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Preface

In the face of escalating geopolitical conflicts, energy trade wars, and the pressing demand for

sustainable development, the global energy sector stands at a crossroads, necessitating a profound

transformation of its industrial, supply, and value chains. This Reprint, through its carefully curated

collection of ten scholarly papers, embarks on an exploratory journey into the dynamic interplay

between digital governance and the energy industry’s evolving landscape. With an aim to elucidate the

multifaceted challenges and opportunities within the energy sector, this compilation seeks to provide

a comprehensive perspective on the role of digitalization in fostering a sustainable, low-carbon future.

The subject matter of this Special Issue is both timely and critical, addressing the urgent need for

innovative solutions to expand the energy industry’s value chain and improve energy distribution in

alignment with market demands. The scope spans across diverse yet interconnected topics, including

the impact of China’s coal dependency on global carbon emissions, the strategic application of game

theory in the oil industry, and the transformative potential of new digital infrastructure (NDI) and

industrial robots in enhancing energy efficiency and international competitiveness.

The motivation behind this Special Issue stems from a recognition of the pivotal role that data

and digital technologies play in leading the energy transition. Amidst the backdrop of the digital

economy’s rapid development, this collection aims to shed light on novel governance models, theories,

and methods that can navigate the energy sector through its ”impossible triangle” of security, economic

growth, and efficiency.

This Reprint is intended for a broad audience, encompassing policymakers, industry professionals,

academics, and anyone interested in the intersection of energy, sustainability, and digital

transformation. The involved authors, hailing from diverse academic backgrounds, bring forth

their unique insights and research findings to contribute to a richer understanding of the energy

sector’s future trajectory.

Acknowledgments are due to all those who have supported the realization of this work. From

the researchers who have contributed their groundbreaking studies to the peer reviewers who have

ensured the academic rigor of each paper and the editorial team who have seamlessly brought this

collection to life, their collective efforts have been instrumental in advancing the discourse on digital

governance and sustainability in the energy industry.

This Special Issue invites readers to engage with the complex challenges and innovative

opportunities that define the contemporary energy sector. We hope the findings and recommendations

presented herein will enrich the academic dialogue and inspire actionable strategies for achieving a

more sustainable and efficient global energy system.

We would like to express our sincere gratitude to the editorial department of Energies and Eartha

Yang for their trust, patience, and highly professional publishing experience in relation to this special

issue. Similarly, we are extremely grateful for the support of the National Natural Science Foundation

of China (No. 72303174 and 72273134). These two projects have provided us with a great deal of

inspiration to continue our research and exploration of the hot topics in the energy industry supply

chain and value chain. We sincerely thank them for their support.

Jiachao Peng, Le Wen, Jianzhong Xiao, Ming Yi, and Mingyue (Selena) Sheng

Editors
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Editorial

Industrial Chain, Supply Chain and Value Chain in the Energy
Industry: Opportunities and Challenges

Jiachao Peng 1,*, Le Wen 2,*, Jianzhong Xiao 3, Ming Yi 3 and Mingyue Selena Sheng 2

1 Law and Business School, Wuhan Institute of Technology, Wuhan 430205, China
2 Energy Centre, The University of Auckland, Auckland 1010, New Zealand; m.sheng@auckland.ac.nz
3 School of Economics and Management, China University of Geosciences, Wuhan 430074, China;

xjianzhong@cug.edu.cn (J.X.); yiming@cug.edu.cn (M.Y.)
* Correspondence: jiachao.peng@wit.edu.cn (J.P.); l.wen@auckland.ac.nz (L.W.)

Ongoing geopolitical conflicts, frequent energy trade wars, and related issues signifi-
cantly undermine the globalization of the energy market. The pressing questions of today’s
and tomorrow’s energy transformation revolve around expanding the energy industry’s
industry chain, supply chain, and value chain, as well as enhancing the market-oriented
distribution of energy through innovative and transformative approaches. Currently, data
have emerged as a pivotal force driving economic growth, fueling the energy revolution,
and propelling the advancement of digital technologies for the creation of a comprehensive
global and regional energy market. This shift introduces fresh governance concepts, theo-
ries, methods, and models. The traditional energy system’s dual challenges of high demand
and high emissions exacerbate ongoing coal-power conflicts and impede the market-based
reform of oil and gas pipelines. With the rapid digitization of the energy sector and the
challenges posed by integrating large-scale renewable energy sources, distributed power
supply, and microgrids, there is an urgent need to adopt digital strategies to address the
“impossible triangle” of ensuring energy security, economic growth, and efficiency. Thus,
exploring digital governance within the energy sector’s industry, supply, and value chains
is crucial. This exploration aims to enhance the efficiency of market factor allocation within
the energy industry amid the digital economy’s swift expansion and address the broader
issues of energy market reform and global integration.

This Special Issue presents a collection of 10 rigorously researched papers that delve
into the opportunities and challenges within the energy industry’s industry chain, supply
chain, and value chain. Highlighting the pivotal moment facing the energy sector, driven by
the rapid transition towards renewable sources [1–3], evolution of the digital economy [3,4],
and the pressing demand for sustainable, low-carbon energy solutions [3,5,6], market
optimization and integration [7,8], technological innovation and diffusion [6,9], regional
and international cooperations [4,5], and environmental governance and regulations [10],
this issue contributes to the discourse on navigating the complexities of modern energy
systems. It offers insights into leveraging digital transformation for sustainable develop-
ment, underscoring the integral role of innovative approaches in advancing the global
energy transition.

China’s reliance on coal-based energy significantly contributes to its carbon emis-
sions, necessitating structural adjustments and accelerated transformation within the coal
industry and its associated sectors. A crucial step towards decarbonization involves un-
derstanding the CO2 emission flow from coal production. In this context, Yang et al.
provide a foundational analysis of China’s coal-based energy sector, identifying key contrib-
utors to its carbon emissions and proposing a shift towards distributed renewable energy
sources. This study sets the stage for understanding the broader implications of energy
production practices and their global impact. Similarly, Sanseverino and Luu expand the
discussion to the global transition towards renewable energy technologies, emphasizing

Energies 2024, 17, 1467. https://doi.org/10.3390/en17061467 https://www.mdpi.com/journal/energies1
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the importance of resource management across the energy technology supply chain to
achieve sustainability goals.

The role of New Digital Infrastructure in facilitating a sustainable energy transition
is thoroughly examined by Fan et al., highlighting its potential to drive green total factor
productivity and foster regional cooperation in pollution reduction. This highlights the
transformative power of digitalization in the energy sector, offering a new lens through
which to view the challenges and opportunities of achieving carbon neutrality. In a study
focusing on the digital economy’s impact on carbon emissions, Lyu et al. demonstrate
the significant potential of digital technologies to enhance energy efficiency and reduce
emissions. This research emphasizes the critical role of digitalization in the energy sec-
tor’s transition towards a more sustainable and low-carbon model. Subsequently, Huang
et al. examine the new energy industry’s export sophistication and its impact on CO2
emissions, advocating for policies that enhance the global competitiveness of renewable
energy products. Their research underscores the importance of international cooperation
and technological innovation in achieving a low-carbon future.

Balhasan et al. explore the application of game theory in optimizing agreements within
the oil industry, suggesting innovative approaches to negotiation that can enhance prof-
itability without compromising on environmental standards. This contribution illuminates
the complexity of economic interactions in the energy sector and the potential for strategic
cooperation to address profitability and sustainability simultaneously. Complementing
this, Zheng et al. investigate the effects of market integration on carbon emissions, offer-
ing insights into the delicate balance between economic development and environmental
protection. Their findings reveal the importance of industrial rationalization and upgrade
in mitigating carbon emissions, highlighting the need for targeted policies that support
sustainable development.

In a vein of innovation, Zhang et al. delve into the transformative impact of industrial
robots on the energy industry, showcasing how technological advancements can optimize
production efficiency and contribute to a more sustainable and internationally competitive
energy sector. This highlights the intersection of innovation, sustainability, and economic
development within the energy industry. Dai et al. investigate the role of new energy vehi-
cles in promoting low-carbon commuting practices within urban settings. Their findings
underscore the importance of supporting infrastructure and public awareness to facilitate
the widespread adoption of sustainable transportation options, contributing to the broader
goal of urban sustainability and carbon emission reduction.

Environmental governance plays a crucial role in the energy transition. Zhang et al. ex-
amine the impact of China’s Ecological Civilization Pilot Policies (ECPs) on carbon emission
reduction within the urban green energy sector, employing a distinct incentive–constraint
model to reflect China’s unique political landscape. The results show the potential of
ECPs in contributing to global carbon emission reduction and sustainability efforts. By
navigating the debate between neoclassical economics and the Porter Hypothesis, the
study enriches the discourse on environmental regulations and their efficacy in promoting
ecological civilization.

This Special Issue presents a comprehensive overview of the current state and future
directions of the energy sector, highlighting the critical importance of integrating digital
governance, technological innovation, and sustainable practices across the industry, supply,
and value chains. By addressing the challenges and harnessing the opportunities presented
by the digital economy, geopolitical dynamics, and environmental concerns, the contri-
butions within this issue offer valuable insights and recommendations for policymakers,
industry stakeholders, and researchers committed to advancing the global energy transition
towards a more sustainable, efficient, and low-carbon future.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.
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Article

Tracking the CO2 Emissions of China’s Coal Production via
Global Supply Chains

Zheqi Yang 1, Xuming Dou 2, Yuqing Jiang 1, Pengfei Luo 1, Yu Ding 1, Baosheng Zhang 1 and Xu Tang 1,*

1 School of Economics and Management, China University of Petroleum, Beijing 102249, China
2 Tianjin Branch, CNOOC China Limited, Tianjin 300459, China
* Correspondence: tangxu2001@163.com; Tel.: +86-15611816677

Abstract: Coal’s green mining and scientific utilization is the key to achieve the national vision of
carbon peak by 2030 and carbon neutrality by 2060. Clarifying the CO2 flow of coal production is the
core part of decarbonization. This study uses an environmental extended multi-regional input–output
(EEMRIO) model to analyze the impact of embodied emissions on the indirect CO2 emission intensity
of coal production between China’s coal mining sector and 141 countries/regions. It is found that the
CO2 emission intensity of China’s coal production was 34.14 gCO2/MJ in 2014, while the direct and
indirect emission intensities were 16.22 gCO2/MJ and 17.92 gCO2/MJ, respectively. From 2007 to
2014, the direct emission intensity of China’s coal production increased by 23%, while the indirect
emission intensity decreased by 30%. The key material and service inputs affecting indirect carbon
emissions of coal production in China are electricity service, metal manufacturing, chemical products,
coal mining, and transport, which accounted for 85.5% of the total indirect emission intensity of coal
production in 2014. Globally, a large portion of CO2 from Chinese coal production is emitted to meet
foreign direct and indirect demands for material and service inputs. Policy implications related to
this outcome are further discussed in the study.

Keywords: coal; CO2 emissions; input–output analysis; China; GTAP

1. Introduction

On 22 September 2020, Chinese President Xi Jinping addressed, at the General Debate
of the General Assembly’s seventy-fifth session, that China would scale up its Intended
Nationally Determined Contributions (NDCs) by adopting more vigorous action plans and
policies and aim to have CO2 emissions peak before 2030 and achieve carbon neutrality
before 2060. After that, the Chinese government developed detailed plans and programs in
a series of summits [1]. The goal of carbon neutrality opens the way to deep decarboniza-
tion of China’s energy system, including accelerating the increase in non-fossil energy
development and consumption and reducing coal consumption as the main path to achieve
carbon neutrality [2,3].

Due to China’s rich coal, poor oil, and less gas energy resource endowment, coal
accounts for more than half of China’s primary energy sources. Although the scale of coal
in China’s total energy consumption continues to decline, the short term is still insepara-
ble from coal due to the characteristics of China’s resource endowment and the current
stage of economic and social development. Xie et al. (2019) reported that in 2025 China’s
energy consumption demand will be 5.5–5.6 billion tons of standard coal, of which the
coal consumption measure is 2.8–2.9 billion tons of standard coal, commanding 50–52% of
total energy consumption [4]. Carbon emissions associated with energy production and
consumption are an important source of carbon emissions in China, and carbon emissions
from coal production and consumption make up 70–80% of China’s total carbon emis-
sions [5]. As coal is the largest producer of China’s greenhouse gas emissions, the energy
conservation and emission reduction in the coal industry will be the most crucial measure

Energies 2022, 15, 5934. https://doi.org/10.3390/en15165934 https://www.mdpi.com/journal/energies4
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for China to respond to global climate change and solve current long-term environmental
problems, which promotes the development of a comprehensive understanding of the
direct and indirect carbon emissions of coal mining.

1.1. Review of Earlier Works

The research method for direct coal-related carbon emissions is mainly to compute
carbon emissions by obtaining activity data of emission sources and the corresponding
carbon emission factors. The carbon emission factors are mainly derived from the 2006
IPCC Guidelines for National Greenhouse Gas Inventories released by the United Nations
Intergovernmental Panel on Climate Change (IPCC) in April 2006 [6]. There are some
scholars who have conducted studies on direct CO2 emissions from coal-fired power plants
using a direct monitoring approach from an engineering perspective [7]. However, none of
these studies considered indirect emissions.

Life Cycle Assessment (LCA) is an important environmental management tool, which
not only can direct environmental impacts caused by the implementation of the activity
being considered but can also analyze the relevant indirect impact. Fossil fuels, mainly
coal, release waste substances into the environment as they power the world’s economy.
Assessing chains of the processes inside the system with environmental analyses such as
LCA is crucial [8]. Wang et al. (2018) used the LCA method to evaluate the direct and
indirect environmental problems of mining, washing, and transportation in the process of
coal mining in China. The indirect emissions mainly involve the impact of carbon emissions
caused by fugitive gas in the production process [9]. The research on the boundary of
coal-fired power generation systems includes three different stages: coal production, coal
transportation, and coal burning. From the perspective of sensitivity analysis, the envi-
ronmental impact of the coal carbon supply chain can be reduced [10]. Zhou et al. (2020)
further refined the coal mining process based on the whole life cycle model, considering the
carbon emissions from mining, ventilation, drainage, power consumption, transportation,
and post-mining activities. Indirect carbon emissions from post-mining activities were also
taken into account [11]. Burchart-Korol et al. (2016) developed an environmental LCA
model applied to coal mining operations, which not only applies to greenhouse gas (GHG)
emission assessment but is also connected with the ReCiPe system to identify damage
categories such as human health, ecosystem, and resources [12].

Input–output (IO) analysis is commonly used to quantify embodied energy [13],
embodied CO2 [14], and embodied PM2.5 emissions [15]. There are many databases that
provide IO tables of embodied energy, such as GTAB and EXIOBASE [16]. Compared with
the EXIOBASE database, the input–output model of GTAB includes more inter-country
trade and is more suitable for studying national emissions. All goods and services produced
by an economy are directly or indirectly linked to energy use and, depending on the type
of fuel used, to carbon dioxide emissions [17]. Davis and Caldeira (2010) calculated carbon
emissions at the global sectoral scale using an EEMRIO [18]. Zhou et al. (2010) combined an
IO table with the energy consumption data by sector to estimate embodied carbon emissions
in the international trade of China in 2007 [19]. Daly et al. (2015) estimated upstream CO2
emissions from current and future energy technologies in the UK using a multi-regional
environment extended input–output (EEMRIO) model, and explicitly simulated direct and
indirect CO2 emissions from energy supply and infrastructure technologies within the
national ESOM (TIMES model) [20]. Some studies account for sector-specific direct and
indirect carbon emissions based on sectoral emission intensity and intersectoral economic
linkages. Pan et al. (2020) used an IO model to account for the sectoral-scale CO2 emissions
of China, including the oil and gas sector [21]. In addition, a system considering material
flow to analyze the embodied carbon emissions of aluminum-containing commodities in
China’s international trade from 2008 to 2017 has also been developed [22].
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1.2. Aim of This Study

Green mining and the scientific utilization of coal are key to achieving the national
vision of carbon peaking by 2030 and carbon neutrality by 2060. Coal-based energy structure
is the main source of carbon emissions in China, which requires the coal industry and
other industries closely connected with the coal mining sector to adjust their structure
and accelerate transformation. Therefore, this paper selects the coal mining sector as the
research subject, calculates the CO2 emission intensity of the sector based on the EEMRIO
approach, and explores the sustainable development model of the coal industry. This paper
is organized as follows: Section 2 explains the method and data, Section 3 describes the
results and discussion, and Section 4 presents conclusions and policy implications.

2. Materials and Methods

2.1. Methodology for Accounting CO2 Emission Intensity

The input–output (IO) model was proposed by Leontief in the 1930s [23], which is
mainly through the formulation of the IO table and establishes the corresponding mathe-
matical model to reflect the national economic system of interdependence and the restriction
relationship between different departments. Multi-regional input–output models are grad-
ually used to quantitatively analyze the environmental impacts of trade activities between
countries or regions, including PM2.5, CO2 [15,17]. This method is used to analyze the
direct and indirect CO2 emissions of coal production in major coal-producing countries
(Figure 1). The basic equation is shown in Equation (1):

C = E(I − A)−1M = ELM (1)

where there are 141 countries or regions and each region has 57 sectors, and C is an
8037 × 8037 vector representing the complete CO2 emissions. E = e

x′ , which is the CO2
direct emission coefficients of economic sectors; L is an 8037 × 8037 Leontief inverse, which
is also called complete emission factor matrix; M is an 8037 × 8037 matrix of intermediate
demand. The Equation (2) is expressed as a matrix:

⎛
⎜⎜⎜⎜⎝

C1 1 C1 2 . . . C1 8037
C2 1 C2 2 . . . C2 8037

...
...

. . .
...

C8037 1 C8037 2 . . . C8037 8037

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

E1 0 . . . 0
0 E2 . . . 0
...

...
. . .

...
0 0 . . . E8037

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

L1 1 L1 2 . . . L1 8037
L2 1 L2 2 . . . L2 8037

...
...

. . .
...

L8037 1 L8037 2 . . . L8037 8037

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

M1 1 M1 2 . . . M1 8037
M2 1 M2 2 . . . M2 8037

...
...

. . .
...

M8037 1 M8037 2 . . . M8037 8037

⎞
⎟⎟⎟⎟⎠

(2)

Indirect emissions from production in the coal sector in each country are summed
in the corresponding columns of the C matrix in Equation (2). Take China as an exam-
ple: ∑8037

i=1 Ci 186 is indirect emissions from China’s coal production. The MRIO model
endogenously calculates not only the domestic output, but also the output in all other
regions resulting from intermediate products, which is embodied in international trade.
The summation by sector and country can be used to analyze the embodied emissions from
coal production of different sectors and countries.

Indirect emission intensity from China’s coal production is shown in Equation (3):

Iind,CHN =
∑8037

i=1 Ci 186

Qcoal,CHN
(3)

where Iind,CHN is the indirect emission intensity of China’s coal production, ∑8037
i=1 Ci 186 is

the indirect emissions from coal production in China, and Qcoal,CHN represents the annual
coal production in China.
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Direct emission intensity from China’s coal production is shown in Equation (4):

Id,CHN =
Cp

Qcoal, CHN
(4)

where Id,CHN is the direct emission intensity of China’s coal production and Cp is the
production-based CO2 emissions in China.

Figure 1. Carbon accounting framework for the coal mining sector.

2.2. Data

In this study, the global production-based CO2 emissions data and world IO tables
were obtained from the latest GTAP 10 [24], which is commonly used in health and environ-
mental research [25], for example, PM2.5 and CO2 accounting studies [26,27]. The Global
Trade Analysis Project (GTAP) database provides the world economy for 4 reference years
(2004, 2007, 2011, and 2014) and distinguishes 65 sectors, up from 57 in the previous release,
in each of the 141 countries/regions. For each country/region, the database presents values
of production and intermediate and final consumption of materials and services in millions
of US dollars. We mainly analyze intermediate consumption data for the coal sector in
11 countries, as shown in Figure 2. Annual data on coal production by country come from
the IEA [28].

Figure 2. CO2 emission intensity of coal production in different countries.
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3. Results and Discussion

3.1. CO2 Emission Intensity of Coal Production in Major Coal-Producing Countries

According to the model and data advantage of the input–output approach, we can
obtain the CO2 emission intensity of the world’s major coal production in 2014, as shown
in Figure 2. The CO2 emission intensity of coal production in different countries is between
2.21 gCO2/MJ and 34.14 gCO2/MJ. China, South Africa, and Russia have large coal produc-
tion emission intensities, which are 34.14 gCO2/MJ, 28.61 gCO2 /MJ, and 28.41 gCO2/MJ,
respectively. At the same time, the CO2 emission sources from coal production vary widely
in different countries. The direct and indirect emission intensity of coal production can be
distinguished by the input–output method, as shown in Figure 1. Direct emission intensity
refers to the CO2 emissions of different resource productions, while indirect emission is
associated with the material and service inputs in the production process.

The direct CO2 emission intensity of coal production in 11 coal-producing countries
ranges from 0.01 gCO2/MJ to 16.22 gCO2/MJ, which is related to the differences in coal
mining exploitation in each country. For instance, although China is rich in coal resources,
its resource endowment and long-term strong demand have led to the increasing depth
of coal mining [29]. Deep coal mine development activities are an important reason for
China’s direct CO2 emission intensity ranking first in 2014. Russia’s underground coal
resources account for 37% of the total resources [30]. Under the circumstance of increasing
mining difficulty, the direct carbon emission intensity of coal production was 7.89 gCO2/MJ
in 2014. However, the direct CO2 emission intensity of coal mining in South Africa is only
0.02 gCO2/MJ, which has rich open-pit coal resources and superior mining conditions.
The indirect CO2 emission intensity of coal production in 11 coal-producing countries
ranges from 1.89 gCO2/MJ to 28.59 gCO2/MJ, which is mainly associated with the material
and service inputs of the coal mining sector. In addition, the differences in industrial
structure, trade structure, and energy structure between countries play more important
roles in indirect emissions. Indirect CO2 emissions from coal production are high in
South Africa, Russia, and China, with carbon emission intensities of 28.59 gCO2 /MJ,
20.52 gCO2 /MJ, and 17.92 gCO2 /MJ, respectively.

Figure 3 illustrates the distribution of direct and indirect CO2 emission intensity in
major coal-producing countries in 2014. South Africa, Mongolia, and Kazakhstan are coal
producers with high indirect emission intensities. China and Russia are coal producers,
which both have high direct and indirect emissions intensities. In general, indirect emissions
are higher than direct emissions in most coal-producing countries. In 2014, indirect CO2
emission intensity accounted for more than 80% of total CO2 emission intensity in each
coal-producing country. Therefore, indirect carbon emission intensity has a significant
effect on the overall carbon intensity of coal production. The next section analyzes the
differences in indirect emission intensity of coal production between countries from the
import/export trade.

Figure 3. Coal-producing countries’ CO2 emission intensity distribution.

8



Energies 2022, 15, 5934

3.2. Indirect CO2 Emission Intensity of Coal Production from Material and Service Inputs

Compared to the bottom-up approach, the top-down input–output method can also
find the key factors affecting the CO2 emission intensity of coal production. Table 1 shows
the 20 major material and service inputs, which accounted for 97.56% of the total indirect
CO2 emission intensity of China’s coal production in 2014. Electricity ranks first with
9.18 gCO2/MJ indirect emission intensity, accounting for half of the total indirect emission
intensity. Above all, China’s power mix is dominated by coal, which accounted for more
than 75% of the total power generation in 2014 [28], resulting in high overall emissions
from the power sector. Secondly, the depth of coal mining in China has been increasing as
shallow coal resources are depleted [31], leading to an increment in electricity consumption
as coal mining becomes harder. The indirect emission intensities caused by ferrous metals,
machinery and equipment, chemical products, and metal products are also relatively high,
which are 2.31 gCO2/MJ, 1.07 gCO2/MJ, 0.75 gCO2/MJ, and 0.73 gCO2/MJ, respectively. It
shows that there is a great demand for steel and chemicals. In addition, it can also be found
in Table 1 that China’s coal production leads to the indirect emission intensity of the coal
mining sector reaching 0.65 gCO2/MJ, which further reflects China’s current coal-based
energy structure.

Table 1. Distribution of indirect CO2 emission intensity of China’s coal production in 2014.

Ranking Material and Service Input Indirect CO2 Emission Intensity

1 Electricity 9.18
2 Ferrous metal 2.31
3 Machinery and equipment 1.07
4 Chemical products 0.75
5 Metal products 0.73
6 Coal 0.65
7 Transport 0.62
8 Wood products 0.40
9 Business services 0.35

10 Petroleum, coal products 0.35
11 Financial services 0.31
12 Mineral products 0.27
13 Trade 0.17
14 Construction 0.08
15 Sea transport 0.08

16 Electrical and electronic
equipment 0.06

17 Water 0.04
18 Manufactures 0.03
19 Air transport 0.02
20 Other extraction (mineral) 0.02

In this study, 20 major inputs of material and service are combined into 7 categories of
material and service inputs to further analyze the temporal variation trend of indirect CO2
from coal mining in China and the differences in indirect emission intensity among major
coal-producing countries. Electricity service includes electricity; transportation services
comprise transport, air transport, and sea transport; extraction services involve coal, water,
and other extractions (mineral); metal manufacturing covers ferrous metal, metal products,
machinery and equipment, and electrical and electronic equipment; other manufacturing
includes wood products, mineral products, and manufactures; support services incorporate
business services, trade, financial services, and construction; and refining and chemicals
comprise petroleum and coal products and chemical products.

Comparing the CO2 emission intensity of China’s coal production in 2007 and 2014, it
can be found that the emission intensity of coal production in 2007 was 38.75 gCO2/MJ, of
which the direct emission intensity was 13.20 gCO2/MJ, and the indirect emission intensity
was 25.55 gCO2/MJ. In 2014, the emission intensity of coal production was 34.14 gCO2/MJ,
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of which the direct emission intensity was 16.22 gCO2/MJ and the indirect emission
intensity was 17.92 gCO2/MJ. With the depletion of shallow coal resources, the depth of
coal mining in China has been increasing, and the direct emission intensity has increased
by 23%. Figure 4 shows that the indirect emission intensity of coal production in China
decreased by 30% from 2007 to 2014, and embodied emission intensity of electricity service,
transportation services, extraction services, metal manufacturing, and other manufacturing
decreased by 26%, 62%, 41%, 30%, and 35%, respectively. The decline in the embodied
emission intensity of the real economy sector is potentially due to technological progress,
energy efficiency improvement, and the adjustment of China’s energy structure. The end
consumption of coal decreased from 43% in 2007 to 39% in 2014, among which the share of
coal power in China’s power structure dropped from 81% in 2007 to 73% in 2014 [28]. For
support services, including financial services, business services, and trade, the proportion
of embodied CO2 emission intensity of coal production increased by 31%, reflecting the
increasing vitality of China’s financial market and commercial services as well as the
increasing participation of financing activities in the coal sector [32].

Figure 4. Changes in the indirect emission intensity of coal production in China.

Figure 5 portrays that the structure of the embodied carbon emission intensity from
coal production is significantly different between China and the US. China’s electricity
service accounts for 51% of embodied emission intensity, compared with 31% for the United
States. Due to China’s coal resource endowment and long-term strong demand, coal mining
depth continues to increase, resulting in increased electricity consumption in production
activities. Meanwhile, there are differences in the power generation structure between
China and the United States. In 2014, 73% of China’s electricity came from coal, compared
to 39% in the United States [28]. China’s embodied emission intensity from extraction
services was 4%, while that from USA was less than 1%, which further reflects China’s
coal-based energy structure. Transportation services is another difference between China
and the United States in the structure of embodied emission intensity from coal production.
The United States accounted for 35% of embodied emission intensity in transportation
serves, while China only accounted for 4%. This is mainly due to China’s developed public
transportation system and the large number of coal power plants in China, which facilitate
local consumption of coal production.
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Figure 5. Embodied emission intensity structure of coal production.

3.3. Coal Production CO2 Emissions Embodied in Trade

In this section, the representative coal-producing countries in each continent are
selected to analyze the embodied CO2 emissions caused by the participation of the coal
mining sector in international trade. In 2014, the embodied emissions from international
trade related to China’s coal mining sector were mainly in Asia, accounting for 64.1%, and
are closely related to trade with Japan, South Korea, Thailand, and India, contributing
0.8% of China’s total indirect emissions from coal production. Outside Asia, countries
with high trade links to China’s coal mining sector include the US, Russia, and Australia.
However, the indirect carbon emissions of China’s coal contributed by international trade
only accounts for 1.13%, and most of the embodied emissions of material and service inputs
are in China.

As shown in Figure 6, the embodied emissions from international trade related to
Russia’s coal mining sector are mainly in Asia and Europe, accounting for 42% and 41.7%,
respectively. The international trade emissions associated with South Africa’s coal mining
sector are mainly in Asia, accounting for 66.3%. The embodied emissions from international
trade associated with the US’s coal mining sector are mainly in Europe and Asia, accounting
for 53.2% and 41.7%, respectively. Asia accounts for 76% of international-trade-related
emissions from Australia’s coal mining sector. In the coal mining sectors of Russia, South
Africa, the US, and Australia, China is the largest importer of trade, accounting for 1.24%,
1.28%, 4.34%, and 3.58% of their total indirect emissions from coal production, respec-
tively. Therefore, coal production in Russia, South Africa, the United States, and Australia
contributed 0.2 Mt, 0.23 Mt, 0.94 Mt, and 0.41 Mt of CO2 emissions in China in 2014.

Figure 6. Trade-related CO2 emission structure from coal production.
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4. Conclusions and Policy Implications

(1) In 2014, the CO2 emission intensity of China’s coal production was 34.14 gCO2/MJ, of
which the direct and indirect emission intensities were 16.22 gCO2/MJ and
17.92 gCO2/MJ, respectively. From 2007 to 2014, the direct emission intensity of
China’s coal production increased by 23%, while the indirect emission intensity de-
creased by 30%. Compared with other coal-producing countries, China has high direct
and indirect emission intensity in coal production mining.

(2) The key material and service inputs affecting indirect carbon emissions of coal pro-
duction in China are electricity, ferrous metal, machinery and equipment, chemical
products, metal products, coal mining, and transport, which accounted for 85.5% of
the total indirect emission intensity of coal production in 2014. It is worth noting that
China’s coal mining sector contributes 4% of indirect emissions to coal production,
which is much higher than other coal-producing countries.

(3) China’s coal production sector is mainly traded with Japan, South Korea, Thailand,
and India. All import trade accounts for 0.8% of the total indirect emissions from coal
production in China. However, China is the largest import source of material and
service inputs for coal production in South Africa, the United States, Russia, Australia,
and other coal-producing countries, accounting for 1.24%, 1.28%, 4.34%, and 3.58% of
their total indirect emissions from coal production, respectively.

Based on the conclusion of this study, policy recommendations are given for the
reduction in CO2 direct emissions from coal production and CO2 embodied emissions from
trade, respectively. First, on the production side, China’s mining difficulty aggravated by
resource exhaustion actively promote the research, development, and application of carbon-
negative technology represented by carbon capture, utilization, and storage (CCUS) in coal
mining. This can alleviate CO2 emissions in the coal supply chain and industrial chain from
the source. Secondly, more than half of the indirect emissions of China’s coal production
come from electricity service. In 2007 and 2014, the proportion of coal power in China
reached 81% and 73%, respectively. However, the proportion of coal power in China bucked
the trend and rose to more than 70% during 2021. While China is aggressively pursuing
carbon neutrality, its coal-based electricity mix is unlikely to change radically anytime soon.
Because of China’s vast territory, wind, light, biomass, and other resources are rich. By
enhancing the complementary supply of distributed renewable energy electricity including
wind power, solar, and biomass in coal production areas in accordance with local conditions,
the embodied emissions of the electricity service input in coal mining can be reduced and
energy structure adjustment can also be promoted.
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The energy transition towards efficient energy production, transport, and use, renewable
energy (RE) technologies and innovative energy management brings benefits to reducing
greenhouse gas (GHG) emissions and achieving climate targets. The transition requires re-
sources, minerals, metals, and materials for RE technologies themselves, for example, solar
photovoltaics (PV), hydrogen fuel cell vehicles (HFCVs) as well as innovative supporting
technologies for variable RE, for example, energy storage systems (ESSs). This requirement
of resources and materials occurs over the whole supply chain of the technologies, from the
extraction of resources, the manufacture of technology, and the deployment of technology,
till the very end of its life cycle. In such context, the consideration of resources in general
and critical raw materials (CRMs) in particular and their relations to the risk of supply
chain disruption are highly important for achieving the global green energy transition. This
editorial paper provides a brief view of the close connectivity between materials/resources
and the green transition over the whole supply chain of energy technologies.

The editorial paper includes 11 papers covering the energy transition all over the globe.
In these papers, the future national energy transition with a specific energy or climate
targets is predicted by applying the energy model [1–3] and relevant energy, materials, and
resources required for energy production can be estimated [2,3]. At the global level, [4]
study the relations between fossil and renewable resources for energy transition, taking
into account the energy security and regional trade. Some authors extend to ‘soft’ measures
for low carbon energy transition such as the energy prosumer business model [5] or the
sector coupling of water and energy supply [6,7]. Apart from environmental benefits, the
economic, social, and sustainable consequences of RE technologies and energy transition are
quantified and assessed [8–10]. A list of CRMs for energy transition and their availability
index is presented in [11].

Limpens et al. [1] use the EnergyScope Typical Days model to analyze the Belgian
energy system in 2035 for different carbon emission targets. It is a regional, bottom-up
and linear model considering multiple sectors and multiple energy carriers with an hourly
resolution and a 1-to-5 min computational time. This model optimizes the design and
operation strategies of the system including a set of 96 energy technologies, from 24
resources while meeting the end-use demand of electricity (TWh), heat (TWh), mobility
(passenger km and tonne km) and non-energy demand (TWh), and minimizing the total
annual cost of the system. Besides, the optimization of the system was constrained under
a climate target limiting its annual life cycle GHG emissions. It is identified that by 2035,
Belgium will lack 275.6 TWh/year of local resources, and 173.3 TWh/year if non-energy
demand is not taken into account. To pursue the cost-effective, green energy transition, the
demand gap could not be met by individual renewable energy technologies such as offshore
wind, geothermal or nuclear power, consequently requiring a mix of renewable solutions.
At the same time, the imported renewable fuels or electricity is not a cost-competitive
solution (assuming that the price of imported renewable fuels is 50% higher than that of
the fossil ones), except for aiming at very low emissions. [1]
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Rixhon et al. [2] conducted an uncertainty analysis with a whole-energy system
model to study the importance of electro-fuels such as hydrogen, methane, and methanol
in Belgium’s energy transition by 2050. The applied whole-energy system model was
EnergyScope Typical Days, which is the same as that of [1]. Only two differences are made,
including the timeframe of the study, and the negligence of non-energy end-use demand.
In the model, Belgium was modeled as a single node without taking into account intra-
national energy transmission. For the uncertainty analysis, the polynomial chaos expansion
method was used to highlight the influence of the critical parameters of energy/fuel price,
transportation technology costs, technological efficiency, and nuclear power capacity on
the total cost of the system.

Under the uncertainties, the annual system cost of 43.6 billion Euros by 2050 could
become 17% higher and twice more uncertain in the context of the zero-emission target.
Specifically, the price of imported renewable electrofuels is the most critical parameter,
contributing to 53.2% of the variation in the total cost of the system. The price of fossil hy-
drocarbons significantly impacts the variation of the system cost, at 34.8%. The maximum
capacity of nuclear power plants has a limited impact of 13.1% on the variation of the total
annual cost of the system. Lastly, two transportation-related parameters of the investment
cost of cars and of fuel cells have a small impact on the variation of the system cost. The lim-
itation of this uncertainty analysis study lied in the independency of parameters. Though
the independency of the parameter is required by the polynomial chaos expansion method,
it does not reflect the reality of technology modeling in some cases, for example, the close
relation of the technology’s investment cost and its efficiency. The authors suggested future
studies on the application of electrofuels/biofuels and the characterization such as price,
availability, geographical origin, production process, etc of imported electrofuels/biofuels
to make the model more refined, realistic and comprehensive. [2]

Delannoy et al. [3] combine GlobalShift and a dynamic function to model the Energy
Return On Investment (EROI) of natural gas at a global scale by 2050. GlobalShift composes
of data on gas reserves and production for the period of 1950–2050 by gas-producing
countries, which is used to quantify energy production. The dynamic function is then
applied to analyze the uncertainty of EROI. It is found that 2040 will see the gross energy
peak of 249 EJ, while the net energy will reach a peak at 210 EJ in 2037. The average EROI
steadily decrease from 141.5 to 16.8 between 1950 and 2050. The energy required to produce
gas is 11 EJ, corresponding to 6.7% of gross energy produced in 2020. By 2050, this number
will mount up to 53 EJ, or 23.7% of gross energy production. With the exponential increase
in the required energy for gas production or the sharp decrease in its EROI, there is a risk to
energy security as well as the environment, which suggests the inclusion of EROI in energy
transition studies [3].

Berdysheva and Ikonnikova [4] propose a modified index for energy security, and
apply it to the global energy trade to understand the growth in the unconventional resources
in the United State of America, RE in Europe (EU), Chinese natural gas consumption, and
changes in other countries’ energy flows, as well as their relations to the energy transition,
the economic situation and the trade network. The authors use a six-step approach of (1)
update data on energy production, consumption, and trade 2000–2008, (2) compare data of
the International Energy Agency and United Nations’ commodity trade to see the energy
flows, and (3) compile data for monetary flows to see the economic link, (4) characterize
individual -economy energy systems’ evolution, in relation to trade, (5) apply complex
network method to see the evolution of trade and test the small world property to see
the change in the cluster and network of energy over time, and (6) use modified energy
security index to see the change in demand, supply, and trade. The results show that the
green energy transition toward higher investment in RE does not improve energy security
in most countries (even make it worse). The reduction in coal consumption changes the
fuel diversification balance and weakens energy security. The increased reliance on natural
gas causes a negative impact on energy security; but expanding the liquified natural gas
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trade reduces the negative impact. The growth in global energy demand induces major
energy exporters to produce more, exposing them to supply risk.

The business model of tenant electricity, which provides tenants of a building with
on-site solar power, offers the potential to achieve energy transition and GHG reduction
targets. In Germany, Moser et al. [5] study barriers to and drivers of diffusion of the
tenant electricity, using qualitative data analysis and semi-structure expert interviews.
The identified main barriers are the legal framework which causes high transaction costs,
and the reluctancy of residents to become prosumers of electricity. Meanwhile, the drivers
of this business model include increasing electricity demand, technical development such
as blockchain and smart meters, and EU RE directives [5].

Torabi et al. [6] study the penetration level of electric vehicles (EVs), and sector
coupling (of water supply and energy management) in an island of Portugal to highlight
the contribution of optimized management of RE resources on its energy transition. The
island’s energy system is transitioning towards the dominance of solar and wind energies.
With the high share of RE, curtailment is inevitable. To support this transition and minimize
the curtailment, three solutions have been identified, including the deployment of ESSs,
EVs, and demand side management of water desalination plants. These solutions are
evaluated by optimizing the system while maintaining the power supply being equal to
the demand plus curtailed power. It was identified that the share of RE may reach 100%
and the curtailment events could be reduced by the large-scale deployment of EVs and
demand management of desalination plants and charging management of ESSs and EVs.
At the same time, the greenhouse gas emissions of the mixed grid reduce accordingly [6].

Zohrabian and Sanders [7] estimate the energy and GHG emission trade-offs of pro-
jected water supply in Los Angeles by 2050. The electricity demand for surface water
supply and recycled water system between 2010 and 2050 is calculated by applying an
energy intensity for annual water volume from different sources. The factors impacting
electric demand for water supply are then decomposed to highlight their importance. The
corresponding GHG emissions are quantified with the current emission intensity of the
current and future grid mix. The results show that treating stormwater and recycling water
bring benefits for coping with water shortage; however, these measures might not consider-
ably benefit in terms of electricity demand. Water conservation brings benefits of energy
savings which are higher in the case of using locally supplied water than imported water.
At the same time, increasing the local water sources in replacement of imported water will
cause the geospatial change in energy demand from outside the city (for recycling water)
to inside the city (for pumping local water). As a result, the local electricity system and its
corresponding GHG emissions will be impacted. The decomposition analysis indicates
that the change in the local water supply structure has a higher impact on the electricity
demand than population growth and water conservation [7].

Bethoux [8] studied the barriers to expanding the deployment of Hydrogen Fuel
Cell Vehicles, HFCVs, on the mass road transportation vehicle market, considering the
environmental and economic aspects over the whole supply chain of production, storage,
and distribution of hydrogen. It is identified that there is a market for using hydrogen for
both light and heavy road transportation. Green hydrogen may be one of the potential uses
of renewable energies and natural hydrogen might become an economic reality pushing
the HFCVs to be a competitive and environmentally friendly alternative to battery electric
vehicles. In the meantime, some barriers that need to be overcome, so as to reduce the
vehicle and fuel technologies’ cost, increase vehicle durability, the lower environmental
footprint of the vehicle, especially in the manufacturing and disposal stages, improve
hydrogen production technologies, enhance the safety of the hydrogen infrastructure as
well as the vehicle [8].

Pietrzak et al. [9] conducted a critical situation assessment of RE sources in Poland,
taking into account three aspects of physical energy sources, energy policy, and social
awareness. Through a semi-structured expert-assessment survey, the study points out that
Poland has large RE resources, and there is a potential for further exploiting this resource in
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the near future. Specifically, the potentials for solar, wind, and solid biomass development
are assessed to be the highest among different RE technologies. Some factors preventing the
deployment of RE have been identified, including the conventional energy lobby, complex
RE regulation, and high investment costs. In order to achieve the energy transition, five
activities such as change of the national law, public education on RE, financial incentive
and tax exemption for RE investment, development of prosumer energy, and dialogue with
the coal lobby are suggested by the experts [9].

Hale and Long [10] evaluate sustainability outcomes of energy transition using uni-
variate time series prediction model. The authors use exponential smoothing and Au-
toRegressive Integrated Moving Average (ARIMA) model to predict the annual electricity
generation supply by 2029. The predicted electricity generation with the lowest uncertainty,
obtained with the ARIMA model is assessed for four sustainability indices of carbon, water,
land, and cost footprints. The change in electricity generation structure (reduction in coal
and increase in solar and wind) and the increase in electricity generation during 2020–2029
will cause an increase in land and cost footprints, but a decrease in carbon and water
footprints. In case the increase in coal-based electricity is substituted by solar only, the
land footprint increases by the smallest rate, and but the cost is the largest among different
substitution strategies. Meanwhile, the substitution with wind is the best strategy in terms
of water and cost footprint, but the worst one in terms of land footprint [10].

Nate et al. [11] provide an availability scoring of 17 critical materials concerning 10
energy technologies. The availability of these critical materials is ranked by their current,
absolute amount used for energy technologies, their projected, percentage annual demand
by 2050 compared to the current value, the number of technologies requiring these critical
materials, their accumulative emissions of CO2, their reserves availability, the number of
countries producing more than 1% of global production and the countries with highest
annual material productivity. Two supply-demand scenarios have been developed using
independent parameter probability and supply-demand balanced fuzzy estimation. It is
identified that cobalt, graphite, and lithium, which are used for ESSs, have the lowest
material availability ranking index. These materials are followed by iron, nickel, and
chromium. With the changes in the supply-demand balance, cobalt, lithium, rare earth
elements, iron and vanadium are the most unpredictable materials [11].
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Abstract: Oil has historically been the most significant primary energy source for our daily lives and
business activities. However, recent skyrocketing oil prices have been one of the greatest concerns
among policymakers, business executives, and the general public due to their impacts on daily
necessities, including food, clothing, and automobile transportation. As a result, fast-rising inflation
on the global scale is attributed to mounting oil prices. Even though many countries have made a
conscious effort to tame oil prices and the subsequent inflation, their efforts are often in vain due
to some uncontrollable situations. These situations include the ongoing war between Ukraine and
Russia, where Russia began weaponizing its oil resources and limiting oil supplies to its neighboring
European countries. Faced with the current energy crisis, a growing number of policymakers and
business executives have attempted to develop energy-induced risk mitigation strategies. With this
in mind, the primary purpose of this paper is to investigate what may have caused oil price hikes
and to determine how significantly oil prices influence commodity prices. This paper then proposes
ways to mitigate energy-induced supply chain risks by analyzing four decades of secondary data
obtained from multiple sources.

Keywords: energy price volatility; energy supply chain; commodity pricing; supply chain mapping;
supply chain resilience; secondary data analysis; trend analysis

1. Introduction

For the last two years, global oil prices have surged, with benchmark Brent crude
jumping from an average of USD 41.96 per barrel at the peak of the COVID-19 pandemic in
2020 to USD 107.64 in July 2022 [1]. The International Energy Agency expects the current
energy demand to increase by 37% in the next 25 years [2]. Similarly, the International
Energy Outlook 2019 [3] predicts significant growth in worldwide energy demand over
the 28 years from 2012 to 2040. Total global energy consumption is expected to grow
from 549 quadrillion British thermal units (Btu) in 2012 to 629 quadrillion Btu in 2020 and
eventually to 815 quadrillion Btu in 2040—a 48% increase from 2012 to 2040 [4]. In particular,
U.S. gasoline and diesel inventories are running low, refining capacity is constrained, and
oil demand remains strong due in part to the pent-up demand [5]. A massive increase in
energy prices puts a heavy burden on every household, with soaring costs for electricity
and mobility. Subsequently, rising energy (especially oil) prices have created unprecedented
economic crises worldwide through superinflation. Energy price hikes are primarily caused
by rapidly growing worldwide demand for oil in the wake of extreme weather conditions, a
shortage of oil supply to the European Union (E.U.) from Russia, and a lack of investment in
energy grid stability due to austerity government policies following the COVID-19-induced
economic doldrums. In particular, the E.U. nations’ dependency on the imports of fossil
fuels from Russia, which is using oil as its geopolitical weapon, poses serious additional
challenges in defusing the current energy crisis. Faced with these challenges, policymakers
and business executives need to act immediately to change their energy conservation
policies and strategies. These polices include oil rationing, energy supply diversity, and
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energy supply chain security. Another change in business strategies includes the overhaul
of private-sector energy usage practices, such as industrial energy curtailment. Cases in
point, the state of California has already issued electricity outage warnings and imposed
restrictions on air conditioning usage. Texas, Illinois, and Missouri will likely develop
energy policies (e.g., rolling blackouts) similar to those in California amid sweltering
summer heat in 2022.

Petroleum (crude oil) is a fossil fuel that is a non-renewable source of energy. Although
crude oil (oil hereafter) is a primary energy source for generating electricity, gasoline, and
heating, oil is a significant culprit of air pollution and the subsequent greenhouse effect
since burning oil emits carbon dioxide gas and contributes to climate change through
global warming. To make matters worse, a vast majority of countries worldwide have
imported oil from the Organization of the Petroleum Exporting Countries (OPEC) and
Russia at increasingly high prices as worldwide oil reserves shrink. In particular, electricity
generated from oil is costly compared to other fossil fuels, such as coal and gas.

2. Relevant Literature Review

Despite the inherent complexity and volatility of energy prices, an accurate forecast of
energy prices and an understanding of energy price behaviors would help energy producers
and consumers determine their energy production capacity, energy inventory level, and size
of investments in energy generation and distribution. Such energy price forecast can help
the energy user or energy developer select the most cost-efficient energy sources. Given
the significance of energy pricing to economic activities, some scholars have attempted
to capture energy pricing patterns and assess their impacts on economic activities. To
elaborate, Asafu-Adjaye [6] was one of the first to estimate the causal relationships between
energy consumption and income in India, Indonesia, the Philippines, and Thailand, using
co-integration and error-correction modeling techniques. His study result indicates a causal
relationship between energy prices and income. Finn [7] theorized that energy price shocks
equivalent to adverse technology shocks could induce significant contractions in economic
activity. Brown and Yücel [8] found that oil price shocks could affect aggregate economic
activities. Thus, they argued that both monetary and energy policies should be developed
based on energy price fluctuations.

Similarly, Papapetrou [9] observed that oil price changes affected actual economic activity
and employment. Oil prices were found to be important in explaining stock price movements
based on the empirical evidence obtained from a multivariate vector autoregression (VAR)
approach. His study, however, was confined to Greece. Huang et al. [10] applied the mul-
tivariate threshold model to investigate the impacts of an oil price change and its volatility
on economic activities (changes in industrial production and actual stock returns) and found
that an oil price change or its volatility had a limited impact on the economies if the change
was below threshold levels. If the change was above threshold levels, an oil price change or
volatility affected economic activities more significantly than the real interest rate. Their data,
however, were limited to monthly data from the US, Canada, and Japan from 1970 to 2002.

However, Olomola [11] found that oil price shocks did not affect economic output or
inflation in Nigeria, while oil price shocks significantly influenced the actual exchange rates in
Nigeria. Benkraiem et al. [12] investigated the relationship between S&P 500 prices as a U.S.
economic barometer and a set of energy prices, including WTI crude oil prices. They observed
that crude oil price shocks influenced short- and long-term U.S. stock market dynamics.
Balashova and Serletis [13] discovered that oil price shocks had a positive and statistically
significant impact on almost all types of Russian economic activity, including the economic
output of manufacturing, mining, construction, transport, retail, and wholesale trade.

Similar to the above line of research examining the causality between oil price shocks
and economic activity, Carfora et al. [14] recently examined the causal relationships among
energy prices, income, and energy consumption in selected Asian countries (India, Indonesia,
Thailand, and the Philippines). Although those relationships varied from one country to
another, they found that, in the cases of India and Indonesia, a bidirectional relationship
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existed between energy prices and income. Dagoumas et al. [15] re-investigated the long-
run relationship between energy prices and economic growth within the periphery of the
European Union (E.U.) using the Variance Decomposition Analysis. Given that energy prices
were strong drivers of inflation in the E.U., they examined how the energy prices (especially
crude oil prices) affected economic growth within the E.U. periphery. They found that energy
prices negatively affected Gross Domestic Product (GDP) growth rates in the E.U.

As this review of the prior literature on energy pricing reveals, most of the existing
studies on energy pricing focused on the macroeconomic implications of energy pricing.
Refocusing on the microeconomic implications of energy pricing, some pioneering works
started to investigate how energy prices affected commodity prices sensitive to economic
fluctuations and, thus, better reflect economic conditions. To elaborate, after recognizing
an increase in the interconnections of agriculture and energy markets through the rise in
new biofuel agribusinesses and oil–ethanol–corn linkages, Saghaian [16] reported a strong
correlation between oil and commodity prices based on empirical results obtained from the
contemporary time-series analysis and Granger causality. Following up, Koirala et al. [17]
examined whether linear relationships exist between future energy prices and future prices
of agricultural commodities, such as corn and soybeans. Their study results revealed that
future agricultural commodity and energy prices were highly correlated; thus, an increase
in energy prices increased the prices of corn and soybeans. Concerned about a surge in
agricultural commodity prices in South Africa from 2004 to 2008, Fowowe [18] analyzed the
relationship between oil prices and commodity prices and found no evidence that agricultural
commodity prices in South Africa responded to oil prices. This finding contrasted with the
prior findings of the earlier studies. López Cabrera and Schulz [19] investigated price and
volatility risk originating in linkages between energy (especially biofuel) and agricultural
commodity prices in Germany using an asymmetric dynamic conditional correlation GARCH
model, as well as a multivariate multiplicative volatility model. Similar to Fowewe [18]’s
study finding, they found that the long-run correlation between energy (biodiesel) prices
and agricultural commodities (rapeseed) was relatively low and not significant. They also
noted that biodiesel prices did not influence rapeseed and crude oil prices in the short run. In
contrast, Wei et al. [20] confirmed a bidirectional positive causality between oil and agricultural
commodity prices. These earlier studies focused on examining any causality between oil
and agricultural commodity prices under the premise that oil price hikes would lead to a
greater use of alternative energy (especially biofuel) extracted from agricultural commodities
(e.g., corn and rapeseed) and to an increase in agricultural commodity and food prices.

Considering the shortcomings mentioned above and the paucity of earlier studies on
energy pricing implications, this paper analyzes more than four decades of secondary data
regarding global oil prices; gasoline prices; and beef, pork, cotton, gold, silver, iron ore, and
coffee prices. Furthermore, this paper examines any functional connection between global
oil price volatility and commodity prices. This paper also discusses various managerial or
policy implications of energy price volatility from an energy supply chain perspective.

3. Sources of Energy Crisis

Given energy’s direct impact on our costs of living, such as electricity and heating bills,
many households and enterprises pay close attention to energy pricing and wonder why
energy pricing is so volatile and thus difficult to predict. The volatility of energy prices is
attributed to a multitude of complicated factors. In particular, since oil has been a primary
energy source, I focus on identifying the main factors influencing oil price volatility. These
factors include the following:

(1) Demand for Crude Oil: Volpe [21] recently reported that, based on the data available
from the American Petroleum Institute (API), the prices of gasoline are often deter-
mined by the cost of global crude oil (61%), refining costs (14%), distribution and
marketing costs (11%), and federal and state taxes (14%). Therefore, it is apparent
that the price of a barrel of crude oil in open markets dictates the price of fuel that
people consume every day. Due to the variety and different blends of crude oil, its
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price depends on one of the four popular benchmarks: Brent Crude, West Texas
Intermediate (WTI), Dubai Crude, and OPEC baskets. Brent Crude is the most widely
used one and is typically sold on the spot market at London’s International Petroleum
Institute. At the same time, WTI is the U.S. benchmark for light sweet oil traded on
the New York Mercantile Exchange (NYMEX) for gasoline. The Dubai Crude (called
Fateh) represents a medium sour crude oil extracted from Dubai. Dubai Crude is
used for pricing Persian Gulf crude oil exports to Asia [22]. The OPEC basket price
is a weighted average of the prices of 13 regional oils from Algeria’s Saharan Blend,
Angola’s Girassol, Ecuador’s Oriente, Indonesia’s Minas, Iran’s Heavy, Iraq’s Basra
Light, Kuwait’s Export, Libya’s Es Sider, Nigeria’s Bonny Light, Qatar’s Marine Saudi
Arabia’s Light, the United Arab Emirates’ Murban, and Venezuela’s Merey [23]. To
complicate oil pricing, the benchmark mentioned above can be determined through
either the spot market or future prices. Two contrasting market situations can set
future prices: (1) Backwardation, where market prices are expected to be lower in
the future months than the present day, and (2) Contango, where market prices are
expected to be higher in the future months than the present day.

(2) Government Policy, Regulations, and Laws: U.S. gasoline is subject to federal and
state taxes. As of 2022, U.S. federal taxes consisted of excise taxes of USD 0.183 per
gallon on gasoline, USD 0.243 per gallon on diesel fuel, and a leaking underground
storage tank fee of USD 0.01 per gallon on both fuels [21]. This fact illustrates that fuel
price is affected by the government’s tax policy. In addition, since oil drilling and pro-
duction can be regulated by state laws in the U.S., oil supplies and subsequent changes
in oil market pricing controlled by the state government can affect oil pricing. The
U.S. federal government regulates offshore oil exploration for the Outer Continental
Shelf (a radius of 200 nautical miles offshore) and thus influences oil production and
pricing. Furthermore, stricter government regulations (e.g., Environmental Protection
Agency regulations) intended for environmental protection can hurt oil pricing. Not
to mention the U.S. policies, the OPEC policies regarding its oil production tend to
have a profound impact on global oil prices since OPEC accounts for 40% of the world
crude oil production, and its oil exports represent about 60% of the total petroleum
traded globally [24]. Another example is Venezuela and Nigeria’s nationalization
of oil fields, which led to global oil shortages and price increases soon after those
countries’ abrupt policy shifts.

(3) Political Instability, Unrest, Geopolitical Tension, and War: Historically, civil upris-
ings, changes in political power, border conflicts, and regional wars involving oil-
producing countries disrupted oil supplies and created a ripple effect on oil prices.
For instance, the Gulf War in the early 1990s, triggered by Iraq, caused a 9-month
oil price hike and nearly doubled oil prices [25]. Similarly, the ongoing war between
Ukraine and Russia has led to a series of import bans for Russian crude oil, liquefied
natural gas, and coal by the U.S. and European Union (E.U.), subsequently increasing
global oil prices in the year 2022. Indeed, the price of crude oil in the global market
skyrocketed from approximately USD 76 per barrel at the start of January 2022 to over
USD 110 per barrel in March 2022 due to Ukraine and Russia’s border conflicts [26].

(4) Natural Calamities and Disasters: Natural disasters, such as hurricanes, tornadoes,
flooding, earthquakes, and tsunamis, can wreak havoc on energy infrastructure,
including oil refineries and power plants. For example, when Hurricane Katrina hit
the U.S. Gulf Coast region, which accounted for 35% of oil production in 2005, U.S.
oil prices soared by around 20% [27]. However, when a 9.0-magnitude earthquake
rocked Japan in 2011 and then destroyed six oil refineries that accounted for 31% of
Japan’s oil output, many expected a temporary oil price drop since refinery closures
would result in reduced crude oil imports [28].

(5) Trader’s Speculative Investment in Oil: Generally, when crude oil supply is tight or
it is considered valuable (premium), its price goes up, whereas if its demand is low
or it is considered less valuable, its price decreases due to its discount. In the NYSE,
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oil traders determine the volume of speculative crude oil purchases and thus affect
the overall demand for crude oil and the subsequent future oil prices. To meet the
U.S. Renewable Fuel Standard (RFS) program targets, the EPA also requires U.S. oil
companies to have one Renewable Identification Number (RIN) for each gallon of
ethanol blended into fuel [29]. To comply with this requirement, some oil producers
that are RIN-short need to increase the purchase of RIN (e.g., biodiesel fuels). Thus,
their oil trade volume can affect oil prices. Furthermore, some industries (e.g., airline
and trucking sectors) participating in cooperative hedging programs against fuel
price hikes can increase their speculative investments in crude oil and the subsequent
oil price, especially when many companies speculate towards a continued upward
pressure on oil prices.

(6) Grid Network, Power Generation, and Distribution: Tayeb [30] recently reported that
U.S. power grid failures in most of Western and Central U.S. increased vulnerability to
the energy supply chain and increased the risk of electricity shortfalls and disruptions.
With rising demand for additional power generation, the U.S. government has been
under growing pressure to expand the power grid. However, adding high-voltage
transmission lines and switches to the grid usually takes much time. In contrast,
replacement parts for turbines and other equipment needed for the power grid may
not be readily available. In addition, power plant commissioning delays can aggravate
the grid network problem. An obsolete and insufficient grid network can adversely
affect oil prices.

(7) Alternative Energy Availability and Affordability: Recognizing the mounting cost of
using fossil fuels and their contribution to global warming, a growing number of
energy producers, including power plants, are exploring various sources of alternative
energy. These include solar, wind, geothermal, biomass, hydrogen, tide/wave, natural
gas, municipal waste, coal, and nuclear. All of these alternative energy sources, apart
from coal, are clean or renewable energy sources. In particular, since renewable
energy can derive power from natural sources, it can replenish itself without running
out. Due to such benefits, the use of alternative energy has grown exponentially
in recent years, accounting for 23.2% of all energy sources for power generation in
2020 [31]. The International Energy Agency (IEA) predicted that alternative energy
sources would account for nearly half of the worldwide increase in power supply up
to 2040 [32]. The increased use of alternative energy will decrease oil demand and
lower oil prices.

(8) Energy Waste: According to the Energy Information Administration (EIA), two-thirds
(66%) of the primary energy used to create electricity is wasted by the time the
electricity arrives at the customer’s meter. Generally, more than half (59%) of energy
is lost in the power generation process due in part to waste heat released in the air
and inefficient transformers and equipment, including pumps, fans, and industrial
boilers [33]. If energy waste can be reduced, energy consumption will drop, thus
decreasing oil prices.

As discussed above, there exists a host of factors influencing oil prices. Though not
specified, other factors, such as inflation and currency fluctuations, can contribute to oil
price volatility. Due to complicated oil price volatility, it is challenging to forecast oil prices
and assess their impacts on our standard of living and daily business practices. Recognizing
such a challenge, the primary purpose of this paper is to examine any functional relationship
or link between oil price volatility and commodity pricing that shapes our daily lives and
everyday business practices. This paper proposes a series of hypotheses and tests them using
statistical data analyses, including a regression analysis and a trend analysis, predicated on
more than four decades of various pricing data collected from secondary sources.

4. Propositions, Analyses, and Results

Due to the volatility and complexity of crude oil pricing, it is a daunting task for us
to accurately predict future oil prices and to assess their potential impacts on commodity
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prices. To understand oil pricing dynamics and their ramifications for commodity markets,
I experimented with multiple business analytic tools (e.g., a series of statistical data and
forecasting analyses) with secondary data obtained from multiple public sources. These
sources include IEA’s Energy Statistics Data Browser, Nasdaq Data Link, Refinitiv Eikon-
Commodities Data Catalogue, Internal Monetary Fund’s Commodity Data Portal, World
Bank Commodity Prices Database, and Wall Street Commodity Data. The following
subsections provide details of those experimental results and their managerial implications.

4.1. Experimental Data

I collected monthly time-series data about the prices of popular energy sources, com-
prising crude oil, gasoline, diesel, and Austrian coal from the secondary data sources that I
referred to earlier. I also compiled matching data about the prices of selected commodities:
(1) metals, such as aluminum, gold, silver, and iron ore; (2) agricultural commodities, such
as corn, cotton, coffee, and wheat; and (3) meats, such as beef and pork. The data set con-
tained 449 monthly pricing records for 37 years, from March 1985 to July 2022. I compiled
the collected data into formats of both Excel® and SPSS files for statistical data analyses.

4.2. Propositions

When the price of crude oil rises, people have to decide how often they should travel,
how often they should go grocery shopping, or how much they should spend without going
over their budgets since oil price hikes tend to impact people’s mobility, heating/electricity
bills, and subsequent daily spending. In particular, Americans’ daily lives are heavily
dependent on oil, as they are the biggest oil consumers in the world. The United States uses
20.54 million barrels of oil daily, accounting for approximately 20% of the 100.23 million
barrels produced daily worldwide [34]. Although people have long felt the impact of oil
prices on their livelihood, few scientific studies have examined the correlation between oil
prices and the cost of living. With that in mind, I developed a series of propositions that test
the validity of relationships between oil price volatility and the cost of living reflected in the
prices of commodities that are essential for sustaining our daily lives. These commodities
include wheat, corn, coffee, beef, and pork, which comprise ordinary people’s daily food
menu. In addition, I included other commodities, such as cotton, an essential material for
clothing; aluminum and iron, which represent essential ingredients for many products
(e.g., automobiles); and gold and silver, which represent popular investment targets as
currency replacements. Furthermore, I added coal since it can be substituted for oil as an
alternative energy source.

Proposition 1. There is a positive relationship between oil and corn prices.

Based on the premise that crude oil prices can increase conventional fossil fuel
(e.g., gasoline) prices, I propose that oil price hikes will increase the demand for alter-
native energy, such as biofuel (e.g., ethanol), which can be created from corn, consequently
increasing corn prices. As of 2009, corn use for ethanol accounted for approximately
one-third of the total demand for U.S. corn [35]. However, corn processing for ethanol
will continue to proliferate in the next few years with government mandates calling for
increased ethanol use in the wake of sky-high oil prices. Such growth is likely to further
increase corn prices. When this proposition is tested using a correlation analysis, corn price
has a significant positive correlation with oil price with a Pearson correlation coefficient of
0.811 (p = 0.000). Figure 1 graphically shows the positive correlation between oil and corn
prices for the last four decades. As expected, I also found that both gasoline and diesel
prices have strong positive correlations with corn prices. Specifically, gasoline price signifi-
cantly correlates with corn price with a Pearson correlation coefficient of 0.832. Likewise,
diesel price significantly correlates with corn price with a Pearson correlation coefficient of
0.715. In addition, I performed a regression analysis to conduct an inference test with the
corn price as the dependent variable and the crude oil price as the independent variable.
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This test result also confirms that crude oil is a significantly good predictor of corn price
(with a standardized β coefficient of 0.811 and an adjusted R-square value of 0.657).

 

Figure 1. Time-Series Plot of Crude Oil and Corn Price Patterns.

Proposition 2. There is a positive relationship between oil and coal prices.

Using the logic similar to proposition 1, I hypothesize that oil price hikes will increase
the demand for another alternative energy source, such as coal, thus increasing coal price.
The test result of this proposition reveals that coal price is positively related to oil price, as
illustrated in Figure 2. The correlation analysis shows that coal price has a strong positive
correlation with oil price, with a Pearson correlation coefficient of 0.831 (p = 0.000). The
inference test based on a bivariate regression analysis with the coal price as the dependent
variable and the crude oil price as the independent variable shows that crude oil is a good
predictor of coal price (with a standardized β coefficient of 0.831 and an adjusted R-square
value of 0.690).

Figure 2. Time-Series Plot of Crude Oil and Coal Price Patterns.
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Proposition 3. There is a positive relationship between oil and iron ore prices.

As the world’s second most traded bulk commodity, iron ore is one of the essential
minerals needed for producing industrial goods, such as machinery, tools, vehicles, aircraft,
ships, building structures, and bridges. Iron ore production is dominated by Brazil and
Australia, which accounts for 80% of iron ore supplies [36]. Since the world’s largest iron
ore consumer is China, importing iron ore from remotely located Brazil and Australia to
China will likely involve bulk shipping affected by fuel cost. Since fuel cost is dictated by
oil price, the rising oil price will lead to higher iron ore prices. Under such a premise, I posit
a hypothesis that iron ore price is directly related to oil price. This hypothesis is validated in
that iron ore price has a strong positive correlation with oil price, with a Pearson correlation
coefficient of 0.787 (p = 0.000). Figure 3 graphically displays the matching pricing patterns
of crude oil and iron ore. The regression analysis result with the iron ore price as the
dependent variable and the crude oil price as the independent variable shows that crude
oil is a good predictor of iron ore price (with a standardized β coefficient of 0.787 and an
adjusted R-square value of 0.619).

Figure 3. Time-Series Plot of Crude Oil and Iron Ore Price Patterns.

Proposition 4. There is a positive relationship between oil and aluminum prices.

The aluminum price reached USD 2830 per metric ton (M.T.) in May 2022, the highest
price since the two-year high in 2018 [37]. A constant rise in aluminum prices is a cause for
concern due to its impact on the cost of production of industrial goods. Kumar [38] recently
observed that the hike in aluminum price was attributed to a substantial increase in energy
costs, growing demand, a decline in China’s production capacity, a reduction in global
inventories, and the impact of COVID-19. He also noted that the cost of electricity powered
by oil comprised approximately one-third (38%) of aluminum production cost. Therefore, I
hypothesize that oil price affects aluminum price. As expected, aluminum price positively
correlates with oil price, with a Pearson correlation coefficient of 0.657. Considering that
the unit of measurement for aluminum price is substantially higher than that for crude oil
price, I transformed the price scales of aluminum and crude oil into logarithmic price scales
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to represent equivalent price fluctuations on the same vertical scale. This transformation
intends to reduce the variance in price scales by making the data conform to the lognormal
law of error for inferential purposes [39]. Figure 4 shows the similar time-series patterns
of the logarithmic price scales of aluminum and crude oil. The regression analysis result
with aluminum price as the dependent variable and crude oil price as the independent
variable confirms that crude oil is a good predictor of aluminum price (with a standardized
β coefficient of 0.657 and an adjusted R-square value of 0.430).

Figure 4. Time-Series (Logarithmic) Plot of Crude Oil and Aluminum Price Patterns.

Proposition 5. There is a positive relationship between oil and gold prices.

Over the last half-century, oil prices seemingly fluctuated in parallel to gold prices.
Indeed, gold prices rose along with oil prices in the 1970s and 2000s, while both prices
dropped simultaneously in the 1980s and 1990s. Based on this observation, some suggest that
oil price may drive gold’s price, whereas others discount the relationship since the inflationary
trend may raise both prices simultaneously [40,41]. To complicate the gold and oil relationship
myth, gold is often regarded as a monetary asset (or currency) rather than a typical commodity.
Although gold price may be influenced by many dynamic factors, such as inflation, interest
rate, and currency (e.g., dollar) valuation, I still found a positive correlation between gold
and oil price fluctuations, with a Pearson correlation coefficient of 0.748 (p = 0.000). The
regression analysis result with gold price as the dependent variable and crude oil price as
the independent variable reaffirms that crude oil is a good predictor of gold price (with a
standardized β coefficient of 0.748 and an adjusted R-square value of 0.559).

Even though oil price may be slightly more volatile than gold price as shown in
Figure 5, Figure 5 indicates a similar movement pattern for both prices (especially in the
2000s and 2010s). In addition, when I made a similar premise for a potential relationship
between silver and oil prices, I still found a significant relationship between oil and silver
prices, with a Pearson correlation coefficient of 0.640. That is, gold, silver, and oil prices
tended to move together most of the time during the last four decades, and, thus, oil prices
can be a predictor of both gold and silver prices.
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Figure 5. Time-Series (Logarithmic) Plot of Crude Oil and Gold Price Patterns.

Proposition 6. There is a positive relationship between oil and wheat prices.

Baffes [42] estimated that grain prices increased 0.18 percent for every 1 percent
increase in the price of oil. Cartwright and Riabko [43] discovered that future wheat and
oil prices were correlated but not causally related. However, Reboredo [44] found weak
oil–food dependence and no extreme market dependence between oil and food prices,
including wheat prices, based on a weekly data analysis from January 1998 to April 2011.
Given that fuel created by oil is required to run agricultural equipment and process, store,
and transport agricultural commodities (such as wheat), crude oil is a critical input to
agricultural production. Therefore, I surmise that wheat price may increase with oil price.
This premise turns out to be true since wheat price has a strong positive correlation with oil
price, with a Pearson correlation coefficient of 0.814 (p = 0.000). Although wheat price looks
more volatile than oil price, Figure 6 shows a similar price pattern for both wheat and oil
prices. The regression analysis result with wheat price as the dependent variable and crude
oil price as the independent variable reaffirms that crude oil is a good predictor of wheat
price (with a standardized β coefficient of 0.814 and an adjusted R-square value of 0.662).

Proposition 7. There is a positive relationship between oil and coffee prices.

Coffee is a tropical commodity that the Commodity-Dependent Developing Countries
(CDCs) located in sub-Saharan Africa, South Asia (e.g., India), and Latin America (e.g., Brazil
and Columbia) mainly produce. These CDCs are vulnerable to oil price hikes and subsequent
supply chain disruptions due to an inadequate transportation infrastructure. Thus, conven-
tional wisdom indicates that the volatility of coffee prices would parallel that of oil prices.
Maurice and Davis [45] found a long-run causality between oil and coffee prices. However,
Vijayakumar [46] did not find any concrete evidence indicating a correlation between oil and
Indian coffee prices. Congruent with the finding of Vijayakumar [46], I found no significant
correlation between oil and coffee (especially Robusta Coffee) prices for the last four decades,
as shown in Figure 7. In particular, except for in the early 2000s, coffee and oil prices rarely
moved in the same direction.
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Figure 6. Time-Series Plot of Crude Oil and Wheat Price Patterns.

Figure 7. Time-Series Plot of Crude Oil and Coffee Price Patterns.

Proposition 8. There is a positive relationship between oil and beef prices.

The recent skyrocketing food prices have raised hyperinflation fears across the world.
Coincidentally or not, since fast-rising food prices have accompanied the recent oil price
hikes, many wonder if oil price has any bearing on food prices. In contrast with the finding
of Onour [47], indicating no evidence of shared trends or cycles between oil and food
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(including beef) prices, I found a relatively strong correlation between oil and beef prices,
with a Pearson correlation coefficient of 0.670. Figure 8 shows similar price trend patterns,
even though oil prices look more volatile than beef prices. The regression analysis result
with beef price as the dependent variable and crude oil price as the independent variable
reaffirms that crude oil is a good predictor of beef price (with a standardized β coefficient
of 0.670 and an adjusted R-square value of 0.447). However, I found that the oil and pork
price relationship was not as strong as the oil and beef price relationship.

Figure 8. Time-Series (Logarithmic) Plot of Crude Oil and Beef Price Patterns.

5. Managerial Implications

So far, I have learned that crude oil price volatility tends to parallel the price volatility
of many commodities, but not that of coffee. Primarily, I found that rising demand for
alternative energy sources (especially biofuel) resulting from mounting oil prices created a
new link between oil prices and the price volatility of agricultural commodities (especially
corn) that can be transformed into biofuel materials. For a similar reason, I discovered
that coal, as an alternative fossil fuel source, tends to have co-movement pricing patterns
with oil. In a nutshell, oil price appears to have a profound impact on the prices of various
commodities essential for everyday lives and industrial activities. Considering the critical
role of oil in sustaining our standard of living, government policymakers and business
decision makers should ensure the long-term stability of oil prices regardless of rapid
environmental, social, economic, and geopolitical changes. Since such stability cannot
be guaranteed without preventing or mitigating the risk of oil/gasoline supply chain
disruptions, government policies and/or business strategies that can enhance resilience
from supply chain disruptions should be developed. With that in mind, this paper also
creates an oil/gasoline supply chain map that will allow political and business leaders
to identify the vulnerability and potential bottlenecks of the oil/gasoline supply chain.
Figure 9 graphically displays this map.

For example, if Russia’s weaponization of its oil resources in response to the E.U.’s
economic sanctions against Russia is the biggest culprit of worldwide oil supply shortages,
a borderline between the upstream (refinery storage) and downstream (oil pipeline) levels
of the oil supply chain is considered the most vulnerable chokepoint with the highest
supply chain risk.
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6. A Summary and Concluding Remarks

In the era of worldwide energy and inflation crises created by the lingering COVID-19
pandemic, a series of natural disasters (e.g., flooding in Europe, East Asia, and the U.S.),
and the prolonged war between Russia and Ukraine, the entire world has been swept into
unprecedented economic turmoil. Volatile oil prices across the globe have further magnified
this turmoil. This paper is one of the few attempts to investigate the functional relationship
between the prices of crude oil and various types of commodities. In addition, this paper
not only identifies a multitude of factors that can influence oil price and its volatility, but
it also develops an oil/gasoline supply chain map that can visualize the weak points of
an oil/gasoline supply chain vulnerable to disruptions. Through a series of experimental
data analyses of four decades of primary energy sources (crude oil, coal, gasoline, and
diesel) and commodities in high demand (corn, wheat, coffee, iron ore, aluminum, gold,
silver, beef, and pork), I discovered the co-movement of crude oil and many commodities’
pricing trend patterns. In particular, I found strong evidence indicating that oil price can be
a good predictor of corn price, which, in turn, may influence food price. This finding implies
that failure to stabilize oil price may substantially increase the cost of living and business
expenditures. Although this paper did not present a clear causality between oil price and all
the commodities, it reminds us of the crucial role of oil in sustaining our standard of living.

From a practical standpoint, this paper aids government policymakers and business
executives in developing effective energy conservation policies and in strengthening the en-
ergy supply chain with enhanced resilience from various risks and uncertainties. In today’s
world, where many countries (developed or developing) are experiencing unprecedented
energy crises and subsequent economic turmoil, establishing a more resilient energy supply
chain helps humans better prepare for future energy crises. This paper also contributes
to the existing body of energy literature by developing key propositions/hypotheses that
raise future open research questions and by theorizing dynamic relationships between oil
and daily necessities in the global commodity market. Despite these contributions, this
paper is far from perfect in its current form. One of the major limitations of this paper
includes a lack of scientific evidence indicating a clear causal relationship between crude
oil prices and ongoing worldwide superinflation. As such, one of the fruitful areas of future
research includes the examination of causal relationships between crude oil prices and
consumer price indexes (CPIs) in both advanced and developing economies across the
world. Another fruitful line of future research is the development of resilient energy supply
chain strategies targeting specific countries or regions (e.g., E.U. nations) vulnerable to
energy supply chain disruptions.
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Abstract: In the context of carbon neutrality, the development of new digital infrastructure (NDI)
and the improvement of digital capabilities are essential, in order to speed up the transformation of
the energy structure. Based on the balanced panel data of 30 provinces in China from 2008 to 2019,
we empirically analyzed the impact of NDI on the structural transformation of energy in China and
its mechanisms of action. The results demonstrated that (1) NDI had a positive impact on China’s
energy transition, and the empirical results were robust. (2) The mediating effect showed that NDI
had a positive impact on the transformation of energy structure, through improving green total
factor productivity and green finance. (3) The heterogeneity analysis indicated that NDI made a
more significant contribution to the transformation of the energy structure in regions with lower
pollution levels and in those with energy cooperation policies. This study provides a policy reference
for Chinese energy transition from the perspective of the digital economy.

Keywords: new digital infrastructure; transformation of the energy structure; energy industry chain

1. Introduction

To avoid the worst effects of climate change and to accelerate sustainable economic
development, the world needs to phase out the use of non-clean energy sources [1]. The
International Energy Agency (IEA) reported that global energy consumption increased by
50–75% between 1985 and 2020. Although the use of clean energy is increasing year by
year, the proportion of fossil energy in primary energy consumption has been around 80%
for nearly a century [2,3]. This high proportion of fossil fuel consumption is a barrier to the
sustainable development of the global economy. The main driver of the current transition
differs from the previous three, in that it is no longer the economic efficiency of new energy
sources, but the response to climate change [4]. Resource depletion, the rising costs of
non-clean energy sources, and technological innovation will further accelerate the energy
transition process, making it imperative that the energy transition forms an important part
of sustainable economic development [5–7].

As another important driving force to promote economic development and optimize
economic structure, information and communications technology (ICT) has been widely
recognized by scholars [8–10]. However, the new digital infrastructure (NDI) that supports
cutting-edge ICT is a relatively neglected area of research. New digital infrastructure
refers to the digital-based infrastructure formed by the new generation of information
technologies, mainly including 5G, artificial intelligence, and the industrial Internet, and
Internet of Things, which provide services that trigger fundamental changes in production
patterns and economic structures [8,10]. The rate of change in the way NDI is supplied
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and the demand for digitally connected services in the last decade has been staggering.
NDI has become a necessary factor of production for consumers to participate in advanced
modern societies [11]. The services provided by NDI penetrate into the production and
operation models of enterprises, improve the efficiency of industrial resource allocation,
and optimize the regional industrial structure, as well as providing new ideas for solving
the problem of energy transition [12–14].

The existing studies have concentrated on the relationship between the services pro-
vided by NDI and the energy transition, and the results are highly variable. Some scholars
argue that the transformation of the energy structure with the services provided by NDI
can accelerate the energy structure transition. Chung (2018) [15] suggested that the new
energy systems with digital infrastructure services can accelerate the transformation of
regional energy structure. Tang et al. (2013) [16] found that NDI helps to cultivate the
green technology innovation capacity of firms and improves corporate governance. Other
scholars have argued that it is uncertain the services provided by NDI contribute to the
transformation of regional energy structure. Lange et al. (2020) [17] indicated that informa-
tion and communication technologies increase global non-clean energy consumption by
expanding energy demand. Shabani and Shahnazi (2019) [18] stated that the relationship
between NDI services and energy consumption is not linear. The emergence of contra-
dictory research conclusions is mainly related to the use of single indicators of NDI, the
inconsistent construction standards of indicators, and a lack of heterogeneity in analysis. In
addition, a large number of studies have found that both NDI and energy transition are
related to green development, but few literature reports have explored whether there is a
green development-related path between the two.

Based on provincial panel data in China, we focused on the impact of NDI on the
energy transition, and explored the mechanisms and heterogeneity from a green develop-
ment perspective. In fact, with the development of the digital economy, the new digital
infrastructure is different from traditional infrastructure, which will have an important
impact on regional green development. Therefore, it is necessary to identify the impact of
new digital infrastructure on energy structure transformation. Our innovations include
the following: (1) Previous studies examined the economic or environmental effects of
traditional infrastructure, while ignoring the environmental effects of NDI, especially its
impact on the energy structure. (2) We not only investigated the transmission mecha-
nism of the impact of NDI on energy structure, but also investigated its heterogeneity
in different regions, in order to investigate the impact of NDI on energy structure more
comprehensively. (3) Under the dual backgrounds of the digital economy and carbon peak
and carbon neutrality, it is of great practical significance to explore the impact of NDI on
energy structure. These conclusions provide a theoretical basis for scientifically formulating
new targeted digital basic energy service facilities.

The rest of the paper is organized as follows: Section 2 presents a mechanical analysis
and the research hypotheses. Section 3 describes the data and empirical methodology.
Section 4 discusses the empirical results. Section 5 summarizes the conclusions and pol-
icy implications.

2. Mechanism Analysis and Research Hypothesis

2.1. The Direct Effects

The efficient resource allocation advantages of NDI help to optimize energy allocation.
ICT has a profound impact on energy management because it lowers costs and keeps
systems up-to-date [19,20]. Cloud computing and big data analysis help to improve the
efficiency of energy production, and wireless networks allow for timely optimization of
energy allocation structures through online platforms [13]. The substitution and optimiza-
tion effects of ICT on energy consumption contribute to the “computerization” of the
production sector [21]. The above-mentioned optimization components, which rely on
NDI, are more focused on the production and management of energy, optimizing the way
energy is consumed by eliminating outdated capacities [22]. Efficient resource allocation
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is conducive to the transformation of regional energy structure. In view of the absolute
advantages of varieties of energy and the comparative advantages of energy industries,
the existing energy system requires a more timely and rapid energy allocation mechanism.
For example, transmission network managers in Belgium are helping the network absorb
more intermittent renewable energy by sharing computer platforms [23]. NDI provides a
reliable technological path for building “smart cities” and promoting the coordination of
low-carbon energy [24]. The market is also an important way to allocate resources. A sound
market mechanism and flexible market design can both facilitate the energy transition. NDI
increases the flexibility and timeliness of energy markets, thereby addressing some of the
technical barriers faced in the development of regional energy structure transitions [25].
The high penetration of NDI can influence and even change group consumer behavior [13].
NDI changes the original method of information transmission and accelerates the trans-
formation of the low-carbon behavior of energy consumers. For example, consumers can
choose low-carbon technology application products and respond to their local govern-
ment’s call for low-carbon policies, and they can increase their awareness of green energy
consumption [26]. Thongmak and Mathupayas (2016) [27] argued that effective dissem-
ination of information helps consumers understand the current environmental situation
and increases environmental empathy and environmental knowledge, thereby influencing
their ecological consumption behavior. Existing empirical results also suggest that the
development of ICT has contributed to renewable energy consumption. Moyer and Hughes
(2012) [28] found that advances in communication technologies are generally positively
associated with increased energy intensity and renewable energy generation. Zheng and
Wang (2021) [13] found that a 1% increase in the level of mobile communication technology
was associated with a 1.1% increase in renewable energy consumption in the short term
and a 0.2% increase in the long term.

Based on the above analysis, the following hypothesis is proposed in this paper:

Hypothesis I: NDI has a significant positive impact on the transformation of the regional energy
structure.

2.2. Indirect Impact
2.2.1. Green Production Level

NDI increases the green total factor productivity (GTFP) of a region. In terms of acceler-
ating information flows, NDI facilitates the development of information technology, while
the convergence of industrialization and modern technology contributes to the iteration and
updating of green production technologies, making regional industrial production greener
and more sustainable [6]. Yan et al. (2018) [29] demonstrated through empirical tests that
trade in communication technologies can bridge the gap between developing economies. In
terms of changing traditional production methods, Haftu (2019) [30] suggested the positive
role of infrastructure in greening total factor productivity. Digital information technology
can help build a more diverse labor supply, with human capital as a supporting condition;
thus making labor demands adapt to green production methods. The diffusion of NDI
services helps to spread the effects of green production, which in turn forces other firms in
the same industry to improve their own GTFP.

The increase in level of green production has promoted the transformation of the
energy structure. In terms of substitution effects, the energy transition is the substitution
of one energy source for another in certain industries or sectors [31]. The improvement of
the level of green production represents an improvement of renewable energy efficiency,
and existing research also recognized the positive effect of green energy utilization tech-
nology on energy structure transformation in production activities [32]. In terms of the
transformation of consumption, improved green production methods are a form of energy
consumption efficiency improvement, and a sustainable energy structure built through
green production promotes the development of green energy consumption preferences
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among consumers [33]. Quantitative changes in the level of green production are driving
qualitative changes in energy transformation.

2.2.2. Green Finance Level

NDI promotes the development of regional green finance. At present, there is a
lack of communication about the information mechanisms, in the development of green
finance. NDI can distribute the environmental, social, and governance (ESG) information
of enterprises to the public and increase the level of green financial support of high-
quality enterprises. At the same time, enterprises will also conduct green reputation risk
management, to ensure the financial support for their own green projects. The spillover
effects of digital infrastructure further improve the green financial environment within the
industry [34]. Not only that, but NDI can also help solve the problems of green finance
regulation. Qing (2019) [35] suggested that the Indonesian government could make use of
NDI to make up for the deficiencies of green information governance. Big data technologies
provided by NDI can help commercial banks reduce unnecessary loan losses by optimizing
energy-saving funds and green investment systems [36].

The development of green finance has promoted regional energy transformation. In
terms of the function of cultivating dynamic energy, the development of green finance can
help fill the huge investment gap in sustainable energy transition, provide sufficient funds
for green technology innovation activities, and enhance the positive impact of innovation in
renewable energy consumption [37,38]. In terms of the function of guiding resource alloca-
tion, green finance can guide social capital flow to green industries, improve the industrial
structure, and promote the transformation of society, from a high-carbon economy, to a
low-carbon economy [39]. Navarro (2019) [40] conducted a study on the feasibility of green
finance, arguing that retail investors, producers, and financial institutions can promote the
regional energy transition without compromising the interests of consumers, by creating
green financial products.

Based on the above analysis, the following hypothesis is proposed in this paper:

Hypothesis II: NDI further promotes regional energy structure transformation by enhancing
GTFP and developing green finance.

2.3. Heterogeneity Analysis
2.3.1. The Effect of NDI on Energy Structure Transformation Is Related to the Degree of
Regional Pollution

In regions with different pollution levels, the role of NDI in the transformation of
energy structure may be different, mainly due to environmental regulations and resource
endowment [41,42]. Economic development is accompanied by high environmental costs
and huge resource consumption, and green development has become the world consensus,
which means that various regions need to reduce the environmental cost of economic
development and maintain a balance between economic development and the ecological
environment [43]. NDI provides equipment for ICT, social media, mobile technologies,
and information networks, all of which contribute to information-based environmental
governance [44]. Environmental regulation further affects the proportion of renewable
energy used, through “compliance cost effects” and “innovation offset effects” [16,45,46].
Therefore, we speculate that NDI can improve the level of regional environmental super-
vision, thereby reducing regional pollution. The transformation of the energy structure
is one of the manifestations of the improvement of regional pollution. Natural resource
endowments will also affect regional energy transformation plans. The industrial struc-
ture being formed by relying on the regional natural resource endowment has led to the
heterogeneity of air pollution among provinces. The degree of pollution of regions rich in
non-renewable resources is higher, and the energy transformation is more difficult [47–49].
Not only that, regional economic conditions also strongly influence the energy transition
plans of local governments, and economic factors affect the transition from fossil fuels or
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non-clean energy, to renewable or clean energy [50]. The coverage rate of NDI in economi-
cally developed regions is high, and the phenomenon of the resource curse is common in
regions with high natural resource endowments [51,52]. Therefore, it is speculated that in
regions with abundant natural resources, the positive effect of NDI on the energy transition
is weak.

2.3.2. The Effect of NDI on Energy Structure Transformation Is Related to Regional Energy
Cooperation Policies (ECP)

ECP can help strengthen the positive role of NDI in the transformation of regional
energy structures. In terms of the content of the ECP, the ECP conforms to the latest energy
production trends and improves the existing energy structure through multilateral coop-
eration [53,54]. For energy structure transformation, the energy production cooperation,
energy investment cooperation, and energy infrastructure connection content in the ECP
provide a larger development platform for NDI [6,55]. In terms of the drivers of ECP, there
are two main charagories of ECP implementation region: First, the region has sufficient
demand to reduce the dependence on non-renewable energy. Second, the region has rel-
atively good energy cooperation conditions. These two conditions are conducive to the
transformation of the energy structure [56]. Economic, environmental, and political factors
help drive the success of energy cooperation [57]. Therefore, policymakers will delineate
ECP areas with reference to the driving factors of energy cooperation success, which reflects
the economic, environmental, and political differences between areas covered by ECP and
non-covered areas. According to the previous analysis, the differentiated effect of NDI on
the transformation of the energy structure can be explained. In summary, the mechanism
diagram of this paper is shown in Figure 1.

Based on the above analysis, the following hypothesis is proposed in this paper:

Hypothesis III: From the perspective of heterogeneity, in areas with low levels of environmental
pollution and under energy cooperation policies (ECP), the positive effect is more obvious.

 
Figure 1. The impact mechanism of the NDI on energy structure transition.

3. Method

3.1. Model

To verify the impact of NDI on energy transition, we chose an OLS model with
multi-dimensional panel fixed effects to mitigate the bias of results, by controlling for
multi-dimensional individual effects. We address the problem of missing variables with in-
dividuals and time, by controlling for the individual effects and annual effects of provinces.

39



Energies 2022, 15, 8784

This paper constructs the following model:

energyit = β0 + β1infrait + γ∑ controlit + λi + μt + εit (1)

where energyit is the energy consumption structure of province i in year t, infrait is the
NDI of province i in year t, and controlit is the set of control variables, specifically govern-
ment self-sufficiency (sufit), level of environmental regulation (erit), level of urbanization
(urbanit) and its squared term (urbanit

2), economic development level (pgdpit), and level
of education (egdpit). λi is the province fixed effect, μt is the time fixed effect, and εit are
random errors.

3.2. Variables
3.2.1. Explained Variable: Energy Structure (energyit)

Referring to the method of Adebayo et al. (2021) [58], the ratio of coal consumption
to total energy consumption is used to measure the energy structure of each province.
Coal consumption and total energy consumption were converted into standard coal, with
reference to the China Energy Statistical Yearbook. The conversion coefficients of major
energy categories are shown in Table 1.

Table 1. Reduction coefficients of major energy categories in the energy industry chain.

Energy Category Reduction Factor Energy Category Reduction Factor

Raw coal 0.7143 Gasoline 1.4714
Washed coal 0.9000 Diesel 1.4571

Coal products 0.5286 Kerosene 1.4714
Coke 0.9714 Fuel oil 1.4286

Coke oven gas 5.7140 Liquefied petroleum gas 1.7143
Natural gas 13.3000 Electricity 1.2290

Liquefied natural gas 1.7572 Thermal 0.0341
Crude oil 1.4286 Others 1.000

3.2.2. Explanatory Variables: NDI (infrait)

Referring to the practice of Zhao (2022) [59], a four-dimensional index system of long-
distance optical cable lines, mobile phone switch capacity, industrial robot installation, and
the number of Internet access ports is used, and the entropy weight method is selected,
to determine the weight of each index, and, finally, the new digital number is calculated.
Infrastructure metrics:

3.2.3. Control Variables

(1) Government self-sufficiency rate (sufit). Fiscal self-sufficiency is a significant cri-
terion for judging whether the development of a regional government is healthy.
Local governments can use public finance to solve the problem of social and eco-
nomic inequality, so as to promote the low-carbon transformation of the region [60].
Saygin et al. (2015) [61] suggested that a government can push the transformation of
the energy structure in a region by providing guiding policies to develop technological
innovation in renewable energy. Referring to the practice of Yan et al. (2022) [62],
we adopt the ratio of the revenue in the general budget of the local government
to the expenditure in the general budget of the local government to represent the
government’s self-sufficiency rate.

(2) The intensity of environmental regulation (erit). When the government implements
a series of environmental regulation policies, polluters will predict increase in the
intensity of environmental regulation in the future, so as to strengthen their current
utilization of such energy, or force enterprises to adopt clean energy and advanced
energy-saving and emission-reduction technologies, by improving industry stan-
dards [63]. Referring to the practice of Peng et al. (2020) [64], we select the com-
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prehensive utilization rate of solid waste, to measure the intensity of environmental
regulation in each province.

(3) The level of urbanization (urbanit). At a particular stage in economic development,
the increase of energy consumption follows an “inverted U” curve with rising urban-
ization levels, which leads to population clustering, changes in energy consumption
patterns, and technological innovation. These changes push the structure of energy
consumption toward optimization. Referring to Liu et al. (2022) [65], this article
uses the proportion of urban population to characterize the urbanization level of a
region and introduces a squared term of the urbanization level (urbanit

2), to ensure
the adequacy of urbanization level in explaining the energy consumption structure.

(4) The level of economic development (pgdpit). Taghizadeh and Rasoulinezhad (2020) [66]
stated that there is a positive correlation between economic development and regional
energy transition. We refer to the practice of Acheampong et al. (2021) [67], which
used the logarithm of gross domestic product (GDP) per capital to measure the level
of regional economic development.

(5) Educational level (egdpit). Level of education may influence the environmental
awareness of residents, which in turn affects their acceptance and support for the
energy transition Tang et al. (2013) [16] also believed that educational level also played
a certain role in the process of energy structure optimization. We reference Li et al.
(2022) [68] and uses the share of local fiscal expenditure on education in regional GDP
to measure the level of education. To sum up, the specific variable description is
shown in Table 2.

Table 2. Variable definitions.

Variable Classification Variable Definition

Explained variable Energy structure Proportion of energy consumed by coal
compared to total energy consumed

Explanatory variable Infra New digital infrastructure

Control variables

Suf Local government revenue to expenditure ratio
Er Comprehensive utilization rate of solid waste

Urban Level of urbanization
Urban2 Square of the level of urbanization
Pgdp Logarithm of GDP per capital
Egdp Education expenditure as a percentage of GDP

Intermediate variables
Gtfp Green total factor productivity
Gfin Green finance index

3.3. Data Description

This paper takes the data of 30 provinces, autonomous regions, and municipalities
in China (excluding Hong Kong, Macao, Taiwan, and Tibet) as the research object. The
time span of the data is from 2008 to 2019. The variable data in this article were mainly ob-
tained from the “China Energy Statistical Yearbook”, “China Statistical Yearbook”, “China
Industrial Statistical Yearbook”, “China Urban Statistical Yearbook”, “China Industrial
Economic Statistical Yearbook”, “China Environmental Statistical Yearbook”, and “China
Insurance Yearbook and Statistical Yearbooks of various provinces”. Industrial robot data
were obtained from the International Federation of Robotics. Table 3 shows a descriptive
statistical analysis of the above variables.
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Table 3. Descriptive statistics of variables.

Var N Mean Std Min Q25 Q50 Q75 Max

energy 360 0.414 0.152 0.012 0.312 0.438 0.519 0.724
infra 360 0.194 0.147 0.012 0.088 0.150 0.251 0.941
suf 360 0.538 0.194 0.189 0.400 0.487 0.706 0.960
er 360 0.665 0.191 0.254 0.511 0.644 0.834 0.998

urban 360 0.559 0.131 0.291 0.469 0.543 0.616 0.942
pgdp 360 1.629 0.419 0.680 1.352 1.594 1.870 2.860
egdp 360 0.040 0.015 0.019 0.029 0.037 0.048 0.112

Figures 2 and 3 plot the average level of China’s energy consumption structure and
NDI from 2008 to 2019. Specifically, the proportion of coal consumption in the central
and western regions is relatively high, while the proportion of coal consumption in the
eastern region is relatively low. The level of NDI in the central and western regions is
generally low, and that in the eastern regions is generally high. Regions with a high level
of NDI are characterized by a developed economy, the concentration of scientific and
technological talent, and a low endowment of non-clean energy resources. Regions with a
high proportion of coal energy consumption have the characteristics of an underdeveloped
economy, large loss of scientific and technological talents, and high endowment of non-clean
energy resources.

Figure 2. Distribution of energy consumption structure (2008–2019).

Figure 3. Distribution of new digital infrastructure (2008–2019).

4. Results

4.1. Benchmarking

We used a linear regression model to test the direct impact of NDI. Table 4 shows the
direct impact of NDI on the energy transition. Columns (1) and (2) do not include control
variables, while columns (3) and (4) include control variables. Columns (1) and (3) fixed
the year, while columns (2) and (4) fixed the year and province. From the results in column
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(4) of Table 4, the impact of NDI on the energy structure remained significant at 1% and
was negative. The impact coefficient was −0.234, which indicates that NDI is conducive to
transformation of the energy structure.

Table 4. Direct impact of NDI on energy structure transition.

(1) (2) (3) (4)
Variables Energy Energy Energy Energy

infra −0.126 * −0.179 *** −0.118 * −0.196 ***
(−1.67) (−4.27) (−1.72) (−4.47)

suf −0.183 *** −0.064
(−3.66) (−1.26)

er −0.075 * −0.047 *
(−1.87) (−1.67)

urban −1.119 *** −0.538 *
(−3.26) (−1.90)

urban2 0.689 *** 0.257
(2.62) (1.08)

pgdp −0.206 *** −0.102 **
(-4.71) (−2.43)

egdp −5.312 *** −0.702
(−8.77) (−1.13)

Constant 0.439 *** 0.449 *** 1.533 *** 0.929 ***
(26.61) (53.57) (11.98) (9.55)

Year Fixed Effect Yes Yes Yes Yes
Province Fixed Effect No Yes No Yes

Observations 360 360 360 360
R-squared 0.115 0.943 0.578 0.948

Notes: ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively, with the same below.

To ensure the robustness of the regression results, we used a replacement regression
method for the test. We used the SYS-GMM model to estimate the impact of NDI on the
regional energy transition. The p-value of AR(1) in Table 4 is less than 0.05, and the p-value
of AR(2) is greater than 0.1, which means that the hypothesis that the remaining terms
have first-order auto-correlation was accepted, and the hypothesis that the remaining terms
have second-order auto-correlation was rejected. The p-value of the Sargan test was greater
than 0.05, which confirmed the validity of the instrumental variables. The above results
indicate that the choice of variables was valid and that the model is appropriate. Table 4
shows the regression results of the SYS-GMM model. The results show that infra had a
significant negative impact on energy, which indicates that NDI had a catalytic effect on
regional energy transition.

In addition, considering the endogenous of the article, we used the instrumental
variable to test the model. Referring to Oughton (2021) [69], we used Internet broadband
access ports (intacc) as an instrumental variable for NDI, which was primarily obtained
from the National Bureau of Statistics of China. The number of Internet broadband access
ports reflects the penetration rate of NDI, so we chose the number of Internet broadband
access ports as an instrumental variable for NDI. Internet broadband access ports do not
directly influence the transformation of the regional energy structure, and NDI is needed to
provide some support, so the number of Internet broadband access ports as an instrumental
variable satisfies the exclusivity requirement. According to column (3) of Table 5, the
instrumental variable passed the F test, which means that the increased Internet broadband
access ports improved the regional energy structure, which is consistent with the results in
Table 4, demonstrating the reliability of the empirical results.
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Table 5. Robustness test of NDI for regional energy transition.

(1) (2) (3)
SYS-GMM SYS-GMM IV

Variables Energy Energy Energy

L.energy 0.946 *** 0.905 ***
(45.87) (30.68)

infra −0.042 *** −0.051 ** −0.166 ***
(−2.98) (-2.38) (−2.96)

suf −0.032 −0.067
(−1.64) (−1.02)

er −0.007 −0.003
(−0.38) (−0.09)

urban 0.056 −0.713 *
(0.32) (−1.74)

urban2 −0.020 0.362
(−0.15) (1.06)

pgdp -0.013 −0.106 **
(−1.01) (−2.00)

egdp −0.417 * −0.041
(−1.91) (−0.06)

Constant 0.018 * 0.074
(1.68) (1.28)

Year Fixed Effect Yes Yes Yes
Province Fixed Effect Yes Yes Yes

Observations 330 330 270
Number of Province 30 30

Ar1 (p value) 0 0
Ar2 (p value) 0.905 0.751

Sargan (p value) 0.288 0.227
KPLM 191.2

CDWaldF 545.9
Note: The standard errors in brackets, ***, **, *, indicate significant at 1%, 5% and 10% respectively, the same
below.

4.2. Mechanism Inspection

Referring to the method of Shen et al. (2021) [70], this paper uses a mediation effect
model to study the impact mechanism of NDI on energy transition.

gtfpit = α1infrait + γ∑ controlit + λi + μt + εit (2)

energyit = α2infrait + α3gtfpit + γ∑ controlit + λi + μt + εit (3)

gfinit = α4infrait + γ∑ controlit + λi + μt + εit (4)

energyit = α5infrait + α6gfinit + γ∑ controlit + λi + μt + εit (5)

Formulas (2) and (3) verify the mediation effect of GTFP (gtfp), and the effect value
of the mediation effect in the total effect is (α1α3)/β1; Formulas (4) and (5) verify the
mediation effect of green finance index (gfin), where the effect value of the mediator effect
over the total effect is (α4α6)/β1.

Columns (1) and (2) of Table 6 use GTFP as an intermediary variable, column (1) shows
that infra had a significant positive impact on GTFP, which means that NDI improved
the GTFP. Column (2) shows that both infra and GTFP were negatively correlated with
energy, which means that NDI not only directly contributed to the transformation of the
energy structure, but also improved the energy structure by promoting green production.
Therefore, GTFP plays an intermediary role in the transformation of energy structure and
NDI. The mediating effect accounted for 23.1% of the effective value of the total effect.
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Table 6. Mechanism test.

(1) (2) (3) (4)
Variables Gtfp Energy Gfin Energy

gtfp −0.024 **
(−2.42)

gfin −0.390 ***
(−4.12)

infra 1.886 *** −0.169 *** 0.054 ** −0.175 ***
(5.85) (−2.99) (2.10) (−4.07)

suf 0.276 −0.054 0.037 −0.050
(0.88) (−1.04) (1.24) (−1.00)

er 0.617 *** −0.033 0.044 *** −0.030
(3.46) (−1.09) (2.65) (−1.08)

urban −15.396 *** −0.793 ** −1.480 *** −1.116 ***
(−8.34) (−2.33) (−8.94) (−3.60)

urban2 12.815 *** 0.512 * 0.663 *** 0.516 **
(8.31) (1.80) (4.79) (2.15)

pgdp 1.184 *** −0.064 0.093 *** −0.066
(4.32) (−1.37) (3.78) (−1.57)

egdp 2.431 −0.724 0.530 −0.495
(0.64) (−1.15) (1.46) (−0.81)

Constant 3.036 *** 0.943 *** 0.546 *** 1.142 ***
(4.84) (8.75) (9.63) (10.57)

Year Fixed Effect Yes Yes Yes Yes
Province Fixed Effect Yes Yes Yes Yes

Observations 330 330 360 360
R-squared 0.944 0.950 0.961 0.950

Notes: ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively, with the same below.

Columns (3) and (4) of the model results in Table 5 use the green finance index as an
intermediary variable. Column (3) shows that infra had a significant positive effect on gfin,
implying that NDI increased the level of green finance. Column (4) shows that both infra
and gfin were significantly negatively related to energy, indicating that green finance played
a significant intermediary role in the energy structure transition, with the intermediary
effect accounting for approximately 10.7% of the total effect. This result implies that NDI
improved the regional energy structure by increasing the penetration of green finance. This
finding is similar to the conclusion of Wang et al. (2021) [71] that green finance development
contributes to the shift from conventional to renewable energy consumption.

4.3. Heterogeneity Analysis

In fact, Figure 2 demonstrates that the level of NDI varies by region. Differences in
their energy endowments and environmental monitoring lead to differences in the energy
structure across countries. As a result, the impact of NDI on the transformation of the
energy structure may vary by region.

4.3.1. The Impact of NDI on the Energy Transition in Provinces with Different
Pollution Levels

Table 7 shows the impact of NDI on the energy transition in regions with various
levels of pollution. Columns (1) and (2) are the comprehensive pollution scores calculated
using the entropy weighting method, Columns (3) and (4) are the comprehensive pollution
scores calculated using the principal component method. Specifically, the inhibitory effect
of infra on energy passes the test for less polluted areas (pollution index below the median).
In less polluted areas, NDI promoted the regional energy structure transformation. For
areas with high pollution levels, the effect of infra on energy did not pass the test. NDI
had a greater impact on the energy transition in regions with a lower pollution level. The
penetration of NDI could help reduce the dependence on regional resource endowments,
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improve the ability of environmental supervision, and promote the transformation of the
energy structure.

Table 7. The impact of NDI on energy transition in provinces with different pollution levels.

(1) (2) (3) (4)
Variables Poent ≤ Med Poent > Med Popri ≤ Med Popri > Med

infra −0.538 *** −0.090 −0.552 *** −0.100
(−6.08) (−1.28) (−6.10) (−1.52)

suf 0.016 −0.082 −0.028 −0.091
(0.20) (−1.29) (−0.35) (−1.44)

er −0.181 *** 0.093 ** −0.160 *** 0.056
(−4.98) (2.17) (-4.31) (1.35)

urban 0.357 −1.879 *** 0.109 −1.921 ***
(0.85) (-3.07) (0.27) (−4.03)

urban2 −0.201 1.605 *** −0.123 1.574 ***
(−0.64) (2.82) (-0.41) (3.48)

pgdp −0.130 *** −0.000 −0.221 *** 0.014
(−2.87) (−0.00) (−3.84) (0.24)

egdp −1.487 ** −0.483 −1.475 ** −0.701
(−2.22) (−0.33) (−2.14) (−0.55)

Constant 0.666 *** 1.013 *** 0.979 *** 1.060 ***
(5.34) (6.97) (6.37) (7.41)

Year Fixed Effect Yes Yes Yes Yes
Province Fixed Effect Yes Yes Yes Yes

Observations 180 178 179 180
R-squared 0.960 0.949 0.959 0.955

Notes: *** and ** represent the significance levels of 1%, 5%, and 10%, respectively, with the same below.

There are two possible reasons why NDI promoted the energy transition in less
polluted provinces. The first reason is the resource endowments of the regions. Areas
with low pollution levels are usually not rich in resource endowments of non-clean energy,
and their industrial development is less dependent on such energy sources. NDI has a
high penetration, which provides a stronger impetus for low-carbon energy transformation
in low-pollution areas [72]. The second reason is the pollution regulation in the region.
Environmental supervision policies are regarded as one of the important ways to reduce
environmental pollution. The tighter the monitoring of pollution, the lower the level of
environmental pollution [73]. Therefore, when the local government pays attention to
environmental pollution, NDI has a more significant effect on improving the government’s
pollution supervision ability.

4.3.2. The Impact of NDI on Energy Transition in Energy Cooperation Regions

Table 8 shows the impact of NDI on regional energy transformation under the ECP.
We selected the “Belt and Road” policy as the representative of ECP [74–77]. Specifically, in
the policy implementation areas of energy cooperation, the effect of infra on energy passed
the 1% significance test. The results indicate that NDI had a greater impact on the energy
transition in areas with the implementation of an energy cooperation policy. In contrast,
in non-energy policy implementation areas, the effect of infra on energy did not pass the
significance test. This result suggests that the impact of NDI on the energy transition in the
non-energy cooperation policy implementation areas was not significant. The empirical
tests found that NDI had a greater impact on the energy transition in energy cooperation
policy regions, while the impact was not significant in non-energy cooperation policy
regions. The reasons for this may be related to geographical location, and the government
needs to consider geographical location and regional trade networks of China’s trading
partners when selecting provinces to implement the One Belt, One Road policy. Therefore,
in regions with existing trade bases, the information supervision, information sharing, and
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information exchange services provided by NDI enhanced the efficiency and stability of
energy cooperation, thereby accelerating the pace of regional energy transformation.

Table 8. Impact of NDI on energy transition in regions with or without in energy cooperation.

(1) (2) (3) (4)
Variables Road = 0 Road = 1 Road = 0 Road = 1

infra 0.006 −0.156 *** 0.024 −0.220 ***
(0.08) (−3.23) (0.33) (−4.01)

suf −0.046 0.020
(−0.67) (0.29)

er 0.092 ** −0.092 ***
(1.99) (-2.77)

urban 0.004 −1.170 **
(0.01) (−2.36)

urban2 0.350 0.846 *
(1.29) (1.87)

pgdp −0.014 −0.048
(−0.21) (−0.90)

egdp 0.811 −0.545
(0.63) (−0.83)

Constant 0.448 *** 0.416 *** 0.277 * 0.952 ***
(29.78) (45.93) (1.88) (6.39)

Year Fixed Effect Yes Yes Yes Yes
Province Fixed Effect Yes Yes Yes Yes

Observations 156 204 156 204
R-squared 0.954 0.950 0.958 0.957

Notes: ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively.

5. Discussion

In the following, we present the main results of the effects mentioned above, pointing
out the impact of NDI on energy structure transition. In Section 4, we test the hypotheses
presented in this paper using empirical models and analyze the empirical results, the
findings of which are summarized in Table 9. This paper discusses the effect, transmission
mechanism, and conditions of NDI on energy structure transformation. The research
showed that NDI had a significant promotional effect on energy structure transformation,
and GTFP and green finance played an important role. In fact, China’s energy industry
chain is characterized by many links and long chains. NDI will help improve the high-
end link capacity of the industrial, chain as well as the autonomy and controllability,
so as to improve the functioning and replace the traditional energy system; accelerate
the construction of a clean, low-carbon, safe, and efficient energy system; and facilitate
the construction of a modern energy system. In addition, green finance and GTFP will
accelerate the transformation of China’s energy structure. Green finance provides long-term
and low-cost financial support for the transformation of energy structure. Improving GTFP
is the core of improving energy efficiency and promoting the transformation of energy
structure. The conclusion of this paper shows that, in the context of carbon peaking and
carbon neutrality, it is necessary to give full play to the importance of NDI in promoting
the transformation of China’s energy structure.
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Table 9. Summary of results: three impacts of NDI on energy transition.

Empirical Main Findings Explanation

Effect I: Direct effect NDI has a significant positive impact on the
transformation of regional energy structure.

1© NDI optimizes energy management systems and improves
energy allocation efficiency.
2© NDI increases the flexibility and timeliness of the energy

market.
3© NDI enhances awareness of green energy consumption and

accelerates the shift in low-carbon consumer behavior.

Effect II: Intermediary effects
NDI contributes to the transformation of
regional energy structure by increasing GTFP.

1© NDI facilitates the diffusion of green production
technologies into industry, thereby increasing the efficiency of
renewable energy use.
2© NDI builds a diverse labor supply system, to meet the labor

demands of green energy production methods.
3© NDI speeds up the flow of information and pushes

companies toward green production, by creating a preference
for green energy consumption.

NDI promotes the transformation of regional
energy structure through the development of
green finance.

1© NDI improves green information communication
mechanisms, increases green financial support for quality
companies, and fills the investment gap in the energy transition.
2© NDI can optimize green investment systems and guide

social capital into regional energy transition.

Effect III: Moderating effects

The positive effect of NDI on the
transformation of the energy structure is
evident in areas with low levels of
environmental pollution.

1© In areas of strong environmental governance awareness,
NDI enhances environmental regulation and influences the
transformation of the energy structure through the “cost of
compliance effect” and “innovation offset effect”.
2© The positive effect of NDI on the energy transition is

undermined by a high level of industrial energy structure
dependence in areas with a large resource endowment in
non-renewable energy sources and by the underdevelopment
of regional economies.

The positive effect of NDI on the
transformation of the energy structure is
evident in regions adopting the Energy
Cooperation Policy (ECP).

1© ECP regions generally have strong energy transition
aspirations, raising the positive role of NDI for the energy
transition.
2© The geographical advantages and industrial needs of the

regions involved in the ECP provide favorable conditions for
energy cooperation and strengthen the positive role of NDI.

6. Conclusions and Policy Implications

Under the “dual carbon” goal, the rapid development of NDI construction has a pro-
found impact on regional energy transformation. Based on provincial panel data in China,
this paper explored the impact of NDI on regional energy structure and its mechanisms
of action, from the perspective of green production and green finance. The main findings
were as follows: NDI has a direct and significant impact on regional energy transition,
and NDI facilitates regional energy transition. NDI not only directly affects the energy
transformation of regions, but also has an indirect impact on regional energy transforma-
tion through GTFP and green financial. The intermediary effect of GTFP was 23.1%, and
the intermediary effect of green finance was 10.7%. This conclusion provides a clearer
explanation for the potential green mechanism of NDI and energy transition, and provides
new ideas for improving regional energy structure. NDI has different impacts on pollution
levels and energy transition policies in different regions. NDI has a significant positive
effect on the energy transition in areas with low pollution levels or ECP, while it does not
have a significant effect on the energy transition in areas with high pollution levels or with-
out ECP policies. This means that the impact of NDI on energy transition is prominent in
regions where the resource endowment is not abundant and the environmental supervision
awareness is strong. These findings respond to, and expand on, the current debate on the
relationship between NDI and the energy transition.

Based on the above findings, we can make the following policy recommendations:

(1) The government should pay attention to the construction of NDI and give full play
to the positive role of NDI in regional energy transformation. Specifically, it should
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follow the trend under the “dual carbon” goal; the rapid development of NDI has a
profound impact on energy transformation. In addition, from the perspective of man-
agerial implications, on the one hand, enterprises can enhance their green technology
innovation ability by increasing R&D investment, such as promoting the technological
innovation of renewable energy, including water energy, wind energy, solar energy,
and tidal energy, so as to realize the transformation and upgrading of energy structure.
On the other hand, the government needs to explore the mechanisms and practice
of carbon reduction, with the demand side as the driving force to improve energy
efficiency, and enhance the internal driving force of energy structure transformation.

(2) Governments should implement targeted energy transition strategies using the impact
of NDI on energy transition. First of all, it is necessary to develop GTFP in industry,
promote the updating and integration of modern technology and green production
technology, and increase the utilization of renewable energy. In addition, we need to
develop the level of regional green finance through NDI, compensate for the lack of
green financial regulation, raise the efficiency of green investment, and provide new
talent for regional energy transition.

(3) According to their level of new digital technology facilities and energy base, dif-
ferent regions should implement targeted energy policies. Specifically, areas with
low pollution levels should strengthen the construction of NDI, give full play to its
advantages, upgrade their own pollution supervision systems, and provide a model
for optimizing their energy structure. Areas with high pollution levels should elimi-
nate their excessive dependence on non-clean energy resources as soon as possible,
raise awareness of pollution control, and actively introduce advanced technologies
of renewable energy, so as to optimize the regional industrial energy structure. In
addition, it is important to continue international energy cooperation, to learn from
the successful experiences of cooperation, to introduce advanced renewable energy
application technologies, to optimize the inter-provincial energy cooperation system,
and to improve inter-provincial energy distribution, so as to achieve a “win–win”
effect of economic growth and energy transition.

This article still has some limitations. Firstly, this article constructed a system of evalu-
ation indicators for NDI by combining existing research and data availability. However, the
current representations of NDI have not yet been unified, so the system of indicators for
NDI still needs improvement. Secondly, this paper chose mediating mechanisms related to
green development, but we did not explore other potential influencing mechanisms. Due
to the availability of data, it is very hard to enumerate all potential mechanisms, which will
be the focus of future research and needs to be further explored.
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Abstract: Cooperation between supply chain partners in the oil industry is essential, especially when
oil prices suffer from fluctuations that affect the profitability of each party. An essential task in oil
field development projects is to create an optimum agreement between the national oil company and
the international oil company to guarantee agreement optimization. In this paper, the national oil
company is the first party (FP) and the international oil company is the second party (SP). The paper’s
purpose is to investigate the use of game theory to obtain the best agreement between the FP and SP
in order to enhance the cooperation and reduce conflict. In this paper, Nash and Maxi-min solutions
have been applied for the first time in a special type of petroleum agreement, called exploration
and production sharing agreements (EPSA). This is conducted for a case study in Libya. The study
considers nine negotiation factors (issues) in the EPSA, which are the share percent, the four “A”
factors, and the four “B” factors, which are usually affected by the fluctuations of oil prices; and
the study investigates their effect on the total payoff function, the net present value (NPV), and
internal rate of return (IRR) for both parties. The Maxi-min solution has shown an improvement in
the NPV and IRR of the SP, where NPV increased from USD 148 million to USD 195 million, and IRR
from 15.65% to 17.01%. The Nash solution has shown a little more improvement than the Maxi-min
solution in the NPV and IRR for the SP, where the NPV and IRR have increased from USD 148 million
to USD 222 million and from 15.65% to 17.94%, respectively.

Keywords: oil fields; oil companies; negotiation; game theory; Maxi-min solution; Nash solution;
agreement optimization

1. Introduction

Negotiation is described as a process in which two or more parties negotiate or
cooperate in order to reach an agreement. Systematic studies of the primary sources of
negotiation literature have been published by Kemper and Kemper [1]. The origins of
negotiation research can be traced back to game theory. Raiffa’s dissertation, which is
included in his book “The Art and Science of Negotiation”, focuses on game theory to explore
negotiation theories’ strategic choices. He claims that the effectiveness of negotiations is
contingent on specific decisions [2]. Pruitt and Carnevale [3] addressed the social conflict
negotiation outlines of the dominant normative negotiating paradigm’s faulty principles;
these traditional models assume that there are only two negotiating sides, each structured
to maximize self-interest.
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The use of specific methodology and scientific research to identify the best alternatives
is an important aspect of the process of evaluating viable investment opportunities and
assisting decision making. The general characteristics of petroleum project evaluation are
comparable to those of other industries. There are, however, some unique and distinct
challenges, most of which are related to the nature and conditions of petroleum projects
and necessitate specialized knowledge and experience. [4].

In comparison to other oil agreements, exploration and production sharing agreements
(EPSA) are currently more widespread. Many EPSA conditions allowed for negotiations
between the national oil company, which is the first party (FP), and the international oil
company, which is second party (SP). The FP retains rights to petroleum resources and
production under the EPSA, but the SP receives a part of hydrocarbon production in
exchange for services rendered [5]. The EPSA is used to split the profits from developed
oil and gas fields’ hydrocarbon output. The EPSA allows for a variety of profit-sharing
arrangements between the two parties. Production share, profit split, production rate,
bonus, discounted cash flow, royalty, and income tax are some of the most used methods [6].
In profit oil split, most EPSAs use a production-based sliding scale and R-factor method.
Around 75% of EPSAs in the world use a sliding scale based on daily production and
annual SP investment [6].

In this research, the Libyan EPSA IV model was applied to an oil field with secondary
recovery and water injection. The development costs are split evenly between the FP and
the SP (50% −50%). The running costs are split among the partners based on their output
shares (production share). All costs for exploration, appraisal, and development can be
recovered from the SP’s production share. Taxes, royalties, and other fees are not applied
to the SP [7,8]. To estimate the net present value (NPV) and internal rate of return (IRR) of
this field, an economic model was created in Excel. Compared to the FP, the SP’s NPV and
IRR of the economic model are both low. The FP’s main goal is to maximize profit from
existing oil and gas reserves. The SP intends to increase oil output while lowering expenses
and increasing profit. The SP has highlighted concerns about potential conflicts of interest
between the FP and the SP. This issue arose as a result of the SP’s unsatisfactory return of
the agreement’s earnings.

A smooth process of agreement between the two parties might face some challenges
in determining the terms in the contract. This is especially important in the time of heavy
fluctuations of prices of oil. Every party wants the best agreement terms to maximize
its profit. Therefore, a fair agreement based on a certain methodology is necessary. The
methodology needs to be practical and easy to understand by practitioners in the two
parties. This study concentrates on the variables that are reflective to the changes in the
prices of oil. Based on Nash and Maxi-min solutions, the study proposes a method that can
be applied with Excel spreadsheets to make it easy for the two parties to accomplish. To
validate the methodology and give full details of its steps, a real case study was presented to
show the effect of the proposed methodology. The effect of the production share, A factors,
and B factors on the economic indicators NPV and IRR for the two parties (government
and international company) was identified in the literature. The agreement on the levels
of these factors needs to be investigated. In this study, the key nine negotiable factors are
used and thoroughly examined using two game theory models in order to assist decision
makers in determining the best course of action for each of them. Furthermore, a strategy
for resolving the conflict between FP and SP has been developed to help remove conflict as
a barrier to the development of oil fields.

Two solutions approaches have been used in this paper to resolve the conflict and
optimize the agreement output. The Nash bargaining solution and Maxi-min solution are
used to enhance the payoff and eventually the SP’s NPV and IRR. The concentration on
the SP is because its margin for profit is much less than that for the FP. However, there is a
threshold for the minimum score that the FP can demand in negotiation, and this threshold
was taken into consideration. The two methods show a significant improvement of the NPV
and IRR. Agreement optimization for the parties has been achieved. The study proposes a
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practical methodology that is deep and yet easy to be applied by practitioners using Excel
Solver. The study starts from the situation that currently exists and proposes a different
way for more gain that guarantees the basic requirements of the two parties.

For the FP and SP alike, the division of economic rent is the primary focus of concern.
It is the driving force behind a fiscal system and the focal point of negotiations and, at
times, tensions and controversies [9].

The SP wants to maximize the value of their assets. They examine investment pos-
sibilities around the world and assess their relative risk–reward profiles using economic
indicators. Oil companies monitor the revenue generated by assets throughout their eco-
nomic lives to ensure that the capital investment and expenditures have been covered
and the return on capital is compatible with the risk associated with the asset and the
corporation’s strategic objectives. The host government is interested in determining if a
fiscal system achieves its goals. To do so, host governments utilize economic and system
measures at the project level to analyze whether the project’s financial and social benefits
are commensurate with the project’s risk level and the government’s sector policy objec-
tives. At the country level, host governments assess the influence of the oil sector’s overall
revenue flow on important macroeconomic variables (mainly inflation, GDP growth, the
balance of payments) [10].

Better negotiation results will lead eventually to better NPV and IRR. The NPV is the
difference between the present value of the investment’s cash outflow and the present value
of the project’s cash inflow. Technically, when the cash flow of an activity is discounted at a
certain given discount rate, either a positive or negative value is obtained, depending on the
conditions. To obtain the maximum possible profit or benefit, the company will choose the
activity with the highest NPV. The IRR is defined as the discount rate at which the sum of all
future discounted cash flow present values equals zero. In the case of overseas investment,
it will be significantly fair if an IRR of 13–17% is guaranteed to the SP. IRR becomes a
more important profit indicator when its value is less than 20%. The IRR is thought to be
considerably more significant for the SP than it is for the FP in oil development projects.
This is the only issue that needs to be taken into account in EOR and offshore development
projects where the IRR is crucial to the FP and SP. Therefore, the minimal IRR of 18% to 20%
is taken into consideration as an economic criterion in the current study for economically
recoverable resources [11].

The main contribution in this study is to include, for the first time, agreement variables
(share, “A” factor, and “B” factor) in the decision-making process in EPSA agreements,
using the two methods of Nash and Maxi-min solutions. This is done by investigating the
effect of these variables on the profitability of the SP and FP. Moreover, a comparison is
made between the proposed methodologies with the original strategy followed currently
in the case study in Libya. In order to optimize their economic benefits, the two parties will
decide which agreement factors to concentrate on during the agreement negotiation with
the help of the proposed tool. Additionally, the NPV and IRR of the SP was significantly
improved using the two new approaches without violating the profit requirements of
the FP. Furthermore, the two fair solution approaches, Nash and Maxi-min, used in this
research, for the first time in oil agreements, will offer a novel technique for further studies
to modernize the current approaches being used in the negotiation of the equity split in the
oil and gas industry to achieve agreement optimization.

The rest of this paper is organized as follows: After this introduction, the next section is
about the literature review, which explains the previous related studies and the contribution
of the current research. Then, the case study with full details is presented. Then, the
methodology section explains the Nash and Maxi-min methods. Then, the section of results
and analysis presents the results and main insights of the methods. Finally, the conclusion
summarizes the main findings and recommendations for future research.
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2. Literature Review

Applications of game theory in the oil and gas industry typically fall into one of three
categories. The first category is competitive bidding, in which companies compete for
a limited number of opportunities. The second type of partnership is a joint venture, in
which a group of companies work together to implement a project or other opportunity.
The third one is the negotiation that involves partners, clients, vendors, and governments,
in which each side aims to secure the maximum possible share [12]. Game theory is known
in the literature to be applied in the field of oil production and price [13]. However, none
of the previous studies investigated game theory methods such as the Nash solution in
EPSA agreements. For example, strategic exploration and production were derived jointly
in a three-period subgame perfect equilibrium in a work by [14]. They found the subgame
perfect Nash equilibrium in a game where firms compete not only in the output market
but also in the exploration process. A game theoretic framework has been applied in a
study by Willigers et al. [15] in the oil and gas industry, where the Nash equilibrium was
used in the analysis. Esmaeili et al. [16] used a game theory approach to investigate the
policies for Iran’s oil and gas shared resources conflicts with Iraq and Qatar. The outcomes
of mathematical models demonstrate how countries could devise an acceptable plan for
utilizing their common resources. Langer et al. [17] used a partial-equilibrium global
energy market model. The problem was modeled as a Generalized Nash Equilibrium
(GNE) between non-cooperative players. They discovered that eliminating the US crude
ban will benefit domestic producers by allowing them to sell their petroleum at global
market prices rather than prices skewed by local constraints.

Tominac and Mahalec [18] created a game-theoretic framework for strategic pro-
duction planning in petroleum refineries. The problem is expressed as non-cooperative
potential games with Nash equilibria as solutions. According to game theory, the produc-
tion planning choices are sound, and they can withstand changes in competition strategy.
Moradinasab et al. [19] investigated the petroleum supply chain in light of sustainability
and pricing challenges, and a model for a sustainable competitive petroleum supply chain
was developed to reduce pollution while increasing profitability and job creation. Araujo
and Leoneti [20] analyze relevant realistic and real-world oil and gas sector examples in the
form of 2 × 2 strategic games, with the goal of investigating game theory methodologies to
aid in the discussion and resolution of the major challenges encountered. They investigated
the use of the Nash equilibrium and Max-min methods, plus other methods, to obtain
solutions in different case studies.

Nicoletti and You [21] modeled the crude oil supply chain from oil well to refinery
as a mixed-integer program that allows for competing objectives and interactions among
various stakeholders. They applied the Stackelberg game theory. The crude oil refiner
takes the lead and selects how much oil to buy in order to maximize profits while limiting
the environmental impact of its operations. The profitability of investment in refinery
development was investigated in a work by Babaei et al. [22], and the effects of the model
on each agent were considered using a multi-agent method. Using a game theory approach,
they discovered substantial investment problems with consequences for the future of
the gasoline sector. Xue et al. [23] determined the optimum negotiation technique for
oil corporations taking part in global oil and gas development projects. They created a
model of bilateral bargaining and examined the variables that affect the equilibrium income
ratios. Bidding order and information asymmetry are shown to be the two key influencing
factors. The findings indicated that information asymmetry has no impact on the two
parties’ relative real income levels. Araujo and Leoneti [24] suggested using game theory
to simulate and assess the stability of Brazil’s regulatory framework for exploration and
production. They suggested a method for modeling a multi-criteria group problem as a
multi-criteria game and solved it by applying the Graph Model for Conflict Resolution
methodology, to comprehend and measure the preferences of the players and find fair and
stable solutions. Csercsik [25] constructed a simple game-theoretic model to capture the
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fundamental elements of the gas supply dilemma. The model was used to build a method
for supply–security cooperation.

For more about game theory with application to oil production and price, the reader
can refer to Ibrahim et al. [13]. The above studies investigated the use of game theory
in the petroleum field in general. However, little was published on using game theory
in petroleum contracts between the national company and the contractor. An example
for that is the study by Keshavarz et al. [26], who investigated the Iranian petroleum
contract fiscal regime using bargaining game theory for the purpose of guiding contract
negotiators. The methodology presented depends on a certain type of contract (risk service
contract) devolved by the Iranian government. Besides its narrow application field, the
model presented is complex. Another study that investigated the game theory in petroleum
contracts was the one by Dirani and Ponomarenko [27], who analyzed the production
sharing contract system. The principle of win-win game theory was presented when
the interests of the international oil company and the state are coordinated. However,
they depended on a literature review and did not investigate the principle with data in
detail. Moreover, none of the mentioned previous studies investigated the EPSA agreement.
Therefore, the novelty of the current study is to investigate petroleum contracts using two
types of game theory models, namely, the Nash and Maxi-min solutions, and propose
two general models that can be applied easily in EPSA agreements and can be easy to
understand. This is done with a real case study. To the best of the authors’ knowledge, this
study is the first one that investigates the application of a game theory method in EPSA
agreements and their negotiation factors. The study depends on practical models that can
be applied by companies to reduce the conflict between the two parties. Excel Solver was
used because of its availability in every computer.

3. Case Study

The focus of the case study is to resolve the conflict between the Libyan National Oil
Corporation (NOC) and an International Oil Company to develop the AA oil field. The
National Oil Corporation was established in 1970. Its purpose is to organize petroleum
development plans and to oversee the administration and financial operations of oil and
gas enterprises. The NOC is in charge of all oil and gas exploration, production, and
marketing both domestically and abroad through its subsidiaries (National Companies)
or through agreements with foreign companies [28]. The NOC has plans to raise Libyan
oil production capacity to 2 million barrels per day. The NOC highlighted its plans for
exploration and production by the following steps:

1. Maximize the profit from each oil and gas agreement.
2. Minimize the SP share in any oil and gas agreement to obtain the highest revenue.

The SP has to bear a high portion of the risk. The SP expects to meet the benchmark
economic criterion. In the proposed development scenario, the IRR did not reach the
minimum limit.

To maintain the production plateau and boost the oil recovery factor, the AA oil field
is expected to be developed by a water injection project. The two parties intend to drill
50 producing wells with a daily flow rate of roughly 60 thousand barrels to develop the
field. This rate is likely to push the plateau out for another six years. The remaining
four peripheral water injections will be drilled to guarantee the requisite oil rate and
pressure are met. Table 1 shows the capital CAPEX and OPEX of the AA oil field. The total
production is expected to reach 219 million barrels by 2037, according to projections. A
three-phase separator is recommended in the field due to the relatively high gas–oil ratio
of 800 SCF/STB and water output. The condensate output of the field is estimated to be
30 STB/MSCF. As a result, a gas plant would be required to remove liquid hydrocarbon
by-product (LHP) from the field.
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Table 1. The capital expenditure and operating costs of AA field.

Cost Type Value, USD MM

CAPEX 569.18

OPEX 464.5

Other Costs 91.35

Total Costs 1125.03

A coded spreadsheet model was utilized to estimate the profitability indicators of
NPV and IRR for this scenario based on the AA field data. The purpose of this coded model
is to create a decision-making model for the initial development scenario.

This field development scenario assumes that the field was created using primary and
secondary recovery methods, as well as water injection. Oil field size, oil prices, gas prices,
LHP prices, and others are decision factors in this regard. Table 2 shows the assumptions
for the decision factors of the AA field in the economic model.

Table 2. The capital expenditure and operating costs of AA field.

Project Variable Value

Original Oil in Place 1 billion

The initial production 60,000 STB/D

Plateau time 6 years

The decline model Hyperbolic

The annual decline rate 25%

The hyperbolic constant 0.6

The oil price (escalated) USD 65/barrel

The HLP price (escalated) USD 75/barrel

The gas price (escalated0 USD 5/MMBTU

The discount rate 10%

The inflation rate 2%

The borrowed money (50% of the CAPEX) USD 321 million

The payment period 5 years

The loan interest rate 7%

The SP Production Share 15%

The Equity Split Mechanism

In 2004, the Libyan EPSA IV modified version was launched. The agreement requires
the SP to assume full responsibility for all exploration costs. The FP pays the entire share
of operational costs (equivalent to its contractual share, 85% to 90%) but only half of
development costs. Once production begins, the SP sets their proportion of share at 10% to
15% of total production in order to recover their share of the exploration and development
costs. The term “production share” refers to this percentage. Furthermore, according to
the “A” and “B” factors, the excess profit oil (the remaining oil from the second party’s
share of production “10% to 15%”) is shared between the two parties. As will be explained
later, the “A” and “B” factor values are a matter of negotiation between the two parties.
Signature and Production Bonuses must be paid by the second party. The first party, on
the other hand, pays the income tax of the second party from its share of the revenue to
the Libyan government. Furthermore, the second party is exempted from customs duties
under Libyan petroleum law. The following are specific rules in EPSA IV:
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1. Similar to EPSA III, except with added Gas and LHP Clauses.
2. SP is entirely responsible for exploration expenditures.
3. CAPEX is split 50/50 between the two parties.
4. SP’s percent of output provided for SP cost recovery.
5. OPEX is shared according to the production share.
6. There is no royalty and no tax paid by a third party.
7. The original “B” factors are as shown in Table 3, and they are a step function of field

oil output. The results of this study provide better settings as will be shown later.
8. Just like the “B” factors, the original “A” factors are obtained to compare the results

of this study to them. They are shown in Table 4, and they are a step function of the R
ratio. The two parties’ negotiating parameters include both “A” and “B” factors.

Table 3. Initial settings of Production Rate and Production Index, B factor.

Production Rate (bbl/Day) Production Index B

1–20,000 0.95

20,001–30,000 0.8

30,001–60,000 0.6

60,001–85,000 0.45

>85,000 0.2

Table 4. Initial settings of A Factor and R Ratio.

R Ratio A Factor

1.0–1.5 0.9

1.5–3.0 0.8

3.0–4.0 0.6

>4.0 0.4

The net cash flow (NCF) in the EPSA IV model can be found by using the following
equations [28,29].

FP NCF = [(FP Share% * oil production*price) + (excess profit, oil) − (SP excess profit, oil)]
+ [(FP Share% * LHP production*price) + (excess profit, LHP) − (SP excess profit, LHP)]

+ [(FP Share% * gas production*price) + (excess profit, gas)
− (SP excess profit, gas)] + Production Bonus − CAPEX − OPEX

(1)

SP NCF = [(SP Share% * oil production*price) − (excess profit, oil)
+ (SP excess profit, oil)] + [(SP Share% * LHP production*price)

− (excess profit, LHP) + (SP excess profit, LHP)]
+ [(SP Share% * gas production*price) − (excess profit, gas)

+ (SP excess profit, gas)] − CAPEX − OPEX − Production Bonus − Capital cost

(2)

The net present value represents the discounted values of future cash inflows and
outflows related to a specific project. The project lifetime is 29 years. After finding the
NCF based on the above equation, NCF of the SP was deflated. Then, IRR was estimated
using the function of IRR in Excel. Then, the NPV was determined by taking the sum of
the negative and positive cash flows and discounting the deflated NCF (from the IRR) by
using the NPV function.

4. Methodology

The Nash bargaining solution is an optimization procedure used to maximize the
product of the payoffs. Almost all bargaining, according to Nash, is a method of achieving
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and distributing benefits. A collection of possible variations of the division of the jointly
obtained benefits from all possible arrangements of the subjects can be considered as such
a negotiation scenario, with the point of conflict “d” determining the subset of the set “S”
within which the solution will be sought, see Figure 1.

Figure 1. Negotiation as a Nash’s bargaining problem.

The point of contention defines a compromise to which all negotiating sides agree
without further discussion. Alternatively, the negotiation is the product of both parties’
alternatives—thus, a compromise for a lower profit than that specified by point is not
worth it. The point of contention may also be found at the crossroads of axes (x, y) if
neither party can come to an agreement and there are no alternative options, as even minor
improvements are beneficial for both parties [30].

Nash’s bargaining solution is a precise solution based on a number of assumptions.
Perfect details, fair negotiating skills, knowledge of the power of negotiation, and so on are
examples of these. Nash suggests a solution which is the so-called Nash product, which
can be found using the formula:

Max [u1 (x*) - u1 (x0)][u2 (x*) - u2 (x0)] (3)

where u1 and u2 correspond to utilities of the first and second subject, point x0 is the benefit
at the point of disagreement, and the point x* relates to the point of interest. Thus, as a
result, the formula shows the maximum benefit that entities can receive [30].

On the other hand, Maxi-min is used to maximize the minimum, to change the
objective function of the agreement output from maximizing the product of the payoffs to
FP and SP to maximizing the lesser of the two payoffs.

It is an optimization procedure used to maximize the minimum of the proportional of
the potential (POP) of the FP and SP. The POP is the ratio of the “excess” to the difference
between the maximum feasible value and the reservation value (RV). Excess is the difference
between the obtained value by the method used and the RV. Later, these relationships are
expressed using mathematical equations. The Excel 2016 Solver will be used to find the
agreement that would maximize the FP’s and SP’s scores. Okoro et al. [31] used Excel to
make their analysis of game theory, where they used the Maxi-min solution.

There are some similarities between the two methods (Nash and Maxi-min solutions).
Therefore, some previous studies such as Araujo and Leoneti [20] and Turbay and Reyes [32]
compared and investigated both of them. However, the objective function of both of them
is different. The Nash equilibrium seeks the best possible strategic option when compared
to the options of other players, and this is true for all players. The Maxi-min strategy, on
the other hand, seeks payoffs that are at least as good as the worst payoff from any other
strategy [33]. Robinson and Goforth [33] proposed a 2 × 2 strategic game classification
based on the players’ payoff-space representation, particularly in the understanding and
interpretation of the Nash equilibrium and Maxi-min strategies. In the next section, the
difference between the results of both of them is presented.
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The Optimization Method Using Maxi-Min and Nash Solution Models

The methodology in this study depends on subjective estimation of the importance of
the negotiable variables, and the score of each level of the variables for both parties. The
two parties might set together to estimate the importance and the score. The following
steps are used for the optimization method [2]:

1- Identifying the variables (issues) to be negotiated by the FP and SP. In the terminol-
ogy of negotiations, issues are used to represent the negotiator factors that need to be set
by both parties. In this study, issues and variables are used interchangeably to mean the
same thing.

The two parties have to determine whether the share, “A” factors, and “B” factors
need to be negotiated or just “A” and “B” factors.

2- Determining the best values of each variable
The FP and SP should list for each issue a set of best and possible resolutions. In this

paper, larger variable values are usually for the advantage of the SP.
3- Determining the preferences and value tradeoffs
The FP and SP should ordinally rank their preferences for a different resolution level

for each issue. Moreover, the two parties have to place the issues in rank order from the
highest importance to the lowest importance. It is known in the literature and based on
some equations that some variables have a larger effect on the NPV and IRR. The exact
effect, however, depends on uncontrollable factors that are not easy to forecast such as
future prices and inflation. Therefore, subjective numbers are used in this study based on
the experience of the authors.

4- The additive scoring system
The FP and SP should score their issues preferences. It would rather go from the

most important to least important. Additionally, it would rather go from the worst to the
best choice.

5- Determining the reservation values (RV)
The FP and SP should decide what the lowest acceptable score (RV) for each bargaining

issue is.
6- Finding efficient contracts
The Maxi-min and Nash solutions have been used in this paper to find the most

efficient contracts. Firstly, the FP and SP are jointly going to negotiate contracts and select
one contract for the nine variables (share, four “A” factors, and four “B” factors) using Full,
Open, Truthful Exchange. Secondly, Excel Solver is used to find the results. Solver will try
to find the best contract that would maximize the minimum of the FP and SP POP. Finally,
Solver is used to find a fair contract based on the Nash solution by maximizing the product
of excesses [2].

The following sets are needed:

I is the number of variables, in the case study it is 9
Ji is the number of options for the variable i
The following parameters are given:
yij1 is the payoff (score) for the FP if option j is selected for the variable i
yij2 is the payoff (score) for the FP if option j is selected for the variable i

The following variables are needed:

xij =

{
1 i f option j is chosen f or the variable i in the optimal solution

0 otherwise

The objective is to maximize the objective function

max Z =

(
I

∑
i=1

Ji

∑
j=1

yij1xij − vr1

)(
I

∑
i=1

Ji

∑
j=1

yij2xij − vr2

)
(4)
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Subject to:
Si1 = max

1≤j≤Ji
yij1 ∀ i = 1..I (5)

Si2 = max
1≤j≤Ji

yij2 ∀ i = 1..I (6)

I

∑
i=1

Si1 = 100 (7)

I

∑
i=1

Si1 = 100 (8)

xij binary

The objective function defined in Equation (4) is the product of the excesses for both
parties, which are the surpluses for both of them. Equations (5) and (6) are to define
the score or importance of each variable, which is the maximum possible payoff that the
party can obtain if the best option can be obtained. Equations (7) and (8) are to force the
summation of the payoffs for all the variables for each party to be 100. For Maxi-min, the
equations will be different. The constraints from (5) to (8) are used in the second model.
However, the objective function is changed. To further explain that, some variables are
defined as follows:

MF1 and MF2 maximum feasible value for the first and second party, respectively.
E1 and E2 excess are the excess for the first and second party, respectively.
P1 and P2 are potential for the first and second party, respectively.

The new equations will be:

max Z2 = min(POP1, POP2) (9)

S.T.

E1 =

(
I

∑
i=1

Ji

∑
j=1

yij1xij − vr1

)
(10)

E2 =

(
I

∑
i=1

Ji

∑
j=1

yij2xij − vr2

)
(11)

P1 = MF1 − vr1 (12)

P2 = MF2 − vr2 (13)

POP1 =
E1

P1
(14)

POP2 =
E2

P2
(15)

The objective is to minimize POP for the two parties. As explained before, the POP
value is the excess divided by potential, and both of them are defined in Equations (10)–(13).
The second model is linear, and that means it is easier to solve.

5. Results and Analysis

In this section, the results obtained using the two used methods are compared with
the initial results set by the two parties without using our methods. In the original setting
and on the basis of EPSA IV, the SP’s NPV for estimated reserves of 219 million barrels was
estimated to be USD 148 million and the IRR was 15.65%. The FP’s NPV was estimated
to be USD 5386 million and the IRR was 409%. Later in this section, the comparison is
made. The FP and SP have determined nine issues and options (share, four A factors, and
four B factors) to be negotiated. The negotiation issues and options have been prepared
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by the FP and SP for the negotiation to improve the SP’s economic indicators, see Table 5.
The table contains four to five options for each one of the nine decision variables. The
methodology presented in the paper tries to select the best options for each variable. The
importance of the share is much larger than the other variables. The ranges shown in
Table 5 are determined based on the experience of the decision makers in both parties.

Table 5. The nine issues and options for the NOC and IOC.

Negotiation Issues and Options Possible Options Values

Production Share Option 1 10%
Option 2 12%
Option 3 15%
Option 4 18%
Option 5 20%

A Factor 1 Option 1 0.90
When R = (1.0–1.5) Option 2 0.92

Option 3 0.94
Option 4 0.96
Option 5 0.98

A Factor 2 Option 1 0.78
Option 2 0.80

When R = (1.5–3.0) Option 3 0.82
Option 4 0.84
Option 5 0.86

A Factor 3 Option 1 0.55
Option 2 0.60

When R = (3.0–4.0) Option 3 0.65
Option 4 0.70
Option 5 0.75

A Factor 4 Option 1 0.35
Option 2 0.40

When R = (>4.0) Option 3 0.45
Option 4 0.50
Option 5 0.53

B Factor 1 Option 1 0.85
When Production (bbl/day) Option 2 0.90

(1–20,000) Option 3 0.95
Option 4 0.98

B Factor 2 Option 1 0.70
When Production (bbl/day) Option 2 0.75

(20,001–30,000) Option 3 0.80
Option 4 0.85

B Factor 3 Option 1 0.55
When Production (bbl/day) Option 2 0.60

(30,001–60,000) Option 3 0.65
Option 4 0.70

B Factor 4 Option 1 0.40
When Production (bbl/day) Option 2 0.45

(60,001–85,000) Option 3 0.50
Option 4 0.53

5.1. Effect of the Production Share, A factors, and B factors of EPSA IV on the SP’s NPV and IRR

Minimizing the production share, A factors, and B factors in the EPSA IV adversely
affect the NPV and IRR of the SP. This effect may appear clearly in oil projects that require
large capital for such development facilities by using secondary and tertiary recovery. The
EPSA IV determines the production share, which is supposed to recover expenses of the SP
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and give it a reasonable percentage of profits. By limiting the production share to a small
value, the risk to the SP to recover their capital is increased when the payback period is
increased. So, “A” factors reduce the profit of the foreign investor in case of stopping the
investment or investing in limited range.

The positive impact of the value of investment on the profit of the SP only appears
in the period of investment, which is the first period of the project. So, the SP will obtain
the highest return from the profit oil when the “A” factors are kept at higher values. “B”
factors are directly affected by the production rate, where a higher production rate will
decrease the value of “B” factors and thus decrease the value of the oil profit and ultimately
negatively impact the SP’s produced share. The decline in the value of B factors due to
increasing production gives a negative indicator to the SP and makes it not motivated to
increase the production rate. The SP must negotiate the “B” factors that are dominated by
the plateau of the production profile. On the other hand, the FP wants to minimize the
benefit of the SP by minimizing the production share, “A” factors, and “B” factors [34]. The
generated options, score, negotiation score for each issue, and the reservation value of the
interest deal of the FP and the SP are shown in Table 6.

Table 6. Ranking issues by importance by the FP and SP.

Pr. Ranking Issue Pos. Resolution

FP SP

Determined
Value

Score
Determined

Value
Score

1 Production Share, % Option 1 60 60 20
Option 2 50 30
Option 3 40 40
Option 4 30 55
Option 5 20 60 60

2 B Factor 3 Option 1 10 10 6
Option 2 8 8
Option 3 6 10
Option 4 4 12 12

3 B Factor 1 Option 1 9 9 4
Option 2 8 6
Option 3 6 8
Option 4 4 10 10

4 A Factor 1 Option 1 6 6 2
Option 2 5 3
Option 3 4 4
Option 4 3 5
Option 5 2 6 6

5 A Factor 2 Option 1 5 5 1
Option 2 4 2
Option 3 3 3
Option 4 2 4
Option 5 1 5 5

6 A Factor 3 Option 1 5 5 1
Option 2 4 2
Option 3 3 3
Option 4 2 4
Option 5 1 5 5

7 B Factor 2 Option 1 3 3 0
Option 2 2.5 0
Option 3 2 1
Option 4 1 2 2

8 A Factor 4 Option 1 1 1 0
Option 2 0.5 0
Option 3 0 0
Option 4 0 0
Option 5 0 0 0
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Table 6. Cont.

Pr. Ranking Issue Pos. Resolution

FP SP

Determined
Value

Score
Determined

Value
Score

9 B Factor 4 Option 1 1 1 0
Option 2 0.5 0
Option 3 0 0
Option 4 0 0 0

sum 100 sum 100

5.2. Nash Solution

The RV value for both parties must be determined at first. In this study, we assume it
is 35 for the FP and 65 for the SP. The negotiation score output of FP and SP from the Nash
solution is summarized in Table 7. This result was obtained with the assistance of Solver.
Excel Solver is a unique mathematical program that operates within Excel. In Figure 2, the
Solver dialogue box maximizes the objective of the product of the FP and SP excess. The
product of excess is increased from 296, with the original settings, to 506. The formulation
and solution of the problem that maximizes the sum of product of the FP and SP are given
in Tables 7 and 8. The negotiation based on the Nash solution yields a solution for the FP
and SP with the following production share, A factor, and B factor: production share at
15%, B3 at 0.65, B1 at 0.98, A1 at 0.98, A2 at 0.84, A3 at 0.75, B2 at 0.85, A4 at 0.35, and B4 at
0.40, see Table 8.

Table 7. Nash solution of the negotiation score of FP and SP from the Solver software.

Issue Possible Options Optimal Option
FP SP

D. Value Score Neg. Score D. Value Score Neg. Score

Production Share, %

Option 1 0 60 60 30
Option 2 0 50 40
Option 3 1 40 40 50 50
Option 4 0 30 55
Option 5 0 20 60 60

B Factor 3

Option 1 0 10 10 6
Option 2 0 8 8
Option 3 1 6 6 10 10
Option 4 0 4 12 12

B Factor 1

Option 1 0 9 9 4
Option 2 0 8 6
Option 3 0 6 8
Option 4 1 4 4 10 10 10

A Factor 1

Option 1 0 6 6 2
Option 2 0 5 3
Option 3 0 4 4
Option 4 0 3 5
Option 5 1 2 2 6 6 6

A Factor 2

Option 1 0 5 5 1
Option 2 0 4 2
Option 3 0 3 3
Option 4 1 2 2 4 4

Option 5 0 1 5 5

A Factor 3

Option 1 0 5 5 1
Option 2 0 4 2
Option 3 0 3 3

Option 4 0 2 4

Option 5 1 1 1 5 5 5
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Table 7. Cont.

Issue Possible Options Optimal Option
FP SP

D. Value Score Neg. Score D. Value Score Neg. Score

B Factor 2

Option 1 0 3 3 0
Option 2 0 2.5 0
Option 3 0 2 1
Option 4 1 1 1 2 2 2

A Factor 4

Option 1 1 1 1 1 0 0 0
Option 2 0 0.5 0
Option 3 0 0 0
Option 4 0 0 0
Option 5 0 0 0

B Factor 4
Option 1 1 1 1 1 0 0 0
Option 2 0 0.5 0
Option 3 0 0 0

Option 4 0 0 0

Total Negotiation
Value 58 Total Negotiation

Value 87

 
Figure 2. Solver objective and constraints of Nash solution model.

Therefore, we can say that x13, x23, x34, x45, x54, x65, x74, x81, and x91 are equal to one,
and others are zeros.
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Table 8. Solver output of Nash solution of the FP and SP.

Variable NOC IOC’s

Negotiation Value (1) 58 87

RV (2) 35 65

Excess (3) = (1) − (2) 23 22

Max Feasible (4) 85 100

Potential (5) = (4) − (2) 50 35

POP (6) = (3)/(5) 0.460 0.629

Product (7) = (3) of NOC × (3) of IOC 506

MinPOP (8) = min ((6) of NOC, (6) of IOC)) 0.460

Optimal options of the FP and SP

Solution Max. Issue 1 Issue 2 Issue 3 Issue 4 Issue 5 Issue 6 Issue 7 Issue 8 Issue 9

Nash 506 Option
3 Option 3 Option 4 Option 5 option4 option5 option4 option1 Option 1

Variable Share B3 B1 A1 A2 A3 B2 A4 B4

Value 15% 0.65 0.98 0.98 0.84 0.75 0.85 0.35 0.40

5.3. Maxi-Min Solution

In the Maxi-min solution, the value of maximizing the minimum POP is improved.
The minimum POP is increased from 0.229 to 0.514. This output has been determined with
the help of Excel Solver. The formulation and solution to maximize the minimum POP of
the negotiation template of the FP and SP are given in Tables 9 and 10.

Table 9. Maxi-min solution of the negotiation score of FP and SP using Solver software.

Issue Possible Options Optimal Option
FP SP

D. Value Score Neg. Score D. Value Score Neg. Score

Production Share, %

Option 1 0 60 60 30
Option 2 0 50 40
Option 3 1 40 40 50 50
Option 4 0 30 55
Option 5 0 20 60 60

B Factor 3

Option 1 1 10 10 10 6 6
Option 2 0 8 8
Option 3 0 6 10
Option 4 0 4 12 12

B Factor 1

Option 1 0 9 9 4
Option 2 0 8 6
Option 3 0 6 8
Option 4 1 4 4 10 10 10

A Factor 1

Option 1 0 6 6 2
Option 2 0 5 3
Option 3 0 4 4
Option 4 1 3 3 5 5
Option 5 0 2 6 6

A Factor 2

Option 1 0 5 5 1
Option 2 0 4 2
Option 3 0 3 3
Option 4 0 2 4
Option 5 1 1 1 5 5 5

A Factor 3

Option 1 0 5 5 1
Option 2 0 4 2
Option 3 0 3 3
Option 4 0 2 4
Option 5 1 1 1 5 5 5
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Table 9. Cont.

Issue Possible Options Optimal Option
FP SP

D. Value Score Neg. Score D. Value Score Neg. Score

B Factor 2

Option 1 0 3 3 0
Option 2 0 2.5 0
Option 3 0 2 1
Option 4 1 1 1 2 2 2

A Factor 4

Option 1 1 1 1 1 0 0 0
Option 2 0 0.5 0
Option 3 0 0 0
Option 4 0 0 0
Option 5 0 0 0

B Factor 4

Option 1 1 1 1 1 0 0 0
Option 2 0 0.5 0
Option 3 0 0 0
Option 4 0 0 0

Total Negotiation
Value 62 Total Negotiation

Value 83

Table 10. Solver output of Maxi-min solution of the FP and SP.

Variable NOC IOC’s

Negotiation Value (1) 62 83

RV (2) 35 65

Excess (3) = (1) − (2) 27 18

Max Feasible (4) 85 100

Potential (5) = (4) − (2) 50 35

POP (6) = (3)/(5) 0.540 0.514

Product (7) = (3) of NOC × (3) of IOC 486

MinPOP (8) = min ((6) of NOC, (6) of IOC)) 0.514

Optimal Options of the FP and SP

Solution Max Issue 1 Issue 2 Issue 3 Issue 4 Issue 5 Issue 6 Issue 7 Issue 8 Issue 9

Maxi-min 0.514 Option 3 Option 1 Option 4 Option 4 Option5 option5 option4 option1 Option 1

Variable Share B3 B1 A1 A2 A3 B2 A4 B4

Value 15% 0.55 0.98 0.96 0.86 0.75 0.85 0.35 0.40

The negotiation based on the Mix-min solution yields a solution for the FP and SP
with the following production share, A factor, and B factor: production share at 15%, B3 at
0.55, B1 at 0.98, A1 at 0.96, A2 at 0.86, A3 at 0.75, B2 at 0.85, A4 at 0.35, and B4 at 0.40, see
Table 10.

5.4. Summary of the Effect of the Three Contracts on the Economic Evaluation Model of the AA
oil Field

The three outputs of the three agreements, the original EPSA IV, optimized by the
Nash solution, and optimized by the Maxi-min solution, are shown in Table 11.

The economic indicators, NPV, and IRR of FP and SP of the three contracts are shown
in Table 12 and Figure 3. For the SP, the optimization by using the Nash solution has shown
the best improvement. The SP’s NPV and IRR are increased from USD 148 million and
15.63% to USD 222 million and 17.94, respectively.
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Table 11. Summary of the issues and options of the three contracts of the FP and SP.

Solution OF * Issue 1 Issue 2 Issue 3 Issue 4 Issue 5 Issue 6 Issue 7 Issue 8 Issue 9

Variable Share B3 B1 A1 A2 A3 B2 A4 B4

Original Agreement Option 3 Option 2 Option 3 Option 1 Option2 Option2 Option3 Option2 Option 1

Value 15% 0.6 0.95 0.90 0.80 0.60 0.80 0.40 0.40

Nash 506 Option 3 Option 3 Option 4 Option 5 Option 4 Option 5 Option 4 Option1 Option 1

Value 15% 0.65 0.98 0.98 0.84 0.75 0.85 0.35 0.40

Maxi-min 0.514 Option 3 Option 1 Option 4 Option 4 Option5 Option 5 Option 4 Option1 Option 1

Value 15% 0.55 0.98 0.96 0.86 0.75 0.85 0.35 0.40

* Objective Function value.

Table 12. The effect of the original agreement, Maxi-min, and Nash solutions on the economic
indicators of FP and SP.

FP SP

Solutions NPV, USD MM IRR, % NPV, USD MM IRR, %

Original Agreement 5386 409 148 15.63

Nash Solution 5312 406 222 17.94

Maxi-min Solution 5339 408 195 17.01
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Figure 3. The SP’s NPVs and IRRs of the original agreement and the optimization solutions of the
Maxi-min and Nash solutions.

The above calculations show the impact of applying the proposed two models on the
performance of both parties. The RV for both parties was respected, and better scores were
found. Eventually, the effect on NPV and IRR was found to be promising. The effect of
different levels of the nine decision variables was found in the literature. Different variables
were found to have different weights (Balhasan, et al., 2020). However, determining the
best options for the levels based on these weights is new in this study. Decision makers
in both parties can utilize the tool used in this study to enhance their agreement terms
based on a win-win strategy. Using a common tool can reduce the needed efforts in the
negotiation process and reduce the conflict between both parties. The tool used can be
easily understood and applied by practitioners. The previous results, especially Figure 3,
show how useful it is to use the proposed tool.

6. Conclusions

The EPSA agreement is a complicated method of equity split used in the oil industry.
Usually, a production-based sliding scale and R-factor system is used. The SP’s NPV
and IRR from the original EPSA agreement conditions were USD 148 million and 15.63%,
respectively. At the beginning, the IRR was too low to satisfy the SP. Therefore, better
configurations were needed. Two approaches were used to find the best negotiation
agreement. The Maxi-min solution maximizes the minimum of the two parties’ proportion
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of the POP. The Nash solution maximizes the product of excesses. The two models have
shown a significant improvement in the SP’s NPV and IRR. The Nash solution has shown
the best improvement in favor of the SP. The SP’s NPV and IRR were increased from
USD 148 million and 15.63% to USD 222 million and 17.94, respectively. The Maxi-min
solution also showed an improvement, but less than the Nash solution. The SP’s NPV
and IRR were increased from USD 148 million and 15.63% to USD 195 million and 17.01,
respectively. Such gains for the SP were acceptable by the FP. The two parties achieved
agreement optimization.

There are some limitations in this study. For example, the study presents the results
for a certain case study. More case studies, especially in the region, can provide more insights.
Moreover, Excel Solver does not guarantee an optimal solution always. Other methods for opti-
mization, such as the genetic algorithm, can be investigated in the future. Moreover, the EPSA
agreements can contain other negotiation issues that can be investigated in further research.
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Nomenclature

FP First Party
SP Second Party
NPV Net Present Value
IRR Internal Rate of Return
EPSA Exploration and Production Sharing Agreement
GDP Gross Domestic Product
POP Proportional of the Potential
RV The Reservation Value
CAPEX Capital Expenditures
OPEX Operating Costs
LHP liquefied hydrocarbon by products
NCF Net Cash Flow
EOR enhanced oil recovery
NOC National Oil Corporation
IOC International Oil Company
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Abstract: Against the backdrop of China’s carbon emission reduction targets and the promotion of the
construction of a unified domestic market, what kind of carbon emission effect has market integration
had in weakening regional barriers and optimizing resource allocation? This paper adopts a two-way
fixed effects analysis based on China’s provincial panel data from 2003 to 2019. It uses a mediation
model to explore the relationship between market integration and carbon emissions. Furthermore,
industrial rationalization and upgrade are the basis for examining whether a competitive or cooperative
relationship exists between the carbon emission effects generated and promoting market integration
between regions. The study finds a negative relationship between market integration and carbon
emissions. In addition, there is significant heterogeneity in the effect of market integration on carbon
emissions, and the influence effect is mainly in central China; industrial rationalization can play an
enhanced role in the process of the negative impact of market integration on carbon emissions, further
enhancing the negative contribution of market integration to carbon emissions. However, market
integration can weaken its negative impact on carbon emissions with the industrial upgrade, and there
may still be invisible barriers between regions in promoting market integration barriers.

Keywords: market integration; carbon emissions; industrial rationalization; industrial upgrade

1. Introduction

Market integration aims to eliminate barriers to the flow of resources and factors in
each region, break down administrative and trade barriers, form a standardized and orderly
market resource-sharing and cooperation platform, and promote equal cooperation and
fair competition in economic development between regions. Since the reform and opening
up, along with the enhanced flow of resources and factors between regions, the economic
development of China has become more and more closely linked, and market integration
has become an essential path for economic growth. With the introduction of the carbon
peak and neutrality targets, all regions must consider environmental factors in the process
of economic development, and try to achieve “zero emissions” in the development process.
China has issued guidelines on establishing a unified domestic market, indicating that the
unification of factor and resource markets is inevitable, and how to take into account the
two-way results of market expansion and carbon emission reduction deserves attention
and in-depth analysis.

For a long time, due to the effects of inter-regional competition, regional barriers have
deepened, and industrial isomorphism has become increasingly aggravated. This has led
to massive energy consumption and exacerbated the rise of carbon emissions, severely
hindering green environmental development. The deepening of regional development
strategy has produced some policy promotion effects on breaking regional barriers. The
guidelines on establishing a unified domestic market have laid a solid foundation for
further deepening market integration, and have contributed to the positive environmental
effects generated in the process of market integration. Therefore, bringing industrial
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structure and agglomeration into the framework of discussion, this paper discusses the
impact mechanism and effect of market integration on carbon emission levels, and then
explores the path and policies to optimize carbon emissions around the construction of
market integration.

2. Literature Reviews and Theoretical Analysis

2.1. Literature Reviews

The ability of regional integration strategies to weaken market segmentation and
reduce carbon emissions is crucial to achieving China’s carbon emission reduction targets.
However, the current literature concerning the impact of market integration on carbon
emissions focuses more on its effects on environmental quality, and only a few pay attention
to the impact on carbon emissions.

In studies on the impact of trade openness on environmental quality, market integra-
tion leads to more unrestricted output flows, implying the elimination of trade barriers.
However, reducing trade barriers has a nonlinear effect on the environment [1–4]. There
are two explanations for the nonlinear relationship between trade openness and the en-
vironment. One uses the well-known pollution haven hypothesis (PHH) to explain the
nonlinear relationship. PHH argues that since pollution often occurs during the transfer
of industries from developed to developing countries, low-income developing countries
are always the victims of environmental pollution. The environmental impact of trade
openness is detrimental to developing countries but benign to developed countries; thus,
global environmental performance is conditional [5–8]. However, trade integration, while
increasing the intensity of pollutant emissions, has offset this negative effect by increasing
efficiency and promoting cleanliness in its manufacturing sector [9]. Therefore, in the
context of trade openness, PHH is often used to test the environmental impact of increased
foreign direct investment (FDI). The other explanation has argued that the results of trade
openness can be divided into scale, technology, and composition effects [7,10–12]. The scale
effect refers to the expansion of pollutant emissions as the size of the economy increases due
to trade liberalization. The technology effect refers to the upgrading of green technologies
to reduce the intensity of emissions, and through stricter environmental regulation, trade
openness will raise income levels and increase the demand for a cleaner environment.
The composition effect refers to the two-way impact of industrial restructuring. If the
high-polluting industrial sector has a comparative advantage, trade openness can damage
the environment by making local areas more specialized in high-polluting production.
Otherwise, trade openness can improve the environment by making local areas more spe-
cialized in cleaner production [2,3,11]. Previous literature has focused extensively on the
environmental impacts of trade barriers. However, most have focused on the ecological
effects of international trade, while relevant evidence from domestic trade remains scarce.

For studies on the impact of market integration on environmental quality, Li and Lin
evaluated the carbon emission performance of provincial regions in China from 1995 to
2012 using a non-radial directional distance function to investigate the effect of regional
market integration on carbon emission performance. The study found that regional market
integration can significantly contribute to carbon emissions [13]. He et al. confirmed the
significant contribution of regional market integration to the marginal abatement cost of
carbon emissions in 30 Chinese provinces during 2002–2011 [14]. Lin and Du (2015) used a
Tobit regression model to estimate the effect of market-oriented reforms on carbon emis-
sions efficiency [15]. The results show that market-oriented reforms can improve carbon
emissions efficiency. The above studies all consider the relationship between regional
market integration and carbon emissions. In addition, these studies also proved that the
increase in the level of market integration could meaningfully contribute to the strength-
ening of regional market forces, especially in the area of high-carbon markets, enhancing
the competitiveness of enterprises and investment development opportunities [16]. How-
ever, it is worth noting that to improve carbon productivity, it is necessary to strengthen
inter-regional cooperation further and focus on the coordinated development of carbon
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productivity in the development process [17]. Certainly, some scholars focus more on the
environmental impact of market integration on energy and electricity. They believe the
integration process will increase energy and electricity consumption and play a vital role in
developing renewable energy. Within the scope of a unified market, technological progress
and the strengthening of environmental regulation tends to promote renewable energy
development, thereby accelerating the process of sustainable development [18]. On a larger
scale, such as regional energy market cooperation that transcends national borders, it faces
many additional problems [19].

In summary, market integration may affect carbon emissions. Market integration
is accompanied by the free flow of production factors, which involves economic and
technological innovation and carbon emissions [20,21]. However, only a few studies focus
on the relationship between market integration and carbon emissions. Similar to other
potential influencing factors of carbon emissions, other external conditions may influence
the effect of market integration on carbon emissions. The impact of market integration on
carbon emissions may vary depending on the external environment.

To address some of these possible gaps in existing studies, this paper verifies the
relationship between market integration and carbon emissions from the perspective of
domestic trade barriers, using provincial panel data for 30 provinces (excluding Tibet)
from 2003 to 2019. The paper aims to contribute to an understanding of the relationship
between market integration policies to reduce regional development inequalities and
carbon emissions in China and other developing countries.

The potential contributions of this paper can be divided into three aspects. First, we
explore the possible negative effects of market integration on carbon emissions in Chinese
provinces and cities. Second, unlike most studies examining the environmental impact of in-
ternational trade, we provide new empirical evidence from the perspective of enhanced factor
mobility. Third, we argue that there is a significant correlation between market integration
and carbon emissions, with a mediating effect through changes in industrial structure.

2.2. Theoretical Analysis and Research Hypothesis

Market segmentation leads to resource misallocation, which results in the inability
to achieve free flow of factor resources within a region, making it challenging to allocate
regional resources efficiently, and then adversely affecting the carbon emission intensity in
the long run [22]. When local governments engage in integrated cooperation, the level of
inter-regional market integration gradually increases, and factors of production can realize
a free flow, which will significantly promote the energy-saving and emission-reduction
effects of urban agglomerations [23]. Market integration refers to the free flow of goods
and factors of production within a framework of consistent rules between regions and
industrial sectors, which will lead to scale economy, knowledge sharing, and technology
spillovers [24]. In other words, market integration can indirectly affect carbon emissions
through economic growth and technological progress [5,25–27]. This paper analyzes the
impact of market integration on carbon emissions, focusing on the possible scale effects,
structural effects, and regional heterogeneity.

Market integration may increase environmental by-products through the expansion of
local markets and the promotion of enterprise production, which exacerbates environmental
pollution, reflecting the scale effect of market integration. Generally speaking, market
integration implies free trade of commodities and removing barriers to factor flow, which
is conducive to optimizing the economic structure and developing regional scale effects,
thus improving resource allocation efficiency and production technology progress and
promoting pollution reduction. While the expansion of trade and market scale caused by
market integration may aggravate carbon emissions due to increased production, but also
reduce pollution emissions due to the scale effect at the same time, the conclusion depends
on comparing different forces [1].
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Based on the above theoretical analysis, hypothesis 1 is proposed: Market integration
will promote the scale effect and increase production quantity, thus leading to increased
carbon emissions.

The environmental Kuznets curve theory suggests that market integration reduces
environmental pollution through factors such as industrial agglomeration and industrial
restructuring [1]. In the classical new economic geography model, market integration pro-
motes the realization of industrial agglomeration, contributes to the completion of enterprise
agglomeration externalities, realizes the diffusion and sharing of environmental protection
technology, and contributes to the improvement of green growth efficiency [28–30]. In ad-
dition, industrial transfer is often accompanied by policy orientation, while industrial
restructuring and development in the region are often closely linked to environmental
policies, especially for the transfer of heavily polluting industries, and the effect of such
policy suppression is evident [21]. Therefore, it is likely to result in competition between
regions in policy development and implementation, which is not conducive to the synergy
of industries in each region to reduce carbon emissions. Market integration promotes the
transformation and upgrading of industrial structure, and reduces the carbon emission
intensity of enterprise production [31–34].

Based on the above theoretical analysis, hypothesis 2 is proposed: Market integration
will slow down the carbon emissions increase by influencing industrial restructuring.

The improvement of environmental welfare by market integration also relies on
the spatial spillover properties of pollutants and cross-regional pollution coefficients. In
particular, with the changing focus of China’s regional development strategy and the
accelerated reform process [35], different regions have different economic development
statuses, degrees of market integration, and energy structures. The impact of their market
integration on carbon emission levels also varies [36].

Based on the above theoretical analysis, Hypothesis 3 is proposed: Regional hetero-
geneity in the impact of market integration on carbon emission levels.

The remainder of the paper is as follows: Section 3 details the model construction
and data description; Section 4 presents and discusses the regression results and conducts
robustness tests; Section 5 presents the main conclusions and policy implications.

3. Data and Method

3.1. Data Description
3.1.1. Carbon Emissions Measurement

This paper takes carbon emissions as a dependent variable, and the data comes from
China Emission Accounts and Datasets: https://www.ceads.net (accessed on 1 August 2022).
It includes carbon emissions from both fossil fuel combustion (i.e., energy-related emissions)
and cement production (process-related emissions) in the emission accounts. Energy-related
carbon emissions are converted from the carbon content in fossil fuels. We use mass balances
to calculate emissions according to the IPCC guidelines (2006), the formula is as follows:

CEi = ADi × NCVi × CCi × O (1)

In the equation, CEi refers to carbon emissions from fossil fueli. While China’s statis-
tical energy system has 26 types of fossil fuels, references to the calculation formula and
method of carbon emission by existing scholars [37,38], merge them into 17 types due to
the small consumption amount and similar quality of certain fuels. Adi is the “activity
data” used for emission estimation. In the case of energy-related emission accounting, ADi
refers to the combustion volume of fossil fuel i. NCVi represents the “net caloric value,”
which is the heat value per physical unit from the combustion of fossil fuel i. CCi is the
“carbon content” of fuel i, quantifying carbon emissions per net caloric value produced. O
refers to “oxygenation efficiency,” which represents the oxidation ratio during fossil fuel
combustion of certain fuels.
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By aggregating emission results from different energy types, the formula for calculat-
ing the total carbon emissions of a province is as follows:

TCE = ∑ CEi (2)

3.1.2. Market Integration Measurement

We use the relative price method proposed by Parsley, Wei and Poncet to measure
market integration [26,39]. First, calculate the variance using the absolute value of the
relative price of the commodity
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To calculate and measure the market segmentation level more accurately and reflect
its actual situation, therefore, in a further transformation of the equation, the non-additive
effects due to commodity heterogeneity
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segmentation of this province and city, that is:
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Among them, j denotes all provinces and cities bordering province i, m represents the
name of the province and city, and N represents the number of combinations of provinces
and cities bordering province and city i. Finally, the market integration index is built on
top of the existing segmentation index (expressed as MI, m still indicates the name of the
province or city), and the formula for the integration index is defined as follows:

MIm =

√
1

Vark
m

(7)

Therefore, the relationship between the two indices of market segmentation and market
integration has an inverse trend. After calculating each provincial and municipal integration
index, the average value of all provincial and municipal market integration values in the
region can be calculated to measure the market integration level of a particular region. We
selected eight categories of: food, tobacco and alcohol; clothing; housing; household goods
and services; transportation and communication; education; culture and entertainment; and
health care. These eight categories of consumer price index are measured; all data are from
provincial statistical yearbooks and the National Bureau of Statistics.
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3.1.3. Industry Change Measurement

Industrial rationalization. We refer to existing scholarly practice to measure [40]. The
first step is to calculate the structural deviation factor:

INDR∗ = ∑
j

Yj

Y

∣∣∣∣Yj/Lj

Y/L
− 1

∣∣∣∣(j = 1, 2, 3) (8)

where i represents each province, j = 1,2,3 represents the three industries respectively, Yj
represents the value added of the industry in that year, and Lj represents the number
of employees in that year. INDR* is the degree of industrial structure rationalization,
measured by the degree of structural deviation in province i. The summed numbers
indicate the relative degree of imbalance between the respective value-added shares of the
three industries and the employment shares. In this case, the higher the value of INDR*,
the lower the degree of industrial structure rationalization of the province. Since all data in
the index are from the same year, we omit the time subscript t for symbolic simplicity, so as
to not cause conceptual confusion.

In the second step, a numerical extreme difference transformation is used to normalize
the range of indicators to a specific interval and convert them into positive indicators.
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In the third step, we first use the structural deviation to calculate the degree of ratio-
nality of the industrial structure, which is given by:

INDRS =
n

∑
i=1

∣∣∣∣Yi/Li

Y/L
− 1

∣∣∣∣ = n

∑
i=1

∣∣∣∣Yi/Y
Li/L

− 1
∣∣∣∣L (10)

In this equation, Thiel’s index is introduced, and the formula is as follows:
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where, INDR denotes the Thiel index, which indicates the level of industrial structure
upgrading. y denotes output, L denotes employment, i denotes industry, and n denotes
the number of industrial sectors; Y/L indicates productivity, Yi/Y denotes the output
structure, and Li/L indicates the employment structure, and the value range of INDR is
(0,LnN). When INDR = 0, it means that the industrial development is very reasonable, and
the smaller the INDH value is, the more reasonable the industrial structure is, and the
development of each internal factor is balanced.

Industrial upgrade. The upgrading of industries involves the evolution of proportional
relations and the improvement of labor productivity. When the share of industries with
higher labor productivity in a country or region is more prominent, it indicates a stronger
industrial chain heightening in that region. Therefore, following the approach of Liu Wei
et al. [41], the connotation of industry chain heightening (INDH) is defined as the weighted
value of the product of the proportional relationship between industries and the labor
productivity of each industry. This shows the essential characteristics of the evolution
of industry chains as higher proportions of labor productivity. The specific formula for
measuring the quality of industry chain heightening is:

INDHit =
3

∑
m=1

Yitm

Yit
× Yitm

Litm
, m = 1, 2, 3 (12)

Here, Yitm denotes the value added of industry m in period t in region i, Litm represents
the number of people employed in industry m in period t in region i. Yitm/Yit denotes the
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labor productivity of industry m in period t in region i. Considering that labor productivity
has a quantitative dimension, this paper adopts the mean value method for dimensionless
treatment. All data are from provincial statistical yearbooks, the National Bureau of
Statistics and CSMAR Database.

Other control variables. To control external factors in different regions, government
input (GOVI), the level of openness to the outside world (FDI), the level of technological
innovation (ZLSP), and the level of regional economic development (GDP) are selected as
control variables. Government input, the level of openness to the outside world, the level of
technological innovation, and the level of regional economic development not only affect carbon
emissions [42,43] but also affect the impact of market integration on carbon emissions [44,45].

Government input (GOVI) is measured by the annual fiscal revenue of each province;
the level of openness to the outside world (FDI) is measured by the sum of total annual
import and export and foreign investment in each province; the level of technological
innovation (ZLSP) is measured by the annual number of patents granted in each province,
and the level of regional economic development (GDP) is measured by the annual gross
product of each province. The relevant data were logarithmically processed. All data are
from provincial statistical yearbooks.

3.2. Methods
3.2.1. Two-Way Fixed Effects Model

This paper’s two-way fixed effects model was constructed to investigate the linear
relationship between market integration and carbon emissions adopting panel data from
2003 to 2019. Considering the estimated coefficients of the double logarithmic, market
integration on the carbon emissions equation can be treated as the elasticities of the depen-
dent variables [46]. To eliminate heteroscedasticity effectively, concerning the independent
variables, we used TCE to represent the level of carbon emissions, MI is the level of mar-
ket integration, and X represents the other control variables. We conducted a double
logarithmic function as shown below:

TCEit = α0 + β1MIit + β2Xit + μit + εit (13)

3.2.2. Analysis of the Mechanism

In this paper, a mechanism analysis model was constructed, and based on the bench-
mark model, indicators related to industrial structure change were added to test the
mechanism of action between market integration, industrial structure change, and carbon
emissions, and further analyze the impact of market integration on carbon emissions. The
model is set as follows.

TCEit = α0 + β1MIit ++β2INDRit + β3Interact1it + β4Xit + μit + εit (14)

TCEit = α0 + β1MIit + β2INDHit + β3Interact2it + β4lnXit + μit + εit (15)

where TCE is the carbon emission level, MI is the market integration level, INDR is the
level of industrial rationalization level, INDH is the level of industrial upgrade, Interact1 is
the interaction term between market integration (MI) and industrial rationalization (INDH),
Interact2 is the interaction term between market integration (MI) and industrial upgrade
(INDH), and X represents other control variables.

3.2.3. Intermediary Effect Model

We constructed a mediating effect model to test the relationship between market
integration, industrial structure change, and carbon emissions. The impact of market
integration development on carbon emissions was quantitatively analyzed. Then we tested
whether industrial structure change mediates the market integration process affecting
carbon emissions. In the next step, the extent of the mediating impact was studied under
the premise that there is a mediating effect, and industrial rationalization and upgrade
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were taken as mediating variables. In summary, the empirical panel data regression model
constructed in the article is as follows:

TCEit = α0 + β1MIit + β3Xit + μit + εit (16)

Mediit = α0 + β1MIit ++β3Xit + μit + εit (17)

TCEit = α0 + β1MIit + β2Mediit + β3Xit + μit + εit (18)

4. Result and Discussion

4.1. Spatial and Temporal Trends
4.1.1. Spatial and Temporal Trends in Market Integration

Through the measurement of market integration levels, it is found that each region’s
overall market integration level shows a fluctuating upward trend, and most regions have
the phenomenon of rising and then falling in Figure 1, such as Beijing, Tianjin, Inner
Mongolia, etc. During the sample examination period, most regions reached a peak market
integration level in 2016. They then fluctuated, indicating to a certain extent that the inter-
regional market integration promotes factor flow, and that there is a limited value in the
collaborative division of labor. In the market integration process, especially after the local
benefits or industrial system have formed a stable situation with a particular economic
foundation, most regions focused more on maximizing the local economy, thus gradually
lowering the goal of inter-regional cooperation with the risk that market segmentation
will rise again. Some regions, such as Shanghai, Zhejiang, and Guangdong, gradually
rebounded after showing a downward trend in 2016, and the degree of inter-regional
regional cooperation was further strengthened. The level of market integration in the
region was continuously enhanced after 2016.

 

2003 2008 

 

2012 2019 

Figure 1. The level of market integration in China.
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From a sub-regional perspective, the overall difference in market integration levels
among the eastern, central, western, and northeastern regions at the initial stage is slight in
Figure 2, the eastern pre-coastal regions are far more demanding than other regions in China
in terms of opening and cooperation, are more dependent on industrial chain development
and foreign trade cooperation, and are more in need of a market. It is necessary to pursue
the role of a win-win or leading role in the process of market integration. On the other hand,
after 2012, with the central government’s slogan “lucid waters and lush mountains are
invaluable assets,” the demand for green economic development in this region is increasing,
indirectly promoting inter-regional market-level integration. Although the eastern region
maintained an upward trend until 2012, it rose slowly, and unlike other areas, it showed
a downward trend after 2012 and rebounded in 2016. Still, the gap in the level of market
integration in 2019 compared with the central and western regions is evident. It may be
because the eastern region, as the frontier region of China’s economic development, has
shown a high level of inter-regional cooperation and development in the early stage of
development and tends to converge in the market integration process. With the central
government proposing industrial transformation and structural adjustment, the eastern
region may have been in a temporary period of pain since 2012, and it will recover the level
of market integration in due course.

 

2003 2008 

 

2012 2019 

Figure 2. The level of market integration in eastern China.

The central region always showing an upward trend and maintaining a leading posi-
tion until 2009 in Figure 3, which may also be closely related to the strategic development
of the rise of central China that the Chinese government has advocated.
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2003 2008 

 

2012 2019 

Figure 3. The level of market integration in central China.

The level of market integration in the western region has always been on the rise in
Figure 4, showing a slower growth between 2003 and 2012, but between 2012 and 2016,
the level of market integration in the western region achieved a significant increase, which
may be attributed to the enhanced binding of resources and environment. The western
region must seek a path that fits ecological and environmental protection with economic
development, so the past development model that relied on environmental resources needs
to be improved to rapidly promote the transformation of the region’s economic structure
through effective inter-regional cooperation.

81



Energies 2022, 15, 9371

 

2003 2008 

 

2012 2019 

Figure 4. The level of market integration in western China.

In addition, after 2009, the market integration level in the northeast region significantly
increased but sharply declined after 2016 in Figure 5. This may be because the promotion of
the revitalization strategy of the northeast stimulated cooperation and exchange between
regions to a certain extent. Still, due to the solidification of the industrial foundation and
many difficulties in transformation, the industrial transformation may not be able to match
further the integration process in the late stage of the market integration process. As a result,
the level of market integration in the region showed a downward trend in the late sample
period. The level of market integration in the western region changed more slowly before
2012, while it showed a significant upward trend after 2012 and a slight decline after 2016.
This may be caused by the fact that most western regions belong to important ecological
protection areas, which, to a certain extent, restricts the possibility of inter-regional economic
collaboration, and guides these regions to invest more in environmental protection.
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Figure 5. The level of market integration in Northeastern China.

4.1.2. Spatial and Temporal Trends in Carbon Emission

Figures 6–10 visualize the level of carbon emissions in each region, and it is evident
from the data that the extent of the carbon emissions is closely linked to the area. It can be
seen from the emissions that Hebei, Shanxi, Shandong, and Inner Mongolia are among the
country’s top regions in terms of carbon emission levels, which is also related to the pillar
industries and development patterns of the areas in Figure 6. For example, in the results of
the sub-region, heavy industries, such as coal mines, metal, and petroleum have relatively
high carbon emissions.

Eastern China has always maintained the rising trend of carbon emission levels,
keeping the second position in Figure 7. Obviously, as an economically developed region,
the eastern region maintains a high level in terms of carbon emissions, both in terms of
production activities and living agglomeration, but with the transformation and upgrading
of the economic structure, more and more energy-consuming industries gradually move to
the central and western regions, thus making the total amount of carbon emissions in the
eastern region show a slight downward trend.

The carbon emission level in central China has shown a slight downward trend since
2012 in Figure 8, resulting from the fact that most provinces in central China are located in
the Yangtze River economic belt, the ecological protection requirements of which may have
a particular impact on the carbon emission level in central China.

It is noteworthy that western China’s carbon emission level has always shown a
significant upward trend in Figure 9, although its carbon emission level ranked last in 2013.
However, by 2019, western China’s overall carbon emission level had jumped to the top of
the four areas. On the one hand, with the deepening of the western development strategy,
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the development of western China has shown an upward trend. On the other hand, along
with the phenomenon of industrial transfer, the level and scale of industries undertaken by
the part of the west in eastern and central China are also rising, which leads to a gradual
increase in the carbon emission level of western China.

The northeast region has maintained a higher carbon emission position for a long
time in Figure 10, which may be related to its regional characteristics; it carries more old
industrial industries, and the transformation of economic and industrial development after
2012 may have had a particular impact on its carbon emission level. It is evident in the
graph that the carbon emission level has fallen back since 2012.

 

2003 2008 

 

2012 2019 

Figure 6. The level of carbon emissions in China.
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Figure 7. The trend of carbon emission levels in eastern China.
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Figure 8. The trend of carbon emission levels in the central China.
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Figure 9. The trend of carbon emission levels in western China.
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Figure 10. The trend of carbon emission levels in northeast China.
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4.2. Analysis of Empirical Results
4.2.1. Regression Analysis Results

Table 1 indicates that under the baseline regression, market integration significantly
increases carbon emissions without considering the impact of changes in industry structure.
However, its impact is far less than that of government input (i.e., each 1% increase in the
level of market integration will lead to a 0.0787% increase in carbon emissions), while every
1% increase in government input will lead to a 0.507% increase in carbon emissions. The
increase in the level of market integration will help break down local barriers, accelerate
the flow of various factors, and reduce transaction costs, thus promoting the scale effect to
increase total production and consumption. Therefore, with other conditions unchanged,
enterprises can produce more goods, and consumers’ willingness and ability to pay are also
enhanced to a certain extent. The increase in these production factors and the acceleration
of commodity flow will increase carbon emissions [47].

Table 1. Results of the benchmark return.

ALL EAST CENTRAL WEST NE
TCE TCE TCE TCE TCE

MI 0.0787 ** −0.0262 0.437 *** 0.0111 0.0361
(2.18) (−0.50) (4.04) (0.25) (0.87)

GOVI 0.507 *** 0.543 *** 0.289 0.605 *** 0.0150
(4.78) (3.23) (1.15) (5.56) (0.10)

ZLSP −0.0328 −0.141 ** 0.151 * −0.183 *** 0.0213
(−0.88) (−2.30) (1.83) (−4.46) (0.43)

FDI 0.173 5.832 *** −3.447 ** −0.962 * 3.315 ***
(0.36) (4.22) (−2.41) (−1.83) (3.61)

GDP −0.0615 −0.328 * −0.0308 0.158 0.114
(−0.47) (−1.71) (−0.10) (1.05) (0.61)

_cons 1.917 * −10.22 *** 9.606 *** 3.900 *** −4.761 *
(1.66) (−2.90) (2.93) (3.42) (−2.00)

N 510 170 102 187 51
r2 0.765 0.725 0.732 0.860 0.850

Notes: t statistics in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

To further analyze whether there is regional heterogeneity in the impact of market
integration on carbon emissions, regression analysis is carried out for eastern, central,
western, and northeastern China without considering the factors of the industrial struc-
ture change. The results show that the impact of market integration on carbon emissions
presents significant regional differences. The eastern, western, and northeastern regions
have no significant impact, and only in the central area has market integration promoted
the level of carbon emissions. The elasticity coefficient is 0.437; (i.e., for every 1% increase
in market integration, carbon emissions will increase by 0.437%). As for other control
variables, both government input and foreign investment levels in eastern China signifi-
cantly contribute to the increase in carbon emissions, with elasticities of 0.543 and 5.832,
respectively. In contrast, the technology and local economic development levels have a
suppressive effect on carbon emissions, with elasticities of −0.141 and −0.328, respectively.
Only western China negatively impacts carbon emissions in government input, with an
elasticity coefficient of 0.605. At the same time, technology and foreign investment have a
positive relationship, with elasticities of −0.183 and 0.962, respectively. Northeast China
only shows a negative relationship with carbon emissions in foreign investment, with an
elasticity coefficient of 3.315.

It suggests that the advancement of market integration in eastern China may not
substantially impact carbon emissions. Meanwhile, it may be due to the higher level of
economic development in eastern China, which has achieved inter-regional opening and
integration earlier than other regions of the country, and the barriers between regions are
relatively low. On the contrary, factors such as technology levels and government input
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may have a more significant impact on carbon emissions, while we consider that changes
in industrial structure may have a relatively more significant impact on regional carbon
emissions. Since 2005, the strategy for the rise of central China has led to a gradual increase
in inter-regional cooperation. Therefore, in this context, the further opening of the market
has accelerated the flow of factors and commodity transactions in central China, which has
led the region to increase the amount of carbon emissions. At the same time, along with the
requirements of national green development, central and western China have gradually
tightened their investment requirements. As a result, it is not difficult to understand that the
western and central regions have significantly suppressed the increase in carbon emissions
in terms of foreign investment, but with the deepening of regional cooperation and further
breaking of market barriers in central China, the spillover of technology is more likely to
be concentrated in non-high-tech. The development of the technology level in this region is
mainly applied to industrial production sectors such as manufacturing, thus showing that
technological progress has significantly promoted the increase in carbon emissions.

4.2.2. Analysis of the Mechanism

To examine the moderating role played by industrial structure changes in the market
integration process on carbon emissions, the interaction terms of market integration and
industrial rationalization, and the interaction terms of market integration and industrial
advancement, are incorporated into the model, respectively. The results are shown in
Table 2.

Table 2. Analysis of moderator effects.

(1) (2) (3) (4)
TCE TCE TCE TCE

MI 0.0798 ** 0.0949 *** 0.0629 * 0.0633 *
(2.21) (2.66) (1.79) (1.79)

INDR 0.0916 0.160
(0.62) (1.10)

INDH −0.250 *** −0.250 ***
(−5.17) (−5.18)

GOVI 0.501 *** 0.459 *** 0.491 *** 0.492 ***
(4.70) (4.37) (4.75) (4.76)

ZLSP −0.0301 −0.0160 −0.0674 * −0.0666 *
(−0.81) (−0.44) (−1.84) (−1.81)

FDI 0.169 0.0717 −0.213 −0.216
(0.35) (0.15) (−0.45) (−0.46)

GDP −0.0637 −0.115 −0.125 −0.127
(−0.49) (−0.90) (−0.99) (−1.00)

Intreact1 0.692 ***
(4.23)

Intreact2 0.0148
(0.26)

_cons −0.0148 −0.118 −0.228 * −0.230 *
(−0.13) (−1.00) (−1.89) (−1.90)

N 510 510 510 510
r2 0.765 0.774 0.778 0.778

Notes: t statistics in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Columns (1) and (2) show the results of the effect of market integration on carbon
emissions after considering industrial rationalization. In the main effects regression, the
impact of market integration on carbon emissions is significantly negative, and the co-
efficient of the effect of market integration on carbon emissions is 0.0798, which means
that every 1% increase in the level of market integration will lead to a 0.0798% increase
in the level of carbon emissions. After adding the interaction term, the result of the inter-
action term is significantly negative; That is, industrial rationalization further enhances
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the impact of market integration on carbon emissions. This indicates that as the level of
industrial rationalization among regions increases, it helps accelerate the optimization of
the inter-regional division of labor and efficient collaboration, and can effectively improve
the utilization of resources and energy. However, more production and consumption may
increase carbon emissions and weaken the carbon reduction effect brought by improving
resource and energy efficiency. Columns (3) and (4) show the results of the impact of market
integration on carbon emissions after considering advanced industrialization. In the main
effects regression, the effect of market integration on carbon emissions is also significantly
negative; namely, every 1% increase in market integration will lead to a 0.0629% increase
in carbon emissions. In addition, industrial upgrading has a significant positive effect on
carbon emissions; every 1% increase in industrial upgrading will lead to a 0.25% decrease
in carbon emissions.

It suggests that although industrial upgrading can play its unique advantage and role
in promoting carbon emission reduction, it may play a limited role in market integration.
With the promotion of market integration, different regions may have different paths and
ways to achieve industrial upgrading. In promoting market integration, due to differences
in levels or similar political demands, the strategic objectives and positioning of industrial
restructuring may have a convergence effect. Therefore, industrial upgrading has not played
a role in strengthening or weakening the impact of market integration on carbon emissions.

4.2.3. Intermediary Effect Analysis

We used industrial rationalization and industrial upgrade as mediating variables to
explore whether market integration has a mediating effect on carbon emissions, and tested
that market integration can additionally affect carbon emissions by influencing changes
in industrial structure. The results of Table 3 indicate that using industrial upgrade as a
mediating variable, it passes the Sobel Test (i.e., market integration can further affect the
carbon emission level by influencing the change of industrial upgrading). The results show
that the proportion coefficient of the intermediary effect of market integration on carbon
emissions is 0.6654. Although the impact of market integration on carbon emissions is still
negative after considering the level of an industrial upgrade as a mediating variable, it can
be seen from the coefficient change that the coefficient of the effect of market integration on
carbon emissions decreases from 0.397 to 0.268 with the intervention of industrial upgrade
(i.e., every 1% increase in market integration level will lead to a 0.268% increase in carbon
emissions). However, the carbon emission level will increase by 0.397% without industrial
upgrade intervention. Interestingly, in the intermediary transmission process, we find
that market integration has a negative effect on industrial upgrading, which may indicate
that in promoting market integration and removing barriers between regions, the rapid
transformation to industrial upgrading may not be achieved in the short term. The rapid
development of local trade, industry, etcetera may be preferred, which will hinder or slow
down the process of industrial structure upgrading. This phenomenon can be seen in the
above regional heterogeneity analysis, and the process of industrial advancement is not
the same between regions. Market integration cannot achieve a pull effect on the overall
industrial progress in the short term. However, it is undeniable that market integration
can still weaken carbon emissions by upgrading industrial structures. The rationalization
of industrial structures failed to pass the intermediary effect test, indicating that regions
may still fail to take industrial rationalization as the primary choice for regional indus-
trial development in promoting market integration. Therefore, this invisible competition
relationship may still exist among regions. This relationship cannot effectively promote
the scientific and reasonable change of industrial structure, and there are risks of resource
reuse, resource waste, and carbon emissions in the market integration process.
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Table 3. Results of mediating effects of industrial upgrades.

(1) (2) (3)
TCE INDH TCE

MI 0.397 *** −0.279 *** 0.268 ***
(4.78) (−3.50) (3.560)

INDH −0.462 ***
(−10.94)

GOVI 0.39 *** 0.957 *** 0.832 ***
(3.19) (8.14) (7.120)

ZLSP −0.245 *** −0.0896 * −0.287 ***
(−4.66) (−1.77) (−6.050)

FDI −4.243 *** 2.429 *** −3.121 ***
(−7.56) (4.50) (−6.080)

GDP 1.023 *** −1.128 *** 0.502 ***
(10.09) (−11.57) (4.890)

_cons 5.585 *** 0.498 5.815 ***
(4.48) (0.420) (5.20)

Sobel Test 0.129 ***
(3.331)

Indirect effect 0.2682
Direct effect 0.3972

Notes: t statistics in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

4.2.4. Robustness Test

We tested the robustness of the benchmark regression by replacing variables, changing
measures standards, extracting years, and other methods in Table 4. The results show that
the impact of market integration on carbon emissions is always negative, but only slightly
varies in the magnitude and coefficient of significance, indicating that the empirical results
are reliable. Column (1) tests the model by the GLS method, and the results show that the
effect of market integration on carbon emissions is significantly negative (i.e., every 1%
increase in market integration will lead to a 0.0282% increase in the level of carbon emissions).
Column (2) shows that after bringing the market integration lag into the model as the core
explanatory variable, the effect of market integration on carbon emissions is still significantly
negative (i.e., every 1% increase in market integration will lead to a 0.0282% increase in
carbon emission level). Column (3) shows that after adjusting the data by excluding the
data from 2003 and from 2019, the model regression results still indicate that the effect of
market integration on carbon emissions is significantly negative (i.e., every 1% increase in
market integration will lead to a 0.0738% increase in the level of carbon emissions). The
results of the robustness test on the model indicate the stability of the regression analysis
and the reliability of the results.

Table 4. Robustness test results.

(1) (2) (3)
TCE TCE TCE

MI 0.0282 *** 0.0818 ** 0.0738 **
(0.0095) (0.0348) (0.0369)

Control Variables YES YES YES
Constant 1.9195 *** 2.4699 ** 2.3137 *

(0.3527) (1.1846) (1.2899)
N 510 450 450
r2 0.6822 0.7349

Notes: t statistics in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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5. Conclusions

This paper adopts a two-way fixed effects analysis based on Chinese provincial panel
data from 2003 to 2019. It uses a mediation model to explore the relationship between market
integration and carbon emissions, the carbon emission effects generated in promoting market
integration between regions, and the shock effects caused by changes in industrial structure
based on industrial rationalization and upgrade. The specific conclusions are as follows:

First, market integration significantly increases carbon emissions, however, there was
significant regional heterogeneity. While the advancement of market integration in eastern
China may not have a substantial impact on carbon emissions, the further opening of
markets in central China accelerates the flow of factors and trade of commodities in central
China, making this region demonstrate characteristics of market integration significantly
increasing the number of carbon emissions.

Second, market integration will increase the scale of production through industrial
upgrades, which will further increase carbon emissions; the results of the moderating effect
show that market integration has a significant negative contribution on carbon emissions,
and that industrial structure change can play a moderating role. Industrial rationalization
can further enhance this negative effect. However, industrial upgrading does not have
an effective regulatory result on this effect, but it significantly positively impacts carbon
emissions. Therefore, it can be seen that along with improving industrial rationalization,
it is conducive to improving the efficiency of production division and accelerating the
circulation of commodity factors among regions. The increase in carbon emissions brought
by this scale efficiency may be much more significant than the reduction effect brought by
the improvement of resource and energy utilization efficiency, thus further enhancing the
impact of market integration on carbon emission. As for industrial advancement, its effects
on carbon emissions are more reflected in itself, but the role played by industrial upgrades
in the process of market integration may be limited.

Third, industrial upgrading can reduce carbon emissions, but there are still some
obstacles to market integration in the process of promoting industrial restructuring. We
find that market integration has a negative effect on industrial upgrading, which may
indicate that promoting market integration between regions and breaking down inter-
regional barriers may not realize the rapid transformation to industrial upgrading in the
short term. Market integration cannot promote the upgrading of the overall industry in
a short time. However, it is undeniable that market integration can still weaken carbon
emissions by upgrading the industrial structure. The rationalization of the industrial
structure failed to pass the intermediary effect test, indicating that in promoting market
integration, regions may still fail to take industrial rationalization as the primary choice for
regional industrial development. Therefore, this invisible competition relationship may
still exist among regions. This relationship cannot effectively promote the scientific and
reasonable change of industrial structure, and there are risks of resource reuse, resource
waste, and carbon emissions in the process of market integration.

Based on these findings, we propose several recommendations to the Chinese govern-
ment to promote the development of a low-carbon economy and achieve China’s carbon
reduction targets.

First, the government should consider the two-way effect of low-carbon and market
integration. With the expansion of market scale, the increase in production brought by the
increase in the degree of market integration will undoubtedly lead to a short-term increase
in carbon emissions. Therefore, it is necessary to take full advantage of the policy dividend
of market integration to accelerate the rationalization of industrial transfer and locally
advanced upgrading between areas to improve the various levels of technical exchanges,
applications, and complementarities among regions.

Second, in the process of promoting market integration, each region should choose
an industrial change path that is in line with the actual regional development, consolidate
the various primary conditions for industrial development, achieve the valid promotion
of increment in actual production and development, and effectively realize the recyclable
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mode of emission reduction. In particular, the central government should accelerate
the implementation of diversified local assessment standards, optimize local officials’
promotion options and ways as soon as possible, and ultimately break the rough inspection
system of regional economic development only.

Finally, in promoting market integration, we should fully use spillover advantages,
play the role of inter-regional transmission of technological innovation, and realize a good
model of increasing output without increasing carbon in the market integration process.
At the same time, central and western China should further strengthen the management
of foreign direct investment, attach importance to the introduction and support of green
industries, and form a sustainable industrial development pattern.
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Abstract: China is confronted with the dual constraints of economic transformation and carbon
emission reduction. As the digital economy is a key force in promoting economic transformation
and optimizing industrial structure, it is crucial to analyze the digital economy’s impact on carbon
emission reduction from the perspective of energy consumption and industrial value chain impli-
cations. We selected data from 251 prefecture-level cities and above in China from 2011 to 2019 as
research samples, measured the development level of the digital economy using the entropy value
method, and constructed relevant regression models based on two-way fixed effects, intermediary
analysis, and moderation analysis. The research reveals that: (1) The digital economy has a significant
contribution to carbon emission efficiency, and there are significant regional heterogeneity and city
size differences; (2) The digital economy can improve carbon emission efficiency by reducing energy
consumption. (3) From a value chain perspective, industrial structure rationalization weakens the
carbon emission efficiency improvement effect of the digital economy to a certain extent, whereas
industrial structure upgrading obviously enhances the carbon efficiency improvement effect of the
digital economy. The above findings enrich the research in the field of digital economy and environ-
mental governance, contribute to a more comprehensive understanding of the mechanisms by which
the digital economy affects the carbon emission efficiency, as well as provide policy implications
for enhancing the use of the digital economy in the regional energy consumption and industrial
value chain.

Keywords: digital economy; carbon emission efficiency; industrial structure; energy consumption;
industrial value chain; mediation model; moderation model

1. Introduction

The effects of climate change on the sustainable growth of human society are significant.
The Paris Agreement establishes the objective of managing the global temperature increase:
accomplishing the goal of reducing global average temperature rise to no more than
2 ◦C and seeking to maintain it under 1.5 ◦C in order to safeguard the earth’s ecological
security [1]. To attain this long-term goal, nations must immediately peak their greenhouse
gas emissions and contribute to the realization of carbon neutrality by the middle of this
century. With China being the largest emitter of carbon dioxide and having the most
comprehensive range of industries, China’s effective promotion of low-carbon transition
development is an obvious choice for deploying carbon peaks and carbon neutrality. A
binding target of 13.5% reduction in energy consumption and 18% reduction in carbon
emissions has been set for China under the 14th Five-Year Plan. In this situation, it is
necessary to improve the efficiency of carbon emissions, achieving more economic growth
with less energy and the same amount of carbon emissions, push for a complete low-carbon
transformation in economic and social fields, and follow a green, low-carbon, high-quality
development path to meet the “double carbon” target on time.
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Currently, the digital economy is becoming increasingly influential in restructuring
factor resources, changing economic structures, and transforming the competitive envi-
ronment. According to the data released in the Report on the Development of China’s Digital
Economy (2022), the digital economy in China achieved a new high in 2021, with its size
reaching 45.5 trillion yuan with a nominal growth rate of 16.2%, 3.4% higher than the nomi-
nal growth rate of GDP, and accounting for 39.8% of GDP [2], strengthening its position in
the national economy as well as playing an increasingly important supporting role.

Although the digital economy can provide long-term benefits to economic develop-
ment, its possible environmental implications have also garnered the attention of numerous
academics. In terms of theoretical and empirical studies, there is still a lack of direct discus-
sion on the impact of the digital economy on the efficiency of carbon emissions, but relevant
studies on the impact of the digital economy, especially on carbon emissions, provide
references and inspirational implications for this paper. On the one hand, some scholars
believe that the digital economy is an effective way to mitigate carbon emissions. They
argue that the digital economy is providing a new impetus for intelligent management
of the environment, with information technology at its core, and has a positive effect on
environmental pollution control by functioning as informal environmental regulation [3,4].
Simultaneously, the extrusion effect of the digital economy can effectively promote the
transformation and upgrading of the regional industrial structure, further restrain the
development of high energy-consuming and high-polluting industries, and thus accelerate
the improvement of environmental quality [5,6]. On the other hand, an opposite viewpoint
on the impact of the digital economy on carbon emissions has gained significant attention.
Proponents of this view believe that the development of the digital economy does not
reduce energy consumption, but rather increases it, and that the energy growth effect
of the digital economy may have outweighed the energy reduction effect [7]. Moreover,
the expansion of the digital economy increases the size of the economy, which in turn
increases energy consumption and carbon emissions [8]. These contradicting findings
have piqued the interest of academics in researching the impact of the digital economy on
carbon emissions.

Research on carbon emission efficiency is mainly focused on the measurement of
carbon emission efficiency among different regions and industries, and the analysis of the
influencing factors of carbon emission efficiency [9,10]. Research on digital economy and
carbon emission mainly focuses on the digital economy’s impact on carbon emission [11,12],
the link between the digital economy and carbon emission performance [13], and the impact
of internet development on carbon emission efficiency [14]. However, few scholars have
argued for a possible direct impact relationship between carbon emission efficiency and
the digital economy, and there is a lack of further evidence to support the relationship in
terms of value chain and energy consumption. This paper therefore seeks to bring the
variety of digital economy development into the research framework of the impact factor
theory for carbon emission efficiency in order to determine whether the digital economy
influences carbon emission efficiency, if such an effect exists. What is the mechanism of
industrial value chain and energy consumption in the process if this effect does exist? To
answer the above questions, this paper combines the distinctive characteristics of the digital
economy and constructs a theoretical analysis framework from the perspective of carbon
emission efficiency. Based on this framework, the digital economy and carbon emission
efficiency levels of 251 prefecture-level and above cities in China were measured from 2011
to 2019, and the impact of the digital economy on urban carbon emission efficiency and its
mechanism of action were empirically examined. The findings indicated that the digital
economy greatly improved carbon emission efficiency in the region, with the reduction
of energy consumption and the improvement of industrial value chains being among the
most significant mechanisms of effect.

As a crucial component of high-quality development, the influence of the digital
economy on economic growth and ecological environment is gaining increasing attention.
As a typical developing country, examining the contribution of China’s digital economy
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to enhancing carbon emission efficiency can provide developing countries with theoreti-
cal support for enhancing the carbon emission reduction capacity of the digital economy
and achieving “economic growth—environmental protection” win-win development. The
original study’s potential marginal contributions included the following three aspects:
(1) This paper empirically tested whether the digital economy had a positive impact on
carbon efficiency using data from prefecture-level municipalities, providing new empirical
evidence for research related to the digital economy and environmental quality, especially
in the area of carbon emissions. It also offered potential policy references for green devel-
opment in China; (2) A comprehensive evaluation index system at the municipal level was
constructed, therefore enhancing the measurement approach. To comprehensively reflect
the development of the digital economy in Chinese cities, comprehensive digital economy
indicators were constructed with the internet as the core, and the characteristics of digital
economy development and the influence relationship between the digital economy and
carbon emission efficiency were discussed in greater detail. (3) We explored the intrinsic
mechanism of the digital economy affecting carbon emission efficiency, and used energy
consumption as a mediating variable to analyze the transmission path, effect size and
heterogeneous differences of the digital economy on carbon emission efficiency improve-
ment, and clarify the policy focus points for promoting the low-carbon development of the
digital economy.

The remainder of this paper is structured as follows. Section 2 presents the relevant
research hypotheses through literature analysis. Section 3 provides an overview of the
research data and methodology. Sections 4 and 5 explain and analyze the empirical results.
Section 6 elaborates the conclusions and policy recommendations of this study.

2. Research Hypotheses

The impact routes of the digital economy on carbon emission efficiency may be ana-
lyzed from two perspectives: the direct impact road from the standpoint of digital economy
development, and the indirect impact path from the standpoints of energy consumption
and the industrial value chain. The influence mechanism of the digital economy on carbon
emission efficiency is depicted in Figure 1.

 
Figure 1. Mechanism analysis between digital economy and carbon emission efficiency.
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2.1. The Direct Impact of the Digital Economy on the Efficiency of Carbon Emissions

Numerous scholars have studied the energy and environmental effects of the digital
economy’s development and found that the rapid development of the digital economy
exemplified by the internet not only results in rapid economic growth, but also contributes
to significant improvements in environmental performance [15,16]. It has been determined
that the rapid expansion of the digital economy, as demonstrated by the internet, brings
not only quick economic growth but also major improvements in environmental perfor-
mance. The rise of the digital economy has a substantial impact on carbon emissions,
the most evident signal of change within the framework of climate change. On the one
hand, the development of the digital economy drives up the level of digital technology, the
application of digital technology in environmental protection has changed the traditional
environmental monitoring model and method by combining various sensors and computer
technology to create a comprehensive network information collection system, realizing
the integration of data collection and transmission and management, reducing the cost
of monitoring technology, and enhancing the monitoring capability of real-time assess-
ment of environmental conditions [17]. The efficient sharing of environmental information
facilitates effective resource deployment, compensates for the deficiencies of traditional
regulatory tools in a targeted manner, provides data support to enhance environmental
regulation and enforcement, and thereby improves pollution management [18]. Moreover,
the development of digital technology offers new options and avenues for business infor-
mation disclosure, thereby mitigating the negative effects of information asymmetry [19].
In addition, it strengthens the competition mechanism of elimination of winners and losers
in the market environment, forcing enterprises with high pollution and high emissions to
invest more in research and development to achieve an efficient use of resources and low
carbon and sustainable development of the city [20]. On the other hand, the development of
the internet has brought about changes in connectivity and communication, accelerated the
speed of information transfer, enriched access to information, provided more opportunities
for knowledge sharing, use and re-creation, enabled traditional industries to take advantage
of the penetration and derivation of digital technology for industrial upgrading, promoted
the process of technical catch-up and economic convergence, as well as the development of
intelligent and environmentally friendly industries [21], and reduced energy consumption
and pollutant emissions [22]. In addition, the efficiency of carbon emission is improved. In
summary, we propose Hypothesis 1.

Hypothesis 1 (H1). The digital economy positively affects carbon emission efficiency.

2.2. Indirect Impact of the Digital Economy on Carbon Efficiency
2.2.1. Digital Economy and Carbon Efficiency: The Energy Consumption Perspective

Energy consumption is a key driver of carbon emissions, which include the con-
sumption of natural resources such as coal, oil and natural gas [23]. In the context of the
expansion of the digital economy, an increasing number of studies have proven the function
of the use of digital devices and processes that might increase energy efficiency in many in-
dustries [24–26]. Specifically, in promoting the integration of traditional energy companies
with digital enterprises, the use of digital technologies has significantly improved the oper-
ational efficiency of oil and gas companies. Additionally, the latest information technology
has been utilized to integrate energy and digital technologies in order to build a new energy
ecosystem, change the way energy is produced and consumed, optimize the energy mix,
accelerate the energy transition, and improve carbon emission performance [27,28]. The
digital economy accelerates urban processes and brings about the development of public
transportation and renewable energy [29], which helps to capitalize on the economies of
scale of public infrastructure and prevent environmental damage [30]. Simultaneously, the
extensive use of big data analysis can effectively promote the construction of the global
energy internet, which can effectively improve the efficiency of energy resource allocation,
enable the development and consumption of clean energy to reach scale, and gradually
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replace fossil fuel energy, which is conducive to reducing carbon dioxide emissions and
can improve carbon emission efficiency [12,31].

Conversely, it has been proposed that rapid urban expansion and development in-
creases intensive urban economic activities caused by housing, transportation and recre-
ation [32], which increases energy demand and leads to more carbon emissions [33], which
reduces the regional carbon efficiency, and the energy consumption associated with the
creation of digital infrastructure itself may negate any possible energy savings. It is ar-
gued that the digital economy based on communication technologies has energy-intensive
qualities, and a huge quantity of infrastructure construction will consume more energy
resources in the early stages of digital economy development [7]. In addition, data creation,
process, storage, and movement depend on resources such as water, electricity, and metals,
and as the scale of use of digital services and products continues to expand, the environ-
mental pollution caused by e-waste during use and carbon emissions also increase [34].
Collard et al. and Longo et al. also believe that the usage of ICT has resulted in an increase
in electricity consumption and that communication technologies have not significantly
improved the environment [35,36]. Therefore, we argue that the digital economy can affect
carbon efficiency through influencing energy consumption, and in this paper, we propose
the following mediation hypothesis.

Hypothesis 2 (H2). Energy consumption plays a mediating role between the digital economy and
carbon efficiency.

2.2.2. Digital Economy and Carbon Efficiency: Industrial Value Chain Perspective

In the context of the rapid development of information technology, the internet, with
its characteristics of openness, collaboration and sharing, has gradually become the most
important production application tool, and its integration with traditional production
factors and resources has promoted industrial upgrading [37]. Gereffi et al. suggest that
industrial upgrading can be seen as a process of climbing up the value chain or between
value chains for firms and the whole industry in the region [38]. The productivity divi-
dend brought by the deep integration of new generation communication technology and
advanced manufacturing technology can significantly break the innovation bottleneck of
each link in the industrial chain, thus breaking the “low-end locking” trap of the industrial
value chain and making the industrial structure develop from low-level to high-level forms
with inter-industrial upgrading [39], and the degree of change from low to high value-
added industries can directly reflect the quality and level of development of the industrial
value chain.

The inter-industrial upgrade will, to a certain extent, diminish the good impact of
the digital economy’s development on reducing carbon emission efficiency. The rapid
emergence and evolution of digital technology has created a new opportunity for the
industrial structure to transform from a factor-driven to an innovation-driven mode. This
can help boost sectoral productivity and improve the industrial value chain [40]. More-
over, digital network platforms can promote resource sharing among industries and fields
via scale and competition effects, optimize traditional industrial production and sales
methods, strengthen the market competition mechanism, eliminate backward production
capacity, and force backward and low-end industries to upgrade [41]. Existing scholars
have argued that inter-industrial upgrading might successfully cut carbon emissions via a
variety of techniques [42,43]. In the process of developing industrial structure in a green
direction, the fossil energy-based energy structure will be significantly enhanced, especially
for energy-intensive and carbon-emitting industrial sectors, and digital technology will
reduce the demand for energy and materials, which can effectively improve energy effi-
ciency and resource allocation efficiency, thereby reducing carbon emissions. Therefore,
we believe that inter-industry upgrading is an important element in industrial value chain
upgrading, as the impact of the digital economy on carbon emission efficiency will be
significantly influenced by industrial structure value-chain upgrading. Furthermore, we
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divide the inter-industry upgrading into two dimensions, industrial structure advanced
and industrial structure rationalization. The industrial structure upgrade process involves
increasing the number of high-value-added industries. This process is carried out to im-
prove the overall structure of the facility. The second is industrial structure rationalization;
the higher the degree of inter-industry coordination, the higher the degree of industrial
structure rationalization.

From the above, we propose the following hypotheses.

Hypothesis 3a (H3a). Industrial structure upgrading plays a moderating role between digital
economy and carbon efficiency.

Hypothesis 3b (H3b). Industrial structure rationalization plays a moderating role between digital
economy and carbon efficiency.

3. Model

3.1. Method

To test the above research hypotheses, a two-way fixed-effects model is first con-
structed for the direct transmission mechanism.

e f fit = α0 + α1digitalit + α2Xit + μi + δt + εit (1)

In Equation (1), e f fit represents the carbon emission efficiency of city i at time t,
digitalit is the digital economy development index of city i in period t, Xit is a vector that
represents the remaining control variables, μi is the individual fixed effect, δt refers to the
time-fixed effect, and εit denotes the random error term.

Besides the direct effect embodied in Equation (1), this study also explored the possi-
bility that the consumption of energy can be a factor mediating the digital economy and
carbon emissions. Referring to the stepwise method proposed by Baron and Kenny (1986)
for testing mediating effects [44]: the coefficient α1 significance of the model (1) of digital
economic development index (digital) on carbon emission efficiency (e f f ) passed the test,
so we constructed linear regression equations for digital on the mediating variable energy
consumption (energy), as well as regression equations for digital and the mediating vari-
able energy on e f f . The mediation effect will be judged by the significance of regression
coefficients such as β1, γ1 and γ2. The following is the specific form of the regression model:

energyit = β0 + β1digitalit + β2Xit + μi + δt + εit (2)

e f fit = γ0 + γ1digitalit + γ2energyit + γ3Xit + μi + δt + εit (3)

Further, this section adds the interaction term of industrial structure upgrading (insu)
and industrial structure rationalization (inso) with digital economy development index
(digital) to test the role of industrial structure moderation between digital economy and
carbon emission efficiency, the significance of the regression coefficients such as η3 and η7
will be used to determine whether the moderating effect exists.

e f fit = η0 + η1digitalit + η2insuit + η3digitalit × insuit + η4Xit + μi + δt + εit (4)

e f fit = η0 + η5digitalit + η6insoit + η7digitalit × insoit + η8Xit + μi + δt + εit (5)

3.2. Variables
3.2.1. Dependent Variable

The explanatory variable studied in this paper is carbon emission efficiency (e f f ).
This research is based on the super-efficient SBM model proposed by tone [45], which
incorporates labor input, capital stock, and energy consumption as input indicators, GDP
as desired output and carbon emissions as non-desired output, as stated in Table 1. (1) Labor
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input is indicated by the number of employees in each prefecture-level city at the end of the
year. (2) The estimation of capital stock is mostly calculated using the perpetual inventory
method at constant prices, and this part draws on Zhang’s approach [46], which adopts a
discount rate of 9.6% to calculate the capital stock at the end of each year from 2011 to 2019,
using the year 2000 as the base period, the calculation formula is Kit = Kit−1(1 − δit) + lit,
where Kit is the capital stock of region i in year t. lit is the fixed asset investment of
region i in year t. δit is the depreciation rate. (3) The direct energy consumption of
the city mainly includes natural gas and liquefied petroleum gas, whereas the indirect
energy consumption mainly includes electricity consumption, which will be converted
into standard coal by referring to the General rules for calculation of the comprehensive energy
consumption GBT2589-2020 because units are not uniform. (4) The estimation of carbon
dioxide emissions is based on the approach of shan, according to the Intergovernmental
Panel on Climate Change (IPCC) guidelines on the allocation of greenhouse gas emissions,
carbon emissions are calculated for 17 fossil fuel combustion and cement production-related
process emissions for 47 socioeconomic sectors [47]. Figure 2 shows the spatial distribution
of carbon emission efficiency indicators, and most cities show an increasing trend of carbon
emission efficiency. Due to the limitation of space, this paper only provides the calculation
results of two years.

Table 1. Evaluation system of carbon emission efficiency.

Input/Output Indicators Definition Units

Input
Labor force Number of employees in the unit at the end of year 10,000 people

Capital stock Total fixed assets at the end of year 10,000 yuan

Energy consumption Total energy consumption of natural gas, liquefied
petroleum gas and electricity at the end of year 10,000 tons of coal

Desirable output Economic output Gross domestic product (GDP) at the end of year 10,000 yuan

Undesirable output Carbon emission Carbon emission at the end of year 10,000 tons

  
(a) (b) 

Figure 2. China’s carbon emission efficiency. (a) Spatial distribution in 2011; (b) Spatial distribution
in 2019.

3.2.2. Independent Variable

The digital economy index (digital) is the key explanatory variable for this article.
Currently, there is a paucity of relevant research regarding the precise measurement of
the digital economy, and academics have not yet developed a recognized evaluation
system. Based on the study findings on the definition of digital economy, the design of
an index system, and measurement methodologies, this work utilizes the availability of
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city-level data and the methodology of Zhao et al. to examine the economic and financial
characteristics of the digital economy [48], measuring the development level of digital
economy from internet development and digital finance. Considering the postal express
business has increased fast in recent years along with the rapid development of e-commerce,
the promotion of internet popularity on the scale of local postal express is relatively stronger
than other factors [49]. In addition, the expansion of the digital economy has presented
technology inventors with increasingly specialized business model difficulties, which
in part encourages technology innovation [50]. In this article, internet penetration rate,
internet-related practitioners, internet-related output, cell phone penetration rate, postal
service output, and technological innovation capability are considered as indicators of
internet development level. For digital finance development indicators, the Digital Financial
Inclusion Index of China is used, which is compiled by the Institute of Digital Finance Peking
University and Ant Financial Group Holdings Limited, comprehensively measuring three
aspects: breadth of digital finance coverage, depth of use, and degree of digitalization [51].
The specific description is shown in Table 2. As an objective weighting method, the entropy
method has a stronger objectivity, so this paper processes the data of the above indicators
through the entropy method to obtain the digital economy index (digital). Figure 3 shows
the trend of China’s digital economy development level by cities. In general, digital
economic development is more advanced in 2019 than it was in 2011.

Table 2. Evaluation system of the digital economy development index.

Primary
Indicators

Secondary
Indicators

Tertiary Indicators Indicator Description Unit
Indicator

Properties

Digital economy
development

index

Internet development
level

Internet penetration rate Number of Internet access users per
100 people household +

Internet-related practitioner
Computer services and software

industry employees accounted for the
proportion of urban unit employees

% +

Internet-related output Total telecom services per capita Yuan +

Cell phone penetration rate Number of cell phone subscribers per
100 people household +

Digital technology
application

Postal operations output Total postal services per capita Yuan +

Technology innovation capability
Number of digital economy-related
invention patent applications in the

current year
Pieces +

Digital finance
development level Digital financial inclusion Digital financial inclusion index of

China – +

  
(a) (b) 

Figure 3. China’s digital economy. (a) Spatial distribution in 2011; (b) Spatial distribution in 2019.
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3.2.3. Control Variables

To mitigate omitted variable bias as much as possible, the article further controls for a
series of variables that affect the efficiency of urban carbon emissions. (1) Economic growth
(pgdp), as measured by GDP per capital [50,52]; (2) Population density (pop), the ratio of
total population to administrative area is chosen to represent population density [53,54];
(3) Environmental regulation (er), this paper collates all Report on the Work of the Govern-
ment in prefecture-level cities from 2011–2019 by hand, sub-phrase the texts, count the
frequency of environment-related words (Environment-related terms specifically include:
pollution, emission reduction, prevention, ecological protection, low carbon, PM2.5, pm2.5,
haze, emissions, emissions, air, blue sky defense war, pm10, PM10, green, environmental
protection, particulate matter, monitoring, energy saving, dust, noise, tailpipe, emissions,
environmental protection, forest coverage, soot, atmosphere, sulfur dioxide, SOD, ozone,
sewage, SO2, binding indicators, wastewater, recycling, water conservation, nitrogen ox-
ides, energy, clean, unit GDP, chemical oxygen demand, energy consumption, ecological
construction, green water and green mountains, low carbon, pollution control, waste gas,
carbon dioxide, energy saving, ecology) and their proportion to the total number of words
in the report, so as to characterize the environmental regulation [55]; (4) Foreign direct
investment ( f di), as measured by the ratio of the annual actual foreign direct investment as
a percentage of GDP [56,57]; (5) Financial development ( f inan), as calculated by the ratio of
loan balances in financial institutions to regional GDP at the end of the year [58]; (6) Urban
transportation network construction (trans), as measured by the road area per capita [59].

3.3. Data Sources and Descriptive Statistics

This research examines Chinese prefecture-level and higher cities between 2011 and
2019. Due to the challenges of incomplete data or poor data quality in some cities, the panel
data of 251 cities are finally retained, and a small amount of missing data are compensated
by linear interpolation. China City Statistical Yearbook, China Energy Statistical Yearbook,
China Macro Economy Database, prefecture-level Municipal Statistical Bulletin, prefecture-
level Report on the Work of the Government, website of Institute of Digital Finance Peking
University, Carbon Emission Accounts and Datasets (CEADs), CSMAR database are the
sources for the data used in this study. In addition, this paper uses the annual average price
of RMB to USD exchange rate from the National Bureau of Statistics to adjust the total of
foreign direct investment; the standard coal conversion is based on the general rules for
calculation of the comprehensive energy consumption GBT2589-2020. In order to reduce
the dispersion of the data, this paper logarithmically processes certain indicators. The
results of descriptive statistics for the major variables in this work are presented in Table 3.

Table 3. Descriptive statistics of the variables (before logarithm).

Variables Symbol Obs Mean Std. Dev. Min Max

Carbon emission efficiency eff 2259 0.45 0.19 0.17 1.38
Digital economy index digital 2259 0.05 0.05 0.01 0.71

Economic growth pgdp 2259 53,292.50 34,022.71 9773.00 467,749.00
Population density pop 2259 3719.28 2536.95 179.00 15,055.00

Environmental regulation er 2259 0.01 0.01 0.00 0.15
Foreign direct investment fdi 2259 0.02 0.02 −0.03 0.20

Financial development finan 2259 0.96 0.55 0.12 7.45
Urban transportation network trans 2259 5.14 6.35 0.21 73.04

4. Results

4.1. Baseline Regression Results

Table 4 displays the results of the linear regression estimation of the digital economy
affecting urban carbon emissions’ efficiency. Models 1 and 2 show the results of fixed-effects
model tests with and without control variables. Despite the absence of control factors,
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the digital economy can still help to improve carbon emission efficiency at a significant
level of 1%. This is consistent with the conclusion of Hypothesis 1. Furthermore, there
is a substantial positive correlation between the level of economic growth and carbon
emission efficiency in Model 2, indicating that regional carbon emission efficiency has been
effectively increased as a result of urban economic growth and economically developed
regions with advanced production technology. This is probably because economic growth
in China is gradually shifting from extensive to low-carbon model [10]. In contrast, the
level of financial development and urban transportation network has a negative correlation
with urban carbon emission efficiency. This may be because the financial development and
the construction of the urban transportation network significantly accelerated the degree of
urban development and expansion, which aggravated the total amount of carbon emissions
in the region, thereby decreasing the efficiency of carbon emissions in a certain period of
time [60,61].

Table 4. Baseline regression results and instrumental variable test results.

Model 1 Model 2 Model 3 Model 4
eff eff digital eff

digital 0.7549 *** 0.5905 *** 3.2639 ***
(7.9560) (6.2796) (3.4517)

distance × mean_digital −0.0004 ***
(−7.4312)

lnpgdp 0.1375 *** 0.0667
(8.8389) (1.3197)

lnpopud 0.0028 0.0027
(0.4188) (0.4462)

er −0.3187 0.3380
(−0.9814) (0.9002)

fdi −0.1314 0.1350
(−0.6896) (0.6190)

finan −0.0258 ** −0.0419
(−2.5714) (−1.6251)

lntrans −0.0491 *** −0.0132
(−4.8218) (−0.7097)

Constant 0.3960 *** −0.9827 *** 0.0330 *** −1.7502 ***
(64.0975) (−5.6587) (18.6782) (−3.6478)

KleibergenPaap rk LM statistic 27.57
[0.000]

KleibergenPaap rk Wald F
statistic

26.74
{16.38}

Observations 2259 2259 2259 2259
Year YES YES YES YES
City YES YES YES YES

Adjust R2 0.131 0.181 0.361 0.685
F 66.58 50.89 170.3 76.86

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels. The figures in () are t statistics
and in [] is P value of the corresponding test statistics. The critical value at the level of 10% critical values of
Kleibergen-Paap rk Wald F test is within {} [62].

The findings of the baseline regression indicate a substantial positive correlation
between the digital economy and carbon emission efficiency, and the development of
regional digital economy contributes to the improvement of local carbon emission efficiency.
The digital economy indicator system constructed in this paper may have measurement
errors due to the availability of data, resulting in correlations between digital economy
development indicators and unobservable factors affecting carbon emission efficiency.
Besides, the reverse causality may exist between digital economy development and carbon
emission efficiency.

This paper attempts an instrumental variable approach to mitigate the endogeneity
problem. We use the spherical distance between each city and Hangzhou (The research
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methodology drawn from this paper selects the geographic feature of spherical distance
from cities at all levels and above to Hangzhou as an instrumental variable. This instru-
mental variable is correlated with the degree of digital economy development in the region.
The growth of digital finance exemplified by Alipay started in Hangzhou; thus, Hangzhou
is the leading city in terms of digital economy development, and it is reasonable to predict
that the closer a city is geographically to Hangzhou, the greater the level of digital econ-
omy development) as an instrumental variable (distance), and interact distance with the
mean value of the digital economy development index (mean_digital) at the national level
in the corresponding year as a new instrumental variable with time-varying effects [63].
Model 3 of Table 4 demonstrates that the estimated coefficient of the instrumental variable
is −0.0004, which is statistically negative at the 1% significantly level. It implies that the
more distant from the digital economy development center, the lower the level of the
digital economy development, which is in line with expectations. After considering the
endogeneity of the variables, the results of model (4) indicate that the digital economy still
has a significant contribution to the efficiency of carbon emissions, which further supports
the conclusion obtained from the benchmark regression, indicating that the improvement
of the development level of the digital economy contributes to the improvement of carbon
emission efficiency.

4.2. Robustness Tests
4.2.1. Dynamic Panel Regression

Different models have been selected to analyze and test the impact of the digital
economy on carbon emission efficiency. One of the biggest issues in the estimation process
of the model is the treatment of the endogeneity problem, as this endogeneity is caused by
the system itself, which is identical to the dynamic panel data in this respect. This paper
further uses the dynamic panel regression to test the robustness of the benchmark regression.
The System Generalized Method of Moments (SYS-GMM) estimation is commonly utilized
in dynamic panel data estimations to address endogeneity issues, and the SYS-GMM
is compared to the difference Generalized Method of Moments (difference-GMM) by
introducing level equations to reduce estimation errors. In order to evaluate the model,
this study employs a two-stage SYS-GMM estimation approach; the estimation results are
presented in Table 5. As can be seen from Model 1, AR (1) test rejects the null hypothesis at
the 1% significance level, and AR (2) test cannot reject the null hypothesis, indicating that
the model does not have higher-order serial correlation. The p-value of the Hansen test is
0.2080, which satisfies the over-identification test, indicating that the instrumental variables
selected in this paper are reasonable and valid. The results from the SYS-GMM method
demonstrate that the coefficients of the digital economy on carbon emission efficiency are
significantly positive at the 1% level, which is consistent with the results of the baseline
regression, supporting the robustness of the baseline regression.

Table 5. Robustness test results.

Model 1 Model 2 Model 3 Model 4
eff eff eff eff

L.eff 0.8280 ***
(21.2600)

Score 0.3076 ** 0.5905 *** 0.6276 ***
(2.0572) (6.2796) (5.5234)

L.Score 0.9311 ***
(8.8773)

Control variables YES YES YES YES
Constant −0.5737 −0.9827 *** −0.9797 *** −1.2033 ***

(−1.5285) (−5.6587) (−5.5661) (−6.7456)
Observations 2008 2259 2223 2008

Year YES YES YES YES
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Table 5. Cont.

Model 1 Model 2 Model 3 Model 4
eff eff eff eff

City YES YES YES YES
Hansen-p 0.2080
AR (1)-p 0.0000
AR (2)-p 0.3542

F 50.89 47.50 55.69
Adjust R2 0.1808 0.1689 0.2044

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels. The figures in () are t statistics or
z statistics.

4.2.2. Controlling Provincial Fixed Effect

Considering the possible changes in the macro-systemic environment caused by the
widespread expansion of the digital economy, this section mitigates the possible changes
of the digital economy development by introducing province-fixed effects and interaction
effects between provinces and years. The estimation results of Model 2 in Table 5 show that
the digital economy still plays a positive role in enhancing the carbon emission efficiency
after considering the systematic changes of macro factors.

4.2.3. Excluding Municipalities Directly under the Central Government

Since Beijing, Tianjin, Shanghai, and Chongqing are under the direct jurisdiction of
the central government, the administrative status is relatively special compared to other
prefecture-level cities. In order to avoid the influence of administrative variables on the
findings of the baseline regression, this section excludes the four municipalities from the
full sample and then performs the regression test again. The estimation result in Model 3
of Table 5 shows that the regression coefficient is 0.6276, which is significantly positive at
the 1% level, proving the robustness of the baseline regression results.

4.2.4. Replacing the Core Explanatory Variable

In consideration of the time required for the development of the digital economy to
influence low-carbon development in the region by building infrastructure and restruc-
turing industries, as well as to further mitigate the possible reverse causality, this paper
treats the digital economy variables with a one-period lag. As shown by Model 4 in Table 5,
after the lagged one-period treatment, the digital economy still contributes significantly to
the carbon emission efficiency in the region at 1% level, which supports the results of the
baseline regression.

4.3. Heterogeneity Analysis

Due to disparities in resource endowments and phases of development, there are
obvious heterogeneous characteristics in the regional distribution of both digital economy
development levels and carbon emission efficiency levels. This study examines regional
differences in the impact of the digital economy on carbon emission efficiency at the city
level from two perspectives: sub-regional and city-level, in light of the potential spatial
heterogeneity of the impact of digital economy development on urban carbon emission
efficiency. The regional classification is separated into four regions based on the regional
location of each city in the province: northeastern, eastern, central and western regions. For
the classification of city levels, the sample of central cities in this paper mainly includes
municipalities directly under the central government, sub-provincial cities and provincial
capitals, and other prefecture-level cities as peripheral cities. Before regression testing,
descriptive statistics are performed on the disparities in digital economy development and
carbon emission efficiency between regions and city levels. According to the descriptive
statistics in Table 6, the eastern region is significantly ahead of other regions in terms of
the degree of digital economy development, and the central cities have a “first mover
advantage” over the peripheral cities; There is also some variation in the mean values of
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carbon emission efficiency between regions. The preceding conclusion lays the groundwork
for testing the geographical heterogeneity of the digital economy and its impact on regional
carbon emission efficiency.

Table 6. Regional digital economic development level and carbon emission efficiency.

N Mean Std. Dev Min Max

digital

Northeastern 297 0.0407 0.0168 0.0124 0.108
Eastern 738 0.0727 0.0838 0.0117 0.714
Central 675 0.0398 0.0267 0.00913 0.348
Western 549 0.0410 0.0267 0.00936 0.229

Central Cities 288 0.122 0.117 0.0241 0.714
Peripheral

Cities 1971 0.0406 0.0234 0.00913 0.272

eff

Northeastern 297 0.354 0.112 0.172 1.073
Eastern 738 0.489 0.182 0.234 1.230
Central 675 0.452 0.172 0.217 1.115
Western 549 0.466 0.220 0.176 1.375

Central Cities 288 0.434 0.189 0.176 1.202
Peripheral

Cities 1971 0.458 0.186 0.172 1.375

Regression analysis of regional heterogeneity is performed in Figure 4. The regres-
sion results of line 1 to line 4 show that in the northeastern, eastern and central regions,
the development of the digital economy plays a significant role in improving the carbon
emission efficiency, especially in the eastern and central regions; the regression results are
significantly positive at the 1% level. This suggests that the eastern region took initiatives
in developing digital economy and has more obvious advantages in digital infrastructure
and digital industry development, allowing them to play a greater role in digital empow-
erment with a variety of benefits, which is more important for carbon emission efficiency
improvement. At the same time, the eastern region has a radiation-driven effect on the de-
velopment of digital economy for the central region, benefiting from the digital technology
spillover from the eastern region, the development pattern of the digital economy in the
central region is further optimized, thus significantly contributing to the carbon efficiency
of the central region. The northeastern region belongs to the traditional old industrial base
area, along with the rapid development of the digital economy, the stimulating effect on
the local traditional industrial sector may be more obvious, especially in promoting the
digitalization of industrial industries. The northeastern region has been able to pay more
attention to the use of low-carbon technologies in the process of industrial transformation
and upgrading, which has greatly improved the efficiency of local carbon emissions. The
digital economy development variables for the western region do not pass the significance
test, most likely because the western region is still in the primary stage of digital economy
development and the network infrastructure construction is still at a lagging level due to
factors such as geographical location and factor accumulation. Lower resource utilization
efficiency may be a significant factor as to why the digital dividend in the western area is
not completely used.

The last two lines in Figure 4 indicate that the digital economy in central cities has a
significant influence on improving carbon emission efficiency, whereas the development of
the digital economy in peripheral cities has a significant inhibitory effect on regional carbon
emission efficiency. This may be due to the fact that central cities have obvious advantages
in the development process, exerting their siphon effect to gather various factors and
forming basically perfect digital economy infrastructure, whereas peripheral cities are
relatively backward in digital economy development and are still at the developing stage of
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digital economy. Furthermore, the construction of digital economy infrastructure in cities
generates more resource consumption, which reduces the efficacy of the infrastructure.

Figure 4. Regression results based on heterogeneity of sub-regional and city-level.

5. Discussion

Previous studies indicate a positive correlation between the digital economy and
carbon emission efficiency, but the mechanisms by which the digital economy influences
carbon emission efficiency still need to be further investigated. This section analyzes the
transmission mechanism in greater detail to determine which factors can influence the
digital economy and the carbon emission efficiency of the region.

5.1. Digital Economy, Energy Consumption and Carbon Emission Efficiency

In the previous chapters, we discussed possible mechanisms and pathways for the
digital economy to influence carbon efficiency from the perspective of energy consumption.
To verify this mechanism of action, we use energy consumption (Urban energy consumption
mainly includes natural gas, liquefied petroleum gas and urban electricity. In this paper,
the main urban energy consumption is converted into standard coal and then summed
up to obtain urban energy consumption) as a mediating variable to test whether the
digital economy has a further effect on carbon emission efficiency by influencing energy
consumption. In Table 7, the results of Model 2 indicate that the coefficient of the digital
economy is negative at the 1% level. This suggests that the development of the digital
economy has a negative effect on energy consumption. It illustrates how the growth of the
digital economy helps to utilize new energy sources and to enhance the efficiency of energy
use to alleviate the problem of excessive energy consumption. The result of Model 3 shows
that the coefficient of energy consumption is also significantly negative at the 1% level,
whereas the coefficient of the digital economy is notably positive, which indicates that it
has a favorable influence on carbon emission efficiency through optimizing the energy
structure, confirmed by Hypothesis 2. This may be because the application of the digital
economy in the energy sector accelerates the process of energy transition and improves the
efficiency of energy production and utilization, which in turn reduces unnecessary energy
consumption and improves the regional carbon emission efficiency.
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Table 7. Intermediary effect regression results.

Model 1 Model 2 Model 3
eff lnenergy eff

digital 0.591 *** −2.391 *** 0.326 ***
(0.0940) (0.340) (0.0873)

lnerengy −0.110 ***
(0.00568)

Control variables YES YES YES
Constant −0.983 *** 1.722 *** −0.792 ***

(0.174) (0.628) (0.160)
Observations 2259 2259 2259

Adjust R2 0.277 0.706 0.392
Year YES YES YES
City YES YES YES

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels. The figures in () are t statistics.

5.2. Digital Economy, Industrial Value Chain and Carbon Efficiency

Although inter-industry upgrading promotes industrial value chain upgrading and
further plays an important role in economic growth, it is equally important for improving
carbon emission efficiency and promoting green development in China [64].

The transformation of industrial structure includes industrial structure upgrading (isu)
(The upgrading of the industrial structure indicates the process of industrial structure’s
evolution and growth from a low level to a high level in accordance with the general rule
of economic development.The research drawn from this part constructs the AIS index
to calculate the advanced industrial structure by the cosine of the angle) and industrial
structure rationalization (iso) (Industrial structure rationalization refers to the process of
industrial restructuring and coordination. This paper draws on the practice of using the
Theil index role to measure the degree of industrial structure rationalization), which are
used as the moderating variables in the regression, respectively. The regression results
are shown in Table 8. The result of model 2 indicates that the interaction term between
industrial structure upgrading and digital economy is significantly positive at the 1%
level, and industrial structure upgrading significantly enhances the influence of digital
economy to promote carbon emission efficiency, which indicates that when industrial
structure upgrading is at a high level, new industries with low energy consumption, low
emission and high efficiency develop vigorously. Meanwhile, as the digital economy has
grown, so has the need for digital management among local businesses, thereby creating
good conditions for the region to use the digital economy to promote carbon efficiency.
Thus, Hypothesis 3a is validated. The outcome of model 4 demonstrates, however, that
the rationalization of industrial structure has a considerable weakening inhibitory impact
in the process of promoting carbon emission efficiency by the digital economy, which
confirms Hypothesis 3b. This indicates that the issue of adapting the development of
the digital economy to the local industrial base and industrial structure is neglected in
the process of promoting regional economic development, and the importance of the
development of the digital economy is overemphasized, with more hotspot-oriented policy
and other adjustments in the process of regional development. In fact, the rationalization
of regional industries requires that the development of the digital economy must follow the
objective laws of local economic and social development in order to achieve a reasonable
allocation of production factors, which in turn can promote the coordinated development
of various industries.
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Table 8. Moderating effect regression results.

Model 1 Model 2 Model 3 Model 4
eff eff eff eff

digital 0.595 *** −1.025 *** 0.591 *** −0.465 ***
(0.0951) (0.255) (0.0941) (0.173)

insu 0.00968 0.0370
(0.0276) (0.0276)

digital × insu 1.746 ***
(0.255)

inso −0.0147 −0.0559 **
(0.0245) (0.0249)

digital × inso −4.316 ***
(0.596)

Control YES YES YES YES
Constant −1.039 *** −1.420 *** −0.969 *** −1.230 ***

(0.236) (0.240) (0.175) (0.177)
Observations 2259 2259 2259 2259

Adjust R2 0.277 0.294 0.277 0.296
Year YES YES YES YES
City YES YES YES YES

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels. The figures in () are t statistics.

Further, we analyze the relationship between the digital economy and carbon emission
efficiency at the level of industrial structure upgrading and the level of industrial structure
rationalization above or below the median. The results of Figure 5a indicate that the
development of the digital economy has a significant effect on carbon emission efficiency in
both high and low industrial structure upgrading. On the contrary, Figure 5b shows that the
growth of the digital economy has a negative effect on carbon emission efficiency in both
high and low industrial structure rationalization. This effect is particularly pronounced
when the industrial structure rationalization at a high level.

  
(a)  (b)  

Figure 5. Moderating effect of industrial transformation. (a) Industrial structure upgrading;
(b) Industrial structure rationalization.

6. Conclusions and Policy Implication

Based on the panel data of Chinese prefecture-level cities from 2011–2019, the carbon
emission reduction mechanism and influence on the digital economy are empirically tested
in several dimensions based on the construction of the digital economy development
level index. The key findings are as follows: First, the digital economy significantly
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improves carbon emission efficiency, and the conclusions are still valid when endogeneity
and a series of robustness variables are taken into account; Second, the effect of digital
economy on carbon emission efficiency is regionally heterogeneous, with greater promotion
effects in the eastern and central regions. The digital economy in central cities also has a
significant effect on carbon emission efficiency, whereas peripheral cities on the contrary
have a significant inhibitory effect; Third, the mechanism analysis shows that the digital
economy can help improve the efficiency of urban carbon emissions by improving energy
consumption as a pathway; Fourth, the industrial value chain has a moderating effect
on the impact of digital economy on carbon emission efficiency, among which, industrial
structure upgrading can significantly enhance the impact of digital economy on carbon
emission efficiency enhancement, although it has a significant weakening and inhibiting
effect in the process of digital economy promoting carbon emission efficiency enhancement.
The main contribution of this paper is to provide more theoretical and empirical support
for the influence of the digital economy on carbon emission efficiency. Nonetheless, there
is potential for development in this paper, mostly owing to the availability of data. The
assessment index system for the growth of the digital economy in cities is insufficiently
thorough, so the index system presented in this study may also be inadequately extensive.
Future enhancements of the established indicator system are contingent upon technological
feasibility and data availability.

Based on the preceding facts, we conclude the following policy implications.
First, the digital economy is progressively becoming a significant driver of economic

growth, and the findings of this paper imply that the expansion of the digital economy is
also favorable to the accomplishment of the carbon peak carbon neutrality aim. Therefore,
local governments should accelerate the growth of the digital economy and maximize
the dividend impact of the digital economy on reducing carbon emissions efficiently. By
constructing a high-speed, green and low-carbon, secure and controllable, intelligent and
comprehensive digital information infrastructure, the government should accelerate the
application of digital economy in social life, especially in the environmental field, how
to guide the transformation and upgrading of traditional industries, and rely on digital
technologies such as 5G, big data, and artificial intelligence to promote industrial innovation
and pollution emission reduction, and foster the emergence of new technologies, industries,
and business models related to low-carbon fields. Governments should leverage their scale
impact and technology effect to transform the digital economy into a sustainable force that
promotes carbon emission efficiency.

Second, the application of the internet in the energy industry should be enhanced and
its integration with energy production and consumption should be encouraged. In the
context of developing the digital economy, the government should guide the transformation
and upgrading of high energy-consuming industries, especially by putting the digital
economy technology represented by the Internet into the development and transformation
of traditional manufacturing industries, encouraging the intelligent upgrading of energy
production, transportation, consumption and other aspects, realizing the upgrading and
optimization of industrial structure, promoting the deep integration of the Internet and
the real economy, and pushing the further transformation of the manufacturing industry
from traditional manufacturing to intelligent manufacturing. Promoting the low-carbon
transformation of the energy sector can make full use of the urbanization process, apply
the digital economy to the process, realize the adjustment and optimization of the energy
structure, and promote the level of green ecological environment in cities.

Finally, digitalization can be used to promote regional green and coordinated devel-
opment and reduce regional disparities. The digital economy gradually integrates local
economic activities into regional production networks, leading to changes in regional pro-
duction and industrial organization, and has become a significant vehicle for promoting
urban and economic transformation. Although digitalization consolidates the advantages
of digital economy development in eastern and central regions as well as in central cities, it
also gradually promotes the transfer of digital economy technology inputs and applications
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to less developed regions, so that less developed regions can also receive technological
dividends, achieve effective growth in economic efficiency in the region, and gradually
reduce the overall gap with developed regions. At the same time, we should strengthen
inter-regional cooperation, create an integrated digital economy intelligent service platform,
establish a large digital economy service repository, realize data and technology resource
sharing, use digital technology to enhance urbanization and digital governance in each
region, and promote the development of the low-carbon economy.
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Abstract: In light of the growing economic uncertainties worldwide, the use of industrial robots has
emerged as a significant opportunity for improving the production efficiency and the international
division of labor in China’s energy industry. This study employed a two-way fixed-effect model
utilizing data from 31 Chinese provinces between 2011 and 2019 to investigate the impact of industrial
robots on the energy industry’s participation in the international division of labor. The results of
the study indicated that the widespread application of industrial robots can boost the international
division of labor status of China’s energy sector. This conclusion remains robust even after addressing
the potential endogeneity issues and conducting a range of sensitivity tests. Furthermore, our findings
suggest that the regions that possess abundant energy resources or exhibit a lower carbon intensity
are more likely to leverage the use of industrial robots to increase the technological sophistication
and enhance their participation in the international division of labor. The application of industrial
robots in the energy industry can enhance the international division of labor through two distinct
channels: optimizing the factor structure and reducing the export costs. Our findings have important
policy implications for ensuring energy security and improving the energy industry’s participation in
the international division of labor.

Keywords: industrial robot; international division of labor; export technology complexity

1. Introduction

Since the 1970s, China has developed a processing model that leverages its advantages
in the international division of labor, resulting in a significant expansion of trade. By 2013,
China had become the world’s largest goods trading nation, with its goods trade exceeding
RMB 31 trillion by 2019. International trade has been a critical driver of China’s economic
development [1]. However, an undeniable fact is that the gap between China’s energy
supply and demand is expanding, and this poses a significant challenge to its economic
development. China’s external dependence on crude oil and natural gas reached 72% and
46%, respectively, in 2021. The slow progress in optimizing China’s energy consumption
and import structure and the increasing concentration of resources are exacerbating China’s
energy security problem [2]. Moreover, the global economic situation has had a profound
impact on the global value chain of the division of labor system. In recent years, the global
environment has become increasingly complex, and protectionism is on the rise. Global
economic development has reached an important crossroads, and multilateralism faces
greater uncertainty. The future of free trade mechanisms and the international division
of labor is uncertain. Against this backdrop, China’s need for effective energy security is
facing greater challenges [3]. To respond to the challenges posed by the changing world
economic environment, the 2021 National Work Conference on Development and Reform
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highlighted the need to strengthen the construction of energy production, supply, storage,
and marketing systems to ensure energy security. Among these measures, enhancing
high-quality energy trade, breaking the strong position of multinational companies in
the international division of labor, promoting Chinese energy companies to deepen their
involvement in the value chain [4], and improving their position in the international
division of labor system have become urgent issues that need to be addressed.

According to recent research, technological advancements can significantly impact
an individual’s level of participation in the global value chains’ division of labor. A firm’s
total factor productivity largely influences its position in the global production chain.
Increasing the income from technology and improving the total factor productivity can
improve China’s unfavorable position in related industries in the global value chain. More-
over, enhancing the research and development (R&D) intensity and rationally applying
technological achievements can also improve the industry’s international division of la-
bor position [5,6]. However, the implementation of protectionist policies in developed
countries, where the protection of relevant technologies is prioritized, poses a challenge
for upgrading the technology and international division of labor status in developing
countries. China’s changing national conditions, such as an aging population, rising labor
costs, and the uncertainty surrounding foreign demand, also pose significant challenges
for product upgrading. The development and progress of artificial intelligence technology
in the 21st century have propelled the robust development of modern industrial robots,
which have brought together various modern high technologies, significantly contributing
to an enterprise’s productivity [7]. This presents new opportunities and possibilities for
overcoming China’s current dilemma and improving the energy sector’s international
division of labor. This is especially crucial in the context of China’s “carbon neutrality”
efforts, which demand higher development standards for the energy industry to enhance
its quality and efficiency. Therefore, it is of great practical significance to investigate the
impact of industrial robots on the international division of labor in the energy industry.

The application of industrial robots has an impact on the structure of the workforce.
Although scholarly research on the subject has yet to reach a fully consistent conclusion,
it represents a departure from previous technological advances. Some scholars contend
that the adoption of industrial robots will increase the demand for skilled workers while
reducing the need for unskilled workers and simultaneously leading to an increase in
the use of skilled personnel [8]. However, others disagree, arguing that industrial robots
differ from other technological advances in that their impact may cover the workforce
at different skill levels [5,6,9]. The manner in which the adoption of industrial robots
affects the structure of the workforce is primarily influenced by the substitution effect
and the productivity effect. The substitution effect refers to the way that industrial robots
can occupy positions that would otherwise be held by human workers and perform the
necessary tasks. The productivity effect refers to the fact that technological advances can
increase productivity while driving the need for related jobs that are still in the technological
stagnation stage. This increase in productivity reduces production costs and product prices,
resulting in an increase in real income for the population and the related demand for
consumer goods and services. Ultimately, this raises the labor demand for tasks that have
not been replaced by related technological advances [6,10].

The economic impact of industrial robots is the second factor to consider. Extensive
research conducted by national and international scholars demonstrated that industrial
robots are a primary tool for enhancing productivity. A panel data study that examined the
use of industrial robots concluded that their application led to a decrease in product prices
and contributed to an increase in the total factor productivity [5]. In a study conducted by
Chen et al. (2019) [11], it was found that the utilization of artificial intelligence resulted
in a reduction in the labor demand during the production processes, an increase in the
total factor productivity, an acceleration of the accumulation of capital, and a consequent
increase in the return on capital. These factors positively impacted economic growth and
served to mitigate the effects of aging on economic growth [11]. Another study conducted
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by Lin et al. (2020) [12] employed a dynamic general equilibrium model that combined
AI and heterogeneous capital to examine their impact on economic growth. The results
indicated that AI played a significant role in optimizing the capital structure, driving
economic growth, and promoting an increase in the population’s consumption level [13].

In recent years, industrial robotics have undergone increasing advancements and
their applications have expanded to various fields, prompting more scholars to study the
relationship between their use and international trade. Goldfarb and Trefler (2018) [14] were
the first to explore the relationship between AI and international trade, revealing that factors
such as economies of scale, knowledge creation, and the geographical location of knowledge
diffusion may contribute to the impact of AI on international trade patterns. Since then,
the adoption of industrial robotics has been shown to affect the status of neighboring
countries in the international division of labor, as demonstrated by Artuc et al. (2020) [15]
who found that a large-scale implementation of robots in the North can lead to increased
imports in the South, resulting in both regions achieving a higher production and trade
of intermediate and final goods. However, the expansion of production and trade of
intermediate goods in the North may come at the expense of a smaller share for the South,
potentially hindering the growth of the international division of labor in the region. Scholars
have also noted that non-manufacturing industries have shown a greater interest in the
use of industrial robots and related technologies [16]. The application of industrial robots
and the digitization in the manufacturing industry has also led to an improvement in the
international division of labor status of service industries and the quality of service trade
development [17]. Empirical studies have further demonstrated that industrial robots have
different technological levels in the services industry [10,18,19].

The research on industrial robots is continuously expanding, with scholars increasingly
exploring their implications for international trade. Some scholars have even suggested that
industrial robots could provide a vital opportunity for developing countries to overcome
their challenges and achieve a competitive advantage. However, much of the current
research on industrial robots and their impact on global value chains and the international
division of labor has been concentrated on the manufacturing and services sectors. As such,
there is a gap in the literature that examines the influence of industrial robots on the exports
within the energy sector, creating an opportunity for this paper to contribute to the field.

Compared to the existing literature, this paper’s potential contributions are threefold.
(1) The research questions focus not only on the impact of industrial robots on labor and
employment, but also on the actual influence of the robot applications on industry progress
as artificial intelligence technology continues to advance. (2) The research content delves
into the microscopic mechanisms behind the impact of industrial robots on the energy
industry’s participation in the international division of labor. This paper not only examines
the effect of industrial robots on the energy industry’s participation in the international
division of labor but also analyzes the path of this impact in depth. (3) The research dataset
was constructed by manually matching the industrial robot data, industrial enterprise
database data, and customs database data, and providing a sample that can be used to
study the technical complexity of the industrial robots affecting the energy exports. This
paper confirms that industrial robots play a role in enhancing the technical complexity of
energy product exports, and further verifies that they can optimize the factor allocation
and reduce the export costs, providing a theoretical basis for leveraging industrial robots to
enhance the international division of labor in China’s energy industry. Drawing on existing
research, this paper constructed a panel dataset using robot data from the International
Robot Federation (IRF) website for China and other countries, as well as provincial-level
data from databases, such as EPS. The dataset was used to investigate the impact of the
industrial robot applications on China’s international division of labor position in the
energy industry and to examine the causal pathways of this impact. The plausibility of the
results was tested for the period spanning from 2011 through 2019.

The following is the proposed sequencing of the paper. In Section 2, we will describe
the theoretical mechanism analysis and hypotheses that underpin this study. In Section 3,
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we will explain the selection of the variables and the model construction adopted for this
study. In Section 4, we will provide an empirical analysis of the theoretical framework
developed in Section 2. Section 5 will provide further tests of the influence mechanism,
while Section 6 will provide the conclusion and policy implications of this study.

2. Theoretical Analysis and Research Hypothesis

2.1. The Application of Industrial Robots Affects the Complexity of Export Technology

Robots are a highly sophisticated technology that have been increasingly adopted in
various stages of corporate product development and production processing. As such,
robots can exert a significant impact on the progress of various industries.

Product innovation is widely recognized as a critical driver of export complexity [20,21].
In the process of product development, innovation is often a trial and error process, requiring
significant R&D efforts and experimentation, which can lead to increased marginal costs [22].
In contrast, robots offer a solution to the challenges of R&D by providing rapid and precise
results, allowing for more reliable and efficient experimentation. This not only improves
the quality of the product but also shortens the development cycle, enabling enterprises to
introduce competitive products into the market quickly. By increasing the technical input
during the export product development process, product innovation is an effective means
to expand the product coverage and optimize the product quality [23], ultimately leading to
an increase in the export technology complexity.

The deployment of industrial robots in the production and processing system holds the
potential to transform the original production process and increase the production efficiency.
One advantage of robots is their ability to assess product states quickly and accurately and
autonomously perform the processing using hardware, such as light and sound sensing,
and software, such as big data. As a result, the application of robots can improve the
product quality of enterprises and enhance the technical complexity of exported products.
However, the implementation of robots may also lead to the replacement of some labor.
Robots can perform tasks in the production process that are impossible for human labor,
resulting in a possible shift in the production process and an increase in labor productivity.
The scale effect generated from the increased labor productivity enables industries to
exploit their differentiation advantages and boost the technological complexity of their
exports. Simultaneously, the enhancement of the labor productivity implies that enterprises
can regulate their production costs, and effective cost management is a crucial means for
enterprises to enhance their export complexity [24–26].

In summary, the utilization of robots in critical aspects of enterprise product develop-
ment, production, and processing presents an opportunity to enhance the export complexity
of the industry. Building upon this insight, we propose the following.

Hypothesis 1. Industrial robot applications promote the upgradation of the technological complex-
ity of exports in the energy industry.

2.2. The Mechanism of Industrial Robots Affecting the Technical Complexity of Exports

More precisely, the integration of industrial robots advances the technological com-
plexity of enterprise exports by the following two means.

Optimizing the factor structure is a crucial pathway for industrial robots to upgrade
the export technical complexity. According to the factor substitution theory, the capital–
labor ratio is closely linked to the usage of capital and labor. Specifically, if the price of a
production factor increases, technology will progress towards reducing the use of that factor
and eventually replacing it, leading to biased technological progress [27]. Technological
advancements, such as industrial robots, affect both capital (K) and labor (L), thereby
changing the factor allocation structure of the firms. With the changing national conditions,
more rational enterprises will further invest in capital to maximize profits. Industrial
robots are primarily a result of capital deepening, capable of filling low- and medium-
skilled labor positions and completing the corresponding work. By scaling up the usage
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of industrial robots and other technologies, enterprises can reduce the usage of labor
(L) and increase capital investment (K), thereby enhancing the capital–labor ratio (K/L),
accelerating capital deepening, and enabling the optimization and upgrading of the factor
structure. Factor markets are also linked to industrial robots. The existing literature
suggests that encouraging companies to engage in intelligent production and increasing
the application of industrial robots is an effective approach to optimize the production
costs when the price of capital decreases [28]. The application of industrial robots can alter
the proportion of the factors invested in production and effectively manage the production
costs of the industry, thereby fulfilling the need for the increased technological complexity
of the exports in the energy sector.

Furthermore, the application of industrial robots plays a significant role in reducing
the cost of exporting products, thereby enhancing the technical complexity of the industry’s
exports. On the one hand, robots facilitate the synergistic development of various aspects of
international trade, including transportation, storage, packaging, loading, and unloading.
This results in reduced expenses during transportation and distribution and meets the
demand of the enterprises for low transportation costs. On the other hand, the practical
application of robot technology, such as the sorting and handling of robots, allows for
intelligent product storage, leading to a further decrease in the overall product storage costs
in the industry. As a result, whether in logistics and transportation or intelligent storage,
the widespread usage of robots has led to a reduction in the fixed costs of exports, enabling
enterprises to invest more capital in research and development, enhance the technical
content of their products, and improve the technical complexity of their exports. Therefore,
based on these observations, we propose a second hypothesis for this study.

Hypothesis 2. The optimization of the factor allocation and reduction in export costs through the
application of industrial robots promotes an increase in the technical complexity of the exports.

3. Empirical Study Design

3.1. Indicator Selection
3.1.1. Explained Variables

The explained variable in this paper is the technological complexity of the exports in
China’s energy industry (Complx). The concept of the export technological complexity was
first proposed by Hausmann et al. (2007) [25]. Since then, various methods for measuring
this variable have been proposed by scholars worldwide. Xu and Lu (2009) [29] modified
the calculation method by utilizing provincial export data and GDP per capita when
cross-country comparisons were not necessary. In this study, we calculated the export
comparative advantage index of the different energy products in each province and used
it as the weighted average to obtain the technological complexity of the exported energy
products (PRODYn).

PRODYn = ∑m

Xmn
Xm

∑m
Xmn
Xm

Ym (1)

In this study, the subscripts m and n represent the provinces and products, respectively.
Xmn represents the export value of product n in province m, while Xm represents the total
export value of all the products in province m. Additionally, Ym represents the GDP per
capita of province m.

After calculating the technological complexity of the exported energy products, we
then used the export weight of each province to derive the export technical complexity of
each province (EXPYm). This was calculated using the following formula.

EXPYm = ∑n
Xmn

Xm
PRODYn (2)

In this paper, we considered the requirements of the panel data regression and data
availability and classified the energy sources into six categories, namely coal, coke or semi-
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coke, crude oil, oil, natural gas, and electricity. This classification was based on the data
obtained from the various sources, such as the China Energy Statistical Yearbook, Chinese
customs data, and the EPS micro database, which provided the data related to the energy
industry. Using this information, we calculated the technical complexity of the exports in
the energy industry.

3.1.2. Core Explanatory Variables

In this paper, the level of industrial robot adoption was measured by the density of
industrial robot use, which was represented by the core explanatory variable, the industrial
robot penetration (Robots). Following the methods proposed by Acemoglu and Restrepo
(2020) [5] and Wang and Dong (2020) [30], this paper used the industry-level robot penetra-
tion and the labor employment ratio of each firm to calculate the level of industrial robot
adoption by each firm. The specific measurement formula is presented as follows.

Robotsjit =
PWPjit=2011

ManuPWPt=2011
× MRCH

it
LCH

i,t=2011
(3)

Specifically, the variable Robotsjit measures the penetration of industrial robots in
industry i and enterprise j in year t. It was calculated as the product of three terms: (1)
the ratio of the proportion of employees in the production department of enterprise j in
industry i in the manufacturing industry in 2011 (base period) to the median proportion
of employees in the production department of all the enterprises in the manufacturing

industry in 2011 (
PWPjit=2011

ManuPWPt=2011
_(t = 2011)), (2) the stock of industrial robots belonging to

the enterprise j in industry i in year t (MRCH
it ), and (3) the employment number of industry

i in China in 2011 (LCH
i,t=2011). Finally, the calculated industrial robot penetration of each

listed enterprise was matched and summed with the provinces one by one to obtain the
penetration of industrial robots at the provincial level.

3.1.3. Control Variables

To examine the impact of industrial robots on the technological complexity of the ex-
ports in the energy industry and to ensure the robustness and reliability of our econometric
regression results, this paper controlled the other variables that might have affected the
technological complexity of the energy exports (see Table 1), following the approach of
Xu et al. (2022) [31].

Table 1. Variable definitions.

Variable Symbolic Variable Name Variable Definition

Explained variable Complx Export technology
complexity

Technical content of
export products

Core explanatory
variable Robots Industrial robot

penetration
Robot

stock/employment

Control variable

Develop Economic
development level

Household
consumption level

index

FDI Foreign direct
investment

Total registered
foreign investment

Patent Technology
innovation level

Patent application
authorization number
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Table 1. Cont.

Variable Symbolic Variable Name Variable Definition

Control variable

Labor Human capital
Average number of
students in colleges

and universities

Index Internet development Internet broadband
access port

Fin Financial
development

Science and
technology finance

index

In this study, we examined the factors affecting the application of industrial robots by
the enterprises. Specifically, the level of economic development, as measured by the level
of residential consumption, played a crucial role in determining the ability of a region to
utilize high technology. We used the level of residential consumption in each province to
represent this variable [32].

Furthermore, foreign direct investment (FDI) can crowd the market when introduc-
ing technology, thereby affecting the technological sophistication of the exports in the
energy industry [10,13,33]. To measure FDI, we used the total amount of foreign registered
investment in each province.

The level of technological innovation, as represented by the number of patent applications
granted in each province, can significantly impact the export complexity of a country’s
products, which in turn changes the export structure. Therefore, we used this variable to
indicate the level of technological innovation [34].

Human capital is essential for providing labor to the production of enterprises. The
quality of human capital affects the R&D capability of enterprises and determines the
technical complexity of their products for export. In this study, we used the average
number of students per 100,000 in higher education in each province to represent this
variable [26].

Internet development strengthens inter-industry linkages and facilitates the division
of labor in the industry. Moreover, it improves the efficiency of resource utilization and the
flow of technology. To measure the internet development, we used the number of internet
broadband access ports in each province [35].

Lastly, we examined the degree of financial development, which can help alleviate
information asymmetry, improve the efficiency of fund utilization, and encourage the industry
to enhance the sophistication of export technology. As an essential means of combining finance
and innovation, technology finance reflects the goal of financial development. Therefore, we
used the Technology Finance Index to represent this variable [36].

3.2. Basic Model Settings

In this paper, we constructed a basic econometric model by identifying the indicators
to measure the consumption and industrial upgrading.

Complxit = α0 + α1Robotsit + α2Xit + μi + γt + εit (4)

where subscripts i and t represent the provinces and years, respectively; Complxit represents
the technical complexity of the energy export of province i in year t, which is the explained
variable of this paper; Robotsit represents the consumption scale and consumption structure
of province i in year t, which is the core explanatory variable of this paper; Xit is the
control variable; μi and γt represent the unobserved provinces and the time fixed effects,
respectively; εit is a random disturbance term; and α is the main parameter. In Equation (4),
the core estimation parameter is represented by α1. A significantly positive value of α1
indicates that the increased use of industrial robots promotes the improvement of the export
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technology complexity in China’s energy industry. On the other hand, if the value of α1 is
not significant, the conclusion cannot be supported.

3.3. Data Source and Variable Description

This paper aims to investigate the impact of industrial robots on the technical com-
plexity of China’s energy industry exports using the panel data from 31 provinces in China
over a period of 9 years, from 2011 to 2019. The data sources used in this study mainly
included customs export data, statistical yearbooks, and the EPS database of each province.
To avoid the influence of outliers and potential bias in the conclusions, a 1% tail reduction
was applied to the collated data before and after conducting the further regression analysis
on the processed data. The descriptive statistics of each variable are presented in Table 2.

Table 2. Descriptive statistics.

Var. Name Obs. Mean SD Min Median Max

Complx 279 16.657 90.456 −97.627 −1.704 1211.009
Robots 279 1401.858 2387.037 16.770 553.219 17,363.777

Develop 279 102.526 1.226 100.567 102.266 106.338
FDI 279 1662.923 2744.061 7.259 621.000 19,533.000

Patent 279 50,471.229 75,386.375 121.000 22,820.000 5.27 × 105

Labor 279 2557.991 802.073 1082.149 2383.000 5612.870
Index 279 202.348 91.647 16.220 212.360 410.280
Fin 279 806.145 724.299 7.600 600.329 4112.233

Note: “Obs.” indicates observation; “Mean” indicates mean; “SD” indicates standard deviation; “Min” indicates
minimum; “Median” indicates median; “Max” indicates maximum.

Table 2 shows that the technical complexity of the energy industry exports (Complx)
ranged from −97.627 to 1211.009, indicating a significant variation in the level of the
technical complexity across the different provinces. Similarly, the industrial robot pene-
tration (Robots) varied widely, with a minimum value of 16.770 and a maximum value of
17,363.777, suggesting a significant disparity in the adoption of industrial robots across the
different regions of China.

4. Results

The estimation methods for the short panels (N large T small) included three types of
mixed regressions, fixed effects, and random effects models. To determine the appropriate
regression model, the Hausman test was applied. The test results indicated that the χ2

statistic was 27.15 with a p-value of 0.0001, which rejects the random effect at the 1% level.
Thus, the fixed-effect model should be used.

4.1. Data Source and Variable Description

In this study, we initially analyzed the effect of industrial robots on the technical
complexity of the energy exports by regressing Equation (1) using a two-way fixed-effect
model that was controlled for the province and year effects.

The results of the baseline regression are presented in Table 3. Columns (1) and
(2) display the results without the inclusion of the region-fixed and year-fixed effects,
while columns (3) and (4) show the control for both the region and year-fixed effects.
As demonstrated in Table 3, the estimated coefficient of the industrial robot penetration
remained significantly positive at the 5% statistical level, regardless of the inclusion of
the region and year-fixed effects. This finding aligned with our prior expectations and
suggests that the use of industrial robots has a noteworthy positive impact on the technical
complexity of the energy exports. Furthermore, the application of industrial robots can
enhance the competitiveness of the export products within the energy industry and foster
international improvements in the division of labor.
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Table 3. Regression results of the two-way fixed-effect model.

(1) (2) (3) (4)

Complx Complx Complx Complx

Robots
0.00449 *** 0.00820 *** 0.00399 ** 0.00615 *
(0.00109) (0.00246) (0.00145) (0.00292)

Develop 3.524 −1.157
(2.005) (4.742)

FDI
−0.00689 ** −0.00863 ***

(0.00222) (0.00250)

Patent
0.000546 *** 0.000740 ***
(0.000111) (0.000176)

Labor
0.0175 ** −0.0330 *
(0.00622) (0.0131)

Index
0.0701 1.017 **

(0.0376) (0.322)

Fin
−0.0433 *** −0.0401 **

(0.00950) (0.0121)

_cons −399.7 170.5
(208.6) (501.7)

Id effect No No Yes Yes
Year effect No No Yes Yes

N 279 279 279 279
R2 0.080 0.254

Note: The numbers in the brackets are standard errors; ***, **, and * indicate a statistical significance at the 1%,
5%, and 10% levels, respectively. “No” means that the effect was not controlled; “Yes” means that the effect
was controlled.

Column (4) of the regression results in Table 3 demonstrated that a 1% increase in
the robot penetration led to a 0.162% increase in the technical complexity of the energy
industry exports, assuming the other control variables remained constant. This finding
confirmed Hypothesis 1 and underscored the crucial role that industrial robots play in
promoting the international division of labor within the energy industry. Notably, among
the control variables, the coefficients for the level of technological innovation and the degree
of internet development were significantly positive at the 1% level, indicating that these
factors facilitated the improvement of the technical complexity of the energy exports, which
was in line with the previous research. Conversely, FDI was significantly negative at the 1%
level, potentially due to the market competition and inadequate technology spillover from
foreign capital. Labor was also significantly negative at the 10% level, implying that merely
increasing the quantity of labor in China’s energy sector is insufficient to meet the demands
of the technological sophistication, highlighting the need for quality talent. Additionally,
the coefficient of the degree of financial development was significantly negative, potentially
due to a mismatch of financial resources in China’s energy industry, which hindered the
overall level of the international division of labor.

4.2. Endogenetic Treatment
4.2.1. Lagging the Core Explanatory Variables by One Period

Since the introduction and use of industrial robots in production processes may involve
a lag effect, companies may not immediately achieve the desired technological upgrade
when implementing them. Instead, they might gradually achieve it in subsequent periods.
To account for this possibility, this section introduces the robot penetration index with
a lag of one period into the model to test the impact of the industrial robot penetration
on the technological sophistication of the exports. The results in column (1) of Table 4
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demonstrated that the robot penetration at the one-period lag remained significantly
positive at the 1% level, further supporting the robustness of Hypothesis 1.

Table 4. Endogenous treatment.

(1) (2) (3) (4) (5)

Complx Robots Complx Robots Complx

L.Robots
0.00831 *
(0.00342)

Robots_US
0.591 ***
(4.771)

Robots
0.037 **
(2.433)

Robots_JP −0.262 ***
(−3.751)

Robots
0.043 **
(2.509)

rk LM test 0.000 0.000

rk F test 264.35 255.38

Control
variables YES YES YES YES YES

Id effect YES YES YES YES YES
Year effect YES YES YES YES YES

Observations 279 279 279 279
R-squared 0.872 0.140 0.868 0.106

Note: The numbers in the brackets are standard errors; ***, **, and * indicate a statistical significance at the 1%,
5%, and 10% levels, respectively. “No” means that the effect was not controlled; “Yes” means that the effect
was controlled.

4.2.2. Two-Stage Least Squares (2SLS) for the Tool Variable Estimation

Endogeneity problems may arise when regressing the industrial robot penetration in
each province on the technological complexity of the exports in the energy sector, as an
increased level in the international division of labor in energy could affect the industrial
robot penetration. Firstly, a region’s higher level in the energy division of labor could result
from its strong research capability and better layout of high-tech industries, which would
make it easier and less costly to receive and use industrial robots in the region. This could
lead to a reverse causality between the explanatory variables and the core explanatory
variables. Secondly, different companies may develop their robot use programs according
to their actual situation and the requirements of their development direction, based on
their current division of labor status. To address this endogeneity issue, we measured the
industrial robot use as an instrumental variable, as suggested by Acemoglu and Restrepo
(2020). They found that the competition among large manufacturing countries is intense,
and the technologies and equipment used in the competition are similar. Therefore, the
industrial robot use can be used as a valid instrumental variable when studying the impact
of the industrial robot use on the employment in the United States.

To mitigate the potential endogeneity problems affecting the findings of this paper,
this section followed the approach of Yan et al. (2021) [37] and Wang and Dong (2020) [30]
by incorporating the stock of industrial robots from the United States and Japan in Equation
(3) instead of relying solely on the Chinese industrial robot stock. Additionally, the newly
computed industrial robot penetration at the provincial level in China was employed as an
instrumental variable, and the two-stage least squares (2SLS) was used for the instrumental
variable estimation. The data on the stock of industrial robots in the United States and
Japan were sourced from the IFR. By employing this methodology, this paper can better
address the potential endogeneity concerns and provide more robust and reliable results.
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The regression results are presented in Table 4, where columns (2) and (4) present
the results of the one-stage regression, and columns (3) and (5) show the results of the
regression using the penetration degrees calculated as the instrumental variables from the
industrial robot stock in the United States (Robots_US) and Japan (Robots_JP), respectively.
To address the endogeneity issue, this paper used the newly calculated industrial robot
penetration at the provincial level in China as an instrumental variable and employed the
two-stage least squares estimation. The results in Table 4 showed that the application of
industrial robots was significantly positive with the export technological complexity, which
was consistent with the previous benchmark regressions, indicating that the application
of industrial robots still had an impact on the export technological complexity after the
endogeneity was addressed. It is worth mentioning that in this result, the influence of
the instrumental variables on the export technical complexity was greater than that of the
Chinese industrial robot penetration. This may be attributed to the earlier industrialization
and stronger technological strength of the United States and Japan. The use of industrial
robots enables different industries to cooperate with each other, improving the efficiency
of the industrial robot use. The rk F-statistic was 264.35 and 255.38 with Robots_US and
Robots_JP as instrumental variables, respectively, which were greater than the critical
values, indicating that no weak instrumental variable problem was present. The p-values
for both the rk LM tests were 0, rejecting the original hypothesis, and there was no under-
identification problem.

4.3. Robustness Test
4.3.1. Add Control Variable

The technological complexity of the energy exports was influenced by multiple factors,
including the infrastructure and firm factors. Therefore, the control-related factors may
overlook other important factors and lead to non-robust estimation results. To account for
this, we included additional control variables to control for the effects of the other factors.
Specifically, we examined the level of infrastructure improvement (in f ) by using road area
per capita (square meters) as an indicator. The influence of the firm factor was examined
by selecting the share of employees of state-owned enterprises in the energy sector as a
variable (property).

Table 5 presents the estimation results after adding the two control variables mentioned
above in Column (1). The results show that the regression coefficient of the industrial robot
penetration remained significantly positive even after accounting for the influence of
the other factors on the technological complexity of the exports in the energy sector at
different levels. This suggests that the influence of the industrial robot penetration on the
technological complexity of the energy exports was not affected by the other factors, and
that the previous estimation results were robust.

Table 5. Robustness test.

(1) (2)

Complx Complx

Robots
0.00603 * 0.00000471 *
(0.00296) (0.00000223)

Develop −1.470 −0.000934
(4.814) (0.00358)

FDI
−0.00877 *** −0.00000660 ***

(0.00252) (0.00000191)
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Table 5. Cont.

(1) (2)

Complx Complx

Patent
0.000735 *** 0.000000565 ***
(0.000178) (0.000000134)

Labor
−0.0292 * −0.0000252 *
(0.0137) (0.0000100)

Index
1.000 ** 0.000776 **
(0.327) (0.000246)

Fin
−0.0402 ** −0.0000307 **

(0.0122) (0.00000924)

Inf −1.227 0.210
(1.262) (0.379)

Property 3.108
(21.18)

_cons 210.3
(511.9)

Id effect YES YES
Year effect YES YES

N 279 279
R2 0.257 0.254

Note: The numbers in the brackets are standard errors; ***, **, and * indicate a statistical significance at the 1%,
5%, and 10% levels, respectively. “No” means that the effect was not controlled; “Yes” means that the effect
was controlled.

4.3.2. Replace Dependent Variable

Equation (1) suggests that as the world per capita income increases, the technical
complexity of the exported products tends to increase, while the characteristics of the
products generally remain stable over time. To ensure the intertemporal stability of the
product characteristics, a standard technical complexity index for the exported products
was introduced [30]. The formula for the standard technical complexity index is as follows.

PRODYn =
PRODYn − PRODYmin

PRODYmax − PRODYmin
(5)

The intertemporal stability of the product characteristics was ensured by introducing
the standard technical complexity index of the exported products, as shown in Equation (5).
Here, PRODYmin and PRODYmax represent the minimum and maximum product technical
complexity of all the export products, respectively, and PRODYn represents the technical
complexity of the export product standards. The estimated results in column (2) of Table 5
did not differ significantly from the benchmark results, indicating that the inclusion of
the standard technical complexity index did not affect the robustness of the previous
estimation results.

4.4. Heterogeneity Test
4.4.1. Distinguish Energy Output

The regional differences in the energy production and the industrial robot application
may lead to varying impacts from the use of industrial robots on the technical complexity
of the energy exports. In order to account for this, we adopted a group regression approach
to analyze the samples of the regions that were rich and not rich in energy production. The
results, presented in columns (1) and (2) of Table 6, show that the use of industrial robots in
regions with abundant energy production significantly increased the technical complexity
of the energy exports, while the effect of industrial robots in regions with a more backward
energy production was not significant. This difference could be attributed to the fact that
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the regions with a low energy production may not be able to use industrial robots on a
large scale due to the region’s actual situation, and thus, are unable to achieve a scale effect.
Additionally, the regions with an abundant energy production were more likely to have
access to targeted financial and technical support, leading to higher levels of industrial
robot adoption. As a result, the factor structure optimization and export cost reduction from
the application of industrial robots were more pronounced in the energy production-rich
regions, which was conducive to the improvement of the technical complexity of the energy
industry exports in these regions.

Table 6. Heterogeneity test.

(1) (2) (3) (4)

Complx Complx Complx Complx

Robots
0.0220 *** 0.000949 0.00149 0.0180 **
(0.00316) (0.00943) (0.00303) (0.00617)

Develop −15.48 * −2.413 −0.944 −7.477
(6.940) (5.487) (1.200) (12.75)

FDI
−0.0139 *** −0.000968 −0.0190 *** −0.0141 *

(0.00346) (0.00624) (0.00221) (0.00589)

Patent
0.0000990 0.000364 −0.000134 0.000378
(0.000214) (0.000348) (0.000191) (0.000309)

Labor
0.0128 −0.0293 0.00318 −0.0651 *

(0.0186) (0.0164) (0.00435) (0.0313)

Index
−0.0261 1.063 * 0.157 2.426 **
(0.441) (0.412) (0.102) (0.850)

Fin
−0.0402 ** 0.0273 0.0150 * −0.0570 *

(0.0151) (0.0251) (0.00649) (0.0269)

_cons 0.0220 *** 0.000949 96.72 876.4
(0.00316) (0.00943) (128.2) (1355.6)

Id effect YES YES YES YES
Year effect YES YES YES YES

N 126 153 90 189
R2 0.477 0.265 0.729 0.281

Note: The numbers in the brackets are standard errors; ***, ** and * indicate a statistical significance at the 1%,
5%, and 10% levels, respectively. “No” means that the effect was not controlled; “Yes” means that the effect
was controlled.

4.4.2. Differentiate Carbon Emission Intensity

Due to the vastness of China and the significant differences in the economic devel-
opment and environmental conditions across its provinces, the use of industrial robots
may have varying effects on the technical complexity of the energy sector exports across
the different regions. In light of this, we referred to Shi and Liu (2022) [38] for a regional
division based on the carbon emission intensity of each province [39]. Specifically, the
Class I region, which comprises ten provinces, including Ningxia, Inner Mongolia, Xinjiang,
Guizhou, Shanxi, Hebei, Qinghai, Gansu, Jilin, and Liaoning, is characterized by a high
carbon intensity. On the other hand, the Class II region, which includes 21 provinces such as
Heilongjiang, Shaanxi, Anhui, Yunnan, Guangxi, Shandong, Henan, Tianjin, Hubei, Jiangxi,
Chongqing, Hunan, Hainan, Sichuan, Jiangsu, Fujian, Zhejiang, Guangdong, Shanghai,
Tibet, and Beijing, has a relatively lower carbon intensity level.

Following the regional division results, we conducted additional grouping tests to
explore the issue of regional heterogeneity in the impact of industrial robots on the technical
complexity of the energy exports. Table 6 presents the regression results of the industrial
robots’ impact on the technical complexity of the energy exports in the Class I and Class
II regions. Columns (3) and (4) of Table 6 indicate that the regression coefficient of the
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industrial robots’ application on the technical complexity of the exports was significantly
positive in the Class II regions with a low to medium carbon intensity. This suggests that
the application of industrial robots significantly enhanced the level of the international
division of labor in energy in the Class II regions and increasing the level of the industrial
robot application can effectively improve the technical complexity of the energy exports in
the region. The reason for this may be that, compared to the Class I regions, the Class II
regions have a more reasonable industrial structure, a relatively higher level of production
technology, a more reasonable distribution of high-tech and modern service industries,
and a more efficient and reasonable application of industrial robots. It is worth noting
that the impact of industrial robots on the technical complexity of the exports in the Class
I regions was not significant. This may be due to the higher carbon intensity and less
advanced industrial structure of these regions, resulting in a less efficient and less effective
application of industrial robots in these regions.

5. Mechanism Inspection

The empirical findings of this study demonstrated that the adoption of industrial
robots contributed to an increase in the technical complexity of the exports, and this
relationship was robust. The second part of the theoretical mechanism analysis posited
that the use of robots could have a “cost-saving effect” on a firm’s export sophistication.
Specifically, our results indicated that the use of robots could impact a firm’s variable costs
by enhancing its productivity or affecting its fixed production costs by reducing overhead
expenses, ultimately influencing the firm’s export technological complexity. Therefore, this
study examined the mechanism from both the efficiency and cost perspectives.

To test the theoretical Hypothesis 2, we introduced the following model.

Elementit = α0 + α1Robotsit + α2Xit + μi + γt + εit (6)

Fixcostit = α0 + α1Robotsit + α2Xit + μi + γt + εit (7)

where Elementit represents the element structure, Fixcostit represents the export cost, and
the other control variables are consistent with the benchmark regression above.

5.1. Element Structure

According to the economic literature, the factor structure of an industry reflects its
endowment status and comparative advantage in production. In particular, if an industry
has a significant share of capital in its factor structure, then it must improve the quality of
its products and increase its exports based on its endowment advantage in order to achieve
an international division of labor status. This proposition is supported by the previous
research [23,40]. Therefore, it is crucial for industries to recognize their factor endowments
and leverage them effectively in order to compete successfully in the global market.

The adoption of industrial robots can be viewed as an increase in capital inputs, which
may be more prevalent in industries with a higher share of capital relative to those with a
higher share of labor. This can obscure the impact of the robots on quality improvement
through a greater share of the capital inputs. However, the factor structure of an industry
depends not only on the total amount of capital inputs but also on the relative proportions
of the capital and labor inputs. Thus, the changes in the labor inputs are equally important.
Although robots affect the factor structure through the capital factor, the impact on labor
should not be overlooked.

The application of industrial robots affects the complexity of the export technology
for two main reasons. First, in terms of the capital factor, as the scale and variety of robot
applications expand and the level of robot use in the production process of enterprises
continues to increase, capital-intensive production tasks become more complex. This
factor-biasing pattern leads enterprises to favor the use of capital to produce high-quality
products, which ultimately results in an increase in the technological complexity [23,40].
Second, in terms of the labor factors, the “substitution” and “creation” theories determine
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the impact of the robots on labor. The “substitution theory” posits that robots are designed
for specific production needs and can perform relatively fixed tasks, so an increase in the
number of robots will inevitably displace human labor and result in the “man-for-machine”
phenomenon. In contrast, the “creation theory” suggests that the application of robots can
expand the scale of production and increase consumer demand, leading to an expansion of
production and an increase in the demand for labor. Additionally, a large-scale application
of robots requires the support of related skills, which can create new job opportunities.

Therefore, the application of industrial robots can alter the structural elements of an
industry and affect the technological complexity of enterprises. This paper defines the
factor structure (Element) as the ratio of fixed assets to the number of employees employed,
drawing from Yuan et al. (2022) [41].

5.2. Reducing Export Costs

Although the introduction of robots can initially increase costs and exacerbate the
financing constraints for firms, the advantages of the low-variable costs associated with
their usage gradually emerge over time. Specifically, industrial robots can replace low-
skilled labor and reduce wage expenses for firms, while also squeezing the market space
for low-skilled labor, which indirectly reduces the average wage level and production
costs. These benefits are especially significant for export-oriented firms, where the demand
for low-skilled labor, such as handling and warehousing, is urgent. Consequently, the
application of industrial robots can lower export costs and free up capital for technology
research and development, which in turn upgrades the enterprise’s export products.

However, when measuring export costs, there may be deviations between the actual
costs and the book records of enterprises, as the standards for measuring various cost items
incurred during the export process are not always uniform. To address this, this study
followed Fu and Lu (2021) [42] and used a proxy variable for the fixed production costs
(Fixcost) as the sum of the financial, administrative, and selling costs.

In Table 7, columns (1) and (2) examine the impact of the robot usage on the factor
structure and fixed costs, respectively. The coefficient of the core explanatory variable was
significantly positive in column (1), indicating that the application of industrial robots
optimized the enterprise factor structure, promoted capital deepening, and adjusted the
labor structure. Meanwhile, the regression coefficient in column (2) was also significantly
positive, suggesting that the use of industrial robots could optimize the export costs.
Therefore, it can be inferred that the main mechanisms driving the use of robots in industry
to improve the technical complexity of the exports are the factor structure optimization and
fixed cost reduction, which confirms Hypothesis 2.

Table 7. Test results of the action mechanism.

(1) (2)

Element Fixcost

Robots
0.0148 ** 0.0117 ***
(0.00593) (0.00394)

Develop 3.037 −5.034
(9.638) (6.395)

FDI
0.00507 0.00247

(0.00509) (0.00338)

Patent
−0.000946 *** −0.000186

(0.000358) (0.000237)
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Table 7. Cont.

(1) (2)

Element Fixcost

Labor
−0.0245 0.0273
(0.0267) (0.0177)

Index
2.895 *** −0.367
(0.655) (0.435)

Fin
−0.0954 *** −0.0788 ***

(0.0246) (0.0163)

_cons −162.0 757.5
(1019.6) (676.4)

Id YES YES
Year YES YES

N 279 279
R2 0.567 0.238

Note: The numbers in the brackets are standard errors; ***, ** indicate a statistical significance at the 1%, 5% levels,
respectively. “No” means that the effect was not controlled; “Yes” means that the effect was controlled.

6. Conclusions and Policy Implications

The utilization of industrial robots undoubtedly plays a significant role in enhancing
the Chinese energy industry’s level of participation in the international division of labor.
This paper examined the empirical impact of industrial robots on the level of participation
and the underlying mechanisms from the perspective of their technological complexity.
To accomplish this objective, we employed the data on the robots from various countries
provided by the IFR and several databases such as the EPS. Our research findings indicated
that industrial robotics enhances the level of participation in the international division of
labor in China’s energy industry. We further observed a regional heterogeneity whereby the
impact of industrial robotics on the export technology complexity was more pronounced
in the regions with an abundant energy production and a low carbon emission intensity.
Moreover, the promotion effect was most significant for the regions with an abundant
energy production. Lastly, the application of industrial robotics improved the technical
complexity of the exports by optimizing the factor structure and reducing the export
costs. In light of the widespread adoption of robotics, this paper established a theoretical
link between the robotics application and the energy industry’s participation level in
the international division of labor. Furthermore, we provided evidence based on the
perspective of the export technology complexity, which offered valuable policy insights
to enhance the Chinese energy industry’s high-quality development and enable Chinese
energy enterprises to realize their status in the international division of labor system.

Based on the findings of this study, the following recommendations are proposed.
Firstly, in order to enhance the participation of the energy industry in the international

division of labor, the cost of applying industrial robotics technology needs to be reduced to
enable its large-scale application in the sector. Although industrial robots have been widely
used in the energy industry, their high price and lack of scale have impeded their deep
integration with the sector. Therefore, it is essential to further reduce the cost of applying
industrial robot technology and promote its integration with the energy industry to meet
the need for large-scale production operations. This can be achieved by optimizing and
upgrading the entire production process, from R&D to design, processing, and sales, and
by enhancing the use of emerging technologies in economically underdeveloped regions to
transform the traditional energy industry into an intelligent and digitized system, thereby
improving the competitiveness of the energy products in the global market.

Secondly, more effective and transparent theoretical policies should be formulated to
improve the international division of labor in the energy industry. To ensure the long-term
stability of an enterprise’s investment in the research and development of related technolo-
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gies, subsidies for the purchase of industrial robots and other related technologies should
be increased to reduce the financial pressure on the enterprises during the preliminary
research and development stage. Additionally, education in the disciplines related to
industrial robots should be deepened, and more highly skilled talents should be cultivated
to match the intelligent development of the enterprises. Finally, the government can play
a leading role in coordinating and advocating for the commercial platform of industrial
robotics, improving the transparency of information for both R&D and the use of robots.
Additionally, the government can encourage financial institutions to invest in SMEs to
reduce the mismatch of funds, thereby enabling more SMEs to enhance their R&D and
innovation capabilities through advanced technologies, such as industrial robots, and to
achieve a higher level of participation in the international division of labor for Chinese
energy enterprises.

It is important to note that the energy data used in this study were mainly derived
from the customs and industrial enterprise databases, and the export technical complexity
of the energy industry was measured by dividing the energy into six categories. However,
due to the limitation of a statistical caliber, the current measurement of the export technical
complexity of the regional energy industries was limited. To address this limitation, future
research should focus on narrowing the statistical caliber and accessing the data related to
the robots of non-listed enterprises, thus enabling data matching between the number of
industrial robots and energy enterprises, resulting in a more detailed analysis.
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Abstract: Existing research has insufficiently explored the nexus between the new energy industry
and CO2 emissions from the standpoint of export sophistication. This study analyses the implications
of the new energy industry’s export sophistication on CO2 emissions, regional heterogeneity, and its
influencing mechanism by gathering data from 31 major economies throughout the world between
1996 and 2021. The study found that the new energy industry’s export sophistication helps reduce carbon
dioxide emissions, and this conclusion still holds after robustness testing; the carbon emission reduction
effect of the export sophistication of the new energy industry is more significant in developed countries
than in developing countries; the new energy industry’s export sophistication possesses a crowding-out
effect on domestic technological progress, which to a certain extent impedes carbon reduction effect.
This paper’s findings provide theoretical guidance for the global low-carbon energy transition.

Keywords: carbon emissions; export sophistication; new energy industry; influential mechanism;
heterogeneity; fixed effects model; mediation effect model

1. Introduction

The unprecedented globalization of international energy commerce in the past few
decades has significantly contributed to the growth and prosperity of the global economy.
Unfortunately, the fossil fuel-based energy trade structure has also emitted a large quantity
of carbon dioxide (CO2), resulting in global warming, which has posed a grave danger to
human survival and development [1]. New energy, also known as unconventional energy,
refers to non-traditional forms of energy, including solar, wind, biomass, geothermal,
hydroelectric, and nuclear energy. Compared to traditional energy, new energy has the
advantages of pure environmental protection, abundant reserves, and sustainability, which
are crucial for resolving the severe environmental pollution problems and the greenhouse
effect in the world today [2,3]. Statistics from China’s National Energy Administration show
that China’s power production from renewable energy in 2022 is equivalent to lowering
domestic CO2 by approximately 2.26 billion tons and exporting wind power photovoltaic
products to decrease CO2 for other countries by nearly 573 million tons for a total reduction
of 2.83 billion tons [4].

Despite worldwide governmental recognition of the potential for new energy to reduce
carbon emissions, the latest data from BP’s 2022 World Energy Statistics Review indicates
that the global energy trade continues to be dominated by fossil fuels, including coal, oil,
and natural gas, with new energy exports receiving notably less emphasis. This is mainly
because new energy has a higher use cost than traditional fossil energy, and its export is
heavily affected by policies, which makes it less competitive [5]. Due to the limited number
of new energy exports, researching and enhancing the export sophistication of new energy,
which demonstrates how competitive new energy is, is an additional effective strategy for
attaining global carbon reduction goals [6].
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Literature abounds with studies investigating the connection between CO2 and new
energy. The prevalent theory in academia is that increased energy use may adversely
decrease carbon emissions [7–9]. Dong et al. (2018) [10] investigated the link between
the new energy industry development and CO2 and found that new energy development
may considerably lower carbon dioxide emissions. The findings of Acheampong et al.
(2022) [11], Habiba et al. (2022) [12], Rahman and Alam (2022) [13], Djellouli et al. (2022) [14]
corroborate the conclusion that the new energy may contribute to the carbon reduction. In
contrast to the conclusion that new energy can help reduce carbon dioxide emissions, Al-
Mulali et al. (2015) [15] found that Vietnam’s use of renewable energy has an insignificant
impact on decreasing carbon dioxide emissions, and Zaidi et al. (2018) [16] came to the
same conclusion in their sample of Pakistan. Additionally, Jebli and Youssef (2017) [17]
found that long-term carbon dioxide emissions in the five nations of North Africa had
grown due to the use of renewable energy.

Existing research on new energy and CO2 primarily examines the impact of new
energy on CO2 from the perspective of total new energy use, while few scholars inves-
tigate its carbon reduction effect from the perspective of new energy competitiveness.
Moreover, the contradictory conclusion between new energy and CO2 indicates that more
in-depth research on the relationship is required. Based on the existing literature, this
study investigates the relationship between export sophistication of new energy and carbon
dioxide, investigates the influence mechanism between the two, and examines whether this
relationship exhibits regional heterogeneity.

This paper’s contribution to the existing body of literature is summarized in three
points. As an important indicator of new energy competitiveness, this study evaluates
the new energy industry’s export sophistication in 31 significant economies from 1996 to
2021 and empirically tests whether there is a carbon emission reduction effect using a fixed-
effect model. Second, in order to avoid the similar phenomenon of the mixed conclusion
of new energy and CO2, we employ the mediation effect model to analyze in depth the
mechanism of new energy export sophistication on carbon emissions, which has significant
theoretical significance in terms of revealing the black box between them. Thirdly, there are
numerous differences between countries, including economic development, the potential
for new energy development, etc. Therefore, it is more plausible to analyze the regional
heterogeneity of carbon emission reduction in the export sophistication of new energy, and
this is useful for making emission reduction recommendations.

The remainder of the article is divided into six sections. Section 2 organizes the extant
literature on the export sophistication of new energy and carbon dioxide. In Section 3,
variable selection, data sources, and model methodology are introduced. Sections 4 and 5
illustrate the findings, mechanism, and regional heterogeneity of the impact of the export
sophistication of new energy on carbon emissions. Section 6 contains the research findings
and proposed countermeasures.

2. Literature Review

2.1. Research into the Export Sophistication of New Energy Industry

Export sophistication is a critical indicator for measuring the structure of national or
regional export commodities, as it reflects the competitive advantage of export commodities.
The introduction of export sophistication can be traced back to Michaely’s (1984) [18] trade
specialization index. The indicator implies that the degree of technology incorporated in
an exported commodity is proportional to the per capita income of the exporting country.
Hausmann et al. (2007) [19] took the initiative in elucidating the connotation of export
sophistication and employing it as a measurement of the structure of export products.
The greater the indicator value, the greater the likelihood that the product can achieve
a competitive advantage in the face of fierce market rivalry. Since its proposal, export
sophistication has shifted the emphasis of international commodity trade competition from
export quantity to export competitiveness. With the expansion of research on export sophis-
tication, different levels of export sophistication have been implemented. At the national
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level, Jarreau and Poncet (2012) [20] computed the export sophistication of 30 provinces in
China from 1997 to 2009; Rehman et al. (2023) [21] assessed the export sophistication of
renewable and non-renewable energy in OECD countries during 1990-2019, respectively;
At the industrial level, Su et al. (2020) [22] took the manufacturing industry as the research
object, calculating the sophistication of manufacturing exports in 36 countries from 2005 to
2014. At the enterprise level, Song et al. (2022) [23] assessed the export sophistication of
498,945 Chinese manufacturing enterprises by combining the Chinese customs database
with the Chinese industrial enterprise database.

Existing research has provided a comprehensive discussion of the definition and mea-
surement of export sophistication, and research on export sophistication involves different
groups, including the nation, industry, and enterprise levels. However, research on export
sophistication in the new energy industry is scarce. Zheng and Wang (2019) [24] used the
United Nations Comrade database to measure the new energy industry’s export sophisti-
cation in 30 countries around the world from 2000 to 2015, comparing and analyzing the
evolution of the export sophistication of transnational new energy industries and their subdi-
visions. Cao et al. (2019) [25] calculated the dynamic changes in the export sophistication of
China’s new energy industry from 2007 to 2016 and discovered that the overall new energy
industry’s export sophistication exhibited a fluctuating growth trend, the proportion of
high-tech sophistication was low, and the export structure exhibited a deteriorating trend.

2.2. Studies of Carbon Dioxide

The methods for calculating carbon dioxide emissions concentrate primarily on three
factors: the measuring method, the material balance method, and the carbon emission factor
method. The measuring method uses the velocity, concentration, and flow rate of carbon
dioxide sample emissions to calculate the total quantity of carbon emissions [26]. This
method necessitates sophisticated measuring instruments and is primarily employed by
environmental monitoring departments. Material balance is an approach for calculating the
total quantity of carbon dioxide emissions based on the input and output material conserva-
tion theorem. This method requires maximum control over the enterprise’s production and
emission situation [27]. Based on the 2006 IPCC National Greenhouse Gas Inventory Guidelines
issued by the Intergovernmental Panel on Climate Change (IPCC), the carbon emission
factor method multiplies and accumulates various forms of energy consumption and their
respective carbon emission factors to obtain carbon emissions. This method is considered
the most authoritative carbon emission accounting method in the world [28]. It serves as
a significant foundation for countries to report their carbon emissions to the IPCC.

Scholars have been interested in the influencing variables of carbon dioxide emissions
for a very long time. The relationship between economic growth and carbon emissions is
one of the contemporary research hotspots, and the environmental Kuznets hypothesis is
the main focus of related research. According to Ridzuan et al. (2020) [29], Malaysia’s long-
term economic growth and carbon emissions show an inverted U-shape. As the economy
expands, carbon dioxide emissions first rise before starting to fall once they reach a critical
threshold. The effect of urbanization on carbon emissions has received significant attention
in terms of population growth. Sufyanullah et al. (2022) [30] discovered that the progress of
urbanization in Pakistan has resulted in a rise in carbon dioxide emissions. The conclusion
that there is a positive association between urbanization level and CO2 also pertains to
the Philippines [31]. One of the key elements impacting carbon emissions is foreign direct
investment. According to Lu et al. (2023) [32], there is a pollution refuge in transition
economies since there is a positive association between foreign direct investment and
carbon emissions. The literature on export sophistication and carbon emissions is abundant,
whereas the literature on examining carbon emissions from the perspective of export
sophistication in the new energy industry is extremely scarce. Based on previous research,
we investigate the relationship between the new energy industry’s export sophistication
and carbon dioxide, as well as the impact Mechanism of export sophistication on carbon
emissions and potential heterogeneity in carbon emission reduction.
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3. Methods

3.1. Model Specification
3.1.1. Econometric Model

This study employed a model with fixed effects [23] to investigate the impact of the
new energy industry’s export sophistication on CO2. The econometric model is shown in
Equation (1).

ln CO2it = α + β1 ln EXPYit + β2 ln FDIit + β3 ln ITit + β4 ln Urbit + δi + ϕt + εit (1)

where ln CO2 and ln EXPY are the logarithms of Carbon Dioxide and export sophistication;
ln FDI, ln IT and ln Urb are the logarithms of control variables, namely foreign direct
investment, international trade and urbanization; i and t represent the country and year
respectively; α is a constant term; β1 and β2-β4 are the coefficients of ln EXPY and 3 control
variables ln FDI, ln IT, and ln Urb on ln CO2, respectively. δi and ϕt represent national
fixed effects and temporal fixed effects, respectively; εit represents the random error term.

3.1.2. Mediation Effect Model

Furthermore, we use the mediation effect model to find out how the export sophistica-
tion of new energy exports impacts carbon emissions [33]. The 3-step regression technique
is suggested to assess if technological progress has a mediating influence with the aid of
Baron and Kenny (1986) [34].

ln CO2it = α0 + α1 ln EXPYit + α2 ln Xit + δi + ϕt + εit (2)

ln TPit = φ0 + φ1 ln EXPYit + φ2 ln Xit + δi + ϕt + νit (3)

ln CO2it = γ0 + γ1 ln EXPYit + γ2 ln TLit + γ3 ln Xit + δi + ϕt + τit (4)

where ln TP is the logarithm of technological progress; α1 in Equation (2) is the total effect
of the ln EXPY on the ln CO2; φ1 in Equation (3) is the effect of ln EXPY on the ln TP;
In Equation (4), the coefficient γ1 is the direct effect of the ln EXPY on the ln CO2 after
controlling for the influence of the ln TP. Xit is the control variable mentioned above; εit,
νit, and τit are random error terms.

The intermediary effect of the explanatory variable ln EXPY on the ln CO2 is φ1 × γ2,
and the relationship between the total effect, the intermediary effect, and the direct effect is:

α1 = γ1 + φ1 × γ2 (5)

3.2. Variables and Data
3.2.1. Explained Variable

The explained variable in this study is CO2, and it has two measurement indicators:
total carbon dioxide emissions [35,36] and per capita carbon dioxide emissions [37]. The
former is an absolute number, while the latter is a relative one. We ultimately settled on the
total carbon emissions as the indicator to measure CO2 and used the per capita carbon diox-
ide emissions for the robustness test. This was done because the carbon emission reduction
and carbon neutralization policies developed by nations around the world are based on the
actual situation of total carbon dioxide emissions. The indicator value that is lower indicates
lower national carbon dioxide emissions, and vice versa. The 2022 BP Statistical Review
of World Energy (accessed on 6 September 2022, from https://www.bp.com/en/global/
corporate/energy-economics/statistical-review-of-world-energy/co2-emissions.html) pro-
vides information on total carbon emissions.
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3.2.2. Explanatory Variable

Export sophistication depicts the degree of productivity connected with a national
or regional array of exported commodities [38]. We rely on Hausmann et al.’s (2007) [19]
measuring approach to calculate export sophistication.

First, assuming the export sophistication of the exported good k is PRODYk, which is
calculated as follows:

PRODYk = ∑
k∈Ki

xik/Xi

∑
j∈Ki

xik/Xi
× Yi (6)

where i refers to the country or region i that exports goods k; xik represents the total export
value of goods k in country i; Xi refers to the total export value of country i; and xik/Xi
represents the proportion of goods k export value in the total export of that country; Yi is the
per capita GDP of country or region i; and ki denotes the collection of all countries exported
good k; PRODYk is the sum of the product of the export proportion of each country’s good
k and the country’s PGDP.

Based on the calculation of PRODYk, we further assess the export sophistication of
industry j. Considering that N represents the total number of exported goods k produced
by industry j of country i, the export sophistication level EXPYji of industry j in country i
is as follows:

EXPYji = ∑
k∈N

skji × PRODYk (7)

Among them, skji is the share of the export value of good k in the total export value
of industry j in country i. EXPYji is essentially the weighted average sum of PRODYk in
industry j of country i.

We used Wang et al.’s (2017) [5] assessment and categorization of the new energy
industry to calculate its export sophistication. The new energy industry is comprised
of four subindustries: wind energy, solar energy, biomass energy, and nuclear power
technology. The HS1996 standard is adopted by the appropriate goods and classification
codes. The original data on export value related to the HS 6-bit code in these four industries
are all taken from the UN Comtrade database (accessed on 29 August 2022, from https:
//comtrade.un.org/data/). The raw data on total exports of various countries and PGDP
are taken from the World Bank Open Data (accessed on 1 September 2022, from https:
//data.worldbank.org.cn/indicator).

3.2.3. Control Variables

(1) Foreign direct investment (FDI)
As 1 of the most influential variables on carbon emissions, the influence of FDI on

CO2 has been the subject of extensive academic study. The pollution refuge theory and the
pollution halo hypothesis are 2 competing theories about how FDI affects CO2 emissions.
According to the pollution haven hypothesis, developing countries tend to adopt lower
environmental protection standards in order to attract more FDI, which brings in a lot
of low-quality, pollution-intensive FDI and turns developing countries into the sources
of developed countries’ carbon emissions [39,40]; whereas the pollution halo hypothesis
contends that FDI brings advanced technology and a wealth of management experience
to host nations [41,42]. According to Ali et al. (2023) [43], we utilized the net inflow
of FDI as a gauge of a country’s ability to attract FDI. The original data regarding net
FDI inflows were obtained from World Bank Open Data (accessed on 1 September 2022 at
https://data.worldbank.org.cn/indicator).

(2) International Trade (IT)
The global trade system has altered as a result of increasing global economic integra-

tion, which has also sparked studies on how trade affects carbon emissions. The impact
of international trade on CO2 is currently primarily focused on 2 aspects: on the 1 hand,
international trade encourages global economic growth through the specialized division
of labor, which increases energy consumption and, in turn, increases total carbon dioxide
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emissions [44]; on the other hand, international trade enhances international exchange
and cooperation, particularly promoting technology exchange between different countries,
which helps to reduce global carbon emissions [45]. The World Bank Open Data is utilized to
extract the pertinent statistics, which are used to measure total goods import and export
trade (accessed on 1 September 2022, from https://data.worldbank.org.cn/indicator).

(3) Urbanization (Urb)
Another important element that has an impact on carbon emissions is urbanization

(Urb). On the 1 hand, both centralized energy use and information spillover, as well
as technological advancements brought about by urbanization, contribute to improving
energy use efficiency and lowering CO2 [46]. On the other hand, the advancement of
urbanization will improve urban population density and the resulting increase in urban
infrastructure, which leads to an increase in CO2 to some extent [30,47]. According to
Wang et al. (2021) [48], the ratio of the urban population to the overall population is
chosen to properly depict the degree of urbanization. The raw data involved in the control
variables are derived from the World Bank Open Data (accessed on 1 September 2022, from
https://data.worldbank.org.cn/indicator).

3.2.4. Intermediate Variable

As 1 of the major determinants of a country’s carbon dioxide emissions, the technolog-
ical progress (TP) of the host nation has been the subject of extensive study. Technological
progress at the source of energy consumption in host countries can reduce CO2 production
by substituting fossil fuels with clean energy; technological progress during the consump-
tion of energy can reduce CO2 production by increasing energy efficiency; and technological
progress at the end of pollution emissions can revert CO2 emissions through carbon capture
and storage. Overall, technological progress in host nations contributes to the reduction
of carbon emissions [49]. We determine the host country’s overall technical advancement
using the Cobb-Douglas production function [50]. The World Bank Open Data (accessed
on 2 September 2022, from https://data.worldbank.org.cn/indicator) is the source of
information on technological advancement.

The variable description and descriptive statistics are shown in Table 1.

Table 1. Variable description and descriptive statistics.

Variable
Types

Variable
Abbreviation

Name Definition Unit

Explained
variable CO2 Carbon dioxide Carbon dioxide emissions from energy Million tons equivalent

Explanatory
variable EXPY Export sophistication of

new energy industry

Weighted average sum of export
sophistication of different new energy

products in a country’s new energy industry
USD

Control
variables

FDI Foreign direct
investment The Net FDI 100 Million USD

Urb Urbanization The percentage of urban residents in the
overall population %

IT International Trade The total amount of imports and exports 100 Million USD

Intermediary
variable TP Technological progress Cobb-Douglas production function -

Variables Mean St.Dev Max Min

LnCO2 5.523 1.345 9.261 3.290
LnEXPY 9.696 0.219 10.411 8.884
LnFDI 23.134 1.641 8.666 −1.405
LnIT 7.833 1.297 10.533 3.108

LnUrb −0.347 0.274 0 −1.316
LnTP 6.570 0.871 7.717 4.024

Note: Descriptive statistical analysis is performed using the tabstat command in the stata15.0 software.
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We gathered yearly panel data for 31 major economies worldwide from 1996 to 2021
based on data availability to confirm the impact of EXPY on CO2. These 31 economies (as
indicated in Table 2), which accounted for 48.67% of the global GDP in 2021, are made up of
22 developed countries or regions (subsequently referred to as the countries) and 9 emerging
countries. More than 85% of the world’s carbon emissions come from these 31 economies’
total emissions of carbon dioxide, while their total new energy exports account for more
than 95% of the world’s new energy trading market. The chosen economies are adequate
and representative. To reduce the potential heteroscedasticity of the sample data, we
logarithmized all of the data.

Table 2. Summary of sample countries.

Sample Classification Name of Economies

Developed countries

The United States (USA), Belgium (BEL), Germany (DEU), Canada
(CAN), Austria (AUT), Switzerland (CHE), The Czech Republic

(CZE), Denmark (DNK), Spain (ESP), Netherlands (NLD), France
(FRA), Britain (GBR), Hong Kong (HKG), Hungary (HUN), Italy

(ITA), Japan (JPN), Finland (FIN), Republic of Korea (KOR), Poland
(POL), Portugal (PRT), Singapore (SGP), Sweden (SWE)

Developing countries
Brazil (BRA), Philippines (PHL), China (CHN), Thailand (THA),
India (IND), Malaysia (MYS), Romania (ROU), Mexico (MEX),

Russian Federation (RUS)

Before starting to apply the econometric model, it is necessary to test the stationarity
of the original data and select the specific form of the model. This study will highlight the
methodology in accordance with the following conceptual framework (see Figure 1 [51]).

Figure 1. Conceptual framework.

4. Empirical Findings

When using the regression model to analyze the correlation between the explanatory
variable and the explained variable, the phenomenon of pseudo-regression may occur,
which means that the data of the explanatory variable and the explained variable is non-
stationary, but the regression outcomes reveal that there is a statistical association between
the two for some reason, and the regression results have no practical significance. To
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prevent pseudo-regression in the regression process, the original data must be tested for
stationarity. The IPS test and Fisher test of the xtunitroot command are used to conduct
a stationarity test on panel data; the results are presented in Table 3.

Table 3. The results of the unit root test.

IPS Test Fisher Test Order of
IntegrationStatistic p-Value Statistic p-Value

LnCO2 −3.3720 *** 0.0004 5.1761 *** 0.0000 I(0)
LnEXPY −7.5256 *** 0.0000 14.1506 *** 0.0000 I(0)
LnFDI −10.0535 *** 0.0000 12.5743 *** 0.0000 I(0)
LnIT −1.6782 ** 0.0467 9.2752 *** 0.0000 I(0)

LnUrb −5.1997 *** 0.0001 9.0213 *** 0.0000 I(0)
LnTP −5.1702 *** 0.0000 10.1308 *** 0.0000 I(0)

Note: ** p < 0.05, *** p < 0.01.

As shown in Table 3, the p values of the explained variable (LnCO2), the explanatory
variable (LnEXPY), the control variables (LnUrb, LnFDI and LnIT) and the intermediary
variable (LnTP) are all less than 0.05, rejecting the null hypothesis and accepting the
alternative hypothesis, indicating that all variables are considered stationary.

In general, there are three varieties of panel models: fixed effects model, pool effect
model, and random effect model. To ensure the validity and consistency of the estimated
results of the regression model, it is necessary to identify the optimal model type based
on the results of various tests. When comparing the fixed effect model with the pool effect
model, the xtcsd command is used to assess the cross-section dependence of the panel
data. The test statistic, 7.237, exceeds the critical value of 0.5811, which corresponds to
a significance level of 1%. The initial assumption that there is no cross-section dependence
is therefore refuted, and the model is regarded to have cross-section dependence. The
xtscc command is then used to determine whether or not the model has individual effects.
The test results indicate that the p-value is 0.000, allowing us to disapprove of the null
hypothesis and assume that there are individual effects; therefore, the fixed effects model is
superior to the pool effect model. The fixed effect model and the random effect model are
commonly compared and chosen using the Hausman command. The test’s findings show
that the p-value is 0.000, failing to meet the 5% threshold for significance. Consequently,
the initial hypothesis of the random effect model is refuted, showing that the fixed effects
model is the preferable alternative. Combining the outcomes of the two comparisons, the
two-way fixed effects model was subsequently applied to panel data regression.

Following model selection and the unit root test, the two-way fixed effects model
(xtreg command for Stata 15.0) is used to examine the carbon emission effect of the new
energy industry’s export sophistication and the regression results are displayed in Table 4.

Table 4. Regression results of the baseline model.

Model 1 Model 2 Model 3 Model 4

LnEXPY −0.320 *** (0.000) −0.290 *** (0.000) −0.210 *** (0.001) −0.219 *** (0.000)
LnFDI 0.046 *** (0.000) 0.028 *** (0.001) 0.029 *** (0.000)
LnIT 0.244 *** (0.000) 0.117 *** (0.000)

LnUrb 1.467 *** (0.000)
Country Y Y Y Y

Year Y Y Y Y
Constant 8.611 *** (0.000) 8.179 *** (0.000) 5.627 *** (0.000) 7.265 *** (0.000)

Mean
VIF - 1.01 2.20 1.96

Note: p-values in parentheses; *** p < 0.01.
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This research uses the vif command to broaden the detection to guarantee that there is
no multicollinearity across variables. The findings reveal that the VIF values of models 1 to
4 in Table 4 are both below 10, suggesting that there is no multicollinearity between variables.

According to the findings of the regression analysis, the correlation between LnEXPY
and LnCO2 is less than 0, and the significance test is passed at the 1% level, indicating that
enhancing the new energy industry’s export sophistication will substantially reduce carbon
dioxide emissions. Carbon dioxide emissions will drop by 0.219% for every percentage
rise in LnEXPY. The explanation for the negative inhibitory effect between LnEXPY and
LnCO2 is that as the new energy industry’s export sophistication increases, the capital and
technology content of the exported new energy commodities increases, and the demand for
fossil energy for such capital- and technology-intensive commodities continues to decline.
By optimizing the structure of energy consumption, carbon dioxide emissions are reduced.

At the 1% level of significance, the relationship between LnFDI and LnCO2 has
an elasticity value of 0.029, which is statistically significant. Each 1% increase in net foreign
investment will result in a 0.029% increase in carbon dioxide emissions. Although there
may be a Pollution Halo effect of FDI on carbon emissions, empirical evidence suggests that
FDI’s Pollution Haven effect inevitably increases the host country’s carbon emissions [52].

The elasticity coefficient between LnIT and LnCO2 emissions is 0.117, and it passed
the 1% significance level test. The change of 1% in international trade will result in a change
of 0.117% in carbon emissions. Promoting international trade, according to the principle
of comparative advantage, would allow a country to develop goods with comparative
advantages, lowering carbon emissions by boosting resource usage efficiency [53]. However,
international trade-driven global economic growth has boosted demand for fossil fuels,
resulting in rising global carbon emissions.

The positive impact of LnUrb on LnCO2 was tested at a significance level of 1%, indi-
cating that urbanization has worsened carbon emissions despite the fact that urbanization
could reduce carbon emissions through resource agglomeration and large-scale manage-
ment [54,55]. However, increased urbanization also drives up the need for infrastructure
and energy utilization, resulting in an increase in CO2 [56]. The study’s findings show that
urbanization causes carbon emissions to grow at a faster rate than agglomeration causes
them to decrease, with an increase in carbon dioxide emissions as a result.

Despite the fact that the panel regression results indicate that the new energy industry’s
export sophistication is conducive to reducing carbon emissions, it is necessary to employ
a series of methods to ensure the conclusions’ objectivity, and the results are given in Table 5.

Table 5. Summary of different robustness regression results.

Model 5 Model 6 Model 7 Model 8

LnEXPY −0.140 *** (0.005) −0.210 *** (0.003) −0.141 ** (0.034) −0.225 *** (0.000)
LnFDI 0.026 *** (0.000) 0.028 *** (0.000) 0.033 *** (0.000) 0.027 *** (0.001)
LnTO 0.123 *** (0.000) 0.156 *** (0.000) 0.133 *** (0.000) 0.126 *** (0.000)
LnUrb 1.382 *** (0.000) 1.394 *** (0.000) 1.404 *** (0.000) 1.488 *** (0.000)
LnIS −0.253 *** (0.005)

Country Y Y Y Y
Year Y Y Y Y

Constant 2.819 *** (0.000) 6.869 *** (0.000) 6.331 *** (0.00) 6.965 *** (0.000)
Note: p-values in parentheses; ** p < 0.05, *** p < 0.01.

(1) Substitute the explained variable. Replace with the outlined variable. Model
5 shows the outcome of the robustness test using per capita carbon emissions rather than
total emissions. The refitted regression result indicated a carbon reduction effect of the new
energy industry’s export sophistication, and the test was passed at the significance level of
1%. The regression coefficient symbols and significance for other variables are identical to
the results of the standard regression. Overall, it can be concluded with confidence that
improving EXPY can substantially reduce carbon emissions;
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(2) Shrink the tail of explanatory variables. Due to the occurrence of singular values,
there may be some variations between the regression estimate findings and the real scenario
based on the derived explanatory factors. To avoid this situation, we use the fixed-effect
model for panel regression and do a two-tailed treatment of 5% for the explanatory variables.
The estimated coefficient of the lnEXPY and lnCO2 is −0.210 (see Model 6 in Table 5),
suggesting that a 1% increase in lnEXPY reduces carbon emissions by 0.210%. Other control
variable regression coefficient symbols were consistent with the benchmark regression
findings and passed the significance test, demonstrating the robustness of the benchmark
regression results;

(3) Eliminate the interference of major international emergencies. Some unexpected
large worldwide occurrences, such as the global subprime mortgage crisis in 2007 and
the Corona Virus Disease 2019 (COVID-19), which caused varying degrees of recession
in the export trade of major economies around the world, will have an effect on the
estimates. In light of this, we delete data for a total of 5 years from 2007–2009 (the subprime
mortgage crisis occurred in 2007 and ended in 2009) and 2020–2021 (COVID-19 occurred
at the end of 2019 and rapidly evolved into a global event in early 2020) to eliminate the
impact of these two major events on the regression results (as shown in Model 7). The
correlation coefficient between lnEXPY and lnCO2 is less than zero, which is consistent
with the benchmark regression findings. As a result, after controlling for big unexpected
international events, the coefficient of the main independent variable is notably negative.

(4) Add a control variable. Taking into account the impact of missing variables,
this paper controls the industrial structure variable and conducts panel regression once
more. Model 8 shows that, after controlling for the industrial structure variable, the
export sophistication of the new energy industry has a negative correlation with carbon
dioxide emissions, and the other control variables’ regression coefficients correspond to the
benchmark regression. As a result, the carbon reduction effect of the new energy industry’s
export sophistication remains effective.

5. Further Discussion

5.1. Mechanism Inspection

The findings of the benchmark regression indicate a negative correlation between
lnEXPY and lnCO2; however, additional research is required to determine how this rela-
tionship is mediated. According to some academics, rising export sophistication indicates
that the export sector is advancing technologically, which indirectly raises a nation’s overall
technological level through active transmission or passive spillover. And technological
progress can also significantly lower carbon emissions [57]. Exploring the potential role of
technological progress as a mediator between export sophistication and carbon emissions
is a crucial matter. Results of empirical regression using technological advancement as
a study’s mediator variable are shown in Figure 2.

As shown in Figure 2, the elasticity coefficients of LnEXPY and LnTP, as well as
LnTP and lnCO2, are all statistically significant at the 1% significance level, demonstrating
that technological progress is one of the mechanisms by which the new energy industry’s
export sophistication affects carbon emissions. According to the change in coefficients,
the direct effect of LnEXPY on lnCO2 is −0.230, meaning that for every 1% increase in
LnEXPY, carbon dioxide emissions will decrease by 0.230%; however, with the intervention
of technological progress, the total effect of LnEXPY on lnCO2 is 0.219%. It’s interesting to
note that the new energy industry’s export sophistication exhibits a negative relationship
with technological progress in the mediated transmission process, i.e., an increase in the new
energy industry’s export sophistication will be detrimental to the domestic technological
level. This is primarily because a country has a finite amount of innovation resources, and
if it concentrates those resources on the new energy industry’s export sophistication, it will
exhaust those resources for domestic innovation.
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Figure 2. Analysis of moderator effects. Note: p-values in parentheses; ** p < 0.05, *** p < 0.01.

5.2. Heterogeneity Discussion

Given the vast differences in economic development between countries, the new
energy industry’s export sophistication may have various effects on carbon emission
reduction in different countries. On this basis, we classified 31 sample countries according
to their level of economic development into developed and less developed countries. The
results of our investigation into the heterogeneity of the carbon emission reduction effects
of the new energy industry’s export sophistication at different economic development
levels are presented in Figure 3.

LnEXPY LnFDI LnTO LnUrb

LnEXPY
LnFDI
LnTO
LnUrb

Figure 3. Heterogeneous regression outcomes for the effects of the new energy industry’s export
sophistication on carbon emissions. (a) represents the comparison of heterogeneity estimation
coefficients, while (b) represents the distribution of lnEXPY coefficients estimated for different
country types.
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According to Figure 3, the elastic coefficient between LnEXPY and lnCO2 in developed
countries is −0.220, and it passes the 1% significance level test. While in less developed
countries, CO2 emissions will drop by 0.155% for every 1% improvement in LnEXPY.
The regression findings demonstrate that the new energy industry’s export sophistication
is helpful in lowering carbon emissions in both developed and developing countries.
Furthermore, as compared to less developed countries, the new energy industry’s export
sophistication in developed countries has a greater influence on reducing carbon emissions.
The explanation for this phenomenon is that economic development is the first priority
for developing countries, and they prefer to continue consuming fossil energy rather than
developing new energy for industries with high initial investment sunk costs, whereas
developed countries prioritize environmental protection and are willing to invest heavily
in the development of new energy industries and new energy technologies to achieve
long-term goals.

6. Conclusions and Policy Implications

The optimization of energy consumption structure and the reduction of global car-
bon emissions are both greatly aided by the growth of the new energy sector. From the
standpoint of export sophistication, this research investigates the direction, mechanism,
and heterogeneity of the new energy industry’s influence on carbon dioxide. To accomplish
this, empirical experiments were conducted by gathering data from 1996 to 2021 from 31 of
the world’s major economies via the UN Comtrade database, the World Bank Open Data, and
the 2022 BP Statistical Review of World Energy. The findings indicate that the new energy
industry’s export sophistication may contribute to a decrease in carbon dioxide emissions,
and this conclusion has withstood a number of robustness tests. The mechanism analysis
reveals that the export sophistication of the new energy industry will have a crowding-out
influence on domestic technological innovation, which is not conducive to achieving the
global carbon emission reduction target. We also observe regional heterogeneity, as the
effect of the new energy industry’s export sophistication on carbon reduction is more
pronounced in developed countries. In light of the significance of new energy in attaining
carbon neutrality and a carbon peak, this research on the new energy industry provides
a theoretical framework for the low-carbon transformation of the energy sector. This paper
also provides evidence for the high-quality development of the new energy industry from
the perspective of export sophistication, which is conducive to taking the initiative and the
lead in the process of reshaping the global energy supply and demand pattern.

Based on the previous findings, this research proposes the three policy implications
listed below.

Firstly, we should prioritize enhancing the new energy industry’s export sophistica-
tion. Countries around the world should accumulate the production process of new energy
products, actively enhance the production capacity of high-end new energy products,
and cultivate their own international competitive advantage in the new energy industry.
Secondly, innovation resources should be cultivated to mitigate the effect of export sophisti-
cation on domestic innovation resources being crowded out. In terms of the total amount of
innovation resources, improve the training support for R&D personnel, and foster a group
of scientific and technological innovators; In the development of the new energy industry,
an additional new energy industry innovation fund will be established, which will be used
for talent support and technological research and development in the new energy industry,
and will increase support for the new energy industry. Finally, distinct new energy industry
development plans should be developed, and the comparative advantages of various coun-
try types should be properly leveraged. Developed countries should speed up research
into new energy utilization technologies, particularly those with zero carbon emissions,
and accelerate the green energy transition. Developing countries should abandon the idea
of development dependent on fossil fuels, lay out new energy products with comparative
advantages, and gradually join the global new energy industry’s international division of
labor system.
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It is important to note that this study is primarily based on the data from 31 of the
world’s major economies; however, if the countermeasures and suggestions in this study
are used to guide the development of the new energy industry in a particular country,
the effect may be greatly diminished due to the unique characteristics of the country. To
overcome this limitation, future research will concentrate on a specific nation in order to
devise countermeasures that are more compatible with the growth of the nation’s new
energy industry.
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Abstract: This study aims to explore the role of China’s Ecological Civilization Pilot Policies in
carbon emissions reduction within the urban green energy industry. It further investigates how
these policies influence carbon emissions. To achieve this, a unique incentive–constraint model is
established considering China’s distinctive political system. The DID model was used in this study,
employing Chinese city data spanning from 2009 to 2020 and analyzing urban panel data with the
use of two specific policies as quasi-natural experiments. The analysis reveals the following key
findings: (i) Ecological Civilization Pilot Policies in the energy industry substantially contribute to
carbon emission reduction through the effects of technological progress and industrial structure
optimization; (ii) the unique incentive–restraint mechanism within these policies enhances their
effectiveness, with short-term incentives and carefully designed assessment criteria playing a pivotal
role in their successful implementation. These findings carry substantial implications for shaping
environmental policies within the energy industry, emphasizing the importance of such policies in
the ongoing global effort to reduce carbon emissions and promote sustainability.

Keywords: carbon emissions; ecological civilization; incentive–constraint mechanism

1. Introduction

Pilot policies represent a distinctive policy, particularly when applied to the experi-
mental implementation of “ecological civilization”, a rarity on the global stage. The notion
of ecological civilization constitutes a unique buzzword within China, having garnered
substantial influence within the nation since its integration into the ideology of the Com-
munist Party of China in 2007 [1]. While this concept’s definition bears a resemblance
to that of “Ecological democracy” [2], China’s developmental trajectory has transformed
it into a societal vision that places paramount importance on enhancing the well-being
of the populace and advancing national development with a steadfast commitment to
the principles of sustainable development [3]. Since 2013, the Chinese government has
implemented Ecological Civilization Pilot (ECP) policies in energy industry fields which
encompass various strategies such as upgrading the energy structure, developing green
industries, and protecting the ecological environment. These policies have provided China
with practical foundations and accumulated experience in reducing carbon emissions and
taking climate action [4].

The primary objective of this study is to delve into the multifaceted impact of China’s
ECP policies, implemented over a decade, on the reduction of regional carbon emissions.
The interplay between these policies and regional carbon emission patterns is scrutinized,
taking into consideration the unique incentive–restraint mechanisms that influence lo-
cal officials. Empirical insights into the effectiveness of the ECP policy paradigm and
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how incentive and constraint mechanisms impact policy outcomes are sought after in
this research.

Our research extends beyond the validation of existing theories, seeking to provide
practical insights that have broader implications for global governance. The ongoing de-
bate between neoclassical economics and the Porter Hypothesis, particularly within the
context of environmental regulatory policies and their impact on carbon emissions, is navi-
gated [5–7]. The distinctions in policy intensity, objectives, mechanisms, and assessments
among various environmental regulatory policies are focused on, shedding light on the
nuances of government policies and their varying effects. Furthermore, the potential to
inform future policy formulation and promotion exists in our findings. The relationship
between ECP policies, incentive–constraint mechanisms, and policy effects is examined,
contributing to a theoretical foundation that can guide policymakers and researchers in
their endeavors to address carbon emissions and ecological civilization.

The remainder of this paper proceeds as follows: Section 2 provides an overview of the
theoretical underpinnings and establishes a hypothesis that will be utilized in the empirical
examination. Section 3 describes the data and methodology. Section 4 provides the core
results on the impact of ECP policies and discusses how incentive–constraint mechanisms
influence these policies. Section 5 concludes this paper.

2. Theoretical Framework

2.1. ECP Policies Overview

In December 2013, China’s National Development and Reform Commission (NDRC)
proposed the establishment of an “Ecological Civilization Demonstration Area” in 100 re-
gions across China. In 2017, China initiated the development of “China’s Demonstration
Cities & Counties for Ecological Civilization Construction”. Both pilot policies were im-
plemented at the prefecture-level cities and exhibited significant differences in policy
indicators. This divergence allows for an impartial analysis of the correlation between
ECP policies and carbon emissions. For the purpose of experimentation, these policies will
be referred to as Policy A1 and Policy A2, respectively. The specific details of these two
policies can be found in Table 1.

Table 1. ECP Policies.

Policy Details Policy A1 Policy A2

Policy Name China’s Demonstration Cities & Counties for
Ecological Civilization Construction. Ecological Civilization Demonstration Area

Policy Objective Establish a model for ecological
civilization construction.

Explore ecological civilization construction
in pilot areas.

Entry Method Application Review Process. Application Review Process

Responsible Agency Ministry of Environmental Protection.

National Development and Reform Commission,
Ministry of Finance, Ministry of Land and

Resources, Ministry of Water Resources, Ministry
of Agriculture, State Forestry Administration.

Policy Characteristics National-level green honor. Selective experimentation.

Policy Indicators Clear construction targets and
management procedures.

Pilot areas determine policy indicators based on
their local conditions.

Assessment Method Assessment is conducted first and the title is
awarded after passing the assessment.

Regular inspections with qualification cancellation
for areas that fail acceptance after the five-year

construction period.

Policy Coverage Titles are awarded annually, covering a total of
262 cities and counties in 2020.

In 2014 and 2015, a total of 100 representative areas
were selected.
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Analyzing the content of the pilot policies reveals commonalities between Policy
A1 and Policy A2. Both policies feature an application–review mechanism, whereby
local governments are required to initiate the application process, culminating in central
authorities determining the approved list following a comprehensive review. Furthermore,
both policies entail the establishment of specific construction and assessment criteria.

Notably, these policies diverge in terms of their respective incentive assessment mech-
anisms, manifesting as follows:

1. Incentive effects: Policy A1 exhibits a stronger actual incentive impact. As a form of
regional “green honor”, Policy A1 represents a short-term honor. Local governments
need to meet the nationally prescribed assessment criteria within a short time frame.
Afterward, the Ministry of Ecology and Environment issues corresponding titles to
regions that pass the assessment. These titles can be considered a local official’s green
achievements. Therefore, local leaders strive to meet the assessment standards. In
contrast, Policy A2, which involves long-term pilot programs, is influenced by the
actions of local leaders. Currently, implementing this policy does not necessarily
guarantee incentives for local officials. Furthermore, the central government has
not specified how honors can be obtained under Policy A2, potentially leading local
officials to lack motivation for such pilot programs.

2. Constraint systems: Policy A1, serving as an “honorary title” for a city, has stricter eval-
uations due to clear assessment criteria. This process involves a one-time assessment;
once the criteria are met, the title is conferred without subsequent evaluation phases.
As a result, this policy may cause local governments to prioritize their economic
interests and discontinue the specific ecological civilization development measures
outlined during the application and approval process. On the other hand, Policy
A2 is an exploratory pilot, where the assessment criteria are unclear. Yet, there is a
follow-up evaluation mechanism, and local governments must face the possibility of
forced withdrawal if they do not pass the assessment.

When considering the two policies comprehensively, it becomes apparent that Policy
A1 exhibits higher policy intensity. This is because local governments are obligated to
fulfill tasks assigned by the central government in accordance with established regulations
before undergoing central government inspections. This aligns with the principles of the
administrative subcontracting system and the theories related to promotion tournaments.
In contrast, Policy A2 involves a broader range of departments in initiating pilot programs
and allows for more discretion. Local governments under Policy A2 may not have a
greater sense of urgency to complete these tasks compared to those under Policy A1. There
are some areas where both policies are concurrently implemented. In these cities, local
governments must ensure the effective implementation of Policy A1 to earn the honorary
title for their cities while also meeting the objectives of Policy A2 to address certain issues.
Consequently, it can be inferred that among all cities, those implementing both policies
exhibit higher policy intensity compared to those implementing either policy individually.

2.2. Impact of ECP Policies on Carbon Emissions

We believe that the implementation of ECP policies has led to higher requirements
for energy enterprises. To align with the objectives delineated by the central government,
local administrations operating within the framework of the target responsibility system
will necessitate a transformation in their governance approach. This transition entails the
adoption of more stringent environmental regulations within their respective jurisdictions.
Typically, these measures fall into two primary categories: incentives and punishments [8,9].
Incentives encourage enterprises to reduce carbon emissions through diverse methods,
encompassing technological advancements and production reduction, thereby catalyz-
ing a city-wide reduction in carbon emissions. Conversely, punishments intensify the
consequences of polluting emissions, discouraging polluting companies from continuing
environmentally harmful production practices solely for economic gain. This ultimately
leads to a reduction in carbon emissions. In this scenario, the implementation of ECP poli-
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cies requires energy enterprises to augment their investments in research and development
(R&D) and innovation. This augmentation aims to cultivate environmentally sustainable
and more efficient technologies. As a result, it reduces energy and resource waste, facili-
tating proficient production management and cost-saving measures. Consequently, this
initiative culminates in the reduction of carbon emission intensity, an enhancement of
carbon efficiency, and the promotion of sustainable development.

Hypothesis 1 (H1). The implementation of ECP policies incentivizes urban areas to reduce carbon
intensity and enhance carbon efficiency in the energy industry.

2.2.1. Energy Industrial Optimization

ECP policies typically align with the long-term carbon reduction objectives of the
nation or region. When formulating these policies, the central government establishes the
level of carbon emissions within the region. Local governments, upon receiving these tasks,
continuously employ administrative measures to compel enterprises to align their actions
with the long-term policy objectives. These environmental regulatory measures compel
both low-end and high-energy-consuming enterprises to undertake industrial upgrades,
thereby reducing pollution emissions during the production process [10,11]. Consequently,
they optimize the industrial structure, expedite regional industrial transformation and
enhancement, reduce carbon intensity, and enhance carbon efficiency.

The requirements for ecological environment development will lead the government
to increase the costs of environmental governance within the government budget while
implementing environmental regulatory policies. This will also result in corresponding
expenditures on green public services [12,13], thereby promoting the improvement of
the ecological environment in the region. The “pollution haven” theory suggests that
differences in environmental regulations among various regions can impact the decision-
making process of pollution-intensive industries [14]. Regions with strict environmental
regulations may incur higher costs for energy enterprises due to environmental issues,
which can result in increased production costs and reduced comparative advantages
for their products. Conversely, regions with more relaxed environmental regulations
may attract polluting enterprises by offering lower environmental costs, thus becoming
“pollution havens”. Enterprises in the energy sector are categorized as being subject to
stringent environmental regulations, consequently incurring significant costs associated
with ecological and environmental management, thereby resulting in elevated production
expenses. As the implementation of ecological civilization initiatives gains traction in
a specific region, the corresponding policy imperatives stimulate improvements in the
local ecological environment. This, in turn, creates a favorable external environment
for the development of green technology-oriented industries, effectively mitigating the
costs associated with industrial transformation. Concurrently, these policy-driven changes
compel polluting enterprises to either exit the region or undergo significant industrial
upgrades. This dynamic fosters a competitive environment in which regions strive to
surpass each other in terms of environmental performance, resembling a “race to the top”.
Ultimately, this leads to a significant increase in the regional industrial agglomeration effect,
thereby reducing carbon intensity and improving carbon efficiency.

Hypothesis 2a (H2a). The implementation of ECP policies incentivizes urban areas to reduce
carbon intensity and enhance carbon efficiency by optimizing energy industrial structure.

2.2.2. Green Technological Progress

In the domain of technological progress, the implementation of ECP policies has
a significant impact on the extent of environmentally friendly innovation in the area,
primarily driven by two contrasting effects: the “compliance cost” and the “innovation
compensation”.
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The “compliance cost” signifies how ECP policies prompt local governments to re-
calibrate their expectations concerning the ecological environment. As these policies are
enacted, local governments enhance relevant ecological standards and emphasize corporate
behavior regarding energy conservation and emission reduction. This increases the “com-
pliance cost” for businesses, resulting in a “crowding out effect” that displaces innovation
inputs, leading to the outflow of capital and hindering technological advancement [15,16].
While the “compliance cost” compels enterprises to either transition or upgrade their in-
dustries, it simultaneously hinders the improvement of carbon efficiency within the region.

The concept of “innovation compensation” refers to the practice in which local govern-
ments provide financial incentives to businesses that achieve green innovation in line with
the predefined objectives of the central government. Following the “Porter Hypothesis”,
suitable environmental regulations induce businesses to internalize costs, thus propelling
them to actively devise green processes, products, and technologies. By doing so, compa-
nies can not only alleviate the financial burden of policy implementation but also potentially
generate additional revenue [17]. Initiated from the perspective of public choice theory
at the enterprise level, this “innovation compensation” for green technological progress
can rouse the subjective initiative of enterprises functioning as “rational economic agents”.
This stimulation encourages them to invest in green technology innovation, leading to
improved efficiency in the use of raw materials and energy, reduced operational costs, and
the attainment of policy incentives [18]. Ultimately, this contributes to the achievement of
environmental regulatory objectives, such as the reduction of carbon emissions and the
enhancement of carbon efficiency.

Hypothesis 2b (H2b). The implementation of ECP policies incentivizes urban areas to reduce
carbon intensity and enhance carbon efficiency by promoting technological progress.

2.3. Incentive–Restraint Mechanism in ECP Policy

While countries worldwide have established environmental laws and policies [19–21],
China’s ECP policy stands out for its distinctive political context. China’s current imple-
mentation of ECP policies predominantly adheres to a “local application, central oversight”
model. Drawing from the theoretical perspective of “administrative subcontract” as ex-
pounded by Zhou [22], China’s governance model can be synthesized as a composite of
“vertical subcontracting” and “horizontal competition”. The central government grad-
ually delegates public administrative responsibilities and administrative discretion to
subnational levels, empowering local administrative leaders with substantial authority.
Concurrently, the power to appoint lower-level government leaders is vested in their
higher-level “contractors”. This model encapsulates the gradual devolution of public
administrative responsibilities and administrative discretion to local tiers, endowing local
administrative leaders with significant influence. However, in the process of policy is-
suance at different levels, local governments, acting as both “agents” responsible for policy
implementation and “self-interested” entities, may not always align their goals with those
of the central government. This duality stems from local governments serving as agents
for superior governments’ directives while concurrently pursuing their own political and
financial interests.

To address this principal–agent problem between central and local governments, the
central government must establish incentive and restraint mechanisms. We believe that
this unique Chinese incentive–restraint mechanism impacts two opposing effects: “com-
pliance cost” and “innovation compensation”. Evaluating how incentives and constraints
affect carbon emissions and carbon efficiency under different policies is imperative for
comprehending China’s pilot policies.

2.3.1. Incentive Mechanism

Local government officials’ career trajectories are often intricately linked to oppor-
tunities for advancement. In the Chinese political system, there is a strong emphasis on
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performance-oriented promotions, with outstanding achievements being a prerequisite
for ascending to higher-level government positions. As a result, local officials are often
required to demonstrate their worth through notable accomplishments in order to stand
out in the competition for government positions. In recent years, China has increasingly
prioritized the development of a “green economy” and the pursuit of “dual carbon goals”.
For local leaders, reducing carbon emissions has now become one of the key achievements
they must strive for. In regions where ECP policies are implemented, local governments
acting as “self-interested actors” actively engage in ecological civilization construction.
They diligently adhere to established objectives and compete with other local governments
to gain recognition from the central government, achieve political victories, and obtain
political incentives [23]. At this point, local governments invest more effort in ECP projects,
mobilize resources to enhance the “innovation compensation” effect, and stimulate regional
enterprises to have a greater innovation drive.

However, incentives do not necessarily lead to good results [24]. Empirical evidence
indicates that high-ranking local officials in China typically hold their positions for a
duration of 3–5 years. In order to achieve quick results, these officials tend to prioritize
policies with short-term objectives. In contrast, leadership transitions may occur during
the extended policy period in contexts defined by long-term objectives. The political legacy
of the departing official is inherited by their successor, which can reduce the motivation
of local officials. As a result, local authorities may prefer a strategy that emphasizes
short-term incentives.

In this context, we believe that local officials are more inclined to drive policies aimed
at reducing carbon emissions when short-term incentives are at play. Conversely, in
regions with longer-term incentives, local officials may lack the motivation to drive policy
implementation. This results in policies that help enterprises generate an “innovation
compensation” but fail to offset “compliance costs”. Consequently, “compliance costs”
exceed “innovation compensation”, leading to a reduction in carbon intensity but not an
improvement in carbon efficiency.

Hypothesis 3a (H3a). Compared to long-term incentives, ECP policies with short-term incentives
are more effective in reducing carbon intensity and improving carbon efficiency through reasonable
incentive mechanisms.

2.3.2. Constraint Mechanism

Throughout the policy implementation process, local governments serving as “agents”
entrusted with specific responsibilities often find themselves having to complete multiple
tasks assigned by the central government simultaneously. Consequently, when conflicts
of interest emerge between the central and local governments, local governments may
utilize their discretion, granted by the central government, to adopt different strategies for
implementing pilot policies based on the level of alignment of interests and the pressure
to execute. This is often referred to as a “differential coping” strategy. In the absence
of effective supervision, even though local governments, in their role as “agents”, may
actively engage in the application of pilot policies in response to the central government
they may lack the sustained motivation to persistently and actively carry out these policy
experiments [25]. Consequently, they will not enact stringent environmental regulatory
measures, thus failing to impact carbon emissions within their respective regions. To
regulate the “differential coping” strategy of local governments, the central government
needs to establish certain constraint mechanisms, whether they be in the form of assessment
systems or penalty systems, to standardize the behavior of local governments and prevent
any potential negligence.

So, it is crucial that the stipulations of these constraint mechanisms are rational. Oth-
erwise, in regions subjected to higher levels of constraint, while the central government’s
assessments might deter local governments from inaction to some extent, excessive levels
of constraint may induce instances of data concealment by local authorities. Several schol-
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ars have explored the phenomenon of firms opting for quantity innovation over quality
innovation [26]. The results of these studies indicate that when faced with innovation
incentives companies tend to actively increase the number of patent applications. However,
this growth primarily focuses on the “quantity” rather than the “quality” of innovation. As
a result, there is an increase in non-invention patents, but no significant improvement in
technology or product quality is achieved.

When environmental regulatory policies become excessively stringent, local officials
may resort to strategic innovation. This response arises from the adverse impact of overly
rigorous environmental regulations on the production and operations of local businesses,
resulting in heightened operational costs. In their efforts to alleviate these costs and main-
tain the performance of local governments, local officials may choose innovations that
demonstrate superficial compliance with regulations while lacking substantive environmen-
tal improvements. Such innovations may encompass compliance-focused pollution control
measures, which may not necessarily lead to significant environmental enhancements. This
means that local officials may prioritize performance and business operations over genuine
efforts to drive sustainable environmental improvements.

In the broader context, it is essential to strike a balance between innovation incentives
and regulatory constraints. An overemphasis on either side can result in adverse conse-
quences. Within the framework of China’s political landscape, when constraint intensity
is reasonably calibrated, ECP policies can encourage local officials to focus on substantial
innovation. This entails implementing significant measures to drive technological inno-
vation and motivating enterprises to attain “innovation compensation” surpassing their
“compliance costs”. However, if constraint intensity is excessively high, local officials,
acting as intermediaries, may opt for strategic innovation due to the disproportionate effort-
to-reward ratio. This choice is made to maintain their political performance and ensure the
stable operation of enterprises. In such scenarios, even though local governments, acting as
“agents” for the central government, might still actively participate in the application of
relevant pilot policies, due to the unreasonable constraint setting they lack the motivation to
continue active policy experimentation. This, in turn, hinders the implementation of robust
environmental regulatory measures, resulting in the ineffectiveness of both “compliance
costs” and “innovation rewards” throughout this process.

Hypothesis 3b (H3b). As the constraint intensity of ECP policies transitions from weak to strong,
local governments tend to favor strategic innovation over substantive innovation.

3. Materials and Methods

3.1. DID Model with Multiple Periods

The ECP policies can be regarded as a quasi-natural experiment in which the selection
of policy pilot areas is deliberately controlled, resulting in a degree of artificial selectivity
in the grouping of experimental and control units. Given that the ECP policies examined
in this study have multiple time points, the traditional Difference-in-Differences (DID)
model, which is typically used to assess policy effects at a single time point, is not suitable.
Therefore, this study adopted the approach proposed by Beck et al. [27] to construct a DID
model with multiple periods in order to evaluate the impact of ECP policies on carbon
emissions. The specific formula used is as follows:

EIit = αi + βi·Postit·Treatit + ∑ γ·Controlsit + vyear + μcity + εit (1)

EFFit = αi + βi·Postit·Treatit + ∑ γ·Controlsit + vyear + μcity + εit (2)

where EIit is the carbon intensity in the city i and year t, EFFit represents the carbon
efficiency in the city i and year t. Postit and Treatit are time and policy dummy variables.
Specifically, if the city i is selected for the ECP Policies, its policy dummy variable Treatit = 1;
otherwise, it is set to 0. Similarly, if the city i is included in the ECP Policies in the
year t, the Postit and Posti,t+n are all set to 1; otherwise, Postit = 0. The interaction term
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Postit × Treatit is the explanatory variable in the model. Furthermore, we included a set
of control variables denoted as Controlsit to account for other potential factors that may
influence carbon intensity and efficiency. The variables vyear and μcity represent time-fixed
effects and city-fixed effects, respectively. The error term is represented as εit.

3.2. Impact Mechanisms

Apart from direct regulatory measures, ECP policies commonly exert influence on
carbon emissions through two primary pathways: technological progress and industrial
optimization. Drawing upon the methodology suggested by Akerman et al. [28], we
incorporated interaction terms into a DID model to discern the distinct effects between the
intergroup coefficient and the policy. The formula employed is as follows:

EIit = α1 + β1·Postit·Treatit + β2·Postit·Treatit·E f f ectit + ∑ γ·Controlsit + vyear + μcity + εit (3)

EFFit = α1 + β1·Postit·Treatit+β2·Postit·Treatit·E f f ectit + ∑ γ·Controlsit + vyear + μcity + εit (4)

When examining the impact of technological progress, substitute the technology
effect variable Techit for Effectit. When assessing the effect of industrial optimization,
replace Effectit with the industrial effect variable Opptiit, and then compare the differences
between β1 and β2 to discern the policy’s influence. The data source is the “China City
Statistical Yearbook”.

3.3. Incentive–Constraint Mechanisms
3.3.1. Incentive Mechanisms

China’s current territorial and quantified evaluation system serves as a strong motiva-
tor for local officials. This “incentive-oriented” instrument capitalizes on the competitive
nature of promotions among local officials, functioning as a mechanism to stimulate their
dedication. Importantly, it fosters a spirit of mutual competition among local officials,
thereby further incentivizing local governments to intensify their efforts in implementing
ECP policies, all in the pursuit of their own self-interest.

We constructed incentive variables based on the important indicators of local officials’
promotion tournament, the incentive virtual variable Intit and Postit × Treatit, to construct a
triple interaction term. Based on relevant studies [29], empirical testing is conducted using
the DDD model with the following formulas:

EIit = α1 + β1·Postit·Treatit·Intit + ∑ γ·Controlsit + vyear + μcity + εit (5)

EFFit = α1 + β1·Postit·Treatit·Intit + ∑ γ·Controlsit + vyear + μcity + εit (6)

Regarding the Intit variable, we stipulate that if the mayor or party secretary of a city
is promoted in the current year, the official promotion index for that year is defined as 1.
If both the mayor and the party secretary are promoted, the concept’s official promotion
index is defined as 2. The cumulative intensity of official promotion within 12 years is then
calculated to determine the official promotion frequency of the city. The data on official
changes in Chinese cities were collected manually by the author through the internet.

3.3.2. Constraint Mechanisms

Technological innovation is a critical factor in the effectiveness of ECP policies in
promoting the reduction of carbon emissions. In the context of vertical constraints between
central and local governments, local governments are likely to use the number of patents as
a performance indicator for regional innovation when reporting to the central government
in order to serve their self-interest. Therefore, we decomposed the dependent variable into
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“substantial innovation” and “strategic innovation”, constructing a DID model to examine
the constraint intensity of different policies, with the following formulas:

TIit = α1 + β1·Postit·Treatit + ∑ γ·Controlsit + vyear + μcity + εit (7)

SIit = α1 + β1·Postit·Treatit + ∑ γ·Controlsit + vyear + μcity + εit (8)

TIit represents “substantive innovation”, using the number of green patent inventions
as a proxy variable while SIit represents “strategic innovation”, using the number of utility
model patents and design patents as proxy variables. The patent data comes from the
China State Intellectual Property Office.

3.4. Dependent Variable

To measure the carbon emission reduction effects, this paper assesses the carbon
emissions of various prefecture-level cities in China from two dimensions: carbon intensity
and carbon efficiency.

Carbon intensity (EIit) refers to the carbon dioxide emissions per unit of GDP, reflecting
the relative relationship between economic growth and carbon emissions. The calculation
of carbon dioxide emissions involves aggregating the carbon emissions resulting from coal
gas and liquefied petroleum gas consumption, electricity usage, transportation activities,
and heat energy consumption within each city. The carbon emissions resulting from the
consumption of coal gas and liquefied petroleum gas are calculated using conversion
factors provided by the Intergovernmental Panel on Climate Change (IPCC) in 2006. The
carbon emissions resulting from electricity consumption are calculated using the emission
factors of the regional power grid [30]. The carbon emissions generated by transportation
are calculated using the passenger and freight volumes of different transportation modes
in the city [31]. Lastly, the carbon emissions resulting from thermal energy consumption
are calculated by considering the amount of raw coal consumed by the city. All carbon
emissions are then added together to obtain the total carbon emissions.

Carbon efficiency (EFFit) is measured using the slacks-based model (SBM) with non-
desirable outputs proposed by Tone [32]. In this model, Chinese cities are considered
as distinct decision-making units, each having three vectors: inputs, expected outputs,
and unexpected outputs. Specifically, the input vector can be denoted as X ∈ Rm, the
expected output vector as Y ∈ Rq, and the non-expected output vector as B ∈ Rp. The input
matrix, expected output matrix, and non-expected output matrix can be defined as follows:
X = [x1,x2. . .,xn] = R(m×n), Y = [y1,y2. . .,yn] = Y(q×n), B = [b1,b2. . .,bn] = R(p×n).

Assuming X > 0, Y > 0, B > 0, the production possibility set is P = {(x,y,b)|x ≥ Xλ,
y ≥ Yλ, b ≥ Bλ, λ > 0}, λ is weight vector, ρ* is the objective function.

ρ* = min
1 − 1

m ∑m
i=1

si
−

xik

1 + 1
k1+k2

(
∑k1

r=1
sr+

yrk
+ ∑k2

t=1
st−
btk

) (9)

s.t. xik| =
n
∑

j=1
λjxij + si

− i = 1, 2, . . . , m;

yrk =
n
∑

j=1
λjyrj + sr

+ r = 1, 2, . . . , q;

btk =
n
∑

j=1
λjbtj + st

− t = 1, 2, . . . , p;

λj ≥ 0, si
− ≥ 0, sr

+ ≥ 0, st
− ≥ 0

s represents the slack variables for input vectors, expected output vectors, and non-expected
output vectors, while λ stands for the weight vector. When 0 < ρ* < 1, it indicates the
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presence of some efficiency loss, which means that carbon efficiency can be improved
through enhancements in input and output units. When the objective function ρ* ≥ 1,
it signifies high input–output efficiency for the region, with higher ρ* values indicating
higher carbon efficiency in that area. We use year-end employment figures as human input,
the capital stock formed by fixed asset investments based on the 2006 as capital input,
urban electricity generation as energy input, GDP as economic output, and carbon dioxide
emissions as non-expected output to measure carbon efficiency in Chinese cities. The data
used in the calculation all comes from the “China City Statistical Yearbook” and “China
Energy Statistical Yearbook”.

3.5. Control Variables

In view of the available statistical data, we conducted empirical testing using a panel
dataset covering 224 cities in China from 2009 to 2020. Acknowledging that other urban
characteristics might potentially impact carbon emissions, we included the following
control variables: urbanization level, denoted as the ratio of urban population to the total
regional population; financial level, quantified as the ratio of local loans to GDP; industrial
level, captured by the share of value added by the secondary industry in the total output;
infrastructure development level, measured as the proportion of road mileage to urban
area for each prefecture-level city; fiscal decentralization level, represented by the ratio of
city fiscal revenue to GDP. Data sources include the “China City Statistical Yearbook” and
the National Bureau of Statistics of China.

4. Results

4.1. Main Results

The results in Table 2 show that, irrespective of the implementation of one or both poli-
cies, cities within the pilot scope have passed the test. This implies that the implementation
of the ECP policies in these regions has effectively led to a reduction in carbon intensity
within the respective areas. This substantiates that the ECP policies currently enforced in
China have significantly promoted carbon emission reduction and positively influenced
the ecological environment development of the energy industry. Furthermore, as one
progresses from Policy A2 to Policy A1 and subsequently to regions where both policies
are simultaneously implemented the policy intensity escalates, yielding a corresponding
increase in its impact on carbon intensity and carbon efficiency. Policy A1 demonstrates
effects on carbon intensity and carbon efficiency, registering values of −2.088 and 0.132,
which are notably higher than those of Policy A2. In cities that implement both policies
concurrently, the effects of the pilot policy on carbon intensity and carbon efficiency are
−2.620 and 0.182, surpassing the outcomes observed in cities implementing a single policy.
This substantiates Hypothesis 1 that ECP policy can reduce the carbon intensity of pilot
cities and improve carbon efficiency in the energy industry. Additionally, as the policy
intensity of ECP policies gradually increases, the policy effect also improves.

In the experiment on control variables, we find that financialization, industrialization,
and the enhancement of fiscal decentralization all had a significant impact in elevating
carbon intensity and reducing carbon efficiency. It is noteworthy that urbanization was the
sole exception, as it increased carbon intensity but did not reduce carbon efficiency. These
findings align with logical reasoning and prior experimental knowledge. Interestingly,
among the controlled variables, the improvement in infrastructure construction had a
substantial effect on decreasing carbon intensity and enhancing carbon efficiency. While the
influence of improved infrastructure development on carbon reduction is relatively modest
when compared to the ECP pilot policy, it substantiates China’s capacity to mitigate carbon
emissions by its notable externalities.
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Table 2. Main Regression.

EI EFF EI EFF EI EFF

A1 −2.088 ** 0.132 ***
(0.818) (0.026)

A2 −0.605 * −0.009
(0.333) (0.011)

A1 × A2 −2.620 ** 0.182 ***
(1.315) (0.042)

Urban 2.291 ** −0.003 2.295 ** 0.000 2.321 ** −0.005
(0.955) (0.031) (0.956) (0.031) (0.956) (0.031)

Finance 1.275 *** −0.040 *** 1.271 *** −0.039 *** 1.272 *** −0.039 ***
(0.247) (0.008) (0.247) (0.008) (0.247) (0.008)

Industry 1.532 *** −0.049 *** 1.590 *** −0.051 *** 1.559 *** −0.050 ***
(0.321) (0.010) (0.321) (0.010) (0.321) (0.010)

Facility −0.134 *** 0.005 *** −0.125 *** 0.004 *** −0.140 *** 0.005 ***
(0.044) (0.001) (0.044) (0.001) (0.044) (0.001)

Fiscal 21.632 *** −1.144 *** 22.003 *** −1.142 *** 22.042 *** −1.173 ***
(6.291) (0.202) (6.298) (0.203) (6.297) (0.203)

Constant −18.498 *** 1.250 *** −19.304 *** 1.281 *** −18.878 *** 1.273 ***
(4.428) (0.142) (4.428) (0.143) (4.426) (0.142)

Observations 2688 2688 2688 2688 2688 2688

Adjust R2 0.629 0.680 0.628 0.677 0.628 0.679

City fixed effects Yes Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes Yes

Notes: *, **, and *** mean significant at the 10%, 5%, and 1% level, respectively.

4.2. Placebo Test

Although we controlled for urban variables in the experiment, it was imperative to
enhance the robustness of our regression results. To achieve this, we randomly selected
an equivalent number of cities from all sample cities as the control group for placebo
tests [33]. Employing a random sampling approach, we generated 500 sets of placebo
variables. The resulting kernel density and coefficient distributions were then depicted in
figures, allowing for a comparison with the original findings and the presentation of the
placebo test outcomes.

Figure 1 illustrates the results of the placebo tests for Policy A1 and Policy A2. Notably,
the sampled outcomes of carbon intensity and carbon efficiency for Policy A1 significantly
deviate from the original results, substantiating that our experimental findings do not
exhibit a placebo effect. While the effect of Policy A2 on carbon intensity also passes the
test, the results for carbon efficiency, due to their lack of significance within the policy
itself, do not exhibit significant differences compared to the placebo test. These test re-
sults are consistent with the main regression findings, demonstrating the robustness of
the experiment.

4.3. Impact Mechanisms Results

Tables 3 and 4 present how ECP policies influence carbon reduction in the urban green
energy industry. In Table 3, we find after introducing the interaction terms in the DID model
that the estimated value β2 of the interaction term is significantly smaller than the estimated
value β1 of ECP policies for carbon intensity. Similar results manifest in the context of
carbon efficiency. These findings substantiate the implications of energy industrial structure
optimization, thus affirming Hypothesis 2a. ECP policies effectively reduce carbon intensity
and enhance carbon efficiency by stimulating energy industrial structure optimization. The
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results in Table 4 are consistent with those in Table 3. The incorporation of interaction terms
leads to a notable decrease in carbon intensity and a significant improvement in carbon
efficiency, thus providing empirical support for Hypothesis 2b. ECP policies can reduce
carbon intensity and enhance carbon efficiency by promoting technological progress.

Figure 1. Placebo test. (a) Policy A1 for carbon intensity; (b) Policy A1 for carbon efficiency. (c) Policy
A2 for carbon intensity; (d) Policy A2 for carbon efficiency. The red line in the figures represents the
kernel density of the coefficient, the gray boxes depict the histogram of the coefficient, and the dotted
line indicates the estimated value of each policy.

We also found that the changes resulting from the inclusion of energy industrial struc-
ture optimization variables exceeded those induced by technological progress variables.
This finding suggests that the effect of energy industrial structure optimization has a more
significant influence than green technological progress. As previously mentioned, whether
from the Pollution Haven Theory or the Environmental Regulation Theory perspective, the
optimization of industrial structure has a positive impact on carbon reduction objectives.
In contrast, technological progress exhibits a dual effect, both promoting carbon reduction
through “innovation compensation” and lowering carbon efficiency due to “compliance
costs”. Although the experiment didn’t conclusively affirm this proposition, it indirectly
lends credence to its plausibility.

4.4. Incentive-Constraint Mechanism

Local governments have historically played a significant role in fostering regional
economic and social progress. Within the context of the specific central–local interaction
mechanism, it is important to highlight the dual roles played by the central government. On
one hand, the central government employs constraint mechanisms, which exert a vertical
constraint effect on local governments. This serves as a vital means to mitigate potential
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moral hazards that may arise among local governments. On the other hand, the central
government strategically employs incentive mechanisms to motivate local governments,
acting as self-interested actors, to actively pursue elevated economic and political benefits.

Table 3. How ECP policies affect carbon emissions reductions by industrial structure optimization.

EI EFF EI EFF

A1 36.092 ** −1.253 **
(16.210) (0.521)

A1 × Ins −5.595 ** 0.203 ***
(2.372) (0.076)

A2 15.959 *** −0.387 **
(4.900) (0.158)

A2 × Ins −2.511 *** 0.057 **
(0.741) (0.024)

Constant −18.451 *** 1.248 *** −18.886 *** 1.272 ***
(4.424) (0.142) (4.420) (0.143)

Observations 2688 2688 2688 2688

Adjust R2 0.630 0.681 0.630 0.678

Control Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes
Notes: ** and *** mean significant at the 5%, and 1% level respectively.

Table 4. How ECP policies affect carbon emissions reductions by technological progress.

EI EFF EI EFF

A1 5.053 * −0.149 *
(2.620) (0.084)

A1 × Tech −0.998 *** 0.039 ***
(0.348) (0.011)

A2 2.480 *** −0.193 ***
(0.931) (0.030)

A2 × Tech −0.524 *** 0.031 ***
(0.148) (0.005)

Constant −18.506 *** 1.249 *** −18.603 *** 1.239 ***
(4.427) (0.142) (4.426) (0.142)

Observations 2678 2678 2678 2678

Adjust R2 0.631 0.681 0.631 0.682

Control Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes
Notes: * and *** mean significant at the 10% and 1% level respectively.

4.4.1. Incentive Mechanism

The effectiveness of “horizontal competition” stems from the capacity of local govern-
ments, operating within this framework, to optimize their interests through the exercise of
administrative authority. Consequently, for the highest-ranking executive officials within
local governments, the strength of incentives, reflecting the alignment of interests among
these officials, takes the form of a “promotion” system within the Chinese context. In this
system, when a local government official demonstrates outstanding abilities in the region
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under their jurisdiction, they frequently experience expedited career advancement. This
dynamic underscores one of the merits of the promotion tournament, as it facilitates the
rapid elevation of competent officials.

Table 5 reveals the examination results of the incentive mechanism. Regions that
have implemented ECP Policies, whether it is Policy A1 or Policy A2, exhibit significant
correlation between the level of official promotions and the effectiveness of the policy. This
phenomenon indicates the presence of an official promotion tournament within China’s
pilot policies. These ECP policies can promote carbon reduction through the mechanisms
related to official promotions. In the process of implementing ECP policies, when a region
has a higher intensity of official promotions, its local leaders will exert more effort to
enhance the policy effects of the ecological civilization pilot, thereby positioning themselves
more favorably in the official promotion tournament.

Table 5. Impact of policy incentive mechanism.

(1) (2) (3) (4)

EI EFF EI EFF

A1 × Int −3.974 *** 0.244 ***
(1.418) (0.046)

A2 × Int −0.982 * −0.004
(0.536) (0.017)

Constant −18.559 *** 1.255 *** −19.289 *** 1.284 ***
(4.425) (0.142) (4.427) (0.143)

Observations 2688 2688 2688 2688

Adjust R2 0.629 0.680 0.628 0.677

Control Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes
Notes: * and *** mean significant at the 10% and 1% level, respectively.

In this study, we also observed that, in comparison to areas which implemented
Policy A2, Policy A1 demonstrated a more pronounced promotion of carbon reduction
and enhancement of carbon efficiency. This observation indicates that Policy A1 as a
“green honor”, can effectively motivate local officials to elevate their ecological civilization
development efforts. Such endeavors result in decreased carbon emissions and improved
carbon efficiency. Contrarily, Policy A2, which offers long-term incentives, failed to produce
a similar effect on carbon efficiency through the official promotion tournament. These
findings provide empirical support for Hypothesis 3a, indicating that ECP policies with
short-term incentives are more effective in reducing carbon intensity and enhancing carbon
efficiency when employing a well-structured incentive mechanism.

4.4.2. Constraint Mechanism

Table 6 presents the examination results of the constraint mechanism. Policy A2,
which features an elimination system, is expected to have a stricter assessment compared to
Policy A1. However, in practical policy implementation, Policy A1 follows fixed assessment
criteria, while Policy A2 allows self-declared criteria. To facilitate their assessment approval,
local officials tend to opt for easily achievable indicators. This tendency is particularly
pronounced in terms of innovation. We find that both ECP policies have a significantly
negative impact on strategic innovation. The implementation of these policies effectively re-
duces the level of strategic innovation. Additionally, the impact of Policy A2 on substantive
innovation is notably lower than that of Policy A1. Policy A1 exhibits a significantly more
substantial influence in diminishing strategic innovation when contrasted with Policy A2.
This observation confirms Hypothesis 3b, suggesting that as the strength of ECP policies
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shifts from weak to strong, local governments tend to lean more towards strategic innova-
tion rather than substantive innovation. This indicates that the assessment mechanism set
in ECP policies makes local governments refrain from using strategic innovation to bypass
central governments. The increased constraint does indeed somewhat reduce the behavior
of local governments pursuing innovation quantity over innovation quality for political
gains. Importantly, the stringency of the assessment is not the sole factor; the reasonable
design of assessment criteria has the potential to more effectively promote substantive
innovation while diminishing strategic innovation.

Table 6. Impact of policy constraint mechanism.

Substantive
Innovation

Strategic
Innovation

Substantive
Innovation

Strategic
Innovation

A1 0.230 * −0.282 **
(0.131) (0.112)

A2 −0.149 *** −0.151 ***
(0.053) (0.045)

Constant 2.922 *** 1.003 * 2.922 *** 0.866
(0.707) (0.605) (0.706) (0.604)

Observations 2688 2688 2688 2688

Adjust R2 0.901 0.925 0.901 0.925

Control Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes
Notes: *, **, and *** mean significant at the 10%, 5%, and 1% level respectively.

Combined with the results in Tables 5 and 6, it is evident that the incentive–constraint
mechanism formulated by Policy A1 is more reasonable. Both its incentive and constraint
mechanisms contribute to the enhancement of regional ecological civilization construction,
thereby promoting the reduction of carbon emissions and the enhancement of carbon
efficiency within the region. In contrast, Policy A2 leads to a concurrent decline in both
strategic and substantial innovation levels. In regions where ECP policies are implemented
with heightened assessment intensity, the continuous rise in “compliance costs” results
in a crowding-out effect, leading to a decrease in the level of “substantial innovation”
among enterprises. Concurrently, due to the formidable constraint capacity of the central
government, regions that implement ECP policies witness a decrease in the level of “strate-
gic innovation” and it is evident that the incentive–constraint mechanism formulated by
Policy A1 is more reasonable. Both its incentive and constraint mechanisms contribute to
the enhancement of regional ecological civilization construction, thereby promoting the
reduction of carbon emissions and the enhancement of carbon efficiency within the region.
In contrast, Policy A2, characterized by higher assessment intensity, leads to a concurrent
decline in both strategic and substantial innovation levels. In regions where ECP policies
are implemented with heightened assessment intensity, the continuous rise in “compliance
costs” results in a crowding-out effect, leading to a decrease in the level of “substantial
innovation” among enterprises. Concurrently, due to the formidable constraint capacity
of the central government, regions that implement ECP policies witness a decrease in the
level of “strategic innovation”.

5. Conclusions

In this study, we have empirically verified Hypotheses 1 through 3, leading us to the
unequivocal conclusion that China’s current ECP policies are highly effective in reduc-
ing regional carbon emissions. This reduction is principally accomplished through the
optimization of industrial structures and the advancement of technological capabilities. Ad-
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ditionally, the Chinese incentive–constraint mechanism plays a pivotal role in this endeavor.
Short-term incentives and well-defined assessment standards serve as motivational levers,
prompting active participation among local officials in ecological civilization development.
These findings not only provide empirical support for the theoretical foundation of ECP
policies but also present practical strategies for establishing administrative frameworks
dedicated to fostering carbon emission reduction.

Furthermore, our study highlights the evolving role of the official promotion competi-
tion in China’s governance framework. It no longer solely prioritizes GDP growth but has
progressively encompassed ecological civilization goals. This transformation endows it
with substantial influence in incentivizing local government officials to contribute proac-
tively to environmental and ecological initiatives. Our research also uncovers a positive
correlation between the comprehensiveness of evaluation criteria within ECP policies and
their actual policy impacts. In contrast, permitting local governments to independently
formulate assessment standards, while considering local contexts to some extent, does not
inherently encourage substantial innovation at the grassroots level. This underscores the
critical importance of judicious central government oversight applying reasonable con-
straints on their subordinate counterparts, thereby fostering greater dedication to ecological
civilization construction and ultimately enhancing policy effectiveness.

Based on these findings, we offer the following three recommendations for the cen-
tral government:

Global Adoption of ECP Policies for Carbon Emission Reduction. It is recommended
that governments worldwide consider implementing policies similar to China’s ECP poli-
cies. These policies have demonstrated their effectiveness in reducing regional carbon
emissions. By adopting ECP-like initiatives, governments can advance their own car-
bon emission reduction efforts. Emulating successful models and adapting them to local
contexts can provide a structured framework for addressing carbon reduction and environ-
mental sustainability at the national level.

Enhanced Guidance for the Energy Industry and Promoting Technological Innovation.
To expedite carbon emission reduction and bolster ecological objectives, governments
should provide heightened guidance to the energy industry. Policymakers can encourage
technological innovation within the sector, emphasizing the development of environmen-
tally friendly and efficient technologies. This approach not only supports carbon reduction
but also fuels economic growth by fostering technological advancements that align with
ecological and sustainability goals.

Tailored Incentive and Constraint Strategies in ECP Policy Design. When crafting
ECP policies, policymakers should take into account the incentive and constraint effects
inherent in the policy design. It is essential to customize these strategies based on the
specific context and conditions of each country. This tailored approach ensures that the
incentive and constraint mechanisms are well-suited to the unique circumstances of each
nation. By doing so, governments can maximize the effectiveness of their ecological policies
and motivate active participation among stakeholders.

However, it is important to acknowledge the limitations of this research. We focused
primarily on China and did not consider the effects of environmental development policies
in other nations. In future research, we plan to integrate data from other countries to
broaden our understanding of the efficacy of environmental policies on a global scale.
Additionally, while we have conducted robustness tests to address endogeneity, we aim
to explore more rigorous methods for handling endogeneity and reducing potential esti-
mation biases in later stages. This is in line with the advancement of quantitative research
techniques and will contribute to a more comprehensive understanding of the subject.

In summary, our study contributes to the understanding of the impact of ECP policies
on carbon emissions in the urban green energy industry. The policy recommendations
presented here aim to further enhance environmental policies and carbon reduction efforts
in China, while recognizing the need for more extensive research and methodological
advancements in the field.
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Abstract: Low-carbon travel is an important part of low-carbon cities and low-carbon transportation,
and low-carbon transportation is an inevitable choice to slow down the growth of carbon emissions
in China. All countries in the world are actively promoting new energy vehicles and attach great
importance to the application of the new energy industry in urban transportation. Commuting
is an important part of urban life, and the choice of travel behavior has an important impact on
traffic and environmental protection. Taking the Xi’an metropolitan area as an example, this paper
expounds on the integrated development path of the industrial chain of new energy + travel in the
metropolitan area and clarifies the energy transformation model of the integrated development of low-
carbon transportation and energy. From the perspective of green and low-carbon, 1000 commuters
were interviewed using a questionnaire survey, and the cumulative prospect model was used to
verify the internal mechanism affecting commuters in metropolitan areas to choose new energy
commuting. The results of the study show that new energy transportation modes play an important
role in the low-carbon economy, and under different scenarios and assumptions, there are significant
differences in the cumulative prospect values of the subway, new energy buses and fuel private cars,
and corresponding optimization measures are proposed to increase the proportion of new energy
commuting trips. The results will help further promote the development of a low-carbon economy
and energy integration in the field of transportation and provide a reference for the sustainable
development of public transportation.

Keywords: low-carbon; green travel; metropolitan area; new energy; commuting

1. Introduction

With the continuous acceleration of economic development and urbanization, the
proportion of transportation in national energy consumption and carbon emissions is rising,
and it will face increasingly severe resource and environmental constraints. Sustainable
development is one of the most pressing challenges facing mankind in the 21st century,
among which energy consumption and climate warming have become the focus of global
attention and research hotpot, and actively responding to climate change and promoting
green and low-carbon development is a key link [1]. A metropolitan area is a new urban
regional form with symbolic significance in the process of modern social and economic
development and is an inevitable trend of urbanization development in countries around
the world. It has become the core area of China’s economic development and carbon
dioxide emissions. The transportation system has always been one of the main ways to
achieve trans-regional large-scale transportation of energy, which profoundly affects the
layout of China’s energy production. In addition, the accelerated expansion of the transport
system and the trend towards re-electrification further strengthen the link between the
transport system and the energy system, becoming a key factor affecting the efficiency of
the energy system operation [2].
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On the one hand, the whole energy industry chain is facing a profound impact.
According to the data, the terminal energy consumption of China’s transportation sector in
2022 is 820 million tons of standard coal. The total carbon emissions from the transportation
industry in Shaanxi Province from 2010 to 2022 were 3.089 million tons. The main types
of energy consumption in Shaanxi are gasoline and diesel, which are the main sources of
carbon emissions from transportation. The intensity of transportation plays an important
role in suppressing the growth of carbon emissions. Specifically, the contribution value of
the transportation intensity factor is negative at 2.1724 million tons, with a contribution
rate of 0.9601 [3]. The opportunities and challenges brought by “carbon peak” and “carbon
neutrality” to the transportation field not only lie in the transportation itself but also
penetrate into different business links in the whole industry chain, including not only
transportation equipment manufacturing, aviation, railway, road and shipping and other
transportation segments, but also sales, transportation, and other service industries [4]. The
industrial chain not only needs to pay attention to the proportion of renewable energy, such
as non-fossil energy, available in the whole country but also extends from the structure of
the energy supply source to the diversity of subsequent energy consumption, which will be
affected by low-carbon development ideas. Specifically, the dimensions of the impact of a
low-carbon economy on related industries in the field of transportation include differences
in the means of transport itself and differences in modes of transport [5]. The former
emphasizes the use of a variety of means of transport with a variety of energy structures,
such as electric vehicles, diesel vehicles, gasoline vehicles, hydrogen vehicles, natural gas
vehicles, etc., while the latter involves the choice of different modes of transport such as
ports, railways, highways, and aviation. Therefore, in the field of transportation, to achieve
the strategic task goal of “double carbon” as soon as possible, it is necessary to seek feasible
solutions from multiple dimensions and implement them around the whole industry chain
and the whole process to achieve good results.

On the other hand, transportation commuting, as a kind of generative demand, is the
periodic and regular travel behavior of people to and from the workplace and residence.
China has entered the metropolitan era of urbanization and quality improvement. The
renewal and upgrading of regional spatial structure has also brought new pressure to
commuting, with the rapid growth of car ownership and the continuous growth of carbon
emissions in the transportation sector [6]. In recent years, the rapid economic and social
development of our country has vigorously promoted the development process of urban-
ization and motorization, and the rapid growth of motor vehicle ownership has become an
inevitable trend of social development. The heavy use of motor vehicles is one of the main
reasons for the continuous increase in carbon dioxide emissions [7]. At the same time, the
pursuit of beautiful and convenient travel demand by urban residents makes the number
of motor vehicles continue to increase, the saturation of urban roads is getting larger and
larger, and overall traffic congestion has become a common problem in major cities. The
traffic carrying capacity of the inner core circle of the metropolitan area obviously exceeds
the load, and the efficiency of traffic management is low, which eventually leads to the
spread of traffic congestion in a larger area. It has intensified comprehensive problems such
as urban environmental pollution.

Based on this, at present, the academic community focuses more on the research vision
of the personal will of new energy travel and the development and promotion of new
energy. Less attention is paid to the optimization of new energy in commuting. Commuting
is an important part of urban life, and the choice of travel behavior has an important impact
on traffic and environmental protection. Therefore, this paper takes the Xi’an metropolitan
area as an example, summarizes the integration mechanism of the new energy + travel
industry chain in the metropolitan area, and clarifies the energy transformation model
of low-carbon transportation and energy integration development. From the perspective
of green and low carbon, the cumulative prospect model was used to verify the internal
mechanism affecting commuters in metropolitan areas to choose new energy commuting.
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It is expected that the research results will contribute to expanding the proportion of new
energy travel in metropolitan areas in the future.

2. Literature Review

The concept of low-carbon was clearly put forward after 2000; however, the idea of low-
carbon travel is not a new concept; it has experienced a long-term evolution, development,
and heat process. The transition from private to public transport systems is analyzed,
and it is suggested that public transport systems can reduce energy demand, carbon
emissions, and air pollutants in local towns. Dällenbach [8] uses cost–benefit analysis to
find that a particularly effective strategy to minimize CO2 emissions from transportation
is to replace flights with rail transit, with the same train emitting about 80–90% less
CO2 than an airplane. Fletcher [9] validated that expected travel patterns also have the
potential to lock in high-carbon transport and undermine progress by collecting data
using an international online survey. Achieving a low-carbon mobility transition must
be supported by coordinated efforts by governments and individuals. Shie [10] adopted
Porter’s diamond model theory to demonstrate that green commitment has a positive
impact on low-carbon travel motivation and intention while it has a negative impact on
low-carbon travel constraints. Liao [11] used an extended TPB model to investigate the
determinants of urban residents’ low-carbon travel intentions and found that attitudes,
subjective norms, and perceived behavioral control have a positive impact on low-carbon
travel intentions. Moriarty [12] proposed to reduce urban vehicle travel by using MSD data
to analyze four methods: changing urban land use, reducing the convenience of private car
travel, introducing a carbon tax, and using information technology as a travel substitute.

Some scholars’ policy studies on traffic governance in the context of metropolitan
areas mainly focus on the policy formulation of traffic planning and the development of
public transportation, etc., and pay less attention to guiding the change of travel behavior
from the level of individual commuters, so as to improve the travel structure and realize
the optimization and upgrading of low-carbon traffic environment. P Næss [13], taking
Norway as an example, found that reducing travel distances, promoting better transport
provision, and imposing tolls on urban roads could effectively save land and reduce car
travel. Abdul [14] believes that transforming traditional gasoline vehicles into new energy
vehicles is an important measure to achieve low-carbon urban development goals via energy
conservation and emission reduction. Electric vehicles, due to their advantages in energy
conservation and carbon reduction, will play an important role in this transformation.
Broin [15] limiting infrastructure deployment as a complementary policy to carbon pricing
reduces the cost of mitigation.

Based on this, this paper improves the cumulative prospect theory model to explore
the internal selection mechanism and application scenarios of new energy commuting
travel mode selection in metropolitan areas and provides targeted countermeasures and
suggestions to guide commuters to choose low-carbon travel and promote the low-carbon
development of transportation organizations in metropolitan areas.

3. Integrated Development of Industrial Chain of New Energy and travel in
Metropolitan Area

3.1. Relationship between Transportation Energy Consumption and Carbon Emission in
Metropolitan Area

The metropolitan traffic environment system is a complex system, and the factors of
the system affect and interact with each other. Dual city life, that is, the separation of the
place of residence and work, has become a common phenomenon, and traffic congestion
and traffic jams in the morning and evening peak have become the norm, which occupies a
lot of commuters’ living and working time and increases economic costs, which greatly
affects the quality of life. The existing travel facilities have been unable to meet people’s
travel needs [16]. Therefore, the travel structure of residents has changed accordingly. The
explosive growth of family cars has not only brought serious congestion of trunk roads
and urban traffic but also greatly increased the consumption of oil and other harmful
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gases and greenhouse gas emissions [17]. The resulting energy shortage, environmental
pollution, and deterioration of urban road conditions will restrict economic development
and prompt the government to make policy adjustments, control private car travel, raise
emission standards, and vigorously develop public transportation, thus affecting people’s
choice of travel modes, which will, in turn, affect energy consumption, pollution emission,
and road construction, forming a complex feedback system [18]. The relationship between
transportation energy consumption and carbon emissions in metropolitan areas is shown
in Figure 1.

Figure 1. The relationship between transportation energy consumption and carbon emission in
metropolitan areas.

3.2. Energy Integration Development of Low-Carbon Transportation

Under the background of energy Internet, the integrated energy and transportation
system takes multi-network complementary as the core concept fully integrates the trans-
portation system and deepens its development based on a multi-energy network. To realize
the coordinated operation and development of energy systems such as electricity, natural
gas, and heat with the railway, wheel transport, electric vehicles, urban electrified rail
transit, large-scale hubs, and other transportation systems [19]. The transportation system
consumes energy during transportation, so energy consumption is an important attribute
attached to the basic attribute. From the energy supply side, re-electrification refers to
“electricity as the center”, promoting the transformation of the source of electricity from
coal power generation to renewable energy power generation to solve the pollution prob-
lem in the process of energy production. By optimizing the power supply structure, we
should vigorously implement clean energy substitution and electric energy substitution.
From the perspective of energy consumption, re-electrification refers to “taking electricity
as a priority”, increasing the proportion of electric energy in terminal energy consump-
tion, promoting efficient and clean energy utilization, and aiming to solve the problems
of pollution and inefficiency in the process of energy consumption [20]. At present, the
volume of “replacing oil with electricity” in transportation energy use is still small, but it is
developing rapidly. In the future, through the development of electrified transportation,
it can achieve “electricity instead of oil”, reduce the proportion of oil in the structure of
energy consumption, and slow down the growth of oil demand. At the same time, as
a green energy storage carrier in the use of new energy vehicles, it is not only the main
body of electricity consumption but also the main body of power supply [21]. New energy
vehicles can not only reduce exhaust emissions, but intelligent shared electric vehicles can
also solve the problem of travel congestion and inefficiency [22]. The energy conversion
diagram for the development of low-carbon transport is shown in Figure 2.
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Figure 2. Energy conversion for low-carbon transport development.

3.3. Calculation Model of Average Carbon Emission of Public Trams in Metropolitan Area

In the selection of the transportation carbon emission accounting model, carbon emis-
sion is calculated according to different types of vehicle ownership, mileage, combustion
per unit mileage, and combustion carbon emission coefficient [23]. The formula is shown
as follows:

E = ∑m,n Distancem,n × Consumptionm,n × Densitym × Calori f icm × Emission coe f f icienm,n (1)

where E represents the total carbon emission of metropolitan traffic in a certain period
of time; m represents the type of fuel consumed by transportation in the metropolitan
area, including diesel, gasoline, natural gas, etc.; n represents the type of vehicle used
for transportation in the metropolitan area. Distancem,n is the distance traveled by the
n-type car using m fuel; Consumptionm,n is the unit energy consumption of n vehicle using
class m fuel; Densitym is the fuel density of m fuel; Calori f icm is the net calorific value of
class m fuel; Emission coe f f icienm,n is the carbon emission factor of m fuel. According to
this calculation, the average carbon emissions of public trams in metropolitan areas with
different fuel types (Table 1) and the per capita energy consumption and carbon emission
factors of individual travel modes (Table 2) are obtained.

Table 1. Average carbon emissions of public trams in metropolitan areas with different fuel types [24].

Vehicle Fuel Type
Direct Carbon Emissions

(Tons)
Indirect Carbon Emissions

(Tons)

Diesel oil 25 29
Natural gas 32 40

Hybrid power 22 27
Gasoline 27 33

Pure electric 0 24

Table 2. Per capita energy consumption and carbon emission factors of each mode of transportation [25].

Item Walk Bicycle Bus Subway Taxi Car

Per capita energy
consumption (kg) / / 0.47 0.12 9.48 8.52

Carbon emission factor (gCO2/kJ) / / 19.8 7.5 140.2 116.9
Abbreviations: gCO2/kJ-Grams of carbon dioxide per kilojoule.
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Low-carbon transportation is a green transportation development mode characterized
by high energy efficiency, low energy consumption, low pollution, low emission, or even
zero-emission [26]. In essence, it is an energy revolution, shifting from fossil energy to green
electricity as far as possible. Therefore, the core of developing low-carbon transportation is
to improve energy efficiency, optimize energy use structure, and improve service level. To
achieve low-carbon and green development of the whole cycle industrial chain in the field
of transportation.

4. Model of New Energy Travel Mode Selection in Metropolitan Area under
Low-Carbon Orientation

Public transportation plays a significant role in reducing carbon emissions. Public
transportation has the advantages of low energy consumption, low emission, and high
transportation efficiency, and is a green transportation mode [27]. The construction of
an urban, comprehensive transportation system dominated by public transportation has
become the consensus of all countries in the world. Improving the sharing rate of public
transportation and reducing the use of private transportation will significantly promote the
reduction in carbon emissions and the protection of the metropolitan environment.

Commuting travel within the metropolitan area is different from regular inter-city
travel and family visits. In the context of increasing travel distance and travel time in
metropolitan areas, as the choice of each traveler is an individual behavior, commuters
have the problem of choosing different travel tools during rush hour.

Subway, new energy buses, and fuel private cars are the three most common ways for
commuters to use. Subway mainly refers to the rail transit built in the city with fast, large
volume and electric traction. Compared with the ground bus, the subway has stronger
transportation capacity and has the unique advantages of punctuality, fast speed, and
saving the land use area of the road surface. Bus mainly refers to the conventional ground
bus, with the characteristics of large passenger volume, low fare, low per capita energy
consumption, and economic and environmental protection travel mode. The travel time of
new energy buses and fuel private cars is uncertain to some extent. However, according to
the transportation policy in China, new energy buses can use bus lanes, which will increase
the driving speed to a certain extent. Additionally, petrol private cars are not allowed.
Therefore, starting from the cumulative prospect theory and expected utility theory, this part
fully considers the simulation scenario of commuters’ travel behavior, assumes departure
time, congestion probability, and possible commuting time consumption, builds a travel
mode selection model, calculates the cumulative prospect value and perceived travel cost,
and explores the direction of guiding travel behavior by comparing the difference of optimal
results under different theoretical frameworks [28].

4.1. Theoretical Model of Cumulative Prospect Theory

Prospect theory (PT) introduces psychology into behavioral science for analysis and is
developed from expected value theory and expected utility theory by psychology professors
Kahneman and Tversky [29]. When observing the behavior of decision-makers in travel
behavior, the important feature of prospect theory is that it mainly focuses on the result that
travelers may face, that is, the psychological feeling when they gain or lose. According to
the prospect theory, under different risk prediction conditions, when people face gains and
losses, they will have different feelings based on different reference conditions. Additionally,
believes that human behavior tendencies can be predicted [30].

The theory has been widely used to study attitudes toward gain and loss in decision-
making. The main content of the theory is as follows: In the premise of failing to make
accurate risk judgment, individual behavior decision is determined using the difference
between the result and the prior assumption. The decision is composed of the value
function and decision power function. It assumes that the uncertain decision process can be
divided into two stages: editing and evaluation. Decision makers divide value into gains
and losses based on reference points. Changes in gains and losses will change people’s
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subjective feelings about value and thus affect and change people’s preferences. In the
evaluation stage, the utility function in the expected utility theory is replaced by the value
function, the probability of the expected utility function is replaced by the decision weight
of the weight function, and the decision is made based on the change of value rather than
the current value.

4.2. Commuter Travel Mode Selection Model

According to the idea of cumulative prospect theory, when commuters are faced with
a commuting mode choice, they will make decisions according to the following steps:
(1) When there is uncertainty in the travel scene and environment, the perceived cost of
commuters for each commuting mode is calculated; (2) Aggregate the perceived cost of
each commuting mode; (3) Based on previous travel experience, set a travel reference
point, which should be as consistent as possible with daily life; (4) On the premise of the
above reasonable travel reference points, the perceived travel cost of each travel mode
is reasonably judged; (5) To find out whether a travel mode is a benefit or a loss to an
individual, and calculate its value; (6) Calculate the cumulative prospect value of each
travel mode, that is, accumulate the prospect value and conduct subjective evaluation;
(7) After judging and comparing the commuting modes between residence and work place,
choose the mode with the maximum cumulative prospect value to commute, and finally
complete the decision-making process.

4.2.1. Edit Stage
1© How to select the decision reference point has always been the core parameter in

prospect theory, which measures the psychological expectations of decision-makers [31].
In the process of travel decision-making, commuters will judge the gains and losses of
behavior with certain measurement standards and evaluate the “loss” and “profit” feelings
of gains and losses, respectively. Generally, in order to arrive at the destination on time,
travelers need to reserve travel time before traveling. The reserved travel time is determined
by the travel time between ODs, travel cost, road network status (number of alternative
routes), etc., which can be used as a reference point for path selection decisions. Commuters
use this reference point to judge whether they arrive early or late, as well as gain and loss.

In this study, commuting time and cost are selected as the reference points for com-
muters to make decisions. Generally, travelers will determine the attributes of alternative
routes based on their own travel purposes and travel needs, on the basis of the effect
judgment of the last trip, combined with experience summary, assuming a decision-making
reference point and integrating the commuting time and cost. The mathematical formula
can be expressed as Equation (1), MK is the attribute of K alternative path, N is the set of
all paths between OD, and NK is the set of road sections included in path K, εα is the road
flow, Mα(·) is time function, βα(·) is the cost function, and P1P2 is individual preferences,
P1 refers to the coordination of commuters’ travel time and cost based on their choice of
path; P2 is a time value parameter, which refers to the degree to which commuters are
willing to invest time or money for this travel:

MK = ∑α∈NK
Mα(εα) = ∑α∈NK

[P1P2Mα(εα) + (1 − P1)βα(εα)], k ∈ N (2)

Compared with the travel time, if the commuter chooses a certain mode of transporta-
tion, the travel cost will be determined accordingly. However, different commuters have
different conditions and needs. Therefore, different travel cost reference points will be
assumed to select corresponding transportation modes. This paper mainly analyzes the
travel choice of public transport and fuel private cars. Based on this, this paper proposes the
following hypothesis: office workers have three travel modes: new energy buses, subway,
and fueled private cars.

CPV = ∑n
i=1 π(pi)·v(Δxi) (3)
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Among them, CPV represents the foreground value, π(pi) is the probability weight
function of the ith state occurrence, and v(Δxi) is the value function.

2© The basic feature of the value function is that a normal person with limited ra-
tionality has a risk-averse attitude towards gains or gains and a risk-preference attitude
towards losses:

v[E(X)] > E[v(X)], E[v(−X)] > v[E(X)], X > 0 (4)

The value function describes the psychological utility of loss value and returns value
to decision-makers. The value function is described as an S-shaped curve specifically: it is a
concave function in the income field and a convex function in the loss field; that is, with the
increase in loss value and income value, the marginal utility decreases. This phenomenon is
summarized as “decreasing sensitivity”. The inflection point of the S-shaped curve, that is,
the reference point of decision-making, means that what plays a role in the decision of the
decision-maker is not the absolute value of losses and gains but the relative change value
relative to the reference point. This feature is summarized as “reference point dependence”.
The value function is steeper in the loss field than in the income field, which shows that the
psychological utility of equal loss is greater than that of income; that is, the decision-maker
is more sensitive to loss, which is defined as “loss aversion” [32]. The formula of the value
function is shown in Formula (5).

v(Δxi) =

{
Δxα

i , Δxi ≥ 0
−λ(−Δxi)

β, Δxi < 0
(5)

where parameter λ It means that the loss has more influence on the decision-maker than
the gain, λ > 1. Parameters α Additionally, parameters β. It represents the slope of the value
curve when facing gains and losses, also known as the risk sensitivity coefficient (0 < α ≤ 1,
0 < β ≤ 1). The recommended parameter values proposed by Kahneman and Tversky are
α = β = 0.88, λ = 2.25. The specific parameter values are shown in Table 3 [32,33]. X0 is the
decision reference point, Δx is the value of x deviating from the reference point.

Table 3. The value function with the diagram.

Item Value

α 0.88
β 0.88
λ 2.25
γ 0.61
σ 0.69

3© The weight function describes the decision-maker’s subjective perception of proba-
bility, which is a probability monotonic increasing function. The formula expression of the
decision weight function:

H+(pi) =
pγ

i[
pγ

i + (1 − pi)
γ] 1

γ

(6)

H−(pi) =
pσ

i[
pσ

i + (1 − pi)
σ] 1

σ

(7)

4.2.2. Evaluation Stage

The cumulative prospect value is obtained by calculating the cumulative probability
of a certain travel mode, taking into account its value function, and the sum of the two
products is the cumulative prospect value of the travel mode. The cumulative prospect
value of a certain travel mode is as follows:

CPV = CPV+ + CPV− (8)
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π+(pi) = H(pi + · · ·+ pn)− H(pi+1 + · · ·+ pn); 0 ≤ i ≤ n − 1 (9)

π−(pi) = H(p−mi + · · ·+ pi)− H(p−m + · · ·+ pi−1); 1 − m ≤ i ≤ 0 (10)

4.3. Generalized Perceived Travel Cost Function

Assuming that all commuters in the metropolitan area are bounded rational, the cost
experienced in the whole travel process is composed of travel time cost and delay cost
caused by early arrival and late arrival. The definition of commuter travel cost function is:

Total Costμ = CEarly + CLate + CTrip + Mμ (11)

Suppose TDeparture is the departure time of office workers and TArrival is the arrival
time of office workers. TArrival = TDeparture + TTransit, TWork is the working hour specified
by the work unit, EArrivelTime = TWork − TArrival is the time when the office worker arrives at
the work unit early, LArrivalTime = TArrival − TWork is the time when the office worker arrives
at the work unit late. CTrip is the travel time cost of office workers, CTrip = φ × TActualTransit,
φ refers to the value of commuting travel time for different travel modes, and TActualTransit
refers to the actual duration of commuting for office workers. δEarly indicates the unit time
value of early arrival of office workers, δLate indicates the unit time value of late arrival of
office workers. Mμ is the transportation cost to be paid for choosing different transportation
modes. 1 − ρ is the additional cost factor of late arrival, ρ is the 0–1 variable, which satisfies
the following relationship:

ρ =

{
0, LArrivalTime ≥ 0
1, EArrivalTime > 0

(12)

Based on this, the generalized travel cost function can be transformed into:

Total Costμ = CEarly + CLate + CTrip + Mμ = ρ × δEarly(TWork − TArrival) + (1 − ρ)δLate(TWork − TArrival)+

φTActualTransit + Mμ
(13)

When commuters feel profitable:

ΔTotal Costμ = Total Costμ − Total Costμ0 > 0 (14)

When commuters feel the loss:

ΔTotal Costμ = Total Costμ − Total Costμ0 ≤ 0 (15)

Based on this, under the cumulative prospect theory, it is assumed that the budgeted
travel cost at the reference point of office workers’ travel is Total Costμ0.

4.4. Spatial Structure of Xi’an Metropolitan Area and Data Sources
Spatial Structure of Xi’an Metropolitan Area

On 21 March 2022, the National Development and Reform Commission of China
approved the Development Plan of the metropolitan area, which is the fifth metropolitan
area plan after the planning of Nanjing, Fuzhou, Chengdu, and Changchun metropolitan
area and the only one in northwest China at present. Xi’an metropolitan area is located at
the intersection of the horizontal axis of the land bridge passage and the vertical axis of
the Bao-kun Passage in China’s “two horizontal and three vertical” urbanization strategic
pattern. It is the core area of the urban agglomeration of Guanzhong Plain, one of the regions
with the best development conditions and the strongest economic and population carrying
capacity in the western region, and plays an important role in the overall construction of a
modern socialist country and the construction of a new development pattern. The spatial
structure evolution diagram of the Xi’an metropolitan area is shown in Figure 3. Xi’an
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metropolitan area is the latest emerging metropolitan area in China, so it is innovative to
study the characteristics and influencing factors of new energy commuting behavior in
this area.

Figure 3. Schematic Diagram of Spatial Expansion of Xi’an metropolitan area.

4.5. Data Sources

In order to comprehensively present the commuting process of commuters in urban
areas and link the travel activities of office workers from home to work, this article aims to
study the travel behavior of office workers in the context of urban areas. Considering the
impact of the epidemic and the limitations of the research scope, an online survey method
was adopted for the questionnaire survey. Due to the potential bias or limitations of online
surveys, we have adopted two methods in our survey. We have chosen two methods
for distributing the online questionnaire. One way is for us to choose locations such as
subways and bus stops and directly invite respondents to enter the questionnaire link
on-site to fill out the questionnaire. Another method is to select six enterprises distributed
in different regions within the Xi’an metropolitan area and entrust their human resources
management department to distribute online questionnaires within the enterprises for
investigation. The survey was conducted from March 2022 to September 2022, covering the
Xi’an metropolitan area. The specific questionnaire design mainly includes understanding
the basic information of the respondents, their family economic status, their choice of
transportation mode during commuting, as well as the layout of public transportation
facilities and personal travel preferences between work and residence. In this survey, the
specific investigation content is as follows:

1© A survey of basic information about commuter families. This mainly includes the
area and street where the household resides, the number of households, the total annual
income of the household, and whether the household owns a private car.

2© Personal situation survey of commuters. It mainly includes statistics on gender,
age, occupation, marital status, registered residence, nature of housing, whether to have a
driver’s license and length of service.

3© Investigation of personal travel behavior information. This mainly includes the
work address of office workers, departure time for commuting, transportation used for
commuting, one-way commuting distance and time, one-way commuting fees, and the
number of one-way commuting transfers. In actual investigation work, based on the
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complete process of commuting for a day, the surveyed personnel are required to fill out the
entire process from home to work, including the specific location of the stopover location
and the means of transportation to be transferred.

5. Result

Then, according to the characteristics of each means of transportation, the commuting
time and different possible probabilities brought by the three modes are assumed to
compare the selectivity of new energy buses, subways, and fueled private cars in different
scenarios.

Mode 1—New energy bus: there is a 70% probability of congestion, travel time is
60 min, there is a 30% probability of no congestion, travel time is 40 min, and the ticket
price is 2 yuan;

Mode 2—Subway: The total travel time is fixed at 30 min, and the fare is 4 yuan;
Mode 3—Fuel private cars: the probability of congestion is 60%, the travel time is

45 min, there is a 40% probability of no congestion, the travel time is 35 min, and the cost is
20 yuan;

By setting a scenario, considering the expected possibility of commuters’ work time
and departure time, the cumulative prospect value of the above method is calculated
according to the constraint of the reserved time:

Scenario 1: The commuter’s work time is 8:00, departure time is 7:20, and needs to
arrive at work within 40 min;

Scenario 2: The commuter’s work time is 8:00, departure time is 7:10, and needs to
arrive at work within 50 min;

Scenario 3: Commuters start work at 8:00, depart at 7:00, and need to arrive at work
within 60 min.

By setting the scenario, considering the expected possibility of the working time and de-
parture time of office workers, according to the constraints of the reserved time, calculate the
cumulative prospect value of the above methods, randomly distribute 1000 questionnaires,
and recover 860 valid questionnaires, with an effective recovery rate of 86%. According
to the minimum living security standard of 740 yuan per person per month for urban
residents in Xi’an from 1 October 2020 and the maximum size of conventional families as
the standard, families with annual income less than 50,000 yuan are defined as low-income
families and other families are classified as non-low-income families.

According to the survey data, 518 men and 342 women commuted among 860 people,
accounting for 67.21% and 39.77% of the total, respectively. In terms of age distribution,
there are 65 people under the age of 20, 269 people aged 20–29, 314 people aged 20–39,
177 people aged 40–49, and 35 people aged 50–59. In terms of occupational attributes,
civil servants account for 14.65%; public institutions staff account for 19.42%; state-owned
enterprises 25.93%; private enterprise staff 29.77%; and foreign enterprises 10.23%. From
the distribution of seniority, new employees within 2 years accounted for 6.63%, those
within 2–5 years accounted for 21.87%, those within 5–10 years accounted for 30.81%, those
between 10–20 years accounted for 32.68%, and those over 20 years accounted for 8.02%.
The descriptive statistics of the personal survey results of commuters are shown in Table 4.

Tables 5–10 show the perceived costs and cumulative prospect values of traveler
decision-making under three different scenarios calculated through the model.

Based on specific data, the following conclusions can be drawn: (1) From Table 5, it
is found that under the expected utility theory, commuters believe that the subway is the
optimal mode of transportation; (2) From Table 6, it can be seen that commuters believe that
new energy bus has the highest returns. (3) From Table 7, it is found that under the expected
utility theory, commuters consider the subway to be the optimal mode of transportation
(4) From Table 8, it can be seen that commuters believe that the subway has the highest
revenue. (5) From Table 9, it is found that under the expected utility theory, commuters
consider the subway to be the optimal mode of transportation. (6) From Table 10, it can be
seen that commuters believe that new energy buses have the highest returns.
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Table 4. Descriptive Statistics of Personal Survey Results for Commuters.

Item Description Number (N = 860) Percentage (%)

Age

Under 20 year 65 7.90
20–29 years old 269 31.28
30–39 years old 314 36.51
40–49 years old 177 20.58
50–59 years old 35 4.07

Gender
Male 518 67.21

Female 342 39.77

Occupation

Civil servant 126 14.65
Public institutions staff 167 19.42

Staff of state-owned enterprise 223 25.93
Private enterprise staff 256 29.77

Staff of foreign enterprise 88 10.23

Working experience

0–2 years 57 6.63
2–5 years 188 21.87

5–10 years 265 30.81
10–20 years 281 32.68
20 years–∞ 69 8.02

Does the family own a car Yes 475 55.23
No 385 44.77

Annual household income

0–50,000 yuan 70 8.13
50,000–100,000 yuan 158 18.37

100,000–150,000 yuan 193 22.44
150,000–200,000 yuan 200 23.25
200,000–300,000 yuan 138 16.05

300,000 yuan–∞ 101 11.74

Table 5. Expected Travel Costs for Different Transportation Modes under Scenario 1.

Fuel Private Cars Subway New Energy Bus

Expected travel time 60 min, 70% 30 min 45 min, 60%
40 min, 30% 35 min, 40%

Perceived travel costs
92.7, 70% 56.4 114.23, 60%
31.6, 30% 53.756, 40%

Expected value of travel cost 63.51 56.4 87.311

Table 6. The cumulative prospect values of different modes of transportation in Scenario 1.

Fuel Private Cars Subway New Energy Bus

Travel cost reference point 24.08 25.55 62.3

Travel cost function value
−84.23, 70% −40.72

−66.34, 60%
0, 30% 0.85, 40%

CPV −43.32 −47.43 −35.28

Table 7. Expected travel costs for different modes of transportation in Scenario 2.

Fuel Private Cars Subway New Energy Bus

Expected travel time 60 min, 70% 30 min 45 min, 60%
40 min, 30% 35 min, 40%

Perceived travel costs
70.63, 70% 27.5 88.316, 60%
53.6, 30% 70.481, 40%

Expected value of travel cost 67.4 27.5 72.606
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Table 8. The cumulative prospect values of different modes of transportation in Scenario 2.

Fuel Private Cars Subway New Energy Bus

Travel cost reference point 25.3 32.25 81.4

Travel cost function value
−51.46, 70% −1.66

−9.16, 60%
−22.37, 30% 1.47, 40%

CPV −24.21 −21.34 −6.2

Table 9. Expected travel costs for different modes of transportation in Scenario 3.

Fuel Private Cars Subway New Energy Bus

Expected travel time 60 min, 70% 30 min 45 min, 60%
40 min, 30% 35 min, 40%

Perceived travel costs
62.4, 70% 51.23 83.27, 60%

55.42, 30% 77.31, 40%
Expected value of travel cost 56.03 53.141 79.022

Table 10. The cumulative prospect values of different modes of transportation in Scenario 3.

Fuel Private Cars Subway New Energy Bus

Travel cost reference point 47.3 37.21 76.54

Travel cost function value
−30.4, 70% −12.4

0.636, 60%
−26.06, 30% 0.709, 40%

CPV −28.15 −13.17 0.68

By integrating the results of the above three scenarios, it can be concluded that under
different travel constraints, commuters use travel costs as a reference point, and the cumula-
tive prospect values obtained are shown in Figure 4. The results of the above analysis show
that (1) commuters will be affected by reference points in the process of travel behavior
selection, which is consistent with the theoretical content of cumulative prospect theory.
This is consistent with the results of the study, mainly because commuters may conduct
empirical evaluations before choosing their mode of transportation, which proves the
importance of further understanding commuters’ judgments of the travel environment
before traveling [34]. (2) In the simulation, it is found that it is effective to take gener-
alized travel costs as the reference point, and commuters will make rational judgments
according to the actual situation. Under the premise of sufficient reservation time and
ensuring that there will be no late for work, commuters will prefer to choose the more
secure means of transportation with low congestion probability when faced with benefits.
This is different from previous studies, which have suggested that commuters are irrational
when choosing transportation, and their personal psychological preferences are difficult
to change [35]. (3) If commuters reserve a short time and find that they are likely to be
late through experience judgment, they will turn into adventurers and form a “gambler’s
psychology” when faced with losses and are more likely to choose transportation with
greater flexibility and a probability of arriving at work in a short time, such as fuel private
cars [36]. (4) Different scenarios and assumptions will cause commuters to make different
travel decisions. Commuters tend to evaluate different choices through the judgment
criteria of utility maximization, and there are differences between traveler choice results
and expectation theory.

In summary, it can be found that under the low-carbon orientation, commuters in
the Xi’an metropolitan area generally believe that the subway has obvious advantages
under different assumptions, which is in line with the current development direction of
optimizing transportation energy in the metropolitan area; In addition, in the scenario, due
to the support of national energy policies in China, new energy buses have the qualification
to enjoy dedicated bus lanes in infrastructure construction. Therefore, they can avoid road
congestion during commuting, which is not available in gasoline private cars. Meanwhile,
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in scenario three, new energy buses and subways, as new energy public transportation
modes, have significant benefits.
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Figure 4. The Cumulative Foreground Model Results in Three Scenarios.

6. Conclusions and Suggestion

This article takes the Xi’an metropolitan area as an example to elaborate on the in-
tegrated development path of the new energy + transportation industry chain in the
metropolitan area and clarifies the energy transformation model for the integrated develop-
ment of low-carbon transportation energy. From the perspective of green and low-carbon,
the cumulative prospect model was used to verify the internal mechanism that affects com-
muters in metropolitan areas to choose new energy commuting modes. The research results
indicate that new energy transportation modes play an important role in a low-carbon
economy, and there are significant differences in the cumulative prospect values of subways,
new energy buses, and gasoline private cars under different scenarios and assumptions.

Therefore, we believe that (1) low-carbon-oriented commuting in urban areas is easily
influenced by the characteristics of transportation modes. Subways and new energy buses
have obvious advantages in energy optimization for commuting, which has become one
of the directions for the future development of low-carbon transportation in urban areas.
(2) Commuters face a significant threat to the proportion of private fuel cars traveling due to
the significant advantages of new energy public transportation in terms of commuting time
and cost when facing the choice of transportation tools. In order to expand the proportion
of public transportation, such as new energy buses and subways in daily commuting, we
need to improve the construction of public transportation infrastructure and increase the
burden of using fuel-powered private cars. (3) Accelerating the proportion of new energy
in public transportation is the key to reducing carbon emissions from public transportation.
New energy public transportation has lower energy consumption and emission levels,
which helps promote the application of new energy and low-carbon technologies.

However, it is important to also acknowledge the limitations of this study. In terms
of case selection and data investigation, we have focused on China. Taking the newly
approved urban agglomeration in western China as an example, although it has some
innovation in the research area, we have not taken into account other mature urban ag-
glomerations in China. At the same time, relying on big data methods, the number of data
samples can be increased to compensate for the subjective bias in data in order to improve
data reliability, which will help to study this topic better.
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Based on these findings, we provide the following suggestions for improving the
proportion of new energy commuting in the Xi’an metropolitan area:

6.1. Build a Complete Network of Ground Bus Charging Facilities

For large cities in China, the first step should be to take measures to strictly control
the growth and use of private cars. Measures such as traffic restrictions, license plate
restrictions, differential parking fees, congestion fees, and staggered commuting should
continue to be implemented to avoid traffic congestion. A new energy vehicle charging pile
is one of the key areas of “new infrastructure”, accelerates the construction of the charging
facilities network, on the one hand, strengthens the technological innovation of charging
facilities, strengthens the digital gene, and promotes the deep integration of traditional
charging facilities, ground bus operation network and new technologies such as artificial
intelligence, block-chain, and big data [37]. Actively explore the construction of an intelli-
gent network platform from the planning and construction of front-end charging facilities
to the deployment of intermediate bus charging needs and then to the management and
maintenance of terminal charging facilities. On the other hand, strengthen the innovation
of charging operation mode, face the subdivision scenarios of the charging demand of
public vehicles and social vehicles at different times, take into account safety, efficiency,
and energy saving, create technology applications such as wireless charging of charging
piles and customized charging management of vehicles, and form an ecological model
of multi-type charging facility investment, diversified charging methods, and diversified
profit sharing [38]. Maximize the utilization rate and profitability of charging facilities to
match the charging demand and management level.

6.2. Promote the Transformation of the New Energy Travel Structure

The transformation of motor vehicle energy structure is the core of promoting urban
transportation emission reduction, and it is also the most potential strategy. To achieve
a carbon peak in 2030, first rely on the decarbonization of the energy system and the
decarbonization of the energy system depends on the energy storage of new energy vehicles,
and the new energy revolution is driven by new energy vehicles [39]. As a representative
of new energy vehicles, pure electric vehicles are the integrated products of modern
automotive technology, new energy, electronic computer intelligent control, and other
high-tech, which do not produce CO2 during operation and use and have the advantages
of environmental protection and pollution-free, high energy efficiency, and low operating
costs. The emergence and popularization of pure electric vehicles can not only make
the automobile industry get rid of the situation of excessive dependence on gasoline
but also reduce carbon emissions, and the emission reduction effect is remarkable [40].
Attention should be paid to the planning and construction of energy supply facilities,
improving the power supply and grid capacity of cities, and strengthening the construction
of charging facilities.

6.3. Strengthen the Publicity of Low-Carbon Travel and Create a Low-Carbon Travel
Cultural Atmosphere

Through the media, the internet, public service advertising, and other advertising
media, the government can inform urban residents about the growing problems of traffic
congestion, air pollution, and energy consumption and their serious consequences so that
citizens can respond to the challenges posed by motorization and make positive contribu-
tions to reducing air pollution and traffic congestion [41]. The government should also
step up efforts to promote low-carbon living and low-carbon travel to the public, especially
the high-income group, and encourage the public to travel using means of transport that
minimizes damage to the environment through extensive publicity on energy conservation
to reduce carbon emissions and the implementation of low-carbon emission practices.
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