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Preface

In precision engineering, the inherent symmetry of actuators in electronic rotors, aircraft wings,

and spacecraft flywheel structures stands as a testament to human ingenuity. Nevertheless, the idyllic

symmetry is often marred by machining imperfections, rendering these meticulously controlled

objects asymmetric. Moreover, external disturbances further disrupt their harmonious operation.

It is imperative, therefore, that we devise algorithms of sophisticated design to uphold the integrity

of these systems. The conception and implementation of control systems are pivotal for the assured

safety of an array of mechanical constructs, encompassing space-faring vehicles, maritime robotics,

and micro-mechanical systems. While contemporary research has laid a substantial foundation, there

remains a pressing need for more nuanced, intelligent, and resource-efficient technologies in control

system algorithms to parallel the burgeoning growth of the industry.

In “Recent Progress in Robot Control Systems: Theory and Applications,” our aspiration is to

curate a collection of original research and survey papers that mirror the cutting-edge advancements

in both the theoretical underpinnings and methodological innovations that propel the evolution of

control system design and its myriad applications.

We wish to express our gratitude to all the scholars and editors who have been involved in the

content and construction of this reprint.

Chengxi Zhang, Jin Wu, and Chong Li

Guest Editors

ix





Citation: Zhang, C.; Wu, J.; Li, C.

Recent Progress in Robot Control

Systems: Theory and Applications.

Symmetry 2024, 16, 43. https://

doi.org/10.3390/sym16010043

Received: 5 December 2023

Accepted: 15 December 2023

Published: 28 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Editorial

Recent Progress in Robot Control Systems: Theory and
Applications

Chengxi Zhang 1,*, Jin Wu 2 and Chong Li 3

1 School of Internet of Things Engineering, Jiangnan University, Wuxi 214082, China
2 Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology,

Hong Kong 999077, China; jwucp@connect.ust.hk
3 Department Automation and Measurement, Ocean University of China, Qingdao 266100, China;

lichong7332@ouc.edu.cn
* Correspondence: dongfangxy@163.com

1. Introduction

Many engineering systems, such as electronic rotors, aircraft wings, and spacecraft
flywheel structures, rely on the symmetry of their actuators. However, symmetry and asym-
metry are not absolute in engineering science. Machining defects and external perturbations
can introduce asymmetry to these controlled objects, compromising their performance and
stability. Therefore, we need to design complex algorithms to preserve the symmetry of
these elegant systems. Control system design is critical for the safe operation of various me-
chanical systems, such as space vehicles, maritime robotics, and micromechanical systems.
Although current research has achieved remarkable results, there is still a high demand for
more refined, intelligent, and low-resource-consumption technologies for control system
algorithms to meet the industry’s growth.

In this Special Issue, we collect original research and survey papers that reflect the
recent advances in the theory and methodology of control system design and applications.

2. Noteworthy Aspects of the Special Issue

This Special Issue contains fifteen papers that cover the following aspects of re-
cent progress in robot control systems: (1) Robotics Navigation and Control; (2) Air-
craft/Spacecraft Systems; and (3) Reliable Designs. The following is a brief summary of
the accepted papers. In addition, we will also present some other achievements that exist
beyond this Special Issue. They will be included in Section 3.

2.1. Robotic Systems

Multi-line LiDAR and GPS/IMU are essential for autonomous driving and robotics
such as SLAM. Multi-sensor fusion requires the calibration of each sensor’s extrinsic
parameters, which affect the vehicle’s positioning control and perception performance.
The algorithm obtains accurate extrinsic parameters and their confidence measures as a
symmetric covariance matrix. Existing LiDAR-GPS/IMU calibration methods need specific
vehicle motion or manual calibration scenes, leading to high costs and low automation.
Ref. [1] proposes a new two-step self-calibration method: extrinsic parameter initialization
and refinement. The initialization part decouples the rotation and translation parts of the
extrinsic parameters and calculates the initial rotation by rotation constraints, and then the
initial translation is calculated by a reliable initial rotation, and the LiDAR odometry drift is
eliminated by loop closure to build the map. The refinement part obtains LiDAR odometry
through scan-to-map registration and couples it tightly with the IMU. The absolute pose
constraints in the map refine the extrinsic parameters.

In artificial intelligence, accomplishing emotion recognition in human–computer in-
teraction is a key work. Expressions contain plentiful information about human emotion.

Symmetry 2024, 16, 43. https://doi.org/10.3390/sym16010043 https://www.mdpi.com/journal/symmetry1
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Ref. [2] found that the canny edge detector can help to significantly improve facial expres-
sion recognition performance. A canny edge-detector-based dual-channel network using
the OI-network and EI-net is proposed, which does not add redundant network layers and
training. The method was verified in CK+, Fer2013, and RafDb datasets and achieved a
good result.

Ref. [3] presents a novel algorithm for the industrial robot contouring control based
on the NURBS (non-uniform rational B-spline) curve. Ref. [4] presents redundant posture
optimization for 6R robotic milling based on a piecewise global optimization strategy
considering stiffness, singularity, and joint limit.

To solve the problems of the poor exploration ability and convergence speed of tra-
ditional deep reinforcement learning in the navigation task of the patrol robot under
indoor specified routes, an improved deep reinforcement learning algorithm based on
Pan/Tilt/Zoom (PTZ) image information was proposed in ref. [5]. The obtained symmetric
image information and target position information are taken as the input of the network,
the speed of the robot is taken as the output of the next action, and the circular route
with the boundary is taken as the test. The improved reward and punishment function is
designed to improve the convergence speed of the algorithm and optimize the path so that
the robot can plan a safer path while avoiding obstacles first. Compared with the Deep
Q Network (DQN) algorithm, the convergence speed after improvement is shortened by
about 40%, and the loss function is more stable.

Ref. [6] is entitled “Trajectory Tracking Control for Underactuated USV with Prescribed
Performance and Input Quantization”.

2.2. Aircraft/Space Vehicle Systems

Ref. [7] takes autonomous exploration in unknown environments on a small co-axial
twin-rotor unmanned aerial vehicle (UAV) platform as the task. The study of fully au-
tonomous positioning in unknown environments and navigation systems without global
navigation satellite systems (GNSS) and other auxiliary positioning means is carried out. Al-
gorithms that are based on the machine vision/proximity detection/inertial measurement
unit, namely the combined navigation algorithm and the indoor simultaneous location
and mapping (SLAM) algorithm, are not only designed theoretically but also realized and
verified in real surroundings. Additionally, obstacle detection, the decision-making of
avoidance motion, and motion planning methods such as Octree are also proposed, which
are characterized by randomness and symmetry.

In response to the problems of slow running speed and high error rates of traditional
flight conflict detection algorithms, Ref. [8] proposes a conflict detection algorithm based
on the use of a relevance vector machine. A set of symmetrical historical flight data was
used as the training set of the model, and they used the SMOTE resampling method to
optimize the training set. They obtained relatively symmetrical training data and trained it
with the relevance vector machine, improving the kernels through an intelligent algorithm.

According to the symmetrical characteristics of a new type of Reusable Launch Vehicle
(RLV) in the recovery phase, [9] studied the basic aerodynamic model data of Starship and
the aerodynamic data with rudder deflection, and the causes of its aerodynamic coefficients
are expounded. They analyzed its stability and maneuverability. According to the flying
quality requirements, the lateral–directional model of Starship in the return phase at a high
angle of attack is analyzed. Finally, they analyzed Starship’s lateral heading stability and
control deviation using the criterion and nonlinear open-loop simulations. The results show
that the Starship has pitching and rolling stability, but it only has heading stability in some
ranges of angle of attack, and there is no heading stability at a conventional large angle of
attack. After the modal analysis and comparison of flight quality, the longitudinal long-
period model of the starship degenerates into a real root and it is stable and convergent.
The lateral heading roll mode is at level 2 flight quality, the helical mode is at level 1 flight
quality, and the Dutch roll mode diverges, which needs to be stabilized and controlled later.
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Ref. [10] is entitled “Thrust Vectoring Vertical/Short Takeoff and Landing Aircraft
Stability Augmentation Controller Based on L1 Adaptive Control Law”. Aiming at the
conversion process of thrust vectoring vertical/short takeoff and landing (V/STOL) aircraft
with a symmetrical structure in the transition stage of takeoff and landing, there is a
problem with the coupling and redundancy of the control quantities. To solve this problem,
a corresponding inner loop stabilization controller and control distribution strategy are
designed. In this paper, a dynamic system model and a dynamic model are established.
Based on the outer loop adopting the conventional nonlinear dynamic inverse control, an
L1 adaptive controller is designed based on the model as the inner loop stabilization control
to compensate for the mismatch and uncertainty in the system. The key feature of the L1
adaptive control architecture is ensuring robustness in the presence of fast adaptation, to
achieve a unified performance boundary in transient and steady-state operations, thus
eliminating the need for adaptive rate gain scheduling.

A new landing strategy is presented in ref. [11] for manned electric vertical takeoff
and landing (eVTOL) vehicles, using a roll maneuver to obtain a trajectory in the horizontal
plane. This strategy rejects the altitude surging in the landing process, which is the fatal
drawback of the conventional jumping strategy. The strategy leads to a smoother transition
from the wing-borne mode to the thrust-borne mode, and has a higher energy efficiency,
meaning a better flight experience and higher economic performance. To employ the strat-
egy, a five-stage maneuver is designed using the lateral maneuver instead of longitudinal
climbing. Additionally, a control system based on L1 adaptive control theory is designed to
assist manned driving or execute flight missions independently, consisting of the guidance
logic, stability augmentation system, and flight management unit. The strategy is verified
with the ET120 platform by Monte Carlo simulation for robustness and safety performance,
and an experiment was performed to compare the benefits with conventional landing
strategies. The results show that the performance of the control system is robust enough
to reduce perturbation by at least 20% in all modeling parameters, and ensures consistent
dynamic characteristics between different flight modes. Additionally, the strategy success-
fully avoids climbing during the landing process with a smooth trajectory and reduces the
energy consumed for landing by 64%.

2.3. Reliable Designs

Deep-learning-based methods have been widely used in fault diagnosis to improve
diagnosis efficiency and intelligence. However, most schemes require a great deal of la-
beled data and many iterations for training parameters. They suffer from low accuracy
and overfitting under the few-shot scenario. In addition, many parameters in the model
consume high computing resources, which is far from practical. In ref. [12], a multi-scale
and lightweight Siamese network architecture is proposed for fault diagnosis with few
samples. The architecture proposed contains two main modules. The first part implements
the feature vector extraction of sample pairs. It is composed of two lightweight convolu-
tional networks with symmetrical shared weights. Multi-scale convolutional kernels and
dimensionality reduction are used in these two symmetric networks to improve feature
extraction and reduce the total number of model parameters. The second part takes charge
of calculating the similarity of two feature vectors to achieve fault classification. Multiple
datasets with different loads and speeds validate the proposed network. The results show
that the model has better accuracy, fewer model parameters, and a scale compared to the
baseline approach through our experiments.

Ref. [13] is entitled “Velocity-Free State Feedback Fault-Tolerant Control for Satellites
with Actuator and Sensor Faults”, Ref. [14] is “Finite-Time Controllers for Flexible Satellite
Attitude Fast and Large-Angle Maneuver”, and ref. [15] is “Fault-Diagnosis Sensor Selection
for Fuel Cell Stack Systems Combining an Analytic Hierarchy Process with the Technique
Order Performance Similarity Ideal Solution Method”.

3
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3. Exploring Further Advances in Intelligent Robot Control

Furthermore, we are pleased to introduce several noteworthy recent studies for schol-
arly consideration. While they may not comprehensively showcase all the achievements in
robot control, they each possess certain commendable attributes.

3.1. Spacecraft Robot Control

Results in the control of spacecraft and robots: Ref. [16] proposes a control Lyapunov-
barrier function-based controller for the stabilization of the spacecraft attitude tracking error
system by combining a designed control barrier function and an existing control Lyapunov
function. Ref. [17] investigates the distributed predefined-time attitude coordination control
problem for multiple rigid spacecraft. Ref. [18] investigates the trajectory tracking control
for a new type of cable-driven large space manipulator via sliding mode control techniques.

3.2. Control of Switching Systems

Results in the stability analysis and controller design of switching systems based
on matrix equations: Refs. [19,20] propose an explicit iterative algorithm and an implicit
iterative algorithm for solving the coupled Lyapunov matrix equation related to the stability
analysis of continuous-time Markovian jump linear systems, respectively. Ref. [21] develops
some convergence conditions for the multiple tuning parameters iterative algorithm and
the single tuning parameter iterative algorithm, which is proposed to solve the discrete
periodic Lyapunov matrix equations related to the control design of discrete-time linear
periodic systems.

3.3. Self-Learning Control: A Simple and Effective Design

Self-learning control, originally referred to as online learning control, was initially pro-
posed in [22], providing the first method for stability proof. Its most prominent attribute lies
in its simple structure and practical applicability. In [22], it solely utilizes a straightforward
proportional-derivative (PD) algorithm as the update term, complemented by a learning
term with a fixed learning intensity. This approach achieves a remarkably high control
precision and response speed while maintaining a simplified form of the control algorithm.
In follow-up research [23], the authors further proposed a control algorithm with variable
learning intensity to mitigate the controller saturation response. Additionally, in another
investigation [24], the authors employed a variable learning intensity approach to enhance
a learning observer, significantly reducing the initial transient oscillations during state and
parameter estimation. Due to its user-friendly simplicity, the self-learning control method
was swiftly applied to gyroscope systems [25], attaining state-of-the-art performance in
certain metrics of gyroscope control systems.

3.4. State Estimation of Robotic Systems

Accurately retrieving information about the condition of a control system, particularly
within the domain of aircraft and robotics, necessitates the utilization of state estimation as
a highly effective approach for minimizing noise influence. In [26,27], the employment of
FIR-smoothing methods has resulted in notable enhancements in estimation performance
concerning observation data that exhibit time delays. Additionally, the destabilizing effects
of faulty signals on controller stability are estimated by leveraging the mean-field theory
described in [28,29]. To fortify resistance against disturbances, the methods proposed
in [30,31] leverage Bayesian inference to capture the inherent randomness of unknown
signals. For the localization of the underground pipe jacking machine, [32] designed a
reliable, real-time, and robust INS/OD solution.

3.5. Trends in Control Systems for Micro Gyroscopes

Another notable trend would be focused on micro-electro-mechanical (MEMS) gyro-
scopes, which are an essential inertial sensor for robotic navigation and attitude control [33].
They may be considered to be black-boxed sensors within the field of robotics, but they are

4
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inherently complicated and self-sustained closed loop control systems [25]. By examining
the operation principles, it can be found that there are typically more than four control
loops in a single working MEMS gyro chip. The control plant would be a pair of orthogo-
nal resonators coupled with the Coriolis effect along with frequency tracking, amplitude
adjustment, quadrature nulling, and force-to-rebalance controllers [34]. Improving the
fabrication quality of gyro devices is a straightforward way to enhance the sensing met-
rics, but optimizing control systems is the advanced approach to break the performance
barrier [35]. By switching empirical controller designs to model-based force-to-rebalance
controllers, the bandwidth can be magnified by 5×~10× [36]. Self-calibration architectures
that observe the gyro parametric errors and calibrations made using electrical stimulus are
another implementation of advanced control systems [37], whether they are acknowledged
by the MEMS designers or not. In any case, advanced control systems will play an essential
role in the field of inertial sensors.
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Abstract: Multi-line LiDAR and GPS/IMU are widely used in autonomous driving and robotics,
such as simultaneous localization and mapping (SLAM). Calibrating the extrinsic parameters of
each sensor is a necessary condition for multi-sensor fusion. The calibration of each sensor directly
affects the accurate positioning control and perception performance of the vehicle. Through the
algorithm, accurate extrinsic parameters and a symmetric covariance matrix of extrinsic parameters
can be obtained as a measure of the confidence of the extrinsic parameters. As for the calibration of
LiDAR-GPS/IMU, many calibration methods require specific vehicle motion or manual calibration
marking scenes to ensure good constraint of the problem, resulting in high costs and a low degree
of automation. To solve this problem, we propose a new two-step self-calibration method, which
includes extrinsic parameter initialization and refinement. The initialization part decouples the
extrinsic parameters from the rotation and translation part, first calculating the reliable initial rotation
through the rotation constraints, then calculating the initial translation after obtaining a reliable initial
rotation, and eliminating the accumulated drift of LiDAR odometry by loop closure to complete the
map construction. In the refinement part, the LiDAR odometry is obtained through scan-to-map
registration and is tightly coupled with the IMU. The constraints of the absolute pose in the map
refined the extrinsic parameters. Our method is validated in the simulation and real environments,
and the results show that the proposed method has high accuracy and robustness.

Keywords: autonomous driving; robot control; LiDAR-GPS/IMU; hand-eye calibration; sensor fusion

1. Introduction

In autonomous driving and robotics, commonly used sensors are LiDAR, camera, and
GPS/IMU. The LiDAR market has broad prospects. It is predicted that by 2025, China’s
LiDAR market will be close to USD 2.175 billion (equal to CNY 15 billion), and the global
market will be close to USD 4.35 billion (equal to CYN 30 billion). By 2030, China’s LiDAR
market will be close to USD 5.075 billion (equal to CYN 35 billion), and the global market
will be close to USD 9.425 billion (equal to CYN 65 billion). The annual growth rate of the
global market will reach 48.3% (http://www.evinchina.com/newsshow-2094.html, accessed
on 2 January 2023). The annual growth rate of vehicle camera modules from 2018 to 2023
is about 15.8%. It is estimated that the annual sales in 2023 will reach USD 5.8 billion
(about CYN 39.44 billion), of which robots and cars will account for 75% (https://www.
yoojia.com/article/10096726019901689110.html, accessed on 2 January 2023). GPS/IMU is a
comprehensive system combining inertial measurement unit (IMU) and global positioning
system (GPS), which can provide centimeter-level absolute localization accuracy. A single
IMU can only offer a relatively accurate motion estimation in a short time, which depends
on the hardware performance of the IMU. The localization error increases rapidly with time.
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LiDAR (light detection and ranging) is the most critical ranging sensor, which can estimate
the relative motion of vehicles in real-time through point cloud registration. LiDAR’s ranging
calculation is complex and often needs to be accelerated in a parallel settlement [1], and due
to the high cost, FGPA is used as a part of the data processing module to reduce costs [2]. The
SLAM based on LiDAR will degenerate where the geometric feature information is sparse.
The camera projects the three-dimensional scene onto the two-dimensional image, through
which we can obtain visual odometry. However, the visual odometry has scale ambiguity,
and the image is also affected by the exposure rate and the light. In order to integrate the
advantages of the sensors to achieve better robustness, many tasks need more than one kind
of sensor. Multi-sensor fusion has become a trend [3–8]. The study in [3] proposes a pipeline
inspection and retrofitting based on LiDAR and camera fusion for an AR system. In [4], for
the loss of visual feature tracking of mobile robots, a feature matching method is designed
based on a camera and IMU to improve robustness. Efficiently fusing different attributes of
the environment captured by the two sensors facilitates a reliable and consistent perception
of the environment. In [5], a method for estimating the distance between an autonomous
vehicle and other vehicles, objects, and signboards on its path using the accurate fusion of
LiDAR and camera is proposed. It can be seen that many tasks tend to use multi-sensor
fusion to complete the task. However, since the coordinate systems of the data collected by
each sensor are different, we need to unify the coordinate systems of different sensors. This
requires different types of data collected by sensors to calibrate the intrinsic parameters of
a single sensor and the extrinsic parameters of multiple sensors. For example, Refs. [9–12]
are calibration works about multi-LiDAR extrinsic parameters. Refs. [13–15] are calibration
works about LiDAR-camera extrinsic parameters. Refs. [16–18] are calibration works about
LiDAR-IMU extrinsic parameters. There are few calibration works about LiDAR-GPS/IMU
extrinsic parameters. The calibration of LiDAR-GPS/IMU is to complete the calibration of
extrinsic parameters of LiDAR and IMU rotation and LiDAR and GPS translation.

Since the intrinsic parameters of IMU and LiDAR are usually provided by the man-
ufacturer at the factory, we mainly solve the calibration of extrinsic parameters between
LiDAR and GPS/IMU. At present, there are many challenges in the calibration of extrinsic
parameters of LiDAR and GPS/IMU. For example, the movement of the vehicle in auto-
matic driving is not like the movement of the robot arm. The movement of the vehicle is
mainly the plane movement of three degrees of freedom, which has fewer constraints on
the other three degrees of freedom, so the error of the other three degrees of freedom is
relatively large. Due to the large difference in the measurement principle between radar and
GPS/IMU, to detect the same object in different sensors for calibrating extrinsic parameters
between them, many calibration methods require specific vehicle operation and manual
calibration marking scenes, resulting in high cost and low degree of automation.

The motion-based method is the primary method for calibration between LiDAR and
GPS/IMU. Geiger et al. [19] proposed to use a hand–eye calibration method to constrain
GPS/IMU odometry and obtain LiDAR odometry through point-plane registration. How-
ever, it does not have an initial extrinsic parameter calculation, so its accuracy depends on
the high-precision registration of the LiDAR odometry. Hand–eye calibration utilizes the
hand-eye model proposed in the field of robotics. It is used to solve the rigid transformation
between the manipulator and the camera rigidly mounted above, and this problem can
be extended to solve the problem of relatively rigid transformation between any two sen-
sors [20,21]. Therefore, we can also use it to solve the rigid transformation between LiDAR
and GPS/IMU. Hand–eye calibration mainly solves the equation AX = XB, where A and B
are the odometry of two different sensors, respectively, and X is the extrinsic parameters
between the two sensors. In [22], the ground is used to solve the Z-axis translation, roll,
and pitch transformation, and then the three-dimensional problem is converted into a two-
dimensional problem. The remaining three degrees of freedom are estimated by hand–eye
calibration. It can be regarded as taking the three degrees of freedom optimized on the
ground as the initial value and then performing hand–eye calibration. The initial value
calculation is too simple and rough, there are manual operation errors, and the obtained ac-
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curacy is relatively low. Baidu’s open-source Apollo project divides the calibration process
into two steps. First, calculate the initial calibration parameters through the trajectory and
then refine the calibration parameters through the feature-based method. Our calibration
method shares the same idea, which is to complete the calibration parameters from the
coarse to the fine, but the details of the method implementation are different. We adopt
more strategies, such as loop closure detection and tight coupling strategies, so the accu-
racy and robustness are relatively better. In [23], in order to solve the problem of missing
constraints caused by the plane motion of vehicle motion, large-range and small-range tra-
jectories are used to solve the extrinsic parameters of rotation and translation, respectively.
However, large-range trajectory recording requires a large labor cost and is demanding;
therefore, the method is not universal. The advantages and disadvantages of related work
are shown in Table 1.

Table 1. The advantages and disadvantages of the related work.

Methods Advantages Disadvantages

Geiger et al. Hand–eye calibration method is proposed no initial extrinsic parameters
Chen, C et al. Group calibration manual operation, the accuracy is low

Baidu Apollo project Calibrate from coarse to fine no loop closure detection
Xuan, Y et al. The large-range trajectories strategy harsh conditions, not universal

This paper proposes a new two-step self-calibration method, which includes extrinsic
parameters initialization and refinement. The initialization part decouples the extrinsic
parameters from the rotation and translation part by first calculating the reliable initial rota-
tion through the rotation constraints, then calculating the initial translation after obtaining
a reliable initial rotation, and eliminating the accumulated drift of LiDAR odometry by
loop closure to complete the map construction. In the refinement part, the LiDAR odometry
is obtained through scan-to-map registration and is tightly coupled with the IMU. The
constraints of the absolute pose in the map refined the extrinsic parameters. The main
contributions of our work can be summarized as follows:

• A new LiDAR and GPS/IMU calibration system can be calibrated daily in an open
natural environment and has good universality.

• Like the common localization problem, we divide the calibration problem into two
steps and adopt the idea from coarse to fine to make the extrinsic parameters have
better robustness and accuracy and effectively eliminate the influence of accumulated
drift on the extrinsic parameters.

• The proposed calibration system is verified in both a simulation environment and a
real environment.

The rest of the paper is organized as follows: Section 2 is an overview of the system,
which describes the core calibration algorithm of the LiDAR-GPS/IMU calibration system,
which is divided into two parts to introduce our proposed algorithm and provide a detailed
introduction to the algorithm. Section 3 is the experimental results of the simulation and
real environment. Section 4 is the summary of this paper and future work. Table 2 is all the
abbreviations used in this article.
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Table 2. Table of abbreviations.

Abbreviation Meaning

LiDAR Light Detection and Ranging
GPS Global Positioning System
IMU Inertial Measurement Unit
SVD Singular Value Decomposition
ICP Iterative Closest Points

GICP Generalized ICP
LOAM Lidar Odometry and Mapping in Real-Time

L-M Levenberg–Marquard

2. Methods

This section introduces the architecture of the proposed LiDAR-GPS/IMU calibration
system, as shown in Figure 1. The system is mainly divided into two parts: parameter
initialization and parameter refinement. In the parameter initialization part, the feature-
based LiDAR odometry and the interpolated GPS/IMU relative pose were used to construct
the hand–eye calibration problem to solve the initial extrinsic parameters and construct the
map. In the parameter refinement part, LiDAR and IMU are tightly coupled by the initial
extrinsic parameters, and the extrinsic parameters were refined through the constraints of
the absolute pose in the map.

Figure 1. The pipeline of the LiDAR-GPS/IMU calibration system is presented in this paper. In the
parameter initialization part, the feature-based LiDAR odometry and the interpolated GPS/IMU
relative pose were used to construct the hand–eye calibration problem to solve the initial extrinsic
parameters and construct the map. In the parameters refinement part, the initial extrinsic parameters
were tightly coupled with the LiDAR and IMU, and the extrinsic parameters were refined through
the constraints of the absolute pose in the map. When the relative change in the extrinsic parameters
is less than the set threshold during the iterative refinement process, it is considered that the extrinsic
parameters are sufficiently convergent, and the refinement ends.

The core of the extrinsic parameter initialization is a hand–eye calibration algorithm.
When the vehicle is in motion, Figure 2 shows the relationship between relative and absolute
pose during hand–eye calibration of LiDAR and GPS/IMU, where the {W} is the first
frame of the GPS/IMU, and the {Lk} and {Ik} represent the kth frame of the LiDAR and
the GPS/IMU frame obtained by interpolation at this time, respectively. TW

Ik
is the absolute

pose of {Ik} relative to {W}. T
Ik
Ik+1

is the relative pose from {Ik+1} to {Ik}. T
Lk
Lk+1

is the
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relative pose from {Lk+1} to {Lk}. It is easy to see from Figure 2 that we have two ways to
obtain the relative pose from {Lk+1} to {Ik}, so we can obtain the formula as follows:

T
Ik
Ik+1

TI
L = TI

LT
Lk
Lk+1

(1)

Equation (1) constitutes the equation AX = XB for hand–eye calibration. The principle
of hand–eye calibration will be introduced in detail below.

Figure 2. This figure shows the pose relationship of hand–eye calibration. We use {W} as the world
coordinate system for mapping. Hand–eye calibration is mainly the relationship between extrinsic
parameter TI

L and two relative poses TIk
Ik+1

and TLk
Lk+1

, which denote the relative pose from {Ik+1} to
{Ik} and {Lk+1} to {Lk}, respectively.

2.1. Hand–Eye Calibration

Equation (1) is usually decoupled into two parts according to [24]: rotation and
translation. As the vehicle moves, the following equation holds for any k:

R
Ik
Ik+1

RI
L = RI

LR
Lk
Lk+1

(2)

(
R

Ik
Ik+1

− I3

)
tI
L = RI

Lt
Lk
Lk+1

− t
Ik
Ik+1

(3)

2.1.1. Extrinsic Rotation

Equation (2) is expressed by a quaternion as follows:

q
Ik
Ik+1

⊗ qI
L = qI

L ⊗ q
Lk
LK+1

⇒
([

q
Ik
Ik+1

]
L
−
[
q

Ik
Ik+1

]
R
)qI

L = Qk
k+1qI

L

(4)

where ⊗ is the quaternion multiplication operator, and
[
q

Ik
Ik+1

]
L

and
[
q

Ik
Ik+1

]
R

are the
matrix representation of the left and right quaternion multiplication, respectively [25].
After stacking measurements at different times, we obtain an over-determined equation as
follows:
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⎡⎢⎣ w1
2 · Q1

2
...

wk
k+1 · Qk

k+1

⎤⎥⎦
4K×4

qI
L = QKqI

L = 04K×4 (5)

where K is the number of rotation pairs of the over-determined equation, and wk
k+1 is the

robust weight to better handle outliers. The angle of the current rotation pair difference in
the angular axis is calculated by Equation (4) and taken as the parameters of Huber loss,
whose derivative is the weight:

wk
k+1 = ρ′(θ), θ = 2 arccos(qw)

q = (q
Ik
Ik+1

⊗ qI
L)

∗ ⊗ qI
L ⊗ q

Lk
LK+1

(6)

where ρ() is Huber loss, qw is the real part of the quaternion q, and ()∗ means taking the
inverse of the quaternion. We use SVD to solve the over-determined Equation (5), whose
closed solution is the right unit singular vector corresponding to the minimum singular
value. Meanwhile, according to [26], to ensure sufficient rotation constraints, we need to
ensure that the second smallest singular value is large enough, which needs to be larger
than the artificial threshold. With the rapid increase of Qk

k+1, the priority queue is used to
remove the constraint with the smallest rotation. Until the second smallest singular value
exceeds the threshold, we can obtain a reliable initial extrinsic rotation.

2.1.2. Extrinsic Translation

When the extrinsic rotation R̂I
L is obtained, translation can be solved by the least

square approach according to Equation (3).⎡⎢⎢⎣
R

I1
I2
− I3
...

R
Ik
Ik+1

− I3

⎤⎥⎥⎦
3K×3

tI
L =

⎡⎢⎢⎣
R̂I

Lt
L1
L2
− t

I1
I2

...
R̂I

Lt
Lk
Lk+1

− t
Ik
Ik+1

⎤⎥⎥⎦
3K×1

(7)

However, the vehicle motion is usually a three degrees of freedom plane motion, so
the translation of the z axis, tz, is not reliable. At the same time, since the acceleration of
IMU is coupled with gravity, it is related to rotation, so it is also not reliable to calculate the
initial translation value through the initial rotation. We can make the plane assumption
as [10] and rewrite Equation (7) as follows:

Rk+1

[
tx
ty

]
−
[

cos(γ) − sin(γ)
sin(γ) cos(γ)

]
t1
k+1 = −t2

k+1 (8)

Equation (8) is the plane motion constraint generated by the k + 1th relative pose,
where γ is the yaw rotation, tx and ty are the translation of the x and y axes, respectively,

Rk+1 is the 2x2 block matrix in the upper left corner of
(

R
Ik
Ik+1

− I3

)
, and t1

k+1 and t2
k+1 are

the first two elements of the column vectors RI
Lt

Lk
Lk+1

and t
Ik
Ik+1

, respectively.
Equation (8) can be rewritten in the form of the matrix equation AX = b:

[
Rk+1 J

]︸ ︷︷ ︸
Ak+1

⎡⎢⎢⎣
tx
ty

− cos(γ)
− sin(γ)

⎤⎥⎥⎦ = −t2
k+1 (9)

where J =

⎡⎣ [
t1
k+1

]
1

−
[
t1
k+1

]
2[

t1
k+1

]
2

[
t1
k+1

]
1

⎤⎦,
[
t1
k+1

]
i

denotes the ith element of the column vector[
t1
k+1

]
. As in Equation (5), by stacking measurements at different times according to
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Equation (9), we can obtain the final matrix equation AX = b, which can be solved by the
least-squares approach: ⎡⎢⎣ A2

...
AK+1

⎤⎥⎦
︸ ︷︷ ︸

A2K×4

⎡⎢⎢⎣
tx
ty

− cos(γ)
− sin(γ)

⎤⎥⎥⎦
︸ ︷︷ ︸

x4×1

= −

⎡⎢⎣ t2
2
...

t2
K+1

⎤⎥⎦
︸ ︷︷ ︸

b2K×1

(10)

The obtained yaw rotation, according to Equation (10), is fused with the original
calculated extrinsic rotation R̂I

L to obtain the new initial rotation. We can manually measure
the value of the extrinsic parameters about the z-axis. Suppose the calculated translation of
the extrinsic parameters about the Z-axis differs too much from the measured value. In that
case, we can set the translation of the Z-axis to the measured value and refine it through
the absolute pose constraint in the refinement part; see Section 2.2.2.

2.2. Methods

This section details the procedure for calculating the initial values of extrinsic pa-
rameters by GPS/IMU measurements and LiDAR measurements. First, the GPS/IMU
measurements were interpolated against the LiDAR timestamp; then, the LiDAR odometry
was estimated as in [27]. The extrinsic parameters were initialized by hand–eye calibration;
see Section 2.1. We integrate loop closure into the system by using a factor graph and
completing the map construction. Then, we tightly coupled LiDAR and IMU through the
initially obtained extrinsic parameters, obtained the LiDAR odometry through scan-to-
map feature-based registration, and refined the extrinsic parameters by constructing the
constraints of the extrinsic parameters through the obtained absolute pose.

2.2.1. Extrinsic Parameters Initialization

As for LiDAR odometry, there are two methods to calculate the relative transformation
of two consecutive frames: 1. based on direct matching, such as ICP [28] and GICP [29],
2. feature-based methods, such as LOAM [27], do not need to calculate all the point clouds
but only need to calculate representative points, which not only improves accuracy but
also reduces computing efficiency. We use the feature-based method in [30] to obtain the
LiDAR odometry.

However, since there are no extrinsic parameters between the LiDAR and IMU, we
cannot use the IMU pre-integration as the guess pose of the LiDAR odometry as in [30].
Because offline calibration does not require real-time performance like SLAM, we can add
more constraints to make the estimated relative motion more accurate. We first need to
compute a predicted pose to prevent the optimization algorithm from converging to a local
optimum. With the increase in time, the registration between consecutive frames tends to
have a larger drift on the Z-axis than other axes. Therefore, we first use the constant velocity
model as the predicted pose and then extract the ground points and calculate the centroid
of the ground point to optimize roll, pitch angle, and z-translation, respectively. Since
LiDAR is basically installed horizontally, we first extract ground points using geometric
features in [31], and then filter the outliers by RANSAC so that the ground points obtained
can reach a high accuracy and the guess pose is relatively accurate.

When we obtain the latest scans of the raw LiDAR point cloud, firstly, we de-skew
the point cloud to the moment of the first LiDAR point by guess pose and project the
skewed point cloud into the range image according to the resolution. We extract the two
feature points, edge feature and planar feature points, through the curvature. We distribute
the feature points uniformly and remove the unstable feature points as [27]. We denote
Fk =

{
Fe

k, Fp
k

}
as all feature points of kth LiDAR point cloud, and Fe

k and Fp
k are denoted as

edge feature points and planar feature points, respectively. We can obtain the distances of
point-to-line and point-to-plane through the following:
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dek =

∣∣∣(pe
k+1 − pe

k,2

)
×
(

pe
k+1 − pe

k,1

)∣∣∣∣∣∣pe
k,1 − pe

k,2

∣∣∣ (11)

n =
(

p
p
k,1 − p

p
k,2

)
×
(

p
p
k,1 − p

p
k,3

)
(12)

dpk =

∣∣∣ (p
p
k+1 − p

p
k,1

)
· n

∣∣∣
|n|

(13)

where pe
k+1 ∈ ′Fe

k+1, p
p
k+1 ∈ ′Fp

k+1. ′
Fk+1 =

{
′Fe

k+1, ′Fp
k+1

}
is the feature points de-skewed

to the first point of the current point cloud.
(

pe
k,1, pe

k,2

)
are the two edge feature points

of Fe
k corresponding to pe

k+1.
(

p
p
k,1, p

p
k,2, p

p
k,3

)
are the three planer feature points of Fp

k

corresponding to p
p
k+1. Fk =

{
Fe

k, Fp
k

}
is the feature points de-skewed to the last point

of the previous point cloud. The moment of the last point of the previous point cloud
is equal to the moment of the first point of the current point cloud, so the edge feature
points at the same moment are on the same line, and the planner points are on the same
surface. Thus, we can obtain the constraint of Equations (11)–(13) and use point-to-line
and point-to-surface distances as cost functions. The relative pose can be calculated by
minimizing the cost function by using the Levenberg–Marquardt algorithm. The LiDAR
odometry algorithm is shown in Algorithm 1.

Algorithm 1 LiDAR Odometry.

Input: Fk =
{

Fe
k, Fp

k

}
,Fk+1 =

{
Fe

k+1, Fp
k+1

}
, TW

Lk
from the last recursion

Output: Fk+1 =
{

Fe
k+1, Fp

k+1

}
, TW

Lk+1

1: Through the constant velocity model, guess pose TW
Lk+1

is calculated from TW
Lk

2: for each edge point in Fk+1 do

3: Extracting ground points through geometric features and RANSAC
4: end for

5: Calculate the three degrees of freedom z-translation, roll, and pitch through ground
point optimization to obtain a new guess pose TW

Lk+1
.

6: De-skew the point cloud Fk+1 to the moment of the first LiDAR point by guess pose.
Detect edge points and planar points in ′

Fk+1
7: for a number of iterations do

8: for each edge point in ′Fe
k+1 do

9: Find an edge line as the correspondence, then compute point to line distance
based on (11)

10: end for

11: for each edge point in ′Fe
k+1 do

12: Find a planar patch as the correspondence, then compute point to plane distance
based on (13)

13: end for

14: Using distance as a cost function for nonlinear optimization, update TW
Lk+1

15: if the nonlinear optimization converges then

16: Break
17: end if

18: end for

19: Reproject Fk+1 to the moment of the last LiDAR point according to TW
Lk+1

to get Fk+1

20: return TW
Lk+1

,Fk+1
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After completing the registration between two consecutive frames, we optimize the
estimated pose again through scan-to-map point cloud registration. We obtain the keyframe
through the relative pose transformation amount greater than the threshold value that
is considered to be set and save it. The local point cloud used for the current point
cloud registration is obtained through the following two methods: 1. It is formed by
superimposing several keyframes adjacent in time. 2. It is formed by superimposing
several keyframes adjacent in position. The search for adjacent positions uses a KD-tree
and adds the position of each keyframe as a point to the KD-tree, and then the keyframes
with adjacent positions are obtained through the nearest neighbor search of the KD-tree.
In order to reduce the drift of cumulative errors, we combined the obtained relative pose
with z-translation, roll, and pitch angle obtained by ground point optimization to make the
relative pose more accurate and robust.

After obtaining the relative pose of LiDAR, the initial calibration parameters can be
obtained by hand–eye calibration through the relative pose constraints of the LiDAR odom-
etry and the relative pose constraints of the interpolated GPS/IMU data; see Section 2.1.
We denote

(
q

Lk
LK+1

, t
Lk
LK+1

)
and

(
q

Ik
IK+1

, t
Ik
IK+1

)
as the relative pose constraint pair of LiDAR

data and GPS/IMU data, respectively. We can construct the following cost function with
extrinsic parameters:

minqL
I ,tL

I

{
∑k∈N

∥∥∥(qIk
Ik+1

⊗ qI
L)

∗ ⊗ qI
L ⊗ q

Lk
LK+1

∥∥∥2

xyz
+

∑k∈N

∥∥∥(R
Ik
Ik+1

− I3

)
tI
L − RI

Lt
Lk
Lk+1

+ t
Ik
Ik+1

∥∥∥2
} (14)

where ‖‖xyz represents the imaginary part of the quaternion, and there are a total of
N relative pose constraint pairs. If we make a planar assumption, the residuals of the
translation part can be constructed by Equation (10). After multiple optimizations, the
initial value of the calibration parameters can be obtained. The global consistency map is
constructed by a loop closure.

2.2.2. Extrinsic Parameters Refinement

In this section, the process of extrinsic parameter refinement is introduced in detail.
First, the absolute pose is obtained through the registration of the global map obtained
from Section 2.2.1. The LiDAR odometry and IMU and tightly coupled by the initial
extrinsic parameters, and the cost function of the calibration parameters was constructed
by the absolute pose. After nonlinear optimization, the refined extrinsic parameters can
be obtained.

From Section 2.2.1, we can obtain the initial extrinsic parameters, the global map, and
the world frame. The global map is built under the world frame. Since we have the initial
extrinsic parameters, we can tightly couple the IMU during the construction of the LiDAR
odometry. Firstly, the pre-integration is used to de-skew the LiDAR point cloud and serve
as the guess pose of the LiDAR odometry. The bias of the IMU is corrected by the optimized
LiDAR odometry based on the factor graph.

First, we obtain the local map by filtering the global map and obtain the LiDAR
odometry by registration with the local map, TW

Lk
. Through Figure 3, we can construct

constraints with extrinsic parameters through the following formula:

TW
Lk

= TW
Ik

T̂I
L (15)

where TW
Ik

is the GPS/IMU pose corresponding to the current LiDAR timestamp.
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Figure 3. This figure shows the pose relationship during the refinement of extrinsic parameters,
where TLk and TW

Ik
are the absolute pose of LiDAR and GPS/IMU, respectively, and TI

L is extrinsic
parameters. The coordinate system of the sensor is indicated in red.

As per Section 2, we can also decouple Equation (15) into the rotation part and the
translation part to obtain the following two constraints [24]:

q̂W
Lk

= qW
Ik
⊗ qI

L,

t̂W
Lk

= tW
Ik
+ RW

Ik
tI
L.

(16)

The construction of the over-determined equation about rotation and translation is the
same as Section 2.2.1, but the assumption of plane motion is not required here, the extrinsic
translation parameters can be optimized by the absolute pose, directly.

We can refine the extrinsic parameters by constructing the cost function of the absolute
pose and extrinsic parameters according to Equation (16):

minqI
L ,tI

L

{
∑k∈N

∥∥∥(qW
Li
)∗ ⊗ qW

Ii
⊗ qI

L

∥∥∥2

xyz

+∑k∈N

∥∥∥RW
Ik

tI
L + tW

Ik
− tW

Lk

∥∥∥2
} (17)

When the cost function is optimized by L-M optimization, the final precise extrinsic
parameters can be obtained when the iteration converges.

3. Results and Discussions

3.1. Validation and Results

In this section, we validate the proposed LiDAR-GPS/IMU calibration system in the
simulation and real environments, respectively. The simulation environment adopted
the Carla simulation platform and was equipped with the required sensors to record
multiple data sets under the empty urban road scene. In the real environment, ouster-128
LiDAR and FDI-integrated navigation systems were used to record corresponding data
sets in outdoor road scenes, and CAD assembly drawing was used as the ground truth for
comparison and verification. In addition to the above hardware configuration, the software
configuration in Table 3 is also required. Data communication was performed through ROS
in the Ubuntu operating system, the received LiDAR point cloud was processed through
PCL, and nonlinear optimization was performed through Ceres Solver. Upon playing
the pre-recorded data set, the system receives LiDAR, GPS, and IMU messages through
ROS and obtains the global map and initial extrinsic parameters through the method of
extrinsic parameters initialization in Section 2.2.1. After the initialization of the extrinsic
parameters is completed, the global map and the initial extrinsic parameters are loaded
through the method of refining the extrinsic parameters described in Section 2.2.2 to carry
out the refinement operation so that the final result of the experiment can be obtained.
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Table 3. Software configuration list.

Software Function

Ubuntu18.04 or 16.04 operating system (OS)
ROS robot operating system
PCL Point Cloud Library

Ceres Solver C++ optimization library

3.1.1. Simulation

As shown in Figure 4, there is the scene diagram built by the Carla simulation plat-
form. Carla [32] is an urban driving simulator and has an ROS interface to support the
sensor suite. Carla can be installed through Carla’s official website tutorial. Note that
installing Carla requires about 130GB of disk space and at least a 6GB GPU. The vehicle is
equipped with LiDAR and GPS/IMU, and the ground truth and noise model size are given
through the configuration file. After completing the hardware configuration and setting
the configuration file, data sets can be recorded in different scenarios. After comparing the
data sets in different scenarios, the experimental data were recorded in Table 4. Figure 5
shows the variation trend of the error values of rotation and translation. Both the rotation
part and the translation part can achieve high precision. Regarding the rotation part, the
error of raw angle and pitch angle is within 0.1 degrees, the error of yaw angle is relatively
large, the error of scene 2 and scene 3 is within 0.2 degrees, and the error of scene 1 is about
0.8 degrees. Regarding the translation part, all errors are within 0.1 m.

Figure 4. Outdoor scene diagram of the Carla simulation platform.

Table 4. Carla simulation environment calibration results.

Simulation Data
Experiment Result

Rotation (deg) Translation (m)

Row Pitch Yaw x y

ground truth 0.000000 0.000000 45.00000 1.000000 −0.500000
scene 1 0.064391 0.023962 44.20480 1.042260 −0.556855
scene 2 0.058780 0.050686 44.93890 0.974243 −0.523805
scene 3 0.014632 0.021158 44.83500 0.984068 −0.502618

average error 0.045934 0.031935 0.340433 1.903333 × 10−4 0.027759
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Figure 5. The line chart of the extrinsic parameter error value of the simulation environment. The
three broken lines of different colors in the figure represent the error data of extrinsic parameters
under three different scenarios. Regarding the rotation part, the error of raw angle and pitch angle is
within 0.1 degrees, the error of yaw angle is relatively large, the error of scene 2 and scene 3 is within
0.2 degrees, and the error of scene 1 is about 0.8 degrees. Regarding the translation part, all errors are
within 0.1 m.

3.1.2. Real-World Experiments

We assembled the sensors, as shown in Figure 6, to collect data, respectively, in the
outdoor scene. The ouster-128 Lidar outputs the point cloud at a frequency of 10 Hz , and
the FDI-integrated navigation system outputs the GPS/IMU measurement at a frequency
of 100 Hz. Since there is no ground truth of LiDAR-GPS/IMU in the real scene and there is
also a lack of an open source LiDAR-GPS/IMU calibration algorithm, we adopted the truth
value provided by CAD assembly drawing for verification and checked the repeatability
and correctness of calibration results through many experiments. The experimental results
are shown in Table 5. Figure 7 shows the variation trend of the error values of rotation
and translation. It can be seen that in the real world, the calibration system we proposed
can still reach high accuracy. Regarding the rotation part, the errors of the pitch angles
of the three scenes are all within 0.2 degrees, the errors of the raw angles are all within
0.45 degrees, and the errors of the yaw angles are all within 0.6 degrees. Regarding the
translation part, all errors are within 0.05 m. Comparing the extrinsic parameters errors
obtained in the simulation environment and the real environment, the errors of the pitch
angle and the translation part are relatively small, and the errors of the yaw angle are
relatively large. The difference is that the error of the raw angle in the real environment is
larger than that in the simulation environment.

Table 5. Calibration results of our own real data.

Real Data
Experiment Result

Rotation (deg) Translation (m)

Row Pitch Yaw x y

ground truth 90.0000 173.000 −180.000 −0.25000 −0.600000
scene 1 90.3050 173.092 −179.432 −0.25099 −0.585795
scene 2 89.5824 173.054 −179.556 −0.24924 −0.607548
scene 3 90.2324 172.824 −179.724 −0.26456 −0.611476

average error 0.03990 0.25670 −0.42933 0.004930 0.0016063
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Figure 6. Illustration of our car equipped with the ouster-128 LiDAR and FDI integrated navigation sys-
tem.

Figure 7. The line chart of the extrinsic parameters error value of the real environment. The three
broken lines of different colors in the figure represent the error data of extrinsic parameters under
three different scenarios. Regarding the rotation part, the errors of the pitch angles of the three scenes
are all within 0.2 degrees, the errors of the raw angles are all within 0.45 degrees, and the errors of the
yaw angles are all within 0.6 degrees. Regarding the translation part, all errors are within 0.05 m.

3.2. Discussions

Many existing calibration methods require specific vehicle movement, such as eight-
shaped trajectories, or manually marked scenes so that different sensors can measure the
same marker for calibration, resulting in low automation and high labor costs. For multi-
sensor fusion, it is crucial to calibrate the extrinsic parameters between sensors. This paper
proposes a motion-based self-calibration method, which can complete the calibration in the
surrounding natural scenes, such as outdoor roads, urban streets, etc., only requiring the
completion of data set recording in advance, and then the extrinsic parameters of LiDAR
and GPS/IMU can be obtained through two-step offline calibration. However, due to the
plane movement of the vehicle, even if the LiDAR odometry and GPS/IMU odometry are
accurately estimated from coarse to fine, the z-axis translation of the extrinsic parameters
cannot be well estimated. There is still no good solution to this difficulty. It may be due to
the large z-axis drift in the registration algorithm of the LiDAR odometry itself. Perhaps
this problem can be better solved by studying a new point cloud registration algorithm.
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4. Conclusions and Future Work

In this paper, we propose a self-calibration system of LIDAR-GPS/IMU, which can
achieve high-precision calibration of extrinsic parameters between LiDAR and GPS/IMU
in natural outdoor scenes. The two-step offline self-calibration method was adopted.
Firstly, the initial extrinsic parameters were calibrated by hand-eye calibration, and the
accumulated drift was removed by loop closure to complete the map construction. Then,
the absolute pose, which was obtained by map-based registration, and extrinsic parameters
constructed the cost function, and the extrinsic parameters were refined by the optimization
algorithm. It has been verified in many experiments in the simulation environment and
real environment and has good robustness and accuracy. Since hand–eye calibration is
applicable to any calculation of rigid transformation between two sensors, future work
involves the calibration of extrinsic parameters between any two sensors between camera,
LiDAR, and GPS/IMU.
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Abstract: In the era of artificial intelligence, accomplishing emotion recognition in human–computer
interaction is a key work. Expressions contain plentiful information about human emotion. We found
that the canny edge detector can significantly help improve facial expression recognition performance.
A canny edge detector based dual-channel network using the OI-network and EI-Net is proposed,
which does not add an additional redundant network layer and training. We discussed the fusion
parameters of α and β using ablation experiments. The method was verified in CK+, Fer2013, and
RafDb datasets and achieved a good result.

Keywords: facial expression recognition; channel weighting; feature fusion; edge detection

1. Introduction

Facial expression recognition (FER) is an important research direction in the affective
computing field [1]. The psychologist Mehrabian’s research shows that emotional expres-
sion = 7% language + 38% voice + 55% facial expressions [2]. This research shows that facial
expressions play an important role in human emotional judgment. The accurate recognition
of facial expression helps to improve the effect of human–computer interaction. At present,
FER has been applied in many fields, such as intelligent teaching, medical facilities, security
monitoring, psychological warning, and driver fatigue monitoring.

Feature extraction is a crucial step of FER. Early feature extraction is mainly based on
handcrafted methods, such as HOG [3], SIFT [4], and LBP [5]. Among them, HOG and SIFT
are calculated by the local gradient of the image. Up to now, these methods have still been
common in the FER task, because they can extract the local information of the image in a
targeted manner. Both SIFT and HOG have a certain degree of robustness on the impact of
illumination, but a common problem with them is a large amount of calculation.

With the development of deep learning, features extracted by deep neural network,
an end-to-end method, has become popular. Typical neural network models are AlexNet [6],
VGGNet [7], ResNet [8], and GAN [9]. However, there is much redundant information in
the extracted features when using the methods of convolutional neural networks. The re-
dundant information is hardly helpful for FER tasks, and some features can be classified
as noise. These problems affect the recognition accuracy of FER, which cannot fulfill the
current FER needs well.

The gradient information of the image contains much information about the shape of
the object, and the edge provides critical information in FER. Although the original images
contain the edge information, the deep network trained by original image will lose this
information. Aiming at solving the above problem, this paper proposes a dual-channel
FER method based on edge feature fusion. The purpose is to effectively focus on the edge

Symmetry 2022, 14, 2651. https://doi.org/10.3390/sym14122651 https://www.mdpi.com/journal/symmetry22
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information of facial expressions while maintaining high-level semantic features. Adding
the network channel for extracting edge features can remove confounding factors in the
image. Moreover, the problem domain is simplified, effectively reducing the amount of
data and the number of layers required by the deep CNN model. Experiments show that
the method proposed in this paper is feasible and can improve the accuracy and robustness
of each benchmark dataset. The main contribution of this paper are:

1. This paper proposes a dual-channel FER method based on edge feature fusion to
enhance edges, discuss the weight of two channels, and analyze the contribution of edges.

2. This paper proves in the experiment that more than just extracting the edge feature
is needed to provide all the information needed for FER. Facts have proved that it can
only be used as a supplement to the original image feature, and more information that
determines FER is included in the original image.

3. The FER method proposed in this paper performs more robustly on three datasets,
including CK+, Fer2013, and RafDb.

2. Related Work

In the area of FER, handcrafted features have been frequently used. Appearance-based
features, one of the traditional handcrafted features methods, focus on extracting low-level
features, such as edges and corners. Hu et al. [10] proposed a new local feature recognition
center-symmetric local octonary pattern (CS-LOP), which improved the LBP algorithm and
the CS-LBP algorithm. Meena et al. [11] proposed using graph signal processing (GSP) to
solve the problem of HOG high-dimensional feature vectors and computational complexity.
In 2021, Shanthi and Nickolas [12] combined LBP features and LNEP features to encode
the relationship between pixels, realizing an effective texture representation. These feature
extraction methods all focus on low-level features. The handcrafted feature-based methods
above have the disadvantages of two points. Firstly, they are useful in datasets with small
samples. On the contrary, they are useless in others, such as wild datasets. Secondly, they
usually only consider a single feature.

In recent years, convolutional neural networks (CNNs), proposed for image classifi-
cation tasks, have achieved better recognition performance. Usually, networks with deep
layers can extract high-level features but bring more noise and network parameters with
excessive redundant information. So, researchers began to find methods to solve these
problems. Xie et al. [13] made more targeted improvements to CNNs, mainly including
an attention-based salient expression region descriptor (SERD) and a multipath mutation
suppression network (MPVS-Net). Minaee et al. [14] proposed an FER method based on an
attention-based convolutional network, focusing on critical face parts. Wang, Kai et al. [15]
proposed Region Attention Networks (RAN) to solve the obstacles of occlusion and posture
changes in FER. They used the attention mechanism and improved CNNs to emphasize
the learning of key regions, thereby improving the effectiveness of FER. Actually, low-level
features are easily lost. In recent years, some researchers tried to combine handcrafted
features with CNNs. G Levi and T Hassner [16] proposed using LBP to preprocess an
image and perform deep neural network learning with the original image. H Zhang, B
Huang, and G Tian [17] proposed to use the LBP for preprocessing and then weighted
fusion with the original image through dual-channel training and added time series, using
LSTM to achieve image-sequence-based FER. F. Bougourzi [18] and others proposed the
FTDS method, which combined shallow features and in-depth features to identify six basic
facial expressions in static images. The paper used HOG, LPQ, and the BSIF to extract
low-level features, while using l-PML and VGG-Face networks to extract high-level features.
Yu et al. [19] proposed a multitask global–local FER method, using global facial models and
part-based models to learn global spatial information features and key dynamic features.

CNNs easily lose low-level features, such as edges. Thought handcrafted feature-
based methods can obtain low-level features, these features are sensitive to illumination
conditions. However, the edges are stable and contain critical information. This paper
proposes a dual-channel FER method to extract features from the original image and edge
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image, using a shallow network to focus on edge features. The method determined the
contribution of the edge in the FER.

3. Proposed Method

This paper uses a dual-channel network model, as shown in Figure 1. We use two
channels to extract features from an original image and an edge image, respectively. The two
networks are based on VggNet [7]. The channel extracts original image features, called the
original image network (OI-Net), which consists of 12 layers of convolution. Another one is
called the edge image network (EI-Net), consisting of 8 layers of convolution. The feature
fusion of the two channels is performed by the given original image feature parameter α
and edge feature parameter β, and Softmax is used for classification.

Figure 1. Our proposed network architectur.

3.1. Edge Image Feature Extraction

The edge contains critical information about the face, including three essential senses
needed for FER. It contains information such as facial muscle texture and wrinkles cor-
responding to different expressions, which improve the accuracy of the recognition. Ex-
tracting the edge features can effectively reduce redundant information and, meanwhile,
distinguish the information that the original image is focused on.

Edge information can be extracted by the shallow network; this low-level feature is
important and easily lost in the deeper network. To avoid the lack of edge information, we
consider extracting the edge feature as a supplement to the OI-Net and discuss its effect.

When performing edge feature extraction, the gradient information obtained by the
solution is very sensitive to noise. Therefore, this paper chooses canny edge detection [20]
that can reduce noise interference to extract edge images. Canny edge detection can remove
noise while introducing two thresholds, T1 and T2, to better preserve edges.

The specific edge detection steps are as follows. The first is Gaussian filtering. The pur-
pose is to remove noise using formula (1);

G(x, y) =
1

2πσ2 e
x2+y2

2σ2 f (x, y) (1)

Among them is the gray value of the image for a position, and it is the gray value of
the image after Gaussian filtering.

The second step is to calculate the image gradient value and gradient direction; see
formulas (2)–(7);

G_x =

⎡⎣−1 0 +1
−2 0 +2
−1 0 +1

⎤⎦ (2)

G_y =

⎡⎣+1 +2 +1
0 0 0
−1 −2 +1

⎤⎦ (3)

Gx = G(x, y)× G_x (4)
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Gy = G(x, y)× G_y (5)

G =
√
(G2

x + G2
y) (6)

θ = arctan
(

Gy

Gx

)
(7)

Gx and Gy are the convolution factors needed to calculate the x-direction and the
y-direction, respectively. By convolving them with G(x, y) in a plane, the horizontal and
vertical brightness difference approximate values Gx and Gy can be obtained. G is the
gradient value, and θ is the gradient direction.

The third step is to perform non-maximum suppression on the gradient image. In the
process of Gaussian filtering, the edge may be amplified. Use non-maximum suppression
to filter non-edge points. The main idea is first to determine the edge, then compare the
gradient direction of the edge with the gradient of neighboring points to determine whether
to keep or discard.

The fourth step is to use dual thresholds for edge connection. First, a higher threshold
is used to detect the edges with a higher degree of certainty, called strong edges, and then
a smaller threshold is used to reveal more edges, called weak edges, and choose to keep
those edges connected with the strong edges and, finally, form the edges that close the
entire image.

In this part, we discuss the image similarity of the same category of facial expression
from, respectively, the original image and edge image. Taking the RafDb dataset as the
example, the images were cropped to a size of 90*90. The variance indicates the similarity
of the image. The smaller the variance, the higher the similarity. We calculated the variance
of the pixels and compared the similarity between the original image and the edge image
with the same category. Figure 2 shows the average value of pixels in each row of the image.
Among the same category, the edge information can show more obvious consistency. When
used as a supplement to the features of the original image, an edge can better emphasize
the commonality of similar expressions.

(a) Comparison of frightened expressions

Figure 2. Cont.
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(b) Comparison of happy expressions

Figure 2. Image similarity comparison.

3.2. Feature Fusion

The different networks can extract different feature information. The fusion of two
dissimilar nets makes the model complementary. To discover and discuss the usefulness of
facial edges, we perform a weighted fusion of the features extracted from the two channels.

We use the two parameters of α and β to denote the parameters of OI-Net and EI-Net
and calculate the weighted feature of them; see Equations (8) and (9).

F1 = α f1 (8)

F2 = β f2 (9)

where f1 and f2 are the feature maps of OI-Net and EI-Net, and F1 and F2 are the weighted
feature maps.

When α = 1 and β = 0, it means that only the feature map from OI-Net is used for
softmax classification. Additionally, it is converse when α = 0 and β = 1.

After obtaining the weighted feature map, we use weight fusion to aggregate them.

F = Add(F1, F2) (10)

The size of F1 and F2 are 512 dimensions. The size of F is 512 dimensions and is the
same. It denotes more supplementary information.

In the next section, we discuss the contribution of F1 and F2 with an ablation experi-
ment and explore the important proportion of edges in FER.

4. Experiments

In this section, we conduct a detailed experimental analysis and verify the designed model
on three different facial expression datasets, namely CK+ [21], Fer2013 [22], and RafDB [23].
Additionally, the effectiveness of this method is demonstrated through experiments.

4.1. Datasets

• CK+

The CK+ dataset is a relatively extensive laboratory control dataset used for FER.
The dataset contains 593 video sequences of 123 subjects, and each sequence contains
changes from neutral to peak expressions. According to the facial motion coding system,
327 sequences are labeled with seven basic expression tags (anger, contempt, disgust, fear,
happiness, sadness, and surprise).

• Fer2013
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This dataset contains 28,709 training images, 3589 verification images, and 3589 test
images. Each image has a pixel size of 48*48. It contains seven facial expressions: anger,
disgust, fear, happiness, sadness, surprise, and neutral.

• RafDb

The RafDb dataset is a facial expression dataset containing basic expressions or com-
pound expressions annotated by 40 well-trained human annotators on facial expression
images. The dataset contains 30,000 facial expression images. In the experiment, we only
use 12,271 face images as the training set and 3068 face images as the test set, which contains
seven basic expressions: surprised, fear, disgust, happiness, sadness, anger, and neutral
expression.

4.2. Experimental Details Settings

The experimental platform configuration is as follows: Ubuntu18.04 system, Intel
Xeon Gold 5218 with a CPU frequency of 2.3 GHz, and NVIDIA RTX2080Ti graphics card
using Pytorch1.2 learning framework and CUDA framework 10.2.

In the experiment, the same hyperparameters are used for the experiment. Using the
SGD optimizer, the weight attenuation coefficient is 5 × 10−4 the momentum is set to 0.9,
and the initial learning rate is set to 0.01. The number of iterations on the Fer2013 dataset
and RafDB dataset is 150. After 50 iterations, the learning rate is attenuated every five
iterations. Each attenuation is 0.9 times the original, and the batch size is set to 128. In order
to avoid overfitting, for the Fer2013 dataset, we randomly crop the 48*48 images into the
44*44 size and perform random flips for data enhancement; for the RafDB dataset, we
randomly select 100*100 images, cut them into a size of 90*90, and perform random flips for
data enhancement. The CK+ dataset uses a 10-fold cross-validation method. The data are
randomly divided into ten parts. Each time, nine parts are taken as the training set, and the
other part is used as the test set. Then, the accuracy of the ten tests is averaged as the final
accurate result of the dataset. The batch size is set to 32 and the number of iterations is set
to 40 times; after 15 iterations, the learning rate is attenuated to 0.9 times the original every
five iterations, and the 48*48 size image is also randomly cropped to the 44*44 size and
randomly flipped for data enhancement.

4.3. Ablation Experiment
4.3.1. Discussion of α and β

In this part, we discuss the parameters of α and β on the RafDb dataset, Fer2013
dataset, and CK+ dataset. In the RafDB dataset, we show the different αs from 0.6 to 1 and
the different βs from 0.1 to 0.4. Figure 3a is a broken line chart of the accuracy of the RafDB
corresponding to different α and β parameters. We find that when α = 0.9 and β = 0.1,
the accuracy rate is as high as 87.58%.

In the Fer2013 dataset, we showed different αs from 0.5 to 1 and different βs from 0.1
to 0.5. Figure 3b is a broken line graph of the Fer2013 accuracy rate when different α and β
parameters are selected. We could find that when α = 1 and β = 0.2, the accuracy rate is as
high as 73.36%.

In the CK+ dataset, we showed different αs from 0.6 to 1 and βs from 0.1 to 0.4.
Figure 3c is a broken line chart of CK+ accuracy when selecting different α and β parameters.
When α = 0.9 and β = 0.1, the accuracy rate reaches 98.68%.

From the experiment results between RafDb, Fer2013, and CK+, we found that
α = [0.9, 1] and β = [0.1, 0.2] can achieve the best recognition effect when performing
feature fusion on OI-Net and EI-Net, which shows that features extracted by EI-Net can
indeed be used to supplement the features extracted by OI-Net, but not as the primary
characterization information. In the FER task, the primary characterization information
is still the original image feature; the original image often loses some critical information
during feature extraction, and edge features can ameliorate this problem.
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(a) Comparison on RafDb data set

(b) Comparison on Fer2013 data set

(c) Comparison on CK+ data set

Figure 3. Image similarity comparison.

4.3.2. Comparison of Proposed Method with Single Channel

In this part, three methods were compared, respectively, the proposed method (OI-
Net+EI-Net), only OI-Net, and only EI-Net. By comparing the recognition rates of the three
methods on each expression category, we find that the method proposed in this paper can
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effectively supplement the facial expression information needed for FER tasks. Figure 4a–c
are the comparisons of the three methods on the RafDb, Fer2013, and CK+, respectively.

In RafDb, the recognition rates of fear and disgust are usually low. In Figure 4a, in the
absence of edge supplementary features, the recognition rate of fear was 53%, and the
recognition rate of disgust was 54%. After adding edge features, the recognition rate of
both categories increased by 4%.

Similarly, on the Fer2013 dataset, our method effectively improved the recognition
rate of the two categories of anger and disgust. In the absence of edge features, the anger
recognition rate is 60%. After adding edge features, the recognition rate reached 63%,
an increase of 3%. Similarly, the accuracy rate of disgust also increased by 3%.

On the CK+ dataset, after adding edge features, the recognition rates of the three ex-
pression categories of anger, sadness, and contempt were significantly improved, and con-
tempt increased by 15%.

(a) Comparison on RafDb data set

(b) Comparison on Fer2013 data set

Figure 4. Cont.
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(c) Comparison on CK+ data set

Figure 4. Comparison of OI-Net+EI-Net, OI-Net, and EI-Net.

4.4. Confusion Matrices and Comparison with State-of-the-Art Methods
4.4.1. Confusion Matrices

The confusion matrices of the method proposed by the paper on the RafDb, Fer2103,
and CK+ datasets can be seen in the Table 1a–c. We achieve outstanding results in both
three datasets. However, we should take note of the categories of fear and disgust in RafDb,
anger and fear in Fer2013, and sadness in CK+. Additionally, happiness always achieves
the best recognition accuracy.

Table 1. Confusion matrices for the CK+, Fer2103, and RafDb datasets.

(a) RafDb Confusion matrices

Sur Fea Dis Hap Sad Ang Neu

Sur 79% 3% 2% 7% 6% 0 3%
Fea 8% 57% 1% 10% 11% 9% 4%
Dis 5% 0 58% 9% 4% 8% 16%
Hap 0 1% 0 95% 3% 0 1%
Sad 0 1% 0 4% 89% 5% 2%
Ang 0 2% 0 4% 7% 87% 0
Neu 1% 2% 2% 3% 5% 0 87%

(b) Fer2013 Confusion matrices

Ang Dis Fea Hap Sad Sur Neu

Ang 99% 1% 0 0 0 0 0
Dis 1% 99% 0 0 0 0 0
Fea 0 0 100% 0 0 0 0
Hap 0 0 0 100% 0 0 0
Sad 0 0 0 0 98% 2% 0
Sur 0 0 0 0 0 98% 2%
Con 0 0 0 0 0 0 100%
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Table 1. Cont.

(c) CK+ Confusion matrices

Ang Dis Fea Hap Sad Sur Neu

Ang 63% 1% 8% 3% 14% 2% 9%
Dis 9% 78% 4% 2% 5% 0 2%
Fea 10% 0 54% 2% 18% 7% 9%
Hap 1% 0 1% 91% 3% 1% 3%
Sad 6% 0 6% 5% 66% 0 17%
Sur 1% 0 7% 3% 2% 84% 3%
Neu 4% 0 4% 4% 14% 1% 73%

4.4.2. Comparison with State-of-the-Art Methods

To verify that the edge features extracted by EI-Net can really supplement the OI-
Net, we compare our method with state-of-the-art methods including ReCNN, CNN-SIFT,
and so on. Table 2 illustrates the comparison of accuracies between different methods. Our
method shows superior performance in RafDb, Fer2013, and CK+. It can be seen that some
methods used pretraining, and we have not.

Table 2. Compared with the accuracy of existing methods

Method Pretraining RafDb Fer2013 CK+

[24] Gan et al. � 85.69% - 96.28%
[25] ACNN � 85.07% - -

[26] SHCNN - - 69.10% -
[27] SCN � 87.03% - -

[15] Wang et al. � 86.90% - -
[28] Gao H - - 65.2% -

[14] Minaee et al. - - 70.02% 98.0%
[29] MBCC-CNN - - 71.52% 98.48%

[30] Multiple CNN - - 70.1% 94.9%
[31] Xie et al. - - 72.67% 97.11%

[32] CNN+ SIFT - - 72.85% 93.46%
[33] DCNN+RLPS - 72.84% 72.35% -

[34] ReCNN � 87.06% - -
[35] LBAN-IL � 77.80% 73.11% -

Ours - 87.58% 73.36% 98.68%

5. Conclusions

In order to find a simple method to reserve edges and discuss their contribution, we
proposed a dual-channel facial expression recognition method to fuse the edge image
features and original image features by EI-Net and OI-Net. The weighted fusion method
is selected to merge the two network channels, and the fusion parameters are discussed.
Through ablation experiments, it is determined that the recognition effect is best when
α = [0.9, 1] and β = [0.1, 0.2], which also shows that the primary characterization information
is still the OI-Net channel.

This paper verifies the proposed method on the three datasets Fer2013, CK+, and RafDb.
From the experimental results, the accuracy rate reaches 87.58% on RAFDB, 73.36% on
Fer2013, and up to 98.68% on CK+. The experiment demonstrates the effectiveness of the
method proposed in this paper.

In the future, we will try to discuss the importance of more low-level features and find
a way to achieve feature fusion adaptive parameters.

31



Symmetry 2022, 14, 2651

Author Contributions: Conceptualization, X.T.; methodology, S.L.; software, J.C.; validation J.C. and
B.X.; data curation, Q.X. and H.H.; writing—original draft preparation, S.L.; writing—review and
editing, Q.X., J.C., H.H. and B.X.; visualization, B.X.; supervision, X.T.; project administration, X.T.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Project of Special Funds for the Cultivation of Guangdong
CollegeStudents’ Scientific and Technological Innovation (“Climbing Program” Special Funds) grant
number pdjh2021a0126.

Data Availability Statement: Not applicable

Acknowledgments: This work was supported by the Project of Special Funds for the Cultivation of
Guangdong College Students’ Scientific and Technological Innovation (“Climbing Program” Special
Funds) (Grant No. pdjh2021a0126), any opinions expressed in this work are those of the authors and
do not necessarily represent those of the funding agencies.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

References

1. Kumari, J.; Rajesh, R.; Pooja, K. Facial expression recognition: A survey. Procedia Comput. Sci. 2015, 58, 486–491. [CrossRef]
2. Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology; The MIT Press: Cambridge, MA, USA, 1974.
3. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893.
4. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
5. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary

patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]
6. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
7. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
8. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
9. Caramihale, T.; Popescu, D.; Ichim, L. Emotion classification using a tensorflow generative adversarial network implementation.

Symmetry 2018, 10, 414. [CrossRef]
10. Hu, M.; Zheng, Y.; Yang, C.; Wang, X.; He, L.; Ren, F. Facial expression recognition using fusion features based on center-symmetric

local octonary pattern. IEEE Access 2019, 7, 29882–29890. [CrossRef]
11. Meena, H.K.; Joshi, S.D.; Sharma, K.K. Facial expression recognition using graph signal processing on HOG. IETE J. Res. 2021,

67, 667–673. [CrossRef]
12. Shanthi, P.; Nickolas, S. An efficient automatic facial expression recognition using local neighborhood feature fusion. Multimed.

Tools Appl. 2021, 80, 10187–10212. [CrossRef]
13. Xie, S.; Hu, H.; Wu, Y. Deep multi-path convolutional neural network joint with salient region attention for facial expression

recognition. Pattern Recognit. 2019, 92, 177–191. [CrossRef]
14. Minaee, S.; Minaei, M.; Abdolrashidi, A. Deep-emotion: Facial expression recognition using attentional convolutional network.

Sensors 2021, 21, 3046. [CrossRef] [PubMed]
15. Wang, K.; Peng, X.; Yang, J.; Meng, D.; Qiao, Y. Region attention networks for pose and occlusion robust facial expression

recognition. IEEE Trans. Image Process. 2020, 29, 4057–4069. [CrossRef] [PubMed]
16. Levi, G.; Hassner, T. Emotion recognition in the wild via convolutional neural networks and mapped binary patterns. In

Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015;
pp. 503–510.

17. Zhang, H.; Huang, B.; Tian, G. Facial expression recognition based on deep convolution long short-term memory networks of
double-channel weighted mixture. Pattern Recognit. Lett. 2020, 131, 128–134. [CrossRef]

18. Bougourzi, F.; Dornaika, F.; Mokrani, K.; Taleb-Ahmed, A.; Ruichek, Y. Fusing Transformed Deep and Shallow features (FTDS)
for image-based facial expression recognition. Expert Syst. Appl. 2020, 156, 113459. [CrossRef]

19. Yu, M.; Zheng, H.; Peng, Z.; Dong, J.; Du, H. Facial expression recognition based on a multi-task global-local network. Pattern
Recognit. Lett. 2020, 131, 166–171. [CrossRef]

20. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 679–698. [CrossRef]
21. Lucey, P.; Cohn, J.F.; Kanade, T.; Saragih, J.; Ambadar, Z.; Matthews, I. The extended cohn-kanade dataset (ck+): A complete

dataset for action unit and emotion-specified expression. In Proceedings of the 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition-Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 94–101.

22. Carrier, P.L.; Courville, A.; Goodfellow, I.J.; Mirza, M.; Bengio, Y. FER-2013 Face Database; Universit de Montral: Montral, QC,
Canada, 2013.

32



Symmetry 2022, 14, 2651

23. Li, S.; Deng, W.; Du, J. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 2852–2861.

24. Gan, Y.; Chen, J.; Yang, Z.; Xu, L. Multiple attention network for facial expression recognition. IEEE Access 2020, 8, 7383–7393.
[CrossRef]

25. Li, Y.; Zeng, J.; Shan, S.; Chen, X. Occlusion aware facial expression recognition using CNN with attention mechanism. IEEE
Trans. Image Process. 2018, 28, 2439–2450. [CrossRef]

26. Miao, S.; Xu, H.; Han, Z.; Zhu, Y. Recognizing facial expressions using a shallow convolutional neural network. IEEE Access 2019,
7, 78000–78011. [CrossRef]

27. Wang, K.; Peng, X.; Yang, J.; Lu, S.; Qiao, Y. Suppressing uncertainties for large-scale facial expression recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 6897–6906.

28. Gao, H.; Ma, B. A robust improved network for facial expression recognition. Front. Signal Process. 2020, 4, 4. [CrossRef]
29. Shi, C.; Tan, C.; Wang, L. A facial expression recognition method based on a multibranch cross-connection convolutional neural

network. IEEE Access 2021, 9, 39255–39274. [CrossRef]
30. Chuanjie, Z.; Changming, Z. Facial Expression Recognition Integrating Multiple CNN Models. In Proceedings of the 2020 IEEE

6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; pp. 1410–1414.
31. Xie, W.; Shen, L.; Duan, J. Adaptive weighting of handcrafted feature losses for facial expression recognition. IEEE Trans. Cybern.

2019, 51, 2787–2800. [CrossRef] [PubMed]
32. Wang, H.; Hou, S. Facial expression recognition based on the fusion of CNN and SIFT features. In Proceedings of the 2020 IEEE

10th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 17–19 July
2020; pp. 190–194.

33. Li, H.; Xu, H. Deep reinforcement learning for robust emotional classification in facial expression recognition. Knowl.-Based Syst.
2020, 204, 106172. [CrossRef]

34. Xia, Y.; Yu, H.; Wang, X.; Jian, M.; Wang, F.Y. Relation-aware facial expression recognition. IEEE Trans. Cogn. Dev. Syst. 2021, 14,
1143–1154. [CrossRef]

35. Li, H.; Wang, N.; Yu, Y.; Yang, X.; Gao, X. LBAN-IL: A novel method of high discriminative representation for facial expression
recognition. Neurocomputing 2021, 432, 159–169. [CrossRef]

33



Citation: Chen, C.; Wang, Z.; Gong,

Z.; Cai, P.; Zhang, C.; Li, Y.

Autonomous Navigation and

Obstacle Avoidance for Small VTOL

UAV in Unknown Environments.

Symmetry 2022, 14, 2608. https://

doi.org/10.3390/sym14122608

Academic Editors: Sergei

D. Odintsov and Jan Awrejcewicz

Received: 16 September 2022

Accepted: 17 November 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Autonomous Navigation and Obstacle Avoidance for Small
VTOL UAV in Unknown Environments

Cheng Chen 1, Zian Wang 2,*, Zheng Gong 3, Pengcheng Cai 3, Chengxi Zhang 4 and Yi Li 5,*

1 School of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110000, China
2 China Academy of Launch Vehicle Technology, Beijing 100076, China
3 Department of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, China
4 Key Laboratory of Advanced Control for Light Industry Processes, Ministry of Education,

School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
5 School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
* Correspondence: wangzian@nuaa.edu.cn (Z.W.); ly@email.tjut.edu.cn (Y.L.)

Abstract: This paper takes autonomous exploration in unknown environments on a small co-axial
twin-rotor unmanned aerial vehicle (UAV) platform as the task. The study of the fully autonomous
positioning in unknown environments and navigation system without global navigation satellite
system (GNSS) and other auxiliary positioning means is carried out. Algorithms that are based on the
machine vision/proximity detection/inertial measurement unit, namely the combined navigation
algorithm and indoor simultaneous location and mapping (SLAM) algorithm, are not only designed
theoretically but also realized and verified in real surroundings. Additionally, obstacle detection, the
decision-making of avoidance motion and motion planning methods such as Octree are also proposed,
which are characterized by randomness and symmetry. The demonstration of the positioning and
navigation system in the unknown environment and the verification of the indoor obstacle-avoidance
flight were both completed through building an autonomous navigation and obstacle avoidance
simulation system.
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1. Introduction

With the development of UAV technology, UAVs are playing an increasingly essential
role in some routine tasks or even under special circumstances in both civil and military
applications [1–3]. For example, some UAVs can be used for military reconnaissance,
autonomous identification and attack, and they can be also used to explore an unknown
region and map it.

The survival capability of drones is a major problem, especially in some complex or
even unknown environment; as a result, autonomous navigation is introduced. While
external information should be introduced into the navigation system for better effects of
flight control, the path planning and obstacle avoidance during autonomous navigation in
unknown environments becomes a crucial issue for unmanned surface vehicles (USVs) [4].

A detection and avoidance system was presented for the autonomous navigation of
UAVs in urban air mobility (UAM) applications by Enrique Aldao et al. [5]. The principle
and navigation method of astronomical spectral velocity measurement, as well as the tech-
nical realization of the solar atomic frequency discriminator for autonomous navigation
(SAFDAN) based on atomic frequency discrimination velocity measurement were com-
prehensively introduced by Wei Zhang et al. [6]. A self-trained controller for autonomous
navigation in static and dynamic (with moving walls and nets) challenging environments
(including trees, nets, windows, and pipe) using deep reinforcement learning, simultane-
ously trained using multiple rewards was introduced by Ramezani Dooraki Amir [7]. A
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visual predictive control (VPC) scheme adapted to the autonomous navigation problem
among static obstacles was proposed by Durand Petiteville A. [8]. Nowadays the majority
of quadrotor drones are manually operated and use global positioning system (GPS) sig-
nals for navigation, thus greatly limiting the flight range of drones and consuming a lot of
manpower and material resources. To solve the problem, Liu Liwen et al. [9] proposed a
method of realizing autonomous flight and conflict avoidance of quadrotor UAVs by using
a multi-sensor system and deep learning methods in extreme flight conditions through track
prediction. Moreover, in the research of Sina Sajjadi [10], a vision-based target-tracking
problem was formulated in the form of a cascaded adaptive nonlinear model predictive
control (MPC) strategy. A typical ASV/USV unit with standard radio remote control system
to the fully autonomous mode was modernized by Specht C et al. [11]. A method of the
obstacle avoidance planning of unmanned surface vehicles based on an improved artificial
potential field was proposed by S Xie et al. [12]. Navigation problems of unmanned aerial
vehicles (UAVs) flying in a formation in a free and an obstacle-laden environment were
investigated in the work of Xiaohua Wang et al. [13]. An unmanned underwater vehicle
(UUV) simulator, an extension of the open-source robotics simulator Gazebo to underwater
scenarios, was described in the work of Musa Morena Marcusso Manhães et al. [14].

This paper completes the development of an autonomous positioning algorithm and
mapping and trajectory planning algorithm. Algorithms that are based on the machine
vision/proximity detection/inertial measurement unit, namely the combined navigation
algorithm and indoor SLAM algorithm, were designed and realized. Additionally, obstacle
detection, the decision-making of avoidance motion and motion planning methods are
also proposed. An autonomous navigation and obstacle avoidance simulation system
is proposed. A target recognition algorithm was developed and finally the proposed
autonomous navigation and obstacle avoidance simulation system was demonstrated
and verified through physical experiments. The proposed algorithm and system play
an important role in many practical systems and applications, such as sweeping robots,
driverless cars, virtual reality technology (VR) and intelligent robots. According to the
experiment results, the maximum error along x direction is less than 0.5 m, less than 0.6 m
along y direction, and 0.4 m along z direction. The yaw angle error is less than 5◦, and
absolute error is less than 0.3 m. The calculated closed-loop error is about 0.3/70 = 0.4%.

The proposed autonomous navigation and obstacle avoidance system, mainly con-
sisting of three components, namely autonomous positioning, environment mapping and
trajectory planning and target detection and recognition, was used to realize autonomous
environmental exploration without GPS. Its workflow and output are shown in Figure 1.

Figure 1. The structural diagram of the autonomous system.
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Section 2 introduces the autonomous positioning algorithm and its simulation results.
The detailed design and the mechanism of map-building and trajectory-planning algorithm
are provided in Section 3. The detailed design of the target detection and recognition
algorithm are in Section 4. In Section 5, the validation of the proposed algorithm is verified
by a flight test and the test environment; the results of the flight test are also introduced in
this part.

1.1. Autonomous Positioning

Visual–inertial simultaneous localization and mapping (VI-SLAM) [15–17] was used to
solve the autonomous positioning problem of UAVs without GPS. The system established
a global coordinate system by regarding the take-off position as the origin and estimated
the relative pose of the UAV by the fusion of the measurement information of the visional
and inertial navigation system.

1.2. Map Building and Trajectory Planning

Mapping and path planning were used to solve the motion planning problems of
UAVs [18]. By building a raster map and running a path search algorithm, the UAV could
be guided to specific targets and avoid known obstacles at the same time.

1.3. Target Detection and Recognition

The target detection and recognition system was used to search, detect and classify the
targets in the field of vision, and provide reference information for the subsequent behavior
decisions [19].

2. Autonomous Positioning

2.1. The Introduction of the Autonomous Positioning Module

The VI-SLAM algorithm adopts binocular and inertial measurement units (IMU).
According to the operation process, the system is divided into four parallel parts: signal
preprocessing thread, pose initialization thread, VisualInertial Odometry (VIO) thread,
and loopback optimization thread [20,21]. The operation flow of the system is shown in
Figure 2:

 

Figure 2. The flow diagram of VI-SLAM.
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2.2. The Preprocessing of Signals

This section describes the VIO preprocessing procedures. For visual measurement, we
tracked features between successive frames and detected new features in the latest frame.
For IMU measurement, pre-integration was adopted between two consecutive frames. Due
to the high measurement noise of the low-cost IMU, the offsets of the inertial components
were obtained by external calibration during the pre-integration process.

2.2.1. Visual Front-End

The basic task of visual front-end is to extract feature points, which mainly includes
two parts: feature tracking and key frame selection.

(1) Bidirectional Kanade–Lucas–Tomasi (KLT) tracking

For the binocular system, the left and right visual images, Rk and Lk were obtained in
each time sequence. Firstly, Harris corner detection was used on the two images, and even
distribution of feature was ensured by setting the minimum interval of pixels between two
adjacent features. Then a KLT sparse optical flow algorithm and polar line search algorithm
were used for feature matching, an RANSAC algorithm of basic matrix model was also
used to remove outer points, and the matched binocular feature point pairs were obtained.
We then applied the same to Rk+1 and Lk+1.

Next, bidirectional KLT tracking was adopted for the feature points in Rk and Rk+1;
that is, a KLT matching and RANSAC screening was carried out from Rk to Rk+1, and then
the remaining matching points were used for a matching and screening from Rk+1 to Rk to
ensure feature stability to the maximum extent.

(2) The selection strategy of the key frames

At the visual front-end, the key frame selection was performed simultaneously, and
there were two selection criteria. The first one was the mean parallax from the previous
keyframe. If the mean parallax of the feature points tracked between the current frame and
the latest key frame exceeded a certain threshold, the frame would be considered as a new
keyframe. Another one was tracking quality. If the number of tracked features was under a
certain threshold, we treated this frame as a new key frame, which avoided the complete
loss of tracking features.

2.2.2. IMU Pre-Integration

The rotation error of the Euler angle was parameterized by IMU pre-integration.
Here, the pre-integration mode proposed by Vins-Mono was used, the covariance transfer
function was derived through the IMU error state dynamics under continuous time and
the bias correction was introduced to correct the error.

The measurement results of original gyroscope and accelerometer of IMU, ω̂ and â are
shown as follows:

ât = at + bat + Rt
wgw + na

ω̂t = ωt + bωt + nω
(1)

IMU measurement values were measured in the body coordinate system, which
is the resultant force that balances the gravity and platform dynamics, and it can be
affected by accelerometer offset ba, gyroscope offset bω and additional noise. Under the
assumption that the additional noise in the measured value of accelerometer and gyroscope
is Gaussian noise, na ∼ N(0, σ2

a ), nω ∼ N(0, σ2
ω). Accelerometer offset and gyroscope

offset were modeled as random walks and their derivatives are nba ∼ N(0, σ2
ba
) and

nbω
∼ N(0, σ2

bω
), respectively.

.
bat = nba.
bωt = nbω

(2)
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Given two moments corresponding to the body coordinate system bk and bk+1, the
position, velocity, and direction states can be transmitted by inertial measurement values in
the world coordinate system between time intervals [tk, tk+1]:

pω
bk+1

= pω
bk
+ vω

bk
Δtk

+
�

t∈[tk ,tk+1]
(Rω

t (ât − bat − na)− gω)dt2

vω
bk+1

= vω
bk
+
∫

t∈[tk ,tk+1]
(Rω

t (ât − bat − na)− gω)dt

qω
bk+1

= qω
bk
⊗ ∫

t∈[tk ,tk+1]
1
2 Ω(ω̂t − bωt − nω)q

bk
t dt

(3)

where

Ω(ω) =

[−
ω�× ω

−ωT 0

]
· 
ω�× =

⎡⎣ 0 −ωz ωy
ωx 0 −ωx
−ωy ωz 0

⎤⎦ (4)

Δtk is the span of the interval [tk, tk+1].
Clearly, the state transmission of IMU requires the rotation, position and velocity of

the coordinate system bk. When these initial states change, we need to retransmit the IMU
measurement values. Especially in optimization-based algorithms, IMU measurement
values need to be retransmitted between them every time the pose is adjusted, and this
transfer strategy is computationally demanding. In order to avoid retransmission, a pre-
integration algorithm was introduced.

After changing the reference coordinate system from the world coordinate system to
the local coordinate system bk, pre-integration can be only applied to the relevant part of
the linear acceleration â and angular velocity ω̂ as follows:

R
bk
w pw

bk+1
= R

bk
w

(
pw

bk
+ vw

bk
Δtk − 1

2 gwΔt2
k

)
+ α

bk
bk+1

R
bk
w vw

bk+1
= R

bk
w

(
vw

bk
− gwΔtk

)
+ β

bk
bk+1

q
bk
w ⊗ qw

bk+1
= γ

bk
bk+1

n

(5)

α
bk
bk+1

=
�

t∈[tk ,tk+1]
R

bk
t

(
^
at − bat − na

)
dt2

β
bk
bk+1

=
∫

t∈[tk ,tk+1]
R

bk
t

(
^
at − bat − na

)
dt

γ
bk
bk+1

=
∫

t∈[tk ,tk+1]
1
2 Ω(ω̂t − bwt − nw)γ

bk
t dt

(6)

Among them, the pre-integration term (6) can be obtained by the IMU measurement
value, which regards bk as the reference frame. α

bk
bk+1

, β
bk
bk+1

, γ
bk
bk+1

are only related to the IMU
offset in bk and bk+1, and have nothing to do with other states. When the offset estimation
changed, if the change was small, we adjusted α

bk
bk+1

, β
bk
bk+1

and γ
bk
bk+1

according to their
first-order approximation to the offset; otherwise, was retransmitted. This strategy saves
a lot of computational resources for optimization-based algorithms because the repeated
transmission of IMU measurement values is avoided.

Under discrete-time conditions, different numerical integration methods can be used,
such as Euler integration, midpoint integration, RK4 integration, etc. The Euler integral is
chosen in this section.

At the beginning, α
bk
bk

and β
bk
bk

were 0, and γ
bk
bk

was a unit quaternion. The average
values of α, β and γ in (6) were gradually transmitted as follows. The additional noise
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na, nω were unknown and they were treated as 0 in the actual program. The estimated
value of pre-integration is obtained as follows:

α̂
bk
i+1 = α̂

bk
i + β̂

bk
i δt + 1

2 R
(

γ̂
bk
i

)
(âi − bai )δt2

β̂
bk
i+1 = β̂

bk
i + R

(
γ̂

bk
i

)
(âi − bai )δt

γ̂
bk
i+1 = γ̂

bk
i ⊗

[
1

1
2 (ω̂i − bwi )δt

] (7)

where i is the discrete moment corresponding to the IMU measurement value during time
interval [tk, tk+1], and δt is the time interval between IMU measurement value i and i + 1.

We then turned our focus to the covariance transmission problem. Since the four-
dimensional rotational quaternion γ

bk
i was over-parameterized, we defined its error as the

perturbation around its mean value:

γ
bk
t ≈ γ̂

bk
t ⊗

[
1

1
2 δθ

bk
t

]
(8)

where δθ
bk
t is the three-dimensional small perturbation.

Thus, the linearized equation of the error term under continuous time can be derived
as follows: ⎡⎢⎢⎢⎢⎢⎣

δα
bk
t

δβ
bk
t

δθ
bk
t

δbat

δbωt

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0 I 0 0 0
0 0 −Rbk

t 
ât − bat�× −Rbk
t 0

0 0 −
ω̂t − bωt�× 0 −I
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
δα

bk
t

δβ
bk
t

δθ
bk
t

δbat

δbωt

⎤⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎣
0 0 0 0

−Rbk
t 0 0 0

0 −I 0 0
0 0 I 0
0 0 0 I

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

na
nω

nba

nbω

⎤⎥⎥⎦
= Ftδzbk

t + Gtnt

(9)

P
bk
bk+1

can be calculated by the recursion and updating of the first-order discrete-time

covariance of initial covariance P
bk
bk
= 0:

P
bk
t+δt = (I + Ftδt)Pbk

t (I + Ftδt)T + (Gtδt)Q(Gtδt)T

t ∈ [k, k + 1]
(10)

where Q is the diagonal covariance matrix (σ2
a , σ2

ω, σ2
ba

, σ2
bω
) of the noise.

Meanwhile, the first-order Jacobian matrix Jbk+1
of δzbk

bk+1
can also be calculated by the

recursion of the initial Jacobian matrix Jbk+1
= I.

Jt+δt = (I + Ftδt)Jt, t ∈ [k, k + 1] (11)

Using Equation (11), covariance matrix P
bk
bk+1

and Jacobian matrix Jbk+1
were obtained.

The first-order approximation of α
bk
bk+1

, β
bk
bk+1

, γ
bk
bk+1

relevant to the offset can be expressed
as follows:
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α
bk
bk+1

≈ α̂
bk
bk+1

+ Jα
ba

δbak + Jα
bw

δbwk

β
bk
bk+1

≈ β̂
bk
bk+1

+ Jβ
ba

δbak + Jβ
bw

δbwk

γ
bk
bk+1

≈ γ̂
bk
bk+1

⊗
[

1
1
2 Jγ

bw
δbwk

] (12)

where Jα
ba

is the subblock matrix of Jbk+1
, and its position corresponds to

δα
bk
bk+1

δbak
, which also

makes sense for Jα
bω

, Jβ
ba

, Jβ
bω

, Jγ
bω

.
When the offset estimation changed slightly, we used Equation (12) to approximately

correct the results of pre-integration without retransmission.
Hence, the corresponding covariance P

bk
bk+1

of the IMU measurement model could
be obtained: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α̂
bk
bk+1

β̂
bk
bk+1

γ̂
bk
bk+1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
bk
w

(
pw

bk+1
− pw

bk
+ 1

2 gwΔt2
k − vw

bk
Δtk

)
R

bk
w

(
vw

bk+1
+ gwΔtk − vw

bk

)
qw−1

bk
⊗ qw

bk+1

babk+1
− babk

bwbk+1
− bwbk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

2.3. Pose Initialization

The pose initialization part is responsible for establishing the coordinate system and
maintaining the feature points and the description of UAV in the coordinate system at
the early stage of the operation process of system [22,23]. Compared with the monocular,
tightly-coupled VIO system, the binocular system can directly recover the depth of feature
points to complete initialization under stationary conditions.

2.3.1. The Depth Estimation of Feature Points

Since the binocular camera system was used, the depth of feature points could be
calculated directly from the disparity and the relative pose of the camera. The analysis
started with ideal conditions: under the assumption that the left and right cameras were in
the same plane (the optical axis was parallel) and the camera parameters (focal length f)
were identical. Then the depth value could be obtained, as shown in Figure 3:

Figure 3. Diagram of the imaging model.

As can be seen from Figure 3 above, an image plane was established with X, Z axes
and the distance between point P and the axis of camera R is ‘x − b’; the intersection point
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of the link between camera L and P in X axis is recorded as ‘xl’ (‘l’ means ‘left’) and the
same for ‘xr’; ‘b’ is the length of baseline.

According to the triangle similarity:

z
f = x

x1 = x−b
yr

z
f =

y
y1 =

y
yr

(14)

where b is the baseline length, and the optical axes of the two cameras are both located in
the XOZ plane.

Then the position of point P can be estimated:⎡⎣x
y
z

⎤⎦ =

⎡⎣ xl · z/ f
yl · z/ f

f · b/(xl − xr)

⎤⎦ =

⎡⎣b + xr · z/ f
yr · z/ f
f · b/d

⎤⎦ (15)

For non-ideal camera imaging model, the perturbation included optical axis deviation
and image distortion. In this case, it was necessary to correct the image and transform it
into the ideal situation, as shown in Figure 4.

Figure 4. Image correction.

After obtaining the space coordinates of feature points, they needed to be converted
into inverse depth to connect them with the SLAM system. Compared with the direct depth
expression, the inverse depth error is more consistent with the Gaussian distribution and
has better numerical stability. The conversion formula of inverse depth λ is as follows:

λ = 1/d
= 1/

√
x2 + y2 + z2 (16)

2.3.2. Pose Initialization

When establishing the SLAM coordinate system, the northeast sky coordinate system
was established by taking the origin of the camera coordinate system in the first frame as
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the origin under state of rest. Then the ith landmark feature point mi in the first frame can
be expressed by the inverse depth in the world coordinate system as follows:⎡⎣αi

βi
λi

⎤⎦ =

⎡⎣ atan(y/z)
atan(−x/z)

1/
√

x2 + y2 + z2

⎤⎦ (17)

In the tracking process of the second frame, the pose of the second frame was obtained
by matching the landmark point in the new frame and the counterpart in the first frame
and running pose calculation, and the available landmark points were updated for the
subsequent pose calculation.

2.4. VIO Algorithm

As the core part of the pose updating of the VI-SLAM algorithm, the VIO algorithm
requires accuracy and running speed at the same time. Therefore, the sliding window
method based on a nonlinear optimization strategy was selected. The basic idea of the
sliding window method is firstly introduced in this section, and then the calculation
methods of IMU and visual measurement residual that needed to be updated in the
formula are introduced separately.

2.4.1. Sliding Window Method

After the initialization of the estimator, the binocular VIO based on sliding windows
was employed for high-precision and robust state estimation. The diagram of the sliding
window method is shown in Figure 5:

Figure 5. Sliding window method.

The full-state vector in the sliding window is defined as:

X =
[
x0, x1, · · · xn, xb

c , λ0, λ1, · · · λm

]
xk =

[
pw

bk
, vw

bk
, qw

bk
, ba, bg

]
, k ∈ [0, n]

xb
c =

[
pb

c , qb
c

] (18)

where xk is the IMU state when the kth image is captured. It contains the position, velocity
and orientation of IMU in the world coordinate system, as well as the accelerometer offset
and gyroscope offset in the IMU body coordinate system. n is the total number of keyframes,
m is the total number of features in the sliding window, and λl is the inverse depth when
watching the lth feature the first time.

Visual inertia BA was used here. We minimized the sum of the prior and the Mahalanobis
norm [24] of all the measurement residuals to obtain the maximum posterior estimation:

minX

⎧⎨⎩‖rp − HpX‖2 + ∑
k∈B

‖rB
(

ẑ
bk
bk+1

,X
)
‖2

P
bk
bk+1

+ ∑
(l,j)∈C

ρ

(
‖rC

(
ẑ

cj
l ,X

)
‖2

P
cj
l

)⎫⎬⎭ (19)
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where the Huber norm [25] ρ(s) is defined as follows:

ρ(s) =

{
1 s ≥ 1
2
√

s − 1 s < 1
(20)

rB
(

ẑ
bk
bk+1

,X
)

, rC
(

ẑ
cj
l ,X

)
are the residuals of IMU and visual measurement, respec-

tively, which are defined in detail in Equations (21) and (22). B is the set of all IMU
measurements and C is a set of features observed at least two times in the current sliding
window. The ceres nonlinear optimization library was used to solve the algorithm.

2.4.2. The Calculation of IMU Measurement Residual

Taking the IMU measurement between two consecutive frames bk and bk+1 in the
sliding window, according to the IMU measurement model defined in (13), the residual of
pre-integration IMU measurement can be defined as:

rB
(

ẑ
bk
bk+1

,X
)

=

⎡⎢⎢⎢⎢⎢⎢⎣
δα

bk
bk+1

δβ
bk
bk+1

δθ
bk
bk+1

δba
δbg

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
bk
w

(
pw

bk+1
− pw

bk
+ 1

2 gwΔt2
k − vw

bk
Δtk

)
− α̂

bk
bk+1

R
bk
w

(
vw

bk+1
+ gwΔtk − vw

bk

)
− β̂

bk
bk+1

2
[

qw−1

bk
⊗ qw

bk+1
⊗
(

γ̂
bk
bk+1

)−1
]

xyz
babk+1

− babk
bwbk+1

− bwbk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

where [·]xyz is to extract the vector part of quaternion q for error state expression. δθ
bk
bk+1

is a three-dimensional error state expression of a quaternion.
[
α̂bk

bk+1
, β̂bk

bk+1
, γ̂bk

bk+1

]T
is an

IMU measurement term that is obtained through the pre-integration of the measurement
values of accelerometer and gyroscope measurements containing only noise during the
time interval of two consecutive image frames. Accelerometer and gyroscope offset are
also included in the remaining terms of the online correction.

2.4.3. Visual Measurement Residual

In contrast to the traditional pinhole camera models in which the reprojection error is
defined on the generalized image plane, the measurement residuals of a camera are defined
on the unit sphere. The optics of almost all types of cameras, including wide-angle, fisheye
or omnidirectional cameras, can be modeled as unit rays connected to the surface of a unit
sphere. Assuming that the lth feature is first observed in the ith image, the residual of the
feature observation in the jth image is defined:

rC
(

^
z

cj

l ,X
)
=
[

b1 b2
]T ·

(
P̂ cj

l − P cj
l

‖P cj
l ‖

)

P̂ cj
l = π−1

c

⎛⎝⎡⎣ û
cj
l

v̂
cj
l

⎤⎦⎞⎠
P

cj
l = Rc

b

(
R

bj
w

(
Rw

bi

(
Rb

c
1
λl

π−1
c

([
uci

l

vci
l

])
+ pb

c

)
+ pw

bi
− pw

bj

)
− pb

c
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where
[
uci

l vci
l
]T is the lth feature which is observed in the ith image the first time.[

û
cj
l v̂

cj
l

]T
is the observation of the same feature in the jth image. π−1

c is a back pro-
jection function that converts pixel positions into unit vectors by using internal parameters
of camera. Since the degree of freedom of the visual residuals is 2, we project the residual
vector onto the tangent plane. As shown below, b1, b2 are two randomly chosen orthogonal

bases in the tangent plane P̂
cj
l , and a group of b1, b2 can be easily found. In Equation (22),

with fixed length, P
cj
l is the standard covariance in tangent space, as shown in Figure 6.

Figure 6. Tangent plane of residual projection.

2.5. Loopback Optimization

Due to measurement and calibration errors, VIO algorithm drifts may cause reduction
in positioning accuracy at any time. The loopback optimization method can form additional
restraints and suppress the drift problems by estimating the pose changes between some
non-adjacent frames. In the loopback optimization part, the DBoW method was first used
for loopback detection, then a bidirectional KLT algorithm was used to determine the match-
ing point pairs. The PNP method was used to solve the pose change between two frames,
and finally the loopback edge was written into the pose map for overall optimization.

2.5.1. DBoW Loopback Detection

The algorithm, by reference to VINS-MONO, used DBoW2 image similarity evaluation
method for loopback detection. The DBoW2 model is the most advanced word bag model,
which abstracts images into keyword descriptions for matching. In addition, the pre-stored
feature points of the key frame and their descriptors were also used for feature-matching
to improve loopback recall. DBoW2 returns loopback detection candidate frames after a
temporal and spatial consistency check, as shown in Figure 7.

Figure 7. Loopback detection and exterior point elimination (the same method in VINS-MONO).
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2.5.2. Bidirectional KLT Tracking and PNP Relocation

Like in Section 2.2.1 (1), bidirectional KLT tracking was used to obtain matching feature
point pairs between two frame feature points with loopback, and then the PNP algorithm
was used to obtain the pose changes between two frames.

2.5.3. The Management of 4-Dof Pose Diagram

When creating the pose map, the information φ̂, θ̂ obtained by IMU estimation was
considered as accurate and they were therefore free from optimization. Therefore, the
pose map only contained the remaining 4Dof, namely the yaw angle ψi and its position
information x, y, z, respectively.

Here, the edge residual between frames i and j is defined as:

ri,j

(
pw

i , ψi, pw
j , ψj

)
=

[
R
(
φ̂i, θ̂i, ψi

)−1
(

pw
j − pw

i

)
− p̂i

ij

ψj − ψi − ψ̂ij

]
(23)

Among them, φ̂i, θ̂i are IMU roll and pitch angle estimations that were directly obtained
from monocular VIO.

The whole pose map with sequential edges and loop-back edges is optimized by
minimizing the following cost function:

min
p,ψ

⎧⎨⎩ ∑
(i,j)∈S

‖ri,j‖2 + ∑
(i,j)∈L

ρ
(
‖ri,j‖2

)⎫⎬⎭ (24)

where S is the set of all sequential edges and L is the set of loopback edges. Although tightly
coupled relocation was able to reduce false loopbacks, a Huber norm ρ(·) was introduced
to further eliminate false loopbacks. In addition, any high-robustness norm was not used
between sequential edges, and VIO was considered to have a strong enough elimination
mechanism for exterior points.

2.6. Simulation Analysis Test

Before the real flight verification, a physical simulation engine was firstly built in the
project, and the ROS Gazebo + Pixhawk scheme was adopted to realize the simulation
verification of the algorithm.

2.6.1. Simulation Engine Gazebo

Gazebo is a 3-D dynamic simulator that accurately and effectively simulates robot
crowds in complex indoor and outdoor environments, as shown in Figure 8. In the same
way that game engines provide high-fidelity visual simulations, Gazebo provides high-
fidelity physical simulations as well as a full suite of sensor models, and very user-friendly
and programs-friendly interactions.

The typical uses of Gazebo include:

• To test a robot algorithm;
• To design a robot;
• To perform a regression test in actual scenarios.

This engine possesses the following characteristics:

• It contains multiple physics engines;
• It contains a rich library of robot models and environments;
• It contains a variety of sensors;
• The program is convenient to design and has a simple graphical interface.

Gazebo can build a simulation scene for robot tests. It can imitate the real world by
adding objects library, garbage bins, ice cream buckets, and even dolls. It can also introduce
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2D house design drawings using a building editor and build 3D houses based on the
design drawings.

 

Figure 8. Gazebo.

Gazebo has a very powerful sensor model library, including camera, depth camera,
laser, IMU and other sensors that are commonly used by robots. In addition, it has a
simulation library, which can be used directly. A new sensor can also be created without
any basis and have its specific parameters added. A sensor noise model can even be added
to make the sensor more realistic.

2.6.2. Simulation System

The simulation was carried out in the Gazebo engine. A PX4 UAV with a built-in
IRIS platform was selected, carrying a RealSense d435i depth camera. The simulation
environment was as shown in Figures 9 and 10:

 

Figure 9. Simulation environment.

The flight path of the UAV is shown below:
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Figure 10. Schematic diagram of the flight path.

Since the final degree of freedom of the pose map was 4Dof, the roll angle and pitch
angle directly determined by IMU were ignored in the evaluation process, and the accuracy
of the four degrees of freedom of x, y, z and yaw were investigated, as shown in Table 1.

Table 1. Quantitative interpretation and conclusion of Figures 11–15.

Maximum error along X direction < 0.5 m Yaw angle error < 5◦

Maximum error along Y direction < 0.6 m Absolute error < 0.3 m

Maximum error along Z direction < 0.4 m Calculated closed-loop error ≈ 0.4%

Standard deviation
X < 0.05 m

Y < 0.06 m

Z < 0.03 m

In the 12 m × 14 m orbit with a total length of about 70 m, the maximum error along
the x direction was less than 0.5 m, less than 0.6 m along the y direction, and 0.4 m along
the z direction. The yaw angle error was less than 5◦, and absolute error was less than
0.3 m. The yaw error generally stayed at zero, with some small fluctuations when the yaw
angle changed abruptly. The calculated closed-loop error was about 0.3/70 = 0.4%.

Figure 11. Comparison between SLAM and real value along x axis.
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Figure 12. Comparison between SLAM and real value along y axis.

Figure 13. Comparison between SLAM and real value along z axis.

Figure 14. Comparison between SLAM and real value along yaw direction.
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Figure 15. Diagram of position error.

2.7. Section Conclusion

This section introduced the detailed design of the autonomous positioning algorithm
and the scene construction and simulation of the algorithm carried out in the Gazebo
engine. Through the simulations, under a scene with fixed size, autonomous positioning
with a certain extent of accuracy was achieved.

3. Detailed Design of the Map-Building and Trajectory-Planning Algorithm

3.1. The Introduction of the Autonomous Positioning Module

In the mapping and path planning part, the RGB-D camera was selected as a reliable
source of in-depth information. An octree map with mature technology was applied to
realize the construction of the three-dimensional map. The RRT* algorithm was used to
realize obstacle avoidance path planning, and finally the third order spline curve β was
used for motion smoothing.

3.2. Octree Map

The point cloud information output by the RGB-D camera can be directly used to
construct the point cloud map, but there are several following obvious defects in the
application of a point cloud map:

• It has a huge amount of data, and there is serious redundant storage and informa-
tion redundancy.

• Point cloud maps are stored in continuous space, which means they can’t be directly
discretized and fast searched.

• This method cannot deal with moving objects and observation errors because we can
add objects into the maps but not remove objects from maps.

In order to solve the above problems, the octree map was introduced. This map form
has the advantages of flexibility, compressibility, updating and discretization.

3.2.1. The Data Structure of the Octree Map

In a discrete map, it is common to model the 3D space as multiple cubes (voxels). If
each facet of the cube is divided into four equally, eight sub-cubes can be obtained until the
required precision is reached. If the process of expanding a cube into sub-cubes is regarded
as expanding eight sub-nodes from one node, then the process of subdividing the whole
space into the smallest sub-space can be regarded as an octo-tree.
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The Figure 16 is the octree map structure diagram. The left one shows the process of
the cube being split into sub-cubes. If the largest cube is regarded as the root node and the
smallest cube as the leaf node, then the octree shown on the right can be formed.

Figure 16. The structure diagram of an octree.

An octree map saves storage space because of its data structure. When all the sub-
nodes of a cube are occupied or not occupied, there is no need to continue to expand
the node; therefore, only an empty root node is needed when a blank map begins to be
established. The actual objects are most closely linked, and it is the same with blank space.
Therefore, most octree nodes do not need to be expanded to cotyledon nodes, which can
save a lot of storage space.

The occupation information stored in each node of the octree is expressed by the
probability: 0 means completely blank and 1 means completely occupied. The initial value
is 0.5. If the node is detected to be continuously occupied, the value will increase; otherwise,
the value will decrease.

3.2.2. Node Probability Updating

According to the derivation of octree, assuming that when t = 1,2, . . . , T, the observed
data is z1, . . . , zT , then the information recorded by the nth leaf node is:

P(n | z1:T) =

[
1 +

1 − P(n | zT)

P(n | zT)

1 − P(n | z1:T−1)

P(n | z1:T−1)

P(n)
1 − P(n)

]−1

(25)

Since the information expressed directly by probability is too complex to be updated,
the algorithm uses log-odds as an alternative description method. Set y ∈ R as a probability
logarithm, x as the probability value between 0 and 1, then the transformation between
them can be described by logit transformation:

y = logit(x) = log
(

x
1 − x

)
(26)

And its inverse transformation is shown below:

x = logit−1(y) =
exp(y)

exp(y) + 1
(27)

When y changes from −∞ to +∞, x correspondingly changes from 0 to 1. When y = 0,
x = 0.5, so we can judge whether a node is occupied or not by storing the value of y. When

50



Symmetry 2022, 14, 2608

point clouds are observed continuously in nodes, y increases by a value; when the observed
node is empty, y decreases by a certain value. Transfer y to the probability space and utilize
the logit inverse transformation when checking the probability.

Set a node as n and the observed data as z. The probability value of this node from the
beginning to t is L(n|z1:t) , and the probability at t + 1 is as follows:

L(n | z1:t+1) = L(n | z1:t−1) + L(n | zt) (28)

With this log probability, the entire octree map can be updated according to RGB-D
data. If the depth of a pixel observed in the RGB-D graph is d, it means that an occupied
point is observed in the space corresponding to the depth value, and there is no obstacle in
the path from the camera optical center to this point.

3.3. Path Planning

Rapidly exploring random tree (RRT) was selected as the path planning algorithm. Tra-
ditional path planning algorithms such as the artificial potential field method, the method
of fuzzy rules, genetic algorithm, neural network and simulated annealing algorithm, ant
colony optimization algorithm, etc., are not suitable for the path planning of multi-degree-
of-freedom robots in complex environments because they all require modeling obstacles in
a certain space, and the computational complexity has an exponential relationship with the
DOF of robots.

RRT effectively solves the problem of path planning under conditions of high-dimensional
space and complex constraints because it avoids space modeling by detecting the collision of
sampling points in the state space, avoiding the modeling of the space. The characteristic of
this method is that it can search the high-dimensional space quickly and effectively and lead
detection to blank areas through random sampling points in the state space and then find a
planned path from the starting point to the target point, which is suitable for solving the path
planning of multi-degree-of-freedom robots in complex and dynamic environments. Note
that the RRT algorithm is probabilistically complete and non-optimal, and path planning only
finds a feasible path, which may not be optimal.

3.3.1. Basic RRT Algorithm

RRT is an efficient planning method in multi-dimensional space. It takes an initial
point as the root node and generates a randomly extended tree by adding leaf nodes
through random sampling [26–28]. When the leaf nodes in the random tree contain the
target point or enter the target area, a path from the initial point to the target point can be
found in the random tree. The workflow of a basic RRT algorithm is as follows:

Initialize the random root node Xinit, which is the starting point of path planning.
A random number P between 0 and 1 is generated. When P < Prob, a sampling point

is randomly selected from the state space as Xrand. When P > Prob, the target point is used
as Xrand.

Select the nearest point from Xrand in random tree nodes as Xnearest, expand some
distance from Xnearest to Xrand to obtain the new node Xnew and the new edge Lnew.

Record the running time: if the run times out, it returns no solution.
If Xnew and Lnew collide with the obstacles in the state space, return to step 2 and

repeat it. If there is no collision, then run tree growth, and add Xnew into the random tree
as Xnearest’s leaf node.

Judge whether Xnew is the target point or not; if it is, then output the current random
tree; otherwise, return to step 2 and repeat it.

The basic RRT algorithm process is shown in Figure 17 below:
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Figure 17. Flow of basic RRT algorithm.

The basic RRT algorithm is not sensitive to the environment and can effectively explore
the whole space. However, it also has serious disadvantages in some application conditions:

The basic RRT algorithm is a pure random search algorithm, which degrades the
search efficiency significantly when the environment contains many obstacles or narrow
channel constraints, as shown in Figure 18.
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Figure 18. Performance of the RRT algorithm in a maze.

Because the narrow channel area is small, the probability of being touched is low, and
this is why it is difficult to find a path in an environment with narrow passageways, as
shown in Figure 19.

 
Figure 19. Performance of the RRT algorithm in an environment with narrow passageways.

Because the nodes of the RRT algorithm are completely randomly generated, the path
may not be relatively smooth, and it cannot be directly applied for path and motion planning.

3.3.2. RRT* Algorithm

Although RRT is a relatively efficient algorithm that can deal with path planning
problems with nonholonomic constraints, and has great advantages in many aspects, the
RRT algorithm can’t guarantee that the obtained feasible path is relatively optimized. RRT*
was improved based on RRT, mainly by reselecting the parent node and rewiring.

In RRT, the nearest point to Xrand is selected as the parent node in the extended node
policy, but this choice is not necessarily optimal. The goal of planning is to make this point
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as close as possible to the starting point. Many improvements have been achieved using
RRT* by drawing a small circle around the sampling point after it is added to the path tree
and considering whether there are better parent nodes to connect to that point so that the
distance from the starting point to the point is shorter (although those nodes may not be
the closest points to the sampling point). If a more suitable parent is chosen, then connect
them and remove the original wiring (rewiring).

The RRT* algorithm is asymptotically optimized, which means that the resulting path
is more and more optimized with the increase of the number of iterations, and it is never
possible to obtain the optimal path in limited time. In other words, it takes a certain amount
of running time to get a relatively satisfactory and optimized path.

In the rewiring process, the tree structure is optimized by introducing the path length
parameter to achieve the optimal path planning. The specific optimization process in-
cludes the following 15 main steps. The process and steps of rewiring are introduced as
Figures 20–22:

(1) Generate a random point Xrand;
(2) Find the nearest node Xnearest from Xrand on the tree;
(3) Connect Xrand with Xnearest;
(4) With Xrand as the center, search for nodes in the tree with a certain radius and find

out the set of potential parent nodes {Xpotential_parent}. The purpose is to update
Xrand and observe whether there is a better parent node;

(5) Start with a potential parent, Xpotential_parent;
(6) Calculate the cost of Xnearest being the parent node;
(7) Instead of performing collision detection, connect Xpotential_parent with Xchild (that

is, Xrand) and calculate the path cost;
(8) Compare the cost of the new path with that of the initial path. If the cost of the new

path is smaller, the collision detection will be carried out; otherwise, the next potential
parent node will be replaced;

(9) If collision detection fails, the potential parent node will not act as the new parent node;
(10) Turn to the next potential parent;
(11) Connect the potential parent node to Xchild (that is, Xrand) and calculate the path cost;
(12) Compare the cost of the new path with the cost of the original path. If the cost of the

new path is smaller, the collision detection will be carried out; if the cost of the new
path is larger, the next potential parent node will be replaced;

(13) The collision detection passes;
(14) Delete the previous edges from the tree;
(15) Add a new edge to the tree, and take the current Xpotential_parent as the parent

of Xrand.

   
(a) (b) (c) 

Figure 20. Cont.
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(d) (e) (f) 

Figure 20. Step (1) to (6). (a) Generate random point; (b) find the nearest node; (c) find initial parent
node; (d) find potential parent nodes; (e) select potential parent node; (f) calculate the initial path cost.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 21. Step (7) to (12). (a) Calculate the new path cost; (b) compare the cost of new path and
initial; (c) failure of collision detection; (d) select new parent nodes; (e) calculate the new path cost;
(f) the comparison of the cost of new and initial paths.

   
(a) (b) (c) 

Figure 22. Collision detection passes. (a) The collision detection passes; (b) delete the previous path
edges; (c) add new edges.
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3.4. Smoothing the Interpolation of Third-Order β Spline

Although the RRT* algorithm improves the optimality and smoothness of the planned
trajectory, it still has many sharp points and cannot be directly used for trajectory control.
Here, third-order β spline interpolation is used to smoothen the solution of RRT*, which
can ensure the continuous acceleration control signal of the motion trajectory.

3.4.1. Node Table

The node table is the key parameter to generating the basic function table, and it
is strictly equal to the sum of the number of control points: the number of orders plus
one. The parameters of the node table are set artificially. For β spline curve, there are two
general ways to set it: sequential method and clamped method. The former is used to make
standard β spline open and closed curves, and the latter is used to make a more practical β
spline curve.

The order list only needs to be set linearly from 0 to 1, while the clamped list needs to
set the nodes of each order plus 1 before and after as 0. Taking the third-order spline curve
with six control points as an example, the size of its node table is 6 + 3 + 1 = 10.

If it is a sequential list, we only need to set it in order:

0,
1
9

,
2
9

,
3
9

,
4
9

,
5
9

,
6
9

,
7
9

,
8
9

, 1 (29)

If it is a clamped list, since it is the third order, the former 3 + 1 parameters are set as 0,
the latter 3 + 1 parameters are set as 1, and the remaining parameters increase evenly:

0, 0, 0, 0,
1
3

,
2
3

, 1, 1, 1, 1 (30)

3.4.2. Basic Function Tables

The basic function table is essentially a recursive equation, but it is also an intermediate
parameter at the same time. The formula is as follows:

Bi,deg(t) =
t − knoti

knoti+deg − knoti
Bi,deg−1(t) +

knoti+deg+1 − t
knoti+deg+1 − knoti+1

Bi+1,deg−1(t) (31)

where, t is the node to be interpolated; knoti represents the ith element in the node table;
Bi,deg(t) is the parameter of the basic function table, whose structure is a two-dimensional
array, and its meaning is the value of the ith element of the basic function table at the deg
order when the user input is t.

The recursive characteristics of the function table can be seen from (31). The current
elements of the deg order need to be calculated by two elements of the deg − 1 order. In
addition, β spline curve algorithm requires that when the function table returns to order 0,
it can be calculated according to the following formula:

Bi,0

{
1 knoti ≤ t ≤ knoti+1
0 knoti > t or knoti+1 < t

(32)

3.4.3. Calculation

Assuming that the corresponding position of the t value in the β spline curve is C(t)
finally, the calculation formula of the final β spline curve is:

Ct =
n−1

∑
i=0

Bi,deg(t)Pi (33)

where Bi,deg(t) is the value of the ith deg order basic function table at t, and Pi is the ith
interpolation control point.
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3.5. Simulation Test and Analysis

The simulation was carried out in the Gazebo engine. A UAV PX4 with a built-in
IRIS platform was selected and carried a RealSense D435I depth camera. The simulation
environment is shown in Figure 23:

 

 

 

Figure 23. Screenshots of mapping simulation environment.

In the map building test, the UAV control system adopted the default parameters of
the simulation system, and the VI-SLAM system constructed in Section 3 was adopted as
the positioning system. The results of map building of the simulation environment are
shown in Figure 24:
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Figure 24. Cont.
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Figure 24. Map building results.

In the path planning test, the UAV control system adopted the default parameters of
the simulation system, and the VI-SLAM system constructed in Section 3 was chosen as the
positioning system. The path planning environment is shown in Figure 25:

 

Figure 25. The path planning simulation environment.

Through path planning, the UAV can autonomously avoid obstacles in indoor envi-
ronments and reach the target location. Parts of the path planning results are shown in
Figures 26 and 27:
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Figure 26. Path planning working condition 1.

 

Figure 27. Path planning working condition 2.

3.6. Section Conclusion

In this section, the map building and path planning algorithms were introduced in
detail, and the above two algorithms were verified by the Gazebo engine. The results show
that the proposed algorithm can fulfill the task requirements well.

4. The Detailed Design of the Target Detection and Recognition Algorithm

4.1. The Introduction of Target Detection and Recognition Module

Since there is no specific cooperation target for detection, the recognition algorithm to
be selected needs to be commonly appliable, transferable, and robust. At the same time, the
algorithm should be optimized and accelerated under limited performance of the airborne
processor to ensure that the high-speed UAV can accurately capture the target [29,30].
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Therefore, the Jetson series GPU development board XavierNX was finally selected as
the computing platform, the YOLOv3 network was used as the basic detection algorithm,
and TensorRT architecture was introduced to achieve GPU inference acceleration.

4.2. Target Detection Network

At present, target detection algorithms can be divided into two categories according
to the process. One of them is the region-convolutional neural network (R-CNN) algorithm
based on region proposals such as R-CNN, fast R-CNN, etc. These algorithms are two-stage
methods, which require the use of heuristic methods or convolutional neural networks to
generate candidate regions, and after that the regions need classification and regression.
The other category is the one-stage algorithm, e.g., YOLO and SSD, which uses a unified
convolutional neural network structure to perform regressive prediction for the location
and categorization of targets at the same time. The first kind of method is characterized by
high accuracy but slow speed, and the second kind of algorithm runs fast with low accuracy.

Overall, the YOLO algorithm is an end-to-end target recognition network, using a
separate full-convolution neural network model, and its workflow is shown in Figure 28:
Firstly, the resolution of the input images should be unified as 448 × 448, then put the
images into the convolution neural network, finally these images are processed by the
output part, and obtain the location and category information of the target. Compared with
R-CNN and other two-stage algorithms, its structure is more concise and unified, with
faster processing speed and easier hardware acceleration. At the same time, the YOLO
training and processing courses are both end-to-end, and the available network can be
directly obtained from the image training set.

 

Figure 28. The workflow of the YOLO target detection network.

In terms of network structure, YOLO uses a unified convolutional neural network
sequence to process images and obtain feature sequences, and then uses a shallow convolu-
tional neural network to perform position regression and category prediction. The specific
network structure is shown in Figure 29.

 
Figure 29. YOLO network structure.

In terms of the internal structure of the network, a 3 × 3 convolution kernel is mainly
used for feature extraction and abstraction, a 1 × 1 convolution kernel is used for cascade
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cross-channel parameter pooling, and a LeakyReLU function is adopted as the activation
function: max(x, 0.1x). Note that the activation function at the last layer of the network
is replaced with a linear one. The final output of the network is a tensor whose size is
7 × 7 × 30, where S = 7 is the number of grids, the first 20 elements in the third dimension
represent the degree of confidence of the 20 classifications, elements 21–22 are the degree
of confidence of the bounding box B = 2, and the last 8 elements are the (x, y, w, h) of the
bounding box B = 2.

The main features of the YOLO target detector are as follows:

(1) Features extraction network

Although the YOLOv1 network adopts the structure of the GoogLeNet classification
network; it uses 1 × 1 and 3 × 3 CNN networks in feature extraction to lower the di-
mensionality of high-dimensional information and realize the information integration of
high and low channels in the network. In the main part of feature extraction, YOLOv2
uses the multi-scale feature fusion method of the single shot multi-box detector (SSD)
network and proposes to use the DarkNET-19 network to improve the fine-grained feature
extraction in images. Since YOLOv2 only performs feature fusion in the latter layer and
produces fixed-size feature maps, this method easily leads to the loss of most fine-grained
information in the fusion process of high and low semantics. Thus, YOLOv2 has a poor
detection effect for intensive small targets. While maintaining the detection speed, YOLOv3
adopts the simplified residual basic module to replace the 1 × 1 and 3 × 3 modules in the
original CNN, and a deeper DarkNET-53 network is constructed as the feature extraction
backbone network of YOLOv3.

(2) Residual mechanism

The YOLOv2 feature extraction in DarkNET-19 uses a straight tube network structure
such as GoogLeNet or visual geometry group (VGG). Convolution is directly added in
DarkNET-19 to deepen the network to realize the purpose of extracting more useful feature
information by convolution network. This easily leads to the disappearance or explosion
of the loss gradient in the network learning training process. For this reason, YOLOv3
in DarkNET-53, drawing on the concept of ResNet, uses a residual module to achieve
the superposition of the output feature map of convolution with the input to solve the
contradiction between network depth and gradient disappearance.

(3) Feature map

In the network, before YOLOv3 outputs the feature map, a method combining the
feature pyramid network (FPN) and upsampling is proposed based on the FPN method in
SSD, which improves the problem of the loss of fine-grained target feature information in
the fusion of multiple high-level information and low-level information in the feature map.
The basic idea of this method is: based on the current feature map, the upsampling method
is used to concatenate the output features of a convolution layer into a new feature map.
This structure can not only improve the feature richness of fine-grained targets, but also
help the algorithm to improve the accuracy of target prediction.

4.3. TensorRT Inference Acceleration

NvidiaTensorRT, formerly known as the graphics processing unit (GPU) inference
engine (GIE), is a high-performance deep learning inference optimizer that can provide
low-latency and high-throughput deployment inference for deep learning applications.
TensorRT can be used to accelerate reasoning for exceedingly large-scale data centers,
embedded platforms or autonomous driving platforms. TensorRT can now support al-
most all deep learning frameworks such as TensorFlow, Caffe, Mxnet, Pytorch and so on.
Combining TensorRT with NVIDIA GPU, a fast and efficient deployment inference can be
realized in almost all frameworks. TensorRT is currently the only programmable inference
accelerator that can build and optimize customized network structures in addition to its
on-premise network structure, so it can adapt to existing network structures and ones in
the near future.
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TensorRT has the following optimization methods, the most important of which are
the first two kinds of adjustment to the network operation structure:

(1) Interlayer fusion and tensor fusion

Taking a GoogleNetInception calculation as an example, the left part of Figure 30 below
is the calculation chart. There are many layers in this structure. During the deployment of
model inference, the calculations of each layer are completed by the GPU, but in the actual
computing process, the GPU starts different compute unified device architecture (CUDA)
cores to complete the computation. The computing speed of the CUDA core tensor is very
fast, and the operation time mainly consists of the slow core startup and read and write
processes of the tensor, which cause a large amount of occupation of memory bandwidth
and a waste of GPU computing resource. By the transverse and longitudinal merger
between layers (the merged structure of convolution, bias and ReLU layers are fused to
form a single layer called case-based reasoning (CBR)), the number of layers in the network
is greatly reduced while maintaining the original functions. Lateral merging can combine
convolution, offset and activation layers into a CBR structure. Vertical merging can combine
layers with the same structure but different weights into a wider layer. Both operations
can make the optimized structure occupy only one CUDA, and reduce the number of data
transfers, memory bandwidth occupation and the time of core start and stop.

Figure 30. TensorRT optimization model.

The combined calculation is shown on the right side of Figure 30. Fewer computation
layers lead to less occupation of CUDA cores, and the entire model structure is more
compact and efficient.

(2) Data accuracy calibration

Most deep learning frameworks train neural networks with tensors at full 32-bit
precision (FP32), and once the network is trained, the data length can be reduced to speed
up the access and operation because backpropagation is not needed in the process of
deploying inference. TensorRT supports FP16 and INT8 data compression acceleration
modes. TensorRT provides a fully automatic calibration process to lower FP32 accuracy to
INT8 accuracy with best matching performance and minimize performance loss.

(3) CUDA core optimization

In the inference calculation of the network model, the CUDA core of GPU is called for
calculation. TensorRT can adjust CUDA kernel for different algorithms, different network
models, and different GPU platforms to ensure the optimal calculation performance of the
current model on a specific platform.

(4) Tensor memory management

Due to the characteristics of the neural network itself, the size of each feature map
remains the same during its operation, so the video memory can be allocated in advance.
TensorRT assigns certain video memory for every tensor during application, reducing
memory usage and improving reuse efficiency.

(5) GPU multi-stream optimization
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For bypass networks that cannot be merged, GPUs generally adopt multi-stream
computing and then perform stream synchronization. TensorRT can optimize the flow
operation from the hardware aspect to achieve the optimal synchronization effect.

4.4. Analysis Test

The acceleration performance test was performed on a JetsonXavierNX computer. In
15 W working mode, the CPU (no optimization), GPU (CUDA optimization), and GPU
(TensorRT optimization) were used for the test. The relative parameters of the device are
shown in Table 2.

Table 2. JetsonXavierNX performance parameters.

Ability 10 W Mode 15 W Mode

AI performance 14 TOPS (INT8) 21 TOPS (INT8)
GPU 384-core NVIDIA Volta™ GPU with 48 Tensor cores

GPU max freq 800 MHz 1100 MHz

CPU 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU
6 MB L2 + 4 MB L3

CPU max freq 2-core @ 1500 MHz
4-core @ 1200 MHz

2-core @ 1900 MHz
4/6-core @ 1400 Mhz

Memory 8 GB 128-bit LPDDR4x @ 1600 MHz
51.2 GB/s

Storage 16 GB eMMC 5.1
Power 10 W|15 W

The test used 1280 × 720 resolution images to identify 1000 groups and average the
time. Since CUDA and TensorRT require pre-start of the CUDA core, the time in this section
was recorded separately. The results of the speed test are shown in Table 3:

Table 3. Results of processing speed using different computing platforms.

Computing Platforms Initialization/ms Average Time/ms

CUP - 790
GPU(CUDA) 2310 85

GPU(TensorRT) 1103 12

After optimization, the network inference speed was greatly improved, about 66 times
as fast as CPU inference, and about 7 times as fast as the CUDA inference, finally reaching
about 83FPS. At the same time, due to the simplified network structure, the CUDA core
startup process was accelerated by about two times after TensorRT optimization.

Part of the recognition results are shown in Figures 31–33:

 

Figure 31. Recognition result 1.
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Figure 32. Recognition result 2.

 

Figure 33. Recognition result 3.

4.5. Section Conclusion

In this section, the target recognition algorithm was introduced in detail, and the
algorithm was verified on the corresponding equipment. The results show that YOLO can
realize the recognition of targets with high precision and accuracy.

5. Technical Validation

Based on the system mentioned above, an indoor UAV platform that is appliable for
indoor environments was built for this paper, which adopted the following plan:

5.1. Introduction of the Platform Plan

The platform consisted of four parts, including the body part, the autonomous naviga-
tion system, the ground control system, and the data transfer system. The overall structure
is shown in Figure 34:
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Figure 34. Diagram of overall structure.

According to the content in the figure, the aircraft platform built is shown in Figure 35:

 

Figure 35. Flight platform.

The subsystems are described as follows.

5.1.1. The Fuselage Part

The body part was composed of power system, frame, and flight control system, which
are described as follows.

(1) Power system

The power package was an Air Gear 450, manufactured by Tmotor, as shown in
Figure 36:
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Figure 36. Air Gear 450 power package.

(2) Frame design

The frame was assembled using carbon fiber with aluminum alloy CNC parts.

(3) Battery

The Leopard 4S-6000mah was adopted as the battery, and its discharge rate is 60 C, as
shown in Figure 37.

 

Figure 37. Leopard battery.

(4) Flight control system

The flight control system adopted the self-developed flight control module, as shown
in Figure 38, whose detailed parameters are as follows:

Main control: STM32F103@72MHz frequency;
IMU: ICM20689*2.

  

Figure 38. Flight control IC.

Since IMU was used as the underlying module, two IMU were installed face-to-face to
suppress the gyro drift.

For detailed technical parameters, see the datasheet of IMU and the main control unit.

5.1.2. Autonomous Navigation System

The autonomous navigation system took an NVIDIA module as the processing core
and an Intel camera as the sensor.

(1) Core processing unit
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The NVIDIA Jetson Xavier NX was introduced as the processing core unit, as shown
in Figure 39.

  

Figure 39. Jetson XAVIER NX module.

(2) Sensor

The sensor used an Intel RealSense Camera D435i and T265 as the vision sensing module.
D435i was used to provide depth information, and its performance is shown in

Figure 40:

  

Figure 40. D435i camera.

T265 provides SLAM mapping information, as shown in Figure 41. The T265 contains
two fisheye lens sensors, an IMU, and a Movidius Myriad 2 VPU. The camera enjoys low
delay and very efficient power consumption. Through extensive performance tests and
validation, under expected application conditions, the closed-loop offset was less than 1%.
The delay between the pose action and the action reflection was less than 6 milliseconds.

Figure 41. T265 camera.

5.1.3. Data Transfer System

The Huawei AP6750-10T was adopted as data transfer system, as shown in Figure 42:
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Figure 42. AP data transfer system.

Its performance indicators are as Table 4.

Table 4. Autonomous navigation system.

Model AP6750-10T
Type Distributed wireless router

Wireless standard IEEE 802.11 a/b/g/ac/ac wave2, support 2×2MIMO
Wireless rate 3000 Mbps

Working frequency range 2.4 GHz, 5 GHz
Support agreement 802.11a/b/g/n/ac/ax

Software parameters
WPS support Supports WPS one-click encryption

Safety performance

Support Open System authentication
Support WEP authentication, and support 64-bit, 128-bit,

152-bit, and 192-bit encryption bytes
Support wap2-psk

Support wpa2-802.1x
Support wpa3-sae

Support wap3-802.1x
Support wap-wpa2
Support wap-wpa3

Internet management

Support IEEE 802.3ab standard
Support sub-negotiation of rate and duplex mode

Compatible with the IEEE 802.1 q
Support NAT

Qos support

Based on the WMM, it supports the WMM power saving
mode, uplink packet priority mapping, queue mapping,

queue mapping, VR/ mobile game application acceleration,
and hierarchical HQos scheduling for airports.

Hardware parameters
Local network interfaces 2 × 10 GE electrical interface, 1 × 10 GE SFP+

Other interfaces one
Type of antenna Built-in type

Working environment Temperature: −10~+50 ◦C

5.1.4. Ground Control System

The ground control system was coded by Qt software, as shown in Figure 43.
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Figure 43. Qt software for coding ground control system.

5.2. Flight Test
5.2.1. Performance Test

(1) Positioning accuracy of integrated navigation

Four reference points were used for accuracy comparison, which were (0, 0, 0), (0, 0,
0.51), (2, 0, 0.51) and (2, −1, 0.51).

When the UAV was placed at the above four points, the corresponding navigation
position was obtained, as shown in Figures 44–47:

 

Figure 44. (0, 0, 0) position navigation data map.

 

Figure 45. (0, 0, 0.5) position navigation data map.
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Figure 46. (2, 0, 0.5) position navigation data map.

 

Figure 47. (2, −1, 0.5) position navigation data map.

The actual four-point navigation positions were (0, 0, 0), (0.02, 0,02, 0.54), (2.19, −0.01,
0.52), (2.18, −1.11, 0.52). According to the above results, it can be seen that this meets the
requirements of the actual conditions, namely:

• Combined navigation and positioning accuracy (CEP): ≤0.2 m;
• Fixed-altitude, fixed-point flight accuracy (CEP): ≤0.5 m (RMS).

(2) Obstacles (stools) were directly placed 1 m, 2 m, 3 m, 4 m and 5 m away in front of the
UAV for evaluation, respectively. The measurement results are shown in Figures 48–52:

 

Figure 48. Resultant figure when obstacle was 1 m away.
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Figure 49. Resultant figure when obstacle was 2 m away.

 

Figure 50. Resultant figure when obstacle was 3 m away.

 

Figure 51. Resultant figure when obstacle was 4 m away.

 

Figure 52. Resultant figure when obstacle was 5 m away.

From the above results, the system meets the requirements of the technical require-
ments, namely:
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Obstacle detection distance: ≥5 m.

(3) Obstacle detection channel and range

Because T265 was used as the obstacle measurement equipment, its field of view (FOV)
range was 163 ± 5◦, and the effect is shown in Figure 53:

 

Figure 53. Results of obstacle measurement range.

It can be seen from the results that the system meets the obstacle detection channel
and range requirements, namely:

The system possesses detection ability in at least three channels; namely, the front,
the top and the bottom. The detection range in each channel (≥ ±45◦ horizontally,
≥ ±45◦ vertically).

(4) Minimum size of detectable obstacle

The ruler was placed 5 m away from the camera to measure the recognition of obsta-
cle size.

It can be seen from Figure 54 that the system can complete the recognition of obstacles.
That is, at 2 m distance, to achieve the recognition of objects with a size of 100 × 5 mm.

 

Figure 54. Obstacle size recognition.
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(5) Obstacle detection rate

This test was placed in the flight test.

5.2.2. Single-Machine Indoor Autonomous Obstacle Avoidance and Navigation

Scene tests under two conditions were performed in this paper. The maps of the two
sites are shown in Figure 55:

 

Figure 55. Maps of test sites.

In order to test the indoor autonomous obstacle avoidance and navigation algorithm,
a 7 × 7 m field was built in the room, in which two obstacles were placed. The UAV started
from the start point in Figure 55, then ran to the first point, the second point, and finally
returned to the end point. During this period, the system automatically recognized and
avoided the two obstacles in the picture.

(1) Scene experiment with three obstacles

The scene diagram of the three-obstacle experiment is shown in Figure 56:

 

Figure 56. Three-obstacle scene.

In this scenario, the UAV completed the flight test process from the starting point to
the end point well, as shown in Figure 57.
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Figure 57. Flight record of three-obstacle scene.
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(2) Scene experiment with two obstacles

In the two-obstacle scenario experiments, the flight data of the UAV were recorded as
shown in Figure 58:

Figure 58. Flight record of two-obstacle scene.

6. Conclusions

This paper completed the following work: Firstly, an integrated navigation algorithm
based on machine vision/close-range detection/inertial measurement unit (IMU) was
designed and realized. Then, an indoor simultaneous localization and mapping (SLAM)
algorithm was designed and realized. Moreover, a method for obstacle detection, obstacle
avoidance motion decision and motion planning was designed and realized. At last,
an autonomous navigation and obstacle avoidance simulation system was built. In the
meantime, the positioning and navigation system in an unknown environment as well as
the indoor obstacle avoidance flight was also demonstrated and verified. There are some
advantages and weaknesses listed as follows:

Advantages: (1) Uses distributed hardware solution to realize obstacle observation
(D435i) and SLAM (T265) functions, which greatly reduces the computational power
requirements of the airborne computer; (2) optimizes the YOLO network using Ten-
sorRT so it can run in real time on the onboard computer; (3) OCtomAP mapping,
RRT* and β spline curve fitting are finished mainly by CPU, target recognition mainly
by GPU, making full use of onboard computer resources.
Weaknesses: (1) The basic assumption of a l-SLAM system is that the environment
remains static. If the environment moves in whole or part, the localization results
will be disturbed; (2) OctomAP requires a cumulative period of stable observations to
effectively identify obstacles, which makes the UAV unable to effectively respond to
obstacles that suddenly appear; (3) the motion trajectory generated by 3-RRT* and β

spline curve only has position command, but no speed and acceleration command,
and so cannot guide the UAV to fly at high speed.

There are also some weaknesses that should be noted and explored such as whether
the detection of the obstacle and the path computation are influenced by the changing
environments and so on.
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Nomenclature

UAV Unmanned aerial vehicle
GNSS Global navigation satellite system
SLAM Simultaneous location and mapping
USV Unmanned surface vehicle
UAM Urban air mobility
SAFDAN Solar atomic frequency discriminator for autonomous navigation
VPC Visual predictive control
MPC Model predictive control
UUV Unmanned underwater vehicle
VR Virtual reality
GPS Global positioning system
VI-SLAM Visual–inertial simultaneous localization and mapping
IMU Inertial measurement unit
VIO Visual–inertial odometry
KLT tracking Kanade–Lucas–Tomasi tracking
RRT Rapidly exploring random trees
CNN Convolutional neural network
RCNN Region-convolutional neural network
SSD Single shot multi-box detector
VGG Visual geometry group
FPN Feature pyramid network
GPU Graphics processing unit
GIE GPU inference engine
CUDA Compute unified device architecture
CBR Case-based reasoning
FP32 Full 32-bit precision
FOV Field of view
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Abstract: This paper presents a novel algorithm about the industrial robot contouring control based
on the NURBS (non-uniform rational B-spline) curve. First, aiming at the error between the industrial
robot’s actual trajectory and the desired trajectory, the contour error is proposed as the trajectory
evaluation index, and the estimation algorithm of contour error based on the tangent approximation
is proposed. Based on the tangent approximation algorithm, the estimation algorithm of contour
error in the local task coordinate frame is proposed to realize the transformation from the Cartesian
coordinate frame to the local task coordinate frame. Second, according to the configuration of the
industrial robot, a modified cross-coupling control scheme based on the local task coordinate frame is
designed. Finally, the Bernoulli’s lemniscate curves are constructed by NURBS curve and five-order
polynomial curve, respectively, and they are symmetrical. The contrast experiment is designed using
the two types of constructed Bernoulli’s lemniscate curves as the incentive trajectory. Through the
analysis and comparison between the obtained uniaxial tracking error and the contour error curve of
the two incentive trajectories, it is concluded that the incentive trajectory constructed by the NURBS
curve has better contour control performance than that constructed by the five-order polynomial
curve. The results drawn from this paper lay a certain foundation for the future high-precision
contouring control of industrial robots.

Keywords: NURBS curve; contour error; local task coordinate frame; cross coupled control;
industrial robot

1. Introduction

In the working process of the industrial robot, the quality of trajectory makes a
difference in the overall working process of the robot [1]. Generally speaking, for the
industrial robot, given all the critical path points through online-teaching, there exists
trajectory error between the actual trajectory and the desired trajectory inevitably because
the dynamic response process of the robot always lags behind the reference input [2–4],
which are mainly manifested in tracking error and contour error [5,6]. With multi-joint
motors of the robot coordinate with each other, the tracking error of single axis motor will
superimpose on the operation trajectory, which forms contour errors [7]. Tracking error
could be defined as the distance between the desired position and the actual position at a
certain moment, while the definition of the contour error is the tangential distance between
the actual position at a certain moment and the desired track point. That is to say, contour
error could also be defined as the distance between the desired trajectory and the actual
trajectory [8]. According to the definition of tracking error and contour error, tracking
error describes the distance between two different points, while contour error describes the
distance from the actual point to a set of points. In the research of the precision contour
error control, the value of contour error is less than or equal to the tracking error’s value,
and the tracking error could be regarded as the maximum value of e contour error at the
very moment. However, the tracking error and contour error does not have a specific
relation with each other, and according to the two definitions above, the two kinds of error
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is completely different [9]. The contour error and tracking error of the robot operation
trajectory are shown in Figure 1.

Figure 1. Contour error and tracking error.

In order to explain the difference between the contour error and the tracking error
more directly, as shown in Figure 1, Pd is the expected point, while point Pa1 and Pa2 are
the actual points at different moments. Then, the tracking error corresponding to the actual

point Pa1 and Pa2 could be expressed as
→

|Pa1Pd| and
→

|Pa2Pd|, meanwhile
→

|Pa1Pc1| and
→

|Pa2Pc2|
are the contour error corresponding to the actual point Pa1 and Pa2. It could be seen from

Figure 1 that the tracking error
→

|Pa1Pd| is less than
→

|Pa2Pd|, but the contour error
→

|Pa1Pc1|
is greater than

→
|Pa2Pc2|. When

→
|Pa1Pd| = 0,

→
|Pa1Pc1| = 0, the opposite is not true. It is

obviously concluded that Pa2 has more practical significance for the contour control than
Pa1. According to the above definitions, it is easy to conclude that the contour error only
depends on the current actual position and the geometry shape of the desired trajectory,
and is irrelevant to the desired point and the tracking error.

The calculation of the contour error depends on the shape of the robot’s end-effector
trajectory. Contour error could be accurately calculated when the trajectory is a simple
curve such as a straight line or arc [10,11]. However, under any common smooth curve,
contour error could not be accurately calculated [12], which could be approximated with a
variety of approximation algorithms in these cases. Yeh [13] et al. proposed a general curve
contour error estimation algorithm based on the tangent approximation of the line contour
error, which achieved good estimation effect for curves with small curvature. J. Yang [14]
et al. improved the estimation accuracy of the contour error through the osculating circle
at any point of the curve as an approximation condition. Y. Zhu [15] et al. proposed
new contour error calculation model under task coordinates, and calculated the first order
approximation of the contour error, which does not depend on the single axis tracking
error. During the calculation process, we just need to know the equation of the desired
trajectory, and the coordinates of the actual point, which achieved good results in planar
curve contour error calculation. However, the contour error calculation for the spatial
curve needs further research [16]. In addition, with the improvement of the processor’s
computing speed in robot system, F. Huo [17] took the minimum value of the distance
between the actual position points and a series of the path points on the desired trajectory
as the estimated value of the contour error. When the interpolation period is short, the
estimation effect of this algorithm is better for the contour error, but this kind of algorithm
needs higher controller performance.

In order to reduce contour error, and improve trajectory performance, L.B [18] et al.
applied the single-axis uncoupled control algorithm to control a single axis separately,
which reduced the tracking error of each axis and improved track accuracy. Jin.Z [19]
established contour error models of the OMPR in straight line, arc, and spiral trajectories
are. Then, they established feed-forward combined multi-axis cross-coupled contour control
compensation strategy which achieved good control effect. L. Wang [20] et al. designed
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a cross-coupled controller in which the inputs of the controller were the tracking errors
obtained according to the five feed-axes commands and encoder feedbacks. S. Wang [21]
et al. designed a self-adaptive fuzzy PID cross-coupled controller which can eliminate
the influence of the characteristics mismatching and parameter difference of each axis.
N.T. Hu [22] et al. proposed a new structure of cross-coupled position command shaping
controller using H∞ control scheme for the precise tracking in the multiaxial motion control
which remarkably reduces contour error. Cross coupling control was applied to solve the
multi-axis motion incoordination caused by a large tracking error of single axis which
achieved good control effect for the motion platform with orthogonal axes, and multi-axis
CNC machining platform [10,19,20,23–25].

However, most of the estimation algorithms mentioned above for the contour error are
suitable for the contour error of the planar curve; furthermore, the estimation algorithms
for the spatial curve contour error are rarely involved. In recent years, more and more
researchers have started to engage in this field. H. Zhao [4] et al. proposed a components-
based contouring control structure for a six-degree of freedom robot. A locally iterative
robotic contour error estimation approach with high accuracy and high efficiency was
designed by compensating the weighted contour error components to the velocity com-
mands in the robotic task space. Z. Wang [26] et al. proposed an Atiken method based on
acceleration iterative to achieve higher estimation accuracy of contouring error and reduce
the real-time calculation burden, and verified the effectiveness of the proposed method
through experiments. The estimation algorithms mentioned above are mostly used in CNC
machining platforms with orthogonal axes, and the control algorithm design of the spatial
curve contour error is also mostly based on the above platforms [27].

Compared with the CNC machine platform, industrial robot has higher degrees
of freedom and more complex actions. Therefore, it is necessary to design a contour
error control algorithm which suits the robot contour control [28–30]. According to the
configuration of the industrial robot, this paper presents a trajectory planning algorithm
in the Cartesian space based on the NURBS curve [31–33]. NURBS curve is often used in
robot path generation algorithms. Compared with other algorithms, the NURBS algorithm
is more conducive to the generation and processing of multidimensional and irregular
curves. G. Wu [34] et al. proposed a path planning method based on the NURBS curve
with optimal robot performance. By solving a multi-objective optimization problem, the
optimal curve parameters and the execution time distributed along the curve segments can
be obtained simultaneously. K. Erwinski [35] et al. presented a NURBS toolpath federate
profile generation algorithm for a biaxial linear motor control system, and constructed two-
dimensional plane curves of “Bird” and “flower” by using NURBS toolpath with marked
control points and polygons. On the basis of existing research results, this paper presents
an approximation algorithm to approximate the contour error of the robot, and constructs
the incentive trajectory by the NURBS curve. Then, based on the approximation algorithm,
a modified cross-coupling controller in the local task coordinate frame is presented, which
realizes the contour control of the robot, improves the trajectory performance and quality
of industrial robot’s working process.

The main contributions of this paper could be summarized as follows:

(1) A contour error approximation algorithm for the spatial curve based on under the
local task coordinate frame was proposed, and realizes the transformation from the
tracking error of each axis on the desired trajectory to the contour error;

(2) A modified cross-coupling control algorithm is proposed which realizes the error
feedback control from the tracking error to the contour error.

(3) The evaluation system of contour error controller with root mean square as evaluation
index is established, and Bernoulli’s lemniscate curves as the incentive trajectory was
constructed by NURBS curve through adjusting its parameters.

This paper is organized as follows. In Section 2, the contour error approximation algo-
rithm of general spatial curve in the local task coordinate frame is proposed. In Section 3,
based on the above contour error approximation algorithm, a modified cross-coupling
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control algorithm is proposed, which is suitable for the industrial robot configuration.
In Section 4, based on the improved cross-coupling control algorithm, the NURBS curve
trajectory planning algorithm is compared with the five-order polynomial planning algo-
rithm, and illustrates the effectiveness of the NURBS planning and modified cross-coupling
controller. In Section 5, this paper arrives at some conclusions.

2. Contour Error Estimation Algorithm

2.1. Contour Error Estimation Based on Tangent Approximation

As shown in Figure 2, the contour error of a line can be accurately calculated. Given the
actual point A(xa, ya), expected trajectory point D(xd, yd), then tracking error could be de-
fined as

⇀
e = (xd − xa, yd − ya). Given direction vector of the planar line

⇀
s = (cos φ, sin φ), and β is the included angle between the vector

⇀
e and

⇀
s , β + θ = π/2.

Then the contour error of the planar line could be expressed as,

→
ε =

→
AE =

→
e cos θ =

→
e

√√√√√√1 −
(→

e · →s
)2

∣∣∣→e ∣∣∣2 · ∣∣∣→s ∣∣∣2 (1)

Figure 2. The contour error of a planar line.

Similarly, for a line in the Cartesian space, its parametric equation is shown as,⎧⎨⎩
x = xd + mt
y = yd + nt
z = zd + pt

,
x − xd

m
=

y − yd
n

=
z − zd

p
= t (2)

Then, the contour error of a spatial straight line can also be expressed in the form of
Equation (1). In addition, a spatial straight line could be regarded as the intersection of
two planes, i.e., {

A1x + B1y + C1z + D1 = 0
A2x + B2y + C2z + D2 = 0

(3)

where
⇀
n 1 = (A1, B1, C1),

⇀
n 2 = (A2, B2, C2) are the normal vectors of the two planes shown

in Equation (3). Then the direction vector of the spatial line is,

→
s =

→
n1 × →

n2 =

∣∣∣∣∣∣∣
→
i

→
j

→
k

A1 B1 C1
A2 B2 C2

∣∣∣∣∣∣∣
=

∣∣∣∣ B1 C1
B2 C2

∣∣∣∣→i −
∣∣∣∣ A1 C1

A2 C2

∣∣∣∣→j +

∣∣∣∣ A1 B1
A2 B2

∣∣∣∣→k
(4)

For common curves, it is difficult to obtain the geometric description of the desired
trajectory, thus it is difficult to calculate the contour error of the common curves. However,
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the calculation of the contour error about a common curve can be simplified as the tan-
gency distance between the actual point and the corresponding desired point, as shown
in Figure 3.

Figure 3. Contour error estimation based on tangential approximation.

In Figure 3, contour error ε could be approximated by εc which is the distance of the

tangent line from point A to point D, and
⇀
t is the unit tangent vector at point D,

⇀
n is the

unit normal vector, then,

εc =
→

AD · →n (5)

The parametric equation of the spatial curves could be expressed as,

Γ : r(t) =

⎧⎨⎩
x = x(t)
y = y(t)
z = z(t)

(6)

Tangent vector at any point of the spatial curve Γ is
⇀
s = (x′(t), y′(t), z′(t)). Thus,

→
εc =

→
e cos θ =

→
e

√√√√√√1 −
(→

e · →s
)2

∣∣∣→e ∣∣∣2 · ∣∣∣→s ∣∣∣2 (7)

In addition, a spatial curve can be thought as the intersection of surfaces, i.e.,{
F(x, y, z) = 0
G(x, y, z) = 0

(8)

where
⇀
n 1 = (Fx, Fy, Fz),

⇀
n 2 = (Gx, Gy, Gz) are the normal vectors of the two surfaces

shown in Equation (8). Then the tangent vector of the common spatial curve is,

→
s =

→
n1 × →

n2 =

∣∣∣∣ Fy Fz
Gy Gz

∣∣∣∣→i −
∣∣∣∣ Fx Fz

Gx Gz

∣∣∣∣→j +

∣∣∣∣ Fx Fy
Gx Gy

∣∣∣∣→k (9)

2.2. Contour Error in Local Task Coordinate Frame

In Figure 3,
⇀
t and

⇀
n are orthogonal to each other at point D on the desired trajectory,

where
⇀
t is the unit tangent vector, and

⇀
n is the unit normal vector, which constitute

the local task coordinate frame at point D. From Cartesian coordinates to the local task
coordinates, we have the following transformation of the coordinates,

ε = Te,
[

εn
εt

]
=

[ − sin φ cos φ
cos φ sin φ

][
ex
ey

]
(10)
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where T is the transformation matrix from the Cartesian coordinate frame to the local task
coordinate frame, and,

T−1 = TT = T (11)

In addition, Equation (10) is equivalent to the Equation (1). For the common curves,
the approximate value of the tangent approximation could be used to estimate the actual
contour error.

For common planar curve whose parametric equation is,{
x = x(t)
y = y(t)

(12)

and the unit tangent vector is,

→
t =

(
− x′√

x′2 + y′2
,

y′√
x′2 + y′2

)
(13)

the unit normal vector is,

→
n =

(
− y′√

x′2 + y′2
,

x′√
x′2 + y′2

)
(14)

then, [
εn
εt

]
=

⎡⎢⎣ − y′√
x′2+y′2

x′√
x′2+y′2

x′√
x′2+y′2

y′√
x′2+y′2

⎤⎥⎦[ ex
ey

]
(15)

where Equation (10) is equivalent to Equation (15).
The above is the case of a planar curve. In the case of the spatial curve, the Frenet local

task coordinate frame as shown in Figure 4 can be established at point D,

Figure 4. Frenet local task coordinate frame of spatial curve.

Similar with the case of a planar curve,
⇀
t is the unit tangent vector,

⇀
n is the unit

principal normal vector,
⇀
b is the unit binormal vector, furthermore,

⇀
t ,

⇀
n ,

⇀
b are orthog-

onal to each other, and satisfy the right-hand coordinate frame. Vector
⇀
t and

⇀
n form

the osculating plane at point D,
⇀
t and

⇀
b form the rectifying plane,

⇀
n and

⇀
b form the

normal plane.
Referring to Equation (6) for parametric equation of spatial curve, then,

→
t =

r′(t)
|r′(t)| =

(x′, y′, z′)√
x′2 + y′2 + z′2

(16)
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→
b =

r′(t)× r′′ (t)
|r′(t)× r′′ (t)| =

(∣∣∣∣ y′ z′
y′′ z′′

∣∣∣∣,−∣∣∣∣ x′ z′
x′′ z′′

∣∣∣∣, ∣∣∣∣ x′ y′
x′′ y′′

∣∣∣∣)√∣∣∣∣ y′ z′
y′′ z′′

∣∣∣∣2 + ∣∣∣∣ x′ z′
x′′ z′′

∣∣∣∣2 + ∣∣∣∣ x′ y′
x′′ y′′

∣∣∣∣2
(17)

and,

→
n =

→
b ×→

t =

∣∣∣∣∣∣∣∣∣
→
i

→
j

→
k∣∣∣∣ y′ z′

y′′ z′′

∣∣∣∣− ∣∣∣∣ x′ z′
x′′ z′′

∣∣∣∣∣∣∣∣ x′ y′
x′′ y′′

∣∣∣∣
x′ y′ z′

∣∣∣∣∣∣∣∣∣
√

x′2 + y′2 + z′2
√∣∣∣∣ y′ z′

y′′ z′′

∣∣∣∣2 + ∣∣∣∣ x′ z′
x′′ z′′

∣∣∣∣2 + ∣∣∣∣ x′ y′
x′′ y′′

∣∣∣∣2
(18)

The equations of normal plane Π1, osculating plane Π2, and rectifying plane Π3 at
point D are: ⎧⎪⎪⎨⎪⎪⎩

Π1 : (Xd − r(t)) · →t = 0
Π2 : (Xd − r(t)) · →n = 0

Π3 : (Xd − r(t)) ·
→
b = 0

(19)

The estimated value εc of the contour error at point A can be decomposed into the
distance εb from point A to the osculating plane Π2, and the distance εn from point A to
the rectifying plane Π3, which could be expressed in the form of:

ε = Te (20)

i.e., ⎡⎣ εb
εn
εt

⎤⎦ =

⎡⎣ T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤⎦⎡⎣ ex
ey
ez

⎤⎦ (21)

where the first, second, and third lines of T are the X, Y, and Z components of
⇀
b ,

⇀
n , and

⇀
t respectively, referring to Equations (16)–(18). Obviously, Equation (20) is equivalent
to Equation (21).

Similar with the case of planar curve,
⇀
t ,

⇀
n and

⇀
b are orthogonal to each other, then

we can get the conclusion shown in Equation (11).
The approximation algorithm presented in Section 2.1 can obtain the effective esti-

mation value of the contour error for general spatial curve, whereas, the estimation value
is expressed as a scalar, which is not suitable for the coordinate transformation from the
tracking error to the contour error. Therefore, it is necessary to establish contour error
approximation model in the local task coordinate frame as shown in Section 2.2.

3. Modified Cross Coupling Control in the Local Task Coordinate Frame

According to the first section of this paper, traditional cross-coupling control algorithm
has better performance for the contour control of the experimental platform with fewer
and orthogonal axes. However, industrial robots are different from orthogonal platform
in configuration. They have higher degrees of freedom. The motion among adjacent
axis motors is transformed through the robot’s link coordinate frame, and the coordinate
transformation from the base coordinate frame to the end-effector coordinate frame is
more complicated. This paper takes SR4C robot as the experimental platform, and its DH
parameter is shown in Table 1.
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Table 1. The DH parameter of the SR4C robot.

Link ai αi di θi Limit (Deg)

1 40 90 330 θ1 −180~180
2 315 0 0 θ2 −130~80
3 70 90 0 θ3 −70~160
4 0 −90 310 θ4 −240~240
5 0 90 0 θ5 −30~200
6 0 0 70 θ6 −360~360

The link coordinate frame of the SR4C industrial robot is shown in Figure 5.

Figure 5. The link coordinate frame of the SR4C robot.

The transformation matrix from base coordinate frame to the end-effector coordinate
frame is Equations (22) and (23).

T = T1T2T3T4T5T6 =

⎡⎢⎢⎣
nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

⎤⎥⎥⎦ (22)

Ti(i=1∼6) =

⎡⎢⎢⎣
cos θi − cos αi sin θi sin αi sin θi αi cos θi
sin θi cos αi cos θi − sin αi cos θi αi sin θi

0 sin αi cos αi di
0 0 0 1

⎤⎥⎥⎦ (23)

In traditional cross coupling control application, such as linear motor platforms,
the transformation matrix T from tracking error to the contour error only involves the
transformation of position, and the calculation is relatively simple, but traditional cross
coupling control is not suitable for the robot contour control. Based on the traditional
cross coupling control, an improved cross coupling controller is proposed in the local task
coordinate frame. It is shown in Figure 6.
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Figure 6. Cross coupled control based on the local task coordinate frame.

The contour error control flow chart based on the control block diagram of Figure 6 is
showed in Figure 7.

Figure 7. Control flow chart of the contour error.

The controller proposed in the literature [23] is shown in Figure 8.

Figure 8. Block diagram of the typical cross-coupled control system.

In Figure 7, first, we get the corresponding point D on the desired trajectory according
to the parameter value u of the NURBS curve corresponding to point A on the actual
trajectory, and the tracking error from point A to point D could be calculated. The contour
error at point D is obtained from Equation (21). Then, the end-effector coordinate frame
where the tracking error locates is transformed to the joint space where each axis is located
through the inverse kinematics equation of the industrial robot in Equation (22). Next,
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regarding the joint angle solved from Equation (22) as the input of the inverse dynamics
equation in the robot joint space, and the solution of robot inverse dynamics, that is to say,
joint torque as the output. At the same time, the inverse dynamics equation in joint space
can be transformed to the Cartesian space, that is to say, the tracking error is taken as the
input of the inverse dynamics equation. Comparing with the controller in Figure 8 which is
proposed in the literature [23], controller in Figure 6, the six-dimensional force component
at the end of the output is fed back to the actual trajectory, so that we could realize the
closed-loop control of the contour error. Thus, the control accuracy of contour error can
be improved.

The inverse dynamics equations in joint space and Cartesian space are shown in
Equations (24) and (25).

M(θ)
..
θ + C

(
θ,

.
θ
) .

θ + G(θ) = τ (24)

MX(θ)
..
X + CX

(
θ,

.
θ
) .

X + GX(θ) = F (25)

where, ⎧⎪⎪⎪⎨⎪⎪⎪⎩
F = J−Tτ
.

X = J
.
θ

..
X = J

..
θ +

.
J

.
θ

..
θ = J−1

..
X − J−1

.
J

.
θ

(26)

J is the Jacobi matrix of the robot, see Equation (27),

J =
[

Jv
Jω

]
, J+v = JT

v

(
Jv JT

v

)−1
(27)

Combining Equation (19) with (20) and (26), it can get Equation (28),⎧⎪⎨⎪⎩
MX(θ) = J−T M(θ)J−1

CX(θ,
.
θ) = J−T

[
C(θ,

.
θ)− M(θ)J−1

.
J
]

J−1

GX(θ) = J−TG(θ)

(28)

For the contour error control, X = [x, y, z]T . Suppose that the coordinate of the desired
point is Xd = [xd, yd, zd]

T , and the coordinate of the actual point is X = [x, y, z]T , then the
tracking error is e = X − Xd. When D is a constant point, Xd = [xd, yd, zd]

T also becomes
constant, and .

Xd =
..
Xd = 0 (29)

Then the inverse dynamics equation in Equation (25) could be written as,

MX(θ)
..
e + CX

(
θ,

.
θ
) .

e + GX(θ) = F (30)

Combining Equation (10) with (11), it can get,

.
e = T

.
ε +

.
Tε,

..
e = T

..
ε + 2

.
T

.
ε +

..
Tε (31)

Substitute Equation (31) into Equation (30), we could get the dynamics equation of the
robot in the local task coordinate frame, which could be expressed as,

MT
..
ε + CT

.
ε + DTε + GT = FT (32)

where,
MT = TMXT, CT = 2TMX

.
T + TCXT

DT = TMX
..
T + TCX

.
T, GT = TGX , FT = TF

(33)
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4. Analysis of Simulation Experiment Results

In this paper, SR4C robot is taken as the experimental object, and the dynamic param-
eters are shown in Table 2.

Table 2. The dynamical parameter of the SR4C robot.

Link
Mass
(kg)

Center of Mass (m) Interia Matrix (kg·m2)

x y z Ixx Iyy Izz Ixy Ixz Iyz

1 1.2228 0.0729 −0.0113 −0.0053 0.0076 0.0130 0.0144 0.0011 0.0013 0.0001
2 1.5967 0.1211 −0.0124 0.0068 0.0071 0.0464 0.047 0.0014 −0.0016 0.00009
3 0.8378 0.0367 −0.0024 −0.021 0.0025 0.0049 0.0043 0.00008 0.0012 0.00002
4 0.5312 −0.0005 0.0008 −0.1167 0.011 0.0111 0.001 0 0 0.00006
5 0.1376 0.00015 0 −0.0111 0.00015 0.00017 0.0001 0 0 0
6 0.0817 0 0 −0.0128 0.00004 0.00004 0.00005 0 0 0

According to the kinetic parameters in Table 2, the kinetic equation described in
Equation (24) could be calculated.

Generally speaking, a k-order NURBS curve can be expressed in the following Equation (34),

P(u) =

⎡⎣ x(u)
y(u)
z(u)

⎤⎦ =

n
∑

i=0
ωidi Ni,k(u)

n
∑

i=0
ωi Ni,k(u)

(34)

where di stands for n+ 1 control points, i = 0, 1, . . . , n; ωi is the weight factor corresponding
to the control point, ω0 > 0, ωn > 0, the rest ωi ≥ 0; U = [u0, u1, un+k+1] is the node vector,
and all the ui is not decrease; 0 ≤ u ≤ 1 is the normalization factor, u1 = u2 = · · · = uk = 0,
un+1 = un+2 = · · · = un+k+1 = 1; the step size of the rest ui in the middle is 1/(n + 1 − k),
i.e., uk+1 = 1/(n + 1 − k), uk+2 = 2/(n + 1 − k), . . . un = (n − k)/(n + 1 − k); Ni,k(u) is
the k-order B-spline basis function, which is defined by the recursion Equation of Cox-de
Boor as, ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ni,0(u) =
{

1, ui ≤ u ≤ ui+1
0, else

Ni,k(u) =
u−ui

ui+k−ui
Ni,k−1(u) +

ui+k+1−u
ui+k+1−ui+1

Ni+1,k−1(u)
de f ine 0

0 = 0

(35)

The parameters of the NURBS curve are as follows: the order of the NURBS curve k = 3;
the weight factor vector is ω = [1, 1, . . . , 1]; the node vector is U = [0, 0, 0, 0, 1/313, 2/313, . . . ,
312/313, 1, 1, 1, 1]; and the control points could be determined by the following
Equation (36), ⎧⎨⎩

xi = 420
yi = 100 cos θi

√
cos 2θi

zi = 715 + 100 sin θi
√

cos 2θi

(36)

where, i = 0, 1, . . . , 315, the number of control points is n + 1 = 316; and the step size of θi
in Equation (36) is 0.01 rad.

Bernoulli’s lemniscate is commonly used on the robots, which is selected as the
incentive trajectory, as shown in Figure 9.
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Figure 9. Incentive trajectory.

According to Equation (36), Bernoulli’s lemniscate curve is constructed by using
NURBS curve. At the same time, Bernoulli’s lemniscate curve is also constructed by using
the five-order polynomial curve.

The partial enlargement of the above incentive trajectory is shown in Figure 10.

Figure 10. Partial enlarged view of the incentive trajectory.

To evaluate the performance of the controller, the following indicators are used:

|εc|rms =

√
1
T

∫ T

0
|εc|2dt (37)

Equation (37) is the root mean square of the contour error, where T is the total planning
duration, which could be used for measuring the average contour error control performance.

max(|εc|) is the maximum absolute value of the contour error, which measures the
instant performance.

Figure 11 shows the uniaxial tracking error chart of the NURBS curve,
Figure 12 shows the uniaxial tracking error chart of the five-order polynomial curve, and
Figure 13 shows the contour error comparison chart of the NURBS curve and the five-order
polynomial curve:
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Figure 11. Tracking error of the NURBS curve.

Figure 12. Tracking error of the five-order polynomial curve.

Figure 13. Contour error comparison between the NURBS curve and the five-order polynomial curve.

The tracking error and the contour error of the NURBS curve and five-order polyno-
mial curve can be seen in Tables 3 and 4.

Table 3. Error value of the NURBS curve.

Error Value
NURBS Curve

max(|εc|)/μm |εc|rms/μm

Tracking error-Y 27.792 4.721
Tracking error-Z 24.231 3.134

Contour error 9.922 1.536
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Table 4. Error value of the five-order polynomial curve.

Error Value
Five-Order Polynomials

max(|εc|)/μm |εc|rms/μm

Tracking error-Y 142.72 76.03
Tracking error-Z 117.13 53.14

Contour error 39.72 24.06

It could be concluded from Figure 9 that the curve constructed by the NURBS curve
trajectory planning is closer to the desired trajectory than the curve constructed by the
five-order polynomials. Furthermore, the improved cross-coupling controller in the local
task coordinate frame designed in this paper is used to control the profiles of the above
two curves. Then, the single axis tracking error diagram, and the contour error re-
sult diagram of the two kinds of the two kinds of curves are obtained. Comparing
Figures 10 and 11, single axis tracking error curve, it is obvious that the single axis tracking
error precision of the NURBS curve planning is significantly higher than the single axis
tracking error precision of the five-order polynomial curve, and the single axis tracking
error of the NURBS curve planning fluctuates far less than the single axis tracking error of
the five-order polynomial curve.

In the comparison of the contour error curves in Figure 12, the contour error of
the NURBS curve planning is significantly lower than that of the five-order polynomial
curve, and the amplitude fluctuation of the NURBS curve contour error is smaller, and
the fluctuation is less. Combining with the contour control data of the two curves in
Tables 3 and 4, it could be concluded that the curve constructed by the NURBS curve
planning controls the contour error at the level of 10 μm, and the root mean square value of
the contour error decreases from 39.72 μm of the five-order polynomial curve to 9.922 μm
of the NURBS curve.

5. Conclusions

In this paper, the difference between tracking error and contour error is described, and
the significance of contour error for trajectory evaluation obtained from trajectory planning
is discussed. Then, the estimation algorithm of the contour error based on the tangent
approximation is proposed. Next, the estimation algorithm of the contour error in the local
task coordinate frame is proposed. Then, according to the configuration characteristics of
the industrial robot, an improved cross-coupling control scheme based on the local task
coordinate frame is designed to control the profiles of the two incentive trajectories which
are constructed by the NURBS curve and the five-order polynomial curve. The obtained
uniaxial tracking error and contour error curve were compared and analyzed. Through the
analysis of simulation experiment results, it is concluded that the NURBS curve has better
contour control performance than the five-order polynomial curve. The research results
of this manuscript provide practical application value for the high precision contouring
control for industrial robots.
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Abstract: Robotic machining has obtained growing attention recently because of the low cost, high
flexibility and large workspace of industrial robots (IRs). Multiple degrees of freedom of IRs improve
the dexterity of machining while causing the problem of redundancy. Meanwhile, the performance of
IRs, such as their stiffness and dexterity, is affected by their position and posture obviously. Therefore,
a redundant posture optimization method for robotic milling is proposed to improve the machining
performance of the robot. The multiple characteristics of the robot are considered, including the
joint-limit, singularity and stiffness, which have symmetry in its workspace. Firstly, the joint-limit is
regarded as the constraint. And a symmetrical and effective constraint method is proposed to simply
guarantee that all the interpolation points can avoid joint interference. Then, the performance indices
of singularity and stiffness are designed as the optimization target. On this basis, the piecewise-
global-optimization-strategy (PGOS) is proposed for redundant optimization. Owning to the PGOS,
all the given planned tool points in their corresponding segment are considered simultaneously to
avoid the gradual deterioration in traditional methods, which is especially suitable for the machining
process with a continuous path. Moreover, the computational load of the optimization solution
is considered and limited by the designed segmentation strategy. Finally, a series of comparative
simulations are conducted to validate the good performance of the proposed method.

Keywords: robotic milling; redundant posture optimization; joint-limit avoidance; stiffness; singularity

1. Introduction

Presently, CNC machine tools are the mean equipment for metal cutting, which is
suitable for production with high precision and large quantity [1]. However, conventional
CNC machine tools suffer from several limitations in the production of large size and small
batches, such as high cost and low flexibility [2,3]. In recent years, robotic machining by
industrial robots (IRs), especially robotic milling, has attracted growing attention owing to
the low cost, high flexibility and large workspace of IRs [4].

As shown in Figure 1, a six revolute (6R) serial robot is usually employed to construct a
robotic milling system where the spindle is mounted as the end-effector (EE). The computer-
aided manufacturing (CAM) system designed for five-axis CNC milling, such as the
Mastercam and Siemens NX, is usually used to generate the target milling path with a
series of tool points [5,6]. During the milling process, the motion control of the 6R robot
needs six coordinates at each milling point, including three position coordinates to locate
the tool center point (TCP) and three posture coordinates to orient the EE [7]. However,
the typical CAM system can only provide five coordinates without the rotational degree of
freedom (DoF) around the tool axis [8], which can be represented by a γ coordinate in the
Euler frame as shown in Figure 1. Hence, the absent γ needs to be determined for the robot
controller for the following posture tracking [9,10], which can be summed up as a planning
problem of redundant DoF.

Symmetry 2022, 14, 2066. https://doi.org/10.3390/sym14102066 https://www.mdpi.com/journal/symmetry95
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Figure 1. Layout of the robotic milling system and the redundant γ coordinate.

The γ coordinate can be directly selected as a fixed value, which solves the redundancy
problem reluctantly. However, the dexterity of the 6R robot is lost. In addition, the
performance, such as the singularity and stiffness of EE, changes with the position and
posture of IRs, which affects the machining quality directly [11]. Therefore, optimization
planning considering the performance of the robot is the most reasonable and valuable
mode for the redundancy problem [12]. For 6R robotic milling, three main performances
are widely considered, including joint-limit, singularity and stiffness of EE, which are
introduced in detail as follows:

• Joint-limit performance

Joint-limit performance is always regarded as one of the optimization targets to avoid
joint interference. Zhu et al. [13] define a joint-limit index to keep each joint angle away
from the limit boundary and its value range is [1, + ∞]. A similar joint-limit index is
designed and applied in [14], which obtains a similar optimization result.

In general, the purpose of these performance indices and their optimization is to
maintain each joint angle close to the middle of the limit range. In fact, this is not necessary
because the joint-limit is to avoid joint interference of mechanical structure but has no effect
on the motion performance when approaching the boundary. Therefore, the joint-limit
does not need to be the optimization target but should be the constraint for judgment.

In this regard, some researchers use the joint-limit as the constraint to judge whether
each joint angle of the planned tool points is within the limit range [15,16]. However, these
methods can only ensure the joint-limit avoidance of the planned tool points. But the
middle interpolation points between the planned points are ignored, which might result
in the risk of joint interference due to the complex nonlinear mapping between Cartesian
space and the joint space of IRs.

• Singularity performance

The singularity of IRs affects their motion performance obviously and the singular con-
figuration should be kept away during the milling process. Hence, singularity performance
should be regarded as one of the optimization targets.

Several singularity performance indices, such as the manipulability index [17] and the
condition number of the Jacobian matrix [18], are designed as the distance metrics to avoid
the singularity. The condition number of Jacobian has many different forms and reflects the
transfer relationship between force and motion [13]. Among them, the condition number
defined in the Frobenius norm [19] is the most widely used owing to the low computational
load. These singularity performance indices have different value ranges and can be selected
according to the application requirements.

• Stiffness performance
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The stiffness performance affects the machining accuracy and surface quality directly
and is the most important factor limiting the application of robot machining compared
with CNC machine tools [20]. The greater stiffness of robot EE can obtain better machine
quality [21]. Therefore, stiffness performance should be regarded as one of the optimiza-
tion targets.

The stiffness matrix of robot EE Kcar in Cartesian space can reflect the operational
stiffness. However, Kcar is the tensor index with various parameters and is difficult to
use in optimization solutions directly. Hence, the scalar index needs to be constructed.
Assuming the robot link is rigid and the joint is elastic, the stiffness distribution of robot EE
is an ellipsoid, which is called a stiffness or compliance ellipsoid. Several scalar stiffness
indices are designed based on stiffness ellipsoids for different occasions. To improve
the accuracy and efficiency of robotic drilling, Jiao et al. [14] and Chen et al. [22] select
maximizing the stiffness in the normal direction of the workpiece as the optimization target.
Correspondingly, the stiffness indices are designed to describe the deviation of the long
axis of the stiffness ellipsoid from the normal direction. Xiong et al. [23] proposes a feed
direction stiffness index where the stiffness along the feed direction is maximized to obtain
a high feed rate. Guo et al. [7] selects the volume of the stiffness ellipsoid as a performance
index to improve the overall machining quality. Similarly, several overall indices are
defined in [22,24,25]. These indices realize the scalar metrics of stiffness performance in
different aspects and can be selected for specific applications.

Based on the above constraint and performance indices, various redundant posture
optimization methods are developed. The stiffness and singularity performance are con-
sidered respectively in [8,22]. For better comprehensive performance, the joint-limit and
singularity indices are combined as the optimization target in [13,23]. However, as men-
tioned before, taking a joint-limit as an optimization objective is unnecessary and might
limit the performance of IRs. Jiao et al. [14] and Xiong et al. [24] consider three factors
simultaneously, where the joint-limit and singularity are used as judgmental constraints.
Nevertheless, the threshold of the singularity index is difficult to determine due to the lack
of clear physical meaning. Lin et al. [16] takes the stiffness and singularity indices as the
optimization targets, respectively. Meanwhile, the constraint for the variation range of γ
between two adjacent planned tool points, which is called the displacement constraint of
γ, is considered to ensure the machining efficiency and quality. And the corresponding
constraint strategy is proposed. However, the velocity planning of the other five DoFs is
needed previously, which is complex and has low accuracy. Most importantly, the above
optimization methods all employ the sequential-single-point-optimization-strategy (SS-
POS), where only one point is considered in each optimization process. Thus, SSPOS is
easy to lead to a gradual deterioration in subsequent optimization. Moreover, due to the
variation range constraint of γ, the optimization process might even fall into the bad region
and cannot jump out.

To overcome these problems, a novel redundant posture optimization method consid-
ering joint-limit, singularity and stiffness is proposed in this paper. The main contributions
can be described as follows:

• A symmetrical judgment method for joint-limit avoidance is proposed to guarantee
that both the planned tool points and their middle points can satisfy the joint-limit
constraint, which is effective and simple to apply;

• A new stiffness index based on the stiffness ellipsoid and its symmetry is designed
to balance the effects of stiffness and singularity indices in a weighted combination,
which can prevent stiffness from being submerged by the singularity index in value;

• Corresponding to SSPOS, the piecewise-global-optimization-strategy (PGOS) and its
redundant optimization method are proposed, which can comprehensively consider all
the given tool points and the computational load. Meanwhile, a simple displacement
constraint method of γ is designed.

The remainder of this paper is organized as follows. Section 2 presents the performance
indices and their combination method. In Section 3, the proposed posture optimization
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method is introduced in detail. The simulation and experiment results are analyzed and
compared with previous research work in Section 4. And the conclusions are given in
Section 5.

2. Performance Indices and Their Combination Method

In this section, the join-limit is discussed as the judgmental constraint and the corre-
sponding judgment method is proposed. Meanwhile, the singularity and stiffness perfor-
mance indices and their combination are illustrated.

2.1. Joint-Limit Constraint

Before the trajectory planning of robot milling, a series of tool points on the target
milling path is obtained by the CAM system. For the posture optimization of these tool
points, the traditional joint-limit judgment method is to directly compare the current joint
angle with the corresponding limit range as follows:

θ
j
min ≤ θ

j
i ≤ θ

j
max (1)

where θ
j
i is the angle of j-th joint in i-th tool point, [θ j

min, θ
j
max] is the value range of i-th joint.

However, Equation (1) only ensures that the optimized points can satisfy the joint-limit
constraints, which is suitable for the machining process without contour motion, such as
robot drilling. But for the milling process, joint interference might occur at the middle
points between adjacent planned points.

The distance between the given tool points is generally close because of the accuracy
constraint. Hence, the change range of each joint angle between two given points is small
when they are away from the singular position. Therefore, a simple judgment method of
joint-limit is designed as follows:

θ
j
min + Δθ j ≤ θ

j
i ≤ θ

j
max − Δθ j (2)

where Δθ j > 0 is the designed allowance, which acts on the initial value boundary sym-
metrically. The value of Δθ j can be set according to the distance between the two planned
points. The farther the distance, the larger the value of Δθ j. Equation (2) provides a simple
and effective method to guarantee that both the optimized points and the corresponding
middle points can be limited to avoid joint interference.

2.2. Singularity Performance Index

There are two main, widely used singularity performance indices that are manipula-
bility and condition number of the Jacobian matrix. The manipulability index Kmani can be
defined as follows:

Kmani =
√

det[J(θ)JT(θ)] (3)

where J(θ) is the Jacobian matrix and Kmani ∈ [0, + ∞). The larger the value of Kmani, the
better the manipulability.

In general, the condition number index of the Jacobian matrix can be defined as
follows:

Kcond = ||J(θ)||||J−1(θ)|| (4)

where ‖·‖ denotes the condition number of matrix. In particular, the condition number
defined in the Frobenius norm form is the analytic function of J(θ) and does not need to
calculate the singular value. Therefore, the singularity index Ksin in the Frobenius norm
form is employed in this paper as follows:

Ksin =
1
m

√
tr(HHT)tr[(HHT)

−1
] (5)
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where Ksin ∈ [1, + ∞), H =

[ 1
L I3 × 3 03 × 3
03 × 3 I3 × 3

]
J(θ), m is the number of rows of J(θ), L is

the characteristic length of the robot. The closer the distance to the singular position, the
greater the value of Ksin.

2.3. Stiffness Performance Index

Under the assumption of flexible joints and rigid links, the compliance matrix of robot
EE in the Cartesian space can be obtained as follows:

C(θ) = J(θ)Kθ JT(θ) (6)

where Kθ is the diagonal matrix of joint stiffness. For 6R IRs shown in Figure 1, C(θ) is a 6
× 6 matrix and can be partitioned as follows:

C(θ) =

[
Cf d(θ) Cf δ(θ)
Ctd(θ) Ctδ(θ)

]
(7)

where Cf d(θ), Cf δ(θ), Ctd(θ) and Ctδ(θ) are 3 × 3 compliance submatrices and reflect
force-linear displacement, force-angular displacement, torque-linear displacement and
torque-angular displacement, respectively.

During the robotic milling process, the cutting force is small, owing to the shallow
cutting depth and high spindle speed. Thus, to reduce the complexity and computational
load, only the force-linear displacement is considered. The force-linear displacement can
be described as follows:

d =

⎡⎣dx
dy
dz

⎤⎦ = Cf d(θ)

⎡⎣ fx
fy
fz

⎤⎦ = Cf d(θ) f (8)

where f is the cutting force and d is the corresponding displacement vector with three
elements. Assuming that unit deformation occurs at robot EE, it can be written as follows:

‖d‖ = dTd = 1 (9)

Based on Equations (8) and (9), the following relationship can be obtained:

f T
uniC

T
f d(θ)Cf d(θ) funi = 1 (10)

where funi is the fore vector causing unit deformation. As shown in Figure 2, the distribution
of funi in Cartesian space can be described as an ellipsoidal surface called force-linear
stiffness ellipsoid, which is symmetrical in space. The volume, shape and posture of
the stiffness ellipsoid reflect the distribution of the end stiffness in space. The values and
directions of the short and long semi-axes are the magnitude and directions of the minimum
and maximum stiffness, respectively.

Based on the stiffness ellipsoid and its symmetry, various stiffness indices are designed.
In this paper, the omnidirectional index is employed based on the volume of stiffness
ellipsoid as follows:

Ksti =
1

Vse
(11)

where Vse is the volume of stiffness ellipsoid and can be calculated as follows:

Vse =
4
3
ß˘1˘2˘3 (12)

where ˘1, ˘2 and ˘3 are the eigenvalues of CT
f d(θ)Cf d(θ), respectively. Ksti ∈ (0, + ∞) and

the smaller the Ksti, the better the stiffness performance of robot EE.
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Figure 2. Force-linear stiffness ellipsoid.

2.4. Combination of Singularity and Stiffness Indices

The singularity and stiffness indices need to be combined as one scalar index for
the following optimal process, where the weighted combination is the most wildly used
method. As can be seen from Equations (12) and (13), the value range of Ksti is (0, + ∞).
However, the stiffness of each joint is finite for a real IR. Meanwhile, the volume of the
stiffness ellipsoid changes gently at the same tool point with different postures. Therefore,
there is a big gap between Ksin and Ksti in terms of value boundary, change amplitude and
order of magnitude. In some tool points, the effect of Ksti might be submerged by Ksin in
a directly weighted combination. Hence, a new stiffness index is proposed in this paper
based on Ksti as follows:

Knew
sti =

√√√√ (Kstimax − Kstimin)
2

(Kstimax − Ksti)
2 (13)

where Kstimax and Kstimin are the maximum and minimum value according to Equation (12)
at the same point with different γ posture. Knew

sti ∈ [1, + ∞) and the smaller the Knew
sti , the

batter the overall stiffness performance of the robot EE.
According to Equations (5) and (13), Knew

sti and Ksin have same value range and order
of magnitude and can be combined with the following form:

Kcom = ω1Ksin + ω2Knew
sti (14)

where ω1 and ω2 are the weight factors and belong to (0, 1]. At present, Kcom can be
selected as the optimization target for the planning of γ. The smaller the Kcom, the batter
the performance of robotic milling.

3. Redundant Posture Optimization Based on Piecewise Global Optimization Strategy

3.1. Fundamental of the Piecewise Global Optimization Strategy

The traditional SSPOS is the most commonly used method but is easy to lead to
poor optimization effects on subsequent points since only one point is considered in each
optimization process. Moreover, due to the displacement constraint of γ between two
adjacent tool points, the optimization process might even fall into a bad region and cannot
jump out. Hence, SSPOS is only suitable for the machining process with a single-point
operation such as robotic drilling.

The global optimization strategy, which can comprehensively consider all the given
tool points, is an effective method to avoid the problems caused by SSPOS. Nevertheless,
the quantity of tool points is usually large, which leads to a high computational load
for global optimization. Therefore, a piecewise global optimization strategy (PGOS) is
proposed, and its flowchart is shown in Figure 3. Firstly, the segmentation is conducted
for the given path on the principle of fixed length or fixed-point quantity. Then, globe
optimization is employed in each segment until all tool points are optimized, which is
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introduced in detail in Section 3.2. In particular, the last tool point of the previous segment
provides the displacement constraint of γ for the first point of the next segment.

Figure 3. Procedures of the proposed PGOS.

3.2. Redundant Posture Optimization Method Based on PGOS

Based on PGOS given in Section 3.1, the proposed optimization method can be de-
scribed as follows with the flowchart shown in Figure 4.

Figure 4. Redundant posture optimization method based on PGOS.
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• Step 1: Path segmentation

The fix point quantity principle is employed to divide the target path into several
segments. It is assumed that N segments are generated with M tool points in each segment.
Set j = 1 and go to Step 2.

• Step 2: Traversal of each point with step length Δγ in j-th segment.

For i-th point, the initial value range of γ
j
i is [−ß, ß]. In this range, Δγ is set to be

the step length for traversal to obtain the critical information. Firstly, the value range
of γ

j
i satisfying the joint-limit constraints can be obtained according to Equation (2) and

described as the data range Ψj
i .

Secondly, the singularity and stiffness indices of each step in Ψj
i can be calculated

according to Equations (5) and (11) and stored into the data sequence [
j
iK

m
sin] and [

j
iK

m
sti]

respectively, where m = 1, 2, . . . , n denotes the step number. After the traversal of i-th
point in j-th segment, the maximum and minimum stiffness indices j

iKstimax and j
iKstimin in

Equation (13) can be obtained from [
j
iK

m
sti].

When all M points are traversed in j-th segment, the critical data obtained above is
stored to the dataset Φj = {Ψj

i , [
j
iK

m
sin], [

j
iK

m
sti],

j
iKstimax, j

iKstimin} (i = 1, 2, .., M). Then, go
to Step 3.

• Step 3: Determination of the displacement constraints of γ between adjacent planned
tool points

The displacement constraint of γ should be given to limit its variation range between
two adjacent planned points. In traditional method, the velocity planning of other five
DoFs needs to be executed repeatedly, which is unnecessary and has high computational
load. Therefore, a simple method according to the maximum allowable velocity is designed
as follows:

γ
j
i ∈ [γ

j
i−1 − Δγ

j
i , γ

j
i−1 + Δγ

j
i ]

Δγ
j
i = max(

∣∣∣Pj
i −Pj

i−1

∣∣∣
vpmax

,

∣∣∣αj
i−α

j
i−1

∣∣∣
ωαmax

,

∣∣∣βj
i−β

j
i−1

∣∣∣
ωβmax

)ωγmax
(15)

where Pj
i = [pj

ix, pj
iy, pj

iz

]
is the position vector, α

j
i and β

j
i are the posture coordinate, vpmax,

ωαmax, ωβmax and ωγmax are the given maximum allowable velocities, respectively. The
displacement constraint given in Equation (15) is effective and efficiency without prior
velocity planning. In particular, the displacement constraint of γ

j
1 (j > 1) should be

determined by γ
j−1
M as shown in Figure 3. Then, go to Step 4.

• Step 4: Globe optimization of j-th segment

For j-th segment, the globe optimization model of M points can be constructed as
follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

min
M
∑

i = 1
Kcom(γ

j
i)

s.t.γj
i ∈ Ψj C1

γ
j
i−1 − Δγ

j
i ≤ γ

j
i ≤ γ

j
i−1 + Δγ

j
i C2

(16)

where condition C1 can be obtained from dataset Φj, C2 can be determined by Equation

(15). During the calculation of Kcom(γ
j
i) according to Equation (14), the performance indices

Ksin(γ
j
i) and Knew

sti (γ
j
i) can be obtained by linear interpolation based on Φj and without

complex calculation process, such as the inverse kinematics of robot.
The Fmincon function in MATLAB is employed to conduct the optimization solution

where condition C2 is used as the linear inequality constraint. After the optimization of j-th
segment, make the following judgment:

If j = N, the redundant posture optimization of the total path is finished;
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If j < N, then empty the dataset Φj, j = j + 1 and back to Step 2 to conduct the
optimization of next segment.

4. Simulation and Validation

In this section, the posture optimization simulation of a complex spatial path is
performed to evaluate the good performance of the proposed method. Analysis and
comparisons are conducted with the representative method.

4.1. Environment Setup

As shown in Figure 5a, the YASKAWA ES165D serial robot assembled with a high-
speed spindle is employed in the simulation and experiments. The Denavit–Hartenberg
(D-H) parameters under the modified D-H method are shown in Figure 5b and Table 1.
The joint limit parameters are given in Table 2.

Figure 5. Robotic milling system. (a) YASKAWA ES165D serial robot with a high-speed spindle.
(b) D-H model of robotic milling system.

Table 1. D-H parameters of ES165D robot.

Coordinate System i ai−1 (mm) αi−1 (Degree) di (mm) θi

1 0 0 650 θ1
2 285 90 0 θ2
3 1150 0 0 θ3
4 250 90 1225 θ4
5 0 −90 0 θ5
6 0 90 225 θ6
7 250 0 123 0

Table 2. Joint-limit parameters of ES165D robot.

Joint i Positive Limit (Degree) Negative Limit (Degree)

1 180 −180
2 166 30
3 120 −80
4 360 −360
5 130 −130
6 360 −360

103



Symmetry 2022, 14, 2066

The joint stiffness of the ES165D robot can be measured and identified by the loading
and measuring experiments. The force loaded on the robot EE is measured by a six-
dimensional force sensor and the corresponding translational deformation is obtained by
the RADIAN Core (API) laser tracker. The stiffness of each joint is illustrated in Table 3.

Table 3. Joint stiffness of ES165D robot (Nmm/rad).

kθ1 kθ2 kθ3 kθ4 kθ5 kθ6

1.187 × 109 2.578 × 109 3.301 × 109 3.401 × 108 2.608 × 108 3.158 × 107

4.2. Simulation Results of Posture Optimization

As shown in Figure 6, the intersecting line constructed by two orthogonal cylindrical
surfaces is employed as the test path. And the position and posture relationship between
the test intersecting line and the milling robot is shown in Figure 7 where OW XWYW ZW
is the workpiece coordinate system. The mathematical expression of intersecting line in
OW XWYW ZW is defined as follows:⎧⎨⎩

x = r cos θ
y = r sin θ

z = R2 − r2 sin2 θ

(17)

where θ ∈ [0, 2ß], R = 500 and r = 300 are the radius of two cylindrical surfaces,
respectively. The blue line containing 100 points is the target path of the tool center point
(TCP). And the red arrow is the posture of the milling tool. Hence, the γ coordinate rotating
around the red arrow is redundant and needs to be optimized.

Figure 6. Test intersecting line.

Based on the performance indices given in Section 2, the comprehensive performance
of the robot in each tool point with different postures can be illustrated in Figure 8. The
white areas indicate the region of joint-limit, where the corresponding γ cannot be chosen.
In other areas, according to the color bar on the right, the darker the color, the better the
comprehensive performance. Therefore, the redundant posture optimization is to obtain a
continuous path in Figure 8, which can go through dark areas.

As shown in Figure 9a, the optimization results obtained by the traditional SSPOS
method are illustrated by the red curve. As can be seen, due to the unreasonable joint-limit
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judge method, the middle points between the adjacent given tool points might not be able
to satisfy the joint-limit constraint, such as the B area, especially when the given tool points
have a long distance. Meanwhile, the SSPOS can easily to lead to the gradual deterioration
of the optimization process. As can be seen from the A area, the γ optimization enters the
bad area and cannot jump out because of the displacement constraint of γ between adjacent
points. Therefore, the SSPOS has good performance for single-point optimization, such as
robotic drilling, but is not suitable for robotic milling with a continuous path.

Figure 7. Pose and posture relationship between the test intersecting line and milling robot.

Figure 8. The comprehensive performance of robot in each tool point with different posture.

105



Symmetry 2022, 14, 2066

Figure 9. Optimization results of redundant posture. (a) Result by SSPOS. (b) Result by PGOS.

The optimization results obtained by PGOS are shown in Figure 9b, and the corre-
sponding joint angles are shown in Figure 10. For the first 50 points, the optimization
results are similar to SSPOS. The difference is that both the optimized tool points and their
middle points in the D area can be guaranteed to satisfy the joint-limit constraints where
Δθi = 5 ◦ (i = 1, 2, .., 6) in Equation (2). It means that the joint-limit constraint strategy
given in Equation (2) is a simple and effective scheme, especially for the areas near the
joint-limit boundary. For the subsequent 50 points, the PGOS finds the optimal path, which
is away from the A area in Figure 9a. Overall, the robot always has a good comprehensive
performance by the proposed PGOS.

Figure 10. Optimized γ and the corresponding joint angles by PGOS.

5. Conclusions

In this paper, a novel redundant posture optimization method is proposed, and the
main conclusions are as follows:

• The joint-limit is regarded as a constraint and the singularity and stiffness perfor-
mances are the optimization target. Correspondingly, the effective and symmetrical
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judgment method of joint-limit and the performance indices of singularity and stiffness
are designed;

• The PGOS is proposed and all the given tool points in their corresponding segment are
considered simultaneously. Meanwhile, the computational load of the optimization
solution is limited by the designed segmentation strategy;

• As can be seen from the simulation results, the proposed method has better planning
quality and can avoid the gradual deterioration caused by SSPOS, which is suitable
for the machining process with a continuous path.
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Abstract: In response to the problems of slow running speed and high error rates of traditional flight
conflict detection algorithms, in this paper, we propose a conflict detection algorithm based on the use
of a relevance vector machine. A set of symmetrical historical flight data was used as the training set
of the model, and we used the SMOTE resampling method to optimize the training set. We obtained
relatively symmetrical training data and trained it with the relevance vector machine, improving the
kernels through an intelligent algorithm. We tested this method with new symmetrical flight data.
The improved algorithm greatly improved the running speed and was able to effectively reduce the
missed alarm rate of in-flight conflict detection symmetrically, thus effectively ensuring flight safety.

Keywords: flight conflict detection; relevance vector machine; Bayesian optimization

1. Introduction

With the rapid development of civil aviation and the rapid growth in flight volumes,
ensuring flight safety has become an essential guarantee in the rapid development of
the aviation industry. Flight conflict detection is a crucial method to ensure flight safety.
According to aircraft tracking information, flight intention information and external envi-
ronmental information provided by navigation equipment are used identify flight conflicts
between two aircrafts during the conflict detection time. Two methods are mainly used to
solve the problem of flight conflict detection: the geometric method and the probability
method [1]. The geometric conflict detection method is based on the use of geometric
calculations to judge whether the aircraft has potential flight conflicts within the geometric
range of the encounter. However, the problem with this method is that the actual situation
cannot be represented by a strict geometric relationship between the aircrafts, and many
factors need to be considered, such as the influence of wind, pilot operation, and the
external environment.

As a result, the geometric conflict detection method suffers from issues including low
certainty and large error values [2]. The study of probability approaches with some fault
tolerance is growing in popularity due to the numerous issues with geometric methods
that are caused by the mistakes in flight data. Traditional probabilistic conflict detection
methods include those based on probability flow theory, complex networks, Markov
chains, game theory, and other methods [3–5]. In 2000, Prandini and others used the
probability analysis method to analyze the measurement index of complex flight trade-offs
and established a flight collision avoidance model. Almost all subsequent studies have
improved and expanded upon this model [6]. Shi Lei and others proposed a probabilistic
short-term conflict detection algorithm based on the idea of a hybrid system and position
space discretization, which uses the tracking and intention information in relation to
monitoring information to predict the short-term track of a flight based on the state-related
random linear hybrid system [7]. Daalen et al. used probability flow theory to solve
the upper probability bound of overall flight conflicts. Jacquemart et al. proposed the
simulation of aircraft motion rollout with the use of a Markov chain, and used an important
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sampling method to calculate conflict probabilities [8]. Compared with the above methods,
intelligent methods, such as support vector machines, have the advantages of strong real-
time performance, high accuracy, relatively small calculation, and small error values, so
they have become a new hot spot in flight conflict detection research [9,10].

In the research on the solution of conflict detection problems through a support vector
machine, Jiao Yuliang and others first used a support vector machine to propose the use
of the horizontal two-dimensional conflict detection method for high-altitude routes [11].
Han Dong and others used the support vector machine method to detect flight conflicts
based on an ellipsoidal protected area, and used simulation data to train the classifier in
advance to carry out efficient conflict detection suitable for low-altitude flights [12]. Wu
Minggong and others combined the support vector machine classification algorithm, the
sigmoid function, and an elliptical protected area to establish a flight conflict detection
model that can simultaneously output the conflict or lack thereof and its probability of
occurrence [13]. On this basis, Wang Ershen used the improved ID3 decision tree algorithm
to reduce the search space to a local method to screen the aircraft with potential flight
conflicts, used the random forest method to select the appropriate training set, and used
the tanh-function optimization to easily saturate the sigmoid function. A probability
map of SVM classification obtains the following results [14]: the above methods have all
been used to study flight conflict detection problems with the use of a support vector
machine, but support vector machines have many disadvantages. For example, an SVM
cannot calculate the posterior probability distribution of a sample output, an SVM is not
suitable for multi-classification problems, and SVM hyperparameters need to be obtained
through cross-validation, which is very time-consuming. Furthermore, the kernel of an
SVM must be positive and definite, whereas RVM avoids these disadvantages. Compared
to SVM, a relevance vector machine can better meet the mission needs of flight conflict
detection. In this paper, we propose a flight conflict detection method based on the use
of a relevance vector machine. Using the SMOTE resampling method to optimize the
training set, we establish an ellipsoidal protected area model, analyze historical flight data,
establish an RVM classification model, and optimize the kernel through various intelligent
algorithms, as well as comprehensively analyzing and selecting the best kernels. In terms of
the running speed, this method only takes 0.001 s to run, an extremely fast running speed.
In terms of classification accuracy, the optimized relevance vector machine model exhibits
a 20% higher accuracy than the SVM model. In terms of innovation, this study represents
the first time an RVM has been employed in flight conflict detection. In applications, by
loading the trained classifier before take-off, the flight conflict detection speed can be
effectively improved, and flight safety can thus be guaranteed.

2. Methods

Flight conflict detection is a two-classification problem, with only two results: conflict
or non-conflict. In previous studies, the excellent two-classification machine learning
algorithm of the SVM (support vector machine) was used to solve flight conflict detection
problems. Although SVM has good promotion ability and avoids the local optimum,
there are still problems such as its slow speed on the testing set and its low classification
accuracy. Compared with support vector machines, the algorithm used in this paper can
give a probabilistic output and it has the following advantages: better generalization ability,
better sparsity, more flexible kernel selection, no mandatory positive definite, and simpler
parameter settings. Conflict detection requires a high running speed, and RVM has better
sparsity than SVM, so its speed on testing sets is faster. Therefore, in this paper, we propose
a flight conflict detection method based on the use of a relevance vector machine to solve
this problem.
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2.1. Data Preprocessing

We first obtain the current position information for the two aircrafts and the speed
vectors through the ADS-B system. The position information of the two aircrafts is
Xa = (xa, ya, za), Xb = (xb, yb, zb), and the speed vectors of the two aircrafts are
Va = (vxa, vya, vza) and Vb = (vxb, vyb, vzb). We extract the feature quantity, reduce
the sample dimension, and obtain the sample information X = Xa − Xb = (x, y, z),
V = Va − Vb = (vx, vy, vz) and use a detection time t, to obtain a simplified sample
with a sample feature dimension of 7 [15–17], that is:

F= (x, y, z, vx, vy, vz, t) (1)

In airspace, the probability of free flight conflicts is a small event in regard to the
total sample, so there is an overwhelming advantage for the collected samples without
conflicts. In order to avoid this imbalance in the number of samples affecting the conflict
detection process, the number of positive and negative samples should be roughly bal-
anced. We improve the robustness of the model to the sample set through the a relatively
symmetrical training set. We improve the classification ability through the SMOTE resam-
pling method, that is, by inserting virtual samples between adjacent negative samples to
reduce the occurrence of over-adaptation [18]. At the same time, normalization of the data
is performed:

Y =
X − Xmin

Xmax − Xmin
(2)

wherein Y ∈ [0, 1] is the normalized value, X is the sample eigenvalue, and Xmax, and Xmin
are the maximum and minimum eigenvalues in the total sample, respectively.

2.2. Definition of Relevance Vector Machine

The given training set is G = {(xi, hi)}N
i=1, where {xi}N

i=1 is the input sample vector,
{hi}N

i=1 represents the corresponding target value, and N is the total number of samples.
The basic form of the relevance vector machine model output is [19–27]:

y(x, w) =
N

∑
i=0

wiK(x, xi) + w = ϕ(x)w (3)

Among them, w is the weight value vector, K(x, xi) is the kernel, and ϕ(x) is the
M × (M + 1) order kernel matrix. Assuming that mi it obeys the normal distribution with
a mean value of y(xi, w) and a variance of σ2, it is expressed by probability as

p(hi) = N
(

hi

∣∣∣y(xi; w), σ2
)

(4)

The likelihood function of the sample is

p
(

h
∣∣∣w, σ2

)
=

N
Π

i=0
N
(

hi

∣∣∣y(xi; w), σ2
)
= (2πσ2)

− N
2 exp{−‖h − Φw‖2

2σ2 } (5)

The conditional probability is

P(h∗|h) =
∫

P
(

h∗
∣∣∣w, σ2

)
p
(

w, σ2
∣∣∣h)dwdσ2 =

∫
P
(

h∗
∣∣∣w, σ2

) p
(
h
∣∣w, σ2)p

(
w, σ2)

p(h)
dwdσ2 (6)

In order to avoid overfitting, the relevance vector machine adds prerequisites to the
weight vector w, so that w is a standard normal distribution, so there are:

p(w|μ ) = ΠN
i=0N

(
wi

∣∣∣0, μ−1
i

)
= ΠN

i=0
μi√
2π

exp

{
−μiw2

i
2

}
(7)
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In this case, the required conditional probability formula is

P(h∗|h) =
∫

P
(

h∗
∣∣∣w, μ, σ2

)
p
(

w, μ, σ2
∣∣∣h)dwdμdσ2 (8)

In the formula μ = [μ0, μ1, μ2, · · · , μN ]
T is a N + 1-dimensional hyperparameter

vector, which obeys the Gamma distribution. Through the Bayesian theory, we can find:

p
(

w, μ, σ2
∣∣∣h) = P

(
w
∣∣∣h, μ, σ2

)
p
(

μ, σ2
∣∣∣h) (9)

In the formula:

p
(

w
∣∣∣h, μ, σ2

)
=

p
(
h
∣∣w, σ2)p(w|μ )

p(h|μ, σ2)
= (2π)− N + 1

2
|Φ|− 1

2 exp

{
− (w − α)TΣ−1(w − α)

2

}
(10)

Φ =
(

σ2 ϕT ϕ + A
)−1

(11)

α = σ−2ΦϕTh (12)

A = diag(μ0, μ1, μ2, · · · , μN) (13)

From the delta approximation function P
(
μ, σ2

∣∣h) ≈ δ
(
μMP, σMP

2), we can get:

P(h∗|h) ≈
∫

P
(

h∗
∣∣∣w, μMP, σ2

MP

)
P(w|h , μMP, σ2

MP|h )dw (14)

Integrating the above formula yields:

p
(

h∗
∣∣∣h, μMP, σMP

2
)
= N

(
h∗
∣∣∣y∗, σ∗2

)
(15)

y∗ = ϕ(x∗)α (16)

σ∗ 2 = σMP
2 + ϕ

(
x
∗
)

TΦϕ(x∗) (17)

The solution of the model can be further transformed into how to obtain μMP and
σMP

2, which can be obtained by using the maximum likelihood method:

P
(

h
∣∣∣w, σ2

)
P(w, μ)dw = 2π− N

2 |Ω|− 1
2 exp

(
−1

2
hTΩ−1h

)
(18)

where Ω = σ2 I + ϕA−1 ϕT . In the above formula, the solution of a and b with zero partial
derivatives can be obtained:

μnew
i = γi

μ2(
σ2)new = ‖h−Φμ‖2

N− N
∑

i=0
γi

γi = 1 − αi ∑i,i

(19)

Among them, in the process of parameter change, a part of μ tends to infinity, and
its corresponding weight value vector w will tend to zero. This means that a part of the
corresponding basis function is “eliminated”, and when the final result converges, the w
corresponding to the remaining μ is the relevance vector we need.

2.3. Flight Conflict Detection Model

Flight conflict detection involves detecting the aircraft within the scope of the airspace
through the use of navigation equipment to determine whether the aircraft can continuously
meet the requirements of the minimum safety interval within a certain period of time. If
the minimum safety interval is not met at the time t, it is determined that there is a flight
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conflict. The ellipsoid protected area is established with the aircraft as the center. The
protected area can be formulated as follows [28]:

x − x0

a2 +
y − y0

b2 +
z − z0

c2 ≤ 1 (20)

wherein a b, and c represent x, y, and z, respectively, three half-axis focal lengths.
According to China’s “Civil Aviation Air Traffic Management Rules [29]”, a = b = 1000 m,

and c = 150 m. These values are used to establish a protected area in Figure 1.

Figure 1. Protected area model.

3. Results

In this section, 10,000 sets of samples from the historical ADS-B dataset were first used
as a training set for RVM training to analyze the feasibility of the proposed conflict detection
method. The Gauss kernel with a strong nonlinearity mapping capability was selected as
the kernel of the RVM, and 100 groups of samples were used to verify the accuracy of the
conflict detection method. Secondly, the genetic algorithm, particle swarm algorithm, and
Bayesian optimization were used to optimize the hyperparameters of the model. Finally,
a comparison of the three optimization methods was carried out to prove the effectiveness
of the relevance vector machine in flight conflict detection.

3.1. Accuracy Analysis of Conflict Detection Model

A simulation experiment was carried out on 100 pairs of dual-aircraft flight data in the
training set, and the confusion matrix of the classification result and the result prediction
diagram of the classification method were obtained. By comparing the predicted value and
the actual conflict value, the accuracy of the method was analyzed.

Figure 2 shows a confusion matrix of the testing set without optimization. In the
confusion matrix, TP in the upper left corner indicates that there was no conflict risk in real
cases and there was no conflict in the prediction, while FP in the lower left corner indicates
that there was a conflict risk in real cases, but there was no conflict in the prediction, and
FN in the upper right corner indicates that there was no conflict risk in real cases, but there
was a conflict in the prediction. Lastly, TN in the lower right corner indicates that there was
a conflict risk in real cases and there was a conflict in the prediction. In the result prediction
diagram (Figure 3), the blue line represents the actual conflict situation of the training set,
and the red line represents the prediction result of the training set.
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Figure 2. Confusion matrix of the relevance vector machine.

Figure 3. Prediction result graph of the relevance vector machine.

As can be seen in Figure 2, the training model without hyperparameter optimization
still demonstrated a 70% accuracy. At the same time, judging from the ratio of TP and
TN, after data preprocessing, the leakage missed alarm rate and false alarm rate of conflict
risk maintained a relatively consistent level. The flight conflict detection method based on
the RVM could be considered to have a certain feasibility, but it can also be seen that the
accuracy of this method had great room for improvement. Thus, the detection accuracy of
this method was improved through the optimization of the kernel.

3.2. Accuracy Analysis after Optimization of the Genetic Algorithm

In order to improve the accuracy in conflict detection and obtain a better RVM model,
the kernel of the relevance vector machine was optimized by using a genetic algorithm [30].
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As shown in Figures 4 and 5, in this case, the RVM training model optimized by means
of a genetic algorithm displayed an 80% accuracy and was significantly improved before
the phase angle optimization. At the same time, the missed alarm rate and false alarm rate
of conflict risk maintained relatively consistent levels.

Figure 4. Confusion matrix after genetic algorithm optimization.

Figure 5. Improved genetic algorithm results prediction graph.

As shown in Figure 6, the optimization of the kernel was close to convergence after
eight generations and had a good convergence rate. The disadvantage of this optimization
approach is that the optimization speed cannot meet the requirements, and there is still
room for improvement in its accuracy.
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Figure 6. Genetic algorithm optimization process diagram.

3.3. Accuracy Analysis after Optimization of PSO Algorithm

The particle swarm optimization algorithm (PSO) is a swarm intelligence optimization
algorithm that simulates the predation behavior of birds and fish. PSO has the advantages
of a simple principle, a small amount of calculation, and fewer control parameters, so
it is widely used in scheduling problems, optimization problems, path planning, and
other practical problems. However, PSO still has some shortcomings, such as the fact
that the algorithm easily falls into the local optimum, can easily become “precocious”,
and has a slow convergence rate and low convergence accuracy [31–33]. As shown in
Figures 7 and 8, the RVM kernel was optimized by means of particle swarm optimization,
the optimized RVM model demonstrated an 81% accuracy in the classification of the
training sets, and the optimized performance of the model was dramatically improved
compared to the unoptimized model.

Figure 7. Confusion matrix after particle swarm optimization.
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Figure 8. Results prediction chart based on improved particle swarm optimization.

3.4. Accuracy Analysis after Bayesian Optimization

Bayesian optimization (BO) is also called active optimization. This method is essen-
tially model-based sequential optimization, and the next round can only be carried out
after the end of the current round of evaluation. The subsequent evaluation position can be
selected according to the information obtained by unknown objective functions to obtain
the optimal solution at the least cost [34,35].

As shown in Figures 9 and 10, the model optimized by means of the Bayesian approach
demonstrated the highest accuracy for the training set, and the balance between missed
alarm rate and the false alarm rate was also the best of the four models, with extremely
high symmetry for the classification results.

Figure 9. Confusion matrix after Bayesian optimization.
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Figure 10. Results prediction chart based on Bayesian optimization.

As can be seen in Figures 11 and 12, in the process of Bayesian optimization, the fourth
generation was already close to the optimal kernel, and the convergence rate was also the
fastest of all the optimization methods.

Figure 11. Bayesian optimization process diagram.
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Figure 12. Variation diagram of Bayesian optimization function.

3.5. Optimization Effect Comparison

In order to verify the feasibility of this method for flight conflict detection and the
optimized detection accuracy, the accuracy and running speed of the unoptimized flight
conflict detection method based on the relevance vector machine were compared with
those optimized using different methods in Table 1.

Table 1. Optimization effect comparison.

SVM RVM GA-RVM PSO-RVM BO-RVM

Running speed 0.3 s 0.0048 s 0.0012 s 0.0019 s 0.0013 s

Optimization time 3418 s 3184 s 388 s

Accuracy 69% 70% 80% 81% 89%

Through this comparison, we observed that the flight conflict detection methods based
on the use of the relevance vector machine were faster, and were thus able to meet the
tight time demands of the urgent task of flight conflict detection. From the perspective
of optimization speed, the Bayesian optimization method was much faster than the other
two optimization methods. It is worth noting that, in fact, the three kinds of optimization
refer to the optimization of the kernel. According to the different optimization effects, the
obtained kernel was different, and its classification performance was also different. From
the perspective of accuracy, Bayesian optimization demonstrated the best optimization
effect, with a relatively balanced and low missed alarm and false alarm rates. Thus, it was
able to meet the accuracy requirements of flight conflict detection during flight.

4. Conclusions

In this paper, we have proposed a flight conflict detection method based on the
use of a relevance vector machine. The conflict risk in the flight process was judged by
constructing a flight protection zone. The relevance vector machine was used to construct
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the model, and the RVM model was trained with 10,000 data elements. The accuracy
of the model was improved by optimizing the kernel. The model’s performance was
optimized by means of a genetic algorithm, a particle swarm algorithm, and a Bayesian
optimization method. After optimization, the accuracy of flight conflict detection after
Bayesian optimization was observed to be the highest, at 89%. At the same time, the
results of this method exhibit a symmetrical missed alarm rate and false alarm rate. In
addition, comparing the support vector machine and the relevance vector machine with
the optimized kernel, the results show that the optimized conflict detection method based
on the relevance vector machine displayed a better accuracy and a faster running speed,
which verifies the effectiveness of the method. In practical applications, with its extremely
fast running speed and high conflict detection accuracy, the flight conflict detection method
based on RVM can reduce flight collision risks through its use as a pre-training model. It
cannot be ignored that the flight conflict detection method based on the correlation vector
machine still presents problems, such as a poor training ability for large samples and an
accuracy which can still be improved. Our future work will focus on further improving the
method’s accuracy, and the influence of the hybrid kernel on the conflict detection effect
will be discussed.
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Abstract: According to the symmetrical characteristics of a new type of Reusable Launch Vehicle (RLV)
in the recovery phase, we studied the basic aerodynamic model data of Starship and the aerodynamic
data with rudder deflection, and the causes of its aerodynamic coefficients are expounded. At the same
time, we analyzed its stability and maneuverability. According to the flying quality requirements, the
lateral-directional model of Starship in the return phase at a high angle of attack is analyzed. Finally,
we analyzed the lateral heading stability and control deviation of Starship by using the criterion and
nonlinear open-loop simulations. The results show that the Starship has pitching and rolling stability,
but it only has heading stability in some ranges of angle of attack, and there is no heading stability
at a conventional large angle of attack. At the same time, after modal analysis and comparison of
flight quality, it can be seen that the longitudinal long-period model of the starship degenerates into
a real root and it is stable and convergent. The lateral heading roll mode is at level 2 flight quality,
the helical mode is at level 1 flight quality, and the Dutch roll mode diverges, which needs to be
stabilized and controlled later.

Keywords: Reusable Launch Vehicle; stability; manipulativeness; flying qualities; criterion analysis

1. Introduction

Since the former Soviet Union cosmonaut Gagarin [1] entered space for the first time,
after more than 60 years of continuous exploration and development in the field of manned
space flight, so far, there are two types of manned spacecraft in the world that can carry out
missions between space and earth: the space shuttle of the United States [2] and manned
spacecraft represented by Soyuz of Russia and Shenzhou of China [3,4]. However, except
for a small part of the space shuttle, other manned spacecraft are not reusable, and the
maintenance cost of space shuttles is very expensive, so the cost of space travel has been
exceedingly high, which greatly restricts the pace of human exploration of outer space.

Starship and Super Heavy are the next generation of reusable space transportation
systems proposed by Musk, founder of SpaceX, based on the vision of Mars colonization.
According to the company’s assumption, a wide range of missions can be accomplished
through a variety of combinations of the two core spacecraft: interplanetary missions such
as manned landing on Mars, near-earth missions such as space station transportation,
satellite deployment, and globally ultra-fast passenger transportation. A recent lunar
version of the starship program also won NASA’s bid for the Moon landing mission. As
a result, this system can theoretically meet the requirements of large-span transportation
activities between different spaces, ranging from near-earth activities to Mars colonization.

In recent years, with the development of civil aerospace enterprises, new opportunities
and challenges have been brought to the aerospace field. Since SpaceX publicized the ITS
program in 2016, the Starship program has undergone several major design changes and
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evolutions. In 2019, the first starship prototype was publicly displayed. Since then, SpaceX
has accelerated the research and manufacturing of starships by adopting the strategy of
rapid testing and iterative verification of prototypes: In 2019, the free suspension test and
safe landing test of the star worm preliminary verifier were completed [5]. Since 2020,
through intensive flight tests of prototypes SN5–SN15 [6–10], SpaceX gradually mastered
the key technologies of suspension at a low altitude of 150 m, flight at a high altitude of
10 km, roll maneuver, engine restarting powered braking, vertically soft landing at a fixed
point, and so on [11–15]. According to the current progress, the orbital flight test of the
Starship–Super Heavy system with high integration and comprehensive assessment is
expected to be realized soon, and the system is planned to be used for carrying out manned
missions such as landing on the Moon and Mars in the future [16–18].

The Starship–Super Heavy transportation system uses a two-stage fully reusable
vehicle scheme with a designed loading capacity of 100 t. After the superheavy booster
completes the first-stage powered flight separation, the starship continues the second-stage
powered flight and continues to accelerate to enter orbit. The design of the starship is a
combination of a two-stage rocket, orbiter, and reentry vehicle. The crew and payload are
placed in the load cabin at the front of the starship, which has a reentry and return capability
similar to that of the space shuttle orbiter [18–20]. The starship can carry a 50 t payload on
return and uses a power-braking vertical fixed-point recovery scheme during the landing
phase, which is similar to the Falcon 9 rocket [21,22]. With a simple shape and body
of cone-column combination, the starship adopts a unique tailless canard aerodynamic
configuration, and in order to meet the requirements of reentry flight, thermal tiles are laid
on the windward side to deal with the thermal environment during reentry flight [23]. The
current aerodynamic layout scheme of the starship is different not only from the manned
spacecraft and space shuttle schemes of the traditional space transportation system, but
also from the radical air-space shuttle scheme, and it is even significantly different from the
earlier scheme, thus attracting huge attention once proposed [24,25]. Different from both
the conventional manned spacecraft that is recovered by parachutes after semi-ballistic
reentry into the atmosphere, and the space shuttle that lands horizontally on the airport,
the landing method that the starship adopts is more similar to the recovery landing method
of the rocket “Falcon”, which realizes the vertical landing by the coordinated control of
rudder surfaces and vector thrust. A new rudder surface control that is different from
the traditional lift-body aircraft is adopted in the starship for this special takeoff and
landing way [26]. Traditional lift-body aircraft realize the control of attitude and path by
adopting the ailerons and vertical and horizontal tails, while the starship controls its body
through two pairs of wings scattered on the nose and tail, which can deflect along the
axial direction [27]. Zuo [27] made a detailed analysis of aerodynamic characteristics of the
shape of the early starships (2019) in the landing and low-speed stages. Combined with
aerodynamic characteristics such as lift/drag obtained from the simulation of subsonic
separation flow field under a large angle of attack and the changing rules of the vertex
moment along the deflection angle of leading and rear wings, a conclusion that four wings
of the starship layout are subject to the three-channel control was given. While during the
hypersonic and supersonic flight of reentry process, how about the wide speed-domain
characteristics of this configuration, whether reentry trimming at full speed domain can be
realized, how about the characteristics of the center of mass, whether the three channels
are stable, what outstanding characteristics and advantages this configuration have, why
such a unique design is taken, and many other problems remain to be further analyzed
and researched.

At present, domestic and foreign studies on manipulativeness stability characteristics
analysis are only limited to aircraft or taxiway takeoff and landing vehicles, and the
structure is relatively simple, such as studies on multivariable stability margin of reentry
aircraft [28], definitions of static stability margin of aircraft [29], and state feedback control
and stability analysis of hypersonic aircraft [30]. There is also research on modal stability
analysis of hypersonic aircraft with lift-body configuration [31], aerodynamic characteristics
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analysis of X-33-like vehicles [32], longitudinal and lateral flight quality research of saucer
aircraft [26,27], flight quality research of short take-off and vertical landing aircraft, criterion
analysis of Robert Weissman, etc. However, there is little research on the manipulativeness
and stability characteristics and flight quality of RLVs that can take off and land vertically.

This paper focuses on the starships, in view of the large angle of attack flight charac-
teristics during the recovery phase. The stability characteristics of aerodynamic derivatives
are analyzed, classical theory of flight dynamics of linearized small perturbation method
is applied to work out the motion characteristic root of longitudinal and lateral direction,
and analysis is carried out. At the same time, the principle of criteria is used to analyze the
lateral-directional stability and control the deviation of the starship. Finally, time-history
open-loop simulation is used to verify the above analysis.

2. Aerodynamic Configuration of Starships

This paper models the starship according to the size parameters publicized on the
official website of SpaceX, as shown in Figure 1. The wings are arranged according to the
canard layout, a pair of front wings are arranged at the cone section, and a pair of rear
wings are arranged at the end of the column section, both of which adopt trapezoidal wings.
The whole ship is 50 m in length, 9 m in diameter, about 18 m in rear wingspan, and 15 m
in front wingspan. The projected area of the whole plane is about 545 square meters. The
weight of the whole ship is 105 kg, and the fuselage is made of stainless steel. In light of
the shape and the distribution of the inner fuel tank and engine, the center of gravity of
the whole ship is estimated at 40 m from the nose, and the pitching axial inertia moment
coming through the center of gravity is 3.7 × 107 kg·m2.

 
Figure 1. Configuration of Starship.

Overall, as a lift reentry vehicle, its simple shape gives itself distinctive characteristics,
but it also brings several questions.
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The simple and coordinated shape of the cone-column -wing, which is facially symmet-
rical, intuitively facilitates the series combination with superheavy boosters with the same
diameter to form a simple two-stage rocket configuration, and this is much more compact
than the complicated parallel layout of the orbiter-fuel tank-booster of the space shuttle,
and the corresponding aerodynamic characteristics, flight control, and design of booster
separation during the active period are also much simpler. Is this simple configuration
suitable for lift reentry and return flight in a superwide speed domain?

A canard layout with a front-rear wings combination is adopted. The canard layout
is common in the design of tactical missiles and highly maneuverable fighters, but there
is no precedent in the design of reentry vehicles. The canard layout with relaxed static
stability technology can realize that all wings generate positive lift at the trimming state
and improve the aerodynamic efficiency of the aircraft. However, is it necessary for the
returning stage? In addition, the canard is located very near the front, which means that
the starship may face a severe aerodynamic heating environment during supersonic flight,
and will it cause a serious problem for thermal protection?

It is a significant change in comparison to the earlier starship schemes (both the
September 2018 and December 2018 versions had vertical tails) that the new version
adopts a tailless layout without vertical tails and ventral fin. Tailless design and canard
configuration will lead to the directional pressure center moving forward significantly.
Intuitively, it can be judged that the starship’s directional pressure center will be too
forward in most ranges of flight velocity and angle of attack. Will this pose a serious risk to
the lateral-directional static stability?

3. Performance Analysis

The new small-scale RLV starship that can vertically take off and land has a wing-body
fusion design with four new rudder surfaces (hereinafter referred to as “elevator-like”,
“aileron-like”, and “rudder-like”) at the front and rear for attitude motion. In order to
evaluate its stability and maneuverability, it is necessary to analyze its manipulativeness
and stability characteristics. Figure 2 shows the scaling model obtained by modeling the
shape layout published by SpaceX. The basic aerodynamic data and corresponding aerody-
namic derivatives were obtained by Computational Fluid Dynamics (CFD) calculation of
the layout, and the following analysis was made.

Figure 2. Configuration of small-scale Starship.

3.1. Analysis of Static Force and Moment Coefficients
3.1.1. Analysis of Polar Curve and Lift-Drag Ratio

In the absence of roll, yaw, and pitch, the changes of pole curve and lift–drag ratio
with angle of attack are analyzed. The results are shown in Figures 3 and 4. The tangent line
of the polar curve is drawn from the origin of the coordinate, the lift–drag ratio achieves
its maximum at the tangent point, and the corresponding angle of attack is the favorable
angle of attack αopt, which is 20◦.
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Figure 3. Polar curve.

Figure 4. Lift−drag ratio.

3.1.2. Analysis of Longitudinal Forces and Moments

Keep the elevator-like, aileron-like, and rudder-like still, δe = δa = δr = 0, and the
rate of roll, pitch, and yaw angle is 0, namely, under the condition of p = q = r = 0, the
starship’s lift coefficient, drag coefficient, and roll moment coefficient curve is shown in
Figures 5–7. In the figures, CL, CD, and Cm are, respectively, lift coefficient, drag coefficient,
and roll moment coefficient, and α is angle of attack. It can be seen from the figures:

(1) The lift coefficient increases with the increase in the angle of attack when−20◦ < α < 40◦,
and decreases with the increase in the angle of attack when α > 40◦. α= 40◦ is the
critical angle of attack.

(2) When 0◦ < α < 80◦, the drag coefficient increases with the increase in the angle
of attack; at −20◦ < α < 0◦ and α > 80◦, the drag coefficient decreases with the
increase in the angle of attack. When the angle of attack is 0, the drag coefficient is
the minimum; when the angle of attack is 80◦, the drag coefficient is the maximum.
So when the starship returns, choose a horizontal descent to minimize the speed of
descent with maximum resistance.

(3) When −20◦ < α < 0◦, Cm > 0, a positive pitching moment is generated to make the
starship raise its nose to reduce the angle of attack. Within the range of angle of attack
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α > 0◦, Cm < 0, a negative pitching moment is generated to make the starship bow its
nose to reduce the angle of attack.

Figure 5. Lift coefficient.

Figure 6. Drag coefficient.

Figure 7. Pitch moment coefficient.
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The above analysis shows that the changing rules of longitudinal static force and
moment coefficient along the angle of attack are consistent with actual flight characteristics.

3.1.3. Lateral-Directional Force and Moment Analysis

Curves of the starship’s lateral force coefficient, roll moment coefficient, and yaw
moment coefficient are shown in Figures 8–10. In the figures, Cs, Cl , and Cn are, respectively,
the lateral force coefficient, roll moment coefficient, and yaw moment coefficient. It can be
seen from the figures:

(1) The variation of static lateral force coefficient with angle of attack is as follows:
negative lateral force is generated if the side slip is positive, while if negative sideslip
occurs, positive lateral force occurs.

(2) When the positive side slip occurs, negative side force is generated, and then negative
roll moment is generated, so the roll moment coefficient is negative; when negative
sideslipping occurs, positive sideslipping force is generated, and then positive rolling
moment is generated, so the rolling moment coefficient is positive.

(3) When positive sideslip occurs, yaw moment coefficient is positive; when negative
sideslip occurs, yaw moment coefficient is negative.

Figure 8. Lateral force coefficient.

Figure 9. Roll torque coefficient.
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Figure 10. Yaw moment coefficient.

The above analysis shows that the lateral-directional static force and moment coeffi-
cient vary with the angle of attack in accordance with the actual flight characteristics.

3.1.4. Static Stability Analysis

The pitch static stability coefficient curve, roll static stability coefficient curve, and
yaw static stability coefficient curve are shown in Figures 11–13. In the figures, Cmα is the
roll static stability coefficient, Clβ is the roll static stability coefficient, and Cnβ is the yaw
static stability coefficient. It can be seen from the figure that the pitching static stability
of the starship decreases with the increase in the angle of attack. When −20◦ < α < 95◦,
Cmα < 0, the starship is longitudinally stable; when α = 95◦, Cmα = 0, the starship is in
neutral static stability, and at this point, the center of gravity and the focus coincide; when
α > 95◦, Cmα > 0, is statically unstable longitudinally. At this time, the longitudinal static
stability margin of the starship body needs to be analyzed, which needs to be estimated
in combination with the lift derivative CLα (reflected in the following sections). When
−20◦ < α < 10◦ and Clβ > 0, the static roll is unstable. When α > 10◦ and Clβ < 0, static
roll is stable. In the measured angle of attack range, Cnβ > 0, the starship has directional
static stability.

Figure 11. Pitch static stability coefficient.
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Figure 12. Roll static stability coefficient.

Figure 13. Yaw static stability coefficient.

4. Analysis of Dynamic Characteristics

4.1. Analysis of Dynamic Derivatives

The dynamic derivative is mainly the variation of the derivative of the dimensionless
moment with angle of attack measured at different angles of attack when all rudder surfaces
are neutral through the oscillating balance experiment, as shown in Figures 14–16.

Figure 14. Pitch damping derivative.
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Figure 15. Roll damping derivative.

Figure 16. Yaw damping derivative.

It can be seen from the figures that in the range of angle of attack −20◦ < α < 90◦ in the
starship recovery stage, the dynamic derivative conforms to the actual flight characteristics.

(1) When a starship raises its head and generates a positive pitch angular rate, q > 0,
a starship will also generate a negative pitch moment to prevent it from rotating
upwards. Therefore, in Figure 13, within the angle of attack −20◦ < α < 135◦, the
pitch damping derivatives are all negative, preventing the starship from rotating.
When α > 135◦, the pitching damping is positive. This is because under a large angle
of attack, because the air flow is in chaos, the polarity of the roll moment changes.
As a result, during the horizontal descent in the returning stage, the largest angle of
attack of the starships is 90◦ according to the analysis of its movement mode and path,
so within its range of angle of attack during its movement process, its pitch damping
derivative is negative all the time, which conforms to the actual flight characteristics.

(2) If the starship rolls to the right, p > 0, the left and right rear wings are asymmetrically
deflecting at this time, and a negative roll moment will be generated, which will
hinder the roll. Within the whole range of angle of attack, the negative roll moment
derivative is exactly caused by the roll angular rate, so the roll damping derivative is
consistent with the actual flight characteristics.

(3) The yaw damping derivative is negative in the range of angle of attack −20◦ < α < 90◦,
but positive in the range of α > 90◦, which promotes the yaw of the starship. Therefore,
this phenomenon is easy to cause the risk of excessive yaw in the recovery stage.
According to the analysis, the yaw damping derivative conforms to the actual flight
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characteristics in the range of a small angle of attack, but in the process of a large
angle of attack, it is underdamped.

4.2. Analysis of Manipulativeness Derivative
4.2.1. Pitching Manipulativeness Derivative

When the deflection of elevator-like is positive, δe > 0, this will destroy the balance
of the original star trek. Elevator-like is subject to an upward force, which lies behind the
center of gravity, which will produce a negative pitch moment, so regular pitch control
derivative angle of attack Cmδe should be negative, and based on analysis, the pitch control
derivative shown in Figure 17 is in line with actual flight characteristics.

Figure 17. Pitch manipulation derivative.

4.2.2. Rolling Manipulativeness Derivative

It can be seen from Figures 18 and 19 that when the aileron-like wing deflects along
the positive direction, δa > 0, a negative rolling moment is generated, so the rolling
control derivative Clδa is negative. When the rudder-like is deflecting along the positive
direction,δr > 0, a positive side force is generated. Because the rudder-like is located
above the axis of the arrow body, a positive rolling moment is generated. Therefore, the
cross-control derivative of rudder-like Clδr is positive, which is consistent with the actual
flight situation.

Figure 18. Roll manipulation derivative.
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Figure 19. Roll crossover derivative.

4.2.3. Yawing Manipulativeness Derivative

It can be seen from Figures 20 and 21 that when the rudder-like is positively deflected,
δr > 0, a positive side force is generated, and then a negative yaw moment is generated,
so the yaw control derivative Cnδr is negative. When the aileron is positively deflected,
because the starship is facially symmetrical in aerodynamic layout, it will produce the yaw
moment by coupling rudder-like and making it deflect. The positive deflection of aileron-
like produces negative roll torque, and the resultant force of lift force and gravity makes
it sideslip negatively. In order to offset the negative sideslip, rudder-like will produce a
positive yaw moment, so the yaw cross-manipulation derivative is Cnδa positive, which is
consistent with the actual flight situation.

Figure 20. Yaw manipulation derivative.
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Figure 21. Yaw crossover derivative.

4.3. Analysis of Modal Characteristics and Flight Quality

Similar to the aircraft with the flying wing layout, the starship, with the design of
wing-fuselage fusion is a facially symmetrical aircraft from which the vertical tails are
canceled, so the dynamic stability analysis method of conventional aircraft is adopted in its
dynamic stability analysis [31]. The longitudinal and lateral-directional linearized small
disturbance state equations are shown in (1)–(5) and (6), respectively.

.
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] (6)

The definition and expression of each parameter in the formula can be found in the
literature [31]. The above equation was used to calculate the characteristic roots of the
starship at the trimming angle of attack and compared with the motion characteristic roots
of B747 and a flying wing aircraft. Then, the analysis in coordination with the flight quality
of GJB-185-86 is shown below.
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4.3.1. Longitudinal Analysis

The characteristic equation of the longitudinal overall motion of the starship is calcu-
lated by Equations (1)–(5):

s4+2.119 s3+5.102 s2 + 0.09367 s + 5.601e−14= 0 (7)

The lateral-directional motion characteristic roots of the starship were obtained as
shown in Table 1 and compared with the longitudinal characteristic roots of B747 [26] and
a flying wing aircraft [26].

Table 1. Longitudinal motion characteristic root comparison.

B747 Flying Aircraft Starship

−0.4650 + 1.2456i −1.6 −1.05 + 1.99i
−0.4650–1.2456i 0.7 −1.05–1.99i
−0.0097 + 0.0445i −0.01 + 0.12i −5.98 × 10−13

−0.0097–0.0445i −0.01–0.12i −0.0185

It can be seen from Table 1 that the characteristic roots are all located in the negative
half-plane, indicating that the longitudinal motion is stable. In addition, the characteristic
roots are composed of a pair of conjugate complex roots and two negative real roots. It is
easy to find that the long-period mode degenerates into the negative real roots of the third
mode, which is between the long and short periods. When the starship is in longitudinal
motion, due to the shaking fuel, the center of gravity moves backward, and static stability
is decreased, which makes the pitching moment and frequency increase, the damping ratio
increase, the imaginary part of the long-period mode slowly change into zero, and the
characteristic roots of long-period mode degenerate into two different negative real roots.
The starship is overdamped, and the motion response is exponentially and monotonously
convergent, indicating that the longitudinal motion is stable.

There is also a method [33] to estimate the characteristic roots of long-period mode
according to the balance state quantity without considering the influence of compressibility
and the change of thrust velocity. In engineering, there is little error between the result of
this method and that of the fourth-order equation. The formula is shown as follows:⎧⎪⎪⎨⎪⎪⎩

ωn.p =
√

2 g
u0

ξp = 1√
2(CL/CD)

λp = −ξpωn.p ± iωn.p

√
1 − ξp2

(8)

After substituting the balance state quantity, the long-period modal characteristic
roots −0.06 ± 0.24475i are obtained as Table 2 and the standard characteristics are listed
as Table 3.

From the above analysis, it can be seen that the third mode of the starship converges
exponentially, the short period mode meets the requirement of level 1 flight quality, and
the estimated long-period modes before modal degradation also meet the requirement of
flight quality of level 1.

Table 2. Modal characteristics of longitudinal course motion.

Mode T1/2/s T/s N1/2/Circle ξ ωn

Third mode 37.46 —- 0 1 0.0185
Short mode 0.66 3.157 0.209 0.4667 2.25

Estimation long-period 11.55 25.671 0.4499 0.2381 0.252
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Table 3. GJB-185-86 longitudinal modal characteristic standard.

Mode Level of Flight Quality Type of Aircraft Maximum of ξ Minimum of ξ

Short
mode

1
C

1.30 0.35
2 2.00 0.25
3 —– 0.15

Long mode
1

C
ξ > 0.04

2 ξ > 0
3 T2 > 55s

4.3.2. Lateral-Directional Analysis

Through calculation of Equation (6), the characteristic equation of the starship’s lateral-
directional overall motion is:

s4 − 0.00956s3 − 0.04901s2+0.02285s + 0.0001024 = 0 (9)

The characteristic roots of lateral-directional motion of the starship are shown in
Table 4 and are compared with those of B747 [27] and a flying wing aircraft [27].

Table 4. Lateral heading motion characteristic root comparison.

B747 Flying Aircraft Starship

−0.1507 + 0.9431i 0.025 + 0.35i 0.175 + 0.195i
−0.1507–0.9431i 0.025–0.35i 0.175–0.195i

−0.3725 −2.0000 −0.336
0.0058 0.0006 −0.00444

It can be seen from the table that the starship and the flying wing aircraft have no vertical
tails, so their Cnβ, which plays a role in the recovery of Dutch rolling motion, is small, and it
is the same thing with Cnr and Csβ, which play a role in damping. Moreover, because the Clβ
is also small, Clβ will be too large, so the directional damping is further reduced, resulting in
the instability of the Dutch roll mode. Because the starship’s spiral mode, lying in the left of the
imaginary axis is close to its imaginary axis, and its roll mode is also located at the left of the
imaginary axis, it could be approximately assumed that its roll and spiral modes are stable.

According to the comparison between Tables 5 and 6, the rolling mode of the starship
meets level 2 flight quality, and the spiral mode meets level 1 flight quality. A pair of
conjugate complex roots corresponding to the Dutch roll mode is in the right plane and in
an unstable state. Considering the aerodynamic derivative affecting the Dutch roll mode in
the above analysis, Cnβ, Cnβ, Csβ, Cnδr , and Cnδr should be added to improve the Dutch roll
mode, but it should be considered that the impact of Clβ on the Dutch rolling is relatively
small, and the ratio relationship of Clβ and Cnβ should be considered when improving its
value to avoid affecting the stability of the spiral mode.

Table 5. Modal characteristics of lateral course motion.

Parameters
Rolling Time

Constant TR/s
Spiral Amplitude

Doubling Time T2/s
Natural Frequency of

Dutch Roll ωd

Damping Ratio of
Dutch Roll ξd

ωd·ξd

Value 2.98 225 0.669 0.261 0.175

Table 6. GJB-185-86 lateral modal characteristic standard.

Parameters
Standards of

Flight Quality
Type of

Flight Stage
Type of
Aircraft

Maximum of
TR/s

Minimum of
T2/s

Minimum of
ωd

Minimum of
ξd

Minimum of
ωd·ξd

Value
I

C II
III

1.4 20 0.4 0.08 0.15
II 3.0 12 0.4 0.02 0.05
III 10 4 0.4 0.02 —
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4.4. Characteristics Analysis of the Ratio between Roll and Swing

In the literature [34], the ratio between roll and swing |φ/β|d is used to represent the
proportion of rolling motion and yaw motion in the Dutch roll mode, and a large ratio
between roll and swing means that the proportion of rolling motion in the Dutch roll mode
is large. A small ratio between roll and swing indicates that the yaw motion accounts for a
large proportion of the Dutch roll mode.

|φ/β|d is the amplitude of the eigenvector ratio of roll angle and sideslip angle that
corresponds to the eigenvalue of Dutch roll, and the approximate expression is shown
as follows: ∣∣∣∣φ

β

∣∣∣∣ ∼=
∣∣∣∣∣ L′

β

ωd

∣∣∣∣∣ 1√
1 + L′p2/ωd

2
(10)

For the flight state of high angle of attack, ωd
2 ≈ N′

β cos α− L′
β sin α, the approximate

expression is transformed into:∣∣∣∣φ

β

∣∣∣∣ ∼=
∣∣∣∣∣ L′

β

N′
β cos α − L′

β sin α

∣∣∣∣∣ 1√
1 + L′p2/

(
N′

β cos α − L′
β sin α

) (11)

where L′
β is the dominant torque of sideslip angle on the body axis roll, N′

β is the dominant
number of yaw moment of body axis caused by the sideslip angle, and L′

p is the dominant
torque of the roll angle rate on the body axis.

During the glide stage at a high angle of attack, L′
β/N′

β is smaller, and L′
p is large

and has a smaller ratio between roll and swing. Shown in Figure 22 is the roll and swing
ratio of each state quantity calculated according to the linear model with small disturbance
at a high angle of attack, and it is about 0.0001 under a large angle of attack. Under a small
roll and swing ratio, the Dutch roll mode of the starship is mainly reflected by yaw motion.

Figure 22. Roll−Sideslip ratio.

5. Analysis Based on the Principle of Criteria

5.1. Criteria of the Margin of Longitudinal Static Stability

Since the layout of starships is similar to that of flying wing aircraft and winged
missiles, the longitudinal static stability margin of a traditional aircraft can be used to judge
whether it is longitudinally stable or not. Its formula is defined as follows:

Kα = −∂Cm

∂CL
= −Cmα

CLα
= xF − xG (12)

137



Symmetry 2022, 14, 1862

where Cm and Cmα are the pitching moment coefficient and the pitching static stabil-
ity derivative, respectively; CL and CLα are the lift coefficient and the lift derivative,
respectively; xF and xG are the dimensionless focus position and the center of gravity
position, respectively.

That Kα is positive (Kα > 0) indicates that the focus is behind the center of gravity,
which is statically stable in longitudinal direction; conversely, Kα < 0 indicates that the
focus is in front of the center of gravity, which is statically unstable in longitudinal direction.
Figure 23 shows that Kα is positive all the time when −20◦ < α < 92◦, and it is negative
when α > 92◦, turning statically unstable. In actual flight, because the body of the arrow is
elastic and with the consumption and shaking of the fuel [32], with the increase in the angle
of attack, in the condition of a small angle of attack, the center of gravity shifts back and
forth, and the static stability margin coefficient of the center of gravity also fluctuates, which
is shown as follows. At a high angle of attack, the center of gravity moves backward, and
the starship changes from statically stable in the longitudinal direction to statically unstable.
However, at a high angle of attack, the static instability coefficient is small and meets the
requirements of controllability [18]. Therefore, the longitudinal stability augmentation
control law and controller should be designed, and the constraint range should be given to
assist the longitudinal stability augmentation of the starship when it moves at a high angle
of attack.

Figure 23. Longitudinal static stability margin.

5.2. Criteria of Comprehensive Analysis of Lateral Direction

This criterion can effectively evaluate the lateral-directional deviation and motion
characteristics of a starship by the comprehensive analysis of dynamic directional stability
criterion Cnβdyn and lateral steering deviation stability criterion LCDP. Figure 24 shows
the graph of analysis results of dynamic deviation and lateral control stability criteria.

Cnβdyn = Cnβ cos α − Iz

Ix
Clβ sin α (13)

where Cnβdyn is the dynamic direction stability deviation parameter; Ix, Iz are, respectively,
the inertial moment along the x-axis and the inertial moment along the z-axis. Cnβdyn > 0
indicates that the aircraft has dynamic directional stability; otherwise, it does not.

LCDP = Cnβ − Clβ
Cnδa
Clδa

(14)
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where LCDP is the lateral manipulation deviation parameter. LCDP > 0 indicates that
there is no deviation in lateral-directional control; on the contrary, it means that there is
deviation in lateral-directional control.

Figure 24. Comprehensive analysis of dynamic deviation and lateral control stability criteria.

As can be seen from the figures, when the angle of attack is at −20◦ < α < −10◦,
Cnβdyn > 0, LCDP < 0, because the absolute value of the deviation parameter of dynamic
yaw stability is larger than that of the lateral control deviation parameter, sideslip can
also be eliminated by rolling motion of aileron-like without deviation. When the angle of
attack is −10◦ < α < 38◦ and α > 93◦, Cnβdyn > 0 m and LCDP > 0, if sideslip occurs
due to external interference at this time, the starship is stable laterally and the reverse
pressure bar can also eliminate sideslip, so there will not be sideslip deviation phenomenon
to endanger the starship. When 38◦ < α < 93◦, Cnβdyn < 0, and LCDP > 0, there will
be the phenomenon of control backlash. However, in the range of 38◦ < α < 45◦ and
88◦ < α < 93◦, because the absolute value of the lateral control deviation parameter is
larger than that of the deviation parameter of dynamic yaw stability, yaw coupling brought
by the rolling maneuver of aileron-like roll can also eliminate sideslip. When 45◦ < α < 88◦,
the absolute value of the deviation parameter of dynamic yaw stability is larger than that of
the lateral control deviation parameter, or there is little difference between them. If sideslip
occurs at this time, sideslip cannot be quickly eliminated; if the operation stick is reversed,
there will be an anticontrol phenomenon.

5.3. Analysis Criteria of Coordinated Control Deviation of Rudder-like and Aileron-like

In the LCDP criterion, only the operation of aileron-like is considered, and the rudder-
like is in neutral state, while in the actual flight condition, aileron-like and rudder-like are
in coordination to realize horizontal directional movement. As a result, the parameters
quantity of rudder-like control are also introduced into the analysis of control deviation,
forming a new deviation analysis criterion of coordinated control of rudder-like and aileron-
like, which is shown as follows:

LCDPARI = Cnβ − Clβ
Cnδa + kCnδr

Clδa + kClδr

(15)

k =
δr

δa
(16)

where LCDPARI is the coordinated control deviation parameter of aileron-like and rudder-
like. Similar to the lateral steering deviation stability criterion, when LCDPARI > 0, the
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rudder-like and aileron-like coordinated control is stable in operation; otherwise, it is
not stable.

According to Figure 25, when the value of k is larger, the range of angle of attack with the
coordinated control deviation parameter, which is more than zero increases, indicating that the
stability of rudder-like and aileron-like coordinated control is much better than that of rudder-like
or aileron-like control alone. When k = 1/3, within the angle of attack range of −20◦ < α < 0◦
and 25◦ < α < 55◦, the coordinated control deviation parameter is negative, while in the angle
of attack range of 0◦ < α < 25◦ and α > 55◦, the coordinated control deviation parameter is
positive. When k = 0.5, the coordinated control deviation parameter is negative within the angle
of attack range of −20◦ < α < −5◦ and 32◦ < α < 50◦, while the coordinated control deviation
parameter is positive within the range of −5◦ < α < 32◦ and α > 50◦. When k = 2/3, the
coordinated control deviation parameter is negative within the range of −20◦ < α < −15◦, and
the parameter is positive within the range of α > −15◦. When k = 1, the deviation parameters
of coordinated control are all positive in all angle of attack ranges, indicating that when the
deflection angles of rudder-like and aileron-like are the same, the best control effect of coordinated
operation is achieved.

Figure 25. Evolution of parameters LCDPARI versus angle of attack (AoA) when k takes different
positive values.

As can be seen from Figure 26, when different negative values of k are taken, the deviation
parameters change little, and the effect is of little difference to that of the LCDP criterion. Therefore,
when different negative values of k are taken, the rudder-like cannot compensate the aileron-like.

Figure 26. Evolution of parameters LCDPARI versus AoA when k takes different positive values.
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5.4. Weissman Graph Criteria

According to reusable carriers Weissman criterion that is introduced in the litera-
ture [35,36], the distribution of typical lateral-directional aerodynamic characteristics state
points of the coordinated control of rudder-like and aileron-like of the starship in horizontal
slip returning on the Weissman graph was analyzed. What is shown in Figure 27a is the
Weissman diagram after the boundary was updated in 1980, and Figure 27b is the distribu-
tion diagram of the lateral-directional aerodynamic characteristics points on Weissman.

                          (a) 

                           (b) 

Figure 27. Weissman. (a) The Weissman diagram with updated boundary. (b) the distribution
diagram of the lateral-directional aerodynamic characteristics points on Weissman.

In the figures, Region A is the no-deviation zone, Region B is a slight-deviation zone,
Region C is a moderate-deviation zone, Region D is a heavy-deviation zone, Region E
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is a moderate -yaw -divergence zone (roll control is carried out, and divergence trend is
weakened), and Region F is the strong -yaw -divergence zone.

Figure 27b shows that most states of starship lie in Area A, without lateral-directional
deviation, and a portion of the state points falls in Area F, because during the returning
stage with a large angle of attack, horizontal directional movement may be unstable, so
the directional stabilization augmentation controller should be designed to move Area F
overall to the right to Area E or the controllable part of Area A. There are only a few cases
of slight yaw or divergence of rolling in the figure, and the divergence can be weakened by
mutual compensation control.

6. Simulation Results of Nonlinear Open Loop

6.1. Longitudinal Simulation Results

Now the accuracy of the above analysis results has been verified by the time response
simulation of the starship scaling model under V = 60 m/s, H = 3000 m. A unit step
response is given to the rudder-like when the starship is in the trimming state. The response
curves of angle of attack, pitch rate, and pitch angle over time are shown in Figures 28–30.

Figure 28. Angle of attack response over time.

Figure 29. Pitch rate response over time.
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Figure 30. Pitch angle response with time.

It can be seen from the figures that short period characteristics of the starship are
obvious during the unit step deflection of elevator-like, whose reflection on the angle
of attack and pitch angular rate is that the starship could turn to the stable state quickly.
At the same time, from the response curve of the pitch angle over time, the pitch angle
also quickly returned to a stable state without accompanying oscillation, indicating
that the long period degenerated into the third mode, which is an exponentially
monotonous and convergent motion. Therefore, in the perspective of simulation
results, it is consistent with the above analysis of control stability characteristics, and
it verifies the accuracy of the above analysis.

6.2. Lateral-Directional Simulation Results

Now a unit step response is given to the aileron-like under V = 60 m/s, H = 3000 m,
β = 0, and the original p = q = r = 0 is ensured. The response curves along time of
sideslip angle, roll angle, roll angular rate, and yaw angle are shown as follows.

Figures 31–34 show that after a step response is given to aileron-like, because
the roll mode belongs to level 2 flying quality, this makes it slow for the roll angle to
recover to the stable state. According to Figures 31 and 32, when the aileron-like steps,
it takes the rolling angle 30 s to recover to a stable state. Because the lateral force
caused by aileron-like deflection is small, coupling yaw motions are also small, and
the yaw angle returns faster to the stable state than the roll angle. The starship is short
of vertical tails, so its Cnβ, which plays a role in the recovery of Dutch rolling motion,
is small. Moreover, the Clβ is also small, which leads the directional damping further
reduced, resulting in the instability of the Dutch roll mode. Because the starship’s
spiral mode is close to its imaginary axis, and its roll mode is also located at the left of
the imaginary axis, it could be approximately assumed that its roll and spiral modes
are stable. Therefore, the half-life of the roll response is about 0.3 s.
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Figure 31. Sideslip angle response over time.

Figure 32. Roll angle response over time.

Figure 33. Roll rate response over time.
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Figure 34. Yaw angle response with time.

Meanwhile, it can be seen from the analysis in the last section that the dynamic
instability of the yaw motion of the starship is divergent, and by controlling the aileron, the
sideslip could be eliminated, and the divergence trend could be weakened. As can be seen
from Figures 30 and 33, the simulation results are consistent with the analysis mentioned
in the last section.

Now a unit step response is given to the rudder-like under V = 60 m/s, H = 3000 m,
β = 0, and at the same time, p = q = r = 0, the response curves of sideslip angle, yaw
angle, roll angle, and yaw angle rate along the time are shown below.

According to the analysis in the previous section, sideslip can be eliminated by the
combined control of aileron-like and rudder-like, so the sideslip angle in Figure 34 can
recover to a stable state. However, when the rudder-like steps, the lateral-directional
motion wholly diverges, which is caused by the instability of the Dutch roll mode of the
starship itself. From the analysis of the roll and swing ratio characteristics in the last
segment, it can be seen that the yaw motion accounts for a large proportion of the Dutch
roll, so when the rudder-like steps, the yaw motion diverges. Meanwhile, according to the
Weissman criterion, some of the state points of the starship fall in the strong yaw divergence
zone during lateral–directional motions. It can be concluded that when the rudder-like
steps, the simulation results are also consistent with the characteristics analysis. And the
response curves, namely, sideslip angle, yaw, roll angle, yaw rate, versus time are showed
as Figures 35–38 below.

Figure 35. Sideslip angle response over time.
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Figure 36. Yaw angle response with time.

Figure 37. Roll angle response over time.

Figure 38. Yaw rate response over time.
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As can be seen from the lateral-directional simulation results, the characteristics of the
lateral-directional motions are consistent with the lateral-directional characteristics analysis
in the previous section.

7. Conclusions

After the aerodynamic characteristics analysis, modal analysis, and deviation criterion
analysis of the starship, the following conclusions are drawn:

The starship is longitudinally stable when −20◦ < α < 92◦, and becomes longitudi-
nally statically unstable when α > 92◦, at which time the center of gravity moves to the
focus. It does not have rolling static stability when −20◦ < α < 10◦. When α > 10◦, it has
rolling static stability; The starship is always yaw statically stable within the range of angle
of attack.

Both long and short longitudinal period mode of the starship meet the level 1 flight
quality, and the motion response of the third mode after degradation is exponentially
monotonous convergent. The lateral-directional roll mode meets level 2 flight quality, and
the spiral mode meets level 1 flight quality. A pair of conjugate complex roots corresponding
to the Dutch roll mode is in the right plane, which is in an unstable state. The Dutch roll
mode is mainly reflected in yaw motion, which is divergent.

Through the comprehensive analysis of dynamic deviation and lateral control stability
criteria, it can be seen that when 45◦ < α < 88◦, if sideslip occurs, the anticontrol phe-
nomenon is easy to occur, thus the design of directional control systems deserves attention.

The effect of combined control of rudder-like and aileron-like is better than that of
single control of either rudder-like or aileron-like, and the best control effect is achieved
when the compensation gain of rudder-like to aileron-like is 1. When the compensation
gain is negative, the rudder-like cannot compensate the aileron-like.

The simulation result of open-loop ontology shows that when a unit step response is
given to elevator-like and rudder-like and aileron-like, after the elevator-like and aileron-
like step, the starship ontology can recover to a stable state, but after the rudder-like step,
the lateral-directional motion of the whole starship diverges, which indicates that the
direction of the starship ontology is unstable, and a directional stability augmentation
controller is necessary to be designed.
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Abstract: Aiming at the conversion process of thrust vectoring vertical/short takeoff and landing
(V/STOL) aircraft with a symmetrical structure in the transition stage of takeoff and landing, there
is a problem with the coupling and redundancy of the control quantities. To solve this problem,
a corresponding inner loop stabilization controller and control distribution strategy are designed.
In this paper, a dynamic system model and a dynamic model are established. Based on the outer
loop adopting the conventional nonlinear dynamic inverse control, an L1 adaptive controller is
designed based on the model as the inner loop stabilization control to compensate the mismatch
and uncertainty in the system. The key feature of the L1 adaptive control architecture is ensuring
robustness in the presence of fast adaptation, so as to achieve a unified performance boundary in
transient and steady-state operations, thus eliminating the need for adaptive rate gain scheduling.
The control performance and robustness of the controller are verified by inner loop simulation and
the shooting Monte Carlo approach. The simulation results show that the controller can still track the
reference input well and has good robustness when there is a large parameter perturbation.

Keywords: L1 adaptive control; V/STOL aircraft; Monte Carlo simulations

1. Introduction

Thrust vectoring technology can directly change the thrust magnitude and thrust direc-
tion of aircraft, which is an important technical scheme to achieve the high maneuverability
of modern aircraft. Unlike conventional fighter jets, vertical/short takeoff and landing
(V/STOL) aircraft is a new type of aircraft [1–3]. It can not only realize the vertical takeoff
and landing, but also carry out a high-speed cruise in a conventional aircraft configuration
and will be widely used in the military field in the future. Therefore, the thrust vectoring
vehicle has the characteristics of a large flight space, complex flight action, and diverse
flight tasks, resulting in the strong nonlinearity of its control system and severe changes in
the external environment. How to design a control scheme that can deal with this large
uncertainty is a key problem in the control design of a thrust vectoring vehicle.

Regarding the aspect of mathematical model establishment and simulation, Songlin
Ma and Weijun Wang [4] established a longitudinal model in a transition flight phase for a
new concept of vertical/short takeoff and landing aircraft. Xiaomeng Zhang and Weijun
Wang [5] analyzed the dynamics of the vertical/short takeoff and landing of unmanned
aerial UAVs and obtained a nonlinear dynamics model. References [6,7] investigated the
thrust vector control of thrust vectoring V/STOL aircraft using a six-degree-of-freedom
flight dynamics simulation. For controller design, Yang, Xili et al. [8] proposed two non-
linear approaches for the autonomous transition control of two vertical/short takeoff and
landing aircraft. Walker, G. and Allen, D. [9] presented an overview of the X-35B control
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law requirements, design, analysis, and summary of the STOVL flight test results. In Refer-
ence [10], a control scheme comprising the dynamic characteristics of the thrust vectoring
system was developed for V/STOL aircraft. Simulation and experimental results were
presented. Zhiqiang Cheng et al. [11] proposed an optimal trajectory transition controller.
Reference [12] showed an application of L1 adaptive control theory for the attitude con-
trol of UAVs. Chiang R Y, et al. [13] presented an H-∞ flight control system design case
study for a supermaneuverable fighter flying quality of the Herbst maneuver, which may
provide some reference for hovering state flying quality. Zian, Wang et al. [14] used an
L1 adaptive inner loop controller and designed a roll-horizon landing deceleration and
landing strategy for hybrid-wing vehicles. Seshagiri S, et al. [15] considered the application
of a conditional integrator-based sliding mode control design for robust regulation of
minimum-phase nonlinear systems for the control of the longitudinal flight dynamics of
an F-16 aircraft. Liu, N, et al. [16] used the nonlinear active disturbance rejection controller
(ADRC) to control the tilt wings. In terms of control allocation, Min, B.M, et al. [17] focused
on applying various control allocation schemes to the SAT-II UAV system. Tan J, et al. [18]
studied attitude tracking UAVs with the terminal sliding mode based on the extended
state observer and with the multi-objective nonlinear control allocation. For the problem
of simulation verification, References [19,20] provided a practical Monte Carlo method to
verify the robustness of the controller.

In the transition stage of the thrust vectoring V/STOL aircraft, the tilt angle of the
vectoring nozzle and the opening of the lift fan will change greatly. In this power conversion
process, both the aerodynamic rudder surface and the power system of the aircraft can
control the six degrees of freedom of the aircraft. At this stage, the aircraft will face the
problems of strong nonlinearity, control quantity coupling, and redundancy. The design of
the control law is a great challenge. Under the physical constraints of the thrust vectoring
vehicle, the aerodynamic control inputs and thrust vectoring control inputs are allocated
according to the virtual control variables. To solve this problem, based on the F35B scale
model, the dynamic equation modeling is given in this paper. On this basis, the inner loop
controller and control distribution method are designed. Finally, the performance and
robustness of the controller are verified by inner loop simulation and the shooting Monte
Carlo approach.

The remainder of this paper is organized as follows. Section 2 introduces the com-
position of the thrust vector V/STOL aircraft power system and establishes the dynamic
equation modeling by combining the whole vehicle dynamics equation, kinematic equation,
and moment equation. Section 3 introduces the design of the inner loop and outer loop
controllers in detail, and the control allocation method is given. The robustness of the
inner loop controller is simulated and verified by Monte Carlo simulation in Section 4, and
conclusions and recommendations for future work are stated in Section 5

2. Dynamic Equation Modeling

The thrust vectoring vertical/short takeoff and landing aircraft used in this paper is a
self-made F35B scale model with a total weight of about 13 kg, a cruising speed of 30 m/s,
and a cruising altitude of less than 100 m.

The F35B consists of a fuselage, wings, tail, and power system as shown in Figure 1.
The F35B mainly has the fixed-wing mode and vertical takeoff and landing (VTOL) mode.
The platform’s aerodynamic control surfaces include a full-motion horizontal tail, a full-
motion vertical tail, and flaperons. The power system consists of two subsystems: the lift
fan and auxiliary motor subsystem installed in the front section of the fuselage; the main
ducted fan and the main motor subsystem installed in the rear section of the fuselage; a
three-bearing swivel duct (3BSD) nozzle is connected behind the main ducted fan.
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Figure 1. F35 model.

2.1. Whole Vehicle Dynamics Model

We use [Tx Ty Tz] to denote the thrust components of the engine under the three shafts.
The aerodynamic force A is defined in the airflow coordinate system, and considering
the lift loss in the transition section, the total aerodynamic force can be expressed as
Equation (1), where D is the drag force, C is the side force, and L is the lift force.⎡⎣ Ax

Ay
Az

⎤⎦ =

⎡⎣−D cos α cos β − C cos α sin β + L sin α
−D sin β + C cos β

−D sin α cos β − C sin α sin β − L cos α

⎤⎦ (1)

The direction of the aircraft’s gravity is given in the z-axis of the ground coordinate
system, which is also converted to the airframe coordinate system.

m

⎡⎣ gx
gy
gz

⎤⎦ = Lbgm

⎡⎣ 0
0
g

⎤⎦ = m

⎡⎣ −g sin θ
g sin φ cos θ
g cos φ cos θ

⎤⎦ (2)

Combined with Equations (1) and (2), the linear motion equation of the aircraft in the
body coordinate system can be determined from Equation (3).⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m du
dt = Tx − D cos α cos β − C cos α sin β

+L sin α − mg sin θ + mvr − mwq
m dv

dt = Ty − D sin β + C cos β
+mg sin φ cos θ − mur + mwp
m dw

dt = Tz − D sin α cos β − C sin α sin β
−L cos α + mg cos φ cos θ + muq − mvp

(3)

where [u, v, w] are the velocity components of the three coordinate axes in the body coordi-
nate system and [p, q, r] are roll angle velocity, pitch angle velocity, and yaw angle velocity
in the body coordinate system, respectively.
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2.2. Kinematic Equations and Moment Equation

The kinematic equations and moment equation of the aircraft are [9]:⎧⎪⎨⎪⎩
.
φ = p + (r cos φ + q sin φ) tan θ
.
θ = q cos φ − r sin φ
.
ψ = 1

cos θ (r cos φ + q sin φ)

(4)

⎧⎪⎨⎪⎩
.
p = (c1r + c2 p)q + c3L + c4N
.
q = c5 pr − c6(p2 − r2) + c7M
.
r = (c8 p − c2r)q + c4L + c9N

(5)

where [φ, θ, ψ] are the roll angle, pitch angle, and yaw angle of the aircraft, respectively;
c1 ∼ c9 are the moment equation coefficients; [L, M, N] are roll moment, pitch moment,
and yaw moment in the body coordinate system, respectively.

Based on Equations (3)–(5), the nonlinear dynamics model of the aircraft can be
derived: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
.
u = Tx − D cos α cos β − C cos α sin β

+L sin α − mg sin θ + mvr − mwq
m

.
v = Ty − D sin β + C cos β

+mg sin φ cos θ − mur + mwp
m

.
w = Tz − D sin α cos β − C sin α sin β

−L cos α + mg cos φ cos θ + muq − mvp
.
p = (c1r + c2 p)q + c3L + c4N
.
q = c5 pr − c6(p2 − r2) + c7M
.
r = (c8 p − c2r)q + c4L + c9N
.
φ = p + (r cos φ + q sin φ) tan θ
.
θ = q cos φ − r sin φ
.
ψ = 1

cos θ (r cos φ + q sin φ)

(6)

3. L1 Stabilization Controller Design

The stability augmentation controller in this paper constitutes a control and stability
augmentation system (CSAS) by controlling the roll, pitch, and yaw of the aircraft. The
CSAS can generate angular velocity and acceleration control commands and provides
torque commands to the control distributor. Then, a single-input single-output (SISO) L1
adaptive controller is designed for each of the three angular velocity channels to compen-
sate for mismatch uncertainties in the dynamics [21–23]. For outer-loop designs such as
pitch and roll, nonlinear dynamic inversion (NDI) provides the tracking of the required dy-
namics. Figure 2 shows the adaptive control flow diagram using NDI and the L1 adaptive
control law.

 

Figure 2. Flow chart of L1 adaptive controller.

In Figure 2, the outer loop state variable x1 = [φ θ ψ]T and the inner loop state variable
x2 = [p q r]T ; the control inputs of the V/STOL aircraft are U1 = [δa δe δr δT δL δaz δac δTl δTr]

T ;
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δa, δe, δr are the aileron deflection, elevator deflection, and rudder deflection, respectively;
δL is the ratio of the lift fan thrust to the maximal lift fan thrust; δT is the ratio between
the maximum three-bearing swivel duct nozzle thrust and the three-bearing swivel duct
nozzle thrust; δac is the three-bearing swivel duct nozzle’s pitch angle, when the aircraft
is in fixed-wing mode, δac = 0◦, and in vertical takeoff and landing mode, δac = 90◦; δaz
is the yaw angle of the three-bearing swivel duct nozzle, as shown in Figure 3; δTl , δTr are
the thrust of the left and right roll nozzles, respectively. The actuator characteristics are
described in Table 1.

Figure 3. Power system diagram.

Table 1. Effector characteristics of the F35B.

Effector Position Limit Rate Limit

δa, δe, δr [−30, 30]deg ±30 deg/s
δT , δL [0, 1] ±0.4

δac [0, 90] ±40 deg/s
δaz [−12, 12]deg ±40 deg/s

δTl , δTr [0, 1000] N ±4000 N/s

The pitch and roll channels realize the decoupling of the angle and angular velocity
according to the timescale separation principle. The attitude angle is controlled by the NDI
method, while the L1 adaptive controller controls the angular velocity. The L1 adaptive law
can be divided into four parts: control object, state predictor, adaptive law, and control law.

3.1. Inner Loop Controller Design
3.1.1. NDI Controller Design of Roll Loop

First, the NDI controller needs to be designed for the roll loop. The kinematic equation
of the outer loop is:

.
x1 = f1(x1, t) + g1(x1, t)x2 (7)

where f1(x1, t), g1(x1, t) are affine functions satisfying f1(x1, t) = 03×1 and g1(x1, t) =⎡⎣1 sin φ tan θ cos φ tan θ
0 cos φ sin φ
0 sin φ/ cos θ cos φ/ cos θ

⎤⎦.

The error is defined as Δx1 = x1c − x1. Based on the NDI method, the angular velocity
command pc can be obtained:

x2c = g−1
1 (x1, t)(K1Δx1 − f1(x1, t)) (8)

where K1 ∈ R3×3 is the bandwidth coefficient and is a diagonal matrix, which is determined
by the flight quality of the aircraft and the outer loop bandwidth.
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3.1.2. L1 Adaptive Controller Design of Roll Angular Velocity Loop

According to the small perturbation theory, the kinematic equation of the outer loop
Equation (7) can be simplified as

.
x2 =

⎡⎣ Lβ Lp
Mα Mq
Nβ Nr

⎤⎦[β α β
p q r

]
+

⎡⎢⎣L .
puc

0 0
0 M .

quc
0

0 0 N.
ruc

⎤⎥⎦ .
x2uc (9)

where
.
x2uc =

[ .
puc

.
quc

.
ruc

]T is the virtual angular acceleration,

⎡⎣ Lβ Lp
Mα Mq
Nβ Nr

⎤⎦ are the

aerodynamic coefficients, and L .
puc

, M .
quc

, N.
ruc

are the virtual control torque generated by
the virtual output signal

.
x2uc.

.
x2uc can be solved by Equation (9) and expressed as:

.
x2uc =

.
x2Tc +

.
x2ac (10)

where
.
x2ac and

.
x2Tc are the roll angular accelerations generated by the air surface and

the vector nozzle, respectively. At low airspeeds, the control torque provided by the
vectoring nozzle dominates. The vector nozzle provides the required pitch acceleration,
i.e.,

.
x2Tc � .

x2uc,
.
x2ac = 0. At high airspeeds, the aerodynamic surfaces subject to the

required pitch angular acceleration, i.e.,
.
x2ac � .

x2uc,
.
x2Tc = 0. During the transitional

flight, both the aerodynamic surfaces and the vectoring nozzle achieve the commanded
roll angular acceleration.

Considering the uncertainty of moment, Equation (9) can be expressed as:

.
x2 =

⎡⎣ Lβ + L̂β Lp + L̂p
Mα + M̂α Mq + M̂q
Nβ + N̂β Nr + N̂r

⎤⎦[ β α β
p q r

]

+

⎡⎢⎣ L .
puc

+ L̂ .
puc

0 0
0 M .

quc
+ M̂ .

quc
0

0 0 N.
ruc

+ N̂.
ruc

⎤⎥⎦
⎡⎣ .

puc.
quc.
ruc

⎤⎦+ σ

(11)

where L̂β, L̂p, L̂ .
puc

, M̂α, M̂q, M̂ .
quc

, N̂β, N̂r, N̂.
ruc

are the uncertain aerodynamic factors and

σ =
[
σp σq σr

]T is the disturbance factor. The structure of the first-order reference
model is as follows:

.
x2 = K2Δx2 = K2(x2c − x2) (12)

Combining Equations (9)–(12), we can write the control model of the rolling loop as:⎧⎨⎩
.
x2 = −K2x2 + K2η
η = ωx2

.
x2 + f2(t, x2)

f2(t, x2) = λx2 + σx2

(13)

where K2(kp, kq, kr) ∈ R3×3 is the feedback gain matrix, ωx2 =

[
1 +

L̂ .
puc

L .
puc

1 +
M̂ .

quc
M .

quc
1 +

N̂.
ruc

N.
ruc

]
is the virtual control factor, λ = diag(L̂p −

L̂ .
puc

L .
puc

Lp, M̂q −
M̂ .

quc
M .

quc
Mq, N̂r − N̂.

ruc
N.

ruc
Nr) is the aero-

dynamic factor, and σx2 = diag(L̂β − L̂ .
puc

L .
puc

Lβ, M̂α − M̂ .
quc

M .
quc

Mα, N̂β − N̂.
ruc

N.
ruc

Nβ)x2 + σ is the

aerodynamic disturbance.
Three assumptions and a lemma are given.

Assumption 1. The unknown constant ωx2 is uniformly bounded, i.e., ωx2 ∈ Ω ⊂ R3×3, Ω is a
compact convex set.
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Assumption 2. f2(t, x2) is uniformly bounded in Equation (19), such as ‖ f2(t, 0)‖∞ ≤ b, b > 0,
where ‖•‖∞ is the ∞-norm.

Assumption 3. The partial derivatives of f2 are semi-globally uniformly bounded: for δ > 0, there
exist d f p(δ) > 0 and d f t(δ) > 0 independent of time t to ensure that the partial derivatives of
f2(t, x2) are piecewise continuous and bounded, as follows:{

‖ ∂ f2(t,x2)
∂x2

‖
∞
≤ d f p(δ)

‖ ∂ f2(t,x2)
∂t ‖∞ ≤ d f t(δ)

(14)

The assumptions can be met since the uncertainty for the inner loop control system is
of a given magnitude.

Lemma 1. For τ > 0, if ‖xτ‖L∞
≤ ρ and ‖ .

xτ‖L∞
≤ dx, where ρ and dx are positive constants, λ

and σx2 are continuous. Furthermore, their derivatives with respect to t ∈ [0, τ] are:⎧⎪⎨⎪⎩
f2(t, x2) = λ‖x‖L∞

+ σx2

‖λ‖ < d f q(ρ), ‖
.
λ‖ ≤ dλ

‖σx2‖ < b, ‖ .
σx2‖ ≤ dσ

(15)

where dλ and dσ are computable finite values; ‖•‖L∞
is the L∞-norm.

Based on the above assumptions and lemma, an adaptive law controller is designed,
which consists of a state predictor, an adaptive law, and a control law:

• State predictor:

According to Equation (13), the state predictor can be expressed as:⎧⎪⎨⎪⎩
.
x̂2 = −K2x̂2 + K2η̂

η̂ =
.
x2cω̂x2 + λ̂x2 + σ̂x2

ŷ = x̂2

(16)

where ω̂x2 is the predicted level of control factor uncertainty, λ̂ is the expected degree of
the aerodynamic factor’s uncertainty, and σ̂x2 is the predicted degree of the aerodynamic
disturbance’s uncertainty; ω̂x2 denotes the estimated level of control factor uncertainty,
B the estimated level of aerodynamic factor uncertainty, and C the estimated level of
aerodynamic disturbance uncertainty.

• Law of adaptation:

⎧⎪⎪⎨⎪⎪⎩
.
λ̂ = ΓKproj(λ̂,−x̃2PK2‖x2‖∞)
.
σ̂x2 = ΓKproj(λ̂,−x̃2PK2).
ω̂x2 = ΓKproj(

.
ω̂x2 ,−x̃2PK2

.
x2)

(17)

where Γ is the adaptive gain, x̃2 = x̂2 − x2 is the prediction error, and P is the solution of
the Lyapunov equation KT

2 P + PK2 = −Q (Q = QT > 0). Kproj is the projection operator.

• Control law:

The control law is as follows:

.
x2c = KdD(Kgx2 − η̂) (18)
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where Kg is the adaptive feedback gain, D is the low-pass filter, and Kd is the adaptive
feedforward gain. The L1 adaptive control scheme is shown in Figure 3. Control laws
should be designed to ensure that the following transfer functions are strictly regular:

C(s) = ωx2 KdD(s)(I + ωx2 KdD(s))−1 (19)

where C(s) satisfies C(0) = I and I is a 3 × 3 identity matrix.
When obtaining Kd and D, the following conditions must be satisfied to ensure the

stability of adaptive control:

‖G(s)‖L1
<

ρr − ‖H(s)C(s)Kg‖L1
‖x2c‖L∞

− ρin

Lpr ρr + b
(20)

where ρin, H(s), G(s), and Lpr are defined as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρin = ‖s(sI + Kp)

−1‖L1
ρ0

H(s) = (sI + Kp)
−1Kp

G(s) = H(s)[I − C(s)]
Lpr =

ρr+γ1
ρr

d f p[ρr + γ1]

(21)

where γ1 is an arbitrary positive number.
In the case of satisfying Equation (20), The adaptive controller of the inner loop consists

of Equations (16)–(18). The block diagram of the adaptive controller system is shown in
Figure 4.

Figure 4. Adaptive controller system block diagram.

3.2. Control Allocation

Equation (6) can be expressed as:

.
X = f (X, U2, t) (22)

where
.

X are the system state variables, U2 are the system control variables, and
.

X = [u v w p q r φ θ ψ],
U2 = [δa δe δr δT δL δaz δTl δTr]

T.
Expanding Equation (22) by Taylor series at the equilibrium point, keeping the linear

part, and ignoring the high-order part, we can obtain:

Δ
.

X = AΔX + BΔU2 (23)

where A = ∂ f
∂X

∣∣∣
X=Xtrim

is the system state matrix, which consists of the partial derivatives

of forces and moments with respect to the state variables. B = ∂ f
∂U2

∣∣∣
U2=Utrim

is the control

derivative matrix, which is the aerodynamic change generated by the unit control amount,
which can reflect the control efficiency of the aircraft by the control input. The subscript
trim indicates the trim value. System control variables ΔU2 can be solved by Equation (23).
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4. Inner Loop Controller Simulation Experiment

According to the inner loop controller and control distribution method designed in the
previous section, the simulation verification results are given in this section. The difficulty
in controlling the V/STOL aircraft is that there is a flight mode conversion process during
the takeoff and landing process. At this stage, the two sets of control mechanisms of the
aircraft are involved in the work of jointly controlling the position and attitude of the
aircraft. Therefore, in this state, the working point is selected for inner loop simulation and
the shooting Monte Carlo approach to verify the performance of the inner loop stabilization
controller and control distribution method designed in this paper.

4.1. Monte Carlo Targeting at Nominal State

An L1 controller with ωp = 8 and D = 1/s receives a 5◦/s frequent square roll rate
command as the input. Figures 5 and 6 show the outcomes for various combinations of Γ
and kp.

Figure 5. Roll rate command tracking results at Kp = 8.

Figure 6. Roll rate command tracking results at Γ = 2500.
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We settled on kp = 8 and Γ = 2500 as the virtual control coefficient and virtual state
coefficient, respectively, because they strike a balance between speed and stability, have a
brief risetime, and exhibit zero overshoots.

According to the inner loop controller designed in the previous section, in fixed–wing
mode, set the height to 25 m and the airspeed to 24 m/s. In this state, given step signals for
the roll and pitch angles, the simulation results are shown in Figure 7.

Figure 7. Roll rate and pitch rate command tracking results in fixed-wing mode.

It can be seen from the figure that this controller can track the pitch angle command
well; the adjustment time of the inner loop pitch angle and roll angle command is about 1 s,
and there is no obvious overshoot.

In VTOL mode, set the height to 25 m and the airspeed to 16 m/s. In this state, given
step signals for the roll and pitch angles, the simulation results are shown in Figure 8:

Figure 8. Roll rate and pitch rate command tracking results in VTOL mode.
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The findings reveal that the curve’s shape is the same in both modes, and the L1
controller’s tracking performance is superb with a steady-state error of zero and a minor
temporal lag.

4.2. Target Shooting Monte Carlo Approach in Level Flight

The robustness of the inner loop controller was simulated and verified by Monte Carlo
simulation. Its parameter perturbation variables mainly include aerodynamic characteris-
tics, mass characteristics, and the dynamic system. The change of perturbation parameters
is shown in Table 2.

Table 2. Main parameters of the V/STOL vehicle.

Parameters Perturbations

CLδe , Cmδe , CSδr , Cnδr , Clδa
±10%

Cmα , CSβ
, Clβ

, Cnβ ±10%
Clp , Cnr ±10%
Clr , Cnp ±10%

Jxx, Jyy, Jzz ±10%

CLδe , Cmδe , CSδr , Cnδr , Clδa
are the control derivatives; Cmα , CSβ

, Clβ
, Cnβ

are the stability
derivatives; Clp , Cnr are the damping derivatives; Clr , Cnp are the cross-damping derivatives;
Jxx, Jyy, Jzz are the inertia moments.

The above parameters are randomly changed, and the shooting Monte Carlo approach
is performed on the aircraft in constant level flight and acceleration conditions, respectively.
At an altitude of 100 m, the aircraft is in constant level flight at a speed of 20 m/s. At 15 s,
a 10◦ pitch angle command is given to conduct a target shooting Monte Carlo approach
simulation test. Then, comparing it with the PID controller [24–26], the simulation results
are shown in Figures 9–13.

As can be seen from the above figure, the control channels of each direction of the
aircraft are decoupled. The controller designed in this paper is obviously better than the
PID controller for instruction tracking. This shows that the controller designed in this
paper can still track the command well and has good robustness under the premise that the
parameters of the aircraft are taken.

 
(a) (b) 

Figure 9. The shooting Monte Carlo approach at the pitch angle. (a) L1 adaptive controller;
(b) PID controller.
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(a) (b) 

Figure 10. The shooting Monte Carlo approach at the airspeed; (a) L1 adaptive controller;
(b) PID controller.

 
(a) (b) 

Figure 11. The target shooting Monte Carlo approach with the elevator; (a) L1 adaptive controller;
(b) PID controller.

 
(a) (b) 

Figure 12. The shooting Monte Carlo approach at the pitch angle velocity; (a) L1 adaptive controller;
(b) PID controller.
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(a) (b) 

Figure 13. The shooting Monte Carlo approach at the angle of attack; (a) L1 adaptive controller;
(b) PID controller.

5. Conclusions

Based on the conventional nonlinear dynamic inverse control of the outer loop, an
L1 adaptive controller was designed as the inner loop stability augmentation control to
compensate the uncertainty in the system. The expected verification results were obtained
from the Monte Carlo simulations. The main contributions of this paper are as follows:

(1) This paper introduced the composition of the power system of the thrust vectoring
V/STOL aircraft and established the dynamic equation of the F35B scale model
prototype.

(2) For the thrust vector V/STOL aircraft with strong coupling and nonlinearity, based
on the conventional dynamic inverse control in the outer loop, an L1 adaptive stabi-
lization controller was designed on the inner loop to compensate for the mismatch
uncertainty. The designed control structure integrates the fixed-wing mode and the
VTOL mode.

(3) The uncertainty of modeling and possible input disturbances were fully considered
and compared with the PID controller. It was verified by simulation that the controller
quickly responds to the command and has good robustness when there is a large
parameter perturbation.
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Abstract: Currently, deep-learning-based methods have been widely used in fault diagnosis to
improve the diagnosis efficiency and intelligence. However, most schemes require a great deal
of labeled data and many iterations for training parameters. They suffer from low accuracy and
over fitting under the few-shot scenario. In addition, a large number of parameters in the model
consumes high computing resources, which is far from practical. In this paper, a multi-scale and
lightweight Siamese network architecture is proposed for the fault diagnosis with few samples. The
architecture proposed contains two main modules. The first part implements the feature vector
extraction of sample pairs. It is composed of two lightweight convolutional networks with shared
weights symmetrically. Multi-scale convolutional kernels and dimensionality reduction are used in
these two symmetric networks to improve feature extraction and reduce the total number of model
parameters. The second part takes charge of calculating the similarity of two feature vectors to
achieve fault classification. The proposed network is validated by multiple datasets with different
loads and speeds. The results show that the model has better accuracy, fewer model parameters and
a scale compared to the baseline approach through our experiments. Furthermore, the model is also
proven to have good generalization capability.

Keywords: convolutional neural network; fault diagnosis; few shot; Siamese network; lightweight

1. Introduction

At present, bearings are an essential component of machine manufacturing equipment.
The good or bad running conditions of bearings directly affects the operation of the equip-
ment. However, complex real environments, including abnormal humidity, temperatures
and current magnitudes, cause different degrees of damage to the bearings, resulting in the
occurrence of faults. This produces high maintenance costs as well as delays of production
progress to the factory and even threatens the personal safety of personnel. Therefore, the
safety of bearings has become a crucial concern. The research on the bearing fault diagnosis
algorithm is of great significance to the safety of equipment [1,2].

Thus far, the traditional bearing fault diagnosis technology is to manually analyze the
vibration signal obtained by the accelerometer [3]. The corresponding methods are used
to extract the characteristic information from the vibration signal, which mainly include
fast Fourier transform (FFT) [4], wavelet transformation (WT) [5], empirical mode decom-
position (EMD) [6], short-time Fourier transform (STFT) [7] and Wigner–Ville distribution
(WVD) [8]. Furthermore, the advent of Hilbert transformation (HT) [9] made it possible
to diagnose transient bearing faults. These methods have been shown to be effective in
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practice. In recent years, machine learning has been utilized in the study of bearing fault
diagnosis.

The main methods are artificial neural networks (ANN) [10], principal component anal-
ysis (PCA) [11], K-Nearest Neighbors (K-NN) [12] and support vector machines (SVM) [13].
Machine learning as a branch of artificial intelligence is widely used in various fields. The
use of machine learning has taught computers how to process data efficiently compared
to traditional methods. The computer can find more subtle features to analyze, which
improves the accuracy and intelligence of bearing fault diagnosis. However, with the
rapid changes of current technology, the amount and types of data have also ushered in
rapid growth. Feature selection, which we need to rely on experts to perform, becomes
time-consuming and laborious. Deep learning not only has better accuracy and processing
speed but also can solve problems end-to-end. Therefore, deep learning is gradually being
widely adopted.

Deep learning has made great breakthroughs in the fields of computer vision, natural
language and data mining. Typical methods, such as convolutional neural networks
(CNN) [14,15], Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) [16]
and Generative Adversarial Networks (GAN) [17], have obvious effects in dealing with
problems in these fields. These methods simplify the step of feature extraction at the same
time. Furthermore, deep learning has good application prospects in the field of bearing
faults. Compared with the traditional diagnosis methods, the deep-learning method realizes
the automatic extraction of features and has a good effect on the accuracy of diagnosis.

A fault diagnosis method based on CNN multi-sensor fusion was proposed in the
literature [18]. An automatic recognition architecture for rolling bearing fault diagnosis
based on reinforcement learning was also proposed in the literature [19]. With the use of
real-life scenarios, the problem of insufficient training samples has been noticed and studied.
In recent years, excellent progress has been made in the study of neural networks based
on small samples [20,21]. Fang, Q. et al., proposed a denoised fault diagnosis algorithm
with small samples that can solve the problem of bearing fault diagnosis under small
samples [22].

However, a model with complex structures often requires a large number of parame-
ters. This leads to a higher level of operational equipment. Too many parameters make it far
from practical in real world scenarios. Furthermore, this may also affect the computational
speed. Hence, controlling the number of model parameters is extremely important in
practical applications. Fang, H. et al. proposed a lightweight fault diagnosis model that
can solve the problem of too many model parameters [23]. However, it cannot perform
fault diagnosis when there are insufficient samples. This shows that the recently proposed
models are unable to achieve a better trade-off between accuracy and lightweight [24,25].

To overcome the problems of few samples and a huge amount of parameters, an end-to-
end multi-scale and lightweight Siamese network with symmetrical architecture (MLS-net)
is proposed in this paper. MLS-net not only maintains good accuracy in bearing fault diag-
nosis under small samples but also has fewer parameters to reduce resource consumption
and a good generalization ability. The main contributions are summarized below.

• We construct a novel fault diagnosis network architecture by combining an improved
Siamese network and few-shot learning for the case of small samples.

• A multi-scale feature extraction module is designed to improve the feature extraction
capability of the model. Furthermore, we use the dimensionality reduction method to
compress the parameters of the model to conserve device resources.

• Extensive experiments are conducted on multiple datasets to demonstrate the effi-
ciency and generalization of the proposed architecture.

The rest of the paper is organized as follows: Section 2 introduces the mentioned basic
theory. Section 3 describes the proposed network structure. Section 4 presents the details
and results of the experiments. Section 5 concludes the paper.

164



Symmetry 2022, 14, 909

2. Preliminaries

2.1. Inception

The inception module has an important role in model compression and feature ex-
traction [26]. The key to the module improvement is the introduction of 1 × 1 convolution
and the construction of a multi-scale convolution structure. The accuracy of the model on
image classification was proven to be significantly improved through experiments. In addi-
tion, the model can utilize the computational resources more efficiently. More features are
acquired with the same amount of parameters. The accuracy is also significantly improved.
At the same time, the problems of overfit, gradient explosion and gradient disappearance
due to the increased depth of the model are also improved.

There are four branches in the inception module. The first three branches use 1 × 1
convolution kernels for dimensionality reduction, which serves to optimize the problem of
too many parameters caused by convolution operations. The reduction in dimensionality
also brings a reduction in calculations. It is beneficial to the full utilization of computational
resources. In addition, convolution kernels with different sizes are used to obtain different
perceptual fields in the inception module. The branch contains 1 × 1, 3 × 3 and 5 × 5 sizes.

The different sizes of the convolution kernels allow for richer information to be
extracted from the features. At the same time, multi-scale convolution uses the principle
of decomposing sparse matrices into dense matrices to speed up the convergence. A
comparison of the traditional convolution and inception modules is shown in Figure 1.

Figure 1. Traditional convolution vs. inception module convolution.

2.2. Siamese Network

A Siamese network [27] is a symmetrical architecture built from two neural networks.
They are mainly applied in small sample cases. The inputs of the model are two samples
from the same or different datasets. The main body consists of feature extraction and
a similarity calculation module. The function of the feature extraction module outputs
the feature vectors of the input samples. The similarity calculation module calculates the
similarity of the two feature vectors. The similarity is compared between the predicted data
and the prior knowledge using the model obtained from training. Thus, fault classification
with small samples is achieved. Its emergence solves the problem of deep neural networks
to obtain high accuracy and overfitting in the absence of a large number of data samples.

2.3. Few-Shot Learning

Few-shot learning [28] is the use of few samples for classification or regression. It
is different from traditional supervised learning methods. Few-shot learning does not
generalize the training set to the test set. It aims to make the model understand the
similarities and differences of things and learn to distinguish between different things.

Few-shot learning generally consists of a support set (S), a query set (Q), a training set
(T) and a judgment rule (R), where S contains a small amount of supervised information in Q.
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The combination of S and Q is used for predictive classification. R is the procedure equipped
to determine the similarities and differences of things. We use T as prior knowledge to
train R. R is then used to determine the similarities and differences between samples in S
and Q to achieve small sample classification.

3. Methodology

3.1. Structure of MLS-Net

The overall architecture of MLS-net is shown in Figure 2. We fuse the improved sub-
network with a Siamese network. A multi-scale and lightweight bearing fault diagnosis
architecture applied to the small sample situation is constructed. The whole structure body
consists of two symmetrical branches. As we can see from the figure, the overall architecture
contains four parts: data pre-processing, the sub-network, similarity classification and the
few-shot learning test.

Figure 2. Architecture of the MLS-net consisting of four modules.

3.1.1. Data Pre-Processing

The data pre-processing part focuses on the construction of the dataset that needs
to be input into the model. The intercepted fault data from the same class and different
classes are randomly combined to form the same and different class sample pairs. In the
input sample pairs, we input the bearing vibration data from the sample pairs into the two
symmetrical feature extraction branches separately.

The whole network needs to input pairs of samples in the format (x1, x2, Y). Each
sample pair contains a label Y . When Y is 1, it means that the input sample pairs are
fault data of the same category. However, when Y is 0, it means that the input sample
pairs are the fault data of different categories. The corresponding x1 and x2 represent the
two vibration data to be input. Further details of the data pre-processing can be found in
Section 4.1.

3.1.2. Sub-Network

The sub-network part has two feature extraction modules with shared weights. The
shared weights ensure that the results obtained from the two branches are comparable
during similarity classification. The main purpose of this part is to extract the feature
vector of the bearing fault data after convolutional processing using an optimized sub-
network. The structure of the sub-network consists of multiple multi-scale and reduced
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dimensional feature extraction modules. The fused multi-scale feature information is used
to enhance the model’s ability to obtain information from the samples. The function of the
dimensionality reduction module is as a reducing parameter.

3.1.3. Similarity Classification

The similarity classification part mainly uses the distance formula to calculate the
similarity between the feature vectors of the two branches. A similarity percentage is
given after normalization. This similarity percentage is used to determine whether the
two input bearing fault vibration data are of the same class. We use the trained similarity
calculation model in combination with the few-shot learning test method to realize bearing
fault diagnosis.

To implement the similarity calculation module, we first use the distance formula to
obtain the distance between two feature vectors. The closer the two feature vectors are,
the more likely that we can assume that they are the same class. When far apart, they are
different classes. We chose the Euclidean distance as the metric formula for the two feature
vectors. The formula is as follows.

st(x1, x2) = ||t(x1)− t(x2)|| (1)

where x1 and x2 are the input samples. t(x1) and t(x2) are the feature vectors obtained
after sub-network processing. sT(x1, x2) is the Euclidean distance.

The output of the entire network indicates the similarity of the sample pairs. In fact,
this problem has been transformed into a binary classification problem in the similarity
classification module. This is to give a probability to determine whether two input samples
are of the same class or different classes. We use the sigmoid function to map the distance
between two feature vectors to the range of (0, 1). The probability is used to intuitively
predict the magnitude of the distance between the two vectors. The formula to calculate
the output is as follows.

p(x1, x2) = sigm(FC(sT(x1, x2))) (2)

where FC is full connection processing for Euclidean distance output. sigm is sigmoid
function. p(x1, x2) is the probability of the similarity of sample pairs.

As the whole similarity calculation module is transformed into a binary classification
problem. When the entire network is trained, binary cross entropy is used as the loss
function of the network. The corresponding formula is as follows:

Loss = −Y(x1, x2)log(p(x1, x2)) + (1 −Y(x1, x2))log(1 − p(x1, x2)) (3)

where Y(x1, x2) represents the corresponding label. The same is “1”, and different is “0”.
Once the loss function is determined, a gradient descent function can be used to train

the Siamese network. The model weights are fine-tuned over multiple cycles by using
forward and backward propagation. A network model that can determine the similarity
of the fault samples is trained. We can use the trained similarity classification model and
few-shot learning test method for bearing fault diagnosis.

3.1.4. Few-Shot Learning Testing

The C-shot K-way testing is generally used to test the model under the situation of
small samples. K classes are extracted from the existing dataset, and C samples from each
class are taken to build the support set as the test criteria. The test set is called the query set.
We use the similarity classification module to calculate the similarity probability between
the support set and the query set. With the help of the similarity probability, we can easily
determine the category of the test sample. The general testing methods include one-shot
K-way testing and C-shot K-way testing.
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In one-shot K-way testing, each class in the support set S contains only one sample.
This test aims to calculate the probability of similarity for each sample pair consisting of
a support set and a query set. The sample pairs with the highest probability are of the same
kind. The definition of S and the formula for the highest score T are as follows.

S =
{
(xi, yi)|i = 1, 2...K

}
(4)

T(x̂, S) = argmax(P(x̂, xk)), xk ∈ S (5)

In the C-shot K-way testing, each class in the support set S contains only C samples.
Unlike one-shot K-way testing, this is performed by comparing the maximum of the sum
of the probability. The specific formula is as follows.

SC = {(Si|i = 1, 2...C)} (6)

T(x̂, SC) = argmax
{ n

∑
i=1

P(x̂, xCk)
}

, xCk ∈ SC (7)

3.2. Sub-Net Optimization

Siamese networks have been proven to be effective in dealing with small sample size
problems. However, when the structure of feature extraction network is simple. The model
cannot effectively extract enough features from the samples for classification. This article
improves on the branches in the Siamese network to overcome the above problem. The
sub-network is improved to a multi-scale and lightweight structure. The model extracts
rich features through convolution kernels of different sizes. We use 1 × 1 convolution
kernels to compress the model and reduce the calculations. This method can improve the
model feature extraction capability and model accuracy. The optimization of sub-network
module is shown in Figure 3.

The optimization for sub-network module is mainly inspired by the Inception module.
The improvement of the sub-network is based on a convolutional network with a first
layer of wide convolution [29]. As shown in Figure 3, the new model retains the wide
convolutional layer of the first layer in the original network. This is to extract more
feature information from the one-dimensional bearing vibration data, while other layers
introduce multi-scale modules and 1 × 1 for sub-network optimization. The 3 × 3 and 5 × 5
convolution kernels generate a huge amount of computation when there are too many
parameters in the input. We introduce a 1 × 1 convolution kernel to achieve dimensionality
reduction of the data, thus, reducing the amount of calculation and model parameters.

Figure 3. Structure of the sub-network with two types of multi-scale convolutional modules.

168



Symmetry 2022, 14, 909

After the model is processed by the first layer of wide convolution, it continues to be
processed by the multi-scale module to obtain richer feature information. The multi-scale
module can have different perceptual fields compared to the conventional convolution
module. There are two types of multi-scale convolution modules in the model. One is
a combination of 3 × 3 convolution and 5 × 5 convolution named IncConv1. The other
is the combination of 1 × 1 convolution and 3 × 3 convolution named IncConv2. Due to
the larger scale of the data in the first stage. The IncConv1 is chosen for processing in the
model. As the scale of the processed data decreases and the depth of the model increases,
the IncConv2 is gradually chosen for processing. This is to reduce the parameters and
computational effort.

The parameters of the convolutional layers in the sub-network are as follows: the
input part is 2048 × 1 size data. The size of the convolutional layer in the first layer is
64 × 1 and contains a total of 16 convolutional kernels. The step size of the convolutional
layers after this one is 1. The size of the second layer is 5 × 1 and contains 32 convolutional
kernels. The third layer is the IncConv1 module mentioned above. It is a combination of
convolutional kernels of sizes 3 × 3 and 5 × 5. The fourth and fifth convolutional layers
are the IncConv1 modules. These are a combination of 1 × 1 and 3 × 3 size convolutional
kernels.

Before the fully connected layer is a dropout layer with a parameter set to 0.5. It is
used to prevent overfitting during model training and to accelerate the convergence of
the model. The final output is a fully-connected layer with an output of 100. We add a
maximum pooling layer after each convolutional layer. The size of each maximum pooling
layer is 2 × 1, and the stride is 1. The maximum pooling is to reduce the model parameters
and increase the computational speed while extracting features robustly.

3.3. Processing of the Network

The specific operations can be seen in Figure 4 in the following modules.

Figure 4. Model workflow of MLS-net.
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• Preprocessing: The bearing fault vibration data is segmented using sliding windows
to obtain the bearing fault samples. We construct a training set and a test set according
to the requirement that the model input is a sample pair.

• Model training: The training set is divided into sample pairs with equal proportions
of the same and different classes of faults. We feed the training samples into the
network. Then, the network is trained by using the Adam gradient descent algorithm
and a binary cross entropy loss function. Finally, we save the model with the best
training results.

• Model testing: We first combine the samples from the test set and the training set
in order to form a support set. The trained optimal model is used in the similarity
probability calculation. The sample pair with the highest similarity probability among
the obtained multiple similarities is selected as the fault class.

4. Experimentation and Analysis

4.1. Data Set Preparation

We must understand the performance of the proposed network structure in the case
of insufficient samples. Three datasets are used for validation in this experiment. They
are the Case Western Reserve University (CWRU) bearing fault dataset [30], Mechanical
fault Prevention Technology Institute (MFPT) bearing fault dataset [31] and Laboratory
simulated bearing fault dataset.

(1) CWRU bearing fault dataset
For this experiment, the 12 kHz bearing fault on the drive side from the Case Western

Reserve University bearing dataset is used as the experimental data. The fault types are
divided into four categories: normal, ball fault, inner ring fault and outer ring fault. Each
fault, in turn, contains three fault categories of 0.007, 0.014 and 0.021 inch dimensions;
therefore, the total number of fault categories is 10. The specific classification is in Table 1.

(2) MFPT bearing fault dataset
The MFPT dataset is provided by the Mechanical Prevention Technology Association.

The dataset contains data from the experimental bench and three real-world fault data.
Fault types are divided into three categories: baseline conditions, outer race fault conditions
and inner race fault conditions. The sampling frequency of the data set is 25 Hz. We selected
seven types of data from MFPT to construct the experimental dataset. The fault types are
classified into three categories: normal, outer ring fault and inner ring fault. Each fault class
data is selected with load conditions of 50, 200 and 300 lbs. The total number of classes
of the fault categories in the experimental dataset is seven. The specific classification is in
Table 2.

(3) Laboratory bearing fault dataset
The main structure of the test bench is shown in the diagram below. The components

are the following: accelerometer, bearings, motors, acquisition cards, frequency converter
and external computers and other key devices. The positions of the individual devices
are marked in Figure 5. The entire experimental equipment is rotated by motors driving
the bearing parts. The accelerometers collect the vibration signal in real time. The vibra-
tion signal is then transferred to the computer for storage and analysis by means of an
acquisition card.

The experiments conducted in this case are set up for three fault situations. The faults
are outer race fault, inner race fault and ball fault. All three faults are set as scratch faults.
Three faults are set to penetrate in the axial. The width of the fault is 1.2 mm, and the
depth is 0.5 mm. All three faults are tested twice at 1800 and 3000 r/min, respectively.
Therefore, all fault categories are divided into six categories. Details of the corresponding
health conditions are shown in the following Table 3.
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Figure 5. Schematic of the bearing fault diagnosis simulation test bench.

Table 1. CWRU bearing dataset classification description.

Fault Location (inch) Status Labels Number of Training Samples Number of Test Samples

Normal 0 1980 75
Rolling ball (0.007) 1 1980 75
Rolling ball (0.014) 2 1980 75
Rolling ball (0.021) 3 1980 75
Inner race (0.007) 4 1980 75
Inner race (0.014) 5 1980 75
Inner race (0.021) 6 1980 75
Out race (0.021) 7 1980 75
Out race (0.021) 8 1980 75
Out race (0.021) 9 1980 75

Table 2. MFPT bearing dataset classification description.

Fault Location (lbs) Status Labels Number of Training Samples Number of Test Samples

normal 0 660 25
Out race (50) 1 660 25

Out race (200) 2 660 25
Out race (300) 3 660 25
Inner race (50) 4 660 25

Inner race (200) 5 660 25
Inner race (300) 6 660 25

Table 3. Laboratory bearing dataset classification description.

Fault Location (r/min) Status Labels Number of Training Samples Number of Test Samples

Out race (1800) 0 660 25
Out race (3000) 1 660 25

Inner race (1800) 2 660 25
Inner race (3000) 3 660 25

Rolling ball (1800) 4 660 25
Rolling ball (3000) 5 660 25

Each type of fault data is a vibration signal collected by an accelerometer. To ensure
consistent conditions with the comparison schemes, the dataset is constructed based on the
method in [29]. The detailed schematic diagram for building the training and test sets is
shown in Figure 6. We build the training set from the first half of the vibration signal and
the test set from the second. Each training sample is 2048 points in length. We use a sliding
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window with a step size of 80 to intercept the training samples sequentially backwards. The
data intercepted by the sliding window is the training set. The second half of the vibration
signal is divided into multiple non-overlapping test samples, and each test sample also
contains 2048 points.

Figure 6. Schematic of the bearing fault vibration signal cut and constructed data set.

4.2. Experimental Setup

The training samples are divided into the training set and validation set. By comparing
the loss rate under different ratios in Figure 7, the ratio of the training set and validation
set is configured to be 4:1 for better convergence performance. In addition, the model is
implemented using the Keras library and Python 3.6. The total epoch of model training is
15,000, and the small batch size is 32. The optimal model is saved after 20 training sessions
have been conducted in the experiment.

Figure 7. Comparison of the model training loss rate under different ratios.

To validate the performance of the models obtained by training under different sam-
ples, the quantities 60, 90, 120, 200, 300, 600 and 900 are randomly selected on the CWRU
and Laboratory datasets. The number of fault types selected in MFPT is seven. For the sake
of balance of the training data, we randomly select the quantities 70, 105, 140, 210, 280, 490
and 700.

The sample pairs we input each time are randomly selected from the above training
set. When they belong to the same class, they are labeled as positive samples; otherwise,
they are negative samples. We also need to ensure that the number of positive and negative
sample pairs is equal to ensure a balanced sample.

In Experiment 1, we vary the number of multi-scale modules in the model to determine
the optimal model structure. In Experiment 2, we test the model on three datasets to verify
the performance of MLS-net. In Experiment 3, we visualize the model performance using
visualization tools. In Experiment 4, we calculate the model size and parameters.

The following three methods will be tested on the three datasets to compare with the
new proposed model.

1. Support Vector Machine (SVM): SVM is a classical machine learning method for
dichotomous classification problems. We use an SVM between any two classes to
implement a multi-classification task.
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2. One-Dimensional Convolutional Neural Network (1D-CNN) [29]: 1D-CNN, which
is a five-layer DCNN. It uses 64 × 1 convolutional kernels for the first layer and
3 × 1 convolutional kernels for the next four layers. The corresponding number of
convolutional kernels is 16, 32, 64, 64 and 64. We add a maximum pooling layer of
size 2 × 1 after each convolutional layer. The final layer is a fully connected layer with
an output of 100.

3. The baseline Siamese network (BS-net) [32]: BS-net has the same structure as the
proposed Siamese network. However, the structure of sub-network in the Siamese
network is the 1D-CNN mentioned above.

4.3. Determination of the Number of Multi-Size Modules

We want to determine the optimal number of multi-size modules in the model. The
multi-size modules are divided into two categories by the introduction of the sub-network.
The larger size is a fusion of 5 × 5 and 3 × 3, which we call IncConv1. The smaller size is
a fusion of 3 × 3 and 1 × 1, which we call IncConv2. Under the premise that the sample
size is set to 60, we will vary the number of these two modules to determine the optimal
number of modules.

The comparison between Tables 4 and 5 shows that the trend of the accuracy of the
model decreases as the number of the IncConv1 increases. This shows that the number of
modules for IncConv1 should be 1. Figure 8a,b shows the variation of accuracy on each
data set and the mean of the three types of data. The mean lines in both plots show that,
as the number of modules increases, the accuracy rate decreases. However, our previous
analysis shows that the number of IncConv1 should be 1.

Therefore, we only need to observe Table 4 to determine the number of IncConv2. We
find that the accuracy rate decreases as the number of modules increases.The accuracy
of the models is similar at number 1 and 2; however, the total number of parameters is
different. To balance the accuracy and the total number of parameters, we finally decided
to set the number of IncConv2 to 2.

(a) (b)

Figure 8. Accuracy comparison with different number of modules: (a) number of IncConv1 is 1 and
(b) number of IncConv1 is 2.

Table 4. Comparison of IncConv2 numbers (number of IncConv1 is 1).

IncConv2 Numbers Datasets Accuracy (%) Mean (%) Total Number of Parameters

1
CWRU 83.50

83.47 63,897MFPT 82.60
Laboratory 84.32

2
CWRU 81.55

82.67 41,449MFPT 84.39
Laboratory 82.08
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Table 4. Cont.

IncConv2 Numbers Datasets Accuracy (%) Mean (%) Total Number of Parameters

3
CWRU 75.12

75.26 31,801MFPT 72.67
Laboratory 78.00

4
CWRU 72.56

72.51 28,452MFPT 68.64
Laboratory 76.34

Table 5. Comparison of IncConv2 numbers (number of IncConv1 is 2).

IncConv2 Numbers Datasets Accuracy (%) Mean (%) Total Number of Parameters

1
CWRU 81.21

82.25 43,497MFPT 83.83
Laboratory 81.73

2
CWRU 79.26

77.96 33,849MFPT 76.00
Laboratory 78.64

3
CWRU 75.23

73.92 30,601MFPT 70.23
Laboratory 76.32

4.4. Model Effects with Different Sample Sizes

In this section, we want to verify that the proposed method performs well in the case
of insufficient samples. We chose the methods described above: (SVM), 1D-CNN, BS-net
and MLS-net for performance comparison. Several models are tested on three bearing fault
datasets. Table 6 and Figure 9 show the results of the experiments.

Table 6. Comparison of sample sizes.

Datasets Models Number of Samples

CWRU

60 90 120 200 300 600 900
SVM 18.93 26.56 31.20 38.67 43.89 50.05 52.35

1D-CNN 73.97 77.39 84.19 93.97 96.59 97.03 98.69
BS-net 79.33 88.41 90.15 94.00 95.45 96.00 98.07

ANS-net [22] 88.64 90.60 - - 98.24 98.59 99.05
MLS-net 81.55 90.02 91.44 93.04 95.59 97.97 98.74

MFPT

70 105 140 210 280 490 700
SVM 45.14 53.14 54.26 56.57 73.14 74.85 78.85

1D-CNN 60.76 70.28 78.47 91.42 95.09 96.23 97.13
BS-net 74.97 81.6 89.6 94.97 95.12 96.25 96.57

MLS-net 84.39 89.32 91.44 95.12 95.79 96.53 97.91

Laboratory

60 90 120 180 300 600 900
SVM 41.33 51.53 66.66 73.33 74 74.66 76

1D-CNN 54.13 60.93 71.66 82.46 83.73 84.26 88.26
BS-net 72.80 81.20 82.00 82.93 85.00 87.06 88.00

MLS-net 82.08 83.99 86.23 87.56 89.05 90.41 92.02

It is clear that the MLS-net shows the most excellent results. We analyze the results of
each dataset and see that the SVM method has a significant difference in accuracy compared
to the other methods. The accuracy of the SVM differs from other methods by nearly 20% or
more when the sample is insufficient. There is also a 10% difference in accuracy with a large
number of samples. It can be seen that the deep-learning approach is far superior to SVM.
Compared with 1D-CNN, the Siamese network model is more complex in structure. The
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model cleverly uses metrics for similarity calculation and incorporates few-shot learning
methods.

(a)

(b)

(c)

Figure 9. Comparison of sample sizes: (a) CWRU dataset, (b) MFPT dataset and (c) Laboratory
dataset.
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This makes the ability of fault classification significantly better than 1D-CNN in the
case of small samples. The MLS-net is compared with BS-net by experimental data. When
the samples are insufficient, the accuracy of the MLS-net is improved in all cases. It can be
seen that the introduced multi-size convolutional module can obtain richer information.
With the increase of samples, the accuracy of both tends to be the same. Sometimes the
accuracy of the old model is higher than that of the MLS-net. The difference between the
two models is within 1%. It can be seen that there is minimal loss of accuracy when the
sample is sufficient.

4.5. Visualization Analysis

We attempted to obtain a better understanding of how well the model performs in
the presence of insufficient samples. We would like to make further proof by using the
feature visualization method of t-SNE and the confusion matrix of the test results. In
Figure 10, we show the visualization of the last layer of the fully connected layer on the
CWRU dataset and Laboratory dataset. The number of samples for model training is set
to 90. In Figure 11, the confusion matrix plot of the test results on these two datasets is
also shown. The comparison methods used in both plots are the BS-net and the MLS-net
proposed in this paper.

In Figure 10, the Figure 10a,b are of the CWRU dataset. Figure 10c,d are the Laboratory
dataset. As can be seen in the figure on the CWRU dataset, the MLS-net can be clearly seen
on categories 1, 2 and 3 with a good distinction. Whereas, on the BS-net it shows that the
three categories are mixed together and cannot be clearly distinguished. It can be seen that
the BS-net is not as good at classifying as the MLS-net. This problem is more apparent in
the Laboratory data set. Multiple classes are mixed together and all data distribution is
discrete on the BS-net. This problem is well resolved in the plots of the MLS-net. It can be
seen that the MLS-net has a better ability to classify samples with small samples.

In Figure 11, Figure 11a,b are the CWRU bearing dataset and Figure 11c,d are the
Laboratory bearing dataset. As we can see in both Figure 11a,b, the number of accurate
judgements for each category in Figure 11a is greater. Whereas, in Figure 11b, it is clear
that the accuracy of per category is much lower. In Figure 11c,d, the comparison of the two
models is also the same. This shows that the new model also has a superior performance in
prediction compared to the BS-net. At the same time, the performance of the MLS-net is
consistent across the different dataset. It means that the MLS-net can be applied to practical
bearing fault diagnosis.

(a) (b) (c) (d)

Figure 10. Visualization via t-SNE: (a,b) CWRU dataset, (c,d) Laboratory dataset.

176



Symmetry 2022, 14, 909

(a) (b) (c) (d)

Figure 11. confusion matrix: (a,b) CWRU dataset, (c,d) Laboratory dataset.

4.6. Model Lightweight Comparison

In this subsection, the main purpose is to analyze the comparison of model size under
different models and datasets. The results of the experiment mainly contain the total
number of model parameters and model sizes for SVM, 1D-CNN, BS-net and MLS-net
under the three dataset. The recently proposed bearing fault diagnosis models ANS-net [22]
and LEFE-net [23] are also compared. We jointly determine the merit of a model based on
the parameters and the accuracy rate. A model that has fewer parameters while having
the higher accuracy will have superior performance. The system cost and the speed of
computation will be greatly increased under fewer parameters. The details are shown in
the following Figure 12 and Table 7.

In Figure 12, we mainly depict the relationship between model accuracy and total
number of parameters. The horizontal coordinate indicates the model parameters. The
vertical coordinate indicates the accuracy rate. The accuracy of each model is obtained from
the experiment when the sample size is set as 900 for the CWRU dataset. As we can see
from Figure 12, MLS-net shows the better performance in terms of the model parameters
and accuracy compared with 1D-CNN and BS-net.

Although ANS-net has similar accuracy with MLS-net, the number of MLS-net pa-
rameters is only 41449, which is greatly reduced. The ANS-net, on the other hand, has far
more than 100,000 parameters. LEFE-net has fewer parameters than ANS-net. However, its
accuracy is lower than ANS-net and MLS-net when the training sample size is 900. When
the sample drops to 60, the accuracy of LEFE-net will be further greatly reduced. Overall,
MLS-net is able to run efficiently with less computation cost as well as guaranteed accuracy.
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Figure 12. Relationship between model accuracy and parameters.

From Tables 6 and 7 and Figure 12, it is clear that MLS-net has a significant improve-
ment in model size and accuracy. Specifically, SVM is 100-times larger than MLS-net in
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terms of model size, while its accuracy is only 50% of MLS-net under small samples. MLS-
net is also more advantageous in terms of the parameters of the model. It compresses about
20% parameters in comparison with BS-net and 1D-CNN. However, MLS-net under small
samples improves the accuracy compared to 1D-CNN with an improvement of 10–15%
and improves the accuracy by about 2–5% compared with BS-net.

ANS-net was recently proposed as a bearing fault diagnosis model for the small
sample case. Although it has a high accuracy rate under small samples, a large number of
parameters (more than 100,000) are needed to ensure the accuracy. In addition, MLS-net
performs better in accuracy and lightweight than the lightweight bearing fault diagnosis
model LEFE-net. Through the above experiments, MLS-net is proven to have a lighter
model structure and better accuracy under small samples, which can greatly improve the
efficiency of bearing fault diagnosis.

Table 7. Comparison of model parameters and sizes.

Models Datasets Total Number of Parameters Model Size

SVM
CWRU - 110,837 KB
MFPT - 108,460 KB

Laboratory - 108,460 KB

1D-CNN
CWRU 52,806 663 KB
MFPT 52,503 660 KB

Laboratory 52,402 659 KB

BS-net
CWRU

53,945 680 KBMFPT
Laboratory

ANS-net
CWRU

>100,000 -MFPT
Laboratory

MLS-net
CWRU

41,449 566 KBMFPT
Laboratory

LEFE-net CWRU 56,640 -

5. Conclusions

In this paper, we proposed the MLS-net for the end-to-end bearing fault diagnosis
problem. The model has a great ability to classify in the case of small samples. It also has
a multi-scale feature fusion module to enable further feature information to be acquired.
With dimensionality reduction, the model is also able to obtain comparable accuracy with
fewer parameters. The model was mainly designed based on the idea of metrics. Two
symmetrical sample feature extraction modules with shared parameters are contained.
These are mainly used to extract the feature vectors of the two sample pairs of the input.
The similarity calculation module is used to calculate the similarity of the two extracted
feature vectors. Thus, the trained model has the ability to compare the similarity probability
between the standard samples and predicted samples. This enables the classification of the
bearing fault.

To better validate the proposed model MLS-net, we tested it on three datasets to
demonstrate its performance. The results show that the model had higher accuracy with
fewer parameters when the sample was insufficient compared to recently proposed meth-
ods. This proves that MLS-net as proposed in our paper makes a good tradeoff between
the accuracy and computing cost. In addition, the results were consistent across the three
datasets tested. This indicates that the whole model has good generalization ability for
different fault datasets.

The model showed good performance by retraining the method in this paper on
multiple datasets. However, the need of retraining the model each time makes the operation
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cumbersome. In future work, we can focus our research more on the transfer scenarios of
the model and fault diagnosis in noisy environments.
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Abstract: A velocity-free state feedback fault-tolerant control approach is proposed for the rigid
satellite attitude stabilization problem subject to velocity-free measurements and actuator and sensor
faults. First, multiplicative faults and additive faults are considered in the actuator and the sensor.
The faults and system states are extended into a new augmented vector. Then, an improved sliding
mode observer based on the augmented vector is presented to estimate unknown system states and
actuator and sensor faults simultaneously. Next, a velocity-free state feedback attitude controller
is designed based on the information from the observer. The controller compensates for the effects
of actuator and sensor faults and asymptotically stabilizes the attitude. Finally, simulation results
demonstrate the effectiveness of the proposed scheme.

Keywords: attitude stabilization; fault reconstruction; fault-tolerant control; sliding mode observer;
state feedback

1. Introduction

As an important component of the satellite, the attitude control system plays a key role
in practical aerospace missions, such as space on-orbit services and spacecraft pointing and
turning. Numerous studies on attitude control methods have emerged, such as adaptive
variable structure control (VSC) [1,2], robust control [3–7], output feedback control [8,9],
time-delayed control [10], and finite-time control [11–13]. The premise of these control
methods is the assumption that there exists no actuator or sensor fault during satellite
maneuvers. However, due to the harsh space environment in satellite operation, actuator
and sensor faults are inevitable. If the designed attitude control system does not have the
ability to deal with the faults, it may lead to the failure of the target space missions or even
the destruction of the satellite [14]. Inspired by this problem, this work mainly studies the
fault tolerant control (FTC) of attitude stabilization guaranteed in the case of actuator and
sensor faults.

For actuator faults or sensor faults, some scholars have used observer methods to
estimate fault values. In [15], a fault-tolerant control method based on the iterative learning
observer was proposed. Fault-tolerant control and closed-loop control assignment were
achieved. In [16], a fixed-time observer was presented to estimate the lumped disturbances,
including actuator faults and external disturbances. At the same time, a fixed-time attitude
controller was presented according to the homogeneity, estimated disturbances, and inte-
gral sliding mode. For gyroscope constant deviation, a coupled quaternion filter and a bias
observer were employed to achieve attitude control in [17]. For the linear parameter varying
(LPV) system, a reduced-order LPV observer was considered to estimate unmeasured states
and sensor faults in [18], reducing the computation of full-order estimation. Refs. [19,20]
proposed an adaptive fault-tolerant attitude controller based on VSC. Compared with the
observer method, this method does not need accurate fault information and compensates
for fault effects by adaptive law. Different from model-based observers, some scholars have
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used the neural network algorithm to solve fault problems. In [21], the uncertain terms
and the fault boundary of the system were estimated by using the neural network and the
online update law, respectively. Based on estimations, a modified fault-tolerant control law
was designed to achieve global asymptotic stability of attitude. In [22], the recursive neural
network was considered to detect and isolate the actuator and sensor faults of the satellite
attitude subsystem. The impacts of component faults on the system were well solved in
the above literature, but either actuator faults or sensor faults were considered, without
discussing the simultaneous faults of both actuators and sensors. For the systems with
simultaneous actuator and sensor faults, some observation schemes have been proposed
in [23–26] and applied to the circuit model and the vehicle model.

The above methods require the satellite attitude and angular velocity to be measurable.
However, in practical applications, angular velocity measurements may not be available
due to sensor faults or reduced satellite costs [27]. Therefore, a velocity-free attitude control
system becomes the trend in satellite development. Considering the unavailability of
angular velocity measurements, a velocity-free attitude stabilization control scheme relying
solely on attitude information was presented in [28]. In [29–31], finite-time observers were
designed to estimate angular velocity, which was applied to attitude stability control [29,30]
and attitude synchronization control [31]. In [32], the finite-time observer based on the
neural network was used to obtain the unknown angular velocity. Compared with the
method in [29–31], it did not require accurate knowledge of the system model. To obtain the
angular velocity faster and more stably, based on the fixed-time theory in [33], a fixed-time
angular velocity observer was designed to complete satellite formation control in [34]. If
the actuator faults are also considered, the design of the control system encounters greater
challenges. In the face of actuator faults and velocity-free measurements, [35] designed
two finite-time observers and presented a fault-tolerant controller with attitude information
only. In [36], an adaptive fault-tolerant controller was proposed based on neural networks
using the information from the finite-time observer.

Although there are credible results for single fault and velocity-free measurements
in the above literature, the simultaneous occurrence of actuator faults, sensor faults, and
velocity-free measurements are not considered. When the above problems occur simulta-
neously, the controller design will face major challenges: (1) Velocity-free measurements
lead to the reduction of measurable information. (2) The simultaneous faults of actuator
and sensor lead to the complexity of fault information, which increases the difficulty of
fault detection and compensation. (3) Velocity-free measurements and sensor faults lead
to the lack of accurate attitude information. To solve these problems, a velocity-free state
feedback fault-tolerant control scheme is proposed in this paper. The main contributions of
this work are summarized as follows:

(a) An improved sliding mode observer is proposed to estimate system states and faults
simultaneously. Compared with the observer in [26], the steady-state performance
is improved.

(b) The multiplicative faults and additive faults of actuator and sensor are considered.
The designed scheme is able to tolerate the lumped faults. The controller presented
has a strong fault-tolerance ability such that the closed-loop attitude system is asymp-
totically stable.

(c) The proposed fault-tolerant control scheme does not require angular velocity mea-
surements, which reduces satellite mass and the cost of airborne sensors.

The remainder of this paper is organized as follows. In Section 2, satellite attitude
dynamics and actuator and sensor faults models are described. The required mathematical
preliminaries are also given in this part. In Section 3, the proposed improved sliding mode
observer and the state feedback fault-tolerant attitude controller are presented, respectively.
Numerical simulation is provided to demonstrate the effectiveness of the proposed scheme
in Section 4. Conclusions are given in Section 5.
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2. Preliminaries

2.1. Notations and Lemmas

In ∈ �n×n represents the identity matrix with a dimension n. 0n×m ∈ �n×m is an n
by m zero matrix. || · || stands for the induced norm of a matrix or the Euclidean norm of
a vector. λmin(·) and λmax(·) denote the minimum and maximum eigenvalues of a matrix,
respectively. For a given scalar α > 0 and a vector x = [ x1 x2 . . . xn ]

T ∈ �n,

the notation can be defined as follows: sigα(x) = [ sigα(x1) sigα(x2) · · · sigα(xn) ]
T ,

where sigα(xi) =|xi|αsgn(xi) and sgn(·) denotes the sign function.
The function Γ(x, α, β) is defined as

Γ(x, α, β) =

{
sgnα(x) ||x|| ≤ 1
sgnβ(x) ||x|| > 1

(1)

where x ∈ �n, 0 < α < 1, and β > 1.
For a given vector a = [ a1 a2 a3 ]

T ∈ �3, the notation a× indicates the skew-
symmetric matrix:

a× =

⎡⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎦ (2)

Lemma 1 [33]. Consider the following nonlinear system of differential equations:

.
x = f(t, x), x(0) = x0 (3)

where x ∈ �n is the system state and f : �+ ×�n → �n is a continuous function defined in
an open neighborhood U of the origin. If there is a positive definite function V(x) : �n → �
satisfying

.
V(x) ≤ −(αVp(x) + βVq(x)) + ς, where α, β ∈ �+, 0 < p < 1, q > 1, and

0 < ς < ∞, the trajectory of Equation (3) is practical fixed-time stable. The settling time T for the
system to reach a steady state satisfies T ≤ 1/α(1 − p) + 1/β(q − 1).

2.2. Satellite Attitude Dynamics Model

To describe the satellite attitude, three coordinate systems are commonly used: the
inertial fixed reference coordinate frame FI , the orbital coordinate frame Fo, and the
body-fixed coordinate frame Fb. The angular velocity ωr of the body-fixed coordinate
frame relative to the orbital coordinate frame is obtained by a yaw–pitch–roll sequence of
rotations. It can be described by [35]

ωr = R(Θ)
.

Θ =

⎡⎣ 1 0 − sin θ
0 cos φ cos θ sin φ
0 − sin φ cos θ cos φ

⎤⎦
⎡⎢⎣

.
φ
.
θ
.
ψ

⎤⎥⎦ (4)

where Θ = [φ θ ψ ]T ∈ �3 is the attitude Euler angle vector. The angular velocity

ω =
[

ωx ωy ωz
]T ∈ �3 of the body frame with respect to the inertial frame in the

body frame is defined as
ω = ωr + ωO (5)

where

ωO = −
⎡⎣ cos θ sin ψ

cos φ cos ψ + sin φ sin θ sin ψ
− sin φ cos ψ + cos φ sin θ sin ψ

⎤⎦ω0 (6)
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Here, ω0 is the orbital angular velocity. Substituting Equations (4) and (6) into Equation (5)
and taking into account small Euler angle rotations, the attitude kinematics can be given by [21]

ω =
[

ωx ωy ωz
]T

=
[ .

φ − ω0ψ
.
θ − ω0

.
ψ + ω0φ

]T
(7)

The angular momentum is expressed as H = Ibω. In the case of considering the
gravity gradient torque and the external disturbance torque, the attitude dynamics model
of the rigid satellite can be described by [35]

Ib
.

ω + ω× Ibω = τ + τd + τg (8)

where τ = [τ1 τ2 τ3 ]T ∈ �3 is the total torque generated by the actuator, τd =

[τd1 τd2 τd3 ]T ∈ �3 is the external disturbance torque, and Ib = diag([ Ib1 Ib2 Ib3 ])
is the inertia matrix. In the case of a small attitude angle maneuver, the gravity gradient
torque τg = [ τg1 τg2 τg3 ]

T ∈ �3 can be approximated as

τg =
[ −3ω2

0(Ib2 − Ib3)φ −3ω2
0(Ib1 − Ib3)θ 0

]T (9)

Substituting Equations (7) and (9) into Equation (8) yields

Ib
..
Θ + a1

.
Θ + a0Θ = τ + τd (10)

Define a new state x = [ xT
1 xT

2 ]
T
= [ ΘT

.
Θ

T
]
T

. Then, Equation (10) can be
rewritten as: { .

x = Ax + Bτ + Dτd
y = Cx

(11)

where x ∈ �6, τ ∈ �3, τd ∈ �3, and y ∈ �6 denote system state, total torque, external
disturbance torque, and measurement output, respectively. The system parameter matrixes
A ∈ �6×6, B ∈ �6×3, D ∈ �6×3, and C ∈ �6×6 are defined as

a0 = ω2
0

⎡⎢⎢⎣
4(Ib2 − Ib3) 0 0

0 3(Ib1 − Ib3) 0

0 0 Ib2 − Ib1

⎤⎥⎥⎦, a1 = ω0

⎡⎢⎢⎣
0

0

Ib1 − Ib2 + Ib3

0

0

0

−Ib1 + Ib2 − Ib3

0

0

⎤⎥⎥⎦,

A =

[
03

−I−1
b a0

I3

−I−1
b a1

]
, B = D =

[
03

I−1
b

]
, c1 =

⎡⎢⎢⎣
0 0 −ω0

0 0 0

ω0 0 0

⎤⎥⎥⎦, C =

[
I3 03

c1 I3

]
.

2.3. Faults Model

Referring to the definition of actuator faults in [36], the actuator faults can be divided
into multiplicative faults and additive faults with the form

τ = ρu + u f (12)

where u = [u1 u2 u3 ]T ∈ �3 represents the actuator commanded control torque;

ρ = diag([ ρ1 ρ2 ρ3 ]
T
) ∈ �3×3 denotes the degree of actuator failure, 0 < ρi ≤ 1,

where i = 1, 2, 3; and u f ∈ �3 stands for actuator additive faults. Equation (12) can be
rewritten as

τ = u + fa (13)

where the lumped actuator faults fa ∈ �3 can be defined as

fa = (ρ − I3)u + u f (14)

In this paper, the fault-tolerant control of the satellite is studied under the condition
of velocity-free measurements so that the actual measurement output only contains the
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attitude angle information. Considering partial failures and additive faults of the sensor,
the expression of measurement output can be defined as

ya = δy + y f (15)

where ya ∈ �3 is the actual output of the sensor; y f ∈ �3 is sensor additive faults; and

δ = diag([ δ1 δ2 δ3 ]
T
) ∈ �3×3 denotes the degree of sensor failure, 0 < δi ≤ 1, where

i = 1, 2, 3. Equation (14) can be rewritten as

ya = Cx + fs (16)

where the lumped sensor faults fs ∈ �3 can be defined as

fs = (δ − I3)y + y f (17)

Combined with Equations (13) and (16), the system dynamics with actuator and sensor
faults can be written as { .

x = Ax + B(u + fa) + Dτd
ya = Cx + fs

(18)

where fa ∈ �3 and fs ∈ �3 denote the lumped faults of the actuator and the lumped faults
of the sensor, respectively. The parameter matrix C = [ I3 03 ] ∈ �3×6. According to
Equation (18), the following assumptions are made:

Assumption 1. There exist positive constants kΘ and kω such that ||Θ|| ≤ kΘ and ||ω|| ≤ kω

for all t ≥ 0.

Assumption 2. The external disturbances and actuator and sensor faults satisfy ||τd|| ≤ rd,
||fs|| ≤ rs, ||fa|| ≤ ra, and ||

.
fa|| ≤ ra1, where rd > 0, rs > 0, ra > 0, and ra1 > 0 are known

constants. There is a known constant η > 0 such that rd + ra + rs + ra1 ≤ η.

Remark 1. For the feedback control problem, the assumption of bounded system states and distur-
bances is necessary. Due to the physical limitation of the equipment, the attitude of the satellite and
the output torque of the actuator are limited in practical engineering. If the external disturbance
is infinite, the attitude system will not be controllable. Similar assumptions also can be found in
related literature, such as Assumption 1 in [29] and Assumption 2 in [26].

2.4. Problem Statement

The objective of this work is stated as follows: for the satellite with simultaneous
actuator faults, sensor faults, and velocity-free measurements, the designed observer is
required to estimate the unknown system states and faults in real time. The velocity-free
fault-tolerant controller is provided to asymptotically stabilize the attitude, i.e., Θ → 0 and
ω → 0 , even in the presence of external disturbances and actuator and sensor faults.

3. Observer-Based State Feedback Attitude Controller Design

In this section, a velocity-free state feedback fault-tolerant attitude controller (VSFTC)
will be proposed to stabilize the attitude of the satellite. The structure of the closed-loop
system is shown in Figure 1. This control structure includes two modules: an improved
sliding mode observer is designed to estimate Θ, ω, fa, and fs and a velocity-free controller
is proposed by using the estimate information of the observer.
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Figure 1. The structure of the proposed fault-tolerant attitude control system without velocity
measurements.

3.1. Improved Sliding Mode Observer Design

According to Equation (18), the augmented system is constructed as follows:{
E

.
x = Ax + Bu + Dd

ya = Cx
(19)

where

x =

⎡⎣ x
fa
fs

⎤⎦, d =

⎡⎢⎣ τd

fa +
.
da

fs

⎤⎥⎦, E =

⎡⎣ I6 06×3 06×3
03×6 I3 03
03×6 03 03

⎤⎦, (20)

B =

[
B

06×3

]
, C = [ C 03 I3 ], (21)

A =

⎡⎣ A B 06×3
03×6 −I3 03
03×6 03 −I3

⎤⎦, D =

⎡⎣ D 06×3 06×3
03 I3 03
03 03 I3

⎤⎦ (22)

Let S = E + FC ∈ �12×12; F ∈ �12×3 is selected as

F =
[

0T
3 0T

3 0T
3 FT ]T (23)

where F = diag([ σ1 σ2 σ3 ]
T
) ∈ �3×3 and σi > 0, i = 1, 2, 3, such that S is non-singular.

Define A = S−1 A, B = S−1B, D = S−1D, and F = S−1F. Then Equation (19) can be
rewritten as { .

x = Ax + Bu + Dd + F
.
ya

ya = Cx
(24)

Let x̂ and ŷa be estimates of x and ya, respectively. The improved sliding mode
observer is proposed as follows:

.
x̂ = Ax̂ + Bu + DΔ + F

.
ya − LΓ(Ce, α, β)− kL(

.
ŷa −

.
ya) (25)

where e = x̂ − x= [ eT
1 eT

2 eT
3 eT

4
]T is the system state error vector; 0 < α < 1, β > 1,

k > 0, and L = [ LT
1 LT

2 LT
3 LT

4 ]
T ∈ �12×3 are the gain matrixes; Li = li I3; li > 0,

where i = 1, 2, 3, 4; and Δ is the compensation input. According to Assumption 2, Δ is
designed as

Δ = −(η + ε)sgn(D
T

N−T Pe) (26)
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where ε > 0 is a small scalar quantity and N, P ∈ �12×12 is the parameter matrix to
be designed.

By defining z = x̂ − Fya + kL(ŷa − ya), Equation (25) can be rewritten as{ .
z = Az + Bu + DΔ + A(F + kL)ya − kALŷa − LΓ(Ce, α, β)

x̂ = z + (F + kL)ya − kLŷa
(27)

where z ∈ �12 is the system state and x̂ is the system output.
According to Equations (24) and (25), the estimation errors can be given by

.
e = Ae + DΔ − Dd − LΓ(Ce, α, β)− kLC

.
e (28)

Define a matrix N = I12 + kLC ∈ �12×12. According to the definition of L and
Equation (21), N is a non-singular matrix. Then, Equation (28) can be rewritten as

.
e = N−1(Ae + DΔ − Dd − LΓ(Ce, α, β)) (29)

Theorem 1. Consider the plant (18) subject to the actuator faults (14), sensor faults (17), and the
external disturbances under Assumption 2. If the observer is designed according to Equation (27), there
exist appropriate gain matrixes L ∈ �12×3, P ∈ �12×12 > 0, and Q ∈ �12×12 > 0, satisfying:

(A − LC)
T

N−T P + PN−1(A − LC) + Q ≤ 0 (30)

such that the estimated statesx̂converges asymptotically to its actual statesxand the error dynamic
system of Equation (29) is ultimately uniformly bounded.

Proof of Theorem 1. Define a Lyapunov function V1 = eT Pe. The time derivative of V1
along the trajectories of the error dynamics in Equation (29) leads to

.
V1 = 2eT PN−1 Ae + 2eT PN−1DΔ − 2eT PN−1Dd − 2eT PN−1LΓ(Ce, α, β) (31)

According to Equation (1), Γ(x, α, β) is a piecewise function. We discuss
.

V1 in
two parts: Part 1 (||Ce|| ≤ 1) and Part 2 (||Ce|| > 1).

Part 1: ||Ce|| ≤ 1. Based on Equation (1), Equation (31) can be rewritten as

.
V1 = 2eT PN−1 Ae + 2eT PN−1DΔ − 2eT PN−1Dd − 2eT PN−1Lsigα(Ce) (32)

Since ||Ce|| ≤ 1 and 0 < α < 1, we have ||C e| ∣∣α ≥ ||Ce|| . Substituting it into
Equation (32) yields

.
V1 ≤ 2eT PN−1 Ae − 2eT PN−1LCe + 2eT PN−1DΔ − 2eT PN−1Dd (33)

According to Assumption 2,
∣∣∣∣d∣∣∣∣ ≤ η. If the inequality in Equation (30) holds,

substituting Equation (26) into Equation (33), we have

.
V1 ≤ 2eT PN−1 Ae − 2eT PN−1LCe + 2eT PN−1DΔ + 2η||eT PN−T D||
≤ eT((A − LC)

T
N−T P + PN−1(A − LC))e + 2||eT PN−T D||(−(ε + η) + η)

≤ −eTQe − 2ε||eT PN−T D||
(34)

From the standard inequality for quadratic forms, we obtain λmin(Q)||e||2 ≤ V1 ≤ λmax(Q)||e||2.
For ε > 0, the inequality in Equation (34) can also be rewritten as

.
V1 ≤ −λmin(Q)||e|

∣∣∣2 ≤ 0 (35)
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Part 2: ||Ce|| > 1. Based on Equation (1), Equation (31) can be rewritten as

.
V1 = 2eT PN−1 Ae + 2eT PN−1DΔ − 2eT PN−1Dd − 2eT PN−1Lsigβ(Ce) (36)

Since ||Ce|| > 1and β > 1, we have ||C e| ∣∣β ≥ ||Ce|| . Substituting it into Equation (36) yields

.
V1 ≤ 2eT PN−1 Ae − 2eT PN−1LCe + 2eT PN−1DΔ − 2eT PN−1Dd (37)

Following the same procedure in Part 1,
.

V1 satisfies

.
V1 ≤ −λmin(Q)||e|

∣∣∣2 ≤ 0 (38)

With the combination of Part 1 and Part 2, we have
.

V1 ≤ 0 when Equation (30)
holds. According to the Lyapunov stability theorem, the errors system in Equation (29) is
asymptotically stable. This completes the proof of Theorem 1. �

3.2. Velocity-Free State Feedback Fault-Tolerant Attitude Controller Design

The parameter matrix of the observer in Equation (25) is expressed as follows:

A =

⎡⎢⎢⎢⎢⎣
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎤⎥⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎣
B1

B2

B3

B4

⎤⎥⎥⎥⎦, D =

⎡⎢⎢⎢⎣
D1

D2

D3

D4

⎤⎥⎥⎥⎦
where Ai,j ∈ R3×3, Bi ∈ R3×3, and Di ∈ R3×3, where i, j = 1, 2, 3, 4. According to

the parameter setting in Equations (11) and (19), A1,2 = I3 and A2,3 = B2 = I−1
b . By

decomposing Equation (25), the differential forms of attitude angle estimation x̂1 and
attitude angle velocity estimation x̂2 can respectively be described as

.
x̂1 = x̂2 − L1Γ(Ce, α, β)− kL1C

.
e (39)

.
x̂2 = A2,1x̂1 + A2,2x̂2 + I−1

b f̂a + I−1
b u + D2Δ − kL2C

.
e − L2Γ(Ce, α, β) (40)

Based on Theorem 1, the following assumption is proposed:

Assumption 3. The feedback term Γ(Ce, α, β) + k(
.
ŷa −

.
ya) of Equation (25) can rewritten as

Γ(Ce, α, β) + kC
.
e. There exists a positive scalar ke, satisfying ||Γ(Ce, α, β) + kC

.
e
∣∣∣∣ ≤ ke, for all

t ≥ 0.

Remark 2. It has been proved in Theorem 1 that the observer errors system is asymptotically stable,
which means that both e and

.
e can converge to neighbors of zero. Therefore, the observer feedback

term Γ(Ce, α, β) + kC
.
e is bounded. Assumption 3 is reasonable.

Theorem 2. Consider the satellite attitude model (18) with the actuator, sensor faults, and velocity-
free measurements. Based on the observer in Equation (27), the controller is designed as

u = Ib(−A2,1x̂1 − A2,2x̂2 − D2Δ + L2Γ(Ce, α, β) + kL2C
.
e

+g1( pk2ξ1 + qk3ξ2)(−x̂2 + L1Γ(Ce, α, β) + kL1C
.
e)

−g1(γ1sigp(s) + γ2sigq(s) + γ3s + g1x̂1))− f̂a

(41)

where ξ1 = diag(
∣∣x̂1

∣∣p−1) , ξ2 = diag(
∣∣x̂1

∣∣q−1) , ki, γi > 0 (i = 1, 2, 3), p ∈ (0, 1), q > 1,
and g1 = 1/k1; s is defined as follows:

s = k1x̂2 + k2sigp(x̂1) + k3sigq(x̂1) (42)
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Then, the estimated attitude angle and the estimated attitude angular velocity converge
to a steady state within a fixed time. According to Theorem 1, the observer dynamic error is
asymptotically stable. Therefore, the satellite attitude system asymptotically stabilizes.

Proof of Theorem 2. Using Equations (39) and (40), the time derivative of s becomes

.
s = k1

.
x̂2 + pk2ξ1

.
x̂1 + qk3ξ2

.
x̂1

= k1(A2,1x̂1 + A2,2x̂2 + I−1
b f̂a + I−1

b u + D2Δ − L2Γ(Ce, α, β)− kL2C
.
e)

+(pk2ξ1 + qk3ξ2)(x̂2 − L1Γ(Ce, α, β)− kL1C
.
e)

(43)

Substituting Equation (41) into Equation (43) yields

.
s = −γ1sigp(s)− γ2sigq(s)− γ3s − g1x̂1 (44)

Then, define a new state vector ζ = [ sT x̂T
1 ]

T . Choose a candidate Lyapunov
function as V2 = ζTζ. Computing its time derivative by using Equations (39) and (44) gives

.
V2 = 2

.
ζ

T
ζ = 2sT s . + 2x̂T

1
.
x̂

= 2sT(−γ1sigp(s)− γ2sigq(s)− γ3s − g1x̂1) + 2x̂T
1(x̂2 − L1Γ(Ce, α, β)− kL1C

.
e)

(45)

The expression x̂2 = g1(s − k2sigp(x̂1)− k3sigq(x̂1)) can be obtained by Equation (42).
Substituting it into Equation (45) yields

.
V2 = −2(γ1sTsigp(s) + γ2sTsigq(s) + γ3sTs + g1sT x̂1 − g1x̂T

1s + g1k2x̂T
1sigp(x̂1)

+ g1k3x̂T
1sigq( x 1̂) + x̂T

1L1(Γ(Ce, α, β) + kC
.
e))

≤ −2χ1ζTsigp(ζ)− 2χ2ζTsigq(ζ)− 2x̂T
1L1(Γ(Ce, α, β) + kC

.
e)

≤ −2χ1V2
α1 − 2χ2V2

β1 − 2x̂T
1L1(Γ(Ce, α, β) + kC

.
e)

(46)

where α1 = (1 + p)/2, β1 = (1 + q)/2, χ1 = min{γ1, g1k2}, and χ2 = min{γ2, g1k3}.
According to Assumption 1 and Theorem 1, there exists k4 > 0 such that ||x̂1|| ≤ k4. By
Assumption 3, the upper bound of the term x̂T

1 L1(Γ(Ce, α, β) + kC
.
e) is obtained:

x̂T
1L1(Γ(Ce, α, β) + kC

.
e) ≤ l1||x̂T

1 || ||Γ(Ce, α, β) + kC
.
e
∣∣∣∣ ≤ l1k4ke < ∞ (47)

Substituting Equation (47) into Equation (46) yields

.
V2 ≤ −2χ1V2

α1 − 2χ2V2
β1 + υ (48)

where υ = 2l1k4ke. From the definitions of p and q, α1 and β1 satisfy 0 < α1 < 1 and β1 > 1,
respectively. According to Lemma 1, if the controller is chosen as Equation (41), s and x̂1
will converge in the neighborhood of zero within a fixed time. The systems in Equations
(39) and (40) are practical fixed-time stable. Moreover, the setting time T is given by

T ≤ Tmax =
1

2χ1(1 − α1)
+

1
2χ2(β1 − 1)

(49)

Theorem 1 proves that the observer errors are asymptotically stable, which means that
the satellite attitude is asymptotically stable. Thus, the argument stated in Theorem 2 holds
and the proof is completed. �

4. Simulation Results

In this section, simulation results are presented to verify the effectiveness of the
proposed observer (Equation (27)) and VSFTC (Equation (41)). Consider a small angular
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maneuvering satellite with actuator and sensor faults without velocity information. The
inertia matrix is

Ib = diag([ 18.73 20.77 23.63 ]
T
)kg · m2 (50)

The initial attitude angle is chosen as

Θ(0) = x1(0) = [ 0.0859 −0.1628 0.1109 ]
Trad (51)

The initial velocity is chosen as

ω(0) = x2(0) = [ −0.0415 0.0496 −0.0557 ]
T rad/s (52)

The satellite orbital angular velocity is ω0 = 0.0012 rad/s. The external disturbance
torque is set as follows:

τd = 1.5 × 10−5 ×
⎡⎣ 3 cos(ω0t) + 1

1.5 sin(ω0t) + 3 cos(ω0t)
3 sin(ω0t) + 1

⎤⎦Nm (53)

The initial values of observer system states are x̂(0) = [ 0T yT
a ]

T .
Non-gyroscopic attitude sensors are equipped to measure the attitude angle Θ. A zero-

mean Gaussian random noise with the variance of 1 × 10−5 is added to the attitude
sensors model. The parameters of Equation (27) are chosen as η = 0.5, ε = 0.0001,
σ1 = σ2 = σ3 = 40, l1 = 7.68, l2 = 0.66, l3 = 0.09, l4 = 6.44, k = 0.001, α = 0.6, and β = 1.4.
The gains for the observer scheme in [26] are set as η = 0.5, ε = 0.0001, σ1 = σ2 = σ3 = 40,
and L =

[
7.68I3 0.66I3 0.09I3 6.44I3

]T . The gains for the controller in Equation (41)
are set as γ1 = 1.4, γ2 = 0.84, γ3 = 0.7, k1 = 1, k2 = k3 = 1.1, p = 0.9, and q = 1.4.

4.1. Observer-Based PD Controller Simulation

In this part of the simulation, the performance of the proposed observer (Equation (27))
is compared with the observer method in [26]. The observer parameters in [26] are consis-
tent with the above sets in this paper. To better display the effectiveness of the proposed
observer, a PD controller is set as

u = −3I3x̂1 − 5I3x̂2 (54)

For a satellite without angular velocity measurements, the lumped faults, including
multiplicative faults and additive faults, are designed as

fa =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fa1 =

{ −0.15
0.2 sin(0 .35t)− 0.1

fa2 =

{
0.2

0.2 sin(0.35t)− 0.1 cos(0.15t)

fa3 =

{
0.1 sin(0.25t)

0.15

50 ≤ t < 75
75 ≤ t < 150
50 ≤ t < 75
75 ≤ t < 150
0 ≤ t < 100

100 ≤ t < 150

(ρ − I3)u =

⎧⎨⎩
−0.15u1
−0.2u2
−0.3u3

0 ≤ t < 75
0 ≤ t < 75
0 ≤ t < 75

(55)

fs =

⎧⎨⎩
0.02 sin(0 .025πt) + 0.1
0.03 sin(0.02πt) + 0.05

0.025 cos(0.015πt) + 0.06

0 ≤ t ≤ 200
0 ≤ t ≤ 200
0 ≤ t ≤ 200

(δ − I3)ya =

⎧⎨⎩
−0.25ya1
−0.4ya2
−0.3ya3

0 ≤ t ≤ 200
0 ≤ t ≤ 200
0 ≤ t ≤ 200

(56)

where ui and yai represent the triaxial component of u and ya, respectively, and t is in seconds.
The curves in Figures 2 and 3 illustrate the time response of attitude estimation

errors e1 and angular velocity estimation errors e2 by two observers. It can be clearly
seen from Figures 2 and 3 that the observation errors of Θ and ω under the observer in
Equation (27) can respectively converge to

∣∣e1i
∣∣≤ 2 × 10−5 and

∣∣e2i
∣∣≤ 2 × 10−6 within 2.8 s;
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the observation errors of Θ and ω under the observer in [26] can respectively converge to∣∣e1i
∣∣≤ 3 × 10−4 and

∣∣e2i
∣∣≤ 2 × 10−5 within 16 s.

  
(a) (b) 

Figure 2. The initial response of attitude angle estimation errors. (a) Observer in Equation (27);
(b) observer in [26].

  
(a) (b) 

Figure 3. The initial response of angular velocity estimation errors. (a) Observer in Equation (27);
(b) observer in [26].

Figures 4 and 5, respectively, show the reconstruction errors of the observer in
Equation (27) and the observer in [26] for actuator faults fa and sensor faults fs. It can
be seen in Figures 4a and 5a that the reconstruction using the proposed observer is achieved
accurately within 2.8 s with steady-state accuracies of

∣∣e3i
∣∣, ∣∣e4i

∣∣≤ 2 × 10−5 . In Figure 4b,
the observer in [26] also shows good reconstruction performance, and the actuator faults
converge to

∣∣e3i
∣∣≤ 1 × 10−4 at 2.8 s. Figure 5b shows that the reconstruction of sensor faults

under the observer in [26] can converge to
∣∣e4i

∣∣≤ 3 × 10−4 within 16 s. The summary can
also be found in Table 1.
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(a) (b) 

Figure 4. The initial response of actuator fault reconstruction errors. (a) Observer in Equation (27);
(b) observer in [26].

  
(a) (b) 

Figure 5. The initial response of sensor fault reconstruction errors. (a) Observer in Equation (27);
(b) observer in [26].

Table 1. The comparison results of the observer in Equation (27) and the observer in [26].

Observer (Equation (27)) Observer in [26]
Ultimate Bound Settling Time Ultimate Bound Settling Time

e1 (rad) 2 × 10−5 2.8 3 × 10−4 16
e2 (rad/s) 2 × 10−6 2.8 2 × 10−5 16
e3 (Nm) 2 × 10−5 2.8 1 × 10−4 2.8
e4 (rad) 2 × 10−5 2.8 3 × 10−4 16
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To give a more instructive comparison of the two observers, the function X(t) = ||e(t)||
is defined motivated by [29] and its time response is shown in Figure 6. From Figure 6, it
is obvious that the proposed observer (Equation (27)) provides a faster convergence rate
than the observer in [26]. In Figures 7 and 8, the steady-state error performances of the two
observers are shown during the same fault period. The observer proposed has a higher
steady-state accuracy than the observation scheme in [26].

Figure 6. The function X(t) by the observer in Equation (27) and the observer in [26].

  
(a) (b) 

Figure 7. The steady-state behaviors of system state estimation errors by the observer in Equation (27)
and the observer in [26]. (a) Attitude estimation errors; (b) angular velocity estimation errors.
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(a) (b) 

Figure 8. The steady-state behaviors of fault reconstruction errors by the observer in Equation (27) and
the observer in [26]. (a) Actuator faults reconstruction errors; (b) sensor faults reconstruction errors.

4.2. VSFTC Simulation

To verify the applicability of the observation method, the actuator faults are redefined
in this section. The sensor faults follow Equation (57). Due to the accurate reconstruction of
the actuator and sensor faults supplied by Equation (27), the controller in Equation (41) can
completely compensate for the effects of actuator and sensor faults. The accurate attitude
information can be obtained. Thus, the controller can guarantee the asymptotic stability of
satellite attitude and angular velocity. The actuator faults are selected as follows:

fa =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

fa1 =

{ −0.15
0.1 sin(0 .2t + π/3)− 0.1

fa2 =

{
0.2

0.2 sin(0.1t)− 0.15 cos(0.2t)

fa3 =

{
0.15 sin(0.1t + π/3)

0.15

75 ≤ t < 150
150 ≤ t < 250
50 ≤ t < 150

150 ≤ t < 250
0 ≤ t < 100

100 ≤ t < 250

(ρ − I3)u =

⎧⎨⎩
−0.1u1
−0.15u2
−0.2u3

50 ≤ t < 200
50 ≤ t < 200
50 ≤ t < 200

(57)

For the given faults, the controller in Equation (41) gives the actuator commanded
control torque, as shown in Figure 9. It is clearly seen from Figure 9 that the controller
effectively compensates for the actuator faults in a short time. As the time response behavior
is shown in Figure 10, the total torque τ acting on the satellite attitude control system
reaches the steady state within 8 s. Figures 11 and 12 show the responses of the estimated
attitude Θ and the estimated angular velocity ω driven by the VSFTC (Equation (41)).
The estimations of Θ and ω converge to

∣∣Θi
∣∣≤ 1 × 10−5 and

∣∣ωi
∣∣≤ 2 × 10−5 within 9 s.

Figures 13 and 14 show that the actual attitude Θ and the angular velocity ω take 9 s
to reach steady-state behavior. As per the steady-state behavior shown in Figures 13
and 14, the attitude pointing accuracy achieves a level of

∣∣Θi
∣∣≤ 1 × 10−5 and the actual

angular velocity has a pointing accuracy of 2 × 10−5. By comparing Figures 11–14, it
is concluded that the proposed observer can reconstruct the faults and system states
quickly and accurately. Therefore, in the face of actuator faults, sensor faults, and rate-
free measurements, the satellite attitude control system completes the steady-state control
mission and achieves the required accuracy in a short time through the VSFTC method.
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Figure 9. The actuator commanded control torque u.

 

Figure 10. The total torque τ.

  
(a) (b) 

Figure 11. The attitude angle estimation of the satellite. (a) The initial response; (b) the steady-
state behavior.
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(a) (b) 

Figure 12. The angular velocity estimation of the satellite. (a) The initial response; (b) the steady-
state behavior.

  
(a) (b) 

Figure 13. The actual attitude angle of the satellite. (a) The initial response; (b) the steady-state behavior.

  
(a) (b) 

Figure 14. The actual angular velocity of the satellite. (a) The initial response; (b) the steady-
state behavior.
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5. Conclusions

For the satellite attitude control system without velocity measurements, the prob-
lems of fault reconstruction, state estimation, and stability control were studied when
the actuator and sensor fail simultaneously. An improved sliding mode observer was
proposed to quickly reconstruct the system states and faults. Based on the improved sliding
mode observer, a VSFTC was presented to guarantee that the closed-loop attitude system
asymptotically stabilizes in the presence of multiple faults and unknown angular velocity.
Numerical simulations illustrated that the proposed observer leads to higher steady-state
accuracy and faster settling time than the traditional sliding mode observer in [26] with the
same parameters. By using VSFTC, the attitude of the satellite arrived at a stable state in
a short time under complex faults, external disturbances, and measurement noises.

However, in this paper, only attitude stabilization was considered under multiple
faults. The observer-based fault-tolerant control for attitude tracking is more challenging.
Therefore, in future research, it is desirable to design an attitude tracking fault-tolerant
controller to achieve fast attitude tracking under multiple faults and disturbances.
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Abstract: To solve the problems of poor exploration ability and convergence speed of traditional
deep reinforcement learning in the navigation task of the patrol robot under indoor specified routes,
an improved deep reinforcement learning algorithm based on Pan/Tilt/Zoom(PTZ) image infor-
mation was proposed in this paper. The obtained symmetric image information and target position
information are taken as the input of the network, the speed of the robot is taken as the output of
the next action, and the circular route with boundary is taken as the test. The improved reward and
punishment function is designed to improve the convergence speed of the algorithm and optimize
the path so that the robot can plan a safer path while avoiding obstacles first. Compared with Deep
Q Network(DQN) algorithm, the convergence speed after improvement is shortened by about 40%,
and the loss function is more stable.

Keywords: patrol robot; path planning; autonomous navigation; DQN; rewards and punishments function

1. Introduction

Path planning is an essential direction of robot research [1]. It is the key to realizing
autonomous navigation tasks, which means a robot can independently explore a smooth
and collision-free path trajectory from the starting position to the target position [2]. Tradi-
tional path planning algorithms include the A-star algorithm [3], Artificial Potential Field
Method [4], and Rapidly Exploring Random Tree [5], and so on, which are used to solve
the path planning in a known environment and are easy to implement. Still, robots have
poor exploration ability in path planning. Given, because of the problems in traditional al-
gorithms, a deep reinforcement learning algorithm has been introduced to enable robots to
make more accurate movement directions in environmental states, which is a combination
of deep learning and reinforcement learning [6–8]. Deep learning obtains the observation
information of the target state by perceiving the environment. In contrast, reinforcement
learning, which uses the reward and punishment functions to guide whether the action is
good or not, is a process in which the patrol robot and the environment interact trial and
error constantly.

The first deep reinforcement learning model, namely DQN, was proposed by Mnih
et al. [9], which combined neural network with Q-learning and used a neural network to
replace the Q value table to solve the problem of dimension disaster in Q-learning. Still,
the convergence speed was slow in network training. DQN was applied to path planning
for model-free obstacle avoidance by Tai et al. [10], which was the over-estimation of state-
action value, inevitably resulting in sparse rewards and not the optimal path for robots.
The artificial potential field, which accelerated the convergence speed of the network,
increased the action step length and adjusted the direction of the robot to improve the
precision of the robot’s route planning, was introduced in the initialization process of Q
value [11], leading to having good effect in the local path planning of the robot but poor
implementation in the global path planning.
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Because of the fixed and symmetrical patrol route, it is difficult for the patrol robot to
avoid obstacles. The A-star algorithm is characterized by large performance consumption
when encountering target points with obstacles. Artificial Potential Field Method cannot
find a path between similar obstacles. The path planned by the Artificial Potential Field
Method may oscillate and swing in narrow channels when new environmental obstacles are
detected. Rapidly Exploring Random Tree is challenging to find the path in an environment
with limited channels. Therefore, to effectively solve the patrol robot exploration algorithm
problems of slow convergence speed and poor ability, an improved path planning for
indoor patrol robot based on deep reinforcement learning is put forward in this paper,
which use PTZ to perceive the surrounding environment information, combining the patrol
robot’s position information with the target of a state-space as network input [12–15].
The position and speed of the patrol robot are taken as the output, and a reasonable reward
and punishment function is designed to significantly improve the convergence speed of
the algorithm and optimize the reward sparsity of the environmental state space in the
paper [16–19].

2. Background

Reinforcement learning is a process in which different rewards are obtained by way
of “trial and error” when the patrol robot and the environment interact, which means that
the patrol robot will not be affected by the initial stage of the environment, which does not
guide the patrol robot to move but only rate its interaction [20–22]. High score behavior and
low score behavior need to be remembered by the patrol robot, which just needs to use the
same behavior to get a high score and avoid a low score when it interacts next time [23–26].
The interaction process of reinforcement learning is shown in Figure 1. DQN, which uses a
neural network for fusion, is based on Q-learning for overcoming the defect of “dimension
disaster” caused by large memory consumption of Q-learning to store data [27–29].

 

Figure 1. Reinforcement learning flow chart.

Deep reinforcement learning mainly realizes the learning interaction between the
patrol robot and the environment, which is composed of deep learning and reinforcement
learning. Deep learning uses the patrol robot’s built-in sensors to receive and perceive the
information of the surrounding environment and obtain the information of the current
state of the patrol robot. While reinforcement learning is responsible for the patrol robot to
explore and analyze the acquired environmental information, which helps the patrol robot
to make correct decisions and makes the patrol robot can achieve navigation tasks come
true [30–32].

The DQN algorithm combines a neural network, which needs to model Q table and
uses RGB image as input to generate all Q values and Q-learning which uses Markov
decision for modeling and uses the current state, action, reward, strategy, and next action
in Markov decision for representation. The experience playback mechanism is introduced
to improve the sample correlation of the robot and solve the efficiency utilization problem
of the robot in DQN, which uses the uniqueness of the target Q value to enhance the
smoothness of the action update. DQN includes three steps: establishing target function,
target network, and introducing experience replay.
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Target function. The target function of DQN is constructed by Q-learning, and the
formula is as follows:

Q′(s, a) ← Q(s, a) + α
[
r + γmaxa′Q

(
s′, a′

)− Q(s, a)
]

(1)

where (s,a) indicates the current status and action. (s′,a′) indicates the next state and action.
Q(s,a) represents the current state-action value. Q′(s,a) represents the updated state-action
value. α represents the learning rate which means how many errors in the current state will
be updated and learned. The value ranges from 0 to 1. γ represents the attenuation value
of future rewards, ranging from 0 to 1. Because the Q value in the DQN algorithm is mostly
randomly generated. For the convenience of calculation, we need to use the maximum
value max.maxa′Q(s′, a′) means the maximum value of Q at the next state-action value.
Breaking down the expression for Q values yields the following expression:

(s1) = r2 + γQ(s2) = r2 + γ[r3 + γQ(s3)] = r2 + γ{r3 + γ[r4 + γQ(s4)]} = · · · (2)

Namely Q(s1) = r2 + γ·r3 + γ2·r4 + γ3·r5 + γ4·r6 + · · · (3)

It is not difficult to conclude that the value of Q is correlated with the rewards at each
subsequent step, but these associated rewards decay over time, and the further away from
state s1, the more state decay.

The target state-action value function can be expressed by the Bellman equation as
follows:

y′ = r + γmaxQ
(
s′, a′, θ

)
(4)

where y′ is the target Q value. θ is the weight parameter trained in the neural network
structure model. maxQ(s′, a′, θ) means the maximum value of Q ant the next state-action
value and θ.

The loss function is the mean square error loss function, and the formula is as follows:

L(θ) = E
[(

y′ − Q(s, a, θ)
)2
]

(5)

Target network. The current state-action value function is evaluated by DQN through
the target network and prediction network. The target network is based on a neural network
to get the target Q value, using the target Q value to estimate the Q value of the next action.
The prediction network uses the stochastic gradient descent method to update the weight
of the network Δθ, and the formula of the gradient descent algorithm is shown as follows:

Δθ = E
[
y′ − Q(s, a, θ1)∇θQ(s, a, θ1)

]
(6)

where ∇ is Hamiltonian.
Experience replay. The experiential replay mechanism improves the sample relevance

of the patrol robot and solves the problem of efficient utilization of the patrol robot. The pa-
trol robot can obtain the sample database during the information interaction between
the patrol robot and the environment. It stores the sample database into the established
experience pool and randomly selects a small part of data for training samples, and then
sends the training samples into the neural network for training. The experience replay
mechanism utilizes the repeatability of the sample itself to improve learning efficiency.

The structure of the DQN algorithm is shown in Figure 2. s (state) represents the
current cycle step, r (reward) represents the reward value generated by the current cycle
step, a(action) represents the behavior caused according to the current cycle step state,
and s_(next State) represents the next cycle step. Target_net and Eval_net refer to Q_target
and Q_eval, respectively. Parameters of Eval_net are deferred to parameters in Target_net.
Q_target and Q_eval represent the two neural networks of the DQN algorithm, which
follows Q-learning, the predecessor of the DQN algorithm. They are not much different,
just different parameters. Q_eval contains behavioral parameters, and theoretical behavior
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is bound to deviate from actual conduct (loss). Thus, in the traditional DQN algorithm,
parameters s, loss, and symmetric Q_target and Q_eval will affect the Train value.

Figure 2. Structure diagram of DQN algorithm.

3. Improved Algorithm

The main goal of the patrol robot is to be able to reach the target point and return to the
starting point autonomously in the indoor route environment. So a kind of improved deep
reinforcement learning algorithm is put forward in this paper, which takes the acquired
image information and target position information as the input of the network, the position
and speed of the patrol robot as the output of the next action, and the specified circular
route with a boundary as the test. Thus, the patrol robot can realize the process of its
running towards the target point in the specified route with limited conditions and finally
returning to the starting point to complete the automatic walking task. Since the robot
needs to walk on the indoor prescribed route to realize the patrol function, the conventional
DQN algorithm is easy to find the optimal path for the open route. Still, for the circular
prescribed route, it is easy to fall into the local optimal and cannot complete the path.
Therefore, the DQN algorithm needs to be improved.

3.1. Overview of Improved DQN Algorithm

The structure of the improved DQN algorithm is shown in Figure 3, which is trans-
mitted to the evaluation function through the current iteration step s. The evaluation
function generates four different data types and sends the data to the target function
through four symmetric routes. In addition to the four transmission lines of the objective
function, the next iteration step s_ also affects them. The evaluation function and Q function
often have a loss value during operation, which, together with the evaluation function,
Q function, and the current iterative step s, guides the patrol robot training.
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Figure 3. Structure diagram of improved DQN algorithm.

In the simulation environment, the patrol robot takes the directly collected image
information as the training sample, then combines its environmental state characteristics
and the target point to be reached as the input of the network, and takes the Q value of
the current position as the output of the network model, and uses the ε-greedy strategy
to select the action to reach the next state. When the next state is reached, a complete
data tuple (s,a,r,s′) can be obtained by calculating the corresponding reward value r. Then,
data of this series are stored in the experience replay pool D, and small-batch samples are
extracted from the experience replay pool D and put into the neural network for training.

In the course of network training, if the patrol robot uses PTZ to identify the obsta-
cle, the improved algorithm can make the robot avoid the block effectively. Otherwise,
the patrol robot will continue to navigate until the target point is reached. The improved
algorithm design is shown in Algorithm 1.

Algorithm 1. Improved Deep Q-learning Network Based on Patrol Robot.

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
Initialize sequence st from replay memory D and preprocess sequenced θ, θ = θ1

for t = 1, T do
With probability ε select a random action at
Otherwise select optimal action at = maxaQ′((st), a; θ)
Execute action at in emulator, observe new reward function rt and next image st+1
Set transition (st, at, rt, st+1) and store it in D
Preprocess θt+1 = θ(st+1)

Sample random mini-batch of transitions
(

sj, aj, rj, sj+1

)
from D

Set yj(a|s) =
⎧⎨⎩rj f or terminalj+1

rj + γmaxa′ Q
(

sj+1, a′; θ
)

f or non − terminalj+1

Perform a gradient descent step on L(θ)

L(θ) = E
(

yj − Q(s, a, θ)
)2

Update policy gradient
end for

end for
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3.2. Improved Target Point Function

The target point is the coordinate of the position that the patrol robot needs to achieve
in the motion state and represents the final position of the patrol robot. It needs to drive on
a fixed route for the patrol robot when performing tasks and return to the initial position
after completing the patrol. If the target point is placed in the starting position, the DQN
algorithm will skip to the end without iteration, thus skipping the patrol step. Even if the
design function makes the algorithm stop iteration when it reaches the initial position for
the second time, due to the characteristics of the DQN algorithm, it will also stop iteration
quickly, and the final walking path may only be a small lattice.

In the circular path, the patrol robot has a long distance to walk as the start point of the
path is just the endpoint. When encountering obstacles, the conventional DQN algorithm
will begin from the starting point again, resulting in a long calculation cycle of the whole
circle.

Therefore, the paper improves the target point function, which the circular route used
in this paper is abstracted. In a grid of 30*30, the track boundary is set in black to represent
obstacle points. The red point represents the starting point which is the initial position
of the patrol robot. The yellow point represents the target point. The paper segments the
whole ring line, the yellow spot under an initial state for the first target of the patrol robot.
While the patrol robot achieves the first target point, the second target point will be set in
the forward line of the patrol robot, at the same time, the first target point will be the new
starting point, and turn the white grid point closest to the first target point on the previous
route into an obstacle point to make it become the barriers for which the patrol robot can
accelerate the efficiency of iteration in the subsequent iterations of the patrol robot, and it
also prevents the patrol robot from going “backward” in each iteration. The target point of
the last stage is set as the starting point of the initial step to ensure that the patrol robot can
complete the whole loop route.

3.3. Improved Reward and Punishment Function

The calculation is performed only according to the improved target point function
modified in Section 3.2. As the robot has a relatively large space for walking and the degree
of freedom is greatly improved, the algorithm calculation time is too long, which violates
the original intention of using the DQN algorithm. Therefore, this paper starts from the
reward and punishment function r, and the reward and punishment function r of the design
change is shown as follows.

r(i,j) =

⎧⎪⎪⎨⎪⎪⎩
−1, (i, j) is an obstacle
1, (i, j) is a target point

μ, r(m,n) �= −1, m ∈ [i − 1, i + 1], n ∈ [j − 1, j + 1]
0, others

(7)

In the original algorithm, the reward value of all points except the obstacle point and
target point is 0. However, the reward and punishment function used in this paper adds a
new reward and punishment value μ, which ranges from 0 to 1. The point to which this
value is assigned must have the following characteristics: the nine points centered on this
point, including the eight surrounding points, are not obstacle points. This point is better
than other blank points, and the patrol robot should choose it first.

As shown in Figure 4, the blue point is the new punishment and reward point, but the
green point is not because the point to the lower left of the green point is the obstacle point.
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Figure 4. An illustration of the new reward and punishment value.

4. Experimental Analysis and Results

4.1. Experimental Environment and Parameter Configuration

To realize the running experiment of patrol robots and verify the validity of the
algorithm in this paper under the specified route, the following experiments comparing
with DQN are carried out in this paper. The experimental environment is composed of
NVIDIA GeForce GTX 1660 SUPER GPU server, ROS operating system of the robot and
Pycharm. The patrol robot training process is trained in the simulation environment built
by Pycharm and then transplanted into the patrol robot named Raspblock with PTZ.

The patrol robot takes the state Q value as the input and the action Q value as the
output, thus forming a state-action pair. If the patrol robot bumps into obstacles while
running, it will get a negative reward. If the patrol robot reaches the target point, it will
get a positive reward; the patrol robot also receives fewer positive rewards if it walks on a
road point with no obstacles around it. The patrol robot can avoid obstacles in the learning
process and keep approaching the target to complete the path planning process through
the method of reward and punishment mechanism. Parameter Settings of the improved
deep reinforcement learning algorithm are shown in Table 1.

Table 1. Parameter Settings.

Parameter Value

Batch 32
Episode 10,000

Learning rate α 0.01
Reward decay γ 0.9

ε− greedy 0.9

4.2. Experimental Modeling Procedure

The paper is modeling as described in Section 3.2 and the characteristics of map
symmetry are shown in Figure 5a. The red point represents the starting point of the robot,
which can change as needed. The yellow point represents the target point, and the next
target point will generate after the robot reaches it until it runs a full lap. The black points
represent obstacles or track boundaries. The state of the final phase is shown in Figure 5b.
The last target point is in the same position as the start of the first stage.
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(a) (b) 

Figure 5. Schematic diagram of the initial model. (a) The first stage; (b) The final stage.

The annular region described above conforms to the general condition. However,
when obstacles suddenly appear in the specified path, the patrol robot must prioritize
obstacle avoidance and then patrol according to the loop. In this paper, the corridor shape
is retained, and the white area in the middle of the two black circles is enlarged to deal with
obstacles in the line. The new model that preserves the map symmetry is shown in Figure 6.
As the black block points in the corridor are randomly set in Figure 6a, the randomness
of barriers and the rationality of the algorithm are ensured. The black spots representing
obstacles in the model include the original track boundary and the newly added obstacle
spots. The new reward and punishment value μ at the part of Section 3.3 is introduced.
The state of the last stage under the new model is shown in Figure 6b.

  
(a) (b) 

Figure 6. Schematic diagram of the new model. (a) The first stage; (b) The final stage.

4.3. Analysis of Experimental Results

In this paper, the DQN algorithm and the improved algorithm using training times and
loss function values are analyzed, and the experimental results are compared. With the same
parameters, the convergence speed of the improved DQN algorithm is about 30% faster
than that of the DQN algorithm, and the average loss function value of the improved DQN
algorithm is about 25% smaller than that of The DQN algorithm under the same training
times. As shown in Figure 7, Figure 7a represents the change curve of training times-loss
function obtained by the operation of the DQN algorithm, and Figure 7b represents the
same by the operation of improved DQN algorithm with a value of 0.5 for the particular
reward and punishment value μ. The number of training times is less than 500, which
belongs to the initial training stage. The patrol robot is in the stage of exploration and
learning and fails to make correct judgments on obstacles, resulting in a significant loss.
When the number of training reaches 500 times, the patrol robot is still exploring the
learning obstacle avoidance stage, indicating that it has begun to identify obstacles and
correctly avoid some obstacles. However, due to the lack of training, it is still learning and
interacting with the environment to adjust further actions to avoid more obstacles to reduce
losses. The improved DQN algorithm in the current state is more stable. When the training
times are between 500 and 1500, the patrol robot is unstable under the DQN algorithm and
the improved DQN algorithm. When the training times reach about 1800, the loss function
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of the improved DQN algorithm tends to be balanced. When the training times reach about
2600, the loss function of the DQN algorithm is regionally balanced. In the testing stage,
the training result model is used to test the network in the same environment to verify its
effectiveness further. The objective function and reward value function of test and training
are consistent. Therefore, the improved algorithm can shorten the network training time
and make the patrol robot plan a shorter path.

 
(a) (b) 

Figure 7. A comparison of the two DQN algorithms. (a) Conventional DQN algorithm; (b) Improved
DQN algorithm (μ = 0.5).

Although the improved objective function and reward value function reduces the
convergence speed of the algorithm, the corresponding loss function slightly increases.
The analysis results show that because the particular reward and punishment value of
0.5 set in the above experiment is too large, the accumulation speed of the reward and
punishment value of the patrol robot is too fast, which makes the patrol robot have serious
interference in the judgment of the later stage. Therefore, the following modifications are
made in this paper, which is the special reward and punishment value 0.5 is changed to
10−6, and it only affects the initial learning, adjusted to 0 after training. The training-loss
function generated by the modified algorithm is shown in Figure 8. Figure 8a represents
the change curve of the training-loss function obtained when the value of μ is 10−6 forever.
Figure 8b illustrates the corresponding change curve obtained when the value of μ is 10−6

at the initial stage of the experiment and 0 at the later stage of the investigation. Compared
with the improved algorithm before, the training times of the two algorithms are increased,
which is caused by the sharp decrease of the particular reward and punishment value μ.
However, by comparison, the convergence speed of the optimized algorithm with changing
μ value is about 40% less than that of the algorithm with unchanged μ value. The number
of training times is less than 500, which belongs to the initial training stage. The patrol
robot is in the stage of exploration and learning and fails to make a correct judgment on
obstacles. The loss value is still large, but both algorithms have a downward trend, which
the loss function of the algorithm with μ value changing declines earlier. When the number
of training reaches 500 times, both algorithms tend to balance, and the algorithm with
changed μ value has fewer training times, which means that the improved DQN algorithm
with changed μ value can complete the training faster, and the patrol robot can avoid
obstacles and reach the target point more quickly. The feasibility of the improved algorithm
is further verified.
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(a) (b) 

Figure 8. Influence of μ value on improved DQN algorithm. (a) μ = 10−6; (b) Changeable μ.

After several rounds of learning according to the improved algorithm, the patrol robot
patrols according to the route shown in Figure 9. If the improved algorithm is not used,
the patrol robot is prone to an infinite loop at the yellow target point in the lower-left corner
of Figure 9, thus unable to complete the walking task. Because this algorithm is cyclic,
no matter which small segment of the target point to take a screenshot will contain part
of the obstacle point. Figure 9 is the final part of the target point of the algorithm in the
whole circle. The corresponding obstacle point of the last part will be displayed, and other
screenshots will also contain the related obstacle point. To distinguish, the transformation
of the obstacle points is especially changed to blue.

 

Figure 9. The approximate route of the improved algorithm.

The calculation time of the four algorithms are analyzed, including the convergence
steps of their curves to be smooth, the total number of training steps, and the loss function
tabulation of convergence. The data is shown in Table 2. Particular reward values are used
to distinguish the four algorithms, μ = 0 for Figure 7a, μ = 0.5 for Figure 7b, μ = 10−6 for
Figure 8a, and changeable μ for Figure 8b.

Table 2. Some data for four algorithms.

μ = 0 μ = 0.5 μ = 10−6 Changeable μ

Operation time 300 s 80 s 63 s 35 s
Convergence steps 2000 1500 750 600
Total training steps 2600 1800 5500 3100

Loss function 0.030 0.040 0.010 0.015
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5. Conclusions

To solve the problem that the patrol robot can complete the loop route, an improved
DQN algorithm based on deep image information is proposed. The depth image informa-
tion of the obstacle is obtained by using PTZ, and then the information is directly input into
the network, which improves the convergence speed of network training. By enhancing the
reward and punishment functions and adding new reward value points, the reward value
of the robot is improved, the problem of sparse reward in the environment state space is
solved by optimizing the state-action space, and the robot’s action selection is more accurate
to complete the patrol task. Simulation and experimental results show that the training
times and loss function values of the DQN algorithm and the improved DQN algorithm
are analyzed through comparative experiments, and the effective implementation of the
improved algorithm is further verified in the testing stage. The improved algorithm not
only enhances the robot’s exploration ability and obstacle avoidance ability but also makes
the planned path length safer, which verifies the improved DQN algorithm’s feasibility in
path planning.

In addition to the black ring boundary, the target point, the starting point, and the
intermediate obstacle point in this paper are randomly set, so the improved algorithm has
strong universality. According to the previous experiments, the DQN algorithm cannot
achieve the best stability and the fastest calculation speed. The optimal result of this
paper is to select the optimal operating speed based on ensuring stability. In the future,
more restrictive conditions can be added to verify the correctness and reliability of the
improved DQN algorithm.
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Abstract: In order to deal with the fast, large-angle attitude maneuver with flexible appendages, a
finite-time attitude controller is proposed in this paper. The finite-time sliding mode is constructed
by implementing the dynamic sliding mode method; the sliding mode parameter is constructed to
be time-varying; hence, the system could have a better convergence rate. The updated law of the
sliding mode parameter is designed, and the performance of the standard sliding mode is largely
improved; meanwhile, the inherent robustness could be maintained. In order to ensure the system’s
state could converge along the proposed sliding mode, a finite-time controller is designed, and an
auxiliary term is designed to deal with the torque caused by flexible vibration; hence, the vibration
caused by flexible appendages could be suppressed. System stability is analyzed by the Lyapunov
method, and the superiority of the proposed controller is demonstrated by numerical simulation.

Keywords: attitude control; fast large-angle maneuver; finite-time control; flexible appendages

1. Introduction

Current space missions, such as push-broom imaging and stare imaging, need satellites
that have the ability to perform fast large-angle maneuvers. However, standard controllers,
such as the PID controller and the sliding mode controller, have the issue of a low con-
vergence rate. It is necessary to develop an attitude controller with a faster convergence
rate. Furthermore, the deformation and vibration of flexible appendages would bring
unexpected torque on the satellite system; hence, the overall goal of this paper is to develop
a satellite attitude controller subject to fast large-angle attitude maneuvers with a better
convergence rate compared to standard controllers. Meanwhile, the flexible vibrations
could be suppressed.

In the field of satellite attitude control, PID control and sliding mode control are the
most mature and widely used methods. They both have the advantage of simple structures
and strong robustness; hence, a lot of work has been performed by researchers. However,
a low convergence rate is the main drawback of these two methods. Li [1–3] developed
PID controllers for satellite’s fast maneuvering with flexible appendages, and standard PID
controllers are modified in his work. Hence, the system could have a better convergence
rate. There is also some work [4,5] focusing on satellite orbit control, and the main goal
of these two papers is to optimize energy consumption. The sliding mode controller is
also a mature method in the field of satellite attitude control. Chakrabarti [6] and Ye [7]
designed sliding mode controllers for satellite attitude maneuvers; the standard sliding
mode for satellite attitude control is modified in these works, and the system robustness is
enhanced. However, the system convergence rate is not taken into consideration in these
works. In order to improve the system convergence rate, Li [8,9] has done some work,
and the standard sliding mode is modified by Bang-Bang logic and dynamic sliding mode.
The system convergence rate is largely improved by implementing the updated law of
the sliding mode parameter. Moreover, Xiao [10–12] has performed some work focusing
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on the modification of sliding mode controllers. The controllers with fault-tolerant and
strong robustness are proposed in these works. Ye [13] also designed a sliding mode control
algorithm for an attitude tracking controller, and his main focus is the system convergence
rate. In his work, it is pointed out that by optimizing the trajectory of angular velocity, the
system could have both a fast convergence rate and low energy consumption. However, the
common drawback of these works is that the system convergence rate is exponential, which
means the system state would reach its equilibrium point with infinite time. The terminal
convergence rate is relatively low in these works, and it is necessary to develop a controller
with a better convergence rate, especially for fast attitude maneuverable conditions.

In order to deal with the exponential convergence rate issue, finite-time control theory,
which could largely improve the system convergence rate to near its equilibrium point,
is developed by researchers. Li [14] developed a finite-time controller with three stage
structures, and a braking curve for angular velocity is constructed. The system convergence
rate is improved by maintaining angular velocity revers to attitude quaternion; meanwhile,
its norm is reaching its upper bound for as long as possible. The singularity issue is solved
by using the property when the angular velocity is reversed to the vector of the Euler Axis.
Liang [15,16], Wang [17,18] and Wu [19,20] also designed finite-time controllers for satellite
attitude control, and their main focus is the structure of the finite-time sliding mode. It is
pointed out that the key to achieving finite-time stability is to construct the fraction order of
the system state properly. However, these works do not consider the flexible deformation of
large flexible appendages, such as solar sails and large antennas, which are very common in
satellites. Noting that when a satellite is on a fast attitude maneuver, the flexible vibrations
can not be ignored; hence, it is necessary to design controllers that are robust to flexible
deformations.

In order to deal with the satellite attitude control issue considering flexible vibration,
some fundamental work [21–24] has been done. Wie constructed the basic structure of a
PID controller for satellite attitude control and some typical methods for stability analysis
is proposed. Some typical sliding mode surfaces are also proposed for satellite attitude
control. Generally, the basic idea to deal with flexible vibrations could be concluded as
following two aspects: 1. treat it as another kind of disturbance with a normal upper bound;
2. design a state observer to estimate it based on its dynamic model. The former is easier
for engineering practice, and the latter has better performance in theoretical research.

In this paper, a finite-time controller for a satellite capable of fast, large-angle maneu-
vers with flexible appendages will be proposed. The next section will give the dynamic
and kinetic models used in this paper, Section 3 is the core of this paper, and the finite-time
controller will be given in this section. Section 4 will demonstrate the performance by
numerical simulation, and Section 5 will conclude this paper.

2. Explanation of the Symbols Used in This Paper

In order to make it easier to understand this paper, the symbols used in this paper are
explained in the following Table 1.

Table 1. Explanation of the symbols.

J Inertia matrix of satellite (3 × 3 matrix)
Ĵ Inertia matrix best estimate (3 × 3 matrix)
J̃ Error inertia matrix (3 × 3 matrix)
ω Angular velocity (3 × 1 vector)
δ Coupling matrix between flexible appendages and rigid body
η Modal coordinate vector
u Control torque
d Unknown disturbance torque
r Norm upper bound of vector r
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Table 1. Cont.

ωni Natural frequencies of flexible appendages
ξi Associated damping of flexible appendages
N The elastic modes need to be considered
r× Product matrix of the three-dimensional vector r
‖r‖ Euclidean two-norm of vector or matrix r
λM(A), λm(A) Maximum and minimum eigenvalue of matrix A
q Attitude quaternion (4 × 1 vector)
qv Vector part of attitude quaternion (3 × 1 vector)
q0 Scalar part of attitude quaternion
sgn(x) Sign function of vector or scalar x

3. Dynamic and Kinetic Model

The dynamic model of the rigid satellite could be written as follows.

J
.

ω + δT ..
η = −ω×(Jω + δT .

η
)
+ u + d

..
η+ C

.
η+ Kη = −δ

.
ω

(1)

where ω is the angular velocity, J is the inertia matrix of satellite, which is a symmetric
matrix, d is the unknown disturbance torque with a normal upper bound ‖d‖ < d. δ is
the coupling matrix between the flexible appendages and the rigid body and δ describes
how the flexible appendages influence the rigid body, η is the modal coordinate vector, its
definition could be found in Table 1, C and K are defined as follows.

C = diag(2ξiωni), i = 1, 2 · · · N
K = diag

(
ω2

ni
)
, i = 1, 2 · · · N

(2)

where ωni is the natural frequency and ξi is the associated damping, and N is the number
of the elastic modes need to be considered.

Product matrix r× of vector r is defined as:

r× =

⎡⎣ 0 −r3 r2
r3 0 −r1
−r2 r1 0

⎤⎦ (3)

Generally, the inertia matrix J could not be accurately known, and it is assumed that:

J = Ĵ + J̃ (4)

where J is the inertia matrix best estimate and J̃ is the error matrix. Product matrix has an
important property, which will be used in the latter part that the eigenvalues of r× satisfies:

λ(r×) = 0, ‖r‖2
λmax(r×) = ‖r‖2

(5)

Define ψ and ϑ as follows.

ψ =
.
η+ δω, ϑ =

[
ηT ψT ]T (6)

The dynamic model (1) could be transformed to:

¯
J

.
ω = −ω×

(
¯
J ω + Hϑ

)
+ Lϑ − Mω + u + d

.
ϑ = Aϑ + Bω

(7)
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where
¯
J , H, L, M, A, B are defined as follows.

¯
J = J − δTδ, H =

[
0 δT ]

, L = δT[ K C
]
, M = δTCδ

A =

[
0 I
−K −C

]
, B =

[ −I
C

]
δ

(8)

The kinetic model based on attitude quaternion could be written as follows.

.
q =

[ .
q0.
qv

]
=

[ − 1
2 qT

v ω
1
2 (q0I3 + q×v )ω

]
=

1
2

[ −qT
v

F

]
ω (9)

where F = q0I3 + q×v and the eigenvalue of F satisfies:

λ(F) = |q0|, 1
λM(F) = 1

(10)

In order to simplify the text, the maximum and minimum eigenvalue of matrix A is
described as λM(A) and λm(A).

Considering that q and −q describes the same attitude, it is assumed that q0 ≥ 0 in
this paper.

Furthermore, it is worth noticing that in engineering practice, system angular velocity
ω and control torque u has its norm upper bound, and it is assumed to be ! and u in this
paper.

4. Finite-Time Controller

4.1. Problem Description

The sliding mode control method has been proposed for a decade, and a lot of work
based on this method has been performed on the satellite attitude control issue. The most
widely used and standard sliding mode for satellite attitude control could be written as
follows.

s = ω + kqv, (k > 0) (11)

After reaching this sliding mode surface, the system state has such properties:

ω = −kqv.
qv = 1

2 (q0I3 + q×v )ω = − 1
2 kq0qv

(12)

When the system maneuvers along (11), the angular velocity vector is reversed to the
attitude quaternion vector, and a lot of work has been done based on this sliding mode.
The model uncertainty and unknown disturbance issue could be effectively solved using
sliding mode (11), and it could be concluded that the reverse property could improve
system robustness. However, based on Equation (11), it could be easily found that the
convergence rate of qv is exponential, which means the system would reach the equilibrium
point with infinite time and the convergence rate needs to be improved.

In order to improve the system convergence rate, a finite-time controller is an effective
method. Generally, in order to achieve the finite-time stability, a fraction order feedback is
used as follows to construct the sliding mode.

.
x = −ksign(x)|x|r, 0 < r < 1 (13)

Sliding mode (13) would bring another issue, i.e., the singularity issue. Since the
control torque is always related to

..
x, i.e., the second derivative of x, the singularity term

xr−1 would be brought into the controller. In order to deal with the singularity issue, some
typical finite-time controllers are designed [14]. However, the system robustness issue is
not taken into consideration, and the reverse property does not hold in these works. System
robustness needs to be improved to suppress the perturbations, such as inertia matrix
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uncertainty and unknown disturbance. In summary, the robustness issue and singularity
issue should be both taken into consideration to design the robust finite-time controller.

Based on the discussion above, the goal of this paper could be: design a finite-time
controller for satellite stabilization issues and the following properties should be satisfied:

1. Compared with the standard sliding mode, the system convergence rate near the
equilibrium point should be largely improved;

2. Finite-time stability should be satisfied, i.e., there exist positive scalar ε, ε′ and T to
satisfy following inequality;

‖qv‖ ≤ ε, ‖ω‖ ≤ ε′ f ot ∀t ≥ T (14)

3. The singularity issue should be solved, i.e., qv,
.
qv, ω,

.
ω are all bound during the whole

control process;
4. The controller should be robust to inertia matrix uncertainty and unknown distur-

bance torque.

4.2. Finite-Time Sliding Mode

In paper [9], the author pointed out that the fixed sliding mode caused the low
convergence rate, and a dynamic sliding mode is constructed in this paper. The maneuver
stage with constant angular velocity and converge stage with constant angular acceleration
are designed based on the updated law of sliding mode parameter k, and the system
convergence rate is largely improved compared to the standard sliding mode. Inspired by
the method in [3], the finite-time sliding mode proposed in this paper could be written as
follows.

s = ω + kqv
.
k =

{
0 ‖s‖ > ε1

k(1 − α)βq0‖qv‖α−1 ‖s‖ ≤ ε1

(15)

1/2 < α < 1, β = k(t0)/‖qv(t0)‖α−1 (16)

where the initial value of k satisfies k(t0) > 0, ε1 is a small positive scalar, and α, β are all
positive scalars.

A sliding mode (15) has the same structure as a standard sliding mode; hence. the
reversed property could be maintained. Moreover, the same structure could make it
possible to design a robust finite-time controller based on standard sliding mode methods.
Based on (15), it could be found that the maneuvering process is constructed in two stages:
in the first stage, i.e., ‖s‖ > ε1, the system performance is totally the same as that of a
standard sliding mode, and the sliding mode parameter k is fixed; in the second stage, i.e.,
‖s‖ ≤ ε1, it could be treated as a system that has reached the sliding mode, and angular
velocity vector has been reversed to the attitude quaternion vector. In this stage, the sliding
mode parameter k begins to update. Moreover, based on the updated law of k, it could be
found that k is monotonically increasing to affect the exponential convergence rate. The
key work of this paper is the updated law of the sliding mode parameter k and when the
system convergences along (15), i.e., s = 0, system (5) would converge to its equilibrium
point within finite-time, and during this process, ω and

.
ω are all norm upper bound.

The next step is to discuss the finite-time stability of the sliding mode (15). When the
system reaches the sliding mode (15), it is defined as follows, and its derivative could be
calculated as:

Vq = qT
v qv = ‖qv‖2 (17)

.
Vq = 2qT

v
.
qv = −kq0qT

v qv = −kq0‖qv‖2 (18)

In order to achieve the goal of finite-time stability, the derivative of Lyapunov function
should satisfy the following inequality:

.
Vq ≤ −γq0‖qv‖α+1, with α ∈ (0, 1) , γ > 0 (19)
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Compared with (14) and (15), it could be that if there exists a positive scalar γ to satisfy
the following inequality, the finite-time stability could be ensured.

k = γ‖qv‖α−1 (20)

In order to satisfy the finite-time condition (20), the fixed parameter k is not feasible
since the right part of (20) tends towards infinite, and a very large k would cause the control
torque of an angular velocity to exceed the system upper bound drastically. Hence, it is
necessary to design a time-variable parameter k and its update law to satisfy (20), and that
is how the dynamic sliding mode (15) is found. In fact, selecting parameters as follows, it
could be found that:

γ = k(t0)/‖qv(t0)‖α−1, β = γ (21)

Noting that the structure of the sliding mode parameter update law in (15), it could be
found that:

k(t0) = γ‖qv(t0)‖α−1

.
k = 1

2 k(1 − α)βq0‖qv‖α−1 =
dγ‖qv‖α−1

dt

(22)

Based on (21) and (22), it could be found that finite-time condition (20) is satisfied, and
(19) could be transformed to:

.
Vq = 2qT

v
.
qv = −kq0‖qv‖2 ≤ −βq0‖qv‖α+1 = −βq0Vα+1/2

q (23)

The system converge time satisfies:

t f ≤ 2V
1−α

2 (t0)

βq0(t0)(1 − α)
(24)

The next step is to improve on sliding mode (15), ω,
.

ω are all norm upper bound. It
is obvious that angular velocity ω satisfies following the property and is the norm upper
bound.

‖ω‖ = ‖−kqv‖ = ‖qv‖α (25)

Calculating the derivative of angular velocity, it could be found that:

.
ω = −k

.
qv −

.
kqv

= −k(q0I3 + q×v )(−kqv)− k
2 (1 − α)βq0‖qv‖α−1qv

= q0k2qv − k
2 (1 − α)βq0‖qv‖α−1qv

= q0β2‖qv‖2α−1e − 1
2 (1 − α)β2q0‖qv‖2α−1e

(26)

where e is the unit direction vector of attitude quaternion, which is defined as e = qv/‖qv‖.
Noting that 1/2 < α < 1, hence, ω,

.
ω are all norm upper bound during the whole maneuver

process, and the demand control torque is also the norm upper bound, i.e., the singularity
issue is solved. However, it is also worth noticing that on sliding mode (15), the system
parameter k tends towards infinite since

.
k is not the norm upper bound. In order to avoid

this situation, we rewrite the sliding mode as follows.

s = ω + kqv
.
k =

{
0 otherwise
k(1 − α)βq0‖qv‖α−1 ‖s‖ ≤ ε1 &‖qv‖ > ε2

(27)

where ε1 and ε2 are all small positive scalars. The difference between sliding mode (15)
and (27) is simple when the system approaches the equilibrium point, the sliding mode
parameter stops updating, and the singularity issue of k could be solved, and the system
state could converge to the field of ‖qv‖ > ε2 within finite-time, hence, if a small enough
parameter ε2 is selected (in fact, considering the disturbance system could not reach the
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absolute equilibrium point, hence reaching the field near system equilibrium could be
treated as reaching equilibrium point), the systems finite-time stability could be ensured,
and this property will be proven in next section.

4.3. Finite-Time Controller

After the finite-time sliding mode surface is derived, the next step is to construct a
finite-time controller to ensure the system state could converge to the proposed sliding
mode surface within finite time and could converge to its equilibrium point along this
sliding mode surface. Furthermore, the proposed controller could resist the disturbance
torque caused by flexible appendages.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u = −kssigr(s) + ω× Ĵω − 1
2 kĴFω − l1sign(s)

otherwise
u = −kssigr(s) + ω× Ĵω − 1

2 kĴFω − l2sign(s)
−k(1 − α)βq0‖qv‖α−1Ĵqv
i f ‖s‖ ≤ ε1 &‖qv‖ > ε2

(28)

where ks is a positive scalar, r is a positive scalar which satisfies 0 < r < 1, sign(x) is the
sign function of vector x, vector function sigr(x) and li is defined as follows:

sigr(x) = x/‖x‖r (29){
l1 = d + λ‖ω‖2 + k

2 λ‖ω‖+ υ

l2 = d + λ‖ω‖2 + k
2 λ‖ω‖+ kλ(1 − α)βq0‖qv‖α + υ

(30)

where λ is a positive scalar which satisfies λ ≥ λM

(
J̃
)

with λM

(
J̃
)

as the maximum

eigenvalue value of the error inertia matrix J̃. Furthermore, υ in (30) is a positive scalar,
which is meant to resist the disturbance torque caused by flexible appendages, and the
method to select this parameter will be given in a later text.

The next step is to discuss the system stability governed by the controller (28). We
select the Lyapunov function as follows

V =
1
2

sTJs (31)

It is obvious that Function (31) is a semi-positive definite when and only when s = 0
Function (31) equals zero. Except for the condition that ‖s‖ ≤ ε1 &‖qv‖ > ε2, we calculate
the derivative of (31) and the substitute controller (28), and it could be found that:

.
V = sTJ

.
s

= sTJ
( .
ω + k

.
qv
)

= sT(−δT ..
η− ω×(Jω + δT .

η
)
+ u + d

)
+ 1

2 sTJFω

= −‖s‖2−r − sT(−δT ..
η− ω×δT .

η+ υ
)

+sT
(

J̃ω − 1
2 J̃Fω + d

)
− l1sTsign(s)

(32)
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Similarly, we calculate the derivative of Lyapunov function at the stage of ‖s‖ ≤ ε1 &
‖qv‖ > ε2, it could be found that:

.
V = sTJ

.
s

= sTJ
( .

ω + k
.
qv +

.
kqv

)
= sT(−δT ..

η− ω×(Jω + δT .
η
)
+ u + d

)
+ 1

2 sTJFω

+ k
2 (1 − α)βq0‖qv‖α−1sTJqv

= −‖s‖2−r − sT(−δT ..
η− ω×δT .

η+ υ
)

+sT
(

J̃ω − 1
2 J̃Fω + k

2 (1 − α)βq0‖qv‖α−1J̃qv + d
)

−l1sTsign(s)

(33)

Noting the definition of l1 and l2 in (30), it could be easily found that the last two terms
in (32) and (33) are negative definites, i.e.,:

sT
(

J̃ω − 1
2 J̃Fω + d

)
− l1sTsign(s) ≤ 0

sT
(

J̃ω − 1
2 J̃Fω + k

2 (1 − α)βq0‖qv‖α−1J̃qv + d
)

−l1sTsign(s) ≤ 0

(34)

Hence (32) and (33) could be transformed to:

.
V ≤ −‖s‖2−r − sT

(
−δT ..

η− ω×δT .
η+ υ

)
(35)

It is obvious the first term in (35) satisfies the finite-time stability condition, and if the
last term in (35) is a negative definite, the system could converge to the designed sliding
mode surface within a finite time. Moreover, it could be found that the term that needs to
be suppressed is the flexible vibration; although, its modal state is hard to get by sensors
on satellite, its dynamic model is known; hence, the modal state could be estimated by a
state observer. We define η̂ and its update law as follows.

..
η̂+ C

.
η̂+ Kη̂ = −δτ (36)

where:
τ = Ĵ−1

(
u − ω× Ĵω − ω×δT .

η̂− δT ..
η̂
)

(37)

It could easily be found that the estimation variable η̂ has the same dynamic model as
the modal state η. We define the estimation error variable η̃ as follows.

η̃ = η− η̂ (38)

Substitute models (1) and (36) into (38), and it could be found that:

..
η̃+ C

.
η̃+ Kη̃ = −δ

( .
ω − τ

)
(39)

Obviously, the only differences are the terms τ and
.

ω caused by model uncertainty
and disturbance torque. Noting that C and K are both positive definite matrices, the
error variable η̃ is typical of the Lagrange system and η̃ would track −δ

( .
ω − τ

)
by an

exponential rate. Furthermore, noting that −δ
( .
ω − τ

)
is a relatively small term, it could be

treated that estimation variable η̂ could track modal state η, but there exists a small tracking
error. Hence, the auxiliary term υ could be defined as follows.

υ = −δT ..
η̂− ω×δT .

η̂− υ0sign(s) (40)
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The function of the last term, υ0, is to offset the effect caused by the model error
−δ

( .
ω − τ

)
. Noting the ith modal estimation error could be described as:

..
η̃i + 2ξiωni

.
η̃i + ω2

niη̃i =
(−δ

.
ω + δτ

)
i (41)

The analytical solution of (41) could be written as follows.

η̃i(t) =
(−δ

.
ω + δτ

)
i(t)− e−ζiωnit sin(ωdt + φ)/

√
1 − ζ2

i

ωd =
√

1 − ζ2
i ωni, φ = arctan

(√
1 − ζ2

i /ξi

)
i f 0 < ξi < 1

(42)

η̃i(t) =
(−δ

.
ω + δτ

)
i(t)− e−ωnit(ωnit + 1)

i f ξi = 1
(43)

η̃i(t) =
(−δ

.
ω + δτ

)
i(t) + e−(ξi+

√
ζ2

i −1)ωnit/
(

2
√

ζ2
i − 1

(
ζi +

√
ζ2

i − 1
))

− e−(ξi−
√

ζ2
i −1)ωnit/

(
2
√

ζ2
i − 1

(
ζi −

√
ζ2

i − 1
))

i f ξi > 1

(44)

Noting that
(−δ

.
ω + δτ

)
i(t) is a relatively small term, the major part is the transient

term, i.e., the second term in (42)–(44). The idea to offset the transient term is to design υ0’s
envelop function, as Figure 1 shows.

Figure 1. Envelop function.

The basic idea to design υ0 is to ensure its norm is larger than the norm of η̃i(t), and
noting Equations (42)–(44), υ0 could be designed as follows.

υ0 = η̃i(t0) exp(−ωυt)

ωυ < min
(√

ξ2
i − 1ωni, ωni,−

(
ξi +

√
ξ2

i − 1
)

ωni

) (45)

By selecting the initial value of η̃i(t0) (in this paper, η̃i(t0) is selected five times larger
than the model error and ωυ is selected 1/5 times less than the minimum value of ωni), it
could be found that:

sT(−δT ..
η− ω×δT .

η+ υ
)

= sT
(
−δT

..
η̃− ω×δT

.
η̃− η̃i(t0) exp(−ωυt)sign(s)

)
< 0

(46)

Hence, the derivative of V in (35) satisfies:

.
V ≤ −‖s‖2−r = (2V)2−r/2 (47)
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Hence, the sliding mode state s could converge to zero within finite time, and based on
the previous discussion, the system state could converge to the field near the equilibrium
point within finite timem and the systems finite-time stability has been proven.

Moreover, it could be found that the sign function terms in (40) and (28) (except the
disturbance term d) tend to zero as the system converges to its equilibrium point and would
not cause high-frequency vibrations.

5. Simulation

Comparing Group

Set the system parameters as follows.

J = diag(100, 75, 50)kg·m2, Ĵ = diag(98, 77, 49)kg·m2

ω(0) =
[

0.01 −0.02 0.03
]
rad/s

q(0) =
[

0
√

6/6
√

3/3
√

2/2
]

ωn =
[

0.7 1 1.8 2.5
]T ,

ξ = 10−2 × [
5.6 8.6 12.8 25.2

]T

δ =

⎡⎢⎢⎣
7 1.2 2.2

−1.2 0.9 −1.7
1.1 2.5 −0.8
1.2 −2.6 −1.1

⎤⎥⎥⎦
(48)

Set the disturbance d as Gauss white noise and its norm upper bound as follows.

d = 5 × 10−3randn(3, 1)Nm, d = 5 × 10−3 (49)

Group A

In order to demonstrate the superiority of the controller in this paper, the standard
sliding mode controller (50) is compared.

s = ω + kqv
u = −kss + ω× Ĵω − 1

2 ĴFω − lsgn(s)
l = λ

(
‖ω‖2 + 1

2 k‖ω‖
)
+ d

(50)

Select the control parameters as follows.

λ = 3, ks = 2, k = 0.15
T = 300 s, t_sample = 0.1 s

(51)

The simulation results of the standard sliding mode controller (50) are given as follows.
Based on Figures 2 and 3, it could be found that the system convergence time is more
than 300 s, and the steady accuracy of angular velocity and attitude quaternion is about
8 × 10−4rad/s and 4 × 10−4. A system governed by a standard sliding mode controller
could converge to its equilibrium point, but the convergence rate is relatively slow. Fur-
thermore, based on Figure 4, it could also be found that the modal state also converges to
zero as the angular velocity converges to zero, and the maximum vibration is about 0.1
according to numerical simulation.
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Figure 2. Curve of angular velocity.

Figure 3. Curve of attitude quaternion.

Figure 4. Curve of modal state.

Group B

The next step is to demonstrate the performance of the finite-time controller proposed
by Li [14] in 2017. In this paper, the author pointed out that by designing the trajectory of
angular velocity properly, the system convergence rate could be largely improved compared
to a standard sliding mode controller. Moreover, finite-time stability, as discussed in this
paper, is proven in Li’s work; hence, this method is compared with the method proposed
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in this paper. The finite-time controller proposed in Li’s work could be written as Equation
(52) and select controller parameters as Equation (53) [14].

u =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−k‖s‖pse +ϕ1ω − l1sgn(s) ‖qv‖ > α

−k‖s‖pse +ϕ2ω − l2sgn(s) β < ‖qv‖ ≤ α

−k‖s‖pse +ϕ3ω +
k2

3
2 rq0‖qv‖2r−1Ĵe

−l3sgn(s)
‖qv‖ ≤ β⎧⎪⎨⎪⎩

ϕ1 = ω× Ĵ − k1
2 Ĵe×

(
I3 + cot ϕ

2 e×
)

ϕ2 = ω× Ĵ − k2
2 ĴF

ϕ3 = ω× Ĵ⎧⎪⎨⎪⎩
l1 = d + λ‖ω‖2 + k1

2 λ
(
1 + cot ϕ

2
)‖ω‖

l2 = d + λ‖ω‖2 + k2
2 λ‖ω‖

l3 = d + λ‖ω‖2 +
k2

3
2 rλ|q0|‖qv‖2r−1

(52)

λ = 3, k1 = 0.1, k = 5
α = 1, β = 0.2, r = 2/3, p = 0.5

T = 200 s, t_sample = 0.1 s
(53)

The simulation results of the finite-time controller (52) are given as follows.
Based on Figures 5 and 6, it could be found that the system converges to its equilibrium

point and the convergence time is about 100 s, which is largely improved compared to
a standard sliding mode controller. Furthermore, based on Figures 5 and 6, it could be
found that the system accuracy at the steady stage is about 1 × 10−4rad/s and 1 × 10−6

of angular velocity and attitude quaternion, which is also improved compared to Group
A. The only drawback of this controller is the flexible deformation. Based on Figure 7,
although a modal state could converge to zero along the converge of angular velocity, the
maximum modal state is about 0.35, and its frequency is also much higher than that of
Group A. The high-frequency vibration causes system state chattering near its equilibrium
point (based on Figure 5, three axes of angular velocity all have a chattering issue).

Figure 5. Curve of angular velocity.
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Figure 6. Curve of attitude quaternion.

Figure 7. Curve of modal state.

Group C

The PID control algorithm is also a mature and widely used method in satellite attitude
control, and the set control parameters are as follows.

u = −kdω − kpqv − kI
∫

qvdt
kd = 10, kp = 2, kI = 0.1

(54)

The system performance is governed by PID controllers and are shown as follows.
Based on Figures 8 and 9, it could be found that the system governed by a PID

controller is stable, and the convergence time is about 200 s, which is slower than the
standard sliding mode controller, but the structure is the strongest and most robust. It
could be easily found that the shock of the system state near its equilibrium point is much
relieved. Moreover, based on Figure 10, it could be found that the PID controller could also
suppress the flexible vibration.
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Figure 8. Curve of angular velocity.

Figure 9. Curve of attitude quaternion.

Figure 10. Curve of modal state.

Group D

The final step is to demonstrate the performance of the controller proposed in this
paper. We selected the control parameters as follows.

λ = 3, k(t0) = 0.05, ks = 2
ε1 = ε2 = 0.001, r = 2/3

T = 200 s, t_sample = 0.1 s
(55)
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Moreover, we assume the initial modal state estimation error as follows.

η̃(t0) =
[

0.01 −0.01 0.02 −0.02
]T

.
η̃(t0) =

[
0.05 −0.01 0.01 −0.005

]T (56)

We selected the auxiliary term as follows.

υ0 = 0.2 × exp(−0.01t) (57)

Generally, the larger parameter k(t0) and r could bring a better system convergence
rate; however, the system control torque and angular velocity is increased. The parameter
ks determines the rate the system converges to the desired sliding mode. The parameter
υ0 determines the suppression for the estimation error; when the initial estimation error,
disturbance and model error are relatively large, this parameter should be selected to be
larger.

The simulation results are given as follows. Based on Figures 11 and 12, it could
be found that the system converges to its equilibrium point and the convergence time is
about 45 s, which is the fastest of the three groups, and the system accuracy at a steady
stage is 1 × 10−4rad/s and 4 × 10−8 of angular velocity and attitude quaternion, which
is also the best in the three groups. Moreover, it could be found that the initial value of
the sliding mode parameter is 1/3 of Group A, but the system convergence time is about
1/8. This proves that by enlarging the sliding mode parameter, the system convergence
time could be largely improved. Based on Figure 13, it could be found that the modal
state converges to zero, and its maximum value is about 0.2, which is largely improved
compared to the finite-time controller in Group B. Comparing the simulation results of
Group D with Groups A, B and C, it could be found that the upper bound and frequency
of flexible vibration is suppressed. Hence, the chattering issue is largely relieved (seen in
Figure 11, the shocking of angular velocity only exists on the Z-axis and its frequency is
much lower). Based on Figure 14, it could be found that although there exists la arge initial
estimation error, the state observer could also track the real modal state, and the estimation
error tends to zero. Based on Figure 15, it could be found that the sliding mode parameter
stops updating when the system state nears its equilibrium point; hence, the system does
not have a singularity issue.

Figure 11. Curve of angular velocity.
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Figure 12. Curve of attitude quaternion.

Figure 13. Curve of modal state.

Figure 14. Curve of modal state and its estimation.
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Figure 15. Curve of sliding mode parameter.

The performance of the three groups of controllers is summarized in the following
Table 2.

Table 2. Comparison of the three controllers.

Standard Sliding Mode Finite-Time Controller
PID

Controller
Method in This Paper

Convergence rate Slow Medium Slow Fast
Steady accuracy Low Medium Low High
Chattering issue Weak Strong Weak Medium

Flexible vibration suppression Small Large Small Medium
Singularity issue None Exists None None

Based on the comparison in Table 2, it could be found that the major advantages of
the method proposed in this paper are its convergence rate, steady accuracy and none
singularity issue. Although the updated law of the sliding mode parameter would cause
relatively large flexible vibration, the modal state estimation algorithm and auxiliary term
could relieve the effect.

6. Conclusions

In this paper: a finite-time controller based on the dynamic sliding mode is proposed,
and the system convergence rate is largely improved compared to the standard sliding
mode and existing finite-time controller. It is proven that by implementing the updated law
of the sliding mode parameter, the system could converge to the field near the equilibrium
point within finite time, without causing the singularity issue during the whole control
process. Furthermore, it is proven that the key to improving the system performance is to
design an angular velocity trajectory properly, and the method proposed in this paper is the
updated law of the sliding mode parameter; by implementing this method, the drawback
of dropping too fast of angular velocity is avoided. Moreover, a state observer is designed
for flexible vibration, and an auxiliary term, which is converging slower than the system
state, is designed to suppress the effect of the estimation error. The simulation results prove
the effectiveness of the method proposed in this paper, and future work could focus on the
modification of the sign function in controllers to avoid high-frequency vibration near the
system’s equilibrium point.
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Abstract: Multi-Criteria Decision Making (MCDM) methods have rapidly developed and have been
applied to many areas for decision making in engineering. Apart from that, the process to select
fault-diagnosis sensor for Fuel Cell Stack system in various options is a multi-criteria decision-making
(MCDM) issue. However, in light of the choosing of fault diagnosis sensors, there is no MCDM
analysis, and Fuel Cell Stack companies also urgently need a solution. Therefore, in this paper, we
will use MCDM methods to analysis the fault-diagnosis sensor selection problem for the first time.
The main contribution of this paper is to proposed a fault-diagnosis sensor selection methodology,
which combines the rank reversal resisted AHP and TOPSIS and supports Fuel Cell Stack companies
to select the optimal fault-diagnosis sensors. Apart from that, through the analysis, among all sensor
alternatives, the acquisition of the optimal solution can be regarded as solving the symmetric or
asymmetric problem of the optimal solution, which just maps to the TOPSIS method. Therefore,
after apply the proposed fault-diagnosis sensor selection methodology, the Fuel Cell Stack system
fault-diagnosis process will be more efficient, economical, and safe.

Keywords: fault-diagnosis; AHP; TOPSIS; MCDM

1. Introduction

A Fuel Cell Stack system (FCS) refers to a power generation system with fuel cell as the
core, fuel supply and circulation system, oxidizer supply system, water/heat management
system, control system, etc., and able to continuously output electronic power [1]. The
main research interests for FCS include using lightweight materials, optimizing design, and
improving the specific power of the fuel cell system, improving the fast cold start capability
and dynamic response performance of the FCS system, researching fuel processors with
load following capabilities, optimizing supercapacitors and hydrogen storage for system
design to improve system efficiency and peak shaving capabilities, recover braking energy,
etc. [1].

Apart from that, a fault is a state in which the system cannot perform a prescribed
function. Generally speaking, a fault refers to an event in which the function of some
components in the system fails and the function of the entire system deteriorates [2].
The FCS is mainly composed of a stack, a fuel processor, a power regulator, and an air
compressor. There will be many potential faults which can directly influence the FCS
system and FCS cause the system to no work properly [3]. Therefore, the effective use of
fault-diagnosis sensors to detect FCS systems becomes very important. The fault diagnosis
is the process of using various detection and testing methods to find out whether there is a
fault in the system and equipment [4].

A proper fault-diagnosis sensor selection is a deeply significant problem for FCS
because of the reason that choosing an unsuitable fault-diagnosis sensor can directly
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influence the main function testing progress of the FCS fault-diagnosis system. Therefore,
selecting a suitable fault-diagnosis sensor can be a very important part to obtain the most
optimal consequence for FCS.

Therefore, FCS companies urgently need to choose more efficient, safer, and more
affordable fault diagnosis sensors. The fault-diagnosis sensor selection problem is a Multi-
Criteria Decision-Analysis (MCDM) problem.

Therefore, in this paper, we use the rank aversion resisted AHP and TOPSIS method
to approach the FCS fault-diagnosis sensor selection problem. The main objective of this
study is to put forward a fault-diagnosis sensor selection methodology which considers
difference criteria and sub-criteria, and helps FCS companies to select the optimal fault-
diagnosis sensors, and ensure that the FCS fault-diagnosis process becomes more efficient,
economical, and safe.

The rest of this article is structured as follows. The “Literature review” section
introduces the background and related research. The “Methods” section describes the
methods that we used in this research. The “Case study” section characterizes an example
to derive experimental information from and to analyze the consequence of imitation. A
detailed discussion and ideas for future work are summarized in the “Discussion” section.

2. Literature Review

A fuel cell is a chemical device that directly converts the chemical energy of the fuel
into electrical energy, also known as an electrochemical generator, and it is the fourth power
generation technology after hydropower, thermal power, and atomic power [1]. Meanwhile,
in addition to the fuel cell’s main body (power generation system), the FCS also has some
peripheral devices, including fuel reforming supply system, gasoline supply system, water
management system, thermal management system, dangerous communication system,
control system, safety system, etc. [5].

To obtain the optimal FCS fault-diagnosis sensor in all alternatives, we can use the
asymmetry of the evaluation result. Symmetry and asymmetry are frequent patterns
that are widely studied in a variety of fields. In most cases, symmetries can exist in an
arithmetic equation, which has been an important part for approving issues or conduct a
more in-depth study. In this research, selecting the fault-diagnosis sensor problem can be
regarded as the process of solving the symmetric and asymmetric problem in mathematical
formulation. To obtain the optimal fault-diagnosis sensor, we have to evaluate different
sensor alternatives depending on various evaluation criteria. The criteria usually include
positive criteria and negative criteria. Therefore, in the evaluation formula, we need to
consider both positive and negative criteria, and get positive and negative evaluation
solutions, which can be seen as the symmetry of formula. Meanwhile, to distinguish and
sort all the alternatives and get the final optimal sensors, the positive and negative results
should be asymmetrical. In fact, in most cases, the evaluation results are asymmetrical.

Selecting the new fault-diagnosis sensor wastes energy and is a complex process, re-
quiring multi-disciplinary cognition and expert experience. Apart from that, with the rapid
development of information and communication technology, a large amount of engineering
system information data are being produced. Therefore, to select an economical, efficient,
and logically well-performed fault-diagnosis sensor, the decision-maker should consider
various sources of information [6,7].

The fault-diagnosis sensor selection problem can be seen as a Multi-Criteria Decision-
Making (MCDM) [8,9] issue. Multi-Criteria Decision-Making has always been a well-
known part of decision making [10]. It concerns establishing or approving determination
and planning issues under multi-standards [11]. MCDM supports managers to make a
decision, which quantifies a special standard depending on its significance in relation
to other targets [12,13]. MCDM methods provide an opportunity to take into account
the multidimensional nature of the considered problem [14]. The MCDM technique can
also take into account the economic, community, civilization, and circumstance affairs
that can enhance the project [15]. MCDM is considered to be a special decision-making
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process, and the issue can be emphasized as follows: selection is required, the level needs
to be defined, all the alternatives need to be prioritized, and different options behaviors
need to be illustrated [16]. MCDM methods are very different depending on the various
dimensions, for instance a fuzzy environment, for which interests and assessment standards
are represented by different methods, including different methods of value aggregation;
whether there is a chance it has certain information can also define the different kinds of
MCDM methods [17–20].

There are many MCDM techniques. The traditional classic mainstream MCDM tech-
niques are Analytic Hierarchy Process (AHP) [21,22], Analytic network process (ANP) [23],
Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) [24], Classic
MAUT [25], ELECTRE [26], PROMETHEE [27], UTA [28], UTADIS [29], etc., while mod-
ern classic mainstream MCDM techniques are COMET [30], COPRAS [31], SPOTIS [32],
SIMUS [33], and so on.

The AHP technique includes determining the total corresponding standards and
compares every two values with each other to estimate the effect of every standard [34].
The AHP can be seen as a measurement based on the comparison between two alternatives,
depending on the decision of specialists to obtain the precedence of all the alternatives [35].
AHP is widely applied to MCDM problems in different fields, for instance financial and
scheduling, and managers can use this method to establish an MCDM issue under a
hierarchy property type [36].

TOPSIS is a generic approach to deal with multi-standard determination issues [37].
Moreover, TOPSIS is also a symmetrical technique used for the ranking of the alternates,
and it is the best-known approach for alternative ranking of MCMD problems [38]. The
symmetrical TOPSIS technique can estimate critical criteria [39]. The main idea of TOPSIS
is that the best alternative among all competitive alternatives should be at the minimum
distance from the Positive-Ideal (P-I) solution and have maximum distance from the
Negative-Ideal (N-I) solution [38,40], which can be regarded as the process of solving the
symmetric problem in mathematical formulation. Furthermore, for determining the best
alternative among several others, TOPSIS proves to be a good MCDM method [39]. Apart
from that, TOPSIS also has other advantages: (1) The structure of TOPSIS is reasonable;
(2) The calculation steps are very easy; (3) It allows to find the optimal options for every
standard chosen through an understandable arithmetic from; (4) The significance weights
are included in the process of comparison [41].

The COPRAS (Complex Proportional Assessment) technique usually evaluates the
maximized/minimized index data, and the influence of these values on the properties
in consequence evaluation is taken into account [42]. Moreover, the COPRAS technique
supposes a straightforward and different scale, relying on the importance and rank of the
effectiveness of the usable alternatives in the appearance of conflicting standards [43,44].
The target of COMET is to approach the issues of MCDM in a fuzzy condition, and this
can be seen as a novel way of thinking to approach the issues of MCDM with regards to
inconstancy [30]. The method is based on L-R-type GFN, which can obtain the hesitant rank
for an option in a definitive standard. SPOTIS is a novel rank reversal-free MCDM method,
and it has very low complexity [32]. Moreover, compared with the COMET approach, it
requires much less information. SIMUS (Sequential Interactive Model for Urban Systems) is
a hybrid model, not only based on Linear Programming but also on traditional approaches,
such as ‘Weighted sum’ and ‘Outranking’ procedures, and can handle any number of
objectives, albeit not reaching an optimal result as in the case of Linear Programming [33].

Faizi et al. proposed the MCGDM (Multi-Criteria Group Decision Making) methodol-
ogy, which was based on the B-W technique with Hamacher polymerization operations of
intuitive binary combination language sets [45]. This method was proposed for modifying
efficiency with operations of determining steps. Božanić et al. proposed methodologies for
MCDM depending on the D values, the FUCOM technique and RAFSI technique, and it
can approach the industrial mechanical equipment choosing problem [46].

232



Symmetry 2021, 13, 2366

COMET (the Characteristic Objects Method) has an attractive function that can avoid
rank reversal; however, compared with AHP and TOPSIS, it requires much more informa-
tion under the situation of the very common value matrix definition in MCDM issues [32].
Moreover, when we consider the stability between the COPRAS and TOPSIS techniques
with a value variable, we find that TOPSIS is better and more insensitive when the value
does not change much, and compared with other technologies, the priority result is dif-
ferent [47]. Moreover, compared with TOPSIS and AHP, the COMET method also needs
much more information when we confront it with traditional MCDM issues [32]. Further-
more, it is very hard to apply the SPOTIS approach as compared with TOPSIS, due to the
fact that there exists uncertainty in the option of minimum and maximum bounds of the
standard [32]. SIMUS, because it is based on Linear Programming, and LP works with a
very different approach in a decision-making scenario when compared with other methods,
can be considered a geometric tactic.

Here, to select the most suitable MCDM technique for fault-diagnosis sensor selection,
we have to consider some judgment methods. Marco Cinelli et al. proposed a taxonomy
depending on the features of MCDM steps [48], which included three important steps:
phase 1—issue statement phase, phase 2—determination recommendation establishment
phase, and phase 3—characteristics and method assistance phase. Wątróbski et al. also
proposed a taxonomy of MCDA methods, and the proposed taxonomy can be selected
as a universal scheme to choose a suitable MCDA technique under a certain decision
problem domain [17]. Therefore, we can apply these taxonomies with MCDM techniques
and choose a similar MCDM technique(s) for fault-diagnosis sensor selection studies.

1. After all the considerations above, we have found that the AHP and TOPSIS method
is the most adaptable for the fault-diagnosis sensor selection. We summarized the
following reasons: the fault-diagnosis sensor selection problem is a deterministic
MCDM problem and, as compared with other methods, AHP and TOPSIS are optimal
for deterministic conditions.

2. The weight definition in the fault-diagnosis sensor choosing means subjective judge-
ment steps, and it just maps to the AHP method.

3. Compared with other complex process methods, it is easy to apply and use the AHP
and TOPSIS methods.

4. Among all MCDM techniques, the AHP and TOPSIS techniques require less information.
5. Among all MCDM techniques, the TOPSIS technique has good stability in a data

variable case.

The main consideration in this study is to select the most suitable fault-diagnosis
sensor and also consider the various standards when making a decision. These are multi-
disciplinary criteria, and there are many intangible or immeasurable factors. Moreover,
when choosing engineering methods or equipment, there are many criteria classification
methods. Yazdani-Chamzini et al. considered the technical parameters, operational param-
eters and economical parameters when selecting the most appropriate mining methods [49].
Štirbanović et al. applied the MCDM method for flotation machine selection, which consid-
ered the constructional parameters, economical parameters, and technical parameters [50].
Sarrate et al. proposed a methodology depending on fault diagnosis capability optimiza-
tion for finding a suitable sensors’ location for FCS systems, and considered different
fault-diagnosis criteria, such as compressor parameters, inlet manifold parameters, air con-
ditioner parameters, humidifier parameters, FCS anode parameters, and so on [51]. When
we define the importance weights of the criteria, there are also intangible or immeasurable
factors that should be approached.

The AHP is a targeted and practical decision-making method for analyzing qualitative
problems, and the characteristic is to structure the various factors in complex issues through
inter-connection to make them organized [35]. Moreover, the AHP is the most commonly
used technique due to its simplicity, ease of use, and great flexibility [52]. However, there
is a rank versal phenomenon in the AHP method. The rank reversal problem means that
when ranking the pros and cons of alternatives to an MCDM problem, adding or reducing

233



Symmetry 2021, 13, 2366

an alternative and applying the same decision model will cause inconsistent ranking results.
Wang and Elhag proposed methodology to avoid rank reversal in AHP [53]; we can use
this method to approach the problem of the rank reversal problem in the AHP method.

Therefore, we can use the AHP method to define the weights of fault-diagnosis sensor
importance criteria. Additionally, we can use TOPSIS to obtain the result of the feasible
fault-diagnosis sensor alternatives. The most important reason why we use TOPSIS is that
it can analyze the length to the P-I result and the N-I result, which just conforms to the
symmetry of the formula. Additionally, we can get the asymmetry of all the candidate
sensor evaluation result through TOPSIS.

Our main objective is to help FCS companies select more efficient, safer, and more
affordable fault-diagnosis sensors. The fault-diagnosis sensor selection problem is an
MCDM problem. Therefore, this research utilizes the AHP method (the MCDM method) to
determine the importance weights of the fault-diagnosis sensor estimation standard, and
TOPSIS is to find suitable solutions. It is then possible for FCS companies to apply this
methodology and choose the optimal fault-diagnosis sensor, making the FCS fault-detection
process more efficient, economical, and safe.

3. Methods

3.1. The AHP Technique

The whole AHP steps are shown as follows [35]:

1. Depending on how thorough the knowledge about the system is, determine the
main target and establish the measures and policies involved in the planning and
decision-making.

2. Establish a hierarchical framwork, and define the location of all the factors that we
use in this framwork according to different goals and different functions.

3. Determine the degree of correlation between neighboring layer factors. Establish pair-
wise comparison matrices, determine the relative weight of a factor on the previous
layer and the significance of the corresponding factors on this layer.

4. Obtain the composite weight of every level factor to the target. Moreover, the sorting
needs to be done, and the importance of the main target of the bottom element at the
framwork needs to be defined.

5. Establish the weight of each layer element of the system goal, perform the total
sorting, and determine the importance of the overall goal of the lowest element in the
hierarchical structure.

First of all, we have to decide the main issue and the different intellectual ideas.
After that, targets, standards, and options will be sorted depending on the hierarchical
composition. In this hierarchical structure, the objectives are in the upper layer, usually
related to the determined options in the middle layer and all the options located in lower
layer. In the third step, we have to make a comparison between the alternatives. Here, we
have to define the importance scale. The importance scale refers to how many more times
one element is important than another. The AHP Fundamental Scale is shown in Table 1.

Table 1. The AHP Fundamental Scale [53,54].

The Paired Comparison Reference Rank

Significance
Rank

Relation Type Interpretation

1 Same significance Two options dedicated to the same degree to the target
3 Little significance of an option to the other Assessment is slightly more inclined to one option over another
5 High significance Assessment is strongly inclined to one option over another
7 Higher significance Very high inclination to one option over another
9 Absolute significance One option is absolutely more significant than another

2,4,6,8 Intermediate values between the two ratios When there is a need to subdivide

Note. C = Criteria.
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After that, the rank of the importance is obtained through a paired comparison matrix
among alternative m and alternative n of the form (Equation (1)) [55]:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 a12 · · · a1n · · · a1N
1/a12 1 · · · a2n · · · a2N

...
... 1

... · · · ...
1/a1n 1/a2n · · · 1 · · · amN

...
... · · · ... · · · ...

1/a1N 1/a2N · · · 1/amN · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

In Equation (1), amn refers to the value appearance of the determination of pairwise
comparison values (alternative m, alternative n) for all alternatives (m, n = 1, 2, . . . , n).
Here, m refers to a row of A and n refers to a column of A. In Equation (1), amn cannot be
equal to 0.

In the next process, we have to calculate the normalized value for every matrix and
define the corresponding weights for them. The corresponding weights can be obtained
from u and λmax (Equation (2)):

Aw = λmaxu (2)

where u refers to the right eigenvector and λmax refers to the largest eigenvector.
To avoid the Rank Reversal problem for the AHP technique, it is possible to calculate

the rescaled right eigenvector weights (Equation (3)):

Û = kU =

(
u1

∑N
1 um

,
u2

∑N
1 um

, · · · ,
uN

∑N
1 um

,
uN+1

∑N
1 um

)T

(3)

where ∑N
m=1 unA = ∑N

m=1 kun, ∑N
m=1 unA = 1, and k = 1/ ∑N

m=1 un.

In Equation (3), Û can be seen as the normalization with respect to the original N
alternatives. We can calculate the rescaled weight Û to resist the rank reversal phenomenon
for the AHP technique when an option is inserted or dropped.

3.2. TOPSIS Technique

The basic process of the TOPSIS technique can be seen as follows:

• First, establish a decision matrix for alternatives (Equation (4)):

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11 y12 · · · y1j · · · y1J
y21 y22 · · · y2j · · · y2J

...
... · · · ... · · · ...

yi1 yj2 · · · yij · · · yiJ
...

... · · · ... · · · ...
yI1 yI2 yIj · · · yI J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where D is the decision matrix, yij is the jth criterion value related to the ith alternative,
I is total number of alternatives, and J is total number of criteria.

• Second, obtain the normalized decision matrix Z(=zij) (Equation (5)):

zij =
yij√

∑I
i=1 yij

2
(5)

where zij is the normalized value for the jth criterion value related to the ith alter-
native and I is the total number of alternatives. The reason why we use the vector
normalization technique is that many researchers have analyzed the effects of different
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normalizations for TOPSIS, and they have found that the vector normalization method
is most suitable for TOPSIS [56,57]. Moreover, in this process, they have computed
the consistency of the results of all the alternatives, and analyzed the sensitivity of the
weight for different normalization methods applied on TOPSIS.

• Third, obtain the weighted normalized decision matrix X(=xij) (Equation (6)):

xij = ωj·zij (6)

Here, the normalized value is obtained from the multiplication of the original value
and the corresponding weights. In this research, the weight can be defined by the
AHP method.

• Fourth, calculate the P-I and N-I results (Equations (7) and (8)):

P-I solution : xj
+ =

⎧⎨⎩ max
i

xij, i ∈ l′

min
i

xij, i ∈ l′′
(7)

where l′ is the value set associate with benefit criteria and l” is the value set associate
with the cost criteria.

N-I solution : xj
− =

⎧⎨⎩ min
i

xij, i ∈ l′

max
i

xij, i ∈ l′′
(8)

where l′ is the value set associated with the benefit criteria and l” is the value set
associate with loss standards.

• Fifth, obtain a symmetric n-dimensional Euclidean distance from every result to the
P-I result and the N-I result (Equations (9) and (10)):

Symmetric distance to P-I solution : di
+ =

√
∑J

j=1

(
xij − xj

+
)2 (9)

Symmetric distance to N-I solution : di
− =

√
∑J

j=1

(
xij − xj

−)2 (10)

• Sixth, obtain the closeness to the ideal result (Equation (11)):

Ci
∗ = di

−

(di
− + di

+)
(11)

• Seventh, determine the order of the Ci* value to define the performance of the alterna-
tives. The larger the Ci* value is, the better the performance of the alternatives is.

4. Results

4.1. The Whole Process of Fault-Diagnosis Sensors for FCS

The whole process of fault-diagnosis sensor selection method for FCS is provided in
Figure 1.

First of all, we should determine the criteria to be used in the evaluation of fault-
diagnosis sensor alternatives. Here, the criteria should be defined by multidisciplinary
knowledge (cost, efficiency, impact on the environment, safety, and so on). After that, we
can assign criteria weights to the AHP method. Next, we can determine the final alternative
evaluation result through the TOPSIS method.
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Figure 1. The whole process of the fault-diagnosis sensor selection method for FCS.

4.2. Criteria for Fault-Diagnosis Sensors Selection for FCS

The standard that is used in the chosen fault-diagnosis sensors are decided by the
company experts. Here, experts consist of experienced employees from different fault-
diagnosis fields and FCS companies. They are very familiar with the size and shape,
installation, performance, and expansion of fault-diagnosis sensors. At the same time, they
are also very aware of the various safety hazards of sensors, and what a reasonable budget
should be for each sensor component.

The proposed criteria and sub-criteria are obtained through related reference research
works and from interviews with experts. After that, depending on the initial screening
result, four important criteria (Constructional Parameters, Efficient Parameters, Economic
Parameters, and Safety Parameters) to be used for fault-diagnosis sensors selection are
established. Apart from that, each criterion has several sub-criteria. There are three sub-
criteria for Constructional Parameters, six sub-criteria for Economical Parameters, six
sub-criteria for Efficient Parameters, and two sub-criteria for Safety Parameters. These
criteria are mainly considered to be widely acceptable by the experts. All these criteria are
meant to make the fault-diagnosis process for FCS more efficient, more economical, more
environmentally friendly, and safer. The four criteria and their descriptions are as follows
(see also Table 2).

• Constructional Parameters: Constructional parameters are related to the size and
shape of the fault-diagnosis sensors, the installation ease, and expansion ability.

• Efficient Parameters: Efficient parameters are related to the efficiency and performance
of fault-diagnosis sensors.

• Economical Parameters: Economic parameters include the cost of all parts of the
fault-diagnosis sensor.

• Safety Parameters: Safety parameters include the incidence of sensor breakage or
electrical leakage and the safety of the sensor system in an emergency.

• Resilience and tolerance: Resilience and tolerance parameters related to the ability
of a fault-diagnosis sensor system to provide the required capability in the face of
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adversity and the fault-tolerant design of the sensor. In an FCS system, there are
different kinds of adversities, such as electromagnetic and light interference, sudden
power cuts, and the best detection distance range, and we have to evaluate the capacity,
which is related to the ability to deal with all these interferences, and ensure that the
error diagnosis process of the fault-diagnosis sensor system continues. Tolerance is
related to the capability of the fault-diagnosis system to continue error-free work in
the situation of an unexpected failure (complete unworking, fixed deviation, drift
deviation, and accuracy degradation).

Table 2. Criteria and sub-criteria of fault-diagnosis sensors for the Fuel Cell Stack system.

Criteria Sub-Criteria

Constructional Parameters (C1)

The size and the shape of the fault-diagnosis sensor
(C11)

The installation easiness (C12)
The expansion ability (C13)

Economical Parameters (C2)

Compressor motor checking sensor cost (C21)
Supply manifold checking sensor cost (C22)

Air cooler checking sensor cost (C23)
Static humidifier checking sensor cost (C24)
Outlet manifold checking sensor cost (C25)

Stack cathode checking sensor cost (C26)

Efficient Parameters (C3)

Compressor motor checking (C31)
Supply manifold checking (C32)

Air cooler checking (C33)
Static humidifier checking (C34)
Outlet manifold checking (C35)

Stack cathode and anode checking (C36)

Safety Parameters (C4) Incidence of sensor breakage or electrical leakage (C41)
Safety of the sensor system in an emergency (C42)

Resilience and tolerance parameters
(C5)

fault-diagnosis sensor system resilience ability (C51)
fault-tolerant design of the sensor (C52)

Note. C = Criteria.

4.3. Assigning the Weights of the Criteria via AHP

In this approach, experts use the AHP method to distribute or decide the standard and
sub-standard weights, depending on the professional competence of them. A scheme for
FCS, which is deeply recognized by the experts in the field of control science, can describe
the FCS working process very well [58–60], and the corresponding fault-diagnose sensor
system can be seen as Figure 2.

In Figure 2, we can find that the model FCS mainly includes seven elements. Moreover,
the FCS can be seen as the machine which can transform fuel energy into electronic
energy [3]. Therefore, in order to allow the chemical energy of the fuel to be converted
into electrical energy more smoothly, safely, more effectively, and more economical in the
FCS system, there is a need to select and set appropriate FCS fault-diagnosis sensor to
check different elements in the FCS system. In Figure 2, we can also find that the FCS
fault-diagnosis sensor can be divided in six parts (Compressor motor checking, Supply
Manifold checking, Air Cooler checking, Static humidifier checking, Outlet manifold
checking, and Stack cathode checking), and the detailed functions of these parts can be
described as follows:

• Compressor motor checking: the main function of this part is to check the angular speed
and motor torque of the compressor, and record the size of the compressor current.

• Supply Manifold checking: the main function of this part it to check the exist air mass
flow rate and temperature of the of the inlet manifold.
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• Air Cooler checking: the main function of this part is to check the air mass flow rate
and temperature of the magic cooler. Moreover, it can also check the humidity of the
magic cooler.

• Static humidifier checking: the main function of this part is to check the exit air
mass humidity, temperature, and pressure of the stack humidifier, and also check the
injected vapor mass flow rate.

• Outlet manifold checking: the main function of this part if to check the outlet manifold
exit air mass flow rate, pressure, and humidity.

• Stack cathode checking: this main function of this part is to check the cathode and
anode exit hydrogen mass flow rate, hydrogen pressure, relative hydrogen humidity,
and exit vapor mass flow rate.

Figure 2. The FCS scheme and the corresponding fault-diagnosis sensor system. Note. C = Collecting
data. CS = Compressor motor checking part. SM = Supply Manifold checking part AC = Air Cooler
checking part. SH = Static humidifier checking part. OM = Outlet manifold checking part. SC = Stack
cathode checking part.

These checking parts can detect all components of FCS in real time, and return the
checking data to the fault diagnosis sensor system. Therefore, depending on the information
above and the criteria and sub-criteria in Table 2, we can establish a multi-level hierarchical
structure as in Figure 3.

Figure 3. Multi-level hierarchical structure for the FCS fault-diagnosis sensor criteria weight definition.

In Figure 3, we can find that there are two levels of hierarchical structure. Level 0 is
the main target of our research, while level 1 shows the multi-standards, and consists of
five main factors to select the FCS fault-diagnosis sensor. Moreover, every main factor also
consists of several sub-criteria. The reason why there are only two levels of hierarchical
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structure is that we only need to use the AHP method to define the weight of all the criteria,
and the selection of the FCS fault-diagnosis sensor will be defined in the TOPSIS method.

Therefore, depending on Figure 3, experts can give the paired comparison result
depending on the comparison rank information in Table 1. The pairwise comparison result
of the criteria and sub-criteria for the fault-diagnosis sensor is shown in Tables 3–8.

Table 3. Consequence of comparison of four fault-diagnosis criteria and the rescaled weight of the
significance of them.

Criteria C1 C2 C3 C4 C5 ui ûi

Constructional Parameters (C1) 1 1 2 5 3 0.323 0.36
Economical Parameters (C2) 1 1 2 7 2 0.329 0.367

Efficient Parameters (C3) 1/2 1/2 1 3 2 0.178 0.198
Safety Parameters (C4) 1/5 1/7 1/3 1 1 0.067 0.075

Resilience and tolerance
parameters (C5) 1/3 1/2 1/2 1 1 0.104 0.116

Note. C = Criteria. ui = Weight for the fault-diagnosis criteria. ûi = rescaled weight for the fault-diagnosis criteria.

Table 4. Pairwise comparison result and weight of the Constructional Parameter (C1) sub-criteria.

Criteria ûi Sub-Criteria C11 C12 C13 vk rvk wk (ûi × rvk)

C1 0.36
C11 1 4 6 0.710 0.821 0.296
C12 1/4 1 1 0.155 0.179 0.064
C13 1/6 1 1 0.135 0.156 0.056

Note. C = Criteria. ûi = rescaled weight for the fault-diagnosis criteria. vk = Weight for the fault-diagnosis sensor sub-criteria. rvk = rescaled
weight for the fault-diagnosis sub-criteria. wk = Calculated weight for the fault-diagnosis sensor sub-criteria.

Table 5. Pairwise comparison result and weight of the Economical Parameter (C2) sub-criteria.

C ûi Sub-Criteria C21 C22 C23 C24 C25 C26 vk rvk wk (ûi × rvk)

C2 0.367

C21 1 3 4 7 4 3 0.395 0.425 0.156
C22 1/3 1 2 3 5 2 0.211 0.227 0.083
C23 1/4 1/2 1 2 4 1 0.135 0.145 0.053
C24 1/7 1/3 1/2 1 2 3 0.096 0.103 0.038
C25 1/5 1/5 1/4 1/2 1 5 0.093 0.1 0.037
C26 1/3 1/2 1 1/3 1/5 1 0.069 0.074 0.027

Note. R = Criteria. ûi = rescaled weight for the fault-diagnosis criteria. vk = Weight for the fault-diagnosis sensor sub-criteria. rvk = rescaled
weight for the fault-diagnosis sub-criteria. wk = Calculated weight for the fault-diagnosis sensor sub-criteria.

Table 6. Pairwise comparison result and the weight of the Efficient Parameter (C3) sub-criteria.

C ûi Sub-Criteria CT31 C32 C33 C34 C35 C36 vk rvk wk (ûi × rvk)

C3 0.198

C31 1 2 5 3 4 1 0.329 0.361 0.071
C32 1/2 1 2 4 6 3 0.247 0.271 0.054
C33 1/5 1/2 1 2 4 1 0.132 0.145 0.029
C34 1/3 1/4 1/2 1 2 3 0.105 0.115 0.023
C35 1/5 1/6 1/4 1/2 1 5 0.098 0.108 0.021
C36 1 1/3 1 1/3 1/5 1 0.089 0.098 0.019

Note. C = Criteria. ûi = rescaled weight for the fault-diagnosis criteria. vk = Weight for the fault-diagnosis sensor sub-criteria. rvk = rescaled
weight for the fault-diagnosis sub-criteria. wk = Calculated weight for the fault-diagnosis sensor sub-criteria.

Table 7. Consequence of the comparison of Safety Parameter (C4) sub-criteria.

Criteria ûi Sub-Criteria C41 C42 vk rvk wk (ûi × rvk)

C4 0.075
C41 1 3 0.75 1 0.075
C42 1/3 1 0.25 0.333 0.025

Note. C = Criteria. ûi = rescaled weight for the fault-diagnosis criteria. vk = Weight for the fault-diagnosis sensor sub-criteria. rvk = rescaled
weight for the fault-diagnosis sub-criteria. wk = Calculated weight for the fault-diagnosis sensor sub-criteria.
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Table 8. Consequence of the comparison of Resilience and tolerance parameter (C5) sub-criteria.

Criteria ûi Sub-Criteria C41 C42 vk rvk wk (ûi × rvk)

C5 0.116
C51 1 4 0.8 1 0.116
C52 1/4 1 0.2 0.25 0.029

Note. C = Criteria. ûi = rescaled weight for the fault-diagnosis criteria. vk = Weight for the fault-diagnosis sensor sub-criteria. rvk = rescaled
weight for the fault-diagnosis sub-criteria. wk = Calculated weight for the fault-diagnosis sensor sub-criteria.

The weight results (ûi and rvk) in Tables 3–8 are released depending on the
Equations (2) and (3) (the rescaled weights for the main right eigenvector for the pairwise
comparison are shown in Tables 3–8). Here, the calculated weight for the fault-diagnosis
sensor sub-criteria (wk) is obtained by multiplying the criteria of the rescaled weight ûi and
the sub-criteria of the rescaled weight rvk.

4.4. Determining the Final Result via TOPSIS

To determine the final fault-diagnosis sensor selection result for FCS, five fault-
diagnosis sensors were evaluated using the TOPSIS method. For evaluation, a 1–5 scale,
shown in Table 9, was used.

Table 9. Evaluation value used for ranking fault-diagnosis sensors for FCS.

Value Meaning

5 Excellent
4 Good
3 Normal
2 Bad
1 Terrible

Experts can use ranking in Table 9. to evaluate the five fault-diagnosis sensors. The
ranking of the five options, corresponding to the fault-diagnosis sensor evaluation sub-
standard, can be seen in Table 10.

Table 10. The ratings of evaluated alternatives with respect to each criterion.

A
CT1 CT2 CT3 CT4 CT5

CT11 CT12 CT13 CT21 CT22 CT23 CT24 CT25 CT26 CT31 CT32 CT33 CT34 CT35 CT36 CT41 CT42 CT51 CT52

SE1 2 4 4 1 3 4 4 5 5 4 4 4 1 5 3 5 2 3 3

SE2 1 1 2 2 4 4 1 2 1 2 2 2 1 2 5 2 1 5 2

SE3 3 3 3 3 5 2 3 1 2 1 4 2 5 3 4 4 4 3 2

SE4 4 2 1 5 2 1 2 3 1 4 2 1 1 5 2 2 2 2 1

SE5 2 4 2 5 2 4 2 3 1 2 1 5 4 3 1 1 2 2 3

Note. A = Alternative. SE = Sensor. CT = Criteria.

The weighted normalized values determined by using Equation (5), Equation (6), and
Tables 4–8, are shown in Table 11.

In Table 11, the MI refers to the loss standard (a smaller value means better results).
Moreover, MA refers to the gain standard (larger value means better results). The weighted
normalized value for alternative Sensor 1 (SE1) relative to sub-criteria CT11 is 0.102. The
value is obtained by multiplying the calculated weight of sub-criteria C11 (wk (0.296 in
Table 4)) and the normalized decision matrix value for C11 (0.343 = 2√

22+12+32+42+22 ).
After that, depending on Table 11 and Equations (7) and (8), the P-I and N-I results can be
decided. The P-I and N-I results can be seen in Table 12.

Depending on the data from Tables 11 and 12 and Equations (9) and (10), the relative
distances of all options from the P-I result and N-I result can be obtained. Finally, we can
compute the distance between each option and the P-I result depending on Equation (11).
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The relative distances between each option and the P-I and N-I solution, and the result of
relative closeness to the N-I, can be seen in Table 13.

Table 11. The weighted normalized value of the alternatives with respect to each criterion.

A

CT1 CT2 CT3 CT4 CT5

CT11

MI
CT12

MA
CT13

MA
CT21

MI
CT22

MI
CT23

MI
CT24

MI
CT25

MI
CT26

MI
CT31

MA
CT32

MA
CT33

MA
CT34

MA
CT35

MA
CT36

MA
CT41

MA
CT42

MA
CT51

MA
CT52

MA

SE1 0.102 0.038 0.038 0.02 0.033 0.029 0.026 0.027 0.024 0.044 0.034 0.016 0.003 0.012 0.008 0.053 0.009 0.049 0.017

SE2 0.051 0.009 0.019 0.039 0.044 0.029 0.007 0.011 0.005 0.022 0.017 0.008 0.003 0.005 0.013 0.021 0.005 0.081 0.011

SE3 0.152 0.028 0.029 0.059 0.054 0.015 0.02 0.005 0.01 0.011 0.034 0.008 0.017 0.007 0.01 0.042 0.019 0.049 0.011

SE4 0.203 0.019 0.010 0.098 0.022 0.007 0.013 0.016 0.005 0.044 0.017 0.004 0.003 0.012 0.005 0.021 0.009 0.032 0.006

SE5 0.102 0.038 0.019 0.098 0.022 0.029 0.013 0.016 0.005 0.022 0.008 0.021 0.014 0.007 0.003 0.011 0.009 0.032 0.017

Note. A = Alternative. SE = Sensor. CT = Criteria. MI = Min. MA = Max.

Table 12. The P-I and N-I solutions of the considered fault-diagnosis sensor alternatives.

A
CT1 CT2 CT3 CT4 CT5

CT11

MI
CT12

MA
CT13

MA
CT21

MI
CT22

MI
CT23

MI
CT24

MI
CT25

MI
CT26

MI
CT31

MA
CT32

MA
CT33

MA
CT34

MA
CT35

MA
CT36

MA
CT41

MA
CT42

MA
CT51

MA
CT52

MA

SE+ 0.051 0.038 0.038 0.02 0.022 0.007 0.007 0.005 0.005 0.044 0.034 0.021 0.017 0.012 0.013 0.011 0.019 0.081 0.017

SE− 0.203 0.009 00.01 0.098 0.054 0.029 0.026 0.027 0.024 0.011 0.008 0.004 0.003 0.005 0.003 0.053 0.005 0.032 0.006

Note. A = Alternative. SE = Sensor. CT = Criteria. MI = Min. MA = Max.

Table 13. TOPSIS results.

Alternative di
+ di

− Ci*

SE1 0.087 0.144 0.624
SE2 0.059 0.174 0.747
SE3 0.128 0.079 0.381
SE4 0.185 0.033 0.151
SE5 0.116 0.106 0.476

Note. Ci* = The relative closeness to the ith ideal solution.

Table 13 shows the evaluation result of the candidate options depending on the
calculation of the TOPSIS methodology. From the Ci* value in Table 13, we can find that
the fault-diagnosis sensor SE2 has the highest value (0.747). In contrast, sensor SE4 has
the smallest value (0.151). Moreover, we also find that companies pay more attention to
the Constructional Parameters (C1) and Economical parameters (C2) (the rescaled weights
(ûi) for these two parts in Table 3 are 0.36 and 0.367, respectively). Moreover, in the
Constructional Parameters (C1), companies pay more attention to the criteria C11 (the
rescaled weight (ûi) for C11 is 0.296; the lower the criteria data, the better), and in the
Economical parameters (C2), companies pay more attention to the criteria C21 (the rescaled
weight (ûi) for C21 is 0.156; the smaller the criteria value, the better). Therefore, when
we use these two criteria (C11, C21) to compare all the sensors, we can find that SE2 has
the smallest value (1 for C11 and 2 for C21, see Table 10). Therefore, compared with other
sensors, SE2 has the smallest size and shape, while the compressor motor inspection has
the lowest cost, and these two parts are also the most important reason why SE2 is optimal.
Additionally, companies should pay more attention to these two parts when considering
other new sensors. Therefore, given the result above, companies can select fault-diagnosis
sensor SE2 to ensure that the FCS fault-diagnosis process is more efficient, economical, and
safer compared with other alternatives.

5. Discussion

The fault-detection process is one of the most important steps in the effective operation
of Fuel Cell Stack Systems, and Fuel Cell Stack Systems are generally complex and need to
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be systematically organized in order to achieve high levels of efficiency. A fault-detection
sensor can ensure the effective operation of Fuel Cell Stack Systems, and companies need to
consider several criteria and restrictions for the sensors’ selection process. Meanwhile, with
the rapid development of manufacturing techniques and manufacturing economy prob-
lems [61–63], safety problems and efficiency problems [64] frequently emerge. Therefore,
to ensure a safe and efficient fault-diagnosis process, it is very important for companies to
select an adaptable fault-diagnosis sensor that meets these conditions.

Therefore, considering the problems above, this article proposed a fault-diagnosis
selection method for Fuel Cell Stack Systems, considering the symmetric and asymmetric
problem in a mathematical formulation and also considering the different multi-disciplinary
criteria (Construction Parameters, Economical Parameters, Efficient Parameters, and Safety
Parameters). To define the weight of the fault-diagnosis evaluation criteria for Fuel Cell
Stack Systems, we introduced the AHP (Analytic Hierarchy Process) method. We used
the AHP technique to define the importance of the fault-diagnosis evaluation standard
or sub-standard. Additionally, we used a method [53] to avoid rank reversal in AHP.
From Tables 2–8, we can get the weight information for all the four main criteria and the
calculated weight information for 17 sub-criteria. The calculated weight information value
multiplies the weight of the criteria by the associated weight of the sub-criteria. Next,
we used TOPSIS to select and obtain the fault-diagnosis sensor in all the alternatives.
Here, we considered both the positive and negative criteria, and obtained positive and
negative evaluation solutions (Tables 11 and 12) through the computation of the P-I solution
(Equation (7)), NN-I solution (Equation (8)), The symmetric distance from the P-I result
(Equation (9)), and the symmetric distance from the N-I result (Equation (10)). From
the TOPSIS results in Table 13, companies can obtain and select the most suitable fault-
diagnosis sensor (the higher the Ci* value, the better). The main contribution of this paper is
to help Fuel Cell Stack Systems companies to select the appropriate fault-diagnosis sensor
to ensure that the Fuel Cell Stack Systems fault-diagnosis process is more economical,
efficient, and safer.

Although the methodology was developed for the fault-diagnosis sensor selection
problem, it is also adaptable for the selection of other manufacturing process facilities,
with slight modifications, such as the cutting or welding facility selection problem in car
manufacturing companies. Therefore, further studies will need to focus on other directions.
In a future study, we will continue to study the comparison of the Technique for Order
Performance by Similarity to Ideal Solution, Višekriterijumsko Kompromisno Rangiranje,
Complex Proportional Assessment, and PROMETHEE II (complete ranking) techniques
based on the results of using different normalization methods. Additionally, a sensitivity
analysis should be performed for the ranking result (Table 13), such as the use of coefficients
to measure the similarity of two rankings in decision-making problems [65]. Therefore,
this will also be a direction for future research. Additionally, engineering information is
sometimes incomplete or in a fuzzy environment, which also needs to be addressed in
future research.

Our research started with the illustration of the significance of fault-diagnosis sensor
selection for a Fuel Cell Stack system. Next, we introduced the main target and the issues
regarding the chosen fault-diagnosis sensor. Then, we used this method (a combination of
AHP and TOPSIS) to approach fault-diagnosis sensor selection considering different fault-
diagnosis sensor evaluation criteria. Ultimately, depending on the proposed methodology,
companies will be able choose the most suitable adaptable fault-diagnosis sensor for their
Fuel Cell Stack system. This method can be used to ensure that the Fuel Cell Stack system
fault-diagnosis process is more efficient, economical, and safer.
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43. Liou, J.J.; Tamošaitienė, J.; Zavadskas, E.K.; Tzeng, G.H. New hybrid COPRAS-G MADM Model for improving and selecting

suppliers in green supply chain management. Int. J. Prod. Res. 2016, 54, 114–134. [CrossRef]
44. Roy, J.; Kumar Sharma, H.; Kar, S.; Kazimieras Zavadskas, E.; Saparauskas, J. An extended COPRAS model for multi-criteria

decision-making problems and its application in web-based hotel evaluation and selection. Econ. Res.-Ekon. Istraživanja 2019, 32,
219–253. [CrossRef]

45. Faizi, S.; Sałabun, W.; Nawaz, S.; ur Rehman, A.; Wątróbski, J. Best-Worst method and Hamacher aggregation operations for
intuitionistic 2-tuple linguistic sets. Expert Syst. Appl. 2021, 181, 115088. [CrossRef]
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Abstract: This paper is devoted to the problem of prescribed performance trajectory tracking con-
trol for symmetrical underactuated unmanned surface vessels (USVs) in the presence of model
uncertainties and input quantization. By combining backstepping filter mechanisms and adaptive
algorithms, two robust control architectures are investigated for surge motion and yaw motion. To
guarantee the prespecified performance requirements for position tracking control, the constrained
error dynamics are transformed to unconstrained ones by virtue of a tangent-type nonlinear mapping
function. On the other hand, the inaccurate model can be identified through radial basis neural
networks (RBFNNs), where the minimum learning parameter (MLP) algorithm is employed with a
low computational complexity. Furthermore, quantization errors can be effectively reduced even
when the parameters of the quantizer remain unavailable to designers. Finally, the effectiveness of
the proposed controllers is verified via theoretical analyses and numerical simulations.

Keywords: underactuated USV; prescribed performance control; input quantization; model-free
control; minimum learning parameter

1. Introduction

At present, USVs are expected to play an increasingly important role in both mil-
itary and civilian domains, such as reconnaissance and surveillance, marine surveying
and mapping, marine resources exploration and development, etc. [1–4]. As one of the
most significant components of USVs, trajectory tracking control systems determine the
success of various missions and hence have received tremendous interest from the field
of ocean engineering. However, the controller design for the trajectory tracking of USVs
still poses enormous challenges owing to unexpected marine disturbances and the com-
plex system involved, which features coupling and nonlinearity. On the other hand, the
usage scenarios and mission objectives also mean that there are high requirements for
the performance of the controllers, the prescribed behavioral metrics, and a constrained
communication bandwidth.

For an underactuated vessel, the unique feature is that the control torque provided by
actuators only acts in surge and yaw motions and is less than the three degrees of freedom
(DOF) used in conventional surface vessel dynamics [5]. To fulfill this practical demand in
engineering, numerous control algorithms, including sliding mode control (SMC) [6–9],
backstepping control [10–13], model predictive control [14,15], and observer-based con-
trol [16,17], enable USVs to accomplish trajectory tracking control. In particular, as SMC is
capable of realizing fast responses, is insensitive to interference, and can help to improve
robustness, fruitful results have been obtained in many fields (spacecraft rendezvous [7],
underwater vehicles [8], and surface vessels [9]) from utilizing newly developed sliding
mode methods. In [9], with the aid of a line-of-sight-based integral sliding-mode technique,
high-accuracy paths following USVs are achieved even in the presence of unknown dy-
namics and external disturbances. On the other hand, backstepping strategies always offer
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superior performances in robust control and adaptive control when a system suffers from
uncertain nonlinear dynamics [16]. Though effective, the problem of expansive calcula-
tions has caused considerable trouble in traditional backstepping designs. To address this
obstruction, the dynamic surface control (DSC) scheme is introduced to facilitate the real-
ization of control for the trajectory tracking problem [1] and leader–follower cooperative
formation problem [17] of USVs.

Without a loss of generality, control signals are usually updated through time sampling
and are accompanied by ubiquitous redundant data transmission to many practical systems,
leading to severe onboard resource occupation. Thus, it is reasonable to consider the issue
of realizing trajectory tracking control under the constrained communication bandwidth
of the USV. For this purpose, the quantized control method [18–20] and event-triggered
algorithm [21–23] have been intensively studied in various agent systems integrated with a
set of independent functional modules. In quantization control, the original signal output
from the control module is first converted into the discrete sequence by a quantizer and then
transmitted to the actuator. In this case, a finite amount of information is directly stored in
actuators so that the change in control signals can be executed by transmitting a spot of
the code. Therefore, the burden of communication will be significantly reduced by virtue
of the quantization mechanisms. In the last decade, quantized control in connection with
robust approaches has attracted increasing amounts of attention from researchers and has
been studied in the fields of spacecraft formation [24,25], unmanned aerial vehicles [26,27],
and underwater vehicles [28]. However, to the best of the author’s knowledge, developing
controllers for USVs with quantized transmitted information remains an open problem.

In addition to input quantization, another important issue that deserves further
investigation is the state constraint control of USVs, which has been ignored in numerous
studies [7,8,11,16,17,25–28]. In practical applications, it is realistic and of great significance
to consider that the USV position error should be limited strictly by both sides of the
feasible channel to ensure the navigation safety of the vessel [6]. With this problem in mind,
efforts have been made by researchers to satisfy the output constraint of the system, and
there appears to be a variety of control schemes, such as the barrier Lyapunov function
(BLF) [29–32], nonlinear mapping (NM) control [13,29], and prescribed performance (PP)
control [30–32]. To restrain tracking error variables, the use of logarithmic BLF [33] and tan-
type BLF [34], in conjunction with an adaptive algorithm, was proposed for the trajectory
control of single and multiple underactuated surface vessels, respectively. However, it
must be mentioned that the accompanying problems, such as the complexity and heavy
workload of BLF-based procedures, restrict its application. As a superior method, NM-
based control, which is dedicated to mapping the constrained output onto the real number
set, has been proven to be effective in handling the constraint problem [29]. Different from
the above maneuvers, the PP strategy described in [30] is capable of ensuring that the
tracking errors of underactuated USVs converge to a predesigned region; more extensions
of this method can be found in [31,32].

Inspired by the above observations, this paper mainly concentrates on providing a
solution to the problem of the trajectory tracking control of USVs subject to prescribed
performance, uncertain dynamics, and communication constraints. The control signal is
discretized by a hysteresis logarithmic quantizer (HLQ), which reduces the communication
load significantly. A backstepping-based adaptive algorithm combining DSC and RBFNNs
is proposed for tackling the negative effects of model uncertainties, unavailable distur-
bances, and quantization errors on control performance. The main contributions of the
proposed controller are as follows:

(i) Compared with the quantized control described in [18–20], the HLQ-based adaptive
algorithm is employed in this paper to transform the traditional continuous signal to the
discrete one so that a high superiority is ensured in reducing the communication load
and improving the control accuracy. Moreover, the application of this technique is further
extended to a case where quantizer parameters are unavailable.
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(ii) In contrast to the numerous existing control strategies for USV trajectory track-
ing [11–13], in this paper the state constraint problem of the position tracking error is
taken into consideration. For this purpose, a novel error transformation mechanism is
developed on the basis of a tangent function, such that the security of marine navigation
can be guaranteed.

The remainder of this paper is organized as follows. The preliminaries and mathematic
models of the USV are given in Section 2. Subsequently, Section 3 elaborates on the design
of the quantized adaptive control strategy. In Section 4, numerical simulations are presented
to authenticate the effectiveness of the proposed algorithm. Finally, conclusions are drawn
in Section 5.

2. Preliminaries and Problem Formulation

2.1. Mathematical Model of Underactuated USV

With no consideration of heave, roll, and pitch motion, the three degrees of freedom
(DOF) kinematics model of underactuated USV is expressed as:⎧⎨⎩

.
x = u cos(ψ)− v sin(ψ)
.
y = u sin(ψ) + v cos(ψ)
.
ψ = r

(1)

where the vector η = [x, y, ψ]T denotes the position and heading angle in the earth-fixed
frame (EF) and the vector v = [u, v, r]T denotes the linear velocity and angular velocity in
the body-fixed frame (BF).

The dynamics model of underactuated vessels is formulated as [5]:⎧⎪⎨⎪⎩
.
u = m22

m11
vr − fu(u) + 1

m11
Q(τu) +

1
m11

τwu
.
v = −m11

m22
ur − fv(v) + 1

m22
τwv

.
r = m11−m22

m33
uv − fr(r) + 1

m33
Q(τr) +

1
m33

τwr

(2)

where mii(i = 1, 2, 3) represents the added mass and combined inertia of the vessel; τu and
τr stand for the control input of surge propulsion force and yaw moment with Q(τ) as
the quantization conversion function; τwu, τwv, and τwr are defined as the various external
disturbances resulting from winds, currents, and waves. In addition, the hydrodynamic
damping terms fu(u), fv(v), and fr(r) are described as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

fu(u) = du
m11

u +
3

∑
i=2

dui
m11

|u|i−1u

fv(v) = dv
m22

v +
3

∑
i=2

dvi
m22

|v|i−1v

fr(r) = dr
m33

r +
3

∑
i=2

dri
m133

|r|i−1r

(3)

where the hydrodynamic damping coefficients du, dv, dr, dui, dvi, and dri can be obtained
by parameter identification using experimental data. Nevertheless, taking into account
the complicated and volatile maritime environment, the precise values of the above damp-
ing terms are difficult to measure in real time. Therefore, it is assumed that all of the
hydrodynamic parameters are bounded and unavailable.

2.2. Formulation of HLQ

In terms of the trajectory tracking control system of USVs, constrained communication
bandwidth usually exists between the controller and the actuators. As a novel technology
for wireless interaction, the quantifier plays a major role in alleviating the pressure of data
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transmission; refer to the existing results shown in [21]. The HLQ is introduced here to
replace the traditional continuous time signals:

Q(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τisgn(τ),
τi

1+δ < |τ| ≤ τi,
.
τ < 0

τi < |τ| ≤ τi
1−δ ,

.
τ > 0

τi(1 + δ)sgn(τ),
τi < |τ| ≤ τi

1−δ ,
.
τ < 0

τi
1−δ < |τ| ≤ τi(1+δ)

1−δ ,
.
τ > 0

0, 0 ≤ |τ| < τmin
1+δ ,

.
τ < 0

Q(τ(t−)),
τmin
1+δ < τ ≤ τmin,

.
τ > 0

.
τ = 0

(4)

where τi = ρ1−iτmin(i = 1, 2, · · ·) with τmin > 0 denotes the range of the hysteresis zone
for Q(τ). The parameter δ determines the transmitting rate of the communication chan-
nel and satisfies δ = (1 − ρ)/(1 + ρ) with 0 < ρ < 1. Obviously, Q(τ) is in the set
U = {0,±τi,±τi(1 + δ)}.

Remark 1. Generally, we consider the USV as symmetric about the longitudinal section of the
hull. Introducing this assumption can remarkably simplify the complexity of the mathematical
model. Considering HLQ, on the one hand, the HLQ adopted in this paper possesses some common
features with conventional quantizers. For instance, a limited number of quantization levels can
be directly stored in the actuator, meaning that the output torque can be changed with only small
information codes being received. On the other hand, the unique advantage of HLQ lies in the
inherent hysteresis property, which has relevance for the reduction in interaction frequency and the
anti-chattering performance.

Inevitably, the introduction of the HLQ results in considerable quantization errors. To
eliminate the adverse impact on the control system, the quantized signal can be decom-
posed into a continuous part and a discontinuous part as follows [35]:

Q(τ) = κ(τ)τ − E(τ) (5)

where κ(τ) =

{
Q(τ)

τ , Q(τ) �= 0
1, Q(τ) = 0

and E(τ) =

{
0, Q(τ) �= 0
τ, Q(τ) = 0

.

Lemma 1. [35]: Considering Equation (5), it is easy to find that κ(τ) is continuous and E(τ) is
discontinuous; thus, the following inequality holds:{

1 − δ ≤ κ(τ) ≤ 1 + δ
E(τ) ≤ τmin

(6)

where δ and τmin are the design parameters of HLQ.

Remark 2. Observing the output characteristics of the HLQ, there is no doubt that the quantization
error will increase as the control input increases. Practically, the selection of δ is capable of affecting
the difference between signals before and after the quantizer [35,36]. Nevertheless, as the upper
bound of the estimation error is assumed to rely on the size of the control input, it is difficult to
obtain the boundness in advance of the control design. To solve this problem, a novel quantization
decomposition was proposed in (5), such that the quantization error only depends on the information
of the HLQ.

2.3. Function Approximation Based on RBFNNs

As an effective technology for the nonlinear approximation of uncertain systems,
RBFNNs have been extensively used in dynamic analysis and advanced controller design.
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In this paper, the model uncertainties caused by unmeasurable hydrodynamic damping
will be surmounted by RBFNNs.

Lemma 2. [4]: Any unknown smooth function f (x) : Rn → R can be expressed by the follow-
ing formula:

f (x) = WTh(X) + o (7)

where o is the additional approximation error; W = [w1, w2, · · · , wm]
T is the weight vec-

tor; wi, i = 1, 2, . . . , m denotes the gain coefficient of the corresponding hidden layer
node, with m standing for the node number; X = [X1, X2, . . . , Xm]

T is the input vector;
h(X) = [h1(X), h2(X), . . . , hm(X)]T denotes the Gaussian function vector formed as shown
in (8), with Cn×m = [c1, c2, . . . , cm] being the center matrix and σ = [σ1, σ2, . . . , σm]

T being
the width vector.

hi(X) = exp

(
−‖X − ci‖2

2σ2
i

)
, i = 1, 2, . . . , m (8)

Though effective, it is still costly to identify the network’s parameters online with the
increasing amount in hidden layer nodes. Consequently, in order to alleviate the problem
of the huge computational resources required without deteriorating the performance,
the MLP technology is implemented during the backstepping design. In this way, only
one scalar instead of the whole weight matrix is estimated adaptively, meaning that the
computational burden for nonlinear approximation is significantly decreased.

2.4. Problem Statement

For the purpose of describing the trajectory tracking of USVs, the reference infor-
mation, including the position and heading angle, is given by the virtual target, whose
dynamics are expressed as: ⎧⎨⎩

.
xd = ud cos(ψ)− vd sin(ψ)
.
yd = ud sin(ψ) + vd cos(ψ)
.
ψd = rd

(9)

where ηd = [xd, yd, ψd]
T denotes the desired position and heading angle and vd = [ud, vd, rd]

T

represents the desired velocities of the virtual vessel.
Comparing the reference and actual trajectories, the tracking errors are defined as:

xe = xd − x, ye = yd − y,
ψe = ψr − ψ, Re =

√
x2

e + y2
e

(10)

where Re is the relative distance between the pursuer and the target. The azimuth of the
vessel is defined as ψr, which is determined by the position of the reference trajectory. Thus,
ψr is calculated as:

ψr =
1
2

π[1 − sgn(xe)]sgn(ye) + arctan
(

ye

xe

)
(11)

Remark 3. It can be derived from (11) that ψr ∈ (−π, π]. In addition, in the cases of xe = 0 and
ye �= 0, it can be concluded that arctan

(
ye
xe

)
→ ±π

2 . Meanwhile, if the position error satisfies

Re = 0, arctan
(

ye
xe

)
will be not defined. Therefore, it is specified that ψr = ψd when Re = 0.

The structure of the trajectory tracking control system of USV is shown as Figure 1. To
promote the controller design, several assumptions and the relevant lemma are given as:
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Figure 1. Structure of the trajectory tracking control system of USV.

Assumption 1. The reference trajectories in (9) should be smooth—that is, xd, yd, ψd,
.
xd,

.
yd, and

.
ψd are all bounded.

Assumption 2. The external disturbance, τwu, τwv, and τwr, are unknown but bounded—that is,
τwu ≤ du, τwv ≤ dv, and τwr ≤ dr hold with du, dv, dr in being unknown positive constants.

Lemma 3. [35]: For any ε > 0 and x ∈ R, the following inequality holds:

0 ≤ |x| − |x|2√
x2 + ε2

≤ |x| − |x|2
|x|+ ε

< ε (12)

The control objective of this study can be summarized as follows. The backstepping
filtering algorithm is constructed for the trajectory tracking control of underactuated USVs.
On the basis of Assumptions 1 and 2, the constrained communication bandwidth and
system uncertainties are taken into consideration. Consequently, the position and attitude
tracking errors are stabilized, while the predefined transient performance is guaranteed.

3. Adaptive Backstepping Design Based on Quantized Input

In this section, a quantized prescribed performance control strategy is provided for
the trajectory tracking of an underactuated USV. Aiming at stabilizing the position and
attitude tracking errors, the backstepping-based dynamic filtering method is developed
with compensation for EOC. In particular, the accurate approximation for unmeasured
parameters is implemented via MLP algorithm-based RBFNNs, which have a low bur-
den of computational resources. Meanwhile, with the consideration of the constrained
communication bandwidth between controllers and actuators, the HLQ is introduced to
provide the quantized control signal and the resulting quantization errors are eliminated
by resorting to the adaptive estimation.

3.1. Position Controller Design

When reviewing the tracking errors defined in (10), it follows that:

xe = Re cos(ψr), ye = Re sin(ψr) (13)

Taking into account (1) and (9), the time derivative of Re can be obtained as:

.
Re =

(
xe

.
xe + ye

.
ye
)
/Re

=
( .

xd − .
x
)

cos(ψr) +
( .
yd −

.
y
)

sin(ψr)
=

( .
xd − u cos(ψ) + v sin(ψ)

)
cos(ψr) +

( .
yd − u sin(ψ)− v cos(ψ)

)
sin(ψr)

=
.
xd cos(ψr) +

.
yd sin(ψr)− u cos(ψe)− v sin(ψe)

(14)
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To ensure that the tracking error dynamics satisfy the designer-specified behavioral
metrics, the error transformation is executed [37] so that an equivalent “state-constrained”
model is established for the subsequent controller design. First off, a positive continue
function, b1(t), is introduced as the upper bound of Re, which means:

|Re| ≤ b1(t) (15)

with the performance function (PF) b1(t) satisfying b1(0) > Re(0). Furthermore, the
normalized tracking error (NTE) is expressed as:

Rn =
Re

b1
(16)

By resorting to the tangent function, the error transformation equation is defined as:

Rt = tan
(

πRn

2

)
(17)

Remark 4. Mathematically, if |Re| → b1(t) , it has Rn → 1 (or Rn → −1 ); thus, Rt → ∞ (or
Rt → −∞ ) holds and vice versa. In other words, the performance constraint (15) can be satisfied
through bounding the variable Rt. Consequently, the control objective of position tracking designs
an algorithm to guarantee the boundedness and convergence of Rt.

According to (14), the derivative of Rn and Rt can be obtained as:

.
Rn =

.
Reb1 − Re

.
b1

b2
1

=
1
b1

(
−Rn

.
b1 +

.
xd cos(ψr) +

.
yd sin(ψr)− u cos(ψe)− v sin(ψe)

)
(18)

.
Rt = ΓR

(
−Rn

.
b1 +

.
xd cos(ψr) +

.
yd sin(ψr)− u cos(ψe)− v sin(ψe)

)
(19)

where ΓR =
π(1+R2

t )
2b1

is a positive definite variable.
Step 1. With the definition of the velocity tracking error ue = ud − u, the Lyapunov

function candidate (LFC) is selected as:

V1 =
1
2

R2
t (20)

Taking the time derivative of V1 and substituting (19) yields:
.

V1 = Rt
.
Rt

= ΓRRt

(
−Rn

.
b1 +

.
xd cos(ψr) +

.
yd sin(ψr)− u cos(ψe)− v sin(ψe)

)
= ΓRRt

[
−Rn

.
b1 +

.
xd cos(ψr) +

.
yd sin(ψr)− ud cos(ψe) + ue cos(ψe)− v sin(ψe)

] (21)

To stabilize the transformed position tracking error Rt, the virtual control law ud is
proposed as:

ud =
1

cos(ψe)

(
k1Rt − Rn

.
b1 +

.
xd cos(ψr) +

.
yd sin(ψr)− v sin(ψe)

)
(22)

with the design parameter k1 being a positive constant.
Substituting it into (21),

.
V1 becomes:

.
V1 = ΓRRt(−k1Rt + ue cos(ψe)) (23)
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Step 2. To remedy the problem of the EOC, a first-order low-pass filter is introduced
to process the virtual command ud. The output characteristic of the filter is given as:

l1
.
uc + uc = ud, uc(0) = ud(0).

uc = (ud − uc)/ι1
(24)

where uc is the output signal and the constant ι1 is the filter parameter. Thus, in the
following design

.
ud is replaced by

.
uc. The second LFC is chosen as:

V2 = V1 +
1
2

u2
e (25)

According to the dynamic (2) and the result (23), the derivative of V2 is written as:

.
V2 =

.
V1 + ue

.
ue

= ΓRRt(−k1Rt + ue cos(ψe)) + ue
( .
uc − .

u
)

= ΓRRt(−k1Rt + ue cos(ψe))

+ue

( .
uc − m22

m11
vω − 1

m11
Q(τu) + fu(u)− 1

m11
τwu

) (26)

In particular, the hydrodynamic damping term fu(u) is regarded as an unknown con-
tinuous function that can be approximated by RBFNN. Learning from Lemma 2, one finds:

fu(u) = WT
1 h1(v) + o1 (27)

where the approximation error o1 satisfies 0 < o1 ≤ O1.
In order to remove the need for the excessive calculations caused by estimating the

entire weight matrix, the upper bound β1 is introduced as β1 ≥ ‖W1‖ and the parameter
h1 is defined as h1 = ‖h1(v)‖. Hence,

.
V2 can be further derived as:

.
V2 = ΓRRt(−k1Rt + ue cos(ψe)) + ue

( .
uc − m22

m11
vω − 1

m11
Q(τu)

)
+ue

(
WT

1 h1(v) + o1 − 1
m11

τwu

)
≤ ΓRRt(−k1Rt + ue cos(ψe)) + ue

( .
uc − m22

m11
vω − 1

m11
Q(τu)

)
+|ue|

(
β1h1 + O1 +

1
m11

du

) (28)

Referring to the discussion in (11, 12), the quantized signal of the control input τu can
be obtained as:

Q(τu) = κ1(τu)τu − E1(τu) (29)

with 1 − δ1 ≤ κ1(τu) ≤ 1 + δ1 and E1(τu) ≤ τumin.
To facilitate the adaptive estimation, it is defined that λ1 = 1

1−δ1
and D1 = O1 +

1
m11

du +
1

m11
τumin.

Moreover, the variables β̂1, D̂1, and λ̂1 are introduced as estimate values, while the estimate
errors are represented as β̃1, D̃1, and λ̃1.

β̃1 = β1 − β̂1, D̃1 = D1 − D̂1, λ̃1 = λ1 − λ̂1 (30)

Subsequently, the control signal is constructed as:

τu = m11λ̂1τu∗ (31)

τu∗ =
η2

t ue√
η2

t u2
e + ε1

+ (k2 + ku)ue (32)

ku =
β̂2

1h2
1√

β̂2
1h2

1u2
e + ε1

+
D̂2

1√
D̂2

1u2
e + ε1

(33)
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where ηt =
( .

uc − m22
m11

vr + ΓRRt cos(ψe)
)

and the controller parameter k2 is a positive
constant. Furthermore, the adaptive update laws are given as:

.
β̂1 = c1

(
h1|ue| − c2 β̂1

)
(34)

.
D̂1 = c3

(|ue| − c4D̂1
)

(35)
.
λ̂1 = c5

(
ueτu∗ − c6λ̂1

)
(36)

where ci(i = 1, 2, 3, 4, 5, 6) are all positive parameters.

Remark 5. Considering the ingeniously designed controller (31–34), there exist three highlights
that deserve some attention. (i) Different from the conservative quantized control, the algorithm
introduced in this paper is developed under the unavailable quantizer parameter δ1. For this
reason, the constant λ1 is introduced for adaptive estimation and procedure (31) is constructed
to compensate the resulting concussion. (ii) The unknown constant D1 is defined as the lumped
additive uncertainties, which is constituted by the approximation error of NN, the environmental
disturbance, and the hysteresis zone of the quantizer. On the other hand, the scalar β1 is utilized for
estimating the weight matrix of RBFNN, which emphatically reflects the superiority of MLP in terms
of the computation burden. (iii) The first term in τu∗ stands for system dynamics compensation, and
the remainder suppresses the phenomenon of chattering, while the convergence of tracking errors
and estimate errors can be ensured.

For the sake of convenience, κ1(τu) and E1(τu) are abbreviated as κ1 and E1, respec-
tively. Thus, with the substitution of (29), (28) can be further written as:

.
V2 ≤ ΓRRt(−k1Rt + ue cos(ψe)) + ue

[ .
uc − m22

m11
vr − 1

m11
(κ1τu − E1)

]
+|ue|

(
β1h1 + O1 +

1
m11

du

) (37)

According to the property of κ1, λ1 and substituting (31), the term − 1
m11

(κ1τu − E1)
can be calculated as:

− 1
m11

(κ1τu − E1)ue = − 1
m11

(
κ1m11λ̂τu∗ − E1

)
ue

= −κ1

(
λ1 − λ̃1

)
ueτu∗ + 1

m11
E1ue

≤ −(1 − δ1)
(

λ1 − λ̃1

)
ueτu∗ + 1

m11
E1ue

= −ueτu∗ + (1 − δ1)λ̃1ueτu∗ + 1
m11

τumin|ue|

(38)

By recalling the control signal in (32) and utilizing Lemma 3, one finds:

− 1
m11

(κ1τu − E1)ue ≤ (1 − δ1)λ̃1ueτu∗ + 1
m11

E1ue − ue

(
η2

t ue√
η2

t u2
e+ε1

+ (k2 + ku)ue

)
≤ −|ηtue| − (k2 + ku)u2

e + (1 − δ1)λ̃1ueτu∗ + 1
m11

τumin|ue|+ ε1

(39)

Substituting the result into (37),
.

V2 can be scaled as:

.
V2 ≤ ΓRRt(−k1Rt + ue cos(ψe)) + ue

( .
uc − m22

m11
vω

)
−
∣∣∣( .

uc − m22
m11

vr + ΓRRt cos(ψe)
)

ue

∣∣∣− (k2 + ku)u2
e

+(1 − δ1)λ̃1ueτu∗ + |ue|β1h1 + |ue|
(

O1 +
1

m11
du +

1
m11

τumin

)
+ ε1

≤ −k1ΓRR2
t − (k2 + ku)u2

e + (1 − δ1)λ̃1ueτu∗ + |ue|β1h1 + |ue|D1 + ε1

(40)

Consequently, taking into account (33), a concise result can be obtained:
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.
V2 ≤ −k1ΓRR2

t − k2u2
e − u2

e

(
β̂2

1h2
1√

β̂2
1h2

1u2
e+ε1

+
D̂2

1√
D̂2

1u2
e+ε1

)
+(1 − δ1)λ̃1ueτu∗ + |ue|β1h1 + |ue|D1 + ε1
≤ −k1ΓRR2

t − k2u2
e − |ue|β̂1h1 − |ue|D̂1 + (1 − δ1)λ̃1ueτu∗ + |ue|β1h1 + |ue|D1 + 2ε1

= −k1ΓRR2
t − k2u2

e + |ue|β̃1h1 + |ue|D̃1 + (1 − δ1)λ̃1ueτu∗ + 2ε1

(41)

3.2. Attitude Controller Design

According to (10), the derivative of ψe is expressed as:

.
ψe =

.
ψr − r (42)

Step 1. To stabilize the attitude of the pursuer, the LFC is selected as:

V3 =
1
2

ψ2
e (43)

With the definition of the angular velocity tracking error being re = rd − r, the time
derivative of (44) is deduced as:

.
V3 = ψe

.
ψe

= ψe

( .
ψr − r

)
= ψe

( .
ψr + re − rd

) (44)

Specially, the virtual control law rd is designed as:

rd = k3ψe +
.
ψr (45)

with k3 being a positive constant. Hence,
.

V3 becomes:

.
V3 = ψe(re − k3ψe) (46)

Step 2. Referring to (24), let the virtual control law rd pass through a first-order filter:

ι2
.
rc + rc = rd, rc(0) = rd(0).

rc = (rd − rc)/ι2
(47)

where rc is the filtered signal and ι2 is the filter parameter. In this step,
.
rd is substituted

by
.
rc.

V4 = V3 +
1
2

r2
e (48)

Differentiating V4 with respect to time and substituting (10), one obtains:

.
V4 =

.
V3 + re

.
re

= ψe(re − k3ψe) + re
( .
rc − .

r
)

= ψe(re − k3ψe) + re

( .
rc − m11−m22

m33
uv − 1

m33
Q(τr) + fr(r)− 1

m33
τwr

) (49)

One caveat here is that the nonlinear function fr(r) cannot be observed accurately.
Therefore, the MLP-based RBFNN is applied to approximate the time-varying dynamics.
According to Lemma 2, the following equation is valid.

fr(r) = WT
2 h2(v) + o2 (50)
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where the approximation error satisfies 0 < o2 ≤ O2. Moreover, two parameters are defined
as β2 ≥ ‖W2‖ and h2 = ‖h2(v)‖, meaning that only one scalar needs to be adaptively
estimated, which reduces the computational burden. In this way, (50) can be derived as:

.
V4 = ψe(re − k3ψe) + re

( .
rc − m11−m22

m33
uv − 1

m33
Q(τR) + WT

2 h2(v) + o2 − 1
m33

τwr

)
≤ ψe(re − k3ψe) + re

( .
rc − m11−m22

m33
uv − 1

m33
Q(τR)

)
+ |re|

(
β2h2 + O2 +

1
m33

dr

) (51)

Learning from Lemma 1, the quantized signal for control input τr can be written as:

Q(τr) = κ2(τr)τr − E2(τr) (52)

with 1 − δ2 ≤ κ2(τr) ≤ 1 + δ2 and E2(τr) ≤ τrmin.
Before giving the control algorithm, it is necessary to define the parameter λ2 = 1

1−δ2

and the lumped unknown term D2 = O2 +
1

m33
dr +

1
m33

τrmin. Meanwhile, the adaptive
estimate values are introduced as D̂2, β̂2, and λ̂2, meaning that the estimate errors can be
expressed as:

D̃2 = D2 − D̂2, β̃2 = β2 − β̂2, λ̃2 = λ2 − λ̂2 (53)

Consequently, the control input is elaborated as:

τr = m33λ̂2τr∗ (54)

τr∗ =
η2

r re√
η2

r r2
e + ε2

+ (k4 + kr)re (55)

kr =
β̂2

2h2
2√

β̂2
2h2

2r2
e + ε2

+
D̂2

2√
D̂2

2r2
e + ε2

(56)

where ηr =
( .

rc − m11−m22
m33

uv + ψe

)
; k4 is a positive controller parameter. The adaptive

learning laws are given as:
.
β̂2 = c7

(
h2|re| − c8 β̂2

)
(57)

.
D̂2 = c9

(|re| − c10D̂2
)

(58)
.
λ̂2 = c11

(
reτr∗ − c12λ̂2

)
(59)

where ci(i = 7, 8, 9, 10, 11, 12) are all positive constants.
According to the definitions of κ2 and λ2, the term − 1

m33
(κ2εω − E2) can be calcu-

lated as:
− 1

m33
(κ2τr − E2)re = − 1

m33

(
κ2m33λ̂2τr − E2

)
re

= −κ2λ̂2reτr +
1

m33
E2re

≤ −(1 − δ2)
(

λ2 − λ̃2

)
reτr +

1
m33

E2re

= −εrre + (1 − δ2)λ̃2reτr +
1

m33
τrminre

(60)

Substituting the control signal in (55) leads to:

− 1
m33

(κ2τr − E2)re ≤ − η2
r r2

e√
η2

r r2
e+ε2

− (k4 + kω)r2
e + (1 − δ2)λ̃2reτr +

1
m33

τrminre

≤ −|ηrre| − (k4 + kr)r2
e + (1 − δ2)λ̃2reτr +

1
m33

τrminre + ε2

(61)

Taking the results into consideration, (52) follows:

.
V4 ≤ ψe(re − k3ψe) + re

( .
rc − m11−m22

m33
uv
)
−
∣∣∣( .

rc − m11−m22
m33

uv + ψe

)
re

∣∣∣
−(k4 + kr)r2

e + (1 − δ2)λ̃2reτr + |re|β2h2 + |re|
(

O2 +
1

m33
dr +

1
m33

τrmin

)
≤ −k3ψ2

e − (k4 + kr)r2
e + (1 − δ2)λ̃2reτr + |re|β2h2 + |re|D2

(62)

257



Symmetry 2021, 13, 2208

Finally, with the substitution of (57), a concise result is obtained:

.
V4 ≤ −k3ψ2

e − k4r2
e − r2

e

(
β̂2

2h2
2√

β̂2
2h2

2r2
e+ε2

+
D̂2

2√
D̂2

2r2
e+ε2

)
+(1 − δ2)λ̃2reτr + |re|β2h2 + |re|D2

≤ −k3ψ2
e − k4r2

e − |re|β̂2h2 − |re|D̂2 + (1 − δ2)λ̃2reτr + |re|β2h2 + |re|D2 + 2ε2

= −k3ψ2
e − k4r2

e + |re|β̃2h2 + |re|D̃2 + (1 − δ2)λ̃2reτr + 2ε2

(63)

3.3. Stability Analysis

In this section, the stability analysis proceeds using the Lyapunov theory. First off, the
theorem is given as follows.

Theorem 1. Consider the underactuated AUV model described in (1) and (2) and the tracking error
dynamics (14) under Assumptions 1 and 2. On basis of the quantizer (4), the error transformation
(21), the filters (24) and (48), and the controllers (31)–(36) and (55)–(60) are capable of ensuring
that all signals in the closed-loop system are bounded and that the position tracking error Re satisfies
the predefined behavioral metrics.

Proof. In order to prevent the adverse effects caused by the introduction of filters, the filter
errors are defined and the validation will be provided to guarantee their convergence.

α̃u = uc − ud, α̃r = rc − rd (64)

Associated with the descriptions of (24) and (48), their time derivatives satisfy
the relation: .

α̃u =
.
uc − .

ud = − α̃u
ι1
+

.
ud ≤ − α̃u

ι1
+ B1,

.
α̃r =

.
rc − .

rd = − α̃r
ι2
+

.
rd ≤ − α̃r

ι2
+ B2.

(65)

where the continuous function Bi(i = 1, 2) possesses an unknown certain maximum—i.e.,
|Bi| ≤ ϑi.

Subsequently, the overall LFC is defined as:

V = V2 +
1

2c1
β̃2

1 +
1

2c3
D̃2

1 +
1−δ1
2c5

λ̃2
1 +

1
2 α̃2

u

+V4 +
1

2c7
β̃2

2 +
1

2c9
D̃2

2 +
1−δ2
2γ11

λ̃2
2 +

1
2 α̃2

r
(66)

With the aid of (41) and (63), differentiating V with respect to time yields:

.
V =

.
V1 +

1
c1

β̃1

.
β̃1 +

1
c3

D̃1

.
D̃1 +

1−δ1
γ2

λ̃1

.
λ̃1 + α̃u

.
α̃u

+
.

V2 +
1
c5

β̃2

.
β̃2 +

1
c7

D̃2

.
D̃2 +

1−δ2
γ6

λ̃2

.
λ̃2 + α̃r

.
α̃r

= −k1ΓRR2
t − k2u2

e + |ue|β̃1h1 + |ue|D̃1 + (1 − δ1)λ̃1ueτu∗ + 2ε1

−β̃1
(
h1|ue| − c2 β̂1

)− D̃1
(|ue| − c4D̂1

)− (1 − δ1)λ̃1
(
ueτu∗ − c6λ̂1

)
+ α̃u

.
α̃u

−k3ψ2
e − k4r2

e + |re|β̃2h2 + |re|D̃2 + (1 − δ2)λ̃2reτr + 2ε2

−β̃2
(
h2|re| − c8 β̂2

)− D̃2
(|re| − c10D̂2

)− (1 − δ2)λ̃2
(
reτr∗ − c12λ̂2

)
+ α̃r

.
α̃r

= −k1ΓRR2
t − k2u2

e + c2 β̂1 β̃1 + c4D̂1D̃1 + c6(1 − δ1)λ̂1λ̃1 + α̃u
.
α̃u + 2ε1

−k3ψ2
e − k4r2

e + c8 β̂2 β̃2 + c10D̂2D̃2 + c12(1 − δ2)λ̂2λ̃2 + α̃r
.
α̃r + 2ε2

(67)

By resorting to Young’s inequality, one of the above terms can be scaled as:

c2 β̂1 β̃1 = c2

(
−β̃2

1 + β1 β̃1

)
≤ c2

(
−β̃2

1 +
1

2σ1
β̃2

1 +
σ1
2 β2

1

)
≤ − c2(2σ1−1)

2σ1
β̃2

1 +
c2σ1

2 β2
1

(68)
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where σ1 > 0.5. Then, a similar calculation can be implemented for c4D̂1D̃1, c6(1 − δ1)λ̂1λ̃1,
c8 β̂2 β̃2, c10D̂2D̃2, and c12(1 − δ2)λ̂2λ̃2, whose results are shown as:

c4D̂1D̃1 ≤ − c4(2σ2−1)
2σ2

D̃2
1 +

c4σ2
2 D2

1

c6(1 − δ1)λ̂1λ̃1 ≤ − c6(1−δ1)(2σ3−1)
2σ3

λ̃2
1 +

c6(1−δ1)σ3
2 λ2

1

c8 β̂2 β̃2 ≤ − c8(2σ4−1)
2σ4

β̃2
2 +

c8σ4
2 β2

2

c10D̂2D̃2 ≤ − c10(2σ5−1)
2σ5

D̃2
2 +

c10σ5
2 D2

2

c12(1 − δ2)λ̂2λ̃2 ≤ − c12(1−δ2)(2σ6−1)
2σ6

λ̃2
2 +

c12(1−δ2)σ6
2 λ2

2

(69)

with σi > 0.5(i = 2, 3, 4, 5, 6).
On the other hand, with the consideration of (65), the terms for the filter error lead to:

α̃u
.
α̃u = − α̃2

u
ι1
+ α̃u

.
ud ≤ − α̃2

u
ι1
+ |α̃u|ϑ1 ≤ − α̃2

u
ι1
+ α̃2

u +
ϑ2

1
4 ,

α̃r
.
α̃r = − α̃2

r
ι2
+ α̃r

.
rd ≤ − α̃2

r
ι2
+ |α̃r|ϑ2 ≤ − α̃2

r
ι2
+ α̃2

r +
ϑ2

2
4 .

(70)

Substituting the results of (68)–(70),
.

V is finally obtained as:
.

V ≤ −k1ΓRR2
t − k2u2

e − c2(2σ1−1)
2σ1

β̃2
1 − c4(2σ2−1)

2σ2
D̃2

1 − c6(1−δ1)(2σ3−1)
2σ3

λ̃2
1 −

(
1

γ1
− 1

)
α̃2

u

−k3ψ2
e − k4r2

e − c8(2σ4−1)
2σ4

β̃2
2 − c10(2σ5−1)

2σ5
D̃2

2 − c12(1−δ2)(2σ6−1)
2σ6

λ̃2
2 −

(
1

γ2
− 1

)
α̃2

r

+ c2σ1
2 β2

1 +
c4σ2

2 D2
1 +

c6(1−δ1)σ3
2 λ2

1 +
ϑ2

1
4 + 2ε1

+ c8σ4
2 β2

2 +
c10σ5

2 D2
2 +

c12(1−δ2)σ6
2 λ2

2 +
ϑ2

2
4 + 2ε2

≤ −ρV + Δ

(71)

with

ρ = min

⎧⎨⎩ 2k1ΓR, 2k2, c1c2(2σ1−1)
σ1

, c3c4(2σ2−1)
σ2

, c5c6(2σ3−1)
σ3

, 2
(

1
γ1

− 1
)

2k3, 2k4, c7c8(2σ4−1)
σ4

, c9c10(2σ5−1)
σ5

, c11c12(2σ6−1)
σ6

, 2
(

1
γ2

− 1
) ⎫⎬⎭

Δ = c2σ1
2 β2

1 +
c4σ2

2 D2
1 +

c6(1−δ1)σ3
2 λ2

1 +
ϑ2

1
4 + 2ε1

+ c8σ4
2 β2

2 +
c10σ5

2 D2
2 +

c12(1−δ2)σ6
2 λ2

2 +
ϑ2

2
4 + 2ε2

(72)

Thus far, this indicates that the transformed tracking errors, the estimate errors, and
the filter errors tend to converge exponentially into a tiny neighborhood around zero.
Hence, as illustrated in Remark 4, the predefined performance for the position tracking
errors is guaranteed all the while.

Ultimately, the validity of Theorem 1 has been illustrated. �

4. Simulation

In this section, four simulation examples are conducted to validate the stability and
exhibit the superiority of the proposed controller. First, a digital model is built on the
basis of the USV’s motion dynamics and the specific parameters are set reasonably. Subse-
quently, the simulation results will be displayed in the form of figures, which are capable
of demonstrating the detailed performance of the developed algorithm. Furthermore,
the experiments under different environments and the comparison with a conservative
controller provide to highlight the advantages of this work.

4.1. Parameter Setting

The vessel model parameters from [5] are adopted for numerical simulation, which
are presented in Table 1. For the reference trajectory, we have ud = 0.5 m/s, vd = 0 m/s,
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rd = 0.5 ∗ π/180 rad/s, and the initial states are chosen as ηd(0) = [0.5 m, 0 m, 3 ∗ π/180 rad]T

and vd(0) = [0 m/s, 0 m/s, 0 rad/s]T. The external disturbances are given as (73).⎡⎣ τwu(t)
τwv(t)
τwr(t)

⎤⎦ = kd

⎡⎣ sin(0.01 ∗ t)
cos(0.01 ∗ t)
sin(0.01 ∗ t)

⎤⎦ (73)

where kd is the amplitude parameter of the disturbances.

Table 1. Main parameters.

Parameter Value Unit Parameter Value Unit

m11 1.1274 kg dv 0.1183 kg/s
m22 1.8902 kg dv2 0.05915 kg/m
m23 0.1278 kg/m2 dv3 0.029575 kg/m2

du 0.0358 kg/s dr 0.0308 kg/s
du2 0.0179 kg/s dr2 0.0154 kg/m
du3 0.00895 kg/m2 dr3 0.0077 kg/m2

Simulations are conducted in four sets, which are distinguished by different initial
states and disturbances. The configurations of the Scenarios are given as follows:

Scenario I: η(0) = [−5 m,−5 m, 0.45 rad]T, v(0) = [0 m/s, 0 m/s, 0 rad/s]T, kd = 0.01
Scenario II: η(0) = [−5 m,−5 m, 0.45 rad]T, v(0) = [0 m/s, 0 m/s, 0 rad/s]T, kd = 0.04
Scenario III: η(0) = [−10 m,−10 m, 0.45 rad]T, v(0) = [0 m/s, 0 m/s, 0 rad/s]T, kd = 0.01
Scenario IV: η(0) = [−10 m,−10 m, 0.45 rad]T, v(0) = [0 m/s, 0 m/s, 0 rad/s]T, kd = 0.04

In this case, the performance function for Re is selected as
b1(t) = (30 − 0.05) ∗ exp(−0.1 ∗ t) + 0.05. The parameters of the quantizer are chosen
as: δ1 = 0.01, τumin = 0.005, δ2 = 0.01, τrmin = 0.005. The parameters of the position
tracking controller (31)–(36) are set as: k1 = 0.01, k2 = 20, c1 = 1, c2 = 10, c3 = 1, c4 = 10,
c5 = 0.1, c6 = 5, ε1 = 0.001. On the other hand, the parameters of the attitude tracking
controller (55)–(60) are set as: k3 = 5, k4 = 20, c7 = 1, c8 = 5, c9 = 1, c10 = 5, c11 = 0.001,
c12 = 5, ε2 = 0.001. The time constant of the filter is chosen as ι1 = 0.01, ι2 = 0.01.

4.2. Robustness Test under Different Intensity of Disturbance

Trajectory tracking in the x − y plane is depicted in Figure 2. Specifically speaking, the
position tracking error and the heading tracking error are plotted in Figure 3, respectively.
From these results, it is observed that the virtual USV can follow the desired trajectory
with a fast convergence speed and satisfactory accuracy. Figure 3 shows that position
tracking with a prescribed performance and high stability can be achieved by the proposed
controllers. The output constraint of the position is guaranteed with the help of the tangent-
type error transformations, thereby meeting the requirements of the science objectives for
the given mission.

Figure 4 gives the velocity tracking errors of the surge and yaw motions, which can
converge to a compact set around the origin quickly and maintain a stable state thereafter.
The estimations of the adaptive parameters in surge motion and yaw motion are plotted in
Figures 5–7. This indicates that all of the adaptive parameters are bounded, which conforms
to Theorem 1. Quantized control signals that take values in a finite set are presented in
Figure 8. With the consideration of input quantization constraints, it is clear that the control
inputs are discrete and keep a constant value within a time interval, meaning that the data
transmission will be considerably improved.

260



Symmetry 2021, 13, 2208

Figure 2. Trajectories of the USV in the 2D plane.

Figure 3. Time responses of position tracking errors and heading tracking errors.
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Figure 4. Time responses of velocity tracking errors.

Figure 5. Time responses of adaptive parameter estimations λ̂1 and λ̂2.
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Figure 6. Time responses of adaptive parameter estimations D̂1 and D̂2.

Figure 7. Time responses of adaptive parameter estimations β̂1 and β̂2.
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Figure 8. Time responses of quantized control forces.

From these figures, the boundedness of all of the closed loop signals can be easily
verified. That is to say that accurate trajectory tracking and attitude tracking are achieved
in this simulation, even in the presence of the quantized inter-vessel transmitted state
information, model uncertainties, and external disturbances. Furthermore, by comparing
all of the results under different scenarios, the proposed scheme enjoys a high robustness
and control performance under different initial tracking errors and disturbances. The
above-mentioned simulation analysis is in accordance with Theorem 1.

5. Conclusions

In this paper, a quantized prescribed performance control mechanism that considers
uncertain model dynamics and quantizer parameters is proposed for the trajectory tracking
of USVs. By combining the adaptive algorithm and the MLP-based NN technique, the
global boundedness and asymptotical stability of the closed-loop system are guaranteed.
Furthermore, the position tracking error has been constrained to the predefined region
with the aid of a tangent-type error transformation. Compared with the exiting quantized
framework, the significant advantage of the presented controller is that the information of
the HLQ does not need to be accurately known by the designer, while the data transmission
burden can be effectively alleviated. Numerical simulations have exhibited the effectiveness
and advantages of the control strategy developed.
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Abstract: A new landing strategy is presented for manned electric vertical takeoff and landing
(eVTOL) vehicles, using a roll maneuver to obtain a trajectory in the horizontal plane. This strategy
rejects the altitude surging in the landing process, which is the fatal drawback of the conventional
jumping strategy. The strategy leads to a smoother transition from the wing-borne mode to the
thrust-borne mode, and has a higher energy efficiency, meaning a better flight experience and higher
economic performance. To employ the strategy, a five-stage maneuver is designed, using the lateral
maneuver instead of longitudinal climbing. Additionally, a control system based on L1 adaptive con-
trol theory is designed to assist manned driving or execute flight missions independently, consisting
of the guidance logic, stability augmentation system and flight management unit. The strategy is
verified with the ET120 platform, by Monte Carlo simulation for robustness and safety performance,
and an experiment was performed to compare the benefits with conventional landing strategies. The
results show that the performance of the control system is robust enough to reduce perturbation by
at least 20% in all modeling parameters, and ensures consistent dynamic characteristics between
different flight modes. Additionally, the strategy successfully avoids climbing during the landing
process with a smooth trajectory, and reduces the energy consumed for landing by 64%.

Keywords: eVTOL; flight dynamics modeling; L1 adaptive control; guidance; deceleration and
landing strategy; energy efficiency; Monte Carlo simulation

1. Introduction

Electric vertical takeoff and landing (eVTOL) vehicles are an emerging class of aircraft
configurations. This configuration highlights the distributed propulsion (DEP) system,
which enables vehicles to cruise economically and take off and land vertically by switching
between the fixed-wing mode and a multi-rotor mode. According to Ref. [1], DEP gives
the vehicle the potential to be more efficient, flexible and reliable than conventional VTOLs,
by changing the flight mode from thrust-borne flight to wing-borne flight. This in turn
changes the dynamic characteristics of the flight significantly, and poses challenges with
respect to the design of strategies and control laws to ensure uniform flight in the entire
envelope [2]. The existing studies pay much attention to the takeoff and acceleration phase
and cruise trajectory scheduling, but little attention has been paid to deceleration and
landing strategies [3].

The existing landing strategies are insufficient for manned eVTOL vehicles [4–6]. The
conventional landing strategy, which causes the vehicle to jump steeply, results in a poor
comfort level, due to the high degree of normal overload and the rapid change in pressure
with altitude, as well as low efficiency, because most of the kinetic energy is not dissipated,
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but rather converted into gravity potential energy, resulting in considerable time and rotor
energy wasted in the subsequent vertical landing phase. The post-stall maneuver strategy
is highly efficient for unmanned aerial vehicles (UAVs), because the angle of attack is
pulled up into the stall region, meaning there is no excessive lift generated in order to rise,
and greater drag coefficients for a produced for the energy to dissipate. However, a fatal
defect of this strategy is that it is highly possible for the vehicles to go out of control in the
stall region [7], which is unacceptable for manned air service.

The fact that the eVTOL aircraft possesses symmetry in the lateral channels prompted
us to design a landing strategy making the most of these lateral symmetry characteristics.
The landing procedure is conducted in a three-dimensional (3D) environment, while the
aforementioned strategies all plan a two-dimensional (2D) trajectory [8]. Ref. [9] proposes a
rolling-horizon landing arrival scheduling method for eVTOLs from the perspective of the
management of limited vertiports in peak hours. This prompted us to design a deceleration
and landing strategy that can take advantage of the vast 3D airspace around the vertiports,
avoiding this abrupt, altitude-increasing maneuver. The symmetrical characteristics in the
roll control channels makes the strategy more feasible in real-world application [10].

Usually, a strategy is performed with the assistance of control systems, especially for
vehicles with complicated dynamic characteristics [11–15]. The conventional Proportional-
Integral-Derivative control systems are widely used in normal fixed-wing aircrafts, but are
seldom used for advanced configured flights, due to their limited robustness performance
and the vast flight envelope of the advanced vehicles [16]. Artificial neural network
systems with model predictive control are able to adapt to the variations in the dynamics
of the plants [17,18]. However, the long iteration cycles and computational time are fatal,
as change in flight mode is a rapid process. The model-based control theories, namely,
the nonlinear dynamic inversion (NDI) and the quantitative feedback theory, are rapid
enough and can ensure precise tracking, but they strongly rely on model precision, which
is unrealistic for new configurations [19,20]. Aircrafts with vertical takeoff and landing
abilities usually require customized control systems that can adapt to changes in control
strategies and dynamic characteristics, and can provide sufficient robustness margins
and fault tolerance [21–25]. Targeted at the multiple flight modes and the modeling
uncertainties of eVTOLs, a control system implemented with L1 controllers is designed.

The L1 adaptive control algorithm is sufficiently fast and robust to be equipped on
a flight control system for eVTOLs. This algorithm has been applied in various plants
successfully, including in aerospace, nuclear technics, marine, etc., contexts [26,27]. The
basic principle of the L1 adaptive theory is the use of a low-pass filter to purify the model
error of fast-varying external disturbances, thus decoupling the adaptive performance
from the robustness performance [28,29]. Its successful application in multiple flight tests
has convinced aerospace engineers of its ability to reject rapidly varying uncertainties,
significantly changing the plant dynamics [12,30]. Additionally, controllers based on L1
theory avoid complicated and time-consuming gain-scheduling, making the control system
more customer-friendly [12,31]. With the assistance of the L1 control system, pilots can
perform the strategy at a low level of work load, because the autopilot is able to plan the
landing trajectory and make the vehicle track it using the guidance logic, while the stability
augmentation system ensures consistent flight performance in all flight modes. The details
of the strategy and assistance control system are presented in this paper. The main contents
of this work are as follows:

1. Flight dynamics modeling of a large-scale 120 kg electric-vertical takeoff and landing
vehicle (ET120), and an analysis of the dynamic characteristics of the system.

2. The design of a four-layer control system based on the L1 adaptive controller for
baseline angular rate control, and a stability analysis of the controller.

3. The design of a roll-horizon deceleration and vertical landing strategy that avoids
altitude surging using a smooth transition from fixed-wing mode to multi-rotor mode,
along with the maneuver and guidance logic.
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4. Monte Carlo simulations for controller performance and strategy performance verifi-
cation and parameter setting. Comparison simulations with the conventional strategy
are performed for validation.

2. Platform Modeling and Dynamics Analysis

2.1. Platform Introduction

The study object of this work was the ET120 platform (as shown in Figure 1), a
laterally symmetric eVTOL configuration developed for future urban air mobility. The main
body of the platform is a lifting body consistent with normal fixed-wing configurations,
consisting of the fuselage, wings and T-tails. The DEP system distinguishes the ET120 from
conventional aircraft, where four pairs of vertically mounted rotors provide the hovering
power, and one horizontally mounted rotor provides the propulsion power. The geometric
parameters of the protype ET120 are given in Table 1.

Table 1. The geometric parameters of ET120.

Parameters Values

Reference area (m2) 3.0103
Wing span (m) 5.8

Mean aerodynamic chord (m) 0.6
Mass (kg) 120

The DEP system, together with the aerodynamic surfaces, engages in the flight control
in different ways, according to the flight mode. In fixed-wing mode, the attitude control is
practiced by the deflection aerodynamic control surfaces. Namely, the aileron deflection δa,
elevator deflection δe and the rudder deflection δr. The velocity is controlled by the speed
of the propulsion rotor δt. In multi-rotor mode, the attitudes are controlled by the speed
difference of the hovering rotors, nφ, nθ and nϕ. The altitude controllable variable is the
total speed of the hovering rotors nh. The flight speed is controlled by the attitude, given
the total hovering rotor speed, which makes the vehicle an under-actuated system in
multi-rotor mode. The physical control principles are illustrated in Table 2.

Figure 1. The actuators of the ET120 platform.
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Table 2. The control methods of the ET120 in different modes.

Mode Multi-Rotors Transitional Fixed-Wing

Roll

Pitch

Yaw

Vertical

2.2. Flight Dynamics Model

The dynamics model of ET120 is established based on the actual aircraft parameters
and wind tunnel tests and are separated into 3 main parts:

The mass balance part. This part gives the gravity and the position of its center.
The aerodynamics part. This part concerns the pure aerodynamic forces and moments

provided by the fixed-wing part, including the fuselage, the wings, the tails and the
aero-surfaces. High-quality aerodynamics data are obtained from wind tunnel tests.

The propulsion system part. This part provides the forces and moments produced
by each rotor. The thrust and torque and tilt moments at different inflow velocity and
inflow angles are obtained using the blade element momentum theory (BEMT) mentioned
in Ref. [7].
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The forces and moments given by the above three parts are added up and projected
to the body frame, outputting the overall force vector F =

[
Fx Fy Fz

]T and moment

vector M =
[

L M N
]T . Then the 6 DOF function of the ET120 can be modeled as:

.
V =

F
m

− Ω × V (1)

.
Ω = J−1[M − Ω × (J·Ω)] (2)

.
θ = EΩ (3)
.
I = Re

bV (4)

where V = [u, v, w]T is the velocity vector in the body frame; m is the mass property;
θ = [φ, θ, ϕ]T are Euler angles, with φ, θ and ϕ being the roll, pitch and yaw, respectively;
Ω = [p, q, r]T are the angular rate in the body frame, with p, q and r being the roll, pitch,
yaw angular rate, respectively; I is the position vector in earth frame, J is the inertia matrix,
and E and Re

b are the transform matrix from the angular vector to the Euler angular vector,
and the rotation matrix from the body frame to the inertia frame, respectively.

2.3. Dynamics Anaylsis

The dynamics analysis is based on the trimming point of the ET120, using the lin-
earized model of the flight dynamics model Equations (1)–(4). Due to the discrepancy in
control actuators in different flight modes, the flight dynamic characteristics of the ET120
differ significantly. This consequently influences the control methods and control system
design. The dynamic characteristics are reflected by the eigenvalue of the system matrix of
the linearized model.

• Longitudinal

The longitudinal eigenvalues in different flight modes are depicted in Figure 2. The
trimming states of these modes are set at:

1. Fixed-wing mode: airspeed (20 m/s~50 m/s), level flight.
2. Transitional mode: airspeed (2 m/s~20 m/s), level flight.
3. Multi-rotor mode: pitch angle (0~10◦), hovering (airspeed zero).

In fixed-wing mode, the longitudinal eigenvalues are all complex numbers distributed
on the left side of the coordinate planes, indicating oscillatory convergence with static
stability. In transitional and hovering mode, the eigenvalues are two complex values with
a negative real part and two complex values with a positive real part. This indicates static
instability in longitudinal modes.

(a) (b) (c)

Figure 2. The longitudinal eigenvalues of the ET120 in different flight modes. (a) fixed-wing mode; (b) transitional mode;
(c) multi-rotor mode.
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• Lateral

The lateral eigenvalues are depicted in Figure 3. The trimming states of different flight
modes are set as in the longitudinal analysis.

In fixed-wing mode and transitional mode, the eigenvalues are two conjugate complex
numbers with negative real parts and a negative number and a positive number. This is
consistent with normal fixed-wing vehicles, presenting an oscillatory converged Dutch roll
mode, a converged roll mode and a slowly diverged spiral mode. However, in multi-rotor
mode at low airspeed, the Dutch roll eigenvalues cross the imaginary axis. This indicates
an abrupt change in the lateral dynamic characteristics in hovering mode.

(a) (b) (c)

Figure 3. The lateral eigenvalues of the ET120 in different flight modes. (a) fixed-wing mode; (b) transitional mode;
(c) multi-rotor mode.

• Numerical results

The numerical results for the dynamics analysis are given in Table 3. Clearly, the dy-
namic characteristics varies significantly both in longitudinal and lateral channels between
the three flight modes. This feature of the ET120 prompted us to employ the L1 adaptive
control theory to address the model uncertainties and the dynamic characteristic changes
during an entire envelope flight.

Table 3. The dynamic characteristics of the ET120.

Channels Fixed-Wing Transition Multi-Rotor

Longitudinal

Long-term
Frequency 0.39~0.41 diverged diverged

Damping ratio 0.042~0.306 diverged diverged

Short-term
Frequency 2.4~7.73 0.3982~2.78 0.21~0.298

Damping ratio 0.672~0.79 0.766~0.768 0.6936~0.8

Lateral

Roll Time constant 0.095~0.24 0.23~1.92 3.08~3.13

Spiral Time constant −40~−130 −5.063~−11.23 −6.49~−11.56

Dutch roll
Frequency 1.25~3.0 0.2816~1.23 cross imaginary axis

Damping ratio 0.133~0.234 0.1619~0.1794 cross imaginary axis

3. Control System Design

As shown in Figure 4, a four-layer flight control system is designed for the ET120,
including: a trajectory planner, a flight management unit, a guidance layer, and a control
stability augmentation layer. The trajectory planner generates the flight path with naviga-
tion information. The flight management unit decides the navigation and control modes
of the vehicle, e.g., the waypoint mode for navigation, the fixed-wing mode for flight
control. The guidance layer drives the ET120 to follow the path at the desired airspeed,
according to the chosen flight mode management unit. The control stability augmentation

272



Symmetry 2021, 13, 2125

layer is used to enhance control stability in both rotor and fixed-wing modes. By using
the single-input–single-output (SISO) structure, the guidance and control algorithms in
the longitudinal, lateral, and directional channels are designed independently. As this
work focuses on strategy design, this section only discusses the inner loop control stability
augmentation, and the guidance logic is discussed with respect to the maneuver strategy
design, while the other layers are omitted.

 

Figure 4. The control architecture of ET120.

3.1. Control Law

A three-axis stability augmentation system (CSAS) is designed to generate virtual
angular acceleration commands and moment instructions to the control allocator. The
baseline angular rate control, which is the basis of the whole control strategy, is practiced
by this system. The CSAS is designed based on L1 adaptive theory, which stands out in the
following respects, compared to the conventional PID controller: (1) The performance of
the L1 controller relies less on model precision. (2) The L1 controller avoids complicated
gain scheduling. (3) It is easier for the L1 controller to ensure level 1 flight quality, even
though the plant is not ascertained. (4) In-time adjustment during flight is accessible to
the L1 controller. For slow loop control, namely, the pitch angle and the bank angle loop,
an NDI controller is enough to provide the desired dynamic characteristics. As shown
in Figure 5, the pitch and roll cascade channel naturally decouple the rapid angular rate
control and slow attitude angle control according to the time-separation principle, where
qc, pc and rc are the pitch, roll and yaw rate command, respectively, and θc and φc are the
pitch and roll commands, respectively. Owing to the similar control structures of the roll,
pitch, and yaw channels, only the pitch channel is discussed here.

3.1.1. The Attitude NDI Controller

Based on the 6DOF function of the ET120, (2), (3), the control plant can be described as:

.
θ(t) = f1(θ(t), t) + g1(θ(t), t)q(t) (5)

where f1(θ(t), t), g1(θ(t), t) are affine functions with f1(θ(0), 0) = 0 and g1(θ(0), 0) = 1.
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Figure 5. Three-axis decoupled control channels.

The tracking error Δθ(t) is the difference between the pitch angle command θc(t) and
the actual pitch angle response θ(t), that is

Δθ(t) = θc(t)− θ(t) (6)

The NDI controller is designed as:

qc(t) = g−1
1 (KθΔθ(t)− f1(θ(t), t)) (7)

where the Kθ is the gain of the pitch angle.

3.1.2. The Angular Rate L1 Controller

The L1 controller is composed of four parts: the control plant, the control law, the state
predictor and the adaptive law, which will be explained in this section.

• Control plant

The pitching rate function is derived from the 6DOF function (2); with the perturbation
assumption, the system can be constructed by first-order coefficients Mα, Mq and M .

qvc
:

.
q(t) = Mαα(t) + Mqq(t) + M .

qvc

.
qvc(t) (8)

where
.
qvc(t) is the total virtual pitch angular acceleration. By moving the

.
qvc(t) term to the

left and all the other terms to the right, we get:

.
qvc(t) =

1
M .

qvc

[
.
qc(t)− Mαα(t)− Mqq(t)] (9)

Physically, the above function means the pitch acceleration is provided by the mo-
ments, and the right terms are generated by the aero-surfaces and the rotor system. If we
define

.
qac(t) to represent the angular acceleration provided by the aero-surfaces and

.
qrc(t)

the rotor system, Equation (9) can be rewritten as:

.
qvc(t) =

.
qrc(t) +

.
qac(t) (10)

In hovering mode, the efficiency of the aero-surfaces is limited due to the low airspeed,
and the majority of the control energy is generated by the hovering rotor system. It is
reasonable that

.
qvc(t) � .

qrc(t),
.
qac(t) � 0. In fixed-wing mode, the hovering rotor is

inactivated, and the situation is reversed, that is,
.
qrc(t) � 0,

.
qvc(t) � .

qac(t). During
transition flight, both the aero-surfaces and hovering rotors achieve the commanded pitch
angular acceleration.
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Considering the modeling uncertainty, Equation (8) is rewritten as:

.
q(t) = (Mα + M̂α)α(t) + (Mq + M̂q)q(t) + (M .

qvc
+ M̂ .

qvc
)

.
qvc(t) + σ1 (11)

where M̂α, M̂q and M̂ .
qvc

are the coefficient uncertainties, and σ1 is the disturbance factor.
Substituting Equation (9) into Equation (10), we get:

.
q(t) = M̂αα(t) + M̂qq(t) +

M̂ .
qvc

M .
qvc

(
.
qc(t)− Mαα(t)− Mqq(t)) +

.
qc(t) + σ1 (12)

With Equation (12), the first-order reference model can be constructed as follows:

.
q(t) = −Kqq(t) + Kqqc(t) (13)

By combining Equations (12) and (13), we can rewrite the control plant of the pitch
channel as: ⎧⎨⎩

.
q(t) = −Kqq(t) + Kqη(t)
η(t) = ωq

.
qc(t) + f2(t, q(t))

f2(t, q(t)) = θqq(t) + σq

(14)

where ωq = 1 +
M̂ .

quc
M .

quc
is the virtual control coefficient, θq = Kq −

M̂ .
quc

M .
quc

Mq is aerodynamic

coefficient, and σq = − M̂ .
quc

M .
quc

Mαα + σ1 is the aerodynamic disturbance.

• The L1 controller

The L1 controller is designed based on the following assumptions, which can be
measured in practical application.

Assumption 1. The plant unknown coefficient ωq is uniformly bounded in [ωql , ωqu], where ωql
and ωqu are the lower and upper bounds of ωq.

Assumption 2. f2(t, 0) in Equation (14) is uniformly bounded, that is ‖ f2(t, 0)‖∞ ≤ b, with
b > 0, where ‖•‖∞ is the ∞-norm.

Assumption 3. The partial derivative of f2 is semi-globally uniformly bounded: for each δ > 0,
there exists dfq(δ) > 0 and dft(δ) > 0 that ensures the partial derivative of f2(t, q(t)) is piecewise
continuous regardless of time, which is written as:{

‖ ∂ f2(t,q(t))
∂q ‖

∞
≤ dfq(δ),

‖ ∂ f2(t,q(t))
∂t ‖∞ ≤ dft(δ).

(15)

For the inner loop control system, the uncertainty possesses a certain magnitude
and limit, and these can be realized using engineering measures. These assumptions are
easily satisfied in practical applications. Given these assumptions, the L1 controller, which
includes a state predictor, the adaptive law and the control law, can be designed with
lemma 1:

Lemma 1. For each τ ≥ 0, if ‖qτ‖L∞
≤ ρ and ‖ .

qτ‖L∞
≤ d, where ρ and d are positive constants,

and θq(t) and σq(t) are continuous [29]. In addition, their derivatives for t ∈ [0, τ] are

f (t, q(t)) = θq(t)‖qt‖L∞
+ σq(t) (16)

∣∣θq(t)
∣∣ < dfq(ρ),

∣∣∣ .
θq(t)

∣∣∣ ≤ dθ (17)∣∣σq(t)
∣∣ < b,

∣∣ .
σq(t)

∣∣ ≤ dσ (18)

where dθ and dσ are calculable limits; ‖•‖L∞ is the L∞-norm.
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• State predictor

The state predictor is a system that reflects the control plants, and which has similar
dynamic characteristics to the control plant. According to Equation (14), the state predictor
can be designed as: ⎧⎪⎨⎪⎩

.
q̂(t) = −Kqq̂(t) + Kqη̂(t)
η̂(t) = ω̂q(t)

.
qc(t) + θ̂q(t)q(t) + σ̂q(t)

ŷ(t) = q̂(t)
(19)

where ω̂q(t) is the estimated uncertainty of the control factor, θ̂q(t) is the estimated uncer-
tainty of the aerodynamic factor, and σ̂q(t) is the estimated uncertainty of aerodynamic
disturbance.

• Adaptive law

The adaptive gains are produced by:⎧⎪⎪⎨⎪⎪⎩
.
θ̂q(t) = ΓKproj(θ̂q(t),−q̃(t)PKq‖q(t)‖∞)
.
σ̂q(t) = ΓKproj(σ̂q(t),−q̃(t)PKq).
ω̂q(t) = ΓKproj(ω̂q(t),−q̃(t)PKq

.
qc(t))

(20)

where Γ is adaptive gain, q̃(t) = q̂(t) − q(t) is tracking error, P is the solution of the
Lyapunov equation −KT

q P − PKq = −Q, Q > 0. Kproj is the projection operator that can
guarantee the boundedness of the adaptive parameters.

• Control law

The control law is given as:{ .
qc = KdD[Kgq(t)− ω̂q(t)

.
qc(t)− θ̂q(t)q(t)− σ̂q(t)]

.
qvc =

1
M .

qvc
[

.
qc − Mαα(t)− Mqq(t)] (21)

where Kg is adaptive feedback gain, D is a low-pass filter and Kd is the adaptive feed
forward gain, as depicted in Figure 6. The filter is expected to have dynamic characteristics
that satisfy the following transfer function:

C(s) = ωqKdD(s)(I + ωqKdD(s))−1, C(0) = I (22)

where I is the identity matrix.
Additionally, the values of Kd and D should ensure that for a given ρ0, there exists

ρr > ρin to maintain the L1 norm condition:

‖G(s)‖L1
<

ρr − ‖H(s)C(s)Kg‖L1
‖qc‖L∞

− ρin

Lρr ρr + b
(23)

where ‖•‖L1
is the L1-norm, and⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρin := ‖s(sI + Kq)
−1‖L1

ρ0

H(s) = (sI + Kq)
−1Kq

G(s) = H(s)[I − C(s)]
Lρr =

ρr+γ1
ρr

dfq[ρr + γ1]

(24)

where γ1 is an arbitrary positive constant and dfq is defined in Equation (15).
The L1 adaptive controller is constructed on the basis of Equations (19) and (21), with

the L1-norm condition satisfied.
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Figure 6. The L1 adaptive controller architecture.

• Stability analysis

The stability analysis was performed using Lyapunov’s second method, as described
in Ref. [21].

Firstly, the tracking error the difference between the response of the state predictor
(Equation (19)) and the control plant (Equation (14)), that is:{

q̃(t) = q̂(t)− q(t)
.
q̃(t) = −Kqq̃(t) + Kqη̃(t)

(25)

where ∗̃, ∗ ∈ {
q,

.
q, η

}
represents the tracking errors, η̃(t) = η̂(t) − η(t). Given Equa-

tion (14), we have:

η̃(t) = η̂(t)− η(t) =
.
qc(t)ω̃q(t) + q(t)θ̃q(t) + σ̃q(t) (26)

with ω̃q(t) = ω̂q(t)− ωq(t), θ̃q(t) = θ̂q(t)− θq(t) and σ̃q(t) = σ̂q(t)− σq(t). The angular
acceleration error is derived by substituting Equation (26) into Equation (25), that is:

.
q̃(t) = −Kqq̃(t) + Kq[

.
qc(t)ω̃q(t) + q(t)θ̃q(t) + σ̃q(t)] (27)

The goal of adaptive laws is to drive the ω̃(t), θ̃(t) and σ̃(t) tend to zero to achieve
stable error dynamics

.
q̃(t) = −Kqq̃(t).

The candidate Lyapunov function is formulated as:

V(q̃, ω̃q, θ̃q, σ̃q) = q̃T(t)Pq̃(t) +
1
Γ
(ω̃q

2(t) + θ̃q
2(t) + σ̃q

2(t)) (28)

The time derivatives of Equation (28) is:

.
V(q̃, ω̃q, θ̃q, σ̃q) =

.
q̃

T
(t)Pq̃(t)+ q̃T(t)P

.
q̃(t)+

2
Γ
(ω̃q(t)

.
ω̃q(t)+ θ̃q(t)

.
θ̃q(t)+ σ̃q(t)

.
σ̃q(t)) (29)

It is assumed that ωq, θq and σq vary slowly enough to satisfy
.

ω̃q ≈ .
ω̂q,

.
θ̃q ≈

.
θ̂q,

.
σ̃q ≈ .

σ̂q. Substituting Equation (27) into Equation (29), we get

.
V(q̃, ω̃q, θ̃q, σ̃q) =

{
−q̃T(t)KT

q + [ω̃q
T(t)

.
qc

T(t) + θ̃q
T(t)qT(t) + σ̃q

T(t)]KT
q

}
Pq̃(t)

+q̃T(t)P
{
−Kqq̃(t) + Kq[

.
qc(t)ω̃q(t) + q(t)θ̃q(t) + σ̃q(t)]

}
+ 2

Γ (ω̃q
T(t)

.
ω̂q(t) + θ̃q

T(t)
.
θ̂q(t) + σ̃q

T(t)
.
σ̂q(t))

(30)
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With adaptive law defined in Equations (20) and (24), Equation (30) is re-constructed as

.
V(q̃, ω̃q, θ̃q, σ̃q) = −q̃T(t)Qq̃(t) + 2ω̃q(t)(q̃T(t)PKq

.
qc

T(t)
+Kproj(ω̂q(t),−q̃T(t)PKq

.
qc(t)))

+2θ̃q
T(t)(q(t)q̃T(t)PKq + Kproj(θ̂q(t),−q(t)− q̃T(t)PKq))

+2σ̃q
T(t)(q̃T(t)PKq + Kproj(σ̂q(t),−q̃T(t)PKq))

− 2
Γ (ω̃q

T(t)
.

ωq(t) + θ̃q
T(t)

.
θq(t) + σ̃q

T(t)
.
σq(t))

(31)

The projection operator in the adaptive laws ensures that the adaptive parameters are
limited to a known compact set Λ. The projection operator is written as

.
θq(t) = Kproj(θq, Γz),

and the properties of the projection function guarantee that for any point θq(τ1) ∈ Λ, where
τ1 ∈ [0, t) and z is a parameter. Then, we have:

(θq − θq(τ1))
T(Γ−1Kproj(θq, Γz)− z) ≤ 0 (32)

With (32), Equation (31) can be simplified to an inequation:

.
V(q̃, ω̃q, θ̃q, σ̃q) ≤ −q̃T(t)Qq̃(t) +

2
Γ
(
∣∣∣ω̃q

T(t)
.

ωq(t) + θ̃q
T(t)

.
θq(t) + σ̃q

T(t)
.
σq(t)

∣∣∣) (33)

As ωq is a constant,
.

ωq = 0. Then, (33) can be expressed as:

.
V(q̃, ω̃q, θ̃q, σ̃q) ≤ −q̃T(t)Qq̃(t) +

2
Γ
(
∣∣∣θ̃q

T(t)
.
θq(t) + σ̃q

T(t)
.
σq(t)

∣∣∣) (34)

According to the bounds Equations (17) and (18) defined in Lemma 1, function (34) is
simplified as:

.
V(q̃, ω̃q, θ̃q, σ̃q) ≤ −q̃T(t)Qq̃(t) +

4
Γ
(dfq(ρ)dθ + bdσ) (35)

Using the properties of projection operator again, Equation (28) is reduced to an
inequation as:

ω̃q
2(t) + θ̃q

2(t) + σ̃q
2(t) ≤ (ωqu − ωql)

2 + 4dfq
2(ρ) + 4b2 (36)

The condition q̃(0) = 0 derives

V(0) ≤ 1
Γ
((ωqu − ωql)

2 + 4dfq(ρ)dθ + 4bdσ) (37)

Assume that:

V(t) >
λm(ρr)

Γ
(38)

where λm(ρr) � (ωqu − ωql)
2 + 4dfq

2(ρ) + 4b2 + 4 λmax(P)
λmin(Q)

(dfq(ρ)dθ + bdσ), λmax(P) is the
max eigenvalue of matrix P, and λmin(P) is the min eigenvalue of matrix Q.

Substitute (36) and (38) into Equation (28) and you get:

q̃T(t)Qq̃(t) ≥ λmax(Q)

λmin(P)
q̃T(t)Pq̃(t) ≥ 4

Γ
(dfq(ρ)dθ + bdσ) (39)

Using (39) and (35) yields
.

V(q̃, ω̃q, θ̃q, σ̃q) < 0
Therefore, we have:

V(t) ≤ V(0) ≤ 1
Γ
((ωqu − ωql)

2 + 4dfq(ρ)dθ + 4bdσ) ≤ λm(ρr)

Γ
(40)
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Since the result of Equation (40) contradicts the assumption of Equation (32), the actual
assumption of Equation (38) should be rewritten as:

V(t) ≤ λm(ρr)

Γ
(41)

The Lyapunov second method indicates that the system satisfying (41) is stable.

3.2. Control Allocation

A control allocator is designed to determine the command of the actuators based on
the angular rate command generated by the CSAS. For the abundant control actuators in
all channels, the allocation criterion uses the efficiency of the actuators, which is related to
the airspeed, to determine the actuator commands.

Since the body frame of the ET120 is almost symmetrical, the products of inertia
Jxy, Jyz and Jzx can be ignored, and the virtual commands to the actuators in the roll, pitch
and yaw channels can be given according to the outputs of the controllers in corresponding
channels

.
pc,

.
qc and

.
rc: ⎧⎪⎪⎨⎪⎪⎩

δa =
.
pc

Lmax
δmin

a

δe =
.
qc

Mmax
δmin

e

δr =
.
rc

Nmax
δmax

r

,

⎧⎪⎪⎨⎪⎪⎩
nφ =

.
pc

Lmax
nmax

φ

nθ =
.
qc

Mmax
nmax

θ

nϕ =
.
rc

Nmax
nmax

φ

(42)

where the superscript max and min represent the maximum or minimum outputs of
the corresponding controllable variables.Lmax, Mmax and Nmax represent the maximum
control effectiveness in the roll, pitch, and yaw channels, respectively, and are given by the
following equations: ⎧⎪⎨⎪⎩

Lmax = ηδa Lδa δmin
a + Lnφ nmax

φ

Mmax = ηδe Mδe δmin
e + Mnθ

nmax
θ

Nmax = Nδr δmax
r + Nnϕ nmax

ϕ

(43)

where Lδa , Mδe , Nδr , are the moments provided by each unit deflection of the corresponding
control surface in roll, pitch, and yaw channels. Lnφ , Mnθ

, Nnϕ are the moments produced
by each unit’s virtual control inputs for the rotors in the roll, pitch, and yaw channels.
ηδa and ηδe are gain-scheduled coefficients that are relevant to the airspeed Vt.

4. Deceleration Transition Process Maneuver Design

4.1. Process Analysis and Maneuver Design

The currently used deceleration and landing process for the ET120 vehicle is depicted
in Figure 7. The process begins from level flight in fixed-wing cruising mode. When the
autonomous landing logic of the autopilot is activated, the ET120 vehicle turns off the
propulsion rotor and performs the pitch-up maneuver. In the early stage of deceleration,
a large pitch-up input increases the angle of attack at the cruising speed (usually at a
high airspeed), which produces a large aerodynamic lift (more than the aircraft weight),
resulting in climbing behavior. This is done for two reasons. One is to transform the kinetic
energy into potential energy by increasing altitude. Another is to cut off the forward thrust
force to reduce the kinetic energy input, so the decrease in airspeed is accompanied by an
increase in altitude. When the airspeed is reduced to near the hover decision speed, the
ET120 vehicle follows the multi-rotor hover mode in preparation for vertical descent and
final landing. This strategy has the following shortcomings: 1. The deceleration corridor
is a straight and long line, which imposes restrictions on high-density traffic in terminal
airspace. 2. The increase in altitude goes against the common sense of decreasing altitude
during the landing process. 3. The increase in altitude also consumes more battery energy
and increases the workload of the hovering rotors, resulting in lower flight performance.
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4. It is also a very poor driving experience for passengers. This ragged deceleration strategy
is obviously not suitable for urban transportation.

Figure 7. Conventional jumping deceleration and landing process.

A major improvement would be to avoid the climbing behavior caused by the large
lift. One idea is to perform a fast pull-up maneuver like a fighter jet to cause the ET120
vehicle to enter post-stall flight, as shown in Figure 8. Instead of the pitch-up motion, the
large normal overload input quickly produces a large AOA, and thus a large drag that leads
to a continuous drop in lift and airspeed. When the AOA exceeds the stall AOA, the ET120
vehicle falls into a stall flight maneuver and re-engages to hover stationary in preparation
for vertical descent to the landing pad (vertiport). During this deceleration process, the
altitude can be slightly perturbed. However, this extreme deceleration approach comes at
the expense of safety and reliability, and is not suitable for urban transportation.

Figure 8. High AOA post-stall maneuver deceleration and landing process.

Another idea is to bank the ET120 vehicle to cleverly guide the large lift caused by
pitch-up motion sideways, just like the bank-to-turn technology for missile autopilot. This
allows the ET120 vehicle to turn the maximum lift plane and project the partial lift (used to
balance the gravity) to the longitudinal (vertical) plane to suppress climbing tendency.

Motivated by the above analysis, a five-stage spiral control strategy for a comfortable
deceleration transition and landing process is designed for the ET120 vehicle, as shown
in Figure 9. The logic begins from a fixed-wing cruise flight at Point A, after thoroughly
performing five stages, the ET120 vehicle finally vertically touches down on the landing
pad, at Point F. The main five-stage spiral control strategy is as follows:

• Stage I: (red dotted lines)

Stage I is used to get close to the landing pad from far away. At Point A, the ET120
vehicle begins to bank and enter a turn to track the loiter circle centered on the landing
pad in fixed-wing flight mode. The turn ends at Point B, when the cross-track error from
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the current position to the loiter circle is less than 3 m. At this stage, altitude and airspeed
maintain constant.

• Stage II: (green dotted lines)

In stage II, the aircraft begins to enter the deceleration transition phase. At point B,
the ET120 vehicle turns off the propulsion rotor and enters no-power flight in fixed-wing
mode. It also maintains a fixed altitude to increase the AOA and thus increase the drag
to reduce airspeed. Meanwhile, a fixed bank angle φ0 is set to spirally turn toward the
landing pad. This stage ends at Point C, where the pitch angle reaches the set value θ0.

• Stage III: (blue dotted lines)

During this stage, the ET120 vehicle is still in mid-airspeed flight, and the efficiency of
aero-surface is far greater than the multi-rotors. The multi-rotors are activated, and their
throttle is set to 30% of the maximum throttle. Meanwhile, the bank angle is fixed at φ1 to
continue turning, and it continues to maintain altitude to reduce airspeed. This stage ends
at Point D, when the pitch angle reaches the set value θ1.

• Stage IV: (yellow dotted lines)

At this stage, the ET120 vehicle is in mid- to low-airspeed flight, and the efficiency
of the aero-surface is equal to the multi-rotors. Then, the throttle of the multi-rotors is set
to 60% of the maximum throttle. It enters rotor mode, and the altitude is controlled by
the multi-rotors. Meanwhile, the aircraft begins to align its nose to the route via attitude
motion. This stage ends at Point E, when the airspeed is less than 5 m/s.

• Stage V: (purple dotted lines)

At this stage, the ET120 vehicle engages a stationary hover state in preparation for
vertical descent and touchdown. Once the vehicle receives the landing instruction, it
commences vertical descent to the landing pad at Point F.

Figure 9. Five stages of the roll-horizon deceleration and landing strategy.

4.2. Control Module Design

• Stage I:

In stage I, it is necessary to design the lateral guidance law to guide the ET120 to the
loiter circle in fixed-wing flight mode, as shown in Figure 10. The typical implementation of
lateral guidance converts the cross-track error and the track angle error to the acceleration
reference. The controller for lateral channel is designed via a cascaded-loop form. The
cross-track error, Δy, and the desired track angle reference, ψd, are inputs of the lateral
channel, and the desired lateral acceleration command, ay,c, is the output command.
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The desired lateral speed,
.
yd, is first obtained from the cross-track error Δy:

.
yd = kPyΔy (44)

where kPy is the proportional gain, and Equation (44) expects the cross-track error to
converge linearly according to the time constant 1/kpy.

Then, the desired track angle caused by lateral motion, Δψc, can be converted as:

Δψc = sin−1(
.
yd/Vg) (45)

where Vg is groundspeed. Δψc is usually considered to be small, and can be approximated
as Δψc =

.
yd/Vg, which is also limited to [−π/2, π/2]. ψc is combined with the desired

track angle reference, ψd, to form a track angle command ψc.

ψc = ψd + Δψc ≈ ψd +
.
yd/Vg (46)

Then, the lateral acceleration command ayc can be constructed as:

ayc = kPψ(ψc − ψ)Vg (47)

where kPψ is proportional gain and (ψc − ψ) should be limited to [−π, π].
With a coordinated turn assumption, the lateral acceleration command ayc can be

converted to a roll angle command φc.

φc = tan−1(ayc/g
)

(48)

where g is acceleration of gravity.
In the roll angle controller, φ is controlled by a proportional control:

.
φc = kPφ(φc − φ) (49)

where kPφ is proportional gain.
Then, the relationship of Euler angular rates to body angular rates are constructed as:⎧⎪⎨⎪⎩

.
φ = p + tan θ(q sin φ + r cos φ)
.
θ = q cos φ − r sin φ
.
ψ = (q sin φ + r cos φ)/ cos θ

(50)

From Equation (50), the desired roll angular rate pc can be calculated as

pc =
.
φc − tan θ(q sin φ + r cos φ) (51)

For the yaw channel, a yaw damper is designed to improve the damping features
of the Dutch roll. In addition, a high-pass filter is also added to weaken the steady yaw
angular rate signal by the stable loiter. The controller is constructed as:

δr = kPr
τs

τs + 1
(52)

where kPr is proportional gain, and τ is time constant of high pass filter.
In the altitude channel, the fixed-wing implementations of the altitude motion are

achieved via the path angle change. The inputs for the altitude control channel are the
altitude h, the climbing rate

.
h, and the desired path climbing rate reference

.
hd. The output

is the path angle command γc.
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Figure 10. The lateral guidance principle in fixed-wing mode.

As in the design of the lateral channel, the desired climbing rate command is con-
structed as: .

hc = kPh(hd − h) +
.
hd (53)

where kPh is proportional gain. It is the converted to path angle command γc:

γc = tan−1 θ
( .

hc/Vg

)
(54)

Then, pitch angle control is achieved via a proportional-integral controller, orga-
nized as:

θc = kPγ(γc − γ) + kIγ

∫
t
0(γc − γ)dτ (55)

where kPγ is proportional gain; kIγ is integral gain.
Similarly to the roll channel, θ is also controlled via a proportional controller:

.
θc = kPθ(θc − θ) (56)

where kPθ is proportional gain;
.
θc is pitch angular rate command.

From Equation (50), the desired pitch angular rate qc can be calculated as:

qc =

.
θc

cos φ
+ r tan φ (57)

For the airspeed channel, the desired airspeed reference Vtd is controlled via a proportional-
integral controller. The input is airspeed Vt and the output is throttle command δt.

δt = kPv(Vtd − Vt) + kIv

∫
(Vtd − Vt)dt (58)

where kPv is proportional gain and kIv is integral gain.
In addition, the hover rotor speed command nh is set to zero. The above commands

together form U = [pc, qc, δr, δt, nh = 0] for the reference input of the angular rate loop.

• Stage II:

In stage II, the ET120 enters fixed-wing gliding flight mode. The ET120 turns off the
propulsion rotor and maintains a fixed bank angle, φ0, at the end of Stage I. In general, the
altitude channel is similar as that in Stage I. In addition, the hovering and propulsion rotors
are set zero. By combining Equations (51), (52) and (57), pc, qc and δr are derived in the
output U. Then, the new U is organized as U = [pc, qc, δr, δt = 0, nh = 0] for the reference
input of the angular rate loop.
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• Stage III:

In Stage III, the ET120 reaches the set pitch angle θ0 at the end of Stage II. Correspond-
ingly, the airspeed is reduced to mid speed. At this stage, the control module is similar to
that in Stage II; in addition, an open-loop hovering rotor system is applied.

The hovering rotor command is set to δt = 30% and the roll angle is fixed at φ = φ0.
By combining Equations (51), (52) and (57), pc, qc and δr are derived in the output U. Then,
the new U is organized as U = [pc, qc, δr, δt = 0, nh = 30%] for the reference input of the
angular rate loop.

• Stage IV:

In Stage IV, the ET120 reaches the set pitch angle θ1 at the end of Stage III. In addition,
it is in mid- to low-airspeed flight. The hovering rotor system gradually occupies the
dominant position of the control capability. The autopilot puts ET120 into rotor mode.

The control of forward speed is achieved by body pitch, and control of altitude is
performed via total hovering rotor thrust. In addition, the roll angle is fixed at φ = φ1. For
the design of altitude channel, the desired climbing rate command,

.
hc, is first obtained

from Equation (53). It is then used to derive the vertical acceleration command ahc via a
proportional controller.

ahc = kPah

( .
hc −

.
h
)

(59)

where kPah is a proportional gain.
The inputs for forward speed channel are groundspeed Vg and its command Vgc, and

the output is θc via a Proportional-Integral controller. The forward acceleration is first
calculated from forward speed error:

axc = kPVg

(
Vgc − Vg

)
+ kIVg

∫
t
0
(
Vgc − Vg

)
dτ (60)

where kPVg is a proportional gain, and kIVg is an integral gain.
The axc is usually small and the approximate relationship between axc and θc can be

calculated as:
θc ≈ − axc

g
(61)

The control of θc is mentioned in Stage 1.
In addition, the roll angle is fixed at φ = φ1. To control yaw channel, a proportional

controller is applied. The heading angle can be derived as:

.
ψc = kPϕ

(
tan−1(Ve/Vn)− ϕ

)
(62)

where kPϕ is a proportional controller.
From Equation (50), the yaw rate command can be calculated as:

rc =

.
ψc cos θ − q sin φ

cos φ
(63)

where rc is then inserted into U = [pc, qc, rc, δt, nh] for output to the reference input of the
angular rate loop.

The hovering rotors are set 60%. By combining Equations (51) and (57), pc and qc are
derived in the output U. Then, the new U is organized as U = [pc, qc, rr, δt = 0, nh] for the
reference input of the angular rate loop.

• Stage V:

In stage V, the ET120 enters stationary hover mode. The lateral position in this stage
should be controlled to within the landing window. Implementation of the guidance
algorithm is depicted in Figure 11. Control of forward position is driven by body pitch,
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and control of lateral position is achieved via body roll. In addition, its heading aligns with
the reference route via body yaw.

In the control module, the desired lateral speed,
.
yd, and forward speed,

.
xd are first

acquired from cross-track error, Δy and forward distance error Δx:{ .
yd = kPyΔy
.
xd = kPxΔx

(64)

where kPx is proportional gain.
Then, we project the

.
yd,

.
xd and ground speed into the ET120’s direction of movement

to acquire forward speed error, Δ
.
x and lateral speed error, Δ

.
y:{

Δ
.
x =

.
xd cos(ψ − ψd) +

.
yd sin(ψ − ψd)− Vn cos(ψ)− Ve sin(ψ)

Δ
.
y = (

.
yd) sin(ψ − ψd) + (

.
yd) cos(ψ − ψd)− Ve cos(ψ) + Vn sin(ψ)

(65)

These are then used to derive forward and lateral acceleration commands, axc and ayc,
respectively: {

axc = kP
.
x
(
Δ

.
x
)
+ kI

.
x
∫ t

0
(
Δ

.
x
)
dτ

ayc = kP
.
y
(
Δ

.
y
)
+ kI

.
y
∫ t

0
(
Δ

.
y
)
dτ

(66)

where kP
.
x and kP

.
y are proportional gains. kI

.
x and kI

.
y are integral gains.

The axc and ayc are usually limited to be numerically small, and the approximate
relationship between axc(ayc) and θc(φc) can be calculated as:{

θc ≈ − axc
g

φc ≈ ayc
g

(67)

The control of θc and φc are mentioned in Stage 1.
To control yaw channel, a proportional controller is applied. The heading angle can

be derived as: .
ψc = kPψ(ψc − ψ) (68)

From Equation (50), the yaw rate command can be calculated as:

rc =

.
ψc cos θ − q sin φ

cos φ
(69)

rc is then inserted into U = [pc, qc, rc, δt, nh] for output to the reference input of the
baseline L1 adaptive controllers.

Figure 11. The lateral guidance principle in multi-rotor mode.
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The control logic of the roll-horizon deceleration process is illustrated in Figure 12,
mainly describing the guidance, control mode and path plans.

Figure 12. The roll-horizon deceleration logic.

The complete control scheme for deceleration transition and landing process is illus-
tratively depicted in Figure 13. It includes the L1 angular rate adaptive controller and the
corresponding control modules designed for the five stages of the deceleration landing pro-
cess, which will be discussed in detail in the following sections. In Figure 13, each control
module is marked with content-related sections and equations of the control algorithm.
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(a)

Figure 13. Cont.
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(b)

Figure 13. The control logic of the five-stage maneuver. (a) Guidance layer; (b) Strategy maneu-
ver logic.
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5. Simulation and Verification

5.1. Monte Carlo Simulations of Angular Rate L1 Controller

The virtual control coefficient and virtual state coefficient contain the estimation of
the model coefficients, influencing the tracking performance of the controller. Usually, the
values of these factors are set empirically, which requires verification. This section takes
the roll channel as an example to verify the parameter settings. The parameters to verify
are the roll rate virtual control coefficient ωp and virtual state coefficient Kp.

A 2 rad/s frequent square roll rate command was given as the input to an L1 controller
with Γ = 2500 and D= 1/s. The results for different combinations of ωp and Kp are given
in Figures 14 and 15. The numerical performance results are given in Table 4.

Figure 14. Time histories of roll rate with Kp = 8.

Figure 15. Time histories of roll rate with ωp = 8.
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Table 4. The performance of different L1 parameters.

[Kp,ωp] Risetime Overshoot

[4,8] 1.17 -
[6,8] 0.72 -
[8,8] 0.65 -

[10,8] 0.63 -
[12,8] 0.62 -
[14,8] 0.6 -
[8,4] 1.14 -
[8,6] 0.78 -

[8,10] 0.63 1.5%
[8,12] 0.76 8%
[8,14] 0.85 15%

We chose Kp = 8, ωp = 8 as the values for the virtual control coefficient and virtual
state coefficient, as these values make a tradeoff between rapidity and stability, with a small
risetime and zero overshoots.

5.2. Monte Carlo Simulations of Angular Rate L1 Controller

To verify the performance of the L1 controller, a Monte Carlo simulation was executed.
The modeling parameters that influence the control efficiency and trimming states were
subjected to perturbation, because these factors are the most sensitive to the performance
of control systems. The perturbation parameters are given in Table 5.

Table 5. The perturbation parameters.

Parameters Perturbations

Cmδe
±20%

Cmα ±20%
CLδe

±20%
CSβ

±20%
CSδr

±20%
Clβ

±20%
Clδa

±20%
Clp ±50%
Clr ±50%
Cnβ ±20%
Cnδr

±20%
Cnp ±50%
Cnr ±50%
CGx ±0.3 m
Jxx ±20%
Jyy ±20%
Jzz ±20%

1. percentages mean multiplication gain; 2. decimals mean addition value.

In Table 5, CLδe
, Cmδe

, CSδr
, Cnδr

, Clδa
are the control derivatives, Cmα , CSβ

, Clβ
, Cnβ

are the stability derivatives, Clp , Cnr are the damping derivatives, Clr , Cnp are the cross
damping derivatives, CGx is the center of gravity position in body x-axis, and Jxx, Jyy, Jzz
are the inertia moments.

The simulation states of the three flight modes are given as:

• Fixed-wing: airspeed 35 m/s.
• Transition: airspeed 10 m/s.
• Multi-rotor: airspeed 0 m/s.

The tracking performances are tested with continuous reversed step commands:

• Roll angle command: 0◦ at 0 s, 25◦ at 5 s, −25◦ at 12 s, 0◦ at 20 s.
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• Pitch angle command: 0◦ at 0 s, 10◦ at 5 s, −10◦ at 12 s, 0◦ at 20 s.

The simulation results of the three flight modes are depicted in Figures 16–18.
The results show that (1) the distribution of the attitude angles is narrow, which

indicates a strong robustness of the L1 controller, which is able to reject the perturbation
listed above; (2) the tracking performance of the L1 controller is excellent, with a steady
state error of zero and a trivial time latency.

Figure 16. Time histories of longitudinal and lateral flight parameters in fixed–wing mode.

Figure 17. Time histories of longitudinal and lateral flight parameters in transitional mode.
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Figure 18. Time histories of longitudinal and lateral flight parameters in multi–rotor mode.

5.3. Simulations for Flight Path Verification

In practical applications, an eVTOL may enter vertiports in different initial states,
namely with respect to cruise speed and landing circle radius. A feasible deceleration
strategy should constrain the endings of the deceleration phase in the landing window for
vertical landing in any possible initial states. To verify this, possible ranges of cruise speed
and landing circle radius were set for the simulation as:

• Cruise airspeed: 30 m/s~50 m/s.
• Landing circle radius: 240 m~300 m.

The horizontal flight path results are given in Figure 19. It can be seen that the endings
of all curves are distributed in a limited area, located in the landing window. These excellent
results ensure a precise landing for vertiport management.

5.4. Monte Carlo Simulations of Rolling-Horizon Deceleration and Landing Strategy

Monte Carlo simulations are a common practice for robustness performance verifica-
tion. The stability derivatives, control derivatives and damping derivatives are sensitive to
the baseline angular rate control, but count for little in trajectory planning, while the basic
values of the aerodynamic forces influence the deceleration efficiency and climbing rate
control, which are sensitive to the trajectory results of the strategy; only the basic values of
the aerodynamic forces CL0 , CD0 , CS0 are perturbed in this simulation. The perturbation
parameters are given in Table 6.
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Figure 19. Trajectory in horizontal planes in different initial states.

Table 6. Perturbation parameters.

Parameters Perturbations

CL0 ±20%
CD0 ±20%
CS0 ±0.6

1. percentages mean multiplication gain; 2. decimals mean addition value.

The initial state of the Monte Carlo simulation is set as:

• Altitude: 50 m.
• Airspeed: 30 m/s.
• Pitch angle: 0◦.
• Roll angle: 0◦.
• Radius of landing circle: 268 m.
• Distance to landing point: 680 m.

The simulation results are given in Figures 20–22, where the black lines, blue lines,
canyon lines and pinkish red lines mark the fixed-wing flight phase, transitional flight
phase, multi-rotors flight phase, and vertical landing phase, respectively, and the red line
marks the nominal state result.

Figure 20 shows the three-dimensional trajectory results, where the green circle is the
landing circle orbit, the green point is the landing point and canyon point is the landing
window. The results show:

• The deceleration and landing process have no altitude surging, and the trajectory is
controlled to be narrowly distributed inside the landing circle. The intention to avoid
climbing is achieved, and the robust performance of the strategy is excellent.

293



Symmetry 2021, 13, 2125

• The end of the deceleration phase (at the end of the canyon lines) is controlled inside
the landing window. Therefore, the strategy ensures a precise landing point, enabling
its practical use in vertiport management.

Figures 21 and 22 give the time history of the flight parameters. The results show:

• In the Stage I maneuver (black lines before 8 s), the strategy firstly adjusts the attitudes
of the flight to enter a straight-line level flight in fixed-wing mode. This phase has
narrowly distributed endings, owing to the fact that the airspeed is fixed until the
flight approaches the landing circle.

• In the Stage II maneuver (black lines after 8 s), an abrupt change in the bank angle and
pitching angle is observed, owing to the fact that the flight uses the bank maneuver
to enter the landing circle orbit and tries to maintain a stable altitude using the
pitching angle.

• In the stage III maneuver (blue lines), the attitudes of the aircraft exhibit another
abrupt change. During this phase, the guidance logic takes the landing point as the
home point to plan a new trajectory, and the flight has to bank to the other side while
varying the pitching angle to maintain a stable altitude. Additionally, the hovering
rotors are activated in this phase, as shown in Figure 22. The airspeed begins to decline
to 20 m/s.

• In the stage IV maneuver (canyon lines), the bank angle settles at −25◦ and the pitch
angle increases monotonically with the decrease in airspeed. During this phase, the
lateral attitude is stable, and the partial lift to maintain longitudinal balance is fixed.
At mid airspeed, the flight uses the aero-surfaces to provide lift (before 28 s), and then
at low airspeed, the hovering rotors are used.

• In the stage V maneuver (pinkish red lines), the altitude decline is obvious, with a low
airspeed and wide-ranging angle of attack. During this phase, the flight is landing
vertically, and the angle of attack is insignificant, as the flight is thrust-driven.

Figure 20. Monte Carlo trajectory results.
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Figure 21. Time histories of longitudinal and lateral flight parameters of the roll-horizon strategy.

Figure 22. Time histories of altitude, airspeed, angle of attack and rotor speed of the roll-horizon
strategy.

5.5. Comparison with Jumping Deceleration and Landing Strategy

The deceleration and landing strategy is proposed to achieve higher efficiency and
driving comfort. A comparison with the conventional jumping deceleration strategy, whose
trajectory is given in Figure 23, is carried out to verify the energy efficiency.

Figure 24 presents the altitude and velocity channel comparison results. Clearly, the
roll-horizon landing strategy has a slight altitude variation, which controls the altitude to
within 40 m to 50 m, while the conventional strategy has a large altitude range that covers
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40 m to 70 m. In the velocity channel, we found that the time taken to decelerate to 5 m/s
(which is the hovering speed) is almost the same (that is, around 19 s), which means the
time efficiency for deceleration of the two strategies is equally matched. However, when
looking at the slopes of the curves, it can be seen that the slope of the roll-horizon curve
is basically unchanged, which indicates a smooth deceleration phase, while the jumping
strategy curve has a larger deceleration rate before the altitude inflection point (at about 9 s),
which makes the deceleration process less comfortable. In the angle of attack diagram, the
conventional jumping strategy has an angle ranging from 0◦ to 40◦, while the roll-horizon
strategy angle range is from 0◦ to 20◦, the large angle to 40◦ is close to the control inability
region, which is unacceptable for manned flight.

Figure 25 presents the work and power consumed by the hovering rotors, where P
means power and W means work. Obviously, the hovering rotor power of the roll-horizon
strategy is lower than that of the jumping strategy throughout the deceleration process.
This means a lower workload for the hovering rotors, which is friendly to the rotor life
span. Additionally, the lower power means less hovering rotor work, which is depicted
more directly in the work diagram. The total work consumed by the roll-horizon strategy
is almost half that of the jumping strategy, which is a considerable advantage in terms of
energy and economical efficiency.

Figure 23. The trajectory of the jumping strategy.
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Figure 24. Altitude and velocity channel comparison.

Figure 25. Altitude and velocity channel comparison.

A quantitative comparison is given in Table 7.
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Table 7. The comparison results.

Indexes Roll-Horizon Jumping

Time to deceleration to 5 m/s 19.4 s 16.5 s
Time to descend to 40 m 19.8 s 21 s
The maximum Altitude 50.67 m 67.8 m

The maximum rotor power 244.7 W 273.9 W
The total rotor work 1613 J 4484 J
The maximum AOA 25.6◦ 35.65◦

It can be found that:

• The time efficiency of the two strategies are similar, where roll-horizon is more efficient
at descending while jumping is more efficient at decelerating.

• The roll-horizon strategy successfully avoids climbing during the landing process.
• The power requirement for the hovering rotors of the roll-horizon strategy is less than

that of the jumping strategy.
• The total energy consumption of the roll-horizon strategy is less than half that of the

jumping strategy.
• The maximum angle of attack of the roll-horizon strategy is lower and appears in the

multi-rotor mode.

6. Conclusions

In this work, an L1 adaptive controller was designed to control the ET120, an eVTOL
with complicated flight dynamic characteristics. Furthermore, a roll-horizon deceleration
and vertical landing strategy was presented for an improved driving experience and to
promote energy efficiency during manned flight. Monte Carlo simulations and comparison
simulations were carried out to verify the performance of the control system and the
efficiency of the roll-horizon deceleration strategy. The results show that the L1 adaptive
controller-based control system is robust enough to reject at least 20% of perturbation on
all modeling parameters. The guidance logic is reliable for completing the maneuvers
designed in this strategy and guarantee a safe and bounded deceleration and landing
path. The promoted strategy has a smoothly varying airspeed curve, resulting in a more
comfortable manned flight, and has a superior energy efficiency, which is able to reduce
the hovering rotor work by 64%. Additionally, the strategy avoids dangerous attitudes that
may cause the flight to go out of control.
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