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Abstract: In view of some recent reports on global wealth inequality, where a small number (often
a handful) of people own more wealth than 50% of the world’s population, we explored if kinetic
exchange models of markets could ever capture features where a significant fraction of wealth can
concentrate in the hands of a few as the market size N approaches infinity. One existing example
of such a kinetic exchange model is the Chakraborti or Yard-Sale model; in the absence of tax
redistribution, etc., all wealth ultimately condenses into the hands of a single individual (for any
value of N), and the market dynamics stop. With tax redistribution, etc., steady-state dynamics are
shown to have remarkable applicability in many cases in our extremely unequal world. We show
that another kinetic exchange model (called the Banerjee model) has intriguing intrinsic dynamics,
where only ten rich traders or agents possess about 99.98% of the total wealth in the steady state
(without any tax, etc., like external manipulation) for any large N value. We will discuss the statistical
features of this model using Monte Carlo simulations. We will also demonstrate that if each trader
has a non-zero probability f of engaging in random exchanges, then these condensations of wealth
(e.g., 100% in the hand of one agent in the Chakraborti model, or about 99.98% in the hands of ten
agents in the Banerjee model) disappear in the large N limit. Moreover, due to the built-in possibility
of random exchange dynamics in the earlier proposed Goswami–Sen model, where the exchange
probability decreases with the inverse power of the wealth difference between trading pairs, one does
not see any wealth condensation phenomena. In this paper, we explore these aspects of statistics of
these intriguing models.

Keywords: wealth inequality; kinetic exchange models; Yard-Sale model; Monte Carlo simulations

1. Introduction

The first successful theory involving classical many-body physics or classical con-
densed matter systems, the kinetic theory of the (classical) ideal gas, is about one-and-a-
quarter centuries old. It consists of Avogadro’s number (about 1023) of constituent atoms or
molecules (each following Newtonian dynamics). It is a robust, versatile, and extremely
successful foundation of classical many-body physics. Social systems, economic markets in
particular, are many-body dynamical systems composed of fewer constituents (ranging
from the order of 1010 for a global market). A lone Robinson Crusoe on an island cannot de-
velop a market or a society for that matter, as markets are intrinsically many-body systems.
It is no wonder that kinetic exchange models of money or wealth have been conjectured
early on (e.g., by Saha and Srivastava [1] in 1931, Mandelbrot [2] in 1960) and resurrected
recently (e.g., by Chakrabarti and Marjit [3] in 1995, Dragulecu and Yakovenko [4] in 2000,
Chakraborti and Chakrabarti [5] in 2000, Chatterjee, Chakrabarti, and Manna [6] in 2004).

Kinetic exchange models of trades and their statistics have been quite successful
in capturing several realistic features of wealth distributions among agents in societies
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(see, e.g., [7,8]). The beneficial effects of an agent’s saving propensity in reducing social
inequality have been extensively studied [5,6,8]. The choice of the poorest trader in each
trade (with the other trade partner being randomly chosen) leads to a remarkable self-
organized poverty line, beneath which, no one remains in a steady state (see, e.g., [9–12]).
This model was inspired by some crucial observations by economists (see, e.g., [10]) and
suggests built-in (self-organized) remedies for reducing social inequality. However, it must
be admitted that such intriguing self-organizing properties of the kinetic exchange models
have not yet been thoroughly investigated.

Contrarily, recent focus has shifted to the unusual growth rate of social inequality in
the post world war II period (see, e.g., [13–16]), which in some countries seems to have
significantly crossed the 80-20 Pareto limit, reaching a steady state, with 87% of the wealth
accumulated by 13% of the population. This has been argued, following an analogy with the
inequality index values for the avalanche burst statistics in self-organized sand-pile models
near their critical points, to be the natural limit in all social competitive situations, where
welfare mechanisms (helping those who fail to participate properly in such self-organizing
dynamics) are either absent or removed (see, e.g., a recent review [16]).

Although the Pareto-like inequality mentioned above—where a small fraction of peo-
ple (say 13%) possess a large fraction (say 87%) of wealth—can already be devastating,
more disturbing types of inequalities are being reported. For example, the Oxfam Re-
port [17] of January 2020 stated “The world’s 2153 billionaires have more wealth than the
4.6 billion people who makeup 60 percent of the planet’s population”. In other words, a
handful number (about 103) of rich people possess more than about 60% (or 109 order) of
poor people’s wealth on this planet. This dangerous trend in the world, as a whole, has
repeatedly been mentioned in various recent reports.

The Pareto-type inequality mentioned above has long been investigated (see, e.g., [6,18])
using the kinetic exchange models with non-uniform saving propensities of traders (see,
e.g., [8,19] for reviews). One may naturally wonder if the kinetic exchange theory allows
for possible models, where only a handful of traders (say, about 10) possess a significant
fraction (say, above 50%) of the total wealth considered in the model, even when its
population N tends to infinity.

The answer is yes. The Chakraborti model [20], widely known today as the Yard-Sale
model, as in [21], has attracted a lot of attention (see, e.g., [22–24]). In its barest form [20], in
the Chakraborti model (denoted here as the C-model), two randomly chosen traders at any
point in time participate in an exchange trade when the richer one saves the excess over the
poorer one’s wealth and goes for a random exchange of the total available wealth (double
that of the poorer one). The slow but inevitable attractor fixed point of the trade dynamics
arrives when all wealth ends up in the hand of just one trader, no matter how large the
population (N) is. Because of the particular form of savings during a trade, whenever
one becomes a pauper, nobody trades with him, and all gradually condense to the state
where one trader acquires the entire wealth and the trade dynamics stop (see [22]). External
perturbations, like regular redistribution of tax collections by the central government (or
any non-playing agent), can help relieve [23,24] the condensation phenomenon, and this
seems to fit well with many observed situations [23]. We will show here that if each trader
has a finite probability ( f ) of playing Dragulecu and Yakovenko (DY)-type [4] random
exchanges, then for any f > 0, the condensation of wealth in the hands of one trader
disappears and the steady-state distribution of wealth exponentially decreases, as in the
DY model.

In the Goswami–Sen (or GS) model [25], one considers a kinetic exchange mechanism,
where the interaction (trade) probabilities among the trade partners (i and j) decrease
with the wealth differences (|mi − mj|) at that instant of trading (time), following a power
law (|mi − mj|−α). Of course, for α = 0, the model reduces to that of DY. The numerical
results showed that, for α values of less than about 2.0, the steady-state wealth distribution
among the traders was still DY-like (it exponentially decayed with increasing wealth). For
higher values (beyond 2.0) of α, power law (Pareto-law) decays occurred. No condensation
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of wealth in the hands of a finite number of traders or agents was observed due to the
inherent DY-like exchange probability in the dynamics of the model. This was confirmed by
extrapolating the fraction of total wealth held in the steady state by the ten richest traders,
with respect to N.

We finally consider a seemingly natural version of the kinetic exchange model, denoted
here as the Banerjee (B) model [26], where the intrinsic dynamics of the model lead to
another extreme kind of inequality in the steady state, in the sense that precisely ten traders
(out of the N traders in the market; N → ∞) possess (99.98 ± 0.01)% of the total wealth.
These fortunate traders are not unique and their fortune does not last for long (the residence
time, on average, is about 66 time units, with the most probable value around 25 time units,
counted in units of N trades or exchanges, for any value of N) and it decreases continuously
with the increasing fraction ( f ) of random trades or interactions. Unlike in the Chakraborti
or Yard-Sale model [20,21], where the dynamics stop after the entire wealth goes to one
(unless perturbed externally), the trade dynamics continue here with the total wealth
circulating only with a handful of traders (about ten) in the steady state. In this model, after
each trade, the traders are ordered from the lowest wealth to the highest, and each trader
trades only with the nearest-in-wealth trader, richer or poorer, with equal probability. Even
if, by chance, the entire wealth goes to one trader, the dynamics of random exchanges do
not stop in this model as all the paupers become the nearest neighbors (wealth-wise) of
this trader, and random exchanges among them occur. The process continues. Apart from
the steady-state wealth distributions and the most probable wealth amounts of the top few
rich traders, we will show that, in this model, the condensation of almost all the wealth
(99.98%) occurs in the hands of 10 traders (no matter how big N is). We will show that this
condensation disappears when a finite fraction f of the time traders engage in DY-type
random exchanges. Eventually, a DY-type exponentially decaying wealth distribution
emerges after a power law region for low values of f .

2. Models and Numerical Studies for Their Statistics

We numerically study the statistical features of the three kinetic exchange models
introduced in the introduction. We begin with the B (Banerjee [26]) model. Next, we
consider the C (Chakraborti, or Yard Sale) model [20,21], and then the GS (Goswami–Sen)
model [25]. In order to explore the stability of the condensation of wealth in these models,
we study the steady-state wealth distribution P(m) in each model and the fraction of
total wealth concentrated in the hands of a few (say ten) traders or agents (whenever
meaningful), allowing each trader to have a nonvanishing probability f (the faction of
tradings or times) to go for DY (Dragulecu and Yakovenko [4])-type random exchanges.

Most of the numerical (Monte Carlo) studies of the dynamics of these models are
studied with four sets of numbers N of agents or traders: N = 100, 200, 400, and 800, and at
each time step, t, the dynamics run over all the N order traders. We consider total money
(M) to be distributed among the agents equal to N and we denote the money of any agent
i at time t by mi(t) and, as such, M = ∑i mi(t) = N. When the steady state is reached
after the respective relaxation times, when the average quantities do not change with time
(with the relaxation time typically being much less than 105 trades/interactions for the N
values considered here), the statistical quantities are evaluated from averages of over 105

post-relaxation time steps.

2.1. Banerjee Model Results

In this B-model, when the DY fraction ( f ) is set equal to zero, no wealth distribution
P(m) in the population is meaningful because of the wealth condensation in the hands of a
few. We first study the distributions (see Figure 1) of the total wealth fraction in the hands
of the richest three. Note that these three are not unique, and once they become so rich,
their residence times (in units of N) are finite (about 66), and in case these positions are lost,
the return times are also finite.
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Figure 1. Distributions of the fraction of total wealth (M = N) ending up in the hands of the richest
three traders. The error estimation is based on 10 runs. The typical errors in the distribution grow
with N near the most probable value of the wealth fraction and are indicated for N = 800 for all three
traders. Far away from the most probable values, the errors are less than the data point symbol sizes.

Although the distribution of the total wealth fraction in the hands of the richest few
(shown in Figure 1) is rather wide (each one spread over more than 30% of the total wealth
and not N), the distribution of the total wealth fraction possessed by the ten richest (at any
time in the steady state) is extremely narrow and spreads over 0.1% only (see Figure 2). At
any time in the steady state, its value is much more robust in this B model (with f = 0), and
its value is less than unity, but very close to 0.9998.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

0.999 0.9992 0.9994 0.9996 0.9998 1

B-Model (f=0)

0.9998

no
rm

al
iz

ed
 d

is
tr

ib
ut

io
n 

of
 1

0 
ric

he
st

 a
ge

nt
s’

 to
ta

l w
ea

lth

fraction of total wealth

N=100
N=200
N=400
N=800

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 20  100  500  1000

B-Model (f=0)

0.9998

av
. f

ra
ct

io
n 

of
 to

ta
l w

ea
lth

 o
f 1

0 
ric

he
st

total number of agents N

Figure 2. Distribution of the total wealth fraction possessed by the ten richest (at any time in the
steady state and for different N values). The inset shows that the average of the total wealth fraction
of the ten richest (for any time and any value of N) in the steady state is very close to 0.9998. Although
the wealth share fractions of the richest ten traders have considerable fluctuations (see Figure 1), their
wealth fraction totals hardly have any fluctuations (much less than the symbol size in the inset). The
error estimation is based on 10 runs. The typical errors in the distribution of total wealth of the ten
richest are more than the data point symbol sizes near the most probable values, where indicated.
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Next, we consider the B model with a nonvanishing probability f of each trader
to follow DY trades or exchanges. We see, immediately, that the wealth condensation
disappears, and with increasing values of f , the wealth is Boltzmann (exponentially)-
distributed among all the agents (see Figure 3), starting with the Pareto-like power law
distribution for lower values of f (see the inset of Figure 3). Indeed, when we consider
the limiting values (for large N) of the average fraction of total wealth (M = N) possessed
by the ten richest traders in the steady state, they all seem to vanish (see Figure 4) for any
non-zero value of f (there remains a constant of 0.9998 for f = 0, for the pure B model).
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Figure 3. Wealth distribution P(m) among all agents against the wealth m in the B model for different
probabilities f of DY random exchanges. Note that the fluctuations appear to grow more for the
lower values of the distribution of wealth due to the log scale used in the y-axis.
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Figure 4. To obtain the limiting values (for large N) of the average fraction of total wealth (M = N)
possessed by the ten richest traders in the steady state, we plot the fraction against 1/N2 (as with
DY-type trades, each N trader interacts with the N − 1 other trader. The extrapolated values all seem
to approach zero for any non-zero value of f (but there remains a constant 0.9998 for f = 0, as in the
pure B model). The error estimation is based on 10 runs. Typical sizes of error bars are indicated.

5



Entropy 2023, 25, 1105

For the wealth condensation in the B-model (with f = 0), Figure 5A shows the dis-
tribution of residence times (in units of N) of the 10 fortunate traders and, in the inset,
the variation of the most probable and average values of residence times (τ, in the unit of
N). For the same model with f = 0, Figure 5B shows the distribution of the return time
to fortune (becoming one of the 10 richest starts from the 20th rank) and (in the inset)
the variation of the most probable and average values of the residence times with market
sizes N.

 0

 0.005

 0.01

 0.015

 0.02

 0  50  100  150  200  250  300

B-Model (f=0) B-Model (f=0)(A) (B)

no
rm

al
iz

ed
 d

is
tr

ib
ut

io
n 

of
 r

es
id

en
ce

 ti
m

e

residence time of 10 richest

N=400
N=200
N=100
N=50

 0

 20

 40

 60

 80

 100

 50  100  150  200  250  300  350  400

B-Model (f=0) B-Model (f=0)(A) (B)

re
si

de
nc

e 
tim

e

N

average
most probable

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0  50  100  150  200  250  300  350  400

B-Model (f=0) B-Model (f=0)(A) (B)

no
rm

al
iz

ed
 d

is
tr

ib
ut

io
n 

of
 r

et
ur

n 
tim

e

return time to 10 richest (from 20th rank)

N=50
N=100
N=200

 1

 10

 100

 1000

 0  50  100  150  200  250  300

B-Model (f=0) B-Model (f=0)(A) (B)

re
tu

rn
 ti

m
e

N

average
most probable

Figure 5. (A) The distribution of residence times (in units of N) of the 10 fortunate traders and (in
the inset) the variation of the most probable and average values of the residence times. (B) The
distribution of the return time to fortune (becoming one of the 10 richest, starting from the 20th rank)
and (in the inset) the variation of the most probable and average values of the return times (in units
of N). The error estimation is based on 10 runs. The typical errors in the distribution of both the
residence and return times grow with N near the most probable values of the respective quantities,
and are indicated for N = 400 here when they are bigger than the symbol sizes.

2.2. Chakraborti or Yard-Sale Model Results

The C model or Yard sale model is well-studied. However, in order to check the
stability of the condensation of wealth (with the entire money M = N going to the hands of
one trader only, we added a nonvanishing probability f of each trader to follow DY trades
or exchanges. We can immediately see that the wealth condensation disappears for any
f > 0 (see Figure 6) and the wealth is distributed in the Boltzmann form (exponentially
decaying with increasing wealth) among all the agents. The inset shows that for any
nonzero value of f , the steady state wealth distribution is exponentially decaying (and
there is a power law region) in this extended model C. When we consider the limiting
values (for large N) of the average fraction of total wealth (M = N) possessed by the ten
richest traders in the steady state (see Figure 7), they all seem to vanish from the unit value
in the original C model (with f = 0) for any non-zero value of f .
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the lower values of the distribution due to the log scale used in the y-axis.
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by the ten richest traders in the steady state of the C model with the f fraction of DY-like trades. For
f = 0, the money goes to one agent and the other nine agents contribute nothing. When we plot the
fraction against 1/N2 (as with DY-type trades, each N trader interacts with (N − 1) other traders),
the extrapolated values all seem to approach zero for any non-zero value of f . The error estimation is
based on 10 runs. Typical sizes of error bars are indicated.

2.3. Goswami–Sen Model Results

Here, the interaction (trade) probability (i and j) decreases with the wealth difference
(|mi − mj|) at the instance of trading (time), following a power law (|mi − mj|−α). As such,
in the GS model, there is always a finite (but small) probability of random exchanges. We
do not need to consider the additional fraction of the DY interaction in this model. Of
course, for α = 0, the model reduces to that of DY. Our numerical results confirm (see
Figure 8) that for α values of less than about 2.0, the steady-state wealth distribution is
still DY-like (exponentially decaying). For higher values (beyond 2.0) of α, power law
(Pareto-like) decays occur (but no condensation of wealth). Although the model leads to
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extreme inequality, there is no condensation of wealth in the hands of a few traders for any
(larger) value of α. In order to check that, we studied the average fraction of total wealth
(M = N) possessed by the ten richest traders in the steady state of the GS model with
α. When we plot the fraction against 1/N2 (see Figure 9), the extrapolated values of the
fraction all seem to approach zero for any non-zero value for any of the α values considered.
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Figure 8. Wealth distribution P(m) among all the agents against the wealth m in the GS model for
different values of α. Note that the fluctuations appear to grow more for the lower values of the
distribution due to the log scale used in the y-axis.
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3. Summary and Discussion

In view of the observed extreme income or wealth inequalities in society, we investi-
gated the suitability of capturing the kinetic exchange models [8], at least qualitatively. We
distinguish between two types of such extreme inequalities: the (Pareto) type [16], where a
small fraction (typically 13%) of the population possesses about 87% of the total wealth
(following a power law distribution) of the respective country. The other more recently
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observed type (as reported by Oxfam [17]) regards the truly extreme nature of income and
wealth inequalities worldwide, where only a handful (say a few hundred to thousands) of
super-rich people throughout the world own more wealth than 50 to 60% of poor people.

Several kinetic exchange models (see, e.g., [6,8]) have been developed to analyze
Pareto-type inequalities. We investigated the statistics of some kinetic exchange models,
where even with N going to the infinity limit, only one person can grab the entire wealth (as
in the Yard-Sale, Chakraborti, or C models [20,21]), or only 10 people can accumulate about
99.98% of the total wealth (as in the Banerjee or B model [26], see Figure 2). We investigate
how these extreme inequalities in the kinetic models are softened to the Dragulescu–
Yakovenko (DY) [4] types of exponentially decaying wealth distributions among all traders
or agents, when the traders each have non-vanishing probabilities f of DY-type random
exchanges. These condensations of wealth (100% in the hands of one agent in the C
model [20], or about 99.98% in the hands of ten agents in the B model) then disappear in the
large N limit (this is clearly seen when extrapolating against 1/N2, as in DY-type random
exchanges, where each N agent interacts or exchanges with all others; see Figures 4 and 7).
We also show that due to the built-in possibility of DY-type random exchange dynamics in
the Goswami–Sen or GS model [25], where the exchange probability decreases with the
inverse power of the wealth difference of the pair of traders, one does not see any wealth
condensation phenomena. In both GS and B models (with f > 0 fraction DY interactions
or exchanges) no wealth condensation occurs, although a strong Pareto-type power law
wealth distribution P(m) or inequalities occur for large values of α, as well as smaller values
of f in the GS and B models, respectively (see Figures 3 and 8). For the wealth condensation
in the B model, for f = 0, we additionally find that the top ten fortunate traders are not
unique and their fortunes do not last for long (the residence time τ of the fortune, on
average, is about 66 time units, with the most probable value being around 25 time units,
when counted in units of N trades or exchanges; see Figure 5A). The most probable ‘return
time’ to such a fortune (of the 20th rank holder, coming within the group of fortunate 10),
is found to be about 20 (in units of N; see Figure 5B). It should be noted that with f = 0, in
the C-model, the residence time τ is infinity for the only fortunate one accumulating the
entire wealth in the system. Indeed, with increasing values of DY fraction f , the values
of τ in both cases decrease rapidly (see Figure 10), following inverse power laws with f .
We further note that, for f = 0 in the B-model near the most probable values of the wealth
fractions (Figures 1 and 2) and residence or return times (Figure 5), the fluctuations tend to
grow with N, indicating the possible divergence there in the macroscopic limit of N. We
plan to explore this significance later.
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Figure 10. The DY fraction f dependence of the bare residence time (in units of interactions or
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Our studies for the B, C, and GS kinetic exchange models using Monte Carlo techniques
suggest that the potential condensation type of extreme inequality can disappear in all
of them if a non-vanishing probability of random exchange is allowed, converging to the
Pareto-type power law inequality (for the B and GS models), converging to the Gibbs-like
(exponentially decaying) wealth distribution for larger values of f in the B model, smaller
values of α in the GS model, or any values of f > 0 in the C model. These observations may
help to formulate public welfare policies.
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Abstract: Given wealth inequality worldwide, there is an urgent need to identify the mode of wealth
exchange through which it arises. To address the research gap regarding models that combine
equivalent exchange and redistribution, this study compares an equivalent market exchange with
redistribution based on power centers and a non-equivalent exchange with mutual aid using the
Polanyi, Graeber, and Karatani modes of exchange. Two new exchange models based on multi-
agent interactions are reconstructed following an econophysics-based approach for evaluating the
Gini index (inequality) and total exchange (economic flow). Exchange simulations indicate that
the evaluation parameter of the total exchange divided by the Gini index can be expressed by the
same saturated curvilinear approximate equation using the wealth transfer rate and time period of
redistribution, the surplus contribution rate of the wealthy, and the saving rate. However, considering
the coercion of taxes and its associated costs and independence based on the morality of mutual aid,
a non-equivalent exchange without return obligation is preferred. This is oriented toward Graeber’s
baseline communism and Karatani’s mode of exchange D, with implications for alternatives to the
capitalist economy.

Keywords: inequalities and wealth redistribution; taxes and redistribution; mutual aid; equivalent
exchange; non-equivalent exchange; markets; economic flow; econophysics

1. Introduction

Wealth inequality is a major social problem in various countries worldwide [1]. Survey
results indicate that the global Gini index is approximately 0.7, indicating widespread
inequality [2]. A Gini index of 0.4 represents a warning level for social unrest [3], and some
countries far exceed this level, including South Africa, Namibia, and Suriname [4]. Higher
social unrest leads to lower production and further inequality, which in turn leads to social
unrest again, creating a vicious cycle [5].

The United Nations Sustainable Development Goals has prioritized Goal 10—which
aims to “reduce income inequalities”, “promote universal social, economic and political
inclusion”, and “adopt fiscal and social policies that promote equality”, among other
targets—along with Goals 1, 2, 8, and 16 (no poverty, zero hunger, inclusive economic
growth, and justice and inclusive institutions, respectively) [6]. Moreover, the United Na-
tions University studies the impact of inequality on economic growth, human development,
and governance, with inequality as a core concern [7]. Thus, there is a need to identify
which types of economic relations—that is, which modes of exchange of wealth—result in
inequality. For this, different definitions of the modes of exchange must be considered.

The economist K. Polanyi has identified three modes of economic exchange: reciprocity,
redistribution, and market exchange [8]. Reciprocity includes the transfer of goods through
gifts with the obligation to provide returns in non-hierarchical relationships; redistribution
indicates the transfer of goods through the collection and refund of taxes based on the
centrality of power; and market exchange represents the equivalent transfer of goods based
on money prices in the market. In other words, reciprocity is a non-equivalent exchange

Entropy 2023, 25, 224. https://doi.org/10.3390/e25020224 https://www.mdpi.com/journal/entropy12



Entropy 2023, 25, 224

with the obligation to return, market is an equivalent exchange, and redistribution is an
equivalent exchange coordinated by a power center.

The anthropologist D. Graeber has presented baseline communism, exchange, and
hierarchy as the three moral principles of economic relations [9]. Baseline communism is
a mutual-aid human relationship wherein each person contributes based on their ability
and is provided a return according to need; exchange is a process toward equivalence, an
inhuman relationship that can be dissolved through profit and loss; and hierarchy repre-
sents a relationship bound and controlled by custom and precedent, with no tendency to
operate through reciprocity. Therefore, baseline communism is a non-equivalent exchange
without the obligation to return, exchange is an exactly equivalent exchange, and hierarchy
is a specific form of redistribution with tribute imposed on proteges and alms imposed as
the protection of a power center.

The philosopher K. Karatani has presented four modes of exchange as the various
stages of the world system [10]. Modes of exchange A, B, C, and D represent reciprocity in
civil society (gift and return), plunder and redistribution in the empire (domination and
protection), commodity exchange in the capitalist economy (money and commodities), and
restoration of the reciprocal-mutual aid relationship of A to a higher level in the world
republic idealized by Kant, respectively. Mode of exchange A is thus a non-equivalent
exchange with the obligation to return, B is a form of redistribution, C is an equivalent
exchange, and D is a non-equivalent exchange without the obligation to return.

A comparison of the three typologies above show that the following definitions
correspond with each other, as shown in Table 1: Polanyi’s reciprocity and Karatani’s
mode of exchange A with non-equivalence and return; Polanyi’s redistribution, Graeber’s
hierarchy, and Karatani’s mode of exchange B with centrality of power; Polanyi’s market
exchange, Graeber’s exchange, and Karatani’s mode of exchange C with equivalence; and
Graeber’s baseline communism and Karatani’s mode of exchange D with non-equivalence
and without return.

Table 1. Comparison of economic typologies by Polanyi, Graeber, and Karatani.

Typology Polanyi Graeber Karatani

Non-equivalent exchange
with obligation to return Reciprocity — Mode of exchange A

Redistribution
by power center Redistribution Hierarchy B

Equivalent exchange
in the market Market exchange Exchange C

Non-equivalent exchange
without obligation to return — Baseline communism D

The contemporary capitalist economy and social security protections comprise a
hybrid of equivalent market exchange (C) and redistribution by power center (B). In
contrast, alternatives to the capitalist economy can be considered as a mutual-aid baseline
communism and mode of exchange D, which sublimates mode of exchange A. Therefore,
it is necessary to identify whether a hybrid of equivalent exchange and redistribution
(B and C) or that of a mutual-aid non-equivalent exchange without obligation to return
(D) would be preferable to suppress wealth inequality. This is also to clarify whether
progressive capital taxation (a hybrid of B and C), as proposed by economist T. Piketty
based on the famous inequality r (the rate of return on capital) > g (the growth rate of
income) [11], or dynamic equality (similar to D), which forces the wealthy to have “skin in
the game” themselves, as proposed by philosopher N.N. Taleb instead of a power-centered
redistributive system [12], is preferable.

Econophysics uses a statistical, physics-based approach for examining wealth ex-
change and distribution and the mechanisms of redistribution (see, for example, the
comprehensive reviews by Chakrabarti A. S. and Chakrabarti B. K., Rosser, and Ribeiro,
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respectively [13–15]). Champernowne explained Pareto’s law based on time series changes
in income distribution through stochastic processes [16]. Angle, writing from a sociolo-
gist’s standpoint, showed that the gamma distribution arises through economic agents’
stochastic processes [17]. Furthermore, Dragulescu and Yakovenko illustrated that the
monetary distribution follows an exponential Boltzmann–Gibbs distribution based on the
analogy of energy conservation [18], and Chakraborti and Hayes demonstrated that a delta
distribution arises when applying a model of random wealth transfer to a model of the
poor and the wealthy, based on the analogy of kinetic energy exchange in collisions of ideal
gas particles [19,20].

Chatterjee and Chakrabarti extended these models and showed that an exponential
distribution can be obtained using a model in which wealth is randomly divided among
agents [21]. Furthermore, Chakraborti and Chakrabarti indicated that gamma and power
distributions can be obtained using a model in which agents follow a non-equivalent ex-
change, except for savings [22]. Kato et al. showed that a delta distribution can be obtained
using a model in which wealth is exchanged equivalently according to the poor [23]. In
addition, Guala used a non-equivalent exchange model combining exchange and tax redis-
tribution for obtaining exponential and gamma distributions based on the tax rate [24], and
Chakrabarti A. S. and Chakrabarti B. K. used a model combining non-equivalent exchange
and redistribution by insurance to obtain insurance-rate-based exponential, gamma, and
delta distributions [25].

Furthermore, Kato and Hiroi used a non-equivalent exchange model in which the
wealthy contribute surplus stock to obtain delta- and gamma-like distributions based on
the contribution rate; they showed that the contribution of surplus stock by the wealthy is
necessary for activating economic flow and reducing inequality [26]. Kato further used an
exchange model combining interest, profit and loss, and redistribution to obtain delta- and
gamma-like distributions and demonstrated that the prohibition of interest, fair distribution
of profit and loss, and redistribution based upon the quintile axiom in welfare economics
are required for reducing inequality [27].

Elsewhere, Iglesias showed that inequality, as measured by the Gini index, is dramat-
ically reduced by externally modeling the collection of a tax proportional to the wealth
difference from local or global agents around the poorest agent and the redistribution of
the tax to the poorest agent [28]. Moreover, Lima et al. showed that a combination of
win/lose equivalent transactions based on the wealth of the poor, power-law taxes that are
more burdensome on the wealthy, and tax exemptions for the poor can result in bimodal
or flat wealth distributions, and that tax exemptions do not necessarily reduce inequality,
as assessed using the Gini index [29]. These Iglesias and Lima models are effectively
non-equivalent exchanges, since each exchange is taxed according to wealth.

The above-mentioned studies do not use models that combine an equivalent exchange
with a redistribution separated from it by a certain time period, however. In this study, I
aim to reconstruct an exchange model that represents a hybrid of equivalent exchange and
redistribution (modes of exchange B and C) and a mutual-aid non-equivalent exchange
without obligation to return (mode D) based on the above-mentioned exchange model of
econophysics. I also compare redistribution and mutual aid in terms of wealth distribution,
inequality, and economic flow to provide guidelines for alternative capitalism. This study
is novel in that it compares redistribution with mutual-aid non-equivalent exchange. Fur-
thermore, it describes new relationships between the following phenomena: economic flow
and inequality; wealth transfer, time period, and redistribution; and surplus contribution
of the wealthy, saving, and mutual aid. Based on the comparison, I provide new insights
into alternatives to the capitalist economy.

In the present model (hybrid of equivalent exchange and redistribution), I use the
equivalent exchange model of Kato et al. [23] to represent, in combination, Polanyi’s market
exchange, Graeber’s exchange, and Karatani’s mode of exchange C, and Kato’s redistribu-
tion model [27] to represent, combinedly, Polanyi’s redistribution, Graeber’s hierarchy, and
Karatani’s mode of exchange B. To model mutual-aid non-equivalent exchange, I adopt
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Kato and Hiroi’s surplus stock contribution model [26] to represent Graeber’s baseline com-
munism and Karatani’s mode of exchange D, repositioning the surplus stock contribution
of the wealthy as a mutual aid without the obligation of return.

The remainder of this paper is organized as follows. Section 2 presents models of
equivalent exchange and redistribution and mutual-aid non-equivalent exchange models,
as well as the methods for calculating the Gini index and total exchange to assess wealth
inequality and economic flow. Section 3 compares the simulation results of wealth distribu-
tions with the Gini index and total exchange calculations for the two models to illustrate
their relationship. Section 4 examines the contemporary significance of mutual aid for
redistribution considering these results and presents discussions on the nature of mutual
aid for alternatives to the capitalist economy. Section 5 presents the key conclusions and
future challenges.

2. Methods

2.1. Exchange Models

Figure 1 visualizes different exchange models that can be used to measure and under-
stand inequality, to be explained in detail below.

Figure 1. Exchange models: (a) basic exchange model; (b) equivalent exchange model (EX) with
redistribution rate ξ and time period tp; and (c) non-equivalent exchange model (NX) with surplus
contribution rate γ. mi and mj represent the wealth of agents i and j, respectively, at times t, t + 1
and t + Δ. λ represents the common savings rate, and ε represents the random division probability.

2.1.1. Basic Exchange Model

First, I present the basic wealth exchange model proposed by Chakraborti and
Chakrabarti [22]. Two agents i, j (= 1, 2, · · · , N) are selected randomly from among
N economic agents. Let the wealth of agents i and j at time t be mi(t) and mj(t), respec-
tively, with a common saving rate λ for both. Figure 1a shows that the two agents i and
j save part of their wealth at time t with a savings rate λ and exchange the remaining
wealth (1 − λ)·(mi(t) + mj(t)

)
, excluding savings, with a random division probability ε,

which is a uniform random number defined in the range 0 ≤ ε ≤ 1. This basic model is a
non-equivalent exchange model wherein the poor and the wealthy offer all their wealth
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(except their savings) in exchange. The wealth mi(t + 1) and mj(t + 1) of the two agents i
and j, respectively, at time t + 1 are expressed as

mi(t + 1) = λ·mi(t) + ε·(1 − λ)·(mi(t) + mj(t)
)
; (1)

mj(t + 1) = λ·mj(t) + (1 − ε)·(1 − λ)·(mi(t) + mj(t)
)
. (2)

2.1.2. Equivalent Exchange Model

The equivalent exchange model that matches the wealth of the poor (hereinafter, the
EX model) proposed by Kato et al. [23] is based on the non-equivalent exchange model,
as presented in Equations (1) and (2). As indicated in Figure 1b, the EX model determines
the amount of exchange based on the wealth Min

(
mi(t), mj(t)

)
of the poorer of the two

agents, i and j. The exchange amount presented by the wealthy and the poor is exchanged
with a random division probability ε, which is a uniform random number in the range
0 ≤ ε ≤ 1. Wealth mi(t + 1) and mj(t + 1) at time t + 1 are expressed as

min = Min
(
mi(t), mj(t)

)
, (3)

mi(t + 1) = mi(t)− (1 − λ)·min + 2·ε·(1 − λ)·min; (4)

mj(t + 1) = mj(t)− (1 − λ)·min + 2·(1 − ε)·(1 − λ)·min. (5)

Repeating the exchange process in the EX model yields a delta distribution in which
all wealth is concentrated in one agent’s hands, as shown in the literature [23]. Furthermore,
in the EX model, redistribution is newly combined with the equivalent exchange shown
in Equations (3)–(5). For the redistribution, I use the model proposed by Kato [27]. In
this model, the wealth transfer rate ξ and the time period tp for redistribution are set,
and N agents simultaneously distribute the wealth ξ·mi(t) corresponding to the transfer
rate ξ to all others equally in every period tp (Figure 1b). This is because establishing an
average period and an average amount of redistribution when assessing the effectiveness
of redistribution in reducing inequality is considered sufficient. The wealth mi(t + Δ) of
agent i at time t + Δ immediately after period tp is expressed as

mi(t + Δ) = (1 − ξ)·mi(t) + ξ·∑j �=i mj(t)
N − 1

. (6)

2.1.3. Non-Equivalent Exchange Model

I use the model proposed by Kato and Hiroi [26] as a mutual-aid non-equivalent
exchange model without obligation to return (hereafter, the NX model). The NX model
is a compromise between the non-equivalent and equivalent exchange models presented
in Equations (1)–(5), respectively. In the first, the wealthy contribute all surplus wealth
except savings, which is not realistic in exchange, that is, economic transactions. In the
second, the wealthy only contribute wealth equivalent to that of the poor; in the absence
of redistribution, extreme inequality, such as a delta distribution, is likely. Thus, Kato and
Hiroi set up a model in which the wealthy contribute a portion of their surplus wealth over
that of the poor to control inequality to a practical extent.

As shown in Figure 1c, in the NX model, the wealth of the poor and the wealth differ-
ence between the poor and wealthy are min = Min

(
mi(t), mj(t)

)
and δ =

∣∣mi(t)− mj(t)
∣∣,

respectively; the poor take the surplus wealth (1 − λ)·min as the exchange amount. The
wealthy’s exchange amount is the wealth (1 − λ)·(min + γ·δ); this is the sum of the poor’s
surplus wealth (1 − λ)·min and the wealth (1 − λ)·γ·δ, which amounts to the wealthy’s
surplus wealth (1 − λ)·max less (1 − λ)·min multiplied by the surplus contribution rate γ.

The poor and wealthy then exchange the amounts mutually proposed with a random
division probability ε, which is a uniform random number defined in the range 0 ≤ ε ≤ 1.
Graeber’s baseline communism is a mutual-aid relationship in which each person con-
tributes based on their ability and each person is given according to their need, without
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obligation to return. Although the contribution of surplus wealth from the wealthy to the
poor inherently varies based on need, the surplus contribution rate γ is set as a constant
parameter to observe the general trends. The wealth mi(t + 1) and mj(t + 1) of two agents
i and j, respectively, are expressed as

min = Min
(
mi(t), mj(t)

)
, (7)

δ =
∣∣mi(t)− mj(t)

∣∣, (8)

i f mi(t + 1) ≤ mj(t + 1),

mi(t + 1) = mi(t)− (1 − λ)·min+ε·(1 − λ)·(2·min + γ·δ); (9)

mj(t + 1) = mj(t)− (1 − λ)·(min + γ·δ) + (1 − ε)·(1 − λ)(2·min + γ·δ). (10)

i f mi(t + 1) > mj(t + 1),

mi(t + 1) = mi(t)− (1 − λ)·(min + γ·δ) + ε·(1 − λ)·(2·min + γ·δ); (11)

mj(t + 1) = mj(t)− (1 − λ)·min + (1 − ε)·(1 − λ)·(2·min + γ·δ). (12)

The NX model equals the non-equivalent exchange model shown in Equations (1) and (2)
when the surplus contribution rate γ = 1 and the equivalent exchange model shown in
Equations (3)–(5) when γ = 0.

2.2. Evaluation Indices
2.2.1. Gini Index

The Gini index g, used as a parameter for evaluating wealth inequality [30], is ob-
tained by drawing the Lorenz curve and an equal distribution line [31]. Various proposed
inequality indices are calculated from Lorenz curves [32], but the Gini index is used here
because it is most common. Mathematically, the wealth mi(t) of the N agents at time t is
ordered from the smallest to the largest; the k-th element in the ordered list Sort(mi(t)) is
denoted by rk(t), and the Gini index g is calculated as

rk(t) ∈ Sort(mi(t)), (13)

g =
2·∑N

k=1 k·rk(t)
N·∑N

k=1 rk(t)
− N + 1

N
. (14)

When the wealth of N agents is perfectly equal (uniform distribution), the Gini index g = 0;
when all wealth is concentrated in a single agent’s hands (delta distribution), g = 1. In
other words, g ranges from 0 to 1. The greater the inequality, the larger the value of g.

2.2.2. Total Exchange

The total exchange amount f is used to evaluate economic flow [26]. The total exchange
f is the sum of the exchanges of the wealthy and poor (1 − λ)·(2·min(t) + γ·δ(t)) at time t
from time t = 1 to t = tmax.

f =
∑tmax

t=1 (1 − λ)·(2·min(t) + γ·δ(t))
2·tmax

. (15)

Furthermore, Equation (15) applies to Equations (3)–(5) if γ = 1. The denominator in
Equation (15), intended for normalization, is the total amount exchanged between the two
agents from time t = 1 to t = tmax, when the two agents exchange one amount each. The
larger the total exchange f , the more active the exchange of wealth, that is, the economic
flows are large, and the market is active.
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3. Results

I first examine wealth distributions for the EX model of equivalent exchange and
redistribution represented by Equations (3)–(6) and the NX model of non-equivalent ex-
change represented by Equations (7)–(12). Figure 2 shows a representative example of the
simulated wealth distribution results. I set a savings rate of λ = 0.25 because the average
global savings rate relative to the gross domestic product (GDP) is approximately 0.25 [33],
and a transfer rate of ξ = 0.5 in the EX model because the highest inheritance tax rate
in the Organisation for Economic Co-operation and Development (OECD) countries is
approximately 0.5 [34,35].

Figure 2. Wealth distribution. (a1) and (a2) represent EX models, and (b1) and (b2) represent NX
models. In all models, the number of agents is N = 1000, the initial values of wealth at time t = 0
are mi(0) = 1 (i = 1, 2, · · · , N), and the savings rate is λ = 0.25. In the EX model, the transfer
rate is ξ = 0.5, and the time period is tp = 104, 105. In the NX model, the surplus contribution
rate is γ = 0.1, 0.5. To determine the changes in wealth distribution, the time (number of exchange
repetitions) is t = 103, 3 × 103, 106.

A consideration of Figure 2(a1,a2) reveals that as the wealth distribution in the EX
model approaches a power distribution, a delta distribution with an increase in the redis-
tribution period tp = 104 to 105 occurs—that is, inequality increases. This implies that
some form of redistribution must be conducted because only equivalent exchange leads to
extreme inequality, as suggested by the literature [23] with respect to regional inequality. A
consideration of Figure 2(b1,b2) shows that the wealth distribution approaches a gamma-
like distribution from an exponential distribution in the NX model when the wealthy’s
surplus contribution rate increases from γ = 0.1 to 0.5, that is, the inequality narrows.
This suggests that inequality can be controlled if considerable mutual aid is provided in a
non-equivalent exchange.
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Next, I examine the change in the Gini index (inequality) g over time (number of
exchanges) t for the EX and NX models by Equations (13) and (14). Figure 3 shows the
results of these simulations.

Figure 3. Gini index on time passage. The number of agents is N = 1, 000, initial values of wealth at
time t = 0 are mi(0) = 1 (i = 1, 2, · · · , N), and the savings rate is λ = 0.25. In the EX model, the
transfer rate is ξ = 0 and 0.5, and the time period is tp = 103, 104, 105. In the NX model, the surplus
contribution rate is γ = 0, 0.1, 0.5, 1.

In Figure 3, cases ξ = 0 (i.e., no redistribution in the EX model) and γ = 0 (i.e., no
mutual aid in the NX model) are identical; as time t passes, the Gini index approaches
g = 1, and all wealth is concentrated in one agent’s hands. In other words, in an equivalent
market exchange, inequality can only be maximized. In the EX model with ξ = 0.5, the
redistribution period tp = 105 to 103 is shortened. In the NX model, the Gini index g
decreases and inequality is suppressed when the rate of surplus contribution from the
rich to the poor increases from γ = 0 to γ = 0.5; however, γ = 0.5 and γ = 1 show little
difference. The reason the Gini index saturates with respect to γ is presumably because
the shape of the Lorenz curve itself, which calculates the Gini index g, does not change,
although the wealthy and poor switch as γ increases, as discussed in the literature [26]
regarding the rank correlation coefficient.

In Figures 2 and 3, the savings rate λ = 0.25 is held constant. Subsequently, I examine
the Gini index (inequality) g by Equations (13) and (14) and total exchange (economic flow)
f by Equation (15) for the savings rate λ and the redistribution parameter ξ/tp × 10−3 of
the EX model, and for the savings rate λ and the surplus contribution rate (mutual aid) γ
of the NX model. The redistribution parameter ξ/tp × 10−3 is introduced because the same
inequality suppression effect is expected for an increase in the transfer rate ξ and a decrease
in the period tp; the ×10−3 is used for adjusting the computational orders of magnitude.
Figure 4 shows the results of these simulations. The time (number of exchanges) t is set to
106, at which the Gini index g is almost stable, as shown in Figure 3.

Figure 4. Three-dimensional graphs of Gini index g and total exchange f for saving rate λ and
redistribution parameter ξ/tp × 10−3 or mutual aid γ: (a) EX model and (b) NX model.
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The consideration of Figure 4a,b reveals the same trend for both EX and NX models.
In the EX model, the larger the savings rate λ, the smaller is the Gini index g (inequality is
suppressed) and the smaller is the total exchange f (economic flow is reduced). Further-
more, the larger the redistribution parameter ξ/tp × 10−3, the smaller is the g (inequality is
suppressed) but the larger is the total exchange f (economic flow is activated). Figure 4b
shows that in the NX model, the larger the savings rate λ, the smaller are the g (inequality
is suppressed) and f (economic flow becomes stagnant). Moreover, the larger the mutual
aid γ, the smaller is the g (inequality is suppressed) and the larger is the f (economic flow
is activated). In other words, inequality g and economic flows f are inversely related with
respect to the redistribution parameter ξ/tp × 10−3 in the EX model and mutual aid γ in
the NX model. As specific values are difficult to read in Figure 4, I examine the Gini index g
for the redistribution parameter ξ/tp × 10−3 of the EX model and the surplus contribution
rate (mutual aid) γ of the NX model. Figure 5 shows the results of these simulations based
on Figures 2–4.

 
Figure 5. Relationship of Gini index g for the redistribution parameter ξ/tp × 10−3 or mutual aid γ:
(a) EX model and (b) NX model. In both models, dotted lines represent approximate curves.

Figure 5a,b shows that, as in Figure 4, the larger the redistribution parameter ξ/tp × 10−3

in the EX model and the mutual aid γ in the NX model, the smaller is the Gini index
g (inequality is reduced). In addition, both plots are accurately approximated by the
saturation curve (dotted line in the figure) because the coefficient of determination R2

is sufficiently large. At a global average savings rate λ = 0.25 [33], the redistribution
parameter and the mutual aid must be as follows: ξ/tp × 10−3 ≥ 0.2 in the EX model and
γ ≥ 0.2 in the NX model, respectively, to avoid exceeding the warning level g = 0.4 [3]. In
other words, Figure 5 suggests that without a certain degree of redistribution or mutual aid,
social unrest and disturbance will be triggered and Goal 10 of the Sustainable Development
Goals to reduce wealth inequality [6] will not be achieved.

Finally, based on the inversely proportional relationship between the Gini index g
and the total exchange f in Figure 4, I introduce the parameter f /g. Then, I examine the
relationship of f /g to the redistribution parameter ξ/tp × 10−3 in the EX model and to
the parameter (1 − λ)·γ, comprising the savings rate λ and the surplus contribution rate
(mutual aid) γ, in the NX model. I introduce the parameter (1 − λ)·γ in the NX model
because reducing the savings rate λ and increasing the surplus contribution rate γ are
believed to increase the unitary exchange and mutual aid per exchange. In contrast, in the
EX model, the transfer rate ξ is multiplied by the entire wealth, including savings, in every
period tp; thus, the effect of redistribution is considered independent of the savings rate λ.
Figure 6 shows these simulation results.
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Figure 6. Relationship of the f /g parameter with the redistribution parameter ξ/tp × 10−3, or
mutual aid (1 − λ)·γ. (a) EX model and (b) NX model. In both models, dotted lines represent
approximate curves.

Figure 6a,b show that the parameter f /g increases as ξ/tp × 10−3 and (1 − λ)·γ
are increased for the EX and NX models, respectively. Furthermore, both plots are
accurately approximated by the saturation curves (dotted lines in the figure) because
the coefficients of determination R2 are larger than 0.9. The EX and NX models yield
f /g ∼ 0.241 ln ξ/tp × 10−3 + 1.48 (R2 = 0.779) and f /g ∼ 0.403 ln(1 − λ)·γ + 1.92

(R2 = 0.937), respectively, when approximated by logarithmic curves. The NX model
results indicate that the logarithmic curves can be approximated with adequate accuracy,
which is consistent with the view in the literature [26]. In Figure 6, I compare the EX and
NX models using saturation curves that can be accurately approximated because both
have sufficiently large R2. It is safe to say that both approximations are isomorphic and
that holds.

f
g

∼ 2
(

1 − e−5x
)

, (16)

x ∼ ξ

tp × 10−3 ∼ (1 − λ)·γ. (17)

Therefore, the redistribution parameter ξ/tp × 10−3 in an equivalent exchange and the
mutual aid (1 − λ)·γ that considers savings in a non-equivalent exchange yield roughly
the same result with respect to the parameter f /g. The approximate equations shown in
Figure 6 and Equations (16) and (17) imply that if the right side has a constant value, the Gini
index (inequality) g and the total exchange (economic flow) f on the left side are inversely
proportional, that is, activating economic flow will increase inequality. Additionally, it
is necessary to increase ξ/tp × 10−3 and (1 − λ)·γ on the right side for the EX and NX
models, respectively, to increase f /g on the left side (i.e., to increase the total exchange f
while decreasing the Gini index g). Moreover, redistribution must either occur with a high
transfer rate ξ and a short period tp or with a low saving rate λ and considerable mutual
aid γ to simultaneously reduce inequality and stimulate economic flow.

The numerical values presented in Figure 6a indicate that the redistribution parameters
ξ/tp × 10−3 ∼ 1 and f /g ∼ 2 are at the saturation point of the EX model. At this point,
the periods tp ∼ 1000, tp ∼ 800, and tp ∼ 500 should be set for transfer rates ξ ∼ 1,
ξ ∼ 0.8, and ξ ∼ 0.5, respectively. Given the results in Figure 3, this is tantamount to
redistributing wealth before wealth distribution occurs, which is not realistic. If the target
is ξ/tp × 10−3 ∼ 0.2, where f /g does not drop considerably on the saturation curve,
tp ∼ 5000 for ξ ∼ 1, tp ∼ 3000 for ξ ∼ 0.6, and tp ∼ 2000 for ξ ∼ 0.4; this seems feasible
within the range of the latter two, that is, ξ ∼ 0.5 and tp ∼ 2500.
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Based on the numerical values presented in Figure 6b, the saturation point of the NX
model is (1 − λ)·γ = 1 and f /g ∼ 2. The savings rate λ = 0 and the surplus contribution
rate γ = 1 should be set at this point; however, it is unrealistic for the wealthy to always
contribute the entirety of their surplus wealth, and for the poor and the wealthy to always
save no wealth, respectively. The latter is because they must save to maintain long-term
future reserves and meet contingent expenditures attributable to disasters. If the target is
(1 − λ)·γ ∼ 0.2, where f /g does not drop considerably on the saturation curve, γ ∼ 1 for
λ ∼ 0.8, γ ∼ 0.33 for λ ∼ 0.4, and γ ∼ 0.25 for λ ∼ 0.2; it would be feasible to achieve
λ ∼ 0.3 and γ ∼ 0.28 within the range of the last two considering the global average
savings rate of 0.25 [33].

Figure 7 shows the relationship between redistribution and mutual aid based on
Equations (16) and (17). The circle represents the tentative target. Lengthening the period
of redistribution from tp = 2500 to 5000 results in a transfer ratio ξ ∼ 1, that is, transferring
all assets and further lengthening the period would no longer maintain the same f /g as the
mutual aid, and this would lead to economic stagnation or widening inequality. Conversely,
if the redistribution period is shortened from tp = 2500 to 1, 250, 625, the transfer rate
decreases to ξ ∼0.25, 0.125, which necessitates frequent redistributions.

Figure 7. Relationship between redistribution parameter ξ and mutual aid γ. The savings rate is
λ = 0.25, and the time period of redistribution is tp = 625, 1250, 2500, 5000.

4. Discussion

This study compared a model combining equivalent exchange and redistribution
(Polanyi’s market exchange, Graeber’s exchange, and Karatani’s mode of exchange C com-
bined with Polanyi’s redistribution, Graeber’s hierarchy, and Karatani’s mode of exchange
B) and a mutual-aid non-equivalent exchange model (Graeber’s baseline communism and
Karatani’s mode of exchange D). This comparison reveals that both produce the same
computational interpretation of the results for wealth inequality and economic flow. Re-
ducing inequality and stimulating economic flow requires either power-centered collection
and redistribution at a high tax rate and frequency in an equivalent market exchange or a
mutual-aid non-equivalent exchange without obligation of return, in which savings are
kept low and the wealthy’s rate of surplus wealth contribution is high.

What does the computational similarity of authoritative redistribution and non-
authoritative mutual aid imply? With respect to time t in these exchange models, a
human lifetime would be considered equivalent to approximately 104 order of magni-
tude (~365 days × 100 years). Therefore, a redistribution target of ξ/tp × 10−3 ∼ 0.2
would mean that a tax of ~50% is levied once every few decades on all assets and not the
income. The maximum inheritance tax rate in OECD countries (i.e., once in a lifetime) is
50% [34,35], which means that collection and redistribution should be conducted more
frequently. Expenses to the government are ~30% of GDP [36], and the collection and
redistribution of taxes by the power center is extra costly; furthermore, the institutional
design creates redistribution bias, that is, inequality.
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In contrast, a mutual aid target of (1 − λ)·γ ∼ 0.2 implies that the wealthy voluntarily
give ~30% of their surplus stock to the poor in a single exchange, without obligation to
return, assuming an average saving rate λ = 0.25 [33]. Although a prescribed surplus
contribution rate γ is specified when modeling a mutual-aid non-equivalent exchange, the
original baseline communism or mode of exchange D only requires that mutual aid be
provided as required. In addition, even if redistribution and mutual aid are “computa-
tionally” similar, they are “qualitatively” different in that redistribution is coercion-based
and driven by the centrality of power, whereas mutual aid is a voluntary choice based
on non-centrism and morality. Extra-personal altruism and compassion, as opposed to
coercion, are believed to result in wellbeing [37]. Therefore, it is evident that a mutual-aid
non-equivalent exchange without obligation to return (the alternative human economy) is
preferable to redistribution by power centers in an equivalent market exchange (capitalist
economy and social security).

Here, examining the mechanism of the Islamic economy is instructive. As a legal
system, the Islamic economy encompasses politics, economics, and society and prohibits
interest (riba) and speculation (gharar), which lead to inequality. Furthermore, it also
successfully balances selfishness as the pursuit of self-interest through joint ventures
(mudaraba), consensual contracts (murabaha), and futures trading (salam) and altruism as
mutual aid through donation (waqf ), alms (sadaqah), and charity (zakat) in an equal and
non-centered community (ummah) under God [38–40]. Redistribution through various
institutions according to the Islamic legal system, rather than coercion by power centers, is
more like a non-equivalent exchange of mutual aid.

According to Graeber, history over the past five millennia has alternated between
cycles of bullion-based monetary economies and virtual money-based credit economies [9].
The monetary economic period is generally characterized by interest-bearing debt, war,
and slavery, whereas the credit economic period has witnessed a morally peaceful society.
In the Middle Ages, a credit economy era that predated the modern era, moral and finan-
cial innovations emerged from the Islamic world. As the modern era transitions from a
monetary economy to a credit economy, the Islamic economy could, once again, provide an
alternative to the capitalist economy [41–43].

Kato compares the Islamic and capitalist economies from the econophysics perspective;
he proposes a return to a “real transaction-based economy” rooted in nature and local
communities, the promotion of a “face-to-face association economy”, and the revival of an
“economy embedded in the morality of mutual aid” as guidelines for a credit economy as
an alternative to capitalism [27]. He then states that the challenge in the non-Islamic world
lies not in redistribution through taxes collected under centralized power but in mutual aid
through one’s free choice under the community’s non-centrality and in the rebuilding of
the morality of mutual aid, that is, without a specific religion.

These guidelines can be considered to be oriented toward anarchism. Anarchism is an
ideology wherein individual freedom and communal solidarity are not contradictory. It
seeks to build a free and equal society through mutual agreement. Graeber and Grubacic
define anarchism in terms of four qualities: non-centrality, voluntary association, mutual
aid, and the network model [44]. Graeber’s baseline communism and Karatani’s mode of
exchange D, which are represented in this non-equivalent exchange model, are oriented
toward anarchism as they both aim for a human economy in which free exchange occurs
while incorporating the morality of mutual aid [45].

Deguchi, writing from the perspective of a philosopher, describes the East Asian
view of the self, “Self-as-We”, which is connected to the lineage of Laozhuang and Zen
thought, as opposed to the Western view of self, “Self-as-I” [46–48]. According to Deguchi,
human beings have a “fundamental incapability” to live alone, and “Self-as-We” is a
network of multi-agents—including “I”—who entrust themselves to each other. The
“mixed-life society” in which “we” live is one in which different self-nomadic people
interact, mingle, and remain in contact, recognizing each other’s “fundamental incapability”
and sublimating it into solidarity. Deguchi’s ideology also underlies Graeber’s baseline
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communism, Karatani’s mode D of exchange, and the face-to-face association economy
based on real transactions in the morality of mutual aid.

Another perspective is the triangle “state (public agencies)–community–market (private
firms)” presented by Pestoff, writing as a political scientist [49]; the “public (state)–common
(community)–private (market)” framework presented by policy scholar Y. Hiroi [50,51];
and the three pillars “state, community, market” presented by economist R. Rajan [52].
The state corresponds to Polanyi’s redistribution, Graeber’s hierarchy, and Karatani’s
mode of exchange B; the community corresponds to Polanyi’s reciprocity and Karatani’s
mode of exchange A; and the market corresponds to Polanyi’s market exchange, Graeber’s
exchange, and Karatani’s mode of exchange C. Thus, Pestoff’s association at the center
of the triangle, Hiroi’s synthesis of “public–community–private” and the departure from
the local level, and the balance between Rajan’s three pillars is oriented toward Graeber’s
baseline communism and Karatani’s mode of exchange D.

In recent work, Karatani notes that the mode of exchange D has emerged repeatedly
through the return of mode of exchange A (reciprocity and return) at a higher level, not as
a world religion such as a monotheistic religion supporting the empire but as a universal
religion emerging on the periphery in defiance of the empire. He also states that because of
the crises of war and depression induced by modes of exchange B (imperial plunder and
redistribution) and C (money and commodity exchange), mode of exchange D will arrive
“from beyond” human will and planning [53].

Historian W. Sheidel states that human history has witnessed wars, revolutions, col-
lapse of states, and epidemics, decreasing economic inequality [54]. Currently, the world is
suffering from the COVID-19 pandemic, war in Ukraine, and natural disasters and conflicts
caused by the effects of global warming. Although these crises are unfortunate, they may
hasten the arrival of mode of exchange D and facilitate the transition from a capitalist
economy to the alternatives suggested by Graeber and Karatani.

As an aside, economist T. Piketty proposes progressive capital taxation based on the
famous inequality r > g (the rate of return on capital > the growth rate of income) [11].
In terms of this study, this would correspond to imposing a progressive transfer rate on
the wealthy in a combination of modes of exchange B and C. Furthermore, philosopher
N.N. Taleb states that decentralization towards those who have “skin in the game” rather
than a redistributive institution constituted by power centers will mitigate the inequality-
generating asymmetry. He also formulates the idea that, to make society more equal, the
wealthy should have “skin in the game” and risk falling out of the wealthy class (i.e.,
dynamic ergodicity should be restored) [12]. In this study’s context, this would encourage
the wealthy’s surplus stock contribution, which may be said to be oriented toward the
baseline communism and mode of exchange D.

This study is limited in that it compares general trends in redistribution and mutual
aid, that the same transfer rate ξ and period tp is set for all agents in the EX model, and that
the same surplus contribution rate γ is set for all agents in the NX model. Future analytical
studies should be conducted in more detail, for example, by setting the transfer rate ξ and
period tp in the EX model based on various social security programs and by choosing the
surplus contribution rate γ in the NX model according to the ability of the wealthy and the
needs of the poor. Moreover, empirical studies are needed that use real-world evidence to
examine the relationship between economic flow and Gini index with respect to tax rate
and frequency for the EX model, and with respect to stock and surplus contribution of the
wealthy for the NX model.

In addition, this study uses a conservative model for aggregate wealth that deals only
with exchange. Therefore, it does not deal with production and consumption, or interest and
profit/loss in the real-world economy [15]. With respect to interest and profit/loss, there
is a non-conservative model introduced by Kato in comparison of Islamic and capitalist
economies [27]. In a future study, the redistribution or mutual aid of interest and profit/loss
for the wealthy and the poor can be considered in such a non-conservative model.
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It should be added that, although the present study used a model based on the kinetic
energy exchange analogy, there is another model that uses potential function to compute
probability distributions for income and expenditure [55], and a model that uses population
dynamics to compute time developments for growth and inequality [56]. Future research
could thus include such models that take into account the finiteness of earth’s resources and
the sustainability of economy. Such non-conservative models are subject to the constraint of
resource limits, however, and eventually researchers may wish to revert to a conservative
model that is primarily based on exchange.

5. Conclusions

In this study, I develop econophysics-based exchange models for a hybrid of a market-
based equivalent exchange (EX) and power-centered redistribution and a mutual-aid
non-equivalent exchange (NX). I also compare redistribution and mutual aid in terms of
wealth inequality and economic flow.

Simulations conducted using these exchange models to evaluate the Gini index (in-
equality) g and total exchange (economic flow) f show that in both the EX and NX models,
the larger the savings rate λ, the more the inequality is suppressed and economic flows
stagnate. Furthermore, the larger the synthetic parameters ξ/tp × 10−3 and (1 − λ)·γ in
the EX and NX models, respectively, the more the inequality is suppressed and economic
flows are activated. I show that the EX and NX models have the same saturated curvilinear
approximation equations f /g ∼ 2·(1 − e−5x), x ∼ ξ/tp × 10−3 ∼ (1 − λ)·γ for these
relationships. This approximate expression indicates that inequality and economic flows
are inversely proportional and that the parameter x must be large to achieve both.

Although the EX and NX models are “computationally” isomorphic approximations,
the NX model of mutual-aid non-equivalent exchange, is “qualitatively” preferable to the
EX model, a hybrid of market equivalence exchange and power redistribution. This is
indicative of Graeber’s baseline communism, Karatani’s mode D of exchange, a face-to-face
association economy based on real transactions as learned from the Islamic economy, and
the ideals of anarchism.

Notwithstanding the fact that mutual aid is “qualitatively” preferable to redistribution,
there remain issues that are beyond the scope of this study’s econophysics-based approach:
the reconstruction of a moral system in the non-Islamic world that is not based on any
particular religion; the realization of a “mixed-life society” of “We” with “fundamental
incapability”; and the incorporation of Graeber’s stated capitalist economic alternative
and Karatani’s mode of exchange D. Future social practice activities based on philosophy,
economics, and sociology should focus on addressing these issues.

Specifically, in order to shift steadily from redistribution toward mutual aid—that is,
toward Pestoff’s association and Hiroi’s synthesis of “public-community-private” described
in the Discussion section—mutual-aid communities could be built through cooperatives [57]
and social enterprises [58,59] using environmental, social, and governance investing [60]
as well as social impact bonds [61]. Such cooperatives and social enterprises will require
governmental policies that provide them with preferential taxation and financial resources.
They will also need to be administrated in a way that allows for the delegation of authority
and lateral support. Still, though the progress toward social innovation will always be
confronted by various social challenges [62], we must nevertheless reduce inequalities.
This may be achieved in the future through the fusion of human society and information
systems, such as in platform democracy [63], platform cooperatives [64], and cyber-human
social cooperating systems [65].
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Abstract: This paper starts by presenting an empirical finding in the U.S. stock market: Between 2001
and 2021, high productivity was achieved when the Shannon evenness—measuring the inverse of
concentration—dropped. Conversely, when the Shannon evenness soared, productivity plunged.
The same inverse relationship between evenness and productivity has been observed in several
ecosystems. This suggests explaining this result by adopting the business ecosystem perspective,
i.e., regarding the tangle of interactions between companies as an ecological network, in which
companies play the role of species. A useful strategy to model such ecological communities is through
ensembles of synthetic communities of pairwise interacting species, whose dynamics is described
by the Lotka–Volterra generalized equations. Each community is specified by a random interaction
matrix whose elements are drawn from a uniform distribution centered around 0. It is shown that the
inverse relationship between productivity and evenness can be generated by varying the strength
of the interaction between companies. When the strength increases, productivity increases and
simultaneously the market evenness decreases. Conversely, when the strength decreases, productivity
decreases and evenness increases. This strength can be interpreted as reflecting the looseness of
monetary policy, thus providing a link between interest rates and market structure.

Keywords: business ecosystem; population dynamics; Shannon evenness; co-evolution in markets

1. Introduction

Neoclassical economics, which assumes investors behave with rational expectations
in order to maintain an efficient market, is frequently at odds to explain the dynamics
of markets. Instead, the agents in markets are not perfectly rational, but rather they are
boundedly rational satisfiers [1]. The idiosyncrasies in human behavior make financial
markets depart from the assumption of informational efficiency leading for example to
excess volatility, i.e., financial markets change more than rational measures of value would
suggest [2].

An alternative viewpoint is to regard financial markets as ecosystems with a tangle of
interactions between companies, investors, clients, etc. Indeed, according to [3,4], compa-
nies are engaged in “competition for differential advantage” which gives firms a position
in the marketplace known as an “ecological niche” [3]. Companies survive and grow in
the marketplace depending on the actions and reactions of agents permanently adjusting
their behavior to match environmental opportunities. Such an ongoing process is similar to
the one that operates in ecological systems competing for scarce resources [5–7]. That is, a
process of co-evolution, shared by markets and ecosystems, in which interdependent species
or companies evolve in an endless reciprocal cycle—such that changes in species A set the
stage for the natural selection of changes in species B—and vice versa [8]. Co-evolution
occurs in different forms, antagonistic, e.g., predators and their prey, mutually compet-
itive, e.g., different species sharing the same trophic level, or cooperative co-evolution,
e.g., flowering plants and their pollinators [9].

Moore [10] introduced biological ecology as a metaphor for strategic thinking about
business co-evolution and radically new cooperative/competitive relationships. In a
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similar vein, Farmer and Lo [11] regard markets as co-evolving ecologies of different
strategies pursued by companies. These strategies are analogous to a biological species,
and the amount of funds deployed by traders following a given strategy is analogous
to the population of that species [11]. As the market evolves, the market shares of the
inefficient companies decrease while the companies with greatest fitness capture market
share. Therefore, companies often play the same role of selection units that species play
in ecosystems.

The general goal in this paper is to use the above analogy between markets and
ecosystems to better understand the forces that structure markets and determine their
productivity. This includes the market responses to external shocks (analogous to envi-
ronmental perturbations), such as expansive economic policies (analogous to nutrient
enrichment), and the susceptibility of companies of being displaced by newcomer compa-
nies (species turnover in the case of ecosystems). Furthermore, the above analogy offers
an opportunity to harness the potential of applying various powerful techniques from
theoretical ecology to the fields of economics and finance. The specific primary objective
of this study is to elucidate the inverse relationship detected between productivity and
evenness within a set of firms encompassing the largest companies in the U.S. stock mar-
ket. To accomplish this, we employ a combination of empirical evidence and theoretical
modeling from ecology. Unraveling this relationship holds significant importance as it
profoundly impacts the functioning of both markets and ecosystems. In fact, this ecological
perspective allows us to use two central attributes which emerge from the co-evolution
process of species in an ecological community, namely its productivity and its species
diversity [12,13] to get insight into market dynamics. Both properties can be defined in
several different ways in ecology. Productivity has been characterized by variables that
range from direct estimates of energy flow to the ecosystem to accumulated biomass or
biomass density (per area or volume) [14,15]. A common metric is the rate of generation of
biomass in an ecosystem, usually expressed in units of mass per unit area per unit of time,
such as grams per square meter per day [16]. In the case of agricultural crops, productivity
is also commonly measured by the total weight per unit area [17], which is known as crop
yield [18]. Diversity, in turn, involves concepts ranging from simplest concept of species
richness, namely the number of species, to evenness, i.e., the measure of how similar species
are in their abundance in an environment [19]. Indeed, species diversity is often intended
as a combination of richness and evenness [20].

This study draws on and integrates elements of ecological science and economics,
which is the scientific research program of ecological economics (EE), understood as “the
relationship between ecosystems and economic systems in the broadest sense” [21]. In
addition, it is transdisciplinary and uses methods and complex systems analysis [22].

2. The Business Ecosystem Perspective: Financial Markets as Ecosystems

The business ecosystem perspective refers to a framework or approach that views
businesses and organizations as part of a larger interconnected system or ecosystem [10]. In
the business ecosystem perspective, the focus is not solely on individual firms operating in
isolation, but rather on understanding how they interact and mutually influence each other
within the broader context of the ecosystem [23–25]. It recognizes that the success and
sustainability of any given organization are influenced by the health and dynamics of the
entire ecosystem in which it operates. Key features of the business ecosystem perspective
include interconnectedness, collaborative relationships, and ecosystem dynamics. Inter-
connectedness recognizes that firms within the ecosystem are interconnected and depend
on each other for resources, capabilities, and market opportunities. Actions and changes
in one part of the ecosystem can have ripple effects on other entities within the system.
Collaborative relationships refer for example to partnerships and alliances among different
companies within the ecosystem. Through ecosystem dynamics, we understand that the
perspective acknowledges that ecosystems are dynamic and subject to various forces and
disruptions, rather than entities at equilibrium. New entrants, technological advancements,
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market shifts, or changes in regulatory environments can shape the competitive landscape
and the overall dynamics of the ecosystem [10,24].

Using the analogy between ecosystems and markets, companies can be regarded
as species and the market value (In this paper ‘market value’ is taken as synonym of
market capitalization, i.e., the number of a company’s shares outstanding multiplied by
the current price of a single share [26].) of a company as the abundance or biomass of
a species [7,11,23–25]. Therefore, as in ecology, we consider as proxy for productivity
a relative metric, corresponding to total returns—i.e., the rate of variation of the total
market value. In addition, as it is carried out in agricultural sciences, we also consider an
absolute metric, given by the total market value (analogous to crop yield). Likewise, as a
measure of diversity, the Shannon evenness [27]—aka Shannon equitability index is used. This
metric is widely used in ecology, for example, to measure the variation of the diversity of a
community with a fixed number of species [28]. Notice that, in the same way as species
evenness is highest when all species in a community have the same abundance, the market
evenness is highest when all firms have the same market share. Market evenness is the
opposite of concentration, which happens for example when a few disproportionately large
firms dominate the returns of value weighted stock market indices such as the S&P500. The
use of the concept of evenness and other diversity measures in economics was reviewed,
for example, in [29]. Additionally, a comparison of ecological and economic measures
of biodiversity was reviewed in [30]. Box 1 summarizes the correspondences between
financial markets and community ecology.

Box 1. Correspondences between financial markets and community ecology.

Financial market Community ecology Denoted by
• company ↔ species i

• market value of a company ↔ species biomass vi

• total market value ↔ total biomass (all species) V

• total market return ↔ rate of variation of the total biomass R

• market share of a company ↔ frequency of such species xi

• evenness (inverse of concentration) ↔ evenness (species diversity) E

Most natural ecological communities exist in a state of nonequilibrium where com-
petitive equilibrium is prevented by several factors such as, for example, fluctuations in
the physical and biotic environment [31]. The same happens in stock markets, where stock
prices often do not settle down for long time but are driven by factors affecting supply
and demand such as the economic environment, economic policies, market news, etc. In
nonequilibrium ecological communities, although the number of coexisting competitors
remains relatively stable, the level of diversity—measured by the evenness—varies. Indeed,
a long-standing debate in ecology is that of how species diversity relates to the productivity
of ecosystems (see for instance [32] or [33] and references therein).

Classical community ecology, developed by Lotka [34] and Volterra [35], has been the
major descriptor of species interactions in the ecological literature for almost a century.
The Lotka–Volterra generalized theory (LVGT) [36,37] rests on the assumption that species
interactions play a major role in structuring an ecological community. The Lotka–Volterra
generalized equations can be written in finite time as [37,38]:

vi(t + 1)− vi(t) = rivi(t)

(
1 +

S

∑
j=1

αijvj(t)

)
, i = 1, 2, · · · , S. (1)

where i denotes the species number; vi(t) stands for its biomass at time t and ri is the intrinsic
growth rate of the species (dimension of time−1). Thus, a central ingredient of LVGT is
the pairwise interaction matrix, αij. whose element ij quantifies the effect of species j on the

31



Entropy 2023, 25, 1029

growth of species i. The resulting variation in pairwise species interactions determines
biodiversity in a community [39], and thus it is able to yield species abundance distributions
and biodiversity as a function of species-specific interaction parameters. By analogy, one
way to approach the relationship between productivity as a function of evenness in financial
markets is through LVGT. The problem is that estimating the interaction matrix αij between
companies is far from trivial. We will come back to this problem in Section 4.

3. Empirical Analysis

3.1. Dataset

The used dataset is based on the Fortune 100 list, i.e., a list of the top 100 public
and privately held companies by revenues in the United States published by Fortune
magazine [40]. From these 100 U.S. companies we selected those 78 public firms such that
reported annual revenue and market cap from 1 January 2000 (see Table 1). Thus, the
resulting dataset consists of time series for daily closing market values for each company,
vi(t) (i =1, 2, . . . , 78), with t measured in days spanning 5536 days, from 1 January 2000
to 31 December 2021 [41]. The market value is a good firm size proxy; indeed, over the
27-year period of 1989–2015, it demonstrated providing high value relevance in predicting
future returns [42].

Table 1. The 78 companies considered in this study ordered by their market value as of 31 December
2021 [41].

Company Ticker
Market Val
(USD Bill)

Rank Sector Industry

Apple AAPL 2902 1 Technology Consumer Electronics

Microsoft MSFT 2522 2 Technology Software–
Infrastructure

Amazon AMZN 1697 3 Consumer Cyclical Internet Retail
Berkshire Hathaway BRK 662.63 4 Financial Services Insurance
JP Morgan JPM 472.51 5 Financial Services Banks
United Health Group UNH 466.21 6 Healthcare Healthcare Plans
Johnson & Johnson JNJ 450.36 7 Healthcare Drug Manufacturers
Home Depot HD 433.37 8 Consumer Cyclical Home Retail
Walmart WMT 401.35 9 Consumer Defensive Discount Stores
P&G PG 392.11 10 Consumer Defensive Household
Bank of America BAC 359.38 11 Financial Services Banks
Pfizer Inc. PFE 331.86 12 Healthcare Drug Manufacturers
The Walt Disney Company DIS 281.54 13 Comm. Services Entertainment
Cisco Systems, Inc. CSCO 267.27 14 Technology Comm. Equipment
Nike NKE 263.55 15 Consumer Cyclical Footwear and Access.

Thermo Fisher Scientific Inc. TMO 263.18 16 Healthcare Diagnosis
and Research

Exxon Mobil XOM 259.38 17 Energy Oil and Gas
The Coca-Cola Company KO 256.09 18 Consumer Defensive Beverages
Costco COST 251.74 19 Consumer Defensive Discount Stores
Abbott Laboratories ABT 248.28 20 Healthcare Medical Devices
PepsiCo, Inc. PEP 240.24 21 Consumer Defensive Beverages
Oracle ORCL 232.89 22 Technology Software–Infrastructure
Comcast CMCSA 228.16 23 Comm. Services Telecom Services
Chevron CVX 226.46 24 Energy Oil and Gas
Verizon VZ 218.12 25 Comm. Services Telecom Services
Intel Corporation INTC 209.6 26 Technology Semiconductors
QUALCOMM Incorporated QCOM 205.73 27 Technology Semiconductors
Merck & Co., Inc. MRK 193.72 28 Healthcare Drug Manufacturers
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Table 1. Cont.

Company Ticker
Market Val
(USD Bill)

Rank Sector Industry

Wells Fargo WFC 186.44 29 Financial Services Banks

Anthem UPS 186.41 30 Industrials Integrated Freight
and Logistics

Lowe’s LOW 174.15 31 Consumer Cyclical Home Retail
Morgan Stanley MS 173.96 32 Financial Services Banks
Honeywell International Inc. HON 142.79 33 Industrials Conglomerates
CVS Caremark CVS 136.38 34 Healthcare Healthcare Plans
Bristol-Myers
Squibb Company BMY 134.24 35 Healthcare Drug Manufacturers

AT&T T 132.58 36 Comm. Services Telecom Services

Raytheon Technologies Corp. RTX 128.51 37 Industrials Aerospace
and Defense

The Goldman Sachs
Group, Inc. GS 127.61 38 Financial Services Banks

American Express Company AXP 124.5 39 Financial Services Credit Services
IBM IBM 120.04 40 Technology Information Tech. Serv.
Citigroup C 119.84 41 Financial Services Banks

Boeing BA 118.56 42 Industrials Aerospace
and Defense

Target TGT 110.89 43 Consumer Defensive Discount Stores

Caterpillar Inc. CAT 110.79 44 Industrials Farm and
Heavy Constr.

Deere & Company DE 105.68 45 Industrials Farm and
Heavy Constr.

General electrics GE 103.83 46 Industrials Specialty Industr.
Machinery

3M Company MMM 101.58 47 Industrials Conglomerates

Lockheed Martin Corporation LMT 96.32 48 Industrials Aerospace and
Defense

ConocoPhillips COP 94 49 Energy Oil and Gas
Phillips 66 TJX 90.56 50 Energy Oil and Gas
Ford Motors F 85.59 51 Consumer Cyclical Auto Manufacturers
Cigna Corporation CI 74.16 52 Healthcare Healthcare Plans

FedEx Corporation FDX 68.53 53 Industrials Integrated Freight and
Logistics

Northrop Grumman Corp. NOC 60.49 54 Industrials Aerospace and
Defense

Capital One Financial Corp. COF 60.05 55 Financial Services Credit Services
The Progressive Corporation PGR 59.99 56 Financial Services Insurance
Humana Inc. HUM 59.75 57 Healthcare Healthcare Plans

General Dynamics GD 57.88 58 Industrials Aerospace and
Defense

Enterprise Products Partners
L.P. EPD 47.79 59 Energy Oil and Gas

AIG AIG 46.55 60 Financial Services Insurance

Walgreens Boots Alliance WBA 45.03 61 Healthcare Pharmaceutical
Retailers

HP Inc. HPQ 40.79 62 Technology Computer Hardware

Exelon Corporation EXC 40.34 63 Utilities Utilities-Regulated
Electric

Sysco Corporation SYY 40.27 64 Consumer Defensive Food Distribution
Archer-Daniels-
Midland Comp. ADM 37.85 65 Consumer Defensive Farm Products

The Travelers Companies, Inc. TRV 37.73 66 Financial Services Insurance
McKesson Corp. MCK 37.24 67 Healthcare Medical Distribution
The Kroger Co. KR 33.28 68 Consumer Defensive Grocery Stores
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Table 1. Cont.

Company Ticker
Market Val
(USD Bill)

Rank Sector Industry

The Allstate Corporation ALL 33.06 69 Financial Services Insurance
Tyson Foods, Inc. TSN 31.65 70 Consumer Defensive Farm Products
Nucor Corporation NUE 31.1 71 Basic Materials Steel
Valero Energy VLO 30.73 72 Energy Oil and Gas
AmerisourceBergen ABC 27.78 73 Healthcare Medical Distribution
Best Buy Co., Inc. BBY 24.44 74 Consumer Cyclical Specialty Retail
Cardinal Health CAH 14.26 75 Healthcare Medical Distribution

Arrow Electronics, Inc. ARW 9.14 76 Technology Electronics
Distribution

Fannie Mae FNMA 0.95 77 Financial Services Mortgage Finance
Chico’s FAS, Inc. CHS 0.66 78 Consumer Cyclical Apparel Retail

According to the Federal Reserve [43], there were three recessions in this period:

• From the first to the third quarter of 2001, corresponding to the dot-com crash [44];
• From the fourth quarter of 2007 to the second quarter of 2009, associated with the

“Subprime Mortgage Crisis” or the “Mortgage crisis” [45];
• Across the first and second quarters of 2020.

Hence, this sample covers two business cycles.

3.2. Variables

In this study, as mentioned, the three main global or aggregated variables considered are:
1. The total market value, V(t), which depends on time t (measured in days), i.e.,

V(t) ≡
78

∑
i=1

vi(t). (2)

2. The total market return, R(t), given by the annual variation of V, i.e.,

R(t) ≡
S

∑
j=1

(vi(t + 1)− vi(t)). (3)

In fact, I mainly consider the two abovementioned quantities adjusted by the annual con-
sumer price index (CPI), respectively, denoted as Va(t) and Ra(t), except as otherwise stated.

3. The Shannon evenness or Shannon equitability, E(t), defined as:

E(t) ≡
− 78

∑
i=1

xi(t) ln xi(t)

ln 78
, (4)

where xi(t) is the market share of company i at day t, i.e.,

xi(t) =
vi(t)
V(t)

. (5)

This index is basically a normalized Shannon entropy, independent of the sample size
(N = 78 in our particular study).

In addition, using daily data raises the problem of high-frequency variation of daily
prices compared to the monthly, quarterly, or annual frequency which are much more
relevant for the business ecosystem picture. To avoid this problem, the high frequency
daily fluctuations were smoothed out by using moving averages over 252 stock trading
days per year.
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It is worth mentioning that the total (unadjusted) market value V of this set of com-
panies at the end of the period was USD 18.9 trillion [40,41], and they represented at least
60% of the total New York Stock Exchange (NYSE) market cap in the period 2000–2021 [46].
Hence, as expected, V is strongly correlated with the S&P 500 index, as shown in Figure 1.
This simply confirms that V for the selected set of companies serves as an aggregate mea-
sure of production to determine the business cycle chronology (working with the entire set
of 2800 NYSE listed firms would be a daunting task).

Figure 1. The total market value V vs. the S&P 500 index, for the period 2012–2021 [41].

As an additional check that that E(t), given by Equation (4), correctly reflects the market
evenness of the whole U.S. stock market the Shannon evenness was computed through
Equation (3) but taking subsets of the whole set of 78 firms, i.e., the top 20 companies, the
top 30, etc. (and replacing in Equation (3) 78 by N = 20, 30, etc.). Figure 2 shows that the
corresponding succession of curves of EN (t) converges towards the evenness E(t) for the
whole set; for N ≥ 50 the curves are qualitatively very similar, while the curve E70 (t) only
shows small departures from E(t). This is because adding companies with very low shares
does not change much E since xi ln xi → 0 when xi → 0.

 
Figure 2. The Shannon evenness curves EN (t) computed for the top N = 20 companies, the top
N = 30, . . . , the whole set of 78 companies (thick gray curve).

It was checked that other different metrics used to quantify the evenness, like in-
verse Simpson and the Gini–Simpson indices, provide qualitatively identical curves to the
Shannon evenness. (See Appendix A)
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3.3. Productivity vs. Evenness in the U.S. Stock Market

The relationship between Ra(t), the most widely used metric to measure market pro-
ductivity, and E(t) provides clear evidence of the inverse relationship between productivity
vs. evenness. In Figure 3, the 21-year period is divided into three portions according to the
behavior of the evenness E (full thick green curve). That is:

• A period of soaring E(t), from January 2001 to December 2007, (almost exactly coincid-
ing with the first business cycle);

• A period of relatively smooth oscillations of E(t) around a high value, from January
2008 to December 2017;

• A period in which E plunged, from January 2018 to December 2021.

Figure 3. CPI adjusted total returns, Ra, and Shannon evenness, E, along the period 2001–2022 [41].
Right axis: Shannon evenness E (full tick green curve). Left axis: Ra plotted for three different
periods depending on the behavior of E: 2001–2007 (dashed blue), characterized by soaring E and
negative average Ra; 2008–2017 (dotted gray), of roughly constant E and low average Ra; January
2018 to December 2021, in which E plunged and the average Ra was high. The horizontal segments
correspond to the mean of Ra along the respective period.

Notice that the Ra averaged over these periods, indicated in Figure 3 by horizontal
segments, was slightly negative (blue), slightly positive (gray), and high (red), respectively.
In other words, during periods in which E(t) sharply decreased productivity was high,
while in the other periods of soaring or high evenness, productivity was low.

The behavior of the absolute productivity metric, Va, is also enlightening. Figure 4
shows the trajectory of Va as a function of E from 2001 to 2021 together with some key
financial events that occurred in this period. The three recessions divide the period in two
business cycles, both characterized by E and Va moving in opposite directions:

• From the beginning of 2001 until the end of 2007 (portion of the trajectory in blue in
Figure 4), in which E steadily increased, while Va ended in a slightly lower value.
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• The 2009–2020 expansion (portion of the trajectory in red in Figure 4), which was the
longest on record at 128 months—from July 2009 to February 2020—according to the
Congressional Research Service (NBER 2022). This was a period in which, after some
initial erratic movements, Va grew strongly and E considerable declined.

 
Figure 4. The trajectory of CPI adjusted total market value, Va, as a function of E from 2001 to
2021 [41]. The portion in blue corresponds to the period between the dot-com crash and the Mortgage
crisis (2001–2008). The red portion corresponds to the 2009–2020 expansion. Full lines correspond to
entire periods in which Va and E moved in opposite directions (see text). Dashed lines correspond
to periods in which Va and E moved in the same direction. The dotted section corresponds to the
erratic period whose start coincided with the Mortgage crisis. The dot-dashed section in the upper
left corresponds to the last three quarters of 2021 in which the market entered in a phase of almost
vertical growth of Va.

It is possible to identify some landmark events. For instance, the dot-com crash in 2001
seems to have triggered a process until 2003 in which Va steadily decreased and E increased
quickly. Conversely, from 2017 to 2021 Va increased and E decreased fast and steadily. The
start of this second period coincided with the advent of “Trumponomics”. The term refers
to the economic policies of U.S. President Donald Trump, who won the 8 November 2016
presidential election on the back of bold economic promises to cut personal and corporate
taxes, restructure trade deals and introduce large fiscal stimulus measures [47]. The period
2008–2015 (dotted curve), whose start coincided with the “Subprime Mortgage Crisis” or
the “Mortgage crisis”, was quite erratic from the point of view of Va vs. E.

In summary, after 21 years, the market evenness roughly returned to the value it had
in 2001, but the total market value doubled in CPI-adjusted dollars. This growth occurred
entirely in the second half of the period, characterized by a process of concentration in
which the evenness lost everything it had gained in the first half.

The negative relationship between the two productivity metrics with the market
evenness agrees to what is often observed in ecological communities across different
taxa. For example, the analysis of data from a large multi-site grassland experiment
revealed that for plots which started with the same and even species composition, but
which diverged in evenness over time, those with lower evenness attained a significantly
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greater biomass [48]. Moreover, the relationship between evenness and biomass across all
plots in these experiments was also negative. The same was observed in other grassland
experiments involving many plots of perennial grass species [49]. There are also examples
of mixtures of species that converge with time towards a state of higher biomass and lower
evenness for protozoa [50] and algae [51].

4. Explaining the Relationship between Productivity and Evenness in Stock Markets
from a Community Ecology Perspective

Species interactions involve a complex balance of competition and facilitation in which
indirect interactions occur if a third species (or more species) modifies the interaction
between two other species [52]. It was argued that the success of species in a community is
affected not only by direct interactions between species, but also by indirect interactions
among groups of species [53,54]. The Lotka–Volterra generalized equations can naturally
implement these indirect interactions through combinations of several pairwise interaction
coefficients. That is, species i affects directly species k through the coefficient αki, but also
indirectly through the combination of αji and αkj (i.e., species i affects directly species j,
which in turn affects directly species k).

Regarding markets as ecological communities enables us to use the general machinery
of the theory of community ecology [9] to understand the observed negative relationship
between productivity, measured by Va and Ra, and evenness, E. We will focus in particular
to the Lotka–Volterra generalized equations and the interaction matrix, αij, quantifying the
strength of the effects between pairs of species.

To estimate the interaction matrix αij of an ecological community a far from trivial
task. A straightforward procedure is through pairwise competition trials by comparing
the species yields in biculture relative to monoculture [50,55]. However, these experiments,
which are common in community ecology and agricultural science are feasible for a small
number of coexisting species S [17,37,49,50]. This is because the number of required
experiments grows as S2. Furthermore, such experiments are not feasible in markets since
one cannot isolate companies from the rest of the market to study their evolution under
controlled conditions. Hence, we have to make use of theoretical analysis in terms of in
silico synthetic communities.

4.1. Ensemble of Synthetic Communities

Therefore, let us use an approach based on Robert May’s theoretical work in commu-
nity ecology in terms of randomly assembled communities [38]. The idea is to consider
an ensemble of pairwise interaction matrices whose diagonal elements, corresponding to
intraspecific interactions of each species i, are set to −1, as it is customarily performed in
community ecology [38]. The off-diagonal matrix elements, corresponding to interspecific
interactions between different species i and j, are drawn from a uniform random distribu-
tion centered around 0 and with radius δ, which can thus be interpreted as the intensity of
interspecific interactions. That, is:

αij =

{
−1 if i = j
random in [− δ,+δ] if i �= j

(6)

Notice that the mean of the interspecific interaction coefficients is μ = 0, i.e., negative
and positive interaction coefficients are equally likely. In fact, complex combinations of
negative and positive interactions have been identified in a number of different ecological
communities, like plant communities [49,56], freshwater communities [57], etc. The hetero-
geneity of interspecific interactions is controlled by δ since the variance of the interspecific
interaction coefficients is given by δ2 = δ2/3, i.e., the greater δ, the greater the variance of
interspecific interactions. To analyze the effect of varying the heterogeneity of interspe-
cific interactions, we took into account that systems in which interspecific interactions are
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stronger than intraspecific interactions are likely to be unstable [58], thus we kept δ < 1.
Thus, the parameter δ was varied from 0 to 0.9 in steps of 0.1.

To set the intrinsic growth rates, ri, it was used that, by Equation (1), on average ri is
equal to the mean relative returns (vi(t + 1) − vi(t))/vi(t). Therefore, let us take ri = 0.014
for all i which is the mean of the empirically observed relative returns (This mean implies
a double average, over companies and over time.). Next, to solve the Lotka–Volterra
Equation (1) for each value of δ, 1000 simulations were run, each one starting from a
random initial condition:

vi(1) = random in [0, 1 ], i = 1, 2, . . . , 78. (7)

The initial total market value, and the evenness are thus given, respectively, by:
V(1) ≈ 78 × 0.5 = 39 (in arbitrary units) and E(1) ≈ 0.957 (see Appendix B). Notice that
these initial values are close to the equilibrium values for δ = 0, V0* = 39 and E0* = 1(see
Appendix C). From this initial arbitrary state, the transient dynamics towards equilibrium
was studied. It is important to note that randomness only enters in the initial choice of the
interspecific coefficients αij, which then define a particular community by Equation (6), and
in the initial configuration (i.e., Equation (7)). For each simulation the subsequent dynamics
is strictly deterministic, and the community specified by a random interaction matrix
given by Equation (6), in general does not allow for the coexistence of all the 78 species.
Instead, some species extinguish with time; the coexistence of the 78 species is in general
unfeasible for random matrices [37]. Therefore, simulations were stopped for a time, T,
for which the first species extinguished (A species is considered extinguished when its
biomass drops below a cutoff vmin << 1 (here I use vmin =10−5)). For small values of δ, T
can be quite large (thousands of time steps). However, as δ increases, T decreases, until
T~30 for δ = 0.9. Hence, to use the same simulation cutoff time for all values of δ, T = 30
was fixed (qualitatively similar results were obtained for smaller values of T, as shown in
Appendix C).

The results of simulations are shown in Figure 5. For δ = 0.1, only slight deviations
in V and E from their initial values, V(1) = 39 and E(1) = 0.957, occur (Figure 5a). As δ
increases, the community moves towards higher values of V and lower values of E. Indeed,
the curves E(δ) and V[δ] (the bars denote average over simulations) appear to be mirror
images of each other.

These opposite trends for E(δ) and V[δ] can be understood as follows. It is immediate
that the evenness will decline when δ is increased. This is because for δ = 0 the interaction
matrix αij, given by Equation (6), reduces to the identity matrix, and then all distinction
among the companies disappears, Therefore, the evenness tends to its maximum possible
value of E0* = 1 (see Appendix C). As the interactions between companies are “turned
on” (δ > 0), the equivalence between companies breaks down and the system departs
from this state of maximum evenness. The larger the heterogeneity (variance) of these
interactions the larger this departure. A derivation that V[δ] is a monotonic increasing
function of δ requires a little bit more of algebra. In a nutshell the idea is that, even though
by Equation (6) positive and negative interspecific interactions are equally likely, the effect
of positive interactions outweighs the effect of negative interactions, as it is shown in
Appendix C. Moreover, it can also be derived that the time derivative of V[δ], i.e., R[δ], is a
monotonic increasing function of δ.

Therefore, a way to generate the observed inverse relationship between productivity
metrics and E, is by changing the interaction strength between companies: if δ increases
(decreases) R and V tend to increase (decrease) and simultaneously E tends to do the
opposite, i.e., to decline (rise).
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Figure 5. For each value of δ the corresponding E, R and V were obtained as averages E, R and V over
1000 simulations of synthetic communities, defined by the interaction matrix of Equation (6), starting
with the initial random configuration of Equation (7). (a): Curves of E vs. δ (circles, left axis) and V vs.
δ (triangles, right axis). (b): Curves of E vs. δ (circles, left axis) and R vs. δ (triangles, right axis).

Regarding the mechanism promoting the growth of δ, and ultimately behind the
negative relationship between productivity and evenness, monetary policy is a natural
candidate. That is, when the monetary policy is loose and interest rates are low, capital
flows to firms. This injection of money promotes the idea that firms address new business
opportunities which multiply the interactions between them, either in the form of coopera-
tion through new contracts, joint ventures, etc. or competition in new segments. Such an
increase in the heterogeneity of interactions among companies is equivalent in our model
to increase δ. Indeed, high productivity coincided with an expansion in money supply,
M1 [59], and mainly with low effective interest rates (see Appendix D). The relationship
between interest rates and evenness, or between money supply and evenness is less clear.
Although at the beginning of the period the evenness soared with high interest rates, it
persisted high during 2009–2015 when, in order to combat the Great Recession, the U.S.
Federal Reserve ran a quantitative easing program and kept the effective interest rate at vir-
tually zero [59] (see Appendix D). In a similar vein, it was observed that algal biovolume, a
surrogate for biomass, increased, whereas evenness decreased with increasing total supply
of resources in algal communities [60].

Two remarks are in order. Firstly, the monotonic curves E(δ), R[δ] and V[δ] of Figure 5
were obtained as averages over 1000 simulations. Nevertheless, this does not imply that if
δ1 < δ2 all simulations performed with δ1 will produce a V smaller than the one produced
by all simulation with δ2 or an E larger than the one produced by all simulation with δ2.
Hence, this approach is also able to yield periods in which R and/or V move in the same
direction as E (either both upward or downward), but they will be less likely than periods
in which productivity metrics and E move in opposite directions. This is in agreement with
what is shown in Figure 4 for the empirical trajectory of V vs. E: those sections in which
both variables move in the same direction are rarer and shorter (e.g., during 2004).

Secondly, this approach, in terms of random matrices, produces only qualitative
evidence for the observed V vs. E trend in the U.S. stock market. To obtain a better
quantitative description, one has to consider more complicated structured interaction
matrices. This issue is beyond the scope of this study, but some recent advances are briefly
reviewed in the next subsection. Indeed, the random matrices approach, which is commonly
used in various fields such as physics, mathematics, and finance, has certain limitations
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and restrictions. A main restriction is its assumptions of randomness. The random matrices
approach relies on the assumption that the matrix elements are independent and identically
distributed random variables. However, in some real-world scenarios, this assumption may
not hold true. Real-world data often exhibit correlations, dependencies, or non-random
patterns that may not be accurately captured by random matrices.

4.2. Other Ecologically Based Approaches Supporting the Negative Relationship between
Productivity and Evenness

The classical Ecological Niche Theory (ENT) states that an ecological community is made
up of a limited number of niches, each occupied by a single species and that differences
among species in their niches are important in determining the outcome of species interactions
as might be revealed in their distributions and/or abundances in ecosystems [61]. Using
ENT, the pattern of increasing biomass accompanied by decreasing evenness was firstly
mathematically derived for the case of pure competition [62], which implies a restriction of the
general interactions of LVGT only to mutually competitive interactions for resources. More
recently, this result was extended to the more realistic case of generalized interactions. This was
performed through the so-called Lotka–Volterra Niche Game Model (LVNGM) [63], resulting
from the combination of ENT and Game Theory. Other recent works approaching financial
markets as ecosystems have contributed to support the generality of the inverse relationship
between productivity and evenness. Indeed, population dynamic models can be used in
conjunction with time series of species abundances to infer the interaction coefficients between
companies through indirect methods. One of such indirect methods is the so-called Pairwise
Maximum-Entropy (PME) modeling [64]. PME modeling is a particular implementation of the
of Maximum Entropy general approach proposed by Jaynes [65,66] which has been used in
finance for different purposes, like ranking the performance of mutual funds [67], retrieving
the risk neutral density of asset returns [68], investigating the effect of size differences on
cost efficiency heterogeneity in U.S. commercial banks [69], etc. In the last two decades, PME
models have been used to analyze ecological data associated with diverse problems, such as
animal flocks [70], and community ecology [37,71–73]. In fact, PME modeling has been applied
for a subset of the US companies I consider here in two recent studies, each one focused on a
different subject, across different time lengths or training periods Ttr. The first one addressed
the issue of inferring adjacency matrices defining the network that describe the interactions
between firms in a fashion similar to how theoretical ecology pictures the interaction of
species in an ecosystem [74]. A main finding of a community analysis on the resultant
networks was that the network modules derived from a PME matrix, Mij, coincide almost
exactly with the industry groupings of the firms defined by the Global Industry Classification
Standard (GICS) [75]. The second study tested the combination of this PME approach with
evolutionary game theory for quantitative market forecasting by taking αij = Mij [7]. It turns
out that the resulting forecasting method does a decent job of predicting empirical shares
of the companies along several choices of validation periods. Interestingly, these interaction
matrices αij obtained by the PME method in [7,74] exhibit properties which are similar to
the ones of the synthetic communities defined by Equation (6), namely that (a) most of its
off-diagonal element are in the interval (−1, +1) and (b) with a mean close to 0.

5. Conclusions

As we have seen, regarding markets as ecosystems can be traced back to the late
1950s [3]. Since then, different authors have contributed to building this analogy and used
it to gain insight into market forces. However, there has been a lack of quantitative tools so
far useful to the practitioners [76]. Indeed, the main novelties of this study are as follows:

Firstly, it raises the productivity vs. diversity issue, a fundamental question of com-
munity ecology, in the context of financial markets modeling. It is worth mentioning that a
similar conclusion was drawn using a different diversity measure provided by the largest
eigenvalue of the correlation matrix among stocks [77]. The productivity–diversity tradeoff
is important because, as it happens in ecology, in economics, decision makers need to strike a
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balance in resource allocation by considering both productivity-enhancing investments and
maintaining a diverse to mitigate risks and promote long-term sustainability and resilience.

Secondly, it uses the Shannon evenness of market values to quantify the market
diversity as opposed to market concentration. Being a normalized metric, the Shannon
evenness is particularly useful when working with samples of companies of large markets
such as NYSE. Additionally, it allows a quantitative comparison of the evenness among
different markets or among different industrial sectors of the same market. The use of
the Shannon evenness was instrumental to detect an important pattern of NYSE market
dynamics between 2001 and 2021, namely the fact that high productivity was achieved
when the evenness dropped; conversely when the evenness soared (during the business
cycle 2001–2008) productivity plunged. Interestingly, such negatively correlated regime
parallels the relationship between total biomass and species evenness observed in several
ecosystems across distinct taxa (plants, algae, protozoa, etc.). In the case of economics
and finance, balancing productivity and diversity is crucial for sustainable economic
growth. High productivity can boost overall output and efficiency, leading to economic
expansion. Diversity, on the other hand, can contribute to resilience and adaptability,
allowing economies to better withstand disruptions. Diversity also plays a vital role in
fostering innovation and creativity. When a system encompasses diverse perspectives,
knowledge, and skill sets, it is more likely that it promotes the generation of new ideas and
approaches. Recognizing the potential adverse effects of losing diversity, decision makers
can implement policies that promote a more diverse economic landscape. This can involve
supporting industries with growth potential, fostering entrepreneurship, encouraging small
and medium-sized enterprises, and providing incentives for diverse business models and
market entrants. Such policies can help maintain a resilient economy, reduce concentration
risks, and encourage innovation and competition.

Thirdly, as far as the author knows, May’s model [38] has not been previously used
to analyze the relationship between evenness and productivity, neither in ecology nor in
economics. Specifically, the model allows to explain how an inverse relationship between
productivity and diversity can emerge when loosening or tightening the monetary policy.
This has profound implications for decision makers, who need to carefully balance the
short-term benefits of loosening monetary policy, such as increased liquidity and economic
stimulus, with the potential long-term undesired effects on the economy. While monetary
easing may provide immediate economic boosts, it can also discourage productivity im-
provements and hinder the development of a diverse and resilient economy. In that sense,
the above finding serves to assess the trade-offs and evaluate the long-term consequences
of monetary policy decisions.

Let us conclude with some research directions that seem worth investigating in fu-
ture works. One important issue is the generality of negative correlation between market
productivity and market evenness. For example, one may wonder whether this pattern
is a particularity of the US stock market or if it is shared by other stock markets in differ-
ent countries? Thus, analyzing financial markets from other countries is a natural next
step. Another question is how the detected pattern is connected to long-term trends in
demographics and the inter-industry reconfiguration of firms away from traditional manu-
facturing [78]. The business ecosystem perspective is also useful to develop quantitative
methods to forecast future market values of firms [79], or to define fitnesses for firms and
disentangle the effects of selection and the environment in the evolutionary dynamics of
financial markets [80].
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Appendix A. Other Metrics of Evenness

In addition to Shannon evenness there are other metrics to assess the equitability or
evenness in a community. A couple of popular metrics are based on the Simpson index,
which is given by:

λ ≡
N

∑
i=1

xi
2, (A1)

where N is the number of companies and xi is the market share of company i, i.e.,

xi =
vi
V

. (A2)

The first one is the inverse Simpson index, given by:

IS ≡ 1/λ. (A3)

The second one is the Gini–Simpson index, given by:

GS ≡ 1 − λ. (A4)

It turns out that both the above indices provide qualitatively identical curves to the
Shannon evenness, as it can be seen in Figure A1 which shows the curves of E(t) and GS(t).

 

Figure A1. E(t) (green, left axis) and GS(t) (orange, right axis) for the set of the largest 78 companies.
The curves were obtained by taking 252 days (i.e., 1 year) moving averages.
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Appendix B. The Evenness of a Randomly Distributed Shares

Suppose that using a uniform distribution in the [0, 1] interval, we draw a set of
S fractions yi, which we assume that are proportional to the market values, vi, of S
firms. Therefore, the mean values yi will be uniformly distributed in the [0, 1] interval:

i.e.,

yi =
i

S + 1
, with i = 1, 2, · · · , S. (A5)

To transform the fractions yi into shares xi we have to normalize them, i.e.,

xi =
yi

S
∑

j=1
yj

=
yi

S
2 (S + 1) 1

S+1

=
2
S

yi. (A6)

Using Equation (4) we can write the evenness in terms of the fractions yi as:

E =

− S
∑

i=1
xi ln

( 2
S yi
)

ln S
= − 2

S

S
∑

i=1
yi ln yi + ln

( 2
S
)

ln S
. (A7)

Substituting Equation (A5) into (A7) we obtain:

E =
2

S(S + 1) ln S

S

∑
i=1

[
i ln

S + 1
i

]
+

ln S
2

ln S
. (A8)

For example, Equation (A8) produces for S = 2 species, E = 0.9813, whereas for
S = 78 companies, by performing the sum from 1 to 78, we obtain 0.11619 and then adding
up ln19/ln38 (=0.84090), we finally obtain E = 0.95709.

The sum in the expression (A8) can be approximated as the integral (the larger S the
larger the accuracy of this approximation):

S

∑
i=1

[
i ln

S + 1
i

]
≈ (S + 1)2

1∫
0

y ln ydy =
(S + 1)2

4
. (A9)

Hence, substituting Equation (A9) into (A8), we obtain the following approximate
expression of the evenness as a function of S:

E ≈ S + 1
2S ln S

+
ln S

2
ln S

. (A10)

For S = 78, the evenness thus becomes E ≈ 0.11623 + 0.84090 = 0.95713, which differs
in 0.004% of the value we obtained performing the sum.

Appendix C. The Total Market Value as a Function of δ

The system of Equation (1) with an interaction matrix given by Equation (6) will
converge towards an equilibrium total market value, V*(δ). It is helpful to consider for a
moment the effect of “switching off” the interspecific interactions, which corresponds to
the trivial community of non-interacting species, so that as δ = 0, the interaction matrix
αij given by Equation (6) reduces to the identity matrix. In this case, the Lotka–Volterra
equations reduce to a set of uncoupled logistic equations:

vi(t + 1)− vi(t) = rivi(t)(1 − vi(t)), i = 1, 2, · · · , S. (A11)
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The solution of Equation (A11) converges for asymptotically large times towards the
equilibrium vi* = 1 for all species i. Then, by Equations (A11), (2) and (4), the corresponding

total market value and evenness become V0* =
78
∑

j=1
v0j∗ = 78 and E0* = 1 (the sub index 0

are used to emphasize that these results hold for the trivial case δ = 0).
If we now “switch on” the interspecific interactions, i.e., δ > 0, from Equation (1), we

have for the equilibrium in which the S companies coexist:

S

∑
j=1

αijvj∗ = −1, i = 1, 2, · · · , S, (A12)

Inverting Equation (A12), we can write the equilibrium total market value, to which
the system eventually converges in terms of the inverse of the interaction matrix, α−1

ij, as:

V∗ =
S

∑
i=1

vi∗ = −
S

∑
i

S

∑
j

α−1
ij, i, j = 1, 2, · · · , S. (A13)

A general analytical expression of V* in terms of the coefficients αI ij is very cumber-
some and thus not very useful. In addition, we still have to perform the integrations in
those αi ij between −δ and δ to obtain the expected total market value at equilibrium for a
given δ, V*(δ). However, for a given value of δ, such multiple integral of Equation (A13)
can be computed numerically. To illustrate this calculation, let us consider the case of an
ensemble for a community of just two companies. Hence, v1* and v2* can be written as [37]:

v1∗ =
1 + α12

1 − α12.α21
, v2∗ =

1 + α21

1 − α12.α21
(A14)

Therefore, Equation (A13) reduces to:

V∗(δ) =
+δ∫

−δ

+δ∫
−δ

dα12dα21(v1∗+v2∗) =
+δ∫

−δ

+δ∫
−δ

dα12dα21
2 + α12 + α21

1 − α12.α21
. (A15)

Performing the above double integral numerically, we obtain the total market value
curve, V*(δ), at equilibrium towards this system, which is depicted in Figure A2. Notice
that it is a monotonic function of δ. This implies that, even though positive and negative
interactions are equally likely, the effect of positive interactions is not entirely erased by
negative interactions.

Figure A2. Total expected market value V* towards a community of two species or a market of
two companies converges at equilibrium as a function of the intensity of interspecific interactions, δ.
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The calculation shown above for two species can be generalized to any arbitrary
S > 2 number of interacting companies.

The results of simulations of 78 species/companies governed by Equation (1), with
random interaction matrices, given by Equation (6), and starting from the initial conditions
given by Equation (7), are shown in Figure A3 for different values of δ, varying the simula-
tion time cutoff, T, from 2 to 20. In panel (A), one can see that for δ = 0.1, independently
of the cutoff time T, only slight deviations in V and E from their initial values, V(1) = 39
and E(1) = 0.957, occur. As δ increases, the initial configuration moves further away from
the equilibrium state. The community then moves towards higher values of V and lower
values of E when increasing T, as shown in panel (A) for δ = 0.3 and 0.5. Above δ = 0.5, the
tendency towards the upper left corner in the plane E-V becomes monotonic, as shown in
panel (B) of Figure A3.

Figure A3. Curves of V(T) vs. E(T) for synthetic communities with different values of δ (see text).
The simulation time runs upward as indicated by the black arrow; each symbol corresponds to a
point V(T), E(T) with a cutoff simulation time T = 2, 3, . . . , 20; the higher the symbol, the larger the
simulation cutoff time T. (A): δ = 0.1, 0.3 and 0.5. (B): δ = 0.6, 0.7 and 0.8.

Appendix D. Effective U.S. FED Rates Compared with the Total Market Value and Evenness

In Figure A4, the curve of the U.S. Federal Reserve effective interest rate along 2000–
2021 [59] is compared with E and V (in trillion USD) in panels (A) and (B), respectively.

Figure A4. (A): Variation in the effective interest rate [59] and the total market value V. (B): Variation
in the effective interest rate [59] and E.
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For the evenness, no clear pattern emerges. As shown in panel (A), at the beginning of
the period, E soared with high interest rates, but from 2009 to 2015, the effective interest
remained virtually zero [59] and E remained high. On the other hand, high productivity
occurred entirely during the period of very low to moderate interest rates. Conversely, the
first business cycle 2001–2008 was characterized in general by high interest rates and low
productivity (panel (B)).
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Abstract: This research systematically analyzes the behaviors of correlations among stock prices and
the eigenvalues for correlation matrices by utilizing random matrix theory (RMT) for Chinese and
US stock markets. Results suggest that most eigenvalues of both markets fall within the predicted
distribution intervals by RMT, whereas some larger eigenvalues fall beyond the noises and carry
market information. The largest eigenvalue represents the market and is a good indicator for averaged
correlations. Further, the average largest eigenvalue shows similar movement with the index for
both markets. The analysis demonstrates the fraction of eigenvalues falling beyond the predicted
interval, pinpointing major market switching points. It has identified that the average of eigenvector
components corresponds to the largest eigenvalue switch with the market itself. The investigation on
the second largest eigenvalue and its eigenvector suggests that the Chinese market is dominated by
four industries whereas the US market contains three leading industries. The study later investigates
how it changes before and after a market crash, revealing that the two markets behave differently,
and a major market structure change is observed in the Chinese market but not in the US market.
The results shed new light on mining hidden information from stock market data.

Keywords: financial big data; stock market modeling; random matrix theory; eigenvalue analysis

1. Introduction

Thanks to the availability of financial data in a wide range of frequencies from tick
to daily, it is possible to apply data mining and knowledge discovery methods beyond
traditional finance but from data science, network analysis, and even physics, etc. The
asset prices in the markets result from complicated dynamics of spreading and reacting
to market signals and information. The market structures are embedded in the price
movements, which are normally correlated with each other. As a starting point for the
underlying cornerstones of finance theories like modern portfolio theory (MPT) [1] and
capital asset pricing model [2], the correlation information of assets prices is always at heart
for theoretical studies and finance industrial practices in portfolio management and risk
management, etc.

For a portfolio of N stocks, we need a correlation matrix with N × N elements to
describe the pairwise relationships. With the increase of N, the number of possible rela-
tionships snowballs, making it difficult and challenging to calculate or analyze. To extract
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the hidden structure and essential information, it is necessary to simplify the network by
filtering the less important elements to make it feasible to analyze portfolios even with
a very large N. In the past few years, we see some methods have been introduced to
simplify the stock matrices. To study the correlation behaviors of the financial markets, a
correlation matrix is constructed from the price time series before we apply methods and
techniques such as principal component analysis [3–6], multidimensional scaling [7], factor
analysis [4], minimum spanning tree [8,9], hierarchical clustering [8,10,11], and singular
value decomposition [12].

Simplification of the correlation matrix requires validation, which statistically validates
the matrix and keeps those validated elements to achieve a simple matrix with fewer noises
and ease of analysis. The validations provide statistical confidence in the results or insights
extracted from the validated matrices. The underlying idea of design validation is to
compare the empirical matrices with random ones generated from the same distributions,
random shuffles, or statistical tests with which the null hypothesis is set up to be tested with
empirical data. Any deviations from these benchmarks are considered noises and should
be filtered. Similarly, given an empirical correlations matrix (and the derived distance
matrices for the networks), we can consider a random matrix with the same size. A null
hypothesis can be introduced to test the statistical validation of each element of the original
empirical matrix by comparing the distributions. The basic idea is that any deviations
from the random distribution are believed as validated with genuine information from the
system. In contrast, those falling within the random distribution are pure random noises
that contain no system information.

Specifically, in this study, based on a dataset covering nine years of stock prices, we
systematically investigate the stock markets of China and the US using random matrix
theory (RMT) to study and compare the correlation properties and the dynamics of eigen-
values and eigenvectors. The findings revealed that the two stock markets are both similar
and different in many ways. The results add new insights into market behaviors with
implications for finance applications such as portfolio management and optimization, mar-
ket risk monitoring, and trading strategy design. Meanwhile, this study also serves as a
framework for data mining and knowledge in financial big data using RMT.

This work is organized as follows. First, we review the literature in Section 2. The
methodology is introduced in Section 3. In Section 4 we describe the dataset of two markets
and the properties of correlation matrices. Using RMT, in Section 5, the properties and
behaviors of eigenvalues and eigenvectors are analyzed with an investigation of a market
switch study. Finally, Section 6 presents conclusions, discussions, and limitations.

2. Literature Review

In this section, we introduce literature from three aspects. First, RMT and its applica-
tions are introduced in Section 2.1, representative studies of applying RMT in analyzing
financial markets are described in Section 2.2, as well as recent studies focusing on com-
paring different stock markets, especially the US and Chinese markets are discussed in
Section 2.3.

2.1. RMT and Its Applications

Originating in mathematical physics, RMT was first introduced by physicists to study
nuclear activities back in the 1950s [13]. Eugene Wigner used RMT to model the excited
states of nuclei in reactions which was hard to obtain by using traditional methods. Instead,
he proposed to analyze the eigenvalues and their spacing of a random matrix [14]. The
basic idea is to analyze the statistical properties of eigenvalues of the random counterpart
whereas it is practically impossible to analyze the individual eigenvalues of the original
complex system. RMT provides a powerful toolbox to reveal properties of matrices whose
elements are sampled from randomness, usually based on certain probability distributions.
Soon, RMT was proved an efficient tool for many challenges in physics and beyond. Before
long, RMT attracted significant interest from scholars in various fields with wide-spreading
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applications like physics, mathematics, biology, engineering, computer science, and social
science. After decades of development, RMT has become an important research field with
rich theoretical implications and real applications in a variety of disciplines, such as spec-
trum analysis and filter in information processing, signal detection and channel estimation
in wireless communication, data analysis in high dimensional space, and optimization in
machine learning. Interested readers should refer to works by Potters and Tao for details
on theories and applications of RMT [15,16].

2.2. Applying RMT Approaches in Financial Markets

In finance, RMT was first introduced into the study of financial markets by [17], and
more recently, there are significant advances in applying RMT in finance studies and
applications [18–20]. In one study, RMT is applied to analyze stock market behaviors [21].
In another study, the world stock market is analyzed with RMT [22]. Recent works also
investigated various financial markets using RMT [23–25].

2.2.1. RMT in Financial Correlation Analysis

Rooted in the correlation analysis, RMT offers a new look into the structures and
behaviors of the financial markets. Applying RMT to financial markets is closely related
to the analysis of correlation matrices and network structures [26–30]. The market is full
of noises, and the useful information in correlation matrices built from price data might
be covered by the noises and make correlation analysis less meaningful [31]. To quantify
the validations of correlations, recently, there are many works applying RMT into the
studies of the correlation matrices of financial markets [17,31–37]. Recently, there is an
emergence of research using RMT in financial markets to filter noises and reveal embedded
market properties. The cross-correlations of stock prices are studied using RMT to identify
correlated relationships [38]. Furthermore, free random variables are applied in RMT
analysis in financial time series [39]. RMT has also been applied to return estimation and
asset allocation in Markowitz mean-variance optimization [40].

2.2.2. RMT in Eigenvalue Analysis

RMT provides a powerful tool for eigenvalue analysis in financial markets. Using
time-shifted series, the lagged correlation matrices are studied from the RMT approach
to compute eigenvalue density and identify deviations [41]. It has been verified that the
largest eigenvalue λmax is a good estimator of the average correlation of the correlation
matrices constructed from a sliding window approach [42]. The same results are also
reported, revealing that the average correlation co-moves with the largest eigenvalue
for the component stocks of S&P500 [36]. For normalized eigenvectors, the value of
Sij ranges from 0 to 1. In other words, the two eigenvectors change from orthogonal
to exactly the same. One study reports that the effect of noises on the risk becomes
insignificant in measure of the fixed portfolio while remaining important for an optimized
portfolio for small values of N/L [31]. This indicates that the correlation matrix can still
be valid in traditional risk management and portfolio optimization; noises cover even
most information. Using simulation methods, many correlation matrix filtering approaches
are tested, and the approaches based on random matrix theory are found to perform
consistently well in all cases [43]. The eigenvalue distribution of the emerging stock market
is different from developed markets though correlation distributions and other properties
are similar. Methods based on clustering for portfolio optimization and effective size
determination are proposed. The results are found to be improved compared to RMT
approaches [37], which indicates that RMT might be further combined with other methods
in filtering matrix and optimizing a portfolio [27].

It was found that the average of correlations in the correlation matrix can be well
estimated from the largest eigenvalue as

λmax/N ∼ 〈
Cij
〉
. (1)
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Following the RMT approach, the largest eigenvalues are found to be responsible for the
market mode. By removing this, the correlation matrix is cleaned to reveal the topological
structures [28]. The details of the residual noise part for a market are studied, revealing that
the noise band is composed of more sub-bands [11]. Using RMT, the Chinese stock market is
studied [18], a similar anti-correlation relationship between sub-sectors is studied [44], and
the results show that the prominent sector structure exists. The distribution of eigenvalues
also reveals that the market is likely to be influenced by the Chinese government’s global
financial crisis and policies. In a further study on the sub-sectors of a stock market, local
interaction structures are found to change during financial crises [19]. The sign information
of components in eigenvectors is again used to detect the sub-sector anti-correlations [45].
Focusing on how the credit market and stock market behave before and after a financial
crisis, RMT is applied and finds that the largest eigenvalue of the credit market precedes
that of the stock market [46]; this indicates that the pattern changes of eigenvalues have
potential implications in the understanding of interrelationships between different markets.
Market contagion is also investigated from financial network analysis and, naturally, RMT.
Market contagion is an important indicator of market stability. By looking into the structural
changes in networks and properties revealed by RMT, one can identify and predict the
market contagion and thus major market switches [47–51].

2.2.3. RMT in Eigenvalue Distributions

Since the introduction of RMT into the study of financial markets, much literature
investigated different markets. An earlier study points out that the lower bound is pos-
itive and no eigenvalues fall between 0 and λmin also vanish above λmax [17]. Since the
empirical values of N and L are limited far from ∞, the edges are blurred with some
eigenvalues falling beyond the bounds [32]. The distribution of the spacings of eigenvalues
s ≡ λi+1 − λi are found to agree with a Wigner distribution of the energy spacing levels [34].
This provides evidence indicating that the empirical correlation matrix is consistent with
its random matrix counterpart. Many empirical studies reveal that only a small fraction
of eigenvalues and their corresponding eigenvectors contain system information while
most are embedded in noises [17,52–54]. It has been reported that the portion of the largest
eigenvalues deviating from the theoretical prediction of the counterpart random matrix is
6% [17], 4.7% [54], 2% [34], 11% [53], and 1% [35].

Furthermore, the study of [55] adds new evidence that not all eigenvalues that fall into
the theoretical interval predicted by the random matrix are purely random noise but still
carry some information. Derived from the eigenvector-eigenvalue identity, a study showed
that dominant eigenvalues, super eigenvalues, and maximum eigenvalues could help to an-
alyze the spectrum of the financial correlation matrix in depth [56]. In computational results
and applications in financial markets, one study reviewed the previous works, including
some real-world applications, and presented promising analytical techniques from random
matrix theory [26,57]. Another study proposed general, exact formulas for the overlaps
between the eigenvectors of large correlated random matrices with noises [58]. Besides the
intro-relationship of stock markets, another study revealed a deep relationship between
news and world financial indices using tools of random matrix theory [59]. Economic
policy is another field that has a significant influence on the stock market, and [60] analyzed
the correlation matrix and different stock network structures to reveal the implication of
the correlation matrix components. The work of [61] fused previous models, which made
predictions based on the arbitrarily long time horizon and introduced an ensemble of
random rectangular matrices from the observations of independent Lévy processes over a
fixed-time horizon. To summarize and compose a benchmark for the study of correlated
time-series signals, ref. [62] used supersymmetric theory to generate the statistics of eigen-
vectors of the cross-correlations of correlated time-series. Another study investigated the
correlations of Chinese stocks before and during the 2008 crisis based on the random matrix
analysis [63].
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2.3. Comparative Studies on Different Markets

In another thread, there are abundant studies dedicated to the comparative studies on
the two major stock markets, namely the Chinese and US markets [29,64–67]. Although
RMT has been applied to stock markets, there is still a lack of comprehensive studies
using RMT to analyze the Chinese and US markets. How the correlations and eigenvalues
behavior are related to the market switches between bull and bear markets is still not
sufficiently investigated. There is a thread of literature on comparing the dynamics of
markets in different countries [29,30]. Considering the signs of eigenvector components,
sub-sectors of positive and negative signs can be derived from sectors in anti-correlation.
The sub-sectors are detected with strong appearances in the Chinese stock market but
weaker in the US stock market [44]. US and British stock exchanges are studied by using
RMT on the asymmetric correlation matrix with a lag of τ [3]. One work revealed the
different strengths of correlations between stocks, especially the oil sector and banking
stocks in the Nigerian Stock Market (NSM) and Johannesburg Stock Exchange (JSE), for
the period of 2009 to 2013, using random matrix theory [68]. Comparative analyses on two
different stock markets—the S&P 500 (USA) and Nikkei 225 (JPN) via the power mapping
method from the random matrix theory, and found strong consistency between the states
of the two stock markets as well as the feasibility to predict critical state (market crash) [69].

Particularly, some works investigated the markets of the US and China [64,66]. Ac-
cording to the strong connection between financial assets and institutions and the diversity
as well as the localization of the stock market, one study previously analyzed the topo-
logical structure of financial networks of two major markets of China and the US with
complex network theory [29]. Several studies investigated the two markets from aspects
of comovement [70], impacts of trade conflicts and pandemic [65,67,71], and conditional
correlations [72]. These studies revealed the different behaviors of the two major stock
markets. However, there is still a lack of comprehensive studies on the Chinese and US
stock markets from the perspective of RMT. In this sense, this work aims to fill this gap by
systematically investigating the two markets using correlation analysis and RMT.

3. Methodology

3.1. Construction of Correlation Matrices

For an empirical correlation matrix C of size N × N generated from N returns series
of length L, we can construct the elements as

C =
1
L

MMT , (2)

where M is a N × L matrix with normalized return yi(t) for each stock at every time t, where

yi(t) =
Yi(t)− 〈Yi(t)〉

σi
, (3)

where Yi(t) stands for the return at time t.
The study of [73] provides a study of the eigenvalues spectrum for the Chinese stock

market with a sliding window approach. The inverse participation ratio is defined as

Ik =
N

∑
l=1

[
uk

l

]4
, (4)

where uk
l is the components of eigenvector vk, to measure the deviation degree of eigen-

vectors [53]. A criterion of fractional Gaussian noise (fGn) is used to evaluate the auto-
correlation matrix of stocks showing agreement with fGn, though the stock returns are
non-Gaussian [20].
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3.2. Eigenvalue Analysis Using RMT

RMT is a powerful tool in the analysis of eigenvalues of noisy data in various
fields [15,16,74,75]. According to RMT [15,16], the eigenvalue distribution of a pure random
matrix Crandom with the same size of C follows

p(λ)random =
Q
2π

√
(λmax − λ)(λ − λmin)

λ
, (5)

where λmin and λmax are the theoretical minimum and maximum eigenvalue bounds of
random matrix, the Q is the ratio of L/N satisfying the requirement that Q > 1, L → ∞,
and N → ∞ [17]. Using the empirical data, we can also get the empirical distribution as

p(λ)random =
1
N

dn(λ)
dλ

. (6)

Theoretically, with the knowledge of Q, we can determine the theoretical eigenvalue
bounds as

λmin,max = 1 +
1
Q

∓ 2

√
1
Q

. (7)

With these calculations, we can construct and determine the theoretical distribution of
a null hypothesis random matrix. The empirical eigenvalues that fall within the interval of
[λmin, λmax] are pure random noises, and those that fall beyond the interval are the validated
eigenvalues carrying true information of the system. In this way, we also get the validated
corresponding eigenvectors for those validated eigenvalues. Also, we can go further to
investigate the statistical validation of the eigenvectors. The distribution of the eigenvector
components in vi for eigenvalue λi follows the Porter-Thomas distribution [17] as

P(vi) =
1√
2π

e−
v2

i
2 , (8)

with which we can validate the eigenvector components by comparing the distributions. It
has been reported that the distribution of eigenvector components of the largest eigenvalues
shows a great difference from the theoretical predictions [17].

In short, we first construct the correlation matrix for the N stocks and calculate the
corresponding theoretical bounds of eigenvalues predicted with RMT, and analyze the
eigenvalues with special attention to the largest and second largest eigenvalues.

4. Data and Correlation Matrices

4.1. Data

In this paper, we study the stock markets of China and the United States. There are
three considerations in choosing these two markets. First, both markets are major stock
markets in the world with tremendous total market scales and a large number of stocks
that are actively traded. Second, the two markets both experienced major market shifts
between bull and bear markets demonstrating rich market dynamics and behaviors. Third,
the US market and Chinese market are representatives of a much-matured market and
still-developing market, respectively. We collected the daily price data of the components
of the China Securities Index 300 (CSI300) and Standard & Poor’s 500 (S&P500) between
4 January 2007 and 6 November 2015. In total, the dataset covers 2149 trading days for
CSI300, and 2228 trading days for S&P500. The data of CSI300 are retrieved from the
CSMAR Solution Database of Shenzhen GTA Education Tech. Ltd. The data of S&P500 are
extracted from Yahoo Finance service. We further selected 163 stocks from CSI300 with at
least 2000 trading dates without continuous 100 non-trading dates, whereas we selected
468 stocks with at least 2100 trading dates from S&P500. Later, we refer to the screened
stocks as CSI163 and S&P468, respectively [29].
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4.2. Correlation Matrices

In a stock market, the prices of stocks fluctuate constantly showing complex behaviors.
It is important to investigate the performance of individual stocks as well as the interactive
behaviors among stocks. To evaluate the interactive co-movement behaviors among the
prices of assets, the correlation is a fundamental concept widely used in studies of price
dynamics and is used in traditional theories. When the correlation is considered, in
traditional theories, like in MPT where the correlation matrices are actually inputs for the
portfolio optimization [1], the correlation is assumed as fixed. Still, in the real world, the
correlations fluctuate and demonstrate some collective behaviors in market crashes. As a
starting point for studying the structure and behavior of markets, correlation analysis is
found to be useful not only in theory but also in practices of portfolio risk estimation and
optimization [33,76]. Especially during periods of crisis, highly collected co-movements
of the stocks are very likely to cause significant losses for a portfolio, so it is necessary
to watch the portfolio’s correlations. Also, to understand the market structure and the
dynamics, it is interesting to investigate the correlations [8,33,35,77–79].

Following the definition and notation widely used in the literature, the Pearson
correlation coefficient [8]

ρij =

〈
YiYj

〉− 〈Yi〉
〈
Yj
〉

√(〈
Y2

i
〉− 〈Yi〉2

)(〈
Y2

j

〉
− 〈Yj

〉2
) (9)

can be calculated for each stock pair of si and sj using the logarithmic return

Yi = ln Pi(t)− ln Pi(t − 1). (10)

The value of ρij ranges from −1 to −1, indicating a dynamic relationship for the two stocks
from a complete anti-correlation to a complete correlation. For a perfect uncorrelated pair,
ρij = 0 by definition. If there are N stocks in consideration, then there will be N2 correlation
coefficients fitting into a N × N correlation matrix. Correlation analysis has been applied
in the study of market structures [8,28,80] and portfolio optimization [31,37,43,54].

In the RMT approach, the statistics of the eigenvalues distribution and the deviation
between empirical distribution and the distribution generated from a random fashion are
discussed to describe the information contribution of these deviated eigenvalues and the
corresponding components of the eigenvectors. But first, the empirical results are tested
against a random matrix case [31].

5. Eigenvalues and Eigenvectors for CSI163 and S&P468

5.1. Eigenvalues

Based on the correlation matrices we built in the previous section, we are ready to
investigate the eigenvalues and eigenvectors of both markets. First, we use all the logged
daily returns data of both two markets, CSI163 and S&P468 over the whole study period,
which is 4 January 2007 and 6 November 2015 covering 2149 trading dates for the former
and 2228 trading dates for the latter. We present the probability density distributions
(PDF) of eigenvalues from the empirical correlation matrix and theoretically predicted by
using random matrix theory for CSI163 in Figure 1 and for S&P468 in Figure 2, respec-
tively. For both markets, we find that most empirical eigenvalues are within the RMT
predicted interval with some exceptions. As shown in Figure 1, for CSI163, the theoretical
predicted eigenvalues bounds are λmin = 0.5250 and λmax = 1.6267. We see that there are
7 eigenvalues are larger than the largest eigenvalue predicted by RMT, i.e., 4.29% of all
eigenvalues fall beyond the interval. The largest eigenvalue λ1 = 60.2252 is nearly 37 times
the predicted largest eigenvalue, i.e., λ1/λmax = 37.0238. For S&P468, as shown in Figure 2,
the largest eigenvalue λ1 = 189.5698 which is almost 89 times the bound predicted by RMT.
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There are 12 eigenvalues that are larger than the bound, i.e., 3.56% are beyond the interval
and carry real market information.
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Figure 1. The eigenvalue distributions for CSI163 correlation matrix over the whole study period.
The yellow bars are distributions of all eigenvalues calculated from the empirical correlation matrix
of 163 daily log return time series, and the red curve is the theoretical distribution predicted from
the random matrix theory by using a random matrix of the same size as the empirical correlation
matrix. The upper bound is λmax = 1.6267. The inset is a plot of all empirical eigenvalues including
the largest eigenvalue λ1 = 60.2252.
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Figure 2. The eigenvalue distributions for S&P468 correlation matrix over the whole study period.
The yellow bars are distributions of all eigenvalues calculated from the empirical correlation matrix
of 468 daily logged return series, and the red curve is the theoretical distribution predicted from
the random matrix theory by using a random matrix of the same size as the empirical correlation
matrix. The upper bound is λmax = 2.130. The inset is a plot of all empirical eigenvalues, including
the largest eigenvalue λ1 = 189.5698.
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Using the sliding window approach, we can investigate the dynamic properties of
eigenvalue distributions. For CSI163 and S&P468, we use the window size Lcsi163 = 170
and LS&P468 = 500, respectively, to satisfy the requirement of Q = L/N > 1. In choosing
the window sizes, basically, we desire a window that is large enough to cover significant
market periods. A shorter window might lead to short-term noises that do not reflect the
fundamental dynamics of the markets. Furthermore, the window moves at a step of one
trading date; this allows our sliding windows to move smoothly with the finest possible
granularity and capture detailed market behaviors. For each sliding window, we use the
data of N stocks to calculate the pairwise correlation matrix C, from which we further
calculate the λ1/N and average correlation

〈
Cij
〉
= ∑ Cij/N2. As shown in Figure 3a,b, we

see that for both markets, the values of λ1/N and the average correlation
〈
Cij
〉

correlated
very well over the whole study period indicating that λ1/N is a good estimator of the
average correlation

〈
Cij
〉

as we have introduced previously.
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Figure 3. The largest eigenvalue λ1/N and the average correlation
〈

Cij

〉
for all sliding windows of

CSI163 (a) and S&P468 (b). We see that the two curves fit very well.

In Figure 4a,b, we plot the largest eigenvalue λ1/N and the index close prices of
CSI300 (a) and S&P500 (b). After the left shifting, we find that λ1/N and the index itself
show similar trends. This shows that λ1/N is also an indicator of the index itself. For
CSI163, the trend similarity is relatively more obvious than that of S&P468. If we do not
perform left shifts, we find that λ1/N is anti-co-move with the index showing that during
market crashes, the λ1/N (also the average correlation

〈
Cij
〉
) becomes larger, i.e., the

stocks of the market are correlated, whereas during calm periods, the λ1/N becomes small
indicating fewer correlations among stocks.

To see how the eigenvalues distributed in the whole study period. In Figures 5 and 6,
we plot the distributions of the eigenvalues (excluding the largest eigenvalue) of all sliding
windows over the study periods CSI163 and S&P468, respectively. As the figures show,
most eigenvalues are very small. Though many eigenvalues are within the bounds of
prediction based on RMT, we also observe some eigenvalues are larger than the upper
bound λmax = 3.9172 for CSI163 and λmax = 3.8709 for S&P468. We define the fraction of
eigenvalues that are larger than the predicted λmax using RMT as

pd =
|λ > λmax|

N
, (11)

i.e., the ratio of the number of eigenvalues deviated beyond λmax to the total number of
eigenvalues N. Since the eigenvalues carry meaningful information about the market, this
ratio can be employed as an indicator describing how much information is embedded in
the distribution of the empirical eigenvalues. Using the sliding window approach, we
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calculate the fraction for each window and plot with the index close price for CSI163 in
Figure 7 and S&P468 in Figure 8, respectively.

For better visualizations, we shrink the index values of 200,000 times for CSI163close
and 100,000 times for S&P468close, respectively. As we can see, the values of pd stay
unchanged between sudden changes, so the curves of pd show a shape of discrete stages
with ups and downs. More interestingly, we find that the changes of pd coincide with the
changes in index closing prices. As shown in Figure 7 for CSI163 and Figure 8 for S&P468,
the changing points of the pd precisely mark out the local minimums (marked with yellow
dots) and local maximums (marked with red dots) of the index itself.
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Figure 4. The largest eigenvalue λ1/N and the index close price of CSI300 (a) and S&P500 (b). The
largest eigenvalue λ1/N curves are left shifted 170 trading dates for CSI300 and 500 trading dates
for S&P500, for the window size is 170 for CSI163 and 500 for S&P468. For better visualizations, we
shrink the indices of CSI300 and S&P500 10,000 times and 5000 times, respectively. We see that the
shifted curves of λ1/N are similar to the indices.

Figure 5. The PDF of all eigenvalues (excluding the largest eigenvalue λ1) distribution for all sliding
windows over the study period of CSI163.
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Figure 6. The PDF of all eigenvalues (excluding the largest eigenvalue λ1) distribution for all sliding
windows over the study period of S&P468.
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Figure 7. The fraction pd of eigenvalues beyond the predicted largest eigenvalue versus the index
close price for CSI163 over the study period. For better visualization, we rescale the index values by
shrinking 200,000 times. The coincidences of changes of fraction pd and the index closing price are
marked out in red dots for local maximums and yellow dots for local minimums on the price curve
with dates.
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Figure 8. The fraction pd of eigenvalues beyond the predicted largest eigenvalue versus the index
close price for S&P468 over the study period. For better visualization, we rescale the index values by
shrinking 100,000 times. The coincidences of changes of fraction pd and the index closing price are
marked out in red dots for local maximums and yellow dots for local minimums on the price curve
with dates.

We see that pd is relatively stable with many fixed periods, but the changes of pd can
match with the significant market changes in index closing prices. Some of them are even
leading the index for several days. This observation indicates that pd has the potential
to monitor the market situation. Once the pd changes value, investors must be cautious
and pay particular attention to the market fluctuations both of surges and crashes. This
information might also be useful in designing trading strategies to catch major market
mode switches.

In Table 1, we summarize the properties of eigenvalues that deviate beyond the λmax.
We see that only a very small fraction of eigenvalues is larger than the theoretically predicted
eigenvalue. On average, only 3.0268 eigenvalues for CSI163 and 7.2250 eigenvalues for
S&P468 are beyond the bounds. The average fraction is

〈
pd
〉
= 0.0186 for CSI163 and〈

pd
〉
= 0.0154 for S&P468, respectively.

Table 1. Properties of eigenvalue deviation fraction pd for CSI163 and S&P468. The avg. number is
the average number of eigenvalues deviated beyond the predicted upper bounds λmax.

Market Avg. Number pd
min pd

max

〈
pd
〉

CSI163 3.0268 0.0061 0.0368 0.0186
S&P468 7.2250 0.0107 0.0214 0.0154

5.2. Largest Eigenvalue

To study the eigenvector u1 corresponding to the largest eigenvalue λ1, we take an
average of all eigenvector components. Since the λ1 stands for the whole market, we expect
that the average components are related to the index. We plot the

〈
u1

i
〉

with the index close
prices of both markets for each sliding window in Figure 9a,b. As shown in the figures,
the value of

〈
u1

i
〉

changes happened on the dates or periods of major market changes.

61



Entropy 2023, 25, 1460

For the eigenvector u1, we also confirm that all components have the same sign, either
positive or negative [81], i.e., all stocks contribute to the movement of the market on the
eigenvector u1 in the same direction; they either climb or fall. It is worth noting that, in
practice, one might choose to remove the market mode of the largest eigenvalue before
analyzing the eigenvalues. Here, we directly analyze the second-largest eigenvalue and the
corresponding eigenvector for simplicity.
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Figure 9. The average of eigenvector components corresponding to the largest eigenvalue
〈
u1

i
〉

and
the index close price of both CSI300 (a) and S&P500 (b). For better visualizations, we shrink the index
close price by 25,000 times and 10,000 times for CSI300 and S&P500, respectively. We see that the
changes of

〈
u1

i
〉

happen on the dates when the markets change.

5.3. Second Largest Eigenvalue

It is believed that the largest eigenvalue λ1 stands for the market mode itself, whereas
the second largest λ2 eigenvalue and its corresponding eigenvector u2 contain more in-
formation about the market. Now, we focus on the distribution of the components in
u2. As we know, the values of components in eigenvectors represent the weights for the
corresponding eigenvector; the best idea to allocate investment in portfolio management is
that we long the assets with positive signs and short the assets with negative signs. The
eigenportfolio based on eigenvector uj is given as:

Pj =
N

∑
i=1

1√
λj

uj
i

σi
Yi, (12)

where N is the number of assets, Uj
i is the component for asset si in eigenvector uj, and Yi

is the return for asset si. This indicates that larger eigenvalues λi bring fewer weights for
assets in a risky portfolio, whereas smaller eigenvalues bring smaller risks with greater
weights on the assets.

For industry Ii, the contribution of Ii is defined as

I j
i (t) = ∑

k∈Ii

(
uj

k

)2
, (13)

where uj
k is the value of the stock belonging to industry Ii. By dividing over the total values

of all industries, we get the normalized contribution for industry Ii

I j
i(t) =

I j
i (t)

∑
i

I j
i (t)

. (14)
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Compared with another approach [73], the normalized values allow comparison between
any two industries, thus making the ranking of industries possible. Of course, Equation (14)
also indicates that ∑

i
I j

i(t) = 1.

Using Equations (13) and (14), we calculate and rank all industries in all sliding win-
dows for both CSI163 and S&P468. For a given date, we can get the contributions from all
sectors to the eigenvector components for the second largest eigenvalue u2. We investigate
which industries appear in the components with the largest values. In Figure 10a,b, we plot
the histograms for industries that appeared for CSI163 and S&P468, respectively. We find
that four industries appeared for CSI163, which are finance and insurance, pharmaceuticals,
machinery, and metals, whereas for S&P468, we find only three industries appeared, which
are utilities, financials, and energy. This reveals the leading industrial sectors for the two
markets over the whole study period.
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Figure 10. The frequencies of industries appearing in the largest values of eigenvector components of
CSI163 (a) and S&P468 (b). For CSI163, four industries appear in the largest eigenvector components,
whereas there are three industries for that of S&P468.

5.4. Market Switching

Both the Chinese and US markets experienced significant fluctuations during our
study period covering some major market mode changes of bull markets and bear markets.
In our study period between 4 January 2007 and 6 November 2015, the Chinese stock
market enjoyed a bull market period from 2007 to 2008 and surged to its historical height
in 2008 but soon suffered a major crash and only partially recovered in the middle of
2008 and stepped into bear market mode before long. This bear market mode lasted for
almost seven years, and only finished in 2015, being replaced by a rocket bull market mode.
Unfortunately, the 2015 bull market was very short and tumbled greatly into bear market
mode again with huge drops. For S&P500, the US stock markets also suffered a great
market crisis in 2008, but the market changed into a very long climbing bull market in 2009.

To investigate how the u2 changes before and after a market crash, we choose a case
study period between 24 July 2008 and 16 February 2009 for CSI300 centering with a
market turning point on 4 November 2008, covering 135 trading days and a period between
26 December 2008 and 2 June 2009, and for S&P500 centering with a market turning point
on 9 March 2009, covering 108 trading days. We denote the ranking for stock si at time t as
Ri(t) according to the normalized values. For a period of [ts, te] of length Ls,e, the averaged
ranking for si is

〈Ri(t)〉 = 1
Ls,e

te

∑
t=ts

Ri(t), (15)

where Ls,e = te − ts + 1 is the number of trading dates in the period. By calculating all

63



Entropy 2023, 25, 1460

averaged rankings for all of the stocks in both periods before and after the market crash, we
can get the top and bottom 10 stocks for CSI163 and S&P468. The top and bottom 10 stocks
according to the averaged ranking for CSI163 in the Fall stage and Climb stage are presented
in Tables 2 and 3, respectively. The same lists are presented in Tables 4 and 5 for the Fall
and Climb stages of S&P468.

Table 2. The top ten and bottom ten stocks of the second largest eigenvalue u2 of CSI163 ranked by
the average u2 components values in the Fall stage between 24 July 2008 and 4 November 2008.

Top 10
Rank Tick Stock Name Industry

1 2007 Hualan Biological Engineering Inc. Pharmaceuticals
2 600,867 Star Lake Bioscience Co., Inc. Pharmaceuticals
3 600,085 Beijing Tongrentang Co., Ltd. Pharmaceuticals
4 963 Huadong Medicine Co., Ltd. Wholesale
5 600,332 Sichuan Hongda Co., Ltd. Metals
6 600,108 Gansu Yasheng Industrial (Group) Co., Ltd. Agriculture
7 600,535 Nanjing Chixia Development Co., Ltd. Real estate
8 600,277 Jiangsu Hengrui Medicine Co., Ltd. Pharmaceuticals
9 600,089 TBEA Co., Ltd. Machinery
10 999 Sanjiu Medical & Pharmaceutical Co., Ltd. Pharmaceuticals

Bottom 10
Rank Tick Stock Name Industry

154 46 Oceanwide Construction Group Co., Ltd. Real estate
155 601,988 China Construction Bank Finance
156 2 China Vanke Co., Ltd. Real estate
157 600,048 Poly Real Estate Group Co., Ltd. Real estate
158 601,398 Guangshen Railway Transportation
159 600,016 China Minsheng Banking Corp. Ltd. Finance
160 600,015 Hua Xia Bank Co., Ltd. Finance
161 1 Shenzhen Development Bank Co., Ltd. Finance
162 600,036 China Merchants Bank Co., Ltd. Finance
163 600,000 Shanghai Pudong Development Bank Finance

The tables reveal some exciting results. In Table 2, we see that stocks of finance and
real estate occupy the bottom ten while stocks of pharmaceuticals dominate the top 10 in
the Fall stage of CSI300, and this phenomenon remains unchanged during the Climbing
stage after the market turning point. This indicates and confirms again that financials are
not the only dominating players in the Chinese stock market. In the Climbing stage, as
shown in Table 2, stocks of pharmaceuticals still dominate the top 10, and the stocks of
finance remain at the bottom part. This shows that the internal structure of the CSI300
market remains almost unchanged before and after the market crashes.

Being opposite to CSI163, S&P468 demonstrates a different behavior before and after
the crash period. As shown in Table 4, stocks of financials dominate the top positions
with the smallest rankings; in other words, stocks of financials play significant roles in the
Fall stage; however, stocks of energy collectively occupy the bottom 10. When the market
entered the Climb stage, passing the turning point, the whole rankings reversed with stocks
of energy becoming the top stocks whereas the financials stocks fell to the bottom, as shown
in Table 5.
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Table 3. The top ten and bottom ten stocks of the second largest eigenvalue u2 of CSI163 ranked by the
average u2 components values in the Climb stage between 4 November 2008 and 16 February 2009.

Top 10
Rank Tick Stock Name Industry

1 999 Sanjiu Medical & Pharmaceutical Co., Ltd. Pharmaceuticals
2 2007 Hualan Biological Engineering Inc. Pharmaceuticals
3 629 Panzhihua New Steel & Vanadium Co., Ltd. Metals
4 600,089 TBEA Co., Ltd. Machinery
5 600,085 Beijing Tongrentang Co., Ltd. Pharmaceuticals
6 538 Yunnan Baiyao Industry Co., Ltd. Pharmaceuticals
7 963 Huadong Medicine Co., Ltd. Wholesale
8 729 Beijing Yanjing Brewery Co., Ltd. Food & Beverage
9 600,535 Nanjing Chixia Development Co., Ltd. Real estate
10 600,332 Sichuan Hongda Co., Ltd. Metals

Bottom 10
Rank Tick Stock Name Industry

459 157 Changsha Zoomlion Heavy Industry Machinery
460 600,030 CITIC Securities Co., Ltd. Finance
461 600,585 Jiangsu Changjiang Electronics Technology Electronics
462 601,988 China Construction Bank Finance
463 601,398 Guangshen Railway Transportation
464 1 Shenzhen Development Bank Co., Ltd. Finance
465 600,015 Hua Xia Bank Co., Ltd. Finance
466 600,016 China Minsheng Banking Corp. Ltd. Finance
467 600,036 China Merchants Bank Co., Ltd. Finance
468 600,000 Shanghai Pudong Development Bank Co., Ltd. Finance

Table 4. The top ten and bottom ten stocks of the second largest eigenvalue u2 of S&P468 ranked by
the average u2 components values in the Fall stage between 26 December 2008 and 9 March 2009.

Top 10
Rank Tick Stock Name Industry

1 STI SunTrust Banks Financials
2 ZION Zions Bancorp Financials
3 MTB M&T Bank Corp. Financials
4 CMA Comerica Inc. Financials
5 WFC Wells Fargo Financials
6 BBT BB&T Corporation Financials
7 JPM JPMorgan Chase & Co. Financials
8 RF Regions Financial Corp. Financials
9 LEN Lennar Corp. Consumer Discretionary
10 PNC PNC Financial Services Financials

Bottom 10
Rank Tick Stock Name Industry

459 EOG EOG Resources Energy
460 MUR Murphy Oil Energy
461 OXY Occidental Petroleum Energy
462 HP Helmerich & Payne Energy
463 NBL Noble Energy Inc. Energy
464 XEC Cimarex Energy Energy
465 APC Anadarko Petroleum Corp. Energy
466 DO Diamond Offshore Drilling Energy
467 DVN Devon Energy Corp. Energy
468 APA Apache Corporation Energy
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Table 5. The top ten and bottom ten stocks of the second largest eigenvalue u2 of S&P468 ranked by
the average u2 components values in the Climb stage between 10 March 2009 and 2 June 2009.

Top 10
Rank Tick Stock Name Industry

1 APA Apache Corporation Energy
2 DVN Devon Energy Corp. Energy
3 ETR Entergy Corp. Utilities
4 DO Diamond Offshore Drilling Energy
5 NBL Noble Energy Inc. Energy
6 APC Anadarko Petroleum Corp. Energy
7 FE FirstEnergy Corp. Utilities
8 OXY Occidental Petroleum Energy
9 MUR Murphy Oil Energy
10 XOM Exxon Mobil Corp. Energy

Bottom 10
Rank Tick Stock Name Industry

459 USB US Bancorp Financials
460 JPM JPMorgan Chase & Co. Financials
461 RF Regions Financial Corp. Financials
462 WFC Wells Fargo Financials
463 BBT BB&T Corporation Financials
464 PNC PNC Financial Services Financials
465 ZION Zions Bancorp Financials
466 CMA Comerica Inc. Financials
467 MTB M&T Bank Corp. Financials
468 STI SunTrust Banks Financials

6. Conclusions and Discussion

In this study, we applied random matrix theory to study the eigenvalues and their
eigenvectors of the US and Chinese stock markets. The correlation properties are studied,
and some eigenvalues of the correlation matrices beyond the predicted bounds are observed
in both markets. The largest eigenvalues λ1 are dozens of times larger than the predicted
λmax. They are found to be potential market indicators. Eigenvalue deviation fractions
beyond the predicted largest eigenvalue are observed to pinpoint market turning points.
For the two markets, the most influential industry sectors are identified. They behave
differently when the market crashes. These findings provide information on the dynamics
of eigenvalues and eigenvectors. This is useful for investors and regulators to monitor
the markets. On the other hand, the eigenvalues are related to factor models. The largest
eigenvalue stands for the market itself and the corresponding eigenvector has impacts on
most stocks, described as the single factor model for stock si: ri = βirM + ei, where rM
is the market return, for N stocks, the correlation matrix has one dominant eigenvalue.
The CAMP is a special case of a single factor model. However, other eigenvalues are
beyond the predicted λmax. It is natural to model the returns in multi-factors as proposed
in arbitrage pricing theory (APT), ri = ∑ βki fk+ei, where fk is the kth factor. Since the
eigenvalues embedded in the predicted bounds represent noises, it is natural to choose the
top k largest eigenvalues λmax−k, . . . , λmax−1; thus, we get k corresponding eigenvectors
vmax−k, . . . , vmax−1. In other words, the k principle components in the PCA. To simplify
the model, it is reasonable to consider the sector information revealed in the eigenvec-
tors; in other words, the corresponding eigenvector components belonging the the sector
are reserved.

Last but not least, the present work still has several limitations that should not be
neglected and are worth further efforts in future works. First, this work only considered two
major markets in an outdated time period. More global markets and updated periods can be
considered in future work. Second, this work provides findings largely through empirical
analysis rather than rigorous statistical approaches. In order to further validate the findings,

66



Entropy 2023, 25, 1460

statistical testing should be considered. Third, this work only reports observations, and
no practical applications are developed to further evaluate the values of the methodology
and findings. In the future, applications like quantitative trading strategies, portfolio
management, and risk management can be developed around the findings to demonstrate
the values in financial practices.
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Abstract: We propose a new agent-based model for studying wealth distribution. We show that a
model that links wealth to information (interaction and trade among agents) and to trade advantage
is able to qualitatively reproduce real wealth distributions, as well as their evolution over time and
equilibrium distributions. These distributions are shown in four scenarios, with two different taxation
schemes where, in each scenario, only one of the taxation schemes is applied. In general, the evolving
end state is one of extreme wealth concentration, which can be counteracted with an appropriate
wealth-based tax. Taxation on annual income alone cannot prevent the evolution towards extreme
wealth concentration.

Keywords: agent-based; economy; information; taxation; complex systems; income distributions

1. Introduction

The study of wealth distributions dates back to the late 19th century, when Pareto
studied the distribution of land in Italy—an equivalent proxy, at the time, to wealth—and
found that, for higher incomes, it was distributed according to a power law, with an
exponent α. Later, he found that this distribution was also applicable to Europe as a whole,
with an average value α � 3/2, according to Pareto estimates [1]. This new discovery led
many economists to believe that this was a robust and stable phenomenon and that, with
sufficient data, the same behavior would be found in most other countries in the world, as
indeed it was. Clearly, if this behavior is valid in general, it must be based on very general
trade behaviors common to all countries in the world, regardless of geographic region,
culture, religion, etc.

Trying to have insight into some of these basic behaviors in trade that are common to
all countries and that are important for a better understanding of the socioeconomic origins
of these distributions, such as those obtained by Pareto, is one of the contributions of this
paper. We will discuss some of these common behaviors in trade and their influence on
this type of distribution.

The probability density function, P(x), associated with Pareto distribution can be
written, in general form, as

P(x) =

{
F(x) for x < xc,

λ
xα+1 for x ≥ xc where λ > 0 is a parameter

(1)

where for x < xc (x can be land, money, etc., in general, any kind of wealth), we have a
function F(x), but for x > xc, a power law appears, having a typical exponent α. The Pareto
distribution, P(x), is usually associated with the cumulative distribution function for the
higher values of x, i.e.,

P(x) =
∫ ∞

x
dx′P(x′) . (2)
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Since then, the nature of this distribution of wealth has changed drastically. In particular,
the 20th century saw the creation of a strong middle class in some countries ([2,3]), as the
industrial revolution, war, and hyperinflation changed the economy of many countries [4].
Interestingly, however, the Pareto distribution would still better describe the tail, while the
Boltzmann–Gibbs distribution would best describe the broader part of society (poor and
middle class), as can be seen in the income distributions for the US and UK in Figure 1.
Therefore, it is not surprising that the ability of the Pareto distribution to describe the
wealthier parts of society leads economists to further reinforce their past ideas about its
robustness and stability.

Nevertheless, as time goes by and the economic turmoil of the 20th century ends,
inequality began to grow at an alarming pace [5], with some economists even predicting
a return to 19th-century levels of inequality [5] in some countries, something that many
economists thought impossible, further putting into question the stability of the distribution.
This increasingly stimulates the theoretical study of the nature of this distribution, trying to
better understand its basic causes.

It is important to note that among the various attempts to quantify a little more
the measure of inequality, the so-called Lorenz curve, proposed by Max O. Lorenz in
1905 [6], is one of the most important and is used to calculate the Gini index, introduced by
Corrado Gini, in 1912 [7], which is currently the standard measure of inequality. Essentially,
the Lorenz curve is a graphical representation of inequality, be it wealth inequality or
annual income inequality. In this representation, we plot on the abscissa the fraction of the
population according to the annual income or wealth and on the vertical axis the fraction
of the accumulated wealth or annual income. The Gini index is defined as twice the area
contained between the line corresponding to complete equality, i.e., the curve connecting
the origin to the point (1, 1), and the Lorenz curve.

Figure 1. The cumulative probability distribution of net wealth in the US (left, 1997) and UK (right,
1996) shown in log–log scales. Points represent data from the IRS/HMRC, and solid lines are the
fitted lines to the exponential (Boltzmann–Gibbs) and power-law (Pareto) [1].

Among those that studied the inequality from a theoretical point of view, however,
agent-based models seem to lead to better results, closer to reality. For example, in [8,9],
Chatterjee, A., and Chakrabarti, B. K., considered a simple gaslike model and developed it
with increasing levels of complexity. In it, they explore how different types of exchanges
can affect a system where, an important point, money is always conserved in any trade
interaction (mi(t) + mj(t) = mi(t + 1) + mj(t + 1)); debt cannot occur; and transactions,
where a Δm fraction of money is exchanged, happen randomly between agents. Their
model leads, as expected, to a steady state, which is a Gibbs state. Sequentially, the authors
added a uniform saving parameter that models the system’s propensity to save, and hence,
the amount exchanged has changed. This in turn leads the distribution of wealth to a
gamma distribution, thus showing how an additional constraint can change the shape of
the distributions. Then, the authors allowed the saving propensity to be distributed among
each agent by ρ(λ) and showed that, regardless of the shape of ρ(λ), the asymptotic form
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of the distribution was always a Pareto one. This result matches the work conducted by
Chakraborti and Patriarca [10], which shows that a system composed of subsystems with
different degrees of freedom (the propensity to save) leads to a Pareto power law.

Another important work was conducted by Braunstein, Macri, and Iglesias in [11],
where they show how, in a complex network, there is a strong link between wealth and the
connectivity of agents.

However, when we take a step back from the simulations and look at the data, we
can clearly see from the works of Dragulescu in [12] and Banerjee and Yakovenko in [3]
and many others ([2,13–28]) how fundamental and widespread these distributions are, and
hence, we expect that this behavior must arise from very basic and common commercial
features and interactions.

Therefore, in order to analyze the influence of these universal aspects on trading in
distributions, we propose here an agent-based model that is able to bridge these gaps
between real-world modeling and fundamental understanding. With this aim, we propose
some very basic fundamental (universal) assumptions that are common to any commercial
exchange, trying to understand their effects on the distribution of wealth. One of these
assumptions is to consider a direct link between information (we further explain this inter-
pretation in the next chapters), represented as the number of connections an agent makes,
and wealth. Another assumption, also very general, is the slight trade advantage that a
wealthier agent generally has over a poorer agent in any given trade event. Finally, we con-
sider two different types of taxation, a taxation on wealth and a taxation on annual income.
In this paper, we will only consider in each scenario (by scenario, we are considering the
time evolution of wealth distribution satisfying a set of rules on the connectivity of agents
and the trade advantage they have depending on the wealth of the agents, and also the
application of only one of two types of taxation, on wealth or on annual income) a single
taxation scheme.

We then show how each of these assumptions contributes to the distribution of wealth
over time and how they help us understand how different taxation schemes can affect
these distributions.

2. Outline of the Model

Our goal with this work is to construct a simple agent-based model, rooted in very
basic assumptions of business relationships. To do this, we have built our model step by
step, introducing complexity along the way, while always maintaining its basic features.
Hence, the description of the model, as well as its results, is presented in the same manner,
as a step-by-step model built from its simplest form to its most complex, in order to help
us understand what the effect of each part is and why it matters. We also separate the
description of each version of the model from its results in order to discuss the impact
of each parameter and to understand why we have chosen some appropriate numerical
values for some of these parameters.

2.1. Fundamental Characteristics

We consider a collection of N agents, each starting with a given value w0 of a continu-
ous variable wi, representing the wealth of the agents. The evolution is probabilistic, where,
in each Monte Carlo step, each agent is chosen once and trades with other agents, chosen
randomly. As the system evolves, agents interact and trade according to four different
scenarios. In these interactions, agents can either gain or lose a net amount of money based
on the combined wealth of both agents i and j,

Δwi,j = μ(wiwj)/(wi + wj) , (3)

where μ is a constant ∈ [0, 1]. This function is chosen because it reflects well the relationship
of the difference in buying power among agents: the bigger the difference in buying
power of one agent relative to another, the greater is its ability to set the amount of money
exchanged. This also makes it impossible for agents to trade more wealth than they
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currently have, a basic requirement. It is important to note, however, that this function is
not special and that any other function with a similar qualitative behavior would also work.

At each interaction, both agents play according to a probability distribution and wealth
is not conserved, as it happens in reality. Therefore, possibilities where both agents gain
(wealth creation) and where both agents lose (wealth destruction) are possible. Since wealth
is not conserved in each trade exchange, the total wealth of the system is normalized at the
end of each Monte Carlo step.

Basic Assumptions

Here, we will introduce the three very basic assumptions that we have adopted
and that we believe are generally valid anywhere in the world. Of course, each of these
assumptions will be adequately mathematized.

Our first basic assumption, which we believe should be self-evident, is

Assumption 1 (First basic assumption). The number of trades an agent makes increases with
his wealth.

These agents will then randomly interact with others according to a given connection
function, which we define as fc(wi), which gives how many connections/interactions
each agent can make, based on his wealth. For example, if fc(wi) = 1, each agent in turn,
regardless of its wealth, will perform one interaction, and therefore one transaction, per
Monte Carlo step. Notice that in one Monte Carlo step, a given agent may perform more
than fc(wi) interactions, as it may be chosen by other agents in their time.

Therefore, according to the assumption, the connection function fc(w) mentioned
above must be a monotonically increasing function. We will assume here the simplest
one, a linear function. Clearly, any other type of monotonically increasing function could
be adopted, but the qualitative behavior of the evolution of the system will not change
by reasonable choices of the connection function. Only the way the system evolves will
change, but not the patterns of the distribution. This assumption will be used in the second,
third, and fourth scenarios presented below.

Our second basic assumption, which is also self-evident, is

Assumption 2 (Second basic assumption). The probability of winning a trade transaction
increases with the difference in wealth between the richest and poorest.

We will introduce a probability of winning a trade exchange that depends on the
difference in wealth between the two agents trading. The richer an agent is relative to
each other, the higher the probability of winning (in terms of simulation, this means that
two “coins” are tossed, one for each agent; hence, they both can win or lose, and situations
where one wins and the other loses are also possible) a trade, as is usually the case in any
trade negotiation. Hence, when wi > wj → P(wi|wj) > P(wj|wi). The aim is to model the
fact that the richest agent in a given trade is usually the one who takes the least risk. This
assumption will be used in the third and fourth scenario.

2.2. Taxation

Here, we have our third basic assumption:

Assumption 3 (Third basic assumption). The tax is a monotonic increasing function of wealth.

We have essentially two main types of taxation: wealth taxation and income taxation
(income or capital gains during 1 year, i.e., one stage).

2.2.1. Taxation on Wealth

After a certain number of Monte Carlo steps, here adopted as five, we have what we
call a stage, which we can consider equivalent to 1 year. At the end of each stage, a tax
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is applied on the amount of wealth the agent has at the end of the period. The standard
pattern should be that the tax increases with wealth, so we have our third basic assumption.

We then define as a taxation function, to be applied to the wealth of each agent at the
end of a stage, the simplest one, a linear function:

Tax(wi) =

⎧⎪⎨
⎪⎩

0, if wi ≤ wo

γ(wi − w0) + σw0, if 0 < wi < w∗ and
τ, if wi > w∗ ,

(4)

where γ, τ, σ ∈ [0, 1]; γ indicates the growth rate of the tax according to wealth, σ the
base tax rate, τ the maximum adopted tax rate, and w∗ = [τ + (γ − σ)w0]/γ. It is
worth noting that taxation here means taxation to be applied on the wealth each agent
has. We will consider in this paper only progressive taxation, as it should be; thus, the
parameter γ is considered non-negative. Of course, scenarios with negative values of γ will
contribute to concentrate more wealth in the hands of fewer agents. The parameter τ could
be relevant and is an important political issue today in many countries. The parameter σ,
the initial tax rate, is a parameter that is not important at all, but we keep it here for the
sake of completeness.

It is also important to note that there is nothing special about the form of this function,
chosen here as a linear function. It could also be another type of increasing function, such
as a power law. What matters is its behavior—it grows with wealth and has an upper
bound. In fact, we explored the quadratic function, and the visible difference was on how
quickly the simulations reached their different patterns.

This taxation is then applied to the share of each agent’s wealth wi above a given
minimum w0 at the end of a fixed number of Monte Carlo steps (called stages), where w0 is
each agent’s wealth at the beginning of the simulation.

The total tax charged to the N agents at the end of a stage is then

CT =
N

∑
i=1

Tax(wi)wi . (5)

This total tax collected at the end of a stage is then redistributed equally among all agents
(different scenarios in which, for example, the redistribution favors the poor are also
possible and certainly lead to different results and conclusions). Thus, if we let CT =
total tax collected, then Ci,T = CT/N is the amount of tax that is returned to each agent at
the end of a stage.

In the fourth scenario (see Sections 2.7 and 3.4), we will consider taxation on annual
income, but the same third assumption applies: taxation increases with income earned
during the previous year.

2.2.2. Taxation on Income or Capital Gain

We have discussed in Section 2.2.1 how to tax the wealth of agents at the end of each
year (stage) rather than taxing income or capital gains, which is the much more common
form of tax. Therefore, instead of taxing all agents’ wealth wi above the minimum w0, we
now tax an agent’s annual capital gain whenever it is above the minimum gain ξ. Hence,
regardless of how much wealth an agent has, if he has enough capital gain over a year, i.e., a
stage, above this minimum (ξ), the agent will be taxed on that amount, in a monotonically
increasing way. Then, we can define

Capital Gain ≡ Gi = wi,t − wi,t−1 , (6)

where t indexes the t-th year, i.e., the t-th stage—as defined in (Section 2.3). Hence, taxation
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to be applied to the capital gain of each agent can now be assumed as

Tax(Gi) =

⎧⎪⎨
⎪⎩

0, if Gi ≤ ξ

γ(Gi − ξ), if ξ < Gi < G∗ and
τ, if Gi > G∗ ,

(7)

where ξ ∈ [0, w0] (therefore, it is never greater than the starting point of the systems) and
G∗ = (τ + γξ)/γ; γ is the the growth rate of the tax according to capital gain.

Notice, however, that here, at the end of a year (a stage), we tax anyone with a capital
gain above ξ, regardless of their current (wealth) condition. Therefore, a poor agent (wi < 1)
who has capital gains above the minimum (Gi > ξ) at a given time t will be taxed, even
though he is poor. Note, however, that the order of magnitude of taxes in this case (earnings
in a year) is very different from the case of a wealth tax. It is important to note that there
are many types of taxes that can be collected during the year. There are consumption
taxes, which are regressive, affecting poor agents more than rich ones, and taxes on annual
income, which are progressive, hurting the rich more. All types of taxes collected during
an agent’s year are called here the agent’s annual income tax. By annual here, we mean the
earning received during a stage, of course.

Therefore, while in the wealth tax model an agent with wi >> w0 can be taxed heavily,
since the tax is applied over the agent’s total wealth above w0, it also allows poorer agents to
build wealth, since they are not taxed until their wealth is at least wi = w0. Here, in the case
of income tax, the opposite may be true. No matter how poor an agent is, whenever he has
a good year, he will be taxed, thus making it difficult for him to build wealth. Meanwhile,
extremely wealthy agents could pay almost nothing—relative to their wealth—if their
capital gain is not important.

As with taxation on wealth, at the end of the stage (year), the total tax collected that
year, which is ∑i Tax(Gi)Gi, is redistributed equally among all agents.

Note, however, that in each scenario analyzed in this paper, only one of these two
types of taxation is applied, either on wealth or on annual income.

2.3. Simulation Setup

We initiate every agent with wi = w0 and define a Monte Carlo step when each agent
(N) in the system finishes his turn, which means

The agent i, with income wi and number of connections fc(wi) = k, performs all k interactions
in one step. These k interactions are randomly chosen.

The system has no distance (every agent can interact with fc(wi) other agents, chosen
at random). Therefore, since the interacting agents are randomly selected, a given agent
i may perform more than fc(wi) interactions per step, since other agents may in turn
randomly choose agent i.

We then define that five Monte Carlo steps constitute a stage, and every step is
synchronous: the state of an agent (increase/decrease in wealth) is only updated when
the Monte Carlo step is completed (all agents have been updated). Tax collection and
redistribution occur only once at the end of the stage. Therefore, Monte Carlo steps can
be interpreted as the passage of months, while a stage as the passage of an entire year
(annual tax).

We also separate the population in two groups:

1. Agents with wi ≥ 1, which are shown in the distributions;
2. Agents with wi < 1, which are taken as the poverty rate and only appear as a percentage.

In the following chapters, we explore different simulation settings (interaction rules,
probability, and connection functions) and discuss some of the properties of the model.
Note, however, that the functions we have chosen have nothing special about them—we
particularly choose the simplest functions whenever possible—it is just their qualitative
behaviors that matter. In fact, in the beginning, we tested alternative functions, and the
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resulting patterns remained unchanged (the speed of evolution may, as mentioned earlier,
change depending on the functions chosen).

2.4. First Scenario: Raw Model and Taxation on Wealth

This is the simplest, unbiased scenario. Consider a system with the trade rules defined
at the beginning of Section 2, with an equal probability of winning a commercial exchange;
i.e., the probability that agent i will win a commercial exchange with agent j is

P(wi|wj) =
1
2

. (8)

We also consider the connection function—which, as it is defined in Section 2.1, means how
many interactions/transactions an agent will choose at each step—as

fc(wi) = 1 , (9)

for any value of wi, implying that at each step, each agent chooses only one other agent to
trade with.

The numerical simulation results for this model can be seen in Section 3.1.

2.5. Second Scenario: The Wealth–Connection Model with Wealth Taxation

In this scenario, we go one step further. We present a simple connection function that
links the wealth of an agent with his number of connections,

fc(wi) =

{
α
(wi−w0)

w0
+ 1 if wi ≥ w0

1 if wi < w0 ,
(10)

where α ∈ [0, 1]. The probability of an agent i winning a commercial exchange with an
agent j is still given by Equation (8).

According to the function (10), note that agents will always make at least one inter-
action and that fc(wi) is continuous. In order to reproduce this, agents with fc(wi) ∈ R

have an equivalent probability of having an extra interaction at each Monte Carlo step. For
example, an agent i with fc(wi) = 3.14 will have three connections plus an extra connection
with a probability of 14%. A random number will be drawn, and if it is below 0.14, the
agent will obtain an extra connection, while if it is above, the agent will only obtain three
connections in this round. The numerical simulations associated with this scenario are
shown in Section 3.2.

2.6. Third Scenario: Favoring the Rich on Transactions and Wealth Taxation

Now, according to our second basic assumption, we introduce a higher probability of
winning a commercial transaction for the agent with greater wealth. Until now, each agent
had an equal probability of winning a commercial exchange, but now the probability of an
agent i winning a transaction with an agent j will be given by the asymmetric function

P(wi|wj) =
2 + exp(βδwi,j)

5 + exp(βδwi,j)
, (11)

where δwi,j = wi − wj and β ∈ [0, 1]. This function aims to model the economic bargaining
power of an agent. The greater the difference between the wealths of agent i and agent j, the
greater the chance that agent i will make a favorable transaction, modeling the fact that the
richer agent takes less risk in a trade transaction. At each step, a random number is drawn,
and an agent plays this probability with each of the other agents he trades with. Wealth,
as always, is not necessarily conserved: if both agents win, wealth is created (both agents
earn Δw, Equation (3)); if only one wins, wealth is conserved (one agent loses Δw, while
the other wins); and if both lose, wealth is destroyed. In Figure 2, we can see the behavior
of this probability function as a function of β. Notice how the decrease in the probability
of winning for the poorer agent is small, while the increase for the rich is significant. The
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function is not symmetric. This is because if the commercial negotiation is too unfavorable
for an agent, he simply does not make the trade (except in very exceptional cases, which
are not considered here).

Figure 2. Probability function, Equation (11).

Here, once again, the chosen function is not special, and any other function with
similar behavior would work. What matters is the advantage that the rich agent has.

2.7. Fourth Scenario: Favoring the Rich in Transactions and Taxation on Annual Income
(Capital Gains)

In this scenario, we consider a connection function given by Equation (10), a probability
to win a commercial exchange given by Equation (11), and a tax on income earned during
a year given by Equation (7).

3. Results

Essentially, μ, β, and α only control how fast the system evolves and, therefore, how
quickly it goes through the different stages. Higher rates of any of these variables will mean
that some of the intermediate distributions will inevitably be skipped because the system
will evolve too fast. Therefore, these parameters will be kept constant in all our simulations
since we are more interested in following the different stages of evolution (after some tests
we adopt from now on the values μ = 0.1, β = 0.01, and α = 1) . Similarly, σw0, our base
tax rate, will be kept at 5% of w0 (σw0 = 0.05). The parameters w0 and ξ are simply scale
parameters, and therefore, their values do not affect the results. Therefore, they are also
kept fixed (w0 = 10 and ξ = 0) during all numerical simulations.

On the other hand, however, γ and τ could completely change both the evolution
of the system and the possible equilibrium states. Therefore, our analysis will consist of
varying essentially these two parameters, keeping all others constant.

3.1. Raw Model

As defined in Section 2.4, the raw model describes a system without any assumptions
that privilege any of the agents. The richest and the poorest have equal opportunities.
Therefore, its probability function (bargaining power) and connection function are given by
Equations (8) and (9). All results presented in this section are for N = 100,000 (number of
agents) averaged over 100 samples. Taxation is over wealth, given by Equation (4).

Statistics

In Figure 3, we can see that even in a system without any kind of privilege, where
no agent has any kind of advantage over another agent, with equitable redistribution
of the wealth collected with taxes among agents, there is still some inequality, with the
Gini coefficient reaching 0.32. In Figure 3a, we can see that the 99 quantile (quantiles are
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equivalent to percentiles, and they represent the point that separates the top x% of the
population from the rest; for example, the 90 quantile (or q90) separates the top 10% of
the population from the other 90%) has a value not greater than 2.5 w0, which is not very
unequal. In Figure 3b, it can be seen that the 10% richest agents own about 20% of the total
wealth, which seems quite reasonable.

However, even in the context of this raw model, where a perfectly egalitarian system
still creates inequality, it is easy to infer that in any normal circumstance, where agents
do not have perfectly equal opportunities and taxation is not applied to an agent’s total
wealth, inequality will likely continue to increase.

The big problem for any society is to avoid great inequalities in order to avoid serious
social problems, not necessarily to eliminate them.

Figure 3. Raw model with taxation on wealth: γ = 10−3 and τ = 0.4. In the figure on the left,
we can see the average wealth held by the 90 and 99 quantiles, i.e., the 10% and 1% richest agents,
respectively, compared with the standard deviation. On the right, the fraction of wealth held by the
10% and 1% richest agents is shown. The time evolution of the Gini index is also shown, stabilizing
slightly above 0.3.

3.2. Wealth–Trade Link

As defined in Section 2.5, the wealth–connection model describes a system in which
the richer the agent, the greater his number of connections (trade exchanges). Therefore,
since his bargaining power remains at 50% at all commercial exchanges, due to fluctuations,
the wealthier agents end up having higher profits than the poorer agents. The functions
that define this scenario are given by Equations (8) and (10). All results presented in this
section are for N = 100,000 averaged over 100 samples. Taxation is on wealth, given by
Equation (4).

Statistics

In Figure 4, we can see that the link between wealth and connections allows for greater
inequality. Whereas, before, the 99th quantile stabilized around 2.4 w0, it now stabilizes
at 3.1 w0, a 30% increase. Similar differences can also be seen for other statistics. The Gini
index went from 0.31 to 0.37, an increase of 20%. The total wealth of the richest 10% went
from 20% to 24%, an increase of 20%, and so on.

Therefore, the small advantage of allowing the agent with more wealth to have more
connections at each step, which is a fact, and even if his chance of winning a trade exchange
is 1/2; i.e., without any advantage, the chances of the agent increasing his wealth increase,
leading to a growth of inequality in the population.
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Figure 4. Statistics for the wealth–connection linked model and taxation on wealth: γ = 10−3 and
τ = 0.4. In the figure on the left, we can see the average wealth held by the 90 and 99 quantiles,
i.e., the 10% and 1% richest agents, respectively, compared with the standard deviation. Note that
these values are larger than in the raw case, Figure 5. On the right, the fraction of wealth held by the
10% and 1% richest agents is shown. The increase in wealth concentration is evident. Consequently,
the Gini index also increases. The time evolution of the Gini index is also shown, stabilizing just
below 0.4.

3.3. Favoring the Rich on Transactions

As defined in Section 2.6, this model describes a system where an agent’s bargaining
power, P(wi|wj), given by Equation (11), and his number of connections, fc(wi), given by
Equation (10), are linked to his wealth. The taxation here is on wealth, given by Equation (4).
Therefore, as an agent becomes richer, his risk decreases both by his increasing bargaining
power and by the number of transactions he makes. All results presented in this section are
for N = 100,000 averaged over 500 simulations.

3.3.1. Distributions

First, we start by exploring the evolution of the wealth distribution in this scenario,
which is the main focus of this research: can the model reproduce real-world wealth
distribution scenarios with these simple assumptions? The parameter values adopted are
τ = 0.4 and γ = 1/10,000 (Figures 5 and 6), and γ = 1/100 (Figure 7).

On the left-hand side of Figure 5, we can see that at the beginning of the simulation,
the system quickly evolves into a Gibbs-type form. However, at stage 5, as the poverty rate
(orange line) begins to increase, what resembles a Pareto tail begins to appear. At stage
10, when the poverty rate has passed 0.5% and continues to increase, the Pareto-shaped
tail starts to become clearer. At stage 23, its shape reaches exactly the expected behavior,
as can be seen in the fitted curve in Figure 6: Gibbs-like middle and poor classes, with a
Pareto-shaped tail for the upper 10% of the population and a poverty rate just above 1%.
Interestingly, however, as the system reaches that point, the poverty rate begins to decrease
due to the wealth tax, as inequality increases. At stage 38, we see that a “secondary” Pareto
tail appears with a higher coefficient, much like the distribution for Japanese firms shown
by Aoyama et al in [14], showing that, in practice, if given enough time, even the rich
begin to differentiate themselves, some much richer than others. Then, at stage 45, poverty
continues to decrease, around 0.1% (remember that taxation is levied on wealth), even
though inequality is still present and evolving. The much richer, due to the taxation on
wealth, rather than annual income, help reduce poverty. The rounded part of the curve
for higher values of wealth is due to finite size effects. By increasing the number of agents,
this rounded part of the curve shifts to the right. To the right of the distributions, we have
a graph of the number of interactions at each stage. We would like to note that, due to
the not-so-large number of agents, we cannot claim that these behaviors are true power
laws. For this, we would have to run simulations for at least 100 times larger number of
agents, which is beyond our scope at the moment. Until the last stage presented in the
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image (stage 45), the system does not seem to have reached an equilibrium state yet. The
tendency towards a condensate state is clear.

Figure 5. Evolution of the distributions for the model that favors the rich: γ = 10−4 and τ = 0.4.
At each stage, the figure on the left is the distribution of income, and the figure on the right is the
distribution of the number of connections. The orange line is the poverty rate.

Figure 6. Stage 23 of Figure 5. Pareto tail (dotted red line) is clear, with Pareto exponent α = 5.63.
γ = 10−4 and τ = 0.4.

Now, when we increase taxation 10 times (γ = 1/10,000 → γ = 1/1000), as can be
seen in Figure 7, the system still evolves to the expected behavior. However, by reducing
inequality, tax revenue is also reduced, and, therefore, the redistribution of wealth. This
makes the system apparently reach an equilibrium state (from stage 42 to stage 99) faster
and much more egalitarian, but with a much higher poverty rate. This is an important
point. It shows that there is a level of taxation above which the system apparently stabilizes,
at least for a long time. Now, just as in the previous chapters—where the rules of the
system were more egalitarian—inequality still exists. This shows us three things about
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a system that favors the wealthy (note that, again, this is in the context of a model with
perfectly equal tax redistribution; unequal redistribution—those that favor the poor, for
example—could lead to different results):

1. The problem of poverty is not simply solved with higher tax rates. How to redistribute
the tax collected is also an essential point. Here, the tax has been redistributed equally
among agents. A redistribution of tax that favors the poor is likely to decrease the
level of poverty. However, this has not been considered in this work, and it would be
interesting to analyze this issue in a future work.

2. A strong tax system does not necessarily mean lower poverty rates. As said before,
how to redistribute taxes is also a key point.

3. It is not necessary to eliminate inequality in order to end poverty. If the rich are taxed
properly—on wealth—and redistribution favors the poor, poverty can be virtually
eliminated.

Figure 7. Evolution of distributions for the model that favors the rich: γ = 10−3 and τ = 0.4. The
orange line is the poverty rate.

Therefore, these simulations show us a lot about the model. First, it shows that the
model is perfectly capable of reproducing, qualitatively, the behavior of wealth distributions
in the real world, from more egalitarian societies to strongly unequal societies, where even
the richest end up separated into different classes. Second, it shows us that a certain level of
inequality generally always exists, but this poverty can be combated with effective taxation
on wealth and effective redistribution of these taxes.

3.3.2. Statistics

In order to better analyze the effects of the parameters of the model over its time
evolution of the distributions, let us examine some of its statistics. The total tax revenue
can be seen in Figure 8 for several values of γ. As the system evolves, lower tax rates lead
to higher tax revenues that are applied to fewer and fewer agents. This is because lower
tax rates allow a greater concentration of wealth, so fewer and fewer people can reach the
minimum wealth required to pay taxes (w0 = 10). This becomes clearer when we look at
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Figures 9 and 10, which show the evolution of the top 10% and top 1% of the population,
respectively. We can see that the 90 quantile initially grows to 2 times w0 and then suddenly
falls around stage 40 for lower tax rates, although the percentage of wealth held by the top
10% continues to increase. This means that wealth is concentrated in a group of agents
(much) smaller than the 10%. This quantifies the effects we saw in the last section: even
among the richest agents, a differentiation starts, with some much richer than others (the
second Pareto tail we saw). Meanwhile, the simulation with the highest tax rate (γ = 0.001)
quickly reaches equilibrium (which can be better visualized in Figure 11) and inequality
is greatly reduced, although, as we saw in the distributions, poverty is more prevalent.
This can be further understood by looking at the Gini coefficient in Figure 11; see how
γ = 0.0001 (tax rate) leads to lower inequality than a value 10 times higher (γ = 0.001).
Moreover, notice that in Figure 11, all simulations eventually reach equilibrium, with a
stable standard deviation.

Figure 8. Evolution of total tax revenue and total taxed agents for different values of γ (tax growth
rate according to wealth).

Figure 9. Evolution of the top 10% of agents for different values of γ (tax growth rate according
to wealth).

Figure 10. Evolution of the top 1% of agents for different values of γ (tax growth rate according
to wealth).
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Figure 11. Evolution of the standard deviation (σ) and the Gini coefficient for different values of γ

(tax growth rate according to wealth).

3.4. Annual Income Tax Model

This scenario is similar to the model described in Section 3.3, where an agent’s bar-
gaining power (P(wi|wj)) and number of connections are linked ( fc(wi)) to his wealth. The
difference in this section is how taxation works. Here, instead of taxing the total wealth
of an agent at the end of a stage, we tax the amount the agent earned at the last stage,
which we call capital gain or annual income. This is the last scenario we are considering,
as it is the closest representation to the taxation most commonly used around the world.
Therefore, as a connection function, we use Equation (10); as bargaining power, we use
Equation (11); and as taxation, Equation (7) is used. All results presented in this section are
for N = 100,000 averaged over 500 simulations.

3.4.1. Distributions

The evolution of wealth distributions for the scenario with annual income taxation
can be seen in Figure 12. In accordance with what we saw in the previous section, the
Gibbs and Pareto tail appears again; see Figure 12, stage 30 (for a proper fit, refer to
Figure 13). This time, however, we can see an even steeper second Pareto tail at stage 41
(see Figure 14), showing that inequality among the rich (top 0.1%) has increased even more.
In addition, we see a reduction in poverty rate between stages 41 and 51, although we
have the highest concentration rate so far. However, as the system continues to evolve,
not only does inequality seem to keep growing, but so does poverty, with no signs of
reaching equilibrium. This is because, since we are taxing only annual earnings, as the
ultrarich possess more and more wealth, there is less and less capital gain to be had in
interaction with other agents (since the very rich are few), so tax revenues decrease and
the welfare state collapses. These numerical results confirm the widespread intuition
among many economists that taxation of annual income fails to balance the concentration
of income in a country that, with this type of taxation, always tends towards an ever more
extreme concentration. Consequently, according to the model, taxation of wealth and not
only of annual incomes seems to be an inevitable policy to avoid a growing concentration
of income.

Now, analyzing the results of the shift from wealth taxation to taxation on annual
earnings, which is the most widely used type of taxation today in most countries, only
confirms the most important part of the model—its ability to represent qualitatively real
world wealth distributions based on a few very simple assumptions widely spread around
the world. Just these few basic assumptions are already sufficient to represent qualitatively
the actual wealth distributions. Of course, we can greatly increase the complexity of the
model by adding new economic variables, which also increases the number of parameters,
all of which have been incorporated in one way or another in the few parameters used
in this model, a kind of coarse-grained one. However, we believe that to understand the
basic facts behind the unequal distribution of wealth around the world, the advantages
that the rich have in trading more and being more likely to win a deal are among the
most important and, as we have seem, are already sufficient to reproduce the qualitative
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(Pareto) aspects of countries’ wealth distributions in general. Wealth concentration, as
these scenarios suggest, is an inevitable fact if there are no effective fiscal policies and a
redistribution of wealth with priority to low-income agents. This work suggests that the
market alone is incapable of properly handling the problem of wealth concentration, which
seems to be circumvented only through effective taxation on wealth, at least in the case of
equal redistribution of revenues. This is the scenario that the model clearly shows.

Figure 12. Evolution of probability distributions for the model with capital gain taxation: γ = 0.1
and τ = 0.4. The orange line is the poverty rate.

Figure 13. Stage 30 of Figure 12. There is a Pareto tail (dotted red line) with α = 4.82.
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Figure 14. Stage 41 of Figure 12, scenario of annual income taxation. A second Pareto tail appears,
with α = 1.06 (dotted red line). γ = 1/10 and τ = 0.4.

3.4.2. Statistics

If we start by looking at the taxes in Figure 15, we already have a good idea of the
impact that the upper tax limit (τ) has on the model. We can see that higher tax limits slow
down the time evolution of the model at some stages, but that inevitably they all follow the
same path. We can also see that due to the new form of taxation, tax revenues are much
lower in all stages. The same behavior can be seen in all other statistics: top 10%, Figure 16;
top 1%, Figure 17; standard deviation and Gini coefficient, Figure 18. Here, however, the
concentration reaches much higher levels, with the richest 1% holding more than 80% of
the total wealth of the population in some cases, while Gini coefficients reach more than 0.8.

Figure 15. Evolution of total tax revenue and total taxed agents for different values of τ (tax limit).
γ = 0.1.

Moreover, as we saw in the last section, the change among the rich happens in a faster
and stronger way. This time, the 90 quantile reaches two times w0 much earlier (stage 20 vs.
stage 40 in the wealth tax model) than before and drops to much lower values: in scenario
3, the lowest value of the 90 quantile is just above 0.8w0 (Figure 9), whereas now it is only
0.25w0 (Figure 16). A similar trend can also be seen at the 99 quantile (Figure 17). This
shows us that the wealth of the population is not, in fact, in the hands of the richest 10%
or even the richest 1%, but, actually, in the hands of the 0.0% group (top 0.001%, 0.0001%,
0.00001%, etc.).

Therefore, the impact of the highest level of taxation, τ, does not seem to change the
qualitative behavior of the time evolution of the stages; it just delays the same pattern, and
it is not a pattern-changing parameter. Then, the important aspects seem to be (i) the value
of the parameter γ, (ii) the type of taxation (on wealth or on annual income), and (iii) how
the total tax revenue is redistributed (to be analyzed in a future work). All other parameters
do not change the tendency of wealth concentration, according to our simulations.
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Figure 16. Evolution of the top 10% of agents for different values of τ (tax limit) and γ = 0.1.

Figure 17. Evolution of the top 1% of agents for different values of τ (tax limit) and γ = 0.1.

Figure 18. Evolution of the standard deviation (σ) and the Gini coefficient for different values of τ

(tax limit) and for γ = 0.1.

4. Conclusions

We show that a simple model that links wealth with trade and favors the rich in com-
mercial transactions can qualitatively reproduce the current wealth/income distributions,
with their middle and poor classes having a Gibbs-type distribution and a Pareto tail for
the richest parts of the population. Moreover, we show that for capital gain/annual income
taxation, the equilibrium state provided by this model is of extreme concentration, while
for a wealth tax, it is possible, depending on the parameter values, to reach an equilibrium
state that is not the one of extreme concentration of wealth.

The model also shows us that, first, simply increasing taxes does not necessarily lead
to lower rates of inequality, because high tax rates lead to a much smaller number of tax-
paying agents, thus decreasing the tax revenue to be redistributed, as in standard economic
theory. Therefore, in general, higher taxes lead to lower rates of inequality, but there is a
special combination of the parameters where this may not be the case; see Figure 11.
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However, while it is important to note that this conclusion about the relationship
between higher taxes and inequality would likely change if redistribution favored the poor,
its fundamental features are still highly likely to be correct. Second, it also shows us that the
lower risks (greater bargaining power) and greater number of opportunities (connections)
associated with wealthy agents are a central part of the inequality equation, so it is not
simply a matter of taxing these agents more, but reducing these differences as well. A
high concentration scenario does not exist when opportunities are equal and/or markets
are regulated.

Furthermore, the model also shows us that this extreme concentration/inequality
can be avoided by taxing wealth, even at low rates, allowing an effective welfare state to
functionally eradicate poverty while allowing a healthy economic elite to exist.

Additionally, we can also state with a certain level of confidence that, given the
model’s ability to qualitatively reproduce current global trends in economic inequality, as
well as its ability to provide results consistent with economic theory, we can understand
the current situation based on a few basic assumptions. This means that among the main
drivers of inequality, we should consider the problem of unequal opportunities and the
difference in risks associated with doing business. Richer agents have much more access to
business and a much lower risk rate than the rest of society and, therefore, a much higher
probability of winning in any scenario analyzed. The temporal evolution of this scenario
leads to growing inequality, inevitably. In addition, the model also makes it very clear
that inequality appears naturally and must be actively combated; otherwise, the tendency
towards extreme concentration is unstoppable. Therefore, given current global trends, with
low taxation, no matter how egalitarian a society may be at the beginning, the system will
tend to evolve towards an ever greater concentration.

Moving a little further away from the realm of the model, but based on its findings,
we could say that inequality is a problem with multiple origins, but which, at its core, is
driven by privileged access to trade and therefore lower risk. However, it is only when this
privilege is boundlessly associated with commercial transactions, allowing large corpora-
tions to buy and sell as they please, that inequality truly spirals out of control. The market,
as we have seen, inevitably creates some level of inequality, which in itself is not a problem
if that inequality is not so high. However, when we allow agents with great bargaining
power unregulated access to the market, the system truly falls apart.

Looking back while building this model, we also considered much more complex
situations, such as distance-based trading advantages between agents, which is also a
realistic factor, among others. However, all these more complex alternatives, with many
more parameters, exhibited similar behaviors and patterns, making it increasingly clear
that the fundamental and simpler characteristics chosen for this model were the driving
factors in its behavior.

Finally, the analysis of the effects of unequal redistribution, favoring the poorest, is
very important, as it will certainly offer new reasonable scenarios, avoiding the extreme
concentration of income we currently see. The study of a hybrid taxation system, in which
both taxation on wealth and taxation on annual income coexist, is also an aspect to be
considered in future studies.
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Abstract: Extreme inequality represents a grave challenge for impoverished individuals and poses a
threat to economic growth and stability. Despite the fulfillment of affirmative action measures aimed
at promoting equal opportunities, they often prove inadequate in effectively reducing inequality.
Mathematical models and simulations have demonstrated that even when equal opportunities are
present, wealth tends to concentrate in the hands of a privileged few, leaving the majority of the
population in dire poverty. This phenomenon, known as condensation, has been shown to be
an inevitable outcome in economic models that rely on fair exchange. In light of the escalating
levels of inequality in the 21st century and the significant state intervention necessitated by the
recent COVID-19 pandemic, an increasing number of scholars are abandoning neo-liberal ideologies.
Instead, they propose a more robust role for the state in the economy, utilizing mechanisms such
as taxation, regulation, and universal allocations. This paper begins with the assumption that state
intervention is essential to effectively reduce inequality and to revitalize the economy. Subsequently, it
conducts a comparative analysis of various taxation and redistribution mechanisms, with a particular
emphasis on their impact on inequality indices, including the Gini coefficient. Specifically, it compares
the effects of fortune and consumption-based taxation, as well as universal redistribution mechanisms
or targeted redistribution mechanisms aimed at assisting the most economically disadvantaged
individuals. The results suggest that fortune taxation are more effective than consumption-based
taxation to reduce inequality.

Keywords: econophysics; exchange models; inequality

1. Introduction

In capitalist economies, social and economic inequality has become an ingrained
characteristic. While a certain degree of inequality can serve as a motivator for individuals
to strive for progress, excessive inequality poses a significant barrier to the fundamental
driver of the economy: trade. Consequently, individuals in dire poverty are marginalized
from participating in economic transactions, resulting in reduced circulation of money
and diminished consumption of goods. From the insights of Adam Smith [1] to the
perspectives of contemporary neo-liberals [2], including proponents of the Austrian School
and minimal state intervention [3], orthodox economic theory has long posited that the
inherent mechanisms of the market will naturally alleviate disparities in wealth. This
theory argues that by providing individuals with opportunities for advancement, everyone
will have a chance to improve their circumstances, thereby reducing inequality [4]. One
of the early studies in income distribution was developed by Italian economist Vilfredo
Pareto [5].
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Pareto’s analysis of income data from the 19th century revealed a striking phenomenon:
income distribution follows a power law, with the exponent now known as the Pareto
exponent. He went beyond this observation, asserting that the non-Gaussian nature
of income distribution suggested that individuals or enterprises took deliberate actions
leading to higher income. This notion still finds support today, despite the fact that there
are more critics of meritocracy [6,7] than proponents. In any case, a persistent hypothesis
prevails in capitalist societies: that with “equal opportunities”, individuals of sufficient
intelligence and effort can ascend the social pyramid.

Nevertheless, the current state of affairs deviates markedly from this idyllic conception.
Recent data from the USA paint a highly contrasting picture: a mere 1% of the economic
elite possesses almost half (50%) of the total wealth, with the top quantile (20%) of the
population owns a overwhelming 88% of available resources, as indicated by Wolff’s
research in 2017 [8]. As highlighted by Piketty [7], the chronological progression of the
wealthiest segment of society’s assets expands at a swifter pace than the overall economy.
Adding to this stark reality, the once-promising notion of social mobility stands exposed
as a mere illusion, as considerable fortunes persist through the channels of inheritance, as
highlighted in Fernholz’s work in 2023 [9].

Even simple exchange models used in econophysics to simulate trade and economic
exchanges demonstrate this phenomenon. In two recent papers [10,11], we have demon-
strated that exchange models considered fair, where agents participating in trade have
equal chances of earning money, inevitably lead to the total concentration of wealth in
the hands of a single individual or a select few. Moreover, most microscopic models of
exchange among economic agents exhibit this behavior (see ref. [12]).

These models consider an ensemble of interacting agents that exchange a fixed or
random amount of their total wealth. The exchanged wealth is susceptible to several
interpretations. It could be the money given for some service or commodity or an error
during the exchange [13], and it may be attributed to a profit or plus valia. Analogous to
physical systems where particles exchange energy through binary conservative collisions,
these models [14–17] consider a set of interacting agents that exchange wealth. If the
exchanged amount of wealth is a random fraction of the wealth of each agent, the resulting
wealth distribution follows a Gibbs exponential distribution [17]. However, such models
lack fairness, as the values each agent puts at stake may differ significantly.

One of the most used models of wealth exchange among economic agents is the so-
called Yard-Sale model. This model, in its original version, is a fair model because each
agent has the same possibility of winning the same amount of money. The basic idea is that
no one can receive, in any trade, more than he/she is putting at stake during the exchange.

Numerical [12] and analytical [18] results with the Yard-Sale model, or some variations
of it, point to condensation, i.e., a continuous concentration of all available wealth in just
one or a few agents, leading to an absorbing state where no more wealth is exchanged [10].
The phenomenon of condensation, while well-known to experts in the field, might appear
to challenge a fundamental principle of thermodynamics because it leads to a situation
seemingly at odds with the second law of thermodynamics. In the conventional Kinetic
Theory of Gases, as formulated by Boltzmann, random energy exchanges propel the system
towards the equal distribution of energy, culminating in a state of maximum entropy.
However, when energy (or wealth) exchanges are restricted from exceeding the inherent
energy, a distinct scenario unfolds. This outcome corresponds to a state of minimum
entropy or, conversely, maximum information. While the second law predicts a thermal
death of the universe, characterized by the uniform distribution of energy and a uniform
temperature, alternative models of equitable exchange envision a thermal death of trade,
marked by large disparities in wealth (comparable to temperature differences), ultimately
leading to a cessation of trade. Nevertheless, the current path of the global economy,
characterized by the persistent growth of inequality [7], seems to bring us uncomfortably
close to this ominous scenario.
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Different modifications have been introduced in the Yard-Sale model to overcome
condensation. For example, increasing the probability of favoring the poorest agent in a
transaction [19,20] or introducing a taxation mechanism [13,21,22], wherein all agents peri-
odically contribute taxes, and the collected amount is subsequently distributed among them.
This approach closely resembles real-world political systems adopted by various countries.
Therefore, our focus will be on examining the impact of taxes on wealth redistribution and
inequality reduction.

In the following section, we will describe the exchange model we are going to use, i.e.,
the Yard-Sale model. In Section 3, we review previous findings with taxation on wealth; in
Section 4, we present the novel results with taxation on exchanges and redistribution, and
the impact in reducing inequality.

2. The Model

We consider an ensemble of interacting economic agents, where two of them are
selected sequentially and at random to exchange a predetermined fraction of their wealth.
Agents do not risk all of their capital in each exchange, but they save a fraction, which
depends on their risk aversion [19,20,23–26]. Therefore, the attributes of each agent i
are the risk-aversion factor βi and its wealth wi. Both are initially drawn from random
uniform distributions in the [0, 1) interval (for the exchange-tax system, we use another
distribution for β, that is the same value for all agents, therefore becoming a parameter
of the model, which is varied to check on its effect), but while βi stays constant for each
agent, wi (simulations are insensitive to the initial distribution of wi) changes because of
exchanges involving that agent.

It is worth noting that certain models introduce the possibility of wealth creation or
destruction during these exchanges [27]. However, for the purposes of our discussion, we
will limit ourselves to conservative models, where the total wealth remains constant.

Let us assume an exchange of wealth between agents i and j. Supposing that i wins an
amount of wealth from j; we have that

w∗
i = wi + dw and w∗

j = wj − dw,

where w∗
i(j) is the wealth of the agent i(j) after the exchange.

The most widely used rule to determine the quantity dw transferred from the loser
to the winner is the fair one, which states that dw = min[(1 − βi)wi(t); (1 − β j)wj(t)]. It is
considered fair because the amount of wealth exchanged is the minimum of the quantities
risked by the two agents and the same regardless of who wins, and it is the basis of the
Yard-Sale model [28].

As we stressed before, numerical and analytical studies with the Yard-Sale model, as
well as its variations, consistently lead to condensation. Recently, we have given a general
proof that all models following a fair principle, including the Yard-Sale, inevitably lead to
condensation [10,11]. To overcome this fate, different rules of interaction have been applied,
for example increasing the probability of favoring the poorer agent in a transaction [19,20]
or introducing a cut-off that avoids interactions between agents below and above this
cut-off [29]. One particular choice is to use a rule suggested by Scafetta [12,19], where, in
the exchange between the agents i and j, the probability of favoring the poorer partner is
given by the following:

p =
1
2
+ f × |wi(t)− wj(t)|

wi(t) + wj(t)
, (1)

and f is a factor that we call the social protection factor, which goes from 0 (equal probability
for both agents) to 1/2 (highest probability of favoring the poorer agent). In each interaction,
the poorer agent has a probability p of earning a quantity dw, whereas the richer one has a
probability of 1 − p. It is evident that the higher the difference in wealth in a given pair of
agents, the higher the influence of f in the probability; thus, f is a good indicator of the
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degree of application of social policies of wealth distribution. This rule have been studied
in full generality in some previous articles [12,30].

We have provided a concise overview of the impacts of the social protection factor.
For a more in-depth examination of this approach to diminishing inequality, we direct
interested readers to the comprehensive review by Chakraborti et al. [31,32].

While this simple mechanism helps to reduce inequality, some critics argue that real-
world exchanges tend to favor wealthier agents. In addition, a consensus has not yet
been reached on how to accurately correlate the protection factor with tangible economic
measures. Consequently, it seems that a more logical way to reduce inequality is through
the redistribution of the taxes collected. Therefore, we will focus on the effects of taxes. In
the next section, we will delve into the simplest tax system: tax on wealth.

3. Taxes on Fortune

In this section, we present previously published results [33] concerning the implemen-
tation of a simple flat tax on wealth. Our simulation revolves around a society consisting of
N agents who engage in wealth exchanges based on the Yard-Sale model. At each time-step,
two agents are randomly selected, facilitating a monetary exchange where one participant
emerges as the winner while the other becomes the loser. Regarding the tax collection
mechanism in our simulation, it operates as follows: after every Monte Carlo Step (MCS),
i.e., following N/2 exchanges, all agents contribute the same fraction λ of their wealth as
taxes. (It is worth noting that the wealth tax shares similarities with property or fortune
taxes, albeit being less prevalent than income taxes.) Consequently, the redistribution
of money can manifest in two distinct ways: a universal allocation, wherein funds are
distributed evenly among the entire population, or a focused approach, wherein the funds
are specifically directed towards individuals with lower wealth.

All results presented here are averages over 103 samples for three system sizes N:
103, 104, and 105. As the obtained results are almost independent of the size, we have plotted
just the outcome for N = 105 and N = 104 agents. The saving propensity factor β, as well as
the initial wealth of each agent, are chosen at random from a uniform probability distribution
in the interval (0, 1). While the individual wealth changes along the simulation because on
the exchange interactions, the saving factor of each agents is fixed.

3.1. Universal Redistribution

The most straightforward type of redistribution is universal, wherein the entire tax
revenue collected is distributed equally among all individuals, irrespective of their wealth.
Similar taxation mechanisms have been proposed in prior studies [13,21], albeit with the
assumption of β values close to 1 and in the context of the small transaction limit approx-
imation. Notwithstanding these differences, our findings, which have been published
elsewhere [33], qualitatively correspond with prior research; they show that the Gini index
decreases as the tax percentage increases, as expected; so, the taxation mechanism can
effectively mitigate inequality. However, the effect of the tax percentage is non monotonic;
indeed, it is more effective at small values. Effectively, 10% of taxes makes a huge change in
the Gini index, lowering it from 1 (no taxes) to 0.5, while increasing taxes up to 25% lowers
the Gini index to 0.3. More details on the quantitative effect of the universal taxes on the
Gini index can be seen in Figure 1-right, (blue curve). We cannot expect, in real societies, a
tax percentage above 25%. Recent contributions [22,34] have explored related systems of
universal redistribution, where the tax percentage depends on wealth.
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Figure 1. (Left): Gini index represented as a heat map plus iso-Gini curves, as a function of the tax
fraction (λ) and the bottom fraction of agents that receive the collected taxes (p). (Right): Gini index
as a function of λ for p = 1 (universal case) and p = p∗ (optimal targeted case). Both figures were
obtained for a system of N = 104 agents (from ref. [33]).

3.2. Focused Redistribution

In the targeted scenario, the total tax collection is distributed among the p poorest
fraction of the population, referred to as the targeted population. The universal case corre-
sponds to p = 1. Figure 1-left illustrates the relationship between the Gini index and both λ
and p. Notably, when the allocation is limited to less than 1% of the population (p ≤ 10−2),
which aligns with many governmental initiatives aimed at assisting the unemployed and
extremely impoverished individuals, the impact on the Gini coefficient is almost negligi-
ble. To achieve a noticeable effect in reducing inequality, it becomes necessary to extend
assistance to at least the poorest 3–4% of the population. Additionally, Figure 1 reveals
an optimal value of p = p∗ that minimizes inequality for each tax rate λ, indicating an
intriguing non-trivial relationship between λ and p in this context.

Finally, in Figure 1-right, we compare the Gini index as a function of λ for two cases:
p = 1 (universal case) and p = p∗ (optimal targeted case). Notably, for intermediate values
of λ, particularly around λ ≈ 0.3, the regulatory mechanism of assisting only a fraction of
the population proves to be more effective in significantly reducing inequality.

4. Taxes on Exchanges

One common taxation in many countries is the VAT (value-added tax), or IVA in
Spanish-speaking countries. A slightly different tax, called ICMS (tax on the circulation of
goods and services) is applied in Brazil. This is a tax that everybody pays when buying
goods or paying for services.

We simulate the VAT system by taxing each exchange with a fixed percentage on
the exchanged quantity dw. In practice, the tax collection works as follows: two agents,
i and j, are randomly selected to exchange wealth in such a way that agent j will lose an
amount of wealth (1 − β)min(wi, wj) while agent i will receive this value reduced by a
factor (1 − λ). Thus,

w∗
i = wi + (1 − λ)(1 − β)min(wi, wj) and w∗

j = wj − (1 − β)min(wi, wj), (2)

where λ is the tax rate. The collected taxes λ(1 − β)min(wi, wj) of each exchange are
accumulated during one MCS, that is, along N/2 exchanges. After this period, the collected
taxes are equally distributed among all agents. We denote the liquidity of the system L
as the total value received by the agents in exchanges along one MCS. The reader may
have already noticed that here, we make use of a constant and universal saving factor β, in
order to simplify the calculations. But, there are no obstacles to using an individual βi for
each agent.

As before, we again use the Gini index to measure inequality. We show in Figure 2 the
Gini index as a function of the tax fraction λ for different values of β. We observe that the
higher the tax rate, the lower the inequality, as expected, and inequality also decreases if

94



Entropy 2023, 25, 1346

the risk aversion increases, similarly to what was obtained in the models without taxes. In
the trivial case (λ = 0), we recover the G = 1 result (condensation).

Figure 2. Equilibrium Gini index as a function of λ, the tax index, for different values of β. Lines
correspond to simulations with N = 104 agents and symbols, with N = 105.

In Figure 3, we depict the liquidity as a function of λ, for different values fo β. Here,
an interesting feature is observed. While the behavior of liquidity with β is not simple,
it generally decreases as the risk aversion increases, which is expected. However, for
each value of β, there is an optimum value of λ = λ∗, such that the liquidity L = L∗ is
maximum—and inequality is minimum. It is clear that very low or very high taxes are a
burden to trade; therefore, an intermediary, not trivial value appears as a function of β to
maximize liquidity. Nevertheless, such maximization has to be counterbalanced with the
minimization of the Gini index. In the next figure, Figure 4, we show that the optimum tax
rate (λ∗) decreases as a function of β.

Finally, in Figure 5, we show how the Gini index and liquidity behave as a function of
β, when the optimum tax rate is applied. We can observe a a trade-off between equality
and liquidity for different values of β.

Figure 3. Equilibrium liquidity as a function of λ, the tax index, for different values of β. Lines
correspond to simulations with N = 104 agents and symbols, with N = 105.
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Figure 4. Optimum value of λ as a function of d β. The line is just a guide for the eyes, points are the
results of the simulations for different values of β.

Figure 5. Equilibrium Gini index (left) and liquidity (right) at λ = λ∗ as a function of β. Lines are
just guides for the eyes, points are the results of the simulations for different values of β.

5. Discussion and Conclusions

Recent studies in the field of econophysics have unveiled an intriguing phenomenon:
fair models that allocate equal chances of winning to individuals may, in fact, result in
maximum inequality. This implies that despite initially equal opportunities, there is a need
for redistribution mechanisms to ensure greater equality in outcomes.

In this article, we delve into the topic of taxation and explore how different taxation
mechanisms can contribute to reducing inequality. Specifically, we juxtapose the findings
of earlier research [10]—which delved into wealth taxes—with the concept of transaction
taxes—akin to a value-added tax (VAT) on consumption. Taxation can be a potent tool
for redistributing wealth and resources from the affluent to the less privileged. However,
the type of taxation system implemented can have vastly different impacts on the level of
inequality in society.

Through our research, we analyze various types of taxation models, including a flat
wealth tax with universal and directed redistribution, as well as a wealth-transaction tax
with universal redistribution.

Our research has identified that a small fraction of wealth tax can significantly con-
tribute to reducing inequality. Our analysis reveals that by implementing targeted redistri-
bution mechanisms that specifically cater to the poorest individuals in society, the impact
of wealth tax can be even stronger. By providing resources and support to those who are
most in need, we can foster greater social and economic equality.

However, while a higher tax rate consistently leads to a decrease in inequality, the
volume of economic activity follows an inverted U-shaped curve in response to changes in
the tax rate. In other words, we can identify an optimal tax rate that maximizes economic
activity. Nevertheless, the specific optimal tax rate varies depending on the average saving
rate of individuals in a society. We have obtained an optimal tax rate that can range from
0.25 to 0.55, depending on the average saving rate.
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When analyzing the outcomes, it is crucial to acknowledge that we are working within
a basic fair exchange model. Despite retaining the fundamental aspects of trade, this model
does not encompass goods production or economic expansion. These constraints mean that
while the impact of taxes and redistribution evidently diminishes inequality, as seen in the
practices of certain nations through social allocations, the numerical outcomes should be
considered as instructive rather than definitive predictions.

To sum up, even though equitable models that distribute equal opportunities might
seem just, they can paradoxically lead to heightened disparities in actual outcomes. This
research underscores the importance of adopting efficient redistribution mechanisms, such
as levying wealth taxes on both wealth and transactions—where the former proves more
effective than the latter—in order to foster heightened levels of societal and economic parity.
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Abstract: The last decade has witnessed a great number of opinion formation models that depict the
evolution of opinions within a social group and make predictions about the evolution process. In
the traditional formulation of opinion evolution such as the DeGroot model, an agent’s opinion is
represented as a real number and updated by taking a weighted average of its neighbour’s opinions.
In this paper, we adopt a hybrid representation of opinions that integrate both the discrete and
continuous nature of an opinion. Basically, an agent has a ‘Yes’, ‘Neutral’ or ‘No’ opinion on some
issues of interest and associates with its Yes opinion a support degree which captures how strongly
it supports the opinion. With such a rich representation, not only can we study the evolution of
opinion but also that of support degree. After all, an agent’s opinion can stay the same but become
more or less supportive of it. Changes in the support degree are progressive in nature and only a
sufficient accumulation of such a progressive change will result in a change of opinion say from
Yes to No. Hence, in our formulation, after an agent interacts with another, its support degree is
either strengthened or weakened by a predefined amount and a change of opinion may occur as a
consequence of such progressive changes. We carry out simulations to evaluate the impacts of key
model parameters including (1) the number of agents, (2) the distribution of initial support degrees
and (3) the amount of change of support degree changes in a single interaction. Last but not least, we
present several extensions to the hybrid and progressive model which lead to opinion polarization.

Keywords: opinion dynamics; opinion formation; opinion polarization

1. Introduction

In social life, opinions and beliefs significantly affect human choices and also drive their
actions [1]. Therefore, it is important to understand opinion dynamics, i.e., the evolution
process of opinion spreading and forming in social networks. Opinion dynamics can be
applied in various aspects [2–8]. For example, in political elections, Bravomarquez et al. [9]
conducted an empirical study on the opinion time series in the 2008 American election
by using Twitter data. In market research, Castro et al. [10] proposed a recommendation
system based on opinion dynamics to help users choose the right product or service in
a scenario of excessive information. In research on transportation, Hashemi et al. [11]
proposed an opinion dynamics method to improve the reliability of the speed estimator. In
other fields, Noah et al. [12] studied the evolution of the American people’s opinions on
a series of issues related to the Iraq war. Carmela et al. [13] explained the mechanism of
consensus reached by 178 countries in the 2015 Paris Climate Change Agreement, etc. In
this way, researchers have deepened their understanding of the formation and evolution of
opinions and aroused interest from other fields.

Models in opinion dynamics usually include three elements: expression formats of
opinions, fusion rules and dynamic environments of opinions. In particular, the agents in
the group express initial opinions through a special expression format. According to fusion
rules, the opinions of the agents are updated repeatedly. Finally, the opinions of all agents
form a stable state: consensus, polarization or fragmentation. According to whether the
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opinion values are discrete or not, the opinion dynamics can be divided into two categories:
(1) discrete opinion models, e.g., the Ising model [14–19], the Sznajd model [20–22], the
Voter model [23–28], the majority-vote model [29–33], and (2) continuous opinion mod-
els, e.g., the Deffuant–Weisbuch (DW) model [34–37] and the Hegselmann–Krause (HK)
model [38–42]. The former type usually describes situations in which agents have a finite
number of opinions. As for the latter type, the DW model updates asynchronously and
allows two agents to interact with each other if their opinions are close to some extent,
while the HK model updates synchronously and allows a crowd of agents to do so simul-
taneously if their opinions are somewhat similar. In addition, both the DW and the HK
models rely on the idea of repeated averaging under a confidence threshold. Considering
these works, we believed that both discrete and continuous models have disadvantages
and thus we will propose a hybrid model where opinions are discrete (support, oppose, feel
neutral) while support degrees are continuous (lying in the range of [0, 1] with 0 meaning
absolutely oppose and 1 meaning absolutely support). First discrete opinions are tailored
for some situations, one of which may be voting for some representatives in congress or
parliament. Second continuous support degrees reflect delicate feelings and emotions,
which are natural in real life.

Most studies on continuous opinion dynamics take a weighted average of agent opin-
ions in any single interaction [43–45]. However, in reality, when an agent is exposed to its
same opinion, its confidence in this opinion will be strengthened. Moreover, when two
agents meet with different opinions, they may not be able to make their opinions the same
immediately. In fact, there are many versions of opinion dynamics models that take into
account the “support” or “conviction” of an agent. For example, Roy et al. [46] studied
this public and private opinion dynamics and the critical behaviour of the consensus-
forming transitions using a kinetic exchange model; Szurlej et al. [47] studied the bi-
nary q-voter model with generalized anticonformity on random Erdős–Rényi graphs;
Lallouache et al. [48] proposed a minimal multiagent model for the collective dynamics
of opinion formation in society by modifying kinetic exchange dynamics studied in the
context of income, money or wealth distributions in a society; Scheufele et al. [49] studied
how the opinion climate affects participatory behaviour with or without public expression
of opinion. Yet none of these studies allows opinions to be strengthened when like-minded
agents meet. Therefore, in this paper, we will propose a novel model called progressive
opinion evolution (POE) which exploits a slow and continuous accumulation updating
strategy to deal with the drawbacks above. Based on this model, we will mainly discuss
how agents interact and update their opinions.

To be specific, we proposed an updating rule for agents’ support degrees, i.e., how
strongly they support an opinion, and thus constructed a mathematical model accordingly.
Moreover, we conducted simulations to test parameter sensitivity on evolution processes.
Our main contributions are summarized as follows: (1) a framework for opinion formation
through progressive opinion change; (2) three mechanisms for opinion polarization.

The remainder of this paper is organized as follows. Section 2 presents some necessary
preliminaries. Section 3 describes our progressive evolution model. Section 4 presents
empirical evaluations of the effects of different parameters on opinion evolution. Section 5
discusses polarization mechanisms as well as related simulations. Finally, Section 6 con-
cludes this paper and discusses future works.

2. Preliminaries

In the simulations part, we discuss groups of agents whose support degrees about an
opinion follow certain distributions, so we introduce notations concerning some probability
distributions here. We use X ∼ U[a, b] to denote that X follows a uniform distribution over
[a, b]. Moreover, we use X ∼ N (μ, σ2) to denote that X follows a normal distribution with
μ and σ2 as its mean and variance, respectively. On the other hand, we use X ∼ beta(α, β)
to denote that X follows a beta distribution, where α > 0 and β > 0, respectively. Moreover,
we sometimes talk about a range of values, so for simplicity, we use E(a, t, b) to denote a

100



Entropy 2022, 24, 1692

set of numbers that begin with a and do not exceed b with t as a single step, i.e., E(a, t, b) =
{a + k · t|a + k · t ≤ b, k ∈ Z, k ≥ 0}.

3. The Proposed Model

Consider a set of agents, A = {a1, · · · , aN}, and a discrete-time stamp t ∈ {0, · · · , ∞}
at which opinions update. To demonstrate how strongly an agent supports an opinion, we
first introduce the definitions of support degree and opinion as below.

Definition 1. Given an agent ai and a time stamp t, we define its support degree si(t) as a function
with a range [0, 1]. Moreover, we define opinions as

xi(t) =

⎧⎪⎨
⎪⎩

1, if si(t) > 0.5;
0, if si(t) = 0.5;
−1, if si(t) < 0.5.

(1)

In our setting, if an agent’s support degree is greater than (resp. smaller than) 0.5, we
say that it supports (opposes) an issue. Otherwise, we say that he remains neutral about
an issue. In what follows, we use 0 ≤ δ ≤ 1 to denote support degree change (SDC), the
increase or decrease of an agent’s support degree. The larger δ is, the more significant an
agent’s support degree update.

Below, we present the definition of support degree profile which describes the support
degree of all agents.

Definition 2. Given a time stamp t, the support degree profile (SDP) at time t, denoted by S(t), is
defined as 〈s1(t), · · · , sN(t)〉, which is a vector of support degrees of all agents.

Below, we define special cases which will be useful for introducing what we mean by
consensus.

Definition 3. If si(t) > 0.5 (resp. si(t) < 0.5, si(t) = 0.5) for all 1 ≤ i ≤ N, we say that S(t) is
a positive (resp. negative, neutral) SDP.

In this paper, we will only be interested in cases where the initial SDP is neither
positive nor negative nor neutral. Next, we define a special case that will be useful in
discussing polarization.

Definition 4. If ∃1 ≤ h �= l ≤ N s.t.

1. sh(t) < sl(t);
2. ∀1 ≤ i ≤ N, si(t) �∈ (sh(t), sl(t));
3. ∃j, k s.t. sj(t) ≤ sh(t) and sk(t) ≥ sl(t),
4. and sl(t)− sh(t) > 0.5;

then we say that S(t) is a τ-gap SDP, where τ = sl(t)− sh(t).

Now, we show the intuition of the notion of a τ-gap SDP. (1) Item 2 implies that no
agents have support degree between that of sh(t) and sl(t); i.e., the support degrees of ah
and al must be adjacent to each other in the sorted form of S(t). (2) Item 3 indicates that
there must exist agents whose support degrees lie at both sides of that of ah and al in the
sorted form of S(t). (3) Item 4 ensures that our definition is well-defined as is stated in
Proposition 1.

Proposition 1. At some certain time stamp, if an SDP is τ-gap, then it cannot be τ′-gap where
τ′ �= τ.
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Proof. (by contradiction) Assume that there exists a profile S(t) that is both τ-gap and
τ′-gap where τ �= τ′. According to Definition 4, τ > 0.5 and τ′ > 0.5. Since S(t) is τ-gap,
there must exist an interval of length τ where no agents have support degrees. Similarly,
there must exist another interval of length τ′ where no agents have support degrees. In this
sense, the intervals above are disjoint. Therefore, the length of their union is τ + τ′ > 1 that
exceeds the length of the interval (0, 1) which is 1.The contradiction falsifies our assumption
and thus confirms the validity of our proposition.

Notice that given an SDP S(t), if si(t) ∈ {0, 1} for 1 ≤ i ≤ N, then it is a one-gap
profile. Below, we have a proposition that asserts that in a τ-gap SDP there cannot be any
neutral agents and there must exist agents with opposite opinions.

Proposition 2. If S(t) is a τ-gap SDP for some τ, then

1. � ∃ 1 ≤ i ≤ N s.t. si(t) = 0.5;
2. ∃1 ≤ j �= k ≤ N s.t. si(t) > 0.5 and sj(t) < 0.5.

Based on the proposition above, we are ready to understand the notion of most
swinging agents as well as their implications.

Definition 5. If S(t) is a τ-gap SDP, sh(t) = max
si(t)<0.5

si(t) and sl(t) = min
sj(t)>0.5

sj(t), then we

say that ah (resp. al) is a/the most swinging agent involved in S(t) that opposes (resp. supports)
an issue.

In this sense, considering all agents, the opinions of ah and al are the closest to neutral.
To some extent, they are the most able to be persuaded and then converted. Hence, it is
reasonable to adopt their support degrees to measure the difference between the supporting
sub-group and the opposing sub-group. The larger the support degree difference between
ah and al , the more polarized the two sub-groups. This leads to the proposition below, in
which the rationality of Definition 4 is shown.

Proposition 3. Suppose S(t) is a τ-gap SDP, ah and al are a/the most swinging agent involved in
S(t) that opposes and supports an issue, respectively, then sl(t)− sh(t) = τ.

Since we studied opinion dynamics empirically, we introduce definitions below which
give exact meanings of observations. Below, we present what we mean by observing a
process of opinion evolution that follows a certain model.

Definition 6. If R = 〈S(0), · · · , S(T)〉M is a sequence of observed profiles that follows M,
where T is a specified time stamp, then we say that R is an observed process of opinion evolution
that follows M and T is the cutoff. Or we say that R is an observed evolution process for short if
understood from the context.

Below, we show the meaning of observing consensus or polarization of length (T − t∗).

Definition 7. Suppose that R = 〈S(0), S(1), · · · , S(T)〉M is an observed evolution process.

1. if there exists 1 ≤ t∗ ≤ T, s.t. S(t) is a positive (resp. negative, neutral) SDP for t∗ ≤ t ≤ T,
but S(t∗ − 1) is not, then we say that R is observed to form a consensus of length (T − t∗).

2. if there exists 1 ≤ t∗ ≤ T, and τ0, s.t. S(t) is a τ-gap SDP for t∗ ≤ t ≤ T with τ ≥ τ0 but
S(t∗ − 1) is not, then we say that R is observed to form a τ0-polarization of length (T − t∗).

In our setting, at each time stamp, exactly two agents meet each other, which is similar
to the DW model [34]. According to their support degrees before the meeting, there are six
combinations of support degrees that need to be considered (as is shown by 1 ∼ 6 in
Table 1 (Since this table is symmetric, the below left part is ignored)):
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1. Both are greater than 0.5;
2. One is greater than 0.5 while the other is less than 0.5;
3. One is greater than 0.5 while the other is equal;
4. Both are less than 0.5;
5. One is less than 0.5 while the other is equal;
6. Both equal 0.5.

Then our update rules will be defined based on the cases above. For example, when
two agents with the same opinion meet each other, both their support degrees will be
increased or decreased, depending on whether they support or oppose an issue.

Example 1. Suppose that two agents both have the same support degree change δ,

1. (both positive) if their previous support degrees are 0.6 and 0.7, then their degrees will increase
to 0.6 + δ and 0.7 + δ, respectively;

2. (both negative) if their previous support degrees are 0.2 and 0.3, then their degrees will decrease
to 0.2 − δ, and 0.3 − δ, respectively.

When two agents with opposite opinions meet each other, their support degrees will
be increased or decreased and get close to each other.

Example 2. Suppose that two agents both have the same support degree change δ, if their previous
support degrees are 0.4 and 0.5, then their support degrees will come close to being 0.4 + δ and
0.5 − δ, respectively.

Table 1. Cases that are considered.

ai
aj > 0.5 < 0.5 = 0.5

> 0.5 1 2 3

< 0.5 - 4 5

= 0.5 - - 6

Both are greater than 0.5 (See 1). One is greater than 0.5 while the other is less than 0.5 (See 2). One is greater
than 0.5 while the other is equal(See 3). Both are less than 0.5 (See 4). One is less than 0.5 while the other is equal
(See 5). Both equal 0.5 (See 6).

In addition, if an agent feels neutral about an issue, its opinion will be dragged and
thus changed by any other one that supports or opposes this issue.

Our progressive opinion evolution (POE) model adopts asynchronous update rules,
i.e., at every time stamp, two or more agents are randomly selected to communicate with
each other and then update their support degrees. Yet in our models, we only allow
interactions between exactly two agents. When two agents, namely ai and aj, meet each
other at time t, their support degree updates can be described as follows, and are divided
into several cases depending mainly on whether they have the same or different opinions.

1. The most trivial case is that both agents are neutral; then no updates are needed, so
the rule, in this case, is as below.{

si(t + 1) = si(t),
sj(t + 1) = sj(t)

(2)

2. If both agents are positive (resp. negative) at time t, their confidence will be strength-
ened and thus their support degrees will be increased (resp. decreased) by δ, as shown
in Equations (3) and (4). {

si(t + 1) = si(t) + δ,
sj(t + 1) = sj(t) + δ

(3)
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{
si(t + 1) = si(t)− δ,
sj(t + 1) = sj(t)− δ

(4)

3. If two agents with opposite opinions meet each other, their confidence in previous
opinions will be weakened, i.e., one support degree will be increased while the other
will be decreased. Without loss of generality, we assume that si(t) < sj(t) and the
respective updates are described below.{

si(t + 1) = si(t) + δ,
sj(t + 1) = sj(t)− δ

(5)

In addition, since support degrees cannot lie outside the interval [0, 1], we apply the
function ∏[0,1] below to limit the results obtained from Equations (2)–(5).

∏
[0,1]

(x) =

⎧⎪⎨
⎪⎩

1, if x > 1
x, if 0 ≤ x ≤ 1
0, if x < 0

(6)

For example, Equation (5) will turn into the following in our implementation.{
si(t + 1) = ∏[0,1](si(t) + δ),
sj(t + 1) = ∏[0,1](sj(t)− δ)

(7)

Proposition 4. Suppose R = 〈S(0), S(1), · · · , S(T)〉M is an observed evolution process that
follows our POE model. If there exist 1 ≤ t∗ ≤ T, s.t. S(t∗) is a positive (resp. negative, neutral)
profile, then S(t) is also a positive (resp. negative, neutral) profile for t∗ < t ≤ T.

Proof. We simply prove the case for positive profiles and the other two are similar. In order
to prove that S(t) is positive for t∗ < t ≤ T, we simply need to prove that S(t∗ + 1) is also
positive.

Without loss of generality, we assume that two agents, namely aj and ak, are picked
for interactions upon S(t∗). According to Definition 3, si(t∗) > 0.5 for 1 ≤ i ≤ N; thus
sj(t∗) > 0.5 and sk(t∗) > 0.5. According to Equation (3), sj(t∗ + 1) = sj(t∗) + δ > 0.5 since
δ > 0. Similarly, sk(t∗ + 1) > 0.5. On the other hand, for any 1 ≤ l ≤ N, s.t. l �= j and l �= k,
sl(t∗ + 1) = sl(t∗) > 0.5, so si(t∗ + 1) > 0.5 for 1 ≤ i ≤ N, which in turn confirms that
S(t∗ + 1) is a positive profile.

4. Simulations with POE Model

We visualized the properties of our model through Matlab simulations. To be specific,
we demonstrated the effects of three parameters including (1) the support degree change δ, (2)
the distribution of their initial SDP 〈s1(0), · · · , sN(0)〉 as well as (3) the group size N.

For each of the three parameters above, we evaluated how they influence the speed of
convergence. So given a model with all parameters specified, we use t∗ to represent the
average number of iterations needed to achieve convergence (see [50] for more details).
Moreover, in order to observe convergence in a convenient way, we used an additional
parameter tmax which means the number of iterations we perform in a particular run.

4.1. Comparing Different Values of Support Degree Change δ

For the simulations in this subsection, N and tmax were set to 200 and 10, 000, re-
spectively. To evaluate the impacts of δ, we tested each value in E(0.05, 0.02, 0.49) for this
parameter. For each such value, we conducted simulations 500 times and obtained the t∗
value over these runs.

Since simulations showed that different δ values present similar trends concerning
convergence, we took two runs as examples in which δ was set to 0.2 and 0.6, respectively,
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and we present them in Figure 1 here. Among all simulations, we found that those models
with δ < 0.5 quickly converge (form a consensus) while those with δ > 0.5 failed to do so
within tmax iterations, as is vividly shown in the two sub-figures of Figure 1.

(a) δ = 0.2 (b) δ = 0.6

Figure 1. The average t∗ values for different δ values. (a) δ = 0.2. (b) δ = 0.6. Other parameters:
N = 200, tmax = 10, 000, si(0) ∼ U[0, 1] where 1 ≤ i ≤ 200.

Furthermore, we present t∗ values with respect to different δ values in Figure 2.

Figure 2. The average t∗ values for different δ values. Other parameters: N = 200, tmax = 10, 000,
si(0) ∼ U[0, 1] where 1 ≤ i ≤ 200.

From Figure 2, we obtained the following observations.

1. In general, the value of t∗ clearly decreased as δ increased from 0.05 to 0.49.
2. The decreasing trend of t∗ wrt. δ was sharp in the first half where δ ranged from 0.05

to 0.25 but became smooth in the second half, where δ is greater than 0.25.

Now, we analyze the performances visualized in Figure 2. When δ is small, agents can
only update their support degree in small steps, so a great number of steps are needed to
achieve consensus. In contrast, when δ is relatively big, a small amount steps are in need.
On the other hand, when δ > 0.5, agents’ support degrees update too fiercely so that no
consensus was observed within tmax iterations.

Remark 1. In practice, given a society, when an average agent is reluctant to change its idea, it
will take longer for the society to form a consensus. On the other hand, if an average agent is too
open-minded, its opinion may keep changing and thus a consensus is difficult to achieve.
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4.2. Comparing Different Distributions of Initial SDP

We considered different distributions of agents’ initial SDP 〈s1(0), · · · , sN(0)〉, and
evaluated their impacts on the result and speed of convergence. To be specific, we con-
ducted two lists of simulations.

1. The former list evaluated the influences of different proportions of opinions, where the
support degree distribution is uniform in both the positive and the negative groups.

2. The latter list simulated those initial SDPs that follow the beta and normal distribution,
compared to those that follow the uniform distribution.

4.2.1. The Effects of Different Proportions of Opinions

Given a fixed number of N agents, we partitioned them into two groups, those who
support or oppose an issue. In this sense, we use Np and Nn to denote the number of agents
in these groups, respectively, and obviously, N = Np + Nn.

Since simulations showed that different (Np, Nn) values present similar results about
convergence, we took two runs as examples in which (Np, Nn) were set to (150, 50) and
(50, 150), respectively, and we presented them in Figure 3 here.

(a) (150, 50) (b) (50, 150)

Figure 3. The effects for different (Np, Nn) values. δ = 0.1, N = 200, tmax = 10, 000. (a) (150, 50).
si(0) ∼ U[0.5, 1] where 1 ≤ i ≤ 150. s151(0), · · · , s200(0) ∼ U[0, 0.5]. (b) Parameter settings are
analogous.

From Figure 3, we obtained the following.

1. Figure 3a showed simulations where Np and Nn were 150 and 50, respectively, and
this simulation formed a consensus where all agents were positive.

2. Figure 3b showed similar situations where Np and Nn were 50 and 150 and finally, all
agents became negative.

From Figure 3, we conjectured that Np > Nn leads to a consensus where all agents
are positive, while Np < Nn causes the opposite. To verify this claim, we conducted
four groups of simulations where (Np, Nn) were set to (180, 20), (120, 80), (90, 110) and
(30, 170), respectively. In each group, we conducted 500 simulations and in the end, we
made observations that fitted this conjecture.

Remark 2. In practice, if everyone is open-minded to some extent, then their meeting is likely to
form a consensus that is consistent with majority votes, provided a sufficient number of interactions.

4.2.2. Evaluating Beta and Normal Distributions of Initial SDP

In reality, agents’ support degrees can be concentrated to some extent. To be specific,
there are two types of interesting distributions: (1) distributions where the majority are
quite indifferent between supporting or opposing an issue, and (2) those where the ma-
jority have polarized support degrees. Rigorously, we think that the beta and the normal
distributions are interesting because they reflect the two situations above. Hence, we redid
the simulations in Section 4.1, but replaced the uniform distribution there with beta(0.1, 0.1)
and N (0.5, 0.1), respectively. Then we visualized the results of these 3 distributions and
placed their curves together in Figure 4.
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Figure 4. The influence of distributions of initial SDPs. Other parameters: N = 200, tmax = 10, 000;
the blue, red and green curves correspond to the beta, uniform and normal distribution, respectively.

From Figure 4, we obtained the following.

1. Obviously, the three curves shared similar trends with the one in Figure 2.
2. The beta distribution took the longest to form a consensus, while the normal distribu-

tion took the shortest time when δ is relatively small.

Further simulations showed that no consensus would be reached when δ > 0.5. All in
all, this figure illustrated that more concentrated distributions lead to sooner consensus
among agents.

Remark 3. In reality, when most agents have initial support degrees that are similar, such agents
can easily persuade others to accept their ideas. In contrast, if there exists a considerable amount
of agents with polarized support degrees, it will take longer to persuade them to accept intermedi-
ate ideas.

4.3. The Effects of Group Size

We redid the simulations in Section 4.1, but replaced the value of N with 100, 200, 500
and 1000, respectively. Since simulations showed that different N values present similar
trends concerning convergence, we took two runs as examples in which N was set to 100
and 500, respectively, and we presented them in Figure 5 here. Furthermore, we visualized
the results of 200, 500 and 1000 agents and placed their curves together in Figure 6.

In Figure 5, we found the following.

1. Both runs formed a consensus.
2. Larger groups of agents led to later consensus.
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(a) N = 100 (b) N = 500

Figure 5. Influence of N. (a) N = 100. (b) N = 500. Other parameters: δ = 0.1, t(a)
max = 5, 000,

t(b)max = 10, 000, the initial support degrees are uniformly and randomly selected from [0, 1].

Figure 6. The average t∗ values for different δ values. Other parameters: the initial support degree is
uniformly and randomly selected from [0, 1]. The blue, red and green curves correspond to parameter
combinations, namely (1) N = 200, tmax = 10, 000; (2) N = 500, tmax = 50, 000; and (3) N = 1, 000,
tmax = 50, 000, respectively.

From Figure 6, we obtained the following.

1. Obviously, the three curves shared similar trends with the one in Figure 2, which
indicated that whether their support degrees converge does not depend on the number
of agents involved.

2. The situation in Figure 5 also occurred in the three cases here.

Remark 4. In a society where communications are primitive, to be specific, in each time stamp,
only two agents are allowed to interact with each other, the time needed to form a consensus is
proportional to the number of agents.

4.4. Non-Uniform SDCs in A Group

In previous simulations, all agents have the same SDC. Alternatively, any two agents
update their support degree with the same increase or decrease. In this subsection, we con-
sidered agents that could have individual SDCs, so we redid the simulation in Section 4.1,
but replaced the uniform SDC among agents with individual ones.

We conducted two simulations in which individual SDCs follow uniform distributions
over [0.1, 0.4] and [0.1, 0.8], respectively. In what follows, we use δi to denote the ai’s SDC.
Since simulations showed that different runs present similar trends concerning convergence,
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we took two of them as examples in which δi ∼ U[0.1, 0.4] and δi ∼ U[0.1, 0.8], respectively,
where 1 ≤ i ≤ 200, and we presented them in Figure 7 here.

(a) δi ∈ [0.1, 0.4] (b) δi ∈ [0.1, 0.8]

Figure 7. Non-uniform SDCs in a group. (a) δi ∈ [0.1, 0.4]. (b) δi ∈ [0.1, 0.8]. Other parameters:
N = 200, tmax = 10, 000, si(0) ∼ U[0, 1] where 1 ≤ i ≤ 200.

In Figure 7, we found the following.

1. Both initial distributions formed a consensus in the end.
2. In Figure 7b, even though there were a significant proportion of agents whose SDCs

were greater than 0.5, a consensus was formed eventually.

Furthermore, we considered other intervals namely [0.1, b] where b ∈ {0.2, 0.3, · · · , 1}.
and each of them was tested 500 times. Then, we visualized the relation between b and t∗
in Figure 8 below.

Figure 8. The relation between the average t∗ value and the right endpoint b. Other parameters:
N = 200, tmax = 10, 000, si(0) ∼ U[0, 1] where 1 ≤ i ≤ 200.

From Figure 8, we obtained the following.

1. Even though there could be a significant proportion of agents who were more open-
minded, i.e., they updated their support degrees considerably, a consensus was still
reached.

2. The b − t∗ curve presented a decrease when b < 0.5 but then showed an increase until
b reached 1. This indicated that larger SDC values generated an earlier consensus
when they were smaller than 0.5. Moreover, it revealed that more open-minded agents
with SDC value greater than 0.5 produced a later consensus.

Now, we analyze this phenomenon.
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1. Since there was a fair proportion of agents with SDC values less than 0.5, they consti-
tuted a core that served as a foundation for opinion evolution. Such a core persuaded
those open-minded agents with SDC values greater than 0.5 to eventually agree with
the opinions of the core.

2. As to the speed of convergence, when δ was small, it took longer to form a consensus
which coincided with the mechanism beneath Figure 2. However, when b ≥ 0.5,
agents’ support degrees update quite fiercely, so it is not easy to reach a consensus,
which was why more time was needed to reach a consensus.

Remark 5. As mentioned above, if agents in a society are too open-minded, they will hardly form a
consensus. However, if there exist plenty of agents who are willing to update their support degrees
in small steps, they will constitute a core and this core will gradually persuade those open-minded
ones and finally turn them into their like-minded companions.

5. Three Mechanisms for Polarization

Group polarization is a hot topec in recent research of opinion dynamics [50–57]. In
this section, we propose three extensions of our POE model which served for polarization.

5.1. Communications Limited by Support Degree Differences

In reality, there can be communication barriers between agents whose support degrees
differ too much. More concretely, if two agents have different opinions, their communica-
tion cannot occur unless their support degrees are close to some extent, i.e., the difference
between their support degrees is smaller than a certain specified confidence threshold.

Based on our POE model above, we introduce a bounded confidence threshold ε,
where 0 ≤ ε ≤ 1, which permits or prohibits communications between agents with
different opinions. Actually, our intuition for this is as follows.

1. Agents with the same opinion communicate with each other effectively.
2. Only when two agents meet with different opinions, do we exert a threshold.

Formally, in Cases 2 , 3 and 5 in Table 1, agents’ support degrees update only when
|si(t)− sj(t)| ≤ ε for some confident specified threshold ε. Combining these rules and the
ones in Equations (2)–(4) in Section 3, we have a novel model, named ε-POE model, for
communications that are limited by support degree differences. Notice that such a model
will degenerate to the POE model when ε = 1. In addition, since support degrees cannot
lie outside the interval [0, 1], we implement this model in the same way as Equation (7).

Since simulations showed that different ε values present similar trends in polarization,
we took two particular runs as examples in which ε were set to 0.1 and 0.6, respectively,
and we presented them in Figure 9 here.

(a) ε = 0.1 (b) ε = 0.6

Figure 9. The influence of ε. (a) ε = 0.1. (b) ε = 0.6. Other parameters: δ = 0.1, N = 200,
tmax = 10, 000, si(0) ∼ U[0, 1] where 1 ≤ i ≤ 200.

Figure 9 shows that both the ε-POE modes (with ε = 0.1 and ε = 0.6, respectively)
polarized.
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Next, we tested all combinations of 〈δ, ε〉 ∈ E(0.1, 0.05, 0.4) × E(0, 0.1, 1) and ran
simulations 500 times with each of them. In this sense, we defined polar ratio as the
proportion of runs that achieved polarization. The relation between polar ratios and
bounded confidence is presented in Figure 10, in which each curve corresponds to a specific
δ value.

Figure 10. The effects of bounded confidence. Other parameters: N = 200, tmax = 10,000,
si(0) ∼ U[0, 1] where 1 ≤ i ≤ 200.

From Figure 10, we found that larger bounded confidence led to smaller polar ratios,
i.e., small bounded confidence tended to polarize. The reason may be that smaller bounded
confidence results in less willingness to update one’s opinions.

Remark 6. More trust between agents with different opinions leads to less polarization.

Actually, we have a proposition below which shows that in our ε-POE mode, once an
SDP becomes 1-gap, it will preserve this property till the end of our observation.

Proposition 5. Suppose that M is an ε-POE model, and R = 〈S(0), S(1), · · · , S(T)〉M is an
observed evolution process. If there exists 1 ≤ t∗ ≤ T, s.t. si(t∗) ∈ {0, 1} for all 1 ≤ i ≤ N, then
S(t∗) = S(t∗ + 1) = · · · = S(T).

5.2. Polarization through More Effective Interaction with Like-Minded Agents

In reality, like-minded agents tend to communicate somewhat effectively. In this sense,
like-minded agents cause more updates compared to those with different opinions. To
distinguish between the effects resulting from like-minded agents and that from opposite-
minded ones, we introduce an extra parameter 0 ≤ c ≤ 1 for perturbation which helps
depict such prejudice. More specifically, we believe that support degree changes between
like-minded agents should be enlarged by a factor of 1 + c, while those between different-
minded agents should be shrunk by a factor of 1− c. Hence, when like-minded agents meet,
the update should be δ(1 + c), which is greater than that in previous sections. Analogously,
when opposite-minded agents meet, the update should be δ(1 − c). If c = 0, this model
degenerates to the POE model above. By considering these issues, we have a model below
which depicts such a situation.

1. The most trivial case is that both agents are neutral and the update rules are just the
same as before, i.e., no updates are needed.
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2. If both agents are positive (resp. negative) at time t, their confidence will be strength-
ened and thus their support degrees will be increased (resp. decreased) by δ(1 + c),
as is shown in Equations (8) and (9).{

si(t + 1) = si(t) + δ(1 + c),
sj(t + 1) = sj(t) + δ(1 + c)

(8)

{
si(t + 1) = si(t)− δ(1 + c),
sj(t + 1) = sj(t)− δ(1 + c)

(9)

3. If two agents with different opinions meet each other, one support degree will be
increased while the other will be decreased. So their support degrees will still get
close, even though by a smaller step in this case. Without loss of generality, we assume
that si(t) < sj(t) and the respective updates are described below.{

si(t + 1) = si(t) + δ(1 − c),
sj(t + 1) = sj(t)− δ(1 − c)

(10)

In addition, since support degrees cannot lie outside the interval [0, 1], like in previous
situations, we implement this model in the same way as Equation (7).

Since simulations showed that different c values present similar trends, we took two
specific runs as examples in which c were set to 0.5 and 0.7, respectively, and we presented
them in Figure 11 here.

(a) c = 0.5 (b) c = 0.7

Figure 11. The influence of c. (a) c = 0.5. (b) c = 0.7. Other parameters: δ = 0.1, N = 200,
tmax = 10, 000, si(0) ∼ U[0, 1] where 1 ≤ i ≤ 200.

In Figure 11, neither consensus nor τ0-polarization was observed with τ0 ≥ 0.8. Yet
detailed observations showed that τ0-polarization was observed with τ0 > 0.6. To better
depict this phenomenon, we propose Definition 8 below.

Definition 8. (dynamic polar) We counted the number of people in the interval [0, r], and [1− r, 1],
which are separately denoted by η, and μ, if | η

N − μ
N | ≤ p, and η

N + μ
N > q, where 0 < r ≤ 1,

0 ≤ p ≤ 1, and 0 ≤ q ≤ 1, then we say that a dynamic polar among the agents is reached at time t,
which concerns r, p and q.

Below, in each simulation, we set r = 0.4, p = 0.2 and q = 0.95. Then, we considered
all combinations of δ ∈ E(0.1, 0.05, 0.4) and c ∈ E(0.1, 0.1, 0.9), and we ran simulations 500
times with each combination. Finally, we reported dynamic polarization ratios in Figure 12,
in which each curve corresponded to a δ value.
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Figure 12. The effects of the perturbation parameter c. Other parameters: N = 200, tmax = 10, 000,
si(0) ∼ U[0, 1] where 1 ≤ i ≤ 200.

In Figure 12, we found that bigger δ values produced smaller dynamic polarization
ratios, which indicated that small δ values tend to cause polarization. Moreover, we noticed
that larger perturbation values led to greater dynamic polarization ratios.

Now, we analyze the performances. With bigger δ, agents’ support degrees fluctuate
sharply so that it is difficult to realize dynamic polarization. On the other hand, if agents
communicate much more effectively with like-minded ones compared to opposite-minded
ones, their support degrees rarely come close to the average level among them.

Remark 7. First, we considered a conservative society in which the majority are stubborn, i.e., they
are little willing to change their support degrees. The less their willingness is, the more likely they
are to form a dynamic polar.

Second, we considered a society where individual agents have obvious prejudice, i.e., they
update their support degrees more strongly with like-minded companions. The greater their prejudice
is, the more probable it is that they will reach a dynamic polar.

5.3. Polarization through the Higher Chance of Interaction with Like-Minded Agents

Inspired by the Barnum Effect [58], we considered a case where agents desire to
interact with like-minded companions. Such interactions can positively reinforce one’s
own beliefs. However, in the POE model, we assume that any two agents have equal
opportunities for interactions. To be specific, each agent is chosen for communications with
a probability about 1

N , where N is the number of agents. In this sense, they have a 50/50
chance of being like-minded.

Given a particular agent ai, we use ρ(ai) to denote the proportion of agents that
share the same opinion with agent ai, so the proportion of agents that have different opin-
ions is 1 − ρ(ai). Then we introduce a bias parameter 0 ≤ b ≤ 1, which helps increase
the probability that an agent meets like-minded companions. More specifically in our
setting, if an agent ai supports or opposes an issue, it will meet like-minded compan-
ions at a probability of min{ρ(ai) + b, 1} while it meets other agents at a probability of
1 − min{ρ(ai) + b, 1}. However, if agent ai feels neutral about that issue, it will meet any
other agent with equal probability. Notice that such a model will degenerate to the POE
model above when b = 0.

Our model here is the same as the POE model before with a single exception that we
pick agents for communications by Algorithm 1.
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Algorithm 1: PickAgentPair.

input: An agent set A, a time stamp t, SDP at time t, i.e., 〈s1(t), · · · , s|A|(t)〉 , a
bias parameter b

output: Two agents for communications

1 ai ← a random agent in A;
2 if ai feels neutral then
3 aj ← a random agent other than ai;

4 else
5 p ← min{ρ(ai) + b, 1}; // prob of meeting a like-minded one
6 x ← a random number that follows U[0, 1]; // for prob determination
7 if x < p then

// with probability p
8 aj ← a random agent that shares opinions;

9 else
// with probability 1-p

10 aj ← a random agent that has different opinions;

11 return ai and aj for communications;

In addition, since support degrees cannot lie outside the interval [0, 1], like in previous
situations, we excluded unreasonable values in the same way as Equation (7).

Below, in each simulation, we set r = 0.4, p = 0.2 and q = 0.95. Then, we considered
all combinations of δ ∈ E(0.1, 0.05, 0.4) and b ∈ E(0.1, 0.05, 0.5) and then tested their effects.
We found that the results were similar to those presented in Figure 11; therefore, we also
used Definition 8 to depict such phenomena. We ran simulations with all combinations
of parameters, 500 times for each. Finally, we reported dynamic polarization ratios in
Figure 13, in which each curve corresponded to a δ value.

Figure 13. The effects of perturbation parameters. Other parameters: N = 200, tmax = 10, 000,
si(0) ∼ U[0, 1] where 1 ≤ i ≤ 200

In Figure 13, we found the following.

1. Obviously, those curves shared similar trends with the one in Figure 12.
2. More perturbation resulted in higher dynamic polarization ratios.
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Based on such observations, we conjectured that more concentration on like-minded
companions could cause more dynamic polarization.

Remark 8. In a society where agents tend to communicate with like-minded companions, their
support degrees will probably be increased by each other. Hence, the society may be divided into
several subgroups each of which shares close support degrees. In other words, these agents will likely
form a dynamic polar.

6. Conclusions

In this paper, we proposed a hybrid opinion dynamic model based on progressive
opinion evolution with a discrete component, namely agents’ opinions, as well as a contin-
uous one, namely support degrees. It has two distinguishing features as follows. (1) When
agents meet with someone with the same opinions, their opinions will be strengthened; to
be specific, their support degrees could increase or decrease simultaneously. (2) Agents
may not be able to achieve an agreement (to have the same support degree) in a single
interaction. Moreover, we proposed several extensions to this POE model which serve
as mechanisms of opinion polarization. To be specific, the first extension introduced a
further component, namely confident threshold, that limited communications between
different-minded agents. The second extension considered prejudice on different-minded
agents, more specifically, like-minded agents produced greater updates while different-
minded agents generated smaller ones. The third brought about more opportunities for
communication between like-minded agents.

We conducted a series of simulations to explore the behaviour of our models. In
particular, we evaluated the impacts of several components and model parameters on the
results and speeds of convergence. The results of these simulations show that our models
reflected some aspects of social reality and thus simulated some social phenomena.

For future works, we will explore models with dictatorships. Moreover, it will be inter-
esting to investigate an agent society with interactions that involve more than two agents.
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Abstract: Social recommender systems are expected to improve recommendation quality by in-
corporating social information when there is little user–item interaction data. Therefore, how to
effectively fuse interaction information and social information becomes a hot research topic in social
recommendation, and how to mine and exploit the heterogeneous information in the interaction
and social space becomes the key to improving recommendation performance. In this paper, we
propose a social recommendation model based on basic spatial mapping and bilateral generative
adversarial networks (MBSGAN). First, we propose to map the base space to the interaction and
social space, respectively, in order to overcome the issue of heterogeneous information fusion in
two spaces. Then, we construct bilateral generative adversarial networks in both interaction space
and social space. Specifically, two generators are used to select candidate samples that are most
similar to user feature vectors, and two discriminators are adopted to distinguish candidate samples
from high-quality positive and negative examples obtained from popularity sampling, so as to learn
complex information in the two spaces. Finally, the effectiveness of the proposed MBSGAN model is
verified by comparing it with both eight social recommendation models and six models based on
generative adversarial networks on four public datasets, Douban, FilmTrust, Ciao, and Epinions.

Keywords: recommendation algorithm; social recommendation; generative adversarial network;
nonlinear mapping

1. Introduction

With the development and popularity of the internet, people are facing an increasingly
serious problem of information overload [1]. As an important information filtering tech-
nology, recommendation algorithms can provide users with personalized information that
meets their interests and needs, saving their time and improving the efficiency of informa-
tion utilization. Recommendation algorithms have been used widely in many fields [2,3],
for example, e-commerce platforms and music and video streaming services. The emer-
gence of social platforms has sparked some analysis regarding social networks [4]. At the
same time, the rise of social networking platforms provides a large amount of user-related
data for social recommendation, which can effectively improve recommendation quality
and user satisfaction by using social relationships and extracting potential user interest fea-
tures from them. Therefore, social recommendation technology has become an important
research direction and research hotspot in the field of recommendation systems [5,6].

Currently, social recommendation models are mainly based on the assumption of
homogeneity, users with social relationships have similar interests [7]. However, this
assumption is not realistic. In reality, the social behavior of users in the social space and
the interaction behavior of users in the interaction space are both diverse and contingent.
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Therefore, it is believed that the heterogeneous information in the two spaces: the social
space and the interaction space, shall not be directly fused [8].

Among them, the fusion of heterogeneous information refers to the process of combin-
ing and harmonizing data from different sources or formats, such as text, images, videos,
and user profiles. For example, in a recommender system, integrating information from
various sources like product descriptions, user reviews, and social media data to provide
personalized recommendations. For example, a user follows and comments on content
related to high-calorie food in the social space, while he or she often searches for and buys
sports-related goods in the interaction space. Although these two behaviors may not seem
to be directly related, the common feature behind them is the user’s pursuit of healthy
living. If the information in the interaction space and social space is directly fused, it may
recommend high-calorie food to users and ignore their pursuit of healthy life; thus affecting
their user experience. Therefore, directly utilizing users’ social behavior to recommend
products can introduce a lot of noise, and how to effectively fuse heterogeneous information
has become a fundamental problem in the field of social recommendation. At the same time,
how to further capture the common features hidden behind heterogeneous information
on the basis of effective fusion of heterogeneous information is a problem that needs to
be solved.

Apart from the fusion of heterogeneous information, social recommendation models
also focus on how to better mine the data information in the social and interaction spaces
to improve recommendation quality. There are a lot of traditional data information mining
strategies such as classification, clustering, generative adversarial network (GAN), and
regression. Among these, generative adversarial networks [9] are a powerful deep learning
model that can generate data with high similarity and have been used widely in areas such
as deep learning [10–12]. Among them, the mining of data information involves extracting
valuable insights and patterns from a large volume of data. It includes techniques such
as data preprocessing, feature extraction, and data analysis. For instance, in the field of
customer relationship management, mining customer data to identify patterns of customer
behavior and preferences for targeted marketing campaigns. In recent years, more and more
researchers have started to explore how GAN can be applied to social recommendation to
improve recommendation accuracy. The challenge of generative adversarial networks is
the design of adversarial ideas, constructing more effective generators and discriminators,
so as to use the generative power of generative adversarial networks. In the scope of
social recommendations, GAN can be used to generate candidate items [13] or candidate
friends [14], in order to facilitate more accurate recommendations. However, most GAN-
based approaches only consider either the social space or the interaction space, failing to
capture the bilateral information at the same time.

The organizational structure is as follows: Section 2 introduces the relevant work;
Section 3 introduces the specific implementation process and details of the MBSGAN model;
in Section 4, the effectiveness of the model was verified through two sets of comparative
experiments; finally, the conclusions, limitations, and potential research directions of this
study were summarized.

2. Related Work

In this section, two lines of related work are presented, namely, the social relationship-
based recommendation model and the generative adversarial network-based recommenda-
tion model.

The user’s social relationship information, as an important factor influencing the
user’s decision making, has been widely incorporated into social relationship-based recom-
mendation models to improve the accuracy and performance of recommendation models.
SBPR [15] transforms social relations into a kind of weight, which is used to strengthen
interaction between users, so as to combine social information and interactive information.
Sorec [16] is based on probabilistic matrix decomposition, which decomposes the user–item
interaction matrix into two low-dimensional matrices and the authors improved the accu-
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racy and performance of the recommendation model by introducing a social network factor
matrix between these two matrices to effectively fuse the social and interaction information.
DSCF [17] is based on collaborative filtering, in which an attention layer is adopted to fuse
interaction and social information. DiffNet++ [18], as a neural network based approach,
aggregates higher-order neighbors in the social network and interaction network to obtain
user expressions separately and uses a graph attention mechanism to fuse the two user
expressions. All of the social recommendation models mentioned above make recommen-
dations by sharing a unified user expression, which achieves the fusion of the two types
of information. The advantage of these models is that sharing user expressions can fill in
missing data and improve recommendation effectiveness by integrating information from
multiple spaces, especially in situations with sparse data. However, these studies overlook
the fact that users typically interact with different goals in the interaction space and social
space, and the underlying motivations and influencing factors are different, leading to
heterogeneity in interaction and social behavior [19]. To solve the above heterogeneity
problem, in some social recommendation models, researchers attempt to learn user feature
vectors in the interaction space and social space separately, and use these learned user
feature vectors to make recommendations. DASO [20] is based on generative adversarial
networks, which fuse interaction information and social information by mapping them
to each other’s space. DcRec [21] is a graph neural network-based social recommenda-
tion model that separates user information in the social space and item space by contrast
learning, and then the user feature vectors in the two spaces are fused for recommendation
tasks using an attention-based fusion mechanism. Although the above methods solve the
problem of heterogeneity by learning users separately, these two models do not take into
account that the interaction and social behavior of users are influenced by their own values
and personality characteristics, and the two behaviors also share common characteristics,
which cannot completely erase the similarity between them [22]. Continuing with the ex-
ample in the introduction, considering only the user’s interest in high-calorie food content
and their social relationship with fitness influencers separately, without considering the
underlying features that connect them, can still lead to incorrect judgments, assuming that
users both enjoy eating high-calorie food and following fitness influencers. Therefore, they
did not fully utilize the common features behind user interaction and social behavior [23].

Generative adversarial networks have been widely used to learn the distribution of
user–item interaction data. Liu et al. [24] proposed solution generates reasonable user–
item pairs by the relevance score function and the discriminator discriminates between
real user–item pairs and the generator-generated user–item pairs. In CFGAN [25], the
generator generates reasonable user purchase vectors, and the discriminator discriminates
between the real user purchase vectors and the generator-generated user purchase vec-
tors. GCGAN [26] uses convolutional neural networks to generate user purchase vectors
based on CFGAN. RSGAN [13] is a social recommendation model based on generative
adversarial networks, in which the generator samples the items that friends of the user
frequently interact with, the user’s preferred items, and the discriminator is responsible
for distinguishing the items sampled by the generator from the real interaction items, so
that the items generated by the generator become closer to the user’s preferences through
adversarial training. ESRF [14] is also a social recommendation model based on GAN, in
which the generator samples a fixed number of friends, and the discriminator is responsible
for distinguishing between the ratings of the items sampled by the generator and the user’s
own preferences, and the ratings of the items by the average opinions of the sampled
friends. By doing this, the friends generated by the generator become more and more
reliable through adversarial training, and the recommendations are assisted by the opinions
of the friends. GANRec [27] proposes a negative sampling model based on the generative
adversarial network, which improves the accuracy of the recommendation system by using
GAN to generate negative samples. However, the above recommendation model only
considers the use of the bilateral generative adversarial networks in the interaction space.
Therefore, in this paper, we build a bilateral generative adversarial network, and use the
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generative adversarial network in each space to learn user feature vectors in the social space
and interaction space at the same time, so as to improve the accuracy of recommendation
algorithms.

3. MBSGAN Model

Users’ values and personality traits developed over time directly influence their inter-
action and social behavior. The way of fully extracting common features between these
two spaces will have a great influence on the social recommendation. Therefore, this
paper introduces a base feature space to fuse interaction and social information, which
contains common user characteristics behind user interaction and social behavior, such as
user values, personality, family background, and education. In addition, we constructed
a bilateral generative adversarial network in both spaces in order to deeply explore and
learn the complex data information in both spaces. While solving the problem of hetero-
geneity effectively, this better captures the common features behind the two spaces and
utilizes bilateral generative adversarial networks to learn information from both spaces
simultaneously.

3.1. Overview of the Model Framework

In this paper, we propose a social recommendation model based on basic spatial
mapping and bilateral generative adversarial networks (MBSGAN), called MBSGAN, based
on spatial mapping and bilateral generative adversarial networks to utilize the underlying
feature space to capture the common features behind user interaction and social behavior.
Among them, adversarial learning in the interaction space obtains candidate recommended
items by learning the interaction information between users and items, while in the social
space, candidate friends are obtained by learning the social information between users and
their friends. Both modules are adversarial models, but they are based in different data
spaces and have different goals. These two adversarial networks are the core content of
bilateral adversarial training in this paper. In MBSGAN, the fusion of interaction and social
information through spatial mapping and bilateral generative adversarial networks can
help deeply explore the interaction information in their respective spaces, so as to improve
the accuracy of recommendations.

The model framework is shown in Figure 1, and the model consists of three modules:
a “User Vector Mapping” module, an “Interaction Space Adversarial Learning” module
and a “Social Space Adversarial Learning” module.

Figure 1. An overview of the proposed MBSGAN framework. uB, uI, uS represent vector represen-
tations of users in the basic feature space, interaction space, and social space, respectively. vI , f S,
respectively, represent the item expression and user friend expression. cI , cS represent the candidate
items and friends selected by the generator; pI , eI , pS, eS represent high-quality positive and negative
examples selected from interactive and social data (please refer to Sections 3.3.2 and 3.4.2 for detailed
interpretation).
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The “User Vector Mapping” module contains the user’s basic feature vector uB and
two mapping functions MB−I and MB−S. First, the user’s base feature vector uB is mapped
through the mapping function MB−I to the interaction space, to obtain the user vector in
the interaction space uI. At the same time, the user base feature vector uB is mapped to the
social space by the mapping function MB−S to the social space, to obtain the user expression
in the social space uS. Finally, the uI and uS are input to the “Interaction Space Adversarial
Learning” module and the “Social Space Adversarial Learning” module, respectively, for
adversarial training.

The “Interaction Space Adversarial Learning” module consists of a generator and a
discriminator. First, the user feature vector of the interaction space uI and item vectors
vI are both input into the score function GI

score (the definition of GI
score will be given in

Equation (4) of Section 3.3). The top k items with the highest scores are selected as candidate
items. Then, the user feature vector uI and the high quality positive items pI, high quality
negative items eI sampled by popularity and the candidate items cI generated by the
generator are input together into the score function DI

score (the definition of DI
score will be

given in Equation (6) of Section 3.3), and then we obtain the correlation scores of users with
high-quality positive and negative items yp

I, ye
I and the correlation scores between the user

and the candidate items yc
I. Finally, the loss function LI

Dϕ
(the definition of LI

Dϕ
will be

given in Equation (8) of Section 3.3) is used to make yc
I both away from yp

I and away from
ye

I as far as possible, thus distinguishing the candidate items.
The “Social Space Adversarial Learning” module also includes a generator and a

discriminator. First, the user feature vector of the social space uS and the friend vector
f S are both input into the score function GS

score (the definition of GS
score will be given in

Equation (11) of Section 3.4), the relevance scores of the user and all friends are obtained,
and the top k friends with the highest scores are selected as candidate friends. Then, the
user feature vector uS and the high-quality positive friends pS, high-quality negative friends
eS are sampled by popularity and the candidate friends cS generated by the generator are
input together into the score function GS

score to obtain the correlation score between the
user and the high-quality positive and negative friends yp

S, ye
S, and the correlation score

between the user and the candidate friends yc
S. Finally, the loss function LS

Dϕ
(the definition

of LS
Dϕ

will be given in Equation (14) of Section 3.4) is used as far as possible to make yc
S

both away from yp
S and away from ye

S, thus distinguishing the candidate friends.
After the above bilateral adversarial training process, the candidate items obtained

from the interaction space generator are recommended to the user as the items to be
recommended. In the following, we will introduce the “User Vector Mapping” module in
Section 3.2, the “Interaction Space Adversarial Learning” module and the “Social Space
Adversarial Learning” module in Sections 3.3 and 3.4. Finally, in Section 3.5, we describe
the entire adversarial training process of the model.

3.2. “User Vector Mapping” Module

The base feature space is a space that is deeper and more in line with the essence of
things than the interaction space and social space. The decisions made by users in any
scenario are influenced by their own values, which reflect a user’s orientation and thinking
or viewing anything and distinguishing right from wrong, and these values have a certain
degree of stability and persistence. Unlike the characteristic factors in social and shopping
scenarios, values will not undergo significant changes in a short period of time. Using the
base feature space to reflect users’ basic values, and the feature factors of the base feature
space can include users’ pursuit of a better life, freedom, and equality, etc. The social and
interactive behaviors of users in both social and shopping scenarios are influenced by their
own values. Therefore, we believe that the base feature space can be transformed into the
interaction space and social space through mapping functions.

We transfer user information from the base feature space (B: the basic space) to the
interaction space (I: the interaction space) and the social space (S: the social space) by a
nonlinear mapping operation. Specifically, the user’s representation in the base feature

122



Entropy 2023, 25, 1388

space ui
B is mapped to the interaction space and the social space by a mapping function,

and the user’s expression in the interaction space ui
I and the user’s expression in the social

space ui
S are obtained. As shown in Equation (1), the nonlinear mapping function from the

base feature space to the interaction space is defined as follows:

uI
i = Mp−I

(
uB

i

)
= WI

L·
(
· · · α

(
WI

2 ·α
(

WI
1 ·uB

i + bI
1

)
+ bI

2

)
· · ·
)
+ bI

L (1)

In the above equation, the WS
I and bS

I are the weights and biases of the L layer neural
network (the number of layers in this article is set to 2), respectively, and α is the nonlinear
activation function. Similarly, the nonlinear function from the underlying feature space to
the social space is shown in Equation (2):

uS
i = Mp−S

(
uB

i

)
= WS

L ·
(
· · · β

(
WS

2 · β
(

WS
1 · uB

i + bS
1

)
+ bS

2

)
· · ·
)
+ bS

L (2)

where the WS
S and bS

S are the weights and biases of the L layer neural network, respectively,
and β is the nonlinear activation function. Equations (1) and (2) represent two multilayer
perceptrons with L layers, respectively.

The user expression mapped through the base feature space will be used for ad-
versarial learning in the interaction space and adversarial learning in the social space,
respectively, which will be introduced below. Therefore, the base feature space and bilateral
generative adversarial networks are combined to jointly mine information and improve
recommendation performance.

3.3. “Interaction Space Adversarial Learning” Module

To better learn user and item representations, we use the generative adversarial
network in the interaction space because of its powerful ability to learn complex data
distributions to capture users’ preferences in selecting items. As shown in the lower left
part of Figure 1, the interaction space adversarial training module consists of two parts:
the generator attempts to select as many items that can best match the user’s interests
as candidates as possible; the discriminator’s goal is to try to override the candidates
generated by the generator.

3.3.1. The Generator in the Interaction Space

The goal of the generator is to approximate the potential true conditional distribution
Preal

I (vI|ui
I) and generate the most relevant candidate samples. First, we use gscore

I (ui
I, vj

I) to
denote the item’s vj

I click or purchase likelihood by the user ui
I, as shown in Equation (3):

gI
score

(
uI

i , vI
j

)
=
(

uI
i · vI

j

)
+ ϕI

g (3)

where ϕI
g is the bias. After normalizing the probabilities by using the softmax function, we

obtain the generator score function in the interaction space GI
score as shown in Equation (4):

GI
score =

exp
(

gI
score

(
uI

i , vI
j

))
∑vj∈V exp

(
gI

score

(
uI

i , vI
j

)) (4)

Second, we use this score function to obtain the user ui
I prediction scores for all items

y1
I, y2

I · · · ym
I and after sorting these items, we select the items with the top k items as

candidate items.

3.3.2. The Discriminator in the Interaction Space

After the generator generates the candidate items, the discriminator is responsible
for overriding the candidate items generated by the generator. The advantage of the
popularity sampling method over other common sampling methods lies in its simplicity
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and ability to handle cold-start problems. So the discriminator improves its discriminative
power by utilizing a two-part prevalence-based sampling strategy [28]. The prevalence-
based sampling strategy is used to accurately obtain positive and negative example items
for adversarial training. The discrimination between positive items, negative items and
candidate items is designed for the continuous game between generator G and discriminator
D to better learn the true data distribution in the training data.

The main process of the popularity-based sampling strategy is as follows. First, the
popularity of an item is expressed in terms of the number of users who have interacted
with nj. Second, a popularity mean (Mean) is calculated to reflect the average popularity
of all items. Items above the mean popularity value are defined as high-popularity items
and those below the mean popularity value are defined as low-popularity items. The mean
popularity value is calculated in Equation (5).

Mean =
1
J ∑ J

j=1nj (5)

where the nj is the first j the prevalence of the first item, and J is the total number of items.
According to the definition of popularity, we believe that among the positive examples

of items that users have interacted with, the low-popularity items represent the users’ true
interest preferences. Similarly, among the negative example items that the user has inter-
acted with, the high popularity items reflect the user’s true aversion tendency. Therefore,
the high-quality positive items, pI , will be obtained by intersecting the user’s positive items
with the low-popularity items, and similarly, the high-quality negative items, eI , will be
obtained by intersecting the user’s negative example items with the high popularity items,
as shown in Figure 2.

Figure 2. Schematic diagram of prevalence sampling.

The main idea of discriminating between positive and negative items and candidate
items is that users’ preferences for predicted candidate items shall not be higher than
the users’ preference for high-quality positive items; the users’ preference for predicted
candidate items shall not be lower than the users’ preference for high-quality negative
items.

The score function of the discriminator in the interaction space Dscore
I is shown in

Equation (6):

DI
score =

exp
(

f I
score

(
ui, vj

))
∑vj∈V exp

(
f I
score

(
ui, vj

)) (6)

f I
score

(
ui, vj

)
=
(
ui · vj

)
+ ϕI

f (7)

where ϕf
I is the bias. As in Equation (7), we can obtain the prediction score of each item in

the discriminator.
In the stage of training discriminator D, the user ratings of high-quality positive and

negative example items, as well as candidate items, are fed into the discriminator D with the
aim of overriding the candidate items generated by the generator. The discriminator loss
function LI

Dϕ
is trained to maximize the difference between users’ ratings of candidate items

and users’ ratings of high-quality positive examples and maximize the difference between
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users’ ratings of candidate items and users’ ratings of high-quality negative examples. The
objective function of discriminator D is shown in Equation (8):

min
Dϕ

LI
Dϕ

= −E
[(

logσ
(

yI
p − yI

c

)
+ logσ

(
yI

c − yI
e

))]
(8)

where the yp
I, ye

I denote the user’s prediction scores for high-quality positive items and
high-quality negative items obtained by using the prevalence-based sampling strategy, and
yc

I denotes the user’s prediction scores for the candidate items generated by the generator.
In the stage of training the generator G, the user’s ratings of high-quality positive

example items and candidate items are fed into the generator G, with the aim of generating
candidate items that better match the user’s true preferences. The difference between the
user’s rating of candidate items and the user’s rating of high-quality positive examples
is minimized by training, i.e., maximizing the generator loss function LI

Gθ
. The objective

function of the generator G is shown in Equation (9):

max
Gθ

LI
Gθ

= −E
[
logσ

(
yI

p − yI
c

)]
(9)

where yc
I denotes the user’s the predicted rating of the candidate item, the yp

I denotes the
user’s prediction scores for the positive example items. The generator G is trained to fight
against the discriminator D, until the discriminator D cannot distinguish the candidate
items from the real data.

3.4. “Social Space Adversarial Learning” Module

In order to better learn user expressions from a social perspective, we utilize another
generative adversarial network in social space for social information learning. Again,
adversarial learning in the social space contains two parts, a generator and a discriminator,
as shown in the lower right part of Figure 1. The generator tries to use the generator score
function to select friends that are as similar as possible to the mapped user expressions as
candidate friends; the discriminator aims to distinguish candidate friends from real friends
by the discriminator score function.

3.4.1. The Generator in the Social Space

The goal of the generator is to approach the underlying true conditional distribution
through adversarial training Preal

S (f S|ui
S) and let the user ui

S generate the most relevant
candidate friends. Similarly, we use gscore

S (ui
S, f j

S) to denote f j
S is the friend of the user

ui
S, as shown in Equation (10):

gS
score

(
ui, kj

)
=
(

uS
i · f S

j

)
+ ϕS

g (10)

where ϕg
S is the bias. After normalizing the probabilities by using the softmax function, we

obtain the score function of the generator in the social space Gscore
S as shown in Equation

(11):

GS
score =

exp
(

gS
score

(
uS

i , f S
j

))
∑kj∈K exp

(
gS

score

(
uS

i , f S
j

)) (11)

In the following, we use this score function to arrive at the user uS
i prediction scores

for all friends y1
S, y2

S · · · yn
S and after sorting, we select the top k friends as candidate

friends.

3.4.2. The Discriminator in the Social Space

The goal of the discriminator is to override the candidate friends generated by the
generator. The discriminator also consists of two parts: a sampling strategy based on
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popularity and a method for discriminating between positive and negative examples and
candidate friends.

Similarly, we use a popularity-based sampling strategy to select high-quality positive
friends and high-quality negative friends. The high-quality positive friends, pS, were ob-
tained by intersecting the user’s friends with the low-popularity friends, and similarly, the
high-quality negative friends, eS, will be obtained by intersecting the user’s negative friends
(friends who have no social relationship with the user) with the high popularity friends.

The main idea of discriminating between high-quality positive and negative example
friends, and candidate friends is that the similarity between the user and the predicted
candidate friend shall not be higher than the similarity between the user and the high-
quality positive example friend, and the similarity between the user and the predicted
candidate friend shall not be lower than the similarity between the user and the high quality
negative example friend.

The score function of the discriminator in social space Dscore
S is shown in Equation (12):

DS
score =

exp
(

f S
score

(
ui, kj

))
∑kj∈K exp

(
f S
score

(
ui, kj

)) (12)

f S
score

(
ui, kj

)
=
(
ui · kj

)
+ ϕS

f (13)

where ϕf
S is the bias. With Equation (13), we can obtain the predicted scores of the user

and each friend in the discriminator. Similarly, the objective function for the social space
discriminator D adversarial training is shown in Equation (14):

min
Dϕ

LS
Dϕ

= −E
[(

logσ
(

yS
p − yS

c

)
+ logσ

(
yS

c − yS
e

))]
(14)

where yp
S, ye

S denotes the user’s prediction scores for the high-quality positive and high-
quality negative friends obtained by using the popularity-based sampling strategy, and yc

S

denotes the user’s prediction scores for the candidate friends generated by the generator.
In the stage of training the optimized social space generator G, the users’ ratings of

positive examples and high-quality candidate friends are fed into the objective function of
the generator G, with the aim of generating candidate friends that better match the users’
true preferences. The objective function for generator G is shown in Equation (15):

max
Gθ

LS
Gθ

= −E
[
logσ

(
yS

p − yS
c

)]
(15)

where yc
S denotes the user’s predicted score of the candidate friend, the yp

S denotes the
user’s prediction scores for the positive friend. The generator G is trained to fight against
the discriminator D so that the discriminator D cannot distinguish the candidate friends
from the real data, and in order to make the candidate friends generated by the generator
closer to the real data, then the goal is to make the difference between yp

S and yc
S becomes

smaller and smaller. Thus, let LG
S

θ be maximized.

3.5. Adversarial Training Process of the Model

In order to show the training process of the MBSGAN model more clearly, we present
the adversarial training algorithm of the MBSGAN model in Algorithm 1. The training
of each cycle is mainly divided into three parts: base feature space mapping, adversarial
training in the social space and adversarial training in the interaction space, as shown
below.
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Algorithm 1: MBSGAN adversarial training algorithm.

Input: datasets 
Output: recommendation list  
1 Randomly split the dataset (item, social) into training set (80%) and testing set (20%) 
2 for each epoch do 
3      obtain the mapped user vector uI, uS from the primary feature space 
4      pretrain the generator and the discriminator of social space 
5      get high-quality positive friends pS and negative friends eS by popularity sampling 
6      for each batch of adversarial training do (social space)  
7           use current  to obtain all friends’ prediction scores 
8           select the top k friends as candidate friends cS 
9           update generator based on Equation (15) 
10         use  to obtain user’s prediction scores for pS, eS and cS 
11         update discriminator based on Equation (14) 
12   end 
13    pretrain the generator and the discriminator of interaction space 
14    get high-quality positive items pI and negative items eI by popularity sampling 
15    for each batch of adversarial training do (interaction space)  
16         use current  to obtain all items’ prediction scores 
17         select the top k items as candidate items cI 
18         update generator based on Equation (9) 
19         use  to obtain user’s prediction scores for pI, eI and cI 
20         update discriminator based on Equation (8) 
21   end  
22    recommend the top k items with the highest scores (interaction space) 
23    calculate precision, recall, NDCG and RMSE, MAE (testing set)  
24 end 

4. Experimental Study

To validate the effectiveness of the MBSGAN model’s performance, the effects of
spatial mapping and bilateral adversarial training on model performance are explored,
as well as the effects of parameter variations in the model on the results. In this section,
two sets of experiments are analyzed in Sections 4.2 and 4.3 to verify the effectiveness of
MBSGAN model performance by analyzing the social recommendation model and the
adversarial training recommendation model; model ablation experiments are compared
in Section 4.4 to verify the effects of vector mapping and bilateral adversarial training on
the model; finally, the selection of the number of candidate samples k values is analyzed
in Section 4.5 to verify the effects of model parameter variations on MBSGAN model
performance.

4.1. Dataset and Evaluation Metrics

In this work, four benchmark datasets, Douban, FilmTrust, Ciao, and Epinions, are
used to study the performance of the proposed MBSGAN. The Douban data comes from
Douban, which contains users’ ratings of movies and social information among users;
FilmTrust is a movie dataset from the FilmTrust website, which also contains users’ ratings
of movies and social information among users; Ciao comes from an online social platform,
which includes users’ ratings of purchased products and social information among users;
the Epinions dataset comes from an online social platform where people can review prod-
ucts, which includes users’ ratings of products and social information among users; The
specific statistics of the four public datasets are shown in Table 1.
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Table 1. Dataset statistics.

Data Items User Volume Item Volume Rating Amount Social Relationships

Douban 2848 39,586 894,887 35,770
FilmTrust 1508 2071 35,497 1853

Ciao 7375 105,114 284,086 111,781
Epinions 40,163 139,738 664,824 442,980

To evaluate the performance of the model, the evaluation metrics are Precision@ k,
Recall@ k, Normalized Cumulative Discount Gain@ k, Mean Absolute Error MAE (Mean
Absolute Error), and Root Mean Squared Error RMSE (Root Mean Squared Error). In the
top k recommendation task, k is taken as 10 to calculate the first three metrics, and the
evaluation metrics are shown below.

Precision: the proportion of all predicted positive samples that contain true positive
samples. The definition is as follows:

precision =
TP

TP + TN
(16)

where TP (True Positive) represents the number of positive samples predicted as positive
and FP (False Positive) represents the number of negative samples predicted as positive.

Recall (recall): the proportion of true positive samples that are predicted to be positive,
which is defined as follows.

Recall =
TP

TP + FN
(17)

where FN (False Negative) represents the number of negative samples predicted as negative.
Recall@ k represents the proportion of true positive samples that are predicted as positive
in the first k samples.

Normalized discounted cumulative gain (NDCG) is a composite assessment score that
evaluates the combined quality of relevance and ranking of items in the test set in the top k
recommendation list. Higher NDCG values indicate better ranking results.

NDCG =
DGG
IDGG

(18)

DCG = ∑ |REL|
i=1

2reli − 1
log2(i + 1)

(19)

where |REL| denotes the results are sorted in the order of relevance from largest to smallest
in the best way. reli denotes the relevance score of item i. DCG (discounted cumulative
gain) calculates the score of items in user u’s recommendation list by considering both
relevance and order factors, and IDCG (ideal discounted cumulative gain) is the result of
DCG normalization.

Mean absolute error (MAE): the mean value of the error between the model predicted
scores and the true scores, reflecting the degree of similarity between the predicted scores
and the true scores. The definition is as follows:

MAE =
∑(u,i)∈Rtest

∣∣rui − r′ui

∣∣
|Rtest| (20)

where |Rtest| denotes the number of user ratings of items in the test set, the rui and r′ui are
the real ratings and the ratings predicted by the algorithm, respectively.
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Root mean squared error (RMSE) is the square root of the ratio of the square of the
predicted score to the true score error to the number of observations n, as defined below:

RMSE =

√√√√∑(u,i)∈Rtest

(
rui − r′ui

)2

|Rtest| (21)

When precision, recall, and NDCG values are larger, it indicates better recommendation
performance. MAE and RMSE reflect the difference between predicted and true scores, and
smaller values indicate higher accuracy of recommendations.

4.2. Parameter Settings

The parameter settings in the experiment are shown in Table 2. k is the number of
candidate samples, d denotes the vector dimension, λ is the regularization coefficient, batch
is the batch size, and lr is the learning rate. In the experiment, the number of epochs for
Douban and FilmTrust was set to 30, and ciao was set to 40.

Table 2. Parameter Settings.

Dataset k D λ batch Lr

Douban 15 32 1 × 10−7 512 5 × 10−5

FilmTrust 15 32 1 × 10−6 512 5 × 10−5

Ciao 20 32 2 × 10−5 1024 5 × 10−4

Epinions 20 32 2 × 10−5 1024 5 × 10−4

4.3. Experimental Comparison of Social Recommendation Models

To demonstrate the advantages of the MBSGAN model proposed in this paper over
other social recommendation models, the experimental results of the MBSGAN model are
compared with eight baseline social recommendation models on four publicly available
datasets. Among them, SBPR and SoMA are Bayesian-based social recommendation models;
Diffnet++, Light_NGSR, and GNN-DSR are graph convolutional neural network-based
social recommendation models; RSGAN, DASO, and ESRF are social recommendation
models incorporating generative adversarial networks. Each of the eight baseline social
recommendation models is described as follows:

(1) SBPR [15] (2014): for the first time, social relationships were added to the Bayesian
personalized ranking algorithm (BPR), arguing that users are more biased towards
items preferred by their friends than items with negative feedback or no feedback.

(2) SoMA [29] (2022): a social recommendation model based on the Bayesian generative
model that exploits the displayed social relationships and implicit social structures
among users to mine their interests.

(3) DiffNet++ (2020): a social recommendation model using graph convolutional net-
works, by aggregating higher-order neighbors in the social relationship graph and
item interaction graph, respectively, and by distinguishing the influence of neighbors
on users with an attention mechanism.

(4) Light_NGSR [30] (2022): a social recommendation model based on the GNN frame-
work, which retains only the neighborhood aggregation component and drops the
feature transformation and nonlinear activation components. It aggregates higher-
order neighborhood information from user–item interaction graphs and social net-
work graphs.

(5) GNN-DSR [31] (2022): a social recommendation model using graph convolutional
networks, which considers dynamic and static representations of users and items and
combines their relational influences. It models the short-term dynamic and long-term
static interaction representations of user interest and item attractiveness, respectively.

(6) RSGAN (2019): a social recommendation model that uses GAN and social reconstruc-
tion, where generators generate items that friends interact with as items that users
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like, and discriminators are used to distinguish items that friends interact with from
items that users really like themselves.

(7) DASO (2019): a social recommendation model based on GAN that fuses heteroge-
neous information by mapping each other in interaction space and social space. The
generator picks samples that are likely to be of interest to users, and the discriminator
distinguishes between real samples and generated samples.

(8) ESRF (2020): a social recommendation model using generative adversarial networks
and social reconstruction, where the generator generates friends with similar pref-
erences to the user and the discriminator distinguishes between the user’s personal
preferences and the average preferences of friends.

To verify the effectiveness of MBSGAN combined with vector mapping and bilateral
generative adversarial networks, we separate the experimental results into two different
types according to the two main tasks of the recommender system: “Top-N recommenda-
tion” and “rating prediction”. Meanwhile, since the SoMA, Light_NGSR, and GNN-DSR
codes are not available, we only compare the MAE and RMSE metrics on the Ciao and
Epinions datasets, as shown in Table 3.

Table 3. Experimental results of social recommendation model (Top-N recommendation).

Model
Douban FilmTrust Ciao

Precision@3 Recall@3 NDCG@3 Precision@3 Recall@3 NDCG@3 Precision@3 Recall@3 NDCG@3

SBPR 0.182 0.013 0.208 0.221 0.094 0.267 0.022 0.008 0.024
DiffNet++ 0.204 0.016 0.220 0.375 0.201 0.416 0.025 0.012 0.028
RSGAN 0.211 0.015 0.217 0.347 0.203 0.385 0.029 0.014 0.033
DASO 0.224 0.017 0.239 0.400 0.234 0.445 0.033 0.023 0.038
ESRF 0.223 0.017 0.238 0.380 0.232 0.392 0.032 0.016 0.037

MBSGAN 0.237 0.018 0.248 0.430 0.236 0.459 0.034 0.029 0.039

The MBSGAN model was compared with five social information-based recommenda-
tion models with the following results:

By observing the experimental results in Table 3, it can be seen that the MBSGAN pro-
posed in this paper obtains optimal values in terms of each metric in the Douban, FilmTrust,
and Ciao datasets compared to the baseline model. Further analysis of the experimental
results leads to the following conclusions: Diffnet++, RSGAN, DASO, ESRF, and MBSGAN
perform better compared to the traditional social recommendation method SBPR because
the four baseline models of the latter incorporate the network model in deep learning,
because deep learning models have multiple layers and nonlinear activation functions
that can capture complex nonlinear relationships between users and projects. Traditional
recommendation models often rely on linear or shallow models, which cannot effectively
capture the complex and nonlinear nature of user–item interactions. And compared with
SBPR, which only considers the first-order neighbors of users, the use of network models
can tap more information about user–item interactions and the association information in
social relationships to obtain a richer user representation. Compared with RSGAN and
ESRF using GAN, DASO and MBSGAN outperform these two models in all metrics, indi-
cating that RSGAN and ESRF share the same user representation in both interaction and
social spaces, which limits the learning of user representation, while DASO and MBSGAN
learn user representation in the social space and interaction space separately to learn more
fully the information in each space. This is because learning user expressions separately
can reduce irrelevant interference. Separating user representations in social spaces and
interaction spaces can avoid interference between spaces and improve the independence
and accuracy of the model for information in each space. The MBSGAN model performs
better than DASO, demonstrating the effectiveness of basic feature space mapping.

By observing the experimental results in Table 4, we can see that, compared with the
baseline model, the MBSGAN proposed in this paper obtains the better result in terms of
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MAE metrics of the Ciao dataset and on the MAE and RMSE metrics of Epinions. Further
analysis of the experimental results leads to the following conclusions: compared with
SoMA, Light_NGSR, and GNN-DSR, which use only social relationships, the experimental
results of MBSGAN on two real datasets almost outperform these baseline models, indicat-
ing that the application of generative adversarial networks in social recommendation is
beneficial to improving the accuracy of the models and reducing scoring errors.

Table 4. Experimental results of social recommendation model (rating prediction).

Model
Ciao
MAE

RMSE MAE
Epinions

RMSE

SoMA 0.785 0.998 1.050 1.189
Light_NGSR 0.736 0.973 0.835 1.084
GNN-DSR 0.697 0.944 0.801 1.057
MBSGAN 0.704 0.807 0.765 0.931

4.4. Experimental Comparison of Pairwise Training Recommendation Models

To demonstrate the advantages of the MBSGAN model proposed in this paper over
other generative adversarial network-based recommendation models, the experimental
results of the MBSGAN model are compared with six baseline adversarial training recom-
mendation models on three publicly available datasets. Among them, CFGAN, GCGAN,
and GANRec [27] are collaborative filtering recommendation models based on generative
adversarial networks, and RSGAN, DASO, and ESRF are social recommendation models
based on generative adversarial networks. The other three baseline adversarial training rec-
ommendation models that are different from the social recommendation model experiments
are described as follows:

(1) CFGAN (2018): a collaborative filtering recommendation model based on generative
adversarial networks, where the generator generates the user’s purchase vector, and
the discriminator is responsible for distinguishing between the generator’s “fake”
purchase vector and the real user’s purchase vector.

(2) GCGAN (2021): Based on CFGAN, the discriminator captures the latent features of
users and items through a graph convolutional network to distinguish whether the
input is a “fake” purchase vector by the generator or a real user purchase vector.

(3) GANRec (2023): a collaborative filtering model based on generative adversarial net-
works, where the generator picks out items that the user may like as negative samples
and the discriminator distinguishes between real positive samples and generator-
generated negative samples.

In order to verify the effectiveness of MBSGAN combined with vector mapping and
bilateral generative adversarial networks, we divided the experimental results into two
different types according to the two major tasks of the recommendation systems: “Top-N
recommendation” and “rating prediction”, respectively. The results of comparing the
MBSGAN model with several generative adversarial network-based recommendation
models on the Top-N recommendation task were as follows.

By observing the experimental results in Tables 5 and 6, it is evident that the pro-
posed MBSGAN obtains optimal values for each metric in the Douban, FilmTrust, and
Ciao datasets compared to the six baseline models. Further analysis of the experimental
results leads to the following conclusions: compared with the three collaborative filtering
recommendation models CFGAN, GCGAN, and GANRec, RSGAN, DASO, and ESRF
perform better because the latter three models incorporate social information, indicating
that the proper use of social relationships can help alleviate the sparsity problem and lead
to more accurate recommendation results. A social relationship is a direct relationship
between people. The addition of social relationships provides more information and ba-
sis for recommendation algorithms, making the recommendation results more accurate.
Compared with RSGAN and ESRF, DASO and MBSGAN outperformed them on almost
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all three datasets, indicating that constructing bilateral generative adversarial networks in
both spaces can more fully exploit the information in the interaction and social spaces than
unilateral adversaries, thus improving the accuracy of the models and reducing scoring
errors. This is because the bilateral adversarial network not only mines the interaction
information in the interaction space, but also uses it to learn information in the social space,
alleviating the noise problem in both spaces and improving recommendation accuracy.

Table 5. Experimental results of the recommendation model based on adversarial training (Top-N
recommendation).

Model
Douban FilmTrust Ciao

Precision@3 Recall@3 NDCG@3 Precision@3 Recall@3 NDCG@3 Precision@3 Recall@3 NDCG@3

CFGAN 0.203 0.011 0.204 0.239 0.073 0.252 0.023 0.011 0.025
RSGAN 0.211 0.015 0.217 0.347 0.203 0.385 0.029 0.014 0.033
DASO 0.224 0.017 0.239 0.380 0.234 0.392 0.033 0.023 0.037
ESRF 0.223 0.017 0.238 0.400 0.232 0.445 0.032 0.016 0.038

GCGAN 0.190 0.014 0.218 0.212 0.229 0.229 0.021 0.010 0.022
GANRec 0.204 0.015 0.217 0.249 0.231 0.230 0.022 0.011 0.026
MBSGAN 0.237 0.018 0.248 0.436 0.268 0.473 0.034 0.029 0.039

Table 6. Experimental results of the recommendation model based on adversarial training (score
prediction).

Model
Douban FilmTrust Ciao

MAE RMSE MAE RMSE MAE RMSE

CFGAN 1.233 1.529 0.981 1.151 1.199 1.423
RSGAN 1.255 1.561 1.022 1.370 1.245 1.560
DASO 0.883 1.224 0.994 1.101 0.859 1.228
ESRF 0.900 1.256 1.683 1.849 1.701 1.869

GCGAN 0.898 1.253 0.956 1.005 0.889 1.255
GANRec 0.922 1.215 1.001 1.059 0.998 1.253
MBSGAN 0.820 1.187 0.895 0.946 0.704 0.807

4.5. Comparison of Ablation Experiments of Models

In order to verify the effectiveness of introducing spatial mapping and bilateral gener-
ative adversarial networks in the model, this paper compares the MBSGAN model with
the MBSGAN-P model with the vector mapping being removed, and with the MBSGAN-
SocGAN model with the social spatial adversarial learning being removed, through ablation
experiments. The comparison results are shown in Figures 3 and 4, respectively.

By analyzing the experimental results presented in Figure 3 as well as Figure 4, it can
be observed that, after removing the spatial vector mapping part of the base features or
bilateral generative adversarial networks, the experimental results of each metric become
worse on all three datasets, indicating that both of the above modules have a positive impact
on the model performance. The introduction of the spatial mapping part better explores
the common features behind different user interactions, which leads to more accurate user
expressions. The basic feature space mapping can help the model better discover and
extract the common features of users in different spaces. By integrating and mapping user
characteristics across different spaces, it is possible to model the similarities and correlations
between users in different spaces, thereby more accurately capturing user interests and
preferences. In addition, it can be seen that the model performance decreases if the bilateral
generative adversarial networks are not used, indicating that using generative adversarial
networks to learn users’ social information is helpful to obtaining more accurate user
expressions. The discriminator network in GAN can evaluate the difference between the
generated social information and the real social information. By continuously optimizing
the adversarial process between the generator and the discriminator, the generated social
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information can be made closer to the real social information, thereby improving the
accuracy and credibility of user expression.

 

Figure 3. Comparison of ablation experimental results of MBSGAN model (Top-N recommendation).

 

Figure 4. Comparison of ablation experimental results of MBSGAN model (score prediction).

4.6. Effect of the Number of Candidate Samples k Values

The k value is the number of candidate samples in interaction-space adversarial
learning as well as social-space adversarial learning, and is used to discriminate among
the three in the discriminator of the two spaces together with the high-quality positive and
negative examples obtained from sampling, thus enabling the generator to more accurately
select candidate samples for recommendation. In order to investigate the effect of the
number of candidate samples k value on the model performance, different k values are
selected to examine the performance of the proposed MBSGAN model in this paper on
three publicly available datasets, and then a reasonable k value is selected as the number
of candidate samples to be selected. The experimental results of the MBSGAN model
corresponding to different k values are shown in Figures 5–7.

In order to present the results of Precision@3, Recall@3, and NDCG@3 with the number
of candidate samples clearly in the same plot, the horizontal coordinates are set as k values
and the vertical coordinates are the evaluation values, here the vertical coordinates are used
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as the primary and secondary axes. The blue line represents Precision@3, the green line
represents NDCG@3, and the orange line represents Recall@3. In Figures 5–7, the values of
Precision@3 and NDCG @3 are based on the main axis on the left, and the Recall@3 values
are based on the secondary axis on the right.

Analyzing Figures 5–7, it can be observed that the experimental results of the MBSGAN
model are affected by the number of candidates k, which shows different trends on the
three datasets. The model works best when k = 15 on the Douban dataset, when k = 15 on
the FilmTrust dataset, and when k = 20 on the Ciao dataset. When the value of k chosen is
too small, fewer candidate samples, positive and negative examples are utilized and the
interaction information cannot be more fully utilized. And when the k value chosen is too
large, it leads to overfitting and makes the recommendation results inaccurate.

 

Figure 5. Experimental performance of MBSGAN models with different k values (Douban).

 

Figure 6. Experimental performance of MBSGAN model with different k values (FilmTrust).
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Figure 7. Experimental performance of MBSGAN model with different k values (Ciao).

4.7. Convergence of the Model

To verify the convergence of the model, we conducted experiments on three datasets:
Douban, Ciao, and FilmTrust to obtain the learning curve of the MBSGAN model. Among
them, the principal axis represents precision@3 and NDCG@3. The secondary coordinate
axis represents recall@3 and the horizontal axis represents the number of epochs.

From Figure 8, it can be seen that the MBSGAN model has achieved convergence on all
three datasets. Among them, on the Douban and FilmTrust datasets, the model converges
when the number of epochs reaches 30, and on the Ciao dataset, the model converges when
the number of epochs reaches around 40.

 
(a) 

 
(b) 

Figure 8. Cont.
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(c) 

Figure 8. The learning curve of MBSGAN on three datasets. (a) convergence of the model on the
Douban dataset. (b) convergence of the model on the Ciao dataset. (c) convergence of the model on
FilmTrust dataset.

5. Conclusions

In this paper, we propose a recommendation model based on spatial mapping and
bilateral generative adversarial networks (MBSGAN). We first map the base feature space
to the interaction space and social space, respectively, to achieve the fusion of heteroge-
neous spaces and obtain more accurate user representations in both spaces. Then, bilateral
generative adversarial networks are constructed in the interaction space and social space
to learn the complex information in the respective spaces. Through two sets of compara-
tive experiments, the effectiveness of using the base feature space to fuse heterogeneous
information was demonstrated, and the advantages of our constructed bilateral generative
adversarial networks in mining information were also verified. However, the factors that
affect user interaction behavior are diverse and complex. We only consider the impact
of user social information on recommendations, which is not comprehensive enough to
learn the potential interaction characteristics of users. We should also consider more di-
verse information, such as item attribute information and user’s own attribute information.
Therefore, in the next work, we should consider fusing more auxiliary information for
user expression and item expression in bilateral generative adversarial networks, such as
knowledge graph information or user attribute information. At the same time, it is neces-
sary to find appropriate fusion methods for this information to further enrich the feature
representation of users and items, thereby improving the accuracy of recommendations.
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Abstract: As a model for economic and ecological systems, replicator dynamics represent a basic form
of agent competition for finite resources. Here, we investigate the effects of stochastic resetting in this
kind of processes. Random reset events abruptly lead individual resources to a small value from which
dynamics must start anew. Numerical results show that resource distribution over the population of
competing agents develops highly nonuniform profiles, exhibiting clustering and fluctuations with
anomalous dependence on the population size. This non-standard statistical behavior jeopardizes an
analytical treatment based on mean-field assumptions. We propose alternative simplified analytical
approaches which provide a stylized description of entropy evolution for the clustered distribution
of resources and explain the unusually slow decrease of fluctuations.

Keywords: replicator population; stochastic resetting; resource distribution; anomalous fluctuations;
clustering

1. Introduction

In theoretical biology, a replicator is an abstract unit capable of creating copies of itself
through interaction with the environment [1,2]. This very generic concept—which provides
a unified tool for studying evolutionary dynamics at several levels—encompasses such
entities as nucleic-acid molecules (RNA and DNA), genes, cells, and, of course, living
organisms. In the theory of cultural evolution, an analogous notion applies to memes, the
units of cultural information, thus extending the same theoretical framework to social and
economic phenomena [3]. The concept of replicator turned out to be especially fruitful
within evolutionary game theory, as a model for biological evolution under natural selection.
In this context, replicators represent strategies whose individual profit, measured by their
relative reproduction success, depends on both their intrinsic fitness and their mutual
interaction [4].

Replicator dynamics is a mathematical model, used in evolutionary game theory, that
describes how the relative prevalence of different strategies changes in time [5,6]. If, in
a large population, xi(t) is the fraction of players adopting strategy i at time t, replicator
dynamics prescribe that

ẋi = xi

[
fi(x)−

N

∑
j=1

f j(x)xj

]
, (1)

(i = 1, 2, . . . , N), where fi(x) denotes the fitness of strategy i, and generally depends on
all the components of x = (x1, x2, . . . , xN). It can be seen that the N-dimensional sim-
plex, given by ∑i xi = 1 with xi ≥ 0 for all i, is invariant under Equation (1), and also
acts as a global attractor for all non-negative initial conditions. From the perspective of
population dynamics, Equation (1) can be interpreted as the time evolution of N interact-
ing species with fitnesses fi(x), additionally subjected to a global mechanism of growth
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limitation, given by the second term in the brackets, which asymptotically constrains popu-
lations to the subspace where ∑i xi = 1. In this work, we adopt a similar interpretation,
where xi represents the resources (richness) of an economic agent i in a population of N
interacting agents.

In the simplest version of replicator dynamics, all fitnesses are constant: fi(x) = λi for
all i [7]. In this situation, the first term in the right-hand side of Equation (1) induces an
exponential growth of the resources xi, at rate λi. The opposing effect of the second term,
however, limits this growth. For sufficiently long times, in fact, the system approaches the
N-dimensional simplex. The outcome of these contrary trends is that, asymptotically, the
replicator with maximal fitness accumulates all the resources. Namely, for t → ∞,

xi =

{
1 if λi = max{λ1, λ2, · · · , λN},
0 otherwise.

(2)

Thus, with constant fitnesses, the population always ends in a state where resources are
trivially concentrated in just one agent. If two or more agents have identical maximal
fitnesses, all the resources become shared between them in proportions depending on the
initial values xi(0).

Our aim in this paper is to study the effect of reset events on the replicator dynamics
with constant fitnesses. Resetting is a stochastic mechanism by which a dynamical variable—
in the present case, xi(t)—is occasionally brought to a prefixed value, from which its
dynamics start anew. This mechanism is able to severely modify the statistical behavior
of a dynamical system [8]. In the present case, we expect it to inhibit the accumulation of
resources by a single agent or a small group of agents, bringing about a nontrivial resource
distribution over the replicator population. To gain insight into the overall behavior of
our model, which we present in Section 2, Section 3 is devoted to the numerical and
analytical study of the case of a single replicator. In Section 4, we show that the combined
effect of replicator dynamics and resetting in a large population with identical fitnesses
results in anomalous statistical properties, with an extremely slow decrease of fluctuations
as the population size grows. This unusual feature is accompanied by clustering in the
amount of individual resources, which, over time, sustains a highly heterogeneous resource
distribution over the population. Analytical arguments based on a toy two-cluster model
are proposed to explain these numerical observations. Finally, Section 5 is devoted to
discussing our main results.

2. Replicators with Resetting

Stochastic resetting was initially introduced as a mechanism of unbounded growth
limitation in the context of demographic dynamics [9,10]. Remarkably, when combined
with multiplicative (exponential) growth, it gives rise to long-time power-law distributions
for the relevant variables [10,11]. It can therefore be used as a model for the emergence
of such distributions in the broad class of phenomena where they are observed [12], rang-
ing from biological taxon abundances [13] to economic resource sharing [14]. Since its
introduction more than two decades ago, the statistical effects of stochastic resetting have
been studied in a wide variety of dynamical processes, such as transport on networks [15],
hydrologic phenomena [16], RNA kinetics [17], and active-particle motion [18], among
many others [8].

As described in the Introduction, stochastic resetting acts on a variable x(t), whose
evolution is otherwise governed by certain dynamical rules, instantaneously bringing its
value to a prefixed level u. Reset events are distributed at random along time, and the
evolution of x(t) begins de novo after each resetting. Such events emulate the effect of
sudden crises or catastrophic occurrences, where the state of the system under study suffers
an abrupt change in a short time [19]. This kind of phenomenon is not uncommon in social
and economic contexts [11,20,21].
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In replicator dynamics with constant fitnesses λi, we introduce reset events by proposing

ẋi = xi

(
λi −

N

∑
j=1

λjxj

)
+ (ui − xi)Pi(t), (3)

(i = 1, 2, . . . , N; cf. Equation (1)). Here,

Pi(t) = ∑
k

δ(t − ti,k) (4)

represents a Poisson (or shot [22]) noise signal, δ(t) being the Dirac delta function. For
each i, the reset times ti,k (k = 1, 2, . . . ) are randomly distributed with uniform frequency
qi, so that the average lapse between ti,k and ti,k+1 is q−1

i for all k. The prefactor ui − xi in
the last term of Equation (3) insures that each reset event brings xi(t) to the reset value
ui. The Markovian stochastic Equation (3) can be dealt with by means of a series of
standard methods, notably, the Chapman-Kolmogorov equation, which governs the joint
probability distribution of the resources xi(t) [22]. It can also be treated numerically, by
a rather intuitive implementation of the Poisson process along discretized time [23]. In
the following sections, we use these techniques to study the collective dynamics of the
replicator population with resetting.

3. Dynamics of a Single Replicator with Resetting

As a first step in the analysis of our model, it is instructive to study the case of a single
replicator, N = 1. Equation (3) becomes

ẋ = λx(1 − x) + (u − x)P(t), (5)

with P(t) = ∑k δ(t − tk). The random reset times tk have frequency q. The first term in the
right-hand side of Equation (5) makes it clear that, for a single replicator, the deterministic
contribution to the dynamics is equivalent to logistic growth [24]. Due to arbitrariness in
the choice of time units, the system has two independent parameters only: the ratio q/λ,
and the reset value u.

Figure 1 shows a pair of realizations of x(t), for u = 0.01 and two values of q/λ, exhibit-
ing qualitatively different behavior. For a relatively small resetting frequency, q/λ = 0.1
(upper panel), x(t) usually has enough time to reach the zone of logistic saturation, just
below the level of maximal resources (x = 1). The evolution is only occasionally punctu-
ated by reset events to x = u. On the other hand, when the resetting frequency is larger
(q/λ = 2.5, lower panel), x(t) barely transits the zone of exponential growth before it is
interrupted by a reset event. In this latter situation, the evolution is very similar to the
case where the deterministic part of the dynamics is purely multiplicative, which we have
analyzed in detail in a recent contribution [19].

Assuming that the stochastic process represented by Equation (5) reaches a stationary
regime for long times, the stationary distribution for x, f st(x), can be obtained from the
Chapman-Kolmogorov equation

∂

∂t
f (x, t) +

∂

∂x
[v(x) f (x, t)] = qδ(u − x)− q f (x, t) (6)

by fixing ∂t f ≡ 0. In the left-hand side of this equation, the second term represents the
probability drift induced by the deterministic logistic dynamics, with v(x) = λx(1 − x).
The two terms in the right-hand side are gain and loss contributions originating in reset
events. The positive gain term is different from zero only at the reset value x = u, while the
negative term represents uniform probability loss at frequency q for all x. On the whole, of
course, the two terms compensate each other. For x �= u, the effect of the delta-like gain
term can interpreted as a boundary condition which connects the solution in the intervals
x < u and x > u through the relation v(u+) f (u+, t) − v(u−) f (u−, t) = q for t > 0, as

141



Entropy 2023, 25, 99

obtained from integration of Equation (6) around x = u. Using this boundary condition,
the stationary solution reads

f st(x) =
q
λ

(
1 − u

u

)−q/λ

x−1−q/λ(1 − x)−1+q/λ (7)

for u ≤ x < 1, and f st(x) = 0 otherwise. This time-independent distribution behaves as
a power law both for small and large values of x. For q/λ > 1, the exponent of 1 − x is
positive, and the distribution has a maximum at x = u while it decays to zero as x → 1.

�

Figure 1. Two realizations of the solution to the stochastic Equation (5), for u = 0.01 and different
values of the ratio q/λ. (a) q/λ = 0.1. (b) q/λ = 2.5. Note different scales in the vertical axes.

For q/λ < 1, on the other hand, f st(x) exhibits a bimodal profile, with a local max-
imum at x = u and a divergence at x = 1. This case is illustrated in Figure 2, where
we plot the distribution as a function of both x (left panel) and 1 − x (right panel) for
u = 0.01 and q/λ = 0.1. The log-log axes emphasize the power-law dependence toward
the two ends. Excellent agreement between analytical and numerical results supports the
assumption of a well-defined long-time stationary regime for the stochastic process. The
bimodal concentration of resources at the extreme values, with the ensuing depletion in the
intermediate zone, is a direct consequence of the competing effect of logistic growth, which
favors accumulation near the maximum, and of reset events, which populate the zone of
lower resources.

Figure 2. Stationary probability distribution for the solution to the stochastic Equation (5), f st(x),
(a) as a function of x and (b) as a function of 1 − x, for u = 0.01 and q/λ = 0.1. The line stands for the
analytical expression (7). Symbols correspond to a 100-column histogram, built from 4 × 105 samples
of x(t) taken from a numerical realization of Equation (5) every 10 time units. The numerical solution
was realized by means of a standard finite-difference algorithm with a time step of 10−3 time units.
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4. Fluctuations and Clustering in Large Homogeneous Populations

Turning now the attention to the case with N > 1, we consider homogeneous replicator
populations, in which the parameters ui, λi, and qi in Equation (3) are the same for all
agents. In this situation, agents differ from each other in the individual realizations of the
sequence of stochastic reset events only. This homogeneity implies that none of them has
an a priori advantage based on fitness, or on the frequency and strength of resetting. Thus,
any nontrivial emergent collective behavior should be ascribed to the randomness in the
time distribution of reset events.

For a homogeneous population, Equation (3) reads

ẋi = λxi(1 − xT) + (u − xi)Pi(t), (8)

with Pi(t) given as in Equation (4) with the same resetting frequency q for all i. In turn,

xT =
N

∑
j=1

xj (9)

stands for the total resources over the population. Assuming that, as in the case of N = 1,
the system attains a well-defined stationary state for long times, we expect that xT reaches
a constant value if N is large enough. Of course, this requires that resource fluctuations are
self-averaging over time and over the ensemble. If these conditions are fulfilled, the station-
ary distribution for individual resources satisfies Equation (6) with, now, v(x) = λx(1 − xT).
The solution is

f st(x) =
quq/λ(1−xT)

λ(1 − xT)
x−1−q/λ(1−xT), (10)

for u ≤ x < 1 and 0 otherwise. The absence of a logistic nonlinearity in Equation (8)
determines that f st(x) is now a pure power law; cf. (7).

The value of xT in Equation (10) must be obtained self-consistently, requiring that it
coincides with the total resources calculated from the distribution f st(x), namely

xT = N
∫ 1

u
x f st(x)dx =

Nqu
q − λ(1 − xT)

. (11)

The only positive solution to this self-consistency equation is

xT =
λ/q − 1 +

√
(λ/q − 1)2 + 4Nuλ/q

2λ/q
. (12)

For a given value of Nu, the total resources vary monotonically from xT ≈ 1 − q/λ ≈ 1
for q � λ to xT ≈ Nu for q � λ. In the first limit, when the resetting frequency is
negligible, the population is driven by almost purely replicator dynamics, and one single
agent typically concentrates all the resources. When, on the other hand, reset events
are dominant, the N agents always have resources close to the minimal value u. The
corresponding distributions are

f st(x) ≈
⎧⎨
⎩

(u−1 − 1)−1x−2 for q � λ,

(u−q/λ − 1)−1x−1−q/λ for q � λ.
(13)

In the remaining of this paper, we fix the attention on the case q < λ. Indeed, much as
in the case of N = 1 analyzed in Section 3, for q > λ—when reset events dominate over
resource growth—the replicator dynamics hardly manifests itself, and evolution does not
essentially differ from that of a system of non-interacting multiplicative elements with
resetting ([19], cf. Figure 1b). For brevity, numerical results are presented for just a few
parameter sets, which we have found to be representative of more general situations.
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Following the same numerical techniques used in the case of a single replicator,
we have computed the stationary distribution of individual resources for populations
of different sizes, with Nu = 0.01 and q/λ = 0.1. According to the analytical result of
Equation (12), all these systems have the same total resources, xT ≈ 0.901. Symbols in
Figure 3 show histograms of f st(x) for three values of N, analogous to those presented in
Figure 2 for N = 1. Lines stand for the corresponding analytical prediction (10).

It is apparent that, although numerical and analytical results follow the same general
trend in the distribution of resources, there are important systematic deviations along the
whole interval of the variable x. The deviations decrease in magnitude as the population
grows, but are still non-negligible for a large system of 105 replicators. For this size and
large x, the slopes of the power-law tails in the numerical estimation and the analytical
prediction are very similar but, as for the values of the distributions, the former are about
one order of magnitude above the latter. The difference has the opposite sign at small x, as
shown in the inset. We show in the following paragraphs that these discrepancies originate
in the anomalous statistical behavior of the total resources xT(t). Its fluctuations along
time, in fact, decay very slowly with the system size N. This indicates that our assumption
that xT is constant, used to solve the stationary Chapman-Kolmogorov equation, may only
hold for extremely large populations, drastically limiting the usefulness of the analytical
approach in this kind of systems.

Figure 3. Symbols: Numerical estimation of the stationary distribution f st(x) for three values of
N, with Nu = 0.01 and q/λ = 0.1. Lines: Analytical solution (10) to the stationary Chapman-
Kolmogorov equation, for the same parameters. Inset: The same data in log-linear scales, for a better
appraisal in the upper part of the vertical axis. The data for N = 10 and 103 have been scaled by the
factors indicated in the plot.

4.1. Anomalous Fluctuations of Total Resources

Figure 4a presents numerical estimations of the stationary distribution of xT along
time, in realizations of Equation (8) for different system sizes N. In all cases, f st(xT) is
sharply peaked around a large value xT ≈ 0.93, and exhibits a broad shoulder for smaller
xT . Overall, this behavior is compatible with the analytically predicted value, xT ≈ 0.901,
obtained from Equation (12). Note however the rather slow change of the shoulder at small
xT as N grows: a variation by a factor of 103 in the size of the population leads to a decrease
of just above one order of magnitude in the height of the distribution in that zone.
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Figure 4. (a): Stationary distribution f st(xT) of total resources xT , for four values of N, Nu = 0.01,
and q/λ = 0.1. (b): Coefficient of variation CV as a function of N. The dashed curve is a B-spline
approximation included as a guide to the eye. All results are estimations obtained from numerical
solutions of Equation (8) along 2 × 108 time steps.

This weak dependence on N is remarkably apparent in the coefficient of variation of
xT , defined as

CV =
1

〈xT〉

√
1
T

∫ T

0
[xT(t)− 〈xT〉]2dt, (14)

where

〈xT〉 = 1
T

∫ T

0
xT(t)dt (15)

is the time average of xT(t), and T is a sufficiently long averaging interval. The coefficient
CV encompasses overall statistical properties of f st(xT) in a single quantity, as a measure
of the fluctuations of xT(t) relative to its average. Figure 4b is a log-log plot of CV as
a function of N. Across the five orders of magnitude covered by the system sizes, the
coefficient of variation only decreases by a factor of 3, and there is no clear indication that
it might approach zero as N → ∞. In fact, within this rather wide interval of N, it lacks
the typical power-law trend that characterizes the system-size dependence of fluctuations
in self-averaging statistical systems (usually, N−z with 0 < z < 1) [25]. This hints at a
strongly heterogeneous behavior within the population, and calls for a closer look at the
time evolution of individual replicators.

4.2. Heterogeneity and Clustering in the Evolution of Resources

The darkest curve in Figure 5a shows the evolution of total resources xT(t) in a
population of N = 104 replicators, with Nu = 0.01 and q/λ = 0.1. At the initial time,
all the replicators have identical resources, x(0) = u. We see that, most of the time, xT(t)
fluctuates close to its maximum value. Intermittently, however, total resources exhibit sharp
collapses where xT(t) suddenly drops to a small value, followed by a rapid recovery.

Other curves in Figure 5a show xi(t) for the three agents with highest resources at
each time. These curves demonstrate the typically heterogeneous resource distribution
over the population: most of the time, these three replicators accumulate a large fraction
of the total resources. Comparison with xT(t), moreover, illustrates how collapses in total
resources usually coincide with a reset event of the richest replicator.
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�

Figure 5. (a): Evolution of total resources, xT(t), and of individual resources for the three replicators
with largest xi(t) at each time, in a realization with N = 104, Nu = 0.01, and q/λ = 0.1. (b): Entropy
of individual shares, Equation (16), for the same realization. The dashed segment has the slope
analytically predicted for the decrease of H(t) with the two-cluster model of Section 4.3.

As a more compact characterization of heterogeneity in the distribution of resources
over the population, we have computed the entropy of the individual shares xi/xT as a
function of time:

H(t) = −
N

∑
i=1

xi(t)
xT(t)

ln
xi(t)
xT(t)

. (16)

This quantity is depicted in Figure 5b for the same realization as in the upper panel. It
shows that, in the intervals between collapses of xT(t), resources progressively accumulate
in less and less replicators. Resetting of one of the replicators with high resources, in
turn, entails a sudden growth of H(t), with an ensuing decrease as resources become
increasingly concentrated.

During the intervals between collapses, we expect the population to be divided into at
least two groups with different resource distributions inside each group. Those replicators
that have undergone a reset event since the latest collapse should have low resources, close
to the resetting level u. On the other hand, replicators that have evolved without resource
resetting in the same period should possess, on the average, relatively higher resources,
with a distribution closer to the equilibrium profile of Equation (10). In a succession of
several consecutive collapses, the same mechanism may generate more than two groups,
leading to a clustered, markedly heterogeneous resource distribution.

Clustering in the resource distribution is well illustrated by a Zipf plot, in which
individual resources are represented against the rank of each replicator in a list sorted by
decreasing values of xi. Figure 6 shows snapshots of this kind of plot at four times, in a
system of N = 5000 replicators. Other parameters are as in Figure 5. For λt = 89, the first
collapse has not taken place yet. In this situation, except for the first-rank replicator which
already monopolizes practically all resources, the distribution over the population closely
follows the equilibrium profile, whose slope is shown by the dashed line. As time elapses,
the occurrence of collapses creates clusters, which in the Zipf plots appear as more or less
flat plateaus separated by much sharper steps. In the Supplementary Video S1, which
shows an animation of the Zipf plots for the same realization along time, the appearance,
evolution, and fading of these plateaus is apparent.
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Figure 6. Four snapshots of a Zipf plot of individual resources versus rank in a decreasing list of
resources, in a population of N = 5000 replicators with Nu = 0.01 and q/λ = 0.1. The dashed
segments show the slope that the plot should exhibit if the population had reached the equilibrium
distribution of Equation (10). Plateaus of different sizes at different times reveal the formation of
groups and, thus, clustering in the resource distribution.

Intermittent collapses of total resources and the consequent clustering of resource
distribution, leading to an overall highly non-uniform behavior inside the population, are
likely determinants of the differences observed between analytical and numerical results,
as illustrated by Figure 3, and the slow decay of fluctuations of Figure 4b. In the following,
under a few simplifying assumptions, we provide a stylized description for the behavior
of the entropy H(t) and a prediction for the typical time between collapses, as well as an
argument which explains the extremely slow decay of fluctuations in total resources as the
system size grows.

4.3. Two-Cluster Model and the Decay of Fluctuations

As a simplified analytical approach to heterogeneity in the replicator population,
we propose a toy model in which, at all times between collapses, total resources have
the value xT given by Equation (12), and the ensemble is divided into just two clusters.
The first cluster contains the Nr(t) replicators whose resources have been reset after the
latest collapse, occurred at time tc. The second cluster comprises the N − Nr(t) remaining
replicators. Moreover, we assume that the individual resources in the first cluster are all
equal to the reset level u, while the remaining resources are homogeneously distributed
over the second cluster. This implies that the total resources in each cluster are Nr(t)u and
xT − Nr(t)u, respectively. With these assumptions, Equation (16) yields

H(t) = −
[

1 − Nr(t)u
xT

]
ln

1 − Nr(t)u
xT

N − Nr(t)
− Nr(t)u

xT
ln

u
xT

≈ ln[N − Nr(t)], (17)

where the approximation of the rightmost side holds for u � xT .
As successive reset events occur, replicators from the cluster of high resources are

transferred to the other cluster at rate q so that, on the average, the number of replicators in
the former satisfies the equation

d
dt
[N − Nr(t)] = −q[N − Nr(t)], (18)
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with N − Nr(tc) = N at the time of the latest collapse. Namely,

N − Nr(t) = Ne−q(t−tc). (19)

Replacing into the approximation for the entropy in Equation (17), we find

H(t) ≈ ln N − q(t − tc), (20)

which predicts an approximate linear decay between collapses. The slanted dashed segment
in Figure 5b has the slope predicted by this result, displaying very good agreement with
the behavior of the numerically obtained signal for H(t).

Our approximation for the entropy H(t) makes it also possible to estimate the typical
time between collapses, τ. In fact, in the two-cluster model a collapse will occur when
just a single replicator remains in the high-resource cluster, N − Nr(t) = 1, accumulating
essentially all the resources. In this case, H = 0 which, according to Equation (17), is the
entropy attained at time t = tc + q−1 ln N. On the average, the last replicator will be reset
after an additional time q−1. Thus, we have

τ =
1 + ln N

q
. (21)

In our simplified picture, τ is nothing but the period of the successive decays of H(t)
between its maximum and its minimum. Figure 7a shows the power spectrum P(ν) of an
actual numerical calculation of H(t) in a system with N = 1000, Nu = 0.01, and q/λ = 0.1.
Its broad profile exposes the stochastic nature of the mechanisms at play in the variation of
the entropy, but shows a clear peak at a well-defined frequency, which reveals an underlying
time-periodic pattern. The vertical dashed line demonstrates that this frequency coincides
quite sharply with the prediction of Equation (21), ν = τ−1 = q/(1 + ln N). We have
performed this same comparison for different values of N, evaluating the main period of
of numerical signals for the entropy from the position of the highest peak in their power
spectra. In Figure 7b, results are compared with Equation (21), represented by the dotted
line, with very good agreement.

Figure 7. (a): Power spectrum of a time signal for the entropy H(t), numerically obtained in a
replicator population with N = 1000, Nu = 0.01, and q/λ = 0.1. The vertical dashed line is the
frequency predicted for H(t) by the two-cluster model, in the approximation Nu � 1. (b): Average
time between collapses estimated from the power spectrum of the entropy (symbols) and from the
analytical prediction ((21), dashed line), as a function of N, with the same parameters as in panel (a).
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Finally, along the same lines of approximation, we are able to give an explanation
for the extremely slow decay of fluctuations in the total resources xT as the system size
N grows, revealed by the weak dependence on N of the stationary resource distributions
f st(x) and f st(xT) (Figures 3 and 4a) and explicitly illustrated in Figure 4b. The time
signal of xT(t) shown in Figure 5a suggests that fluctuations in total resources are mainly
dominated by the collapses associated with resetting of the replicators that accumulate
most of the resources. In a highly stylized model for the signal xT(t), we can assume that
the statistical distribution of total resources is given by a dichotomic process, where—in the
interval between collapses—xT stays at its minimum value Nu during a “recovery time”
tR, and at its (approximate) equilibrium value 1 − q/λ during the (average) remaining time
τ − tR. Namely,

f st(xT) =
tR
τ

δ(xT − Nu) +
(

1 − tR
τ

)
δ
(

xT − 1 +
q
λ

)
. (22)

From this Ansatz, the calculation of the mean value and the standard deviation of xT is
straightforward. In the limit Nu � 1, we find

〈xT〉 =
(

1 − tR
τ

)(
1 − q

λ

)
, σxT =

√
tR
τ

(
1 − tR

τ

)(
1 − q

λ

)
, (23)

which yields a coefficient of variation

CV =

√
tR/τ

1 − tR/τ
. (24)

If tR is interpreted as the time needed by xT(t) to recover from its small value just after
a collapse up to its equilibrium value, we do not expect tR to depend on N, at least
for sufficiently large systems. Indeed, according to Equation (8), total resources should
approximately obey ẋT = λxT(1 − xT)− qxT , which is independent of N. If this is the case,
Equations (21) and (24) imply that the coefficient of variation of xT decays as

CV ∼ 1√
ln N

(25)

for N → ∞.
Symbols in Figure 8 correspond to results for CV as a function of ln N for three different

values of q/λ, obtained from numerical solutions of Equation (8) analogous to those of
Figure 4b. Dashed lines stand for the asymptotic behavior predicted by Equation (25).
Numerical results closely follow the prediction, even for relatively small values of N. On
the one hand, Equation (25) shows that CV converges to zero as N grows, which validates
the Chapman-Kolmogorov formulation for sufficiently large systems. On the other, the
same result proves the extremely slow decay of fluctuations with the population size. Just
as an illustration, suppose that one wants to diminish fluctuations in xT by a factor of 10,
starting from results for a system of 104 replicators. The new system should have nothing
less than 10400 replicators (!), a size clearly beyond the reach of any presently available
computational means.
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�

Figure 8. Coefficient of variation of total resources CV as a function of ln N, for Nu = 0.01 and three
values of q/λ (note log-log scales). Symbols correspond to numerical results, and dashed lines stand
for the asymptotic behavior predicted in Equation (25).

5. Conclusions

Replicator dynamics with constant fitnesses is a basic model of agent competition,
where one or a few agents eventually accumulate all the available resources. In this paper,
we have investigated whether this concentration can be mitigated by stochastic resetting in
the case of a homogeneous population. Reset events are randomly distributed in time, and
force the dynamics of randomly drawn agents to start anew from a small value. Analytical
results based on the Chapman-Kolmogorov equation show that, in fact, the long-time
distribution of individual resources approaches a smooth profile, with a power-law decay
of probability as the amount of resources grows.

However, numerical evidence reveals that—even for long times and large populations—
the analytical prediction is, at most, an approximation to the actually observed resource
distributions. A closer inspection of the dynamics of individual agents shows that the
overall behavior is still governed by a few agents, which occasionally accumulate most
of the total resources. When the resources of one of these wealthier agents are reset, total
resources “collapse”, and the resource distribution suddenly becomes much more even.
Subsequent collapses of this kind lead the distribution to develop clustering, separating
the population into groups of agents with similar individual resources. This heterogeneity
is responsible for the sustained differences between numerical and analytical results. These
collapse-driven dynamics are also responsible for the extremely slow decay of fluctuations
with the system size, which jeopardizes the use of the mean-field approach implicit in the
Chapman-Kolmogorov Equation (6) for any practically attainable number of agents. Such
anomalous statistical behavior is reminiscent of extreme-value statistics, whose relevance
to economic processes has been emphasized in various contexts [20,26,27].

The present study complements recent work on cooperative agents subject to stochas-
tic resetting [19], where we have shown that cooperation leads to resource redistribution,
distorting the power-law distributions derived from the sole effect of reset events. These
contributions represent a first attempt to characterize the collective behavior of interacting
agents under the action of resetting, thus combining deterministic dynamics with stochas-
tic ingredients. Other interactions of economic and ecological interest (e.g., parasitism,
predator-prey, etc.) are worth considering in future work on the subject.
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//www.mdpi.com/article/10.3390/e25010099/s1, Video S1: Animation of Zipf plots for resource
distribution over the replicator population (cf. Figure 6).
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Abstract: Based on the perspective of the innovation value chain, sci-tech innovation is divided into
two stages: R&D and achievement transformation. This paper uses panel data from 25 provinces
in China as the sample. We utilize a two-way fixed effect model, spatial Dubin model, and panel
threshold model to discuss the impact of two-stage innovation efficiency on the value of the green
brand, the spatial effect of this impact, and the threshold role of intellectual property protection in the
process. The results indicate that: (1) the two stages of innovation efficiency have a positive impact
on the value of green brands, and the effect of the eastern region is significantly better than that of the
central and western regions. (2) The spatial spillover effect of the two stages of regional innovation
efficiency on the value of green brands is evident, especially in the eastern region. (3) The innovation
value chain has a pronounced spillover effect. (4) The single threshold effect of intellectual property
protection is significant. When the threshold is crossed, the positive impact of the two stages of
innovation efficiency on the value of green brands is significantly enhanced. (5) The influence of
economic development level, openness, market size, and marketization degree on the value of green
brands shows remarkable regional differences. In conclusion, this study contributes to understanding
green brands’ growth and provides important implications for developing independent brands in
various regions of China.

Keywords: green brand value; innovation efficiency; innovation value chain; intellectual property
protection; negative entropy flow; spatial Dubin model; panel threshold model

1. Introduction

Reviewing the development process of global modernization, the rapid growth of the
global economy has also created many ecological and environmental problems, such as
climate change/global warming, increased pollution, and resource shortages. Since the
1990s, countries worldwide have paid more attention to green coordination and sustainable
development of the economy and ecological environment. Nowadays, green development,
a form of economic growth and social development aimed at efficiency, harmony, and
sustainability, has become a significant trend globally. Many countries worldwide consider
the development of green industries essential to promoting economic restructuring.

China has entered a new stage of high-quality economic development. Developing
a green economy that can reduce damage to the ecological environment and achieve sus-
tainable development is a critical aspect of high-quality economic development. With the
overall green transformation of China’s economic and social development, people’s con-
sumption concepts and structure have also begun to change. More and more attention has
been paid to product safety, food health, quality of the living environment, and other issues.
Green consumption, a collective term for various consumption behaviors and patterns
that meet human health and environmental protection standards, has gradually become
popular. The popularity of green consumption has promoted the rapid development of
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green markets that specialize in selling products that produce little environmental pollution
during production and consumption. In order to expand the green market share, obtain
differentiated competitive advantages, and establish good customer relations, the green
brand strategy has become an inevitable choice for enterprises to adapt to the green con-
sumption wave. More and more enterprises in China are seeking a green development path.
Huawei released the Green Development 2030 report, pointing out that green development
is the key to breaking the future of enterprises. BYD announced a “fuel cut-off”, becoming
the first auto company in the world to officially stop production of fuel vehicles. HSBC
actively promotes “paperless bank” and “green credit”. It can be seen that establishing the
green brand image of enterprises, creating green brand innovation, and promoting green
innovation are the mainstream trends of the future development of all kinds of enterprises.
Building a green brand is an inevitable requirement in order for enterprises to enhance their
competitiveness and ensure sustainable development. According to the Green Ranking
released by Newsweek in 2017, 52 enterprises in China have entered the global top 500,
148 in the United States, 60 in Japan, and 32 in France. No Chinese enterprise has joined the
international top 50, but there are 15 in the United States, 6 in France, and 3 in Japan. As the
second-largest economy in the world, China has made some achievements in developing
green brands. However, there still needs to be a gap in the quality and efficiency of green
brand growth compared with the United States, Britain, Japan, and other countries. The
green brand is not limited to the category of ecological and environmental protection.
However, it is closely related to the sustainable development of enterprises. Developing
green brands not only conforms to the development trend of the social environment, but
also conforms to the wave of green consumption in the market. At the same time, it is
also conducive to improving enterprises’ international competitiveness and sustainable
development ability. As China’s green market is not mature enough, problems such as
poor authenticity of green brands, “hollowing out” of green brands, and “green floating”
of brands have begun to emerge, which have seriously affected consumers’ enthusiasm
for green brand consumption and green brand trust [1]. How to create a green brand with
consumer trust and value has become a hot issue in business and academic circles.

The current research on green brands is conducted chiefly from the perspective of
consumers and enterprises [2–5], and research on green brand value based on a regional
perspective is rare. Previous studies have shown that innovation capability can help
enterprises gain competitiveness and sustainability and thus help enterprises improve their
market position, establish a brand reputation, bypass competition, make breakthroughs,
and attract customers [6–9]. However, previous studies only discussed whether innovation
could improve brand value and generally regarded the innovation process as a “black
box”, requiring more analysis of the innovation process. Only a few studies conducted
independent research on green brands. In addition, the development of brands and the
process of sci-tech innovation both need the protection of intellectual property rights as
part of their premise. Legal and institutional means are required to protect enterprises’
innovation achievements and encourage enterprises to continue to innovate to inject fresh
blood into the development of enterprise brands constantly.

Given the above background and existing research, this paper, from the perspective
of the innovation value chain, divides the innovation process into two stages: R&D and
achievement transformation, to more clearly reveal the impact of the two stages of in-
novation on green brand value. As the degree of intellectual property protection varies
significantly in different regions of China, taking intellectual property protection as a
threshold variable, we can explore the impact of two-stage innovation on green brand value
under different levels of intellectual property protection. On the one hand, we can further
reveal the differences in the impact of innovation at different stages on green brand value;
on the other hand, we can provide targeted policy recommendations for developing green
brands in different regions. As for the impact of regional innovation on brands, existing
studies usually regard the research region as a whole, which ignores the spatial relevance
of innovation activities and other economic activities among regions. The establishment of
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a spatial Dubin model can further discuss the impact of this spatial effect on green brand
value. To provide a theoretical and practical basis for sci-tech innovation to promote the
green brand value and provide targeted policy suggestions for constructing green brands
in different regions of China.

2. Literature Review

2.1. Green Brand and Influencing Factors of Brand Value

Green brand refers to specific brand characteristics and attributes related to reducing
environmental impact and consumers’ different environmental demands [2]. Compared
with nongreen brands, green brands have three characteristics: greenness, sustainability,
and externality. Greenness refers to green brands’ function of improving the ecological
environment and social environment, which allows them to achieve a “win-win” in pop-
ulation, economy, environment, and other aspects. Sustainability refers to the efficient
and reasonable allocation of enterprise resources due to the green nature of green brands.
Externality refers to the positive impact of enterprises’ development of green brands on
other economic entities, such as improving the ecological environment, guiding other enter-
prises towards green practices, leading consumers to green consumption, etc. Scholars have
carried out a series of studies in green brand-related fields, mainly from the perspective of
consumer behavior. Royne et al. (2011), Hartmann & Apaolaza-Ibáez (2012), Suki (2016),
and other researchers found that the main factors that affect consumers’ green brand choice
and purchase behavior are the deterioration of the external ecological environment and the
enhancement of their health and environmental awareness [10–12]. Consumers have the
motivation to choose green brands, but the actual efficiency of green brand selection is not
high. From the consumers’ perspective, the brand–consumer distance is too large, which
is why consumers reject green brands. Enterprises can encourage consumers to establish
green brand memory through green marketing, shorten the brand–consumer distance, and
thus promote green brand consumption [13,14]. From the perspective of enterprises, green
brand innovation is not vital, and uneven product quality is also an essential factor that
restricts consumers’ green consumption [15]. Therefore, enterprises should pay attention to
the role of green marketing in adjusting brand environmental relevance and consumers’
green brand attitude and the driving role of sci-tech innovation on the brand to enhance
the value of green brands through innovation [9].

Brand value is the amount obtained by calculating all brand assets with a method
similar to tangible assets evaluation [16]. Such brand assets include the value added by
the brand to product sales in the market, as well as the cognition, attitude, and behavior
of consumers and other stakeholders towards the brand. In short, brand value is the total
value of all brand assets, expressed in monetary terms. Brand value is the most intuitive
embodiment of brand competitiveness and the most direct reflection of a brand’s position in
the market, as well as its development and change. The mainstream evaluation methods for
brand value include Interbrand, Financial World, World Brand Lab, etc. With the expansion
of the influence of the World Brand Lab in China, Chinese scholars usually use the brand
value data released by the World Brand Lab to conduct relevant empirical research [17–19].

Currently, the research on green brand value continues the research method of brand
value and is mainly based on two perspectives of corporate finance and consumers. Chen
(2010) believed that green brand value is a series of brand assets and liabilities related to
enterprises’ green commitments and environmental concerns [20]. Ng et al. (2014) pointed
out from the consumers’ perspective that green brand value is the overall evaluation
of consumers’ perception of green products or services and their environmental desire,
sustainable expectation, and green demand [21]. With the development of society, the
evaluation of corporate brands, especially green brands, should not be limited to traditional
financial indicators such as market value, operating income, profitability, or the green
value perceived by consumers. Whether there are positive environmental and social
externalities is also an important consideration. ESG index is an evaluation standard
system for enterprise, which mainly encompasses three aspects: the impact of enterprise
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on the environment (E), responsibility to society (S), and internal governance (G). The
three aspects are closely related to the three characteristics of the green brand (green,
sustainability, and externality). The ESG index can reflect the development of green brands
of enterprises to a certain extent. Therefore, this paper will measure the regional green
brand value based on the brand value data released by the world brand experiment and
the ESG index released by Shanghai Huazheng Index Information Service Co., Ltd.

2.2. Sci-Tech Innovation and Brand Value

The idea of sci-tech innovation as an essential source of brand value is relatively
new, and issues of brand and sci-tech innovation penetration are gradually emerging in
academia [22]. Aaker (1996) and Zhang et al. (2013) believe that sci-tech innovations,
such as the inclusion of significant new technology attributes, may cause consumers to
recognize convenience and comfort from the new technology attributes and appreciate
innovation efforts and capabilities, thus creating a better image for the brand [23,24].
Kliestikova & Kovacova (2017) believe that innovation is being integrated into the con-
struction and management of brands and use questionnaire surveys, choice analysis, and
cluster analysis to empirically verify that innovation is an essential source of brand value
perceived by consumers [25]. Kurt (2019) emphasized that companies focusing on R&D
strategies to provide products based on technological innovation will contribute to brand
value and corporate revenue in the global environment of immediate consumption, and
empirical studies have shown a positive relationship between R&D expenditures, revenue,
and brand value [26]. Yao et al. (2019) believe that sci-tech innovation mainly helps to
improve production efficiency and product quality, thereby gaining long-term competi-
tive advantages, which will be reflected in brand value. They also found that technical
innovation has a stronger impact on improving brand value compared with nontechnical
innovation [27]. Apparently, sci-tech innovation has an essential impact on brand value.

As for the relationship between sci-tech innovation and brand value, the existing
research mainly carries out relevant research on two levels: firstly, at the enterprise level,
based on the theory of enterprise resource base and the theory of core competitiveness;
second, at the regional level, based on the theory of brand growth environment. Scholars
generally argue that innovation can promote brand value by developing new products
and services, improving the quality of existing products and services, increasing the added
value of products and services, and other ways [28–30].

2.2.1. The Perspective of Enterprise Resource Base and Core Competence

According to the theory of enterprise resource base, the resources owned by enterprises
are the material basis for the construction and development of enterprise brands. High-
quality enterprise resources can promote new brands’ success and help existing brands
grow [28]. M’Zungu et al. (2010) pointed out that sufficient resources can guarantee
enterprise’ R&D and production activities, which is conducive to the development and
growth of enterprise brands [31]. Han & Zhao (2008) considered that for the development
of China’s brands, improving product quality is the primary condition, and the quality of
products depends not only on good product design but also on the skilled workers and
high-quality knowledge of workers involved in enterprises [32]. Zhu & Wang (2018), based
on the perspective of intellectual property rights, analyzed that enterprises’ intellectual
assets, such as talents, patents, and trademarks, play an essential role in promoting brand
competitiveness [33]. It can be seen that the innovation resources of enterprises will have a
positive effect on brand competitiveness and brand value.

An enterprise’s core competence is a comprehensive system composed of the accumu-
lation of knowledge, special skills, and related resources in the production and operation
process of the enterprise. It is the power source of the sustainable competitiveness of the
enterprise. Huang & He (2015) believed that brand competitiveness came from the core
competence of enterprises, especially the ability to innovate independently [34]. The core
competitiveness of an enterprise originates from its resources, but unique and difficult-to-
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imitate essential resources can bring long-term competitive advantages to the enterprise.
The innovation resources of an enterprise are usually unique to that enterprise and are
scarce, nonimitative, and irreplaceable [35]. Li & Liu (2017) believe that knowledge re-
sources dominated by core technologies are the most important manifestation of enterprise
innovation resources, which are the essential resources needed to cultivate the core com-
petence of enterprises [30]. Through the Internet industry, Helm (2007) found that for
the high-tech industry, product innovation and technology development make the brand
different and promote the development of the industry [36]. Wang & Wang (2020) argued
that the value of China’s time-honored brands comes from the accumulation of historical
culture and the inheritance of core technologies, cultural endowment determines the direc-
tion of brand development, and the improvement and innovation of core technologies is
the source of brand growth [37]. Based on enterprise resource theory and enterprise core
competence theory, Wang et al. (2013), explored the influencing factors of independent
brand creation and proposed that independent innovation is the fundamental means for
Chinese enterprises to create high-quality brands while providing human capital quality is
the key to enhance enterprise innovation ability [38].

To sum up, from the perspective of enterprise resources or core competence, improv-
ing enterprise innovation capability is essential to increase brand equity, improve brand
competitiveness, achieve brand differentiation, and promote brand value.

2.2.2. The Perspective of Brand Growth Environment

Brand building is affected not only by internal factors of the enterprise but also by
external environmental factors of the enterprise; that is, the environmental factors of the
region where the brand is located. Wang & Cheng (2012) built a unitary linear regression
model and found that regional technological innovation has a significant positive impact on
brand value without interfering with other influencing factors [39]. Wang et al. (2019) found
that regional R&D capabilities and technological environment support significantly impact
brand value by building a multiple regression model [40]. Zhou et al. (2014) calculated the
regional technological innovation scores of 31 provinces by factor analysis and certified that
the stronger the regional technological innovation ability, the higher the brand value [41].
Qi & Liu (2015) analyzed the impact of collaborative innovation and performance on the
competitiveness of brands from the regional level and found that the higher the degree of
collaboration between innovation subjects, the more vital the innovation efficiency, and
thus the more significant the role of improving the competitiveness of brands [42]. In
addition to the innovation environment, the regional market environment, legal system
environment, social environment, political environment, and natural environment in which
the brand is located will have a specific impact on the construction and growth of the
brand [43,44].

Intellectual property protection is crucial in technological innovation and brand build-
ing. The more perfect the legal environment is, the higher the return rate of R&D invest-
ment and brand investment is, and the stronger the motivation of enterprises to innovate.
Sukarmijan & Sapong (2014) believed that based on the background of the intellectual
economy, intellectual property protection plays a vital role in promoting technological
progress and brand promotion [45]. Wang et al. (2015) used panel data from 25 provinces
in China to demonstrate that intellectual property protection can indirectly affect brand
growth by influencing regional technological innovation capability [46]. Yan (2018) stressed
that the government should strengthen the protection of agricultural products’ knowledge
innovation, and create a good knowledge protection environment, to improve agricultural
products’ brand value [47].

2.3. Innovation Value Chain Theory

Previous studies usually regarded the innovation process as a “black box”, which
would ignore the internal structure and internal operating mechanism of innovation. From
the perspective of the innovation value chain, we can explore the internal mechanism
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of the innovation process and match the research on the path of innovation efficiency
improvement. The innovation value chain was first proposed by Hansen & Birkinshaw
(2007). They argued that the innovation value chain could be divided into three stages:
the generation, transformation, and dissemination of creativity, and there is a progressive
internal correlation in the three stages [48]. Chinese scholars usually regard the innovation
value chain as the decomposition of sci-tech innovation links based on the perspective
of production. Sci-tech innovation is a multi-stage, multi-factor value chain transmission
process from the input of innovative resources to the output of innovative products, which
mainly includes the following three stages: the input of innovation, the condensation
of innovative knowledge, and the realization of innovative achievements [49–51]. Yu
and Liu (2014) divided the sci-tech innovation process into knowledge innovation, R&D
innovation, and product innovation. They investigated the innovation efficiency of different
provinces at different stages using the three-stage DEA model [49]. Considering that this
paper focuses on analyzing the impact of technological innovation capability and value
transformation capability on the development of green brands, the innovation process is
simplified into two stages: R&D and achievement transformation. R&D is the basis of
innovation, focusing on knowledge creation and technological research and development.
Achievement transformation is the application of innovation to realize the economic value
of innovation. Both stages of innovation have input–output functions and are interrelated
processes. That is, the output in the R&D stage is usually the input in the achievement
transformation stage. See Figure 1 for the two-stage innovation value chain model.

Figure 1. Two-stage innovation value chain.

2.4. Dissipative Structure Theory

In addition to being widely used in physics, chemistry, and mathematics, dissipative
structure theory has gradually become a new research paradigm in economics. Its solid
economic explanatory power has laid a foundation for its extensive economic application.
Perrings (1986) applied the theory of dissipative structure to the analysis of economic envi-
ronment systems and pointed out that economic environment systems are complex systems
with dissipative structure properties [52]. The dissipative structure has four characteristics:
openness, nonequilibrium, internal nonlinearity of the system, and an internal driving
effect of “fluctuation” [53,54]. The brand ecosystem has four main dissipative structure
characteristics as a complex economic system. As a component of the economic system, the
brand ecosystem has a close exchange of capital, technology, information, and other ele-
ments with other systems in the economic system (openness). The brand ecosystem is not
static, but a nonequilibrium evolution system. Technological progress or changes in market
demand bring about brand changes, with which the brand ecosystem is gradually adjusted
away from the original equilibrium. With the maturity of new technologies or the stability
of market demand, the brand ecosystem enters a new equilibrium (nonequilibrium). The
development of any brand will be affected by other brands and stakeholders. There is a
complex network of associations between brands and between brands and stakeholders
that compete with and promote each other [55]. It is not a simple linear relationship that
can be described and depicted (in other words, it is nonlinear). “Fluctuation” originates
from the change in policy, capital, technology, market, stakeholders, and other influencing
factors. Any small influencing factor deviating from the original equilibrium state will be
further amplified into a “huge fluctuation” that controls the evolution of the whole system
through the nonlinear interaction relationship (the internal driving role of “fluctuation”).
Therefore, the brand ecosystem is a system with the characteristics of a dissipative structure.
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2.5. Summary of This Chapter

Scholars have conducted extensive research on the relationship between innovation
and brand and have gathered rich research results. Mainly based on the theory of brand
equity and brand competitiveness, they believe that innovation can increase brand equity
and improve brand competitiveness, thereby improving brand value and brand influence.
Brand equity theory and brand competitiveness theory are the extension and expansion
of resource-based theory and core competence theory in marketing. Essentially, they
both emphasize that only continuous innovation can provide inexhaustible power for the
development and growth of brands.

Nevertheless, scholars seldom explore the impact of innovation on green brand value
from the regional level and usually regard the research region as an independent whole,
which will ignore the differences between regional development and the spatial interaction
of regional economic activities. Secondly, innovation is a multi-stage and multi-output
process, and the impact of innovation output at different stages on brand value may differ.
Thirdly, in addition to the innovation environment in which the brand is located, the
market environment, legal environment, social environment, etc., will have a particular
impact on the creation and growth of the brand; in particular, the legal environment of
intellectual property. On the one hand, intellectual property protection can provide a
legal basis and protection for enterprises to safeguard brand rights and create a good
external environment and institutional guarantee for enterprises to promote brand growth.
On the other hand, it can effectively weaken the externality of innovation and avoid the
phenomenon of “free riding”, to protect the innovation achievements of enterprises, ensure
the innovation benefits of enterprises, and improve the enthusiasm of enterprises for
continuous innovation. Finally, according to the four characteristics of the dissipative
structure, this paper discusses that the brand ecosystem is a system with the characteristics
of the dissipative structure.

3. Study Design

3.1. Model Construction

According to the brand ecosystem theory, the brand ecosystem is a business ecosystem
composed of brands and their related environments for survival and development, includ-
ing government, market, sci-tech innovation, legal system, culture, and other ecological
environment elements, investors, suppliers, industry associations, customers, and other
relevant stakeholder elements [56]. The construction of a green brand is carried out under
specific environments and conditions. It is closely related to sound economic development,
a high level of opening to the outside world, a perfect market, a large market scale, and
other factors. It is encouraged and constrained by various factors and relationships between
all parties. Any change in these factors will affect the realization of green brand value.
According to the dissipative structure theory of Prigogine (1994) [57], we can infer that
if the brand ecosystem is an isolated system, then according to the principle of entropy
increase, the entropy of the system will continue to increase, and the perfection of the
system will certainly weaken. Suppose the brand ecosystem is an open system. In that
case, the introduction of negative entropy from the surrounding environment will offset the
increase in system entropy by constantly exchanging material, energy, and information with
the outside world, giving the brand ecosystem the characteristics of a dissipative structure.
This dissipative structure feature will make the brand ecosystem more orderly and promote
green brand value in the system. Regional sci-tech innovation is an important way for the
system to obtain the negative entropy flow, while protecting intellectual property rights
will enhance the negative entropy flow.

For an open system with dissipative structure characteristics, its development state
can be measured by calculating the total entropy change of the system [53]. The total
entropy change (dS) of the system comes from the positive entropy flow (dSi, dSi > 0)
generated by the system itself and the negative entropy flow (dSe, dSe < 0) formed by the
system’s exchange with the outside world. The formula is dS = dSi + dSe. When dS < 0,
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the system will have a self-organization phenomenon and gradually evolve from the low
stage to the high stage. When dS > 0, the system will be in a disordered state of change and
degenerate from the advanced stage to the low-level stage. When dS = 0, it means that the
system has not changed. Based on the theory of dissipative structure and the principle of
entropy increase, this paper builds a relationship model between sci-tech innovation and
the promotion of green brand value, as shown in Figure 2.

Figure 2. The relationship between sci-tech innovation and the promotion of green brand value.

Sci-tech innovation ability is the source of power to promote the development of green
brands. From the regional perspective, the value of a green brand in a region is not only
affected by the local brand’s ecological and environmental factors, but also neighboring
regions’ environmental factors. In addition, the strength of intellectual property protection
will affect the role of technological innovation in promoting the value of green brands.
According to the above analysis, the empirical test model constructed in this paper is shown
in Figure 3.

Figure 3. Influence mechanism of sci-tech innovation on green brand value.

3.1.1. Two-Way Fixed Effects Model

In order to study the impact of two-stage innovation efficiency on the value of the
green brand, this paper uses the stepwise regression method to build Models (1)–(3). The
specific model forms are as follows:

BVit = α0 + α1TRDit + α2EDLit + α3OULit + α4MSit + α5MDit + μit (1)

BVit = α0 + α1TATit + α2EDLit + α3OULit + α4MSit + α5MDit + μit (2)

BVit = α0 + α1TRDit + α2TATit + α3EDLit + α4OULit + α5MSit + α6MDit + μit (3)

The explained variable BVit is the green brand value of region i in year t. The explana-
tory variables TRDit and TATit are the R&D efficiency and achievement transformation
efficiency of region i in year t; EDLit, OULit, MSit, and MDit, respectively represent the
regional economic development level, the degree of opening to the outside world, the
market size and the degree of marketization. α is the regression coefficient; μ is a random
error term.
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3.1.2. Two-Way Fixed Effects Model

According to the application of “the first law of geography” in economics, there is a
specific interaction between regional economic activities in space [58]. Commonly used
spatial econometric models include the spatial Doberman model (SDM), spatial lag model
(SLM), and spatial error model (SEM). SDM has more real explanatory power than the
other two models because it can examine the influence of explanatory variables in adjacent
areas on the explained variables [59]. Therefore, to avoid ignoring the possible model
estimation bias caused by spatial effects of regional economic behavior and to make the
research results more realistic, this paper explores the spatial effects of regional innovation
efficiency on the value of green brands by building a SDM. The specific manifestations of
the SDM are as follows:

BVit = ρWBVit + β0TRDit + β1EDLit + β2OULit + β3MSit + β4MDit
+θ0TRDit + θ1EDLit + θ2OULit + θ3MSit + θ4MDit + εit

(4)

BVit = ρWBVit + β0TATit + β1EDLit + β2OULit + β3MSit + β4MDit
+θ0TATit + θ1EDLit + θ2OULit + θ3MSit + θ4MDit + εit

(5)

BVit = ρWBVit + β0TRDit + β1TATit + β2EDLit + β3OULit + β4MSit + β5MDit
+θ0TRDit + θ1TATit + θ2EDLit + θ3OULit + θ4MSit + θ5MDit + εit

(6)
W is the spatial weight matrix; WBVit is the spatial lag item of the explained variable’s

green brand value; WTRDit, WTATit, WEDLit, WOULit, WMSit, and WMDit are the spatial
lag items of R&D efficiency, achievement transformation efficiency, and other control
variables, respectively. ρ represents the spatial autocorrelation coefficient, β and θ represent
the regression coefficient, and ε represents the error term.

The spatial adjacency weight matrix (W) is set according to whether provinces are
adjacent geographically. If two regions are adjacent, the matrix element is set to 1. If
two regions are not adjacent, the matrix element is set to 0. The spatial inverse distance
matrix (W*) is set according to the Euclidean distance (dij) between the provincial capitals
of each province and city and is used for the subsequent robustness test. The weight matrix
elements of the spatial adjacency weight matrix (W) and spatial inverse distance matrix
(W*) are defined as follows:

Wij =

{
1, region i is adjacent to region j
0, region i isn′t adjacent to region j

, i �= j W∗
ij =

{
1

dij
, i �= j

0, i = j
(7)

3.1.3. Panel Threshold Model

This paper refers to Hansen (1999)’s panel data threshold model [60], selects intel-
lectual property protection as the threshold variable of R&D efficiency and achievement
transformation efficiency, and constructs the threshold regression model as follows:

BVit = α0 + α1TRDit I(IPRit ≤ γ) + α2TRDit I(IPRit ≥ γ) + α3EDLit
+α4OULit + α5MSit + α6MDit + μit

(8)

BVit = α0 + α1TATit I(IPRit ≤ γ) + α2TATit I(IPRit ≥ γ) + α3EDLit
+α4OULit + α5MSit + α6MDit + μit

(9)

IPRit is the level of intellectual property protection in year t of region i, γ is the
threshold value, ε is a random disturbance term, and I (·) is a threshold index function.

3.2. Variable Design
3.2.1. Explained Variables

Previous studies mostly explored the impact of sci-tech innovation on enterprise
brand value from the enterprise level. This paper focuses on the impact of technological
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innovation on the overall level of green brand value in the region from the regional level. It
considers the poor availability of regional green brand value data. Therefore, this paper’s
regional green brand value is the sum of the regional green brand value. The measurement
method is as follows: first, we count the brands that are shortlisted in China’s 500 Most
Valuable Brands. Secondly, according to the ESG index, we remove the enterprise brands
rated below B. Finally, according to the brand value data released by the World Brand Lab,
the total brand value of enterprises in a particular region with an ESG rating of B or above
is estimated.

3.2.2. Explanatory Variables

This paper refers to the super-efficient SBM proposed by Tone (2002) [61] and uses
the efficiency value to measure the two-stage innovation level: R&D efficiency (TRD)
and achievement transformation efficiency (TAT). In the stage of R&D, R&D personnel
and R&D funds are usually used as input in the initial stage of innovation. Innovation
output is generally about knowledge and technology, and its manifestations are patents,
inventions, monographs, and scientific papers. In the R&D stage, R&D personnel and R&D
expenditure are selected as the innovation input indicators in this stage. The number of
patent applications and Chinese scientific and technological papers included in three major
foreign retrieval tools (SCI, EI, CPI-S) are selected as the innovation output indicators to
measure technology and knowledge. Of these, the total R&D expenditure of each region is
calculated as R&D capital stock (based on 2009) concerning the perpetual inventory method
proposed by Pittman (1983) [62], Kt = (1 − δ) Kt−1 + It, where Kt is the R&D capital stock in t
period. It is the R&D expenditure in period t; Kt−1 is the R&D capital stock of period t−1; δ
is the capital depreciation rate. The calculation of initial R&D capital stock and depreciation
rate refers to the practice of Shan (2008); with the capital depreciation rate δ set as 15%, and
initial R&D capital stock K0 = I0/(δ + e), e is the average growth rate of R&D expenditure [63].
The number of patent applications and scientific and technological papers published, as the
intermediate variables of the innovation value chain, are not only the innovation output
indicators in the R&D stage, but also the input indicators in the achievement transformation
stage. Enterprises also need to provide corresponding financial support when developing
and utilizing innovative achievements. Therefore, new product development expenditure
is selected to reflect the investment of innovation funds in the achievement transformation
stage. The innovation achievements will eventually provide economic benefits to the
enterprise, so the sales revenue of new products and the export revenue of new products
are selected as the innovation output in the achievement transformation stage. See Table 1
for the two-stage evaluation indicators of regional innovation efficiency.

Table 1. Two-stage regional innovation efficiency evaluation index system.

Stage Indicator Type Indicator Name

R&D
Input R&D expenditure

Full time equivalent of R&D personnel

Output Number of patent applications
Number of scientific papers published

Achievements transformation
Input

Number of patent applications
Number of scientific papers published

New product development expenditure

Output Sales revenue of new products
Export income of new products

3.2.3. Threshold Variables

In order to measure the level of intellectual property protection (IPR), the GP index
method proposed by Ginarte & Park (1997) is a quantitative measurement method com-
monly used abroad to measure the level of intellectual property protection [64]. The GP
index measures the level of protection from the legislative level of intellectual property pro-
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tection. Due to the relatively imperfect legal systems of developing countries, the level of
intellectual property protection measured by the GP index will be on the high side. Thence,
Chinese scholars usually measure the actual level of intellectual property protection in
China based on the research ideas of Han & Li (2005), taking into account the law legislation
and enforcement level of intellectual property protection [65]. Hu et al. (2012) proposed a
new method to objectively and comprehensively measure the level of intellectual property
protection by the proportion of technology market transactions in local GDP [66]. This
method does not need to trace the factors that affect intellectual property protection, which
are difficult to measure. Given the measurability and objectivity of this method, this paper
uses the proportion of technology market transactions in local GDP to measure the level of
regional intellectual property protection.

3.2.4. Control Variables

According to the theory of brand growth environment, brand development is affected
not only by the enterprise’s internal factors, but also by environmental factors. Considering
the significant differences in the level of economic development, openness, market size, and
marketization in various regions may have a particular impact on the growth of the green
brand. Therefore, these factors are introduced as control variables. The regional economic
development level (EDL) is measured by per capita GDP. The regional opening up level
(OUL) is measured by the proportion of total imports and exports in local GDP. The market
size (MS) of the region is measured by the total resident population of the region. The
degree of marketization (MD) is measured by the proportion of the government’s general
public budget expenditure to the local GDP. If the proportion is high, the government has
more intervention in the market, and the degree of marketization is low. See Table 2 for
specific measurement indicators of each variable in this paper.

Table 2. Variable Description.

Variable Type Index Name Indicator Measurement

Interpreted variable Green Brand Value (BV)
The total value of all brands in China’s 500 Most

Valuable Brands by region, taking the natural
logarithm

Explanatory variable R&D efficiency (TRD) Calculated by super efficiency SBM model.
Achievement transformation efficiency (TAT) Calculated by super efficiency SBM model.

Threshold variable Intellectual property protection level (IPR) Technology market turnover divided by regional GDP

Control variable

Economic Development Level (EDL) Per capita GDP of each region, taking natural
logarithm

Openness to the outside world (OUL) Import and export volume divided by regional GDP

Market size (MS) The total number of permanent residents in each
region, taking the natural logarithm

Marketization degree (MD) General public budget expenditure divided by
regional GDP

3.3. Sample Selection and Data Source

The research sample of this paper is 25 provinces in China. Due to the lack of brand
value data in some years in Tibet, Qinghai, Gansu, and other regions, these regions are not
within the scope of the study, considering the continuity of data. There are 12 provinces
in the east: Beijing, Fujian, Guangdong, Hebei, Heilongjiang, Jiangsu, Jilin, Liaoning,
Shandong, Shanghai, Tianjin, and Zhejiang. There are 7 provinces in the central region:
Anhui, Henan, Hubei, Hunan, Jiangxi, Inner Mongolia, and Shanxi; There are 6 provinces
in the western region: Chongqing, Guangxi, Guizhou, Shaanxi, Sichuan, and Yunnan.

In calculating the total value of brands of enterprises listed in various regions, green
brand screening is based on the Huazheng ESG index rating. Considering that the inno-
vation characteristics of enterprises in the hotel, catering, jewelry, and other industries
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are not obvious enough, the data of such enterprises are excluded. In addition, since the
brand value released by the World Brand Experiment is calculated based on the relevant
data of the previous year; that is, the brand value released in 2021 is the brand value in
2020, so the statistical year of the green brand value is one year ahead of schedule. The
innovation data of each province and city come from the China Science and Technology
Statistics Yearbook over the years, and other data come from the China Statistics Yearbook
and the statistical yearbooks of each province and city. Some missing data are processed by
interpolation. This paper uses panel data, and the research range is from 1 January 2009 to
31 December 2020.

4. Empirical Analysis Process and Results

4.1. Time Change Trend of Green Brand Value and Two-Stage Innovation Efficiency in Three Major
Regions of China

Before the empirical analysis, the time trend of green brand value and two-stage
innovation efficiency in the three regions over the years is statistically analyzed. Figure 4
shows the development trend of green brand value in three regions of China from 2009 to
2020. From the overall trend, the value of green brands in China is steadily rising, and the
development trend of green brands is good. However, the value of green brands varies
significantly among regions. The growth trend of green brand value in the eastern region
is significantly higher than in the central and western regions. This is because the eastern
region has a relatively high level of economic development and opening to the outside
world and a good market environment and innovation environment, which can contribute
to the development of enterprises and brand building in the region.

 

Figure 4. Change of average value of green brands in different regions of China from 2009 to 2020.

Figure 5 shows the trends of R&D efficiency and achievement transformation efficiency
in China’s regions from 2009 to 2020. From the overall trend, the efficiency of R&D and the
efficiency of achievements transformation in China are rising. The trend of achievement
transformation efficiency is greater than that of R&D efficiency. This shows that with the
progress of science and technology and the deepening of market-oriented reform, China
has made specific achievements in R&D and achievement transformation. Regarding
R&D efficiency, the eastern region showed a steady growth trend, the central region
showed an apparent upward trend after 2017, and the western region showed a downward
trend after 2017. In terms of the efficiency of achievements transformation, the three
regions are subject to volatile changes, and the fluctuation range is extensive. To a certain
extent, the economic benefits of innovation will be affected by various factors, such as
the regional economic environment, market changes, and policy changes. These factors
vary significantly among different regions, leading to a volatile trend in the efficiency of
innovation achievements transformation.
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(a) (b) 

Figure 5. Changes in average R&D and achievement transformation efficiency in different regions of
China from 2009 to 2020. (a) Change in R&D efficiency. (b) Change in achievement transformation.

4.2. Impact of Two-Stage Innovation Efficiency on Green Brand Value
4.2.1. Time Series Stationarity Test

This paper uses Stata16.0 software to conduct statistical analysis on sample data. The
correlation analysis results show that explanatory and control variables are significantly
correlated with the explained variables at 1%, which preliminarily verifies the rationality of
the empirical model construction in this paper. The factor independence test results show
that each variable’s variance inflation coefficient (VIF) is less than five, and the mean VIF is
less than two, indicating that there are no multiple collinearities between variables and that
the variable indicators are suitable.

Considering that this paper uses panel data to avoid the “pseudo regression” phe-
nomenon, it is necessary to conduct a unit root test on panel data and judge the stability
of the data. In this paper, the LLC test (in the case of the same unit root) and the Fisher
ADF test (in the case of different unit roots) are used to test the stability of data. Table 3
shows that BV, EDL, and MS are unbalanced sequences under the horizontal sequence.
However, under the first-order difference sequence, all variables reject the assumption that
“there is a unit root”. Hence, all first-order differences are stable, and each variable is at
least cointegrated with first-order units I (1).

Table 3. Descriptive statistics and correlation analysis.

Variable
LLC Statistics ADF Statistics Test Result

(If the Sequence is Stable)Statistics p Value Statistics p Value

BV −11.4794 *** 0.0000 25.2830 0.9986 No
TRD −16.3135 *** 0.0000 105.9524 *** 0.0000 Yes
TAT −9.6603 *** 0.0000 183.8841 *** 0.0000 Yes
EDL −11.7807 *** 0.0000 46.2625 0.6241 No
OUL −14.2522 *** 0.0000 73.6434 ** 0.0164 Yes
MS −7.9454 0.9102 191.2413 *** 0.0000 No
MD −10.2202 *** 0.0000 132.1372 *** 0.0000 Yes
L.BV −14.2425 *** 0.0000 67.7333 ** 0.0481 Yes

L.TRD −14.9561 *** 0.0000 102.6958 *** 0.0000 Yes
L.TAT −8.7227 *** 0.0003 160.5342 *** 0.0000 Yes
L.EDL −20.1709 *** 0.0000 71.3872 ** 0.0252 Yes
L.OUL −14.7298 *** 0.0000 66.0949 * 0.0632 Yes
L.MS −18.3309 *** 0.0000 153.4215 *** 0.0000 Yes
L.MD −9.1084 *** 0.0002 118.0936 *** 0.0000 Yes

Note: *, **, and *** are significant at 10%, 5%, and 1% statistical levels, respectively.
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4.2.2. Regression Results and Analysis of Two-Way Fixed Effect Model

Above all, this paper uses the Hausman test to judge whether to choose a fixed or
random effect model. The test results show that all models pass the significance test at least
at the 10% level, so we choose the fixed effect model. Secondly, the White and Wooldridge
tests are used to test whether the sample data have heteroscedasticity and autocorrelation.
The results show that there are heteroscedasticity and autocorrelation. Therefore, this paper
uses a two-way fixed effect model to control the time variables, and the Driscoll Kraay
standard is used for error estimation. See Table 4 for the specific regression results.

Table 4. Analysis of the impact of two-stage regional innovation efficiency on the value of
green brands.

Variable
National Eastern Central Western

(1) (2) (3) (3) (3) (3)

TRD 0.3696 *** 0.3209 *** 0.2036 ** −0.2288 0.9135 **
TAT 0.3286 *** 0.3057 *** 0.2500 *** −0.0074 0.3188 **
EDL −0.3564 * −0.1698 * −0.0873 * 0.9116 *** −0.9127** 0.0268
OUL 0.3490 * 0.2055 * 0.2541 * 0.9955 *** −0.3262 −0.9218
MS 0.4510 0.3007 0.6407 0.5371 0.9132 0.9811 ***
MD −0.6199 ** −0.2212 −0.2017 0.7015 *** −0.9166 ** −0.9217 **

C 5.9911 *** 5.3524 * 1.4011 −10.7175 *** 7.6209 −88.0073 ***
Time item control control control control control control

Sample size 300 300 300 144 84 72
R2 0.7395 0.7474 0.7552 0.8805 0.9311 0.6478

Hausman test 17.02 *** 16.19 ** 14.86 ** 15.62 ** 52.25 *** 9.36 *
Model FE FE FE FE FE FE

Note: *, **, and *** are significant at 10%, 5%, and 1% statistical levels, respectively.

From the national level, the impact coefficients of R&D efficiency and achievement
transformation efficiency on the value of green brands are 0.3693 and 0.3286, respectively.
Both have passed the significance test at the level of 1%, indicating that both can significantly
promote the growth of green brand value. The regression results of national model (3) show
that when the two innovation efficiency scores are simultaneously used as explanatory
variables for regression analysis, the impact coefficients of R&D efficiency and achievement
transformation efficiency are 0.3209 and 0.3057, respectively. Both pass the significance
test at the 1% level, indicating that the R&D efficiency and achievement transformation
efficiency positively impact the value of green brands together, which is synergistic.

In national Model (3), the impact coefficient of the economic development level is
−0.0873, which is significant at the 10% level. Under normal circumstances, the higher
the economic development level of a region, the better the brand development in the
region. The negative impact may be that China’s green brand development started late,
and the development of green brands seriously lags behind economic construction. The
impact coefficient of the degree of opening up is 0.2541, and the significance level test
shows that the higher the degree of opening up, the better the development of green
brands. Improving the level of opening up and expanding the international market can
promote China’s green brands from “China” to “the world”. China’s green brand value and
influence can continuously improve through competition and cooperation with well-known
international brands. The market size and the degree of marketization have positive and
negative effects on the value of green brands, respectively. However, they need to pass
the significance test, which the vast territory of China and the significant differences in
resource endowments and market environments between different regions may cause.

At the regional level, the efficiency of R&D and the efficiency of achievements trans-
formation in the eastern region positively impact the value of the green brand. The impact
of the efficiency of achievements transformation is more significant than the efficiency of
R&D due to the relatively developed market in the eastern region. In the developed market
environment, once the new products enterprises develop successfully enter the market, the
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economic benefits will be incredible, which is conducive to improving the brand value. The
R&D efficiency and achievements transformation efficiency in central China have not signif-
icantly impacted the value of green brands in this region. The sci-tech innovation efficiency
in central China needs to be further improved. Attention should be paid to strengthening
the economic transformation of innovation achievements. The efficiency of R&D and the
efficiency of achievement transformation in the western region positively affect the value
of green brands. The impact of R&D efficiency is far more significant than the efficiency of
achievement transformation. While improving the level of R&D, the western region should
also pay attention to the economic benefits of sci-tech achievements transformation.

The economic development level of the eastern region will have a significant positive
impact on the green brand value. In contrast, the economic development level of the central
and western regions has yet to have a significant positive impact. The development of the
economy and green brands in the eastern region is relatively balanced. Only the level of
opening up in the eastern region has a significant positive impact on green brand value,
while only the market size in the western region has a significant negative impact on green
brand value. This shows that the green brand market in the western region is still mainly
domestic, while the eastern region has opened the international market. The degree of
marketization in the eastern region positively impacts the value of green brands because
the public economy dominates China’s primary economic system. The eastern region is the
first to realize reform and opening up in China. Government market policies and economic
support are an essential part of developing enterprises and brand building in this region.
The degree of marketization in the central and western regions harms the value of green
brands, indicating that improving marketization is conducive to developing green brands
in the region.

In summation, improving the efficiency of regional R&D and the efficiency of achieve-
ments transformation can promote the growth of green brand value. The regional inno-
vation efficiencies of the two stages have obvious synergy. However, due to the evident
differences in the brand growth environment between regions, there are significant regional
differences in the impact degree and effect of regional innovation efficiency of the two
stages. The regional economic development level, the degree of opening up, the market
size, and the degree of marketization also have significant regional differences in the impact
of green brand value in different regions. Therefore, to speed up the construction and
development of China’s green brands, it is necessary to improve the R&D ability and
innovation achievements transformation ability, adapt to local conditions, and formulate a
targeted development path according to the regional brand growth environment.

4.3. Analysis of Spatial Spillover Effect of Regional Innovation Efficiency on Green Brand Value

Referring to Elhorst (2014)’s idea of spatial applicability test [67], before building the
spatial Dubin model, we should first use Moran’s I index to test the global spatial correlation
of three core variables, namely, green brand value, R&D efficiency, and achievement
transformation efficiency in 25 provinces. Furthermore, we depict the spatial aggregation of
regional economic activities from the overall regional space. Moran’s I index is calculated
as follows:
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(10)

where Xi represents the observation value of the ith region, wij represents the standardized
spatial adjacency matrix, and Moran’s I index is [−1,1]. If its value is greater than zero, this
indicates that the data are positively correlated in space. If its value is equal to zero, this
indicates that the data are spatially random. If the value is greater than zero, this indicates
that the data are spatially negatively correlated. Next, we carry out the LM and robust
Robust LM test on the residuals of nonspatial econometric models to further judge whether
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a spatial econometric model should be established. Finally, the applicability of the Spatial
Doberman Model (SDM) is tested. LR and Wald tests are used to determine whether the
SDM needs to degenerate into SEM or SLM.

4.3.1. Spatial Correlation Test Results

Based on the spatial adjacency matrix (W), this paper uses Moran’s I index to test
the spatial autocorrelation of green brand value, R&D efficiency, and achievement trans-
formation efficiency. The global Moran’s I index and test results of core variables in each
province and city from 2009 to 2020 are shown in Table 5. From 2009 to 2020, the overall
Moran’s I index of green brand value is significantly negative. Most of them are significant
at the 1% level, indicating that there is a negative spatial correlation between the green
brand values of each province and city. That is, the value of green brands between regions
presents the characteristics of “high-low” adjacent or “low-high” adjacent clustering. Based
on the above analysis of the development of green brands in various provinces in China,
some provinces have a high value of green brands, while neighboring provinces have a low
value of green brands. It is not difficult to determine that there is a “siphon effect” in the
development of green brands in China. That is, regions with a high development of green
brands will attract talent, capital, technology, and other production factors from nearby
regions due to their better market environment and economical level to promote their
own region’s brand development while inhibiting the brand development of neighboring
regions. However, this negative correlation is gradually weakening with the development
of science and technology and more convenient transportation in recent years.

Table 5. The overall Moran’s I test results of green brand value and two-stage regional innova-
tion efficiency.

Year 2010 2012 2014 2016 2018 2020

BV
Moran’s I −0.211 *** −0.203 *** −0.208 *** −0.202 ** −0.198 ** −0.164 **
Z-statistic −2.810 −2.919 −2.707 −2.283 −2.256 −1.680

p value 0.002 0.002 0.003 0.011 0.012 0.046

TRD
Moran’s I 0.288 *** 0.146 * 0.165 * 0.189 ** 0.223 ** 0.189 **
Z-statistic 2.509 1.443 1.591 1.909 2.197 1.945

p value 0.006 0.075 0.056 0.028 0.014 0.026

TAT
Moran’s I 0.143 * 0.167 ** 0.181 ** 0.241 *** 0.296 *** 0.288 ***
Z-statistic 1.535 1.720 2.418 3.084 2.802 2.737

p value 0.062 0.043 0.018 0.001 0.003 0.003

Note: *, **, and *** are significant at 10%, 5%, and 1% statistical levels, respectively.

The overall Moran’s I index of R&D efficiency and achievement transformation effi-
ciency from 2009 to 2020 is significantly positive and at least passes the 10% significance
test, indicating a “spatial diffusion” effect of regional innovation in China. There is a
positive interaction between R&D efficiency and achievement transformation efficiency in
each region. The core variables have spatial correlation, which preliminarily verifies the
rationality of using the spatial econometric model to conduct empirical research.

4.3.2. Regression Results and Analysis of Spatial Dubin Model

According to the LM test and robust Robust LM test results, the panel data model has
spatial autocorrelation, and a spatial panel regression model should be built. According
to the LR and Wald test results, the SDM model is a better choice. Finally, according to
the results of the Hausman test and the comparison of the goodness of fit, this paper uses
the spatial Dubin model with fixed time effect as the benchmark return model. Regarding
Elhorst (2010)’s practice [68], this paper uses the partial differential method to estimate the
direct effect, indirect effect (spatial spillover effect), and total effect of two-stage innovation
efficiency and other relevant influencing factors on green brand value. The direct effect
represents the impact of local innovation efficiency on local green brand value. The indirect
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effect indicates the impact of local innovation efficiency on neighboring regions. The total
effect represents the overall impact of innovation efficiency on green brand value. See
Table 6 for the regression results of the spatial Dubin model.

Table 6. Analysis of the spatial effect of two-stage regional innovation efficiency on the value of
green brands.

Variable
National Eastern Central Western

(4) (5) (6) (6) (6) (6)

Direct effect

TRD 0.6025 *** 0.7767 *** 0.9179 *** 0.2497 0.5073 ***
TAT 0.3111 ** 0.3519 ** 0.2563 ** 0.0826 0.6742
EDL 0.9144 *** 0.9188 *** 0.9197 *** 0.6074 0.9362 *** −0.3645
OUL 0.9123 *** 0.9104 *** 0.8205 ** 0.1946 −0.5140 0.5933
MS 0.8599 *** 0.9263 *** 0.9038 *** 0.8769 *** 0.8849 *** 0.9228 ***
MD −0.9110 ** −0.4710 −0.9842 ** 0.9485 *** 0.9192 ** −0.9593 ***

Indirect effect

TRD 0.1239 0.0041 0.2135 * 0.7754 ** 0.4614
TAT 0.6369 *** 0.8021 *** 0.2543 ** 0.0441 0.9184
EDL −0.9187 *** −0.9191 *** −0.9154 *** −0.9107 ** −0.9255 *** 0.9261
OUL 0.3715 0.4995 0.1159 0.9118 *** 0.9106 *** 0.9413 ***
MS −0.9152 *** −0.9118 *** −0.9104 *** 0.1772 0.1944 0.9490 ***
MD −0.9255 *** −0.9126 −0.4261 −0.9573 *** 0.5581 0.9495 ***

Total effect

TRD 0.7275 *** 0.7809 *** 0.4446 *** 0.5258 ** 0.9687 **
TAT 0.7480 *** 0.9540 *** 0.5106 *** 0.1267 0.9117
EDL −0.4238 −0.0356 0.4269 −0.4617 *** 0.9111 ** 0.9225 *
OUL 0.9160 *** 0.9155 *** 0.9364 ** 0.9137 *** 0.9101 *** 0.9100 ***
MS −0.6582 *** −0.2545 −0.1319 0.9105 *** 0.9108 *** 0.9718 ***
MD −0.9365 *** −0.9173 ** −0.9141 * −0.8821 0.9248 *** 0.9492

Sample size 300 300 300 144 84 72
R2 0.7041 0.6876 0.7160 0.9366 0.7933 0.7538

Note: *, **, and *** are significant at 10%, 5%, and 1% statistical levels, respectively.

From the national level, the direct effects of R&D efficiency and achievement transfor-
mation efficiency on green brand value are significantly positive, indicating that improving
R&D and achievement transformation efficiency will significantly promote local green
brand value. It can be seen from the national Model (6) that when the two stages of inno-
vation efficiency are simultaneously used as explanatory variables for regression analysis,
the influence coefficients of the direct effect and the total effect of R&D efficiency and
achievement transformation efficiency are significantly increased. This shows that R&D
efficiency and achievement transformation efficiency can jointly promote the increase of
green brand value. They have the “1 + 1 > 2” effect. That is, the innovation value chain has
a spillover effect.

The indirect effect coefficient of R&D efficiency on green brand value is 0.1239, which
fails to pass the significance test, indicating that the positive impact of R&D efficiency on
adjacent regions is insignificant. The indirect effect coefficient of achievement transforma-
tion efficiency is 0.6369, which passes the significance test. It shows that a spatial spillover
effect on the impact of achievement transformation efficiency on the value of the green
brand. The achievement transformation efficiency in this region has a significant role in
promoting the value of the green brand in neighboring regions. The overall impact of R&D
efficiency and achievement transformation efficiency on green brand value is significantly
positive, and the total effect of achievement transformation efficiency is greater than that of
R&D efficiency.

The regression results of national Model (6) show that the direct effect coefficient of
economic development level on the value of the green brand is significantly positive at the
level of 1%, the indirect effect is significantly negative, and the total effect is significantly
positive. This indicates that if the value of the green brand is higher in regions with high
economic development, the “siphon effect” will be generated to inhibit the development of
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the green brand in adjacent regions. The direct and total effects of the degree of opening up
and market size are significantly positive. In contrast, the indirect effects are not significant,
indicating that improving the level of opening up and exaggerating the market size is only
conducive to the promotion of the value of the local green brand. The direct and total
effects of the degree of marketization are significantly negative. In contrast, the indirect
effect is insignificant, indicating that improving the level of marketization is only conducive
to developing local green brand value.

From the regional level, the direct, indirect, and total effects of the efficiency of R&D
and achievement transformation in the eastern region are significantly positive, and the
three effect coefficients of achievement transformation efficiency are more significant than
R&D efficiency. This reveals that the two-stage innovation efficiency in economically
developed regions will not only positively impact the development of the local green brand,
but will also promote the development of the green brand in neighboring regions. The
value of the green brand will be more affected by achievement transformation efficiency.
The three effects of the achievement transformation efficiency in the central region are
insignificant, indicating that the achievement transformation efficiency has not played a
significant role in promoting the green brand value of the region and adjacent regions. The
direct effect of R&D efficiency in the central region is not significant, but the indirect effect
is significantly positive, indicating that there is a problem of uncoordinated development
between sci-tech innovation and green brands in some provinces in the central region; that
is, provinces with solid sci-tech innovation experience poor development of the green brand.
For example, the efficiency of R&D in Anhui Province ranks seventh in the country, but the
value of the province’s green brand only ranks seventeenth. Therefore, the central region
should focus on improving the ability to transform innovation achievements, improving the
ability to coordinate the development of innovation and brand, and building a brand with
innovation. The direct effect and total effect of R&D efficiency in the western region are
significantly positive, indicating that R&D efficiency in the western region has a significant
role in promoting the improvement of green brand value. However, the indirect effect is
not significant, which may be caused by the low mobility of innovation factors among
regions due to the limited geographical environment of the transportation industry in the
western region. The three effect coefficients of achievement transformation efficiency in the
western region are insignificant, indicating that the western region needs to improve the
achievement transformation ability to develop its brand. This relies on innovation.

In summation, we can draw the following conclusions: improving the efficiency
of regional R&D and the efficiency of achievements transformation will promote the
improvement of the green brand value as a whole, and the innovation value chain has
noticeable spillover effects. Regional innovation efficiency’s spatial effect on the green
brand’s value in the two stages has noticeable regional differences. The spatial spillover
effect of R&D efficiency in eastern and central regions is significantly positive, while the
spatial spillover effect of achievement transformation efficiency is significantly positive
only in eastern regions.

4.4. Analysis of Threshold Effect of Intellectual Property Protection
4.4.1. Threshold Inspection

For the threshold test of intellectual property protection, firstly, we estimate the
number of regression model thresholds when there is one threshold, two thresholds, and
three thresholds using STATA16.0 software in Model (8) and Model (9), respectively. The
estimation results are shown in Table 7. It can be seen from Table 7 that the single threshold
model with the explanatory variable of R&D efficiency and the single threshold model
with the explanatory variable of achievement transformation efficiency has passed the
5% significance test, and it is preliminarily judged that there is only one threshold in
Models (8) and (9).
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Table 7. Threshold effect test and estimation results of intellectual property protection.

Threshold Effect Test Threshold Estimation Results

Explanatory
Variable

Model F Value p Value BS Times Threshold
Estimated

Value
95% Confidence

Interval

TRD

Single
threshold 34.57 ** 0.0200 500 Single

threshold 0.0109 [0.0104, 0.0110]

Double
threshold 12.09 0.1940 500 Double

threshold 0.0017 [0.0015, 0.0018]

Triple
threshold 6.00 0.7400 500 Triple

threshold 0.0036 [0.0035, 0.0037]

Conclusion There is a single threshold

TAT

Single
threshold 25.42 ** 0.0480 500 Single

threshold 0.0064 [0.0062, 0.0065]

Double
threshold 5.90 0.4740 500 Double

threshold 0.0104 [0.0102, 0.0106]

Triple
threshold 5.24 0.7180 500 Triple

threshold 0.0016 [0.0015, 0.0016]

Conclusion There is a single threshold

Note: *, **, and *** are significant at 10%, 5%, and 1% statistical levels, respectively.

Secondly, we verify the authenticity of the threshold with the help of the likelihood
ratio function graph, as shown in Figure 6. When LR = 0, the corresponding threshold
parameter is the threshold estimate value. The confidence interval of the threshold estimate
value is the threshold parameter interval corresponding to the LR value being less than
the critical value under a specific significance level (when the significance is 5%, the
critical value is 7.35) [69]. It can be seen from Figure 6 that the threshold estimate value of
intellectual property protection in Model (8) (explanatory variable is TRD) is 0.0109, and
the threshold estimate of intellectual property protection in the Model (9) (the explanatory
variable is TAT) is 0.0064. The single threshold values of the two models are within their
corresponding confidence zones, indicating that the single threshold estimates of the two
models are consistent with the valid threshold values. It can be determined that there is
only a single threshold for intellectual property protection in Models (8) and (9).

 
(a) (b) 

Figure 6. IPR threshold likelihood ratio function with TRD and TAT as explanatory variables. (a) IPR
threshold likelihood ratio function with TRD as explanatory variable. (b) IPR threshold likelihood
ratio function with TAT as explanatory variable.

Therefore, this paper selects a single threshold model to analyze the threshold effect of
intellectual property protection. The threshold value of intellectual property protection in
the Model (8) is 0.0109, and its 95% confidence interval is [0.0104, 0.0110]. The threshold
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value of intellectual property protection in the Model (9) is 0.0064, and its 95% confidence
interval is [0.0062, 0.0065].

4.4.2. Regression Results and Analysis of Threshold Model

When the explanatory variable is R&D efficiency, the threshold model regression
results are shown in Table 8, Model (8). When the explanatory variable is achievement
transformation efficiency, the threshold model regression results are shown in Table 8,
Model (9). According to the regression results of Model (8), the indirect impact of intel-
lectual property protection on the value of the green brand through the efficiency of R&D
shows a positive single threshold feature: When the level of intellectual property protection
in a region does not exceed the threshold (0.0109), the regression coefficient of the impact
of R&D efficiency on the value of the green brand is 0.3687, and it passes the 1% signifi-
cance level test. When the level of intellectual property protection in a region crosses this
threshold, the regression coefficient of the impact of R&D efficiency on the value of green
brand increases to 0.7220 and passes the 1% significance level test. Eighteen provinces,
including Beijing, Tianjin, Shaanxi, Shanghai, Hubei, and Jilin, have crossed the threshold of
intellectual property protection (0.0109) by 2020. Compared to 2009, only Beijing, Shanghai,
and Tianjin have crossed the threshold. It can be found that intellectual property protection
in China has developed rapidly and achieved remarkable results over the past 12 years.
However, the level of intellectual property protection in some regions is still low. It is still
necessary to further strengthen the protection of intellectual property rights.

Table 8. Analysis of threshold effect of intellectual property protection.

Variable (8) (9)

TRD × I (IPR < 0.0109) 0.3686 ***
TRD × I (IPR ≥ 0.0109) 0.7220 ***
TAT × I (IPR < 0.0064) 0.2607 ***
TAT × I (IPR ≥ 0.0064) 0.5027 ***

EDL −0.4106 −0.1166
OUL 0.3743 * 0.2364 *
MS 0.9844 0.2316
MD −0.7061 * −0.2550

C 2.0457 5.4149
Time item control control

Sample size 300 300
F statistic 77.22 *** 86.02 ***

R2 0.7602 0.7622
Note: *, **, and *** are significant at 10%, 5%, and 1% statistical levels, respectively.

It can be seen from the regression results of Model (9) that the indirect impact of
intellectual property protection on the value of the green brand through the efficiency of
achievement transformation is also characterized by a single positive threshold: When the
level of intellectual property protection in a region does not exceed the threshold (0.0064),
the regression coefficient of the impact of achievement transformation efficiency on the
value of the green brand is 0.2607, and it passes the 1% significance level test. When the
level of intellectual property protection in a region crosses this threshold, the regression
coefficient of the impact of achievements transformation efficiency on the value of green
brand increases to 0.5027 and passes the 1% significance level test. By 2020, 20 provinces,
including Beijing, Tianjin, Shaanxi, Shanghai, Hubei, and Jilin, have crossed the thresh-
old of intellectual property protection (0.0064). Compared to 2009, only six provinces,
including Beijing, Shanghai, Tianjin, Liaoning, Shaanxi, and Heilongjiang, have crossed
this threshold, indicating that China’s intellectual property protection has also made re-
markable achievements in the field of innovation achievements transformation. Compared
with the threshold value of intellectual property protection in the field of achievement
transformation, its threshold value in the field of R&D is higher. The reason for this may be
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that the innovation output in the stage of R&D usually takes the form of intangible assets
such as knowledge and technology. Such intellectual property infringement is relatively
secret, so the requirements for relevant legal systems and law enforcement are high.

To sum up, intellectual property protection has a significant threshold effect in the
stage of R&D and the stage of achievement transformation. When intellectual property
protection crosses the corresponding threshold, it will significantly improve the efficiency
of R&D and the efficiency of achievement transformation on the positive effect of green
brand value. Furthermore, because of the different innovation elements in each stage, the
threshold effects of intellectual property protection on innovation efficiency in the two
stages are quite different.

4.5. Robustness Test

Standard robustness testing methods include changing data sources, replacing vari-
ables, variable lag, model replacement, selecting subsamples, grouping regression, etc.
Since the explained and explanatory variables in this paper are difficult to replace, group-
ing regression has been conducted according to regional division. Therefore, this paper
tests the robustness of the benchmark model and the panel threshold model by lagging the
explanatory variables by one period and tests the robustness of the spatial Dubin model by
replacing the spatial adjacency matrix (W) with the spatial inverse distance matrix (W*).

The robustness test results show that R&D efficiency and achievement transformation
efficiency lagging behind by one period have a significant positive impact on the green
brand value on the overall level. The efficiency of R&D has a greater impact on the green
brand value than the achievement transformation efficiency. At the national level, the
direct, indirect, and total effects of the efficiency of R&D are significantly positive, while the
direct and total effects of achievement transformation efficiency are significantly positive,
but the indirect effects are not significant. The protection of intellectual property rights
has a significant single threshold effect on the efficiency of R&D and the efficiency of
achievements transformation that are lagging by one phase. The above conclusions are
consistent with the empirical results of the experimental model. Therefore, the model
settings are robust, and the results are reliable.

5. Conclusions and Suggestions

5.1. Research Conclusions

Firstly, this paper estimates the total value of the green brand in 25 provinces in
China from 2009 to 2020 using the data released by the World Brand Lab. The regional
R&D efficiency and achievement transformation efficiency of each province and city in
12 years are calculated by building the super-efficiency SBM model. The paper provides
a descriptive statistical analysis of the time and space change trend of the green brand
value and the two-stage regional innovation efficiency of each province and city over a
12-year period, according to the calculation and measurement results. Secondly, the paper
explores the impact of two-stage regional innovation efficiency and other control variables
on green brand value by building a two-way fixed effect model as the benchmark model.
With the help of SDM, this paper analyzes the spatial spillover effects of the two stages
of regional innovation efficiency and other influencing factors. The level of intellectual
property protection is introduced as a threshold variable to study the difference in the
impacts of R&D efficiency and achievement transformation efficiency on green brand value
under different levels of intellectual property protection. Finally, the main conclusions of
this paper are as follows:

(1) The development trend of the green brand in various regions of China is good, but
the differences among regions are large. The development of the green brand in the eastern
region is significantly better than that in the central and western regions. The upward trend
of green brand value is also significantly greater than that in the central and western regions,
which indicates that the development of the green brand is better in regions with better
market economic conditions and policy systems. In some regions, there is a “siphon effect”
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when developing the green brand. That is, regions with high brand development levels
usually absorb brand resources and brand elements from surrounding regions, resulting
in faster development in regions with a higher level of green brand development during
slower development in regions with a low level of green brand development.

(2) The imbalance of innovation capability among regions in China is prominent, and
there are differences among regions in different innovation stages. The eastern region is
higher than the central and western regions in the efficiency of R&D and the efficiency
of achievements transformation. This is due to the more developed economy and an
advantage in the eastern region’s input and output of sci-tech innovation. The efficiency
of R&D in the central region is lower than that in the western region, but the efficiency of
achievements transformation is higher than that in the western region. The central region
must strengthen institutional innovation and improve management efficiency. Due to its
limited market development potential, the western region will inhibit the enthusiasm of
enterprises to develop new products and expand the scale of market operation. Therefore,
it is necessary to speed up the construction of the market system to stimulate innovation
with demand. From the perspective of time trends, the efficiency of R&D and the efficiency
of achievement transformation in the eastern and central regions are rising. However, the
efficiency of R&D and achievement transformation in the western regions have declined
in recent years. This is because the brain drain in the western regions has been severe in
recent years, and a large number of outstanding scientific researchers, professors, scholars,
etc., are flowing to the eastern and central regions, making the innovation ability of the
western regions increasingly weak.

(3) The efficiency of R&D and the efficiency of achievements transformation will
significantly enhance the value of the green brand. The efficiency of R&D and the efficiency
of achievements transformation will have a significant value chain spillover effect. However,
at the regional level, the two-stage innovation efficiencies of the central region have no
significant impact on the value of the green brand. Enterprises in the central region
should emphasize transforming innovation into productivity and improving the innovative
value of products and services. There are regional differences in the impact of economic
development level, the degree of opening up, market size, and marketization on the value of
the green brand. The level of economic development in the eastern region has a significant
positive impact on the value of the green brand. In the central region, there is a phenomenon
that the development of brands needs to catch up with economic development. This may be
because the innovation ability of the central region needs to promote brand development.
The western region has yet to have a significant positive impact on the value of green
brands due to its low level of economic development. Only the degree of opening up in
the eastern region has a significant positive impact on the value of the green brand, and
only the market size in the western region has a significant positive impact. It can be found
that brand development in economically developed regions has shifted from market scale
orientation to market scope orientation. The higher the level of marketization in the central
and western regions, the greater the value of the green brand. The situation in the east
is the opposite. Considering that this article measures the level of marketization by the
degree of government intervention, it shows that the eastern region is a demonstration area
for reform in many fields, which will promote the development and growth of the green
brand to a certain extent.

(4) There is a significant single threshold effect in the level of intellectual property
protection. When the level of intellectual property protection crosses the corresponding
threshold, the positive effects of two-stage innovation efficiency on the value of an green
brand are significantly improved. It can be seen that speeding up the construction of
intellectual property laws and regulations, improving the judicial system, and strengthening
law enforcement are of great significance to the development of China’s green brands.

(5) The two stages of regional innovation efficiency have spatial spillover effects on the
value of the green brand, but there are significant regional differences. The spatial spillover
effect of regional innovation efficiency in the two stages of the eastern region is significantly
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positive. In contrast, only the R&D efficiency in the central region has a significant positive
spatial spillover effect. In comparison, the spatial spillover effect of the two stages of
regional innovation efficiency in the western region is insignificant. In addition, there is
a significant negative spatial spillover effect at the national level and in the eastern and
central regions. That is, regions with a high level of economic development will harm the
value of the green brand in their adjacent regions, which also explains why the development
of the green brand in China has a “siphon effect”. This means that economically developed
regions have better material living conditions, a market environment, policy support, and
greater space for improvement, which will attract excellent talents, high-quality resources,
and excellent brands from the surrounding regions, thus promoting the development of
the local green brand. However, at the same time, this will have a certain inhibitory effect
on the construction of green brands in the surrounding regions. The degree of opening up
only produces positive spillover effects in the eastern and central regions. The market scale
only produces a positive spillover effect in the western region. The degree of marketization
has a positive spillover effect in the eastern region and a negative spillover effect in the
western region, indicating that the policy support in the eastern region will radiate to the
surrounding regions. In contrast, the marketization development in the western region will
have a “crowding out effect” on the surrounding regions. In summary, the main reason
for the existence of the “siphon effect” in China’s green brand development is that the
“radiation effect” of regional sci-tech innovation and other factors is far less significant than
the “siphon effect” of economic development.

5.2. Policy Suggestion

The brand economy is the product of the development of the market economy to a
particular stage and is also a high-level manifestation of regional economic development. In
the international market, the brand is not only a symbol of an enterprise but also a symbol
of the competitiveness of a region or even a country. Improving the value and influence
of green brands is of great practical significance to China’s green development. Therefore,
based on the above research conclusions, this paper proposes the following suggestions:

(1) Improve the two stages of innovation efficiency and emphasize the effect of sci-tech
innovation in promoting brand value. While continuing to increase R&D funds,
personnel, and other innovative resources, all localities should also pay attention
to improving innovation output capacity, optimizing the allocation of innovation
resources, and improving innovation efficiency, so as to provide strong power for
China’s green brand building. The eastern region continues to produce a marked
effect on R&D and achievement innovation in promoting the value of the green
brand. The central region needs to strengthen institutional innovation, improve
management efficiency, and formulate relevant policies to encourage enterprises to
focus on products and quality, so as to produce a driving effect in innovation on
brands. The western region needs to strengthen the construction of the market system,
create a good market environment, shift the market competition from price and scale
competition to product and service competition, and improve the corporate image and
brand value with high-quality products and services. All regions should strengthen
the degree of opening up to the outside world, improve marketization, and improve
the construction of market mechanisms. Especially in the central and western regions,
it should open up the international market, participate in competition and cooperation
in the international market, take its essence, eliminate its dregs, and create a greener
brand with international influence.

(2) According to each region’s sci-tech innovation resource endowment, focus on superior
resources and create a regional solid green brand. For example, the Jilin Province
should encourage the development of green automobile brands (FAW, Hongqi, Jiefang,
etc.); the Guangdong Province ought to promote the greening of household appliance
brands (Gree, Midea, Skyworth, etc.); and the Jiangsu Province should vigorously
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develop green machinery manufacturing brands (Xugong, Hengtong Optoelectronics,
Tongding, etc.).

(3) Improve intellectual property laws and regulations and strengthen law enforcement
and justice. The government should speed up the construction of laws and regulations
system for intellectual property protection, implement the intellectual property pro-
tection law, strengthen the enforcement of intellectual property protection, and ensure
the judicial fairness of intellectual property protection. Regional differences should be
fully considered in policy formulation. Investment in sci-tech innovation should be
increased for regions with a high level of intellectual property protection to promote
the process of sci-tech innovation while improving the formulation of intellectual
property protection for regions with a low level of intellectual property protection.

(4) Give full play to the spatial spillover effect of R&D and achievements transformation,
and strengthen regional innovation cooperation and communication, including the
communication of scientific researchers, technologies, patents, management systems,
and other innovative resources. The central government should overall construct a
coordinated regional development mechanism, and its planning and requirements for
regional economic development should not be limited to the local region. At the same
time, it should consider its contribution to the coordinated development in regions and
achieve win–win or multi-win through market mechanisms and benefit compensation
mechanisms. The eastern region should support the central and western regions with
redundant innovation resources. On the one hand, it can improve the innovation
efficiency of the eastern region, and on the other hand, it can promote the innovation
ability of the central and western regions. The central region should strengthen the
spillover effect of innovation achievements and pay attention to the communication
of innovation achievement transformation ability between regions. The western re-
gion needs to speed up the construction of transportation infrastructures such as
expressways and high-speed rail, promote the construction of the market system and
mechanism, drive innovation with demand, and promote green brand development
with innovation. In areas with low economic development levels, the government
should formulate relevant policies to improve the treatment of talents and strengthen
support for enterprises so as to prevent brain drain and outflow of enterprise re-
sources. Areas with high economic development levels should provide counterpart
support to areas with low economic development, strengthen the interaction between
universities, enterprises, and governments in their regions, and achieve win–win
cooperation between regions in areas with high economic development levels.

(5) Strengthen the spillover effect of the innovation value chain. In the market envi-
ronment, the innovation competition is not only the competition for knowledge,
technology, and other R&D capabilities but also the competition for research and
development of new products, new markets, and other achievements and transforma-
tion capabilities. Therefore, all regions should promote the deep integration of IUR,
improve the communication channels at all stages of the innovation value chain, and
strengthen the effective interaction between the government, enterprises, universities,
and research institutions, so that R&D and achievements transformation can form a
benign interaction, producing “1 + 1 > 2” spillover effect.

5.3. Research Limitations and Future Research Directions

First of all, the sample selection could be better. Because of the availability and integrity
of the data, this paper only studies 25 provinces in China. It excludes the sample data of
nine provinces, such as Gansu, Xinjiang, and Tibet. Secondly, due to the need for more
systematic and perfect evaluation methods for a regional green brand value in China,
only the relevant data released by the World Brand Lab and Shanghai Huazheng are used.
Although relatively authoritative, these data need more comprehensiveness and can only
reflect a single region’s total green brand value. In contrast, each region’s green brand
characteristics, influence, and structure are not considered. Finally, although this paper has
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divided three regions, including the eastern, middle, and western regions, there are still
some limitations in the study areas. Regional development has presented the characteristics
of urban clustering in recent years. The trend of urban clustering development in “Beijing-
Tianjin-Hebei”, “YangtzeRiver Delta”, “Pearl River Delta”, and other cities is noticeable,
and there are their regional development advantages. It impacts the region’s green brand
development strategy and direction, so the regions need to be further divided.

With the rapid development of China’s market economy, developing the green brand
economy is of great practical significance to realize the green transformation of economic
development, improve China’s sustainable development ability and enhance its interna-
tional competitive position. In the future, scholars can conduct more extensive and in-depth
research in the following aspects: study various main elements of innovation (enterprises,
universities, research institutions, government, etc.), nonmain elements (material condi-
tions required for innovation), and coordinate the impact of policies and systems that
various elements on green brand development from the static (innovation environment) or
dynamic (innovation system) perspective. Improve the evaluation system of regional green
brand development. Explore the path of brand innovation and development of small and
medium-sized enterprises. Innovation drives green brand development and provides a
relevant theoretical and practical basis for realizing the development of the green economy.
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