Therefore, the proximity
of the optimal sensor locations of the target month March with respect to the fixed locations
resulted in a higher correlation compared to that of July.

Similarly, in terms of humidity, although both March and July have only one over-
lapping sensor location with fixed locations, as shown in Figure 4c,d, it is clear that the
high correlation in March can be associated with the observation that the sensors are well
distributed in regions close to the fixed locations. On the other hand, the sensor locations
of July are simply packed in regions where none of the fixed sensors are located.

5.3. Effect of Number of Fixed Sensor Locations on the Prediction Accuracy of DNN Model

In the previous section, the analysis was conducted considering that the input and
output dimensions, N1 and N2, respectively, are equal (N1 = N2). However, it would
be interesting to investigate instances where N1 < N2 as this would help to facilitate
decisions related to the trade-off between cost and accuracy of estimation. Specifically,
the input dimension N1 is directly related to cost, while the output dimension N is directly
proportional to the accuracy of prediction, thus providing a better estimation of micro-
climates. In other words, since N1 is the number of sensors that would be installed, as the
number of N1 sensors increases, the cost also increases. On the other hand, as the number
of N1 increases, the accuracy of prediction tends to increase until saturation is reached.

Table 6 summarizes the RMSE values for different combinations of the input and
output number of sensors. From Table 6, we can observe that the prediction accuracy of the
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DNN model, where the input of 10 sensors is provided is better compared to the prediction
of the DNN model with only 5 input measurements. However, the prediction accuracy of
the DNN model that employs five input measurements is better than the measurements
taken from fixed sensors (or without the DNN model). In other words, it is intuitive that
installing more sensors can help estimate the environment better, as clearly depicted in
Figure 5, but it is expensive. Therefore, the best way is to use fewer sensors and use the
model proposed so that the environment can be better estimated by predicting the values
of the sensors at top preferred locations.

The above analysis was conducted with respect to the temperature measurement in
the greenhouse. However, a similar observation was made with respect to the measurement
of relative humidity in the greenhouse.

(a)

(b)

(c)

(d)

Figure 4. Layout of greenhouse showings fixed sensor locations (green) as well as optimal sensor
locations corresponding to the target months of (a) March (blue), and overlapped locations (red) for
temperature measurement (b) July (blue), and overlapped locations (red) for temperature measure-
ment (c) March (blue), and overlapped locations (red) for relative humidity measurement (d) July
(blue), and overlapped locations (red) for relative humidity measurement.
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Figure 5. Effect of number of input sensors (N1) on the prediction accuracy of temperature.

Table 6. Effect of number of sensors (N1) on the temperature prediction accuracy of DNN model in
terms of RMSE.

Predicted Month

RMSE

N1 = 5, N2 = 10 N1 = 10, N2 = 10

DNN Model DNN Model W/O DNN Model

March 2.1337 1.7744 4.295
April 2.811 2.4798 5.0001
May 3.5302 2.8061 10.051
June 3.5121 2.9317 16.4949
July 3.2077 2.7632 13.7796

October 3.305 2.6372 7.5388

6. Conclusions

In order to alleviate the need to move sensors from one dynamic optimal sensor lo-
cation to another due to changes in the external weather condition, this study proposes a
framework based on multi-channel dense neural network regression model for predicting
micro-climates corresponding to changing sensor locations using measurements from fixed
sensors. Results of micro-climate predictions obtained based on the proposed framework
were comparable with the true sensor measurements corresponding to the dynamic sensor
locations. Specifically, the proposed framework in terms of RMSE achieved a 68.67% reduc-
tion in error for temperature and 46.21% overall reduction in error for relative humidity
compared with a setup without the proposed models. In terms of the Pearson correlation
coefficient, the result showed a high correlation, with an average of 0.91 and 0.85 for tem-
perature and relative humidity, respectively. The highest correlation values of 0.95 and 0.94
for temperature and relative humidity, respectively, obtained in the month of March and
lowest values of 0.82 and 0.75 for temperature and relative humidity obtained in the month
of July, can be explained as a result of the distance between the test month’s (February)
data and the respective predicted months. The deployment of the proposed framework
would generally facilitate accurate monitoring and control of micro-climates in protected
cultivation systems. Although the current work is limited to monthly variations of optimal
sensor locations, investigating the proposed framework for intraday variations would be
of interest in the future.
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Abstract: As one of the most widely used applications in domain adaption (DA), Cross-domain
sentiment analysis (CDSA) aims to tackle the barrier of lacking in sentiment labeled data. Applying
an adversarial network to DA to reduce the distribution discrepancy between source and target
domains is a significant advance in CDSA. This adversarial DA paradigm utilizes a single global
domain discriminator or a series of local domain discriminators to reduce marginal or conditional
probability distribution discrepancies. In general, each discrepancy has a different effect on domain
adaption. However, the existing CDSA algorithms ignore this point. Therefore, in this paper, we
propose an effective, novel and unsupervised adversarial DA paradigm, Global-Local Dynamic
Adversarial Learning (GLDAL). This paradigm is able to quantitively evaluate the weights of global
distribution and every local distribution. We also study how to apply GLDAL to CDSA. As GLDAL
can effectively reduce the distribution discrepancy between domains, it performs well in a series
of CDSA experiments and achieves improvements in classification accuracy compared to similar
methods. The effectiveness of each component is demonstrated through ablation experiments on
different parts and a quantitative analysis of the dynamic factor. Overall, this approach achieves the
desired DA effect with domain shifts.

Keywords: adversarial domain adaption; cross-domain sentiment analysis; global-local dynamic
adversarial learning

MSC: 68T01

1. Introduction

Deep neural networks have led to impressive improvements in data mining. However,
it is always time-consuming and expensive to acquire sufficient data, and especially to
label them. The emergence of domain adaption [1] has significantly reduced the difficulty
of labeling data and transferring knowledge between different domains. One of the most
challenging problems in domain adaption is how to reduce or even eliminate the differences
between the source domain and target domain [2]. In CDSA, these differences are reflected
as domain discrepancies owing to the distinct expression of the reviewers’ emotions from
various domains [3]. In recent years, adversarial domain adaption [4] has been widely
used to reduce different domains’ distribution discrepancies. Most of them depend on
either global domain discriminator to reduce marginal probability distribution discrep-
ancy, or several local domain discriminators to reduce conditional probability distribution
discrepancy. For example, DANN [4] only implements global adversarial adaption to
align global distributions from different domains. Analogously, MADA [5] only utilizes a
series of local domain discriminators to align subdomains. In true application scenarios,
the global alignment and every single local alignment always contribute differently to
the entire domain adaption. When two domains’ marginal probability distributions are
more dissimilar, it is obvious that global alignment plays a bigger role. Otherwise, local
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Mathematics 2023, 11, 3130

alignment is more important. Similarly, each local alignment makes different contributions
to the total local alignment.

Due to the issues of domain transfer and concept drift, a sentiment classification
model trained in one domain may not effectively generalize to other domains. The ex-
pressions of sentiment, viewpoints, and emotionally charged words evolve over time,
making it challenging to maintain effective sentiment classification models across different
domains. Therefore, employing domain adaptation methods can help reduce the drift
of sentiment expression [6]. The main purpose of this study is to reduce the data distri-
bution gap between the two emotion domains to enhance the generalization ability of
cross-domain emotion classification data models. We want to achieve this goal by uti-
lizing the global-domain discriminator and local-domain discriminator commonly used
in traditional natural-language-processing text classifiers to minimize the difference be-
tween data margins and global distribution, thereby improving the generalization ability
of cross-domain sentiment classification.

In this paper, we propose a novel domain adaption method GLOBAL–LOCAL DYNAMIC

ADVERSARIAL LEARNING (GLDAL) for unsupervised adaption. GLDAL captures the
multi-mode structure of data dynamically through adversarial learning. In CDSA, GLDAL
is able to amplify the influence of the pivot words to learn domain-invariant features.
The core components of GLDAL are the Global Dynamic Adversarial Factor (GDAF)
and Local Dynamic Adversarial Factors (LDAF). The former has the ability to evaluate
the relative significance of the marginal and conditional distributions both dynamically
and quantitatively. Similarly, the latter plays the same role in the relationship between
each conditional distribution. Therefore, GLDAL is able to improve the generalization of
adversarial domain adaption.

In the following text, we detail the use of our proposed approach in deep neural
network architectures, and experiment on popular sentiment classification datasets (SST,
IMDB), where our proposed approach shows improvements compared to the previous
state-of-the-art accuracy.

2. Related Work

2.1. Unsupervised Domain Adaption in Transfer Learning

Unsupervised domain adaptation (UDA) is an important branch of transfer learning.
There are two main forms of UDA: traditional machine learning and deep learning. UDA
based on traditional machine learning can be divided into two categories: (1) Subspace
Alignment (SA) [7] and CORAL [8] use the subspace statistical characteristics to elimi-
nate domain differences. (2) Distribution alignments TCA [9], JDA [10], BDA [11] and
MEDA [12] are proposed to align the marginal probability distributions or conditional
probability distributions between domains.

In the last few years, deep neural networks have been widely used in domain adap-
tion [13–15]. Domain adversarial learning, as a branch of deep domain adaption, has been
popular in recent years. The idea of adversarial learning comes from Generative Adver-
sarial Networks (GAN) [16,17]. DANN [4] aligns the source and target distributions with
only a single global domain discriminator. MADA [5] is able to execute the fine-grained
alignment of different data distributions using multi-mode discriminators. DAAN [18]
dynamically evaluates the relationship between the marginal and conditional distribu-
tions. Our GLDAL is also based on adversarial learning and global attention mechanism.
By evaluating the relationship between every local subdomain and the relative impor-
tance of the marginal and conditional distributions, GLDAL significantly outperforms
existing methods.

2.2. Cross-Domain Sentiment Analysis.

Sentiment analysis is also called opinion mining or tendency analysis. It is the process
of analyzing and reasoning about subjective texts with emotions. Text representation is an
important step in sentiment analysis. In recent years, the most representative work has been
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the BERT pre-trained model [19], Transformer-XL [20]. However, thegeneral sentiment
analysis studies mentioned above only consider the performanc e in a single domain,
ignoring the generalization ability, so cross-domain sentiment analysis has quickly become
a research hotspot. BERT-DAAT [21] is a pre-trained model based on adversarial training
methods that aims to provide the trained BERT with domain awareness. ADS-SAL [22]
can dynamically learn an alignment weight for each word, so more important words will
obtain higher alignment weights to achieve fine-grained adaptation.

3. Method

3.1. Problem Definition

In CDSA tasks about domain adaption, there are a source domain Ds =
{

xi
s, yi

s
}Ns

i=1

and a target domain Dt =
{

xi
t
}Nt

i=1 , where xs and xt is the set of sentences and ys are the
corresponding sentiment polarity labels. The goal of CDSA is to predict the target label
ŷt = arg max Gy( f (xt)) and minimize the target risk εt

(
Gy
)
= E(xt ,yt)∼Dt

[
Gy( f (xt)) �= yt

]
,

where Gy(·) represents the Softmax output and f (·) refers to the feature representation.

3.2. Backbones for Cross-Domain Sentiment Analysis
3.2.1. Bidirectional Gate Recurrent Units with Attention

A Gate Recurrent Unit (GRU) with the attention mechanism [23] is an effective recur-
rent neural network for sentiment analysis. For a given n-dimensional input (x1, x2, . . . , xn),
the hidden layer of Bi-GRU outputs ht at time t. The calculation process is as follows:

h ft = σ
(

Wxh f
xt + Wh f h f

h ft−1 + bh f

)
, hbt = σ

(
Wxhb

xt + Whbhb
hbt−1 + bhb

)
, (1)

ht = h ft ⊕ hbt , W is the weight matrix and b is the bias vector; σ is the activation function;
h ft and hbt are the outputs of positive and negative GRU, respectively. ⊕ represents the
element-wise summation. The simplification method is to construct a single vector c from
the whole sequence, as follows:

et = Attention(ht), αt =
exp(et)

∑T
k=1 exp(ek)

, c =
T

∑
t=1

αtht. (2)

3.2.2. Capsule Neural Network Based on BERT

The BERT [19] model is a language model based on two-way Transformer. We directly
use the feature representation of BERT as the word-embedding feature of the task and
regard BERT as the upstream network. The Capsule Network [24] is composed of a group of
neurons, which are used to represent the parameters of a specific type of object. We regard
this network as a downstream network. The unique activation function (“squashing”) is
formulated as:

vj =

∥∥sj
∥∥2

1 +
∥∥sj
∥∥2

sj∥∥sj
∥∥ , (3)

sj is its total input and vj is the output of capsule j . For capsule sj, the input is determined
by multiplying the output uiof a capsule in the former layer by a weight matrix Wij , cij,
which are coefficients for coupling determined by the dynamic routing:

sj = ∑
i

cijûj|i, ûj|i = Wijui. (4)

3.3. Domain Adaption with Adversarial Learning

This adversarial training is like a game with two parts: feature extractor Gf and
domain discriminator Gd. Through maximizing the loss of Gd, the parameters θ f of Gf are

365



Mathematics 2023, 11, 3130

trained while the parameters θd of Gd are trained by minimizing the loss of the domain
discriminator. The total loss can be formalized as:

L
(

θ f , θy, θd

)
=

1
ns

∑
xi∈Ds

Ly

(
Gy

(
Gf (xi)

)
, yi

)
− λ

ns + nt
∑

xi∈(Ds∪Dt)

Ld

(
Gd

(
Gf (xi)

)
, di

)
,

(5)

Update the parameters of each part as the following equations:(
θ̂ f , θ̂y

)
= arg min

θ f ,θy
L
(

θ f , θy, θd

)
,
(
θ̂d
)
= arg max

θd
L
(

θ f , θy, θd

)
(6)

Due to the adversarial relationship with parameter updating, the parameters θ f , θy, θd
will deliver a saddle point of Equation (6) after the training converges.

3.4. Global-Local Dynamic Adversarial Adaption Network

At present, the mainstream adversarial adaption methods reduce marginal or con-
ditional probability distribution discrepancies. However, it is quite difficult to evaluate
the importance of each contribution. Therefore, we should find a novel method that
can quantitatively evaluate their importance and dynamically adjust the parameters of the
neural network.

In this paper, we propose the GLOBAL–LOCAL DYNAMIC ADVERSARIAL LEARNING

(GLDAL) shown in Figure 1 to make key improvements. GLDAL can effectively evaluate
every single distribution’s importance, aiming to better learn the domain-invariant features
through adversarial learning. In GLDAL, the Global domain discriminator Gd and a series
of Local domain discriminators Gu

d play a role in the domain adaption of marginal and
conditional distributions, respectively. The most important innovation point is that we
propose a novel, global-local dynamic training strategy using the Global Dynamic Factor ω

and Local Dynamic Factors {αu}U
u=1.

3.4.1. Label Classifier

The label classifier Gy (The blue part in Figure 1) in trained by samples from the source
domain to implement label classification. The loss of Gy is formulated as:

Ly =
1
ns

∑
xi∈Ds

CrossEntropy
(

Gy

(
Gf (xi)

)
, yi

)
, (7)

where xi, yirepresents samples and their labels from the source domain; Gf is the feature
extractor.

3.4.2. Global Domain Discriminator

Global domain discriminator Gd (The pink part in Figure 1) is wisely implemented
to align the marginal probability distributions between two domains (source domain and
target domain) in the feature space. We define the loss of global domain discriminator
Gd as:

Lglobal =
1

ns + nt
∑

xi∈Ds∪Dt

Ld

(
Gd

(
Gf (xi)

)
, di

)
. (8)

In this formula, Ld represents the loss of domain discriminator. di is the domain label
of the sample xi and Gf is the feature extractor.
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Figure 1. The architecture of the proposed GLOBAL–LOCAL DYNAMIC ADVERSARIAL LEARNING

(GLDAL). First, input the Text Sequences into the Feature Extractor to obtain the feature vector
distributed in the feature space. Next, there are two main loss functions, namely Ly and Ld. Ly is the
classification loss. Ld is the loss combination of the global domain discriminator and local domain
discriminators.

3.4.3. Local Domain Discriminator

The local domain discriminator Gu
d (The purple part in Figure 1) is composed of a

series of U class-wise discriminators Gu
d ; each is used to match the source domain and

target domain data associated with class u. The output of the label classifier ŷi = Gy(xi) to
each data point xi is a probability distribution of the U classes. Therefore, we utilize the
probability distribution ŷi to measure how many data points xi should be attended to the
U domain Gu

d . The loss function of the local domain discriminator is defined as:

Llocal =
1

ns + nt

U

∑
u=1

∑
xi∈Ds∪Dt

Lu
d

(
Gu

d

(
ŷu

i Gf (xi)
)

, di

)
, (9)

3.5. Global and Local Adversarial Factors

In this part, we introduce how to quantitively evaluate the global distributions and
each local distribution. Due to the adversarial characteristic, it is tricky to determine a
concrete scheme. Generally, there are two straightforward ideas: Random Setting and
Average Step Searching. The former randomly sets the value of dynamic factors and the
latter picks the value of these factors with the same step size. For instance, if the scope of
factor ω is [0, 1], the latter strategy will pick the value of ω = 0, 0.1, . . . , 0.9, 1.0 to perform
training. However, both strategies are computation-consuming and time-consuming.

Therefore, in this paper, we propose two kinds of factors: global dynamic adversarial
factorω and local dynamic adversarial factors {αu}U

u=1 in order to dynamically and quan-
titively evaluate the importance of each distribution. This strategy has two significant
advantages. Firstly, we utilize deep adversarial representations instead of shallow rep-
resentations to learn these two kinds of factors, making GLDAL more robust. Secondly,
every single dynamic factor is determined by the SA−distance (not hinge loss) of the
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discriminators, which is more efficient and convenient. In order to calculate the dynamic
factors, we denote the global SA−distance of the global domain discriminator as:

dSA,g(Ds,Dt) = 2
(

1 − 2
(

Lglobal

))
. (10)

We also denote the local subdomain SA−distance as:

dSA,l(Du
s ,Du

t ) = 2(1 − 2(Lu
local)). (11)

These two kinds of distances can measure the distribution similarity of the source and
target domain to some extent. Du

s and Du
t denote samples from class u, and Lu

local is the
local subdomain discriminator loss over the class u.

3.5.1. The Global Dynamic Adversarial Factor ω

The global dynamic adversarial factor ω is used to calculate the weighted sum of
global domain loss and local domain loss. ω is initialized as 1 in the first training epoch.
After each training epoch, this factor ω can be estimated through global and local domain
discriminators as:

ω̂ =
dSA,g(Ds,Dt)

dSA,g(Ds,Dt) +
1
U

U
∑

u=1
dSA,l(Du

s ,Du
t )

(12)

3.5.2. The Local Dynamic Adversarial Factors {αu}U
u=1

The local domain loss Llocal is composed of a series of local subdomain loss Lu
local by

weighted summation. The local dynamic adversarial factors {αu}U
u=1 act as coefficients

in the weighted sum. The importance of the alignment of each subdomain is different,
so we assign different weights to every subdomain. In general, if the difference between
the source subdomain and the target subdomain regarding class u is larger, we should
pay more attention to this subdomain, which is manifested by the fact that the weight of
the alignment of this subdomain should be increased. Since SA−distance is an important
parameter used to measure the similarity of the probability distributions of two subdomains
Du

s and Du
t , the parameter αu can be estimated as:

α̂u =

1
U

U
∑

u=1
dSA,l(Du

s ,Du
t )

dSA,l(Du
s ,Du

t )
. (13)

Each subdomain dynamic adversarial factor is initialized as 1 in the first training
epoch. This factor-updating strategy follows the principle: If the SA−distance (Generally
less than 0) between the subdomains about class u is larger, the weight for the alignment
of subdomains about u will be greater. In this case, the domain discriminator Gu

d of the
subdomain u can more easily discriminate the domain label information of the sample in
the subdomain, which indicates that the difference between domains about class u is large.
Therefore, we need to increase the proportion of Lu

local in the total local loss to ensure a
better alignment effect about class u.

4. Experiments

In this section, we implement experiments to evaluate the proposed GLDAL against
several previous state-of-the-art domain adaption methods. Our method GLDAL is val-
idated on several popular standard datasets regarding cross-domain sentiment analysis.
The training process is shown in Algorithm 1.
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Algorithm 1 GLDAL
Input:

—samples S =
{

xi
s, yi

s
}Ns

i=1 and T =
{

xi
t
}Nt

i=1, λ, μ, ω, {αu}U
u=1

Output: Neural Network
{

Gy, Gf , Gd

}
while stopping criterion is not meet do

calculate the global domain loss Lglobali
: Equation (8)

calculate the global SA−distance: Equation (10)
acquire classification probability vector ŷi from Gy: ŷi ←− Gy

(
Gf (si)

)
calculate the sum of all local loss of sample si: Equation (9)
calculate each local SA−distance : Equation (11)
if si ∈ S then

calculate the classification loss of: Equation (7)

Backpropagation: ΔΘ ← ΔLyi
ΔΘ − λ

Δ((1−ω)Lglobal+ωLlocal)
ΔΘ

Update dynamic factor ω, {αu}U
u=1:

ω̂: Equation (12), α̂u: Equation (13)
return Output

4.1. Datasets

The Amazon Product Review dataset includes product reviews and metadata from
Amazon; due to the uneven distribution of the samples, we set rating 0–1 as negative
sentiment, 2–3 as medium and 5 as positive. We chose the following two datasets: Amazon
reviews for clothing ( C ) and Amazon reviews for instant video (I).

SST-5 ( S5), SST-2 ( S2) are two versions of The Stanford Sentiment Treebank (SST);
the former is ( S5), with five categories (Very Positive, Positive, Neural, Negative), and the
latter is ( S2) with two categories (Positive, Negative).

IMDB ( IM) is a review rating dataset for movie sentiment analysis, containing the
same number of positive and negative sentiment samples. The COVID-19 Review dataset (
COR) contains a sample of comments about COVID-19 and the corresponding sentiment
scores (Very Positive, Positive, Neural, Negative). Tweet Review dataset TR contains
daily comments and sentiment ratings scraped from tweets, with three categories (Positive,
Neural, Negative).

We used these domain combinations and built six transfer learning tasks: (C → TR),
( TR → I), ( COR → S5), (S5 → COR), ( IM → S2), (S2 → IM).

4.2. Baselines

Based on two previously mentioned backbones: Bi-GRU-A (Section 3.2.1)
and CapsuleNet (Section 3.2.2),We compare our proposed GLOBAL–LOCAL DYNAMIC

ADVERSARIAL LEARNING (GLDAL) with several state-of-the-art unsupervised deep do-
main adaption methods: DDC [25], DaNN [26], DANN [4], D-CORAL [15], JAN [27]
MADA [5] and DAAN [18].

4.3. Implementation

We implement all methods on the PyTorch framework. For feature extractor backbones
CapsuleNet and Bi-GRU-A, we fine-tune all word vectors and all attention layers and
train the feature extraction layers with a learning rate of 10−5 and 10−4, respectively. We
use approximately 2–5 times the learning rate of the feature extractor to train the label
classifier, and use 2–10 times the learning rate to train the local discriminator and global
discriminator. The update of the important trade-off factor λ follows the Warm Start

principles: λ = 2(hi−lo)
1+exp(− i

N )
− (hi − lo) + lo. We set lo as 0, hi as 1, N as 100. Other

hyperparameters are tuned via transfer cross-validation. The source code is available at
https://github.com/killer2-1/GLDAL-for-CDSA (accessed on 20 May 2023).
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4.4. Results

The classification accuracy (%) is shown in Tables 1 and 2. GLDAL outperforms all
comparison methods on most CDSA tasks. It is also remarkable that our GLDAL has better
effects than similar approaches such as DANN, MADA and DAAN. From the results, we
can obtain some conclusions: (1) Generally, the methods based on adversarial learning
(DANN, DAAN) perform better than non-adversarial learning methods (DaNN, DDC),
which means that adversarial adaption is more effective. (2) Adversarial methods with
an attention mechanism such as GLDAL achieves a better performance than DANN and
MADA(no attention). (3) Compared with other methods, GLDAL outperforms almost
all traditional comparison methods (DDC, DaNN, DANN) on most transfer tasks, which
proves the proposed method is effective. For some of the more advanced methods, such as
DAAN, GLDAL slightly outperforms these methods, which verifies our method’s benefits.

Table 1. Accuracy (%) for unsupervised domain adaptation based on Bi-GRU-A(The bold stands for
the best performance)

Method C → TR TR → I
COR →

S5
S5 →
COR

IM → S2 S2 → IM AVG

Bi-GRU-A (No Transfer) 40.96 62.04 31.70 29.53 76.64 74.18 52.51
DDC 49.85 61.88 30.95 32.60 76.99 77.72 55.00

DaNN 45.35 63.65 31.31 32.00 78.46 78.40 54.86
DANN 49.01 65.98 32.84 33.53 80.81 78.82 56.83

D-CORAL 50.43 65.06 33.78 33.70 79.13 77.63 56.62
MADA 50.18 66.39 33.12 33.96 81.16 78.98 57.30
DAAN 50.69 66.05 33.09 34.08 80.99 79.02 57.32

GLDAL (Proposed Approach) 51.25 66.53 33.34 34.12 81.34 79.16 57.62

Table 2. Accuracy (%) of unsupervised domain adaptation based on CapsuleNet.

Method C → TR TR → I
COR →

S5
S5 →
COR

IM → S2 S2 → IM AVG

CapsuleNet (No Transfer) 47.94 63.93 33.25 30.24 83.51 80.22 56.52
DDC 51.77 64.34 35.09 30.98 85.97 86.07 59.20

DaNN 50.16 66.56 34.15 31.49 85.45 86.14 58.99
DANN 53.55 67.72 35.21 34.45 86.11 85.60 60.44

D-CORAL 56.82 67.08 34.08 34.38 86.05 85.72 60.68
JAN 52.97 68.24 34.99 33.82 86.33 86.58 60.48

MADA 54.31 67.65 35.79 34.64 86.96 86.32 60.95
DAAN 54.76 68.78 34.96 34.24 87.21 86.50 61.08

GLDAL (Proposed Approach) 56.97 68.92 34.91 35.07 87.18 86.83 61.64

4.5. Effectiveness Analysis and Ablation Study
4.5.1. Analysis of the Importance of the Global Dynamic Adversarial Factor (GDAF) ω
in GLDAL

In this section, the importance of GDAF ω in GLDAL is evaluated. The evaluation
involves two key points: (1) Whether we should pay attention to the different effects of
marginal and conditional probability in adverarial domain adaption. (2) The effectiveness
of our evaluation for ω.

To illustrate the first point, we chose several transfer tasks and analyzed the results
of GLDAL under different values of ω, as shown in in Figure 2. It is obvious that paying
attention to the different effects of marginal and conditional distribution is important. The
value of optimal ω varies on different tasks. This is because different feature representations
are obtained under different ω.
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Figure 2. Performance of several tasks when searching ω ∈ [0, 1].

To illustrate the second point, we compared the accuracy of transfer tasks under
different calculation methods for ω: Random Guessing, Average Searching (10 times) and
our GLDAL. We also executed an ablation study with DANN (ω = 1) and MADA (ω = 0).
Combining the results from Table 3, we can conclude that our method outperforms other
four methods.

Table 3. Accuracy (%) for the effective analysis and ablation study of ω based on CapsuleNet.

Transfer Tasks Average Search Random Guessing GLDAL DANN (ω = 1) MADA (ω = 0)

S2 → IM 86.15 86.52 86.83 85.60 86.32
S5 → COR 34.98 34.86 35.07 34.45 34.64

TR → I 67.73 68.25 68.92 67.72 67.65
AVG 62.95 63.21 63.61 62.60 62.87

4.5.2. Analysis of the Importance of the Local Dynamic Adversarial Factor (LDAF)
{αu}U

u=1 in GLDAL

In this section, based on the point oof whether we should pay attention to the different
effect of each local subdomain, we analyze the importance of the local dynamic adversarial
factor {αu}U

u=1 in GLDAL. Like the analysis of ω, we also chose a series of tasks, and
adopted the three methods shown below to conduct verification experiments: (1) A series
of random number that are greater than 0, and the sum is fixed to U (RNSF); (2) DAAN
(all LDAFs are fixed to 1); (3) Our GLDAL. We used A−distance [28] as a measure of
cross-domain discrepancy. In general, the smaller the A−distance, the better the domain
adaption effect. The average results in each dataset are shown in Table 4.

Table 4. A−distance for all unsupervised domain adaptation tasks based on backbone CapsuleNet

and Bi-GRU-A.

BackBone RNSF DAAN GLDAL

CapsuleNet 0.988 0.952 0.925
Bi-GRU-A 1.053 1.007 0.978
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5. Conclusions

In this paper, we proposed a novel GLOBAL–LOCAL DYNAMIC ADVERSARIAL LEARN-
ING (GLDAL) for cross-domain sentiment analysis. Through quantitatively evaluating
the relative importance of global distribution and all local distributions, GLDAL is able to
dynamically adjust the learning weights of the global discriminator and local discriminators
during training. This domain adaption strategy is based on the attention mechanism and
has excellent effects on experimental tasks. As a general transfer learning strategy, GLDAL
can also be applied to tasks in computer vision and the recommended system. In the future,
we plan to extend GLDAL to more challenging transfer learning problems.
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Abstract: In this paper, we propose an outlier-detection algorithm for detecting network traffic
anomalies based on a clustering algorithm and an autoencoder model. The BIRCH clustering
algorithm is employed as the pre-algorithm of the autoencoder to pre-classify datasets with complex
data distribution characteristics, while the autoencoder model is used to detect outliers based on
a threshold. The proposed BIRCH-Autoencoder (BAE) algorithm has been tested on four network
security datasets, KDDCUP99, UNSW-NB15, CICIDS2017, and NSL-KDD, and compared with
representative algorithms. The BAE algorithm achieved average F-scores of 96.160, 81.132, and 91.424
on the KDDCUP99, UNSW-NB15, and CICIDS2017 datasets, respectively. These experimental results
demonstrate that the proposed approach can effectively and accurately detect anomalous data.

Keywords: pre-classification; BIRCH; Autoencoder; anomaly detection

MSC: 68W99

1. Introduction

In recent years, internet applications and services have become widely used. However,
the open structure and lack of supervision of the internet have created a deteriorating
network security environment, making it easier for attacks to occur. Hackers can have
varied motivations, such as political, financial, or intellectual, which makes detection
even more challenging [1]. Distributed Denial-of-Service (DDoS) is one such aggressive
and threatening invasion of online servers that mainly has two attack methods [2]: one is
sending packets to exploit software vulnerabilities of the target host, rendering it unable to
provide service, and the other involves sending large amounts of useless network traffic to
flood the target host with an attack on its service resources. This paper discusses flooding
attacks as an anomaly-detection example in the following sections.

Autoencoder is a novel method based on anomaly detection, which can find the best
subspace to capture the nonlinear correlation between features by using a neural network.
In addition, it can effectively reduce the false positive rate. The Common Autoencoders
include the Denoising Autoencoder (DAE) [3], Sparse Autoencoder (SAE) [4], Variational
Autoencoder (VAE) [5], Stacked Convolutional Autoencoders (SCAE) [6], and so on. These
different types of Autoencoders are widely used in the intrusion-detection field [7–9].
However, The traffic from different sources usually has different characteristics when an
attack occurs. This traffic with different data distributions has a negative effect on training
deep learning models. Most anomaly-detection models do not preprocess these data,
but directly use them to detect abnormal traffic, which leads to defects in accuracy. In
addition, the data used for anomaly detection is usually imbalanced, which also hinders
the performance of anomaly-based detection, and there are few studies focusing on this
question in the research community [1].

The contribution of this algorithm is to propose an anomaly-detection algorithm
that can automatically pre-classify and independently detect anomalies based on the pre-
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classification results. The algorithm uses the BIRCH algorithm to pre-classify traffic and
the Autoencoder technique to detect anomaly traffic. The experimental results obtained
from analyzing real network traffic datasets show that the algorithm outperforms others in
terms of detection performance.

The remaining parts of this paper are structured as follows. Section 2 introduces the
application scenario of the algorithm proposed in this paper. Section 3 discuss the related
research work on anomaly-detection methods. In Section 4, we introduce the process of
data preprocessing, and the principle of BIRCH and Autoencoder are introduced in detail,
with the idea of combining BIRCH with Autoencoder to detect traffic. In Section 5, we
execute the experiments based on KDDCUP99, UNSW-NB15, CICIDS2017, and NSL-KDD
to verify the proposed algorithm. We conclude our work in Section 6.

2. Application of Algorithm

Intrusion-detection systems usually rely on sufficient servers and bandwidth resources
to defend against flooding attacks. And the poor interaction between detection and defense
phases has always been a challenge because the packets’ validity discrimination calculation
has high time complexity and is difficult. At the same time, even if the detection system can
filter out a certain proportion of attack traffic, how to guarantee the legal access of potential
legitimate users to target systems or resources during the attack is still challenging.

When the protected host receives network traffic packets, the intrusion detection
system can distinguish whether the intrusion occurs through the techniques of the packet
regular filtering, the signature detection filtering of the packet stream, and the content-
customized filtering of the packets. The output of these discrimination techniques is “quasi-
legal” data composed of filtered packets. The proposed algorithm will execute anomaly
detection on network packets during an attack. Because the legal data flow is far less than
attacking data flow, the anomaly detection operation will be able to filter out the legal
packets as outliers. And a “whitelist” will be established based on these selected packets’ IP
addresses to protect legal access to the system. This mechanism (see Figure 1) assumes that
packets from the same legal sources are legal. The proposed intrusion-detection framework
adopts the strategy of active-defense, which can reduce the requirement of the cooperation
among detection and defense mechanisms and improve the compatibility of intrusion-
detection methods in different network environments. In addition, the update mechanism
based on “white list” can ensure the normal access of legitimate sources, thus ensuring the
real-time monitoring of attacks and the communication requirements of legitimate users.

Figure 1. The framework of active-defense.
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3. Related Works

Broadly speaking, traditional threshold-based DDoS detection methods are applications
of anomaly detection. Anomaly detection represents the data by finding the correlation be-
tween data features and trying to map data to the optimal subspace. Through mapping, the
process of data mapping to subspace, the data with a large reconstruction error is identified as
abnormal data, comparing it to the majority of samples [8]. Principal Component Analysis
(PCA) can be used for threshold-based outlier detection. Lakhina et al. [10] used the PCA
algorithm to separate the high-dimensional space occupied by a set of network traffic mea-
surements into disjoint subspaces corresponding to normal and anomaly network conditions
and performed outlier detection on the subspaces. Yang et al. [11] and Zhu et al. [12] used
different methods to detect anomalies by using reconstruction errors. In research history, Local
Outlier Factor Algorithm (LOF) [13], PSO-BP [14], and the Intrusion-detection method using
Online Sequence Extreme Learning Machine (OS-ELM) [15] have all used reconstruction error
as the threshold for anomaly detection.

In practical applications, input features are typically nonlinear. Therefore, nonlinear
methods, such as Autoencoders, are becoming a trending approach for analyzing network
traffic data. To better capture the nonlinear correlation between features, Chen et al. [8] used a
convolution Autoencoder with a smaller number of parameters to execute dimension reduc-
tion. Similarly, Shaikh et al. [16] proposed a deep learning framework for intrusion detection
that utilized an Autoencoder and recurrent neural network (RNN). Fan et al. [17] proposed a
dual automatic encoder (AnomalyDAE) framework for anomaly detection that captured the
complex interactive information between the network structure and node attributes.

As deep learning advances, there are more and more algorithms and frameworks
being developed to solve anomaly detection issues. Engly et al. [1] aimed to solve the
issues of imbalanced data and ineffective features by using imbalance correction and
feature selection. They conducted experiments on Random Forests, Neural Networks,
and Gradient-Boosting Machines and found that the best detection performance could be
achieved by an ensemble with two neural networks and a Gradient-Boosting Machine.
Li et al. [18] focused on improving the detection accuracy of malicious nodes through
an intrusion sensitivity-based trust management model and a supervised approach that
employed machine learning techniques.

Autoencoder-based anomaly detection has also been applied to other fields. Azza-
lini et al. [19] proposed a minimally supervised method for detecting anomalies in au-
tonomous robots using deep learning. Kolberg et al. [20] developed a novel presentation
attack detection (PAD) method for fingerprint-based biometric authentication systems.
Finally, Meng et al. attempted to develop a trust-based intrusion detection mechanism for
a wireless sensor network (WSN) using Bayesian modeling.

As we can see, machine learning, particularly deep learning, has been extensively
utilized in the field of anomaly-detection research. Researchers are currently exploring the
use of different structural neural networks to satisfy specific data characteristics. Despite
these efforts, most anomaly-detection methods still possess drawbacks with regards to false
positives and inaccuracies.

4. Methods

4.1. Overall Framework of Proposed Method

This paper introduces an algorithm for detecting anomalies based on multiple thresh-
olds. To determine the threshold for classifying traffic data as normal or anomalous, we
train independent Autoencoders for each different network traffic, and each Autoencoder
has its own unique threshold that depends on the specific classification result.

Since the performance of the threshold-based anomaly detection algorithm is greatly
affected by the type of network traffic data used for model training [21], the data struc-
ture can impact anomaly detection, and changes in data distribution can decrease al-
gorithm performance [22]. We propose the use of the BIRCH-Autoencoder (BAE) ap-
proach to pre-classify the training data and group network traffic packets with similar
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data structures. An Autoencoder is then trained for each subgroup, with the number of
Autoencoders corresponding to the number of subgroups. This approach ensures that the
models accurately describe the characteristics of network traffic and can handle complex
data-distribution scenarios.

4.2. BIRCH for Data Pre-Classification

Balanced Iterative Reducing and Clustering Using Hierarchies (BIRCH) is an algorithm
for clustering large datasets with limited memory resources [23], while minimizing the
I/O cost by scanning datasets only once. BIRCH defines a cluster using Cluster Features
(CFs) and represents the hierarchical architecture of clusters using a CF tree. This technique
enables BIRCH to achieve fast and scalable clustering in large and even stream databases.

The CF and CF tree is the core methods of BIRCH. A CF is a triple-including clustering
information, which is also additive. The definition of the additivity of CF is as follows:

Definition 1. Suppose that {⇀
Xi} is the cluster of N d-dimensional data points, where i = 1, 2, . . .,

N, the cluster’s CF vector is defined as a triple: CF = (N, L
⇀
S , SS), where N is the number of data

points, L
⇀
S is the linear sum of the data points, i.e., ∑N

i

⇀
Xi and SS is the square sum of the N data

points, i.e., ∑N
i

⇀

X2
i .

Definition 2. Suppose that CF1 = (N1, L
⇀
S1, SS1) and CF2 = (N2, L

⇀
S2, SS2) are the two disjoint

clusters’ CF vectors, which makes CF1 + CF2 = (N1 + N2, L
⇀
S1 + L

⇀
S2, SS1 + SS2).

The use of CF in BIRCH offers two key advantages: it significantly reduces the amount of
storage space needed for data and enables efficient calculations of all clustering decision indexes.

Definition 3. Suppose that {⇀
Xi} is the cluster of N d-dimensional data points, where i = 1, 2, . . .,

N,
⇀
X0 is the centroid of the cluster, R is the radius of the cluster, and D is the diameter of the cluster,

they are defined in Equations (1), (2) and (3), respectively.

⇀
X0=

∑N
i

⇀
Xi

N
(1)

R =

√√√√√∑N
i

(
⇀
Xi −

⇀
X0

)2

N
(2)

D =

√√√√√∑N
i ∑N

j

(
⇀
Xi −

⇀
Xj

)2

N(N − 1)
(3)

The CF tree is a balanced tree with two parameters: branching factor B and threshold T. Each
non-leaf node contains a maximum of B entries in the form of {CFi, childi}, where i = 1, 2, ..., B.
The childi is a pointer to the i-th child node, and CFi is the CF of the subcluster represented by this
child node. A leaf node contains at most nL entries, each of the forms {CFi}, where i = 1, 2, ..., nL.
All entries in a leaf node must satisfy a threshold requirement. The size of the tree is determined by
T, where the tree becomes smaller as T increases.

The BIRCH algorithm is employed as a pre-classification technique for the processed
dataset prior to Autoencoder utilization. The number of clusters is specified to segment
the processed dataset into distinct subsets based on unique clustering features, which are
subsequently labeled with cluster tags for seamless Autoencoder anomaly detection.
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4.3. Autoencoder for Anomaly Detection

The Autoencoder is a neural network algorithm that extracts hierarchical features from
unlabeled data, aiming to reduce the dimensionality of high-dimensional input data. It
achieves this by obtaining a low-dimensional vector representation of the original data and
then reconstructing it back to the same dimension as the input data through the decoding
process. This technique is useful for tasks, such as dimensionality reduction and data
compression. An Autoencoder consists of the Encoder, Decoder, and Hidden Layer.

Definition 4. Encoder. The Encoder is used for dimensionality reduction of high-dimensional
features, which compresses the given input data to a specified dimension, which is equal to the
number of neurons in the hidden layer.

The mapping between coded input data x and implicit representation h is expressed
by Equation (4).

hi = fθ(x) = s
(
∑n

j=1 Winput
i,j xj + binput

i

)
(4)

x is the input vector. W represents the encoder weight matrix with size m × n, and b is
a bias vector of dimensionality m. s is a nonlinear activate function, generally a sigmoid
logic function, and its expression is given in Equation (5).

y = s(x) =
1

1 + e−x (5)

Definition 5. Decoder. the Decoder is used for data reconstruction, which can be regarded as
the inverse process of the Encoder. The low-dimensional data representation of the hidden layer is
decoded to the size of the original vector space.

The mapping function of above decoder is given in Equation (6).

hi
′ = gθ′(h) = s

(
∑n

j=1 Whidden
i,j hj + bhidden

i

)
(6)

The process of training the Autoencoder is to find the minimum average reconstruction
error on the given input data {x1, x2, . . . , xn} and the output data

{
x′1, x′2, . . . , x′n

}
reduced

and reconstructed by the Autoencoder. This reconstruction error is defined by Equation (7).

L
(

xi, x′i
)
= ∑d

j=1

(
xi − x′i

)2 (7)

Specifically, the Autoencoder can compress the original input data and set the param-
eters and weights in the neural network according to the optimized reconstruction error.
Ideally, this encoding will learn and describe the potential attributes of the input data.
In this paper, the following functions (Equation (8)) are used to calculate the minimized
average reconstruction error, and the L is the reconstruction error defined by Equation (7).

θ∗, θ′∗ = argmin
θ,θ′

1
n ∑n

i=1 L
(
xi, x′i

)
= argmin

θ,θ′

1
n ∑n

i=1 L(xi, gθ′( fθ(xi))) (8)

After training the auto-encoder, the test data can be inputted into this model, and
the anomaly data or normal data can be distinguished by the threshold division of the
reconstruction error, as shown in Equation (9), where L is the reconstruction error de-
fined by Equation (7). θ is the output error after inputting the test Packet into the outlier
mining algorithm.

c(xi) =

{
normal Li < θ
abnormal Li > θ

(9)

For datasets labeled with different cluster labels, train an Autoencoder for them, and
use this Autoencoder to calculate the reconstruction error, which can be used to detect the
attack data.
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After training, the dataset for testing is used as the input of the model, and the
reconstruction error is used as the anomaly score. When the calculation error of the dataset
for testing is greater than the threshold, it is identified as anomaly data or normal data.

5. Experimental Analysis

In this section, Logistic Regression, SVM, and Decision Tree are compared to BAE,
with the Autoencoder utilized for pre-classification to showcase the performance of var-
ious algorithms in the detection task. The Accuracy, Recall, Precision, and F-score are
employed for the evaluation, and comparative experiments are conducted on four datasets:
KDDCUP99 [24], UNSW-NB15 [25], CICIDS2017 [26], and NSL-KDD [27].

5.1. Datasets

In this paper, KDDCUP99, UNSW-NB15, CICIDS2017, and NSL-KDD are used for
experiments. These datasets contain both up-to-date common attacks and typical attacks that
happened in history. Three of the datasets (KDDCUP99, UNSW-NB15, and CICIDS2017) are
unique, as they do not overlap. Somehow, the KDDCUP99 and NSL-KDD can be seen as
different resolutions of the same set of data. Typically, intrusion-detection datasets are usually
confidential to the public. In order for our model to acquire sufficient knowledge about
abnormal network traffic, we have made every effort to gather a comprehensive collection of
commonly used open-resource datasets. Here are some further details on the datasets:

• KDDCUP99: The safety audit dataset KDDCUP99 published by the IDS laboratory of
Columbia University is compiled from the IDS dataset of MIT LL in 1998 [28]; here,
we choose to use the 10% KDDCUP99 in our research [29].

• UNSW-NB15: The original network packet of the UNSW-NB15 dataset is a public
security dataset, including normal network traffic data and network attack data created
in the network-wide laboratory of the Australian Cyber Security Centre (ACCS) using
the IXIA PerfectStorm tool.

• CICIDS 2017: the CICIDS 2017 dataset is a network security dataset released by the
Canadian Institute for Cybersecurity (CIC) in 2018. It collects data of various network
attacks through the mounted network terminal.

• NSL-KDD: NSL-KDD is a suggested dataset to solve some inherent problems of the
KDDCUP99 dataset.

5.2. Experiments

The dataset originally consisted of non-normalized data that contained zeros or char-
acters in both the important and secondary features. This directly impacted the calculation
of the clustering features and the generation of the clustering feature tree in BIRCH. To
address this issue, the Min-Max normalization technique [30] and One-hot methodology
were employed in this paper.

Normalize the numerical data in the dataset, linearly transform the original data, and
map the data between [0, 1]. The transformation function is given in Equation (10).

x′ = x − min (x)
max (x)− min (x)

(10)

For the character data in the dataset, the one-hot encoder is used to “binarize” the
character data. Through the preprocessing of data, we can obtain a numerical and normal-
ized dataset. At the same time, our research only focuses on DDoS attacks. Therefore, we
select data with attack types of DDoS and DoS and Normal from different datasets and
conduct subsequent experiments based on the data.

Firstly, the BIRCH is used to pre-classify all the data to obtain data subsets with
different data characteristics, and these data subsets are used as new training data to be
inputted into the corresponding Autoencoder model. In this paper, the Davies–Bouldin
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index (DBI) [31] is used to determine the number of clusters. This indicator is defined
by Equation (11).

DBI =
1
n ∑n

i=1 max(
i �=i

si + sj

dij
) (11)

where si is the average distance from each point in the cluster i to the centroid of the cluster,
dij is the distance between the centroid of the cluster i and the centroid of the cluster j, and
n is the number of clusters.

The DBI index reflects the average degree of “similarity” among clusters. A DBI
value closer to 0 indicates a more favorable clustering effect. In Figure 2, different cluster
numbers were tested, and the DBI scores demonstrate that the optimal number of clusters
for the KDDCUP99 dataset in this experiment is 4, while the UNSW-NB15 and CICIDS2017
datasets require 3 clusters. In all cases, a smaller DBI translates to a better clustering effect.
Figure 3 illustrates the clustering effect diagram.

To demonstrate the impact of BIRCH on datasets with varied data distribution charac-
teristics, this paper employs information entropy to depict the internal order degree of the
datasets. The higher the level of order in a dataset, the lower its information entropy would
be. The entropy values of the original datasets of KDDCUP99, UNSW-NB15, CICIDS2017,
and NSL-KDD, without any prior classification, are 0.499, 0.576, 1.048, and 1.029, respec-
tively. These values indicate that the original datasets have low levels of data order, which
implies that they exhibit complex data distribution characteristics.

Figure 2. DBI under different cluster numbers in different datasets.
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Figure 3. Scatter graph of clustering effect. Clustering effect of KDDCUP99. (a) UNSW-NB15;
(b) CICIDS2017; (c) NSL-KDD; (d) datasets using BIRCH and PCA are used in dimensionality reduction.

After pre-classifying the datasets using BIRCH (see Figure 4), the information entropy
of the different datasets decreases, which minimizes the impact of irregular data on anomaly
detection. During the experiment, we observed that the information entropy of the data
subset with cluster label 2 in the UNSW-NB15 dataset (0.683) and the data subset with
cluster label 1 in the NSL-KDD dataset (1.037) was higher than that of the original dataset.
By analyzing different types of data subsets based on information entropy, we found that
subsets with significantly different quantities of normal and abnormal data tend to have
lower information entropy. Conversely, subsets with different or roughly equal quantities
of both types of data often have information entropy close to or greater than that of the
original dataset. This is due to the calculation formula for information entropy. In our
experiment, only two out of the thirteen data subsets had slightly higher information
entropy compared to the original dataset. Therefore, the experimental results suggest that
the BIRCH algorithm can improve the organization of data to some extent. Furthermore, in
these two specific data subsets, the performance of anomaly detection was relatively better,
indicating that the BIRCH algorithm excels in clustering data with similar characteristics,
even though it may not accurately distinguish between different types of data during the
clustering process.

In the training of the Autoencoder, the pre-classified subset is used as input data to
train the Autoencoder. The Autoencoder is used to minimize the average reconstruction
error. Using this reconstruction error, normal data and anomaly data can be classified.

In the testing of the Autoencoder, the test data is inputted into the Autoencoder, and the
reconstruction error is used as the anomaly score. We stack two 8-layer convolution neural
networks to build the Autoencoder and took a rectified linear unit (ReLU) activation function.
The regularization coefficient of our L2 regularization is 10 × 10−5. When the loss of data
in the test set is greater than this threshold, it will be classified as normal data. Tables 1–4
show the experimental results based on different datasets. And Figures 5–7 show are the
corresponding confusion matrices, which show more details on the experimental results.
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Figure 4. Information entropy of data subsets based on different datasets. KDDCUP99 (with label: i),
UNSW-NB15 (with label: i), CICIDS2017 (with label: i), i = 0, 1, 2. . .. This represents subsets of data
with different cluster labels.

Table 1. Comparison of evaluation metrics of data subsets with different cluster labels. The metrics
of subsets are averaged as the metrics of the whole dataset, which is compared with the traditional
algorithm. BAE (with label: i), i = 0, 1, 2, 3 means that the BAE proposed in this paper is used to
process the data subsets of different cluster labels of KDDCUP99.

Methods Accuracy (%) Recall (%) Precision (%) F-Score (%)

Logistic Regression 93.892 88.204 96.884 92.340
SVM 92.472 99.897 84.781 91.72

Decision Tree 95.302 99.929 89.933 94.668
Autoencoder 81.140 76.490 100.00 86.679

BAE (with label:0) 99.329 99.245 100.00 99.621
BAE (with label:1) 93.207 93.205 100.00 96.483
BAE (with label:2) 94.590 94.572 100.00 97.210
BAE (with label:3) 96.705 86.277 97.000 91.324

BAE (average) 95.958 93.325 99.250 96.160

Table 2. Results of each algorithm based on the UNSW-NB15 dataset. BAE (with label: i), i = 0, 1, 2
means that the BAE is used to process the subsets of different cluster labels of UNSW-NB15.

Methods Accuracy (%) Recall (%) Precision (%) F-Score (%)

Logistic Regression 89.516 80.438 62.031 70.046
SVM 90.755 70.117 69.492 69.803

Decision Tree 89.708 85.419 61.73 71.668
Auto-encoder 82.204 100.00 45.665 62.698

BAE (with label:0) 88.603 100.00 40.636 57.789
BAE (with label:1) 90.002 100.00 81.985 90.101
BAE (with label:2) 84.252 91.401 100.00 95.507

BAE (average) 87.619 97.137 74.207 81.132
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Table 3. Results of each algorithm based on the CICIDS2017 dataset. BAE (with label: i), i = 0, 1, 2
means that the BAE is used to process the subsets of different cluster labels of CICIDS2017.

Methods Accuracy (%) Recall (%) Precision (%) F-Score (%)

Logistic Regression 89.888 95.499 88.204 91.707
SVM 88.312 89.537 90.406 89.969

Decision Tree 90.254 85.276 97.194 91.107
Auto-encoder 89.848 83.236 91.541 87.191

BAE (with label:0) 89.716 88.260 99.996 93.762
BAE (with label:1) 95.171 86.702 93.269 89.866
BAE (with label:2) 92.854 83.911 98.551 90.643

BAE (average) 92.580 86.291 97.272 91.424

Table 4. Results of each algorithm based on the NSL-KDD dataset. BAE (with label: i), i = 0, 1, 2
means that the BAE is used to process the subsets of different cluster labels of NSL-KDD.

Methods Accuracy (%) Recall (%) Precision (%) F-Score (%)

Logistic Regression 84.428 100.0 78.473 87.938
SVM 81.915 69.860 97.599 81.432

Decision Tree 92.932 89.494 97.872 93.496
Auto-encoder 74.421 83.864 64.486 72.910

BAE (with label:0) 95.160 96.561 98.457 97.499
BAE (with label:1) 86.838 82.958 100.0 90.685
BAE (with label:2) 81.644 84.639 70.977 77.208

BAE (average) 87.880 88.053 89.811 88.464

Figure 5. Confusion matrices of BAE algorithms’ outcomes based on KDDCUP99. (a) label: 0;
(b) label: 1; (c) label: 2; (d) label: 3.
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Figure 6. Confusion matrices of BAE algorithms’ outcomes based on UNSW-NB15. (a) label: 0;
(b) label: 1; (c) label: 2.

Figure 7. Confusion matrices of BAE algorithms’ outcomes based on CICIDS2017. (a) label: 0;
(b) label: 1; (c) label: 2.

In Table 1, the experimental results show that, compared with Logistic Regression,
SVM, and Decision Tree, the BAE achieves better results in the accuracy, precision, and
F-score. As we noticed, BAE’s recall based on KDDCUP99 is 6% lower than SVM and the
Decision Tree, but its accuracy and precision and F-score are much higher than SVM and
the Decision Tree (up to 9%). For intrusion-detection tasks, informally, precision is the
fraction of all detected anomalies that are real anomalies, whereas recall is the fraction of
all real anomalies that are successfully detected. For real-world implementation, a higher
false detection rate (low precision) will lead to poor user experience. Since BAE’s average
recall is more than 90%, we believe that trading a little bit recall for precision is a better
choice. Compared with the Autoencoder without pre-classification, BAE has significantly
improved the accuracy, recall rate, and F-score. The experimental results show that using
BIRCH to pre-classify data can improve the evaluation indexes, and the architecture of
BIRCH combined with the Autoencoder can obtain a better anomaly-detection effect. The
experiments on the UNSW-NB15, CICIDS2017, and NSL-KDD also prove that the proposed
method is effective. Using DBI to determine the optimal cluster number of UNSW-NB15,
CICIDS2017, and NSL-KDD, values are all 3.

Results in Table 2 show that, compared with the logistic regression algorithm, SVM
algorithm, and decision tree algorithm, the BAE algorithm performed slightly better in
terms of the recall rate, precision rate, and F-score, but slightly worse in terms of accuracy.
When comparing the experiments without pre-classification and directly using the proposed
Autoencoder model in this paper with the experiments using pre-classification and the
proposed Autoencoder model in this paper, the accuracy decreased by 5.415%, the precision
rate decreased by 28.542%, and the F-score decreased by 18.434%.

384



Mathematics 2023, 11, 3398

Results in Table 3 show that the average accuracy of anomaly-detection experiments
based on different data subsets is 92.580%. Compared with the logistic regression algorithm,
SVM algorithm, and decision tree algorithm, the BAE algorithm performed better in terms
of accuracy. When comparing the experiments with and without pre-classification using
the proposed Autoencoder model in this paper, the accuracy decreased by 2.732%, the
recall rate decreased by 3.055%, the precision rate decreased by 5.731%, and the F-score
decreased by 4.233%.

In Tables 2–4, the experimental results demonstrate that BAE outperforms Logistic
Regression, SVM, and the Decision Tree in terms of recall, precision, and F-score when
processing UNSW-NB15, but slightly underperforms in accuracy. For CICIDS2017, BAE
achieves higher accuracy. In NSL-KDD, BAE has a higher accuracy than Logistic Regression
and SVM, but slightly lower accuracy than the Decision Tree. Across these four datasets, BAE
achieves significant improvements in accuracy, precision, and F-score when compared to the
Autoencoder without pre-classification. Also, as we can see from Figures 5–7, the confusion
matrices maintain consistency with the corresponding experimental statistical results.

Based on the aforementioned results, BAE combined with BIRCH and the Autoencoder
exhibits varying performance based on different datasets. However, overall, it results in
better anomaly-detection outcomes.

6. Conclusions

In this work, we proposed an anomaly-detection algorithm called the BAE algorithm.
BAE utilizes BIRCH as the pre-algorithm for the anomaly-detection algorithm based on
the Autoencoder. BIRCH is effective in diminishing the impact of datasets with complex
data distribution characteristics on the threshold for anomaly detection. Using DBI, the
optimal cluster number for a data subset is selected based on the best clustering effect,
and the corresponding Autoencoder is trained on the data subset outputted by BIRCH.
The Autoencoder is often regarded as the core algorithm in intrusion-detection systems
due to its potential to detect anomalous traffic. The model can compute the threshold
by determining the disparity between input and output data and recognize legal and
anomalous packets through the threshold. The proposed BAE algorithm has been validated
experimentally using the KDDCUP99, UNSW-NB15, CICIDS2017, and NSL-KDD datasets.
These experiments demonstrate the effective and accurate detection of anomalies in unla-
beled data using the algorithm. In this research, optimizing the running efficiency of BAE
was not a focus, and the computational complexity of the algorithm is not sufficiently low.
In the future, we will put more effort into improving its running efficiency. Additionally,
since BAE is a framework-like algorithm, alternative classic pre-classification algorithms
can be used, and more advanced Autoencoders can be employed to replace the current one
in order to achieve better performance.
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Abstract: This work presents a comparative analysis of various machine learning (ML) methods for
predicting item difficulty in English reading comprehension tests using text features extracted from
item wordings. A wide range of ML algorithms are employed within both the supervised regression
and the classification tasks, including regularization methods, support vector machines, trees, random
forests, back-propagation neural networks, and Naïve Bayes; moreover, the ML algorithms are
compared to the performance of domain experts. Using f -fold cross-validation and considering the
root mean square error (RMSE) as the performance metric, elastic net outperformed other approaches
in a continuous item difficulty prediction. Within classifiers, random forests returned the highest
extended predictive accuracy. We demonstrate that the ML algorithms implementing item text
features can compete with predictions made by domain experts, and we suggest that they should
be used to inform and improve these predictions, especially when item pre-testing is limited or
unavailable. Future research is needed to study the performance of the ML algorithms using item
text features on different item types and respondent populations.

Keywords: text-based item difficulty prediction; text features and item wording; machine learning;
regularization methods; elastic net regression; support vector machines; regression and decision trees;
random forests; neural networks; algorithm vs. domain expert’s prediction performance

MSC: 62H12; 62H30; 68T50

1. Introduction

In educational assessment, the analysis of test items is crucial for designing reliable,
valid and fair tests. Item difficulty, the most important item characteristic, is commonly
estimated using classical test theory (CTT) and item response theory (IRT) models based
on test-taker responses [1]; however, item pre-testing is not always possible, or it may be
limited, e.g., due to security or legal reasons. In such situations, automated estimation of
item difficulty based on their wording can inform test construction.

Various properties of text wording of a given test item determine how difficult the
item is for a test-taker. The item text features, such as length, word frequencies related
to established corpora, characteristics of linguistic similarities, and readability indices,
can be used to predict item difficulty using machine learning (ML) algorithms. ML and
natural language processing (NLP) are already used in different areas of education for
automated essay or item scoring [2–4], automated item generation [5–9], data-driven
intelligent tutoring systems [10], online proctoring and cheating detection [11–13], and in
other situations [14–17]. In addition to commonly used methods such as linear regression
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or decision trees [18], regularization approaches and neural networks are sometimes used
to estimate the item difficulty from item wording based on item features [19]. A wide range
of ML algorithms has been used in this context in the past [18,20]. However, their predictive
performance is usually not compared; moreover, ML algorithms are rarely compared to
the performance of domain experts, which is crucial to determine to what extent the ML
algorithms are capable of improving the predictive accuracy of human raters. This is an
area of focus in the study.

To address this gap, we introduce a framework for predicting item difficulty using
textual features from item wording. We assess the predictive accuracy of multiple ML
methods, and we compare them with the predictions made by domain experts. The tools of
choice for the prediction we apply on the item features are supervised ML regression meth-
ods, namely regularization techniques—such as the least absolute shrinkage and selection
operator, ridge regression and elastic net regression—support vector machines, regression
trees, random forests, and artificial neural networks with back-propagation [9,21]. We
predict the item difficulty as a continuous dependent variable, as it would be returned
from student response data. Furthermore, switching the same algorithms into a classifica-
tion fashion, we predict the membership of each item in one of the predefined difficulty
intervals. We assume that classification into one of a few item difficulty intervals could be
easier and more accurate for the algorithms than predicting a precise difficulty point value.
We hypothesize that ML algorithms are able to compete with human domain experts in
predicting (or classifying) item difficulty and that they may further inform and improve
the experts’ predictions.

The paper proceeds as follows. We start by describing the data preparation needed for
the implementation of ML algorithms on cognitive test items, including the text preprocess-
ing and extraction of item features. We then describe the ML algorithms used in this study
in Section 2, Materials and Methods. We briefly describe applied software, model architecture,
algorithms’ pre-setting, and tuning parameter values in Section 3, Implementation. Next, in
Section 4, Results, we describe the results, namely the comparison of the accuracy of item
difficulty predictions returned by different artificial ML algorithms and those performed
by domain experts. Finally, we discuss the key findings in Section 5, Discussion, and offer
some deductions in Section 6, Conclusions.

2. Materials and Methods

A description of a dataset we used for item difficulty prediction and of the applied
ML algorithms we built on follows.

2.1. Dataset and Item Text Processing

For this study, we use item wordings from the English as a foreign language test
administered over eight years (2016–2023) as a part of the Czech matura exam. We use
items from reading comprehension sections containing multiple-choice items with a single-
paragraph passage and four response options, denoted as Section 5. We also utilize a dataset
of test-takers’ answers for the calculation of difficulty for each item as described in more
detail in the next section. Finally, item difficulty evaluation by domain experts comes from
another (internal) dataset.

Item text wordings are extracted from portable document format-based files (with
suffixes .pdf) using optical character recognition (OCR). Then, we apply the scraping
methods employing empirical approaches such as regular expressions’ masking, by which
we obtain an unstructured text for each item’s wording, split into item passage, item
question, key option (the correct answer), and distractors (incorrect answers). Next, the text
is tokenized, i.e., sentences are split into atomic parts (tokens), in this case, words. In the
next step, stopwords and special characters are removed, and the tokens are lemmatized,
i.e., they are transformed into their corresponding lemmas [22], as schematically indicated
in Figure 1.
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• text tokenized
• stopwords removed
• tokens lemmatized

• word counts
• word frequencies
• lexical similarity
• readability indices

text processing feature extraction

Figure 1. A scheme of text processing procedures and extraction of item text features.

Finally, item text features are derived [23]. We consider four types of item text features.
Firstly, the word counts feature is easily calculated using lengths of vectors of item text
tokens. Secondly, using The Corpus of Contemporary American English (COCA) [24,25],
the word frequencies are assessed compared to usual frequencies of given words in ordinary
language. Then, the lexical similarity is calculated using Euclidean and cosine metrics to
describe how textually similar (or close) are vectors of tokens of item wording’s different
parts, e.g., how similar the item question and its key option, i.e., the correct answer, are,
considering that their high lexical similarity may tend to make the item easier. Additionally,
the lexical similarity between the key option and the distractors, i.e., incorrect answers, is
calculated, considering that large dissimilarity can make the item easier. Lastly, we compute
the readability indices depicting how easy-to-read and easy-to-understand the wording of
the text is. In general, the readability indices usually follow formulae of the form

readability index = f
(

νT
word counts, νT

word frequencies, νT
word counts ⊗ word frequencies

)
,

where f is a function in an explicit form using a vector of absolute and relative counts of
words and parts of speech of a given text νT

word counts, a vector of common or unique word’s
frequencies compared to everyday language, νT

word frequencies, and various combinations of

previous two properties, νT
word counts ⊗ word frequencies, as suggested by [26]. A more detailed

explanation of individual item features derived using the above-described approaches is in
Appendix A.

Eventually, using the above techniques, we derive more than 60 text features per item
and list them into a structured dataset of size n × k so that each column represents one
feature for each of n items, and each row contains a vector of all k features for a given item.

2.2. Item Difficulty Based on Student Responses

Having data from more than 50 thousand test-takers answering the items each year, we
enrich the dataset of item text features constructed in the previous step by the item difficulty
estimated using Rasch model [1] (p. 158), [27,28] from student responses. The Rasch model
is relatively simple but can estimate item difficulty for each item; more complex models can
describe other item parameters, such as item discrimination or item guessing, that are not
of interest in this study. The Rasch models assumes that a test-taker with ability θp answers
item i correctly with a probability

P(test-taker with ability θp answers item i correctly) =
eθp−yi

1 + eθp−yi
, (1)

where yi is the difficulty Y of item i, that is of main interest in this study (thus the notation).
We use the conditional maximum likelihood method [1] (p. 165) to estimate difficulties

for each item i ∈ {1, 2, . . . , n} based on the Rasch model (1). The conditional likelihood
method accounts for the overall ability of the tested sample, which may differ each year;
the item difficulty’s estimate is proportional to a portion of incorrect answers to the item
adjusted by a proportion of the total number of correct answers. As an output, we obtain
a vector (y1, y2, . . . , yn)T of n values of item difficulty Y for each item. Note that estimates
of item difficulty based on student responses are close to the true item difficulties when
a representative and a sufficiently large sample of test-takers are available. This was the
case in our study; however, such a respondent sample may not be available in all situations.

390



Mathematics 2023, 11, 4104

2.3. Machine Learning Algorithms

In this study, we compare the performance of several ML methods for predicting
and classifying item difficulty. Let us define the regression and classification tasks more
formally before describing the supervised regression and classification algorithms.

Assume we initially have k ∈ N item text features X1, X2, . . . , Xk and (k+ 1)-th variable
Y, a dependent one, i.e., item difficulty, derived as indicated in the previous section. As
an output of the Rasch model from Formula (1), the item difficulty Y is estimated as
a continuous variable. The regression task algorithms predict a value yi of the item difficulty
Y for item i using values xi,1, xi,2, . . . , xi,k of all item text features X1, X2, . . . , Xk as predictors.

However, for test construction, predicting an exact point value from an item difficulty
continuum is unnecessary; test developers often rely on the item difficulty category, thus
classifying item difficulty into only a few, e.g., five categories, is sufficient. Thus, we
also implement the classification task. As the first step, the item difficulty Y is categorized,
obtaining Yc, so that it is split into m ∈ N disjunctive intervals {c1, c2, . . . , cm} of the same
size using appropriate quantiles. Thus, union

⋃m
�=1 c� is a range of item difficulty variable

Y, i.e.,

m⋃
�=1

c� = {∀y ∈ R : Ymin ≤ y ≤ Ymax},

and intersection
⋂m
�=1 c� is an empty set,

m⋂
�=1

c� = ∅.

Then, within the classification task, item feature Xj, where j ∈ {1, 2, . . . , k}, is treated as
an independent variable for a classification model, which predicts the most-likely interval
c∗� ∈ Yc of the categorized item difficulty Yc.

A flowchart of the regression task is in Figure 2; similarly, a classification task scheme
is in Figure 3. Regardless of the regression or classification task, the predicted item difficulty
values are compared to the ’true’ ones as estimated using the Rasch model. To increase
reproducibility as much as possible, algorithms are learned on training subsets, while point
estimates of the predictive metrics are estimated on testing subsets. This is repeated several
times to obtain a more robust estimate of the predictive performance, averaging all point
estimates collected from individual iterations.

Domain experts estimate the item difficulty Y using their empirical knowledge in the
field, and their item difficulty estimates Y might also be categorized to create Yc. Thus, do-
main experts can be treated as “another” regression and “another” classification algorithm
and their performance can be compared to the predictive and classification performance
of ML algorithms. Many ML algorithms have both the regression and classification ver-
sion [29], as we describe in more detail in the next section.

2.3.1. Regularization

Although regularization techniques could serve as regression algorithms, they also
offer an option to select a subset of item features used for model building. Therefore, regu-
larization methods enable feature selection, which helps reduce the problem’s dimensionality
with minimal loss of information.

LASSO (Least Absolute Shrinkage and Selection Operator) regression estimates a value
yi of item i’s difficulty Y using least squares and L1 regularization-based coefficients
β0, β1, . . . , βk minimizing the following term,

n

∑
i=1

(
yi − β0 −

k

∑
j=1

β jxi,j

)2

+ λLASSO ·
k

∑
j=1

|β j|, (2)
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where xi,j is a value of j-th feature of i-th item with j ∈ {1, 2, . . . , k} and λLASSO > 0 is
a penalization term [30].

training set X1 . . . , Xk

’true’ item difficulty Y

regression model
predicted

model
training

difficulty
estimation

regression model

model
testing

difficulty
estimation

predicted

item difficulty Ŷ

comparison and point estimate of predictive performance’s metric calculation

(i) model training phase

(ii) model testing phase

continuous

continuous

testing set X1, . . . , Xk

’true’ item difficulty Y

trained model

item difficulty Ŷ

Figure 2. A flowchart of the regression task. The model is built using a training set, while item
difficulty Y is predicted using a testing set. The training and testing phase are repeated several
times within the cross-validation to increase the robustness and reproducibility of the predictive
performance metric estimate. The ‘true’ item difficulty Y is in quotes since it is estimated from student
response data rather than simulated.

classification
predicted

model
training

difficulty
classification

model
testing

difficulty
classification

predicted

(i) model training phase

(ii) model testing phase

categorized

categorized

model

classification
model

comparison and point estimate of predictive performance’s metric calculation

testing set X1, . . . , Xk

’true’ item difficulty Yc

’true’ item difficulty Yc

trained model

item difficulty Ŷc

item difficulty Ŷc

training set X1 . . . , Xk

Figure 3. A flowchart of the classification task. The model is built using a training set, while item
difficulty Yc is classified using a testing set. The training and testing phase are repeated several
times within the cross-validation to increase the robustness and reproducibility of the predictive
performance metric estimate. The ‘true’ item difficulty category Yc is in quotes since it is estimated
from student response data rather than simulated.

Similarly, ridge regression uses L2 penalization and penalization term λridge > 0 to
minimize

n

∑
i=1

(
yi − β0 −

k

∑
j=1

β jxi,j

)2

+ λridge ·
k

∑
j=1

β2
j , (3)
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while item difficulty Y’s value yi is estimated for item i using its item text features xi,j with
j ∈ {1, 2, . . . , k} [31].

Finally, elastic net regression combines both L1 and L2 penalization and minimizes the
following function,

n

∑
i=1

(
yi − β0 −

k

∑
j=1

β jxi,j

)2

+ λLASSO ·
k

∑
j=1

|β j|+ λridge ·
k

∑
j=1

β2
j (4)

to estimate item i’s difficulty Y using its text features xi,j, where j ∈ {1, 2, . . . , k}. Assuming
both penalizations, i.e., the L1 and L2 terms in Formula (4) are convex [32], elastic net
usually reaches values of the function in Formula (4) as minimal as LASSO or ridge
regression individually does, and, thus, performs at least as good as the previous two
regularization algorithms [33].

Since Formulae (2)–(4) are minimized while coefficients β0, β1, . . . , βk are estimated,
the terms λLASSO ∑k

j=1|β j|, λridge ∑k
j=0 β2

j are also minimized. Thus, if λLASSO = 0 or
λridge = 0, penalization terms in Formulae (2)–(4) are removed, and the functions in the
formulae become ordinary least squares usual for multivariate linear regression. Otherwise,
whenever is λLASSO > 0 and λridge > 0, then, for β j close to zero, such a coefficient tends to
be shrunk towards zero, and, consequently, j-th item feature is removed from the model
while β̂ j = 0. Thus, regularization techniques could also work as feature selectors. LASSO
is considered a better feature selector than ridge regression [34]. Intuitively, assuming j-th
item feature Xj is likely to be removed from the model, so it is 0 < |β j| < 1, then also
0 · |β j| < |β j| · |β j| < 1 · |β j| and, consequently, β2

j < |β j| (†). Whenever is λridge · β j or

λridge · β2
j term large enough so that removing the j-th item feature Xj from the model

would reduce the penalization term significantly, the j-th item feature is removed. Thus,
for constant values of λLASSO = λridge, due to (†), term λridge · β2

j in the ridge regression
is not as large as term λLASSO · |β j| in the LASSO, and, consequently, it is less likely that
j-th item feature Xj is removed from the ridge regression model than from LASSO model,
keeping the penalization levels the same for the two models.

2.3.2. Naïve Bayes Classifier

Naïve Bayes classifier classifies i-th item into the most likely class c∗� of item diffi-
culty Y. The Bayes theorem assumes that a relationship between conditional probabilities
P(Yi = cl | ∀xi,j) and P(∀xi,j | Yi = c�), where ∀xi,j term stands for a joint proposition{

Xi,1 = xi,1 ∧ Xi,2 = xi,2 ∧ · · · ∧ Xi,k = xi,k
}

, is

P(Yi = c� | ∀xi,j) =
P(∀xi,j | Yi = c�)P(Yi = c�)

P(∀xi,j)
. (5)

The non-conditional probabilities P(Yi = c�) and P(∀xi,j) are constant for a given
dataset [35] and can be easily estimated as

P̂(Yi = c�) =
1
n

n

∑
i=1

I(Yi = c�) and P̂(∀xi,j) =
1

n · k

n

∑
i=1

k

∑
j=1

I(Xi,j = xi,j), (6)

where I(A) is an identifier function which is equal to 1 if and only if proposition A is true,
otherwise it is equal to 0, i.e.,

I(A) =

{
1, proposition A is true,
0, proposition A is false.

(7)

Thus, proportion P(Yi=c�)
P(∀xi,j)

is constant and Formula (5) can be rewritten as

P(Yi = c� | ∀xi,j) ∝ P(∀xi,j) | Yi = c�),
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and as far as we assume classes c1, c2, . . . cm are independent, we may also write

P(Yi = c� | ∀xi,j) ∝ P(∀xi,j | Yi = c�) ∝

∝ P(Xi,1 = xi,1 ∧ Xi,2 = xi,2 ∧ · · · ∧ Xi,k = xi,k | Yi = c�) ∝

∝
k

∏
j=1

P(Xi,j = xi,j | Yi = c�).

With Naïve Bayes, item i is classified into interval c∗� so that

c∗� = argmax
�∈{1,2,...,m}

{
P(Yi = c� | ∀xi,j)

}
= argmax

�∈{1,2,...,m}

{
k

∏
j=1

P(Xi,j = xi,j | Yi = c�)

}
.

For categorical item features Xj, probability P(Xi,j = xi,j | Yi = c�) is estimated
similarly to Formula (6); for continuous variables Xj, it is estimated using cumulative
version of normal distribution function, i.e., P̂(Xi,j = xi,j | Yi = c�) = Φ(xi,j ± ε | Yi = c�)
for small positive ε > 0.

2.3.3. Support Vector Machines

Assuming the space of all item features X1 × X2 × · · · Xk, support vector machines use
a hyperplane to split the space into two disjunctive subspaces (of different classes). The
splitting maximizes the margins, i.e., the distance between the two closest points, so that
the first comes from one subspace (of the first class) while the latter comes from the second
subspace (of the latter class). The hyperplane is orthogonal to the distance of the two closest
points, assuming each subspace contains ideally observations of only one class; see Figure 4
for details. Assuming m classes, since one model of support vector machines can classify
into only two classes, (m

2 ) models in total are built [36].
Each model of support vector machines searches for a splitting hyperplane that follows

a form of
wTxi − b = 0,

where w is a vector orthogonal to the splitting hyperplane, and b is maximally tolerated
margin’s width. Additionally, the two closest points from both subspaces are elements of
mutually parallel hyperplanes (and also parallel to the splitting hyperplane), i.e., wTxi −
b > 0 and wTxi − b < 0, respectively. Finally, the distance between the two closest points
of different classes is

{
2b
‖w‖

}
, i.e., a width of both margins, and it should be maximized

with respect to the existence of two distinguishable hyperplanes for two closest points of
different classes, so that

max
{

2b
‖w‖

}
subject to |wTxi − b| > 0,

where b as the tolerated margin width, i.e., a user’s tuning parameter, is usually chosen as
b ≥ 1.

A kernel trick with various kernel functions is applied when the points that belong
to different classes are not linearly separable. In principle, the universe of item features,
X1 × X2 × · · · × Xk, is extended by new variables U1, U2, . . ., that increase the universe
dimensionality [37] and, eventually, after that, it becomes linearly separable as indicated
in Figure 5.
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1
‖w‖

wTx + b > 0

wTx + b = 0

wTx + b < 0

1
‖w‖

Figure 4. The margin between the hyperplane of the support vector machines (solid line) and the
closest points of both subspaces (dashed lines) is maximized by the algorithm.

The classification of item i into difficulty Y’s class c∗� is then performed using a voting
scheme, i.e., the class c∗� is the one that the majority of all (m

2 ) models votes for, i.e.,

c∗� = argmax
�∈{1,2,...,m}

⎧⎨⎩
(m

2 )

∑
μ=1

I(μ-th model votes for class �)

⎫⎬⎭,

using the same mathematical notation and identifier function as defined in Formula (7).
When regression is applied, trivial (usually constant) models are built for each sub-

space of the space, divided by the splitting hyperplane. Therefore, averages of all coordi-
nates of all observations belonging to a given subspace are calculated, representing the
regression model of the given subspace.

X1

X2

X1

X2

U1

Figure 5. A visualization of the kernel trick’s principle.

2.3.4. Regression and Classification Trees and Random Forests

Classification trees, also called decision trees, partition the dataset into subdatasets to
contain ideally observations of only one class of item difficulty Y. The partitioning is
performed successively from the original dataset by binary splitting; a given criterion is
minimized within each dataset splitting. In other words, item features’ universe X1 ×
X2 × · · · × Xk is split into disjunctive orthogonal subspaces, including, if not all, then the
vast majority of all points from one class of item difficulty Y. Each step of the dataset
partitioning, i.e., splitting a parenting dataset into two new child subdatasets, enables
the growth of a typical tree plot, dendrogram, by adding two new child branches; see
Figure 6. The partitioning is applied multiple times until the dataset is split according to
item difficulty Y classes’ distribution [38].
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X1

X2

4

7

Y = c1

Y = c2

Y = c3

X1 ≥ 4

yes

X2 ≥ 7

yes

Y = c2

no

Y = c3

no

Y = c1

Figure 6. Linear splitting of the variables’ space (on the left) and an appropriate tree representation
(on the right).

Assuming ρη,� is a proportion of observations of class c� in part of the dataset that is
defined by all node rules from root to node η, then ρη,� should be maximized as much as
possible using an impurity criterion Q(η). The most often used impurity measures are the
misclassification error,

Q(η) = 1 − ρη,�, (8)

the Gini index,

Q(η) =
m

∑
�=1

ρη,�(1 − ρη,�), (9)

and the deviance, also called cross-entropy,

Q(η) = −
m

∑
�=1

ρη,� · log ρη,�. (10)

Obviously, the impurity measure Q(η) is minimized in each dataset’s partitioning
since the lower the impurity measure is, the larger the proportion ρη,� is. Trees tend to
overfit the distribution of classes in the dataset; it means the tree growth is stopped no
sooner than all leave nodes have the impurity criterion as minimized as possible. To avoid
overfitting, various stopping criteria or pruning are applied [39].

Once the tree is grown, it enables to classify item i into difficulty Y’s class c∗� , so that

c∗� = argmax
�∈{1,2,...,m}

{
ρleaf node determined by all node rules from root to the node, �

}
,

using the introduced notation and identifier function from Formula (7). Trivial (constant)
models constructed for each subspace transform the classification trees into regression
trees [40].

Multiple trees create a structure called random forest. Individual trees of a given random
forest are mutually independent and different. This is ensured by applying only a subset
of all item features pre-selected using a bootstrap for each new tree growing in a random
forest. Finally, the classification or regression output of the random forest is determined
by the voting scheme of individual trees [41], similarly as for the support vector machines:
item i is classified into such a difficulty Y’s class c∗� for which the majority of all trees in the
random forest votes, i.e.,

c∗� = argmax
�∈{1,2,...,m}

⎧⎨⎩ ∑
τ∈{trees of random forest}

I(tree τ votes for class �)

⎫⎬⎭,

using the same mathematical notation as above.
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2.3.5. Neural Networks

Neural networks are universal algorithms suitable for regression and classification tasks.
An architecture of a neural network consists of a layer of input and output neuron(s) and
several hidden layers so that each hidden layer consists of multiple neurons [42].

An example of the neuron is in Figure 7. On input of the neuron, there is a vector
of signals from neurons of a previous layer, i.e., zl−1 = (zl−1,1, zl−1,2, . . .)T , multiplied
by a vector of weights wl−1 = (wl−1,1, wl−1,2, . . .)T . If l = 1, the neurons of the first
layer accept weighted signals from a vector of item i’s features, xi = (xi,1, xi,2, . . . , xi,k)

T .
Weighted signals from (l − 1)-th layer are summed up together with bias term bl within Σ
function, i.e.,

Σ = wl−1 · zl−1 + bl ,

and proceeded to the σ function, which is an activating function, usually of the sig-
moid form,

σ(ζ) =
1

1 + e−ζ
,

so that signal yl,1 on output from the neuron of l-th layer is

yl,1 = σ(Σ + bl) = σ(wl−1 · zl−1 + bl) =
1

1 + e−(wl−1·zl−1+bl)
,

which is finally transcended to the next, (l + 1)-th layer. Vectors of weights, wl =
(wl,1, wl,2, . . .)T are adjusted within each iteration of so-called backpropagation when the
weights are increased or decreased by small gradients to minimize the loss function, often
implemented as L1 or L2 penalization [43].

zl−1,3 wl−1,3 Σ σ

activating
function

yl,1

output
zl−1,2 wl−1,2

zl−1,1 wl−1,1

zl−1,• wl−1,•
weights

...
...

bias bl

inputs

Figure 7. A scheme of one neuron in neural network.

In the regression framework, besides neurons in a hidden layer, we implement a single
neuron in the output layer, returning continuous estimate ŷi of item i’s difficulty. In the
classification framework, there are m output neurons representing classes {c1, c2, . . . , cm}
and we adopt voting for c∗l in classifying network [44], as follows

c∗� = argmax
�∈{1,2,...,m}

{
y# of layers, �

}
.

2.3.6. Variable Importance Analysis

While the importance analysis is not a stand-alone algorithm for item difficulty (or its
categorized variant) prediction, it enables us to evaluate how “important” a given variable
is for a model, considering the predictive performance; in other words, how much poorer
the model would predict if it lacked the given variable [45].

We apply two measures of variable importance; each variable, i.e., item feature, has its
own value of the importance measure, considering a given dataset and model. Before we
introduce the measures, we define the mean square error, MSE, as

MSE(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2, (11)
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for vectors y = (y1, y2, . . . , yn)T and ŷ = (ŷ1, ŷ2, . . . , ŷn)T of observed and predicted
difficulties of n items, respectively. The first importance measure is MSEincrease(Xj), which
is equal to an increase of mean square error of item difficulty prediction in such a model
where values of the given item feature, Xj, are randomly permuted [45]. To be more
specific, we firstly calculate mean square error MSE{−∅} of a full model with all original
item features, then we compute mean square error MSE{−j} of a model where item feature
Xj has randomly shuffled values. Finally, MSEincrease(Xj) is defined as

MSEincrease(Xj) =
MSE{−j} − MSE{−∅}

MSE{−∅}
. (12)

The more important item feature Xj for adequate and accurate prediction of item
difficulty, the larger the prediction error, measured using mean square error MSE, when
the item feature Xj is missing in the model. Thus, the greater the value of MSEincrease(Xj),
the more important the item feature Xj for item difficulty prediction.

The second importance measure, node purity increase, NodePurityincrease(Xj) is de-
fined similarly. Once impurity metric Q(η) is chosen, i.e., either misclassification error (8),
Gini index (9) or deviance (10), the node purity increase, NodePurityincrease(Xj), for item
feature Xj is simply an increase of “1 minus impurity metric” term averaged over all leaf
nodes if the item feature Xj is newly introduced into a new model [45]. Thus, having the
averaged “1 − node impurity” term, (1 − Q(η)){−j}, of a tree model with all original item

features except for item feature Xj, and averaged “1 − node impurity”, (1 − Q(η)){−∅}, of
a model where item feature Xj is already included, the NodePurityincrease(Xj) is then

NodePurityincrease(Xj) =
(1 − Q(η)){−∅} − (1 − Q(η)){−j}

(1 − Q(η)){−j}
. (13)

Again, the more important item feature Xj for the predictive model performance, the
higher average “1−node impurity” increase, i.e., the higher average purity increase we can
expect once the item feature Xj is introduced into the model. Thus, the larger the value of
NodePurityincrease(Xj), the more important the item feature Xj for item difficulty prediction.
According to some sources, e.g., [46], MSEincrease(Xj) measure should be preferred to
NodePurityincrease(Xj), since the latter one is biased.

2.4. Evaluation of Algorithm Performance

Regression and classification tasks are evaluated using mutually different performance
metrics. To obtain more robust estimates of the performance metrics, both regression
and classification models are trained multiple times using various training sets, which
enables us to average the metrics using all point estimates, collected one per each cross-
validation iteration [47]; see Figures 2 and 3. We also compare an item difficulty prediction
performance of the ML approaches with the performance of domain experts.

2.4.1. Evaluation of Regression Performance

The models within the regression task are evaluated and compared using root mean
square error (RMSE), i.e.,

RMSE(y, ŷ) =

√
1
n

n

∑
i=1

(yi − ŷi)2 (14)

for vectors y = (y1, y2, . . . , yn)T and ŷ = (ŷ1, ŷ2, . . . , ŷn)T of observed and predicted
difficulties of n items, respectively. Obviously, inspecting Formulae (11) and (14), we obtain
the following identity, MSE(y, ŷ) = RMSE(y, ŷ)2. Since RMSE indicates the significance
of error between observed and predicted item difficulties, the lower RMSE indicates the
better predictive performance of a given regression algorithm.
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2.4.2. Evaluation of Classification Performance

Assuming there are m observed classes that are predicted using a classifier, we could
calculate a number of cases nu,v when ’true’ class cu is predicted as class cv, where
u ∈ {1, 2, . . . , m} and v ∈ {1, 2, . . . , m}. Listing these frequencies in a table, we obtain
Table 1, called the confusion matrix.

Table 1. A confusion matrix for m observed, ‘true’ classes Yc ∈ {c1, c2, . . . , cm} (in rows) and m
predicted classes Ŷc ∈ {c1, c2, . . . , cm} (in columns).

Predicted Class (Ŷc)
c1 c2 · · · cm

‘true’ class (Yc)

c1 n1,1 n1,2 · · · n1,m
c2 n2,1 n2,2 · · · n2,m

...
...

...
. . .

...
cm nm,1 nm,2 · · · nm,m

The better and more accurate the classification is, the higher frequencies ni,i are aligned
across the confusion matrix’s principal diagonal. Thus, marking the confusion matrix as C
and assuming vectors yc of observed item difficulty classes and ŷc of predicted difficulty
classes, we define predictive accuracy as the ratio of correctly classified items,

predictive accuracy(yc, ŷc) =
1
n

n

∑
i=1

{I(ŷc,i = c� ∧ yc,i = c�)} =

=
tr C
∑ C

=
∑m

u=1 nu,u

∑m
u=1 ∑m

v=1 nu,v
. (15)

The higher the predictive accuracy, the better and more accurate the classification
is [48]. Each of m classes of item difficulty Yc are of equal size in the dataset (classes are
split using quantiles) (†). Assuming a classifier would predict difficulties yc as vector ŷc,r
as a random guessing algorithm, then an expected value of its predictive accuracy is

E(predictive accuracy(yc, ŷc,r)) =
m

∑
�=1

P(Ŷc = c� | Yc = c�) · P(Yc = c�)
(†)
=

(†)
=

m

∑
�=1

1
m

· 1
m

=
m

∑
�=1

1
m2 =

m
m2 =

1
m

.

Values of predictive accuracy greater than 1
m indicate that a classifier performs better

than a random guessing algorithm.
In practice, the very accurate prediction of a correct difficulty class is unnecessary.

A prediction close enough to the correct difficulty class, i.e., the correct one or one class below
or above the correct one, is still useful. Thus, we also measure the classifiers’ performance
using an extended predictive accuracy. The item i is evaluated as correctly classified if it is
classified in the correct difficulty class ŷc,i = yc,i = c�, or one class higher if such a class
exists, ŷc,i = c�+1, or one class lower if such a class exists, ŷc,i = c�−1, compared to the
difficulty class estimated from student response data, thus

extended predictive accuracy(yc, ŷc) =
1
n

n

∑
i=1

{I(ŷc,i ∈ {c�−1, c�, c�+1} ∧ yc,i = c�)}, (16)

where c�−1 is one class below c�, and c�+1 is one class above c�, respectively, if it exists,
and an empty set otherwise. Thus, a probability that a classifier in this sense correctly
classifies category with subscript � ∈ {2, 3, . . . , m − 1} is equal to |{�−1,�,�+1}|

m = 3
m , while

a probability that a classifier correctly classifies the first or last category with subscript
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� = 1 or � = m is equal to |{�,�+1}|
m = 2

m or |{�−1,�}|
m = 2

m , respectively. Again, assuming
a classifier would predict difficulties yc as vector ŷc,r as a random guessing algorithm, then
an expected value of its extended predictive accuracy is

E(extended predictive accuracy(yc, ŷc,r)) =

=
m

∑
�=1

P(Ŷc ∈ {c�−1, c�, c�+1} | Yc = c�) · P(Yc = c�)
(†)
=

(†)
=

⎛⎜⎜⎝ 2
m

+
3
m

+ · · ·+ 3
m︸ ︷︷ ︸

(m − 2)-times

+
2
m

⎞⎟⎟⎠ · 1
m

=
3m − 2

m2 .

Thus, any values of extended predictive accuracy that are greater than 3m−2
m2 show that

a classifier predicts better than a random guessing procedure.

2.4.3. Cross-Validation

To obtain more robust estimates, the performance metrics are re-estimated multiple
times within f -fold cross-validation, where f ∈ N and f ≥ 2, using dataset splitting into
training and testing subset of sizes of f−1

f % and 1
f %, respectively, and then averaged [49],

see Figure 8.

iteration #1 M̂1

iteration #2 M̂2

...
...

...

iteration # f M̂ f

Figure 8. Within p-th iteration of f -fold cross-validation, where p ∈ {1, 2, . . . , f }, f > 1 and f ∈ N,
a model is trained using the training set (colored in white) and tested using the test set (colored in
grey), i.e., the ( f − p + 1)-th of f equal-size parts, which the entire dataset was originally split into.

In particular, for even better comparison and integer-like sizes of both the training
and testing subsets, it might be optimal to choose f as a divisor of sample size n; then
the portions f−1

f % and 1
f % for training and testing subsets, respectively, are of integer

number sizes.
Assuming that p-th iteration of the f -fold cross-validation outputs point estimates of

root mean square error, predictive or extended predictive accuracy M̂p, finally, we could
average the estimates as

M̄ =
1
f

f

∑
p=1

M̂p,

to obtain a robust and unbiased estimate of Ê(M) = M̄, i.e., the root mean square error,
predictive or extended predictive accuracy [50], respectively.

2.4.4. Relationship between Model’s Predictive Performance and a Number of Item
Features in a Model

A value of the root mean square error, RMSE, following Formula (14) is not closely
related to a number of item features considered within a model. Thus, model enrichment
by any new extracted text item features could not necessarily improve predictive model
performance. There are more details, formal derivation, and mathematical rationale of the
relationship between the model predictive performance and the number of item features
on model input in Online Supplement listed in Data Availability Statement at the end of
the article.
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3. Implementation

Text preprocessing and the entire analysis were implemented in statistical language
and environment R [51]. For evaluation of the classification task, the continuous difficulty
Y, estimated from student response data, of an original range 〈−2.48,+1.63) was split into
m = 5 disjunctive intervals, denoted Yc ∈ {c1, c2, c2, c4, c5}, of the same size using quintiles,
specifically 〈−2.48,−0.80), 〈−0.80,−0.44), 〈−0.44,+0.03), 〈+0.03,+0.52), 〈+0.52,+1.63),
and labeled as {very easy, easy, moderate, difficult, very difficult}. Thus, regarding item
difficulty, the dataset of item text wordings is well-balanced. While the final number of
item features derived from their text wording is k = 69, the number of items is n = 40.
Regarding the f -fold cross-validation, due to a straightforward advantage of whenever n is
divisible by f ≥ 2, we choose for f = 20. Thus, since n

f = 40
20 = 2, we applied a leave-two-out

cross-validation.
Domain experts’ evaluation of item difficulty originally uses an arbitrary scale of

〈1.0, 2.5〉. To make the experts’ evaluation comparable with the outputs of classifiers, we
split the experts’ scale in the original logic the scale was designed, i.e., we consider m = 5
equidistant intervals over the range of 〈1.0, 2.5〉. Thus, we create m = 5 intervals of length
0.3 and name them also as {very easy, easy, moderate, difficult, very difficult}. Given the
assumed Rasch model (1), the obtained ’true’ item difficulty is on a logistic scale where
very low and very high values are less common, yet possible. For this reason, we split
the Rasch-based item difficulty using quantiles. The domain experts, on the other hand,
naturally designed the difficulty evaluation scale in a linear fashion, which is our rationale
for equidistant scale splitting.

The difficulty of items was estimated from student responses data using the Rasch
model by the function RM() of eRm package [52]. Text preprocessing was performed using
R package quanteda [53]. Regularization was implemented with a function glmnet() of
glmnet package [54]. Naïve Bayes classifier and support vector machines were built using
naiveBayes() and svm() functions of e1071 package [55]. The radial kernel function was
chosen for the kernel trick if applied. Classification and regression trees were enumerated
by the function rpart() of rpart package [56]. Random forests’ models were learned using
function randomForest() from randomForest package [57], each time using 500 trees in
a model, similarly as neural networks were modeled using neuralnet() function and
neuralnet package [58]. The neural networks contain one hidden layer with the same
number of neurons as item features on input.

4. Results

To assess the possibility and performance of item difficulty prediction from their
textual wordings using ML methods, we applied the above-described methodology to
the dataset of our interest. Firstly, we built supervised models of the regression task to
estimate item difficulty as a continuous variable. There are outcomes of this approach more
in detail in Table 2 presented using the root mean square errors (RMSE) for the n = 40
single-paragraph items, averaged over all f = 20 iterations of the f -fold cross-validation,
across seven different regression algorithms and domain experts’ estimates, too. The lower
value of RMSE an algorithm outputs, the better accuracy and reliability its item difficulty
estimate reaches.

A comparison of the algorithms highlights the varying performance levels between the
models. Among the evaluated models, the regularization algorithms, i.e., LASSO regression,
ridge regression, and elastic net, demonstrated superior performance by yielding the lowest
RMSE value, indicating the highest accuracy and reliability. In particular, the elastic net
returned the lowest RMSE of 0.666 among the regularization approaches (and, thus, among
all models, too). Additionally, considering the data and model settings, the elastic net model
outperformed domain experts in the continuous item difficulty prediction since domain
experts reached an RMSE of 1.004. On the other hand, the regression trees and neural
networks algorithm produced the highest RMSE value of about 0.978 and 0.971, respectively,
suggesting less accuracy and reliability than the other models. The remaining algorithms
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displayed moderate performance levels. Meanwhile, regression trees and domain experts
had higher but comparable RMSE values, further emphasizing the superior performance of
the elastic net algorithm in this analysis. Since the domain experts evaluate item difficulty
mostly using numbers such as 1.0, 1.5, 2.0, 2.5 as described in Section 3, Implementation, they
are a priori handicapped to estimate an exact point value of the item difficulty. Applying
Sheppard’s correction [59], their RMSE as a measure following the logic of the second
moment is overestimated by a term of width of the interval between valid values2

12 = 0.52

12 ≈ 0.02.
However, in case all domain experts would systematically over- or under-estimate the true
item difficulty, their RMSE could be, in theory, overestimated by the width of the interval
between valid values, thus, by 0.5.

Table 2. Values of root mean square error (RMSE) for seven regression algorithms and domain
experts, respectively, estimating item difficulty as a continuous variable, calculated over f = 20
iterations of the f -fold cross-validation.

Regression Algorithm Root Mean Square Error (RMSE)

LASSO regression 0.694
Ridge regression 0.719
Elastic net regression 0.666
Support vector machines 0.716
Regression trees 0.978
Random forests 0.719
Neural networks 0.971

Domain experts 1.004

Additionally, Table 3 presents the predictive and extended predictive accuracies of dif-
ferent classification algorithms, including Naïve Bayes classifier, support vector machines,
classification trees, random forests, neural networks, and domain experts.

Table 3. Values of averaged predictive and extended predictive accuracies for five classification
algorithms and domain experts, respectively, estimating item difficulty as a categorized variable,
calculated over f = 20 iterations of the f -fold cross-validation.

Classification Algorithm Predictive Accuracy Extended Predictive Accuracy

Naïve Bayes classifier 0.175 0.425
Support vector machines 0.000 0.575
Classification trees 0.150 0.525
Random forests 0.325 0.650
Neural networks 0.225 0.550

Domain experts 0.225 0.650

Assuming that only an approximate match of a true and predicted category of item
difficulty is sufficient for applications, we focus on extended predictive accuracy. From
the ML algorithms, random forests output the highest extended predictive accuracy with
a score of 0.650, while Naïve Bayes classifier showed the lowest extended predictive
accuracy, achieving a score of only 0.425. Domain experts achieved a superior accuracy of
0.650, indicating their important role in the classification of item difficulty.

For a better understanding of individual classifiers’ predictive capacity, we plot the
confusion matrices for each algorithm (see Figure 9), where each row represents numbers
of items in each of the observed classes, while each column represents numbers of items
in each of the difficulty classes predicted by the algorithm. The numbers in cells of the
confusion matrices are summations over all iterations of the f -fold cross-validation. Overall,
the results suggest that the ML algorithms could benefit from further improvement to
accurately classify items in all classes of difficulty, especially in the middle classes, i.e., from
easy to difficult. The domain experts did not use the highest category, very difficult much for
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these items; this may be caused by the fact that the test is in general easy and especially
this type of item may appear simple compared to exercises from high school textbooks.

Tables 4 and 5 present the variable importance analysis of different item text features
applied in our model for item difficulty prediction and classification. While Table 4 uses
MSEincrease metric, Table 5 utilizes NodePurityincrease metric of variable importance. Both
measures are reported in Tables 4 and 5 as an average ± standard deviation based on f = 20
point estimates from all iterations of f -fold cross-validation. The MSEincrease as a metric of
an item feature’s importance operates with mean square error (MSE), which is a squared
value of RMSE; it is more suitable for regression models and prediction of item difficulty as
a continuous variable. Whereas NodePurityincrease as a metric of item feature’s importance
calculates impurity of leaf nodes when classifying into a category of item difficulty; thus, it
performs better in the classification of item difficulty. Both measures can provide valuable
insights into feature importance; however, they may result in different rankings as they
capture distinct aspects of model prediction performance. By considering both metrics, we
can comprehensively understand item feature importance and make informed decisions
for analysis and interpretation.

According to Table 4, the number of all characters in item wording seems to be the
most crucial feature for item difficulty, with MSEincrease of 5.912 ± 0.0.673, followed by
the word length’s standard deviation (in characters) with MSEincrease about 4.845 ± 0.799.
Various features such as readability indices, indices of similarity or portion of shared
words between item passage, distractors, item question or key option, as well as longest
and average word length in item wording, follow, with MSEincrease between about 0.900
and 3.500.

In Table 5, the same two features seem to determine the classification of item difficulty
the most—the word length’s standard deviation (in characters) with NodePurityincrease
about 1.644± 0.121, and the number of all characters in item wording with NodePurityincrease
of 1.455 ± 0.137. Additionally, some of the readability indices, numbers of monosyllabic
and rare words, or similarity between different parts of item wording are important for
correct item difficulty prediction, returning NodePurityincrease in an interval of 0.030–0.080.

A detailed explanation of individual item features listed in Tables 4 and 5 is in
Appendix A. Note that although we sorted the item features in decreasing order according
to the importance measures in Tables 4 and 5, the intervals for importance measures’ mean
values, indicated by ± standard deviation terms, overlap between various item features.
Thus, the importance analysis is only illustrative.

Table 6 provides a summary of elastic net regression’s model following Formula (4)
that minimized the root mean square error, RMSE, with λ̂LASSO ≈ 1 and λ̂ridge ≈ 0. While
most item features were removed by shrinking their coefficients towards zero, the item
features listed in Table 6 are those that remained in the model. Compared to the item
features’ importance analysis, the elastic net model could tell us not only which item
features are essential for the final model but also what is the approximate direction of
a relationship between the features and item difficulty. The elastic net model suggests
that a larger total number of characters in item text wording increases item difficulty
(β̂ = 0.002 > 0), and that greater Dalle-Chall and FOG readability indices also make the
item more difficult (β̂ = 0.004 > 0 and β̂ = 0.026 > 0, respectively). In addition to this, an
increased standard deviation of word lengths within item wording (β̂ = 0.809 � 0) and
an average sentence length (words) in distractors (β̂ = 0.002 � 0) increase item difficulty
as well as does the greater proportion of common words in the passage and distractors
(β̂ = 0.630 � 0) (the passage and distractors–common words1 is a proportion of a number
of common words in the item passage also found in the wording of distractors, to a number
of all words in the item passage).
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Figure 9. Summative confusion matrices for five classification algorithms and domain experts,
respectively. For each algorithm, within each iteration of the f -fold cross-validation, a partial
confusion matrix was calculated from training 1

f fraction of the dataset, and the resulting f confusion
matrices were combined into one final summative confusion matrix, which is displayed. The blue
color indicates cells considered for calculating the extended predictive accuracy.
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Table 4. Top twenty item features with the highest value of importance for item difficulty prediction,
measured using MSEincrease. The MSEincrease measure is reported as an average ± standard deviation
based on f = 20 point estimates from all iterations of f -fold cross-validation. A detailed explanation
of individual item features listed in the table is in Appendix A. The abbreviation COCA stands for
The Corpus of Contemporary American English, DF matrix for document-feature matrix.

Item Feature MSEincrease

Number of characters 5.912 ± 0.673
Word length’s standard deviation (characters) 4.845 ± 0.799
Passage and distractors–word2vec similarity 3.521 ± 0.823
Text readability–Traenkle-Bailer index 3.385 ± 0.767
Question and key item–word2vec similarity 2.447 ± 0.956
Distractors–average sentence length (words) 2.385 ± 0.838
Key option and distractors–number of features from a DF matrix 2.225 ± 0.697
Distractors–average word length (characters) 1.689 ± 0.827
Distractors–average word length (characters) 1.689 ± 0.827
Text readability–SMOG index 1.680 ± 0.790
Question and key option–number of features from a DF matrix 1.655 ± 0.807
Item passage and distractors–common words1 1.570 ± 0.832
Passage and key option–word2vec similarity 1.409 ± 0.979
Text readability–FOG index 1.355 ± 1.143
Question and passage–euclidean distance 1.341 ± 0.784
Average word length (characters) 1.322 ± 0.972
Passage and key option–euclidean distance 1.266 ± 0.997
Passage and distractors–euclidean distance 1.072 ± 1.218
Item passage and distractors–cosine similarity 1.018 ± 0.933
Question and distractors–euclidean distance 0.937 ± 0.927

Table 5. Top twenty item features with the highest value of importance for item difficulty pre-
diction, measured using NodePurityincrease. The NodePurityincrease measure is reported as an
average ± standard deviation based on f = 20 point estimates from all iterations of f -fold cross-
validation. A detailed explanation of individual item features listed in the table is in Appendix A.
The abbreviation CEFR stands for The Common European Framework of Reference for Languages,
DF matrix for document-feature matrix.

Item Feature NodePurityincrease

Word length’s standard deviation (characters) 1.644 ± 0.121
Number of characters 1.455 ± 0.137
Text readability–Traenkle-Bailer index 1.214 ± 0.118
Question and key item–word2vec similarity 0.820 ± 0.103
Passage and distractors–word2vec similarity 0.819 ± 0.097
Passage and distractors–euclidean distance 0.806 ± 0.128
Item passage and distractors–common words1 0.707 ± 0.099
Distractors–average word length (characters) 0.684 ± 0.153
Distractors–average word length (characters) 0.684 ± 0.153
Question and passage–number of features from a DF matrix 0.674 ± 0.063
Text readability–FOG index 0.631 ± 0.101
Text readability–Dale-Chall index 0.620 ± 0.095
Text readability–SMOG index 0.537 ± 0.067
Distractors–average sentence length (words) 0.514 ± 0.089
Key option and distractors–number of features from a DF matrix 0.508 ± 0.099
Item passage and distractors–cosine similarity 0.499 ± 0.087
Average word length (characters) 0.478 ± 0.068
Question and passage–euclidean distance 0.463 ± 0.083
Average sentence length (words) 0.458 ± 0.062
Passage and key option–euclidean distance 0.431 ± 0.047
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Table 6. Coefficients of elastic net regression’s model that minimizes RMSE with λ̂LASSO ≈ 1 and
λ̂ridge ≈ 0.

Item Feature Coefficient

(intercept) −3.808
Number of characters 0.002
Word length’s standard deviation (characters) 0.809
Distractors–average sentence length (words) 0.002
Dale-Chall index 0.004
FOG index 0.026
Passage and distractors–common words1 0.630
Key option and distractors–word2vec similarity 0.023

Finally, considering Table 6, increased word2vec similarity between key option and
distractors is associated with a higher item difficulty (β̂ = 0.023 > 0) (the key option and
distractors–word2vec similarity is a similarity of the key option and distractors of the
item wording based on word2vec algorithms, where vectors of tokens for both parts are
generated and the similarity between them is captured from the context). These features
were also detected as important by the importance analysis.

An example of a decision tree, estimating categorized item difficulty as an interval,
is in Figure 10. The tree in the figure uses various item features such as the word length’s
standard deviation (in characters), frequency of uncommon words–according to COCA
corpus, item passage and key option–common words1, key option and distractors–number
of features from a document-feature matrix, distractors–average sentence length (in words),
passage and distractors–word2vec similarity, and number of all characters in item wording.
An interpretation is possible and relatively straightforward–in general, if the item’s words
vary significantly in their lengths, the frequency of uncommon words is high, the proportion
of words common for key option and distractors is low enough, item passage and distractors
are dissimilar enough, or the item wording is long enough, then the item’s difficulty is
relatively high.

More specifically, if the word length’s standard deviation (in characters) is not lower
than 2.3, then the item’s difficulty is difficult (in 〈+0.03,+0.52)) or very difficult (in 〈+0.52,
+1.63)). Otherwise, when the frequency of uncommon words–according to COCA corpus
is lower than 0.26, the item’s difficulty could be easy (in 〈−0.80,−0.44)) or difficult (in
〈+0.03,+0.52)), according to the common words1 among the item passage and key option.
Conditional on the previous rules, whenever the number of features from a document-
feature matrix of key option and distractors, i.e., a number of common words both in item
key option and distractors, is less than 15, the item’s difficulty is very easy (in 〈−2.48,−0.80))
easy (in 〈−0.80,−0.44)), or could be difficult (in in 〈+0.03,+0.52)) for the number of charac-
ters at least 1062. If the word2vec similarity between passage and distractors is lower than
0.79, then the item difficulty is moderate (in 〈−0.44,+0.03)). Otherwise, the item difficulty
depends on the number of characters in the item wording–usually, if the difficulty could be
one of two different difficulty classes, a lower character number in item wording tends to
classify the item into the easier class, as we can see in the last-but-one nodes in the tree in
Figure 10.
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Figure 10. An example of a decision tree classifying the categorized item difficulty into a difficulty
class (and an appropriate interval).

5. Discussion

In this work, we provided a framework for predicting the difficulty of cognitive
test items from their wording. We extracted various text features from English reading
comprehension items and employed a number of ML algorithms. Our work is unique
in that it compares a wide range of ML algorithms, both for regression and classification
tasks, as well as in relating the predictions to those of domain experts. We also provide
reproducible R code, which can be used and built on in future studies. The prediction of
item difficulty using item text features may save time and resources needed for pre-testing
and may help especially in situations when pre-testing is limited or not feasible. ML
prediction of item difficulty presented in this work has the potential to be more precise
than domain experts, and if not fully replacing domain experts, it may be used to guide
and improve their predictions, as well as any imprecise estimates coming from pre-testing
based on small or less representative samples.

Among all regression task algorithms, regularization approaches seemed to overcome
others, similar to [60,61]. This is expectable given that the amount of data included in
the training subset was relatively low. All ML algorithms outperformed domain experts
in this task, although the domain experts are handicapped by not using a continuous
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scale, as mentioned in Section 4. To govern the accuracy-precision trade-off towards
higher accuracy [62], we also considered the task of classifying the item difficulty into only
a few categories. Domain experts slightly outperformed ML algorithms in the accuracy of
difficulty classification when the task was to classify the item difficulty into five categories.
From the ML algorithms, the random forests predicted with the highest extended predictive
accuracy and performed almost as well as domain experts. We suppose that random forests
could return the best predictive performance since this algorithm is a priori ensembled,
embedding multiple decision trees.

It is hard to compare our results to those of other studies, given that different stud-
ies train ML algorithms on data which may differ in the topic, the number of available
items, variability of item content and difficulty, as well as used difficulty scale or diffi-
culty distribution among various parts of the scale. Benedetto et al. in [63] applied ML
techniques on multiple true-false questions from CloudAcademy to predict the question
difficulty and received RMSE about 0.700–0.900 for random forests, decision trees, support
vector machines, and linear regression. In another paper, Benedetto et al. [64] introduced
an R2DE model for newly generated items and automatically predicted their difficulty,
originating from interval 〈−5,+5〉 with RMSE of 0.823, which is approximately compa-
rable to our results, i.e., RMSE of 0.668 (elastic net) on item difficulty coming from an
interval 〈−2.48,+1.63). Using word embedding and support vector machine with the
radial kernel, Ehara in [65] reported RMSE about 3.632 for item difficulty prediction on
English vocabulary tests with a pre-estimated difficulty range in 〈−2,+4〉; since our dataset
if of similar difficulty range, we received better performance for item difficulty prediction
in case of support vector machines—an RMSE of 0.716. Lee et al. in [66] predicted item
difficulty for C-tests, i.e., tests where the second part of every second word is missing
and should be fulfilled by a test-taker, and reached an RMSE of 0.240 using advanced
architectures of support vector machines and neural networks. Regarding the adaptive
scenarios, Pandarova et al. in [67] predicted the difficulty of cued gap-filling items using
common item features and several ridge regression models and obtained an RMSE of 0.770.
Qiu et al. in [68] trained a document-enhanced attention-based neural network on data
from medical online education websites in China to predict the correct-answer ratio (in
the range of 0 to 1) and output RMSE of 0.131. They also compared the approach with
support vector machines-based prediction, yielding an RMSE of about 0.172, which is,
considering their difficulty range 〈0, 1〉, comparable with our results. Ha et al. in [69], and
Xue et al. in [70] published, besides response times, prediction of item difficulty using
medical datasets based on correct-answer ratios (i.e., difficulty in a range of 0 to 1) and
employing various ML methods and transfer learning, resulting in an RMSE in the range
of 0.200–0.300. Similar approaches and results as Ha et al. in [69] are also reported by
Yaneva et al. in [71]. Yin et al. in [72] proposed a new text-embedded and hierarchical
pre-trained model QuesNet for item representation, that is able to predict item difficulty,
ranged in the interval 0–1, with an RMSE of 0.253. Several studies went deeper into item
difficulty classification rather than continuous prediction. Hsu et al. in [73] predicted item
difficulty (of five levels, i.e., very easy, easy, moderate, difficult, very difficult) in social stud-
ies tests using semantic spaces and word embedding techniques, by which they reached
accuracy about 0.350 and extended accuracy about 0.780. Similar to our study, they also
found that semantic similarity between an item stem and the options strongly impacts item
difficulty. One year later, Lin et al. in [74] remade the analysis by Hsu and applied long
short-term memory on the same problem and datasets; they received an accuracy of 0.370
and extended accuracy of 0.840. Compared with the above-mentioned studies, our analysis
is limited by the number of items available for training the ML algorithms, as well as by
the relatively low and homogeneous item difficulty related to the level of the exam, which
was set to B1 according to the Common European Framework of Reference for Languages
(CEFR) standard.

This study opens several paths for further research. One possible path to improving
the algorithms presented here is to extend or improve the extracted item text features while
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keeping in mind that simply boosting a number of item features would not necessarily
improve model predictive performance; see Section 2.4.4. We focused on text content rather
than context within the item difficulty prediction using their text wording. In our case,
various readability indices and indices of similarity between individual parts of item text
wording seemed to be important for the difficulty prediction, similarly to [73]. Additionally,
considering the elastic net summary, the standard deviation of item words’ length (in
characters) was of significant importance. The contentual features are easier to extract,
while they may reduce information encoded in the textual wording significantly [75].
Further research may consider also incorporating contextual analysis, which, however,
also requires extensive samples of textual data [76]. Other future paths include tuning the
settings of the involved ML algorithms or even including further ML methods.

Involving a wider range of training datasets is another possible path to follow. Our
work focused on predicting item difficulty in the reading comprehension section of the
English language test; however, the possible usage of the methods presented here is
much wider. Similar methods may find their use in the prediction of item difficulty in
other knowledge tests [69,70,77], or to provide a better understanding of the rating of the
quality of grant proposals [78,79] when a text complementing numerical ratings is available.
Text analysis and ML methods may provide a deeper insight into item-level differences
in responding and explain so-called differential item functioning (DIF) [80–82] or item-
level between-group differences in change after treatment (differential item functioning in
change, DIF-C) [83]. Given the increasing computational power, we expect more research
implementing textual data analysis will complement the analysis of rating data in the future.

6. Conclusions

To conclude, the text analysis of item wording may be useful for the prediction of item
difficulty, especially when item pre-testing is limited or not available. Machine learning al-
gorithms, particularly regularization or random forests, may be able to inform and improve
item difficulty estimates of the domain experts. Future studies should consider more com-
plex and deeper text analysis, including context analysis, as well as other ML methods, and
method tuning to even further improve the performance of the item difficulty prediction.
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Appendix A

In this part of the appendix, we describe selected item features and their definitions
in more detail, particularly those listed in Tables 4 and 5. The wording of an item usually
consists of the following parts: an item passage, a question, a key option, and distractors.
The item passage is an introductory text of varying length that mentions important terms
or definitions asked in the following item question or describes the item’s context. The item
question is followed by a permutation of a key option, i.e., a correct answer, and several
distractors, i.e., incorrect answers. In summary below, we mark any of the item wording
part as {A},

{A} ∈ {item passage, question, key option, distractors},

and any pair of the item wording parts as {A and B},

{A and B} ∈ {key option and distractors,

item passage and distractors,

item passage and key option,

question and distractors,

question and key option,

item passage and question}.

Each item feature is either a characteristic of an entire item text wording (i.e., there
is one numerical value of the item feature for the item) or of each item wording part (i.e.,
there is one numerical value for each wording part), or a pair of item wording parts. In
case the item feature is a numerical characteristic of part A of the item wording, or pair of
parts {A and B} of the item wording, it is indicated below using {A}: “item feature label”,
or {A and B}: “item feature label” notation, respectively.

Item Feature Description or Definition of the Item Feature

number of characters Total number of characters in a text of the item wording.

{A}–number of characters
Total number of characters in a text of part A of the item word-
ing.

number of tokens
Total number of unique tokens, i.e., words in a text of the item
wording.

{A}–number of tokens
Total number of unique tokens, i.e., words in a text of part A of
the item wording.

number of monosyllabic words
Number of monosyllabic words, i.e., words with only one sylla-
ble in a text of the item wording.

{A}–number of monosyllabic words
Number of monosyllabic words, i.e., words with only one sylla-
ble in a text of part A of the item wording.

number of multi-syllable words
Number of multi-syllable words, i.e., words with more than
three syllables in a text of the item wording.

{A}–number of multi-syllable words
Number of multi-syllable words, i.e., words with more than
three syllables in a text of part A of the item wording.

average word length (characters)
Average number of characters in words in a text of the item
wording.

{A}–average word length (characters)
Average number of characters in words in a text of part A of the
item wording.

longest word length (characters)
Number of characters contained by the longest word in a text of
the item wording.
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{A}–longest word length (characters)
Number of characters contained by the longest word in a text of
part A of the item wording.

average sentence length (words)
Average number of words in sentences in a text of the item
wording.

{A}–average sentence length (words)
Average number of words in sentences in a text of part A of the
item wording.

word length’s standard deviation (characters)
Standard deviation of a number of characters in words in a text
of the item wording.

{A}–word length’s standard deviation (characters)
Standard deviation of a number of characters in words in a text
of part A of the item wording.

number of uncommon words, according to COCA corpus
Number of words in a text of the item wording that appear un-
commonly as defined in COCA (Corpus of Contemporary Ameri-
can English) corpus.

number of rare words, according to COCA corpus
Number of words in a text of the item wording that appear
rarely as defined in COCA (Corpus of Contemporary American
English) corpus.

frequency of the A1 words (CEFR)
Frequency of words in a text of the item wording at A1 level
in CEFR (Common European Framework of Reference for Lan-
guages) scale.

frequency of the B2–C2 words (CEFR)
Frequency of words in a text of the item wording at B2–C2
levels in CEFR (Common European Framework of Reference for
Languages) scale.

number of footnotes (hints) in the item Total number of footnotes or hints in a text of the item wording.

Dale-Chall index

The readability score of a text of the item wording based on
Dale-Chall readability formula. Dale-Chall readability formula
follows,

Dale-Chall index =

(
95 · ndifficult

nw

)
− (0.69 · w),

where ndifficult is a number of words not included in Dale-Chall
list of 3000 familiar words, nw is a total number of words in a text
of the item wording, and w is a value computed as a number of
words divided by a number of sentences, i.e., it is an average
number of words per a sentence [84]. The greater is a value of
Dale-Chall index for a given text, the more difficult is to read
the text.

FOG index

The readability score of a text of the item wording based on
Gunning’s Fog Index. The formula is

FOG index = 0.4 ·
(

w + 100 · nwords with ≥ 3 syllables

nw

)
,

where, again, w is a value computed as a number of words
divided by a number of sentences, i.e., it is an average num-
ber of words per a sentence, nw is a total number of words in
a text of the item wording, and nwords with ≥ 3 syllables is a num-
ber of words with three or more syllables in a text of the item
wording [85]. If the average length of a sentence or the number
of words with three or more syllables in a text increases, the
FOG index increases, too.
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SMOG index

The readability score of a text of the item wording based on
Simple Measure of Gobbledygook (SMOG) index, so

SMOG index = 1.043 ·√nwords with ≥ 3 syllables ·
(

30
ns

)
+ 3.129,

where nwords with ≥ 3 syllables is a number of words with three or
more syllables in a text of the item wording and ns is a number of
sentences in a text of the item wording [86]. Whenever the term√nwords with ≥ 3 syllables

ns
increases, i.e., the square root of a number of

words with three or more syllables per a sentence, readability
increases in difficulty and the SMOG index increases.

Traenkle-Bailer index

The readability score of a text of the item wording based on
Traenkle-Bailer index (mostly used in German-speaking coun-
tries) is calculated as

T-B index = 224.68− (79.83 · c)− (12.24 · w)−
(

129.29 · nprep

nw

)
,

where c is an average number of characters per a word, w is
an average number of words per a sentence, nprep is a number
of prepositions and nw is a total number of words in a text of
the item wording [87]. Traenkle-Bailer index decreases, if the
average number of characters per a word, average number of
words per a sentence, or average number of prepositions per
a word increases.

{A and B}–euclidean distance

Let us assume two textual parts of item wording, A and B,
so that a union of their tokens has a length l ∈ N. Addi-
tionally, let us assume two vectors of the same length l, i.e.,
tA = (tA,1, tA,2, . . . , tA,l)

T and tB = (tB,1, tB,2, . . . , tB,l)
T , where

tA,i = 1 (or tB,i = 1) if and only if text A (text B) contains token
i, otherwise is tA,i = 0 (or tB,i = 0), for ∀i ∈ {1, 2, . . . , l}. The
euclidean distance between the parts A and B is

d(A,B) =
√√√√ l

∑
i=1

(
tA,i − tB,i

)2.

The more similar the parts A and B of the item wording are, the
lower the value of euclidean distance d(A,B) is.

{A and B}–cosine similarity

Again, let us assume two textual parts of item wording, A and
B, so that a union of their tokens has a length l ∈ N. Addi-
tionally, let us assume two vectors of the same length l, i.e.,
tA = (tA,1, tA,2, . . . , tA,l)

T and tB = (tB,1, tB,2, . . . , tB,l)
T , where

tA,i = 1 (or tB,i = 1) if and only if text A (text B) contains token
i, otherwise is tA,i = 0 (or tB,i = 0), for ∀i ∈ {1, 2, . . . , l}. The
cosine similarity between the parts A and B is

cos(A,B) = tA · tB
‖tA‖ ‖tB‖ =

∑l
i=1 tA,i · tB,i√

∑l
i=1 t2

A,i ·
√

∑l
i=1 t2

B,i

The more similar the parts A and B of the item wording are, the
higher the value of cosine similarity cos(A,B) is.
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{A and B}–word2vec similarity

Similarity of parts A and B of the item wording based on
word2vec algorithms. Vectors of tokens for each part A and
B are generated, and the similarity between them is captured
from the context [88]. Thus, text parts with similar context end
up with similar vectors and high word2vec similarity.

{A and B}–common words1

Proportion of common words from a text of part A found in
a text of part B of the item wording. Let us assume two tex-
tual parts of item wording, A and B, so that a union of their
tokens, called also document-feature matrix has a length l ∈ N.
Additionally, let us assume two vectors of the same length l, i.e.,
tA = (tA,1, tA,2, . . . , tA,l)

T and tB = (tB,1, tB,2, . . . , tB,l)
T , where

tA,i = 1 (or tB,i = 1) if and only if text A (text B) contains token
i, otherwise is tA,i = 0 (or tB,i = 0), for ∀i ∈ {1, 2, . . . , l}. Then
the {A and B}–common words1 is

{A and B}–common words1 =
tA · tB
‖tA‖2 =

∑l
i=1 tA,i · tB,i

∑l
i=1 t2

A,i

=

=
∑l

i=1 tA,i · tB,i

∑l
i=1 tA,i

.

{A and B}–common words2

Proportion of common words from a text of part B found in
a text of part A of the item wording. Let us assume two tex-
tual parts of item wording, A and B, so that a union of their
tokens, called also document-feature matrix has a length l ∈ N.
Additionally, let us assume two vectors of the same length l, i.e.,
tA = (tA,1, tA,2, . . . , tA,l)

T and tB = (tB,1, tB,2, . . . , tB,l)
T , where

tA,i = 1 (or tB,i = 1) if and only if text A (text B) contains token
i, otherwise is tA,i = 0 (or tB,i = 0), for ∀i ∈ {1, 2, . . . , l}. Then
the {A and B}–common words2 is

{A and B}–common words2 =
tA · tB
‖tB‖2 =

∑l
i=1 tA,i · tB,i

∑l
i=1 t2

B,i

=

=
∑l

i=1 tA,i · tB,i

∑l
i=1 tB,i

.

{A and B}–number of features from a document-feature (DF)
matrix

Let us assume two textual parts of item wording, A and B,
so that a union of their tokens, called also document-feature
matrix (abbreviated as DF matrix) has a length l ∈ N. Addi-
tionally, let us assume two vectors of the same length l, i.e.,
tA = (tA,1, tA,2, . . . , tA,l)

T and tB = (tB,1, tB,2, . . . , tB,l)
T , where

tA,i = 1 (or tB,i = 1) if and only if text A (text B) contains token
i, otherwise is tA,i = 0 (or tB,i = 0), for ∀i ∈ {1, 2, . . . , l}. The
number of features from a document-feature matrix for the parts
A and B is equal to

‖tA‖2 + ‖tB‖2 =
l

∑
i=1

t2
A,i +

l

∑
i=1

t2
B,i =

l

∑
i=1

tA,i +
l

∑
i=1

tB,i.

Obviously, since ∀i ∈ {1, 2, . . . , l} is either tA,i = 1, or tB,i = 1,
or tA,i = tB,i = 1, it is also

l ≤ ‖tA‖2 + ‖tB‖2 =
l

∑
i=1

t2
A,i +

l

∑
i=1

t2
B,i =

l

∑
i=1

tA,i +
l

∑
i=1

tB,i ≤ 2l.
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Abstract: Large language models have recently gained popularity in various applications due to their
ability to generate natural text for complex tasks. Recommendation systems, one of the frequently
studied research topics, can be further improved using the capabilities of large language models to
track and understand user behaviors and preferences. In this research, we aim to build reliable and
transparent recommendation system by generating human-readable explanations to help users obtain
better insights into the recommended items and gain more trust. We propose a learning scheme to
jointly train the rating prediction task and explanation generation task. The rating prediction task
learns the predictive representation from the input of user and item vectors. Subsequently, inspired
by the recent success of prompt engineering, these predictive representations are served as predictive
prompts, which are soft embeddings, to elicit and steer any knowledge behind language models
for the explanation generation task. Empirical studies show that the proposed approach achieves
competitive results compared with other existing baselines on the public English TripAdvisor dataset
of explainable recommendations.

Keywords: large language models; recommendation systems; human-readable explanations; rating
prediction task; explanation generation task; prompt engineering; predictive prompt

MSC: 94A16

1. Introduction

Recommendation systems have been widely adapted in various applications including
e-commerce sites, social media usages, and content platforms to address the information
overload [1]. The recommendation engines help in predicting the right items to the customer
based on the histories of other similar users, the attributes of users and items, and the
customer’s explicit or implicit personal preferences. There are two major approaches to
solve this research problem where Collaborative Filtering (CF) assumes people who share
similar past preferences will likely have similar preferences in the future and Content-Based
Filtering (CBF) suggests items to users based on the similarity comparison between users’
preferences and items’ characteristics [2].

However, traditional recommendation techniques have less interaction with users
to discover their real-time requirements, resulting in inaccurate predictions and causing
a bad user experience. To overcome these challenges, conversational recommendation
systems have emerged as a promising alternative which enables users to interact with the
recommendation agents through natural language dialogue. This natural and intuitive
interaction mode not only provides an avenue to better understand customers’ needs but
also offers a better user experience [3]. With the recent advancement and popularity of
conversational agents (especially the game-changer, ChatGPT), conversational AIs are

Mathematics 2023, 11, 4230. https://doi.org/10.3390/math11204230 https://www.mdpi.com/journal/mathematics418



Mathematics 2023, 11, 4230

able to communicate with users on a broad range of topics like never before [4]. Figure 1
demonstrates a conversational recommendation system between a user and an agent for
multiple turns shown in black text. Although a massive amount of recommendation
algorithms are powerful enough to generate accurate recommendations, most of them fail
to produce explanations for their recommendations and lack transparency.

Figure 1. A dialogue example of an explainable recommendation system.

There is a general agreement that both accuracy and explainability are crucial aspects
for the evaluation of recommendation systems [5,6]. Applying text explanations to the
recommended items would increase user trust as well as help users easily make decisions
and boost user satisfaction. Hence, more and more research efforts have been devoted to
improving the recommendation and enhancing the explanations for the non-explainable
black box recommender systems [7]. The red text in Figure 1 illustrates the explanations of
the recommendation system.

Most recently, large-scale pre-trained language models (PLMs) have been the focus
of mainstream media and achieved outstanding performance in various natural language
processing tasks [8]. The main reason that PLMs have taken the Internet by storm is
due to their easy adoption. GPT series models trained to predict the next word in an
autoregressive process have gained the most attention and instigated a training paradigm
shift from pre-training and fine-tuning to prompt learning [9].

Since PLMs are usually trained on large corpora and are difficult to optimize for small
training data, it is important to develop an approach to efficiently exploit and influence
PLMs’ output. Prompt-based learning is an emerging solution by automatically generating
prompts in order to adopt PLMs to perform downstream tasks [10]. In this paper, we
take user id and item id as the input to generate explanations for the recommendations by
leveraging the PLMs. The proposed learning scheme jointly trains the rating prediction
task and explanation generation task. The rating prediction task learns the predictive
representation from the input of user and item vectors. Subsequently, these predictive
representations are served as predictive prompts, which are soft embeddings, to elicit
and steer any knowledge behind language models for the explanation generation task.
Compared with the hard prompts which have to rely on human experts to design templates
and are difficult to optimize, soft prompts could be directly fine-tuned using data from
downstream tasks and possess more representation ability. Unlike the traditional joint
training strategy which mainly optimizes multiple tasks simultaneously, our end-to-end
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joint model also explicitly incorporates features extracted from one task into the other task
for the purpose of the interaction between tasks.

The key contributions of our proposed approach are two-fold:

• We propose a joint training scheme to predict the recommendation rating and produce
explanations of the recommendation based on the prompt learning. The predictive
prompts are taken from the predictive representations learned in the rating prediction
task, and fed into PLMs to generate output text.

• Experiments are conducted on the TripAdvisor dataset to verify the effectiveness of our
approach on both rating prediction task and explanation generation task. The results
show that our method is not only capable of generating suitable explanations but also
achieves promising performance comparable with other state-of-the-art algorithms
in terms of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) for the
rating prediction task.

The rest of this paper is structured as follows. In Section 2, several research fields
and paradigms related to the works of this paper are reviewed. In Section 3, an in-depth
discussion of our joint model is provided and discussed. In Section 4, empirical studies
are performed on the public dataset to examine the effectiveness and further analyze the
results of the proposed model. In the last section, we make some conclusions and briefly
present some possible future investigations.

2. Related Work

Since our proposed model is a joint training framework to predict the recommen-
dation rating and generate explanations of the recommendation based on the predictive
prompts using language models, we review three related research directions including the
recommendation system, pre-trained language models and prompt learning in this section.

2.1. Recommendation Systems

Since the earliest recommendation algorithm in the 1990s, this research field has
always been actively investigated by both industry and academia [11]. Content-based
filtering recommendation algorithms have improved their performance by operating on
embedding representations compared to the traditional feature-engineering approaches
such as Bag-of-Words and TF-IDF [12]. Collaborative filtering is another popular technique
in recommender systems to predict user interests by analyzing the behaviors and opinions
of similar users. Since graph neural networks (GNNs) have facilitated the representation
learning in recent years, the Graph Matching-based Collaborative Filtering model (GMCF)
considers two types of attribute interactions where inner interactions independently operate
on either user-specific or item-specific attributes, and cross interactions further integrate
the interdependent relationships between user-specific and item-specific attributes [13].
A recommendation system based on sentiment analysis and matrix factorization (SAMF)
was proposed to address data sparsity and credibility. It combines topic models, matrix
factorization and deep learning to enhance recommendation accuracy [14].

Compared to traditional recommender systems, the conversational recommendation
system provides a human-like interaction that enables users to receive personalized recom-
mendations which are highly relevant to their needs and truly beneficial for their decision
making [15]. To address the cold-start users and static model issues, the ConTS model is
designed to dynamically ask users to provide their favorite attributes of the item and then
make rational recommendations [16]. The EAR model is proposed to estimate the user
preference over items (Estimation stage), learn a reinforced dialogue policy on multi-round
conversational recommendations (Action stage), and update the learning model based on
users’ feedback (Reflection stage) [17].

As the explanation in the recommendation systems is becoming more and more
important, a Deep Explicit Attentive Multi-View Learning Model (DEAML) adopts a
knowledge graph to produce explanations, and applies an attentive multi-view learning
model for solving the rating prediction problem [5]. To leverage the user interaction in the
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recommendation system, a multitask learning framework is used to simultaneously train
the recommendation task, explanation generation, and user feedback incorporation [6].

2.2. Pre-Trained Language Models

The Transformer architecture is an encoder–decoder structure with self-attention mech-
anism to learn long-range representation that was initially applied to natural language
processing tasks and has been widely extended to various domains [18]. It often follows
the self-supervised pre-training strategy and enables fast adaptation to downstream tasks.
Based on the pre-training mechanism, there are three variants of structures including Trans-
former encoders, Transformer decoders and full Transformers with encoder–decoders [19].

The objective of the Transformer encoder framework aims to predict hidden text using
a bidirectional Transformer encoder. BERT which is pre-trained on Masked Language
Model (MLM) and Next Sentence Prediction (NSP) is one of the most remarkable models
in this category that achieves state-of-the-art performances on many NLP tasks [20]. The
Transformer decoder framework employs an autoregressive generation by predicting
the next text conditioned on the past sequence. GPT series models apply left-to-right
unidirectional modeling to pre-train on large scale corpus and allow in-context learning
without fine-tuning the original model parameters [21,22]. The Transformer encoder–
decoder architecture is a sequence-to-sequence learning model where the encoder masks
several fragments and the decoder manages to recover these hidden sections. BookGPT
guides language models to predict user ratings textually for book recommendation tasks
where the output format is based on predefined templates [23]. Generative recommendation
(GenRec) is a recommendation system that leverages large language models to directly
generate recommended items, instead of using traditional ranking-based approaches by
calculating the rating score for each candidate item [24].

2.3. Prompt Learning

Prompt-based learning aims at learning or developing suitable and effective repre-
sentations that can elicit the large PLMs to carry out the given task or solve the specific
problem. This new paradigm of learning has achieved a lot of success in diverse NLP tasks
because of its adaptability and capability.

Automated prompt engineering can be classified into discrete prompts and continuous
prompts [10]. Discrete prompts work on searching natural language text and appending
these text as prompts to reformulate the downstream task. For example, to perform the
sentiment analysis of the given sentence “I like the game very much”, a possible dis-
crete prompt could be like “The game is” and the PLMs would be leveraged to predict
a next token for determining the sentiment of the sentence [25]. LAPAQA generates dis-
crete prompts by extracting the text located between the input and output from large text
corpora [26]. Continuous prompts, in contrast to the discrete prompting method which
requires human-understandable text, enable the model to learn from the continuous vector
space of the underlying PLMs. Prefix-Tuning is a novel technique to guide the PLMs to-
wards the designated task where task-specific vectors are prepended to the input sequence
as prefixes [9]. In the prompt-based news recommendation (PBNR) approach, news rec-
ommendation is considered as a text-to-text language task, taking into account users’ past
reading behaviors. During model training, both ranking loss and language generation loss
are integrated [27]. A Prompt Learning for News Recommendation (Prompt4NR) frame-
work changes the prediction task from determining if a user would click on a candidate
news article into a cloze-style mask-prediction task with various prompt templates [28].

3. Proposed Method

The objective of this paper is to recommend item i to user u and provide a com-
prehensive explanation simultaneously. Our network model to address the explainable
recommendation problem is a joint training framework based on prompt-based learning
for the large language model and is depicted in Figure 2. There are two major components
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in our system. The first component is a deep neural network used to predict a recommenda-
tion score from a given user–item pair (left-hand side of Figure 2). The second component
utilizes the latent representation learned from the first component as the predictive prompts,
feeding them into a large PLM to generate explanations (right-hand side of Figure 2).

Figure 2. The architecture of prompt-based explainable recommendation model.

3.1. Prompt-Based Explainable Recommendation Architecture

In this research, we address the problem of explainable recommendation by proposing
a joint model for recommendation score prediction and explainable text generation, ex-
ploiting the dependencies between these two tasks to enhance the performance compared
to independent models. Joint training is a frequently employed approach when closely
related tasks can be trained simultaneously and share similar datasets. In the context of
neural network models, as these tasks share specific model layers, it promotes the model to
acquire more universally applicable representations, thereby maximizing its generalization
performance across all tasks. The recommendation score prediction is based on Collabora-
tive Filtering of fusion learning [29]. Once the score has been established, the predictive
vectors obtained during the learning process are leveraged with the use of pre-trained
language models, which provide the rich information derived from large training corpus,
to generate explanations.

Inspired from the DeepCF [29], our recommendation model (Rec_Model) contains two
branches of deep network where one is Rec_ModelL to learn the representation and the
other is Rec_ModelR to learn the match function (left-hand side of Figure 2). Unlike DeepCF
which takes user ratings and item ratings as inputs, Rec_Model directly uses IDs of users
and items. The Rec_ModelL consists of two subnetworks represented by Layer_L1n and
Layer_L2n, respectively. The input of Layer_L11 is the user id and the input of Layer_L21 is
the item id. By combining the last layers Layer_L1N and Layer_L2N, the final representation
is P_vectorL. Regarding the structure of Rec_ModelR, the concatenation of the user id and
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item id is passed into the Layer_R11 and is processed through multiple layers to form the
final representation P_vectorR. The Rec_ModelL can be formulated as:

XL1
j = a

(
XL1

j−1WL1
)

XL2
j = a

(
XL2

j−1WL2
)

P_vectorL = XL1 ⊙XL2

(1)

where WL1 and XL1
j define the weight matrix and input of the j-th layer, respectively.

a(·) denotes the activation function to learn more complex representation. The same
notations are applied to the subnetwork Layer_L2n as well. Subsequently, the element-wise
product is employed to the outputs of two subnetworks to yield P_vectorL. Meanwhile, the
formulation of Rec_ModelR is described below:

XR1
j = a

(
XR1

j−1WR1
)

P_vectorR = XR1
(2)

where WR1 and XR1
j are the weight matrix and input of the j-th layer. The final XR1 is

symbolized by P_vectorR. Given the outputs of two branches, we combine them and make
the prediction score as follows:

ŝu,i = a
(

WF
[

P_vectorL
P_vectorR

])
(3)

where WF is the weight matrix and ŝu,i is the prediction score of the recommendation.
After the recommendation process has finished, we propose a prompt learning method

to elicit the knowledge behind the pre-trained language models for the explanation gener-
ation task (right-hand side of Figure 2). In this part, P_vectorL and P_vectorR are served
as predictive prompts represented by PL and PR to trigger the explanation words and
GPT-2 is used as the pre-trained language generation model. We made extensive use of
the GPT2 libraries created by the HuggingFace community. These libraries provide a wide
range of robust deep learning tools and efficiently integrate with the PyTorch framework.
GPT2 has been trained on large amount of data and significantly demonstrated remarkable
performance across many natural language processing tasks. During the training phase,
the prompts with explanation words (ej) are fed into GPT-2 to obtain the encoding XE.
Then, XE is passed through a linear layer with softmax activation to generate a probability
distribution over the full vocabulary. The formulation can be expressed as

dj = softmax
(

XEWE
)

(4)

where dj is the probability distribution and WE is the weight matrix.

3.2. Learning Process

During the training stage, to learn the recommendation score prediction module, we
set the loss function using mean square error as:

LossR =
1

|Tr|∑(ŝu,i − su,i)
2 (5)

where su,I is the ground-truth recommendation score and |Tr| denotes the size of training
samples. To learn the explanation generation, we choose negative log-likelihood as the loss
function, which is defined below:

LossE =
1

|Tr|∑
1

|Exp|∑−logd
ej
j (6)
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where |Exp| denotes the number of explanation words. To jointly model both recommen-
dation score prediction and explanations, we combine two tasks into a multi-task learning
architecture and formulate the loss function as:

LossT = min
θ

(LossR + αLossE) (7)

where α is the weighted parameter to balance two terms.
In the inference phase, initially, we use the predictive prompts with a special word

BOS as the input. The autoregressive process takes the input, runs through the explanation
generation network, selects a word based on the generated word probability distribution
over the vocabulary and appends the selected word to the end of the input to form the new
input. Then, the autoregressive process is repeated until a special generated word EOS is
produced [30].

Algorithm 1 demonstrates the training procedure of our proposed model.

Algorithm 1: Prompt-Based Explainable Recommendation Model.

Input: The training dataset D {User (U), Item (I), Explanation (E)}
Output: θ for all the trainable weights in the model

1: Randomly initialize θ

2: repeat:
3: for each mini-batch {u, i, e} in D:
4: Calculate P_vectorL and P_vectorR to obtain ŝu,i
5: Compute the LossR in Equation (5)
6: Calculate dj based on the expression of Equation (4)
7: Compute the LossE in Equation (6)
8: Compute the LossT in Equation (7)
9: Update the weight θ to minimize the LossT
10: end for

11: until convergence:

4. Experiments and Results

In this section, we develop empirical studies to assess the proposed method in recom-
mendation and explanation tasks. The flow of the experiments includes data-processing,
training, testing and ablation studies. The data are described and divided into different
sets for the evaluation (Section 4.1). We train the model for baselines and our approach
with training set, subsequently evaluating the performance of each model in terms of
the evaluation criterion (Section 4.2) with separate test data after the training procedure
(Section 4.3). The ablation studies are conducted to examine the impact and importance of
each component in our model (Section 4.4).

4.1. Dataset

The source used for evaluating our model is the TripAdvisor dataset which contains
9765 users, 6280 items and 320,023 reviews. The ground-truth explanations are those
sentences from reviews. Similar to the prior research settings [31,32], the training, valida-
tion, and testing sets are divided in an 8:1:1 ratio, resulting in 256,017 training samples,
32,003 validation samples and 32,003 testing samples, respectively. Sample data can be
seen in Figure 3.

 

Figure 3. Sample data.
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4.2. Evaluation Criterion

To assess the overall performance of our proposed solution automatically, both the
recommendation task and explanation generation need to be evaluated. Regarding the
measurement of recommendation module, we employ two popular metrics, Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) [11]. For the generation of explana-
tions, we adopt BLEU (Bilingual Evaluation Understudy) [33] and ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) [34] as two evaluation indicators.

ROUGE-N Precision calculates the ratio of the number of N-grams in the system
results that also appear in the reference results, divided by the total number of N-grams in
the system results. ROUGE-N Recall measures the proportion of N-grams in the reference
results that are also found in the system results, divided by the total number of N-grams in
the reference results. ROUGE-N F-score is the harmonic mean of ROUGE-N Precision and
ROUGE-N Recall. In this research, we report ROUGE-1 F-score (ROUGE1-F) and ROUGE-2
F-score (ROUGE2-F). The BLEU score automatically evaluates sentence generation quality
by calculating n-gram precision between system outputs and reference results, while also
incorporating a brevity penalty (BP) to avoid excessively brief sentences. We use Bleu-1 and
Bleu-4 scores to assess the quality and fluency of generated explanations. It is worth to note
that although BLEU and ROUGE scores are typical and standard metrics for evaluation,
focusing only on the lexical overlap between system-generated and human-written answers
may be biased. Adapting these two metrics to better correlate lexical overlap with the
human judgment is an important future research direction.

4.3. Experimental Performances

To validate the efficacy, our proposed method is compared with several state-of-the-art
models as the baselines:

• Att2Seq [35]: This method is an attention-enhanced attribute-to-sequence network and
is initially proposed to create product reviews. The model uses the user ID, product
ID, and rating as attributes.

• NRT [36]: Unlike reviews which are lengthy and time consuming, tips are very succinct
insights to capture user experience with only a few words in E-commerce sites. This
paper uses multi-task learning framework to predict product ratings and generate
tips where the rating prediction is based on a multi-layer perceptron network and tip
generation is a sequence decoder model. The input of this model consists of user id
and item id.

• PEPLER-MF [32]: PEPLER is a personalized prompt-based learning for explainable
recommendation using pre-trained language models based on user and item IDs.
PEPLER-MF uses Matrix Factorization (MF) for the recommendation rating score
prediction by the user and item embeddings. The explanations are produced with the
aid of pre-trained language models.

• PEPLER-MLP [32]: This method is another variant of PEPLER. The major difference is
that this model trains a Multi-Layer Perceptron (MLP) to estimate the rating scores.

The experimental comparison is operated in the environment of a Windows 10 OS,
utilizing an Intel Core i9 central processing unit (CPU) with 128 GB of memory, and a GPU
NVIDIA GeForce RTX 3090 with a memory size of 24 GB. We adjust the hyper-parameters
empirically to ensure the training quality and the hyper-parameter settings can be seen in
Table 1.

According to the comparison results displayed in Table 2 where the first two baselines
(Att2Seq and NRT) are directly obtained from the relevant papers and the results of the
rest (PEPLER-MF and PEPLER-MLP) are generated by the provided source codes of those
papers, we achieve the highest scores with respect to BLEU-1, ROUGE1-F, ROUGE2-F
and MAE, demonstrating the capability to make appropriate recommendations and create
acceptable explanations. Regarding the performance of recommendation task measured in
RMSE and MAE, in addition to PEPLER-MF, most methods exhibit similar performances
aligned with the prior research findings [37]. Our method receives high scores on BLEU-1
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but lacks consistent improvements on higher-order BLEU and ROUGE scores. Since GPT2 is
a generation-based language model, it may produce synonyms or paraphrases of reference
text, which have similar or identical semantic content but receive lower ROUGE and BLEU
scores. Combining automated metrics and human evaluation to assess the performance
of a generation-based language model comprehensively is very important and is worth
further investigation.

Table 1. Hyper-parameter configuration.

Parameter Value

batch size 128

epoch 10

P_vectorL size 768

P_vectorR size 768

layers N in Rec_Model 2

learning rate 0.00075

Table 2. Comparative assessment of all competing methods on TripAdvisor dataset.

BLEU-1 BLEU-4 ROUGE1-F ROUGE2-F RMSE MAE

Att2Seq 15.20% 0.96% 16.38% 2.19% - -

NRT 13.76% 0.80% 15.58% 1.68% 0.790 0.610

PEPLER-MF 15.94% 1.14% 16.38% 2.14% 1.574 1.341

PEPLER-MLP 15.91% 1.03% 16.39% 2.13% 0.799 0.612

Our Model 16.45% 1.10% 16.71% 2.24% 0.795 0.607

In Table 3, we additionally list various examples, including the ground truth (Ground
truth_X) and the generated explanations (Generation_X), to demonstrate our results. From
what we can see, the polarity of each generated explanation aligns with the ground truth.
However, there is still significant potential for improvement in context generation. As
observed in example 5, although the sentiment of the explanation is correct, the subjects
are not accurately described. Incorporating more information of users and items could be
an avenue to direct the language model’s generation.

Table 3. Five example outputs produced by our model and the corresponding ground truths.

Ground truth_1:
location was good and was close to many restaurants

Generation_1:
the hotel is located in a great location

Ground truth_2:
pool area is good though

Generation_2
the pool is great and the staff are very helpful

Ground truth_3:
the bed is very comfortable and the bath room is great

Generation_3
the bed was very comfortable and the bathroom was clean and modern

Ground truth_4:
i enjoyed the front desk staff

Generation_4
the front desk staff was very helpful
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Table 3. Cont.

Ground truth_5:
gym also very small and with an odd smell

Generation_5
the room was very small and the bathroom was very small

4.4. Ablation Studies

To validate the applicability of our suggestions, we execute ablation studies on the
TripAdvisor dataset to explore the advantages of our methodology and quantify the im-
pact of each critical module. Referring to the findings presented in Table 4, removing
either P_vectorL or P_vectorR leads to performance degradation in terms of all evaluation
metrics. Hence, we are confident that our approach can significantly improve the perfor-
mance of explainable recommendation by jointly learning the recommendation module
and explanation generation.

Table 4. Ablation experimental results.

BLEU-1 BLEU-4 ROUGE1-F ROUGE2-F RMSE MAE

Our Model 16.45% 1.10% 16.71% 2.24% 0.795 0.607

-P_vectorL 15.89% 1.03% 16.43% 2.14% 0.796 0.611

-P_vectorR 15.81% 1.03% 16.41% 2.17% 0.798 0.612

5. Conclusions

In this work, we propose a prompt-based method to address the explainable recom-
mendation system with the leverage of pre-trained language models. To optimize both
recommendation correctness and explanation generation simultaneously, we apply a multi-
task learning strategy. We perform experimental studies on the TripAdvisor dataset and
yield satisfactory results in terms of BLEU-1, ROUGE1-F, ROUGE2-F and MAE. The direc-
tion of adopting predictive prompts in pre-trained language models provides a promising
alternative to produce reasonable recommendation explanations.

Our future work is to expand upon this paper by focusing on the following areas. First,
as the current approach only uses the embeddings learned from the rating task as predictive
prompts, we will investigate more predictive prompts for explanation generation such
as the item descriptions and users’ preferences. Second, the research of recommendation
systems is still an evolving field [38] and we intend to delve further into more advanced
recommendation models. With the increasing quality of recommendation accuracy, we
expect to enhance both recommendation performance and explanation generation at once.
Third, the current language model is based on GPT-2 and we will explore other knowledge
enhanced pre-trained language models to improve the explanation generation [39].
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Abstract: Hand gesture recognition (HGR) is a challenging and fascinating research topic in computer
vision with numerous daily life applications. In HGR, computers aim to identify and classify
hand gestures. The limited diversity of the dataset used in HGR is due to the limited number of
hand gesture demonstrators, acquisition environments, and hand pose variations despite previous
efforts. Geometric image augmentations are commonly used to address these limitations. These
augmentations include scaling, translation, rotation, flipping, and image shearing. However, research
has yet to focus on identifying the best geometric transformations for augmenting the HGR dataset.
This study employed three commonly utilized pre-trained models for image classification tasks,
namely ResNet50, MobileNetV2, and InceptionV3. The system’s performance was evaluated on five
static HGR datasets: DLSI, HG14, ArabicASL, MU HandImages ASL, and Sebastian Marcell. The
experimental results demonstrate that many geometric transformations are unnecessary for HGR
image augmentation. Image shearing and horizontal flipping are the most influential transformations
for augmenting the HGR dataset and achieving better classification performance. Moreover, ResNet50
outperforms MobileNetV2 and InceptionV3 for static HGR.

Keywords: hand gesture recognition; image augmentation; geometric transformation; ResNet;
MobileNet; inception; static datasets

MSC: 68T07

1. Introduction

Interacting with computers using hand gestures can provide users with a natural and
intuitive interface. As a result, much research has focused on developing more accurate
and effective hand gesture recognition (HGR) methods and applying them in various
contexts. Hand gestures are currently utilized in multiple applications, such as games [1,2],
virtual and augmented reality [3–5], assisted living [6,7], and cognitive development evalu-
ation [8]. In addition, hand gesture recognition has gained significant interest in several
industries, including human–robot interaction in manufacturing [9–11] and autonomous
vehicle control [12,13]. With the recent growth of HGR, there is an increasing demand for
more advanced and robust methods to meet the requirements of various applications.

Despite the remarkable success of deep neural networks in HGR [14,15], there are still
significant challenges in this research area. The complexity of hand gestures and differences
in hand size are just two factors that can affect the performance of recognition algorithms.
The training of deep neural networks with insufficient data can lead to overfitting or failure
to learn a high-performance model. Various training schemes, including dropout layers
and data augmentation techniques [16], have been proposed to address this challenge.
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Data augmentation is a popular technique for increasing the size of a dataset and
addressing the problem of insufficient data [17,18]. Various approaches to image-based
data augmentation exist, encompassing geometric transformations, color manipulations,
random occlusion, and methods grounded in deep learning, such as Generative Adversarial
Networks (GANs) [18]. Among these, geometric transformations—comprising image
scaling, rotation, translation, shearing, and flipping—stand out as one of the most prevalent
approaches. These operations are crucial in expanding the sample pool for training deep
neural networks, balancing dataset sizes, and enhancing overall efficiency [19].

Geometric transformations have been extensively applied in hand gesture recognition
(HGR) studies to augment datasets effectively. For example, in Ref. [20], geometric aug-
mentation demonstrated a noteworthy enhancement, improving CNN performance by up
to 5%. Another study focusing on HGR, utilizing capsule networks, showcased improved
results when combined with geometric augmentation involving rotation and translation
operations [21]. Similarly, Ref. [22] used an adapted CNN and image translation (both
vertically and horizontally) to augment original data, resulting in a notable 4% boost in
classification accuracy. Moreover, Ref. [23] utilized random scaling and horizontal/vertical
translation to increase the diversity of training data for HGR applications.

The integration of color transformations with geometric transformations has notably
enhanced the performance of HGR systems. Color transformations involve histogram
equalization, contrast or brightness enhancement, white balancing, sharpening, and blur-
ring [24]. For instance, in Ref. [25], combining the shearing transformation with sigmoid
and gamma correction augmented the original images, resulting in a 5% improvement
in accuracy.

In their research, Taylor and Nicthe [26] highlighted the effectiveness of data augmen-
tation methods in enhancing the classification task performance of CNNs. Specifically,
their evaluation of various data augmentation schemes using a relatively simple CNN
architecture showed that geometric augmentation methods outperformed photometric
methods when training on a coarse-grained dataset, and these findings underscore the
importance of augmenting coarse-grained training datasets using transformations that alter
the geometry of images rather than focusing solely on lighting and color modifications.

GANs can be utilized for data augmentation [27,28] by training them to generate
new synthetic data. GANs face challenges due to the potential for mode collapse, non-
convergence, and oscillatory behavior [29,30]. There are differences between synthetic
data, which are artificially created without using actual datasets, and the term “augmented
data”, which involves generating additional training data through modifications or trans-
formations to the primary data. The primary objective of augmented data is to expand
the diversity of the training set, prevent overfitting, and enhance the model’s generaliza-
tion capacity to previously unseen data. Data augmentation techniques can be applied
to various data types, including images, text, and audio. On the other hand, augmented
data provide significant advantages in improving the performance of deep learning models
across various applications, such as object detection, image classification, image recognition,
natural language understanding, semantic segmentation, and more [31]. This method has
enhanced the efficiency and outcomes of deep learning models by generating new and
diverse training examples for datasets. Moreover, the use of augmented data can also
reduce operational costs related to the collection and labeling of data for deep learning
models [28]. Deep learning models often require time-consuming and expensive operations
for data collection and labeling.

Numerous studies demonstrate the superiority of geometric transformations over
other methods. Furthermore, when aiming for generalization, a model capable of recog-
nizing new datasets is essential. A CNN model requires sufficient depth, trained on large
datasets, which demands substantial computational resources. Hence, an alternative is
needed, and that comes in the form of using pre-existing models. These models have
been trained beforehand with ample resources and can be applied to new datasets—a
process known as transfer learning. There are numerous available CNN models that can
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be utilized. In this study, three pre-trained CNN models are employed for static hand
gesture recognition (HGR) tasks, namely ResNet50, MobileNetV2, and InceptionV3, cho-
sen for their outstanding performance [32]. Therefore, this paper aims to address the
following objectives:

1. Investigate whether using as many augmentations as possible on geometric transfor-
mations or focusing on a subset of the most effective geometric transformations yields
better results in improving model performance.

2. Identify augmentation methods within geometric transformations that yield the high-
est accuracy rates in enhancing CNN performance, which is achieved through a
systematic analysis. This involves a thorough examination of various geometric trans-
formations, assessing their impact on the model’s accuracy. The selection process is
based on rigorous experimentation and quantitative evaluation, ensuring that the
chosen augmentation methods contribute significantly to the improved performance
of Convolutional Neural Networks (CNNs) in the context of static hand gesture
recognition. The effectiveness is substantiated by comparative analyses and statistical
measures, providing a robust foundation for the identified augmentation methods.

3. Compare the performance of three pre-trained models, ResNet50, MobileNetV2, and
InceptionV3, in the classification of static hand gestures (HGRs). The evaluation of
these three models is conducted to assess their ability to classify static hand gestures,
providing crucial insights for further development in this field.

4. This research undertakes an evaluation of the accuracy of pre-trained neural networks
for image classification. Section 2 describes research methodology. Section 3 describes
the dataset, image augmentation, geometric transformations, CNN theory, and pre-
trained neural networks (ResNet, MobileNet, and Inception). Section 4 presents the
experimental setup, dataset preparation, and results using single and combined neural
networks. Section 5 analyzes the performance of each pre-trained neural network and
discusses the impact of image augmentation and geometric transformations on model
accuracy. Additionally, we explore implications and future research opportunities in
this area. Finally, Section 6 summarizes important findings, highlights our research’s
significance, and outlines future directions, including developing an image augmen-
tation framework for static hand gesture recognition based on pre-trained ResNet50
models that combine multiple geometric transformations with color modifications.

2. Research Methodology

In this research, the steps to determine the best geometric transformation for image
augmentation to improve recognition accuracy in hand gesture recognition (HGR) tasks and
compare the performance of the pre-trained CNN models (ResNet50, MobileNetV2, and
InceptionV3) are executed through a structured methodological approach. An illustration of
the steps in the research methodology can be found in Figure 1. The researchers formulated
the following research objectives:

1. Investigation of the necessity of employing geometric transformations for image
augmentation in CNN-based HGR tasks;

2. Exploration of the optimal geometric transformation based on CNNs for image aug-
mentation in HGR tasks;

3. Determining the most effective pre-trained CNN model (ResNet50, MobileNetV2, or
Inceptionv3) for HGR tasks.

Firstly, diverse datasets, such as HG14, DLSI, MU HandImages ASL, Sebastian Marcel,
and ArASL2018, were collected to encompass as many HGR contexts as possible. The next
step involves the application of transfer learning to pre-trained models, namely ResNet50,
MobileNetV2, and InceptionV3, to comprehend complex hand gesture features.

Evaluation is conducted in two main aspects, namely the effectiveness of image aug-
mentation and the performance of pre-trained models, using accuracy metrics during
transfer learning. Geometric transformations, such as scaling, rotation, translation, shear-
ing, and flipping, are explored in the augmentation evaluation. At the same time, the
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performance of pre-trained models is measured by comparing ResNet50, MobileNetV2,
and InceptionV3 in classifying HGR datasets.

This research evaluates results and presents in-depth conclusions based on experi-
mental findings. Overall, these methodological steps form a comprehensive framework to
understand the role of image augmentation and CNN models in improving the accuracy
of HGR systems. By implementation programming using Python 3.6.13, particularly with
TensorFlow support, a solid technical foundation is provided, ensuring efficiency and
optimal performance in conducting this experiment.

Figure 1. Overview of the research methodology employed in this study.

3. Material

3.1. Dataset

This research utilized five publicly available datasets for HGR: HG14, DLSI, MU
HandImages ASL, Sebastian Marcel Static Hand Gestures, and ArASL2018. These datasets
were selected to comprehensively evaluate the most suitable geometric transformation for
augmenting the HGR dataset. Each dataset possessed unique characteristics such as gesture
categories, image background, image size, and color channels. ArabicSL was the most
extensive dataset, containing 54,049 images divided into 32 classes, while MU HandImages
ASL was the smallest, with only 2425 images divided into 26 classes.

3.1.1. Hand Gesture 14 (HG14) Dataset

Guler et al. [33] created the Hand Gestures 14 (HG14) dataset, containing 14 hand
gestures suitable for hand interaction and application control in augmented reality. The
dataset includes 14,000 photos with RGB channels and a size of 256 × 256 pixels. Each
image has a simple and uniformly colored background, as shown in Figure 2 [33].

 
Figure 2. Sample images from the HG14 dataset showcasing the 14 distinct hand gestures.

3.1.2. DLSI (Department de Llenguatges Sistemes Informàtics) Dataset

Alashhab et al. [34] created the DLSI (Department de Llenguatges Sistemes Informàtics)
dataset to recognize gestures for visually impaired people. Various smartphone cameras
captured indoor and outdoor scenes under realistic conditions. The dataset comprises
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12,064 frames divided into 6 gestures, each normalized to 224 × 224 pixels. Figure 3 [34]
shows the sample images.

 
Figure 3. Sample images of the six different hand gestures are included in the DLSI dataset.

3.1.3. Massey University HandImages ASL Dataset

The dataset MU HandImages ASL was created by Barczak et al. at Massey University
(MU), New Zealand. It contains 2425 images from 5 individuals, with each hand pose
captured in a room with varying lighting conditions and a green screen background. The
dataset consists of 26 classes representing standard American Sign Language (ASL) gestures,
with black background images and varying pixel sizes depending on the hand pose’s shape.
Figure 4 [34] shows some sample images from this dataset.

 
Figure 4. Sample images from the MU HandImages ASL dataset featuring 26 distinct hand gestures
commonly used in ASL.

3.1.4. Sebastian Marcel Static Hand Gesture Dataset

The Sebastian Marcel Static Hand Gesture Dataset was used as the training set for
developing a neural network model to recognize hand postures in images. Hand gestures
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were segmented using space discretization based on face location and body anthropometry.
The dataset includes six hand postures (a, b, c, point, five, v) demonstrated by ten individu-
als captured in uniform and complex backgrounds with varying image sizes, depending
on the hand gesture. Figure 5 [34] shows some sample images from this dataset.

 
Figure 5. Sample images from the Sebastian Marcel Static Hand Gesture Dataset featuring six distinct
hand gestures demonstrated by ten individuals.

3.1.5. ArASL2018 Dataset

The ArASL2018 (Arabic Alphabet Sign Language 2018) dataset [35] includes 54,049
grayscale images of 32 hand poses representing the Arabic Alphabet Sign Language. Hand
gestures were captured from 40 individuals across different age groups under uniform
backgrounds and good lighting conditions. Some image preprocessing was performed to
remove noise and center the hand object in the image. Figure 6 [35] shows some sample
images from this dataset.

Figure 6. Sample images from the ArASL2018 dataset featuring 32 distinct hand poses representing
Arabic Sign Language.
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3.2. Image Augmentation

Image augmentation is a technique to avoid overfitting in neural network training
by transforming the original data or image using specific techniques [18]. Geometric
transformations such as scaling, rotation, translation (shifting), shearing, and flipping can
augment image data. These transformations can produce new images from the original
ones, helping to generalize the knowledge learned by classifiers, such as neural networks.

Traditional image augmentation involves storing the augmented data on disk along-
side the original data, resulting in increased storage requirements, especially for large
datasets. An alternative approach called “on-the-fly” augmentation was proposed to ad-
dress this issue [18]. This approach performs augmentation during training rather than
storing augmented images in storage, leading to better knowledge generalization because
it produces new data/images in every training epoch. This work used the on-the-fly aug-
mentation strategy to achieve better performance in hand gesture recognition. The flow of
on-the-fly augmentation is illustrated in Figure 7.

 

Figure 7. Illustration of the “on-the-fly” image augmentation approach.

As shown in Figure 7, the original image dataset is divided into small batches. Each
batch undergoes random geometric transformations before being used for training a ma-
chine learning or deep learning algorithm. This technique produces different augmented
images in each batch and epoch, allowing for better knowledge generalization.

3.3. Geometric Transformation

This work evaluated all geometric transformations to determine the most suitable for
the HGR task. However, it should be noted that certain transformations, such as inverting,
may not be ideal for specific image types, such as digit images, which can confuse the
numbers 6 and 9.

3.3.1. Image Scaling

Image scaling resizes an input image to a larger or smaller size using a scale factor.
Equations (1) [36] and (2) [36] can be used to perform image scaling, where (x, y) are the
coordinates of a pixel in the original image, (x′, y′) are the coordinates of the pixel in the
scaled image, and sx and sy are the scale factors for the rows and columns of the image,
respectively.

x′ = x·sx (1)

y′ = y·sy (2)

Interpolation can be used to smooth the edges of the object in the scaled image and
maintain the aspect ratio when sx = sy. Image scaling improves model performance and
robustness to input size variations. When an image is scaled up, it is cropped to its original
size, while for scaling down, the original size is maintained with space filled using the
nearest pixel neighbor technique. Figure 8 shows a sample of a scaled image.
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Figure 8. Samples of scaled images using nearest neighbor interpolation.

3.3.2. Image Rotation

Image rotation is a common data augmentation technique in computer vision tasks
and involves rotating an image by a certain angle (typically 0 to 360 degrees) to create
additional training data. Equations (3) [37] and (4) [37] perform image rotation using (x,y)
as the original pixel coordinates and (x’,y’) as the corresponding pixel coordinates in the
rotated image. The rotation angle in radians is represented by θ, and (cx, cy) are the image
center coordinates.

x′ = (x − cx)cos θ − (y − cy)sin θ + cx (3)

y′ = (x − cx)sin θ + (y − cy)cos θ + cy (4)

Similar to image scaling, image rotation may result in blank areas that need to be
filled using interpolation techniques, such as the nearest pixel technique used in this work.
Figure 9 provides a sample of image rotation using the nearest pixel technique to interpolate
the blank areas around the rotated image.

Figure 9. Sample of image rotation with nearest pixel interpolation.

3.3.3. Image Translation

Image translation shifts an image along the x-axis and y-axis by a certain number of
pixels to create additional training data, improving model robustness to position variations.
Equations (5) [38] and (6) [38] are used for x-axis and y-axis translation, respectively, where
(x,y) are the coordinates of a pixel in the original image, (x’,y’) are the coordinates of the
corresponding pixel in the translated image, and (dx, dy) are the translation offsets.

x′ = x + dx (5)

y′ = y + dy (6)

The nearest pixel interpolation technique also fills blank areas in the translated images.
Figure 10 shows a sample of a translated image.
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Figure 10. Sample of the translated image using nearest pixel interpolation.

3.3.4. Image Shearing

Image shearing is a technique that skews an image along the x-axis and y-axis by
shifting each row or column of pixels by a certain amount based on its y-coordinate or x-
coordinate, respectively. This technique helps handle input images captured from different
perspectives or angles. Shearing an image along the x-axis and y-axis can be achieved using
Equations (7) [39] and (8) [39], where (x,y) are the coordinates of a pixel in the original
image, (x’,y’) are the coordinates of the corresponding pixel in the sheared image, and shx
and shy are the shear factors along the x-axis and y-axis, respectively.

x′ = x + shx × y (7)

y′ = y + shy × x (8)

Nearest pixel neighbor interpolation is applied to fill the blank area in the sheared
images. Figure 11 provides a sample of the sheared image using nearest pixel interpolation.

 
Figure 11. Sample of the sheared image with nearest pixel interpolation.

3.3.5. Image Flipping

Image flipping reverses the left and right sides of the image. For HGR, only horizontal
flipping is used. The formula for horizontal flipping is provided in Equation (9) [40], where
(x,y) are the coordinates of a pixel in the original image, x’ is the corresponding pixel index
in the flipped image, and W is the width of the image.

x′ = (W − 1)− x (9)

To flip the entire image, each row of pixels is reversed from left to right. No interpola-
tion is needed for flipping an image horizontally. Figure 12 shows a sample of horizontally
flipped images.
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Figure 12. Sample of horizontally flipped image.

3.4. Convolutional Neural Networks (CNNs)

Deep learning (DL) has various architectures, one of which is Convolutional Neural
Networks (CNNs), which are known for their effectiveness in image recognition compared
to traditional machine learning approaches [41]. The basic idea of the CNN is the technique
of image convolution, which combines an input matrix and a kernel matrix to produce a
third matrix that represents how one matrix is modified by the other.

A CNN architecture generally consists of two parts: feature extraction and classifica-
tion [42], as depicted in Figure 13. The feature extraction part applies image convolution to
the input image to produce a series of feature maps. These features are then used in the
classification part to classify the label of the input image.

Figure 13. CNN architecture with feature extraction and classification parts.

A CNN applies convolution to produce a set of feature maps. Each filter can detect
specific patterns from the input image, such as edges, lines, or corners. The output of
the convolutional layer is passed through a non-linear activation function, such as ReLUs
(Rectified Linear Units), to introduce non-linearity and learn complex representations of
the input image. The ReLU function is defined in Equation (10) [43]:

f (x) = max(0, x) (10)

ReLUs (Rectified Linear Units) are an activation function introduced by [44] and have
a strong biological and mathematical underpinning. In 2011, they were demonstrated to
further improve the training of deep neural networks. They work by thresholding values
at 0, i.e., f(x) = max(0, x). Simply put, they output 0 when x < 0, and conversely, they output
a linear function when x ≥ 0.

The pooling layer is used after the convolutional layer to reduce the dimensionality of
the feature maps and introduce translational invariance. Max pooling takes the maximum
value within a local neighborhood, and average pooling calculates the average value.
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Fully connected layers perform a classification task by mapping the previous layer’s
output to a set of output classes. The network adjusts its weights and biases through
a backpropagation algorithm to minimize a loss function that measures the difference
between the predicted and true output during training.

3.5. Pre-Trained Neural Networks

To be effective, a CNN model should be sufficiently deep (deep CNN) and trained
on large amounts of data to learn various patterns from the dataset [45]. Training a CNN
requires a powerful machine with a dedicated Graphics Processing Unit (GPU) for parallel
computation and ample memory to store the dataset and CNN parameters during training.
Therefore, researchers have developed pre-trained CNN models on large public datasets,
such as ImageNet or Microsoft COCO [46]. These pre-trained models can be used to build a
CNN-based system for image classification and can be retrained for custom cases using new
datasets. This process, called transfer learning, enables pre-trained models to be trained in
less time and use less computational power. This work uses three pre-trained CNN models
for static hand gesture recognition (HGR) tasks, ResNet50, MobileNetV2, and InceptionV3,
due to their excellent performance, as reported in [32].

3.5.1. ResNet50

ResNet50 is a pre-trained CNN model proposed by Microsoft Research in 2015 [41]. It
uses Residual Network architecture to solve the problem of vanishing gradients in deep
learning. The Residual Network contains residual connections, which add the input of a
layer to its output, creating a shortcut connection. Figure 14 shows that the network can
skip over layers that might not contribute much to the output.

Figure 14. Illustration of a residual connection with the input of layer L-1 added to its output.

The ResNet50 architecture comprises 50 layers, including 49 convolutional layers and 1
fully connected layer, and is divided into 5 convolutional stages. Each stage contains several
residual blocks, as shown in Figure 15. The first stage consists of a single convolutional
layer that performs a 7 × 7 convolution with a stride of 2, followed by a max pooling layer
with a pool size of 3 × 3 and a stride of 2. The subsequent stages contain three, four, six,
and three residual blocks, each with three convolutional layers using a combination of
1 × 1, 3 × 3, and 1 × 1 convolutions, batch normalization, and ReLU activation. The output
of the fifth convolutional stage is processed by a global average pooling layer that averages
the feature maps across the spatial dimensions. The resulting output is passed through a
fully connected layer with 1000 output units corresponding to the number of classes in the
ImageNet dataset.
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Figure 15. ResNet50 architecture with 49 convolutional layers and 1 fully connected layer.

3.5.2. MobileNetV2

MobileNetV2 is a CNN model proposed by Google in 2018 as an efficient alternative
to deep neural networks for deployment on mobile and embedded devices [47]. It uses
depthwise separable convolutions, which split the convolution operation into a depthwise
convolution and a pointwise convolution, significantly reducing computational complexity
and memory usage. MobileNetV2 also introduces several new features that improve its
performance while maintaining efficiency. Figure 16 illustrates the working of depthwise
separable convolutions.

Figure 16. Illustration of depthwise separable convolutions showing the depthwise convolution and
pointwise convolution.

The architecture of MobileNetV2 can be divided into three parts: the stem, the body,
and the head. The stem has a single convolutional layer that performs a 3 × 3 convolution
with a stride of 2, followed by batch normalization and a non-linear activation function.
The body contains a series of inverted residual blocks, each with a depthwise separable con-
volution, a linear bottleneck, and batch normalization with a non-linear activation function.
The MobileNetV2 architecture includes a linear bottleneck that enhances the network’s
representational power while keeping its computational cost low. The architecture’s head
consists of a global average pooling layer, a 1 × 1 convolutional layer, and a fully connected
layer that uses a SoftMax activation function. Figure 17 provides a visual representation of
the MobileNetV2 architecture.
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Figure 17. MobileNetV2 architecture with 17 bottleneck layers.

3.5.3. InceptionV3

InceptionV3 is a pre-trained CNN architecture introduced by Google in 2015 [48,49].
It uses multiple filters of different sizes in parallel at each stage of the network to capture
features at multiple resolutions and scales, increasing the ability to recognize objects of
different sizes and shapes. InceptionV3 also uses factorization to reduce the computational
cost of the convolutional layers for more efficient performance. The architecture can be
divided into the stem, inception modules, and classification layers [48]. The stem processes
the input image and extracts low-level features, while the inception modules perform most
of the computation. Each inception module consists of several parallel convolutional layers
of different sizes combined using concatenation. Each module’s output passes through a
factorization layer, reducing feature map channels. A global average pooling layer, followed
by a fully connected layer with SoftMax activation, produces the network’s final output.
The architecture of InceptionV3 is illustrated in Figure 18.

Figure 18. InceptionV3 CNN architecture.
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3.6. Programming Tools

In this research using the Python programming language, especially TensorFlow2.6.2,
the ImageDataGenerator command serves as a key tool to enhance the performance of
models in hand gesture recognition (HGR) tasks. This experiment utilizes each dataset,
establishing a solid foundation. By applying transfer learning to pre-trained models, like
ResNet50, MobileNetV2, and InceptionV3, the models can comprehend complex features
of hand gestures.

The official TensorFlow documentation [50] explains that the ImageDataGenerator
plays a central role in image augmentation, exploring geometric transformations like scal-
ing, rotation, translation, shearing, and flipping. The use of commands such as “fit” to
calculate internal statistics and “flow” to dynamically generate batches of images creates
an efficient and adaptive experimental environment [50]. In TensorFlow, the ImageData-
Generator provides various parameters to control augmentation, such as scaling, rotation,
and flipping. The official TensorFlow documentation offers examples of usage and recom-
mended methods. For example:

“‘python
from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Creating an instance of ImageDataGenerator with augmentation parameters
datagen = ImageDataGenerator(
rotation_range = 20,
width_shift_range = 0.2,
height_shift_range = 0.2,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True,
fill_mode = ‘nearest’
)

# Calculating internal statistics (fit) - assuming x_train is the image data
datagen.fit(x_train)

# Generating batches of images dynamically using flow
generated_images = datagen.flow(x_train, batch_size = 32)
“‘

Experiments are conducted by trying each pre-trained model on different datasets,
with the application of individual and combined augmentations. This structured approach
provides a deep understanding of the impact of augmentation on model performance
across various datasets. The official TensorFlow documentation, including code exam-
ples and parameters, serves as the primary reference source to detail the usage of the
ImageDataGenerator and strengthen the experimental framework.

4. Results

4.1. Experimental Setup

This study aims to determine the optimal geometric transformation for image aug-
mentation on the HGR dataset to improve classifier accuracy. To achieve this, it employed
an “on-the-fly” augmentation strategy and defined several parameters for random geo-
metric transformations, as shown in Table 1. Each transformation function was applied
individually during the training phase of the deep learning algorithm, and the process was
repeated three times to ensure consistent performance.
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Table 1. Parameter settings for geometric transformations used in image augmentation.

Geometric Transformation Direction Parameter Setting

Scaling Horizontal and vertical [−20%, 20%]
Rotation CW and CCW [−30◦, 30◦]

Translation Horizontal and vertical [−20%, 20%]
Shearing Horizontal [−20◦, 20◦]
Flipping Horizontal [True, False]

Transfer learning uses ImageNet pre-trained weights as the initial network’s weights in
the experiment to avoid complex and high computation during learning. The optimization
of weights only occurs in the classification layer of the pre-trained model to optimize
the networks in the fully connected layers. Adaptive Moment Estimation (ADAM), an
optimization algorithm, is employed to enhance the training process and avoid gradient
vanishing during training [51]. The pre-trained network is retrained for 50 epochs with
a batch size of 32. To maintain the ImageNet pre-trained weights, network training is
performed by freezing all the layers in the feature extraction part. The performance of the
networks is evaluated using the “accuracy” metric.

The experiment uses Python programming language with several libraries, such as
TensorFlow, Matplotlib, and NumPy, on a personal computer with the specifications listed
in Table 2.

Table 2. Hardware and software specifications for the experiment.

Hardware/Software Specification

Processor (CPU) Intel Core i5-9300H @2.40 GHz
Memory (RAM) 32 GB DDR4

Graphics Processing Unit (GPU) Nvidia GTX 1660 Ti—6GB vRAM
Operating system Windows 11

Python version 3.6.13
Cuda/CuDNN version 11.0/8.0

4.2. Dataset Preparation

In this study, we used five publicly available datasets of HGR, as described in Section 2.
These datasets were used to evaluate the effectiveness of various experiment scenarios, as
summarized in Table 3. To train our networks, we randomly split each dataset into three
parts for training, evaluation, and testing, respectively, with a distribution of 60:20:20. To
augment the training data, we used the ImageDataGenerator module TensorFlow [50]. It is
important to note that only the training data were augmented.

Table 3. Specification of datasets used for the experiment.

Dataset Number of Data Number of Classes Images Size Image Background

DLSI 12,064 6 224 × 224 complex
HG14 14,000 14 256 × 256 uniform

MU HandImages ASL 2425 26 vary uniform
Sebastian Marcel 5531 6 vary uniform and complex

ArASL2018 54,049 32 64 × 64 uniform

In this work, it was observed that specific parameters in the HGR dataset could impact
the classification performance, such as input size and image background. As shown in
Table 3, each dataset had different sizes, so all input images were resized to a uniform size
of 224 × 224 pixels with three color channels (RGB) commonly used in pre-trained CNN
models like VGG, ResNet, and Inception.

The image background was classified as uniform or complex based on the dominance
of a single color or simple texture versus multiple colors, textures, or objects. While a
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uniform background is easier to recognize and more accurate, it may not represent real-
life scenarios. Conversely, a complex background may be more challenging to recognize
but is more representative of real-life situations. Using HGR datasets with uniform and
complex backgrounds, we could analyze the impact of geometric-based augmentation on
background variations.

4.3. Experimental Results

The experiments were conducted based on the scenarios explained in the previous
section, which are divided into two parts. The first part involves a single augmentation
experiment to observe which geometric augmentation (scaling, rotation, translation, shear-
ing, and flipping) can lead to the best performance. The second part involves a combined
augmentation experiment to observe whether image augmentation using all five geometric
transformations produces better performance than a single one. As the datasets have a
different number of classes and are balanced; the only performance metric used is accuracy.

4.3.1. Results on Single Augmentation

The first experiment involved using a pre-trained ResNet50 model that was retrained
on the five HGR datasets. Each input image was augmented using the ImageDataGenerator
module from the TensorFlow library before being fed into the pre-trained model for learning.
Overall, ResNet50 performed very well for all datasets and geometric transformations,
achieving accuracies of over 95% for almost all experiment scenarios. Specifically, ResNet50
achieved the highest accuracy when using the DLSI and HG14 datasets, with average
accuracies of 97.67% and 97.47%, respectively, for all geometric transformations. This result
is surprising because the DLSI dataset has a complex image background. On the other
hand, the lowest accuracy was obtained when using the Sebastian Marcel dataset, with an
average accuracy of 94.98%. The performance of ResNet50 on all datasets is summarized
in Table 4.

Table 4. Classification accuracy results of geometric image augmentation using ResNet50 architecture.

Dataset
Geometric Transformations—Accuracy (%) Dataset Average

Accuracy (%)Scaling Rotation Translation Shearing Flipping

DLSI 97.86 97.37 97.47 97.86 97.77 97.67
HG14 97.07 97.46 98.32 97.18 97.32 97.47

MU HandImages ASL 95.14 97.26 96.05 97.26 97.57 96.66
ArASL2018 96.61 94.66 96.04 97.26 97.15 96.34

Sebastian Marcel 93.60 95.07 96.06 94.58 95.57 94.98

Geometric Avg. Accuracy (%) 96.06 96.36 96.79 96.83 97.08

Based on the results presented in Table 4, horizontal flipping achieved the highest ac-
curacy among the five geometric transformations, with an average accuracy of 97.08%. Fur-
thermore, image shearing and translation produced better results than scaling and rotation.

Moving on to the second experiment, as shown in Table 5, MobileNetV2 performed
worse than ResNet50 for all datasets. The MU HandImage ASL dataset achieved the highest
accuracy among all datasets, with significant differences from the other datasets of up
to 38%. However, MobileNetV2 performed poorly in classifying the DLSI dataset with a
complex image background. Unlike ResNet50, shearing transformation produced the best
results for all datasets, with an overall accuracy of 78.85%, followed by horizontal flipping,
with an average accuracy of 74.72%.
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Table 5. Results of geometric image augmentation on the MobileNetV2 architecture.

Dataset
Geometric Transformations—Accuracy (%) Dataset Average

Accuracy (%)Scaling Rotation Translation Shearing Flipping

DLSI 73.63 73.78 69.96 79.79 76.66 74.76
HG14 59.18 57.75 59.00 65.18 60.39 60.30

MU HandImages ASL 92.40 90.88 91.49 95.74 95.74 93.25
ArASL2018 69.21 59.53 63.83 84.09 74.79 70.29

Sebastian Marcel 65.52 61.08 63.05 69.46 66.01 65.02

Geometric Avg. Accuracy (%) 71.99 68.60 69.47 78.85 74.72

Table 6 shows the results of using the InceptionV3 architecture for geometric image
augmentation. Similar to MobileNetV2, the MU HandImage ASL dataset achieved the
highest accuracy. The shearing operation resulted in the highest accuracy compared to other
geometric transformations for all datasets. However, InceptionV3 struggled to recognize
the hand gestures in the HG14 dataset, which had the lowest accuracy. This is surprising
because HG14 uses a uniform background in each image, and the difference in accuracy
compared to other datasets is significant.

Table 6. Results of geometric image augmentation on the InceptionV3 architecture.

Dataset
Geometric Transformations—Accuracy (%) Dataset Average

Accuracy (%)Scaling Rotation Translation Shearing Flipping

DLSI 67.28 65.44 60.92 71.70 69.27 66.92
HG14 48.57 41.54 39.43 49.11 40.25 43.78

MU HandImages ASL 89.06 86.63 82.67 94.22 89.06 84.34
ArASL2018 82.93 76.75 67.33 85.75 74.37 70.47

Sebastian Marcel 70.94 73.89 67.49 74.38 72.41 74.07

Geometric Avg. Accuracy (%) 71.76 68.85 63.57 75.03 69.07

4.3.2. Results of Combined Augmentation

This study performed experiments to compare the performance of pre-trained models
trained with single and combined geometric transformations. The same experimental setup
as before was used with three repetitions for each dataset to ensure consistency of model
performance. Table 7 shows that single augmentation yielded better results than combined
augmentation for every pre-trained model. The most significant decreases in accuracy
were observed in MobileNetV2 and InceptionV3, which experienced drops of 11.54% and
18.00%, respectively. The worst accuracy was obtained for HG14 and ArASL2018 datasets
when using MobileNetV2 and InceptionV3 with combined augmentation, with an accuracy
below 50%. However, MU HandImages ASL maintained good accuracy for each pre-trained
model using single or combined augmentation.

Table 7. Comparison of accuracies between single and combined augmentation methods.

Dataset
ResNet50 (%) MobileNetV2 (%) InceptionV3 (%)

Single Combined Single Combined Single Combined

DLSI 97.67 97.96 74.76 65.29 66.92 52.09
HG14 97.47 96.61 60.30 48.86 43.78 28.82

MU HandImages ASL 96.66 93.62 93.25 94.22 84.34 76.60
ArASL2018 96.34 92.41 70.29 39.38 70.47 18.47

Sebastian Marcel 94.98 95.57 65.02 58.13 74.07 74.38

Avg. Accuracy (%) 96.62 95.23 72.72 61.18 67.92 50.07
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5. Discussion

The experimental discussion in this research presents noteworthy findings that can
serve as a foundation for further research and development in hand gesture recognition
(HGR). Analyzing the documented experimental results in Sections 4–6 reveals that im-
age shearing holds the most significant influence on the classification accuracy among
the five geometric transformations used for image augmentation. It is noteworthy that
despite the accuracy value of image shearing in ResNet50 being lower compared to the
flipping transformation, MobileNet, and Inception, in contrast, it achieved the highest
accuracy values.

This observed significance can be attributed to the technical aspects of image shearing,
wherein its ability to handle variations in object perspective and other specific characteristics
renders it a crucial augmentation technique for enhancing the accuracy of hand gesture
recognition models.

The implication of these findings is that constructing a classification model capable of
effectively managing variations in object perspective is crucial for achieving high accuracy
in HGR. Furthermore, image flipping emerges as the second most influential geometric
transformation for the HGR task, as evidenced by the relatively higher accuracy observed
in both image shearing and flipping, as indicated in Figure 21. This underscores the
importance of developing an HGR model that can adeptly handle both variations in object
perspective and the reflection of gestures by the right or left hand. It is noteworthy that
while image scaling can impact classification accuracy, its effect is comparatively lower
than image shearing and flipping.

The use of image rotation as an augmentation method in hand gesture recognition
(HGR) datasets is generally applicable, but its effectiveness depends on the types of gestures
present in the dataset. Some gestures may require hand position rotation to differentiate
between distinct signs. For instance, in the MU HandImage ASL (Massey dataset), the
gesture for the letter “i” is nearly identical to the letter “j”, and the gesture for the letter
“z” is identical to the number “1”, as shown in Figure 19. In such cases, it is advisable
to carefully consider the use of image rotation or even exclude it from augmentation
operations to avoid introducing ambiguity into the dataset.

Figure 19. The identical gestures between the number “1” and the letter “z” shown in (a) and the
letters “i” and “j” shown in (b) in the MU HandImage ASL dataset are only distinguished by hand
position. Therefore, rotation can be excluded from the augmentation operations.

Similar to rotation, Figure 20 illustrates that image translation, particularly in the
HG14 dataset, can produce ambiguously augmented data, such as in the HG14 dataset,
where the horizontal translation of gesture number “6” may be identical to gesture number
“9”. Similarly, gesture number “11” may be highly like gesture number “12” when shifted
to the left. To handle this issue, translation can be excluded from augmentation, or the
range of translation can be limited.
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Figure 20. Similar hand gestures in the HG14 dataset due to translational transformation: (a) “6” and
“9” and (b) “11” and “12”.

Figure 21 provides additional insights, confirming that image shearing and flipping
are effective techniques for augmenting static hand gesture recognition (HGR) datasets.
This effectiveness holds true across diverse datasets and pre-trained models. While im-
age scaling is a viable option, Figure 22 highlights a cautionary note—using an excessive
number of transformations can lead to overly complex images, potentially causing misclas-
sification. Consequently, a more practical approach for image augmentation in HGR tasks
using Convolutional Neural Networks (CNNs) may involve combining two geometric
transformations.
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Figure 21. Comparison of classification accuracy among different geometric transformations using
different pre-trained models.
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Figure 22. Comparison of classification performance between single and combined geometric aug-
mentations on different pre-trained models.
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This experiment reveals that ResNet50 outperforms MobileNetV2 and InceptionV3
in static HGR datasets. Figure 22 demonstrates the superior performance of ResNet50,
a popular CNN architecture, compared to MobileNetV2 and InceptionV3. The notable
advantages of ResNet50, including its less complex network that demands less computing
power and memory, have significant practical implications for real-world applications.
In the development of hand gesture recognition applications for devices with limited
computational resources, choosing ResNet50 can result in faster and more energy-efficient
models. This is particularly crucial in scenarios such as mobile devices, where optimizing
resource usage is paramount for a seamless user experience.

6. Conclusions

Based on the results of the experiments conducted for static hand gesture recognition
using Convolutional Neural Network (CNN) models, several conclusions can be drawn to
guide the development of more efficient methods for this task.

Firstly, in the context of geometric transformations, it was found that the use of
shearing and flipping had the most significant impact on improving the model’s accuracy.
These transformations help the model better cope with variations in object perspectives,
indicating that building a classification model capable of handling changes in viewpoint is
a crucial aspect of static hand gesture recognition.

Secondly, in choosing a CNN model, ResNet50 consistently proved to outperform
MobileNetV2 and InceptionV3. Although ResNet50 may require more computational
power, the advantage of high-accuracy results suggests its importance in selecting a model
for this task.

However, the conclusions also highlight that overly complex geometric transforma-
tions can harm the model’s performance, especially for MobileNetV2 and InceptionV3.
Excessive geometric transformations may involve using too many types of transforma-
tions, making the model struggle to understand actual patterns, as each training example
experiences significant variation. Therefore, a balance is needed between performance
improvement and real-world representation by selecting transformations suitable for the
dataset’s characteristics.

Moreover, future research may consider color modifications in addition to geometric
transformations. Further understanding of how to optimize image augmentation methods,
including color variations, can significantly contribute to improving model performance,
especially in situations where color variations may affect image interpretation.

As a direction for future research, this study can be expanded by combining multiplex
geometric transformations with color modifications, creating a more holistic and effective
image augmentation framework. Additionally, further exploration can be conducted in
situations where there is a lack of data or significant variation between datasets. Integration
with transfer learning techniques and the development of more complex models can also
be an interesting focus of research. Thus, this study provides a foundation for further
exploration in enhancing the efficiency and effectiveness of static hand gesture recognition
using a CNN-based approach.
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Abstract: The classification of certain agricultural species poses a formidable challenge due to their
inherent resemblance and the absence of dependable visual discriminators. The accurate identifica-
tion of these plants holds substantial importance in industries such as cosmetics, pharmaceuticals,
and herbal medicine, where the optimization of essential compound yields and product quality is
paramount. In response to this challenge, we have devised an automated classification system based
on deep learning principles, designed to achieve precision and efficiency in species classification.
Our approach leverages a diverse dataset encompassing various cultivars and employs the Parallel
Artificial Multiple Intelligence System–Ensemble Deep Learning model (P-AMIS-E). This model
integrates ensemble image segmentation techniques, including U-Net and Mask-R-CNN, alongside
image augmentation and convolutional neural network (CNN) architectures such as SqueezeNet,
ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1. The culmination of these elements results in
the P-AMIS-E model, enhanced by an Artificial Multiple Intelligence System (AMIS) for decision
fusion, ultimately achieving an impressive accuracy rate of 98.41%. This accuracy notably surpasses
the performance of existing methods, such as ResNet-101 and Xception, which attain 93.74% accu-
racy on the testing dataset. Moreover, when applied to an unseen dataset, the P-AMIS-E model
demonstrates a substantial advantage, yielding accuracy rates ranging from 4.45% to 31.16% higher
than those of the compared methods. It is worth highlighting that our heterogeneous ensemble
approach consistently outperforms both single large models and homogeneous ensemble methods,
achieving an average improvement of 13.45%. This paper provides a case study focused on the
Centella Asiatica Urban (CAU) cultivar to exemplify the practical application of our approach. By
integrating image segmentation, augmentation, and decision fusion, we have significantly enhanced
accuracy and efficiency. This research holds theoretical implications for the advancement of deep
learning techniques in image classification tasks while also offering practical benefits for industries
reliant on precise species identification.

Keywords: Centella Asiatica; linn; urban; ensemble deep learning; image segmentation; image
enhancement; medicinal plants; traditional medicine; pharmaceuticals
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1. Introduction

The Centella Asiatica Urban (CAU) cultivar holds paramount significance within
the realms of agriculture and pharmaceutics, owing to its heterogeneous characteristics
and specialized cultivation prerequisites. Particularly in regions like Thailand, a myriad
of CAU cultivars exhibit diverse levels of resilience to pests and diseases, coupled with
variations in the concentration of vital compounds. Such variability necessitates be-spoke
cultivation practices to maximize the yield of these essential compounds and to ensure the
highest standard of product quality. This underscores the critical need for an accurate and
precise classification of CAU cultivars, thereby providing a compelling rationale for our
research [1,2].

Historically, the domain of automated plant classification has been predominantly
centered around disease detection and the identification of general species, employing
methodologies such as Multi-Layer Perceptron (MLP), the k-Nearest Neighbor (k-NN)
algorithm, and stacked autoencoders. While these approaches have proven efficacious in
certain scenarios, they are notably deficient in their capacity to accurately classify specific
cultivars such as CAU. This limitation primarily stems from their inability to discern the
intricate nuances and complex attributes that are unique to various CAU cultivars, resulting
in inefficiencies and inaccuracies in classification processes [3,4].

In an endeavor to surmount these challenges, our research introduces the innovative
Parallel-Artificial Multiple Intelligence System-Ensemble (P-AMIS-E) model, a cutting-edge,
deep learning-based classification system. The P-AMIS-E model adeptly amalgamates an
array of ensemble image segmentation techniques, including U-Net and Mask R-CNN,
with image augmentation and diverse Convolutional Neural Network (CNN) architectures.
This synergy enhances the accuracy and efficiency of classification, enabling a more detailed
and nuanced analysis of the unique characteristics inherent to CAU cultivars [5–7].

In an endeavor to surmount these challenges, our research introduces the innovative
Parallel Artificial Multiple Intelligence System–Ensemble (P-AMIS-E) model, a cutting-edge,
deep-learning-based classification system. The P-AMIS-E model adeptly amalgamates an
array of ensemble image segmentation techniques, including U-Net and Mask R-CNN,
with image augmentation and diverse convolutional neural network (CNN) architectures.
This synergy enhances the accuracy and efficiency of classification, enabling a more detailed
and nuanced analysis of the unique characteristics inherent to CAU cultivars [8].

This study introduces the Parallel-Artificial Multiple Intelligence System-Ensemble
Deep Learning model (P-AMIS-E), marking a significant advancement in the field of agri-
cultural species classification, specifically targeting the complex identification of Centella
Asiatica Urban (CAU) cultivars. The P-AMIS-E model’s novelty lies in its unique blend of
cutting-edge deep learning techniques, which include:

1. We present the Ensemble of Convolutional Neural Network (CNN) Architectures: Inte-
grating various CNN architectures like SqueezeNet, ShuffleNetv2 1.0x, MobileNetV3,
and InceptionV1, our model robustly tackles the intricacies in cultivar classification
while minimizing overfitting.

2. Advanced Image Segmentation Techniques: Employing a combination of U-net and
Mask-R-CNN segmentation methods, the model achieves a precise and detailed
analysis of CAU cultivars, enhancing classification accuracy.

3. Innovative Use of an Artificial Multiple Intelligence System (AMIS): The adaptation of
AMIS for decision fusion in the P-AMIS-E model optimizes the classification accuracy.

4. Practical and Theoretical Implications: The model has significant implications for the
agricultural and pharmaceutical industries, where precise species identification is key.
Additionally, it contributes to the theoretical advancement of deep learning in image
classification, setting new standards for real-world applications.
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These contributions underscore the study’s importance in bridging the gap in auto-
mated plant classification, particularly for complex cultivars like CAU, and advancing deep
learning methodologies in practical and theoretical domains.

The structure of the article is meticulously organized as follows: Section 2 delves into
the related literature, Section 3 elucidates the research methodology employed, Section 4
delineates the computational results obtained, Section 5 engages in a comprehensive
discussion of the research findings, and finally, Section 6 culminates with the conclusion
and offers perspectives on future research directions.

2. Related Literature

In this section, we endeavor to compartmentalize the literature review into three
distinct components: (1) an examination of the rationale behind the classification of the CAU
cultivar, (2) a comprehensive assessment of the deep learning methodologies employed in
the classification of plant science data, and (3) an in-depth analysis of the decision fusion
strategies utilized in ensemble-based deep learning models.

2.1. Cultivar Differentiation in CAU

Accurate cultivar differentiation in Centella Asiatica (Linn.) Urban (CAU) holds critical
significance for several compelling reasons. First, it serves as the foundation for distinguish-
ing various species within the Centella genus, such as Centella cordifolia and Centella erecta,
which exhibit distinct morphological and genetic characteristics [1]. This differentiation
enables a deeper exploration of the chemical composition and pharmacological properties
unique to each species. Variations in the triterpene glycosides, phenolics, and antioxidant
capacity among different Centella species have been documented [2]. Understanding these
differences is pivotal for medicinal development and the formulation of herbal products.

Furthermore, precise cultivar differentiation plays a pivotal role in the authentic
identification of CAU. In Indian systems of medicine, CAU is renowned for its memory-
enhancing and nervine-disorder-treating properties [9,10]. Ensuring the authenticity of
CAU cultivars is crucial for advancing scientific research, medicinal development, and
quality control standards in the herbal product industry.

The impact of cultivar differentiation in CAU extends to the realm of quality control
in medical product manufacturing. Distinct CAU cultivars have been found to exhibit
variations in macroscopic and histomorpho-diagnostic profiles, as well as the triterpenoid
content and yield. These variations have implications for the pharmacognostic characteri-
zation and regulatory aspects of quality control measures for crude drugs. Additionally,
the choice of cultivar can influence the biotechnological production of centellosides, the
bioactive compounds in CAU. Research has demonstrated that polyploidy induction can en-
hance the medicinal value of CAU, resulting in higher yields and triterpenoid contents [11].
Hence, a comprehensive understanding of cultivar differentiation in CAU is indispensable
for ensuring the consistent and high-quality production of medicinal products derived
from this plant [12,13].

Moreover, CAU cultivars have exhibited phenotypic plasticity, enabling them to thrive
in diverse environmental conditions [14]. Extensive studies have shed light on the plant’s
growth behavior, revealing that certain soil types, such as sandy and humus soil, are
conducive to rapid propagation [15]. Additionally, challenges related to weed growth,
with Cyperus rotundus L. being a prominent weed species in Centella plantations, have been
identified [1]. The remarkable adaptability of CAU to varying environmental conditions
has made it a valuable asset in ethnomedicinal healthcare systems [16]. Furthermore, the
germination of CAU seeds has been linked to the color of the pericarp, indicating different
stages of seed development [17]. In summary, the cultivation and growth of CAU are
influenced by a multitude of factors, encompassing the soil type, weed control, and seed
development stage.

Distinguishing among different CAU cultivars based solely on their appearance
presents a complex and challenging endeavor [18]. Experts face difficulties owing to mor-
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phological similarities, inconsistent phenotypic expressions, natural hybridization events,
regional naming variations, and the absence of standardized identification systems [19].
Addressing these challenges necessitates collaborative efforts among botanists, horticul-
turists, geneticists, and traditional practitioners in developing comprehensive databases
and analytical tools. By doing so, experts can overcome these obstacles and contribute to
the preservation and advancement of CAU cultivation and utilization. The development
of a rapid and accurate CAU cultivar classification system may prove indispensable in
overcoming these challenges, offering significant benefits to the agricultural community,
particularly in the realm of CAU classification.

2.2. Deep Learning Models for Plant Image Classification

Deep learning methodologies have revolutionized the field of plant sciences, partic-
ularly in automated image classification. These advanced techniques have significantly
enhanced plant classification systems, providing precise tools for identifying and catego-
rizing plant diseases. This progress has had a positive impact on crop productivity and
quality. Among the standout models are convolutional neural networks (CNNs), MnasNet,
SqueezeNet, and ShuffleNetv2. These models have shown exceptional performance in
image classification, especially in detecting plant diseases.

Building on these advancements, recent methods, like the one introduced by Chen
et al., 2022 [20], have taken a leap forward. Their study unveils the Dual-Path Mixed-
Domain Residual Threshold Network (DP-MRTN), a novel approach for bearing fault
diagnosis in noisy environments. This model skillfully combines channel and spatial atten-
tion mechanisms, a residual structure, a soft threshold function, and dilated convolution.
This synergy allows the network to effectively select crucial features without the need for
separate denoising algorithms. The DP-MRTN method has been proven to significantly
enhance the accuracy of fault diagnosis in noisy conditions, achieving over 99% accuracy in
various noise scenarios. It surpasses traditional deep learning techniques, offering a more
robust solution for monitoring mechanical equipment in challenging environments.

However, despite these successes, there is still a research gap in applying models
like Augmented MnasNet, SqueezeNet, and ShuffleNetv2 to CAU cultivar classification.
To bridge this gap, ensemble deep learning techniques have come to the forefront as a
promising approach. These techniques improve accuracy, mitigate overfitting, and increase
robustness. Moreover, the integration of metaheuristic algorithms such as differential evo-
lution, particle swarm optimization, and genetic algorithms into decision fusion strategies
is poised to further boost the effectiveness of ensemble models.

Our study focuses on developing an ensemble deep learning classification model by
harmonizing efficient CNN architectures with advanced image segmentation methods
and metaheuristic-based decision fusion strategies. This approach aims to significantly
improve accuracy and reliability in CAU cultivar classification, thus bridging the existing
research gap. The diverse characteristics and cultivation requirements of the Centella
Asiatica (Linn.) Urban (CAU) cultivar make it an ideal case study. In Thailand, the varying
resistance of CAU cultivars to diseases and pests, along with differences in essential
compound concentrations, necessitates tailored cultivation techniques for an optimal yield
and product quality [16,21,22]. Additionally, the divergence in agronomic traits among
CAU cultivars based on their growth region emphasizes the need for rapid and precise
classification to inform cultivation practices [17,23,24].

Deep learning models have exhibited impressive performances across various plant
image classification domains, including disease identification and flower species recogni-
tion [25]. Notably, models like VGG-Net and the Inception module excel in plant disease
identification, while techniques like 3-D CNN and CNN with ConvLSTM layers have
enhanced plant accession classification through the integration of spatial and temporal data
for improved accuracy [26]. DenseNet121 has also proved effective in accurately classifying
flower species [27]. These studies collectively underscore the effectiveness of deep learning
models in plant image classification, often achieving accuracy rates exceeding 94%.
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Among the standout models in plant classification research are MnasNet, SqueezeNet,
and ShuffleNetV2. These models have demonstrated their prowess in various applications.
For instance, SqueezeNet achieved a remarkable 96% accuracy rate in citrus fruit disease
classification, and ShuffleNetV2 demonstrated efficient low-power image classification
for edge computing [28,29]. Furthermore, Patil utilized a support vector machine (SVM)
classifier in combination with various features for plant identification, achieving an overall
accuracy of 78% [30]. Additionally, Heredia explored the application of deep learning
models like ResNet50 in large-scale biodiversity monitoring, noting substantial accuracy
improvements over existing methods [31,32].

MnasNet, SqueezeNet, and ShuffleNetv2 each offer unique advantages in plant
classification. MnasNet, being a lightweight neural network, achieves a high accuracy
with a minimal computational cost [33]. SqueezeNet, another compact model, excels
in rapid image processing on edge devices while maintaining a high accuracy. Shuf-
fleNetv2, known for its multihop lightwave network, leverages optical interconnection to
enhance rapid packet communication, thus reducing fiber cabling congestion and enabling
modular growth [34,35]. These models exemplify the potential of efficient and effective
deep learning models across various applications, including computer vision and natural
language processing.

Ensemble deep learning models play a critical role in improving disease detection and
pest recognition accuracy in plant classification by combining the strengths of multiple
models for enhanced generalization [36–39]. Deep ensemble models, which merge deep
learning with ensemble learning, exhibit remarkable generalization performance, holding
great potential for transforming plant recognition systems. Deep ensemble neural networks
(DENNs) have even surpassed state-of-the-art pre-trained models in plant disease detec-
tion [39]. Additionally, model compression techniques, such as pruning and quantization,
have successfully reduced the computational demands of deep learning models in plant
seedling classification without significant accuracy loss [40]. Despite the advantages and
high accuracy of models like MnasNet, SqueezeNet, and ShuffleNetv2, the application of
ensemble deep learning in these contexts remains an underexplored area of research. Our
study aims to develop a CAU cultivar classification system by harnessing ensemble deep
learning with these models, ultimately advancing plant classification and contributing to
the development of robust plant recognition systems.

In addition to deep learning models, preprocessing techniques such as image segmen-
tation and augmentation play a crucial role in plant classification systems. Methods like
U-Net and R-Net segmentation have found successful application in various plant science
contexts [41]. For example, 3D U-Net has been used to segment root and soil volumes in
MRI scans, enhancing the signal-to-noise ratio and resolution. Another study leveraged a
U-Net-based CNN for segmenting root images from rhizotrons, yielding strong correlations
with manual annotations. Additionally, an EncU-Net model, based on U-Net architecture,
achieved over 90% success in lesion segmentation in dermoscopic images, demonstrating
the efficacy of these segmentation methods in plant science [16].

2.3. Decision Fusion Strategy in Ensemble Deep Learning

In ensemble deep learning, decision fusion strategies play a pivotal role in enhancing
the generalization performance by combining the decisions of multiple models. These
strategies encompass static fusion and dynamic fusion methods. Static fusion assumes
uniform capabilities among agents or disregards agents with subpar performance, whereas
dynamic fusion adapts to the competence of each base agent on test states. A dynamic
fusion method for deep reinforcement learning, for instance, measures base agent perfor-
mance on validation states and adjusts agent weights based on their performance and
similarity to new states [42]. Decision-level fusion methods have found applications in
diverse domains, including COVID-19 patient health prediction through calibrated en-
semble classifiers employing a soft voting technique [43]. In target recognition tasks, an
ensemble-learning-based information fusion model has improved the recognition abilities
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of distributed sensors [44]. Ensemble learning frameworks have also enhanced cooperative
spectrum sensing in cognitive radio systems, utilizing convolutional neural networks and
fusion strategies for global decision making [45].

Metaheuristic techniques like swarm intelligence (SI) and evolutionary computing
(EC) have effectively optimized deep neural networks (DNNs) in various tasks [46]. They
excel in generating optimal hyperparameters and structures for DNNs when dealing with
extensive datasets [47]. Ensemble learning has further been applied to enhance sentiment
analysis [48], text classification [49], and epileptic seizure prediction [50]. For instance,
a stacking ensemble approach boosted accuracy in sentiment analysis by leveraging the
strengths of different deep models.

Artificial multiple intelligences systems (AMISs) were initially proposed by Pitakaso
et al. [8] to streamline the agricultural product flow from Thailand to neighboring countries.
Subsequently, an AMIS was employed to determine optimal weights for ensemble deep
learning models in classifying various medical images [51,52]. Recently, an AMIS was
utilized to optimize ensemble classification models in two stages, combining different
image segmentation methods and CNN architectures. This double ensemble model outper-
formed traditional fusion methods like unweighted averages and majority voting, yielding
outstanding accuracy.

In this research, AMIS will combine two segmentation methods and three CNN
architectures for CAU cultivar classification. However, modifications are required, as the
original AMIS used in [53] cannot be directly applied. New improvement methods are
introduced, and adjustments to the probability function for selecting improvement methods
will be made.

3. Research Methods

The proposed research entails the creation and deployment of an automated classifi-
cation system for CAU species utilizing the parallel AMIS ensemble model (P-AMIS-E).
Initially, diverse CAU species will be collected and photographed to constitute the training
and testing datasets. Subsequently, the P-AMIS-E model will be developed, trained, and
tested on this dataset, aiming to enhance species classification accuracy and efficiency while
minimizing manual intervention. The model’s performance will be assessed and analyzed
in subsequent sections of this paper.

3.1. Dataset Preparation

The Centella Asiatica Urban (CAU) specimens were gathered from diverse production
sources. The study encompassed five distinct CAU cultivars, specifically Rayong, Cha-
choengsao, Nakhon Pathom, Ubon Ratchathani, and Prachin Buri. Each of these cultivars
underwent uniform cultivation conditions and care procedures for a duration of 12 weeks.
Fresh leaf samples from all cultivars were meticulously collected and photographed against
a white background to ensure consistency.

The dataset was subsequently partitioned into two subsets: CALU-1 and CALU-2.
The CALU-1 dataset served as the training and testing set for the model, while the CALU-2
dataset remained unseen and was reserved for validation purposes. The total number of
images present in both datasets is detailed in Table 1.

Table 1. Detail of the datasets in CALU-1 and CALU-2.

CALU-1 CALU-2

CM NP NR NS NT NB PB RB SK UB CM NP NR NS NT NB PB RB SK UB

Training set 1005 1089 1000 1000 1007 1000 1056 1056 1090 1000 - - - - - - - - - -
Testing set 504 504 500 500 505 570 506 594 539 500 500 502 500 541 528 500 575 594 568 500

Total 1509 1593 1500 1500 1512 1570 1562 1650 1629 1500 500 502 500 541 528 500 575 594 568 500

Note: Chiang Mai: (CM), Nakhon Pathom: (NP), Nakhon Ratchasima: (NR), Nakhon Si Thammarat:
(NS), Narathiwat: (NT), Nonthaburi: (NB), Prachin Buri: (PB), Ratchaburi: (RB), Songkhla: (SK), Ubon
Ratchathani; (UB).
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Based on the data presented in Table 1, CALU-1 was split into two subsets, namely,
the train dataset (80%) and the test dataset (20%). The CALU-1 dataset contained a total of
3240 images, whereas CALU-2 consisted of 3591 images and was only utilized to evaluate
the effectiveness of the proposed method. Examples of all five types of Centella asiatica (L.)
Urban from both datasets are shown in Figure 1.

 

Figure 1. Example of all types of Centella asiatica (L.) urban from both datasets.

3.2. Develop the P-AMIS-E

The development of the P-AMIS-E comprised four steps: (1) image augmentation,
(2) the ensemble of two types of image segmentation, (3) the ensemble of various types of
CNN architectures, and (4) the application of AMIS as the decision fusion strategy. The
workflow diagram of the P-AMIS-E is shown in Figure 2.

Figure 2. Workflow diagram of the proposed method.

In accordance with Figure 2, the proposed methodology was initiated by inputting the
training images into the image segmentation methods. Subsequently, the training images
underwent processing within the ‘ensemble image segmentation procedure’. During this
stage, the Adaptive Metaheuristic-based Image Segmentation (AMIS) served as the decision
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fusion strategy for the proposed model. Following this step in the diagram, the images
were input into the ensemble convolutional neural network (CNN) model, culminating in
the final prediction. For the testing dataset, the images were directed straight to the image
segmentation procedure, utilizing the model previously trained on the training dataset to
predict the ultimate class of each image. To elucidate the proposed algorithm, we provide a
stepwise explanation in the following subsections.

3.2.1. Image Augmentation

To enhance the performance of an automated classification model for CAU species, a
variety of image augmentation techniques were employed, including rotation (at angles of
90, 180, and 270 degrees), flipping (both horizontally and vertically), zooming at different
scales, cropping to focus on specific plant parts, adding Gaussian noise for varying pixel
intensity and lighting condition simulation, color jitter for random adjustments in bright-
ness, contrast, saturation, and hue, and shearing to skew the original images and improve
perspective recognition.

Through the application of these augmentation techniques, the diversity of the training
dataset was increased, leading to the improved performance of the classification model.
The augmented dataset was then utilized to train the model, resulting in high accuracy and
robustness in recognizing CAU species [54–56].

3.2.2. Image Segmentation

This study employed two image segmentation methods, U-Net and Mask R-CNN, to
segment the important features of the CAU’s leaf. U-Net was chosen for leaf segmentation
due to its suitability for images with limited training data, particularly in medical image
analysis [57,58]. The U-Net architecture consists of an encoder network and a decoder
network connected by a bottleneck layer. The encoder network captures contextual in-
formation, while the decoder network generates the segmentation mask. U-Net has been
successful in various image segmentation tasks, including the segmentation of organs, tu-
mors, and blood vessels in medical imaging, and other segmentation tasks such as satellite
and microscopy image segmentation. The success of U-Net is attributed to several factors,
including the use of skip connections that recover spatial information, its relative light
weight and efficiency, and its adaptability to different segmentation tasks and datasets.

Mask R-CNN is a state-of-the-art deep learning algorithm that performs object de-
tection and instance segmentation simultaneously. It extends Faster R-CNN by adding a
parallel branch for predicting segmentation masks. Mask R-CNN outputs a set of bounding
boxes, class labels, and segmentation masks to precisely segment objects at the pixel level.
A small convolutional neural network produces the mask for each region proposal gen-
erated by the object detection branch [59,60]. Mask R-CNN’s versatility and effectiveness
make it useful in various computer vision applications, such as autonomous vehicles,
medical image analysis, and robotics, as it performs both object detection and instance
segmentation simultaneously.

The segmentation of images of the CAU’s leaf will be conducted through the utiliza-
tion of two distinct methodologies: U-Net and Mask-R-CNN. Subsequently, the outcomes
derived from these two approaches will be amalgamated to yield a unified solution, em-
ploying an Artificial Multiple Intelligence System (AMIS). The framework depicting the
ensemble segmentation is visually depicted in Figure 3.

The proposed approach involves the integration of two diverse image segmentation
methods, namely, U-Net and Mask-R-CNN, to form a unified solution. This fusion will
be achieved through the optimization of weights assigned to the outcomes obtained from
U-Net and Mask-R-CNN networks.

Z = ∑I
i=1 WiYi (1)
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Figure 3. AMIS-ensemble segmentation.

The segmentation solution is formulated through the utilization of Equation (1), where
Yi represents the outcome derived from segmentation method I, Wi denotes the weight
assigned to each method obtained from the AMIS, and Z represents the ultimate predictive
value of the AMIS-ensemble segmentation. The AMIS algorithm will be explained in
Section 3.2.4.

3.2.3. Ensemble the CNN Models

To establish an Automated Classification model for CAU species based on a convolu-
tional neural network (CNN) architecture, it is imperative to choose a suitable model that
encompasses precision and efficiency. In this investigation, we explore a series of compact
yet impactful CNN architectures as candidates for this purpose.

We elaborate on our innovative ensemble Convolutional Neural Network (CNN)
model, specifically engineered for the classification of the Centella Asiatica Urban (CAU)
cultivar. A key aspect of this model is its adherence to a strict size constraint, remaining
under 80 MB to facilitate deployment in fast-response environments. This is achieved
through the integration of a series of lightweight yet proficient CNN architectures within
an ensemble framework.

The ensemble configuration encompasses an ensemble of nine distinct neural network
architectures, comprising four instances of SqueezeNet models, each approximately 5 MB in
size, three ShuffleNetv2 1.0x models, with an individual model size of approximately 6 MB,
one Inception v1 model, occupying an approximate space of 20 MB, and three MobileNetV3
models, each weighing approximately 6 MB. In aggregate, the ensemble model consumes a
total storage space of 77 MB. The selection of these models was grounded in their efficiency
and capacity to conduct a nuanced analysis of the input data, which, in the context of our
research, encompasses diverse imagery of CAU cultivars. For more comprehensive details
regarding these architectural choices, refer to references [61–64].

Central to our ensemble model is the application of an Artificial Multiple Intelligence
System (AMIS) in the decision fusion layer. This innovative strategy leverages the strengths
of each model in the ensemble, utilizing AMIS to intelligently integrate their individual
predictions. The AMIS approach in the decision fusion layer assesses the outputs from
the SqueezeNet, ShuffleNetv2, Inception v1, and MobileNetV3 models, considering each
model’s confidence and accuracy to formulate a final classification decision.

The diagram (Figure 4) depicts this ensemble architecture, illustrating the individual
data processing paths of the CNN models and their convergence at the AMIS-based
decision fusion layer. This layer is the linchpin of our ensemble model, where the combined
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intelligence and analytical power of the individual models are synthesized to achieve an
optimal balance between accuracy and computational efficiency.

Figure 4. Proposed ensemble architecture.

Through the AMIS in the decision fusion layer, our ensemble model not only ensures
a comprehensive and nuanced analysis of CAU cultivars but also maintains the agility and
responsiveness essential for real-time classification applications. This unique integration of
multiple CNN architectures with the AMIS-driven decision fusion represents a significant
advancement in agricultural species classification, particularly in environments where the
speed and model size are critical constraints.

This refined approach to decision fusion within our ensemble model exemplifies
the practical application of advanced AI techniques in agricultural settings. It marks a
significant step forward in addressing the challenges of accurate CAU cultivar classification
while adhering to the constraints of fast-response applications and model efficiency.

To test the effectiveness of the proposed model, we will compare the method with the
homogenous SqueezeNet, the ShuffleNetv2 1.0x model, and MobileNetV3 and the state-of-
the-art single model which has a size of 80–120 MB, ResNet-101 (102 MB) [65], Xception
(88 MB) [66], NASNet-A Mobile (84 MB) [67], and MobileNetV3-Large (113 MB) [64] to be
fairly compared to the proposed model. Details of the proposed and compared methods
are shown in Table 2.

According to the data presented in Table 2, our proposed model will undergo a
comparative analysis with diverse methodologies, encompassing both individual large
models and homogeneous ensemble models, with model sizes ranging from 80 to 113 MB.
To facilitate a fair comparison, all methods will be re-implemented based on the conceptual
frameworks provided in the references. Subsequently, comprehensive testing of these
methods will be conducted on the established dataset.
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Table 2. List of the proposed method’s details.

Methods Number of CNNs
Homogenous (Ho)/Heterogenous (He)/

Single Model (Single)
Total Size

ResNet-101 [65] 1 Single 102
Xception [66] 1 Single 88
NASNet-A Mobile [67] 1 Single 84
MobileNetV3-Large [64] 1 Single 113
SqueezeNet [61] 16 Homogenous 80
ShuffleNetv2 1.0x [62] 14 Homogenous 84
MobileNetV3 [64] 14 Homogenous 84
InceptionV1 [63] 4 Homogenous 80

Proposed Methods 11 Heterogenous 77

3.2.4. Parallel-AMIS-Ensemble Model (P-AMIS-E)

AMIS decision fusion strategies will be used in two parts of the proposed model
parallelly. Figure 5 demonstrates the parallel-AMIS-ensemble model used in this study.

Figure 5. Framework of P-AMIS-E.

Figure 5 demonstrates the synergistic application of U-Net and Mask R-CNN for the
segmentation of Centella Asiatica Urban (CAU) leaf imagery. U-Net’s encoder–decoder
architecture is particularly adept at processing images with sparse data, a scenario preva-
lent in medical image analysis. Characterized by skip connections, U-Net’s design adeptly
recovers spatial information, thereby augmenting its efficiency and versatility across a
spectrum of segmentation tasks. Complementing U-Net, Mask R-CNN, an advanced
iteration of Faster R-CNN, incorporates a parallel branch dedicated to predicting segmen-
tation masks alongside object detection. This results in meticulously detailed pixel-level
segmentation, encompassing bounding boxes, class labels, and masks, all produced by a
succinct convolutional network. Mask R-CNN’s bifunctional capability renders it a highly
adaptable tool in a variety of contexts, including autonomous vehicles, medical imaging,
and robotics.

The fusion of U-Net and Mask R-CNN, as depicted in Figure 5, capitalizes on the
distinct strengths of each method, culminating in a comprehensive solution adept at
navigating the intricacies of CAU leaf segmentation. The integration process utilizes an
Artificial Multiple Intelligence System (AMIS) to merge the results from both segmentation
techniques, thereby significantly enhancing the precision of cultivar classification.

In the P-AMIS-E model, the journey begins with the initial image, intended to discern
various CAU cultivars. This image is subjected to dual segmentation techniques—U-Net
and Mask-R-CNN—whose outputs are subsequently unified within the AMIS ensemble
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framework. Following segmentation, geometric image augmentation is applied, prepar-
ing the segmented images for analysis by four distinct CNN architectures: SqueezeNet,
ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1.

Each CNN architecture contributes a unique perspective, yielding four separate pre-
dictions in every iteration. The P-AMIS-E model synthesizes these individual insights into
a singular, cohesive prediction using the AMIS framework. Thus, the Parallel-Artificial
Multiple-Intelligence System-Ensemble (P-AMIS-E) model emerges as the culmination of
this intricate and multifaceted approach, standing as a testament to the power of integrated
artificial intelligence in the realm of plant cultivar classification.

The AMIS framework consists of four key stages, namely, (1) the generation of initial
work packages (WP), (2) the selection of the intelligences box (IB) by the WP, (3) the
performance of the improvement procedure utilizing the selected IB, (4) updating heuristics
information, and (5) the iterative repetition of steps (2) to (4) until the termination conditions
are satisfied.

In our investigation, we have adopted a customized adaptation of the Artificial Multi-
ple Intelligence Systems (AMIS) as the favored technique for decision fusion, effectively
employed in both image segmentation and the integration of Convolutional Neural Net-
work (CNN) architectures. The conceptual foundation of AMIS was originally put forth by
Pitakaso et al. [8]. This study builds upon the AMIS model proposed by the aforementioned
author, which was designed to optimize the transborder agricultural production logistic
network in the north-eastern region of Thailand.

The AMIS framework consists of a coherent sequence of five steps, encompassing (1)
the generation of the initial set of work packages (WPs), (2) the selection of the preferred
intelligent box (IB) by the WPs, (3) the implementation of the improvement method by the
WPs using the selected IB, (4) the updating of heuristics information, and (5) the iterative
execution of steps (2) through (4) until the predefined termination conditions are met.

The utilization of AMIS shall be applied to ascertain the most favorable weighting
scheme for amalgamating dissimilar solution types acquired from a variety of segmentation
methods and architectures. This specific approach will be juxtaposed with alternative
decision fusion strategies—notably, the unweighted average model (UWM), along with
the adapted differential evolution algorithm (DE) proposed by Kabanikhin [68], and the
modified Genetic algorithm (GA) proposed by S. Yang & Collings [69]. By employing
this comparative analysis, we aim to discern the efficacy and superiority of AMIS in
enhancing the fusion of diverse solutions, thereby contributing to advancements in the
field of segmentation methodologies and architectural integration.

The unweighted average model (UWA) is characterized by its equitable distribution of
weight across each prediction value

(
Yij
)
, where ‘i’ denotes the CNN label and ‘j’ indicates

the prediction class, a representation applicable to segmented image classes, denoted by 0
or 1. The fusion process of the UWA is governed by Equation (2), while AMIS, DE, and GA
employ Equation (3) to compute the final weight. Here, Yij signifies the predicted value of
CNN ‘i’ for class ‘j’ prior to the application of both equations.

Subsequently, upon merging multiple CNN results, Vj is utilized to categorize class
‘j’, with each CNN ‘i’ assigned a weight (Wi) based on the total number of CNNs or
segmentation methods (I) and the number of classes (J). This methodology ensures a
comprehensive and systematic approach to determining the final weights and achieving an
effective fusion of diverse CNN outputs, thereby contributing to the enhanced classification
performance and segmentation results in our study.

Vj =
∑I

i=1 Yij

I
(2)

Vj = ∑I
i=1 WiYij (3)

In this investigation, AMIS, DE, and GA were employed to ascertain the optimal
value of Wi in the given scenario. The unweighted average decision fusion strategy (UWA)
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presents a straightforward and computationally efficient approach for integrating ensemble
deep learning models. UWA distributes equal weights to each CNN, which facilitates the
ease of implementation and interpretation. However, UWA’s limitation lies in its lack of
optimization capabilities, impeding its ability to finely tune the ensemble performance.

On the other hand, Differential Evolution (DE) exhibits robust global search capa-
bilities, rendering it suitable for addressing intricate optimization problems, particularly
those characterized by noisy landscapes. DE adapts adeptly to multimodal search spaces;
nevertheless, it may converge at a slower pace and necessitate greater memory resources
due to its population-based approach.

In contrast, the Genetic Algorithm (GA) strikes a harmonious balance between ex-
ploration and exploitation, enabling faster convergence. Nonetheless, GA’s performance
may be sensitive to parameter settings, and it may encounter challenges in highly complex
landscapes. Each of these methods, with their unique strengths and limitations, contributes
to the diversification of decision fusion approaches, offering valuable insights into opti-
mizing ensemble performance for deep learning models. AMIS can be explained stepwise
as follows.

Generate the Initial Work Package

In this section, we undertake the generation of WPs at random, where each WP
is characterized by dimensions of 1 × D, with ‘D’ representing the number of image
segmentation methods or the CNN architectures under consideration. To initiate this
process, we employ a real number for the first track, uniformly and randomly generated
within the interval of 0 and 1, as governed by Equation (4).

Xki1 = U(0, 1) (4)

Within this context, the notation Xki1 pertains to the specific value within WP ‘k’ at ele-
ment ‘i’ during the first iteration. Here, ‘i’ denotes the count of available CNN/segmented
methods, while ‘k’ signifies the predetermined number of WPs. Moreover, alongside
the primary set of WPs, two supplementary sets, denoted as the best work package
(BWP) and random work package (RWP), were also stochastically generated during the
initial iteration.

BWPki1 = U(0, 1) (5)

RWPki1 = U(0, 1) (6)

Within the provided context, BWPkit denotes the set comprising the best solutions
acquired from the initial iteration up to iteration ‘t’, whereas RWPkit is a randomly selected
set determined by a specific formula. During the inaugural iteration, both BWPkit and
RWPkit were generated randomly utilizing Equations (5) and (6), respectively. Subsequently,
Equation (7) was employed to update Xkit, whereby the value of Xkit in iteration ‘t + 1’
is derived from the value of Xkit in iteration ‘t’, employing a selected Improvement Box
(IB) operator. For instance, an illustrative track with D = 5 is as follows: {0.11, 0.28, 0.19,
0.94, 0.75}. This WP’s value will undergo recalculation to obtain the value of Wi, entailing
further steps in the iterative process.

Pki =
Xki

∑i
i=1 Xki

(7)

Equation (8) has been adapted to address the variability arising from the presence of
‘k’ number of WPs. To this end, Ckj is employed for classifying class ‘j’ based on WP ‘k’,
while Pki represents the weight associated with the CNN/segmentation method ‘i’ utilizing
values from WP ‘k’.

Ckj = ∑I
i=1 PkiYij (8)

Perform WP Improvement Procedures
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The work packages (WPs) undergo iterative execution, wherein the enhancement of
solutions is achieved through the application of intelligence boxes (IBs). In this study, we
adopt a selection of IBs, specifically differential evolution (DE)-inspired variants, namely,
DEI-I, DEI-II, and DEI-III, along with additional methods, such as random crossover (RC),
single-bit mutation inspired (SMI), SWAP, restart (RT), and scaling factors (SF). Each of
these methods is incorporated using formulaic expressions, as provided in Equations (9)
through (16), respectively. These IBs collectively contribute to the systematic improvement
of solutions, thereby enhancing the efficacy of our approach in the research domain.

Xkit = Xr1it−1 + F1(Xr2it−1 − Xr3it−1) (9)

Xkit = Xr1it−1 + F1(Xr2it−1 − Xr3it−1) + F2(Xr4it−1 − Xr5it−1) (10)

Xkit = Xr1it−1 + F1
(

Bgbest
i − Xrit−1

)
+ F2(Xr2it−1 − Xr3it−1) (11)

Xkit =

{
Xkit−1 i f Rki ≤ CR
Rkit−1 otherwise

(12)

Xkit =

{
Xkit−1 i f Rki ≤ CR
Xr1it−1 otherwise

(13)

Xkit = Bgbest
i + F1(Xr1it−1 − Xrit−1) + F2(Xr2it−1 − Xr3it−1) (14)

Xkit = Rki (15)

Xkit =

{
Xkit−1 i f Rki ≤ CR
RkiXkit−1 otherwise

(16)

The set of randomly selected work packages, denoted as r1, r2, r3, r4, and r5, ex-
cludes work package ‘k’. Furthermore, Rkit represents a randomly generated number
corresponding to work package ‘k’ at position ‘i’ during iteration ‘k’, and Rki denotes a
random number corresponding to work package ‘k’ at position ‘i’. The crossover rate (CR)
is set to 0.7, determining the frequency of crossover operations during the simulation.

The notation Bgbest
i designates the best work package found thus far in the simulation.

These defined parameters and notations play pivotal roles in facilitating the comprehensive
exploration and optimization of work packages during the simulation process.

In the process of IB selection, each WP has the liberty to choose an IB in the current
iteration, without being bound by the IB chosen in the last or prior iterations. However, the
likelihood of selecting each IB may vary, being either reduced or increased based on the
quality of solutions generated using that particular IB. The probability function governing
the selection of IB ‘b’ in iteration ‘t’ is described by Equation (17). Within this equation,
when the parameter ‘F’ is assigned a value of 0.4, ‘Abt’ denotes the average solution quality
derived from all tracks that have hitherto chosen IB ‘b’, iteration ‘t’. Abest

t−1 signifies the
average solution quality of tracks that have previously selected the ‘best’ information bit,
which is determined by its highest average accuracy. ρ denotes the constant number which
is set to “20”. Additionally, ‘Nbt−1’ represents the count of tracks that have selected IB ‘p’
up to the current iteration. The parameter ′Ibt−1’ increases by 1 if IB ‘b’ contains the best
work package, ‘Bgbest

i ’, otherwise it remains unchanged. The constant parameter ‘K’ has
been set to 30, and Q is defined as the constant number which is set to 100. It is noteworthy
that all predefined parameters have been meticulously established through the preliminary
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tests conducted during the course of this research, ensuring their appropriateness for the
optimization process.

Pbt =
FNbt−1 + (1 − F)Abt−1 + KIbt−1 + ρ Q

|Abt−1−Abest
t−1 |

∑B
b=1 FNbt−1 + (1 − F)Abt−1 + KIbt−1 + ρ Q

|Abt−1−Abest
t−1 |

∣∣∣∣ (17)

Equation (17) serves as a probability function that guides the selection of ‘IB’, denoted
as ‘b’, during iteration ‘t’. This equation derives from four distinct components, each
drawing from historical data related to the performance of various ‘IBs’. These components
collectively inform the likelihood of selecting ‘IB’ ‘b’ based on its past performance.

The first component quantifies how frequently ‘IB’ ‘b’ has been chosen in previous
iterations. This metric reflects the popularity of ‘IB’ ‘b’ among the selection process and
implies that more frequently selected ‘IBs’ might have the potential to yield superior
solutions. The second component in Equation (17) calculates the average value of the
‘objective function’ associated with ‘IB’ ‘b’. This component provides insights into the
typical performance level of ‘IB’ ‘b’.

The third component counts the instances where ‘IB’ ‘b’ has consistently outperformed
all other ‘IBs’ in the same iteration. This highlights ‘IB’ ‘b’s ability to consistently find
the best solutions. The final component considers the difference between the average
solution value of ‘IB’ ‘b’ and the ‘best IB’. It introduces an additional dimension to the
evaluation process.

Once these components are combined in Equation (17) to compute the probability of
selecting ‘IB’ ‘b’, a roulette wheel selection method will be employed for the subsequent
step. This roulette wheel selection ensures that ‘WP’ (Worker Package) selects ‘IB’ based
on their respective probabilities. Higher probabilities will correspond to a greater chance
of selection, favoring ‘IBs’ that have consistently demonstrated superior performance in
comparison to others. In summary, Equation (17) and the roulette wheel selection method
work in tandem to choose the most promising ‘IB’ based on their historical performance,
fostering a dynamic and adaptive selection process.

In each iteration, it is imperative to update the values of several parameters in response
to the prevailing conditions. These essential factors encompass Rki, Rkit, Nbt, Abt, Bgbest

i , and
Ibt−1. Subsequently, the selection of IB, the performance on the selected IB, and the updating
of the probability of the IB are executed iteratively until a specified termination condition
is satisfied, such as a predetermined computational time limit or a prescribed number of
iterations. This iterative process ensures the progressive refinement and convergence of the
algorithm, ultimately leading to the attainment of reliable and optimized results within the
specified constraints.

3.3. Performance Measurement Matric and the Comparison Methods

Performance metrics play a pivotal role in assessing the efficacy of deep learning
models, providing valuable insights into their performance on specific tasks and guiding
informed decisions for researchers and practitioners. Notably, accuracy stands as a fun-
damental metric, measuring the proportion of correctly classified instances relative to the
total dataset size and offering an overarching measure of correctness. In Section 3.2.4, we
will undertake a comprehensive performance evaluation, comparing the efficacy of all
individual models and homogeneous ensemble models. Additionally, we will implement
the Vision Transformer (ViT) approach, as presented by [70], to provide a benchmark for
assessing the performance of our proposed model.

In parallel, precision endeavors to minimize false positives by gauging the ratio of
true positive predictions to the total predicted positive instances. Conversely, the recall,
synonymous with sensitivity or the true positive rate, proves indispensable when reducing
false negatives, capturing the ratio of true positive predictions to the total actual positive
instances. The contribution to model evaluation includes the F1-score, which effectively
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balances precision and recall, especially when handling imbalanced class distributions.
The calculations for the accuracy, precision, recall, and F1 score can be calculated using
Equations (18)–(21).

Accuracy =
nTP + nTN

nTP + nPN + nFP + nFN
(18)

Precision =
nTP

nTP + nFP
(19)

Recall =
nTP

nTP + nFN
(20)

F1 − score =
2nTP

2nTP + nFP + nFN
(21)

where nTP is the number of true positives, nTN is the number of true negatives, nFP is the
number of false positives, and nFN is the number of false negatives.

In addition to accuracy, the area under the receiver operating characteristic (ROC)
curve (AUC) is a crucial performance metric, especially for binary classification tasks.
The ROC curve illustrates the trade-off between the true positive rate and false positive
rate, with the AUC representing the area under this curve. Higher AUC values indi-
cate a superior model performance, making it a valuable tool for comparing different
models. These metrics together provide a comprehensive understanding of the strengths
and weaknesses of the deep learning model, which is essential for model selection and
optimization. The function used to calculate ‘AUC’ in our experiment can be found
at ‘https://scikit-learn.org/stable/modules/geneated/sklearn.merics.roc_auc_score.html’
Accepted date (15 January 2024).

This study sets forth to explore the efficacy of two decision fusion strategies: the
“unweighted average” (UWA) approach, which uniformly amalgamates individual clas-
sifier outputs [52], and a tailored artificial multiple intelligence system (AMIS) [8]. AMIS
incorporates the differential evolution algorithm (DE) [51], and genetic algorithm (GA) [53]
to optimize the weights assigned to each classifier, seeking to enhance the performance of
the ensemble classifier.

In summary, the proposed method can be condensed into algorithmic form, as depicted
in Algorithm 1.

Algorithm 1: Construction of the Parallel-Artificial Multiple Intelligence System-Ensemble Deep
Learning model (P-AMIS-E)

Input: Image training set, list the number of each type of CNN architecture.
Step (1) Generate new images with data augmentation on the training set, including the
method: rotation, flipping, zooming, cropping,
Gaussian noise, shearing lighting simulation, brightness, contrast, saturation, and hue.
Step (2) Construct the AMIS-ensemble segmentation.

- Training U-Net and Mask-R-CNN networks.
- Optimize U-net and Mask-R-CNN weights using AMIS in Algorithm 1, whose

objective is to minimize segmentation loss.

Step (3) Segment images in Step (1) using AMIS-ensemble segmentation in Step (2).
Step (4) Construct and train each CNN in the list, and number each type of CNN
architecture with a segmented image set in Step (3).
Step (5) Construct the AMIS-ensemble CNN.

- Predict the CNN output
(

Ykj

)
, with the CNN index k and class j, of all CNNs in

Step (4) from the input segmented image set in Step (3).
- Optimize CNN weights using AMIS, whose objective is to maximize the accuracy

rate on the prediction output Ykj of all CNNs.

Output: AMIS-ensemble CNN with an optimal weight.
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The analysis will utilize Gradient-weighted Class Activation Mapping (Grad-CAM)
to elucidate the decision-making process of the AI across different classes within the
classification model. Grad-CAM, a technique enhancing the transparency of convolutional
neural network-based models, achieves this by visualizing essential input regions for
predicting specific classes. The method employs gradients originating from the target
concept, like a classification class, within the final convolutional layer to create a coarse
localization map that highlights significant image areas for concept prediction. Regarding
the computation of neuron importance weights αc

k, we define fk(x, y) as the activation of
unit ‘k’ in the last convolutional layer at spatial location (x, y). We calculate the gradient of
the score for class ‘c’ (prior to softmax), denoted as yc, with respect to these features fk. The
gradient undergoes global-average pooling over width and height dimensions (indexed by
x and y) to obtain αc

k, as determined by Equation (22).

αc
k =

1
Z ∑x ∑y

∂yc

∂ fk(x, y)
(22)

Let Z denote the number of pixels in the feature map and ∂yc

∂ fk(x,y) represent the gradient.
Concerning the Grad-CAM heatmap Lc

Grad−CAM, it is derived as a weighted summation of
feature maps, subsequently subjected to a ReLU activation, as outlined in Equation (23).
The incorporation of ReLU activation ensures the visualization of features that positively
impact the class of interest while disregarding negative contributions.

Lc
Grad−CAM = ReLU

(
∑k αc

k fk

)
(23)

Visualization involves normalizing the heatmap Lc
Grad−CAM, which is subsequently

superimposed onto the input image. This visualization approach reveals the crucial regions
within the input image that are instrumental in predicting class ‘c’. The utilization of
Grad-CAM enables the acquisition of a visual elucidation for the convolutional neural
network’s decision-making process, emphasizing the distinctive image areas employed by
the model in class identification.

4. Computational Result

In this investigation, two distinct computing resources were harnessed to facilitate
the development and testing of our algorithm. During the training phase, we availed the
computational capabilities of Google Collaboratory, which granted access to an NVIDIA
Tesla V100 boasting 16 GB of RAM and commensurate specifications. This arrangement
proved instrumental in training our model on a robust computing resource, well equipped
to manage the taxing computational requirements inherent to our algorithm.

For the evaluation of the proposed model’s performance, we conducted simulations on
a separate computing system, equipped with two Intel Xeon-2.30GHz CPUs, 52 GB of RAM,
and a Tesla K80 GPU with 16 GB of GPU RAM. The meticulous selection of this computing
system was based on its ability to proficiently handle the computational demands entailed
by our simulation process, thus affording us the opportunity to meticulously assess the
model’s performance. By leveraging these two distinct and high-performance computing
platforms, we attained the precision and dependability required to achieve accurate and reli-
able outcomes throughout our study. The algorithmic and model parameter configurations
are presented within Table 3 for reference.
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Table 3. Model parameter configurations.

CNN Hyperparameters Metaheuristics (GA, DE, and AMIS) Hyperparameters

Number of CNN epochs of a single model 100 Number of populations (NWP ) 100
Number of CNN epochs in an ensemble 30 Number of iterations (G ) 100
CNN optimizer Adam Crossover rate of DE and AMIS (CR ) 0.3
Learning rate 0.0001 Mutation rate of DE 0.07
Batch size 32 First Scaling Factor of DE (F ) and AMIS (F1 ) 1.67
Image size 331 × 331 Second Scaling Factor of AMIS (F2 ) 1.2

470



Mathematics 2024, 12, 351

The experimentation phase was partitioned into three distinct groups, with the experi-
mental framework visually depicted in Figure 6. In the initial group, various combinations
of the proposed methods were rigorously tested to ascertain the optimal performing com-
bination. Subsequently, the second group undertook a comprehensive evaluation of our
proposed method, in contrast to state-of-the-art approaches, utilizing the best combination
of methods identified in the initial group while focusing on the CALU-1 dataset.

 
Figure 6. Experimental design framework.

To gauge the efficacy and generalizability of the proposed method, the third group
assessed its performance on an unseen dataset, CALU-2. This methodological division
allowed for a systematic and meticulous evaluation of the proposed approach while also
facilitating a rigorous comparison with existing state-of-the-art methods.

The illustrative framework depicted in Figure 6 served as a clear roadmap for guiding
the experiment’s progression, enabling the achievement of reliable and reproducible results.
By adopting this well-structured experimental design, we could confidently examine the
efficacy of our proposed method and draw meaningful comparisons with the existing
state-of-the-art techniques.

4.1. Unveiling the Optimal Combination of Diverse Model Configurations

As delineated in our research methodology, we leveraged two distinct image seg-
mentation methods—specifically, the Mask R-CNN and U-Net methods, along with an
ensemble of these two methods, achieved through four decision fusion strategies: the
unweighted average (UWA), differential evolution algorithm (DE), genetic algorithm (GA),
and modified artificial multiple intelligence system (AMIS). Additionally, we incorporated
one type of image augmentation method into the experimentation. Consequently, the
entire experimentation encompassed a total of 32 distinct experimental configurations,
meticulously summarized in Table 4.
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Table 4. The design of an experiment to reveal the best combination of the model’s elements.

No.

Segmentation Augmentation Decision Fusion Strategies

No
Segmentation

Mask
R-CNN

U-Net
Ensemble

Segmentation
No

Augmentation
With

Augmentation
AMIS DE GA UWA

1 � - - - � - � - - -
2 � - - - � - - � - -
3 � - - - � - - - �
4 � - - - � - - - - �
5 � - - - - � � - - -
6 � - - - - � - � - -
7 � - - - - � - - � -
8 � - - - - � - - - �
9 - � - - � - � - - -

10 - � - - � - - � - -
11 - � - - � - - - � -
12 - � - - � - - - - �
13 - � - - - � � - - -
14 - � - - - � - � - -
15 - � - - - � - - � -
16 - � - - - � - - - �
17 - - � - � - � - - -
18 - - � - � - - � - -
19 - - � - � - - - � -
20 - - � - � - - - - �
21 - - � - - � � - - -
22 - - � - - � - � - -
23 - - � - - � - - �
24 - - � - - � - - - �
25 - - - � � - � - - -
26 - - - � � - - � - -
27 - - - � � - - - � -
28 - - - � � - - - - �
29 - - - � - � � - - -
30 - - - � - � - � - -
31 - - - � - � - - � -
32 - - - � - � - - - �

Then, we use CALU-1 to test the effectiveness of the proposed model and reveal the
best combination of the various elements of the proposed model; the computational result
is shown in Table 5. When comparing different methods of classification, it is essential
to carefully select performance measures that align with the goals and requirements of
the study. While the choice of performance measures may vary depending on the specific
application, several commonly used measures are available for evaluating the classification
performance. These measures include the accuracy, precision, recall, F1 score, and ROC
curve and AUC. Accuracy represents the proportion of correctly classified instances, while
precision measures the proportion of true positives among all positive predictions. Recall,
on the other hand, represents the proportion of true positives among all actual positive
instances. The F1 score combines precision and recall into a single measure that provides
a balanced evaluation of both metrics. Finally, the ROC curve and AUC are measures of
the trade-off between the true positive rate and false positive rate at various thresholds.
The result of 12 experiments is shown in Table 5, and the conclusion of the benefit of using
different elements of the proposed method is shown in Table 6.

The findings from our experimental study, as presented in Table 6, reveal that the
ensemble segmentation method, incorporating both Mask R-CNN and U-Net, demonstrates
a notably higher accuracy compared to models that omit segmentation. The improvement
in accuracy is by an average of 13.69% and 10.98% when compared to models employing
Mask R-CNN and U-Net individually, respectively. Additionally, the results align with
Precision, Recall, F1-Score, and AUC as evaluation metrics.
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Table 5. Result of the tested run for CALU-1.

No. Accuracy Precision Recall F1-Score AUC

1 82.14 82.40 82.40 82.81 82.15
2 82.79 81.64 81.61 81.96 80.88
3 81.75 81.33 80.35 80.21 80.43
4 79.29 79.65 79.57 79.57 79.45
5 83.25 83.42 83.70 83.69 83.22
6 84.59 83.68 83.71 84.52 84.65
7 82.16 82.17 82.35 83.68 83.23
8 80.48 80.14 80.10 80.95 80.45
9 85.88 85.25 85.97 85.48 85.82
10 83.55 83.75 83.52 83.43 83.97
11 82.51 81.56 82.73 82.73 82.76
12 83.78 80.18 83.64 83.47 82.31
13 86.14 84.40 86.40 86.81 86.15
14 84.79 84.64 84.61 84.96 84.88
15 81.75 81.33 80.35 80.21 81.43
16 82.29 81.65 81.57 98.57 81.45
17 88.25 88.42 88.70 88.69 88.22
18 85.59 85.68 85.71 85.52 85.65
19 84.16 84.17 84.35 84.68 85.23
20 83.48 83.14 83.10 83.95 83.45
21 89.88 89.25 89.97 89.48 89.82
22 87.55 87.75 87.52 87.43 87.97
23 86.51 86.56 86.73 86.73 86.76
24 84.78 84.18 84.64 84.47 84.31
25 93.14 93.40 93.40 93.81 93.15
26 90.79 90.64 90.61 90.96 90.88
27 90.35 90.33 90.35 90.21 89.43
28 88.29 88.65 88.57 88.57 88.45
29 98.54 98.57 98.71 98.83 98.95
30 96.91 96.62 96.48 96.52 96.21
31 94.16 94.17 94.35 94.68 95.15
32 92.48 92.14 92.10 92.95 92.42

Table 6. Conclusion of the benefit of using different elements of the proposed methods.

No.

Segmentation Augmentation
Decision
Fusion

Strategies

No
Segmentation

Mask
R-CNN

U-Net Ensemble
No

Augmentation
With Aug-
mentation

AMIS DE GA UWA

Accuracy 82.06 83.84 86.28 93.08 85.36 87.27 88.40 87.07 85.42 84.36
Precision 81.80 82.85 86.14 93.07 85.01 86.92 88.14 86.80 85.20 83.72
Recall 81.72 83.60 86.34 93.07 85.29 87.08 88.65 86.72 85.20 84.16
F1-score 82.17 85.71 86.37 93.32 85.38 88.41 88.70 86.91 85.39 86.56
AUC 81.81 83.60 86.43 93.08 85.14 87.32 88.44 86.89 85.55 84.04

Furthermore, the computational analysis shows that models with image augmentation
yield a superior quality by 2.54% compared to those without it. Among the decision fusion
strategies utilized, AMIS stands out with a higher quality, outperforming DE, GA, and
UWA by average margins of 1.83%, 3.65%, and 4.62%, respectively.

As a result, the most optimal combination of models comprises ensemble segmentation,
image augmentation, and the adoption of AMIS as the decision fusion strategy. This
model will serve as the benchmark to compare against state-of-the-art methods in the
subsequent section.
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4.2. A Comparative Analysis of the Proposed Model against State-of-the-Art Methods Using the
CALU-1 Dataset

The experimental dataset employed in this study is denoted as CALU-1, consisting
of a total of 15,525 images. The dataset was meticulously partitioned into two distinct
groups: 10,303 images were allocated for the training procedure, while the remaining
5222 images were earmarked for testing both the proposed models and the compared
methods. To assess the performance of the models comprehensively, essential performance
metrics such as the AUC, precision, accuracy, recall, and F1-score were employed. The
results of this comprehensive evaluation are succinctly presented in Table 7.

Table 7. Comparative performance analysis of diverse methodologies on the CALU-1 dataset.

Methods Accuracy Precision Recall F1-Score AUC

ViT [70] 91.32 89.19 90.48 90.85 91.52
ResNet-101 [65] 88.38 84.19 86.29 87.42 89.01
Xception [66] 89.27 88.40 89.89 88.72 90.29
NASNet-A Mobile [67] 91.63 91.83 89.74 90.21 91.96
MobileNetV3-Large [64] 92.51 92.17 90.97 91.35 91.38
SqueezeNet [61] 93.21 93.37 94.13 93.73 94.41
ShuffleNetv2 1.0x [62] 94.36 93.73 94.09 94.27 94.83
MobileNetV3 [64] 94.72 93.96 94.64 94.93 95.97
InceptionV1 [63] 95.05 94.18 94.79 95.48 95.99

Proposed Methods 98.41 97.82 97.99 99.61 98.39

Table 7 presents the comprehensive performance evaluation of various deep learning
methods on the CALU-1 dataset, utilizing five essential performance metrics: Accuracy,
Precision, Recall, F1-score, and AUC (Area Under the Curve). Each row in the table
corresponds to a specific deep learning architecture, while the columns represent the
respective performance metric values for each method.

Among the evaluated methods are well-established architectures such as ViT, ResNet-
101, Xception, NASNet-A Mobile, MobileNetV3-Large, SqueezeNet, ShuffleNetv2 1.0x,
MobileNetV3, and InceptionV1. Additionally, the table incorporates the results of the
proposed methods, which were designed and tested during the present study.

Upon the analysis of the results, noteworthy observations emerged. First and foremost,
the proposed methods demonstrate superior performance across all performance metrics,
surpassing all other architectures in the evaluation. With an accuracy of 98.41%, the
proposed methods achieve an impressive level of correct classification. Moreover, their
precision of 97.82% indicates a highly effective ability to minimize false positive predictions.

Further, the recall rate of 97.99% highlights the proposed methods’ proficiency in cap-
turing actual positive instances accurately. The proposed methods also achieve a remarkable
F1-score of 99.61%, signifying an exceptional balance between precision
and recall.

Finally, the proposed methods exhibit an outstanding AUC value of 98.39%, showcas-
ing their excellent discriminative power and overall performance in comparison to other
state-of-the-art methods. These results robustly validate the efficacy and superiority of the
proposed methods for image segmentation tasks on the CALU-1 dataset, emphasizing their
significance in advancing the field of deep learning and image analysis.

4.3. Comparative Analysis of the Proposed Model against State-of-the-Art Methods Using the
Unseen CALU-2 Dataset

All proposed methods have been tested with CALU-2, which is the unseen dataset
that has 5308 images. The result of the experiment is shown in Table 8.
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Table 8. Result of the classification model using CALU-2.

Methods
Number of

CNNs

Homogenous
(Ho)/Heterogenous (He)/

Single Model (Single)

Total
Size

Training
Time

(Minutes)

Testing Time
(Second/
Image)

Accuracy Precision Recall
F1-

Score
AUC

ViT [70] 1 Single - - 90.24 89.53 88.48 89.01 90.45
ResNet-101 [65] 1 Single 102 62.48 0.83 88.7 84.6 85.8 87.9 89.5
Xception [66] 1 Single 88 47.59 0.48 90.1 88.1 90.7 88.8 89.7
NASNet-A Mobile [67] 1 Single 84 45.32 0.49 92.6 92.1 89.8 89.7 91.8
MobileNetV3-Large [64] 1 Single 113 67.55 1.34 92.6 92.6 90.8 91.4 91.7
SqueezeNet [61] 1 Single 5 5.44 0.10 76.2 75.9 75.5 75.8 76.9
ShuffleNetv2 1.0x [62] 1 Single 6 5.98 0.12 76.8 76.8 76.2 77.1 77.3
MobileNetV3 [64] 1 Single 6 6.01 0.13 75.1 74.8 75.6 74.9 75.6
InceptionV1 [63] 1 Single 20 15.7 0.20 79.4 78.9 79.2 79.1 79.8
SqueezeNet [61] 16 Homogenous 80 39.03 0.44 92.8 93.6 94.1 93.5 93.9
ShuffleNetv2 1.0x [62] 14 Homogenous 84 44.19 0.48 94.2 93.9 94.1 94.6 94.8
MobileNetV3 [64] 14 Homogenous 84 43.95 0.47 94.1 94.7 95.3 95.3 95.5
InceptionV1 [63] 4 Homogenous 80 37.58 0.44 94.3 94.8 95.5 95.6 95.7

Proposed Methods 11 Heterogenous 77 34.59 0.34 98.5 97.5 97.4 99.0 97.7

Table 8 provides a comprehensive comparison of various deep learning models,
evaluating their performance metrics on the CALU-2 dataset. These models fall into
three categories: single models, homogeneous ensembles, and our proposed
heterogeneous ensemble.

Starting with the single models, ViT, ResNet-101, Xception, NASNet-A Mobile, and
MobileNetV3-Large are notable for their substantial sizes, ranging from 84 MB to 113 MB.
They exhibit commendable accuracy, scoring between 88.7% and 92.6%. However, their
training times are significantly high, particularly ResNet-101, which takes 62.48 min. The
testing time per image varies from 0.48 to 1.34 s, with Mo-bileNetV3-Large being the fastest.
While these single models offer respectable accuracy, their size and extensive training times
may constrain their applicability.

Turning to SqueezeNet, ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1, we en-
counter a diverse set of single models, characterized by their relatively lightweight sizes
(ranging from 5 MB to 20 MB). These models, despite their compactness, achieve com-
petitive accuracy scores, all surpassing the 75% mark. Notably, they present trade-offs
between accuracy and computational efficiency. For instance, SqueezeNet delivers 76.2%
accuracy, alongside a remarkably brief 5.44 min of training time and a swift 0.10 s of testing
per image. In contrast, InceptionV1 achieves the highest single-model accuracy at 79.4%.
However, it necessitates a longer training period (15.7 min) and 0.20 s for image testing.
These single models cater to various application requirements, allowing users to choose
the optimal trade-off between accuracy and computational resources.

Transitioning to the homogeneous ensemble models, which include SqueezeNet, Shuf-
fleNetv2 1.0x, MobileNetV3, and InceptionV1, we notice their unification of models of
the same type. These homogeneous ensembles collectively achieve remarkable accuracy,
averaging around 94%. This accuracy surge represents a significant improvement over
their individual single models, highlighting the advantages of ensemble learning. However,
this gain in accuracy coincides with lengthier training periods, ranging from 37.58 to 44.19
min—substantially longer than those of single models. Nevertheless, the testing times
remain relatively efficient, ranging from 0.44 to 0.48 s per image. These homogeneous en-
sembles excel in scenarios prioritizing maximum accuracy, even at the expense of increased
training times.

In contrast, our proposed heterogeneous ensemble method, which amalgamates di-
verse models, including SqueezeNet, ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1,
emerges with an outstanding accuracy of 98.5%. Notably, this remarkable accuracy is at-
tained with significantly shorter training durations, as low as 34.59 min, alongside efficient
testing times of 0.34 s per image. This underscores the potency of leveraging diverse model
architectures within ensemble learning. The proposed heterogeneous ensemble not only
outperforms homogeneous ensembles in terms of accuracy but also maintains efficiency in
both training and testing.
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In summary, our proposed heterogeneous ensemble method excels in terms of accuracy
and computational efficiency when compared to both single models and homogeneous
ensembles. This underscores the advantage of harnessing diverse model architectures
to achieve exceptional accuracy while optimizing computational resources, making it a
compelling approach for image classification tasks, such as CAU cultivar classification.

To conduct a thorough analysis of ‘explainable AI’, we will utilize Figure 7a,b and
Figure 8 to showcase the confusion matrix and the Heatmap GradCAM for both the CALU-
1 and CALU-2 datasets. This approach aims to provide insights into the decision-making
processes of artificial intelligence.

Figure 7. Confusion matrices for the classification of agricultural cultivars across various regions in
Thailand using the models CALU-1 (a) and CALU-2 (b). The horizontal axis represents the predicted
classifications, and the vertical axis represents the actual classifications, with the regions denoted by
the following abbreviations: CM (Chiang Mai), NP (Nakhon Pathom), NR (Nakhon Ratchasima), NS
(Nakhon Si Thammarat), NT (Narathiwat), NB (Nonthaburi), PB (Prachin Buri), RB (Ratchaburi), SK
(Songkhla), and UB (Ubon Ratchathani). The number within each cell reflects the count of predictions
made by the respective model for each actual-predicted pair, with the main diagonal showing the
number of correct predictions per region.

Figure 7 presents the confusion matrices for two distinct models, CALU-1 and CALU-2,
applied to the classification of various regions based on their unique agricultural culti-
vars. The axes of each matrix represent the predicted classes (horizontal axis) and the
actual classes (vertical axis) corresponding to different regions in Thailand. Each entry
in the matrices denotes the number of instances that a region’s cultivar, represented by
its abbreviation, was predicted to be of a certain class versus its true class. The diagonal
cells, highlighted by the greater numbers, indicate the number of correct predictions for
each region, where the model’s prediction aligns with the actual class. Off-diagonal cells
represent misclassifications, where the predicted class does not match the actual class. The
regions are denoted by their initials: CM for Chiang Mai, NP for Nakhon Pathom, NR for
Nakhon Ratchasima, NS for Nakhon Si Thammarat, NT for Narathiwat, NB for Nonthaburi,
PB for Prachin Buri, RB for Ratchaburi, SK for Songkhla, and UB for Ubon Ratchathani.
The matrices offer a visual and quantitative analysis of the model’s performance across
different regional cultivars, with a clear emphasis on the model’s accuracy and areas where
the classification performance could be improved.
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(a) Chiang Mai (b) Nakhon Pathom

(c) Nakhon Ratchasima (d) Nakhon Si Thammarat

(e) Narathiwat (f) Nonthaburi

g Prachin Buri h Ratchaburi

i Songkhla j Ubon Ratchathani

Figure 8. The Heatmap GradCam of leaf classification employing the proposed model.

Figure 7a,b illustrates the confusion matrix obtained from the proposed model’s
classification outcomes. It is evident that the Ubon Ratchathani cultivar exhibits the
highest accuracy when compared to other cultivars from CALU-1 and CALU-2. However,
the Narathiwat cultivar demonstrates the highest degree of misclassification for CALU-
1 and CALU-2. This can be attributed to the fact that the Narathiwat Cultivar shares
leaf characteristics that closely resemble those of other cultivars such as NP, NB, and PB.
Notably, the discrepancies primarily arise from subtle variations in size and certain aspects
of outward appearance among these cultivars.
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To elucidate the underlying reasons for the variations in accuracy across different culti-
vars, a meticulous analysis is warranted. In this regard, the Heatmap GradCAM technique
serves as an insightful tool for expounding upon the distinctive classification outcomes. As
evidenced in Figure 8, the GradCAM visualization sheds light on the discriminative regions
exploited by the AI model when categorizing diverse leaf types within varying cultivars.
It becomes apparent that the Ubon Ratchathani cultivar is predominantly assessed based
on features situated toward the center of the leaf’s surface. In contrast, the Prachin Buri
cultivar places greater reliance on attributes located along the leaf’s periphery. This reliance
on distinct regions is notably prevalent among certain cultivars where the curvature of the
leaf’s edge diverges, prompting a strategic shift in classification emphasis. Furthermore, the
classification decision-making process is notably influenced by the leaf’s size, as evidenced
by the conspicuously reddened regions depicted in the heatmap. This characteristic is most
pronounced in cultivars boasting larger leaf dimensions, including CM, NP, and NR.

In the next experiment, we will test the datasets CALU-1 and CALU-2 by splitting the
datasets into k-folds to validate the datasets. We will use three and five folds of the test
datasets and test for the result obtained from using different groups of trained datasets.
The results are shown in Table 9.

Table 9. K-fold validation result using three and five as the k of the datasets CALU-1 and CALU-2.

CALU-1
3-cv 5-cv

Methods Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

ViT [70] 91.19 ±
1.57

89.01 ±
2.39

90.13 ±
0.99

91.04 ±
1.23

92.02 ±
1.61

91.32 ±
1.24

89.19 ±
1.45

90.48 ±
1.02

90.85 ±
1.24

91.52 ±
2.49

ResNet-101 [65] 81.49 ±
2.73

83.04 ±
1.96

83.73 ±
1.84

86.24 ±
2.40

88.18 ±
1.44

82.38 ±
2.18

83.99 ±
2.39

84.59 ±
2.57

86.53 ±
1.77

88.41 ±
0.85

Xception [66] 82.95 ±
1.05

86.39 ±
1.83

87.39 ±
1.68

87.19 ±
2.19

89.22 ±
1.05

82.27 ±
1.47

87.18 ±
2.31

88.45 ±
1.49

87.69 ±
1.84

89.37 ±
0.34

NASNet-A Mobile [67] 87.83 ±
1.86

89.15 ±
2.17

88.12 ±
1.06

88.05 ±
1.83

89.29 ±
1.82

88.33 ±
1.49

90.42 ±
2.09

88.38 ±
1.35

88.78 ±
1.48

89.84 ±
0.93

MobileNetV3-Large [64] 89.24 ±
1.32

90.86 ±
1.19

89.07 ±
2.51

89.48 ±
1.78

89.94 ±
1.01

90.18 ±
0.87

91.03 ±
1.56

89.42 ±
1.58

90.37 ±
1.31

90.68 ±
1.19

SqueezeNet [61] 91.49 ±
1.93

91.83 ±
1.68

91.92 ±
1.94

92.03 ±
1.51

92.38 ±
2.49

92.05 ±
1.31

92.15 ±
1.39

92.63 ±
1.61

92.59 ±
0.93

93.15 ±
1.43

ShuffleNetv2 1.0x [62] 92.84 ±
2.01

92.16 ±
1.15

92.14 ±
1.53

92.58 ±
1.58

92.75 ±
2.18

93.36 ±
2.18

92.54 ±
1.42

92.89 ±
1.14

93.18 ±
0.58

93.41 ±
0.84

MobileNetV3 [64] 93.81 ±
1.19

91.85 ±
2.12

93.08 ±
1.74

92.71 ±
1.06

94.19 ±
1.42

94.34 ±
1.34

92.09 ±
1.90

93.62 ±
0.98

93.32 ±
1.31

95.03 ±
2.44

InceptionV1 [63] 93.75 ±
1.58

93.11 ±
1.11

93.27 ±
1.85

93.72 ±
2.49

93.93 ±
1.86

94.18 ±
1.74

93.74 ±
1.35

93.88 ±
1.19

94.46 ±
1.58

95.27 ±
1.31

Proposed Methods 93.46 ±
1.04

97.20 ±
0.58

96.74 ±
0.69

97.89 ±
1.31

98.15 ±
0.47

97.47 ±
1.31

97.43 ±
1.31

97.10 ±
0.84

98.31 ±
0.74

98.83 ±
0.84

CALU-2

3-cv 5-cv

Methods Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

ViT [70] 89.31 ±
1.14

88.48 ±
1.95

89.11 ±
1.27

88.30 ±
1.64

89.94 ±
1.38

90.15 ±
1.65

88.94 ±
1.96

88.23 ±
1.87

89.01 ±
1.48

90.45 ±
1.76

ResNet-101 [65] 80.98 ±
1.84

82.76 ±
2.14

83.18 ±
1.73

85.78 ±
1.83

87.11 ±
1.91

82.08 ±
2.04

83.41 ±
1.58

83.81 ±
1.93

86.31 ±
1.96

87.59 ±
1.28

Xception [66] 82.47 ±
1.27

86.19 ±
1.18

87.01 ±
1.18

86.39 ±
1.91

88.35 ±
1.18

81.89 ±
1.97

86.84 ±
2.19

88.19 ±
1.01

87.54 ±
2.14

88.93 ±
1.92

NASNet-A Mobile [67] 86.81 ±
1.53

89.28 ±
2.05

87.27 ±
1.84

87.74 ±
1.19

88.38 ±
1.79

87.18 ±
1.63

90.07 ±
1.17

88.07 ±
1.28

88.18 ±
2.16

89.04 ±
0.84

MobileNetV3-Large [64] 89.07 ±
1.94

90.21 ±
1.57

88.41 ±
2.01

88.79 ±
1.28

89.15 ±
1.93

89.49 ±
1.58

90.68 ±
2.48

89.28 ±
1.84

90.25 ±
1.96

90.18 ±
1.48

SqueezeNet [61] 91.04 ±
1.18

91.43 ±
1.18

91.26 ±
1.93

91.48 ±
1.11

92.08 ±
2.00

91.79 ±
1.08

91.82 ±
0.58

92.17 ±
1.93

92.05 ±
1.15

92.76 ±
1.92

ShuffleNetv2 1.0x [62] 92.18 ±
1.85

91.78 ±
1.05

91.68 ±
1.27

92.06 ±
1.96

92.01 ±
1.84

92.85 ±
2.00

92.14 ±
1.05

92.53 ±
1.08

93.01 ±
1.39

93.06 ±
1.53

MobileNetV3 [64] 93.29 ±
1.53

91.04 ±
2.08

92.37 ±
1.86

92.51 ±
1.79

93.75 ±
1.48

94.09 ±
1.18

91.30 ±
1.88

93.08 ±
1.34

93.15 ±
1.88

95.88 ±
1.92

InceptionV1 [63] 93.18 ±
1.57

92.16 ±
1.89

92.83 ±
1.19

93.04 ±
2.04

93.41 ±
1.19

94.01 ±
1.31

93.08 ±
1.19

93.14 ±
1.83

94.19 ±
2.93

95.08 ±
2.90

Proposed Methods 93.21 ±
1.81

96.81 ±
0.85

96.06 ±
0.94

97.18 ±
1.15

97.41 ±
0.97

97.14 ±
1.04

97.11 ±
1.08

96.47 ±
0.76

98.14 ±
1.15

98.48 ±
0.63

Upon scrutinizing the performance of the “Proposed Methods” in relation to alterna-
tive methodologies across the CALU-1 and CALU-2 datasets, several salient observations
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come to light. Concerning accuracy, the “Proposed Methods” consistently provide com-
petitive outcomes. In CALU-1, their achievements manifest as accuracy rates of 93.21%
and 97.14% through the utilization of threefold and fivefold cross-validation paradigms,
correspondingly. These figures situate the “Proposed Methods” in close juxtaposition to
distinguished techniques such as “MobileNetV3” and “InceptionV1.” This ability to achieve
a competitive accuracy is also shown in CALU-2, thereby corroborating the robustness of
the proposed approach.

Advancing to the realm of precision, the “Proposed Methods” perpetually transcend
their counterparts. Within CALU-1, they yield precision metrics of 96.81% and 97.11% in
conjunction with threefold and fivefold cross-validation sequences, individually. Evident
here is their significant ability to accurately discern positive instances. These successful
outcomes also reflect those of CALU-2, where the “Proposed Methods” exhibit precision
metrics of 96.81% and 97.11%.

Delving into the domain of recall, the “Proposed Methods” exhibit commendable
results across both datasets. For CALU-1, their recall achieves maximum values of 96.06%
and 96.47% by virtue of threefold and fivefold cross-validation regimes, respectively. This
ability to identify positive instances is in accordance with the results observed for CALU-2,
where the recall rates reached 96.06% and 96.47%.

Additionally, the “Proposed Methods” exhibit effective results in terms of precision
and recall, achieving elevated F1-scores. For CALU-1, F1-scores of 97.18% and 98.14%
(for threefold and fivefold, respectively) demonstrate their ability to achieve a symbiotic
balance among these dual metrics. This is also reflected in the F1-scores found for CALU-2,
achieving values of 97.18% and 98.14%.

In terms of discerning between the categorical classes, the “Proposed Methods” demon-
strate consistent AUC values. This indicates their ability to discern between positive and
negative instances. With AUC values reaching 97.41% and 98.48% for the threefold and
fivefold cross-validation modalities within CALU-1, and similar values also being found
for CALU-2, the superiority of the proposed approach is demonstrated.

Furthermore, the resilience exhibited by the “Proposed Methods” across both datasets
is palpable, as evidenced by their meager standard deviations. These serve to uphold the
premise of a dependable and consistent comportment of the model.

In a contextual juxtaposition of threefold and fivefold cross-validation, a discernible
constant trend ensues. While both methodologies render commendable performances, the
dominion of fivefold cross-validation precipitates marginally elevated precision, recall,
F1-Score, and AUC values. This underscores the enhanced capability imparted by a
greater multitude of folds in encapsulating subtle intricacies and affording a more granular
evaluation of the model’s performance.

In the ensuing experimental phase, we shall undertake an assessment of the proposed
model’s performance, employing a dataset amalgamated from CALU-1 and CALU-2.
Notably, these datasets deviate from the conventional white background, introducing a
degree of environmental heterogeneity. The principal objective of this experiment resides in
gauging the robustness of the aforementioned model across a spectrum of diverse scenarios.

Furthermore, our investigation will extend to the exploration of variance within the
standard fusion strategies. Specifically, we will juxtapose the conventional majority voting
and unweighted averaging approaches with our novel AMIS fusion technique. The dataset
under consideration comprises a total of 343 images representing class CM, 340 images
for NP, 338 images for NR, 346 images for NS, 350 images for NT, 339 images for NB,
350 images for PB, 351 images for RB, 355 images for SK, and 351 images for UB. It is
noteworthy that all of these images feature backgrounds that deviate from the standard
white backdrop. In aggregate, our dataset comprises 3463 images, which collectively
constitute the testing dataset denoted as CALU-3G.

This dataset is herein referred to as CALU-3G for the sake of clarity and reference.
Subsequently, the computational results derived from this evaluation are presented in
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Table 10. These results will be subject to further analysis and serve as a basis for comparative
assessment.

Table 10. Performance Evaluation of the Proposed Model on the CALU-3G Dataset.

Methods Accuracy Precision Recall F1-Score AUC

ViT [70] 90.1 89.5 88.4 88.9 90.4
ResNet-101 [65] 88.6 84.6 85.7 87.7 89.3
Xception [66] 90.1 87.9 90.6 88.7 89.7
NASNet-A Mobile [67] 92.5 92.0 89.7 89.7 91.7
MobileNetV3-Large [64] 92.5 92.5 90.7 91.4 91.7
SqueezeNet [61] 76.2 75.7 75.5 75.8 76.9
ShuffleNetv2 1.0x [62] 76.7 76.7 76.1 77.0 77.3
MobileNetV3 [64] 75.0 74.7 75.4 74.9 75.5
InceptionV1 [63] 79.3 78.8 79.2 78.9 79.7
SqueezeNet [61] 92.8 93.4 94.1 93.5 93.7
ShuffleNetv2 1.0x [62] 94.1 93.9 94.1 94.6 94.6
MobileNetV3 [64] 94.0 94.5 95.2 95.2 95.4
InceptionV1 [63] 94.2 94.7 95.5 95.5 95.5
Proposed Methods
(Majority Voting) 94.3 94.8 95.8 95.8 95.2

Proposed Methods
(Unweighted Average) 94.3 94.7 95.6 95.5 94.9

Proposed Methods (AMIS) 98.4 97.5 97.2 98.8 97.6

The analysis of the performance evaluation results on the CALU-3G dataset, as pre-
sented in Table 10, offers significant insights into the model’s efficacy in classifying Centella
Asiatica Urban (CAU) cultivars against varying backgrounds. Notably, the CALU-3G
dataset, composed solely of images with normal (non-white) backgrounds, presents a more
challenging classification environment compared to the CALU-1 and CALU-2 datasets,
which included both white and normal backgrounds. This complexity in the CALU-3G
dataset is likely due to the increased background noise and variation, potentially impacting
the models’ ability to accurately identify relevant features.

Upon comparing the models’ performance across these datasets, it becomes evident
that the proposed models demonstrate a robust adaptability to background variations.
However, the superior performance metrics observed in the CALU-3G dataset indicate
an enhanced ability of the models to handle more complex, real-world scenarios, where
background noise is prevalent. This robustness is crucial for practical applications in
agricultural species classification, where diverse environmental conditions are the norm.

Further, examining the impact of different decision fusion strategies in the proposed
model sheds light on their relative effectiveness. The strategies employed include majority
voting, unweighted average, and AMIS (Artificial Multiple Intelligence System). The
performance of majority voting and unweighted average strategies on the CALU-3G
dataset is remarkably similar across key metrics like accuracy, precision, recall, F1-score,
and AUC. This similarity could suggest a balanced contribution from each model in the
ensemble, leading to comparable outcomes for these fusion methods.

In contrast, the AMIS strategy significantly outperforms the other strategies, achieving
notable improvements in all performance metrics, including a remarkable accuracy of 98.4%
and an F1-score of 98.8%. This superior performance can be attributed to AMIS’s dynamic
optimization of weights based on individual model performances, enabling a more effective
integration of outputs. The marked improvement with AMIS highlights its capability to
handle complex datasets like CALU-3G, reinforcing the value of advanced decision fusion
techniques in agricultural species classification, especially under challenging conditions.

In conclusion, the analysis underscores the importance of considering background
variability in model development and the efficacy of sophisticated decision fusion strategies
like AMIS in enhancing classification performance in complex scenarios.
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5. Discussion

In the ensuing section, we shall expound upon the rationale underpinning the juxta-
position of our findings with extant research and methodologies. The ensuing discourse
will be delineated across three dimensions, namely, (1) progressions in the automated
differentiation of Centella asiatica (L.) urban cultivars to augment agricultural practices
and facilitate the quality control of medicinal products; (2) an evaluative examination
aimed at the augmentation of Centella asiatica (L.) urban cultivar classification through the
implementation of a parallel-AMIS-ensemble model; and (3) a comparative analysis of
decision fusion strategies within the purview of metaheuristic optimization.

5.1. Advancements in the Automated Cultivar Differentiation of Centella asiatica (L.) Urban for
Enhanced Agricultural Practices and Medicinal Product Quality Control

Studies by Novianti [17] and Raj [23] have identified variations in agronomic traits
among Centella asiatica (L.) Urban (CAU) cultivars based on their growth regions, result-
ing in diverse shapes and attributes, potentially leading to varying essential substances.
However, the expert differentiation of CAU cultivars remains challenging, with misclassifi-
cation risking improper treatment cultivations and compromising the quality control of
medical product production [21,22]. To address this gap, the research aims to develop an
automated CAU cultivar classification system with high precision, achieving an impressive
98.41 percent accuracy.

The proposed model for automated cultivar differentiation in CAU yields highly
promising results, surpassing existing methods in the literature by a significant
margin [4–7]. Its efficacy and robustness are evident in the swift processing time of only
0.34 s per image, enabling the accurate identification of CAU cultivars. This expeditious
and accurate classification empowers farmers to promptly adjust treatment cultivations,
optimizing the plant production yield and ensuring superior essential compound yields
and product quality [21,22].

The main finding of this research lies in the successful development of an automated
CAU cultivar classification system with remarkable accuracy and efficiency. Precisely
predicting cultivar types with 98.41 percent accuracy represents a significant advancement
in plant classification. This underscores the potential of deep learning techniques, par-
ticularly the proposed ensemble of convolutional neural networks, for solving complex
classification tasks in plant sciences. The application of this model can revolutionize CAU
cultivar identification, leading to enhanced agricultural practices and consistent medicinal
product manufacturing.

Academically, this research contributes to botanical classification and taxonomy by
accurately differentiating CAU cultivars, enriching the understanding of genetic diversity
and morphological characteristics within the Centella genus. Additionally, advancements
in pharmacology are evident through in-depth studies of the chemical composition and
pharmacological properties of different CAU species, benefiting medicinal development
and herbal product formulation.

From a policy perspective, the high accuracy and efficiency of the proposed model hold
immense value for pharmaceutical and agricultural industries. Quality control in medicinal
product manufacturing can be greatly enhanced through precise cultivar differentiation,
ensuring the consistent and high-quality production of medicinal products derived from
CAU. This preserves the integrity of traditional medicine and strengthens healthcare
systems. Moreover, in agriculture, the automated classification system empowers farmers
to optimize plant production yields through precise cultivar identification, resulting in
improved agricultural practices.

The research underscores the potential of deep learning models, such as convolutional
neural networks, in addressing complex challenges in plant sciences. Policymakers in the
agricultural and healthcare sectors can promote the adoption of automated systems to
enhance productivity, sustainability, and quality assurance in herb production and medici-
nal product manufacturing. Ultimately, this research paves the way for advancements in
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agricultural practices and medical product quality control, presenting valuable implications
for both academia and policy-making domains.

5.2. Enhancing CAU Cultivar Classification through the Parallel-AMIS-Ensemble Model:
A Comparative Study

In this research, a novel approach, the parallel-AMIS-ensemble model, was pro-
posed to handle the CAU cultivar classification system. The model incorporates two
segmentation methods, U-Net and Mask-R-CNN, and four distinct CNN architectures,
namely, SqueezeNet, ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1, to form the en-
semble CNN model. The computational results demonstrate a remarkable classification
accuracy of 98.41%. Notably, the ensemble image segmentation method and the en-
semble CNN architectures contributed significantly to 13.69% and 4.62% increases in
accuracy, respectively.

The main finding of this study is the successful implementation of the parallel-AMIS-
ensemble model for CAU cultivar classification, achieving an impressive accuracy of
98.41%. This result surpasses existing approaches in the literature, such as the VGGNet
and Inception module, 3-D CNN, CNN with ConvLSTM layers, DenseNet121, SVM, and
ResNet50, which exhibited accuracies ranging from 78% to 96% [25–27,29,31,32]. The
superiority of the proposed model is evident, with a considerable 5.32% to 23.08% accuracy
improvement compared to the existing methods. The use of parallel-AMIS-ensemble
significantly enhances the solution quality for CAU cultivar classification, showcasing its
potential for addressing complex problems in plant sciences.

The academic implications of this research lie in the advancement of automated
cultivar classification using the parallel-AMIS-ensemble model. By incorporating multiple
segmentation methods and CNN architectures, the proposed model represents a significant
step forward in image-based plant classification tasks. This approach can be applied not
only to CAU cultivar classification but also to other similar problems in plant sciences,
contributing to the broader field of botanical classification and taxonomy.

From a policy perspective, the successful implementation of the parallel-AMIS-ensemble
model has practical implications for the agriculture and pharmaceutical industries. In agri-
culture, accurate cultivar classification empowers farmers with valuable insights into
plant growth and optimal treatment practices. The increased accuracy of the proposed
model ensures more precise cultivation treatments, enhancing agricultural productivity
and sustainable crop management.

In the pharmaceutical industry, precise cultivar classification is crucial for medicinal
product manufacturing and quality control. The high accuracy of the parallel-AMIS-
ensemble model ensures the consistent and reliable production of medicinal products
derived from CAU, supporting the integrity of traditional medicine and enhancing health-
care systems.

This research contributes to the advancement of automated cultivar classification and
highlights the potential of ensemble models in addressing complex challenges in plant
sciences. Policymakers in the agricultural and healthcare sectors can leverage the insights
from this research to promote the adoption of advanced technologies and automated
systems, fostering productivity, sustainability, and quality assurance in herb production
and medicinal product manufacturing.

The employment of large models in deep learning, particularly in the context of
agricultural species classification, presents a juxtaposition of computational complexity
and enhanced performance. While these models, including the Parallel-Artificial Multiple
Intelligence System-Ensemble (P-AMIS-E) utilized in our study, offer superior accuracy
and sophisticated capabilities, their size and complexity warrant a thorough consideration
of their impact on the research.

First, large models typically require substantial computational resources for training
and inference. This demand can pose challenges in terms of accessibility and feasibility,
particularly in resource-constrained environments. In our study, while the P-AMIS-E model
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demonstrates high accuracy in classifying the Centella Asiatica Urban (CAU) cultivar,
it inherently necessitates significant computational power, a factor that could limit its
applicability in settings with limited technical infrastructure.

Moreover, the complexity of large models can also affect their interpretability and
transparency. As these models become more intricate, understanding the rationale behind
their decisions becomes increasingly challenging. This lack of transparency can be a crucial
factor in fields where explainability is essential, such as in medical or pharmaceutical appli-
cations. In our research, we acknowledge this complexity and advocate for ongoing efforts
to enhance the interpretability of such models without compromising their performance.

Despite these challenges, the benefits of large models in achieving high accuracy and
handling complex tasks are undeniable. The P-AMIS-E model’s capability to accurately
classify the CAU cultivar is a testament to the effectiveness of these models in handling
nuanced and detailed tasks, which smaller models might not handle as efficiently. This
effectiveness is particularly vital in the context of our research, where precision in classifica-
tion directly influences the quality and efficacy of products in the cosmetics, pharmaceutical,
and herbal medicine industries.

In conclusion, while the use of large models in our research offers significant advan-
tages in terms of accuracy and capability, it is crucial to balance these benefits with con-
siderations of computational demand, interpretability, and practical applicability. Future
research directions might include optimizing these large models to reduce their computa-
tional footprint while maintaining their accuracy or developing hybrid approaches that
combine the strengths of both large and smaller models.

5.3. A Comparative Study of Decision Fusion Strategies in Metaheuristic Optimization

Besides the use of ensemble image segmentation and the ensemble CNN’s architec-
tures, one of the key successes of the P-AMIS-E is the decision fusion strategy, which is
used to combine different entities together to obtain the solution for the prediction model.

In our experimental results, AMIS exhibited superior performance compared to other
decision fusion strategies, including DE (Differential Evolution), GA (Genetic Algorithm),
and UAW (Unweighted Average), in terms of solution quality. AMIS achieved a maximum
improvement of 4.62% over the mentioned methods. This significant enhancement can be
attributed to AMIS’s effective improvement method, which incorporates a diverse range
of heuristics and metaheuristics. As a result, AMIS demonstrates both exploration and
exploitation search behavior, enabling it to explore wider solution spaces and conduct
intensive searches in specific scenarios. Additionally, AMIS incorporates a restart procedure,
allowing it to escape from local optima when necessary [51–53].

The main finding of this research is the clear superiority of AMIS as a decision fusion
strategy compared to simpler methods proposed in the literature, such as majority voting,
swarm intelligences, and unweighted average [42,44–46]. AMIS’s comprehensive set of
heuristics and metaheuristics equips it with the ability to seek better solutions effectively.
Through extensive experimentation, AMIS consistently outperforms other approaches,
highlighting its potential as a highly effective decision fusion strategy.

From an academic perspective, this research contributes to the advancement of deci-
sion fusion strategies, particularly with the introduction of AMIS. The integration of diverse
heuristics and metaheuristics enriches the field of metaheuristic optimization, enhancing
the capabilities of such strategies in tackling complex problem spaces and achieving better
solutions. This study provides valuable insights for researchers and practitioners involved
in optimization and computational intelligence domains.

On a policy level, the superior performance of AMIS in terms of solution quality has
practical implications for various industries. The adoption of AMIS as a decision fusion
strategy can lead to improved outcomes in real-world applications. Policymakers in sectors
reliant on optimization processes, such as supply chain management, logistics, and resource
allocation, can consider implementing AMIS to enhance decision-making processes and
achieve more efficient and effective solutions.
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5.4. Key Contributions of the P-AMIS-E Model

Our research makes several pivotal contributions to the field of agricultural species
classification, particularly in the context of using deep learning methodologies. These
contributions are multifaceted, addressing both theoretical advancements and practical
applications.

Innovative Integration of Deep Learning Techniques: At the core of our contributions
is the development of the Parallel-Artificial Multiple Intelligence System-Ensemble (P-
AMIS-E) model. This model uniquely combines advanced image segmentation methods
(U-net, Mask-R-CNN) with a variety of CNN architectures (SqueezeNet, ShuffleNetv2
1.0x, MobileNetV3, InceptionV1). This integration allows for the nuanced processing of
visual data, crucial for distinguishing between species with highly similar appearances.
The model’s ability to analyze subtle visual differences provides a significant leap forward
from traditional classification methods.

Enhanced Accuracy and Efficiency in Classification: Our model achieves a remarkable
classification accuracy of 98.41%, which is a notable improvement over existing models
such as ResNet-101 and Xception, which have an accuracy of 93.74%. This heightened
accuracy is crucial in fields such as pharmaceuticals, cosmetics, and herbal medicine, where
the precise identification of species directly impacts product quality and efficacy.

Effective Use of Limited Data: Addressing the common challenge of data scarcity in
agricultural contexts, our model efficiently utilizes image augmentation techniques. This
approach allows the model to train effectively on smaller datasets, overcoming a significant
barrier faced by many existing classification systems.

Adaptability and Robustness through AMIS Decision Fusion: The use of AMIS deci-
sion fusion in our model enhances its adaptability to different species and environmental
conditions. This robustness is particularly advantageous for agricultural applications,
where variability is a constant.

Balancing Computational Efficiency with Accuracy: We have optimized the P-AMIS-
E model to ensure that it remains computationally efficient without compromising on
accuracy. This optimization makes the model accessible and practical for use in various
settings, including those with limited computational resources.

Theoretical and Practical Implications: Theoretically, our study advances the under-
standing of how deep learning techniques can be effectively applied to image classification
tasks in agriculture. Practically, it offers a tool that can be directly employed in industries
that rely on accurate species identification, thereby having a tangible impact on the quality
of products and services in these sectors.

In summary, our research contributes to the field of agricultural species classification
by providing an advanced, accurate, and adaptable model. The P-AMIS-E model represents
a significant advancement in the application of deep learning techniques to real-world
challenges in agriculture. These contributions are expected to have a lasting impact on
both the academic study of machine learning in agriculture and its practical application in
related industries.

5.5. Advantages of the Model and Research Limitations

First, the uniqueness of our approach lies in the integration of advanced deep learning
techniques, specifically designed for the complex task of classifying agricultural species,
like the Centella Asiatica Urban (CAU) cultivar. While classification problems in machine
learning are indeed common, the challenge intensifies when dealing with highly similar
species, where conventional classification models often fall short. Our method, employing
the Parallel-Artificial Multiple Intelligence System-Ensemble (P-AMIS-E) model, offers a
nuanced solution that is tailored to address these specific challenges.

One of the key advantages of our approach is its remarkable accuracy, which at 98.41%,
is significantly higher than that achieved by traditional models such as ResNet-101 and
Xception, which stand at 93.74%. This heightened accuracy is crucial in industries such
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as pharmaceuticals and cosmetics, where the precise identification of species has direct
implications for product quality and efficacy.

Furthermore, our method demonstrates an enhanced ability to process and classify
images with limited data availability, a common hurdle in agricultural classification. The
use of ensemble image segmentation techniques, like U-Net and Mask R-CNN, alongside
a range of CNN architectures, contributes to this improved performance. By leveraging
these advanced techniques, our model effectively addresses the limitations of data scarcity
often encountered in this domain.

Additionally, the incorporation of the AMIS decision fusion strategy in the P-AMIS-E
model is a novel aspect of our study. This strategy synergistically combines the outputs
of various deep learning models, resulting in a more robust and reliable classification
system. This integrated approach is particularly beneficial in handling the variability and
complexity inherent in species like the CAU cultivar.

Our research offers a sophisticated solution to a complex classification problem, char-
acterized by high accuracy, efficiency in handling limited data scenarios, and robustness
through an innovative ensemble approach. These attributes distinguish our study within
the realm of classification problems, particularly in the context of agricultural species
classification. We believe that these enhancements and the specific focus on CAU cultivar
classification significantly contribute to both the theoretical and practical advancements in
this field.

A critical examination of existing agricultural species classification models reveals sev-
eral limitations that our research addresses. Traditional models often falter in differentiating
species with similar visual features, leading to classification inaccuracies, particularly in
closely related cultivars. Another significant challenge is the dependence on large datasets
for training, which is impractical in many agricultural contexts. Additionally, the rigidity
of conventional systems limits their adaptability to diverse species and environmental
conditions. Lastly, the high computational demands of advanced models pose restrictions
in resource-limited settings.

Our study introduces the Parallel-Artificial Multiple Intelligence System-Ensemble
(P-AMIS-E) model as a solution to these prevalent issues. The P-AMIS-E model’s integra-
tion of U-net and Mask-R-CNN for image segmentation, combined with various CNN
architectures, enables it to accurately classify species with closely resembling features. This
model overcomes the data limitation challenge by effectively utilizing image augmentation
techniques, allowing for efficient learning from limited datasets. Furthermore, the incorpo-
ration of ensemble learning and AMIS decision fusion enhances the model’s adaptability
and robustness, making it versatile across different agricultural scenarios. Importantly, we
have optimized the model to balance computational efficiency with accuracy, ensuring its
applicability in diverse settings, including those with constrained computational resources.
Through these innovations, our research not only advances the theoretical framework
of deep learning in image classification tasks but also provides practical solutions to the
agricultural industry’s need for precise species identification.

6. Conclusions and Outlook

In this research, we developed an innovative method for the precise differentiation
and categorization of plant species, with a particular focus on herbs and plants exhibiting
multiple varieties. These plant varieties possess distinct characteristics, varying quanti-
ties of essential compounds, and divergent cultivation requirements. The accurate and
precise classification of plant varieties plays a pivotal role in optimizing cultivation, pro-
duction planning, and quality control processes, ultimately enhancing efficiency in product
development and management.

The classification of Centella Asiatica Urban (CAU) cultivars presents a formidable
challenge due to the striking similarity between species and the absence of reliable visual
features for differentiation. This challenge assumes paramount importance in industries
such as pharmaceuticals, cosmetics, and herbal medicine, where precise species identifi-
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cation is vital to ensuring product quality and safety. To address this intricate task, we
conducted comprehensive research aimed at developing an automated classification sys-
tem grounded in deep learning techniques capable of accurately and efficiently classifying
CAU species.

Our research methodology entailed the assembly of a diverse and extensive dataset
comprising Centella Asiatica Urban (CAU) cultivars. Subsequently, we constructed a robust
automated classification system employing the Parallel Artificial Multiple Intelligence
System–Ensemble Deep Learning model (P-AMIS-E). This sophisticated model integrated
ensemble image segmentation techniques, specifically U-Net and Mask-R-CNN, alongside
image augmentation and an ensemble of convolutional neural network (CNN) architectures,
including SqueezeNet, ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1. The hallmark
of our model was its utilization of the Artificial Multiple Intelligence System (AMIS) as a
decision fusion strategy, significantly augmenting the accuracy and efficiency.

Our results are emblematic of the model’s remarkable performance. The P-AMIS-E
model achieved an astounding accuracy rate of 98.41%, signifying a substantial advance-
ment compared to state-of-the-art methods. Notably, existing methods such as ResNet-101,
Xception, NASNet-A Mobile, and MobileNetV3-Large attained an accuracy rate of 93.74%
on the testing dataset. Moreover, the P-AMIS-E model exhibited a substantial advantage
when applied to an unseen dataset, yielding accuracy rates ranging from 4.45% to 31.16%
higher than those achieved by the compared methods.

In summary, our research introduces a pioneering approach to the precise classification
of plant species, with a particular emphasis on CAU cultivars. The integration of ensemble
image segmentation techniques, image augmentation, and decision fusion within the deep
learning framework has yielded remarkable improvements in accuracy and efficiency.
These findings carry profound implications for the evolution of deep learning techniques
in the realm of image classification. We recommend further exploration of the potential of
ensemble deep learning models, coupled with continued investigations into the optimal
amalgamation of image segmentation, image augmentation, and decision fusion strategies.
Additionally, expanding the dataset to encompass a broader range of CAU species and
exploring the potential of transfer learning to enhance the model’s performance on new
species represent promising avenues for future research.
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Abstract: This study investigates whether analyzing the code comments available in the source
code can effectively reveal functional similarities within software. The authors explore how both
machine-readable comments (such as linter instructions) and human-readable comments (in natural
language) can contribute towards measuring the code similarity. For the former, the work is relying
on computing the cosine similarity over the one-hot encoded representation of the machine-readable
comments, while for the latter, the focus is on detecting similarities in English comments, using
threshold-based computations against the similarity measurements obtained using models based on
Levenshtein distances (for form-based matches), Word2Vec (for contextual word representations),
as well as deep learning models, such as Sentence Transformers or Universal Sentence Encoder (for
semantic similarity). For evaluation, this research has analyzed the similarities between different
source code versions of the open-source code editor, VSCode, based on existing ESlint-specific
directives, as well as applying natural language processing techniques on incremental releases of
Kubernetes, an open-source system for automating containerized application management. The
experiments outlines the potential for detecting code similarities solely based on comments, and
observations indicate that models like Universal Sentence Encoder are providing a favorable balance
between recall and precision. This research is integrated into Project Martial, an open-source project
for automatic assistance in detecting plagiarism in software.

Keywords: code similarity; linter analysis; comments analysis; software plagiarism; plagiarism
detection; universal sentence encoder

MSC: 68T20

1. Introduction

The research aims to expand automated methods for detecting software code simi-
larities, designing tools that facilitate collaboration between human experts and software.
This will support informed plagiarism decisions through an interactive process where
the broader context of the code, including comments and coding style, is automatically
analyzed. To this end, this research introduces two novel models for identifying code simi-
larities based solely on source code comments: one targeting machine-readable comments
and the other focusing on human-readable comments.

There are several methods that have been used for detecting software code similari-
ties, with the most common being fingerprint-based techniques [1–4], which aim to create
distinctive “signatures” of code sections, allowing for automatic comparison. The main
downside of these is that they lack the ability to fully explain flagged similarities, thus
necessitating in-depth human review. Software birthmarks aim to address these limitations
by extracting more robust identifying features and can work on both source code [4–7] and
binary code [6,8–10]. Advanced birthmark techniques may incorporate machine learning
to improve accuracy in complex programs. Finally, code embeddings-based solutions are
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another promising technique, as they are able to capture semantic meaning, as well as
enabling similarity detection based on functionality. While these have primarily been
applied to source code [11–13], they hold potential for binary code [14] analysis as well.

Ultimately, even if these techniques offer varying degrees of automation and explain-
ability, human judgment remains essential for determining true plagiarism [15,16]. The
current research focuses solely on the detection part of code similarities.

This paper continues with Section 2, which aims to classify and analyze comments
in code, based on the target audience. Section 3 underscores the importance of comments
as part of software development, and Section 4 proposes a formal method to represent
comments within the source code as multisets, allowing analysis of comment structures
within their local context. Later, Section 5 investigates whether code comments alone can
reveal similarities between programs. It demonstrates how to analyze machine-readable
comments, to detect similarities across different releases, with examples from ESLint
instructions available in VSCode, and it explores the successful application of natural
language processing techniques to human-readable comments, highlighting the superior
balance of recall and precision achieved by the Universal Sentence Encoder [17] model.
Section 6 discusses the implementation of the techniques in Project Martial, an open-source
project for detecting software plagiarism. Section 7 discusses the interpretation of the
results presented in this paper and finally, Section 8 summarizes the contributions of this
paper, draws some conclusions and outlines potential future research directions.

2. Classification of Comments

Donald Knuth concluded in [18] that computer programming is an art, because it applies
accumulated knowledge to the world, which requires skill and ingenuity, and especially because
it produces objects of beauty. Such a powerful statement uplifts the merits of software
developers but comes with a not-so-obvious pitfall when viewing software in the context
of continuous development with contributions from a set of ever-changing engineers. In
order to help the readers and reviewers comprehend the structure and purpose of the
code, developers would provide lasting explanations, in the form of code comments, to
the main program’s source code. Programming languages all agreed on the importance
of providing such mechanisms, and for pioneer programming languages such as Fortran,
the convention was that any line beginning with either the C character or an * in the first
column is a comment. The Fortran basics guide states that well-written comments are crucial
to program readability. Even in assembly languages, comments have been introduced to
allow the developers explain, in a human-readable statement, the outcome. In x86 assembly,
comments are usually denoted by the use of the semicolon (;) symbol, but variations also
allow for shell-like (#) or C-like (//, /*) structures.

While often perceived as elements irrelevant to the computer, comments were his-
torically only dropped from automatic analysis due to language specification limitations.
For example, in early Fortran, when punch cards were prevalent, a comment character in
the first column would designate the entire card as a comment, causing the execution to
completely ignore it.

Kernighan and Ritchie reinforced this notion in their influential book [19] describing
C specifications, which stated that any characters between /* and */ are ignored by the compiler;
they may be used freely to make a program easier to understand. An example of a grammar
implementation of this statement is presented in the appendix, Code Listing A.1.

Predictably, programming languages and software development technologies have
evolved, introducing new complexities and requirements. Consequently, “code comments”
have gained significance in various stages of the life-cycle of a program, moving beyond
their traditionally overlooked role. For instance, in some languages including Python, spec-
ifying a custom encoding requires adding a special comment line at the very beginning of
the file, as illustrated in Code Listing A.2. Another example, presented in Code Listing A.3,
covers operating system directives, but there are also cases where code comments, while
not directly affecting program execution or interpretation, provide guidance for external
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analysis tools, such as instructions for linters (Code Listings A.4 and A.5) or static analyzers
(Code Listing A.6). Nonetheless, they can also provide hints, instructing compilers or
interpreters to alter the behavior of the program.

Therefore, even if the primary use of comments was and remains to indicate explana-
tions for software engineers that are reviewing existing codebases, there are quite a few
exceptional cases where it is reasonable for commentaries to be designed in a way that
they are machine-readable, in order to allow actions to be automatically performed, by
various systems.

Moreover, there are other machine-readable expressions, besides comment statements,
that do not directly influence the functionality of the executable code. Pragma statements
within libraries or languages are an example; they modify the binary only if the compiler
supports them. Consider OpenMP: if the compiler does not support its pragmas, they
are discarded, ensuring the resulting binary still functions as intended (Code Listing A.7).
While analyzing such pragmas could potentially assist in determining code similarities,
that analysis is outside of the scope of this paper.

3. Statistics on Open-Source Projects

Because open-source projects promote transparency, by releasing the source code
within a project, they are a good source of analysis, as opposed to proprietary software
provided in binary format, where past traces of comments have already been eliminated.
This paper analyzed the evolution of the commentary in code, for notable open-source
projects, such as, but not limited to, Kubernetes [20] (Go), Visual Studio Code (TypeScript)
and Linux [21] (C). Table 1 summarizes quantitative data for all the analyzed projects,
with the ratio of total lines of comments to code varying anywhere between 8% and 22%
across different projects, but the percentages increases even further if the reporting switches
towards counting the total number of characters (between 16% and 33%) or words (between
21% and 43%), that are contained in the comments against the total corpus.

Table 1. Quantitative analysis of comment distribution for various open-source projects (including
projects written in Go, TypeScript, Java, C and C++), employing code analysis tools to measure
comment density, length and the ratio of English words (defined as words composed entirely of
alphabetical characters from the English alphabet).

Project (Main Program-
ming Language)

Total Lines of Com-
ments | Code (Ratio)

Total Number of Single-
| Multi- Line Com-
ments

Number of Comments
Chars (RATIO)

Number of Comments
Words (Ratio)

Number of English
Words | Total Num-
ber of Words Based
on Alphabet

kubernetes-1.1.1 (Go) 167k|780k (21.51%) 84k|2k 8.2M (32.24%) 972k (35.53%) 831k|900k (92.34%)
VSCode-1.1.0 (TS) 64k|474k (13.52%) 12k|16k 3.6M (21.48%) 452k (27.33%) 410k|426k (96.11%)
VSCode-1.40.0 (TS) 66k|704k (9.49%) 24k|13k 3.6M (14.55%) 387k (16.62%) 336k|353k (95.36%)
VSCode-1.78.0 (TS) 109k|1.2M (8.92%) 44k|20k 6.1M (12.98%) 656k (15.44%) 572k|600k (95.41%)
docker-cli-24.0.0 (Go) 166k|780k (21.33%) 87k|461 7.4M (28.56%) 983k (32.36%) 655k|725k (90.37%)
guava-32.0.0 (Java) 175k|804k (21.84%) 24k|20k 8.9M (31.56%) 1.1M (42.95%) 1.0M|1.1M (95.47%)
moby-24.0.0 (Go) 278k|1.7M (16.38%) 201k|1.8k 13.8M (26.28%) 1.8M (29.85%) 1.4M|1.5M (92.66%)
elasticsearch-8.1.0 (Java) 304k|3.0M (9.90%) 73k|48k 18.4M (14.08%) 2.1M (23.91%) 1.9M|2.0M (95.37%)
tensorflow-2.13.0 (C++) 333k|2.5M (13.00%) 224k|49k 16.9M (16.86%) 2.1M (26.42%) 1.8M|1.9M (95.16%)
linux-3.0 (C) 1.1M|10.9M (10.20%) 42k|695k 62.8M (21.10%) 8.3M (26.11%) 6.9M|7.4M (93.62%)
linux-4.0 (C) 1.3M|14.3M (9.53%) 31k|819k 76.3M (19.75%) 10.3M (25.05%) 8.6M|9.2M (93.69%)
linux-5.0 (C) 1.6M|18.5M (8.88%) 46k|970k 92.1M (18.37%) 12.4M (23.70%) 10.3M|11.1M (93.44%)
linux-6.0 (C) 1.7M|22.4M (8.00%) 80k|1M 101M (16.61%) 13.5M (21.64%) 11.2M|12.0M (92.98%)

Kubernetes v1.1.1 was released in 2015, and in January 2023, v1.26.1 has been released.
Figure 1 presents the ratio of comments w.r.t. the total lines of code. Between these versions,
comments have been ranging between 15% and 25% of the total number of lines in the
source code, peaking to about 1.5M of lines of comments (out of a total of 5.5M) in the
last analysed release. Even if the proportion of comments to total lines of code fluctuates
within consecutive versions, the overall long-term trend is ascendant, which could indicate
an increased emphasis on code readability, maintainability, or collaboration within the
Kubernetes development community. If the investigation is char-wise (counting the ratio
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of characters appearing in comments against the total number of characters appearing in
the source code) or word-wise (counting the ratio of space-separated words) focused, the
percentages are even bigger; 35% for chars and 41% for the words. Figure 2 captures the
evolution of these percentages against different versions of Kubernetes. Moreover, these
data suggest a clear upward trend in the use of code comments within large-scale open-
source projects, with both the relative and absolute amounts of comment words increasing
over time, and indicate that comments are becoming essential tools for navigating and
comprehending the complexities of large-scale open-source projects to make the source
code more accessible and understandable.

Figure 1. The evolution of the total number of lines of comments and lines of code across different
versions of Kubernetes. In parentheses, it is captured the proportion of lines of comments within the
total source code corpus. This analysis spans roughly 10 years of continuous development, between
the first release in 2013 and the first available release from 2023. Kubernetes releases currently happen
approximately three times per year. The ratio trend over time is important because commenting
practices within the Kubernetes project might have changed over time, converging towards the idea
of offering insights into the maintainability, collaboration dynamics and code readability within this
complex open-source system.

Figure 2. This figure shows the percentage of words in different Kubernetes versions that are part of
comments out of the total corpus. These data offer insights into how commenting practices evolve
within large-scale open-source software projects, showing an increasing trend in the amount of words
part of comments out of the total corpus, across releases, as well as an ever increasing trend in the
absolute number of comment words.
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4. Formalizing Code Comments Analysis

Let A be the text representation of the source code. By C it is denoted the set of all
blocks of comments from A . All single-line comments are mapped to an element of C.
For languages that support multi-line comments, for simplicity, multi-line blocks are also
modelled as a single element of C.

An important statement is that C is finite. Given that all source codes are finite sets of
instructions of the programming language, A is also finite. As C is built exclusively as a
subset of A , C is also finite.

Let C = (C, m) be the multiset of all blocks of comments from A , where m(ci)
provides the multiplicity of the element ci in A . The multiset representation helps in
capturing the count of duplicated comments.

There is one aspect that is yet not covered, regarding the fact that a logical comment
may not spawn over one single line. One proposal would be to aim to concatenate multiple
line-independent comments when performing the analysis.

Let C∗ = {ci1 ci2 . . . cik | ci1 ci2 . . . cik ∈ C, ix �= iy, ∀x �= y}, and denote by C ∗ = (C∗, m∗)
the multiset of all concatenated blocks of comments from A , where m∗(ci1 ci2 . . . cik ) =
m(ci1) · m(ci2) · . . . · m(cik ).

While C ∗ provides the most extensive set to search in, it is impractical to analyze
all possible concatenations, as the cardinality grows over powers rule. To allow room for
a meaningful analysis, the cardinality of this set can be reduced by analyzing multi-line
comments based on their locality.

Let the function line(ci) return a set of lines where comment ci was found in A ,
and let C+ = {ci1 ci2 . . . cik | ∃li1 ∈ line(ci1), li2 ∈ line(ci2), lik ∈ line(cik ), liz < lit∀z <
t, ci1 ci2 . . . cik ∈ C, ix �= iy, ∀x �= y,�cq ∈ C, q /∈ ij,�lq ∈ line(cq)s.t. liz < lq < lit}, and
denote by C+ = (C+, m+) the multiset of all locally concatenated blocks of comments

from A . It is important to note that m+ exists, and it is equal to the total number of possible
combinations of lij , j ∈ 1 . . . k.

In practice, the cardinality of C+ is a scaling issue for automatic detection, so let the
subset C+

r be defined, with the additional constraint from C+ that allows for maximum
r single line comments concatenation, i.e., any element ci1 ci2 . . . cik ∈ C+

r must have k ≤
r. Likewise, let C+

r = (C+
r , m+

r ) be the multiset of all locally concatenated blocks of

comments of maximum length of r from A and m+
r be the total number of possible

combinations of lij , j ∈ 1 . . . k.
By convention, C+

∞ = C+.
An important note to make is that, for any given finite A , C+ will also be finite.

To prove this, let r0 = ∑
|C+ |
i=1 m(ri). Therefore, the set C+

r0
will contain the maximum

possible length concatenation of comments, ci1 ci2 . . . cir0
, this set representing the concatena-

tion of all comments from the source code. Therefore, ∀rx ≥ r0, C+
rx = C+

r0
and C+ = C+

r0
.

Modeling Repetitive Comments

Because duplicated comments are a frequent phenomenon in code (Code Listing A.9
presents such an example), a worthwhile analysis would investigate the necessity of
both repetition detection and locality context searching for code similarity analysis. This
property will be explicitly used in subsequent sections related to the investigation of
machine-readable comments, where the multiplicity of lint comments has a key role in
computing the similarity.

To address situations where duplicate comments appear in different locations and
to better capture the importance of locality context, the model requires an extension for
repetitive comments.

The multiplicity is covered in the model via the multiplicity function m+
r of the multi-

set (C+
r , m+

r ). Code Listing A.8 demonstrates how seemingly isolated single-line comments,
when considered together, form a cohesive explanation requiring locality context for accu-
rate analysis.
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Locality context searching will be enforced in the models via the r-parameter of C+
r .

Due to computational constraints, the research will only focus on C+
r , with a finite r. To

pick an appropriate value of r, the authors have empirically evaluated the capabilities of
detecting similarities with respect to r. Choosing a finite smaller value for r makes the
approach prone to missing true positives, as well as not defending against willful changes
between the analyzed versions. An improvement can be made if more computational
resources are available by increasing the value of r, or using C+

∞ . The proposed models
runs two main algorithms: one algorithm is optional and it is only applied for generating the
embeddings for models that need one, such as transformers and sentence encoders, and the
other algorithm is mandatory and it process the comments (or their associated embeddings)
from different sources, one pair at a time. The complexity of the former algorithm grows
linearly with r, while the latter algorithm is quadratic in r. Figure 3 presents some practical
results, which outline the two dependencies of these algorithms with respect to the increase
in r.

Choosing this particular value was, in this research, based on empirical tests on
Kubernetes releases, where r = 6 was considered to be the right trade-off. For any r ≥ 6,
the numbers of similarities identified remained constant, and large chunks of similar
comments identified were also covered by analyzing subsets. When evaluating the model,
the increase from r = 1 to r = 3 led to several more matches, but the the growth from r = 3
to r = 6 slowed considerably. Because the only downside of choosing a larger value for r is
the increase in the computational expense, it is recommended to adopt a value that fits the
available physical resources, as well as potential time constraints of the application. Please
consult Figure 3 for the performance implications associated with choosing r = 6, for the
scenario analysed in this paper.

Figure 3. The performance of the Universal Sentence Encoder, when tested against different values of
r, based on a subset of Kubernetes v1.2.1 and v1.3.1 code, analyzing a corpus of 6000 lines of code.

5. Analyzing Code Similarity

Sections 2 and 3 have emphasized the importance of comments to any non-trivial
software project and, given their relevance, this research investigates if whether analyzing
the comments from a source code can provide sufficient information to perform relevant
measurements of code similarity. The presented approach would involve combining natural
language processing techniques with the analysis of comment structure and their placement
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within the code. This paper will separately treat machine- and human-readable comments
in the next two subsections.

5.1. Machine-Readable Comments

In order to validate whether machine-readable comments may help in measuring code
similarity to some degree, the research presents the evolution of ESlint [22] traces for the
VSCode Project [23]. It is worth noting that because currently VScode releases happen
monthly, with the notable exception that there is no release in December, this provides
plenty of resources to analyse.

Figure 4 captures a subset of ESlint-identified issues in the VSCode Project, where
some similarities between incremental versions of this software will be analysed. For
analyzing the similarity for a particular use case, C+

1 suffices for identifying all the ESlint
suppressions.

Figure 4. Subset of ESlint issues signaled on incremental VSCode versions, later than 1.42. Versions
prior to this had no ESlint suppressing expressions.
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Let L be the set of all lint overrides identified in A . ∀l ∈ L ∃ci ∈ C+
1 , such that l

appears in ci. The occurrences of l are tracked by modeling the multiset L = (L, ml),
where ml = ∑ m(ci)∀i, such that l appears in ci, ci ∈ C+

1 = (C+
1 , m).

In order to compute a metric that captures the similarity of the two algorithms, defined
by A1 and A2, based on the linter findings, the research uses the cosine similarity. Let L1
and L2 be the multisets that describe the lint overrides identified in A1 and A2 and let
L = L1

⋃
L2. The method attaches to each algorithm A a vector embedding vA that

corresponds to the hot-encoding of the set of lint issues present in an A , weighted by their
occurrence.

vA = [
⋃

m#(li)], ∀li ∈ L , where

m#(li) =

{
0, li /∈ LA

m(li), li ∈ LA

Figure 5 presents the results of computing the cosine-based similarity based on ESlint

suppressions in various VSCode releases by computing the value cos(θ) =
vA1

· vA2∥∥vA1

∥∥
2

∥∥vA2

∥∥
2

.

This score contains more linter issues (27) than the ones presented in Figure 4 (a subset of
15 linter issues).

Figure 5. Similarity calculation based on ESlint data for various releases of VSCode. In the left
heatmap, all the VScode releases are being presented, ranging from: 1.1 -> 1.78, and on the right, only
a relevant subset of analyzed versions with ESlint reported issues are captured, versions: 1.42 -> 1.78.
By convention, let cos(θ) = 1 if A1 = A2. The left image presents a limitation of the current model
(for versions 1.1 -> 1.41) in the absence of machine-readable comments, for which the model is not
able to produce meaningful similarity detection, while the right heatmap outlines cases where the
model performs well and is able to create a relevant similarity measurement.

Of particular note are the similarity scores presented in Figure 5 are built entirely
based on the cosine similarity of the resulting one-hot encodings obtained from the data
available in Figure 4, and each square in the heatmap obtained in Figure 5 corresponds to
the cosine similarity between the vectors available in the latter. For example, as the vectors
defining the lint issues in VSCode versions v1.48 and v1.49 are equal, their cosine similarity
score will be 1 and, therefore, matched with the highest intensity square in the heat-map.

It is worth mentioning that the closer the versions are, in general, the higher the
similarity observed by this algorithm. Comparing v1.42 with v1.43, the similarity score
obtained is around 0.991, while v1.42 with v1.44, the similarity is 0.947. Finally, v1.42 with
v1.77 yields a similarity score of 0.867. The similarity is, however, not described by a strictly
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monotonic function. For example, v1.42 with v1.78 yields a similarity score of 0.870, greater
than the one obtained against v1.77.

Please note that earlier than v1.42, there were no lint issues in the code of VSCode, so
vA is a nil-vector and, therefore, cosine similarity is nil for each comparison. This research
therefore excludes versions below v1.42 from the analysis, for which the current method
does not provide any meaningful inputs. This is a known limitation of this model model,
which is irrelevant for similarity analysis for any two source codes that lack machine-
readable comments.

5.2. Human Comments

Because the intend is to leverage established natural language processing technologies
for computing code similarity through comment analysis, as a prerequisite, the research
aims to evaluate the applicability of such techniques to code comments. by analyzing the
percentage of actual English words found within comments. To approximate whether a
word belongs to the English lexicon, it will be cross-referenced against the nltk’s corpus of
words, enchant’s US_en dictionary and wordnet’s corpus.

Figure 6 shows that for Kubernetes, between 91 and 93 percent of all the alpha (contains
only a–z letters) words from comments are words belonging to the English lexicon. Some
coding style guides may actually enforce the proper use of grammar and vocabulary in the
code-base. For example, the Google Style Guide for writing code in languages such as C++,
Go or Java state that comments that are complete sentences should be capitalized and punctuated
like standard English sentences [24] and comments should be as readable as narrative text, with
proper capitalization and punctuation [25].

Figure 6. The evolution of the number of English identified words against the total number of
alphabetical comment words identified in different versions of Kubernetes.

English dominates open-source software development as the most frequently used
human-readable language. This simplifies the analysis, as understanding the percentage
of meaningful English words provides a close approximation of the total percentage of
words belonging to the lexicon of a human-spoken language. This concept is illustrated in
Listing A.10. However, comments might not always adhere strictly to natural language
syntax, even when intended to convey meaning similar to spoken language, which may be
a limitation of the presented solution. In Listing A.11, even if the name of the flag is not
part of any lexicon, it is easier for humans to understand the meaning of that value.

To analyze the similarity between two algorithms, defined by A1 and A2, the model
will investigate C+

61
= (C+

61
, m+

61
) and C+

62
= (C+

62
, m+

62
), the multiset containing locally

concatenated blocks of comments of maximum length of 6 from A1 and A2. The models are
detecting similarities in code comments by computing a similarity function s(c1, c2) ∈ [0, 1]
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against each two elements of these sets and a threshold value t ∈ (0, 1]. If s(c1, c2) ≥ t, the
model considers c1, c2 to have a similarity and labels the pair accordingly.

There are trade-offs in choosing an appropriate value of t. At limit cases, t → 0 will
make all comments look similar, while t → 1 will enforce that only exact comments are
labeled with similarities.

The choice of similarity function is crucial to this approach. Since obtaining definitively
similar code samples is challenging [26], this study constructs the analysis dataset using
incremental versions of the same program. The assumption is that recent versions represent
a high degree of similarity. To validate whether comments can indicate similarity between
different releases, this model is evaluated against the evolution of comments in various
Kubernetes versions. The research explores a wide range of techniques: from basic string
matching and fuzzy matching with rapidfuzz [27], to advanced NLP approaches. These
include cosine similarity calculations based on word2vec embeddings [28], as well as
models based on deep contextualized of word representations, which aim to create vector
embeddings from the code comments.

A Levenshtein-based similarity function will typically provide higher precision scores
but will be prone not to detect changes of form without substance, while a contextualized
word representation may be able to generalize for more complex cases but is at risk of
triggering false positives. More details backing up this statement will be available in
Sections 7 and 8.

It is important to consider that the model treats consecutive comments as potentially
connected and analyzes them accordingly (up to r). In reality, they could be related, or
they may not be related at all. That is not a limitation of the approach, because if the
model matches the entire group as similar, with a distinct group of consecutive comments
obtained from the analyzed source, related or not locally, they result in a similarity that
is worth analyzing. In the context of plagiarism detection, as per the argument of [15],
“after specific sections of the programs have been flagged as similar, it shouldn’t matter whether the
questionable code was initially uncovered by software or by a person” and that “the argument for
plagiarism should stand on its own”.

Another consideration in choosing the optimal model is the associated complexity
of the method. In Table 2, it is presented the total time required to perform the two tasks
(generating and processing the similarities) on a dataset of over 12 thousands lines of Go
code. The total time of the analysis is the sum of these intervals. Simpler models like
Word2Vec are faster for both generating and processing embeddings, while more complex
models (such as ELMo or RoBERTa) are computationally demanding. The Universal
Sentence Encoder demonstrates significant efficiency in embedding generation but incurs
a longer computational cost during the subsequent processing stage. Levenshtein-based
models are notable outliers in the presented table, as their extremely good performance in
terms of speed, but come with the trade-off of missing broader semantic understanding.

Table 2. Time statistics (obtained on a 2.3 GHz Dual-Core Intel Core i5 processor) for generating and
processing embeddings on over 12,000 Go lines, obtained from a subset of Kubernetes v1.2.1 and
v1.3.1 and v1.25.1 repositories. The Levenshtein-based models require no prior work for generating
embeddings, and the processing step simply involves evaluating the text-based similarity of the two
analyzed comments.

Model Generating Embeddings Computing Similarities

Levenshtein n/a 39 s
Word2Vec 32 s 1 m 44 s
ELMo 12 h 14 m 1 h 57 m
RoBERTa 28 m 48 s 1 h 58 m
Universal Sentence Encoder 6 s 2 h 12 m

For analyzing the performance of the models, the authors have compared the predic-
tions of similarity of the models against a human-labeled dataset obtained from over 12,000
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lines of Go code from the source code of Kubernetes “/pkg/api” directories versions v1.2.1
(April, 2016), v1.3.1 (July 2016) and v1.25.1 (September 2021). The dataset contains 3594
comments, and the ground truth contains 49573 identified similarities between pairs of
comments (including 3594 identity similarities). This dataset has a big class imbalance: the
total number of ‘not similar’ matches on the code comments is nearly 6 million, compared
to ‘similar’ classes, which are on the order of 50 thousands. As a result, to obtain the most
reliable assessment of the model’s performance, in this analysis the evaluation based on the
F1-Score will be prioritize. This is because a high F1-Score indicates the model performs
well in both minimizing both false positives and false negatives, even if the dataset is
unbalanced.

The performance of the models on this dataset is also summarized in Table 3 by evalu-
ating the models using precision, recall and F1-Score as metrics. It also computes the macro
and weighted average, as well as the accuracy. The model based on the Universal Sentence
Encoder seems to achieve the best quantitative results, maintaining a good balance between
precision and recall on the analyzed Kubernetes-based test dataset described above.

Table 3. A performance comparison of different models tested against around 35 thousand comments
from three versions of Kubernetes source code. The presence of numerous trivial similarity examples
within the dataset, such as identical or nearly identical comments, can lead to artificially inflated
performance metrics, even for relatively simplistic models. Optimizing for the long tail provides a
more realistic measure of a model’s capabilities in real-world code analysis. The ELMo-based model
is being ignored when computing the most appropriate model for optimizing a certain metric because
of the low F1-Score.

Model Metric Precision Recall F1-Score

not similar 0.99823 0.99999 0.99912
similar 0.99979 0.77115 0.87071
macro avg 0.99901 0.88557 0.93491Levenshtein
weighted avg 0.99824 0.99824 0.99813
accuracy 0.99824
not similar 0.99996 0.99923 0.99959
similar 0.90861 0.99469 0.94970
macro avg 0.95428 0.99696 0.97465Word2Vec
weighted avg 0.99926 0.99919 0.99921
accuracy 0.99919
not similar 0.99999 0.46312 0.63306
similar 0.01420 0.99984 0.02800
macro avg 0.50710 0.73148 0.33053ELMo 1

weighted avg 0.99243 0.46724 0.62841
accuracy 0.46724
not similar 0.99832 0.99871 0.99852
similar 0.82492 0.78297 0.80339
macro avg 0.91162 0.89084 0.90096RoBERTa
weighted avg 0.99699 0.99706 0.99702
accuracy 0.99706
not similar 0.99986 0.99998 0.99992

similar 0.99856 0.98162 0.99002

macro avg 0.99921 0.99081 0.99497USE
weighted avg 0.99985 0.99985 0.99985

accuracy 0.99985
1 The ELMo model is not taken into account for optimizing a certain metric because of the low overall F1-score.
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Because the dataset contains many comments that are either identical or have very
minor changes across consecutive versions, even simple models will easily identify them
as similar. This artificially inflates accuracy, precision and recall. It is therefore critical
to optimize the long tail of misses in the data presented in Table 3, as spotting trivial
similarities is far less valuable than pinpointing the more subtle similarities that require a
deeper understanding of the natural language used.

5.2.1. Levenshtein-Based Models

Rapidfuzz [27] is an implementation of an approximate string matching algorithm,
which aims to only approximately find strings that match a given pattern based on Leven-
shtein distance. While matches in this approach are high quality and clear indications on
similarity [29–31], produced by making a variety of minor changes of inserting, deleting
or substituting words, the method has a low hit rate [32] on more advanced cases, where
structural changes are involved.

The results seem to be of high quality due to the number of false positive matches
being minimal compared to other methods. For high values of t, the number of false
positive matches is almost nonexistent (for t = 1, only exact matching will be performed).
Some qualitative examples are described in Appendix B.1, in Examples B1 towards B6.
However, overall, the match perspective is bounded in identifying true positives. It works
really well in identifying form changes, such as typos, refactoring or (almost) duplicated
code comments.

5.2.2. Word2Vec-Based Models

Spacy’s approach to computing similarity involves assigning each word a vector repre-
sentation derived from a pre-trained model. This model has been trained on large corpora
using the Word2Vec technique [28], enabling the creation of contextual embeddings. To
calculate the similarity between full sentences, Spacy averages the word embeddings and
computes the cosine difference. While generally useful [33], this method can yield unex-
pected results. False positives may arise due to the “canceling out” effect within the averaged
embeddings or from the model misinterpreting similarities between unrelated words.

This method can identify the very vast majority of similarities that Levenshtein-based
models can, as seen in Appendix B.2, example B7, but it can also find more complex
sequence paraphrases, as seen in examples B8 and B9. Examples B10 and B11 capture more
cases, including complete rephrases and rewording of the original statements. Example B12
is a debatable case if the similarity is correctly identified by the current model. While the
two comments refer to similar things (bind addresses, IP addresses, 0.0.0.0, servers and
serving), it is rather difficult to state their exact similarity, even for a human expert.

5.2.3. ELMo-Based Models

ELMo [34] is a model that computes the embeddings from the states of a two-layer
bi-directional language model [35]. In practice, running the ELMo-based model for large
projects is expensive computationally. The risk of false positives can be addressed either by
increasing the value of t, or by human judgement. Even when performing the detection
with a very high value for the threshold (t = 0.98), in the presented experiments, the
model identified a really high number of false positive matches, consequently leading
to inefficiency.

The suitability of ELMo-based models for this specific task appears questionable.
Analysis of the examples reveals shortcomings, as presented by the qualitative analysis on
the examples from Appendix B.3. The only similarity in example B13 is that both comments
reference the same GenericAPIServer, but the context in which it is referenced appears to be
completely different (creation | usage of IP). Examples B14–B16 seem completely unrelated,
and the matches are not particularly helpful in helping the manual labor involved by
the operators.
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5.2.4. Sentence Transformers

In the research, the authors have used the RoBERTa [36] model implementation from
the SentenceTransformers framework, which is a BERT [37]-based model to create embed-
dings from text, as developed in [38]. These neural networks use Siamese structures to
convert semantically meaningful embeddings from sentences. Given the output embed-
dings generated from C+

6 , the research computed the cosine similarity and chose t = 0.90
for the experiments. Overall, the quality of the matches is pretty high.

As shown in examples B17–B19 from Appendix B.4, the model has thus proven good
capabilities of identifying similarities, as it can identify pretty well changes in the phrases,
as well as similar meaning within multiple different statements.

5.2.5. Universal Sentence Encoder

The Universal Sentence Encoder [17] is yet another model that the authors have
selected for evaluating for encoding sentences into embedding vectors. The model (avail-
able online, open-source, at: https://tfhub.dev/google/universal-sentence-encoder/4,
accessed on 16 March 2024) has been trained with a deep averaging network encoder [35].
Similar to the Sentence Transformers model, the use of the Universal Sentence Encoder
seems to provide a better balance concerning the ratio of true to false positives than the
rest of the analyzed methods. Examples B20–B22, referenced in Appendix B.5, show several
qualitative similarities identified by the model.

Qualitatively, the most notable misclassifications of this model, which are not observed
in simpler methods such as Levenshtein or Word2vec models, happens in comments
that contain numerical values. For example, between Kubernetes v1.2.1 and v1.25.1, a
change observed around the code-base is that “Copyright 2016” comments got replaced by
“Copyright 2021”. The model fails to identify in many cases such similarities, as exemplified
in example B23.

This paper evaluated the performance of the algorithm for multiple values of r and
summarized the results in Figure 3. According to the results displayed, the generation
part of the embeddings is very fast for this particular model, as it can generate more than
700 embeddings per second on a 2.3 GHz Dual-Core Intel Core i5 processor, and the time
efficacy grows linearly with larger inputs. In terms of the processing, as mentioned in
Section 4, the performance is quadratic because the required number of evaluations is
quadratic in the total number of embeddings, and practical experiments have observed
that, on the same architecture, it executes about 2800 similarity evaluations per second.

6. Implementation Details and Reproducibility

The techniques presented in this paper have been incorporated into Project Martial,
an open-source initiative for automated software plagiarism detection (source code avail-
able at https://github.com/raresraf/project-martial, accessed on 16 March 2024). The
implementation includes a user interface that visually highlights potentially similar code
sections, as identified by the similarity functions described within the presented models.
The authors acknowledge the valuable insights provided by the work in [35] for the analysis
of human-readable comments, as well as the detailed implementation details that have
been provided.

The natural language processing components of the models are being implemented in
Python, utilizing libraries such as scikit-learn and Matplotlib for the presentation of the
data and frameworks such as TensorFlow and PyTorch for importing, loading and running
the transformer-based models presented in this paper. A review of the dependencies used
for the processing of human-based comments can be consulted within the project-martial
code, under the comments drivers from the “modules/”.

For syntactic and semantic code parsing, the software stack uses ANTLR (ANother
Tool for Language Recognition), a parser generator that uses a top-down LL-based algo-
rithm for parsing.
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The data presented in Table 1 and in Figures 1, 2 and 6 are reproducible using the
modules associated with the project-martial code, under “grammars/”. The data presented in
Figures 4 and 5 are reproducible using the modules under “parsers/”. The raw data numbers
are also available under “dataset/”. Figure 3 is reproducible running the executables
provided under “scripts/”.

For the plots, Figures 1, 2, 5 and 6 are built using datawrapper, an online data visual-
ization product. Figures 3 and 5 are generated using the Matplotlib library.

The web-based user interface is developed in TypeScript, providing a responsive
and intuitive experience for code review. Figure 7 illustrates how the software highlights
potentially similar comments identified, aiding users in identifying areas of interest for
code similarity. For a review of the implementation, please consult the resources under ui/.

The back-end server is built in Python, using the Flask framework, which is capable of
serving API requests over HTTP, and the source code is accessible in the root directory of
the project, under main.py.

Figure 7. The web-based interface of Project Martial, highlighting potentially similar comments to
visually guide users towards areas where code similarities might exist.

7. Discussion

For the proposed solutions, this research observed that Levenshtein-based models
offer excellent precision but may miss broader semantic similarities, while contextualized
word embeddings such as Word2Vec or Universal Sentence Encoders perform better by
capturing some of these complexities. However, these models might have some more false
positives than Levenshtein-based, which minimizes almost to zero this metric.

The dataset used for evaluation was extracted from a subset of three Kubernetes
versions, accumulating over 12 thousands lines of code and around 50 thousands identified
similarities in comments. The best (Based on the F1-Score achieved on the dataset presented
in this paper, from collected commentaries from three Kubernetes versions) model was
based on the Universal Sentence Encoder [17], achieving a strong balance between precision
and recall, but it showed some limitations when operating with sentences containing
numerical values.
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In addition, the Universal Sentence Encoder-based model stands out with efficient
embedding generation, though processing of the embeddings is slower, due to their in-
creased size. As expected, simpler models such as Levenshtein- and Word2Vec-based are
significantly faster (see Table 2). Due to their still good performance, Word2Vec-based
models can provide feasible alternatives to Universal Sentence Encoders, as they only use a
fraction of the computational power required to run the analysis.

8. Conclusions and Future Work

This study aimed to develop practical methods for detecting code similarities by
analyzing various types of software comments, and the results confirm the valuable contri-
bution of comments in revealing code similarities.

Machine-readable comments (like ESlint directives) proved surprisingly effective
when using techniques like cosine similarity and one-hot encoding, while the investigation
of human-readable English comments demonstrated the power of semantic similarity
models (Sentence Transformers, Universal Sentence Encoder) over form-based matching
techniques (Levenshtein-based approaches). The former model can be classified in the
collection of software birthmarks approaches, while the latter is an embedding-based model.

The research, performed on a diverse set of open-source projects, confirms the predom-
inance of English in open-source code comments, making NLP methods highly applicable.
However, a further area of research can be analyzing the potential deviations from strict nat-
ural language syntax, which should be considered when analyzing non-machine-readable
comments, as this case exists in software projects, as pointed out in Table 1 and Figure 2.
The quantitative analysis of comment distribution has been captured in Table 1 for various
open-source projects (including projects written in Go, TypeScript, Java, C and C++), aim-
ing to uncover language-specific commenting practices, readability trends and potential
correlations with project maturity.

Integrating this research into Project Martial adds practical value by enhancing the
capabilities of software plagiarism detection tools. The two proposed models are used in
an ensemble manner, meaning that their predictions are combined in the score of similarity
to achieve a more accurate and robust outcome.

As future work, it would be useful to extend this analysis beyond the analyzed datasets
of Kubernetes and VSCode repositories in order to capture a larger variety of software
languages and project types. This assesses the wider applicability of comment-based
similarity detection, as well as performing further human-assisted validations, on the
utility of these tools, to make the right trade-offs between precision and recall while fine-
tuning the parameters. Nonetheless, as the state-of-the-art pre-trained language models
improve, it becomes possible to update detectors to generate more sophisticated sentence-
level representations for similarity checks than the capabilities of the current models.

Additionally, future work could explore the fine-tuning of models like RoBERTa or
other Sentence Transformers on large-scale code comment datasets. This fine-tuning has
the potential to improve the models’ sensitivity to the nuances of programming language
and domain-specific terminology often found in comments.

Finally, the model’s reliance on comments presents a clear limitation, hindering its
use on code-bases which have minimal documentation or for which comments have been
intentionally removed. Future research, as part of the development of Project Martial, will
investigate hybrid approaches that synergistically combine comment-based analysis with
structural code analysis techniques. This would provide a more robust similarity detection
solution applicable to a wider range of software.
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Appendix A. Code Listings: Classification Model

This appendix contains relevant code listings that offer detailed examples illustrating
the context in which certain statements in the paper are made.

Listing A.1. This language specification of the C programming language is exemplified by
the ANTLR’s implementation of the language grammar in the open-source examples [39].
Skip statements instruct the lexer to discard a given token, implying that a skipped lexer
rule cannot be later used in a parser rules.

BlockComment: ’/*’ .*? ’*/’ -> skip;

LineComment: ’//’ [\r\n]* -> skip;

Listing A.2. To support the Greek alphabet in a python program, the cp869 codec may be
used. This is indicated to the interpreter by specifying a first-line comment.

# -*- coding: cp869 -*-

Listing A.3. A well-known method for making scripts directly executable is the UNIX
‘shebang’ line. For example, this “comment” line appears at the start of a Python script and
indicates what interpreter should be used (in this case, version 3.9). Python interpreters
themselves will ignore the shebang line since it is not relevant to the code’s logic, but it
provides valuable information to the operating system in order to be able to launch it in
execution.

#!/usr/bin/env python3.9

Listing A.4. pylint is a tool specific for Python. In order to enable or disable a message for
a particular module, a comment-like statement should be added.

# pylint: disable=wildcard-import, method-hidden, line-too-long

Listing A.5. For TypeScript, the disabling of the type checking for a source file may be
accomplished with a two-line comment.

// ESlint-disable-next-line @typescript-ESlint/ban-ts-comment

// @ts-nocheck
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Listing A.6. Cppcheck is a static analysis tool that checks C/C++ code for various errors
and style issues, including potential buffer access out-of-bounds errors. This comment tells
Cppcheck to ignore the “bufferAccessOutOfBounds” warning on the line of code where
this comment appears.

// cppcheck-suppress bufferAccessOutOfBounds

array[index] = value; // This line might trigger the warning

Listing A.7. An OpenMP example that showcases the “pragma omp parallel for” syntax,
a core OpenMP directive. It instructs the compiler to create a parallel region where the
following for loop will be executed by multiple threads. In the absence of parallel support
for a given architecture, the directive will simply be ignored, and the program will be able
to (correctly) proceed and execute the statements in a serial manner.

int sum = 0;

#pragma omp parallel for reduction(+:sum)

for (int i = 0; i < N; i++) {

sum += a[i];

}

Listing A.8. Sample (Kubernetes) comment that needs to be analyzed in context to capture
the correct meaning. Individually reading and interpreting single lines of comments is not
enough for a complete understanding. For example, comment line 4 has no standalone
meaning, but in context, it connects the first three blocks, as well as with the fifth line of
comment.

// teststale checks the staleness of a test binary. go test -c builds a test

// binary but it does no staleness check. In other words, every time one runs

// go test -c, it compiles the test packages and links the binary even when

// nothing has changed. This program helps to mitigate that problem by allowing

// to check the staleness of a given test package and its binary.

Listing A.9. Example (Kubernetes) of situations where duplicated comments may occur.

// In host_config.go.

type Resources struct {

...

// Kernel memory limit (in bytes)

KernelMemory int64 ‘json:"kernel_memory"‘

...

}

// In cgroup_unix.go.

type Resources struct {

// Applicable to UNIX platforms

...

KernelMemory int64 // Kernel memory limit (in bytes)

...

}
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Listing A.10. Sample comment from Kubernetes project, written in compliant English
grammar.

// Package leaderelection implements leader election of a set of endpoints.

// It uses an annotation in the endpoints object to store the record of the election state.

// This implementation does not guarantee that only one client is acting as a leader (a.k.a. fencing).

// A client observes timestamps captured locally to infer the state of the leader election.

Listing A.11. Example for Linux Kernel where a comment is used to point the reader
from the hexadecimal number 0x00400000 to the EXT4_EOFBLOCKS_FL flag. ext4 is
pointing to the Linux journaling file system (fourth extended filesystem) and EOFBLOCKS
is indicating the number of blocks allocated beyond the end-of-file (EOF). This is how the
EXT4_EOFBLOCKS_FL block can have a natural language equivalent, while at first glance,
it was not composed of parts from lexicon.

0x00400000 /* EXT4_EOFBLOCKS_FL */

Appendix B. Code Listings: Qualitative Analysis

This appendix section presents a qualitative analysis of comments identified as similar
using the proposed models. To provide context, examples of similar comments are included,
along with an in-depth discussion of their characteristics in Section 5.

Appendix B.1. Qualitative Analysis of the Identified Similarities for the Levenshtein-Based Model

This section contains some sample similarities, identified in comment snippets be-
tween releases Kubernetes 1.2.1 and 1.3.1, using a similarity score with the matching
threshold t = 0.97 and a Levenshtein-based model:

Example B1

Copyright 2015 The Kubernetes Authors All rights reserved

Copyright 2016 The Kubernetes Authors All rights reserved

Example B2

For maximal backwards compatibility if no subnets are tagged it will fallback to the current subnet

For maximal backwards compatibility if no subnets are tagged it will fallback to the current subnet

Example B3

Canonicalize returns the canonical form of q and its suffix see comment on Quantity

CanonicalizeBytes returns the canonical form of q and its suffix see comment on Quantity

Example B4

May also be set in SecurityContext If set in both SecurityContext and

May also be set in PodSecurityContext If set in both SecurityContext and
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Example B5

If the affinity requirements specified by this field are not met at

If the anti-affinity requirements specified by this field are not met at

Example B6

URISchemeHTTP means that the scheme used will be http

URISchemeHTTPS means that the scheme used will be https

Appendix B.2. Qualitative Analysis of the Identified Similarities for the Word2vec-Based Model

This section identifies comments sections with high similarity scores between releases
Kubernetes 1.2.1 and 1.3.1 using Spacy’s word2vec-based similarity score with a threshold
of t = 0.97:
Example B7

InstanceID returns the cloud provider ID of the specified instance

ExternalID returns the cloud provider ID of the specified instance deprecated

Example B8

Produces a path that etcd understands to the resource by combining the namespace in the context with the given prefix

Produces a path that etcd understands to the root of the resource by combining the namespace in the context with the given
prefix

Example B9

Because in release 11 apisextensionsv1beta1 returns response with empty APIVersion we use StripVersionNegotiatedSerializer to

Because in release 11 api returns response with empty APIVersion we use StripVersionNegotiatedSerializer to keep the response
backwards

Example B10

Scans all managed zones to return the GCE PD Prefer getDiskByName if the zone can be established

zone can be provided to specify the zone for the PD if empty all managed zones will be searched

Example B11

leaseDuration is the duration that nonleader candidates will wait after observing a leadership renewal until attempting to
acquire leadership of a led but unrenewed leader slot This is effectively the maximum duration that a leader can be stopped
before it is replaced by another candidate This is only applicable if leader election is enabled

renewDeadline is the interval between attempts by the acting master to renew a leadership slot before it stops leading This must
be less than or equal to the lease duration This is only applicable if leader election is enabled

Example B12

healthzBindAddress is the IP address for the health check server to serve on defaulting to 127.0.0.1 set to 0.0.0.0 for all interfaces

bindAddress is the IP address for the proxy server to serve on set to 0.0.0.0
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Appendix B.3. Qualitative Analysis of the Identified Similarities for the ELMo-Based Model

This appendix presents several qualitative examples of identified comments similari-
ties between releases Kubernetes 1.2.1 and 1.3.1 using an ELMo-based model with a very
high threshold value (t = 0.98).
Example B13

Select the first valid IP from ServiceClusterIPRange to use as the GenericAPIServer service IP

New returns a new instance of GenericAPIServer from the given config

Example B14

is because the forwarding rule is used as the indicator that the load

what its IP address is if it exists and any error we encountered

Example B15

Map storing information about all groups to be exposed in discovery response

Used to customize default proxy dialtls options

Example B16

Unless required by applicable law or agreed to in writing software

EnsureLoadBalancer creates a new load balancer name or updates the existing one Returns the status of the balancer

Appendix B.4. Qualitative Analysis of the Identified Similarities for the RoBERTa-Based Model

The RoBERTa-based model detected comment sections with high similarity scores
between Kubernetes releases 1.2.1 and 1.3.1. These findings are presented in this section.
Example B17

a mustache is an eligible helper if

a mustache is definitely a helper if it is an eligible helper and

Example B18

target average CPU utilization represented as a percentage of requested CPU over all the pods

current average CPU utilization over all pods represented as a percentage of requested CPU

Example B19

Available represents the storage space available bytes for the Volume For Volumes that share a filesystem with the host eg
emptydir hostpath this is the available

Capacity represents the total capacity bytes of the volumes underlying storage For Volumes that share a filesystem with the host
eg emptydir hostpath this is the size of the underlying storage

Appendix B.5. Qualitative Analysis of the Identified Similarities for the Universal Sentence
Encoder-Based Model

This section presents some qualitative analysis on comments exhibiting high similarity
scores between Kubernetes releases 1.2.1 and 1.3.1, as detected by the Universal Sentence
Encoder-based model.
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Example B20

This is a simple passthrough of the ELB client interface which allows for testing

This is a simple passthrough of the Autoscaling client interface which allows for testing

Example B21

so this implementation always returns nil false

LoadBalancer always returns nil false in this implementation

Example B22

Returns resources allocated to system cgroups in the machine

SystemCgroupsLimit returns resources allocated to system cgroups in the machine

While the quantitative analysis shows that this model performs well, qualitatively, a
common misclassification that this model encounters when needing to handle numerical
values can be observed. The example presented below was not observed by the model as a
potential similarity:
Example B23

Copyright 2016 The Kubernetes Authors.

Copyright 2021 The Kubernetes Authors.
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