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Preface

Robotics has witnessed a transformative evolution over the past decade, driven by

unprecedented advancements in artificial intelligence, machine learning, and material science. This

Special Issue, “Recent Advances in Robotics and Intelligent Robot Applications”, aims to provide

a comprehensive overview of the latest research and developments that are shaping future robotics

research in corresponding areas. In recent years, the confluence of deep learning algorithms with

sophisticated sensor technologies has enabled robots to achieve levels of autonomy and efficiency.

From autonomous vehicles navigating in complex urban environments to humanoid robots capable

of intricate human–robot interactions, the scope of what robots can achieve has expanded rapidly.

This Special Issue delves into these advancements, exploring how they are revolutionizing sectors

such as bionics and soft robots, motion and path planning, manipulator control, image classification,

and processing algorithms. Moreover, the advent of soft robotics, inspired by the flexibility and

adaptability of biological organisms, represents a significant leap forward. Through detailed case

studies and expert analyses, this book sheds light on the innovative designs and applications of

soft robots. One of the most exciting aspects of space robotics research is the integration of robots

into space exploration environments. The development of space robots highlights a paradigm shift

where robots and astronauts work side by side, supporting scientific missions and safety in space.

This reprint examines some technological breakthroughs about machine vision in space and robot

motion planning. “Recent Advances in Robotics and Intelligent Robot Applications” is a collaborative

effort, bringing together contributions from active leading researchers in the field, providing in-depth

discussions, solid scientific proof, and forward-thinking perspectives. We hope that this compilation

is informative for seasoned robotics professional and academic researcher and that it also inspires the

next generation of innovators to push the boundaries of robotics research. Finally, I would like to

express my deepest gratitude to my wife Chao Li and my children Norah Song and Roman Song for

their unwavering support and encouragement throughout this endeavour.

Qi Song and Qinglei Zhao

Editors
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Recent Advances in Robotics and Intelligent
Robots Applications
Qi Song 1,* and Qinglei Zhao 2

1 Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences,
Suzhou 215163, China

2 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (CIOMP),
3888 Dongnanhu Rd., Jingkai District, Changchun 130033, China; coldsun@ciomp.ac.cn

* Correspondence: songq@sibet.ac.cn

Robotics research has a unique allure for both academia and the industry due to
its potential for groundbreaking innovation and real-world applications [1,2]. Robotics
research and applications encompass a broad range of topics, challenges, and opportu-
nities. The topics in this Special Issue represent just a small fraction of the diverse and
interdisciplinary field of robotics, which intersects with areas such as materials science and
mechatronics, computer science, hardware engineering, robot kinematics, and bionics [3,4].
Fast-paced development in sensor hardware, robot perception, smart decision-making
strategy, and gripper designs allows robots to react in “real-time” to the environment and
thus work intelligently alongside human beings [5]. More crucially, artificial intelligence
(AI) integrated into robotic applications has the potential to revolutionize various aspects
of human life, offering a wide range of benefits and support.

This Special Issue of Applied Sciences, entitled “Recent Advances in Robotics and
Intelligent Robots Applications”, has 14 research papers, covering topics from bionics
(contribution 1) and soft-material robot designs (contribution 14), infrared image algo-
rithms (contribution 2), target tracking algorithms (contribution 3 and 7), hyperspectral
image classification (contribution 4), manipulator control (contribution 5 and 8), and space
image denoise and analysis methods (contribution 6 and 10) to motion and path planning
(contribution 9, 11, 12, and 13). The demonstrated robot designs and algorithm devel-
opment include novel low-cost robot designs with leaping abilities (contribution 1) and
resilient meta-materials (contribution 14); an accurate model that identifies the thermal
target (contribution 2); sophisticated neutral network models that track solar positions
with time scales (contribution 3); pixel-level hyperspectral image classification with neural
networks (contribution 4); space manipulator control models in orbit (contribution 5); and
image denoise methods for sky-based backgrounds (contribution 6); visual object track-
ing with convolution and correlation (contribution 7); pick-and-place models with small
dataset training (contribution 8); mathematic models for continuum robots (contribution 9);
analyses of the MTF of remote sensing cameras (contribution 10); time-varying method for
global path planning (contribution 11); low-cost localization models with a sparse modular
point matrix (SMPM) (contribution 12); and deep reinforcement learning combined with
RRT for path planning (contribution 13). The spectrum of the contributed research spans
a wide range of topics, from traditional image processing methods and robot designs to
robot kinematic models and path and motion planning with deep learning approaches.

Soft robotics focuses on the research and development of robots with compliant and
flexible structures that are inspired by natural organisms. These robots can better adapt to
dynamic environments and are often used in applications such as medical robotics, search
and rescue tasks, and outdoor exploration [6].

Similarly, bio-inspired robotics draws inspiration from biology to design robots that
mimic the structure and behavior of living organisms. This includes biomimetic locomotion,
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sensory systems inspired by animal perception, and soft actuators inspired by muscles and
tendons [7].

Manipulation focuses on the development of robotic arms and hands that are capable
of grasping, manipulating, and interacting with objects in a dexterous and precise manner.
Primary applications include industrial automation, warehouse logistics, and assistive
robotics for space applications [8].

Motion planning involves the algorithms and techniques used to plan the path of a
robot from the current state to a desired state while avoiding obstacles and adhering to
constraints without any human intervention. Robot motion planning involves designing
feedback systems to regulate the robot’s motion, and this ensures that it executes its planned
actions intelligently and safely [9].

Perception in robotics refers to the ability of robots to sense and understand their
environment using various sensors, such as cameras, LiDAR, millimeter-wave radars, and
ultrasonic sensors. This includes tasks such as object detection, recognition, localization,
and mapping (well known as SLAM—simultaneous localization and mapping) [10].

Autonomous navigation involves enabling robots to move and navigate complex
and dynamic environments without human intervention. This includes developing algo-
rithms for localization, path planning, obstacle avoidance, and decision making under
uncertainty [11].

Currently, machine learning and AI techniques are growing very fast, and incredibly,
they are integrated into robotics, which enables them to learn using data and allows
them to adapt to dynamic environments. This includes reinforcement learning for robotic
control, deep learning for perception tasks, and probabilistic modeling for decision making.
Recently, the transformer-based generative model (GPT) has been recognized as a technical
revolution and is expected to fill the long-existing gap between robots and artificial general
intelligence (AGI) [12].

On the other hand, space robotics technology involves the development and deploy-
ment of robotic systems for exploration, maintenance, construction, and other tasks in
space environments [13].

In space, robotic systems are utilized for the maintenance and servicing of spacecraft
and satellites in orbit. These robots can perform tasks such as refueling, repairing, and
upgrading satellites; extending their operational lifetimes; and reducing the need for costly
replacements. Robotic arms equipped with various tools and instruments are essential for
performing precise tasks in space, such as capturing payloads, deploying instruments, and
conducting repairs. These arms are often mounted on spacecraft, landers, or rovers. Space
robots also require advanced navigation and localization systems to accurately determine
their position and orientation relative to celestial bodies, obstacles, and other spacecraft [14].
This involves integrating sensors, such as cameras, LiDAR, GPS, and inertial measurement
units (IMUs).

Space robotics technology plays a crucial role in advancing our understanding of
the universe, enabling scientific exploration, supporting space missions, and laying the
groundwork for future human exploration and settlement of space [15].

In summary, more novel research efforts have been emerging with more innovative
topics, including humanoid robotics, bio-inspired design, collaborative robotics, and ethical
considerations in robot deployment. Robotics will continue to drive advancements in
automation, efficiency, safety, and human well-being, with ongoing efforts to address
societal challenges and shape the future of technology.

Even though it is impossible to cover all research areas of robotics and related applica-
tions, this Special Issue provides a humble collection of selected topics with cutting-edge
research, and it hopes to show recent primary achievements from intuitive aspects. We
would like to take this opportunity to thank all the contributing authors and reviewers of
this Special Issue for their excellent research work and valuable time spent on providing
comments for the collected papers. Finally, the unconditional and generous support from
the editorial staff of Applied Sciences is also a key to this high-quality Special Issue.
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Bionic Design of a Miniature Jumping Robot
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Abstract: In response to the problem of low energy storage density in the structure of existing
miniature jumping robots, this study designed a parallel single-degree-of-freedom double six-link
jumping robot by imitating the physiological structure and jumping mechanism of wax cicadas. The
designed six-link mechanism was first mathematically modeled, and to accommodate the jumping
structure of this robot, a six-link mechanism with a smaller cam pushrod stroke was obtained by
optimizing the linkage size and position parameters in the model. The dynamics of the robot’s
jumping process were then analyzed utilizing the second type of Lagrange equation to determine
the joint angles of the robot’s jumping phase. The results were compared with an ADAMS-based
jumping simulation to verify the validity of the analysis of the dynamics. The feasibility of the
structural design was then validated using ADAMS simulations. Finally, a physical prototype of
the jumping robot was produced and tested; the findings revealed that the robot had good jumping
performance, was stable in the air, fully discharged 600.2 mJ of energy, and was able to overcome
obstacles measuring 220 mm in height and 330 mm in distance. The design of the jumping robot
provides a novel approach to improving energy storage density and serves as a foundation for future
research on footed jumping robots.

Keywords: imitation wax cicada; parallel single-degree-of-freedom double six-linkage mechanism;
optimization; Lagrange equation; ADAMS

1. Introduction

The rapid advancement of science and technology has necessitated the development of
efficient, intelligent, and multifunctional micro-robots. Micro-robots are currently plagued
by two main problems: the complex motions and long execution times of footed robots [1–3]
traversing small target obstacles, and the restricted movement of wheeled tracked robots [4–6]
with strong maneuverability in complex terrain. It becomes more difficult for micro-robots to
navigate efficiently in natural unstructured environments as their size decreases [7]. Jumping
robots are an excellent solution to these problems. With a small contact area and high energy
efficiency, they can overcome obstacles several times their size [8,9] in a short period of time
and adapt to unstructured terrain, which holds great potential for future applications in rescue
and military operations and exploration.

In recent years, several research teams both domestically and abroad have developed
some miniature jumping robots by drawing inspiration from insects including grasshop-
pers, fleas, and foam cicadas. Using two torsion springs as energy storage elements, the
Swiss Federal Institute of Technology in Lausanne has designed a locust-like jumping robot
with excellent jumping capabilities [10], which weighs only 7 g and is capable of jumping
to a height of 1.38 m, which is about 27 times its own dimensional height. The Sant’ Anna
Institute of Higher Studies in Italy designed a cicada-like jumping robot with two linear
springs for energy storage by optimizing the leg length ratio [11], which enables stable
landings and continuous jumps with a jump height of approximately 100 mm. Based on
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the principle of frog-leg jumping, Changlong Ye et al. from Shenyang University of Aero-
nautics and Astronautics designed a jumping robot with a deformed wheel structure that
integrates wheeling and jumping [12], which can achieve jumping direction controllability,
and tests have shown that a 300 g robot can achieve a maximum jump height of 285 mm.
Riccy Kurniawan et al. from the University of Washington, U.S. proposed a Yak jumping
robot [13]. The robot has a symmetrical mechanical structure with two shape memory
alloy (SMA) spring actuators in the upper and lower parts, which are driven by radio
transmission to store energy by converting the linear displacement of the SMA springs
into a bending moment. According to the test results, the 216 mg robot has a vertical jump
height of 138 mm, making it one of the top insect-grade wirelessly powered robots for
jumping performance. The University of California proposed a crawling jumping robot
driven by shape memory alloy actuators and aluminum foil [14] with magnet actuation to
drive the whole system. The initial state of SMA has some pre-deformation, and jumping
motion is promoted by induction heating of SMA and aluminum foil in a high-frequency
alternating magnetic field. During the heating of the SMA berth, this design converts SMA
from martensite to austenite. More elastic potential energy is stored, increasing the jump
height, which is not found in conventional springs. A locust-like jumping robot developed
by the Northwestern Polytechnic University in China mimicking the movements of the
femur, tibia, and tarsus of the locust’s hind legs [15] uses a linear spring to store energy
and utilizes the negative rotation of the robot’s body to counteract its tendency to flip in
the air phase.

The aforementioned studies on miniature jumping robots have focused on the imple-
mentation and miniaturization of jumping functions but have neglected to design energy
storage mechanisms with a greater energy storage density, the size of which directly affects
the potential that a jumping robot can achieve. In this paper, the wax cicada, which has an
excellent jumping ability, is used as a bionic prototype to design a jumping robot with a
parallel single-degree-of-freedom six-link energy storage mechanism as the core, to solve
the problem of insufficient energy storage in the existing energy storage mechanism of
micro-robots and to provide a reference for the improvement of the energy storage density
of future footed robots.

2. Design of the Wax-like Cicada Jumping Mechanism
2.1. Study of the Structure and Jumping Mechanism of the Hind Legs of a Bionic Prototype Wax
Cicada

The wax cicada is an insect belonging to the family Cicadidae of the order Hemiptera,
as shown in Figure 1a, its accustomed jumping movement pattern allows it to swiftly
escape from threats posed by the outside world. Studies on wax cicadas have shown the
presence of paired pleural arch structures on the hind thorax [16] that function as energy
stores and contain a large number of tendon and arthroplasty elastic elements. It is this
unique pleural arch that contributes the vast majority of the jumping energy source, as
shown in Figure 1b [16].

Appl. Sci. 2023, 13, x FOR PEER REVIEW  2  of  16 
 

stable  landings  and  continuous  jumps with  a  jump height of  approximately  100 mm. 

Based on the principle of frog‐leg jumping, Changlong Ye et al. from Shenyang University 

of Aeronautics and Astronautics designed a jumping robot with a deformed wheel struc‐

ture that integrates wheeling and jumping [12], which can achieve jumping direction con‐

trollability, and tests have shown that a 300 g robot can achieve a maximum jump height 

of 285 mm. Riccy Kurniawan et al. from the University of Washington, U.S. proposed a 

Yak jumping robot [13]. The robot has a symmetrical mechanical structure with two shape 

memory alloy (SMA) spring actuators in the upper and lower parts, which are driven by 

radio  transmission  to  store  energy by  converting  the  linear displacement of  the  SMA 

springs into a bending moment. According to the test results, the 216 mg robot has a ver‐

tical  jump height of 138 mm, making  it one of the top  insect‐grade wirelessly powered 

robots for jumping performance. The University of California proposed a crawling jump‐

ing robot driven by shape memory alloy actuators and aluminum foil [14] with magnet 

actuation to drive the whole system. The initial state of SMA has some pre‐deformation, 

and  jumping motion is promoted by induction heating of SMA and aluminum foil in a 

high‐frequency alternating magnetic field. During the heating of the SMA berth, this de‐

sign converts SMA from martensite to austenite. More elastic potential energy is stored, 

increasing  the  jump height, which  is not  found  in  conventional  springs. A  locust‐like 

jumping robot developed by the Northwestern Polytechnic University in China mimick‐

ing the movements of the femur, tibia, and tarsus of the locust’s hind legs [15] uses a linear 

spring to store energy and utilizes the negative rotation of the robot’s body to counteract 

its tendency to flip in the air phase. 

The aforementioned studies on miniature jumping robots have focused on the imple‐

mentation and miniaturization of jumping functions but have neglected to design energy 

storage mechanisms with a greater energy storage density, the size of which directly af‐

fects the potential that a jumping robot can achieve. In this paper, the wax cicada, which 

has an excellent jumping ability, is used as a bionic prototype to design a jumping robot 

with a parallel single‐degree‐of‐freedom six‐link energy storage mechanism as the core, 

to solve the problem of insufficient energy storage in the existing energy storage mecha‐

nism of micro‐robots and to provide a reference for the improvement of the energy storage 

density of future footed robots. 

2. Design of the Wax‐Like Cicada Jumping Mechanism 

2.1. Study of the Structure and Jumping Mechanism of the Hind Legs of a Bionic Prototype Wax 

Cicada 

 

   

(a)  (b)  (c) 

Figure 1. (a) Wax cicada in life; (b) Biological structure of the pleural arch [16]; (c) Simplified model 

of the jumping process. 

Figure 1c shows a significant change in the posture of the hind legs of the wax cicada 

during the jump. Before energy storage, the angle between the femoral and tibial joints is 

in a large state. During energy accumulation, the elastic element contracts heavily to flex 

Figure 1. (a) Wax cicada in life; (b) Biological structure of the pleural arch [16]; (c) Simplified model
of the jumping process.

6



Appl. Sci. 2023, 13, 4534

Figure 1c shows a significant change in the posture of the hind legs of the wax cicada
during the jump. Before energy storage, the angle between the femoral and tibial joints is
in a large state. During energy accumulation, the elastic element contracts heavily to flex
the pleural arch [17] and store large amounts of energy. The wax cicada has a cogwheel
structure at the hip rotor and the released energy is transferred from the hip rotor to the
end of the hindfoot. At the same time, the femoral and tibial joint stance gradually becomes
smaller and reduces to a post-energy accumulation stance in which the wax cicada enters a
pre-jump state, after which both feet are rapidly and synchronously extended due to the
cogwheel structure at the hip rotor [18], producing a fast and powerful jump. The energy
storage capacity of the pleural arch, which contains many elastic elements, is undoubtedly
much higher than that of a single elastic element, and studies have shown that the jumping
speed of the wax cicada is a staggering 5.5 m/s [19] compared to that of a flea with a
jumping speed of 1 m/s [20].

2.2. Modeling of the Wax Cicada Jumping Mechanism

Based on the physiological structure and jumping mechanism of the wax cicada, the
femur was used to simulate the wax cicada’s femoral joint, the tibia to simulate the cicada’s
tibial joint, and two four-bar mechanisms consisting of two semi-pleural arch structures
to simulate the cicada’s two posterior pleural arch structures, respectively, and two lin-
ear springs were used to replace tendons and other elements to design the bionic energy
storage structure model, as shown in Figure 2. In Figure 2, the connecting rods are articu-
lated and the degree of freedom of the jumping leg mechanism is calculated as shown in
Equation (1):

F = 3n− 2pl − ph = 3× 6− 2× 8− 1 = 1 (1)

where n represents the number of moving parts and has a value of 6; pl represents the
number of low pairs in the kinematic pair and has the value of 8; and ph represents the
number of higher pairs in the kinematic pair and has the value of 1. The structure stores
energy with the cam rotating counterclockwise as the prime mover, making contact with the
rod CE and generating a collision force. As the mechanism only has one degree of freedom,
the two rotating joints E and F of the four-rod mechanism will move in the curved slots,
gradually changing the attitude of the four-rod mechanism, the four linear springs fixed in
the two four-bar mechanisms will be stretched, and the two parallel six-link mechanisms
will have a defined motion.
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2.3. Modeling of the Wax Cicada Jumping Mechanism

Based on the structural diagram of the jumping mechanism established above, a
virtual prototype of the bouncing robot was created, as shown in Figure 3a. The robot is
composed of four main parts: the front legs, the parallel double six-link mechanism, the
body, and the energy control mechanism, which is shown in Figure 3b. The front legs of
the robot provide support and attitude adjustment, the double six-link mechanism with
four linear springs provides the power source for bouncing, the energy control mechanism
stores and releases energy for the whole system, and the body part of the bouncing robot
connects and balances the entire robot. In addition, the body is equipped with a servo
control board to control the energy storage and release state of the entire system, as well as
a battery that powers the entire robot.
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The robot bouncing principle is as follows: During the energy storage phase of the
robot, the driving rudder rotates clockwise to transmit power through the rudder disk
and coupling to the input shaft in a predetermined ratio, and then to the two cams of the
output shaft via the energy control mechanism. The two cams rotate counterclockwise
until they collide with the rotating linkage of the sub-mechanism (a four-bar mechanism),
resulting in a collision force that forces two of the rotating joints to make a circular motion.
The femur and tibia undergo a specific regular attitude change with the movement of the
four-bar mechanism. At the same time, the four linear springs fixed to the two four-bar
mechanisms are forced to stretch, and the whole system begins to store energy. The cam
continues to rotate until it reaches the maximal energy storage for the whole system, at
which point there are no more collision forces between the cam and the rotating joint, and
the femur and tibia are in the ready-to-jump position. The cams continue to rotate after
the energy is released, and the energy stored throughout the robot is instantaneously and
completely released. The entire robot will return to its original stance in a very short time
and the energy stored in the four linear springs will be instantly transferred through the
entire mechanism to the toe bones causing the robot to jump by the reaction force of the
ground on the toe bones.

2.4. Power Conversion Principle

A secondary reduction mechanism was employed in this study to reduce the speed
and load inertia and multiply the torque on the output shaft to achieve the minimum
torque required to stretch the four linear springs to their maximum. Figure 4 illustrates the
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principle of how the servo amplifies the torque of the input shaft and reduces the speed of
the input shaft to the output shaft. The process is as follows: The servo is coupled to the
input shaft by a coupling and outputs with a torque of value τ1, which is transmitted to the
output shaft under the action of the reducer with a value τ2. ω1, ω2 and ω3 in the diagram
represent the rotational speeds of the input, intermediate and output shafts, respectively.
The theoretical variation of torque is related as:

τ2

τ1
=

Z3

Z1
·Z2

Z1
=

Z3·Z2

Z2
1

(2)

In the above equation, Z1, Z2 and Z3 correspond to the number of teeth on the
driving gear, intermediate gear, and driven gear, respectively. Conversely, the theoretical
relationship between the rotational speeds is expressed as follows:

ω3

ω1
=

Z2
1

Z3·Z2
(3)

This multiplies the maximum torque of the output shaft and reduces the torque require-
ment of the rudder, while at the same time reducing the output shaft speed proportionally
and increasing the overall energy storage time.
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2.5. Bouncing Motion Process

The robot completing the entire bouncing motion is shown in Figure 5. To begin, the
rudder control board drives the rudder to turn counterclockwise. The power from the
rudder is transmitted via the energy control mechanism to the two cams on the output
shaft, which are in contact with the two rotating links on the left and right, respectively, and
the two six-link mechanisms in parallel begin to change stance in a synchronized manner.
The four linear springs fixed to the four-bar mechanism are stretched, causing the robot’s
center of gravity to shift downwards gradually. At this point, the two cams continue to
rotate, the attitude of the six-link mechanism changes, and the deformation of the linear
spring gradually increases until the cams reach a critical point, at which point the robot’s
energy storage phase ends. During the release phase, the cams continue to rotate until they
cross the critical point, at which moment the entire system instantly releases all its energy
and the robot leaps up.
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Figure 5. Bouncing movement flow chart.

3. Jumping Mechanism Analysis and Optimization
3.1. Design and Parameter Optimization of the Jumping Leg Mechanism

This section explores the effect of the angle of the variable C1DG and the length of
DG on the magnitude of the spring deformation, provided that the fixed rod DG and the
length of DE are constants, to allow the double six-link mechanism to rotate to the limited
position of maximum compression of the linear spring, as shown in Figure 6. To reduce the
minimum torque required by the cam during compression, a cam with a small actuator
stroke was first designed, followed by the calculation of the deformation of the spring
when the rotating linkage is rotated clockwise to a critical state based on the profile of the
cam, and the analysis of the variation law between the angle of the variable C1DG and the
length of DG and the deformation of the spring.
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In Figure 6, the six-rod mechanism AB1C1DE1F1G represents the initial state of the
jumping leg mechanism without energy storage, AB2C2DE2F2G is the limit state of the
jumping leg mechanism at maximum energy storage, the rotating linkage C1E1 rotates the
fixed angle β to reach the critical state, and the DG rod is a fixed rod. According to the
relationship between two linear spring positions with symmetry, DE1 = DG = L1 and
is a constant, and E1F1 = GF1 = L2, L2 is a variable. According to the given cam profile,
β = π/3, let the initial length of the spring be L0, the limit length at the maximum of the
deformation variable is L′, the angle between the rotating connecting rod C1E1 and the
fixed rod DG is the variable α, and the value of α is in the range of (0, π). In the triangle
DE1F1, according to the cosine theorem, we have:

cos
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2
=
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2

2L0L1
(4)

In the triangle DE2F2:
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Simplifying the above two equations yields:
{
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From Equation (6), it follows that:
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In Equation (7), α and L2 are two independent variables that have no influence on one
another. Using the control variables method, the mathematical analysis of this function
leads to the conclusion that the smaller the angle of α, the larger the value of L′ − L0, and
the larger the deformation of the spring, while L2 remains constant. If α remains constant,
the value of L′ − L0 tends to increase as L2 decreases. We thus propose a design principle
that is compatible with this six-rod mechanism: the linkage length L1 remains constant,
the initial spring length L0 and the limit length L′ satisfy the conditions for the use of the
spring, and the size of α or is L2 is reduced in the six-rod mechanism so that the size of
the linkage is reduced and the deformation of the spring is quickly maximized. There is,
however, a theoretical minimum value for L2, which is the minimum value when E1F1G
coincides with the position of the dead point of the mechanism, when E1F1G = 2L2.

3.2. Dynamical Modeling and Analysis

A common approach used for establishing the dynamic equation of robots is the
Lagrange method. During the take-off phase of the robot, its joint angles can be obtained
by solving the analytical equations. Assuming that the robot’s tibia is in a state where
it is not slipping on the ground and that the tibia and the ground can be regarded as a
rotational connection, the generalized angle θ1 between the tibia and the ground is used as
the coordinate of the system; the dynamics of the robot in the take-off phase is modeled
based on the Lagrange approach, as shown in Figure 7.
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Figure 7. Overall dynamic model of the take-off phase.

In Figure 7, the point E is the center of mass of the body, mi, li represent the mass and
length of each bar, and the dynamic equation of the robot during the jumping phase is
obtained by: {

d
dt

∂L
∂

.
Θ1
− ∂L

∂Θ1
= 0

L = k− u
(8)

In the preceding equation, the dynamic energy k generated by each rod includes the
linear velocity dynamic energy and angular velocity dynamic energy generated by the
center of mass of that rod. Using the contact point between the tibia and the ground as
the zero potential energy point, the potential energy u of the system can be divided into
two parts, one part is the elastic potential energy of the spring and the other part is the
total gravitational potential energy of the system composed of each rod, resulting in the
dynamic energy and potential energy of the system when the robot jumps, as shown in
Equation (9): 


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∑
1

ki =
1
4 miv2

i + Iiω
2
i

u = 4• 1
2 kc∆x2 + 2

6
∑
1

mighi

(9)

In Equation (9), kc is the spring’s coefficient of elasticity, ∆x is the spring deformation,
g is the acceleration of gravity, vi is the velocity of the center of mass of each linkage, hi is
the vertical coordinate of the center of mass of each linkage relative to the point of zero
potential energy, and Ii is the rotational inertia of each linkage to the center of mass. Table 1
displays the parameters of the robot’s connecting rods, such as mass, length, and inertia.

The dynamic equations were solved numerically using the Runge–Kutta method with
an initial value of θ1 of 88◦ and ω1 of 0 rad/s. The final calculated output curves were
compared with the simulation results in the ADAMS environment, as shown in Figure 8.

In Figure 8, the energy storage phase of the robot lasts from 0 to 5.02 s, during which
the femur-tibia and tibia-ground angles gradually decrease, whereas the body-femur angle
gradually increases. The curves of the body-femur, femur-tibia, and tibia-ground angles
are approximately the same, indicating that there are minor errors between the simulation
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results and the calculation results, but the curves are identical, demonstrating the validity
of the dynamic analysis.
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Table 1. Relevant parameters for robot components.

Components Parts Materials Weight (g) Length (mm) Rotational Inertia
(kg ·mm2)

Femur - Aluminum 1.4 36.8 0.63

Tibia - Aluminum 4.5 50.9 3.89

Rotary linkage Connecting rod Aluminum 5.6
75.5 2.85Connectors Photosensitive resin 0.4

Auxiliary rod I Connectors Photosensitive resin 0.1
30.8 0.22Connecting rod Aluminum 0.6

Auxiliary rod II Connecting rod Aluminum 0.6
30.8 0.22Connectors Nylon glass fiber 0.1

Body

Camshafts Stainless steel 6 62

55.15

Cams Resin 4 -
Gear sets Nylon glass fiber 6

-

Bearings Steel 1.8
Servo 12

Steering wheel Plastic 0.6
Couplings Photosensitive resin 1.2
Forelegs Nylon 5
Battery - 16

Control panels - 12
Other - 75.4

Total mass - 166.6 - -

4. ADAMS-Based Simulation Analysis of Bouncing Robot Motion

According to the structural design scheme of the imitation wax cicada jumping robot
proposed in Section 2, the model was imported from SolidWorks into ADAMS for kinematic
simulation analysis to predict the kinematic performance of the bouncing robot and to
verify the feasibility of the overall mechanism design.

4.1. Component Type Parameters of the Bionic Bouncing Robot

Based on the 3D structure of the robot, a prototype model of the robot was assembled,
of which the model parameters of the relevant components are shown in Table 2.
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Table 2. Relevant component type parameters.

Components and Parameters Numerical Values

Spring wire diameter ˆ outside diameter ˆ length (mm) 0.7 ˆ 6 ˆ 25

Modulus of active wheel ˆ number of teeth (mm) 0.5 ˆ 18

Modulus of intermediate wheel ˆ number of teeth (mm) 0.5 ˆ 42

Modulus of driven wheel ˆ number of teeth (mm) 0.5 ˆ 80

Small bearing bore ˆ outer diameter ˆ thickness (mm) 4 ˆ 7 ˆ 2.5

Large bearing bore ˆ outer diameter ˆ thickness (mm) 4 ˆ 8 ˆ 3

Servo mass (g) ˆ max. torque (kg · cm) 12 ˆ 5

4.2. Motion Simulation and Experiments

The process used for the simulation is as follows: according to the given material prop-
erties, add the material properties of each part in ADAMS, set the connection relationship
between each part, add the collision force of the parts in contact, and finally add the driving
force for simulation.

The trajectory of the robot’s center-of-mass motion is determined from the simulation
of the virtual prototype and is shown in Figure 9. It can be seen from the figure that the
robot is relatively stable during its motion in the air, with no substantial overturning. At
the end of the simulation, the bouncing performance data of the robot was obtained using
the post-processing module of ADAMS, as shown in Figure 10a,b.

During the simulation, the robot saves energy from 0 to 5.02 s, the robot starts to store
energy under the force of the cam, and the center of mass gradually drops to its lowest
point. When the cam is ready to pass the contact boundary of the four-bar mechanism and
the energy is about to be fully released, the system’s energy storage achieves a maximum at
t = 5.02 s. At t = 5.02~5.31 s, the robot releases energy, starts jumping, and gradually
accelerates to the highest point with a jump angle of about 62◦. The elastic potential en-
ergy accumulated in the robot during this process will be completely transformed into
kinetic energy. The vertical height of the highest point is about 393 mm, and horizontal
displacement will continue to increase until the robot hits the ground. When the robot
begins to descend at t = 5.31~5.55 s, its gravitational potential energy at the highest point is
completely converted into kinetic energy, and the robot lands at t = 5.55 s with a horizontal
displacement of 595 mm, reaching the maximum. According to the center of mass displace-
ment graph, the robot has a maximum bounce height of 306 mm and a maximum jump
distance of 595 mm. The acceleration of the robot during the whole jumping process and
the change of the torque of the rotating vice between the body and the femur and the femur
and the tibia of the single six-link mechanism during the jumping process are shown in
Figure 11a,b. During the gradual stretching of the linear spring and the energy storage
process of the whole system, the center of gravity of the robot shifts downwards and has a
smaller tendency of jumping up and down until 5.02 s and gains an instantaneous accelera-
tion of a value of 275 m/s2 during the jumping, after which the momentary acceleration
changes to a gravitational acceleration of approximately 9.8 m/s2. During the energy
storage phase, the moment between the body and femur and femur and tibia in the six-link
mechanism builds and then falls to zero at t = 5.02 s due to the immediate release of energy.
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Figure 11. (a) Acceleration of the robot’s center of mass; (b) Graph of torque change during the
jumping phase.

5. Prototyping and Experimental Testing

To measure the actual jumping performance of the bouncing robot, experimental tests
were carried out on the prototype robot. The control board was a one-way control board
with a DIY wireless servo. Aluminum alloy was utilized for the six-link mechanism, the
joint parts and the gear set of the energy control mechanism were made of robust nylon

15



Appl. Sci. 2023, 13, 4534

fiberglass, and the rest of the components were made of resin. A high-speed camera was
used to record the jumping process and to obtain the robot’s attitude and position at the
highest point and the landing point, as shown in Figure 12.

Appl. Sci. 2023, 13, x FOR PEER REVIEW  14  of  16 
 

 

Figure 12. Robot prototype jump test. 

With 600.2 mJ of energy fully released, the test results showed that the vertical height 

of the jumping robot was 220 mm, the horizontal distance was 330 mm, and its jumping 

speed was 2.21 m/s, of which the vertical speed was 2.11 m/s and the horizontal speed was 

0.66 m/s. The overall energy consumption efficiency was 67%, with the majority of energy 

lost due to the friction of each rotating connection and air resistance during the jumping 

process. As the simulation cannot fully simulate the contact between the end of the robot’s 

hind foot and the end of the forefoot and the ground, as well as the influence of realistic 

factors such as physical prototype production defect, there is a certain degree of discrep‐

ancy between the simulation results and the experimental results. 

Many bouncing  robots have a high  jumping capacity, but  researchers have  rarely 

considered the impact of the bouncing robot’s mass on the weight of the robot. For exam‐

ple, the MSU Jumper has a jump height of 872 mm and a distance of 898 mm at zero loads, 

but a 4 g increase in weight decreases jump performance by 5.8% and an 8 g increase in 

weight decreases  jump performance by 20.3% (695 mm  jump height and 678 mm  jump 

distance at 8 g), which shows that the weight of the robot greatly affects its jump perfor‐

mance. This shows that the weight of the robot itself greatly affects its  jumping perfor‐

mance. To better highlight the performance of the bouncing robot, this paper proposes a 

reference factor  Г ൌ m൫𝑣௫
ଶ ൅ 𝑣௬

ଶ൯  from the perspective of the bouncing performance of the 

robot per unit weight. The variable m represents the weight of the robot, the variable  𝑣௫ 

and  the variable  𝑣௬  represent  the horizontal and vertical velocity of  the robot when  it 

starts to jump, and it responds to the relationship between the bouncing performance of 

the robot and its weight. Next, the above equation can be simplified by the physics equa‐

tion  for oblique  throwing motion as  Г ൌ 𝑚ሺ4ℎଶ ൅ 𝑥ଶሻ 2ℎ⁄ , where: variable h represents 

the height of  the  robot’s bounce  and variable  x  represents  the distance of  the  robot’s 

bounce. Furthermore, some representative micro‐robots and their characteristics are com‐

pared, as shown in Table 3 below. 

Table 3. Comparison of the characteristics of miniature bouncing robots. 

Bouncing Robot  Weight (g)  Jump Height (mm)  Jumping Distance (s)  Energy Value (mJ)  Parameters Г 

GRILLO III [11]  22  100  200  31.8  0.88 

Miniature jump‐

ing robot [10] 
7  1380  790  154  2.09 

MSU Jumper [21]  23.5  872  898  ‐  5.185 

Mini‐Whegs [22]  191  18  ‐  ‐  0.688 

JelloCube [23]  250  70  180  ‐  9.285 

Figure 12. Robot prototype jump test.

With 600.2 mJ of energy fully released, the test results showed that the vertical height
of the jumping robot was 220 mm, the horizontal distance was 330 mm, and its jumping
speed was 2.21 m/s, of which the vertical speed was 2.11 m/s and the horizontal speed
was 0.66 m/s. The overall energy consumption efficiency was 67%, with the majority of
energy lost due to the friction of each rotating connection and air resistance during the
jumping process. As the simulation cannot fully simulate the contact between the end of
the robot’s hind foot and the end of the forefoot and the ground, as well as the influence of
realistic factors such as physical prototype production defect, there is a certain degree of
discrepancy between the simulation results and the experimental results.

Many bouncing robots have a high jumping capacity, but researchers have rarely
considered the impact of the bouncing robot’s mass on the weight of the robot. For example,
the MSU Jumper has a jump height of 872 mm and a distance of 898 mm at zero loads, but
a 4 g increase in weight decreases jump performance by 5.8% and an 8 g increase in weight
decreases jump performance by 20.3% (695 mm jump height and 678 mm jump distance
at 8 g), which shows that the weight of the robot greatly affects its jump performance.
This shows that the weight of the robot itself greatly affects its jumping performance. To
better highlight the performance of the bouncing robot, this paper proposes a reference
factor Г = m

(
v2

x + v2
y

)
from the perspective of the bouncing performance of the robot

per unit weight. The variable m represents the weight of the robot, the variable vx and
the variable vy represent the horizontal and vertical velocity of the robot when it starts
to jump, and it responds to the relationship between the bouncing performance of the
robot and its weight. Next, the above equation can be simplified by the physics equation
for oblique throwing motion as Г = m

(
4h2 + x2)/2h, where: variable h represents the

height of the robot’s bounce and variable x represents the distance of the robot’s bounce.
Furthermore, some representative micro-robots and their characteristics are compared, as
shown in Table 3 below.

The weight of the robot varies negatively with jumping performance, with larger val-
ues of Г indicating better jumping performance. Although the introduced reference factors
may not reflect the relationship between robot weight and jumping ability completely and
accurately, they can reflect the robot’s jumping performance per unit weight to some extent.
After comparative analysis, it was found that the reference factors proposed in this paper
have some reference value for measuring the bouncing ability of a robot per unit weight.
Specifically, the energy storage density of the bouncing robot proposed in this paper is
600.2 mJ, and its reference factor Г value is 11.454. Compared with existing miniature
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bouncing robots, the bouncing robot in this paper has a high energy storage density and a
certain advantage in bouncing performance per unit weight.

Table 3. Comparison of the characteristics of miniature bouncing robots.

Bouncing Robot Weight (g) Jump Height (mm) Jumping Distance (s) Energy Value (mJ) Parameters Г

GRILLO III [11] 22 100 200 31.8 0.88

Miniature jumping
robot [10] 7 1380 790 154 2.09

MSU Jumper [21] 23.5 872 898 - 5.185

Mini-Whegs [22] 191 18 - - 0.688

JelloCube [23] 250 70 180 - 9.285

This article robot 166.6 220 330 600.2 11.454

6. Conclusions

This study has presented the overall structural design of a bouncing robot with
high energy density based on the jumping mechanism of the wax cicada. An optimized
parametric analysis model of the six-bar mechanism was established, and the influence of
two variables of the six-bar mechanism—the angle of C1DG and the length of DG—on the
spring deformation variables was ultimately proposed.

The kinetic model of the jumping phase was established, and the joint angle of the
robot was obtained using kinetic equations and compared to simulation results in the
ADAMS environment to verify the validity of the kinetic equations.

Simulation of the jumping performance of the robot was carried out in the ADAMS
virtual prototype environment. The feasibility of the entire implementation of the jumping
robot was validated by analyzing the jumping motion of the robot in one cycle, and the
jumping performance in the simulation environment was obtained. The simulation results
show that the bouncing robot has good jumping ability and air posture stability.

A physical prototype was assembled using 3D printing and other techniques, and
experimental tests were completed. The results show that with an energy storage capacity
of 600.2 mJ, the robot can overcome obstacles with a height of about 220 mm and a distance
of about 330 mm and does not flip significantly in the air. Compared to existing miniature
bouncing robots, the bouncing robot developed in this paper has a higher energy storage
density and better bouncing performance per unit weight.

In this paper, we have designed an energy storage mechanism with a high energy
density of up to 600.2 mJ based on bionic principles. This design may provide a valuable
reference for future research on energy storage in footed bouncing robots. However, we
are aware of some shortcomings in the design of this paper, which need further research
and improvement. Future research could explore higher energy density energy storage
mechanisms and add other movement modes to expand the range of applications of the
robot in different environments.
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Abstract: Infrared signature of targets is one important approach for target detection and recognition.
When measuring the infrared signature of a target in the atmosphere, it is necessary to take the
atmospheric transmittance and atmospheric radiation between the measured target and the observer
into account. In this study, a blackbody-based approach for estimating atmospheric transmittance
and atmospheric radiation is proposed to improve accuracy. Radiometric calibration is first carried
out in the laboratory for the infrared thermal imager to determine the slope and offset used in
the linear regression. With a set of different temperatures, radiance of the blackbody and digital
number value of images are calculated. Finally, according to the analytical expressions derived, the
atmospheric transmittance and atmospheric radiation are determined, and actual radiance for the
cooperative target is calculated. Results demonstrate that the uncertainty of the actual radiance of
measured cooperative target calculated via the proposed method is lower than that by MODTRAN,
from MODTRAN at 5.7% and 16.7%, from proposed method at 2.56% and 10.2% in two experiments.

Keywords: infrared signature; atmospheric transmittance; infrared thermal imager; radiometric
calibration

1. Introduction

With the further development of infrared focal plane arrays (IRFPA), infrared remote
sensing techniques play an important role in many fields, especially in multiple military
cases for aerospace vehicles [1–4]. Infrared signature has been demonstrated much during
the last few years in feature acquisition and recognition of targets, which can provide
signature information of targets such as radiance and intensity [5–7], for different vehicles
usually represent different infrared signature.

At present, the research on the infrared radiation characteristics of targets mainly
includes two ways, namely the simulation and the experiment. In the simulation, the
mathematical radiation model is first established based on the state and the environment
of targets. Then, according to the radiation formation mechanism of targets, each compo-
nent that influences the radiation characteristic of the target is analyzed and calculated
theoretically [8–13]. Although the simulation is widely used in the study of the infrared
characteristics, due to the fact that they are not subject to the site and cost, the accuracy
and effectiveness cannot be easily verified. In contrast, the experiment that measures and
inverses the actual radiation of the target with a radiometrically calibrated infrared measur-
ing system is the direct and the only means to obtain and verify the radiation characteristics
of the measured target [14,15]. In experiments, infrared signature measurement of targets
usually consists of three steps: (1) radiometric calibration for the infrared thermal imager,
which aims at quantifying the relationship between the radiation received and the output
digital number (DN); (2) estimation of the emission and reflection from the ground and
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the atmospheric effects, such as atmospheric transmittance and path radiation, which can
be predicted by software like MODTRAN; (3) inversion of the radiation characteristics
using a model of radiation measurement, according to the target material surface emissivity,
transmittance and so on. In both approaches mentioned above, the influence caused by the
atmosphere must be inevitably corrected, especially for long range targets. However, the
estimation of atmospheric parameters and the atmospheric radiation, nowadays, mainly
depends on atmospheric transmission radiative transfer software such as LOWTRAN,
MODTRAN, and FASCODE, of which the uncertainty is merely approximately 20–30%
which is far from enough in engineering application.

In this work, a method of infrared radiation measurement based on blackbody or
an object served as a blackbody for cooperative targets is proposed, based on which the
atmospheric transmittance and the atmospheric radiation are estimated and the actual
radiation of the measured cooperative target is calculated with lower uncertainty. The
proposed method can be considered as an alternative for practical scenes when measuring
cooperative targets in engineering applications.

2. Materials and Methods
2.1. MODTRAN

Moderate Resolution Atmospheric Transmission radiative transfer code and algo-
rithm (MODTRAN) [16], developed by the U.S. Air Force Research Lab, is widely used to
calculate various atmospheric radiative transfer parameters under complex atmospheric
conditions from 0 to 50,000 cm−1, such as transmittance, et al. Models of atmosphere in
MODTRAN can be defined by users according to the theoretical calculation or measured
data, which makes the simulation and use of MODTRAN particularly flexible. In addition,
MODTRAN includes representative models of atmosphere, aerosol, cloud, and rain, and
various complex geometric conditions such as horizontal, vertical, inclined upward, and
downward transmission, which makes MODTRAN a powerful tool in the calculation of
atmospheric radiative transfer parameters.

Although MODTRAN software provides default parameters for most settings, it
would be best if measured data is input in order to approximate the real situation. For
atmospheric parameters collection, cloud and aerosol micro lidar to determine the visi-
bility and aerosol extinction profile, automatic sun tracking photometer to measure total
atmospheric transmittance and total water vapor, and meterological station to collect the
temperature, humidity, wind, pressure, et al., are often employed in the process of at-
mospheric parameters measurement. Figure 1 shows the workflow for the correction of
atmospheric transmission via MODTRAN using measured atmospheric parameters.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 12 
 

 
Figure 1. Workflow for MODTRAN software using measured atmospheric parameters. 

2.2. Theory of Infrared Radiation 
The radiation obtained by an infrared thermal imager mainly includes three parts: 

the self-radiation of the measured target, reflected environmental radiation, and atmos-
pheric radiation [17]. The equivalent radiance from the surface of an opaque target by an 
infrared thermal imager can be expressed as: 

0( ) ( ) (1 ) ( ) ( )r a b a b u a b aL T L T L T L Tλ λ λ λ λ λ λ λ λτ ε τ α ε= + − +  (1)

where Tr is the radiation temperature measured with the infrared thermal imager, T0 is 
the surface temperature of the object, Tu is the ambient temperature, Ta is the atmospheric 
temperature, ελ is the surface emissivity of the measured object, εaλ is the atmospheric 
emissivity, τaλ is the atmospheric transmittance, αλ is the surface absorptance of the object, 
and 𝐿௕ఒ denotes the radiance emitted by the blackbody at wavelength λ. 

The corresponding irradiance of entrance pupil for the infrared thermal imager is: 
2 2

0 0 0[ ( ) (1 ) ( ) ( )]a b a b u a b aE A d L A d L T L T L Tλ λ λ λ λ λ λ λ λ λτ ε τ α ε− −= = + − +  (2)

where A0 is the visible area of the target corresponding to the minimum space angle of the 
thermal imager, d is the distance between the target and the thermal imager, and usually 
A0d−2 is considered as a constant. 

Radiation power of the infrared thermal imager received for a certain wavelength is: 

rP E Aλ λ=  (3)

where Ar is the area of lens of the thermal imager. 
Without considering stray radiation, which can be minimized via high projection ma-

terial and cold aperture, the total radiation of the thermal imager received PT is: 

T opP Pλτ=
 (4)

where τop is the transmittance of optical systems. 
The response voltage signal Vs is referred according to [18] as: 

0( )s TV g R P Vλ= +  (5)

where Rλ is the spectral responsivity of the infrared thermal imager, which is a constant 
for a certain infrared thermal imager; V0 is the DC bias voltage; and g is the response gain 
used to amplify the signal. 

2 2

1 1

2

1

2
0 0

0

{ [ ( ) (1 ) ( ) ]

( ) }

s r op a b b u

a b a

V A A d g R L T d R L T d

R L T d gV

λ λ

λ λ λ λ λ λ λλ λ

λ

λ λ λλ

τ τ ε λ α λ

ε λ

−= + −

+ +

 


 (6)

Figure 1. Workflow for MODTRAN software using measured atmospheric parameters.

2.2. Theory of Infrared Radiation

The radiation obtained by an infrared thermal imager mainly includes three parts: the
self-radiation of the measured target, reflected environmental radiation, and atmospheric
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radiation [17]. The equivalent radiance from the surface of an opaque target by an infrared
thermal imager can be expressed as:

Lλ(Tr) = τaλελLbλ(T0) + τaλ(1− αλ)Lbλ(Tu) + εaλLbλ(Ta) (1)

where Tr is the radiation temperature measured with the infrared thermal imager, T0 is
the surface temperature of the object, Tu is the ambient temperature, Ta is the atmospheric
temperature, ελ is the surface emissivity of the measured object, εaλ is the atmospheric
emissivity, τaλ is the atmospheric transmittance, αλ is the surface absorptance of the object,
and Lbλ denotes the radiance emitted by the blackbody at wavelength λ.

The corresponding irradiance of entrance pupil for the infrared thermal imager is:

Eλ = A0d−2Lλ = A0d−2[τaλελLbλ(T0) + τaλ(1− αλ)Lbλ(Tu) + εaλLbλ(Ta)] (2)

where A0 is the visible area of the target corresponding to the minimum space angle of the
thermal imager, d is the distance between the target and the thermal imager, and usually
A0d−2 is considered as a constant.

Radiation power of the infrared thermal imager received for a certain wavelength is:

Pλ = Eλ Ar (3)

where Ar is the area of lens of the thermal imager.
Without considering stray radiation, which can be minimized via high projection

material and cold aperture, the total radiation of the thermal imager received PT is:

PT = τopPλ (4)

where τop is the transmittance of optical systems.
The response voltage signal Vs is referred according to [18] as:

Vs = g(RλPT + V0) (5)

where Rλ is the spectral responsivity of the infrared thermal imager, which is a constant
for a certain infrared thermal imager; V0 is the DC bias voltage; and g is the response gain
used to amplify the signal.

Vs = Ar A0d−2τopg{τaλ[ελ

∫ λ2
λ1

RλLbλ(T0)dλ + (1− αλ)
∫ λ2

λ1
RλLbλ(Tu)dλ]

+εaλ

∫ λ2
λ1

RλLbλ(Ta)dλ}+ gV0
(6)

Let
K = Ar A0d−2τopg (7)

f (T) =
∫ λ2

λ1

RλLbλ(T)dλ (8)

Equation (6) is then simplified for:

Vs = K{τaλ[ελ f (T0) + (1− αλ) f (Tu)] + εaλ f (Ta)}+ gV0 (9)

When the surface of the measured target can be treated as a gray body, according to
Kirchhoff’s law (ελ = αλ and εaλ = 1 − τaλ) and especially when the measured target is a
blackbody, Equation (9) is simplified for:

Vs = K{τaλ f (T0) + εaλ f (Ta)}+ gV0 (10)
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As the output of the infrared thermal imager, also called the digital number (DN), is
usually proportion to Vs [19], Equation (10) is transformed into:

Gs = k{τaλ[ελ f (T0) + (1− αλ) f (Tu)] + εaλ f (Ta)}+ G0 (11)

When the measured target and the infrared thermal imager are determined, the
coefficients become fixed values; the actual radiance of the measured target is:

f (T0) =

Gs−G0
k −εaλ f (Ta)

τaλ
− (1− αλ) f (Tu)

ελ
(12)

2.3. Model of Radiometric Calibration and Infrared Thermal Imager

One of the most commonly used approaches of radiometric calibration for infrared
thermal imager is that setting a blackbody source of large area to completely cover the
field-of-view (FOV) of the infrared thermal imager [20–22], as shown in Figure 2.
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Figure 2. Schematic diagram of the radiometric calibration.

Since the calibration is usually carried out in the laboratory and the thermal imager is
very close to the blackbody, the influence of the atmosphere can be ignored, ελ = αλ = 1,
τaλ = 1 and εaλ = 0. As a result, Equation (11) is simplified as:

Gs = k f (T0) + G0 (13)

where f (T0) can be calculated according to Planck’s law of radiation:

f (T0) =
1
π

∫ λ2

λ1

C1λ−5

eC2/λT0 − 1
dλ (14)

In Equation (14), C1 and C2 are called the first and second radiation constants, respectively,
with values C1 = 2πhc2 = 3.742× 10−16 W ·m2 and C2 = hc/kB = 1.4388× 10−2 m ·K,
where fundamental constants c (2.997 × 108 m/s), h (6.626 × 10−34 J s), and kB
(1.381 × 10−23 J/K) are the speed of light in vacuo, Planck’s constant, and Boltzmann’s
constant, respectively.

In the process of radiometric calibration, it is necessary to keep laboratory conditions
and thermal imager parameters unchanged. Nonuniformity correction (NUC) is often ap-
plied to make the response of each pixel identical. The procedure of radiometric calibration
for an infrared thermal imager is as follows.

1. Turn off the auto gain function of the infrared thermal imager, and set focus to infinity;
2. Apply NUC to the blackbody source;
3. Save frames of image when the temperature of blackbody source is completely stable,

then average the saved images to reduce random noises;
4. Collect DN value for the averaged images of different temperatures;
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5. Calculate the radiance according to Equation (14);
6. Change the temperature of the blackbody and repeat the steps 3–5 until all tempera-

tures are measured;
7. Fit DN value and the radiance in Equation (13) by the least square method.

The infrared thermal imager and the blackbody source used for radiometric calibration
are shown in Figure 3.
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Figure 3. The infrared thermal imager and the blackbody source. (a) Infrared thermal imager;
(b) Blackbody source.

The properties of the infrared thermal imager and the blackbody source are listed in
Tables 1 and 2, respectively.

Table 1. Properties of the infrared thermal imager.

Parameter Value

Manufacturer FLIR Systems
Model MINICORE-600Z

Band Range 3.7–4.8 µm

Resolution 640 × 512 pixel
Pixel Size 15 µm × 15 µm

Output Bit 14 bit
F# F4

Focus 30–600 mm continuous zooming
Cooling Type Stirling cooling

Table 2. Properties of the blackbody source.

Parameter Value

Manufacturer CI Systems
Model SR800-12LT

Size 305 mm × 305 mm

Temperature range −40–150 ◦C
Emissivity 0.97 ± 0.02

Uniformity ±0.03 ◦C

2.4. The Proposed Blackbody-Based Method

Although MODTRAN software is widely used to estimate the transmittance, atmo-
spheric radiation, and so on, it is only suitable for theoretical analysis not practical scenes,
for MODTRAN is mainly based on the U.S atmospheric parameters which cannot represent
the actual condition in the other places, especially in cities with heavy pollution. The
proposed method can be considered as an alternative for practical scenes. The atmospheric
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transmittance and atmospheric radiation can both be derived from Equation (11) by setting
two different temperatures denoted as T0H and T0L as follows:

GsH = k{τaλ[ελ f (T0H) + (1− αλ) f (Tu)] + εaλ f (Ta)}+ G0 (15)

GsL = k{τaλ[ελ f (T0L) + (1− αλ) f (Tu)] + εaλ f (Ta)}+ G0 (16)

Hence, the atmospheric transmittance and atmospheric radiation can be derived by
Equation (15) minus Equation (16) and Equation (15) plus Equation (16) as follows:

τaλ =
GsH − GsL

k[ελ f (T0H)− ελ f (T0L)]
(17)

εaλ f (Ta) =
1
2
· {GsH + GsL − 2G0

k
− τaλ[ελ f (T0H) + ελ f (T0L) + 2(1− αλ) f (Tu)]} (18)

Figure 4 shows the workflow for correction of atmospheric transmission using the
proposed approach.
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3. Results
3.1. Radiometric Calibration for the Infrared Thermal Imager

In the process of radiometric calibration for the infrared thermal imager, two-point
NUC is applied to ensure the uniformity of images from the blackbody source. In addition,
we use a DALSA X64-CL iPro image acquisition card to grab 100 image frames for each
temperature, and set temperatures of the blackbody increasing from 35 to 115 degrees C at
interval of 5 degrees C, with DN value of pixel (320,256) collected. The radiance calculated
according to Planck’ law of radiation and corresponding DN value are shown in Table 3.
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Table 3. Radiance and DN value collected in the radiometric calibration.

Temperature/◦C Radiance/W·m−2·str−1 DN Value

35 2.4764 1986
40 2.9356 2257
45 3.4627 2584
50 4.0649 2979
55 4.7501 3399
60 5.5267 3900
65 6.4034 4491
70 7.3896 5162
75 8.4950 5904
80 9.7299 6722
85 11.1051 7668
90 12.6318 8717
95 14.3216 9880

100 16.1866 11,295
105 18.2395 12,658
110 20.4933 15,106
115 22.9614 15,114

Table 3 indicates that the DN value is of little increase during the temperature increas-
ing from 110 degrees C to 115 degrees C. Considering the 14-bit output of the thermal
imager, it can be concluded that the DN value has reached a saturation point around 110
degrees C. Therefore, data from 110 to 115 degrees C is removed for the least square, and
only data from 35 to 105 degrees C is used. The result of the radiometric calibration under
the condition of 2 ms integration time, 300 mm focal length, is given:

Gs = 679 f (T0) + 194 (19)

with the fitted straight line using least square method shown in Figure 5.
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3.2. Experiments

We conduct an infrared radiation measuring experiment for the blackbody source in
different temperatures. The blackbody source is settled horizontally 30 m away from the
infrared thermal imager, with temperature increasing from 65 to 105 degrees C at intervals
of 10 degrees C, as shown in Figure 6.

25



Appl. Sci. 2023, 13, 4832

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 12 
 

 
Figure 5. Fitted straight line with the least square method. 

3.2. Experiments 
We conduct an infrared radiation measuring experiment for the blackbody source in 

different temperatures. The blackbody source is settled horizontally 30 m away from the 
infrared thermal imager, with temperature increasing from 65 to 105 degrees C at intervals 
of 10 degrees C, as shown in Figure 6. 

     
(a) (b) (c) (d) (e) 

Figure 6. Blackbody source in field test with different temperatures in degree C: (a) 65; (b) 75; (c) 85; 
(d) 95; (e) 105. 

The radiance calculated according to Planck’ law of radiation and corresponding DN 
value are listed in Table 4. 

Table 4. Radiance and DN value for the blackbody test. 

Temperature/°C Radiance/W·m−2·str−1 DN Value 
65 6.4034 4072 
75 8.4950 5298 
85 11.1051 6764 
95 14.3216 8605 

105 18.2395 11,207 

According to Equations (17) and (18) the atmospheric transmittance τaλ and atmos-
pheric radiation εaλf(Ta) can be calculated through least square fitting in order to reduce 
error, values of which are approximately 88.8% and 0.0239 W/m2/sr. In comparison with 
MODTRAN, the atmospheric parameters used for the blackbody test are listed in Table 5. 
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(d) 95; (e) 105.

The radiance calculated according to Planck’ law of radiation and corresponding DN
value are listed in Table 4.

Table 4. Radiance and DN value for the blackbody test.

Temperature/◦C Radiance/W·m−2·str−1 DN Value

65 6.4034 4072
75 8.4950 5298
85 11.1051 6764
95 14.3216 8605

105 18.2395 11,207

According to Equations (17) and (18) the atmospheric transmittance τaλ and atmo-
spheric radiation εaλf (Ta) can be calculated through least square fitting in order to reduce
error, values of which are approximately 88.8% and 0.0239 W/m2/sr. In comparison with
MODTRAN, the atmospheric parameters used for the blackbody test are listed in Table 5.

Table 5. Atmospheric parameters used in MODTRAN for the blackbody test.

Atmospheric Parameters Value

Atmospheric profile Mid-latitude summer
Altitude of observer (km) 0.216

Visibility (km) 13
Humidity (%) 54

Temperature (◦C) 20
Atmospheric path horizontal

Distance from observer to target (m) 30
CO2 mixing ratio (ppmv) 370

Input these parameters listed in Table 5 into MODTRAN, the atmospheric transmit-
tance and atmospheric radiation are 83.9% and 0.0352 W/m2/sr, respectively. With all the
parameters given above, the infrared radiation of targets can be calculated by Equation (12).
The comparison of inversion results with the derivation from the analytical expression
and with MODTRAN are given in Table 6. It is obvious that the inversion results derived
by the expression in each row are closer to the actual radiance of the blackbody than that
by MODTRAN, with the maximal error of 2.56% and 5.7% by the derivation from the
analytical expression and by MODTRAN, respectively.

To extend the verification to other tests, we also carried out a field test for a fan-shaped
infrared target. Due to the relatively small size of the blackbody, we cannot acquire enough
pixels over a long distance in some cases. The target with a bigger fan-shaped infrared
target is used in the experiment, which consists of 10 pieces of heating plates, each with an
18-degree central angle, the radius of 2.25 m, and the surface emissivity of 0.52. The fan-
shaped target is shown in Figure 7, with the aluminum box of the temperature controller.
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Table 6. Comparison of inversion results for the blackbody source.

Temp
(◦C)

DN
Value

Actual
Radiance
(W/m2/sr)

Radiance with
MODTRAN

(W/m2/sr)

Error with
MODTRAN

(%)

Radiance with
Derivation
(W/m2/sr)

Error with
Derivation

(%)

65 4072 6.4034 6.7654 5.6 6.4348 0.48
75 5298 8.4950 8.9174 4.9 8.4696 0.29
85 6764 11.1051 11.4908 3.4 10.9010 1.83
95 8605 14.3216 14.7224 2.7 13.9552 2.55
105 11,207 18.2395 19.2899 5.7 18.2731 0.18
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Figure 7. Heating plates used in the field test.

Two pieces of plates are chosen in the experiment, with the temperature increasing
from 35 to 50 degrees C at intervals of 3 degrees C and with the ambient temperature of
28 degrees C, shown in Figure 8.
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Figure 8. Heating plates with different temperatures in degree C: (a) 35; (b) 38; (c) 41; (d) 44; (e) 47;
(f) 50.

The atmospheric parameters for the fan-shaped target test are listed in Table 7.
The transmittance and atmospheric radiation are calculated by Equation (12) with

values of 73.3% and 1.17 W/m2/sr, while by MODTRAN with values of 72.3% and
1.34 W/m2/sr, respectively. Table 8 shows the comparison of inversion results for the
two hearting plates, indicating that for each row, the radiance derived from the analytical
expression is also closer to the actual radiance than that from MODTRAN over a relatively
long distance, with the maximal error of 10.2% and 16.7% by the derivation from the
analytical expression and by MODTRAN, respectively.
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Table 7. Atmospheric parameters used in MODTRAN for the fan-shaped target test.

Atmospheric Parameters Value

Atmospheric profile Mid-latitude summer
Altitude of observer (km) 0.22

Visibility (km) 13
Humidity (%) 45

Temperature (◦C) 28
atmospheric path slant

distance from observer to target (m) 1560
CO2 mixing ratio (ppmv) 370

Table 8. Comparison of inversion results for heating plates.

Temp
(◦C)

DN
Value

Actual
Radiance
(W/m2/sr)

Radiance with
MODTRAN

(W/m2/sr)

Error with
MODTRAN

(%)

Radiance with
Derivation
(W/m2/sr)

Error with
Derivation

(%)

35 1630 2.4764 2.0611 −16.7 2.4789 0.10
38 1701 2.7442 2.3392 −14.8 2.7532 0.33
41 1823 3.0354 2.8171 −7.2 3.2246 6.2
44 1944 3.3515 3.2911 −1.8 3.6922 10.2
47 1978 3.6941 3.4243 −7.3 3.8235 3.5
50 2041 4.0649 3.6711 −9.7 4.0669 0.05

4. Discussion

For long distance infrared signature of targets in the field, the inversion uncertainty is
mainly affected by (1) the uncertainty of the radiometric calibration, (2) the uncertainty of
the estimation for the atmospheric transmittance and atmospheric radiation, and (3) the
uncertainty of the environmental condition changes in the field, such as temperature,
wind, etc., other than that in the laboratory. Among these factors mentioned above, the
uncertainty in the radiometric calibration, i.e., values of k and G0 in Equation (13), under
current measuring conditions is approximately 6% for a medium-wave infrared thermal
imager [22]. The uncertainty in the estimation of the atmospheric transmittance and
atmospheric radiation, depending on meteorological equipment and MODTRAN, is about
20–30%; and the environmental differences between the field and the laboratory is usually
10%. As a result, the uncertainty of the measurement for the infrared thermal imager can
be calculated by the root mean square of the three factors listed above, approximately
23.2–32.2%. In our experiments, the inversion uncertainty derived from the analytical
expression and by MODTRAN is 2.56%, 10.2% and 5.7%, 16.7%, respectively, both of which
are acceptable according to the above analysis. It is obvious that the uncertainty derived
from the analytical expressions is lower than that by MODTRAN for cooperative targets,
i.e., targets that can be easily placed a blackbody or an object that served as a blackbody
nearby. However, for non-cooperative targets such as an enemy vehicle, we can only
employ MODTRAN to estimate the radiation of targets theoretically.

5. Conclusions

In this paper, a blackbody-based approach for estimating the actual radiation of
measured cooperative target is proposed. Firstly, radiometric calibration is carried out
in the laboratory for the infrared thermal imager to determine the slope and offset used
in the linear regression. Then, the radiance of the blackbody and digital number value
of images are calculated with a set of different temperatures. Finally, according to the
analytical expressions derived the atmospheric transmittance and atmospheric radiation
are determined, and actual radiance for the cooperative target is calculated. Lab and field
tests demonstrate that the uncertainty of the actual radiance of measured cooperative
target calculated via the proposed method is lower than that by MODTRAN, which can
be considered as an alternative for practical scenes when measuring cooperative targets
in engineering application. Future studies will mainly focus on lowering the uncertainty
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for non-cooperative targets over long distances, which aims to reduce the impact of the
atmospheric transmission to improve furtherly the infrared radiation of measured targets.
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Abstract: A two-dimensional space turntable system has been used to ensure that the Solar X-ray
and Extreme Ultraviolet Imager (X-EUVI) can track the Sun stably, and the prediction of the two-
dimensional turntable trajectory is an important part of payload health management. Different from
the dynamic model using traditional trajectory prediction, we propose a new method for predicting
the pitch axis trajectory of the turntable based on the sun vector and a deep learning CNN-LSTM
model. First, the ideal solar position of the pitch axis was calculated using the sun vector. Then,
the ideal solar position was combined with the running turntable pitch axis motor speed, current,
and solar position error signal as the CNN-LSTM model input data. The model parameters were
trained and adjusted through test data simulation using Fengyun-3E satellite orbit data. Finally, the
next position of the pitch axis was predicted. The test results showed that in the sun vector and
CNN-LSTM model, the RMSE value was 0.623 and the MSE value was 0.388. It was better than the
LSTM model or CNN model alone and could accurately predict the pitch axis position.

Keywords: two-dimensional turntable; pitch axis trajectory; sun vector; CNN-LSTM model; deep learning

1. Introduction

The Solar X-ray and Extreme Ultraviolet Imager (X-EUVI) is a payload of the Sun
synchronous orbit (twilight) FY-3E satellite, which has an orbital altitude of 836 km and an
orbital period of 102 min. This is the first space-based solar X-ray and extreme ultraviolet
(EUV) imager for space weather and space physics in China [1]. FY-3E is a three-axis
stabilized spacecraft with respect to the Earth and changes in the position of the Sun the
X-EUVI coordinate system in real time. Therefore, the two-dimensional turntable system
was developed to track the Sun [1]. It is shown in Figure 1.

When X-EUVI works in orbit, the two-dimensional turntable system first roughly
points to the Sun according to the sun vector from the satellite. Then, X-EUVI precisely
points to the Sun using a turntable lock-in control system based on Trace Guide Telescope
(TGT) solar position data [1].

The two-dimensional turntable includes the pitch axis and the azimuth axis. The
control system of the two-dimensional turntable realizes the accurate direction of the target
by controlling the position, speed, and torque of the two brushless motors, namely the
position axis and the pitch axis [2]. This paper takes the pitch axis trajectory as the research
object. The two-dimensional turntable controls the trajectory depending on the sun vector
data and the solar position data combined with the satellite attitude and other factors.

When the turntable controls the optical axis to point to the sun, the image obtained by
the XEUV is in the center of the field of view as shown in Figure 2.

The main factors affecting the normal running of the turntable include the turntable
motor current, motor voltage, target solar position, and solar position error signal. The
prediction of the two-dimensional turntable trajectory can show the operation status of
the turntable. It is not only important to understand the operation of the turntable itself
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but also that it has an important impact on the evaluation of the operation status of the
satellite platform. The same applies to the trajectory prediction of the spaceborne integrated
platform or intelligent load.
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Meteorological Satellite Center of China).

The existing models of trajectory prediction involve different algorithms in different
fields, but research on trajectory predictions of a two-dimensional turntable in space is still
lacking. By establishing the traditional motion model, the running track of the turntable
can be predicted. However, due to many unknown and variable factors in the model, the
error is difficult to measure, so the accuracy of the motion model is difficult to guarantee [3].
There are many different methods for trajectory prediction. They include the hidden
Markov model (HMM), based on mathematical statistical methods [4], the Kalman filter [5],
or neural networks and deep learning in machine learning methods [6–10]. The advantage
of the hidden Markov model is that it has a relatively good prediction effect for tracks
with variable states, and the disadvantage is that because of its memoryless nature, it
cannot use the preorder information of track sequence. The hidden Markov model is often
used for long-sequence prediction [11]. It is often used for pedestrian trajectory prediction.
A Kalman filter relies on the information of the previous sequence point and the current
position information to predict the next moment. The advantage is that the state estimation
process is very stable, and because its calculation process is a continuous prediction and
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correction process, it is suitable for trajectory-prediction scenarios requiring strong real-time
performance. However, the Kalman filter is extremely dependent on forecasting the next time
based on the information of the last sequence point and the current position information.

Neural networks and deep learning have strong nonlinear mapping, self-learning, and
adaptive abilities. The disadvantage is that they are very sensitive to the initial network’s
weight, and there is a local minimization problem. When the initial network weight is
not uniform, the training results may be different, so this method is applicable to most
trajectory prediction scenarios. Since there is no uniform standard for the structure of a
neural network, the appropriate network structure should be selected according to the
specific situation in practical application [12].

We proposed to use a sun vector and a one-dimensional convolutional neural network
combined with a long short-term memory network (CNN-LSTM) hybrid neural network
model as a method for predicting the trajectory of the pitch axis of the space turntable. First,
according to the sun position calculation model, we calculated the ideal solar position value
from the sun vector data and then used the ideal solar position value of the pitch axis, pitch
axis motor speed, current, and position error signal data as the input data of the model.
We then selected a specific step of the time sliding window and predicted the position
of the pitch axis at the next time. It was built on a model of CNN-LSTM, the prediction
sequence was set with an adaptive Adam optimizer, and the simulating telemetry data of a
two-dimensional turntable was used for training. We used RMSE and MSE as performance
evaluation indicators.

2. Materials and Methods

The pitch axis pointing model established a two-dimensional turntable to roughly
point to the Sun from the sun vector broadcasted by the satellite platform.

2.1. Sun Vector Calculat Model

The sun vector in the orbital instant root broadcast was the unit vector in the orbital
coordinate system. The sun vector was defined using the J2000 coordinate system [13,14].
After a series of coordinate transformations from the orbit coordinate system to the unit
vector of the optical axis of the guide mirror, the transformation matrix of the satellite
attitude had to be considered as shown in Figure 1. Many error factors were difficult to
determine, setting all the installation errors was ignored, and the satellite attitude was
ignored so the ideal value of the turntable motion could be calculated.

The ideal position value of the pitch axis can be calculated through the sun vector. It is
shown in Equations (1) and (2):

Sun vector:
S0 = [Xs(t) Ys(t) Zs(t)]T (1)

We calculated the ideal value of the pitch axis of the turntable as:

θpitcht = atan
[

Zs(t)
Ys(t)

]
× Dpitcht (2)

where S0 is the sun vector, θpitcht is the pitch axis angle, and Dpitcht is the error matrix, which
is currently set as the unit matrix. According to the above formula, the initial position of
the pitch angle of the turntable could be calculated in advance through the sun vector data
broadcasted by the satellite platform. In the actual operation of the turntable, the platform
attitude factor and the position error should also be considered. In addition, it was also
affected by the operating speed and control current of the turntable itself.

2.2. One-Dimensional Convolution Neural Network (1D-CNN) Model

CNN is a successful deep learning framework first proposed by LeCun et al. [15]. In
the study of deep learning, in 1D-CNN (also known as time-domain convolution), the
convolution kernel is a vector with a length of N, which is used for neighborhood filtering
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of one-dimensional input signals and extracting local features. The kernel slides along a
one-dimensional time axis. It is often used to process NLP and time series data. It is shown
in Figure 3.
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In the convolution layer, the input data information needs to undergo convolution
operation and activation function calculation before flowing to the next layer. The operation
is shown in Equation (3):

ht = σcnn(Wcnn ∗ Xt + bcnn) (3)

where Wcnn represents the weight coefficient of the filter, namely the convolution kernel;
Xt represents the data information of the time, while the input sample * represents the
discrete convolution operation between Xt and Wcnn; bcnn is a bias parameter, which will
be obtained by learning when training the model; σ Cnn stands for the activation function;
and ht represents the output data after the convolution operation.

2.3. Long Short-Term Memory (LSTM) Network Model

A long short-term memory network (LSTM) is an improved cyclic neural network
used to solve the problem that RNN networks cannot deal with long-distance dependence.
Hochreiter proposed the LSTM algorithm [16], which can store data information in a longer
time step. Regarding the problem of time series prediction and analysis, LSTM can predict
future data characteristics through the data characteristics of the past period time. LSTM
networks enable nodes to “remember” or “forget” data through a “gate” structure, which
mainly includes three “gates”: the forgetting gate, the information adding a gate, and the
information output gate. Through these three “gates”, the input of each cell state contains
the output of the previous moment, and the input of the current moment also contains
some information stored by the node itself. Therefore, LSTM has a better performance on
longer sequences. It is shown in Figure 4.
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The LSTM updates for time steps given inputs xt, ht−1, and Ct−1, The operation is
shown in Equations (4)–(9):

ft = σ
(

W f · [Ct−1, ht−1, xt] + b f

)
(4)

it = σ(Wi · [Ct−1, ht−1, xt] + bi) (5)

C̃t = tanh(WC · [ht−1, xt] + bC) (6)

Ct = ft ∗ Ct−1 + it ∗ C̃t (7)

ot = σ(Wo[ht−1, xt] + bo) (8)

ht = ot ∗ tanh(Ct) (9)

where σ and tanh represent the sigmoid activation function and hyperbolic tangent acti-
vation function, respectively; W and b represent the weight matrix and bias parameters,
respectively; xt represents the input of the LSTM unit at time t; ht represents the output of
the unit corresponding to at time t; and Ct represents the state unit of the LSTM at time t.
The whole LSTM unit includes three thresholds, namely forgetting gate ft, input gate it,
and output gate ot.

2.4. CNN-LSTM Model

The CNN-LSTM model is a hybrid model of two neural network models. We first used
CNN to extract data features and LSTM to further extract temporal features. The specific
structure was as follows: the CNN model used a Conv1D layer and multiple input data as
the time series; the kernel moved in one dimension along the time axis, then we input the
data into LSTM layer and used the LSTM layer to obtain the long-term characteristics of
the pitch axis data. Finally, it output the predicted value. It is shown in Figures 3 and 4.

According to the above, the main factors affecting the pitch axis position include the
ideal position calculated from the sun vector, the pitch axis operation error, the motor
current, and the motor speed. The pitch axis motor current (C; unit: A), initial position
(I; unit: ◦), pitch axis motor speed (S; unit: ◦/s), and pitch axis operation error (E; unit: mV)
were set as input data. The expected position of the pitch axis (Pt, unit: ◦) was out-
put through two CNN network layers and one LSTM layer. The initial position value
was equal to the ideal position value calculated using Formulas (1) and (2) as shown in
Figures 5 and 6.
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Figure 6. CNN-LSTM model operation diagram, the yellow parts represent the layer of CNN, and
the green parts represent the layer of LSTM.

In Figure 6, C represents the pitch axis motor current, I represents the ideal sun
position, S represents the pitch axis motor speed, E represents the pointing error, and Pt is
the predicted position value of the output.

In the CNN network, we set the data input feature to 4. We conducted performance
tests using input time sliding of 3, 5, or 10. Taking into account performance factors, the
best performance was found for a time sliding of 3. The time sliding window was set
at 3, the stride was set at 1, the kernel size was set at 1, and the activation function used
RELU. The activation function of the LSTM layer was RELU. We used a grid search for
hyperparameter optimization. We tested the performance of the SGD, Adagrad, and Adam
optimizers [17] in this application. Finally, the optimizer selected Adam, the loss function
selected MSE, and the drop layer was set to 0.35. The following network architecture design
was sampled. It is shown in Figure 7 and Table 1.
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Table 1. Model parameter table.

Layer (Type) Parameter 1

conv1d (Conv1D) 720
conv1d_1 (Conv1D) 20,880

lstm (LSTM) 139,776
dropout (Dropout) 0

dense (Dense) 129
1 Total params: 161,505; trainable params: 161,505; non-trainable params: 0.

3. Results

We constructed a data set based on orbit data simulated using Fengyun-3E satellite
orbit data and the operation data of the two-dimensional turntable of the Solar X-ray and
Extreme Ultraviolet Imager (X-EUVI).

The main steps to build the CNN-LSTM model were as follows:

(1) We set the time window size K and transformed the data set according to the time
window size to transform the time series into a supervised sequence; that is, we used
the past K values to predict the value of the next time and the original value of the
next time as the supervised value.

(2) We divided the data set used into the training set and test set and converted the data
format into the format required in the CNN-LSTM model, namely (samples, time
steps, features).

(3) The parameters used in the model, including the number of iterations, the amount
of data for each iteration, and the number of neurons, were determined through
continuous attempts.

(4) We established a CNN-LSTM model. After the model for predicting the data in the
data flow was built, the data could be predicted.

The specific process is shown in Figure 8.
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3.1. Data Feature Extraction and Data Set Establishment

The data sampling period was 32 s. A total of 34,559 sets of data were set up and sorted
by time. The first 29,562 sets of data were used as training sets, and the last 4997 groups
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were used as test sets. The outliers in the data set were removed and normalized. The
results are shown in Figures 9 and 10.
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3.2. Experiment Environment and Tools

The experimental environment of this research was an AMD FX (tm)—4100 Quad-
Core Processor, 16 GB of memory, the Windows 10 operating system, and Python 3.9, and
PyCharm as development tools. In PyCharm, we used the data packets keras and sklearn.

3.3. Experiment Result

We set epoch = 50 and batch_Size = 70. The change in the loss value with EPOCH
is shown in Figure 11. The training set fluctuated in the early stage. With the increase
in EPOCH, the loss value gradually converged. The predicted value and actual value
are shown in Figure 12 below. It can be seen that the data prediction at some inflection
points had more errors. It also can be seen that when using the CNN-LSTM model, the loss
function of the training set converged better (see Figures 11 and 12).
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Since we achieved good results using the CNN-LSTM model, we used the idea of
ablation to evaluate the impact of each module on performance. In the CNN-LSTM model,
we removed the CNN layers or LSTM layers, both of which had a large impact on the
performance of the system (the number of CNN layers changes also affected the final result).
We selected the CNN model and the LSTM model for the model comparison. The CNN
model was set with three layers of 1D-CNN (Filter = 64), the LSTM model was set with two
layers of LSTM, and the time sliding window was 3. The optimizer was consistent with
the CNN-LSTM model, and the Adam optimizer was selected. The loss function was MSE.
When EPOCH was set to 50, CNN-LMST had the lowest loss and the best effect. This is
shown in Figure 13 for specific values and in Table 2. This model can be used for trajectory
prediction of other motion units.

Table 2. Performance in test data sets for each model.

Model RMSE MSE

LSTM 0.678 0.459
CNN 0.632 0.399

CNN-LSTM 0.623 0.388
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4. Discussion

In this paper, we proposed using a sun vector to calculate the ideal turntable position
value. Then we took the ideal position value and turntable speed, current, and solar
position error signal as date features and used the CNN-LSTM model to realize predicting
the trajectory of the pitch axis. The model could adjust parameters adaptively on the
training set and had a better performance on the test set.

The premise of the conventional feedback method is the need to calibrate the optical
axis in relation to the instrument body coordinate system and the satellite coordinate
system. The position of the pitch axis is then derived by determining the coefficients of
the controller. The disadvantage is that certain parameters may need to be adjusted after a
long period of system operation. The advantage is the high reliability due to the rigorous
model derivation. The advantage of the deep learning method for calculating the pitch axis
position is that it can be used without coordinate system calibration, allowing adaptive
adjustment of the parameters. However, due to its black-box nature, this research is still at
a preliminary stage for on-orbit applications.

Compared with the trajectory prediction method mentioned above, the pitch axis
trajectory prediction of a two-dimensional turntable is a typical time series prediction
problem [18,19]. It is not only related to the previous running state of the turntable but
also is affected by the running state of a period of the time window. From this point of
view, HMM and an extended Kalman filter only predict the next state through the last state,
and the results will affect the accuracy of the prediction [20]. We did not use the equation
of motion either, thereby avoiding uncertainty error analysis. We used a deep learning
model to predict the trajectory by extracting and learning data features. We used a sliding
time window instead of just the last state, and our findings were in accordance with recent
studies indicating that a prediction model based on deep learning can achieve satisfactory
results [21–26]. The prediction model based on the LSTM model could effectively avoid
gradient disappearance or gradient explosion. In the process of debugging parameters,
we also found that the initial value of parameters affected the final performance of the
model. The size of the dataset also limited our choice of models. This model had a better
performance on a small data set. For the comparison of the performance indicators of
the LSTM model and CNN model alone, we could see that the sun vector combined with
CNN-LSTM model had a better performance.

The major limitation of the present study was that the model contained part of the
black box, so the model lacked interpretability. At the present stage, we mainly used the
calculated results to compare with the real values and then used the comparison results to
reverse-extrapolate to achieve the purpose of optimizing the performance of the model. The
generalization ability of the CNN-LSTM model has yet to be verified. In addition, when
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the sliding time window becomes larger, the calculation time of the model will become
longer. It will affect the execution time of the model.

Despite its limitations, the model of CNN-LSTM had a significant short-term predic-
tion effect on turntable trajectory prediction.

Future applications in orbit will be different from the ground simulation. For the
hardware environment, we must choose the processor to meet the onboard radiation—a
hardened and tolerant processor generally using an ARM and field-programmable gate
array (FPGA) fabric for real-time processing [27]. Software algorithms will be transplanted
and optimized accordingly, and the trained network structure needs to be arranged on the
onboard platform to work.

5. Conclusions

With the introduction of intelligent load and spaceborne integration, increasing atten-
tion has been paid to the problems related to two-dimensional turntable motion [28].

In this paper, different from the motion model and equation using traditional trajectory
prediction, we used the sun vector and the CNN-LSTM model to predict the pitch axis
position of the two-dimensional turntable. It had the advantages of adaptive adjustment
of parameters and easier establishment of models. We calculated the ideal sun position
through the sun vector model and input it into the model as a feature to participate in
the prediction. Through comparison of performance indicators, the CNN-LSTM model
combined with a solar vector model was superior to the LSTM model or the CNN model.
The test results showed that the RMSE value was 0.623 and the MSE value was 0.388. The
CNN-LSTM model could accurately predict the two-dimensional turntable operation.

This can be applied not only to track prediction of a turntable but also extended to
other track predictions; for example, vehicle trajectory prediction, navigation trajectory
prediction, etc. It also has broad prospects in other applications such as fault detection by
predicting the state [29–32].
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Abstract: Convolutional neural networks (CNNs) have attracted significant attention as a commonly
used method for hyperspectral image (HSI) classification in recent years; however, CNNs can only be
applied to Euclidean data and have difficulties in dealing with relationships due to their limitations
of local feature extraction. Each pixel of a hyperspectral image contains a set of spectral bands that
are correlated and interact with each other, and the methods used to process Euclidean data cannot
effectively obtain these correlations. In contrast, the graph convolutional network (GCN) can be used
in non-Euclidean data but usually leads to over-smoothing and ignores local detail features due to the
need for superpixel segmentation processing to reduce computational effort. To overcome the above
problems, we constructed a fusion network based on the GCN and CNN which contains two branches:
a graph convolutional network based on superpixel segmentation and a convolutional network with
an added attention mechanism. The graph convolutional branch can extract the structural features
and capture the relationships between the nodes, and the convolutional branch can extract detailed
features in the local fine region. Owing to the fact that the features extracted from the two branches
are different, the classification performance can be improved by fusing the complementary features
extracted from the two branches. To validate the proposed algorithm, experiments were conducted on
three widely used datasets, namely Indian Pines, Pavia University, and Salinas. An overall accuracy
of 98.78% was obtained in the Indian Pines dataset, and overall accuracies of 98.99% and 98.69% were
obtained in the other two datasets. The results show that the proposed fusion network can obtain
richer features and achieve a high classification accuracy.

Keywords: hyperspectral images; convolutional neural networks; graph convolutional networks;
feature fusion

1. Introduction

Hyperspectral imaging technology combines imaging technology with spectral tech-
nology and has achieved wide application in recent years. With the advancement of
hyperspectral imaging technology, hyperspectral imaging systems can simultaneously ac-
quire abundant spectral information and two-dimensional spatial information of a feature
and then form a hyperspectral image (HSI) [1–3]. Therefore, hyperspectral imaging tech-
nology has become a hotspot for research due to its rich spectral and spatial information.
An HSI provides from tens to hundreds of continuous spectral bands [4]. The abundance
of spectral information greatly enhances the ability to distinguish objects. Therefore, an
HSI is commonly used in disaster monitoring, vegetation classification, fine agriculture,
and medical diagnosis due to its extremely high spectral resolution [1,2,5].

As the focus of the field of hyperspectral image analysis, the HSI classification task
has always received significant attention from scholars. Hyperspectral image classification
aims to classify each pixel point in the image [6]. In the early days, most HSI classification
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methods mainly relied on some traditional machine learning algorithms [7] which were
mainly divided into two processes: traditional manual feature engineering and classifier
classification [8]. Feature engineering aims to process data based on knowledge so that
the processed features can be better used in subsequent classification algorithms. Com-
monly used feature engineering methods include principal component analysis (PCA),
independent component analysis (ICA), and other dimensionality reduction methods.

Typical classification algorithms include the support vector machine (SVM) [9], ran-
dom forest (RF) [10], and k-nearest neighbor (KNN) [11], etc. [12,13]. The above machine
learning approaches only focus on the spectral information of an HSI. It is inaccurate to use
the spectral information only for the classification task, thus limiting the improvement in
the classification accuracy and the gradual elimination of spectral information.

As a result of the triumph of deep learning in areas such as computer vision, many
approaches based on deep learning have also been adopted for hyperspectral image
classification [14]. Among the deep learning methods, convolutional neural networks
(CNNs) [15] have become a popular method for hyperspectral image classification due to
their excellent performance. Deep-learning-based methods represented by CNNs have
replaced traditional machine-learning-based HSI classification methods and have become a
research hotspot [16].

Deep learning methods of 1D-CNN [17] and 2D-CNN were first applied to hyperspec-
tral image classification, and the performance surpassed machine learning methods. How-
ever, the above methods suffer from the underutilization of spatial and spectral information.
Therefore, the 3D-CNN model [16] was proposed, which can extract spatial–spectral fea-
tures simultaneously and therefore obtain better classification results, but the model has
a large computational burden. To extract richer features, some scholars have proposed a
hybrid spectral CNN (HybridSN) [18] which combines 3D-CNN and 2D-CNN to exploit
the spatial–spectral features of an HSI with less computational burden than 3D-CNN.

With the purpose of finding correlations between data, highlighting important features,
and ignoring irrelevant noise information, an attention mechanism has been proposed.
Li et al. proposed a two-branch double attention network (DBDA) [19] which contained
two branches to extract spatial and spectral features and added an attention mechanism
to obtain better classification results. In order to capture richer features, deeper network
layers are needed, but the deeper network layers will lead to computational complexity
and make the model training difficult. Zhong et al. introduced a residual structure based
on the 3D-CNN model [20], constructed a spectral residual module and a spatial residual
module, and achieved more satisfactory classification results.

Although the classification results achieved by CNN-based classification methods
have been good, there are still some limitations. First, the CNN is designed for Euclidean
data, and the traditional CNN model can only convolve regular rectangular regions, so
it is difficult to obtain complex topological information. Second, CNNs cannot capture
and utilize the relationship between different pixels or regions in hyperspectral images;
they can only extract detailed features in the local fine region, but the structure features
and dependency relationship between the nodes may provide useful information for the
classification process [21,22].

In order to obtain the relationship between objects, graph convolutional networks
(GCNs) have been developed rapidly in recent years [23]. GCNs are designed to process
graph-structured data. CNNs are used for processing Euclidean data such as images, which
are a regular matrix. Therefore, no matter where the convolution kernel of a CNN is located
in the image, the consistency of the result of the operation is guaranteed (translational
invariance). However, the graph-structured data are non-Euclidean data, and the graph
structure is irregular, so it is impossible to apply the CNN on graph data. The graph
convolution is designed to resolve this situation. The most important innovation of the
GCN is to overcome the inapplicability of translation invariance on non-Euclidean data, so
it can be applied to extract the features of the graph structure.
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Kipf et al. proposed the GCN model [24] which is able to operate on non-Euclidean
data and extract the structural relationship between different nodes [21]. Some scholars
have attempted to apply the GCN to hyperspectral classification tasks [25], and various
studies have shown that the classification results are not only affected by spectral infor-
mation but are also related to the spatial structure information of the pixels [22,26]. By
treating each pixel or superpixel in the HSI as a graph node, the hyperspectral image can be
converted into graph-structured data, and then the GCN can be used to obtain the spatial
structure information in the image and provide a more effective information for the classi-
fication. Hong et al. [22] proposed the MiniGCN method and constructed an end-to-end
fusion network which was able to sample images in small batches, classify images as sub-
graphs, and achieve good classification results. Wan et al. proposed MDGCN [27], which is
different from the commonly used GCN. Working on a fixed graph model, MDGCN is able
to make the graph structure update dynamically so that the two steps benefit each other. In
addition, we cannot consider each pixel of an HSI as a graph node due to the limitation of
computational complexity, so hyperspectral images are usually preprocessed as superpixels.
The superpixel segmentation technique is applied to the construction of the graph structure,
which reduces the complexity of model training significantly. However, the superpixel
segmentation technique leads to another problem. Superpixel segmentation often leads
to smooth edges of the classification map and a lack of local detailed information of the
features. This problem restricts the improvement of the classification performance and has
an impact on the analysis of the results.

To obtain the relational features of an HSI and to solve the problem of missing details
due to superpixel segmentation, inspired by [28], we designed a feature fusion of the
CNN and GCN (FCGN). The algorithm consisted of two branches: the GCN branch and
CNN branch. We applied the superpixel segmentation technique in the GCN branch. The
superpixel segmentation technique can aggregate similar pixels into a superpixel. Then,
we treated these superpixels as graph nodes. Graph convolution processes the data by
aggregating the features of each node as well as its neighboring nodes. This approach
can capture the structure features and dependency relationship between the nodes and
thus better represent the features of the nodes. Compared with the CNN branch, the GCN
branch based on superpixel segmentation can acquire structure information over a longer
distance, while the CNN branch can obtain the pixel-level features of the HSI and perform
a fine classification of local regions. Finally, the different features acquired by the two
branches were fused to obtain richer image features by complementing their strengths. In
addition, the attention mechanism and depth-wise separable convolution algorithm [29]
were applied to further optimize the classification results and network parameters.

2. Methodology

This section presents the proposed FCGN for HSI classification, which includes the
overall structure of the FCGN and the function of each module in the network.

2.1. General Framework

To solve the problem of missing local details in classification maps due to superpixel
segmentation, we proposed a feature fusion of the CNN and GCN, as shown in Figure 1.
The proposed network framework contained a spectral dimension reduction module
(see Section 2.2 for details), a graph convolutional branch (see Section 2.3 for details), a
convolutional branch (see Section 2.4 for details), a feature fusion module, and a Softmax
classifier. It should be noted that the features extracted from convolutional neural networks
were different from those of graph convolutional networks. Feature fusion methods can
utilize different features of an image to complement each other’s strengths, thus obtaining
more robust and accurate results. Because of that, it is possible to obtain better classification
results than a single branch by fusing features from two branches.
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The original HSI was handled by the spectral dimensionality reduction module first,
which was used for spectral information transformation and feature dimensionality re-
duction. Then, we used convolutional neural networks to extract the detailed features
in a local fine region. Considering the problem that the CNN-based method may induce
overfitting with too many parameters and an insufficient number of training samples,
we used a depth-wise separable convolution to reduce the parameters and enhance the
robustness. To further improve the model, we added attention modules to the convolution
branch. We used the SE attention module to optimize the proposed network [30]. The SE
module can obtain the weight matrix of different channels. Then, the weight values of each
channel calculated by the SE module were multiplied with the two-dimensional matrix
of the corresponding channel of the original feature map. We used graph convolutional
networks to extract the superpixel-level contextual features. In this branch, we applied a
graph encoder and a graph decoder to implement the transformation of pixel features and
superpixel-level features (see Section 2.5 for details). Next, the different features acquired
by the two branches were fused to obtain richer image features by complementing their
strengths. Finally, after the processing of the Softmax classifier, we obtained the label of
each pixel. The role of Softmax is to assign a probability value to each output classification,
indicating the probability of belonging to each class.

2.2. Spectral Dimension Reduction Module

There is a significant amount of redundant information in the original hyperspectral
image. Using dimension reduction modules, it is possible to significantly reduce the
computational cost without significant performance loss. The 1 × 1 convolutional layer has
the ability to remove useless spectral information and increase nonlinear characteristics.
Moreover, it is usually used as a dimension reduction module to remove computational
cost, as shown in Figure 2. In the FCGN network, hyperspectral images are first processed
using two 1 × 1 convolutional blocks. Specifically, each 1 × 1 convolutional block contains
a BN layer, a 1 × 1 convolution layer, and an activation function layer. The role of the BN
layer is to accelerate the convergence of the network, and the activation function layer
can significantly increase the network’s nonlinearity to achieve better expressiveness. The
activation function in this module adopts Leaky ReLU.
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We have:
X∗h,w,n = σ( ∑

x,y,b
Wx,y,b,nX̃h,w,b + Bx,y,b,n) (1)

where Xh,w,b denotes the input feature map, X̃h,w,b denotes the batch-normalized input
feature map, X∗h,w,n denotes the output feature map, Wx,y,b,n denotes the convolution kernel
of the input feature map in row x and column y, Bx,y,b,n denotes bias, and n is the number
of convolution kernels. σ represents the Leaky ReLU activation function.

2.3. Graph Convolution Branch

Numerous studies have shown that the classification accuracy can be effectively
improved by combining the different features of images. Traditional CNN models can
only convolve images in regular image regions using convolution kernels of a fixed size
and weight, resulting in an inability to obtain global features and structural features of
images. Therefore, it is often required to deepen the network layer to alleviate this problem.
However, as the number of network layers deepens, the chance of overfitting increases
subsequently, especially when processing data with a small amount of training samples
such as HSIs. Such a result is unacceptable to us.

Therefore, a GCN branch based on superpixel segmentation was constructed to obtain
the structural features. Different from the CNN, the GCN is a method used for the graph
structure. The GCN branch can extract the structure features and dependency relationship
between the nodes from images. These features are different from the neighborhood spatial
features in a local fine region extracted by the CNN branch. Finally, the property of the
network can be enhanced by fusing the different features extracted from the two branches.
The graph structure is a non-Euclidean structure that can be defined as G = (V, E), where
V is the set of nodes and E is the set of edges. V and E are usually encoded into a degree
matrix D and node matrix A, where D records the relationship between each pixel of the
hyperspectral image and A denotes the number of edges associated with each node.

Because the degree of each graph node in the graph structure is not the same, the
GCN cannot directly use the same-size local graph convolution kernel for all nodes similar
to the CNN. Considering that the convolution in the spatial domain is equivalent to
the product in the frequency domain, researchers hope to implement the convolution
operation on topological graphs with the help of the theory of graph spectra, and they have
proposed the frequency domain graph convolution method [31]. The Laplacian matrix of
the graph structure is defined as L = D−A. The symmetric normalized Laplacian matrix
is defined as:

L = IN −D−1/2AD−1/2 (2)

The graph convolution operation can be expressed by Equation (3).

gθ • x = Ugθ(Λ)UTx (3)

where U is the orthogonal matrix composed of the feature vectors of the Laplacian matrix
L by column, and gθ(Λ) is a diagonal matrix consisting of parameter θ, representing the
parameter to be learned. The above is the general form of graph convolution, but Equation
(3) is computationally intensive because the complexity of the eigenvector matrix U is
O(N2). Therefore, Hammond et al. [32] showed that this process can be obtained by fitting
a Chebyshev polynomial, as in Equation (4).

gθ • x =
K

∑
k=0

θkTk

(
L̃
)

x (4)

where L̃ = 2
λmax

L− IN and λmax are the largest eigenvalues of L. θk is the vector of the
Chebyshev coefficients. In order to reduce the computational effort, the literature [33] only
calculates up to K = 1. λmax is approximated as two; then, we have:
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gθ • x ≈ θ
(

IN + D−1/2AD−1/2
)

x (5)

In addition, self-normalization is introduced:

IN + D−1/2AD−1/2 → D̃
−1/2

ÃD̃
−1/2

(6)

where Ã = A + IN ,D̃ii = ∑
j

Ãij. Finally, the graph convolution is:

Hl+1 = σ
(

D̃
−1/2

ÃD̃
−1/2

HlWl
)

(7)

2.4. SE Attention Mechanism

The attention mechanism can filter key information from the input images and enhance
the accuracy of the model with a limited computational capability. Therefore, we applied
the attention mechanism to the convolutional branch. For simplicity, we chose the SE
attention mechanism. The purpose of the SE module is to obtain more important feature
information by a weight matrix that provides different weights to different positions of the
image from the perspective of the channel domain. The SE module consists of three steps.
First, the compression operation performs feature compression from the spatial dimension
to turn the feature of H ×W × B into a 1 × 1 × B feature. Second, the excitation operation
generates weights for each feature channel by introducing the w parameter. Finally, the
weight outputs from the excitation block are considered as the importance of each feature
channel after selection, and the weights of each channel calculated by the SE module are
multiplied with the two-dimensional matrix of the corresponding channel of the original
feature map to complete the rescaling of the original features in the channel dimension to
highlight the important features. The SE module is shown in Figure 3.
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Figure 3. Schematic diagram of SE attention mechanism mainly divided into two operations of
squeeze and excitation.

2.5. Superpixel Segmentation and Feature Conversion Module

The GCN can only be applied on graph-structured data, and in order to apply the
GCN to hyperspectral images, the hyperspectral image needs to be constructed as a graph
structure first. The simplest method is to consider each pixel of the image as each node of
the graph structure, but this method leads to a huge computational cost. Therefore, it is
common to first apply superpixel segmentation to the HSI.

Currently, common superpixel segmentation algorithms include SLIC [34], Quick-
Shift [35], and Mean-Shift [36]. Among them, the SLIC algorithm assigns image pixels to
the nearest clustering centers to form superpixels based on the distance and color difference
between pixels. This method is computationally simple and has excellent results compared
with other segmentation methods.

In general, the SLIC algorithm has only one parameter: the number of superpixels
K. Suppose an image with M pixel is expected to be partitioned into K superpixel blocks;
then, each superpixel block contains M/K pixels. Under the assumption that the length
and width of each superpixel block are uniformly distributed, the length and width of each
superpixel block can be defined as S, S = sqrt (M/K).

Second, in order to avoid the seed points falling on noisy points or line edges of the image
and thus affecting the segmentation results, the positions of the seed points are also adjusted
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by recalculating the gradient values of the pixel points in the 3 × 3 neighborhood of each
seed point and setting the new seed point to the minimum gradient in that neighborhood.

Finally, the new clustering centers are calculated iteratively by clustering. The pixel
points in the 2S × 2S region around the centroid of each superpixel block are traversed.
After that, each pixel is divided into the superpixel blocks closest to it; thus, an iteration is
completed. The coordinates of the centroid of each superpixel block are recalculated and
iterated, and convergence is usually completed in 10 iterations. Figure 4 represents the
diagram of different number of superpixels in a image.
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In this paper, the number of superpixel was not the same in each dataset but rather
varied according to the total number of pixels in the dataset, for which the number of
superpixels is specified as K = (H×W)/β, where H and W are the length and width of
the dataset, and β is a segmentation factor to control the number of superpixels, which is
100 in this paper.

It is worth noting that since each superpixel had a different number of pixels, and
because the data structures of the two branches were different, the CNN branch and the
GCN branch could not be fused directly. Inspired by [28], we applied a data transformation
module that allowed the features obtained from the GCN branch to be fused with the
features from the CNN branch, as shown in Figure 5.
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Xi denotes the i-th pixel in the flattened HSI and Vj denotes the average radiance of the
pixels contained in the superpixels Sj. Let Q ∈ RHW×Z be the association matrix between
pixels and superpixels, where Z denotes the number of superpixels; then, we have:

Qi,j =





1, if
_
Xi ∈ Sj

0, if
_
Xi /∈ Sj

, (8)

where
_
X = Flatten(X), Qi,j denotes the value of Q at the association matrix, and

_
Xi denotes

the i-th pixel in
_
X. Finally, the feature conversion process can be represented by:

V = Encoder(X;Q) = Q̂Tflatten(X), (9)

_

X = Decoder(V; Q) = reshape(QV), (10)

where Q̂ denotes the normalized Q by column, and reshape(QV) denotes restoring the
spatial dimension of the flattened data. V denotes the nodes composed of superpixels and
_

X denotes the feature converted back to Euclidean domains. In summary, features can be
projected from the image space to the graph space using the graph encoder. Accordingly,
the graph decoder can assign node features to pixels.

3. Experiments and Discussion

The overall accuracy (OA), average accuracy (AA), and kappa coefficient (kappa) were
employed as the evaluation indices of the classification performance. The AA is equal
to the sum of the number of correctly classified samples divided by the total number of
samples. AA represents the average value of each accuracy for each category. The kappa
coefficient is a reference metric that enables the calculation of overall consistency and
classification consistency.

3.1. Experimental Datasets

To evaluate the effectiveness of the model, three commonly used hyperspectral
datasets—Indian Pines (IP), Pavia University (PU), and Salinas (SA)—were used to evaluate
the FCGN algorithm in this paper.

The IP dataset was acquired by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor over the northwestern Indian region. This dataset contains 145× 145 pixels
with 220 spectral bands ranging from 0.4 to 2.5 µm. After removing 20 water absorption
and noisy spectral bands, 200 bands were reserved for the experiment. The land cover
scene consists of 16 classes with 10,366 labeled pixels. The dataset was divided into training,
validation, and test sets. For this dataset, the sample size was relatively small, and the
number of samples of each class was extremely unbalanced. Overall, 5%, 1%, and 94% of
samples per class were randomly selected for training, validation, and testing, respectively,
as presented in Table 1.

The PU dataset was captured by the reflective optics system imaging spectrometer (ROSIS)
sensor at Pavia University. This dataset contains 610 × 340 pixels with 125 spectral bands
ranging from 0.43 to 0.86 µm. In total, 103 bands were utilized after discarding noisy bands.
There are nine land cover categories in this dataset. Overall, 0.5%, 0.5%, and 99% of samples
per class were selected for training, validation, and testing, respectively, as listed in Table 2.

The SA dataset is another commonly used dataset for hyperspectral image classifica-
tion. It was recorded by the AVIRIS sensor over the Salinas Valley. This dataset contains
512 × 217 pixels with 224 spectral bands, and 204 bands were utilized. There are 16 land
cover categories in this dataset. Because this dataset has a larger number of samples com-
pared with Indian Pines, 0.5% of the labeled samples were selected as the training set and
the validation set, and 99% of samples per class were randomly selected for testing, as
listed in Table 3.
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Table 1. The dataset division for each class of the IP dataset.

NO. CLASS Train Val Test

1 Alfalfa 3 1 50
2 Corn-notill 72 14 1348
3 Corn-mintil 42 8 784
4 Corn 12 2 220
5 Pasture 25 4 468
6 Trees/Grass 37 7 703
7 Pasture-mowed 2 1 23
8 Hay-windrowed 24 4 461
9 Oats 1 1 18
10 Soybeans-notill 48 9 911
11 Soybeans-mintill 123 24 2321
12 Soybeans-cleantill 31 6 577
13 Wheat 11 2 199
14 Woods 65 12 1217
15 Building-Grass 19 3 358
16 Stone-steelTowers 5 1 89

Total 520 99 9747

Table 2. The dataset division for each class of the PU dataset.

NO. CLASS Train Val Test

1 Asphalt 34 34 6563
2 Meadows 94 94 18,461
3 Gravel 11 11 2077
4 Trees/Grass 16 16 3032
5 Metalsheets 7 7 1331
6 Baresoil 26 26 4977
7 Bitumen 7 7 1316
8 Bricks 19 19 3644
9 Shadows 5 5 937

Total 219 219 42,338

Table 3. The dataset division for each class of the SA dataset.

NO. CLASS Train Val Test

1 Brocoli_green_weds_1 11 11 1987
2 Brocoli_green_weds_2 19 19 3688
3 Fallow 10 10 1956
4 Fallow_rough_plow 7 7 1380
5 Fallow_smooth 14 14 2650
6 Stubble 20 20 3919
7 Celery 18 18 3543
8 Grapes_untrained 57 57 11,157
9 Soil_vinyard_develop 32 32 6139
10 Corn_senesced_green_weeds 17 17 3244
11 Lettuce_romaine_4wk 6 6 1056
12 Lettuce_romaine_5wk 10 10 1907
13 Lettuce_romaine_6wk 5 5 906
14 Lettuce_romaine_7wk 6 6 1058
15 Vinyard_untrained 37 37 7194
16 Vinyard_vertical_trellis 10 10 1787

Total 279 279 53,571
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3.2. Experimental Settings

The proposed architecture consisted of three modules. The number of layers in
the spectral dimension reduction module, graph convolution branch, and convolution
branch were all set to two. The spectral dimension reduction modules started with two
1 × 1 convolution layers (128 filters and 128 filters). The size of the convolution kernels in
the CNN branch was set to 3 × 3 (128 and 64 filters), and the sample output dimensions
in the GCN branch were set to 128 and 64. We used the Adam optimizer to train our
model with a learning rate of 0.001, and the training epoch was set to 500. The number of
superpixels for each dataset was set to 1/100 of the number of pixels.

The proposed algorithm is implemented in Python 3.8.12 and Pytorch1.1.0 using
Python language. The hardware used for training is an i7-10750H CPU and a NVIDIA
GeForce RTX 2060s GPU.

3.3. Classification Results

To verify the performance of the model, several advanced HSI classification meth-
ods were selected for comparison with this model, including 3D-CNN [37], GCN [24],
MiniGCN [22], HybirdSN [18], DBDA [19], and MDGCN [27]. The number of training
samples and test samples selected for each method were the same, and the hyperparame-
ters were the same as in the original paper. The classification accuracies of the different
methods on each dataset are shown in Tables 4–6 the best results in each class were
bolded and the classification maps obtained by these methods are illustrated in Figures 6–8;
the experimental results are the average of five experiments. It is worth noting that al-
though we have minimized the risk of data leakage, the issue may still exist and affect the
classification results.

Table 4 shows the classification results of the different models on the IP dataset. The
lack of training samples on the IP dataset and the imbalance in the number of samples from
different categories made classification challenging, but our classification method obtained
the best classification results. It can be observed that the classification accuracy obtained
by the 3D-CNN was lower than other methods, which might have been due to the fact
that the 3D-CNN had more parameters, but the number of training samples was small in
this experiment. In addition, it did not take full advantage of the relationship information
contained in the samples, which eventually led to poor classification results. HybirdSN
combines 3D-CNN layers with 2D-CNN layers, which has a stronger feature representation
capability by combining spatial and spectral information and a lower number of param-
eters, but the accuracy was still lower in the case of a small number of samples. DBDA
contains two branches to obtain spatial–spectral features, respectively, and introduces the
attention mechanism and eventually achieved better classification results than HybirdSN.
The GCN-based classification method can generally obtain better classification results with
a smaller number of samples. MiniGCN adds a convolutional branch and adopts a small
batch strategy compared with GCN. MiniGCN achieved better classification results but did
not take into account the different importance of different features. In contrast, the FCGN
obtained the best classification results, which was greatly due to the design of two branches
to obtain complementary features. The graph convolution branch based on superpixel
segmentation can obtain large-scale irregular features of the image and the relationship
between different nodes, reducing the classification error caused by noise. The convo-
lutional neural network with the added attention mechanism can acquire regular image
features at a small image scale and generate detailed edge features, which complements
the smooth features acquired by the superpixel segmentation-based graph convolution
branch to obtain better classification results on both large and small scales. The convolution
branch was able to process the local fine area to obtain the detailed features of the image;
due to the misclassification of pixels, the classification result of the convolution branch
contained more noise. By fusing the features of the two branches, the influence of noise on
the classification results was greatly reduced. In terms of running time, the FCGN had a
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medium running time compared to the other comparison algorithms due to the use of the
depth-separable convolution algorithm.

Table 5 shows the classification results of the different models on the Pavia University
dataset. It can be observed that the classification results of each algorithm slightly improved
relative to those of the IP dataset, which may be because of the fewer sample classes in the
PU dataset and because the number of samples in each class was similar. It is remarkable
that the DBDA obtained better classification results than HybirdSN, which may have
resulted from the two-branch structure of HybirdSN and the attention mechanism. The
FCGN performed better than the compared methods, with an OA of 98.99%, because
the FCGN could fully exploit the features of the samples. Moreover, the addition of the
attention mechanism also improved the classification results. The runtime of the FCGN
algorithm slightly increased compared to some comparison algorithms, but considering the
competitive classification results of this algorithm and the short testing time, the increase
in the runtime is worth it.
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Figure 8. The classification maps for Salinas. (a) False-color image; (b) ground truth; (c) 3DCNN;
(d) GCN; (e) MiniGCN; (f) HybirdSN; (g) DBDA; (h) MDGCN; (i) FCGN; (j) Figure legend.

Table 4. Classification results of the IP dataset.

Class 3DCNN GCN MiniGCN HybirdSN DBDA MDGCN FCGN

1 80.00 94.66 93.73 83.44 99.51 88.88 100.00
2 90.16 70.37 72.54 80.38 93.55 96.16 96.51
3 80.05 66.89 76.83 82.21 94.11 94.17 98.46
4 86.54 86.88 98.16 99.19 96.42 92.59 97.36
5 84.43 89.27 93.40 96.47 97.64 96.79 97.13
6 79.12 93.38 92.64 98.81 96.23 99.50 100.00
7 67.22 92.91 88.48 86.89 96.66 96.82 92.89
8 90.87 96.14 97.59 98.04 91.35 95.72 98.68
9 70.00 100.00 99.73 73.11 89.37 99.98 100.00
10 79.11 85.37 75.98 90.41 70.30 85.70 97.30
11 90.81 68.45 79.42 74.23 90.32 96.06 98.63
12 72.50 78.90 79.51 91.00 97.38 98.88 95.17
13 70.88 99.84 98.93 71.88 97.99 97.21 99.59
14 85.83 85.12 87.88 98.33 98.34 99.93 99.33
15 92.30 82.67 89.82 94.48 96.25 96.17 95.71
16 69.22 97.41 100.00 70.22 86.66 94.82 97.75

OA(%) 78.47 86.67 88.67 87.99 94.55 97.62 98.78
AA(%) 80.57 86.77 89.04 86.82 93.26 95.58 97.80
Kappa 80.70 84.38 88.39 87.44 94.01 95.49 97.99

Train time(s) 250.11 59.02 342.55 220.99 298.32 1204.15 204.50
Test time(s) 15.04 5.60 15.38 14.51 21.77 20.33 5.92

Table 5. Classification results of the PU dataset.

Class 3DCNN GCN MiniGCN HybirdSN DBDA MDGCN FCGN

1 80.85 77.26 86.22 94.10 96.36 99.00 98.41
2 80.49 76.97 92.21 94.36 99.11 98.21 99.91
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Table 5. Cont.

Class 3DCNN GCN MiniGCN HybirdSN DBDA MDGCN FCGN

3 69.77 69.19 86.13 82.40 90.32 86.81 97.35
4 95.99 90.88 92.06 95.27 97.99 94.55 97.96
5 91.30 94.27 95.11 95.77 99.01 99.76 99.73
6 90.57 92.98 90.34 92.44 97.55 99.80 99.00
7 80.21 82.81 88.99 89.06 94.37 98.07 99.89
8 89.73 86.91 82.77 80.04 88.94 96.92 98.68
9 91.12 95.55 92.87 99.11 98.39 98.38 98.41

OA(%) 86.33 85.41 89.67 92.99 97.22 98.22 98.99
AA(%) 85.56 85.20 89.63 92.81 95.78 96.83 98.81
Kappa 85.21 80.37 87.09 89.98 96.72 97.27 97.90

Train time(s) 131.44 251.59 1058.37 122.61 145.88 3265.31 1283.37
Test time(s) 88.21 17.33 50.15 65.48 118.37 57.29 38.94

Table 6. Classification results of the SA dataset.

Class 3DCNN GCN MiniGCN HybirdSN DBDA MDGCN FCGN

1 88.31 98.64 96.19 99.34 99.62 100.00 99.74
2 88.35 98.99 99.02 98.61 99.14 100.00 100.00
3 82.01 73.84 86.32 94.38 97.45 99.16 100.00
4 84.02 99.49 98.32 97.04 94.77 100.00 99.82
5 87.76 99.66 96.35 98.24 98.02 94.32 97.71
6 91.42 99.97 99.55 99.03 99.99 99.98 98.98
7 90.94 93.54 98.54 96.89 97.62 98.85 99.99
8 80.07 94.70 91.40 86.55 87.35 86.18 94.25
9 94.88 100.00 99.74 99.12 89.37 99.97 99.97
10 88.76 70.82 84.25 89.89 89.57 93.84 96.68
11 83.62 80.85 83.51 91.23 90.32 98.29 99.01
12 87.99 95.05 94.99 97.92 97.38 94.98 99.99
13 72.15 94.94 89.47 99.46 98.99 97.00 99.36
14 73.05 97.82 98.94 97.66 95.69 97.12 99.10
15 91.34 54.25 67.39 81.47 86.77 95.92 94.56
16 92.96 65.60 64.61 99.28 96.34 98.65 98.67

OA(%) 86.30 91.47 91.76 96.25 92.55 96.80 98.69
AA(%) 86.10 90.92 90.53 95.38 94.90 97.14 98.61
Kappa 85.09 88.01 88.39 92.09 93.37 95.34 97.18

Train time(s) 153.09 269.04 1094.67 146.96 176.55 3377.41 1357.15
Test time(s) 93.37 23.02 57.47 72.72 120.17 65.33 42.46

Table 6 shows the classification results of the different models on the Salinas dataset.
We can see that the FCGN was superior to other methods in terms of the OA, AA, and
Kappa coefficient, proving the effectiveness of the FCGN algorithm again. By observing
the classification results of Grapes untrained and Vineyard untrained ground features in
the Salinas dataset, the classification accuracy is relatively low; this is largely because the
two ground features are mixed together. We can see from Figure 8 that the FCGN method
had fewer misclassified pixels than other methods and was more accurate for classifying
large-scale regions.

4. Discussion
4.1. Influence of Label Ratio

To evaluate the generalizability and robustness of the proposed FCGN and other
methods, we set the number of training samples per class from 5 to 25 with an interval
of 5. Figure 9 shows the OA obtained by the different methods on the three datasets. It
can be observed that the proposed FCGN achieved a better classification accuracy than

55



Appl. Sci. 2023, 13, 7143

other methods, and the classification accuracy of each method improved as the number of
training samples increased, which proves the great robustness of the proposed FCGN.
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4.2. Influence of Segmentation Factor

The larger the segmentation factor, the smaller the number of superpixels; therefore,
the larger the size of the superpixels, the more they can preserve larger objects and suppress
more noise. Conversely, the smaller the segmentation factor, the larger the number of
superpixels; therefore, the smaller the size of the segmentation map obtained, the more
smaller objects which can be preserved and noise which can be contained.

In order to investigate the influence of the number of superpixel blocks on the perfor-
mance of the FCGN, in this section, the segmentation coefficients were set to 50, 100, 150,
and 200, and the influence of different segmentation factors on the classification accuracy
of the FCGN was tested on the three datasets, as shown in Figure 10. It can be seen that the
classification accuracy of the FCGN on the IP dataset decreased with the increase in the
segmentation coefficients, which was due to the fact that the samples in the IP dataset were
of a smaller scale. The size of the superpixel was too large, which missed the sample detail
information. The OA of the PU dataset was similar when the segmentation factor was
50 and 100, and the highest accuracy was achieved when the factor was 100. The sample
scale on the SA dataset was much larger, so as the size of the superpixels increased, the
classification results did not decrease. Instead, more noise effects were removed, increasing
the accuracy. However, when the segmentation factor reached a certain size, the classifica-
tion accuracy was bound to decrease gradually. In order to prevent the classification map
from being smooth and missing too much detailed information, the segmentation factor
was set to 100 in this chapter.
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4.3. Ablation Study

The proposed FCGN mainly contains a graph convolutional branch based on su-
perpixel segmentation and a convolutional branch with an added attention mechanism.
To further validate the contribution of the two branches, we tested the OA of the two
branches on three datasets separately. In addition, we tested the impact of the attention
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mechanism. We can intuitively see from Table 7 that the overall classification accuracy
decreased when any branch was missing, which proves that the complementary features
obtained by combining the graph convolution branch and the convolution branch can
indeed improve the classification performance. We can also observe that the addition of
attention mechanisms resulted in some improvement in the classification results, which
indicates that by adding appropriate attention mechanisms to the network, we can obtain
the importance of different features and capture long-range features and high-level features
to improve the classification results.

Table 7. OA(%) indices of the ablation experiment of the FCGN.

Dataset Branch1 Branch2 Without SE FCGN

Indian Pines 93.58 94.69 96.44 98.78

Pavia University 95.65 93.41 97.98 98.99

Salinas 97.33 94.50 97.88 98.69

5. Conclusions

To reduce the complexity of graph structure construction, superpixel segmentation
is often performed on an HSI first; however, superpixel segmentation processing leads
to similar features within each superpixel node, resulting in a lack of local details in the
classification map. To solve the above problems, a new hyperspectral image classification
algorithm, the FCGN, was proposed in this paper, in which a graph convolutional network
based on superpixel segmentation was fused with an attentional convolutional network for
feature fusion, a GCN based on superpixel segmentation was used to extract superpixel-
level features, an attentional convolutional network was used to extract local detail features,
and, finally, the obtained complementary features were used to improve the classification
results. In order to verify the effectiveness of the algorithm, experiments were conducted
on three datasets and compared with some excellent algorithms. The experimental results
show that the FCGN achieved a better classification performance. Although the FCGN
achieved better classification results, there are still some shortcomings. In particular, this
paper did not consider the variability of different neighbor nodes during the construction
of the graph structure which may limit the ability of the model. In addition, only a simple
feature splicing fusion method was used in this paper, so the construction of the graph
structure and new fusion mechanism will be further explored in subsequent research.
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Abstract: This paper presents a novel control strategy for transferring large inertia loads using
flexible space manipulators in orbit. The proposed strategy employs a Luenberger state observer and
damping-stiffness controller to address issues of large tracking error and vibration. A comprehensive
joint dynamics model is developed to identify the main sources of disturbance, and a Luenberger
state observer is designed to estimate unmeasurable transmission deformation. Transmission stiffness
and load inertia perturbations are identified based on the estimated results. By adjusting velocity
damping and the gain of the forward channel, perturbations are suppressed to maintain optimal
system damping and stiffness. Simulation and physical experiments demonstrate the effectiveness
of the algorithm, with simulation experiments showing smoother joint output characteristics and
minimal vibration under large load inertia changes, and a 97% reduction in internal deformation.
Physical experiments demonstrate improved joint dynamic command tracking performance, with an
88% reduction in position tracking error. The algorithm provides a practical and efficient approach
for transferring large inertia scientific payloads in space.

Keywords: space manipulator; flexible joint; dynamic; Luenberger observer; automatic control

1. Introduction

The space manipulator is a powerful tool for on-orbit space services due to its large
working range, high positioning accuracy, and strong load capacity [1]. However, the
joint—a key component of the space manipulator—shows obvious flexibility characteristics
due to the application of harmonic reducers that increase output torque. During the transfer
of a target object for a science experiment in orbit, nonlinear changes in the transmission
stiffness of the joint harmonic reducer and the load inertia can cause perturbations in the
dynamic model, leading to out-of-tolerance joint trajectory tracking and flexible vibration,
as shown in Figure 1. Reducing motion speed and modal analysis have been used to avoid
violent flexible vibration of the space manipulator. In addition, the dynamic control of
flexible joints is a point of difficulty in the control of exoskeleton robots, medical robots,
and other equipment that are in direct contact with the human body. Therefore, the high-
performance control of flexible joint robots has always been a research hotspot in the
industry [2].
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1.1. Related Works

Scholars have proposed various control strategies, such as full-state feedback control
(FSFB), backstep control, compensation control based on state observer, synovial membrane
control, and neural network control, to address the motion control of flexible joints with
nonlinear time-varying load inertia [3–5]. The backstep method compensates for the
interference of the contained severe uncertainty by building a state feedback controller [6].
The state observer is capable of compensating for model disturbances and thereby reducing
their impact on joint control. Jian Li, for a class of uncertain flexible joint robots with
variable stiffness actuators (VSAs), explicitly constructed a state feedback controller through
backstepping and disturbance learning mechanism [7], and designed a key switching
mechanism to adjust online parameters in the controller, which achieved good control
effect. However, when the order of the controlled system is high, the calculation of the
partial derivative of the virtual control quantity will have the disadvantage of differential
explosion [8], which is not suitable for space occasions with limited computing resources [9].
The FSFB method has a simple structure and a small calculation amount; however, due to
the general effect on the flexible time-varying inertial control system, the flexible vibration
phenomenon occurs easily when the gain is large [10–12]. Feedback linearization control is
an effective means to solve the nonlinear links in the control system; however, this method
relies on high-precision mathematical models, and the control effect is greatly reduced
once the model is biased [12]. The synovial membrane controller has the characteristics of
fast response and strong robustness to disturbances. However, when the state trajectory
reaches the sliding modal plane, it does not easily slide strictly along the sliding mode
towards the equilibrium point. Rather, it crosses back and forth on both sides to approach
the equilibrium point, resulting in jitter [13]. The intelligent algorithm based on a neural
network also has the problem of excessive computation and is difficult to apply in space
engineering [14].

The state observer can compensate the model to reduce the impact of model distur-
bance on the control system, and there is no differential explosion problem. Z. Bowen et al.
propose an accurate estimation of the uncertainty of the velocity state of the manipulator
and the stiffness of the joint by the Extended State Observer (ESO) [15]. M. J. Kim et al.
use the inverse method to generate adaptive controllers, in which dynamic uncertainty is
compensated for by a radial basis function neural network (RBFNN) and joint-stiffness
uncertainty is eliminated by ESO estimation. The articulated motor side interference ob-
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server is proposed and fed back to the proportion differential controller, which, in turn,
introduces a nominally stable controller input [16]. A. Fagiolini et al. achieve linear state
observation of the plastic deformation of the flexible joint reducer by measuring the joint
and motor position [17]. L. Dou et al. propose a terminal sliding mode control (TSMC)
strategy based on fuzzy interference observer to target liquid shaking interference of a
flexible liquid-filled spacecraft [18]. C. Pan et al. design a state observer for single-degree-
of-freedom flexible joint manipulator disturbance to compensate for interference, turning
the nonlinear system into a linear integral sequence system [19]. Y. Lin et al. propose a
linear expansion state observer for industrial robotic arms to estimate joint flexibility and
torque [20]. Yong Nie developed two low-order extended state observers to handle the
external load force and the impact of the pressure compensator in a high-order nonlinear
hydraulic system. Additionally, backstepping methods were designed to ensure robust
stability of the system [21]. Due to the difficulty of modeling nonlinear and flexible envi-
ronments, some scholars propose the use of artificial neural networks to control the flexible
joints [22–25], and W. Quanwei et al. propose a new neural network based on a disturbance
observer-based integrated sliding mode controller that is only numerically simulated [26].
However, the state observer method can only realize the estimation of the internal state
of the model, and must be combined with other closed-loop control methods to build a
stable control system. Therefore, it is very important to choose a suitable observer and
control strategy.

1.2. Motivations and Contributions

This paper investigates and proposes a new high-performance tracking control method
for flexible space manipulator joints with a simple model structure, moderate calculation
requirements, and practical applications. This method maintains the damping and stiffness
of the control system at the desired state, despite simultaneous disturbances from external
load inertia and internal transmission stiffness in the joint. To achieve this, the paper designs
a Luenberger state observer to estimate the internal flexible deformation of the joint reducer
and observe real-time transmission stiffness and load inertia. By simplifying the model, the
paper analyzes the influence of parameter changes on the control characteristics, improving
on traditional three-loop feedback control algorithms that are sensitive to changes in model
parameters. The paper introduces speed dampers and feed-forward gain regulators to
keep the damping and stiffness of the flexible joint control system at the desired state,
Henceforth, this strategy is referred to as Constant Damping and High Stiffness (CDHS)
algorithm. Thereby improving the joint control system’s robustness and the ability of the
flexible space manipulator to transfer large-inertia scientific payloads in orbit. The paper’s
contributions to the control of flexible space manipulators include:

• A comprehensive state-space dynamic modeling method for flexible joints is proposed,
and the perturbation parameters of the flexible joint model are comprehensively
analyzed.

• A Luenberger state observer [27] based on the joint dynamics model is constructed,
which enables the accurate estimation of the internal flexible deformation of a joint
that cannot be directly measured.

• The dynamic identification of joint transmission stiffness and external inertia is real-
ized according to the estimated value of joint flexible deformation and joint physical
motion characteristics.

• A control algorithm for flexible joints with constant damping and high stiffness
is proposed, based on a dual-adjustment mechanism of speed damping and feed-
forward gain. The algorithm is proposed and its effectiveness is verified by simulation
experiments and physical experiments.

The remainder of this paper is organized as follows: In Section 2, we present the
problem formulation and the comprehensive joint dynamics model. Section 3 describes the
design of the CDHS controller with a Luenberger observer. In Section 4, we compare and
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discuss the simulation results and physical experiment results. Finally, Section 5 contains
the conclusions of this study.

2. Dynamic Modeling of Flexible Joints

Due to the limitations of space transportation and the usage environment, space ma-
nipulators are longer but lighter in weight compared to industrial manipulators, resulting
in significantly lower structural rigidity [28]. The flexible space manipulator studied in
this paper is illustrated in Figure 2a. It has an arm length of approximately 3300 mm, with
a weight of only 60 kg. The joint structure of the manipulator, as shown in Figure 2b, is
driven by a brushless DC motor with a harmonic reducer as the transmission part. Both
the motor and the output shafts of the reducer are equipped with position sensors. The
reducer has the lowest stiffness among the manipulator’s components. Hence, this paper
only considers the flexibility of the space manipulator caused by the joint harmonic reducer
while disregarding other factors.
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Full-Elements Joint Dynamics Model

The flexible joint of the space manipulator is composed of several components, includ-
ing the motor, motor position sensor, joint position sensor, and harmonic reducer, as shown
in Figure 2b. To simplify the engineering analysis, the model is divided into three parts:
the motor unit, transmission unit, and output unit, as depicted in Figure 3. The inertia
and damping of the motor position sensor and its associated structure are included in the
motor unit, while the inertia and damping of the output position sensor and its subsidiary
structure are included in the output unit. The equivalent inertias and damping of the joint
unit, transmission unit, and output unit are denoted by Im, Ig, Il, and dm, dg, dl, respectively.
The rotation angles are qm, qg, ql, and the moments are τm, τg, τl. Additionally, to account
for the stiffness and damping characteristics of the output shaft and reducer, an ideal
torsion spring-damping link is introduced between the motor unit and the transmission
unit and between the transmission unit and the output unit. The equivalent stiffness and
damping between the motor unit and the transmission unit are denoted by kg and dmg,
respectively, while the equivalent stiffness and damping between the transmission unit and
the output unit are denoted by kgl and dgl, respectively.
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Figure 3. Full-elements dynamic model of flexible joint.

The dynamics model of the flexible joint consists of two parts: an electrical model and
a mechanical model. The electrical model describes the characteristics of motor current
input and torque output, while the mechanical model describes the characteristics of motor
torque input and joint load torque output, which is further divided into linear and nonlinear
parts. The dynamic model of the flexible joint can be described as follows:

τ = Kq + D
.
q + I

..
q (1)

q =
[
qm, qg, ql

]
(2)

The joint stiffness matrix K, the inertia matrix I, and the damping matrix D are defined
as follows:

K =




kg −kg 0
−kg kg + kb −kb

0 −kb kb


 (3)

I =




Im 0 0
0 Ig 0
0 0 Il


 (4)

D =




dm + dmg −dmg 0
−dmg dg + dmg + dgl −dgl

0 −dgl dl + dgl


 (5)

The nonlinear part of joint dynamics mainly includes joint viscous friction fvis and
coulomb friction fcou.

fvis =
[
0, 0, 0, dmn − dm, dgn − dg, dln − dl

]
qT (6)

fcou =
ekd − e−kd

ekd + e−kd
xT (7)

kd =
[
0, 0, 0, dm, dg, dl

]
(8)

According to the dynamic model, the flexible joint of a space manipulator is a dynamic
system of multi-variable inputs and outputs, and the joint dynamics model shown in
Figure 4 is established by the state space method. In order to clarify the physical meaning of
the model, the position and velocity of the joint motor unit, transmission unit, and output
unit are selected as the state vector X.
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{ .
XJ = AJXJ + BJUJ

YJ = CJXJ
(9)

XJ =
[
qm, qg, ql ,

.
qm,

.
qg,

.
ql

]T
(10)

.
XJ =

[ .
qm,

.
qg,

.
ql ,

..
qm,

..
qg,

..
ql

]T
(11)
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The input vectors of the state-space model are the motor torque and the total output
torque.

UJ = [τm, τl ]
T (12)

The joint model state transformation matrix A AJ, input matrix BJ, and output matrix
CJ are, respectively:

AJ =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
kg
Im

− kg
Im

0 − dmg+dm
Im

dmg
Im

0

− kg
Ig

kg+kb
Ig

− kb
Ig

dmg
Ig

− dmg+dg+dgl
Ig

dgl
Il

0 − kb
Il

kb
Il

0
dgl
Il

− dgl+dl
Il




(13)

BJ =

[
0 0 0 1

Im
0 0

0 0 0 0 0 1
Il

]
(14)

CJ =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(15)

3. CDHS Controller with Luenberger Observer
3.1. Structure of CDHS

Based on the analysis of Equation (9), the disturbances of the dynamic model of
the flexible joint of the space manipulator are primarily caused by changes in internal
parameters, such as the load inertia disturbance Il caused by manipulator configuration
changes, the stiffness disturbances kg and kgl resulting from harmonic reducer stiffness
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changes, and the friction coefficient. Additionally, there is a nonlinear damping disturbance
caused by changes in dmg and dgl. While the position–speed–current (torque) three-loop
feedback control algorithm utilized in transmission flexible joint control can adapt to
nonlinear disturbances caused by friction changes, significant changes in load inertia and
transmission stiffness can result in significantly worse control characteristics, larger tracking
errors of motion trajectory, and flexible joint vibrations [29].

The constant damping and high stiffness control algorithm proposed in this paper is
based on the three-loop feedback control algorithm, and addresses the limitation that the
latter cannot handle time-varying loads with large inertia and flexibility [30,31]. To over-
come this, we incorporate a system-stiffness controller and a system-damping controller
to mitigate perturbations caused by changes in joint inertia and transmission stiffness,
thus ensuring that the damping and stiffness parameters of the flexible joint dynamics
control system are always maintained in the desired state. The schematic diagram of the
constant damping–high stiffness controller is presented in Figure 5 to illustrate its design
and implementation for achieving high quality control performance.
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3.2. The Luenberger Observer

The flexible deformation of the joint harmonic reducer is the most sensitive component
that reacts to changes in joint stiffness and external load inertia. However, due to the relia-
bility requirements of the space environment, a sensor for detecting harmonic deformation
cannot be installed inside the joint. Instead, the working state of the internal transmission
mechanism of the joint can be estimated through a state observer [32]. In this paper, a
Luenberger state observer is constructed based on the joint dynamics model. The specific
calculation process is as follows:

Take the reducer position qg and the reducer speed
.
qg as the state observation vector

x, and take the motor position qm, motor speed
.
qm, motor acceleration

..
qm, joint output

position ql , and joint output speed
.
ql that can be directly measured as the input vector U.

X =
[
qg,

.
qg

]T
(16)

U =
[
qm, ql ,

.
qm,

.
ql ,

..
qm
]

(17)
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According to the joint dynamics state space model Formula (5), the following formula
is obtained.

.
x1 = x2 (18)

.
x2 = −kg + kb

Ig
x1 −

dmg + dgl + dg

Ig
x2 + BU (19)

Y = −kgx1 − dmgx2 + DU (20)

where B and D are the coefficients corresponding to the state observer.

B =

[
0 0 0 0 0
kg
Ig

kb
Ig

dmg
Ig

dgb
Ig

0

]
(21)

D =
[
kg dmg dm 0 Im

]
(22)

Define a Luenberger state observer based on the above calculation.
{ .

X = AX + Buq + L(y−Cx)
Y = CX + DU

(23)

A =

[
0 1

− kg+kb
Ig

− dmg+dgl+dg
Ig

]
(24)

C =
[
−kg −dmg

]
(25)

Let the estimation error be e = x− .
x. Then, the observation error dynamic equation is

as follows:
.
e = (A− LC)e (26)

The characteristic state equation of the system is as follows:

|λI− (A− LC)| = 0 (27)

L =

[
λ1
λ2

]
(28)

λ2 +

[
kg +

(
1 + Ig

)
dmg + dg + dgl

Ig

]
λ+

(
1 + Ig + dg + dgl

)
kg + kb

(
1− dmg

)
dg

Ig
= 0 (29)

The characteristic equation of the state observer is calculated to obtain λ1 and λ2,
and then the estimated value x̂ of the state observation vector x is calculated in real-time
according to Equation (29).

3.3. CDHS Control Layer
3.3.1. Realtime Stiffness and Load Inertia Identification

The real-time load inertia and real-time stiffness of the joint are identified according
to the estimated value of the joint’s flexible deformation by the observer. The equivalent
stiffness kg on the input side of the motor is related to the position qm of the motor and
the position qg of the reducer, and the equivalent stiffness kgl on the output side of the
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joint is related to the output position ql of the joint and the position qg of the reducer. The
corresponding relationship can be obtained through calibration of harmonics [33].

k̂g = f1(qm − x̂1)
k̂gl = f2(x̂1 − ql)

(30)

The joint real-time stiffness kt is determined by the series connection of two elastic
links, and the estimated value of the stiffness k̂t is calculated as follows:

k̂t =
k̂g × k̂gl

k̂g + k̂gl
(31)

The real-time load inertia of the joint is determined by the quotient of the joint output
load moment and the load acceleration. The calculation formula is as follows:

Ĵt =
kgl(x̂1 −U2) + dgl(x̂2 −U4)

..
ql

(32)

3.3.2. CDHS Controller

Due to the limited computing power of the processor used in a space manipulator, a
simplified model must be used. Given that the stiffness of the joint’s output unit is signifi-
cantly greater than that of the transmission unit, the stiffness and damping of the output
and transmission units can be combined. Assuming constant joint transmission stiffness
and only considering viscous friction, the joint’s dynamic equation can be simplified to a
transfer function model, where the motor input angle is θi, the joint output angle is θo, the
joint equivalent stiffness is kt, the equivalent inertia is Jt, and the viscous friction system is
f. The transfer function model is as follows:

θo(s)
θi(s)

=
kt

Jts2 + f s + kt
(33)

The undamped oscillation frequency ωn and damping ratio ξ of the system can be
calculated using the following equations:

ωn =

√
kt

Jt
ξ =

f
2
√

Jtkt
(34)

According to the above formula, it can be observed that an increase in load inertia
leads to a decrease in system damping and a decrease in undamped oscillation frequency,
which may result in joint motion overshoot or instability. To address this issue, a closed-
loop damping control system is introduced via speed damping feedback, and a position
variable gain controller is added to adjust the closed-loop stiffness of the system. Here,
k1 represents the position control gain, ks represents the damping control gain, and the
transfer function of the joint closed-loop control system is as follows:

θo(s)
θi(s)

=
ktk1

Jts2 + ( f + ktk1ks)s + ktk1
(35)

The new system undamped oscillation frequency ωn and system damping ξ are
calculated as follows:

ωn =

√
ktk1

Jt
ξ =

f
2
√

Jtktk1
+

ks

2

√
ktk1

Jt
(36)

The above formula shows that the speed damping feedback introduces an additional

term of ks
2

√
ktk1

Jt
compared to the original system. By setting a desired reference inertia
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Jexp, for the joint, the speed damping feedback coefficient ks can be adjusted to maintain a
constant closed-loop damping of the joint.

ks =
f

k̂tk1

(√
Ĵt

Jexp
−1

)
(37)

In the same way, changing the position gain k1 can make the system undamped
oscillation frequency ωn stable at the expected value ωnexp.

k1 =
Ĵt ×ωnexp

2

k̂t
(38)

4. Experiments and Analysis

The flexible joint used in the experiment is the self-developed manipulator joint
module with a rated output torque of 40 N.m and a self-weight of 3.5 kg. The motor of
the joint has six pairs of poles, and the coil resistance r, coil inductance Lq, and Torque
constant kt are shown in Table 1. The joint is equipped with various sensors, including a
motor resolver, joint angular position sensor, joint angular velocity sensor, and harmonic
end resolver (output position sensor). The main characteristic parameters of the joint are
shown in Table 1.

Table 1. Main parameters of space flexible joint.

mm [kg] Im [kg·m2] Ig [kg·m2] dm [N·s/m] dg [N·s/m] dl [N·s/m] kg [N·s/rad]

3.5 0.23 0.0717 0.0036 0.002 0.0003 1000

dmg [N·s/m] dgl [N·s/m] P [pairs] kb [Nm/rad] kt [Nm/A] Lq [H] R [Ω]

0.001 0.002 6 16,000 0.78 0.002 15.2

4.1. The Simulation Experiment

To verify the effectiveness of the high stiffness constant damping control algorithm, a
comparative experiment was conducted between the traditional three-loop feedback con-
troller and the CDHS controller using a typical excitation signal for fast track applications
in orbit. The joint servo system was set to a sinusoidal signal with a frequency of 0.05 Hz
and an amplitude of 0.1 rad, while the load inertia signal was set to a sinusoidal signal with
a frequency of 0.01 Hz and an amplitude of 100 kg·m2.

The position command tracking curve and position tracking error curve obtained using
the traditional three-loop feedback controller are presented in Figures 6 and 7, respectively.
The curves indicate the occurrence of flexible vibration when the algorithm is used to
control the flexible joint to track the sinusoidal position command signal, particularly at
the peak and trough of the signal. Notably, the algorithm fails to adapt to changes in
joint stiffness. Additionally, the position tracking error curve reveals that the error in joint
position at different times, such as 30 s and 50 s, is inconsistent. This indicates that the
command tracking error is not solely dependent on the joint position but is also influenced
by the load inertia, with the maximum error being ±1.5◦.

The position command tracking curve and position error curve of the CDHS algorithm
are presented in Figures 8 and 9, respectively. As shown in the command tracking curve,
the CDHS algorithm effectively eliminates flexible vibrations, indicating its ability to adapt
to changes in joint stiffness. Furthermore, the position tracking error curve indicates that
the command tracking error is consistent for the same joint position at different times,
indicating that the algorithm is not affected by load inertia. The maximum error is only
±0.5◦, highlighting the improved tracking performance achieved by the CDHS algorithm.
Figure 8 shows that the position feedback and the position command basically overlap
when the joint tracks the position sinusoidal excitation signal. Figure 9 shows that the
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position tracking error is also similar to a sinusoidal waveform, and the tracking error peak
appears at the peak and trough commutation moments of the position command.
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Figures 10 and 11 depict the flexible deformation curves of the joint reducer under
the traditional three-loop feedback controller and CDHS controller, respectively. The
curves indicate that the joint harmonic reducer is significantly affected by changes in load
inertia under the three-loop feedback controller, resulting in noticeable fluctuations and
a maximum deformation of ±0.05◦. Conversely, the maximum deformation of the joint
harmonic reducer under the CDHS controller is only ±0.004◦, which is not comparable
to the three-loop feedback controller; rather, it is reduced by an order of magnitude. This
demonstrates the CDHS controller’s ability to achieve smooth transmission of the reducer
under variable load conditions.
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Figure 9. Joint position tracking error curve using CDHS controller.

Table 2 shows the statistics on the joint position tracking error and flexible deformation
of the reducer as key indicators for evaluating the performance of the controller. The results
show a big improvement in both indicators with the CDHS controller compared to the
three-loop feedback controller. Specifically, the joint tracking error is reduced by 73.1%
and the flexible deformation of the reducer is reduced by 97.9%. These results indicate
that the CDHS controller improves the control accuracy and robustness of the joint system,
particularly under variable load conditions.
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Figure 11. The flexible deformation of harmonic reducer using CDHS controller.

Table 2. Comparison of key indicators resulting from three-loop and CDHS controllers.

Controller
Method

Maximum
Error/◦

Average
Error/◦

Error
Reduction

Rate

Maximum
Deformation

/◦

Average
Deformation

/◦

Deformation
Reduction

Rate

Flexible
Vibration

Three-loop ±1.5 0.606 1 ±0.05 0.019 1 Exist
CDHS ±0.5 0.163 73.1% ±0.004 0.0004 97.9% None

4.2. Physical Experiment

In order to further validate the effectiveness of the control strategy, a physical test
platform was constructed, as shown in Figure 12. The platform was used to simulate
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flexible joints controlling the displacement of large inertia target loads, with an inertia of
about 100 kg·m2. The joint driver utilized Altera’s FPGA A3PE300 as the core computing
unit, which allowed for efficient operation of the algorithm through the parallel computing
capability of the FPGA. The host computer sent continuous position commands with a
period of 16 ms to the joint driver through the CAN bus. The joint driver then controlled
the compliant joint to drive the simulated load to track the position command. The
photoelectric encoder located between the joint and the load recorded the position response
curve of the joint output.
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Figure 12. Flexible joint experiment platform.

The joint position control performance of the three-loop feedback controller and the
CDHS controller was compared on a physical test platform. The controllers were configured
with the same control parameters and tested on the joint’s range of motion from −135◦ to
−125◦, with varying speeds. The highest speed was reached at 40 s, followed by a gradual
reduction in speed until the joint stopped. The joint driver recorded the position tracking
curves and error curves for both controllers. Figures 13–16 show the results for different
controller and speed configurations.
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The position tracking curve indicates that the tracking error of the three-loop feedback
controller is larger than that of the CDHS controller. When the three-loop feedback con-
troller is in operation, the average errors in the high-speed and low-speed sections are 0.7◦

and 0.5◦, respectively. In contrast, the CDHS controller operating in the high-speed and low-
speed sections has average errors of 0.08◦ and 0.05◦, respectively. The position command
tracking errors of the CDHS controller in the high-speed section and low-speed section are
reduced by 88.6% and 90%, respectively, compared to the three-loop feedback controller.

5. Conclusions and Future Work

During space scientific load position transfer control, the joint load inertia and trans-
mission stiffness change nonlinearly due to the manipulator arm shape, leading to flexible
deformation of the joint harmonic reducer and nonlinear variation in joint transmission
stiffness. These changes perturb the joint dynamics model and affect the control system’s
key parameters, resulting in decreased damping and stiffness, which increase joint po-
sition tracking error and flexible vibration. To address this issue, we first established a
full-element flexible joint dynamic model and used a Luenberger state observer to estimate
joint flexible deformation, which cannot be directly measured, and to identify joint load
inertia disturbance and transmission stiffness disturbance. Then, we designed a distur-
bance compensation control strategy based on a simplified model that is convenient for
engineering application, which maintains the joint control system’s desired damping and
stiffness under internal and external disturbances and improves control quality. Finally, we
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compared the new algorithm with the traditional three-loop feedback controller through
simulation and physical experiments. The results show that the CDHS algorithm has more
stable motion characteristics than the three-loop feedback control algorithm, reducing the
joint’s flexible deformation by 97% and improving joint dynamic tracking performance,
with an 88% reduction in position tracking error. These results are consistent with the
theoretical analysis.

In the future, experiments will be conducted on an air-bearing platform to validate the
effectiveness of the algorithm in controlling the real load displacement of space manipula-
tors in microgravity, especially in the presence of multi-joint coupling disturbances. The
research and experiments on the constant damping and high stiffness control method of
flexible space manipulators based on the Luenberger state observer have positive implica-
tions for the future of space manipulators. These implications include the ability to capture,
transfer, and maintain large spacecraft in orbit, and the capability to perform on-orbit
servicing missions with high precision and reliability. The findings of this research will
serve as a valuable guide for the development of advanced space manipulator technologies
and contribute to the progress of space exploration and technology.
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Abstract: For space target images captured by a sky-based visible light camera, various conditions are
influenced by the imaging system itself and the observation environment; these conditions include
uneven image background intensity, complex noise, stray light composition, and diverse target forms.
A mean wavelet transform algorithm is proposed. This algorithm initially performs mean filtering
and wavelet transform filtering on the noise-containing space target images and then performs
a wavelet inverse transform on the filtered results to generate the final image. The experimental
results show that our algorithm has good denoising performance and can effectively maintain the
image details.

Keywords: sky-based visible light camera; space target images; denoising; wavelet transform; mean
filtering

1. Introduction

Studies on sky-based image denoising techniques have focused on extracting space
targets by processing the image prior to object detection. The objective is to suppress or
eliminate inhomogeneous background noise.

Methods for suppressing or eliminating image noise can be categorized into two
groups: transform domain methods [1–4] and spatial domain methods [5–13]. The trans-
form domain approach involves removing the noise in the transformed domain of the
image and then inverting the transform to achieve image denoising. Spatial domain meth-
ods, on the other hand, involve directly operating on the original image, taking advantage
of the grayscale values in the neighborhood of the pixels to perform relevant operations on
the pixels.

Unlike conventional images, in space target images, the captured images not only
contain Gaussian noise, salt-and-pepper noise, Poisson noise, speckle noise, etc., but also
the imaging size, shape, and gray value of space targets are highly similar to noise, and the
background strength is unevenly distributed due to the scattered light. These factors cause
difficulty for traditional image denoising algorithms [14–19] to be applied to the denoising
of star maps, easily causing loss of target information or false targets. New requirements for
image processing technology are needed to suppress or eliminate the complex background
interference in star maps while preserving space target information.

This paper proposes a mean curvelet transform method. Curvelet transform is a
multiscale and directionally sensitive transformation method that extracts detailed features
from an image. On the other hand, mean processing is a basic image smoothing method
that reduces noise by calculating the average value of pixel neighborhoods. By integrating
these two methods, one can first utilize the curvelet transform to extract detailed features
from the image and then use mean processing to smooth the extracted details, thereby
reducing noise. The effectiveness of the proposed algorithm is verified through simulation
experiments.
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2. Materials and Methods
2.1. Wavelet Transform and Curvelet Transform
2.1.1. Wavelet Transform

In the 1980s, J. Morlet first proposed the concept of wavelets [20]. In the same period,
mathematicians Y. Meyer and S. Mallat further studied the Mallat algorithm based on
previous work, and the wavelet transform was officially created [21,22]. From a theoretical
perspective, wavelet transform theory evolved from Fourier analysis. Fourier analysis
can be used to analyze the characteristics of data separately using the time axis and
frequency axis transformations, but it cannot reflect the characteristics of signals changing
simultaneously along both the time and frequency axes. It can only consider one of the
two axes, allowing a global understanding of the signal’s characteristics, but is unable to
describe the local characteristics of a specific time-frequency region of the signal. In reality,
signals are often nonstationary, and it is difficult to maintain stability. Most signals are
nonstationary, and the local time-frequency characteristics precisely describe the distinctive
features of nonstationary signals. While scaling the signal by shrinking or expanding the
variable multiplier and transforming the signal through smooth distance shifts, the wavelet
transform can decompose the signal into multiple levels, surpassing the limitations of the
Fourier transform in this aspect.

The traditional approach of the wavelet transform is to separate the high-frequency
and low-frequency signals for processing. The low-frequency signal, which undergoes
minimal changes, is expanded to analyze the fine details of the rapidly changing parts in
the high-frequency signal. In the time dimension, the signal is further segmented, while in
the low-frequency signal, the frequency is divided more finely, adjusting the time-frequency
characteristics analysis based on the specific high and low frequencies of the signal.

The continuous wavelet transform involves extensive data operations, so it needs to
be discretized during implementation to simplify the form. In the expression of continuous
wavelets, the binary number scale parameter a and the translation parameter b remain
continuous, and only the parameters in the semi-discrete continuous wavelet formula
are discretized while the variable t remains unchanged. The discrete form of the wavelet
transform is:

(WΨ f )
(

1
2j , b

)
=
∫ ∞

−∞
f (t)

{
2j/2Ψ

(
2j(x− b)

)}
dx (1)

This transformation is also known as the binary wavelet transform, which meets
the condition:

A ≤ ∑
j∈z

(
2−jω

)∣∣∣∣∣

2

≤ B (2)

Here, 0 < A < B < ∞, where A and B are constants. For a certain level of decom-
position, the binary wavelet transform can be considered a function of the variable b in
Equation (2), and b is not discretized. Equation (2) can be transformed into a convolution
operation expression, which is shown below:

Ws f (x) = f ∗Ψs(x) (3)

By scaling the wavelet mother function Ψ(x) with a factor of s (where s = 2j), we
obtain the wavelet function as follows:

Ψs(x) =
1
s

Ψs

( x
s

)
(4)

Let us assume fτ(x) = f (x− τ). Then,
(
W2j fτ

)
(x) = W2j[ f (x)] (5)
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If we first shift the function f along the scale and then perform the binary wavelet
transform, it is equivalent to first applying the binary wavelet transform and then shifting
it along the scale. In other words, W2j f possesses the properties of f , which is the meaning
of translation invariance.

Although the binary wavelet transform is in a discrete form, the variable b is not dis-
cretized along the scale, and the transformation of the wavelet transform at different scales
is not discrete. This translation invariance exhibits a zooming characteristic. By adjusting
b to enlarge or reduce the scaling factor, the wavelet transform acts like a microscope,
enabling the study of finer or coarser details in the signal.

2.1.2. Limitations of the Wavelet Transform and Introduction of the Ridgelet Transform

Although the wavelet transform, known as the “mathematical microscope”, can ex-
press the details of image waveforms and has significant application value and advantages,
it has a limitation due to the lack of anisotropy in wavelet bases. The wavelet transform
can only reflect discontinuities or points where the derivative is zero in 1D images, and
it cannot capture the edge features of 2D spatial images. Therefore, at the end of the 20th
century, Candes developed the ridgelet transform algorithm [23], which expresses line
singularities and can provide a good approximation of line singularities in multivariable
functions. The expression of the ridgelet transform is given by:

Ψγ(x) = a−
1
2 Ψ
(
[u, x]− b

a

)
(6)

where Ψγ is called a ridgelet generated from Ψ under specific admissibility conditions. a
represents the scale parameter, "u" represents the direction parameter, and b represents the
position parameter. Ψγ has rapid decay properties that satisfy:

∫
Ψ(t)dt = 0 (7)

For functions with several variables, the ridgelet transform is defined as:

R( f )(r) = 〈 f , Ψr〉 (8)

The ridgelet transform represents the direction by adding an additional parameter to
the wavelet basis function. In the cross-section, the basis of the ridge is the wavelet. The
continuous ridgelet transform in 2D space is expressed in Equation (9).

CRTf
(
a, bx, by

)
=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)Ψa, bx, by(x, y)dxdy (9)

When comparing the expressions of the 2D wavelet transform, as shown in Equation (10),
with the ridgelet transform, we can observe the following contrast: in the wavelet transform
formula, the parameter is a point, whereas in the ridgelet transform, the parameter is a line.

w f
(
a, bx, by

)
=
∫ ∞

−∞

∫ ∞

−∞
f (x, y)Ψa, bx, by(x, y)dxdy (10)

The introduction of the ridgelet transform solves the problem of the wavelet trans-
form’s inability to describe 2D edge singularities. However, the ridgelet transform still has
limitations when dealing with functions with curve singularities. Moreover, in practical
images, edges are rarely straight lines, which limits the widespread application of the
ridgelet transform. Additionally, the ridgelet transform suffers from high computational
redundancy. Therefore, in the last year of the 20th century, Candes and Donoho developed
the curvelet transform and formulated its theory. The curvelet transform effectively cap-
tures the singular points and characteristics of curves in images. The basis of the curvelet
transform exhibits directionality and anisotropy, allowing for the optimal approximation
and description of nonlinear parts of 2D images. Thus, curvelet analysis combines the
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properties of wavelet multiresolution and locality with directionality, providing an optimal
approach for representing images with these three features.

2.1.3. Curvelet Transform

The curvelet transform, introduced by E.J. Cande and David L. Donoho at the end of
the 20th century, is a method aimed at addressing the limitations of the wavelet transform
in expressing the anisotropy of image boundaries and line features [24]. While the wavelet
transform is suitable for representing isotropic objects, it falls short in capturing the direc-
tional variations in image boundaries and line features. Therefore, the curvelet transform
was proposed as a first-generation extension of the wavelet transform, preserving the
advantages of multiresolution and time-frequency localization while introducing the ability
to perform multiscale, translation, and multidirectional transformations. This enables the
curvelet transform to better describe the singular changes in images, which cannot be
effectively expressed by the wavelet transform.

Numbered lists can be added as follows:

• First-generation curvelet. The first-generation curvelet transform primarily involves
subband decomposition and a multiscale ridgelet transform, which is a nonadaptive
representation method. As shown in Figure 1, the first-generation curvelet includes
subband decomposition, smoothing partitioning, normalization, and ridgelet analysis.
The decomposition process introduces significant data computation, making it quite
complex in digital implementation. Based on this, E.J. Candes and Donoho proposed
a second-generation transform three years later, and this transform is an improved
curvelet algorithm that is easier to understand and simpler to implement. Furthermore,
the two scholars introduced a fast curvelet algorithm that directly divides frequencies,
eliminating the need for the ridgelet transform. This construction significantly differs
from the first-generation curvelet algorithm, resulting in a reduction in data and
computational complexity.

Subband 

decomposition

Smoothing 

partitioning
Normalization

Ridgelet analysis

The decomposition process

Re-Normalization

Smooth 

integration

Subband 

composition

The composition process

Figure 1. Flowchart of The first-generation curvelet transform algorithm.

• Second-generation curvelet transform. The construction of the second-generation
curvelet transform differs from the construction of the first generation transform, but
the second-generation transform is an improvement of the first-generation transform.
The idea behind the first-generation curvelet transform is to partition the target func-
tion space into infinitely small blocks to approximate curves as straight lines; then,
local ridgelet analysis is utilized. In contrast, the second-generation curvelet transform
only retains the abstract principles of the ridgelet transform, such as the framework
and tight frame, while discarding its specific computational methods. The continuous
curvelet transform serves as an example.
The formula for the continuous curvelet transform in the time domain is as follows:

C(i, j, k) =
〈

f , ϕi,j,k

〉
=
∫

R2
f (x)ϕi,j,k(x)dx (11)

where
ϕi,j,k(x) = ϕj

[
Rθ

(
x− xj

k

)]
(12)
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indicates the position at

x(j)
k = R−1

0

(
k1 × 2−j, k2 × 2−j/2

)
(13)

When the angle position of all points at 2(−j) is considered, the curvelet transform can
be obtained by rotating the curvelet basis ϕj by a certain angle θ and shifting it by K.

θ = 2π × 2−[j/2] × l, l = 0, 1, . . . , 0 ≤ θ1 ≤ 2π (14)

The parameter k = (k1, k2) ∈ z2 represents the displacement sequence in the 2-
dimensional space.

2.1.4. Curvelet Transform Algorithm

The algorithm for the curvelet transform is described as follows:

(1) Perform a J-level decomposition of the original image I to obtain the subband se-
quences CJ and DJ;

(2) Set the initial block size (i.e., the finest scale block) to BMIN, and let B1 = BMIN;
(3) For j = 1 to J:

- Divide Dj into subblocks of size BJ with overlapping regions;
- Apply the discrete ridgelet transform to each subblock;
- If (j mod 2 = 1), set Bj + 1 = 2Bj; otherwise, set Bj + 1 = Bj.

The curvelet transform itself is a redundant transformation. If the number of wavelet
decompositions in the first step is J, then the overall redundancy factor of the entire
transform is 16J + 1. Since each step of the above decomposition is reversible, it is possible
to construct the corresponding inverse transform algorithm to completely reconstruct the
original image.

2.1.5. Analysis of Wavelet Transform Denoising

The wavelet transform method solves the correlation values of the spatial image in a set
of established anisotropic bases. The method of wavelet transform denoising is as follows:
first, the noisy image is decomposed into subbands of different scales, and the wavelet
transform coefficients corresponding to each subband are obtained through the Plancherel
operation; then, the obtained wavelet transform coefficients are processed by the hard
threshold method (abandoning the smaller transform coefficients and retaining the larger
transform coefficients) to filter out noise in the image and retain the edge characteristics
of the image. The expression of the hard threshold in the wavelet transform denoising is
as follows:

C0(i, h) =
{

C(i, h), |C(i, h)| ≥ Ti
0, |C(i, h)| < Ti

(15)

where C(i, h) is the wavelet coefficient at scale i and direction h, Ti is the threshold corre-
sponding to different scales, and C0(i, h) is the wavelet transform coefficient after hard
threshold denoising; the expression for selecting the threshold Ti is as follows:

Ti = ki, σ · σi (16)

where σ is the noise standard deviation, σi is the noise standard deviation corresponding to
the subband after transformation, and ki is the adaptive constant corresponding to each
subband. The Monte Carlo algorithm with strong adaptability is used to estimate the noise
standard deviation in this method.

2.2. Analysis of Mean Filtering Algorithm

The principle of mean filtering is to calculate the mean of the pixels in the current point
neighborhood to replace the gray value of the current point, and this is a linear filtering
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algorithm. It is equivalent to convolving the image with a filtering template of a certain
size, filtering out the objectives with poor correlation, and obtaining a smooth star map
background. The formula for mean filtering is as follows:

g(x, y) = W(i, j) ∗ f (x, y) (17)

where f (x, y) is the original image data, g(x, y) is the filtered image data, and W(i, j) is the
filtering template, which is represented as follows:

W(i, j) =
1

M× N




1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1




M×N

(18)

2.3. Mean Wavelet Transform Denoising Process

In a space target image, the background information is primarily represented by pixels
with low grayscale values, while the edges and details of the target are mainly represented
by pixels with higher grayscale values, assuming there is no contamination from stray light.
The curvelet transform is known for its multi-scale and multi-directional sensitivity, which
enables effective capture of detailed features in images. However, in practical scenarios,
space target images usually contain significant amounts of non-uniform stray light, which
can vary in intensity. When the grayscale value of the background information is similar to
that of the target edges, the curvelet transform may struggle to effectively capture these
subtle changes. As a result, it becomes challenging to distinguish the target from the
background, leading to blurry outcomes.

To address this issue, we introduce the mean filtering algorithm to enhance contrast
and aid in distinguishing the target from the background. Subsequently, we apply the
curvelet transform for filtering. Nevertheless, mean filtering has its limitations, such as
insufficient smoothing of the grayscale values in the background information and potential
blurring of the target edges. These limitations restrict the denoising capability of the current
transform. Furthermore, the non-uniformity of stray light in the space target image can
result in regions with no stray light or severely weak stray light, where pixel values already
contain valid target information. However, the mean filtering averages over these regions,
potentially leading to blurring of object detail.

Hence, in this paper, we propose an image processing approach based on weighted
averaging. We denote the two source images as X and Y, where the X image is denoised
directly using the curvelet transform and the Y image is filtered by the mean prior to
the current transform. The final composite image, denoted as Z, is obtained by taking
the weighted average of the two images. The mean curvelet denoising formula can be
expressed as follows:

C(Z, p) = KC(X, p) + (1− k)C(Y, p) (19)

The weighting coefficient, denoted as k, its expression is as follows:

k = a×
∑Nx

x=Mx
∑

Ny
y=My

I(x,y)
2N

(Nx −Mx + 1)×
(

Ny −My + 1
) (20)

Mx, My, Nx, Ny represent the coordinates of a pixel in the image, I(x, y) represents the
value of the pixel at coordinates (x,y), N represents the number of gray levels in the image,
a represents an empirical value within the range of a ∈ [0, 1].

In regions of the background where strong stray light is present, we amplify the k
value to enhance the proportion of the denoised image Y, which is obtained after mean
filtering, in the composite image Z. Conversely, in regions with weak stray light in the
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background, we reduce the k value to enhance the proportion of the denoised image X,
obtained through direct curvelet filtering, in the composite image Z. The flowchart of the
mean wavelet transform denoising algorithm is shown in Figure 2.

Noisy image

Mean Filtering Wavelet Transform

Wavelet Transform
And Denoising

C(Y,p)

Wavelet Transform 

Denoising

C(X,p)

Weighted average composite image
C(Z,p)

Inverse wavelet transform

Denoised image

Figure 2. Flowchart of the mean wavelet transform denoising algorithm.

3. Results

This paper verifies the effectiveness of the mean wavelet transform denoising algo-
rithm through two comparison experiments.

3.1. Lena Image of a Hat Part in the Reverse Color Image Experiment

The resolution of the inverse color image of the hat part of the Lena image is a gray
image of 512 × 512 with an 8-bit grayscale. We use the mean filtering algorithm, wavelet
filtering algorithm and mean wavelet filtering algorithm to remove the white noise in the
original image, and the experimental results are shown in Figure 3 and Table 1.

Table 1. Quality of the lena image of a hat part reverse color image and experiment images obtained
via different methods.

Method Peak Signal to Noise Ratio Note

Original noisy image 21.13 -
Mean filtering 24.45 large amount of distortion

Wavelet filtering 28.95 small amount of distortion
Mean wavelet filtering 29.55 very little distortion

From Figure 3, the mean wavelet transform algorithm restores the slanted lines on the
hat more realistically than the other methods.
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(a) (b)

(c) (d)

Figure 3. Lena image filtering results: (a) original image with noise; (b) mean filtered image;
(c) wavelet transformed filtered image; (d) mean wavelet filtered image.

3.2. Real Star Image Experiment

The real star image resolution is a 2048 × 2048 gray image with a gray level of 12 bits.
We use the mean filtering algorithm, wavelet filtering algorithm and mean wavelet filtering
algorithm to filter out the white noise in the original image. The experimental results are
shown in Figure 4 and Table 2.

 

(a) (b)

(c) (d)

Figure 4. Real star image filtering results: (a) original image with noise; (b) mean filtering image;
(c) wavelet filtering image; (d) mean wavelet filtering image.

As shown in Figure 4, in the real star image, the mean wavelet transform can not
only remove nonuniform noise but also significantly improve the signal-to-noise ratio of
the image.
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Table 2. Quality of real star image and experimental images obtained via different methods.

Method Peak Signal to Noise Ratio Note

Original noisy image 6.20 -
Mean filtering 10.23 small amount of distortion

Wavelet filtering 6.95 large amount of distortion
Mean wavelet filtering 12.94 very little distortion

4. Discussion

This paper proposes the mean-curvelet transform denoising algorithm to address the
issues of uneven background intensity, complex noise and interference, and diverse target
shapes in images of space targets captured by visible light cameras under the constraints of
the imaging system and observation environment. The algorithm applies mean filtering
and curvelet transform filtering to the noisy space target images separately and then
applies the inverse curvelet transform to the filtered results to generate the final image. The
experimental results show that this algorithm effectively improves the signal-to-noise ratio
of images.

Furthermore, since the fixed threshold is used in the curvelet transform in this paper,
we will study the application of the variable threshold curvelet transform to the algorithm
in future experiments.

However, since the curvelet transform is mostly implemented on hardware platforms
such as X86 and X64, which cannot tolerate long-term operation in space radiation envi-
ronments, the algorithm proposed in this paper currently does not have the capability of
real-time processing in orbit. In future studies, we will select some hardware platforms
with radiation resistance indicators, such as DSP or FPGA, and apply the algorithm on
these hardware platforms to achieve real-time processing in orbit.

5. Conclusions

Based on our study, and compared with existing methods, our proposed mean curvelet
transform method not only has better suppression performance for images of space targets
with uneven background intensity, complex noise and clutter but also maintains good
target shape diversity and preserves image details and other information, significantly
improving the image quality. Therefore, our proposed algorithm has great application
value for denoising space target images. In future research, we will further investigate the
performance of the algorithm.
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Abstract: Visual object trackers based on Siamese networks perform well in visual object tracking
(VOT); however, degradation of the tracking accuracy occurs when the target has fast motion, large-
scale changes, and occlusion. In this study, in order to solve this problem and enhance the inference
speed of the tracker, fast and accurate visual tracking with a group convolution and pixel-level
correlation based on a Siamese network is proposed. The algorithm incorporates multi-layer feature
information on the basis of Siamese networks. We designed a multi-scale feature aggregated channel
attention block (MCA) and a global-to-local-information-fused spatial attention block (GSA), which
enhance the feature extraction capability of the network. The use of a pixel-level mutual correlation
operation in the network to match the search region with the template region refines the bounding
box and reduces background interference. Comparing our work with the latest algorithms, the
precision and success rates on the UAV123, OTB100, LaSOT, and GOT10K datasets were improved,
and our tracker was able to run at 40FPS, with a better performance in complex scenes such as those
with occlusion, illumination changes, and fast-motion situations.

Keywords: feature fusion; pixel-level correlation; Siamese network; attention mechanism

1. Introduction

As one of the research contents in computer vision, visual object tracking has wide
application prospects and value in security surveillance, intelligent transportation, au-
tonomous driving, human–computer interaction, autonomous robotics, marine exploration,
military target identification, and tracking. Visual object tracking was first carried out using
correlation filtering for tracking, and with the development of deep learning, convolutional
neural networks have gradually been widely used due to their powerful feature extraction
capabilities. Visual object tracking is usually divided into three parts: using a backbone
network to extract the target’s features, then correlating the template features with the
search, and finally utilizing a classification and regression sub-network to predict the center
and bounding box of the target. Siamese networks are widely used in object tracking with
this structure.

SiamFC [1] first introduced Siamese networks to object tracking. In SiamFC, the
template features are correlated with the search features to find the region with the largest
response and complete tracking and evaluation. Since then, many works have been carried
out on Siamese networks in object tracking. SiamRPN [2] introduced the RPN (region
proposal network) structure of object detection to tracking, constructing two branches—one
for the regression of the target bounding box, and the other for the classification of the
target—where the multi-scale anchor box improves the performance under object scale
changes. SiamRPN++ [3] solved the problem of poor results in deep networks due to the
destruction of translation invariance when the network is deepened, successfully using
ResNet [4] and MobileNet [5] as the backbone networks. SiamFC++ [6] removes the anchor
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frame and changes the output prediction to an anchor-free style without presetting the
anchor frame.

In recent years, transformer structures have boomed in various fields of computer
vision. TransT [7] uses the structure of a transformer as the correlation operation, which
improves accuracy. Zhao et al. [8] used a transformer structure as the backbone network
and utilized a decoder to reconstruct the target appearance within the search region so
that the template is close to the search frame, rather than the search frame being directly
related to the template image. In this way, the robustness of the tracker is enhanced, even if
the appearance of the target has changed. Gao et al. [9] proposed a one-and-a-half-stream
structure that uses an adaptive token division method so that the search and template
regions have self-attention and cross-attention, as in a two-stream structure, as well as
advanced template interactions with the search region, as in a one-stream structure. This
structure outperforms some two-stream and one-stream pipelines.

In object tracking, training datasets usually contain many videos and multiple forms
of motion. Some annotations may be less accurate due to occlusion and present simi-
larities; thus, some trackers use data processing methods to improve the performance.
Yang et al. [10] analyzed the dataset distribution in a low-level feature space and proposed
a sample squeezing method to eliminate redundant samples, making the dataset more
abundant and informative and increasing the diversity of the dataset. Qi et al. [11] adap-
tively obtained a tight enclosing box; when the target is in deformation or rotation, the
bounding box cannot tightly enclose the target. They also designed a classifier to determine
whether the target is occluded or not, which helps to avoid the collection of occluded
samples for tracker updates, and to improve accuracy.

However, there are still some challenges in practical applications. Target appearance
changes, illumination variation, and occlusion can affect the effectiveness of tracking.

Generally, different features of the object are extracted in different stages of the network.
As shown with HDT [12], combining these features from different layers improves the
performance of the tracker. HDT uses an improved hedge algorithm to hedge weak
trackers from each layer into a strong tracker. In this work, we consider feature fusion
by using a 1 × 1 convolution to concatenate and fuse features from different stages in the
Siamese backbone network, which can improve the algorithm accuracy. Meanwhile, in
order to improve the detection speed, we use a group convolution for the dimensionality
reduction. A group convolution [13] can exponentially reduce the number of parameters
compared with a normal convolution, which can speed up the operation. In the correlation
stage, we use a new matching method, namely a pixel-level correlation operation, in the
network, which is able to obtain a correlation feature map with a smaller kernel size and a
more diverse target representation, reducing the interference of background clutter and
preserving the target boundary and scale information, which is beneficial to the subsequent
prediction.

The main contributions of this work are as follows:

(1) Feature fusion: we use not only the last layer output feature map for prediction but
also the feature map of layers 3, 4, and 5 for feature fusion to output the prediction;

(2) Pixel-level correlation: the template features are decomposed into spatial features and
channel features, which are matched with the search features, instead of correlating
channel-by-channel;

(3) Speed improvement: we use a group convolution for the dimensionality reduction,
which reduces the number of parameters and the use of activation functions and
normalization in the backbone to speed up the detection;

(4) New attention module: we designed two new attention modules, namely, a multi-scale
feature aggregated channel attention block (MCA) and a global-to-local-information-
fused spatial attention block (GSA), enabling the network to focus on certain parts of
the features and reduce the attention on useless parts, thus improving the performance
and accuracy of the model.
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The rest of this paper is organized as follows. In Section 2, we present research on
object tracking based on Siamese networks published in recent years. Section 3 outlines
the core of our tracker, including four parts to improve accuracy, from the lightness to
the robustness of the algorithm. Section 4 is the experimental section, which presents an
ablation study and a comparison of the results of different trackers on different datasets to
analyze the validity of our work. Finally, we conclude the paper in Section 5.

2. Related Work

This section introduces the development of object tracking and some object trackers
that have been reported in recent years. Object tracking algorithms can be divided into two
categories: one is based on correlation filtering, and the other is based on deep learning.
The methods based on correlation filtering include MOSSE [14], KCF [15], and DSST [16].
Correlation filtering introduces the convolution theorem from the signal domain to object
tracking and transforms the template matching problem into a correlation operation in the
frequency domain. This method is fast in operation but has average accuracy in complex
scenarios. In recent years, with the development of deep learning technology and the estab-
lishment of large-scale datasets, object tracking algorithms based on convolutional neural
networks have gradually emerged, among which Siamese network-based visual object
trackers are particularly remarkable. A Siamese network consists of two sub-networks with
the same structure and shared parameters, which are initially used for picture similarity
analysis and metric learning. SINT [17] and SiamFC [1] first introduced Siamese networks
to the visual object tracking field. SiamFC inputs the template picture and search sample,
obtains the template feature map and search feature map, and then slides the template
feature map over the search feature map as part of the correlation operation. The point
with the largest response on the search feature map is considered the prediction target.
SiamFC, as a fully convolutional network, has a simple structure and high tracking speed,
and many subsequent works have been based on it. SiamRPN [2] introduced the RPN
structure from object detection to the tracking field. One branch judges whether the object
is in the foreground or background, and the other branch predicts the bounding box of
the target. However, these algorithms only use shallow networks, and the tracking effect
worsens for deep networks. Through the use of SiamRPN++ [3], it was found that the
accuracy of deep networks is reduced because the strict translational invariance is broken,
but allowing the target to be shifted in a certain range near the center point during training
can alleviate the impact, enabling the successful application of deep networks in tracking
algorithms. SiamFC++ [6] uses an anchor-free prediction head that does not set any anchor
parameters, eliminating the effect of preset hyperparameters on the generalization ability
of the algorithm. There are also some transformer structures used in visual object tracking
that have achieved good results.

Although these works achieved good results, the tracking accuracy decreases and the
inference speed becomes slower in the face of occlusion, object scale changes, background
clutter, and other situations. In this paper, we adopt feature fusion and some simplified
methods for complex scenes to reduce the computational cost and improve accuracy at the
same time, using pixel-level correlation to reduce the influence of background clutter and
to refine the object bounding box.

3. Proposed Method

In this section, we describe the network framework in detail. As shown in Figure 1,
our model mainly consists of a Siamese network backbone and two sub-network detection
heads for the bounding box classification and regression. The Siamese backbone network
is fine-tuned from ResNet50, inspired by the transformer structure, reducing the use of
activation functions and normalization, and instead using channel attention [18] and
spatial attention [19] modules in the classification and regression sub-networks to make the
network more accurate in extracting features. Moreover, to improve the inference speed,
a group convolution and 1 × 1 convolution are used for the dimensionality reduction in
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the feature fusion stage; both of them accelerate the computation speed and reduce the
inference time. The cross-correlation operation no longer uses depth-wise correlation [3];
template features and search features are correlated in a pixel-level matching model, which
can effectively reduce background clutter and allow the model to refine the object boundary
ranges and focus more on the target.
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Figure 1. Illustration of our proposed framework. Section 3.1 presents Siamese backbone network,
CNN1, CONV3, CONV4, CONV5 represent layer 3, 4, 5 of it. F represents the pixel-level correlation
method, which is presented in Section 3.2. The feature fusion model is presented in Section 3.3. The
classification and regression sub-network using a dual-attention mechanism, CNN2, is presented in
Section 3.4.

3.1. Siamese Backbone Framework

Thus far, deep convolutional neural networks have been successfully applied in the
field of object tracking. The deepening of these networks has led to improvements in the
performance of trackers, such as ResNet [4], ResNeXt [13], and MobileNet [5], which have
achieved a good performance. ResNet50, as a classical network, has good robustness and
effectiveness and is usually used in trackers as a feature extraction backbone network while
modifying the backbone network in order to cater to the accuracy requirements of the
tracking task.

Ren et al. [20] proposed Flow Alignment FPN (FAFPN) to align feature maps of
different resolutions to solve the semantic misalignment problem when fusing features of
different layers. We set the steps of the conv4 and conv5 feature layers to 1 and remove
the down-sampling operation so that the output resolution of the last three blocks is the
same; meanwhile, to increase the receptive field, the use of a dilated convolution [21] to
extract more features has been proven to be effective. Transformers [22], as excellent model
architectures, are widely used in various vision tasks. Compared to convolutional neural
networks, transformers usually use less activation functions and normalization operations
with good results. Inspired by this, a similar method is applied in the backbone.

The original ResNet50 network uses a convolution of 7 × 7 with a 2-step size in the
first layer, following a maximum pooling to complete a 4-fold down-sampling of the input
image. The transformer divides the image into patches of the same size and feeds each
patch into the network. We change the first layer of the network to a convolution of 4 × 4
with a 4-step length, with no overlap between convolutions. Compared with the previous
one, the convolutional kernel with K = 4 and S = 4 has a smaller kernel size and a larger
step size. The computation and parameter numbers are shown in Equations (1) and (2):

FLOPsold :
(

N
2

)2
× 72 × 3× 64 = 2352N2 (1)

FLOPsnew :
(

N
4

)2
× 42 × 3× 64 = 192N2, (2)

where N denotes the input size, and 3 and 64 are the input and output channels in the first
layer of the network, leading to a significant reduction in computation.

Another difference between transformers and CNNs is the use of activation functions
and normalization. RELUs are widely used in various CNN networks as simple and effi-
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cient activation functions. GELUs, as a variant of RELUs, are used in the latest transformer
structures, such as the Swin Transformer and BERT, and can effectively alleviate neuron
death and avoid gradient disappearance. Therefore, we use GELUs [23] instead of RELUs.

Traditional convolutional neural networks use an activation function after each layer
of convolution. In order to speed up the operation, we remove the activation function after
the 3 × 3 convolution, only using it after the 1 × 1 convolution.

As for normalization, BN is the most common normalization method, which is widely
used in various vision tasks. Meanwhile, the setting of the batch size affects the final result.
Models with an insufficient batch size are not suitable for convergence, while there may
be a reduction in the generalization ability of models with too large a batch size. Group
normalization [24] can be used for the normalization of samples, and it has been used in
many application scenarios. We use GN instead of BN and also reduce its use to improve
the inference speed. The modified Resnet50 consists of a new bottleneck (see Figure 2), and
the inference speed is about 5 FPS faster.
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3.2. Pixel to Global Correlation

Correlation is the most important part of object tracking, which combines template
features with search features and then connects them to the output of the classification
and regression sub-networks. Unlike depth-wise correlation [3], which correlates template
features with search features channel by channel, in this work, we use pixel to global
correlation [25], which decomposes template features and correlates every pixel with
the search features to obtain a correlated feature map S. This correlation can effectively
suppress background interference, improve the target response on the feature map, and
further improve the accuracy of the target bounding box.

The process is shown in Figure 3, where the template features Z f ∈ RC×H0×W0 are
first decomposed into spatial feature vectors Zs =

{
Z1

s , Z2
s , . . . , Znz

s
}

, Zi
s ∈ RC×1×1 for

each pixel.
nz = H0 ×W0 (3)
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Figure 3. Illustration of pixel to global correlation, where Z f is the template feature, and X f is the
search feature. (a) The template feature is decomposed into feature vectors Zs and Zc. Zs converts
the template feature into feature vectors according to each pixel position. Zc converts the template
feature maps of each channel into feature vectors. (b) Feature vectors Zs and Zc are successively
correlated with the search feature X f to obtain features S1 and S2. S2 is the correlation feature map
combining the template and search features.
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Similarly, the template features are also converted into channel feature vectors,
Zc =

{
Z1

c , Z2
c , . . . , Zc

c
}

, Zi
c ∈ Rnz×1×1, according to the channel dimension. The search

features are first correlated with the spatial feature vectors Zs to obtain feature map S1
based on Equation (4):

S1 = X f ∗ Zs. (4)

Then, feature map S1 is correlated with the channel feature vectors X f to obtain feature
map S2 based on Equation (5):

S2 = S1 ∗ Zc, (5)

where ∗ represents the convolution process. Feature map S2 is obtained after both the
channel features and spatial features of the template are correlated. Then, the classification
and regression sub-networks complete the target prediction.

Naive correlation [1] and depth-wise correlation [3] use whole template features
as kernels to correlate the search features so that the adjacent sliding windows on the
feature map produce similar responses, blurring the spatial information. As a refinement
method, pixel to global correlation decomposes the template into 1∗1 feature sub-kernels
according to the space and channel to correlate the search region, which effectively reduces
background interference and further improves the accuracy of the target bounding box,
avoiding the blurring of features.

3.3. Feature Fusion

In order to make full use of the features extracted from the backbone network and
the advantages of deep networks, features from different layers are used in our feature
fusion, and at the same time, in order to speed up the inference, a group convolution [13] is
used to first reduce the feature dimensions to simplify the number of parameters and then
aggregate the features via a pointwise convolution.

Group convolutions [13] have been widely applied as efficient convolution methods.
Their specific process is shown in Figure 4. C1 × H ×W is used as the input, and the
output is C2 × H ×W, which represents the channel, height, and width of the convolution.
The input is divided into g groups, and each group uses a convolution with a kernel size
of k × k and C1/g channels. Compared with the number of parameters of an ordinary
convolution, i.e., k× k× C1 × C2, the number of parameters of the group convolution is
k× k×C1×C2/g, which is 1/g of an ordinary convolution, greatly reducing the parameter
redundancy. A group convolution is equivalent to decomposing the input and processing
the data in parallel, which can speed up the operation. The number of parameters and
FLOPs is calculated using Equations (6) and (7):

Paramsnormal : k× k× C1 × C2, FLOPsnormal : k× k× C1 × C2 × H ×W (6)

Paramsgroup :
k× k× C1 × C2

g
, FLOPsgroup :

k× k× C1 × C2 × H ×W
g

. (7)
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Generally speaking, during the tracking process, there may be problems such as
illumination changes and scale variation, which require the tracking task to use as much
feature information as possible. It is usually considered that in the shallow layer of a
network, the network extracts the fine-grained information [26] of the object, such as
its color and shape, to help locate the object’s position, and as the network deepens, the
network extracts the semantic information of the object. Fusing these features from different
deep and shallow layers helps to track the target. After correlation, the features of the three
stages are concatenated together, and the fusion of the features is implemented using a
pointwise convolution [27], which achieves the fusion of cross-channel information quickly
and efficiently.

3.4. Classification and Regression Sub-Network

The aim of an attention mechanism is to allow the model to learn how to allocate its
own attention and weight the input signal. An attention mechanism scores each dimension
of the input and then weights the features according to the score, increasing the weight
of interesting parts and decreasing the weight of uninteresting parts, so that the network
adaptively highlights the features that are important to the downstream model or task. In
this work, two attention modules, namely, channel attention and spatial attention modules,
are implemented in the classification and regression sub-network (CNN2), as shown in
Figure 5. The features are first reduced in dimensionality via a group convolution [13];
then, a PW convolution [27] is used for feature fusion, and finally the dual channel and
spatial attention module is followed.
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The multi-scale feature aggregated channel attention block (MCA) is a mechanism
for tuning the network at the channel level, as shown in Figure 6. The input features
are first divided into four parts, each of which is reduced to half of the original channel
via a convolution layer. Two operations are performed independently: one directly uses
global average pooling to make the features 1× 1× C in size, with a global perceptual
field, aggregating the global features and squeezing information from the channels after
the sigmoid activation to obtain the channel weights, which are then multiplied back to
the divided features; the other uses an additional convolution layer and then performs the
same operation as the former. The four parts adopt the same operation and concatenate
together, completing the attention enhancement of the channel dimension, making the
network automatically focus on the channels that are important.

The MCA block is based on Equations (8)–(10), where F is the input, S is the spilt
operation, Cat is the concatenate operation, δ is the activation function, C1 and C2 represent
the convolution layers, and GAP stands for global average pooling.

F1 = C1(S(F)) (8)

FSE1 = Cat(δ(GAP(F1))× F1, δ(GAP(C2(F1)))× C2(F1)) (9)

FSE = Cat(FSE1, FSE2, FSE3, FSE4) (10)
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The global-to-local-information-fused spatial attention block (GSA) is similar to the
channel attention block in that it weights the network from the spatial dimension as shown
in Figure 7. The same input features are divided into four parts, using two convolution
layers, average pooling, and maximum pooling [28] for each feature point of the network
along the channel direction to obtain four 1∗h∗w feature maps. The pooling map and
convolution map are concatenated before another convolution layer to obtain weights in
the spatial dimension, which are then multiplied back to the input. Two parts are then
added to complete the attention enhancement of the spatial dimension, making the network
focus on the more important regions. We employ the GSA block in Equations (11)–(13).

FSPA1 = F× C2(Cat(C1(F), GAP(F))) (11)

FSPA2 = F× C4(Cat(C3(F), GMP(F))) (12)

FSPA = FSPA1 + FSPA2, (13)

where GAP and GMP represent average pooling and maximum pooling, F is the input
feature, C1, C2, C3, C4 represent the convolution layers, and Cat is the concatenate operation.

After the template features are correlated with the search features (pixel-level corre-
lation), they are fed into the classification and regression sub-networks (CNN2), which
predict whether it is an object or background, along with the bounding box of the target. As
shown in Figure 8, the two sub-networks use the same correlation module as the input and
do not use separate correlation modules, which also reduces the amount of computation
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and speeds up the operation of the network. The algorithm finally runs at 40 FPS, which is
nearly 9 FPS faster than SiamCAR.
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4. Experiments
4.1. Implementation Details

The initial model of the backbone was derived from ResNet50 [4] trained on the
COCO [29] dataset, a migration learning approach that is commonly used for network
training today. We used the Lasot [30], Got10k [31], ImageNet VID [32], and YouTube
Bounding Boxes [33] datasets as training sets. The search region was cropped to 255 × 255,
and the template region was cropped to 127 × 27 for training. The initial learning rate was
0.001, and 20 training epochs were performed using stochastic gradient descent (SGD). In
the first 5 epochs, the learning rate increased from 0.001 to 0.005, and in the last 15 epochs,
it gradually decreased from 0.005 to 0.0005. Meanwhile, the parameters of the backbone
network were frozen in the first 10 epochs, where only the neck and output parts were
trained, and in the last 10 epochs, the parameters of the backbone network were unfrozen,
and the network was trained as a whole. Finally, the model was tested and evaluated on
the UAV123 [34] and OTB100 [35] datasets.
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4.2. Ablation Study

In order to explore the effect of the multi-layer feature fusion, ablation comparison
experiments were conducted. Table 1 shows that the use of multi-layer feature fusion is
better than just using a single feature, and the effect is better when using the three-layer
feature fusion of CONV3, CONV4, and CONV5 than when using the two-layer feature
fusion of CONV4 and CONV5, indicating that the features extracted from the different
stages of the network are not the same, and fusing multi-layer features is beneficial to
improving the tracking accuracy. The correlation method based on pixel matching of
the template features also shows an improvement compared to the channel-by-channel
correlation method, with an improvement of 0.8% on the UAV123 dataset. The addition of
the attention module to the network further improves the effect of the network, and the
use of both spatial and channel attention models enables the network to achieve the best
effect, with a final accuracy of 65.5% on the UAV123 dataset.

Table 1. Ablation study of the proposed tracker on UAV123. L3, L4, and L5 represent conv3, conv4,
and conv5, respectively. DW/Pix stands for depth-wise correlation and pixel to global correlation.

L3 L4 L5 Correlation MCA Block GSA Block AUC
√

DW 0.616√ √
DW 0.620√ √ √
DW 0.628√ √ √
Pix 0.636√ √ √
Pix

√
0.647√ √ √

Pix
√ √

0.655

In order to analyze the effect of fusing multi-layer features, we tested the model on
three datasets. As shown in Table 2, the use of three feature maps from different convolution
layers leads to the best results on all three datasets, which shows that the use of multi-layer
feature fusion is beneficial to improving the accuracy.

Table 2. Ablation study of the use of feature maps from different layers.

Conv Layers Used UAV123 OTB100 GOT10K
AUC P AUC P AO SR0.5

Conv5 0.616 0.814 0.690 0.905 0.585 0.680
Conv4, 5 0.620 0.822 0.693 0.907 0.591 0.689

Conv3, 4, 5 0.628 0.827 0.695 0.908 0.594 0.693

Another ablation experiment was conducted to explore the attention mechanism and
pixel-level correlation. As shown in Table 3, the baseline uses three convolution layers
with pixel-level correlation, while MCA and GSA are the multi-scale feature aggregated
channel attention block and the global-to-local-information-fused spatial attention block.
Every addition improves the accuracy. In the end, all modules are used, achieving the best
performance with an AUC of 65.5% and a precision rate of 85.2%.

Table 3. Ablation study of the attention model and correlation method.

Method AUC PNorm P

Baseline (3layers + pix) 0.636 0.857 0.830
+MCA 0.647 0.869 0.844
+MCA +GSA 0.655 0.876 0.852

4.3. Results on UAV123

UAV123 [34] is a collection of 123 high-definition videos captured using UAVs during
aerial photography, containing a variety of targets such as pedestrians, ships, planes, and
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cars; a variety of scenes including fields, roads, and water, with many activity styles; and
occlusions, scale changes, lighting changes, and camera movements in order to increase the
tracking challenge. The evaluation metrics include success, precision, and norm precision.
Precision is the center position error, using the average center position error of all frames in
a sequence to evaluate the performance of the trackers. Success is the proportion of area
overlapped between the detection and the real area; generally, the area under the curve is
used as its value.

We compared our work with other state-of-the-art trackers, including SiamRPN++ [3],
Ocean [36], SiamBAN [37], and SiamGAT [38]. As shown in Figure 9, compared with
SiamCAR, our tracker shows a 4.0% improvement in success and a 4.8% improvement
in precision.
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Figure 9. (a) Overall success and precision plots of our tracker on UAV123 compared with other
trackers. (b) Success plot for visual attributes. (c) Precision plot for visual attributes.

We also compared the trackers in terms of visual attributes, including illumination
changes, occlusion, scale changes, and background clutter, as shown in Figure 10. Our
tracker ranks first, which shows that our tracker has the ability to cope with illumination
changes, occlusion, and scale changes.
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4.4. Results on OTB100

OTB100 is a widely used object-tracking dataset. It contains 100 video sequences with
attributes such as fast motion, motion blur, and low resolution. We compared our tracker
with other state-of-the-art trackers including SiamCAR [39], SiamRPN++ [3], SiamBAN [37],
and CFNet [40].

Figure 11 illustrates the success and precision plots of the compared trackers. Our
track-er achieves better results than SiamCAR [39] and SiamBAN [37], with a faster speed
in terms of scale variation, out-of-plane rotation, low resolution, etc. Our tracker obtains
a success rate of 0.701 and a precision rate of 0.914. The integration of the attention and
pix-el-level correlation methods enables the tracker to work well in scenarios with low
resolution, scale variation, etc.
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4.5. Results on GOT10K and LaSOT

As a large tracking dataset, GOT10K contains more than 10,000 videos, and it is
populated with more than 560 categories of moving objects and 87 motion patterns—more
than other datasets. We tested our model on the test set. As shown in Table 4, compared with
SiamCAR [39], SiamFC++ [6], and Ocean [36], our tracker achieves an AO of 60.7%, which
is 1.2% better than that of SiameseFC++ and generally better than that of the other trackers.

Table 4. Comparison with other trackers on the GOT10k test set.

SiamFC SiamRPN SiamRPN++ SiamCAR SiamFC++ Ocean Ours

AO 0.374 0.483 0.517 0.569 0.595 0.611 0.607
SR0.5 0.404 0.581 0.616 0.670 0.695 0.721 0.713

LaSOT contains 70 object categories and provides an equal number of sequences for
each category to mitigate potential category bias, resulting in a collection of 1400 sequences
with an average video length of 2512 frames, constituting a high-quality tracking dataset.
We tested our tracker on this test set. As shown in Table 5, our tracker outperforms Ocean
by 1.2% and has a better performance than the other trackers, which shows its effectiveness
and generalizability.

Table 5. Comparison with other trackers on the UAV123, OTB100, and LaSOT datasets in terms of
the AUC.

SiamRPN++ SiamCAR SiamBAN CGCAD PGNet Ocean Ours

UAV123 0.611 0.604 0.615 0.623 0.619 0.621 0.655
OTB100 0.695 0.696 0.696 0.691 0.703 0.676 0.701
LaSOT 0.469 0.507 0.514 0.518 0.531 0.560 0.572

Figure 12 shows that our model can track successfully in the face of size variation,
occlusion, and low resolution, improving the success and precision rates. The inaccuracy
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of the boat tracking is due to the fixed viewpoint, and as the boat is traveling from far to
near, its size changes rapidly, so the tracker does not work well. Our model aggregates
multi-layer features with different receptive fields, which reduces the problem of accuracy
degradation due to the change in the size of the object. The person tracking inaccuracy is
due to the close distance and high similarity of the two people, resulting in the bounding
box containing both. Pixel-level correlation is a more refined correlation method that
can refine the bounding box and diminish tracking exceptions caused by background
interference. Due to the small size and fast movement of UAVs, tracking errors often occur.
The attention module can enhance the feature extraction ability of the network, allowing
the network to focus on important features and track successfully. Therefore, our tracker
provides a better accuracy than the other algorithms in different situations. Meanwhile,
compared to SiamCAR’s inference speed of 31FPS, our model runs at 40FPS, representing
an improvement of 9FPS, which is an improvement in both speed and success.
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boat, UAV, and images present challenging attributes such as low resolution, occlusion, fast motion,
and size variation. Green boxes denote ground truth, yellow boxes are results from SiamCAR, and
red boxes are our model results.

5. Conclusions

In this work, we propose a Siamese framework with a group convolution and pixel-
level correlation for visual object tracking, with training from end to end, using multi-layer
feature fusion and attention mechanisms to improve the feature extraction capability
of the network, which works well under fast motion, occlusion, etc. We designed two
attention modules: a multi-scale channel attention block (MCA) and a global-to-local spatial
attention block (GSA), which enable the network to extract more meaningful features in
the classification and regression sub-network. During tracking, pixel-level correlation
reduces background interference and provides more refined target boundaries, and it
decomposes the template features from the channel and spatial dimensions and uses every
pixel feature to correlate the template and search regions. Furthermore, in order to improve
the inference speed, our tracker uses a group convolution, which reduces the number of
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parameters in the network, as well as the use of activation functions and normalization
in the backbone. The final inference speed reaches 40FPS, nearly 9FPS faster than that of
SiamCAR. Our model achieved a 65.5% success rate and an 85.2% precision rate on the
UAV123 dataset, outperforming SianCAR by 4%; a 70.1% success rate and a 91.4% precision
rate on the OTB100 dataset; and a 57.2% success rate on LaSOT, outperforming Ocean
by 1.2%. Accordingly, our tracker performs better than other trackers and effectively
improves the results under lighting changes and occlusion, showing its effectiveness
and generalizability.
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Abstract: Object detection for a pick-and-place system has been widely acknowledged as a significant
research area in the field of computer vision. The integration of AI and machine vision with pick-and-
place operations should be made affordable for Small and Medium Enterprises (SMEs) so they can
leverage this technology. Therefore, the aim of this study is to develop a smart and lean pick-and-place
solution for custom workpieces, which requires minimal computational resources. In this study, we
evaluate the effectiveness of illumination and batch size to improve the Average Precision (AP) and
detection score of an EfficientDet-Lite model. The addition of 8% optimized bright Alpha3 images
results in an increase of 7.5% in AP and a 6.3% increase in F1-score as compared to the control dataset.
Using a training batch size of 4, the AP is significantly improved to 66.8% as compared to a batch
size of 16 at 57.4%. The detection scores are improved to 80% with a low variance of 1.65 using a
uniform 135-angle lamp and 0 illumination level. The pick-and-place solution is validated using
Single-Shot Detector (SSD) MobileNet V2 Feature Pyramid Network (FPN) Lite. Our experimental
results clearly show that the proposed method has an increase of 5.19% in AP compared to SSD
MobileNet V2 FPNLite.

Keywords: object detection; EfficientDet-Lite; Average Precision

1. Introduction

One of the current trends in advanced manufacturing is to employ Artificial Intel-
ligence (AI) methods to improve the pick-and-place process. The integration of AI and
machine vision with pick-and-place operations can significantly improve the manufactur-
ing process. It should be made affordable for Small and Medium Enterprises (SMEs) so
that they can leverage the benefits come with this technology without being concerned
with allocating a significant financial budget. The fast and smooth integration of machine
vision technology with the current pick-and-place operations of SMEs is another crucial
aspect that should be taken into consideration.

In this context, any machine vision solution should be developed in a way that
the commissioning and installing can be carried out simply and quickly by the field
operators of SMEs without special skills. Therefore, one of the current trends in advanced
manufacturing is to employ object detection using Deep Learning methods to improve the
pick-and-place process. Furthermore, we study the usage of this smart and lean system in
low-light environments, such as waferfab manufacturing during the night shift. Die-sorting
machines, for example, can be used in low-light environments because they are totally
automated and require no user intervention. As such, sufficient ambient lighting is not
needed [1], and hence, our aim is to develop a smart and lean pick-and-place solution,
which requires minimal computational resources, for custom workpieces.

AI model efficiency has become increasingly important in computer vision, and object
detection using machine learning is becoming crucial for pick-and-place operation and
warehousing logistics [2,3]. Other than allowing the smart detection of objects without
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camera recalibration, AI enhances the application’s robustness to light changes, shadow,
background noise and low-illumination [4].

Continuing from our previous work [5], we aim to improve the pick-and-place opera-
tion using an Artificial Intelligence model deployed on an embedded controller. Our target
is to develop a smart and lean pick-and-place system that meets the requirements of low
power consumption, small memory usage, and fast run time.

Model efficiency has become increasingly important in computer vision to be used on
mobile devices and embedded controllers such as Raspberry Pi due to the model’s compact
size and quick inference. Convolutional Neural Network (CNN) models are crucial for
feature extraction and classification, but conventional high-performance algorithms are
expensive due to their high-power consumption and memory usage.

TensorFlow has developed several deep learning object identification models that
were designed for embedded and mobile devices, hence the name TensorFlow Lite (TFLite).
The model’s compact size and quick inference for TFLite versions make them appropriate
for a variety of applications, including wearable technology and the Internet of Things.
A pre-trained TensorFlow model is used to act as a learnt generic model because it has
previously been trained on a sizable general dataset. This helps to reduce the quantity of
data required to train a model from scratch.

Our project uses the state-of-the-art model EfficientDet-Lite [6], which was developed
by Google in 2020. Compared to other state-of-the-art models, EfficientDet-Lite detec-
tors are more precise and need fewer computational resources (working memory, power
consumption, and floating-point operations per second or FLOPS) than their predecessors.

TFLite is a model optimization toolkit provided by Google, whose purpose is also to
reduce the complexity of deep learning models and speed up the inference time. TfLite’s key
feature is size reduction, which results in a smaller model and less need for storage space
and RAM. TFLite decreases latency by quantization, which helps to simplify calculations
during inference with only a little amount of accuracy loss.

TFLite optimizes the model via quantization, clustering, and pruning. The model’s
accuracy is reduced, as it is quantized from FP64 to lower resolutions (FP32, FP16, INT8).
In order to reduce a model’s complexity by reducing the number of its unique weights, clus-
tering involves dividing the weights of the trained model’s layers into clusters and sharing
the centroid of each cluster’s weight. Pruning is the process of removing less important
model parameters that barely affect the outcomes of predictions. This aids in simplifying
the model at the expense of some accuracy loss and offers far higher performance.

EfficientDet uses the same backbone as EfficientNet and adds a bi-directional feature
pyramid network (BiFPN) to help in multi-scale feature fusion. It utilizes several opti-
mization and backbone tweaks and a compound scaling method that uniformly scales the
resolution, depth and width for all backbones, feature networks and box/class prediction
networks at the same time.

Considerable research has already been completed for object detection using AI, laying
the foundation for this work. The contribution of every work published previously in all the
relevant domains has played a significant role in developing this work. Our pick-and-place
approach is similar to a robot collecting a rock from a hopper using a vision-based image
processing algorithm [7] and a robot performing pick and place operations on deformable
items [8].

Similar to us, some researchers developed novel methods to improve the mean Average
Precision. Using Faster-RCNN, Leung [1] developed a vehicle detection approach for
insufficient and night-time illumination conditions and improved the mAP values by
0.2; however, it was not meant for a resource-constrained embedded system. Luo [9]
achieved an average detection accuracy of 57.51% on EfficientDet-D2 for the road damage
detection, which was lower than our 74.1% AP for the Alpha1 dataset. Jain [10] developed
“DeepSeaNet” to detect underwater objects with EfficientDet with a high accuracy of
98.63%, but the method was not suitable for lightweight devices due to the complexity of
the model.
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Similar to our lightweight methodology, Cirjak [11] used EfficientDet-4 on Raspberry
Pi to monitor the codling moth population and achieve a high accuracy of 99% with a
small dataset of 430 images. Wu [12] adopted EfficientDet to detect textureless objects in
an industrial environment, but this method was not suitable for Raspberry Pi due to the
heavy computation. Saurabh [13] used a web camera and ABB robot to detect color and
perform a color-sorting algorithm; this work has 100% detection but no machine learning
implementation. Konaite [14] used another lightweight model, SSD MobileNet V2, on
Raspberry Pi to detect barriers for blind people to navigate safely.

EfficientDet is used in non-industrial scenarios such as dental application. Bayaran [15]
assessed the diagnostic quality of bitewing radiographs at contact areas between teeth,
which can help the oral radiologists provide better radiographic qualities.

Other than EfficientDet, advanced CNN is used in other applications. For example,
it is used in implementing traffic signs recognition in a mobile-based application [16], a
speech recognition system using TensorFlow [17], a smart surveillance system for night
low-illumination objects [18] and a visual feedback algorithm on AlexNet [19].

The effectiveness of illumination to improve the detection scores has not been ex-
tensively studied for pick-and-place solutions, especially robots used in warehouses and
logistics areas with low illumination, and thus, our research aims to fill this gap.

We implement a smart and lightweight object detector requiring minimal computa-
tional resources which controls a pick-and-place system. The illumination effect on the
EfficientDet-Lite model deployed in Raspberry Pi are investigated and compared. Our
contributions include the following:

• The addition of 8% optimized bright Alpha3 images resulted in a 7.5% increase in
Average Precision and a 6.3% increase in F1-score.

• Obtain high detection scores over 80% and low variance of 1.65 by using 135-degree
angle and level 0 illumination in accordance with Japanese Industrial Standard (JIS).

• In-depth analysis of EfficientDet-Lite models with training batch sizes 4, 8, and 16.
Batch size 4 had the best performance with an overall mean of 66.8% and low standard
deviation of 6.23%

The remainder of this paper is organized as follows: In Section 2, we introduce the
project setup for a smart and lean pick-and-place solution as well as the data collection
and training process. In Section 3, we test our proposed method on the custom dataset
and compare it with some other state-of-the-art methods to show the effectiveness and
advantages of our method. Conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Materials and Measurements Setup

Figure 1 shows the project setup for our smart and lean pick-and-place solution. The
framework of the pick-and-place solution is mainly divided into two parts; object detection
and location using an embedded system, and workpiece placement using a robot arm. A
Universal Robot 3 (UR3) collaborative robot is used to perform the pick-and-place solution.
A Logitech 2D camera of 5 Megapixels (MP)is mounted on the arm of UR3 and connected
to the USB port of a Raspberry Pi. Once the object is detected, the General-Purpose Input–
Output (GPIO) sends a signal to control the hardwired signal of the UR, as proposed by
our previous work [5]. Using 2D cameras is beneficial to the pick-and-place system, as they
are more affordable and have good accuracy [20]. Compared to other vision solutions, a 2D
camera detection engine is easy to use, thus increasing their adaptability and flexibility to
different custom-made objects.

Figure 2 shows the flowchart for our pick-and-place solution using the Raspberry
Pi. Using OpenCV on Raspberry Pi, the data images are captured, and the images are
annotated using the online Roboflow tool. The dataset is then preprocessed, augmented,
and run on Google Colab for model building and training. Using TensorFlow’s Model
Maker [21], the model is built, trained, and evaluated before being converted to TensorFlow
Lite. The lite version consumes less memory compared to the original version.
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This project used 2 datasets for training: Dataset 1 for optimized bright and illumi-
nation level and Dataset 2 for batch test. The mean and variance AP are then extracted
and compared. For the batch test, we compare the AP for batch sizes 4, 8 and 16. For the
illumination test, we use 3 lamp angles and compare the best detection scores.

The project uses custom datasets for the initial training process. Three different colors
(yellow, blue, red) are used, and each color has 2 different shapes (cylinder, cube), as shown
in Figure 3. The project uses Roboflow [22] as an online annotation and data splitting tool.
Using the Label Assist tool, the highest mAP is used to annotate images, and the confidence
is lowered to 20%. The confidence level is lowered to make the annotation visible for
all objects. The overlap is reduced to 50% to enable detection of workpiece with poor
confidence. These values are chosen after trial and error in order for the AI tool to add most
of the annotations automatically. For faster annotation, the zoom and lock view functions
are used to ensure more accurate annotation as the workpiece looks bigger. A Roboflow’s
Healthcheck is performed to ensure the distribution of workpieces in the dataset.
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According to our previously published research [5], EfficientDet-Lite4 has a large
file size and may not be suitable for Raspberry Pi due to its memory limitations. Hence,
in this project, we specifically use EfficientDet-Lite 0 to 3 as our models, and these four
architectures are trained using the TensorFlow Lite Model Maker [23] library.

All Tensorflow models are developed and evaluated using Google Colab [23] with a
Graphic Processing Unit (GPU) Hardware Accelerator. The proposed framework aims to be
a complete object detector that only needs minimal data processing before and after model
detection and classification. After training, the EfficientDet Lite models are quantized
(weights of 8-bit integer) using Post-Training Quantization.

For our object detection, the evaluation criteria are the mean Average Precision (mAP)
and F1-score. According to the validation dataset COCO2017, its mAP is the same as
Average Precision in Tensorflow Model Maker [23]. For our pick-and-place application,
ARmax10 is chosen as the Recall value as we expect to have a maximum of 10 detections
per pick-and-place application.

The formula of the mean Average Precision is given as below:

mAP =
1
n ∑ k=n

k=1 APk (1)

where APk is the Average Precision of class k, and n is the number of classes.
The F1-score is used to evaluate the models’ accuracy, since it allows for the simul-

taneous maximization of two metrics that are well known in this field: Precision, which
measures the detections of objects, and Recall, which measures the objects that are detected.
The F1-score is calculated based in the mAP and Recall value in the formula below:

F1 =
2 ∗mAP ∗ ARmax10

mAP + ARmax10
(2)

To speed up the training, the number of epochs is fixed at 50 for the 4 models. The
threshold for detection is set at 30%. The standard deviation of the AP is calculated
as follows:

σ =

√
∑(xi − µ)2

N
(3)

where σ is the population standard deviation, N is the size of the population, xi is the value
of an AP and µ is the population mean of all APs.
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The variance of the AP is calculated as follows:

S2 =
∑(xi − µ)2

N
(4)

where S2 is the population variance, N is the size of the population, xi is the value of an AP
and µ is the population mean of all APs.

Data preprocessing decreases the training time and increases the performance of the AI
model by applying image transformations to all images in this dataset, as shown in Table 1.
To prevent overfitting of the model, the data augmentation process is shown in Table 2.
Both data preprocessing and augmentation are completed using the online Roboflow tool.

Table 1. Preprocessing operations applied to the original images.

Model Setting Description Batch Size

Auto-Orient Activated Rotate image 15◦ counter-clockwise Discard EXIF rotations and standardize
Resize 416 × 416 Resize all the images to square size 416 is divisible by 16

Table 2. Augmentation operations applied to the original images.

Model Setting Description Comments

Rotation −15◦ Rotate image 15◦ counter-clockwise Add variability to perspective to be more
resilient to camera’s angleRotation 15◦ Rotate image 15◦ clockwise

Shear Horizontal 15◦ Shear image horizontally by 15◦ Add variability to perspective to be more
resilient to camera’s pitch and yawShear Vertical 15◦ Shear image vertically 15◦

This project uses an augmentation technique to increase the number of images from a
small number of images. Two datasets were built: Dataset 1 with 124 images to study the
illumination effect and Dataset 2 with 82 images to study effect of batch size. Dataset 2 is a
small dataset consisting of 82 images, and it is used for batch testing. Our objective is to
determine whether there is a visible increase in mAP due to batch size despite the small
datasets. Table 3 presents the two datasets utilized for the three test trials.

Table 3. Augmented dataset for illumination, optimized brightness and batch size test.

Test
Experiment Dataset Test Application TensorFlow Model Batch

Size

Number of
Original
Images

Number of
Augmented

Images

Augmented
Ratio

1 Dataset 1 Optimized bright EfficientDet-Lite 2 8 124 1006 8.12

2 Dataset 1 Illumination level EfficientDet-Lite 2 8 124 1006 8.12

3 Dataset 2 Batch size

EfficientDet-Lite 0

4, 8, 16 82 333 4.05
EfficientDet-Lite 1
EfficientDet-Lite 2
EfficientDet-Lite 3

For test experiments 1 and 2, the model chosen is EfficientDet-Lite2 with a batch size
of 8, as it is lightweight and has a good trade-off between training speed and accuracy. For
test experiment 3, we vary the batch size to 4, 8 and 16, and we also vary the 3 Tensorflow
models from EfficientDet-Lite 0 to 3.

2.2. Image Optimization Process to Improve Mean Average Process

Table 4 shows the distribution of the workpiece in Dataset 1, where there are a total of
963 objects. The blue cylinder has highest distribution at 35.61%, which is followed by the
blue cube at 20.87%. The red cylinder has the lowest distribution at 13.33%.
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Table 4. Distribution of workpiece in Dataset 1.

Total Objects Number of
Blue Cube

Number of
Blue Cylinder

Number of
Yellow Cylinder

Number of
Yellow Cube

Number of
Red Cube

Number of
Red Cylinder

963 201 343 128 162 166 129
(100%) (20.87%) (35.61%) (13.29%) (16.82%) (17.23%) (13.33%)

The proposed pick-and-place method aims to be a complete object detector that only
needs minimal data processing before and after model detection and classification. There-
fore, we choose a small number of images to evaluate the effectiveness of this approach.
This study emphasizes the necessity of rapid and accurate label annotations, as well as fast
data processing with small datasets, using a smart and “lean” approach.

Figure 4 shows the augmentation process, where 124 original images are augmented to
327 images using the Flip-90 degree, Flip-180 degree and Rotate-15 degrees manipulation.
Similarly, the 10 bright images (8% of the total images) are augmented to 24 images. Using
the Roboflow online tool, the images are merged to produce 1006 augmented image after
undergoing image shearing manipulation.
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For the bright images, 10 images of different alpha values are added to the dataset, as
shown in Table 5. Using the addWeighted function from OpenCV, a brightness of alpha(α)
parameter is overlayed onto the 10 images. The addWeighted function is a function that
helps by adding two images (f0 and f1) by passing varying α values of 1, 2 and 3 into the
formula below.

g(x) = (1 − α)f 0(x) + αf 1(x) (5)

Table 5. Optimization process with Alpha datasets.

Optimization Process Control Group Alpha1 Dataset Alpha2 Dataset Alpha3 Dataset

Base image + 10 normal
images 124 + 10 normal

Base image + 10 bright
Alpha1 images 124 + 10 bright level 1

Base image + 10 bright
Alpha2 images 124 + 10 bright level 2

Base image + 10 bright
Alpha3 images 124 + 10 bright level 3

The datasets are named as follows. Alpha1 has 124 base images with 10 bright images.
Alpha2 has 124 base images with 10 bright images, and Alpha3 has 10 bright images. The
optimization is shown in Figure 5, where the results of brightening are clearly visible.
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2.3. Illumination Level Setup to Improve Detection Scores

According to the Japanese Industrial Standard (JIS) Z 9110-1979 [24], the recommended
level of illumination shall be as shown in Table 6 below. Using an illuminance (lux) meter
and a commercially available lamp, the appropriate level of illumination is determined for
a specific work location in a typical factory environment, such as the packing, assembly
and inspection area.

Table 6. JIS recommend level of illumination.

Illumination Level Lux Range Work Areas

Level 0 Less than 5 Darkroom and indoor emergency stairways
Level 1 150 to 300 Wrapping and packing
Level 2 300 to 750 Assembly, test and ordinary visual work
Level 3 750 to 1500 Inspection, selection and precise visual work
Level 4 1500 to 3000 Inspection, selection and extremely precise visual work

It is important to note that the detection scores are affected by the surface reflection
since the workpieces are made of metallic materials. Rather than mounting the lamp
directly above the workpieces, the lamp is positioned on the side so that the light does
not reflect directly from the metallic surface. As shown in Figure 6, the base of the lamp
is positioned 30 cm horizontally and 25 cm vertically from the workpieces, with 3 angles
of 180 degrees, 90 degrees and 135 degrees from the lowest vertical point lamp. This
project focuses on pick-and-place applications within darkrooms, corridors, and poorly
illuminated areas with less than 300 Lux levels, as it is less extensively studied.

Table 7 shows the on-site lux measurement as well as classification of areas for the
proposed robot implementation in an assembly line.
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Table 7. Classification of work areas.

Illumination
Level

On-Site Lux
Measurement Work Areas Application

0 6 Darkroom, indoor emergency stairways Robot in INDOOR in darkroom
1 242 Wrapping and packing Robot in INDOOR doing packing
2 663 Assembling, testing and ordinary visual work Robot in INDOOR doing assembly
3 950 Inspection, selection and precise visual work Robot in OUTDOOR doing inspection

4 1212 Inspection, selection and extremely precise
visual work

Robot in OUTDOOR/DIRECT
SUNLIGHT doing detailed inspection

To ensure reliability and determine the average detection score, a minimum of three
readings are taken. Figure 7 illustrates the setup of three different lamp angles (180, 135 and
90). A lamp angle has two adjustable levels of illumination—lower than 150 lux and
between 150 and 300 lux.
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To prevent the direct reflection of the light by the metallic surface, the lamp is mounted
at the side instead of directly above the workpieces. The reason for this setup is to reduce
the direct glare from the lamp while providing enough illumination, as shown in Figure 8.
The number of frames per second (FPSs) can be seen on the top-left corner of the image.
The speed is typically in the range of 0.8 frames per second as the Python code used to
display the results using OpenCV uses a portion of the processing time.
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2.4. Training Batch Size Configuration to Improve Mean Average Precision

Table 8 below defines their training settings. The batch size is set based on the GPU
Random Access Memory (RAM) with the default learning rate and input resolution. The
Tensorflow model is trained with training data with batch sizes of 4, 8 and 16, respectively.
In this project, a batch size of 4 is abbreviated to “Batch4”, a batch size of 8 is abbreviated
to “Batch8”, and a batch size of 16 is abbreviated to “Batch16”.
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Table 8. Training setting of EfficientDet Lite0 to Lite3.

Model Input Resolution Learning Rate Batch Size Epochs

EfficientDet-Lite0 320 × 320 0.08 4, 8, 16 50
EfficientDet-Lite1 384 × 384 0.08 4, 8, 16 50
EfficientDet-Lite2 448 × 448 0.08 4, 8, 16 50
EfficientDet-Lite3 512 × 512 0.08 4, 8, 16 50

The model training and validation are completed in Google Colab (Python 3.8) using
Tensorflow Model Maker on free GPU. The Tensorflow model is trained with training data
with batch sizes of 4, 8 and 16, respectively. To speed up the training, the number of epochs
is fixed at 50 for the 4 models.

Dataset 2 is used for the batch size training; it is deliberately chosen to be a small
dataset consisting of 82 images and 1022 objects. As shown in Table 9, it has a healthy
distribution percentage of the workpieces. The small dataset allows fast training times and
practical data preparation. Its purpose is to determine an optimal number of batch sizes
with a good trade-off between the accuracy of the detected objects and training speed.

Table 9. Equal distribution of workpiece in Dataset 2.

Total Number
of Objects

Number of
Blue Cube

Number of
Blue Cylinder

Number of Yellow
Cylinder

Number of
Yellow Cube

Number of
Red Cube

Number of
Red Cylinder

1022 136 135 216 208 150 177
(100%) (13.3%) (13.2%) (21.1%) (20.3%) (14.6%) (17.3%)

3. Results
3.1. Results of Optimized Bright Images on Average Precision

Table 10 shows the results of the evaluation metrics using EfficientDet-Lite2, and
training was completed for 50 epochs. The results demonstrate that Dataset 3 has the
highest F1-score, which is to be expected given that it has the highest AP and AR Max10.
The best performance comes from Alpha3, as it results in a 10.2% increase in Average
Precision and a 6.3% increase in F1-score as compared to the Control Dataset.

Table 10. The Average Precision and calculation of F1-score.

Average Precision Control Dataset
(%)

Alpha1
(%)

Alpha2
(%)

Alpha3
(%)

AP (mAP) 73.5 75.7 70.9 81.0 (+7.5%)
AP Tflite 73.3 74.1 69.5 79.0

AR Max10 76.7 78.6 78.5 81.9
F1-score 75.1 77.1 74.5 81.4 (+6.3%)

The color of the workpiece has a direct effect on the accuracy, as shown in Table 11.
The blue cube performs the best under Alpha3 with an Average Precision increase of 24.6%
while the red cube performs the worst with the AP dropping by 28.6% in the Alpha2 dataset
and further to less than the threshold value of 30% in the Alpha3 dataset. One explanation
could be that red colors reflect more light, whilst blue colors absorb more. The blue cube
has the highest AP (90.4%) in the Alpha3 dataset, while the red cube has the lowest AP
in the Alpha2 (45%) and in Alpha3 datasets (29%). As our goal here is to have consistent
high detection scores with low variance, we choose Alpha1 instead of Alpha3 for our
subsequent projects. The average AP for Alpha1 is 0.8% higher than the control dataset.
Hence, Alpha1 is chosen to increase the AP while maintaining low variance.
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Table 11. Average Precision with Alpha datasets.

Average Precision Control Dataset
(%)

Alpha1
(%)

Alpha2
(%)

Alpha3
(%)

Yellow cube 78.9 78.1 78.9 76.2
Yellow cylinder 76.3 72.2 82.7 83.3

Red cube 73.6 85.1 45.0 (−28.6%) 29.0
Red cylinder 73.4 65.9 55.0 66.7

Blue cube 65.8 66.1 77.6 90.40 (+24.6%)
Blue cylinder 71.9 77.3 73.8 78.4

Overall APs 73.3 74.1 (+0.8%) 69.5 65.8
Variance of APs (%) 16.4 0.47 1.924 3.99

Figure 9 shows that in general, all the APs for Alpha1 and Alpha2 are higher than that
of the COCO2017 dataset, which is 33.97%. For Alpha3, only the red cube has a lower AP
than the validation mAP. The overall mean of Alpha1 is 6.2% higher than that of Alpha2.
Therefore, for a high and consistent object detection approach, we use the Alpha1 dataset
in our pick-and-place solution.
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3.2. Results of Illumination Level on Detection Scores

Table 12 shows the results of various illumination angles and levels. The average
is taken from the three best detection scores for all the three different lamp angles (180,
135 and 90). Each angle has two levels of illumination—a lux level less than 150 and a lux
level in between 150 and 300. The lux measurements are taken to ensure that the detection
occurs during the specified illumination level, as per the JIS specification. The threshold for
detection is set at 30% and, hence, if there is any detection less than 30%, it will be shown
as ‘Nil’ below.

Table 13 shows the average detection score of workpieces and the variance. The
135-degree level 1 has the highest average detection score (81.17%), which is followed by
the 135-degree level 0 at 80.50%. The 180-degree level 1 has the lowest detection scores of
77.94%. The lowest variance is 1.65% at the 135-degree level, and the highest variance is
25.08% for the 90-degree level 1.
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Table 12. Detection scores and lux level for the different angles and intensities of the lamps.

Angle and Lux
Level of Lamp Class Reading 1

(%)
Reading 2

(%)
Reading 3

(%)
Average

Reading (%)
Measured Lux
Value (lm/m2)

180◦ Level 0

Red cylinder 85 77 75 79.00 25
Red cube 83 80 69 77.33 23.5

Yellow cylinder 85 77 78 80.00 25.7
Yellow cube 91 77 85 84.33 25.7

Blue cylinder 77 78 75 76.67 24.1
Blue cube 77 73 75 75.00 24.1

180◦ Level 1

Red cylinder 80 85 75 80.00 187.9
Red cube 80 62 65 69.00 187.8

Yellow cylinder 85 80 85 83.33 188.6
Yellow cube 92 57 86 78.33 188.9

Blue cylinder 75 73 83 77.00 188.1
Blue cube 83 70 83 80.00 187.5

135◦ Level 0

Red cylinder 78 83 86 82.33 50
Red cube 80 83 83 82.00 48

Yellow cylinder 78 80 83 80.33 50
Yellow cube 77 78 85 80.00 49

Blue cylinder 77 82 77 78.67 50
Blue cube 85 71 83 79.67 49

135◦ Level 1

Red cylinder 75 87 83 81.67 175
Red cube 86 83 86 85.00 172

Yellow cylinder 76 75 83 78.00 177
Yellow cube 80 89 83 84.00 174

Blue cylinder 73 80 78 77.00 175
Blue cube 75 83 86 81.33 176

90◦ Level 0

Red cylinder 89 51 89 76.33 28
Red cube 91 80 88 86.33 25

Yellow cylinder 91 39 83 71.00 28
Yellow cube 94 48 85 75.67 26

Blue cylinder 80 57 78 71.67 28
Blue cube 89 70 69 76.00 26

90◦ Level 1

Red cylinder 90 65 85 80 206
Red cube 93 76 83 84 189

Yellow cylinder 91 49 82 73.67 209
Yellow cube 92 62 89 81 192

Blue cylinder 80 53 86 73 207
Blue cube 88 80 65 77.67 201

Table 13. Detection scores and Lux level for 180-degree level 1 lamp.

Class 180◦ Level 0
(%)

180◦ Level 1
(%)

135◦ Level 0
(%)

135◦ Level 1
(%)

90◦ Level 0
(%)

90◦ Level 1
(%)

Yellow cube 79.00 80.00 82.33 81.67 76.33 80
Yellow cylinder 77.33 69.00 82.00 85.00 86.33 84

Red cube 80.00 83.33 80.33 78.00 71.00 73.67
Red cylinder 84.33 78.33 80.00 84.00 75.67 81

Blue cube 76.67 77.00 78.67 77.00 71.67 73
Blue cylinder 75.00 80.00 79.67 81.33 76.00 77.67

Average 78.72 77.94 80.50 81.17 76.17 78.22
Variance 8.86 19.75 1.65 8.40 25.08 15.43

Hence, to increase the average detection score to over 80%, as shown in Figure 10 below,
we propose to use a 135-degree lamp. We can observe that the illumination distribution
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is more even and that there is less surface reflection with a 135-degree lamp of level
0 illumination because of its low variance.
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3.3. Results of Variation of Batch Size on Average Precision

A comparison of Average Precision across Efficient-Det Lite models is built in order
to investigate which model performs the best with a small dataset. As shown in Table 14
below, Batch4 has the highest overall AP at 66.8%, and it has the lowest standard deviation
at 6.23%. In contrast, Batch16 has the lowest overall AP at 57.4% and highest standard
deviation at 7.87%. According to Keskar [25], this is because the large-batch methods
tend to converge to sharp minimizers of the training and testing function and as is well
known, sharp minima lead to poorer generalization. In contrast, small-batch methods
consistently converge to flat minimizers due to the inherent noise in the gradient estimation.
As compared to Batch16, both Batch4 and Batch8 have higher average APs of 66.1 ± 0.7%
and standard deviations of 6.245 ± 0.015%.

Table 14. Variation of batch size.

TFLite Model Average Precision Batch4
(%)

Batch8
(%)

Batch16
(%)

EfficientDet-Lite0

Yellow cube 72.1 64.4 66.3
Yellow cylinder 47.9 53.2 40.2

Red cube 66.2 71.4 73.2
Red cylinder 62.7 64.8 56.6

Blue cube 63.4 62.2 55.6
Blue cylinder 59.1 59.9 54.4

EfficientDet-Lite1

Yellow cube 56.9 73.7 55.5
Yellow cylinder 72.5 50.3 40.7

Red cube 68.6 70.4 58.2
Red cylinder 68.1 64.0 53.9

Blue cube 63.9 63.8 49.6
Blue cylinder 71.4 59.3 50.7

EfficientDet-Lite2

Yellow cube 73.5 70.8 67.7
Yellow cylinder 62.4 59.0 49.2

Red cube 72.3 75.8 70.7
Red cylinder 68.4 63.0 55.5

Blue cube 63.3 63.8 58.3
Blue cylinder 70.8 70.3 56.8

EfficientDet-Lite3

Yellow cube 72.5 69.9 59.3
Yellow cylinder 57.6 57.6 54.7

Red cube 73.8 71.8 66.0
Red cylinder 66.0 68.9 57.4

Blue cube 63.1 62.5 55.5
Blue cylinder 68.4 67.2 53.3

Average of APs 66.8 65.4 57.4
Standard deviation of APs 6.23 6.26 7.87
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From Table 15 and Figure 11 below, the overall results show that the red cube has the
highest AP at 69.9% and the second lowest standard deviation at 4.48%. The red cylinder
has the second highest AP at 62.4% with a standard deviation at 5.09%. In comparison
to other classes, the yellow cylinder has the lowest AP at 53.8% and the highest standard
deviation at 8.69%. This is consistent with our prior findings [26], which show that neutral-
colored things such as yellow cubes have lower APs than strong-colored objects such as red
cubes. As the objects for this pick-and-place action have a metallic surface, yellow objects
suffer from surface reflection from external lighting.

Table 15. Average Precision according to workpieces.

Batch Size TFLite Model
Yellow
Cube
(%)

Yellow
Cylinder

(%)

Red
Cube
(%)

Red
Cylinder

(%)

Blue
Cube
(%)

Blue
Cylinder

(%)

4 72.1 47.9 66.2 62.7 63.4 59.1
8 EfficientDet-Lite0 64.4 53.2 71.4 64.8 62.2 59.9
16 66.3 40.2 73.2 56.6 55.6 54.4

4 56.9 72.5 68.6 68.1 63.9 71.4
8 EfficientDet-Lite1 73.7 50.3 70.4 64.0 63.8 59.3
16 55.5 40.7 58.2 53.9 49.6 50.7

4 73.5 62.4 72.3 68.4 63.3 70.8
8 EfficientDet-Lite2 70.8 59.0 75.8 63.0 63.8 70.3
16 67.7 49.2 70.7 55.5 58.3 56.8

4 72.5 57.6 73.8 66.0 63.1 68.4
8 EfficientDet-Lite3 69.9 57.6 71.8 68.9 62.5 67.2
16 59.3 54.7 66.0 57.4 55.5 53.3

Average of APs 66.9 53.8 69.9 62.4 60.4 61.8
Standard Deviation of APs 6.24 8.69 4.48 5.09 4.434 7.13
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Red 
Cube 
(%) 

Red 
Cylinder 

(%) 

Blue 
Cube 
(%) 

Blue 
Cylinder 

(%) 
4  72.1 47.9 66.2 62.7 63.4 59.1 
8 EfficientDet-Lite0 64.4 53.2 71.4 64.8 62.2 59.9 

16  66.3 40.2 73.2 56.6 55.6 54.4 
4  56.9 72.5 68.6 68.1 63.9 71.4 
8 EfficientDet-Lite1 73.7 50.3 70.4 64.0 63.8 59.3 

16  55.5 40.7 58.2 53.9 49.6 50.7 
4  73.5 62.4 72.3 68.4 63.3 70.8 
8 EfficientDet-Lite2 70.8 59.0 75.8 63.0 63.8 70.3 

16  67.7 49.2 70.7 55.5 58.3 56.8 
4  72.5 57.6 73.8 66.0 63.1 68.4 
8 EfficientDet-Lite3 69.9 57.6 71.8 68.9 62.5 67.2 

16  59.3 54.7 66.0 57.4 55.5 53.3 
Average of APs 66.9 53.8 69.9 62.4 60.4 61.8 

Standard Deviation of APs 6.24 8.69 4.48 5.09 4.434 7.13 
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3.4. Statistical Analysis on Variation of Batch Size

As we observed in Table 14 above, the Average APs of Batch4 and Batch8 are quite
similar. Therefore, a statistical analysis is conducted to see whether there is a significant
difference between the two groups of values. We utilize the Mann–Whitney U method as
it is one of the most commonly used non-parametric statistical tests [27]. Developed by
Mann and Whitney in 1947, this non-parametric test is frequently used for small samples
of data that are not normally distributed [28].

In Mann–Whitney U test, the null hypothesis states that the medians of the two
respective groups are not different. As for the alternative hypothesis, it states that one
median is larger than the other or that the two medians differ. If the null hypothesis is
not rejected, it means that the median of each group of observations is similar. If the null
hypothesis is rejected, it means the two medians differ.
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We apply the Mann–Whitney U test to our Batch4 and Batch8 as the number of
samples are small [29], less than 30, and the AP results are not normally distributed. Our
null hypothesis (H0) and alternative hypothesis (H1) follow:

H0. The median of APs is equal between Batch4 and Batch8 APs.

H1. The median of APs is not equal between Batch4 and Batch8 APs.

Using SciPy which is a Python library used for scientific computing and technical com-
puting, we obtain a p-value of 0.448. Since the p-value (0.448) is above the 0.05 significance
level, we fail to reject the null hypothesis.

We conclude there is not enough evidence to suggest a significant difference in medians
between the two datasets. As the standard deviation only differs by 0.008, we recommend
using Batch8 instead of Batch4 for faster training and evaluation.

3.5. Performance Validation

We use the pre-trained model SSD MobileNet V2 FPNLite and compared the perfor-
mance regarding the Average Precision and detection score. Table 16 shows the performance
results of our selected EfficientDet-Lite2 model and SSD MobileNet V2 FPNLite, using the
same training data for each of them. We compare the performance of the SSD MobileNet
to that of our EfficientDet-Lite2 model with the Alpha1 dataset and found that our results
were significantly better. Compared to SSD MobileNet V2 FPNLite, our model shows a
significant improvement of accuracy for the yellow cube at 40.4% and red cube at 40.1%.

Table 16. Comparison of APs for custom object detection model.

Class EfficientDet-Lite2 with Alpha1 Dataset
(%)

SSD MobileNet V2 FPNLite
(%)

Improvement of Accuracy
(%)

Yellow cube 78.1 37.7 40.4
Yellow cylinder 72.2 35.8 36.4

Red cube 85.1 45.0 40.1
Red cylinder 65.9 43.4 22.5

Blue cube 66.1 48.8 17.3
Blue cylinder 77.3 37.7 39.6
Overall mean 74.1 41.4 32.7

Table 17 shows the comparison of detection scores for the custom dataset running on
our EfficientDet-Lite2 model and SSD MobileNet V2 FPNLite. The detection scores are taken
with the project setup of the 135-degree lamp and level 0 illumination. When compared
to SSD MobileNet V2, our model significantly improves the overall detection scores by
5.19%. Comparing EfficientDet-Lite2 to SSD MobileNet V2, significant improvements are
observed for the red cube (+19.33%) and red cylinder (+20.66%).

Table 17. Comparison of detection scores with SSD MobileNet V2.

Class 135-Degree Lamp with Level
0 Illumination (%)

SSD MobileNet V2
FPNLite (%)

Comparison of
Detection Scores (%)

Yellow cube 80.00 91.50 −11.5
Yellow cylinder 80.33 94.67 −14.34

Red cube 82.00 62.67 +19.33
Red cylinder 82.33 61.67 +20.66

Blue cube 79.67 83.00 −3.33
Blue cylinder 78.67 58.33 +20.34
Overall mean 80.50 75.31 +5.19
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3.6. Comparison mAP with COCO2017 Validation Dataset

Tensorflow Lite Model Maker provides the performance of each EfficientDet-Lite
model with the mean Average Precision evaluated on the COCO2017 validation dataset.
Hence, for additional validation, we compare our AP with the COCO2017 dataset, as
shown in Table 18. As indicated in Section 3.1, we choose the Alpha1 dataset since it
performs the best in AP rather than Alpha2 or Alpha3 datasets. The results show that all
the Alpha1 datasets of the EfficientDet-Lite models outperform the COCO2017 dataset, with
EfficientDet-Lite2 outperforming it by 51.13%. As a result, we chose EfficientDet-Lite2 for
our future projects.

Table 18. Comparison of Average Precision with COCO2017 dataset.

Model Architecture COCO2017 Dataset
(%)

Alpha1 Dataset
(%)

Improvement of Accuracy
(%)

EfficientDet-Lite0 25.69 78.1 52.41
EfficientDet-Lite1 30.55 72.2 41.65
EfficientDet-Lite2 33.97 85.1 51.13
EfficientDet-Lite3 37.7 65.9 28.20

Overall AP 31.98 75.33 43.35

4. Discussions

The aim of the our project is to develop a smart and lean pick-and-place system for a
lightweight embedded controller such as Raspberry Pi. The advantage of our system is that
the robot could perform well in low-illumination area such as the wafer-cutting system.
In this study, we evaluate the effectiveness of illumination and batch size to improve the
Average Precision and detection scores of the EfficientDet model. This study is important
because our control algorithm utilizes high and consistent detection scores to establish
the location of the workpiece and regulate the arm movement. The improvement of the
Average Precision and detection scores depends on many factors and features; this study
focused on the illumination angle and level as an important feature of the control of lighting.
The results of the detection score are subject to ambience lighting and noise, which may
vary significantly if the workplace is located in an open area. Therefore, the application of
Deep Learning for custom object detection will aid in reducing this variation significantly.

This study has several limitations; for instance, the quality of the dataset plays a part
in determining the Average Precision. We observed that certain workpieces have surface
reflection from external illumination, which has an impact on the Average Precision. In this
study, we used the Japanese industrial standards for the system’s lux levels for illumination.
We acknowledge that different regions and industries may have varying standards and
requirements for illumination levels, such as the Illuminating Engineering Society of North
America (IESNA) and the European Standard EN12464-1 [25].

Currently, our method works well for application for illumination levels 0 and 1.
For future projects, we would like to expand the application to other use cases of higher
levels of illuminations. In order to attain the necessary high Average Precision and detec-
tion scores, we will take into account additional dataset preparation, optimization, and
reinforcement learning.

5. Conclusions

In this work, we have successfully developed a novel method to develop a smart
and lean pick-and-place system for custom workpieces. We evaluated the effectiveness of
illumination and batch size to improve the Average Precision and detection score of the
EfficientDet-Lite model, and we used it in our novel approach to develop a smart algorithm
for the Raspberry Pi to control the Universal Robot.

Using a lightweight embedded system, we developed advanced pick-and-place robotic
systems, enhancing automation in manufacturing processes by accurately detecting custom
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objects and controlling robot arm movement. This project has improved the detection of
objects with deep learning and implemented the state-of-the-art (SOTA) EfficientDet-Lite
model on Raspberry Pi. The validation on another SOTA model, SSD MobileNet V2 FPN-
Lite, has shown that our object detection significantly improves the Average Precision and
overall detection scores. Our experimental results clearly show that the proposed method
has an increase of 5.19% in AP compared to the SSD model. In fact, all the APs obtained
during the evaluation test exceed the AP from the COCO2017 validation test.

In the EfficientDet-Lite2 model, the addition of 8% optimized bright Alpha3 images
resulted in an increase of 7.5% in Average Precision and an increase of 6.3% in F1-score.
We observed that the blue cube has the highest AP in the Alpha3 dataset, while the red
cube has the lowest AP in the Alpha2 and Alpha3 datasets. As our goal here is to have a
consistent high detection score with low variance, we choose Alpha1 instead of Alpha3 for
our subsequent projects.

As a result of using Batch4, the overall AP across all EfficientDet-Lite models increased
significantly to 66.8% as compared to Batch8 at 65.4% and Batch16 at 57.4%. In order to
speed up the training for our subsequent projects, we use Batch8 for training rather than
Batch4. This decision is validated by the Mann–Whitney U statistical analysis, which shows
that Batch4 and Batch8 do not have any significant differences in AP.

In order to increase the overall detection score to over 80%, we utilized a 135-degree
lamp and level 0 illumination. As such, this study presents a very good starting point for
the development of a better object detection for pick-and-place robots by using the effect of
illumination. This is important because the control algorithm [4] that Raspberry Pi uses to
move the arm of the universal robot depends on high and consistent detection scores to
establish the location of the workpiece. In the future, we will extend the system to identify
angular rotations and improve real-time detection as well as address the issue of surface
reflection from external lights.
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Abstract: Kinematic modeling is essential for planning and controlling continuum robot motion.
The traditional Denavit Hartenberg (DH) model involves complex matrix multiplication operations,
resulting in computationally intensive inverse solutions and trajectory planning. Solving position and
orientation changes in continuum robots using the double quaternion rule can reduce computational
complexity. However, existing dual quaternion methods are direct equational transformations of
DH rules and do not give a complete modeling process. They usually require more interpretability
when applying continuum robot kinematic modeling. This paper uses the dual quaternion method
to establish a kinematic model of a continuum robot. It uses a two-section continuum robot model
to compare the advantages of dual quaternion and traditional modeling methods. In addition, this
paper proposes a five-polynomial interpolation algorithm based on the dual quaternion method
for trajectory planning of continuum robots. This method accurately models spatial bending and
torsional motions of singularity-free continuum robots.

Keywords: Denavit–Hartenberg; continuum robot; dual quaternion Jacobian matrix; trajectory planning

1. Introduction

Researchers have become increasingly enthusiastic about continuum robots in recent
years because of their excellent mechanical properties when operating in unique environ-
ments. The continuum robot is a flexible, continuous, multi-segmented robotic system
inspired by the skeletal structure of biological organisms. In contrast with conventional
rigid multi-joint robots, continuum robots employ a soft, deformable structure composed
of numerous interconnected and continuous flexible segments. These segments can be
actuated internally or externally using stimuli such as gas, liquid, or motors, facilitating
smooth, seamless, and flexible motion and deformation. For example, continuum robots
can perform surgical operations under minimally invasive and non-invasive conditions
of the human body [1–4], target detection and fault diagnosis in narrow intervals [5–7],
and grasp targets in high-pressure underwater environments, such as the deep sea [8].
They were developed from studying structures in nature that can be freely bent, twisted,
and elongated, such as the arms of octopuses, the tongues of mammals and reptiles, and
the trunks of elephants [9–11]. The diversity of potential applications of the continuum
robot leads to various designs [12], which are reflected in the structure and the matching
drive. From the physical form, the continuum robot is divided into the following for-
mats: a single flexible pipe or rod with uniform stiffness [13], a series of flexible concentric
tubes [14], a series of parallel truss platforms [15], flexible continuum pipes with multiple
open slots [16,17], and a plurality of elastic material disks stacked. Drive models include
pneumatic, traction line, electrochemical, and other drive modes. However, they all exhibit
continuum curvature in a continuum robot, i.e., a continuum changes curvature along the
main chain’s length. Furthermore, unlike conventional manipulators, which consist mainly
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of rigid elements resulting in only changing themselves at discrete points in their structure,
continuum robots can theoretically change any position in their system [18,19], which leads
to challenging kinematic and dynamic modeling of continuum robots and further leads to
difficulties in real-time dynamic control.

Continuum robots have widespread use in quasi-static environments where dynamic
models may not be applicable [20]. Researchers have employed various approaches to
solving the kinematics of continuum robots, such as utilizing motion combinations of
fake rigid manipulators to simulate their motion and applying the Denavit–Hartenberg
(DH) model, which was initially developed for rigid manipulators’ accuracy in emulating
continuum robot behavior; kinematic and shape correspondence between super-redundant
manipulators and desired spatial profiles have been introduced [21,22]. Recently, the incor-
poration of continuum curvature into a modified DH modeling procedure using differential
geometry has provided a comprehensive approach to modeling continuum robots [23].
Building upon this work, the researcher has proposed the variable reality of the central
axis, associating the driving variable with the central axis curve to modify and enhance
existing ideas [11]. The Jacobian matrix of the model and the corresponding kinematic
control method have also been discussed. However, special numerical treatment is required
when approaching these models’ straight (zero-curvature) cross-section configuration. The
researcher expanded the driver variables, employing the Taylor series to address this issue
and, thus, preventing model invalidity at zero curvature [24–26]. Nevertheless, modeling a
multi-system or multi-joint manipulator arm using the above modeling approach becomes
difficult, as the method of obtaining the end pose by multiplying the pose matrix places a
significant workload on the system, and the relationship between each part of the system
and the global coordinate system must be constantly considered. To address the challenge
of dealing with sections with nearly straight deformation, the researcher has proposed
using dual quaternions to solve this problem. Although the dual quaternion method offers
increased efficiency in representing changes in the position and spatial elements of the
robot, the existing approach is directly converted from the DH rule based on mathematical
rules without considering the perspective of manipulator motion. This leads to limited
interpretability of the dual quaternion method when applied to the kinematic modeling of
manipulators in scientific journal articles.

Building upon previous research, this paper explores the dual quaternion method
from the standpoint of kinematics in order to tackle continuum manipulator problems. The
solution is established based on the definition, and the merits of the dual quaternion method
are emphasized by comparing its computational efficiency with traditional DH model-
based algorithms. The paper is structured as follows. Section 2 introduces the operational
rules of dual quaternions and derives the principles for representing spatial rotation and
displacement using dual quaternions. Section 3 illustrates the modeling of forward and
inverse kinematics for single and multiple joints employing the dual quaternion method
using the standard continuum manipulator model. Section 4 corroborates the results
through simulation and experimental testing. Finally, conclusions are drawn in Section 5.

2. Materials and Methods
2.1. Dual Quaternion Rule

Quaternions are fourth-order hypercomplex numbers often used to describe changes
in four-dimensional hyperplanes and vectors in graphics. Quaternions are generally
represented in the form a + bi + cj + dk, where a, b, c, and d are real numbers, and i, j,
and k are basic quaternions. Quaternions can be composed of a scalar part and a vector
part. q is a quaternion represented as q = (r, v), where r is a scalar defined in the real
number field, and v is a three-dimensional vector. q∗ is the conjugate of q, represented by
q∗ = (r,−v). q1 and q2 are two quaternions. The result and outer product of those are
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shown in Equations (1) and (2). The product of two quaternions is called the Grassmann
product and is denoted by the symbol ⊗.

(r1, v1) + (r2, v2) = (r1 + r2, v1 + v2) (1)

(r1, v1)(r2, v2) = (r1r2 − v1 · v2, r1v2 + r2v1 + v1 × v2) (2)

The dual numbers are a system of hypercomplex numbers, which are expressions of
the form c + dε, where c and d are real numbers, and ε is a symbol taken to satisfy. When c
and d are replaced by quaternions using real numbers, the dual numbers are called dual
quaternions. A dual quaternion can be represented in the form of q̂, which can be written as
q̂ = qr + εqd. Among them, qr and qd are two quaternions, respectively, referred to as the
imaginary and real parts of dual quaternions. q̂∗ represents the dual quaternion conjugate,
as shown in Equation (3).

q̂∗ = q∗r + εq∗d (3)

2.2. Dual Quaternion Representation of Rigid Body Motion

Rigid body motions describing elements of solid geometry, such as points, lines, and
surfaces in space, can be represented by dual quaternions. As shown in Equation (4), this
means that the dual quaternion is used to represent a straight line A that changes into a
straight line B after rotation and translation in space, where Â and B̂ are the Plücker forms
of straight lines A and B, respectively. q̂ is the dual quaternions representing the angle
of rotation θ around axis l. It can also be written in the form of Equation (5), where the
derivation process is given in Appendix A.

B̂ = q̂∗ ⊗ Â⊗ q̂ (4)
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2.3. Physical Model of Continuum Robot

The general kinematic equations of a tendon-driven continuum robot arm are estab-
lished. A specific example is presented to demonstrate the application of the derived
kinematic equations, in which a tendon-driven continuum robot is considered. As il-
lustrated in Figure 1, this continuum robot comprises two independent single-section
manipulators, namely Sections 1 and 2. Each manipulator section is constructed using a
flexible disc as its primary structure, with the discs connected by springs, referred to as
tendons. These tendons are secured at predetermined positions along the arc length of the
robot. The end of the arm is equipped with a multi-traction line attached to the discs. By
pulling these traction lines, a load is applied to the spring through the disc, resulting in the
corresponding bending of the robot arm.
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Figure 1. Structure of a continuum tendon-driven robot. (a) Schematic diagram of the robotic arm
model in the natural state; (b) Schematic diagram of the robotic arm model in the driven state;
(c) Cross-sectional schematic diagram of the robotic arm model. Among them, Lij represents the
number of the driving lines, i represents the ith robotic arm, and j represents the jth driving lines.

3. Kinematic Model of Continuum Robotics
3.1. Center Axis Curve Parameters

Due to the arrangement of the tendons (discs and springs), the robotic arm is driven
in line, and these continua exhibit a telescopic movement or bend into a circular shape.
Therefore, the continuum arm’s central axis can be described in space precisely as a circular
arc with a variable radius of curvature and length. As shown in Figure 2a, the diagram on
the left shows the state of the continuum arm of the section when it is not driven, i.e., t = 0.
The central axis of the disc is a straight line with four drive lines of length L0

ij(j = 1, 2, 3, 4).
After the continuous manipulator is driven for time t, the state is shown in Figure 2b. The
line length becomes Lt

ij(j = 1, 2, 3, 4). Let the change in rope length between the driven
state and the undriven state be lij (t), as shown in Equation (6).

lij (t) = L0
ij − Lt

ij (6)

When the continuum arm is driven, the overall curve is assumed to be circular based
on continuum curvature [24]. The radius of the curvature is described by ρi ∈ (0, ∞), and
the bending angle is described by ϕi ∈

(
0, π2

)
, which is on a plane that forms an angle

δi ∈ (−π,π) with the x-axis as a whole in space. The curve parameters in joint space
variables are given by Equations (7)–(9). A comprehensive derivation of these variables is
provided in Appendix B.

ϕi =
1

2Ri

√
(li4 − li2)

2 + (li3 − li1)
2 (7)

δi = arctan
(

2(li1 − li2)
(li1 − li3)

− 1
)

(8)

ρi =
2
√
(li4 − li2)

2 + (li3 − li1)
2

Ri ∑ lij
(9)
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Figure 2. The Structure diagram of the single-section mechanical arm is driven and not driven.
(a) Schematic diagram of the driving line of the single-section robotic arm when it is not driven,
where L0

ij represents the rope length. (b) Schematic diagram of the driving line of the robotic arm

after driving time t, where Lt
ij represents the rope length.

3.2. Coordinate Systems and Dual Quaternion Transformations of Points and Lines

A single-segment continuous robot is used to model using the dual quaternion method.
The forward kinematics of the robot are to solve its end pose after driving. The physical
model of the single-section robotic arm when driven is shown in Figure 3a.
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Figure 3. (a) Physical model of a single-section robotic arm in the driving state. Among them,
{F}{1}{2}{3}{4}{E} are the coordinate systems, respectively, and LE and LF represent the straight lines
where the z-axis of the {F} and {E} coordinate systems are located, respectively. (b) Mathematical
model of a single-section robotic arm in the driving state. It describes the z-axis and y-axis in the
coordinate system {F}, that is, the straight lines LF and PF, which after coordinate transformation
become the straight lines LE and PE in the coordinate system {E}.

As shown in Figure 3, if {F} and {E} are two reference frames, while q̂E, q̂F are the dual
quaternion of those reference frames relative to a fixed coordinate system in space, then the
relative position relationship between these two coordinate systems is called q̂EF, which is
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represented by (10) and can be obtained from (4); a more detailed derivation process can be
found in Appendix C.

q̂EF = q̂E ⊗ q̂F =
[
cos

ϕ

2
,−sinδsin

ϕ

2
, cosδsin

ϕ

2
, 0&, 0, 0, 0, ρ · sin

ϕ

2

]
(10)

Let the lines in the front-end coordinate system {F} where the y-axis and z-axis lie be
LF, PF and the direction vectors be lF and pF, respectively. By Euler’s theorem, the line LF
in the coordinate system {F} becomes L1 after a rotation around the z-axis and a translation
ρ along the axis x1, and then L2 around the axis y2, before a translation ρ along the new x3
axis becomes LE in the coordinate system {E}. Similarly, PF can become PE. The moment
vectors are mL, mP, respectively, which are expressed in the Plücker coordinate system as
LF = (lF, mL), PF = (pF, mF). They can be expressed as L̂F = lF + εmL, P̂F = pF + εmF by
a dual quaternion. Substituting (10) into (3), we can obtain the relationship between the
straight line LF and LE on the coordinate system {F} and {E} as (11).

L̂F = q̂∗EF ⊗ L̂E ⊗ q̂EF (11)

Similarly, the relationship between PF and PE is (12).

P̂F = q̂∗EF ⊗ P̂E ⊗ q̂EF (12)

According to Plück’s law, the intersection points of the two are the position of the end
coordinate system, and the pose can be expressed as [lF , pF , lF × pF].

3.3. Kinematic Equations of Continuum Manipulator

As shown in Figure 4, three identical single-section robotic arms are connected in
series to form an overall number: i− 1, i, i + 1. Then, the central axis is the z-axis direction
on the front-end disk of this multi-section robotic arm. Next, establish a coordinate system
and record it as {F}, and set up a coordinate system on the end disc with the central axis as
the direction of the z-axis and record it as {E}. Assume that the center point at the top of
the segment (i + 1) is O, which is expressed as OE(i+1) = (0, 0) in the coordinate system{

E(i+1)

}
.
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Figure 4. The coordinate system of a multi-section continuous robot in a driven state.
{

F(i−1)

}

represents the coordinate system at the front end of the continuous robot in the first section, while
F(i) represents it in the second section. Due to physical model limitations, the i-th manipulator’s
front-end coordinate system differs from the 1-section robot arm, but F(i) and E(i−1) remain the same.
Thus, a total of i + 1 coordinate systems are needed for the i-section robotic arm.

This point is denoted OF(i+1) =
(

OF(i+1), mF(i+1)

)
in the coordinate system

{
F(i+1)

}
,

because
{

F(i+1)

}
and

{
E(i)

}
are the same in space. Therefore, the end position of the

robot arm in the section i + 1 can be expressed as ÔE(i) in the end coordinate system of the
section i.

ÔE(i+1) = q̂∗(i+1)i ⊗ ÔE(i) ⊗ q̂(i+1)i (13)
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Similarly, the position of the central axis point of the front end of the multi-segment
continuous arm in the coordinate system of the end of the first continuous arm is:

ÔE(i−1) = q̂∗(i+1)i ⊗ q̂∗(i−1)i ⊗ ÔE(i+1) ⊗ q̂(i−1)i ⊗ q̂(i+1)i (14)

Then the z and y axis directions of the frontmost position point are:

L̂E(i−1) = q̂∗(i+1)i ⊗ q̂∗(i−1)i ⊗ L̂E(i+1) ⊗ q̂(i−1)i ⊗ q̂(i+1)i (15)

P̂E(i−1) = q̂∗(i+1)i ⊗ q̂∗(i−1)i ⊗ P̂E(i+1) ⊗ q̂(i−1)i ⊗ q̂(i+1)i (16)

Through (15) and (16), the expression of the end position of the overall mechanical arm
can be obtained in the first section of the robotic arm, and the complete forward kinematic
equation can be obtained.

3.4. Control the Motion of the Robotic Arm through the End Position

In the previous section, the forward kinematic equations of the continuum arms
were derived using the dual quaternion method. The Jacobian matrix of each part of the
manipulator is first solved to solve the inverse kinematics numerically.

Let the expression of the Plücker form of the coordinates of a point P0 in the coordinate
system {0} be P̂0, and the dual quaternion relationship between the coordinate system {0}
and the coordinate system {1} is q̂i.

Let the expression of the Plück form of the coordinates of a point P0 in the coordinate
system {0} be P̂0, and the dual quaternion relationship between the coordinate system {0}
and the coordinate system {1} is q̂i, then the point can be expressed in the coordinate system
{1} for (17).

P̂1 = Q1 = q̂∗i ⊗ P̂0 ⊗ q̂i (17)

Writing (18) as a vector pattern gives (18).

Q1 = Q1 = [1, ϑ1] + [0, εx1] (18)

The complete forward kinematics of ith section relative to {0}, denoted by Qi, is given
by (19).

P̂i = Qi = q̂∗i ⊗ · · · q̂∗1 ⊗ P̂0 ⊗ q̂1 ⊗ · · · q̂i (19)

Write (19) as a vector, as shown in (20). Here ϑ̂ ∈ R4 is the rotation and x̂ ∈ R4 is
the displacement.

Qi = Q1 · · · ⊗Qi = [1, ϑ1,2...i] + [0, εx1,2...i] (20)

Qi = Q1 ⊗Q2 ⊗ · · · ⊗Qi = Qi−1 ⊗Qi (21)

Putting q̂ = [qr, εqd] into (21), we can obtain (22) and (23), which are the dual quater-
nion representations of the position and pose matrix of the ith robotic arm.

ϑ̂1,2...i = ϑ̂1,2...i−1 ⊗ q̂i,r (22)

x̂1,2...i = x̂1,2...i−1 ⊗ q̂i,r + ϑ̂1,2...i−1 ⊗ q̂i,d (23)

We need to use the obtained position and pose to obtain partial derivatives of the joint
variables, so as to obtain the velocity Jacobian matrix of the manipulator vector. Let Jϑ

i and
Jx

i , respectively, be the position and pose quaternion Jacobians from (24) and (25).

Jϑ
i =

∂(ϑ1,2,...i)

∂(δ, θ)
∈ R4×2i (24)
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Jx
i =

∂(x1,2,...i)

∂(δ, θ)
∈ R4×2i (25)

Solve the derivatives of joint variables for (22) and (23) to obtain (26) and (24), where
the formula for derivation is (24) and (25).

Jϑ
i = Jϑ

i−1 ⊗ qi,r (26)

Jx
i = Jx

i−1 ⊗ qi,r + Jϑ
i−1 ⊗ qi,d (27)

The Jacobians derived in (26) and (27) are only valid in the Plück coordinate system,
so we need to transform the Plück coordinate system into the inertial coordinate system.

The Cartesian angular velocity, ωx ∈ R3 relative to {0}, can be recovered from the
quaternion velocities as (28).

ωx = 2q⊗ .
q (28)

The partial derivative of the angular momentum can be used to obtain the Jacobian
matrix of the angular velocity using (29).

Jω
i =

∂(ω)

∂(δ, θ)
∈ R3×2i (29)

Putting (28) into (29) can obtain the Jacobian matrix of the angular velocity of the
manipulator to the joint variable represented by the dual quaternion in the inertial space,
that is (30).

Jω
i = 2

[
ϑ̃i

]
Jϑ

i (30)

[
ϑ̃i

]
=




a0 −a3 a2 −a1
a3
−a2

a0 −a1 −a2
a1 a0 −a3


 (31)

Similarly, the linear velocity is recovered from the component as in (31). The Jacobian
matrix of the manipulator speed is expressed as (33) in the Cartesian coordinate system.
Putting (32) into (33) can obtain the Jacobian matrix of the velocity of the manipulator to
the joint variable represented by the dual quaternion in the inertial space, that is (34).

vi = 2
[
ϑi
] .
xi − 2[x̃i]

.
ϑi (32)

Jv
i =

∂(vi)

∂(δ, θ)
∈ R3×2i (33)

JV
i = 2

[
ϑ̃i

]
Jv
i − 2[x̃i]Jϑ

i (34)

When solving the pose and position of the manipulator at the same time, the overall
Jacobian matrix should be (35).

J =
[

JV
i

Jω
i

]
(35)

Since the kinematics of the continuous manipulator are generally high-order polyno-
mials, it is impossible to solve the closed solution of the complete task space position or
orientation of the multi-section continuous manipulator. Therefore, numerical solutions or
metaheuristic algorithms are mainly used to solve the inverse kinematics of the manipula-
tor. This paper uses the pseudo-inverse iterative numerical solution method to solve the
inverse kinematic Equation (36) used for the inverse position solution.

J† = JT
(

JJT
)−1 (

J ∈ Rm×n) (36)

128



Appl. Sci. 2023, 13, 11289

4. Simulation Results and Discussion

To evaluate the accuracy of the dual quaternion model compared to traditional kine-
matic models, specifically the DH and DH Taylor expansion models, we conducted a
comparative analysis using the same driving variable. As demonstrated in Figure 5, our
findings reveal that the error computed by the dual quaternion model aligns closely with
those of the DH and DH Taylor expansion models. This corroborates the precision and
reliability of our proposed methodology. These results underscore the potential of dual
quaternions for enhancing the accuracy of kinematic models for continuum robots, laying
the groundwork for future research in robotics and related fields. To prove the improvement
of calculation speed using dual quaternion modeling, we use the same solution algorithm
to solve the same target and compare the calculation time of dual quaternions: DH and DH
Taylor. We anticipate the endpoint of the robotic arm to traverse from its initial position, P1
(0, 0, 960 mm), ultimately arriving at the desired position, P2 (369.8146 mm, 345.8315 mm,
702.9017 mm), as shown in Table 1. We used the optimization toolbox in MATLAB, and the
CPU was an Intel(R) Xeon(R) W-2245 CPU @ 3.90 GHz 3.91 GHz processor for calculation.
From Table 1, we can see that, in the numerical method, the dual quaternion model solves
the target position with high precision and a short calculation time of 0.45 s; compared
with the traditional DH method of 1.15 s, the calculation time is doubled. In standard
meta-heuristic algorithms, the dual quaternion models are shortened by more than half.
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Figure 5. The two-section driven manipulator contains four driving variables: ϕ1 ∈ [−π, π],
δ1 ∈ [0, π/2], ϕ2 = 0, and δ2 6= 0. The spatial coordinates solved by the DH Taylor expansion
series model are used as standard results to compare the errors in the results of the dual quaternion
model and the DH model. (a) The dual quaternion model and the standard result solve the error in
the x-coordinate direction between the coordinates. (b,c) are the errors in the y-axis and z-axis with
the standard result, respectively. (d) The errors between the DH model solution coordinates and the
standard result in the x-coordinate direction, (e,f), are the errors on the y-axis and z-axis, respectively.
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To achieve smooth angular velocity and acceleration changes at the end of the robotic
arm during operation, a quintic polynomial interpolation algorithm based on dual quater-
nions is proposed for motion planning of the robotic arm. The simulated movement of the
robotic arm end, as illustrated in Figure 6, demonstrates that the velocity and acceleration
of the variables are continuum and smooth during the robotic arm’s movement from point
P1 to point P2, without any abrupt changes. This indicates that the robotic arm’s motion is
not subject to speed distortion and can operate seamlessly.
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Figure 6. Use the fifth-order polynomial interpolation algorithm to plan the trajectory of the robotic
arm and solve the problem of the end of the two-section continuous robot moving from point P1

to point P2 in space. (a) Schematic diagram of the motion trajectory of the two-section continuous
robot. The path is planned through the fifth-order polynomial interpolation algorithm; that is, the
continuous robot needs to move 50 steps from point P1 to point P2 according to the interpolation
sequence. (b) The error between the continuous robot’s actual path and the algorithm’s path (c–e),
respectively, represents the changes in the angle, angular velocity, and angular acceleration of the
driving amount when the continuous robot moves from point P1 to point P2 and sequentially moves
50 interpolation trajectory points. The x-axis represents the 50 trajectory points.
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Table 1. Comparison of calculation time and quantity under different models.

Model Optimization Algorithm Actual Position Iterations Time(s)

DH

Genetic algorithm [369.8147, 345.8322, 702.9025] 25 3.43
Simulated annealing algorithm [369.8150, 345.8317, 702.9021] 5500 62.15
Numerical solution Algorithm [369.8143, 345.8315, 702.9017] 32 1.15
Particle Swarm Optimization [369.8125, 345.8306, 702.9003] 225 3.36

DH Taylor expansion

Genetic algorithm [372.2827, 347.7579, 706.3873] 400 4.50
Simulated annealing algorithm [369.8165, 345.8329, 702.9044] 7700 52.30
Numerical solution Algorithm [369.8146, 345.8319, 702.9018] 31 0.41
Particle Swarm Optimization [369.8101, 345.8311, 702.8985] 380 4.60

dual quaternions

Genetic algorithm [369.8161, 345.8352, 702.9070] 350 2.39
Simulated annealing algorithm [369.8118, 345.8293, 702.8986] 3900 28.50
Numerical solution Algorithm [369.8146, 345.8319, 702.9018] 32 0.45
Particle Swarm Optimization [366.5362, 345.7464, 701.7661] 85 1.18

5. Conclusions

This paper establishes a kinematic model of a continuous robot based on dual quater-
nions. It derives it from the perspective of the transformation process of geometric elements
in space: linear rotation and translation of space. First, the kinematic equations of the line-
pulled continuum robot are derived by applying the dual quaternion method. Secondly,
the kinematic model of the multi-section complete robotic arm was further established, and
the inverse kinematic solution was performed based on the numerical solution method.
Finally, this paper proposes a trajectory planning process for a continuum robot using the
five-polynomial dual quaternion method.
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Appendix A

Let there be any two vectors a,b in the space, where the vector a translates the distance
l along the p axis, and then rotates θ to become the vector b. Define the dual angle notation,
θ̂ = θ + εl, which relates an arbitrary 3D spatial line a to a given 3D spatial line b by a
rotation θ about a unique axis and with a translation l along the same axis.

Here, ra,rb represent the vectors from any arbitrary point in space, denoted as O,
to points a and b, respectively. The symbols a′, b′ signify the cross products. The cross
products a′ and b′ can be represented by a and b and their corresponding ra and rb, as
shown in Equation (A1).

a′ = ra × a, b′ = rb × b (A1)

We can write the vectors a and b representing line segments 0A and 0B in Plücker
form as â and b̂, respectively.

â = a + ε(ra × a), b̂ = b + ε(rb × b) (A2)
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Decomposing the vector b along the orthogonal directions of a and p × a gives
Equation (A3).

b = cos θa + sin θ(p× a) (A3)

Considering the relationship depicted in the figure, where rb = ra + l, and combining
it with the above equation, we can simplify it to Equation (A4).

b̂ = (cos θ − εlsin θ)(a + εra × a) + (sin θ + εlcos θ){[p + ε(ra × p)]× a} (A4)

The inverse Taylor series transformation is utilized for the change process, as shown
in Equation (A5), which ultimately simplifies Equation (A6).

cos θ − ε sin θl = cos θ̂, sin θ + ε cos θl = sin θ̂ (A5)

b̂ = cos θ̂â + sin θ̂(p̂× â) (A6)

Let cos θ̂ be a dual number, and sin θ̂(p̂× â) be a dual vector, then applying the
concept of dual quaternion, we can see that the elements in coordinate system {A} are
transformed into coordinate system {B} after a rotation angle θ after a translation distance
l around an axis is expressed as Λ̂ = cos θ̂ + sin θ̂p̂, where: b̂ = Λ(â). Further, if q̂ab is
equal to the Equation (A7), the b̂ can be expressed as q̂∗ ⊗ â⊗ q̂.

q̂ =

(
cos

(
θ

2

)
, sin

(
θ

2

)
l
)
+ ε

(
−d

2
sin
(

θ

2

)
, sin

(
θ

2

)
m +

d
2

cos
(

θ

2

)
l
)

(A7)
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in space.

Appendix B

The curvature radius ρij and the center bracket’s curvature radius, which are formed
by the changes in each pull line during the driving process, are denoted as R. This is the
radius of the circle where the drive line is located. Given that ρi ϕi = li, ρij ϕi = lij, we can
calculate ρij and lij according to Equations (A8) and (A9), respectively.

ρij = ρi + Ri cos (δi) (A8)

lij = li + Ri ϕi cos δij (A9)

The cables are evenly distributed in the cross-section of the base, with intervals of
90◦. Specifically, we have δi1 = δi; δi2 = δi +

π
2 ; δi3 = δi + π; δi4 = δi +

3π
2 . Consequently,

the sum of cosine values of ∑i cos δij = 0. Considering the relationship between the main
arc length and the four chord lengths, we find that li = 1

4 ∑i lij. When the robot joint only
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undergoes a bending angle δ while the rotation angle is 0, the transformation of the length
of the first drive line can be expressed as Equation (A10).

∇li1 = li − li1 = (ρi − ρi1)δi = ∇ρi1 δi = Riδi (A10)
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Figure A2. (a) Physical model of a single-section robotic arm in the driving state. (b) Project Plane
O{E}{F} that drives the rear robotic arm onto plane FZFXF.

ϕi, θi and the variation of the four drive ∇lij when the traction arm bends and twists
at the same time. Substitute the rope drives 1 and 2 into lij = li + Riϕi cos δij to obtain
li1 = li + Ri ϕi cos δi; li2 = li − Ri ϕi sin(δi). In the same way, substitute 1 and 3 to obtain
li1 = li + Ri ϕi cos δi; li3 = li − Ri ϕi cos(δi). By solving for δi as shown in Equation (A11),
we can determine its value.

δi = arc tan
(

2(li1 − li2)
(li1 − li3)

− 1
)

, δi ∈
(
−π

2
,

π

2

)
, li ∈ R (A11)

We can substitute the rope drives 2 and 4 into lij = li + Riϕicos δij to obtain:
li2 = li − Ri ϕisin δi; li4 = li + Ri ϕisin δi. In the same way, substitute 1, 3 to obtain:
li1 = li + Riϕi cos δi; li3 = li − Riϕi cos(δi). By solving for ϕi as shown in Equation (A12),
we can determine its value. And because ρi ϕi = li, li = 1

4 ∑i lij, by solving for ρi as shown
in Equation (A13), we can determine its value.

ϕi =
1

2Ri

√
(li4 − li2)

2 + (li3 − li1)
2 (A12)

ρi =
Ri ∑i lij

2
√
(li4 − li2)

2 + (li3 − li1)
2

(A13)

Appendix C

The coordinate system {1} relative to {F} is obtained by rotating the coordinate system
along the axis lz1 by an angle δ.

Then, qF1,r =
[
cos δ

2 , lz1sin δ
2

]
and qF1,d = 1

2
(

pi − qi ⊗ pi ⊗ q∗i
)
⊗ qi, as shown in

Equation (A14), the dual quaternion representation.

q̂F1 =

[
cos

δ

2
0 0 sin

δ

2
0 0 0 0

]
(A14)

The coordinate system {2} is translated relative to coordinate system {1} along the axis
lx1, given by [ρcos δ ρ sin δ 0].
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We have q12,r = [1, 0, 0, 0]T and q12,d = [0, ρcos δ, ρsin δ, 0]. Thus, the dual quaternion
representation q̂12 is given by Equation (A15).

q̂F1 =

[
cos

δ

2
0 0 sin

δ

2
0 0 0 0

]
(A15)

The coordinate system {3} relative to {2} is obtained by rotating the coordinate system
along the axis ly1 by an angle ϕ.

Then, q23,r =
[
cos ϕ

2 , ly1 sin ϕ
2
]

and q23,d =
[
0, 0, 0, ρsin ϕ

2
]
, as shown in Equation (A16),

the dual quaternion representation.

q̂23 =

[
cos

ϕ

2
,−sin δsin

ϕ

2
, cos δsin

ϕ

2
, 0, 0, 0, 0,

ρ

2
sin

δ

2
sin

ϕ

2

]
(A16)

The coordinate system {4} is translated relative to coordinate system {3} along the axis
lx3, given by [ρ cos δ, ρ sin δ, 0].

We have q34,r = [1, 0, 0, 0]T and q34,d = [0,−ρ cos δcos ϕ,−ρsin δsin ϕ, ρsin ϕ]. Thus,
the dual quaternion representation q̂34 is given by Equation (A17).

q̂34 =
[
1, 0, 0, 0, 0,−ρ

2
cos δ cos ϕ,−ρ

2
sin δ cos ϕ,

ρ

2
sin ϕ

]
(A17)

The coordinate system {E} relative to {4} is obtained by rotating the coordinate system
along the axis lz4 by an angle −δ.

Then, q4E,r =
[
cos

(
−δ
2

)
, lz4sin

(
−δ
2

)]
and q4E,d = [0,−ρsin δ(cos ϕ− 1) sin δ

2 ,

ρ cos δ(cos ϕ− 1)sin δ
2 , 0], as shown in Equation (A18), the dual quaternion representation.

q̂4E = [cos δ
2 ,−cos δsin ϕ sin δ

2 ,− sin δ sin ϕ sin δ
2 ,− cos ϕ sin δ

2 , 0,−ρ sin δ sin δ
2 (cos ϕ− 1),

ρ cos δ sin δ
2 (cos ϕ− 1), 0]

(A18)

By concatenating the coordinate transformations described in the above equations,
we can obtain the transformation dual quaternion between the two coordinate systems,
represented as Equation (A19).

q̂EF =
[
cos

ϕ

2
,− sin δ sin

ϕ

2
, cos δ sin

ϕ

2
, 0, 0, 0, 0, ρ · sin

ϕ

2

]
(A19)
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Abstract: The modulation transfer function (MTF) serves as a crucial technical index for assessing
the imaging quality of remote sensing cameras, which is integral throughout their entire operational
cycle. Currently, the MTF evaluation of remote sensing cameras primarily relies on the slanted-edge
method. The factors influencing the slanted-edge method’s effectiveness are broadly classified into
two categories: algorithmic factors and image factors. This paper innovatively comprehensively
analyzes the influencing factors of the slanted-edge method and proposes an improved slanted-edge
method to calculate the MTF testing method of remote sensing cameras, which is applied to the MTF
testing of remote sensing cameras. Since the traditional algorithm can only be applied in the small
angle situation, this paper proposes a new method of slanted-edge method test calculation based
on the optimal oversampling rate (OSR) adaptive model of the slanted edge and uses simulation
experiments to verify the reliability of the algorithm model through the deviation of the slanted-edge
angle calculation and MTF measurement, and the results show that the algorithm improves the
accuracy of the MTF measurement compared with the ISO-cos and OMINI-sine methods. Then,
the effects of the slanted-edge angle, image region of interest (ROI), as well as image contrast and
signal-to-noise ratio (SNR) on the accuracy of the MTF calculation by the slanted-edge method were
quantitatively analyzed as the constraints of the slanted-edge method test. Based on the laboratory
target experiment, the algorithm flow and various influencing factors obtained in the simulation stage
are verified, and the experimental results are more consistent with the various test results obtained in
the simulation stage. Consequently, the slanted-edge method introduced in this paper is applicable
for future remote sensing camera MTF testing. This approach offers a valuable reference for on-orbit
focusing, satellite operational condition monitoring, lifespan estimation, and image restoration.

Keywords: remote sensing camera; MTF; slanted-edge method; accuracy analysis; influencing factors

1. Introduction

In the lifecycle of remote sensing cameras, from system installation and long-distance
transportation to launch impact and in-orbit operation, various factors such as the space envi-
ronment and component aging lead to a gradual decline in imaging system performance [1].
This deterioration results in diminished image quality and information content. High-
quality space images are crucial for delivering accurate and comprehensive data, necessi-
tating regular in-orbit quality assessments of remote sensing cameras to monitor perfor-
mance shifts. The MTF is a critical parameter for evaluating the imaging quality of optical
systems [2]. It quantifies the extent of information attenuation during object imaging, offer-
ing higher accuracy and a more objective and comprehensive assessment than traditional
methods. As an ideal performance index for orbiting remote sensing cameras, MTF mea-
surements are also vital for predicting the lifespan of satellite imaging systems [3], assisting
in satellite in-orbit adjustments, and facilitating image recovery and reconstruction.
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MTF detection methods vary depending on the target used, including the three-bar
method [4], slanted-edge method [5], slit method [6], and Siemens Star method [7,8]. Cur-
rently, laboratory testing of camera MTF predominantly employs the three-bar and slanted-
edge methods, as other methods face limitations due to challenges in target processing,
extended testing durations, and poor repeatability, leading to less frequent application. The
slanted-edge method, a primary technique for remote sensing camera MTF detection [9],
involves rotating a slanted-edge target at a specific angle relative to the detector’s rows or
columns. This rotation projects and rearranges the pixels of the slanted-edge image based
on a predefined rule [10], thereby enhancing the image’s sampling rate and mitigating
under-sampling issues. Recognized as an indirect approach for measuring the MTF, the
slanted-edge method has been successfully implemented in the in-orbit MTF measurement
of satellites such as IKONOS [11,12], Orbview [13], GF-4 [14], and Quickbird [15]. The
International Organization of Standards endorses this method as well (ISO12233:2023) [16],
which involves analyzing a camera-captured slanted-edge target image to determine the
edge spread function (ESF) [17], differentiating the ESF to acquire the line spread function
(LSF), and then applying Fourier transform on the LSF and taking the modes to compute
the MTF [18,19]. Offering a comprehensive evaluation at various spatial frequencies in a
single instance and characterized by rapid detection, the slanted-edge method has garnered
significant scholarly interest [20].

The accuracy of the slanted-edge method hinges on precise estimation of the image
edge angle, as this directly impacts the MTF calculation results. Masaoka et al.’s [21]
approach utilizes the Sobel operator and the Hough transform for edge angle estimation,
examining how estimation errors affect the method’s accuracy. Roland [22] focused on
the impact of inclination estimation errors on the stability and repeatability of MTFs
obtained via this method. A critical step in the slanted-edge method’s algorithm involves
differentiating the ESF to derive the LSF, a process that can amplify noise. Consequently,
noise impact analysis and suppression techniques have become a focal area of research.
To mitigate noise’s impact on accuracy, scholars have suggested fitting the ESF with a
function model. Tzannes and Mooney [23] and J. M. Mooney, for instance, identified the
midpoint of each data row as half the mean gray value between the dark and light regions
of the slanted-edge image, constructing an oversampled ESF fitted with a Fermi function
to counter noise effects. Hwang et al. [24] enhanced MTF detection accuracy by refining
the ISO 12233 slanted-edge method with a similar Fermi function fitting of the ESF, while
Masaoka [25] achieved higher accuracy through an oversampling ESF, employing image
rotation, cumulative distribution function fitting, and projection.

The analysis above reveals that the MTF testing of remote sensing cameras using
the slanted-edge method is significantly influenced by the chosen calculation method,
with varying algorithmic models leading to considerable deviations in results [26]. In
this paper, according to the working state of the space camera on orbit and the imaging
characteristics, combined with the relevant theories of optoelectronic imaging systems, the
optimal algorithm based on the slanted-edge optimal OSR adaptive model’s slanted-edge
method calculation is proposed through the study of the sub-pixel edge detection fitting
algorithm and edge diffusion function extraction. The GLCM method is used to detect
the sub-pixel edges and accurately locate the edge position, and then the edge points are
projected, and the sub-pixel arrays are sampled, fitted, and smoothed with a variable OSR
for different angles to obtain the ESF, and the differentiation of the ESF curves is used
to obtain the LSF, and the smoothing of the LSF curves is performed by using the Tukey
window function. Finally, the Fourier transform mode normalization is applied to the LSF
curve to obtain the MTF curve. In order to verify the reasonableness of the algorithm,
simulation experiments are used to verify the response of the imaging system to the spatial
frequency through the mathematical function to simulate the response of the imaging
system to the spatial frequency and obtain the slanted-edge image and the theoretical
MTF curve, respectively, using the ISO-cos, OMNI-sine, and the algorithm proposed in
this paper to calculate the MTF curve of the slanted-edge image and compare it with the
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theoretical MTF curve, which shows that the MTF curve of the proposed algorithm at each
frequency has a higher similarity to the theoretical MTF curve, verifying the reasonableness
of the algorithm in this paper. This study shows that the MTF curves at each frequency
of the proposed algorithm have high similarity with the theoretical MTF curves, which
verifies the reasonableness of the algorithm in this paper.

Subsequently, the image factors affecting the calculation of the slanted-edge method
are analyzed. It establishes the relationship between the slanted-edge angle and ROI in the
MTF calculation results through simulation. The simulation results are then compared in
terms of accuracy and stability to ascertain the optimal slanted-edge angle range and the
ideal ROI range for the slanted-edge method. Under optimal conditions for the slanted-edge
angle and image ROI, simulations are conducted to obtain images with varying contrasts
and SNRs. These simulations aim to investigate the impact of these varying contrasts and
SNRs on the calculation results. In the laboratory, the MTF test validation system was
constructed. This system utilized a customized slanted-edge target to capture test images
via the optical system imaging process. Subsequently, the MTF test was conducted to
validate the efficacy of the slanted-edge test method proposed in this paper.

The rest of this paper is structured as follows: In Section 2, the foundational concept of
the MTF and the procedural aspects of MTF calculation through the slanted-edge method
are introduced. This section also delves into the analysis of algorithmic factors affecting
the results of the slanted-edge method, presenting processing steps of the algorithm based
on a slanted-edge optimal OSR adaptive model. Section 3 scrutinizes the impact of image
factors on the results of the slanted-edge method calculation and proposes constraints for
this calculation method. Section 4 presents and analyzes the results of the experiments
conducted. Finally, Section 5 offers a comprehensive summary of the entire paper and
outlines directions for future research.

2. Measurement Principles and Methods

Per the principles of Fourier optical imaging, in a specific imaging system, when
an ideal point light source serves as the input function, the resulting output is not a
concentrated point but rather a distinct spot [27]. This phenomenon is known as the point
spread function (PSF) [28], exemplified in Figure 1.
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Figure 1. Formation of point spread function.

The PSF characterizes the response of an imaging system to an ideal point source,
illustrating the diffusion of this source on the imaging plane and thereby unveiling the
system’s spatial resolution. The optical transfer function (OTF) [29,30], as delineated in
Equation (1), emerges from the two-dimensional Fourier transform of the PSF [10]. It
embodies the imaging system’s response to various spatial frequencies and is composed of
two components: the amplitude and the phase parts.

OTF(u, v) = F{PSF(x, y)} (1)

Here, F is the Fourier transform, x, y are the spatial coordinates, and u, v are the
frequency coordinates.

The OTF provides a comprehensive description of an imaging system’s capacity to
transfer spatial details, encompassing both contrast and phase information [31]. The
MTF, constituting the magnitude component of the OTF, specifically reflects the system’s
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proficiency in transferring contrast across various spatial frequencies. Accordingly, the
MTF is formulized as shown in Equation (2):

MTF(u, v) =|OTF(u, v)| (2)

Similarly, the LSF is the light intensity distribution captured on the image plane after
imaging of a line source, either δ(x) or δ(y). The LSF is essentially the integral of the
PSF along a specified direction, and its one-dimensional Fourier transform provides the
cross-section profile of the MTF in that direction, as demonstrated in Equation (3):

LSFx(x) =
∫

PSF(x, y)dy
LSFy(y) =

∫
PSF(x, y)dx

(3)

When the input function is a step function, typically exemplified by the slanted-edge
image region of a remote sensing image, its resultant output function is the ESF. This
output represents the two-dimensional light intensity distribution post-optical system
processing. The ESF can be viewed as the integral of the LSF, establishing a relationship
between differentiation and integration, as illustrated in Equation (4). Furthermore, the
one-dimensional Fourier transform of the LSF corresponds to the MTF for that specific
direction [32], forming the theoretical foundation of the slanted-edge method used in
MTF calculation.

ESF(x) =
x∫
−∞

LSF(x′)dx′

LSF(x) = d
dx ESF(x)

(4)

As delineated by the aforementioned theory, the interrelationship among PSF, LSF,
ESF, and MTF is depicted in Figure 2. Consequently, by acquiring any one of LSF, PSF, or
ESF, the MTF can be derived based on this established relationship [33,34].
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The principal procedures for computing the MTF using the slanted-edge method [14],
as applied in remote sensing imagery, are illustrated in Figure 3:

(1) Identify and capture an image of the slanted-edge calculation region in the remote
sensing image, ensuring it conforms to specific criteria; the edge should be straight
and form a slight angle with the detector’s image element direction.

(2) Conduct image preprocessing on the slanted-edge region to minimize random noise,
followed by sub-pixel slanted-edge detection to ascertain the sub-pixel location of the
slanted edge.

(3) Gather data points adjacent to the slanted edge and perform multi-line alignment
using the precise sub-pixel slanted-edge positions from step 2, resulting in the ESF of
densely sampled points.
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(4) Compute the derivative of the ESF to generate the LSF curve.
(5) Apply the Fourier transform to the LSF, yielding the MTF curve.
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2.1. Sub-Pixel Edge Detection and Fitting

The sub-pixel edge detection step is pivotal in the slanted-edge method, as accurate
determination of the sub-pixel edge position is essential for proper alignment and fitting in
subsequent stages. Presently, sub-pixel edge detection techniques can be broadly classified
into three categories: moment-based, interpolation-based, and edge model function fitting-
based approaches. In this paper, we employ one method from each category for sub-
pixel edge detection using the slanted-edge method: gray-level co-occurrence matrix
(GLCM) [35], bilinear interpolation (BLI) [36], and hyperbolic tangent fitting (HTF) [37].
Since sub-pixel edge detection is executed for each row of data points, the methods used
are inherently one-dimensional. We simulate, compare, and analyze the accuracy and
influencing factors of these methods to identify the most effective sub-pixel edge detection
technique for the slanted-edge method.

2.1.1. Gray-Level Co-Occurrence Matrix (GLCM) Method

The GLCM sub-pixel edge detection method operates on the principle of invariant
GLCM, comparing the actual edge with an ideal edge model to accurately localize the image
edge. This method presupposes that the one-dimensional ideal edge model resembles a
step function, u(x), with gray values g1 and g2 on either side of the edge and a step height
of h. The ideal edge configuration is therefore represented as follows:

E(x) = (g1 − g2)× u(x− h) + g1 (5)

where ω1, ω2 are the proportions of pixel points with gray values g1, g2, respectively,
relative to the total number of pixel points in the entire edge region, adhering to the
equation: ω1 + ω2 = 1. Assuming xj represents the GLCM value at an edge point, we
consider the first three moments of this value.

m =
2

∑
j=1

ωjgi
j =

1
n

n

∑
j=1

xi
j (6)

Here, n is the total number of pixel points, with the actual edge density denoted as
ω = k/n. This value of ω can be deduced through calculation as follows:

ω1 = 0.5
[

1 + s
√

1/
(
4 + s2

]
g1 = m1 − σ

√
ω2
ω1

, g2 = m2 −m1

s = 1
n

n
∑

i=1

(xi−m1)
3

σ3 = m1+2m1
3−3m1m2

σ3

(7)

Consequently, the edge position in the actual image is determined as follows:

k = np1 −
1
2
=

n
2

√
s

4 + s2 + (n− 1)/2 (8)
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2.1.2. Bilinear Interpolation (BLI) Method

Bilinear interpolation, an advancement of linear interpolation in two dimensions,
facilitates the estimation of pixel values at undefined points within an image. This method
approximates the value of a new pixel point by utilizing the values of its four neighboring
pixels. It is particularly effective for tasks like image scaling, rotation, and sub-pixel
edge detection [38].

Consider a pixel point with a sub-pixel location designated as (x, y). To employ bilinear
interpolation, it is necessary to identify the four nearest integer pixel locations surrounding
this point. Typically, these locations are represented as (x1, y1), (x1, y2), (x2, y1), (x2, y2),
where x1, x2 are the nearest integers to x, obtained by rounding down and up, respectively,
and similarly for y1, y2 with respect to y.

Initially, linear interpolation is conducted in the x-direction, which entails calculating
the values at points (x, y1) and (x, y2).

f (x, y1) = f (x1, y1) + (x− x1) · ( f (x2, y1)− f (x1, y1))
f (x, y2) = f (x1, y2) + (x− x1) · ( f (x2, y2)− f (x1, y2))

(9)

A linear interpolation is then conducted in the direction where the values of (x, y1)
and (x, y2) have already been calculated.

f (x, y) = f (x, y1) + (y− y1) · ( f (x, y2)− f (x, y1)) (10)

The interpolation results from the two aforementioned directions are combined to
derive the final interpolation expression, incorporating the respective weights of these
two directions:

f (x, y) = (1− t)(1− u) f (x1, y1) + t(1− u) f (x2, y1)
+(1− t)u f (x1, y2) + tu f (x2, y2)

(11)

where t, u represent the differences in distances along the x-axis and y-axis, respectively,
defined as t = x − x1 and u = y− y1, where x1, y1 correspond to the coordinates of the
lower left pixel point.

2.1.3. Hyperbolic Tangent Fitting (HTF) Method

Angela Cantatore et al. proposed the hyperbolic tangent fitting method as an edge
model. This approach aligns the actual edge gray-level distribution with the model to
enhance sub-pixel edge detection accuracy. The hyperbolic tangent function, an S-type
function, is generally expressed as follows:

f (x) = A · tanh(B(x− C)) + D (12)

where A is the curve’s magnitude, B is the slope, C is the curve’s center position (i.e., the
edge position), and D is the offset.

In sub-pixel edge detection, a set of grayscale values I(x) from edge pixels is analyzed,
where x indicates the pixel position. The objective is to determine the optimal values of
A, B, C, and D that best fit these data. Initially, a rough edge location is identified using
initial edge detection, and the surrounding gray values are extracted. Subsequently, a
fitting window encompassing a series of pixel points near the edge is chosen in the vicinity
of this initial edge location. The method employs least squares to determine the optimal
parameters A, B, C, and D, thereby minimizing the discrepancy between the fitted function
f (x) and the actual gray value I(x). This is accomplished by addressing the following
optimization problem:

min
A,B,C,D

∑
x
[I(x)− (A · tanh(B(x− C)) + D)]2 (13)
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The optimization problem can be solved using a nonlinear least-squares algorithm,
and in this paper the Levenberg–Marquardt algorithm is used to solve it.

2.1.4. Simulation Experiment

This comparative analysis evaluates the three methods discussed above through
simulation. Firstly, a slanted-edge image, measuring 30 pixels in both length and width,
is selected. The results of applying these three sub-pixel edge detection methods are
illustrated in Figure 4.
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Without considering random noise, Table 1 shows that all three sub-pixel edge de-
tection accuracies are high, with the interpolation method having an error of less than
0.06 pixels, while the GLCM and fitted methods have significantly higher accuracies than
the interpolation method, with an error of less than 0.03 pixels.

Table 1. Mean and standard deviation of sub-pixel edge deviations calculated by the three methods.

Indicator

Method
GLCM BLI HTF

Angle deviation MEAN 0.063718 0.044824 0.038874
Angle deviation SD 0.043189 0.02798 0.028086

Gaussian noise, with a noise standard deviation ranging from 0.001 to 0.010 in incre-
ments of 0.001, was added to the simulated image for blurring purposes. Subsequently,
the root-mean-square error (RMSE) between the measured and theoretical values of the
GLCM, BLI, and HTF detection methods was calculated under varying noise conditions.
The results of these calculations are depicted in Figure 5.

The introduction of varying levels of Gaussian noise reduces the accuracy of the
three methods under consideration. Specifically, the accuracy of the BLI method is sig-
nificantly compromised by random noise, with edge detection errors escalating rapidly
from 0.06 pixels to 0.7 pixels post-noise addition. Conversely, the GLCM and HTF methods
exhibit more resilience to random noise, with errors incrementally rising to only 0.1 pixels.
Notably, the GLCM method demonstrates commendable accuracy, comparable to the fitting
method. However, its shorter processing time makes it particularly suited to real-time
detection requirements. Consequently, this paper opts for the GLCM method, balancing
accuracy with operational efficiency.
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2.2. ESF Processing Methods

Extracting the ESF curve is a crucial step in ensuring the computational accuracy of
the slanted-edge method. The optical imaging system’s conversion of optical signals into
electrical signals on the detector results in a down-sampling phenomenon [39]. This varies
based on pixel size and leads to the edge image data manifesting as a discrete sequence of
points rather than a continuous curve. Consequently, part of the ESF curve information is
missing, which directly impacts the accuracy of the MTF. To address this issue, a multi-line
edge alignment method is employed to create a more densely sampled ESF curve.

Firstly, the pixels within the edge image’s ROI are projected. This projection can be
executed in two ways: horizontally or perpendicular to the slanted edge, as illustrated in
Figure 6. While these projection methods yield similar results when the edge angle is small,
they diverge significantly as the edge angle increases.
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edge direction.

In this paper, the ROI image is projected orthogonally to its edge. The subsequent
one-dimensional (1D) pixel array requires sub-pixel oversampling, where the bin width is
a critical parameter. In the methods outlined in ISO 12233, ISO-cos, and OMNI, a 4x OSR is
utilized. The primary distinction among these methods lies in the variation in bin width
relative to the edge’s inclination angle. Specifically, ISO 12233 and OMNI employ a constant
bin width of 1/4 pixel, independent of the angle, whereas ISO-cos adjusts the width based
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on the neighboring pixel dimensions at the projection level, resulting in a bin width of
(cos θ)/4 pixel. At any edge angle, when tan θ = 1/4, the ISO-cos method aligns the edge
image’s pixel projection intervals with the oversampling bin width. However, for angles
exceeding 14.04◦, where the projection interval of each pixel column fails to align with the
bin width, resulting in a gap larger than the bin width, the assumptions about the random
phases of the imaging system’s sampling points are violated. This misalignment leads to
inaccuracies in the MTF estimation. Since cos θ ≤ 1, the bin width in the OMNI method is
always greater than or equal to that in ISO-cos at a fixed OSR. This reduces the likelihood
of empty bins in edge image projections at larger edge angles. Nonetheless, in scenarios
involving smaller angles, the OMNI method’s accuracy for sub-pixel oversampling binning
does not match that of the ISO-cos method.

Masaoka [25] proposed the OMNI-sine method, an enhancement of the OMNI ap-
proach, which adapts the bin width in response to the edge angle. In this method, the
sampling interval for each row of the ROI aligns with the bin width at intervals of cos θ
pixel, and for each column, it aligns at tan θ pixel intervals. However, challenges arise when
the slanted-edge angle θ approaches 0◦, causing the bin width to diminish towards zero
and potentially leading to an infinitely large OSR. When the angle is less than 4◦, the OSR
can exceed 14◦. While, theoretically, a higher OSR correlates with greater computational
accuracy, practically, an excessively high rate increases computational cost with marginal
gains in accuracy. Conversely, a very low rate leads to data underutilization and compro-
mised accuracy, particularly in accurately determining the system MTF at the Nyquist
frequency. To mitigate these issues, the bin width is confined within 1/n bin to minimize
the occurrence of empty bins. The OSR, denoted as νbin, is defined in Equation (14) and
ensures computational efficiency comparable to the ISO method across all angles.

θsym = arccos(cos 4θ)
4

νbin = nbin · 2[log2(sin θsym)]−log2(sin θsym)
(14)

This paper introduces an optimal OSR adaptive model, which is developed by ana-
lyzing various ESF processing methods. The model segments the edge angle interval to
determine the optimal OSR for each specific angle. The segmentation is as follows: for an
edge angle θ in the range [0◦, 5.711◦), the optimal OSR is set to 5; for θ in [5.711◦, 18.435◦), it
is determined by the cotangent of θ; and for θ in [18.435◦, 45◦), the optimal OSR is fixed at 3.

In practical applications, optical systems often exhibit aberrations that lead to distor-
tion in edge images, thereby impeding accurate characterization of the ESF distribution
in actual images. To maximize the utility of image data while minimizing the influence of
random noise, it is essential to reprocess the ESF. This paper describes the application of a
fifth-order filter for initial fitting of the ESF, followed by the use of a Savitzky–Golay filter
for subsequent smoothing.

2.3. LSF Processing Methods

The ESF can be transformed into the LSF by differentiating it from the discrete ESF.
This process occurs post-noise reduction [40], as outlined in Equation (15), where the actual
edge distribution overlays the noise interference.

f ′ESF(x) = fESF(x) + fnoise(x)
F
{

d
dx f ′ESF(x)

}
= FLSF(j2π) + j2πFnoise(j2π)

(15)

Due to the spatial domain differentiation of the ESF, noise increasingly impacts the
MTF values of the system. The noise coefficient escalates with rising frequencies, indicating
a more pronounced noise effect. Therefore, it is necessary to smooth the LSF to mitigate
this noise impact. For smoothing, Hamming windows are typically employed. This paper
compares the efficacy of the Tukey and Hamming window functions in both time and
frequency domains, as depicted in Figure 7.
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Figure 7. Hamming window and Tukey window frequency and time−domain response curves:
(a) the time-domain response curve; (b) the frequency-domain response curve.

Figure 7 illustrates that in the time domain, the Tukey window (represented by a black
line) features smooth transitions at the window’s extremities. This characteristic diminishes
signal abruptness, thereby aiding in the reduction in spectral leakage. In contrast, the
Hamming window (represented by a red line) is generally smoother but exhibits more
pronounced jumps at the window’s onset and conclusion, potentially leading to increased
spectral leakage [41]. In the frequency domain, the Tukey window typically exhibits
lower sidelobe magnitudes (peaks outside the main peak) compared to the Hamming
window, suggesting enhanced efficacy in minimizing spectral leakage. Moreover, the main
sidelobes (central highest peaks) of the Hamming window [42] are marginally wider than
those of the Tukey window, indicating a slight inferiority in frequency resolution. These
distinctions imply that the Tukey window might be preferable for applications requiring a
balance between time–frequency characteristics, reduced spectral leakage, and controlled
sidelobe magnitude. Particularly in scenarios demanding precise frequency characteristic
measurement or analysis, the Tukey window’s attributes may offer superior performance.
Therefore, this paper employs the Tukey window for smoothing purposes.

2.4. Processing Steps of the Algorithm Based on the Slanted-Edge Optimal OSR Adaptive Model

According to the comparative analysis of each key link processing method of the
slanted-edge method above, the process of the optimal OSR adaptive model based on the
slanted edge is shown in Figure 8.
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2.5. Simulation Experiment Analysis

To precisely assess the accuracy of the algorithm, the RMSE between the test and
theoretical MTF curves across various frequencies is utilized as the evaluation metric. This
method of accuracy calculation, in contrast to the commonly employed absolute error
measurement of MTF values at the Nyquist frequency, encompasses a broader range of
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spatial frequencies. It more effectively captures the congruence between the computed and
theoretical MTF curves, thereby providing a more comprehensive representation of the
algorithm’s accuracy.

In line with imaging system theory, the response of an imaging system to spatial
frequency can be simulated using a mathematical function, provided the system’s param-
eters are known. These parameters include the aperture diameter D, focal length f , and
wavelength λ. Furthermore, Equation (16) defines the cutoff frequency fcut in the context
of the diffraction limit.

fcut =
1
λ

D
f

(16)

The OTF in the diffraction limit can be expressed in Equation (17) as:

OTFdiff( f ) =
2
π


arccos

(
f

fcut

)
− f

fcut

√
1−

(
f

fcut

)2

 (17)

The imaging system’s image sensor size is designated as 8 µm, with an aperture
diameter of 30 mm, a focal length of 25 mm, and a diffraction wavelength of 10 µm.
Utilizing these parameters, the system’s OTF is derived in accordance with Equation (17).
Subsequently, the PSF is computed through an inverse Fourier transform of the OTF,
simulating the system’s response to a point light source. The cumulative sum of these PSFs
yields the ESF, which represents the system’s response to an idealized edge. This ESF is
then projected onto a two-dimensional grid, determined by setting the edge angle and the
image dimensions (H and V). The ESF effectively models the imaging system’s response to
the slanted edge, culminating in the generation of slanted-edge images at angles of 5◦, 10◦,
14◦, and 26◦, as shown in Figure 9.
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Figure 9. Images of slanted edge with different angles: (a) slanted-edge angle of 5◦; (b) slanted-edge
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In this section, edge images are generated using software, after which Gaussian noise
with a variance of 0.005 is introduced to the images. Subsequently, the ISO-cos, OMNI-sine,
and the adaptive OSR method proposed in this paper are employed to calculate the MTF of
the edge images at various angles. Simulations are conducted to validate the accuracy of
the algorithm presented in this paper, as illustrated in Figure 10.

Figure 10 clearly demonstrates that the MTF curves calculated using the algorithm
proposed in this paper align more closely with the theoretical values compared to the
other two methods. Specifically, Figure 10a indicates that the OMNI-sine method is prone
to MTF aliasing at high frequencies with slanted-edge angles. Similarly, the ISO-cos
method exhibits aliasing in MTF curves at high frequencies when the slanted-edge angle is
substantial. The system MTF value at the Nyquist frequency, as depicted in Figure 10d, is
0.1586. Additionally, a comparison of the RMSE between the MTFs and the system values
for each method across different frequencies is presented in Table 2.
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Table 2. RMSE of MTF calculation by different methods.

Angle

Method
ISO-cos OMNI-sine Algorithm in This Paper

5◦ 0.0495 0.0808 0.0527
10◦ 0.0301 0.0303 0.0276
14◦ 0.0337 0.0405 0.0319
26◦ 0.0905 0.0446 0.0478

It can be seen that the MTF value measured by the algorithm in this paper has the
smallest mean square error with the theoretical value, which is closer to the real result.

3. Analysis of Factors Influencing the Results

The slanted edge of the imaging system represents a continuous input signal. When
this signal is incident on the image detector element, it remains continuous. However,
the sampling process discretizes this continuous signal, transforming it into a step-like
distribution on the detector, as illustrated in Figure 11a. This distribution, highlighted by a
red circle in the figure, defines the structure known as a “sampling step”. The embodiment
of the sampling step varies with different tilt angles, requiring different numbers of image
lines, as demonstrated in Figure 11b,c.

According to the mathematical relationship, the number of image elements, denoted
as y, required to represent a slanted edge with a width of x pixels is given by Equation (18):

y ≥ x
[
cot θ

]
(18)
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Angle 

ISO-cos OMNI-sine Algorithm in This Paper 

5° 0.0495 0.0808 0.0527 
10° 0.0301 0.0303 0.0276 
14° 0.0337 0.0405 0.0319 
26° 0.0905 0.0446 0.0478 

It can be seen that the MTF value measured by the algorithm in this paper has the 
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Figure 11. Schematic diagram of slanted-edge discretization: (a) slanted-edge angle of 8.13◦ ;
(b) slanted-edge angle of 14.036◦ ; (c) slanted-edge angle of 26.565◦ .

Figure 12 depicts the minimum number of pixels along the height of the slanted edge
necessary to represent the slanted-edge angle, varying from 1◦ to 45◦, when the width of
the slanted edge is fixed at 1 pixel.
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3.1. Effect of Slanted-Edge Angle on Slanted-Edge Method

From Figure 11, it is evident that a smaller slanted-edge angle necessitates a greater
number of pixels to represent the angle, leading to an increase in the image size in the
height direction of the slanted edge. To explore the impact of the slanted-edge method,
particularly how the slanted-edge angle, constrained by the height of the edge, affects
the method’s results, the imaging process of the imaging system was simulated as per
Section 2.4. This simulation involved using a computer to generate 100 × 100-pixel images
of a slanted edge with angles increasing from 1◦ to 45◦. The grayscale values for the light
and dark areas were set at 255 and 0, respectively. The slanted-edge method was then
applied to calculate the MTF of the system at the Nyquist frequency. This paper’s analysis
includes comparing the results of the proposed algorithm with the theoretical values to
evaluate the effectiveness of the slanted-edge method. The comparison of the theoretical
and actual calculated values is presented in Figure 12.

Figure 13b demonstrates that the relative error escalates notably when the slanted-
edge angle is less than 6◦, suggesting that the solution results become highly volatile at
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smaller angles. This is attributed to the inadequacy of the actual image’s slanted-edge
height in fully capturing the nuances of smaller angles. Conversely, when the angle exceeds
12◦, the relative error also increases as the angle widens. This rise in error is due to the
increased width of the edge under a constant height, which introduces additional noise
into the solution results. Therefore, the optimal range for the slanted-edge angle is between
6◦ and 12◦.
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When the slanted-edge angle ranges from 6◦ to 12◦, the relative error between the
calculated and theoretical values remains below 0.01. This suggests that within this angle
range, the slanted-edge method demonstrates optimal stability, making it the most ideal
range for the slanted-edge angle.

3.2. Effect of ROI in Slanted-Edge Images on the Slanted-Edge Method

This section analyzes the impact of slanted-edge height on the slanted-edge method
under a specific slanted-edge angle of 7◦. Examination of Figure 10 reveals that the
continuous signal becomes discretized following the sampling process. Subsequently, the
signal’s representation on the detector resembles a stair-step distribution. The height of the
slanted edge, corresponding to a varying number of steps for a constant angle, introduces
result uncertainty. With a slanted-edge angle fixed at 7◦, the height fluctuates within a
9-pixel range. Table 3 presents the varied slanted-edge heights for each step. Consequently,
simulation experiments were conducted to assess the relationship between slanted-edge
height and step distribution.

Table 3. Height of slanted edge for different steps.

Steps 1 2 3 4 5 6 7 8

Rows 2~18 11~27 20~36 29~45 38~54 47~63 56~72 65~81

Figure 14 vividly illustrates the convergence of data, highlighting the correlation
between the number of steps in the slanted edge and the precision of experimental results.
As the number of steps increases, there is a notable improvement in convergence, with the
root-mean-square error remaining below 0.1 when the step count exceeds three. Therefore,
an image of the slanted edge should include a minimum of three step structures. Addi-
tionally, considering the relationship between the number of slanted-edge steps and their
height, as detailed in Table 3, the slanted edge’s height within the ROI should be at least 30
pixels for an ideal slanted angle range of θ ∈ [6◦, 12◦].
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Figure 14. Nyquist MTF versus sampling step curve.

3.3. Effect of Contrast and SNR of Slanted-Edge Images on the Slanted-Edge Method

In this section, we examine the impact of image contrast and SNR on MTF measure-
ments using a slanted-edge angle of 7◦. Low edge contrast can hinder the visual distinction
of edges, thereby affecting the stability of MTF results. We analyze images with contrasts of
0.95, 0.85, 0.75, 0.66, 0.55, 0.45, 0.35, 0.25, 0.15, and 0.05. Additionally, various noise levels
are introduced to these images to achieve slanted-edge images with SNRs of 100, 90, 80,
70, 60, 50, 40, 30, 20, and 10. Using the algorithms proposed in this paper, we explore how
image contrast and SNR influence the slanted-edge method. The simulation results are
presented in Figure 15.
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The presence of noise in the edge image inevitably leads to fluctuations in the MTF
curve. As illustrated in Figure 15, random noise significantly impacts MTF calculations. A
decrease in the image’s SNR results in an increase in the RMSE, leading to a rapid decline
in calculation accuracy. Specifically, when the SNR falls below 30 dB, the calculated RMSE
of the MTF exceeds 0.2, markedly increasing the likelihood of MTF aliasing. Consequently,
the reliability of the measured MTF under these conditions is considerably diminished.
In the absence of noise interference, the contrast of the images on either side of the edge
marginally affects the accuracy of the MTF calculations. This is evident from Figure 15,
which demonstrates that even when the contrast of the gray values on both sides of the
edge is reduced to 0.3, the MTF calculation still retains high accuracy. However, as random
noise increases, images with higher contrast demonstrate a superior ability to resist noise
interference, thereby maintaining higher calculation accuracy.

Consequently, for optimal measurement results, it is essential to maintain an image
contrast of at least 0.3 and ensure that the image’s SNR exceeds 30.

4. Laboratory Test Results and Analysis

To validate the accuracy and reliability of the testing methodology proposed in this
paper, the MTF test experiment was designed for a laboratory CMOS camera, and an
experimental verification platform was constructed. This platform comprises an inte-
grating sphere light source, a slanted-edge target, an optical lens, a CMOS camera, a
three-dimensional rotary platform, and an image acquisition device. The integrating sphere
provides uniform illumination for the slanted-edge target. The light signal, after travers-
ing the optical lens, is captured by the CMOS camera and subsequently converted into
a grayscale image through signal acquisition and processing. This image represents the
target as captured by the camera’s imaging system and is depicted in Figure 16, showcasing
the test equipment. The MTF of the optical system under test is computed from the slanted-
edge target image using the proposed method. The resulting transfer function values are
then employed to evaluate the accuracy and stability of the focal plane position and the
MTF values obtained through this test method.
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Figure 16. MTF laboratory test system.

The experimental setup included an integrating sphere source, a slanted-edge target,
an optical lens, a CMOS camera, a 3D rotation platform, and an image acquisition device,
all mounted on an optical vibration isolation platform. The 3D rotation platform was
meticulously aligned to ensure the optical path was coaxial, enabling the CMOS camera
to fully capture the slanted-edge target image. We maintained a precise 7◦ angle between
the slanted-edge target and the detector. Additionally, the 3D rotation platform facilitated
image acquisition at 0.1 mm intervals within a 1 mm depth range beyond the camera’s
focal length, capturing 20 frames at each position (see Figure 17a). Using the slanted-edge
method outlined in this paper, we calculated the MTF values at various positions. These
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values were then used to construct through-focus MTF curves, as depicted in Figure 17b.
The accuracy of our proposed algorithms was validated against reference MTFs derived
from three-bar target images in a controlled laboratory environment.
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Figure 17. Target image and test results: (a) target, red rectangular areas are the ROI; (b) MTF
through−focus curve.

The curve displayed in the figure closely aligns with the through-focus curve derived
using the three-bar method. This congruence provides experimental evidence that the
slanted-edge method introduced in this paper is a viable approach for calculating the MTF.

Subsequently, we altered the angle between the CMOS camera and the slanted-edge
target. The 3D rotary stage was adjusted incrementally, starting from 1◦. Slanted-edge
target images were captured at every 0.5◦ increment, collecting 20 frames at each angle, up
to a maximum of 45◦, as illustrated in Figure 18. This procedure resulted in the acquisition
of a total of 1760 slanted-edge target images. To mitigate the effects of air disturbance, the
20 frames obtained at each angle were aggregated and averaged, producing a representative
slanted-edge image for each angle. We then computed the MTF values at the Nyquist
frequency for the 88 distinct sets of slanted-edge images, facilitating the assessment and
analysis of the impact of the slanted-edge angle on the accuracy of the slanted-edge method.

Figure 19 presents the results, illustrating that the trend of MTF values at the Nyquist
frequency for various slanted-edge images, as measured in the laboratory, aligns with
the simulated results. This alignment corroborates the efficacy of the optimal OSR-based
adaptive modeling algorithm introduced in our study. Notably, the MTF relative error
remains within 1.5% for slanted-edge angles ranging from 6◦ to 12◦. The stability is
particularly pronounced at a 7◦ slanted-edge angle, suggesting that the slanted-edge
algorithm demonstrates optimal stability within this angle range. Additionally, this finding
affirms the reliability and precision of the constraints specified in the slanted-edge method
proposed in this paper.
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Figure 18. Images of slanted-edge targets at different angles: (a) slanted-edge angle of 3◦; (b) slanted-
edge angle of 7◦; (c) slanted-edge angle of 8◦; (d) slanted-edge angle of 10◦; (e) slanted-edge angle of
14◦; (f) slanted-edge angle of 20◦.
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5. Conclusions

In this paper, we address the limitations of existing sub-pixel edge detection and ESF
curve extraction algorithms, specifically their low accuracy and high error rates. Through
simulation experiments, we generate ideal computer-generated slanted-edge images and
introduce varying levels of noise to assess the algorithms’ performance. We focus on
comparing the accuracy and stability of different methods for calculating the angle in the
slanted-edge technique. Furthermore, we examine the impact of the OSR on the method’s
measurement accuracy and propose an adaptive model based on the optimal OSR. This
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model adjusts the sampling rate according to the edge angle, enhancing its applicability
across a broader range of angles. Additionally, we employ higher-order polynomial edge
fitting to mitigate the effects of spatial aberrations and image noise more effectively.

This paper subsequently analyzes the image factors influencing the slanted-edge
method’s calculations. Specifically, it analyzes how the slanted-edge angle, ROI, contrast,
and SNR impact the method’s accuracy. These factors are quantitatively assessed as
constraints of the slanted-edge method through simulation experiments. The simulation
results show that when the slanted-edge angle is between 6◦ and 12◦, the relative error
between the calculated value and the theoretical value is within 0.01, which indicates that
when the slanted-edge angle is between 6◦ and 12◦, the slanted-edge method has the best
stability in the solving results, and it is a more ideal range of the slanted-edge angle. The
ROI of slanted-edge height is at least 30 pixels, and the slanted-edge width is selected
based on the principle of including as large a bright and dark area as possible. The SNR
of the slanted-edge image significantly influences the results of MTF calculations. As the
SNR decreases, there is a rapid decline in calculation accuracy. Conversely, contrast has
a minimal impact on MTF calculation accuracy, with results maintaining a high level of
precision even when the contrast ratio decreases to 0.3. To ensure optimal calculation
results, it is imperative to maintain an SNR greater than 30dB for the slanted-edge image,
along with a contrast ratio exceeding 0.3.

At present, the selection of the ROI for slanted-edge images remains a manual process
in this paper. Future advancements may involve the integration of neural networks or
feature recognition techniques to intelligently automate the selection of the effective ROI.
Factors such as atmosphere and motion blur that cause MTF attenuation in photoelectric
imaging systems can be added to the subsequent analysis to make it more universally
applicable, further improve the algorithm, and increase the computational accuracy. In
this paper, we use both simulation and laboratory experiments for algorithm validation
and accuracy analysis, which can be followed by on-orbit experiments using real on-orbit
image data for further evaluation.
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Abstract: In this paper, a novel global time-varying path planning (GTVP) method is proposed. In
the method, real-time paths can be generated based on tunable Bezier curves, which can realize
obstacle avoidance of manipulators. First, finite feature points are extracted to represent the obstacle
information according to the shape information and position information of the obstacle. Then, the
feature points of the obstacle are converted into the feature points of the curve, according to the
scale coefficient and the center point of amplification. Furthermore, a Bezier curve representing the
motion path at this moment is generated to realize real-time adjustment of the path. In addition, the
5-degree Bezier curve planning method consider the start direction and the end direction is used in
the path planning to avoid the situation of abrupt change with oscillation of the trajectory. Finally,
the GTVP method is applied to multi-obstacle environment to realize global time-varying dynamic
path planning. Through theoretical derivation and simulation, it can be proved that the path planned
by the GTVP method can meet the performance requirements of global regulation, real-time change
and multi-obstacle avoidance simultaneously.

Keywords: Bezier curve; path planning; obstacle avoidance; global time-varying; dynamic obstacle;
real-time

1. Introduction

Path planning is a mapping from perceptual space to behavioral space and the planning
method is one of the research hotspots at present. There are a variety of path planning methods
commonly used, such as the potential energy method [1], heuristic search algorithm [2],
Dijkstra algorithm [3], LPA* algorithm (Life Planning A*) [4], Floyd algorithm [5], PRM
algorithm [6], RRT algorithm [7], unit division method [8] and intelligent algorithm [9–11].
However, these path planning algorithms cannot satisfy global adjustment, real-time change
and multi-obstacle avoidance at the same time.

The planned motion path can be divided into two categories: segmented paths and
continuous paths. Segmental paths include the linear path, circular path, segmental func-
tion path, etc. Continuous paths includes the B-spline curve, spline function, polynomial
function, Dubins curve [12], clothoid curve [13], etc. The above methods have the charac-
teristics of optimizing velocity and acceleration curves, but the planned trajectory cannot
change with dynamic obstacles.

Bezier curve is a parametric polynomial curve family with adjustability, continuity
and smoothness, which has been widely used in path planning. Wang [14] combines
gliding motion with the three-dimensional path planning method of robot dolphins to
propose segmented Bezier curves, which can be implemented to hybrid underwater robots.
Zhang [15] proposed a path planning method based on the combination of a jump point
search and Bezier curve, which adopts improved heuristic functions based on distance and
direction to reduce costs and generate optimal trajectories based on Bezier curves. Zafer [16]
proposed a novel method based on Bezier curves to address excessive nodes and spikes
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in path planning in a given environment by using network mapping. In order to reduce
the computational cost of motion planning, Arslan [17] adopts the parameter matching
reduction method to make multiple low-order Bezier segments approximate the high-order
Bezier curve adaptively. This method can be implemented in the trajectory optimization of
non-holonomic constrained mobile robots. Song [18] proposed an improved particle swarm
optimization algorithm to plan the smooth path of mobile robots in order to meet the
requirements of continuous curvature derivative continuity, combined with the continuous
high-order Bezier curve, so as to solve the local optimal solution and premature convergence
problems. Blazi [19] proposed a new parameterization method of motion primitive based
on Bezier curves, which is suitable for path planning applications of wheeled mobile robots.
In this paper, the analytical solution of the motion primitive of a 3-order Bezier curve
is given under the given boundary conditions that guarantee the continuous curvature
of the combined spline path. Bulut [20] proposed the use of quintic triangular Bezier
curves with two shape parameters and C3 continuity for path planning. When there is
an obstacle, the predetermined path can be adjusted only by the shape parameter in this
method. Xu [21] proposed a new smooth path planning method for mobile robots based on
quadratic Bezier transition curve and improved particle swarm optimization algorithm.
Simulation results demonstrate the effectiveness and superiority of this method combined
with quadratic Bezier transition curve and improved PSO-AWDV algorithm.

Researchers have proposed a number of path planning methods for multi-obstacle en-
vironments. Deng [22] proposed a multi-obstacle path planning and optimization method
for multi-obstacle avoidance. This method uses the convex hull to optimize obstacles, so as
to obtain the base point set and generate the corresponding extension point set. The multi-
objective D* Lite algorithm is utilized to design the distance and smoothness of the path
planner to obtain a reasonably optimized path in a complex environment. Finally, the third
Bezier curve is used to smooth the path.

To solve the dynamic obstacle avoidance problem, many methods have been proposed.
However, the traditional method [23] can realize the local dynamic obstacle avoidance
of a mobile car, but it cannot be applied to the global dynamic obstacle avoidance of a
manipulator. Scoccia [24] used the optimal fitting interpolation of a Bezier curve to smooth
the trajectory and improved the obstacle avoidance ability of the robot in the dynamic
environment by considering the speed of obstacles. In order to optimize the distance
between the start point and the target point, the improved genetic algorithm is used to
explore the Bezier curve control points, and the optimal smooth path is selected to minimize
the total distance between the start point and the end point [25]. Kang [26] proposed a
new collision cost prediction network (CCPN) that adopts a real-time updated sensor data
occupation grid to estimate collision costs and avoid robot collisions with static and dy-
namic obstacles. Minnetoglu [27] proposed an effective real-time path planning algorithm
based on the geometry applied to three-dimensional environments, which adopts a three-
dimensional potential field to generate the intermediate point that characterizes the path of
the robot with less degrees of freedom and significantly improves the maneuverability of
the manipulator to avoid obstacles.

The researchers propose a variety of local real-time path planning methods for single
obstacles, moving vehicles, or remotely piloted aircraft. However, the global real-time path
planning method of the snake manipulator is lacking. Therefore, a global time-varying
path planning method based on a Bezier curve (GTVP) is proposed. The GTVP method
generates the real-time motion trajectory of the manipulator according to the real-time
data of dynamic obstacles and then obtains the trajectory of the center point of each joint
of the manipulator according to the repeated path method, which skillfully combines the
trajectory planning of joint space with the trajectory planning of Cartesian space.

The layout of this paper is as follows. Section 2 introduces the improvement of
the proposed method. Sections 3 and 4 describe the trajectory planning process of this
method in single-obstacle and multi-obstacle environments. Section 5 carries out theoretical
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verification of the method. Section 6 carries out simulation verification and Section 7
summarizes this article.

2. Characteristics of GTVP

The high-order Bezier curve has the disadvantages of large computation, oscillations
and complex trajectory, so it cannot be applied to dynamic environment. Although the low-
order Bezier curve can guarantee the continuity of the path, it cannot provide continuous
curvature and arbitrary setting of the second derivative of the characteristic points of the
Bezier curve. The more feature points the Bezier curve has, the more flexible the smooth
path is, but the more computational the complexity is and vice versa. In conclusion, in the
process of path planning, it is necessary to balance the amount of calculation with the
flexibility of the trajectory.

The planned path should meet the following conditions:

(1) The manipulator can realize dynamic obstacle avoidance along the path;
(2) Realize G3 continuity and continuous curvature derivative;
(3) Minimize the maximum curvature of smooth paths;
(4) The length of the smooth path is as short as possible under the premise of meeting

the basic conditions.

It is difficult to satisfy the requirements of real-time obstacle avoidance by using a
traditional intelligent algorithm to optimize the solution. In order to address the problems
of real-time path planning and Bezier curves, the GTVP method is improved on the premise
of satisfying the elementary criteria. The novelty and contributions of this paper are
summarized and listed as following.

(1) Considering obstacles of different positions and shapes, the GTVP method extracts a
finite number of feature points to characterize the key information of dynamic obsta-
cles, which reduces the complexity of the obstacle model. In this way, the dynamic
obstacle information can be analyzed in real time during path planning.

(2) Before real-time path planning, the GTVP method has formulated the conversion
relationship between feature points and paths through equation deduction (Step 5,
Step 6, Step 7). In real-time path planning, the corresponding spline curve can be
generated by bringing in the real-time data of feature points and the spline curve is
the motion path of the snake manipulator, which greatly reduces the calculation time.

(3) There are many inflection points in the path planned by traditional methods and the
variation curve of the joint declination angle is unsmooth when the snake manipulator
moves along the path. By virtue of the characteristics of Bezier curves, the smooth
path can be directly planned by the GTVP method and then the smooth path can be
adjusted in real time according to the nodes on the path and the feature points of
dynamic obstacles.

(4) The traditional method can be applied to the dynamic obstacle avoidance of a trolley
or car, but it cannot be applied to the snake manipulator to avoid obstacles on the
global path. Built on the global characteristics of Bezier curves, the GTVP method can
adjust the global path in real time by adjusting the obstacle feature points and curve
feature points.

(5) The GTVP method extracts real-time information of dynamic obstacles and utilizes
feature points to generate the corresponding smooth trajectory curve, which can
realize real-time obstacle avoidance of the manipulator. This method avoids numer-
ous unnecessary calculations, improves search efficiency and efficiently solves path
planning problems in multi-target conditions or multi-obstacle environments.

(6) The GTVP method can not only adjust the direction of the start point of the path,
but also adjust the direction of the end point of the path.

(7) There are several adjustable parameters in the GTVP method: center point of obstacle,
number and position of obstacle feature points, location of scaling center point, scaling
ratio coefficient, etc. Individual parameters can be selected or adjusted according to the
specific application environment, so this method has good environmental adaptability.
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3. Transient Path under the Single-Obstacle Environment
3.1. Overall Process

For moving obstacles with different shapes, it is necessary to plan the corresponding
time-varying trajectory according to the real-time information of the obstacle, so that the
manipulator can ensure that it does not collide with the obstacle and can also move from
the starting point to the end point. In order to meet the above requirements, the global
time-varying path planning (GTVP) method for dynamic obstacles is proposed in this
paper. The pseudo-code for the main function in the method is shown in Algorithm 1.

Algorithm 1 The main function of the time-varying trajectory planning algorithm

1: Input: xstart, xend, dstart, dend;
2: Obs_Information← Get_obstacle(t);
3: Central_Point←Mid(Obs_Information, xstart, xend);
4: Feature_Points← Extract(Obs_Information, xstart, xend);
5: Bezier_Points← Amplify(Feature_Points, Central_Point, xstart, xend, dstart, dend);
6: Bezier_Curve← Bezier_Function(Bezier_Points);
7: Output: Bezier_Curve;

The whole process of the algorithm combined with the pseudo-code is explained as
follows. First, input the initial data and the moving object model, including the position xstart
and direction dstart of the start point, the position xend and the direction dend of the end point
and the model of the snake manipulator (Step 1). Then, obtain the real-time shape and position
information of the obstacle (Step 2) and find the center point O0, which is the preparation
for the curve generation (Step 3). Extract feature points of the surface that represents the
obstacle information and judge which side of the obstacle the moving object walks from
(Step 4). Enlarge the surface of the obstacle according to the formulated scale coefficient and
magnification center point and generate the feature points of the Bezier curve according to the
specified law (Step 5). Next, generate the Bezier curve according to the characteristic point of
the curve (Step 6). Finally, output the real-time Bezier curve (Step 7).

The Bezier curve corresponding to each moment can be obtained through the above
process. Next, the process and principle of the GTVP method are described in four examples
shown in Figures 1–4. The direction of the x-axis is from the start point xstart to the end
point xend and the y-axis is perpendicular to the x-axis. The GTVP method is suitable
for snake manipulators, redundant manipulators, continuous manipulators, mobile cars,
mobile robots, remote control aircraft and other moving objects. In this paper, the process
and principle of the GTVP method are described by taking the snake manipulator as an
example. The details of each step are described in Sections 3.2–3.6.
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Figure 1. Bezier curve generated for rectangular obstacles.

160



Appl. Sci. 2023, 13, 13334

-100 -50 0 50 100
-40
-20

0
20
40
60
80

O0

C

Bezier curve

P1
0 P0

2

P0
3 P0

4

P0
5 P0

6

Obstacle

E1

E2 E3

E4xleft xright

x
y

Set K Set E

xendxstart

Figure 2. Bezier curve generated for circular obstacles.
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Figure 3. Bezier curve generated for non-parallelogram obstacles.
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Figure 4. Bezier curve generated for irregularly shaped obstacles.

3.2. Obtaining Initial Information

In Step 1, the kinematic model of the snake manipulator is constructed, including
establishment of the D-H coordinate system and analysis of the conversion relationship
between the parameters. According to the task requirements, the start point xstart, the
end point xend, the start point direction dstart and the end point direction dend are set
corresponding to the motion trajectory of the manipulator. The relationship between the
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parameters is presented in Equation (1). The dstart and dend in Figures 1, 2 and 4 are both 0°,
so they are not marked. The dstart and dend in Figure 3 are −30°.

{
dstart = x′start

dend = x′end
(1)

In Step 2, the detailed information of obstacles can be obtained through image pro-
cessing, construction of sparse maps and so on. The feature information of obstacles
(represented by the Obs_Information symbol) can be extracted and only one set of data
is needed to store the shape data of obstacles: Obs_Information (1). The data of x, y,
z, θx, θy and θz are used for storage of the position data of three-dimensional obstacles:
Obs_Information (2:7). Where x, y and z are the distance between the current position
and the origin point, θx, θy and θz are the angles of rotation of the initial pose around the
axes x, y and z. The position data of two-dimensional obstacles are stored through the
data of x, y and z. The data of z, θx and θy are always zero. Size data of the obstacle are
stored through obstacle features: Obs_Information (8:), the size data of obstacles of different
shapes occupy different numbers of data. For example, the size data of spherical obstacles
are stored through r, the size data of cuboid obstacles are stored through a, b and c. The size
data of irregular polyhedral obstacles are stored through the initial position information of
each vertex.

The problems of image recognition and segmentation can be solved by existing meth-
ods proposed by other researchers. For obstacle recognition, Chen [28] proposed an
adaptive object recognition system, which can effectively identify specific targets under
complex backgrounds. For the extraction of edge information, Gu [29] used the improved
wavelet mode maximum algorithm to extract image edges, which can obtain edge image
information with better clarity and connectivity. Yu [30] extracted the boundary of an
obstacle from the semantic segmentation result by applying pixel filtering. For irregular
obstacles, Bai [31] conducted grid preprocessing and convex preprocessing for concave
obstacles, which enhanced the safety of UAV path obstacle avoidance. In order to determine
turning points, Dai [32] proposed to use motion coherence to distinguish dynamic and
static visual feature points and remove the edges between irrelevant points in the point
correlation optimization process.

The shape and size of obstacles do not change with time, but the position of dynamic
obstacles changes over time, such as translation, rotation and other movements. There-
fore, it is necessary to extract the information of dynamic obstacles in real time to obtain
preliminary data for obstacle avoidance.

3.3. Center Point of Obstacle

Extract unchanged initial data in Step 1 and the initial data that need to be updated in
real time are extracted in Step 2. In Step 3, the center point O0 is obtained through the two
endpoints of the trajectory and the obstacle, which lays the groundwork for the subsequent
amplification. The start point xstart and the end point xend are connected to generate a
straight line. If the line does not intersect the obstacle, there is no need to consider obstacle
avoidance and the moving object can move along the line from xstart to xend. If part of the
line segment is inside the obstacle, the two ends of the line segment are represented by xleft
and xright, respectively and the midpoint of the line segment is the center point, which is
marked O0. The pseudo-code corresponding to the Mid function that determines the center
point O0 is shown in Algorithm 2.
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Algorithm 2 Central_Point←Mid(Obs_Information, xstart, xend)

1: Input: Obs_Information, xstart, xend;
2: for xleft from xstart to xend do
3: if xleft in obstacle then
4: break for
5: end if
6: end for
7: for xright from xend to xstart do
8: if xright in obstacle then
9: break for

10: end if
11: end for
12: if xleft is xend then
13: Central_Point← Null;
14: else
15: Central_Point← (xleft+xright)/2;
16: end if
17: Output: Bezier_Curve;

After inputting the characteristic information of the obstacle “Obs_Information”, xstart
and xend, let xleft move step by step from xstart to xend, according to the specified step δ.
The calculation equation is as follows.

xleft = xstart + n · δ (2)

where n = 1,2,3, . . . . . .
Each step determines whether the xleft in the step is in the obstacle space. If it is not in

the obstacle space, it analyzes whether xleft reaches or exceeds the xend point. If so, there is
no need to consider obstacle avoidance. If xleft does not reach or does not exceed xend, let
xleft continue moving from xstart to xend and cycle again.

If xleft is in the obstacle space, let xright move step by step from xend to xstart, according
to the specified step δ and the calculation equation is as follows.

xright = xend − n · δ (3)

where n = 1, 2, 3, . . . . . .
Each step determines whether the xright in the obstacle space. If not xright continues to

move from xend to xstart and cycle again. If xright is in the obstacle space, the center point
O0, is calculated as follows.

O0 =
(

xright + xleft

)/
2 (4)

3.4. Feature Points of Obstacles

In Step 4, the feature points of the obstacle are extracted. The turning point of each
object is regarded as the feature point on the surface of each object. Several feature points
and locations of feature points need to be extracted, which can be set according to the task,
mainly related to the following factors.

(1) Obs_Information. The type of obstacle and the number of inflection points in the
characteristic information of the obstacle;

(2) The position of the start point xstart and the end point xend;
(3) Which_Side. Whether the planned trajectory is above or below the obstacle needs

to be determined; in other words, which side of the obstacle the planned trajectory
bypasses needs to be determined.

The pseudo-code corresponding to the Extract function is shown below.
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Line 2–3 in Algorithm 3. The Ei in Figure 1 represents the feature points of the
rectangular obstacle, which are the points that characterize the shape and size of the
obstacle. The fuzzy center of gravity C is determined according to the above feature points
of the obstacle (also known as the inflection point of the obstacle), which can reduce the
amount of calculation. Some specially shaped obstacles have no inflection point and several
feature points of the obstacle can be set according to the specified rules, as shown in
Figure 2. Where four straight lines with adjacent angles of 60° are made through the point
O0 and the intersection point Ei of the straight line, and the intersection point with the
circular obstacle is regarded as the feature point of the obstacle. By setting feature points
for circular obstacles with the help of the method, the real-time generated Bezier curve
never intersects with obstacles. The relevant proof process is shown in Section 5. Three or
six feature points Ei can be extracted from triangular obstacles, four feature points Ei can
be extracted from quadrangular obstacles, the number of feature points Ei extracted from
N-sided obstacles is N and the number of feature points Ei extracted from circular obstacles
is n, where n can be set as an integer, such as 3–6, etc. After obtaining these feature points
of the obstacle, the blurred center of gravity C of the obstacle can be obtained by taking the
average of the above points. The calculation equation is as follows.

C =
w

∑
i=1

Ei/w (5)

where w is the number of feature points of the obstacle.

Algorithm 3 Feature_Points← Extract(Obs_Information, xstart, xend)

1: Input: Obs_Information, xstart, xend;
2: Ei ← Obs_Feature(Obs_Information);
3: C← Equation (5)(Ei);
4: Which_Side← Judge_Side(C, xstart, xend);
5: Feature_Points← (Ei, Which_Side);
6: Output: Feature_Points;

Line 4 in Algorithm 3. By determining which side of the connecting line between
the start point xstart and the end point xend, the fuzzy center of gravity C is the side of the
obstacle the moving object goes through can be determined. The fuzzy center of gravity C,
in Figures 1–4 is above the line, so the trajectory only needs to be planned in the upper part
of the obstacle.

3.5. Feature Points of Curves

The feature points of the obstacle are extracted in Step 4 and the feature points of
the curve are extracted in Step 5. In this step, the obstacle is magnified with the O0 point
as the center point. The enlarged boundary is used to obtain the points P0

i by which the
Bezier curve is drawn and the line between these points is a Bezier polygon. In this paper,
the magnification scale k is set to 2 and the points on the obstacle surface are regarded as
set E and the points on the magnified boundary are regarded as set K and then the two sets
satisfy the following relationship.

K = k · E−O0 (6)
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It can be specifically shown in the image that the line segments in Figure 1 satisfy the
relationship shown in Equation (7):





P0
2 O0 = k · xleftO0

P0
3 O0 = k · E1O0

P0
4 O0 = k · E2O0

P0
5 O0 = k · xrightO0

(7)

The line segments in Figure 2 satisfy the relationship shown in Equation (8):





P0
2 O0 = k · xleftO0 = k · E1O0

P0
3 O0 = k · E2O0

P0
4 O0 = k · E3O0

P0
5 O0 = k · xrightO0 = k · E4O0

(8)

The line segments in Figure 3 satisfy the relationship shown in Equation (9):




P0
3 O0 = k · E1O0

P0
4 O0 = k · E2O0

∠P0
2 P0

1 = dstart
∠P0

6 P0
5 = dend

(9)

The points in Figure 4 satisfy the relationship shown in Equation (10):





P0
2 = (min(K, x), 0)

P0
3 = (min(K, x), max(K, y))

P0
4 = (max(K, x), max(K, y))

P0
5 = (max(K, x), 0)

(10)

where min(K, x) is the minimum value of the set K in the x-axis direction.
In summary, in addition to finding set K of the enlarged boundary points according to

set E and the magnification scale k, the following steps are included in Step 5:

(1) Set the start point xstart as the first point in feature points of the curve and the end
point xend as the last points in feature points of the curve;

(2) Make a straight line through the xstart point in the direction dstart (start direction)
and find the solution in set K (set K is the set of points on the boundary after the
enlarged surface of the obstacle), which is the second point in the characteristic point
of the curve;

(3) Make a straight line through the xend point in the direction dend (end direction)
and find the solution in set K, which is the penultimate point in the feature point of
the curve;

(4) Amplify the Ei of the part in which the trajectory planning needs to be developed
and the enlarged point is regarded as a feature point of the curve (such as Figures 1–3),
or the maximum value point of the coordinate is regarded as a feature point of the
curve (such as Figure 4).

3.6. Generating Curve

In Step 4 and Step 5, the feature points of obstacles and the feature points of curves
are extracted respectively. In Step 6, a Bezier curve is generated from the feature points of
the curve P0

i . The curves representing the path can be circular arcs, sine and cosine curves,
N-polynomial curves, Bezier splines, B-splines, and so on. In this paper, the Bezier curve
is taken as an example to describe how to use the feature points of the curve to plan the
time-varying trajectory.
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Feature points can be obtained according to the obstacle P0
1 -P0

n . According to these
feature points and the scale factor κ, a Bezier curve with n-1 order can be generated.
From P0

1 to P0
n , a polygon composed of polylines formed by various feature points is

referred to as a feature polygon. In Figure 5, the point after the first iteration satisfies the
following relationship.





P1
1 = (1− κ)P0

1 + κP0
2

P1
2 = (1− κ)P0

2 + κP0
3

P1
3 = (1− κ)P0

3 + κP0
4

(11)
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Bezier curve

Figure 5. Schematic diagram of the Bezier curve (example of κ = 0.3).

The point after the second iteration satisfies the following relationship.

{
P2

1 = (1− κ)P1
1 + κP1

2
P2

2 = (1− κ)P1
2 + κP1

3
(12)

After the third iteration, the point on the Bezier curve is obtained, which satisfies the
following relationship.

p(κ) = P3
1 = (1− κ)P2

1 + κP2
2 (13)

The points and segments in the diagram satisfy the following relationships.

Pj
i = (1− κ)Pj−1

i + κPj−1
i+1 (14)

Pj−1
i Pj

i

/
Pj

i Pj−1
i+1 = κ

/
(κ − 1) (15)

where Pj
i is the ith point after the jth iteration and p(κ) is the function representing the

Bezier curve, κ ∈ [0, 1].
When κ changes from 0 to 1, a cubic Bezier curve defined by n = 4 vertices in the graph

is generated. By analogy, the nth degree Bezier curve p(κ) defined by n+1 vertices can be
obtained that satisfies the following equation.

p(κ) =
n+1

∑
i=1

Ci−1
n (1− κ)n+1−iκi−1P0

i (16)

where Ci−1
n is the number of combinations expressed in probability theory.

The p(κ) corresponding to the Bezier curve can be sorted out as a matrix as follows.

p(κ) = PK1(1− κ)K2(κ)HT (17)

The matrices P, K1, K2 and H in the equation are as follows.

P =
[

P0
1 , P0

2 , · · · , P0
n

]
(18)
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K1(1− κ) =
[
(1− κ)n, (1− κ)n−1, · · · , (1− κ)0

]
· In (19)

K2(κ) =
[
κ0, κ1, · · · , κn

]
· In (20)

HT = [λ1, λ2, · · · , λn] (21)

where P is the geometric matrix of feature points; K1 and K2 are diagonal matrices related
to parameter κ; H is the weight matrix; λi = Ci−1

n is the weight coefficient.
Deriving the variables K1, K2 and p(κ) to κ, the following equations can be obtained.

dK1

dκ
=
[
−n(1− κ)n−1,−(n− 1)(1− κ)n−2, · · · ,−1, 0

]
· In (22)

dK2

dκ
=
[
0, 1, · · · , (n− 1)κn−2, nκn−1

]
· In (23)

dp(κ)
dκ

= P
[

dK1

dκ
K2 + K1

dK2

dκ

]
HT (24)

d2 p(κ)
dκ2 = P

[
d2K1

dκ2 K2 + 2
dK1

dκ

dK2

dκ
+ K1

d2K2

dκ2

]
HT (25)

Just substituting the specific κ value into the above derivation equations, the matrix
related to κ can be solved in advance. The final improvement curve p(κ) and its first and
second derivatives can be obtained by adjusting the weight matrix according to expectations
and the curve is the final Bezier curve at this moment.

The curve p(κ) in two-dimensional space changes along the x-axis and y-axis directions
and the corresponding change functions can be written as px(κ) and py(κ). The radius of
curvature R corresponding to this curve is calculated as follows.

R =

∣∣∣∣∣∣∣∣∣

[
(p′x)

2 +
(

p′y
)2
]3/2

p′x p′′y − p′′x p′y

∣∣∣∣∣∣∣∣∣
(26)

By controlling the parameters in the equation, it is guaranteed that the radius of
curvature R of the Bezier curve is always within the specified range. So that the deflection
angle of the joint is always within the limit when the moving object (such as a snake
manipulator) moves along this path.

4. Dynamic Path under the Multi-Obstacle Environment

Section 3 introduces the process of generating feature points of obstacles, feature
points of curves and Bezier curves with the help of pseudo-code for a single dynamic
obstacle. In this section, how to plan paths for multiple obstacles in real time is described,
as shown in Figure 6.

Step 1: Input the initial data and the model of the moving object: the position xstart
and direction dstart of the start point, the position xend and the direction dend of the end
point and the model of the snake manipulator.

Step 2: Obtain real-time shape position information for each obstacle: Obs_Information_j.
Step 3: Find the center point Oj_0 of each obstacle.
Step 4: Extract the surface feature point Ej_i that characterize the information of each

obstacle and find the fuzzy center Cj of each obstacle through Equation (27).

Cj =
w

∑
i=1

Ej_i/w (27)
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where j is the number of obstacles and w is the number of obstacle feature points.
Step 5: The magnified surface Kj_i of obstacle is obtained by Equation (28) according

to the scale factor k, magnification center point Oj_0 and surface feature point Ej_i.

Kj_i = k · Ej_i −Oj_0 (28)

The jth obstacle can generate a set Kj from which the main feature points are filtered
to obtain the feature points of the Bezier curve.

In this method, it is not necessary to analyze the feature points that are far away from
the obstacle and it is not necessary to consider multiple adjacent feature points repeatedly.

Step 6: According to the feature points of the curve and the principle described in
Section 3.6, a smooth transition Bezier curve can be generated.

Step 7: The motion path corresponding to each time is output, so that the moving
object can achieve dynamic obstacle avoidance when moving along the path.

_
1

/
w

j j i
i

C E w


 

0
_j iP

Figure 6. Flowchart of real-time trajectory generation in a multi-obstacle environment.

According to the above steps, the obstacle avoidance curve generated at a certain mo-
ment can be obtained when moving in a multi-obstacle environment, as shown in Figure 7.
The figure includes L-shaped obstacles, rectangular obstacles, triangular obstacles, circular
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obstacles and pentagram obstacles. These five obstacles move along the path represented by
Equations (29)–(33) and these five motion paths are plotted by curves in Figure 7. The dif-
ferent colored asterisks * in the figure correspond to the feature points of each obstacle.
When these five obstacles move, the Bezier curve is generated in real time by this method
to ensure that the moving objects do not collide with the obstacles.

{
xcircle

/
50 = 9 sin(πt/200) + 5

ycircle
/

50 = −10 cos(πt/200)− 2
(29)





xrectangle

/
200 = sin(πt/50) + 5

yrectangle

/
200 = cos(πt/200) + cos(πt/50) + 1

(30)





xtriangle

/
50 = t/100 + 30

ytriangle

/
50 = −t/10 + 13

(31)

{
xstar/50 = −t/10 + 35
ystar

/
50 = 3t/20− 18

(32)

{
xL/50 = sin(πt/30) + 5
yL
/

50 = −t/10 + 11
(33)
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Figure 7. Obstacle avoidance curve in a multi-obstacle environment.

When the five obstacles move in real time, feature points of obstacles, feature points of
curves and Bezier curves are generated in real time through the GTVP method.

5. Theoretical Verification

The process of the GTVP method is described in Sections 3 and 4. In these two
sections, the effectiveness and practicability of the GTVP method are proved by theoretical
derivation. The path planned by this method can ensure that the moving object will never
encounter the obstacle and the distance between the moving object and the obstacle can
be adjusted by adjusting the magnification factor. Next, a circular obstacle is taken as an
example to describe the proof process.

If O0 is taken as the origin point, the coordinates of the four points E1, E2, E3 and E4
in Figure 2 are:
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



E1 :
(
−
√

r2 − y2
0, 0
)

E2 :
(
−1
4 ξ,

√
3

4 ξ
)

, ξ =
√

4r2 − y2
0 −
√

3y0

E3 :
(

1
4 ξ,
√

3
4 ξ
)

, ξ =
√

4r2 − y2
0 −
√

3y0

E4 :
(√

r2 − y2
0, 0
)

(34)

where r is the dimensional information of the circular obstacle: the radius of the circle; y0 is
the distance between point O0 (center point) and point C (fuzzy center of gravity).

Through adopting the method in the paper, six feature points can be obtained. And then,
the expression of the 5-order Bezier curve can be derived:

p(κ) =
N

∑
i=1

Ci−1
N−1(1− κ)N−iκi−1P0

i (35)

where N = 6. Equation (36) can be obtained by expanding the combination number in the
above equation.

p(κ) =
N

∑
i=1

[
N!

(i− 1)!(N − i− 1)!

]
(1− κ)N−iκi−1P0

i (36)

Put N = 6 into Equation (36) and expand to obtain Equation (37).

p(κ) = (1− κ)5P0
1 + 5(1− κ)4κP0

2 + 10(1− κ)3κ2P0
3+

10(1− κ)2κ3P0
4 + 5(1− κ)κ4P0

5 + κ5P0
6

(37)

Bringing in these 6 points P0
1 - P0

6 , it can be analyzed that, when κ = 0.5, the distance
between the Bezier curve and the obstacle is the closest. Let κ = 0.5 , and yields:

p(κ = 0.5) = (0.5)5P0
1 + 5(0.5)5P0

2 + 10(0.5)5P0
3+

10(0.5)5P0
4 + 5(0.5)5P0

5 + (0.5)5P0
6

(38)

Ensure that the curve is outside the obstacle, namely:

p(κ = 0.5) ≥ r− y0 (39)

After organization,

10 · (0.5)3 ·
√

3
4
· ξ ≥ r− y0 (40)

Bringing in ξ, and tidying up, yields:

5
√

3
(√

4r2 − y2
0 −
√

3y0

)
≥ 16(r− y0) (41)

Let y0=k · r, where k ∈ (0, 1). Equation (42) is obtained after simplification.

5
√

3
(√

4− k2 −
√

3k
)
≥ 16(1− k) (42)

After further organization,

5
√

3
(√

4− k2
)
+ k− 16 ≥ 0 (43)
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Let the left of the inequality sign in the above equation be f (k), namely:

f (k) = 5
√

3
(√

4− k2
)
+ k− 16 (44)

When f (k) is derived and the increase or decrease of the function between the interval
(0,1) is analyzed, it can be obtained that the function keeps as the increase function between
the interval (0, 1/

√
19) and the subtraction function between the interval (1/

√
19, 1). The

two minimum points f (k = 0) = 1.32 and f (k = 1) = 0 satisfy the condition of greater than
or equal to 0. Through the theoretical derivation in this section, it can be proved that the
Bezier curve planned by this method never touches obstacles.

6. Simulation
6.1. Feasibility Analysis of Obstacle Avoidance

The experiment was run on a CPU of Inter i5-6500 with 4G of RAM. According
to Section 3, the GTVP method can ensure that the manipulator avoids obstacles in a
single-obstacle environment. It can be seen from Section 4 that, when the manipulator
moves in a multi-obstacle environment, it still keeps a certain distance from the obstacles.
The movement process of the manipulator is shown in Figure 8. It can be seen from Figure 8
that complex obstacles are characterized by the basic obstacle model and the corresponding
obstacle feature points are generated in the process of motion planning. Whereafter,
a continuous path with global dynamic change is generated according to the dynamic
feature points, so that the manipulator can repeat the time-varying following movement
along the time-varying path, so as to achieve obstacle avoidance.
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     (a)                                                                            (b)                                                                            (c)

Figure 8. Diagram of the motion process of the manipulator in the environment of multiple obstacles.
(a) t = 90 s. (b) t = 95 s. (c) t = 100 s.

During the movement of the manipulator from 90 s to 100 s, the closest distance
between the key node of the manipulator and all obstacles can be analyzed to obtain the
change curve shown in Figure 9. The curve is the closest distance between each key node on
the manipulator and the obstacle, where d8 is the closest distance between the end point of
the manipulator and all obstacles and the remaining di corresponds to the closest distance
between the start point of the ith link and all obstacles.

As can be seen from the figure, the maximum distance between the manipulator and
the obstacle is 15 mm, which is not less than the set minimum distance. Because, when
the closest distance between the manipulator and the obstacle is less than the specified
value, the real-time path can be quickly adjusted by adjusting the curve feature point
of the symbolic path in this method, so that the manipulator can retreat to a safe area.
Through the above simulation, it can be proved that the path planned by the proposed
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method meets the following conditions: “global”, “time-varying” and “obstacle avoidance
in multi-obstacle environment”.
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Figure 9. The closest distance between several key nodes and obstacles.

6.2. Comparison of Different Methods

For path planning of moving objects, traditional path planning methods used for
obstacle avoidance cannot consider multiple conditions: (1) real-time obstacle avoidance;
(2) global obstacle avoidance; and (3) obstacle avoidance under multiple obstacles. Up to
now, a variety of path planning methods are proposed, and the comparison between these
methods is summarized in Table 1.

Table 1. Features of different algorithms.

Methods Real-Time Global Multi-Obstacle Types of Path Application Objects

Method 1 [7] × � � RRT/ Straight path Manipulator
Method 2 [9] × � � VDSM/ Straight path Manipulator
Method 3 [3] × × � Bezier curves Wheeled mobile robot
Method 4 [20] × × � Bezier curves Autonomous vehicles
Method 5 [21] � � � Bezier curves Mobile robots
Method 6 [22] � × � Bezier curves Robot
Method 7 [23] � × × Bezier curves Mobile robots
Method 8 [24] � × × Bezier curves Robot
Method 9 [33] × � � RRT Robot

GTVP � � � Bezier curve Manipulator

It can be seen from the table that most methods cannot take into account multiple-
obstacle avoidance conditions at the same time. It can be seen from the simulation results
that method [7] and method [9] not only cannot realize real-time path planning, but also the
simulation time in the static path is longer than that in the present method. Although global
real-time path planning can be achieved for multiple obstacles in paper [21], the PSO
algorithm is adopted in the algorithm, which takes a certain amount of time to perform
iterative operations in the process of solving the key points of the path. However, the path
that meets multiple conditions can be solved without the help of an intelligent optimization
solving algorithm in this method and the planned path is smoother.

The distance between the robot arm and the obstacle is relatively close from 90 s
to 100 s. During this period, path planning was performed through RRT, Q-RRT*[33],
MDA+RRT [7] and GTVP to obtain Figures 10–13. In these four pictures, (a)–(f) are the
corresponding simulation results of the six moments 90 s, 92 s, 94 s, 96 s, 98 s and 100 s,
respectively. In the figure, the black solid part is the obstacle, the red line segment is the
planned path and the black dot in Figure 13 is the feature point.
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(a) (b) (c)

(d) (e) (f)

Figure 10. Simulation results obtained by RRT. (a) t = 90 s. (b) t = 92 s. (c) t = 94 s. (d) t = 96 s.
(e) t = 98 s. (f) t = 100 s.

(d) (e) (f)

(a) (b) (c)

Figure 11. Simulation results obtained by Q-RRT* [33]. (a) t = 90 s. (b) t = 92 s. (c) t = 94 s. (d) t = 96 s.
(e) t = 98 s. (f) t = 100 s.
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(d) (e) (f)

(a) (b) (c)

Figure 12. Simulation results obtained by MDA+RRT. (a) t = 90 s. (b) t = 92 s. (c) t = 94 s. (d) t = 96 s.
(e) t = 98 s. (f) t = 100 s.

(a) (b) (c)

(d) (e) (f)

Figure 13. Simulation results obtained by GTVP. (a) t=90s. (b) t = 92 s. (c) t = 94 s. (d) t = 96 s.
(e) t = 98 s. (f) t = 100 s.

As can be seen from Figure 10, the path planned by the RRT algorithm requires a
small number of nodes, but the total length of each planned path is long and there are
many turning points. When the manipulator moves along this path, the joint angle will
exceed the limit of the deflection angle. As can be seen from Figures 11 and 12, the path
length planned by the Q-RRT* algorithm or MDA+RRT algorithm is short, but the distance
between the path and obstacles is close, and the planned path has uncertainty at any time.

As can be seen from Figures 10–12, the path planned by other path planning methods
has the following characteristics: (1) the distance between the path and the obstacle is
relatively close, which cannot meet the conditions of obstacle avoidance by the manipulator;
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(2) the path is not smooth; and (3) there is a big difference between the paths planned
at each time. All in all, in the movement process of the manipulator, other methods are
difficult to ensure real-time, global and obstacle avoidance at the same time.

As can be seen from Figure 13, feature points change with the change of obstacle
position, representing the key information of the obstacle position. It can be seen from the
figure that the path planned by the GTVP method is not the shortest path, but the path
has smooth characteristics. The GTVP method is used to plan the path in the middle of
the obstacles, so that the path is as far away from all obstacles as possible. For real-time
path planning, the path planning of each moment with the GTVP method is related to
the path planning result of the previous moment, thus reducing the overall simulation
time and realizing real-time path planning. In a word, the GTVP method adjusts the path
corresponding to each moment through the feature points of obstacles, so as to achieve the
requirements of ensuring real-time, global and obstacle avoidance at the same time.

Each method is used to plan the path in the environment of t = 100 s and the boxplots
shown in Figure 14 shows the simulation time statistics for 50 simulations. As shown in the
figure, the average times required for simulation using RRT, Q-RRT*, MDA+RRT and GTVP
are 0.008 s, 0.5992 s, 1.6136 s and 0.0934 s, respectively.
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Figure 14. The computational time of each method. (a) RRT. (b) Q-RRT*. (c) MDA+RRT. (d) GTVP.

As shown in the figure, path planning using the RRT algorithm takes the shortest time,
but the planned path is not smooth , unfeasible and the path changes greatly at adjacent
moments. The path planning time of the GTVP method is much less than the other two
methods and the path obtained is smooth and continuous in real time.

6.3. Comparison of Bezier Curves under Different Orders

The high-order Bezier curve has some disadvantages, such as a large calculation
amount, oscillation, complexity of the trajectory and it cannot be applied to dynamic
environments. Although the low-order Bezier curve can guarantee the continuity of the
path, it cannot provide the continuous curvature and any setting of the second derivative
of the Bezier curve.In short, it is necessary to balance the computational load of trajectory
planning with the flexibility of the trajectory. In this paper, the characteristics of Bezier
curves under different orders are compared and analyzed. Finally, the GTVP method
selects the 5-order Bezier curve with a global real-time obstacle avoidance function and the
calculation amount of the 5-order Bezier curve is moderate.

Taking the time-varying environment with five obstacles mentioned in this paper as
the simulation environment, a set of Bezier curves is obtained every 0.1 s in the process of
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0 s to 100 s. The total simulation time tn required for real-time path planning using Bezier
curves of different orders is summarized in Table 2.

Table 2. Characteristics of methods under different orders.

Methods Simulation Time
tn(s)

Global Obstacle
Avoidance Characteristics

Bezier curves (n = 9) 71.552 � Trajectory mutation
Bezier curves (n = 7) 44.491 � Feasible
Bezier curves (n = 5) 20.313 � Feasible
Bezier curves (n = 3) - × Infeasible

The GTVP method in this paper considers the starting direction , the ending direction
and there are 6 points representing the characteristics of obstacles. Therefore, the degrees
of the Bezier curve is at least 5-order, while the 3-order Bezier curve cannot meet the
requirements. It can be seen from the table that the simulation time increases with the rise
of the order. However, the generated path is more complex when the order of Bezier curve
is 9 and the trajectory mutation with oscillation will occur. Moreover, the simulation time is
as long as 71.552 s, which cannot guarantee real-time planning. In summary, the degrees of
the Bezier curve with the GTVP method can be 5-order or 7-order. This paper preferentially
selects the 5-order Bezier curve planning method to ensure real-time requirements.

7. Conclusions

In this paper, a novel path planning method, GTVP, is proposed. In this method,
the center point is obtained according to the real-time shape and position information of the
obstacle and feature points representing the obstacle information are extracted. Then the
obstacle surface is amplified by the scale coefficient to generate the center point and Bezier
curve feature point. Finally, the curve corresponding to the real-time motion path of the ma-
nipulator is output. The GTVP method is applied to trajectory planning in single obstacle or
multi-obstacle environment and each process of the method is described in detail. The sim-
ulation results demonstrate that the path planned with the GTVP method can meet various
conditions at the same time: (1) real-time obstacle avoidance; (2) global obstacle avoidance;
and (3) obstacle avoidance under multiple obstacles. When the manipulator moves in a
multi-obstacle environment, the closest distance between the manipulator and the obstacle
is 15 mm, which is greater than the set minimum distance. In addition, compared with
other path planning algorithms, the GTVP method can plan real-time smooth paths that
meet multiple conditions without the help of an intelligent optimization algorithm.

In the future, we can continue to improve the GTVP method in the following directions:
(1) analyze how to adjust multiple adjustable parameters better in the GTVP method; (2) the
GTVP method is combined with other intelligent optimization algorithms to plan optimal
trajectory planning based on time, space, speed and other goals; and (3) the GTVP method
can be applied to smooth obstacle avoidance in a three-dimensional environment.
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Abstract: In the context of automatic charging for electric vehicles, collision localization for the
end-effector of robots not only serves as a crucial visual complement but also provides essential
foundations for subsequent response design. In this scenario, data-driven collision localization
methods are considered an ideal choice. However, due to the typically high demands on the data
scale associated with such methods, they may significantly increase the construction cost of models.
To mitigate this issue to some extent, in this paper, we propose a novel approach for robot collision
localization based on a sparse modular point matrix (SMPM) in the context of automatic charging for
electric vehicles. This method, building upon the use of collision point matrix templates, strategically
introduces sparsity to the sub-regions of the templates, aiming to reduce the scale of data collection.
Additionally, we delve into the exploration of data-driven models adapted to SMPMs. We design a
feature extractor that combines a convolutional neural network (CNN) with an echo state network
(ESN) to perform adaptive feature extraction on collision vibration signals. Simultaneously, by
incorporating a support vector machine (SVM) as a classifier, the model is capable of accurately
estimating the specific region in which the collision occurs. The experimental results demonstrate
that the proposed collision localization method maintains a collision localization accuracy of 91.27%
and a collision localization RMSE of 1.46 mm, despite a 48.15% reduction in data scale.

Keywords: automatic charging; data-driven collision localization; sparse modular point matrix;
convolutional neural network; echo state network; support vector machine

1. Introduction

In the domain of robot-assisted automatic electric vehicle charging, the connection
between the charger and the charging port relies on precise visual positioning [1]. However,
the visual positioning system may be subject to disturbances in unstructured environments,
such as changes in lighting conditions, leading to instances of positioning failure. Visual
positioning failure typically results in three scenarios: in cases of minimal localization
deviation, the charger carried by the robot’s end-effector is able to connect to the charging
port, but may experience jamming. In such situations, impedance control implemented
on the robot can effectively suppress jamming [2]. When the positioning deviation is
substantial, the charger on the robot’s end-effector may fail to make contact with the
charging port during the connection process, potentially causing contact with other parts
of the electric vehicle’s body. In this case, implementing a collision classification protection
system on the robotic arm ensures the safety of the vehicle and the robot. When the
positioning deviation falls between the aforementioned scenarios, meaning that the charger
can make contact with the charging port but cannot smoothly insert due to the presence of
a visual positioning deviation, imparting a collision localization capability to the robotic
arm can effectively correct the deviation caused by the visual positioning failure, serving as
a supplementary localization strategy in the event of a visual failure [3,4].
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In the exploration of model-based collision localization methods, J. Vorndamme et al.
achieved collision localization for humanoid robots by constructing a generalized momen-
tum observer to calculate joint torques and estimate joint accelerations [5]. This method
enables point estimation in single-contact situations using only onboard sensors. Addi-
tional force/torque sensors are introduced only when estimating multi-contact positions.
M. Iskandar et al. developed a momentum-based external force estimation framework for
robot collision localization [6]. This approach includes joint-level residual estimation and
uncoupled force–torque estimation in Cartesian space, eliminating the need for acceler-
ation estimation and consequently mitigating the introduction of noise associated with
acceleration estimation. D. Zurlo et al. addressed the problem of difficulty in achieving
high-precision collision localization solely by relying on a generalized momentum observer
to a certain extent by combining the generalized momentum observer method with a
particle filtering strategy [7].

In the pursuit of achieving high-precision collision localization, artificial-skin-based
methods are generally considered a more favorable option. P. Piacenza et al. utilized
low-cost optical components installed along the edges of the perception region to achieve
higher accuracy in contact localization by measuring the impact of touch on the passage
of light through elastic material [8]. X. Fan et al. designed a set of ultrasound sensors
deployable on the surface of a robotic arm to achieve high-precision contact localization and
analyze contact pressure [9]. P. Mittendorfer et al. achieved interactive touch in different
parts of a humanoid robot by employing self-organizing, multimodal artificial skin [10].
X. Li et al. developed a tactile sensor composed of overlapping air chambers, leveraging
the spatiotemporal continuity of learning contact positions to achieve high-precision and
high-resolution collision localization [11].

With the rapid advancement of artificial intelligence technology, supervised learning
strategies have become widely utilized to address collision localization problems in robotics.
These methods are commonly referred to as data-driven collision localization approaches.
D. Popov et al. employed onboard sensors to collect collision data from robots, utilizing
neural network methods to learn from the relevant data, thereby achieving collision local-
ization at the centimeter level [12]. X. Ha et al. utilized information from multi-core fiber
Bragg grating sensors, combined with a k-nearest neighbor (KNN) model to fit a free-space
curvature model, successfully estimating collision positions for continuum robots [13].
F. Min et al. mounted accelerometers on the joint near the base and end-effector of a robotic
arm to capture vibration signals during collisions. They performed reasonable feature
extraction on the collision vibration signals and, in conjunction with an artificial neural
network (ANN), successfully achieved the localization of the contact points [14]. W. McMa-
han et al. mounted four accelerometers on a single robotic arm to form an accelerometer
array, capturing collision vibration data. They employed a support vector machine (SVM)
to learn from the vibration information of different collision positions, thereby achieving
collision localization with an error in the centimeter range [15].

In the realm of robot-assisted automatic electric vehicle charging, the end-effector,
which is incapable of establishing direct physical contact with the charging port, exclu-
sively interfaces with it through the intermediary of the carried charger. This situation
may introduce unknown disturbances in signal measurements within the model-based
method, posing challenges for achieving high accuracy in collision localization with model-
based methods. Additionally, during the plug-in process, the forces generated during
collisions typically act along the robot. As discussed in [5], model-based methods face
increased difficulty in handling collision issues when external forces act along the robot.
In addition, due to the frequent contacts and substantial contact forces inherent in the
plug-in process, this demanding operational environment will significantly diminish the
lifespan of artificial skin. Simultaneously, the deployment of artificial skin encounters
certain challenges, serving as a constraint that restricts its application in addressing this
issue. Considering data-driven collision localization methods, these approaches heavily
depend on formulating rules for gathering data tailored to specific scenarios.
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In our previous research, we introduced a collision point matrix template specifically
designed for millimeter-level collision localization in the scenario of automatic charging for
electric vehicles [4]. The collision point matrix template consists of collision points spaced
at 1 mm intervals on a plane. By pre-setting the collision point matrix template on the
surface of the charging port and then colliding with each collision point using the charger
carried by the automatic charging robot, we can obtain collision vibration information
suitable for collision localization. Utilizing a collision point matrix template composed of
densely distributed collision points, the collision localization problem can be transformed
into a classification problem, with collision information corresponding to different points
in the template. To enhance the generalization ability of the collision localization method,
it is necessary to consider the adaptation of the collision localization method to variations
in joint configurations during the data collection process. Therefore, it is generally required
to collect collision information under as many different joint configurations as possible. As
the accuracy of collision localization in this method depends on the dense distribution of
collision points in the template, the cost of data collection is typically very high.

To alleviate the significant burden of data collection associated with such an approach,
we propose a data-driven collision localization method based on a sparse modular point
matrix (SMPM). Unlike the earlier collision point matrix template, the SMPM efficiently
reduces the density of collision point distribution, thereby reducing the scale and associated
costs of building the collision dataset to some extent. The main contributions of this paper
are as follows:

1. Building upon the collision point matrix template, the SMPM is first introduced to
achieve local sparsity of the template, thereby reducing the data scale required for the
data-driven collision localization method;

2. Comparative experiments are conducted by constructing SMPMs of various forms
and degrees of sparsity, exploring the optimal way to build SMPMs effectively while
maintaining high collision localization performance with a reduced data scale;

3. A data-driven collision localization method combining a convolutional neural network
(CNN), an echo state network (ESN), and a support vector machine (SVM) is proposed
to enable the SMPM to achieve optimal performance in collision localization.

2. Materials and Methods
2.1. Dataset Description

The SMPM proposed in this study was constructed based on the collision point matrix
template introduced in ref. [4]. To investigate the effectiveness of the proposed SMPM,
the data used in this study were consistent with our previous work [4]. Specifically, the
datasets comprised vibration signals encompassing 3-axis acceleration and 3-axis angular
velocity, collected by the IMU mounted on the charger at a sampling frequency of 1500 Hz.
An AUBO-i5 robot, a commercially available general-purpose 6-DOF robotic arm, was
employed as the automatic charging equipment. It was connected to the charger via a
flexible wrist, as depicted in Figure 1. During the data collection process, the end-effector
robot moves in a linear motion at a speed of 15 mm/s to execute the collision. Each collision
point in the collision point matrix template attached to the charging port undergoes five
collisions in the same pattern to minimize the impact of robot positioning errors on the
results. Additionally, we considered the impact of different joint configurations on the
collision localization results, thereby constructing three independent collision vibration
signal datasets named D1, D2, and D3. Each dataset corresponds to three sets of distinct
joint configurations, with each dataset containing 4335 samples. For more details, please
refer to the table entitled “Joint configuration of the datasets” in ref. [4].
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Figure 1. Illustration of the automatic charging equipment.

2.2. SMPM Method

In our previous work, we observed that when using the collision point matrix template,
the estimated positions of collision points are prone to confusion with their neighboring
collision points. This implies that it is possible to estimate the occurrence of collisions
at a particular collision point by leveraging the collision vibration information from its
neighboring points. Building upon this idea, we propose a local modularization and
sparsification approach for the collision point matrix template, as illustrated in Figure 1. The
collision point matrix template mentioned here is identical to the one in ref. [4]. Collision
points are defined as intersection points between the central axis of the charger and the
plane in which the charging port is located. The template comprises collision points
with 1 mm spacing, arranged in 17 rows and 17 columns, with its center located at the
intersection of the central axis of the charging port and the plane in which the charging
port is situated. In practical applications, the template can be scaled without altering the
spacing between collision points. Modularization is achieved by exploiting the similarity
in collision vibration signals between the estimated collision points and their neighboring
points, eliminating the need to collect data for the estimated collision points during the
data collection process. We refer to the estimated collision points that do not appear in
the dataset as “zero-shot points”, while the collision points used to estimate zero-shot
points, requiring collection in the dataset, are defined as “fully observable points”. In the
process of implementing local modularization, we consider the information from fully
observable points nearest to the zero-shot points to estimate collisions occurring at the
zero-shot points. This process leads to the formation of a modular point matrix (MPM),
as illustrated in the figure, comprising a central zero-shot point and its surrounding eight
fully observable points. The MPM utilized results in a 1/9 reduction in the quantity of data
collected, compared to the original collision point matrix template.

Furthermore, it is crucial to consider whether utilizing all eight fully observable points
is necessary for accurately estimating a collision occurrence at a zero-shot point. In theory,
the collision vibration information obtained from these eight fully observable points may
contain redundancy when estimating a zero-shot point. If this hypothesis holds true,
eliminating the redundant fully observable points could further reduce the scale of the
collision dataset. Taking this into consideration, we propose three sparsification methods
for the MPM, as illustrated in Figure 2. The first sparsification method involves removing
one of the fully observable points from the MPM. This approach results in eight sparse
modular point matrices (SMPMs), denoted as Cell 1-1, Cell 1-2, . . ., Cell 1-8, obtained by
sequentially removing one fully observable point in clockwise direction starting from the
top left corner. The second sparsification method involves removing two fully observable
points from the MPM. During this removal process, we consider two extreme cases: one that
maximally preserves the zero-shot point’s farthest adjacent points (resulting in Cell 2-1 and
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Cell 2-2), and another that maximally preserves the zero-shot point’s nearest adjacent points
(resulting in Cell 2-3 and Cell 2-4). The third sparsification method involves removing four
fully observable points from the MPM, specifically resulting in Cell 3-1, which excludes
all of the nearest adjacent points, and Cell 3-2, which excludes all of the farthest adjacent
points. The collision localization effects arising from the different sparsification methods
are explained in detail in the experimental section.
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2.3. Collision Localization Model

In our previous work, we explored collision localization models based on a CNN [3]
and an ESN [4], respectively. Drawing inspiration from these two approaches, we proposed
a collision localization model that integrates a CNN and an ESN as feature extractors. In
this model, the CNN demonstrates a propensity for capturing salient features along the line
of sight, making it a prevalent choice for feature engineering. Meanwhile, the ESN exhibits
the capability to unfold in accordance with the temporal sequence, finding widespread
applications in time series analysis. To enhance the ultimate localization performance,
we also integrate an SVM model as the final region classifier. Capitalizing on distinctive
attributes of the CNN and ESN, we formulate a collision localization model based on a
CNN-ESN-SVM (CE-SVM) architecture.

2.3.1. CNN

The CNN, a representative deep learning method, is known for its efficacy in pro-
cessing time-series and image signals [16,17]. A typical CNN structure comprises two
main components: the convolutional layer and the pooling layer. In the convolutional
layer, the convolution operation is applied between the input features and convolution
kernels, resulting in the generation of new features. Following convolution, the obtained
results typically undergo non-linear processing, often facilitated by activation functions.
Commonly employed activation functions include Sigmoid, tanh, and ReLU [18]. Based
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on previous research results, ReLU activation functions are a suitable choice for collision
localization problems.

The pooling layer serves two primary functions: dimensionality reduction and mit-
igating overfitting. There are two main types of pooling methods: average pooling and
maximum pooling. In average pooling, the operation involves taking the average of the
convolution-derived features as the output, while in maximum pooling, the operation
involves selecting the maximum value from the convolution-derived features as the output.
In this research, we adopted the same pooling method as in our previous work, specifically
utilizing the maximum pooling approach.

2.3.2. ESN

An echo state network (ESN) is a type of recurrent neural network proposed by Jaeger
et al. [19], consisting of three main components: an input layer, a reservoir, and an output
layer. The reservoir is essentially a randomly connected recurrent network of a certain size,
where neurons form a dense structure through random connections. These connections are
predetermined and remain unaltered during training. A basic ESN model is illustrated in
Figure 3.
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Let Nin, Nres, and Nout represent the numbers of neurons in the input layer, reservoir,
and output layer, respectively. The matrices Win, Wres, and Wout denote the weight ma-
trices from the input layer to the reservoir, within the reservoir, and from the reservoir
to the output layer, respectively. Win and Wres are randomly initialized and remain fixed
throughout the training process. Only Wout undergoes adjustments during the learning
process. The specific ESN model can be expressed as follows:

h(t) = εtanh(Winx(t + 1) + Wresh(t) + Wouty(t)) (1)

where tanh(·) represents the non-linear activation function of the reservoir and ε ∈ (0, 1] is
the leakage rate. x(t), h(t), and y(t) denote the input vector, the state vector of the reservoir,
and the output vector, respectively. Compared to conventional RNNs, the training process
of the ESN is simpler, only involving parameter adjustments in the output layer. The entire
network does not require the complex process of backpropagation. Furthermore, due to
the randomness and dense connections in the reservoir, this structure facilitates enhanced
generalization capabilities, enabling the network to capture the non-linear dynamics of
input signals effectively. This property contributes to the ESN’s strong performance in
handling time-series tasks.

In terms of hyperparameter settings, since Win and Wres are generated through random
initialization, it is essential to predefine the range for their random initialization before
training. The appropriate values for these two weight matrices were adopted from Ref. [20].
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Additionally, following our previous work [4], the leakage rate ε, spectral radius ρ, and
Nres were set. Specifically, the hyperparameters of the ESN used in this paper are presented
in Table 1.

Table 1. Key parameters of ESN.

Parameters Symbolic Representations Values

Weight matrices from the input layer
to the reservoir Win [−0.5, 0.5]

Weight matrices within the reservoir Wres [−0.5, 0.5]
Leakage rate ε 0.5

Spectral radius ρ 1
Numbers of neurons in the reservoir Nres 64

2.3.3. Framework of CE-SVM

The framework of the proposed CE-SVM is illustrated in Figure 4, consisting primarily
of a feature extractor and a classifier. The collision vibration signals employed are 3-axis
acceleration and 3-axis angular velocity signals collected by the IMU mounted on the
charger. After normalization, these signals serve as inputs to the model. The definition
of the input data length follows the concept of the “effective period” from our previous
work, where a segment with rich information meeting collision localization requirements
is extracted from the initial data length, as detailed in ref. [4]. As discussed in ref. [4],
an effective period with 290 sampling points already contains sufficient information for
collision localization. Therefore, this paper also sets the effective period to 290 sampling
points. The input layer of the feature extractor is followed by two CNN layers, each
composed of a convolutional layer and a maxpooling layer. In the diagram, Conv2D denotes
a 2D convolution layer, and MaxPooling2D denotes a 2D pooling layer. Post Conv2D, batch
normalization is applied to ensure the data’s generalization ability. Subsequently, a non-
linear ReLU activation function is used to process the features, enhancing the model’s
capacity for effective non-linear information processing. Notably, the Conv2D structure
employed in this study differs from that of [3]. While the previous work involved symmetric
3 × 3 convolutional kernels, in this study, we adopt asymmetric kernels to maximally
preserve temporally reasonable features extracted by the CNN for subsequent processing
by the ESN layer. The convolution kernel size in the temporal direction is significantly larger
than that in the different axis dimensions. To effectively transmit temporal information
to the ESN layer, the time-distributed technique [21] is employed for the flattening layer
connecting the CNN layers and the ESN layer. To enable the SVM to effectively utilize
the features extracted by the ESN, the features need to undergo flattening processing
after the ESN process. Simultaneously, a fully connected layer is employed to reduce the
dimensionality of the features to prevent the curse of dimensionality. In the feature extractor
training process, Softmax is used as the final classifier. Based on feedback from the Softmax
layer’s estimation results, the weights of different components in the feature extractor are
adjusted. In the training of the classifier SVM for collision localization, the weights of the
pre-trained feature extractor are fixed and used solely for feature extraction. The SVM is
then constructed based on the features extracted by the pre-trained feature extractor.

Detailed hyperparameters for the feature extractor and classifier are provided in
Table 2. The hyperparameters of the ESN and SVM are taken from [4], while the hyperpa-
rameters of the CNN remain consistent with those outlined in ref. [3], with the exception
of the convolutional kernel aspect. Since the padding method is not utilized during the
initial convolutional computation, it should ensure that the length of the input can be
evenly divisible by the convolutional length along the temporal dimension. Furthermore,
to maintain an appropriate convolutional size along the temporal dimension, we specify
the kernel size in this direction as 10. Meanwhile, the kernel size remains consistent with
ref. [3] in the other direction. Our experiments utilized a Windows-based system with
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the following specifications: Processor: Intel (R) Core (TM) i7-10700K CPU @ 3.80 GHz,
Memory: 31.9 GiB, GPU: NVIDIA GeForce RTX 3080.
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Table 2. Hyperparameters of the CE-SVM.

Type Name of Parameter Values

Number of filters 64
Conv2D Kernel size (10, 3)

Stride 1

Batch normalization - -

ReLU - -

Pool size (2, 2)
Maxpooling Stride 1

Padding same

Conv2D

Number of filters 64
Kernel size (10, 3)

Stride 2
Padding same

Batch normalization - -

ReLU - -

Pool size (2, 2)
Maxpooling Stride 1

Padding same

Time-distributed flattening - -

Nres 64
ESN ε 0.5

ρ 1

FC Number of hidden units 512

SVM
Regularization parameter 100

Kernel function rbf

3. Results and Discussion

To explore the effectiveness of the SMPM in reducing the required data scale for
collision localization model construction, the experimental design of this research mainly
consists of two parts. The first part aims to analyze the SMPM structure under discrete
distributions and select the optimal structure based on the structural analysis results. The
second part aims to investigate the effectiveness of the proposed collision localization
method when employing the optimal SMPM layout across the entire collision point tem-
plate. In the first part of the experiment, various SMPM structures are predefined based
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on the characteristics of vibration signals corresponding to collision points. Subsequently,
utilizing multiple data-driven models, SMPMs with diverse structures across the discrete
distribution of collision point templates are evaluated, leading to the selection of the opti-
mal SMPM structure. In the second part of the experiment, the optimal SMPM is deployed
throughout the entire collision point template with varying degrees of sparsity. This deploy-
ment allows for testing the performance of the optimal SMPM in reducing the necessary
data scale for constructing the collision localization model while maintaining collision
localization performance. By integrating the test outcomes, the collision localization model
that best complements the SMPM is also identified.

3.1. Optimal SMPM Structure

In conducting a comprehensive structural analysis and optimization of the SMPM
across the entire collision point matrix template, significant computational costs are in-
curred. In this study, we mitigate these computational challenges by decomposing the
SMPM optimization problem into distinct local regions. This subdivision results in a sub-
stantial reduction in the workload for the optimal SMPM structure selection method. The
proposed optimal SMPM structure selection method consists of two main steps: firstly,
various forms of sparsification are applied to the MPM distributed in the four-corner region.
Collision localization is then performed on the SMPMs using multiple models. Based on
the accuracy of the localization results, SMPMs with superior performance are initially
identified. Subsequently, the position of the SMPM relative to the collision point matrix
template is adjusted, and further collision localization using multiple models is conducted
on the initially screened SMPMs to select those with the optimal structure. In terms of
model selection, the proposed CE-SVM method from this study is employed, along with
the DCNN-SVM method introduced in [3], as well as the ESN-SVM, LSTM-SVM, and
GRU-SVM methods mentioned in [4]. Additionally, based on our previous findings, the
effective handling of collision point localization in the testing set when a particular collision
point in the collision point matrix template is present in both the training and testing sets
has been validated. Therefore, in the SMPM selection process, greater attention can be
directed towards evaluating the performance of collision localization for zero-shot points.
Consequently, in the SMPM selection process, we employ all points in datasets D1, D2, and
D3 that meet the definition of zero-shot points as the testing set. Simultaneously, all points
in datasets D1, D2, and D3 that conform to the definition of fully observable points are
utilized as the training set.

The distribution of MPMs in four corner regions of the collision point matrix template
are illustrated in Figure 5. To introduce a certain level of similarity interference, four MPMs
are set in each region, and are tightly connected to form a square area. These MPMs are
labeled for collision localization. Specifically, we defined the regions in the four corners as
I, II, III, and IV. Subsequently, we assigned numerical labels from 1 to 4 to the MPMs within
each region. Then, different forms of sparsification were applied to the MPMs, as shown
in Figure 2. Based on these various sparsification forms, collision localization tests were
conducted to preliminarily identify preferable sparsification forms.

Building upon the aforementioned preferable configurations, we further displaced the
SMPM to occupy different positions on the collision point matrix template. As illustrated
in Figure 6, there are three types of movements: vertical (up and down), horizontal (left
and right), and toward the center. A collision localization test was conducted each time
the SMPM was shifted by a distance equivalent to one collision point. Based on the results
of these tests, we refined the selection of the optimal SMPM structure. To facilitate the
explanation, we defined the following situations: horizontal movement by one collision
point as LR1 and by two collision points as LR2; vertical movement by one collision point as
UD1 and by two collision points as UD2; and movement toward the center by one collision
point as CT1 and by two collision points as CT2.

187



Appl. Sci. 2024, 14, 2131

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 16 
 

 

throughout the entire collision point template with varying degrees of sparsity. This de-
ployment allows for testing the performance of the optimal SMPM in reducing the neces-
sary data scale for constructing the collision localization model while maintaining colli-
sion localization performance. By integrating the test outcomes, the collision localization 
model that best complements the SMPM is also identified. 

3.1. Optimal SMPM Structure 
In conducting a comprehensive structural analysis and optimization of the SMPM 

across the entire collision point matrix template, significant computational costs are in-
curred. In this study, we mitigate these computational challenges by decomposing the 
SMPM optimization problem into distinct local regions. This subdivision results in a sub-
stantial reduction in the workload for the optimal SMPM structure selection method. The 
proposed optimal SMPM structure selection method consists of two main steps: firstly, 
various forms of sparsification are applied to the MPM distributed in the four-corner re-
gion. Collision localization is then performed on the SMPMs using multiple models. Based 
on the accuracy of the localization results, SMPMs with superior performance are initially 
identified. Subsequently, the position of the SMPM relative to the collision point matrix 
template is adjusted, and further collision localization using multiple models is conducted 
on the initially screened SMPMs to select those with the optimal structure. In terms of 
model selection, the proposed CE-SVM method from this study is employed, along with 
the DCNN-SVM method introduced in [3], as well as the ESN-SVM, LSTM-SVM, and 
GRU-SVM methods mentioned in [4]. Additionally, based on our previous findings, the 
effective handling of collision point localization in the testing set when a particular colli-
sion point in the collision point matrix template is present in both the training and testing 
sets has been validated. Therefore, in the SMPM selection process, greater attention can 
be directed towards evaluating the performance of collision localization for zero-shot 
points. Consequently, in the SMPM selection process, we employ all points in datasets D1, 
D2, and D3 that meet the definition of zero-shot points as the testing set. Simultaneously, 
all points in datasets D1, D2, and D3 that conform to the definition of fully observable 
points are utilized as the training set. 

The distribution of MPMs in four corner regions of the collision point matrix template 
are illustrated in Figure 5. To introduce a certain level of similarity interference, four 
MPMs are set in each region, and are tightly connected to form a square area. These MPMs 
are labeled for collision localization. Specifically, we defined the regions in the four cor-
ners as I, II, III, and IV. Subsequently, we assigned numerical labels from 1 to 4 to the 
MPMs within each region. Then, different forms of sparsification were applied to the 
MPMs, as shown in Figure 2. Based on these various sparsification forms, collision locali-
zation tests were conducted to preliminarily identify preferable sparsification forms. 

 
Figure 5. Illustration of SMPMs at four corners of the collision point matrix template. 

Building upon the aforementioned preferable configurations, we further displaced 
the SMPM to occupy different positions on the collision point matrix template. As 

Figure 5. Illustration of SMPMs at four corners of the collision point matrix template.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 16 
 

 

illustrated in Figure 6, there are three types of movements: vertical (up and down), hori-
zontal (left and right), and toward the center. A collision localization test was conducted 
each time the SMPM was shifted by a distance equivalent to one collision point. Based on 
the results of these tests, we refined the selection of the optimal SMPM structure. To facil-
itate the explanation, we defined the following situations: horizontal movement by one 
collision point as LR1 and by two collision points as LR2; vertical movement by one colli-
sion point as UD1 and by two collision points as UD2; and movement toward the center 
by one collision point as CT1 and by two collision points as CT2. 

 
Figure 6. Illustration of SMPMs with different distributions. (a) Case with horizontal movement; (b) 
case with vertical movement; (c) case with movement toward the center. 

As shown in Figure 7, the average collision localization accuracy results for the 
SMPM positioned at the corners of the collision point matrix template are presented. The 
results labeled “models with CNN” represent the average collision localization accuracy 
of fusion models incorporating convolutional modules, specifically the DCNN-SVM and 
CE-SVM methods. Conversely, “models without CNN” correspond to the average colli-
sion localization accuracy of models excluding convolutional modules, including ESN-
SVM, LSTM-SVM, and GRU-SVM. From the graph, it is evident that fusion models with 
convolutional modules significantly outperform those relying solely on recursive neural 
networks for handling collision localization when applied in conjunction with an SMPM. 
When employing collision localization methods with convolutional modules, the accuracy 
of SMPMs (Cell 1-1 to Cell 1-8) after removing single points is slightly higher overall than 
the accuracy achieved by the MPM. In contrast, for collision results obtained using colli-
sion localization models without convolutional layers, single-point removal SMPMs are 
comparatively disadvantaged. This suggests that, when estimating the localization of col-
lisions at zero-shot points, choosing an appropriate model enables the achievement of ac-
curacy levels, even with sample size reduction, equivalent to or higher than those achieved 
without reducing the sample size. In the case of double-point and quadruple-point 

Figure 6. Illustration of SMPMs with different distributions. (a) Case with horizontal movement;
(b) case with vertical movement; (c) case with movement toward the center.

As shown in Figure 7, the average collision localization accuracy results for the SMPM
positioned at the corners of the collision point matrix template are presented. The re-
sults labeled “models with CNN” represent the average collision localization accuracy
of fusion models incorporating convolutional modules, specifically the DCNN-SVM and
CE-SVM methods. Conversely, “models without CNN” correspond to the average collision
localization accuracy of models excluding convolutional modules, including ESN-SVM,
LSTM-SVM, and GRU-SVM. From the graph, it is evident that fusion models with convolu-
tional modules significantly outperform those relying solely on recursive neural networks
for handling collision localization when applied in conjunction with an SMPM. When em-
ploying collision localization methods with convolutional modules, the accuracy of SMPMs
(Cell 1-1 to Cell 1-8) after removing single points is slightly higher overall than the accuracy
achieved by the MPM. In contrast, for collision results obtained using collision localization
models without convolutional layers, single-point removal SMPMs are comparatively dis-

188



Appl. Sci. 2024, 14, 2131

advantaged. This suggests that, when estimating the localization of collisions at zero-shot
points, choosing an appropriate model enables the achievement of accuracy levels, even
with sample size reduction, equivalent to or higher than those achieved without reducing
the sample size. In the case of double-point and quadruple-point removal SMPMs, it is no-
tably observed that when using models with convolutional modules, Cell 2-3, Cell 2-4, and
Cell 3-2 achieve significantly higher average collision localization accuracy compared to
single-point removal SMPMs. Especially, Cell 3-2 consistently achieves the highest collision
accuracy across different sparsification forms. This implies that certain points in the MPM
provide redundant or even disruptive information for collision localization. Furthermore, it
can be observed that, in the single-point removal SMPM, using models with convolutional
modules results in higher collision accuracy for Cell 1-1, Cell 1-3, Cell 1-5, and Cell 1-7
compared to their adjacent counterparts, Cell 1-2, Cell 1-4, Cell 1-6, and Cell 1-8. Similarly,
in the double-point removal SMPM, Cell 2-3 and Cell 2-4 achieve significantly higher
collision localization accuracy than Cell 2-1 and Cell 2-2, while in the quadruple-point
removal SMPM, Cell 3-2 demonstrates markedly higher collision localization accuracy than
Cell 3-1. This phenomenon indicates that the sparsification method removing the farthest
adjacent points of zero-shot points in the MPM is more effective than removing the nearest
adjacent points. Moreover, the standout performance of Cell 3-2 suggests that information
from the farthest adjacent points in the MPM may lead to confusion in different regions,
resulting in a decrease in collision localization accuracy.
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Figure 7. Collision localization accuracy with different forms of SMPMs at four corners.

Considering the significant advantages of collision localization models with convolu-
tional modules when combined with an SMPM, we focused solely on utilizing collision
localization models with convolutional modules when analyzing the zero-shot point lo-
calization situation of the SMPM at different positions within the collision point matrix
template. In the selection of SMPM structures, we experimentally chose SMPM structures
that exhibited clear advantages at the corners of the collision point matrix template, specifi-
cally those removing the farthest adjacent points: Cell 1-1, Cell 1-3, Cell 1-5, Cell 1-7, Cell 2-3,
Cell 2-4, and Cell 3-2. For the purposes of comparison with cases without any sparsification,
Cell 0 was introduced as a control experiment. Figure 8 depicts the collision localization
results based on SMPMs positioned at different locations. The best performance in UD1 and
UD2 is observed with Cell 1-5 and Cell 2-3, in LR1 and LR2 with Cell 0 and Cell 1-3, and in
CT1 and CT2 with Cell 1-7 and Cell 3-2. Comparing the results of SMPMs with those of the
MPM, it is evident that the vibration signals acquired at the farthest neighboring points may
indeed contain information that could degrade the localization model’s performance. From
the average accuracy results of different movement point numbers in UD, LR, and CT, the
relative differences in average accuracy for SMPMs removing single points (Cell 1-1, Cell
1-3, Cell 1-5, and Cell 1-7) compared to the MPM are 1.29%,−0.2%, and−0.02%; for SMPMs
removing double points (Cell 2-3 and Cell 2-4), they are −0.03%, −1.18%, and −1.56%;
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and for SMPMs removing four points (Cell 3-2), they are 2.16%, −0.7%, and 0.62%. This
indicates that information contained in some of the farthest adjacent points is not always
redundant. However, even with the removal of these points, collision localization accuracy
does not significantly decrease compared to using the MPM, suggesting that removing the
farthest neighboring points is effective in reducing the dataset size while maintaining high
collision localization accuracy. Furthermore, it is noteworthy that the use of the Cell 3-2
sparsification form consistently demonstrates excellent collision localization performance
for SMPMs positioned at different locations. This sparsification form, compared to others,
minimizes the required data collection scale to the greatest extent. Hence, we consider the
Cell 3-2 sparsification form of the SMPM the optimal choice.
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3.2. Collision Localization Results across the Entire Template

When applying the SMPM with the Cell 3-2 form for collision localization at the
charging port, the encountered challenge is not solely limited to accurately identifying
collisions occurring at zero-shot points. Rather, it extends to efficiently locating collisions
within the entire collision point matrix template. Therefore, it is imperative for the Cell 3-2
SMPM to be comprehensively deployed across the entire collision point matrix template. In
order to investigate the feasibility of the proposed sparsification method across the entire
domain, a thorough analysis of the complete collision point matrix template area is required
under different robot joint angles. The training datasets used for this purpose are D1 and
D2, while the testing dataset is D3, isolated from D1 and D2. Additionally, the collisions
occurring at the locations of removed fully observable points also need to be addressed.
Despite the theoretical capability of SMPMs to effectively locate collisions at both zero-shot
and fully observable points, there is currently a lack of adequate information for handling
collisions at removed fully observable points. Hence, we introduce the concept of partially
observable points, i.e., collision data sampled with a demand lower than that of fully
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observable points but greater than zero. In conjunction with training datasets D1 and D2,
the specific forms of SMPMs containing locally observable points used in the experiments
are illustrated in Figure 9. To ensure the comprehensive deployment of SMPMs across the
entire collision point matrix template, a departure from the approach outlined in [7] is taken.
Specifically, the outermost points of the collision point matrix template are disregarded,
and analysis is conducted only on the inner 15 rows and 15 columns. Building upon the
Cell 3-2 form, partially observable points are positioned at the farthest adjacent point
of the MPM. The samples include 30 instances of fully observable points, 0 instances of
zero-shot points, and N instances of partially observable points. To investigate the impact
of different sparsity levels of partially observable points on the collision localization results,
five different SMPMs are defined, with N values of 5, 10, 15, 20, and 25, denoted as S1 to S5,
respectively. Additionally, for comparison with the case of ample data collection, an MPM
(S6) is introduced, and a control experiment (S7) utilizes the collision point matrix template
directly without downsampling.
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In evaluating the effectiveness of applying SMPMs with varying degrees of sparsity
to collision localization, we employ assessment criteria that include collision localization
accuracy and root mean square error (RMSE). In this study, we treat the SMPM as a unified
entity, with its central position representing the estimated positions of individual points
within the SMPM. The results of collision localization accuracy are presented in Table 3,
where the data scale of S7 is defined as 100%. In S7, the collision localization accuracy
of different models exceeded 96%, with the highest reaching 98.67%. As the data scale
decreases, the accuracy of collision localization for each method also declines accordingly.
At a data scale of 51.85%, the average accuracy of each method only drops by 8.72%.
Notably, the CE-SVM method exhibits the smallest decrease, with a reduction of only 7.22%,
maintaining an accuracy above 90%. Furthermore, in cases S1 to S6, the CE-SVM method
outperforms other methods, especially in situations with higher sparsity, highlighting the
pronounced advantage of CE-SVM. Regarding the deviation in collision localization, the
RMSEs of various models for collision localization are presented in Table 4. Due to the
utilization of the center position of the SMPM as the estimated location for individual
points within the SMPM, additional localization biases are introduced in the RMSEs, even
when the collision area is correctly predicted. Therefore, the RMSEs of various models
are consistently greater than 1 mm. Without any reduction in data scale, the CNN-SVM
model achieves the lowest RMSE in collision localization. However, with the introduction
of varying degrees of sparsity, the CE-SVM consistently exhibits a notable advantage.
When the data scale is reduced to 51.85%, the RMSE of the CE-SVM method increases
by only 0.21 mm, compared to the increase in RMSE for CNN-SVM, which is only 55%
of its value. In conclusion, it is evident that the SMPM is capable of maintaining a high
level of collision localization performance even in scenarios involving significant data
scale reduction. From both the collision localization accuracy and RMSEs perspectives, the
SMPM maintains a high level of performance even in scenarios of substantial data scale
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reduction. Particularly noteworthy is its outstanding collision localization performance
when employed in conjunction with the CE-SVM method.

Table 3. Collision localization accuracy achieved using SMPMs with different levels of sparsification.

Case CE-SVM CNN-SVM LSTM-SVM ENS-SVM GRU-SVM Data Scale

S1 91.27% 89.29% 88.33% 89.53% 88.73% 51.85%
S2 94.29% 91.79% 90.62% 91.54% 90.8% 59.26%
S3 95% 94.17% 93.24% 93.27% 93.06% 66.67%
S4 96.2% 95% 93.92% 94.2% 93.88% 74.07%
S5 97.07% 95.12% 94.44% 95.22% 94.72% 81.48%
S6 96.73% 95.74% 94.78% 95.65% 95.28% 88.89%
S7 98.49% 98.67% 96.7% 98.64% 98.27% 100%

Table 4. Collision localization RMSEs achieved using SMPMs with different levels of sparsification (mm).

Case CE-SVM CNN-SVM LSTM-SVM ENS-SVM GRU-SVM

S1 1.46 1.62 1.73 1.63 1.75
S2 1.4 1.52 1.59 1.54 1.61
S3 1.37 1.46 1.51 1.5 1.49
S4 1.33 1.45 1.48 1.47 1.48
S5 1.34 1.39 1.54 1.42 1.42
S6 1.3 1.39 1.45 1.42 1.44
S7 1.25 1.24 1.35 1.26 1.26

4. Conclusions

To achieve higher precision in collision localization, the existing data-driven method
for the plug-in process of electric vehicle (EV) automatic charging suffers from high data
collection costs. In this study, we propose a novel data-driven approach for robot colli-
sion localization specifically tailored to automatic charging scenarios for EVs, effectively
mitigating this issue. Our method is grounded in a collision point matrix template and inte-
grates a sparse modular point matrix (SMPM) to reduce the necessary size of the collision
dataset for data-driven techniques. By employing an optimized SMPM structure to sparsify
the entire template, we achieve a reduction in data scale of 48.15% while maintaining an
average localization accuracy of 89.43% and an average RMSE of 1.64 mm. Compared to
scenarios without sparsification, the average localization accuracy decreases by only 8.72%,
with a minimal increase of 0.37 mm in RMSE for collision localization. Additionally, we
exploit the characteristics of convolutional neural network (CNNs) and echo state network
(ESNs) to develop an integrated adaptive extractor for dynamic feature extraction from
collision vibration signals. Utilizing a support vector machine (SVM) as the classifier, we
demonstrate the exceptional performance of the model in addressing collision localization
issues when combined with the SMPM. Specifically, even with a 48.15% reduction in data
scale, our model achieves an outstanding collision localization accuracy of 91.27% and an
RMSE of 1.46 mm for collision localization.

Although our proposed method effectively reduces dataset size while maintaining
collision localization performance at a high level, there is still a noticeable decrease in
collision localization accuracy when compared to the scenario without any sparsification.
In subsequent research, we will focus on exploring whether data augmentation techniques
can be employed to generate data for sparsified points, creating a virtual supplement to the
dataset. We aim to enhance the performance of the collision localization method further
while reducing the need for experimental data acquisition.
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Abstract: This paper proposes a path planning framework that combines the experience replay
mechanism from deep reinforcement learning (DRL) and rapidly exploring random tree star (RRT*),
employing the DRL-RRT* as the path planning method for the manipulator. The iteration of the RRT*
is conducted independently in path planning, resulting in a tortuous path and making it challenging
to find an optimal path. The setting of reward functions in policy learning based on DRL is very
complex and has poor universality, making it difficult to complete the task in complex path planning.
Aiming at the insufficient exploration of the current deterministic policy gradient DRL algorithm
twin delayed deep deterministic policy gradient (TD3), a stochastic policy was combined with TD3,
and the performance was verified on the simulation platform. Furthermore, the improved TD3 was
integrated with RRT* for performance analysis in two-dimensional (2D) and three-dimensional (3D)
path planning environments. Finally, a six-degree-of-freedom manipulator was used to conduct
simulation and experimental research on the manipulator.

Keywords: deep reinforcement learning; twin delayed deep deterministic policy gradient; path
planning; six-degree-of-freedom manipulator

1. Introduction

The utilization of multi-degree-of-freedom manipulators is prevalent across various
industries including aerospace and industrial manufacturing and so on. The study of
path planning problem in complex environments is a crucial aspect in the field of robot
control technology. At present, some path planning methods commonly employed include
the A* algorithm based on graph traversals [1], the probabilistic roadmap method (PRM)
algorithm based on probability sampling [2] and rapidly exploring random tree star (RRT*)
utilizing a random sampling technique [3,4]. Informed RRT* uses a heuristic function
to guide exploration toward the target region by optimizing the sampling process [5].
RRT*-Smart enhances the optimization speed of paths near obstacle turning points by
incorporating path optimization and intelligent sampling techniques within RRT* [6]. The
node generation strategy of the Gaussian mixture model RRT* (GMM-RRT*) algorithm
utilizes a target-biased policy, resulting in shorter path length [7]. The P-RRT*-connect [8]
combines the bidirectional artificial potential field with RRT*, which reduces the time and
decreases the number of iterations. The Real-Time RRT* (RT-RRT*) [9] introduces an online
tree rewiring strategy, it can find paths to new targets more quickly. These methods exhibit
robust environmental exploration abilities, asymptotic optimality and consume fewer
computational resources. However, these methods explore the environment randomly and
hardly use valuable previous iterative experience to guide sampling. This characteristic
may lead to these methods unable to find more optimized solutions.

The introduction of Deep Q-network (DQN) by [10] marked a milestone in the field.
DRL has achieved remarkable advancements in many fields [11–13]. DRL empowers
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agents to conduct autonomous exploration and leverage the experience gained from prior
explorations to inform subsequent behavioral decisions. With the advent of DRL, robots
are now capable of self-directed learning. The Refs. [14,15] proposed a path planning
method of improved learning policy based on different experience depth requirements at
different learning stages. Marcin et al used deep deterministic policy gradient (DDPG) [16]
and hindsight experience replay (HER) to train the manipulator in a simulated environ-
ment [17]. Gu [18] used a policy learning algorithm with deep Q-function to train physical
robots. Lin [19] used recurrent neural network and DDPG to predict the collision-free path.
Yang [20] proposed a new deep Q-learning method, which was applied to the push and
grasp of objects by manipulators. Li [21] proposed a DRL that integrates automatic entropy
adjustment. Kim [22] designed a motion planning algorithm that uses TD3 [23] with HER
to enhance sample efficiency.

Some advanced DRL algorithms possess certain limitations. Pan [24] used the Boltz-
mann Softmax operator to estimate the value function, which increased computational
costs and involved an amount of parameter adjustment. The policy of DRL is driven by
reward during learning, successful learning relies on the design of reward functions and
an action selection policy to ensure exploration and exploitation [25]. The universality of
the reward function is typically low, and its design poses significant challenges. In the
presence of obstacles, employing a general distance-based reward function often leads to
policy learning failures [26]. Li [27] layered the DRL model to avoid the construction of
complex reward functions. The task or policy model is divided into upper and lower layers
to mitigate the coupling between the update formula and the challenging convergence of
the reward function [28].

The challenge of applying DRL to path planning tasks remains significant. The current
trend is to combine DRL with traditional path planning methods. The traditional path
planning methods, such as RRT and PRM, possess robust sampling and search abilities,
enabling them to provide reference paths or intermediate waypoints for DRL. In turn, DRL
accomplishes the point-to-point task between each pair of nodes so that agents can obtain a
smoother path [29]. Sampling path planning methods does not need a reward function in
complex environment and has a higher success rate than does the DRL, it can be used to
provide a successful experience reference for DRL, and DRL can use these experiences to
exert exploration ability and finally complete the learning of the path planning strategy.
Gao [30] combined TD3 with PRM, this can decompose the path into multiple local paths,
improve development efficiency. Li [21] proposed traditional path planners with DRL
to obtain the path in Cartesian space. Florensa [31] decomposed complex problems into
multiple subproblems and explored maze paths using dynamic programming. Chiang
et al. [32] regarded PRM and RRT as global path planning methods, respectively, and
searched for intermediate path points of DRL in indoor navigation. The waypoint selection
of some fusion methods is influenced by traditional path planning. To address the above
issues, the contributions are outlined as follows:

• In order to improve the ability of DRL algorithm to balance exploration and develop-
ment, an improved TD3 algorithm was designed and evaluated.

• Aiming at the problems existing in robot path planning, a path planning method
is proposed that combines the exploration abilities of sampling-based RRT* and the
experience replay mechanism of DRL algorithm.

• The simulation environment of path optimization based on DRL-RRT* is built.

The remaining sections of this paper are organized as follows: Section 2 presents the
implementation principle of the proposed CDTD3 algorithm. Section 3 provides a detailed
description of the DRL-RRT* path planning algorithm. Section 4 reports the path planning
verification in a simulation environment. Section 5 outlines the experimental verification of
the manipulator path planning using CDTD3-RRT*. Section 6 concludes the paper.
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2. Improved TD3 Algorithm
2.1. Reinforcement Learning

Reinforcement learning (RL) are generally described using the Markov decision pro-
cess (MDP) [33], and a tuple M = (S,A, r, p, γ) can be used to describe MDP, where S
and A represent a set of states and actions, p is the probability of transition from the
current state to the next state, r is the reward given by environmental changes for state
transition, and γ ∈ (0, 1) is a discount used to determine reward priority. At time step t,
for a given state s ∈ S, the agent can obtain r by selecting action a ∈ A based on policy µ
and transfer to the next state si+1 ∈ S. The goal of the agent is to maximize the discounted
return Rt = ∑T

i=t γi−tr(si, ai) [23], which can be measured by value function Q shown in
Equation (1).

Qµ(s, a) = Eµ[Rt
∣∣s, a] (1)

2.2. Algorithm Structure

The actor-critic structure DRL algorithm TD3 [23] for continuous control is advanced.
Similar to popular DRL such as soft actor critical (SAC) [34], TD3 uses the double network
structure of actor and critic. Both the current actor network µθ(s) and the current critic net-
work Qωk (s, a) (k = 1, 2) have a corresponding target network, during the implementation,
only µθ(s) and Qωk (s, a) participate in parameter update while the target actor network
µθ′(s) and the target critic network Qω′k (si+1, a′) (k = 1, 2) are used to store the parameters
of the corresponding target network at the previous time. µθ′(s) and Qω′k (si+1, a′) do not
completely copy the parameters of their corresponding original network when storing
them; instead, a soft update method shown in Equation (2) is adopted.

{
θ′ = τθ + (1− τ)θ′

ω′k = τωk + (1− τ)ω′k
(2)

where τ ∈ (0, 1). θ and θ′ represent the network parameters of µθ(s) and µθ′(s), respectively.
ωk and ω′k correspond to Qωk (s, a) and Qω′k (si+1, a′), respectively.

TD3 select an action based on policy µθ(si) in the si. Due to the deterministic policy
adopted by TD3, a certain proportion of random noise is added in the exploration phase to
improve the exploration ability of the agent. The output of ai is shown in Equation (3).

ai = µθ(si) + δ (3)

where δ ∼ N (0,σ) represents a Gaussian distribution with a mean of 0 and variance σ.
To limit the action, a is cropped as alow < a < ahigh. The concept of off-policy DRL is to
fully utilize previous experience memory, these algorithms usually have a large experience
replay buffer B, which is used to store information such as state, action, reward, and next
state for each step. When updating the actor network and critic network, the required
parameter sequence Γ = (si, ai, ri, si+1) in the update equation will be obtained by sampling
from the B, and the objective function can be calculated using Equations (4) and (5).

yi = ri + γmin
k=1,2

Qω′k (si+1, a′) (4)

a′ = µθ′(si+1) + ξ (5)

where ri is the reward, and a′ represents the output of the network µθ′(si+1) with noise
ξ and ξ ∼ N (0,σ̃) denoting a Gaussian distribution, which is clipped to (−c, c) c > 0.
Adding clipped noise to the actions by µθ′(si+1) is a regularization method that can be
used to alleviate overfitting in the output of Qω′k (si+1, a′). In Equation (4), the values of
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two target networks Qω′k (si+1, a′) is minimized to reduce bias; otherwise, the update of
the current critic network can be performed with Equation (6) to minimize the loss Lω.

Lω =
1
N

N

∑
i=0

[yi −Qωk (si, ai)]

2

(6)

where N is the number of batches sampled from B. In deterministic policy gradient RL [35],
the policy parameters are updated by calculating the sampled policy gradient. Equation (7)
can be used to update the current actor network.

Lθ =
1
N

N

∑
i=0

[∇aQω1(si, a)
∣∣∣a=µθ(si)

∇θµθ(si)] (7)

As shown in Equation (3), although adding a certain proportion of noise in the explo-
ration stage of TD3 can increase a certain exploration ability, the deterministic policy plays
a dominant role in the policy learning exploration, which still limits the early exploration of
the agent. In order to enhance the exploration ability of the agent, ε-greedy is a commonly
used policy for balancing exploitation and exploration. The ε-greedy policy is shown in
Equation (8), which shows that when the agent makes a decision, there is a small probability
of positive ε will randomly selecting an unknown action, and a probability of (1 − ε) will
selecting the action with the largest action value among the existing actions.

µθ(si) =

{
ε
|A| + 1− ε , i f a = argmaxQ(si, ai)
ε
|A| , i f a 6= argmaxQ(si, ai)

(8)

A standard RL algorithm must include exploration and exploitation. Exploration
helps the agent fully understand state space and select the other unknown action, and
exploitation helps the agent find the optimal action to maximize the expected return at the
present moment. Inspired by these methods, TD3 is combined with ε-greedy policy. In
order to enhance the exploration ability of agent in the early stage and make more stable
use of the exploration in the later stage, the decay of ε-greedy policy is used and combined
with TD3. The ε-greedy policy proposed based on cosine decay as shown in Equation (9).

ε = λ(c + cos(
πt
i
)) (9)

where λ ∈ (0, 0.5), c is a constant greater than 1, i is training steps, and t is the current step
value. After combining TD3 with the ε-greedy policy of cosine decay, the method of action
selection shown in Equation (3) can be changed to the form shown in Equation (10).

ai =

{
µθ(si) + δ, i f ε ≤ X

δ̃, i f ε > X
(10)

where X is the uniform distribution on [0,1); and δ̃ ∼ (0, σ′) is a random number conforming
to a Gaussian distribution with a mean of 0 and a standard deviation of σ′; it is common to
set σ′ to a number associated with the maximum action. The flow of the cosine decay TD3
(CDTD3) algorithm is shown in Figure 1.
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Figure 1. Flowchart of the CDTD3 algorithm.

The performance of CDTD3 was tested in MuJoCo through the OpenAI Gym interface.
The original task set was used during testing without modifying the environment and
reward function. Except for the individual characteristics of the algorithms, other settings
remained the same. Each algorithm was run 10 times under different random seeds. The
number of training steps in each task was two million steps. The results are shown in
Figure 2, including the results of three different DRL algorithms running on three different
robot tasks in MuJoCo. The dimensions of the robot’s joints in Figure 2a–c from more to less,
and the specified task difficulty ranges from hard to easy. The x-axis is the number of steps,
while the y-axis is the average return of ten evaluations per five thousand steps for the
current task under two million training steps. The shaded area in the Figure 2 represents
the maximum and minimum value intervals with test data smoothed by convolution, while
the solid line represents the average of ten experimental results.
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In Figure 2c, the robust exploratory ability of CDTD3 does not significantly contribute
to relatively simple tasks. However, in the scenarios illustrated in Figure 2a,b, CDTD3
exhibits a superior ability to explore actions with higher rewards and to rapidly incorporate
them into decision-making process compared to the TD3. CDTD3 has strong exploration
ability and adaptability to tasks, which makes policy learning more efficient.
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3. The Improved Path Planning Method

RRT* has the characteristics of continuous iteration and path replanning in the en-
vironment. However, due to its random nature, each exploration or iteration of RRT* is
independent of each other, so the new node positions generated by each iteration may
be different, leading to a tortuous and suboptimal path. The reward function in DRL
plays a pivotal role in shaping the learning effectiveness of the agent. It is imperative to
define an appropriate reward function for each task to guide the agent toward success-
ful task completion. The variation of the task can also easily lead to the failure of the
reward function.

Currently, there are many improved variations of RRT*, such as informed RRT* [5],
RRT*-Smart [6], and real-time RRT* [9], which have advantages in specific scenarios. How-
ever, they still face the problem of independent exploration and iteration. Additionally,
introducing target biasing methods in RRT* can yield favorable results, and this approach
is relatively easier to implement and debug compared to algorithms such as informed RRT*.
Based on these issues, a path planning framework that combines the strengths of DRL and
RRT* have been proposed, and is built on the basis of RRT* with target bias.

Performing a path search between two adjacent waypoints is called a dynamic point-
to-point (D-P2P) task. The agent defines a spherical range centered at the intermediate
waypoint as an explorable region and performs a D-P2P task between the preceding and
following waypoint. The initial base path R0 =

{
r1

0, r2
0, . . . , rN

0} is obtained by RRT*, N
is the total number of waypoints. The length of the original path can be characterized as
l1
0 = ∑N−1

n=1

∣∣r1
nr1

n+1

∣∣, where
∣∣r1

nr1
n+1

∣∣ represents the Euclidean distance between waypoints
r1

n and r1
n+1.The steps of the DRL-RRT* algorithm is described as follows.

Step 1: Initialization. The number of iterations for RRT* is m, DRL path search task is K
times. D-P2P task for each iteration is J = N − 2 groups. Using RRT* for planning iteration.

Step 2: Using DRL for path search tasks. When the agent first enters the jth (1 ≤ j ≤ J)
explorable region in a certain steps, the position ck

j is retained as the end position of this
D-P2P task, and the waypoint replacement task in Step 3 is performed. If the explorable
region is not accessed in the specified number of steps, go to Step 4.

Step 3: The procedure of waypoint replacement. The first waypoint replacement is
considered, resulting in point c1

2 being obtained after completion of the D-P2P task; then,
the impacts of r1

2 and c1
2 on the original path are computed individually. If c1

2 makes the

path shorter, c1
2 replaces r1

2, and the length becomes l1
0 =

∣∣∣r1
1c1

2

∣∣∣+
∣∣∣c1

2r1
3

∣∣∣+∑N−1
n=3

∣∣r1
nr1

n+1

∣∣ . The

waypoints of the path become R1 =
{

r1
1, c1

2, . . . , r1
N
}

; at the same time, c1
2 also serves as the

starting position for the next D-P2P task; otherwise, the original path is unchanged.
Step 4: Termination condition check for a round of DRL search task. If D-P2P task

iteration is larger than the iterative number J, break to Step 2.
Step 5: Get the new path Rk+1. Assuming that only c1

2 can shorten the path during
the first iteration (k = 1), the path for the second iteration is R2 =

{
r2

1, r2
2, . . . , r2

N
}

={
r1

1, c1
2, . . . , r1

N
}

.
Step 6: Terminating condition check. If the iteration is larger than K, the path explored

is retained as P = RK, and the algorithm stops. Otherwise, restart from Step 2.
RRT* with DRL is utilized by Kontoudis [29]; however, the waypoints were unchanged

during the process. Reference [30] employed TD3 and PRM as a path planning method, in
such cases, the final path is highly influenced by the original path, limiting the effectiveness
of the DRL in path planning. In contrast, in the proposed DRL-RRT*, DRL optimizes
the underlying path planned by RRT* by automatically adjusting the intermediate nodes
of the path. Consequently, potential optimizations can be explored, allowing for direct
modification of the underlying path. Reference [21] combined improved DRL with RRT*,
and optimized the path by adjusting the intermediate waypoints. In contrast, the proposed
method calculates the path replacement as soon as the intermediate waypoints are explored,
and the path replacement method is simpler. Base on the planning results of RRT*, the
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policy learning and experience replay mechanism of DRL are combined to obtain a better
path. Figure 3 illustrates the flow of the proposed DRL-RRT* path optimization algorithm.
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In each iteration of length optimization, the agent using DRL performs a D-P2P path
search task. In each task, the reward function is designed as follows:

r =
{ α

e−ρd , other
0, i f collsion

(11)

where d is the distance between the agent and the goal. To ensure an appropriate reward
value in D-P2P tasks, constants α and ρ are introduced to limit its magnitude. It is crucial
to keep 0 < ρ < 1 to avoid potential issues such as vanishing or exploding gradients.

4. Simulation Analysis

When the DRL-RRT* is used for path optimization simulation in 2D and 3D obstacle
environments, the success rate of each path iteration optimization is expressed as follows:

η =
1
K

1
J

K

∑
k=1

J

∑
j=1

ζk
j × 100% (12)

where K represents the number of path search tasks performed by DRL, J represents the
number of groups for D-P2P tasks, and ζk

j ∈ {0, 1}. If the agent can reach the endpoint of
the current task in the maximum step size of the j D-P2P tasks in k times iteration, then
ζk

j = 1; otherwise, ζk
j = 0.

4.1. Analysis of the 2D Simulation Environment

The size of the 2D complex obstacle environment was 100 (cm2), and the simulation
environment was configured with obstacles of diverse shapes is depicted in Figure 4, the
lines represent the paths and the gray geometric objects represent obstacles. The starting
position was (10, 90), and the target position was (98, 8). In order to fully utilize the
exploration ability of RRT*, a target bias strategy is introduced in RRT*, which makes the
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sampling point equal to the target point with a certain probability p and randomly samples
with a probability of (1− p).
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Figure 4. Simulation environment for a complex obstacle space.

RRT* was first used for 10,000 iterations in the 2D simulation scenario. Then, CDTD3,
TD3, and DDPG are used for 100 iterations of path optimization experiments on the DRL-
RRT* algorithm, respectively. Iteration steps K in each experiment was 200, and the steps
in each D-P2P task was 200. Among the 100 times experiments of each algorithm in each
environment, different experiments were configured with different random seeds. The
resulting path is shown in Figure 4, and the path optimized using the CDTD3 demonstrated
improvements in terms of both path length and smoothness, closely resembling a straight
line throughout most of the obstacle-free sections.

As DDPG and TD3 use a deterministic policy, they are prone to premature convergence
to local optima with fixed actions during the continuous exploration and optimization
process, making it difficult to explore better policy. They performed worse than did CDTD3
in terms of path length and success rate. The addition of a random exploration mechanism
in CDTD3 enhances the exploration ability of the deterministic policy DRL and prevents
premature convergence to local optima which includes fixed action selection. This feature
can help the agent to be more inclined to explore the environment in the early stage of
the task so as to explore a better policy. In certain obstacle-free spaces, CDTD3 explored
and identified more optimal waypoints. By replacing intermediate waypoints through
point substitution, the originally curved paths become straighter and the length of the path
is shortened.

The results shown in Figure 5a represent the probability density. The x-axis represents
the path length, while the y-axis represents the percentage of distribution. The curve
represents the distribution of the path lengths from multiple experiments. From the
probability density curve, it can be observed that, under the influence of CDTD3, the
majority of results were concentrated in the region of the smaller path lengths. The
distribution was relatively dense, and the final results exhibited less fluctuation, indicating a
higher level of stability. The results of TD3 and DDPG were more dispersed and distributed
in the region of larger path lengths. The relationship between the changes in path length
obtained by the three algorithms is illustrated in Figure 5b. As the number of iteration
steps increases, the path length undergoes continuous optimization and reduction., CDTD3
demonstrates superior ability to explore a more optimal path compared to TD3 and DDPG
in most experimental cases, resulting in shorter path lengths and greater consistency with
each optimization.
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Figure 5. Simulation results of the 2D complex obstacle space. (a) The probability density of path
length. (b) Diagram of the length variation during the path optimization process.

The simulations for the maze space and the narrow space environment as shown in
Figures 6 and 7 is designed, the lines represent the paths and the purple geometric objects
represent obstacles. The starting point and obstacles were set differently. In the narrow
space environment depicted in Figure 7, the distance between the two obstacles vertically
was less than 10 cm. The obstacle avoidance path connecting the starting point and the
target point needed to pass through all the narrow channels. The path explored by RRT*
tended to be more winding; however, by using CDTD3 to optimize the path, continuously
adjusting the intermediate waypoints, even in the case of a narrow space with a relatively
singular path, the optimized path by CDTD3 still demonstrated advantages. It appeared
more straight and shorter in the overall path. The probability density statistics of the path
length in maze space and narrow space are illustrated in Figure 8, while Figure 9 depicts
the changes in the path. Aligning with the outcomes observed in the complex obstacle
space, CDTD3 outperformed in these two cases.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18 
 

  
(a) (b) 

Figure 5. Simulation results of the 2D complex obstacle space. (a) The probability density of path 
length. (b) Diagram of the length variation during the path optimization process. 

The simulations for the maze space and the narrow space environment as shown in 
Figures 6 and 7 is designed, the lines represent the paths and the purple geometric objects 
represent obstacles. The starting point and obstacles were set differently. In the narrow 
space environment depicted in Figure 7, the distance between the two obstacles vertically 
was less than 10 cm. The obstacle avoidance path connecting the starting point and the 
target point needed to pass through all the narrow channels. The path explored by RRT* 
tended to be more winding; however, by using CDTD3 to optimize the path, continuously 
adjusting the intermediate waypoints, even in the case of a narrow space with a relatively 
singular path, the optimized path by CDTD3 still demonstrated advantages. It appeared 
more straight and shorter in the overall path. The probability density statistics of the path 
length in maze space and narrow space are illustrated in Figure 8, while Figure 9 depicts 
the changes in the path. Aligning with the outcomes observed in the complex obstacle 
space, CDTD3 outperformed in these two cases. 

   
(a) The result of CDTD3  (b) The result of TD3 (c) The result of DDPG 

Figure 6. Simulation environment for the maze space. 

   
(a) The result of CDTD3 (b) The result of TD3 (c) The result of DDPG 

Figure 7. Simulation environment for the narrow space. 

130 140 150 160
Path Length (cm)

0

0.05

0.1

0.15

0.2

0.25 CDTD3
TD3
DDPG

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

Figure 6. Simulation environment for the maze space.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18 
 

  
(a) (b) 

Figure 5. Simulation results of the 2D complex obstacle space. (a) The probability density of path 
length. (b) Diagram of the length variation during the path optimization process. 

The simulations for the maze space and the narrow space environment as shown in 
Figures 6 and 7 is designed, the lines represent the paths and the purple geometric objects 
represent obstacles. The starting point and obstacles were set differently. In the narrow 
space environment depicted in Figure 7, the distance between the two obstacles vertically 
was less than 10 cm. The obstacle avoidance path connecting the starting point and the 
target point needed to pass through all the narrow channels. The path explored by RRT* 
tended to be more winding; however, by using CDTD3 to optimize the path, continuously 
adjusting the intermediate waypoints, even in the case of a narrow space with a relatively 
singular path, the optimized path by CDTD3 still demonstrated advantages. It appeared 
more straight and shorter in the overall path. The probability density statistics of the path 
length in maze space and narrow space are illustrated in Figure 8, while Figure 9 depicts 
the changes in the path. Aligning with the outcomes observed in the complex obstacle 
space, CDTD3 outperformed in these two cases. 

   
(a) The result of CDTD3  (b) The result of TD3 (c) The result of DDPG 

Figure 6. Simulation environment for the maze space. 

   
(a) The result of CDTD3 (b) The result of TD3 (c) The result of DDPG 

Figure 7. Simulation environment for the narrow space. 

130 140 150 160
Path Length (cm)

0

0.05

0.1

0.15

0.2

0.25 CDTD3
TD3
DDPG

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

Figure 7. Simulation environment for the narrow space.

203



Appl. Sci. 2024, 14, 2765
Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 18 
 

 
(a)  (b)  

Figure 8. Probability density results of path length. (a) The results of the maze space. (b) The results 
of the narrow space. 

(a) (b) 

Figure 9. Diagram of the relationship between path length change and the algorithm. (a) The results 
of the maze space. (b) The results of the narrow space. 

The simulation results in the three environments were analyzed. The mean and var-
iance in Table 1 correspond to the outcomes of 100 experiments. The original path lengths 
were 154.1 cm, 284.7 cm, and 222.1 cm, respectively, while the path lengths optimized by 
CDTD3 were 136.6 cm, 244.4 cm, and 179.55 cm, respectively. The success rate of path 
iteration and the results of path reduction rate are presented in Table 2, where the reduc-
tion rate represents the percentage reduction to the RRT* path length. The success rates of 
CDTD3 performing point-to-point tasks in the three environments were 91.3%, 87.3%, and 
95.6%, respectively, which were better than those of TD3 and DDPG, owing to the random 
exploration mechanism of CDTD3 algorithm. 

Table 1. Mean and variance statistics of path length in the 2D simulation environment. 

Algorithm Index Complex Obstacle Maze Space Narrow Space 

CDTD3 Mean (cm) 136.60 244.32 179.55 
Variance 2.59 20.51 12.39 

TD3 Mean (cm) 142.81 252.56 191.88 
Variance 23.79 127.29 75.65 

DDPG 
Mean (cm) 145.62 258.12 201.08 
Variance 38.44 278.97 260.86 

  

220 240 260 280 300
Path Length (cm)

0

0.02

0.04

0.06

0.08

0.1 CDTD3
TD3
DDPG

150 200 250
Path Length (cm)

0

0.02

0.04

0.06

0.08

0.1

0.12
CDTD3
TD3
DDPG

Figure 8. Probability density results of path length. (a) The results of the maze space. (b) The results
of the narrow space.
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The simulation results in the three environments were analyzed. The mean and
variance in Table 1 correspond to the outcomes of 100 experiments. The original path lengths
were 154.1 cm, 284.7 cm, and 222.1 cm, respectively, while the path lengths optimized by
CDTD3 were 136.6 cm, 244.4 cm, and 179.55 cm, respectively. The success rate of path
iteration and the results of path reduction rate are presented in Table 2, where the reduction
rate represents the percentage reduction to the RRT* path length. The success rates of
CDTD3 performing point-to-point tasks in the three environments were 91.3%, 87.3%, and
95.6%, respectively, which were better than those of TD3 and DDPG, owing to the random
exploration mechanism of CDTD3 algorithm.

Table 1. Mean and variance statistics of path length in the 2D simulation environment.

Algorithm Index Complex Obstacle Maze Space Narrow Space

CDTD3
Mean (cm) 136.60 244.32 179.55
Variance 2.59 20.51 12.39

TD3
Mean (cm) 142.81 252.56 191.88
Variance 23.79 127.29 75.65

DDPG
Mean (cm) 145.62 258.12 201.08
Variance 38.44 278.97 260.86
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Table 2. Optimization success rate and path reduction rate of the 2D simulation environment.

Algorithm Index Complex Obstacle Maze Space Narrow Space

CDTD3
Success rate 91.3% 87.3% 95.6%

Reduction rate 11.4% 14.2% 19.14%

TD3
Success rate 88.2% 85.5% 98.7%

Reduction rate 7.4% 10.2% 13.59%

DDPG
Success rate 76.2% 79.5% 86.8%

Reduction rate 5.5% 73.2% 9.44%

CDTD3 is combined with RRT* and RRT, respectively; and conducted 100 simulations
in complex obstacle and maze environments. The settings of RRT remained consistent with
those of RRT*, except for the inherent characteristics of their respective. The simulation
results are shown in Table 3. Using CDTD3-RRT* could achieve a superior path due to
the advantageous features offered by RRT*. This characteristic led to an improved initial
path, resulting in a shorter final path. In the maze environment, the reduction rate of
CDTD3-RRT was better than that of CDTD3-RRT*, but the final path length was not as
good as that of CDTD3-RRT* since the path of the original RRT was longer than that of
RRT*. Nevertheless, favorable outcomes can still be achieved using the proposed method.

Table 3. Results of CDTD3-RRT* and CDTD3-RRT in the 2D simulation environment.

Algorithm Index Complex Obstacle Maze Space

CDTD3-RRT*
Mean (cm) 136.6 244.32
Variance 2.59 20.51

Reduction rate 11.4% 14.2%

CDTD3-RRT
Mean (cm) 154.9 258.92
Variance 8.49 51.56

Reduction rate 10.8% 19.3%

In the complex obstacle space and maze space, CDTD3-RRT* was compared with
two more advanced path planning methods, including the artificial potential field with
informed RRT* (APF-IRRT*) [36], the adjustable probability and sampling area RRT algo-
rithm (APS-RRT) [37]. Table 4 presents the performance comparison of CDTD3-RRT* under
100 experiments. It can be seen that CDTD3-RRT* has significant advantages under the
path length. Owing to the powerful sampling and search ability of RRT* and the optimiza-
tion ability of CDTD3, APS-RRT and APF-IRRT* use limited exploration range operations
in the two complex environments, which is not conducive to obtaining better paths.

Table 4. Comparison of the path planning in the 2D simulation environment.

Algorithm Index Complex Obstacle Maze Space

CDTD3-RRT*
Mean (cm) 136.6 244.32
Variance 2.59 20.51

APF-IRRT*
Mean (cm) 171.13 312.15
Variance 200.33 316.21

APS-RRT
Mean (cm) 167.32 315.18
Variance 191.35 322.69

4.2. Analysis of the 3D Simulation Environment

In order to verify the performance of the CDTD3-RRT* path planning method in 3D
complex obstacle environments, a 3D space simulation environment was designed, with
size of 100 (cm3). The environment is shown in Figure 10a, Figure 10b is locally enlarged,
and multiple obstacles of different sizes and shapes were set up in the environment.
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view of the 3D environment.

RRT* was first used for 5000 iterations with the starting position at (6, 6, 6) and the
target position at (98, 96, 95). DRL were used to carry out 50 simulation experiments on
the DRL-RRT*, each experiment was conducted under different random seeds, and each
experiment had 400 iterations. The length of each point-to-point task was 400 steps.

The simulation results are shown in Table 5. The average path lengths for 50 repeated
experiments were 186.61 cm, 191.23 cm, and 197.29 cm, respectively. Figure 11 shows the
relationship between path length and algorithms. The random policy was added to the
CDTD3 to further optimize the performance of the algorithm. In the 3D environment,
CDTD3 consistently discovered shorter paths across multiple experiments, leading to
reduced path length and higher success rates for D-P2P tasks.

Table 5. Results of the 3D complex obstacle space simulation.

Algorithm Mean(cm) Variance Success Rate Reduction Rate

CDTD3 186.61 20.09 94.35% 10.6%
TD3 191.23 20.21 91.78% 8.2%

DDPG 197.29 79.93 62.43% 4.4%
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5. Simulation and Experiment of Manipulator Path Planning
5.1. Evaluation Index of Path Planning

The accuracy and stability of path planning algorithms require certain indicators for
evaluation. Typically, the root mean square error (RMSE) analysis method is employed to
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quantify the deviation between the desired value xi and actual value yi of the manipulator
trajectories. The RMSE is expressed as follows:

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (13)

The success rate of position deviation is used to measure the discrepancy between the
actual target position and the set target position. The distance di between the actual target
(xi, yi, zi) and the set target (x, y, z) is calculated as follows:

di =

√
(xi − x)2 + (yi − y)2 + (zi − z)2 (14)

The success rate of the position deviation in the experiment can be expressed by:

G =
1
N

n

∑
i=1

gi (15)

where N is the number of experiments; gi ∈ {0, 1}; if di < ϕ, then gi = 1, otherwise gi = 0.
ϕ is a threshold that can be used to measure the relationship between di and G.

5.2. Experiment and Simulation Research on the Application of Manipulator Path Planning

A manipulator experimental platform was established as shown in Figure 12 to verify
the feasibility of the proposed method in the practical manipulator. The hardware of
the experimental platform included the 6-DOF manipulator Han’s Robot Elfin E05, the
supporting tools and the computer were equipped with the Ubuntu20 operating system.
ROS Noetic MoveIt 1 is an open-source robotic motion planning framework for robot
motion planning and control. It provides collision checking and control functionalities,
integrating collision detection libraries such as the Flexible Collision Library (FCL), which
is used to detect collisions between the robot and the environment or other objects.
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Manipulator simulations were conducted to test the path planning. The use of the
simulation environment allowed us to perform multiple experiments under different
scenarios, conditions, and parameter settings to ensure the rationality and feasibility of the
planned paths, reducing the wear and tear on the manipulator in real-world experiments.
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The simulation environment shown in Figure 12 was established for the obstacle avoidance
path planning task of the manipulator using Rviz and MoveIt1. The simulation environment
consisted of four different obstacle environments and various starting positions and target
positions, all of which closely resembled real-world scenarios.

In the CDTD3 algorithm, λ= 0.1, c= 1, and i= 100. A total of 100 simulation exper-
iments were conducted on the manipulator. The average length of the executed path in
the joint space and the success rate of planning execution results are presented in Table 6,
the threshold ϕ in the experiment was 5 (cm). According to the results in Table 6, the
paths generated by CDTD3-RRT* had a good performance on different tasks, with shorter
paths after planning and execution. In Scenario 3, where the task was relatively simple,
the results of CDTD3 and TD3 were similar. Moreover, under four different tasks, three
algorithms had a higher success rate in path planning. In the four scenarios, the paths
obtained through the CDTD3-RRT* had a better length compared to those obtained through
RRT*. The path reduction rates were 11.1%, 31%, 9.0%, and 20.4%, respectively.

Table 6. The results of manipulator simulation.

Algorithm Index Scenario 1 Scenario 2 Scenario 3 Scenario 4

CDTD3-RRT*
Mean (cm) 146.3 56.1 108.7 90.7

Success rate 98% 86% 92% 100%

TD3-RRT*
Mean (cm) 149.7 58.8 108.5 94.1

Success rate 99% 85% 92% 100%

DDPG-RRT*
Mean (cm) 151.0 58.9 109.4 91.1

Success rate 98% 87% 93% 100%

The manipulator experimental platform is shown in Figure 12. The process of obtaining
the executable path of the manipulator is shown in Figure 13. When conducting path
planning experiments on manipulator, given the starting pose, target pose and obstacle
information. CDTD3-RRT* is first used to compute a collision-free path based on the
environment. Then, the inverse kinematics solution and obstacle avoidance detection
were performed using the motion planning method computed cartesian path in MoveIt1,
which integrates IKFast and FCL plugin. Thus, the executable path of the joint space
was calculated, and information such as joint variables required for the operation of the
manipulator was output. After obtaining the executable path information, it was sent to
Elfin E05 for execution. CDTD3-RRT* was tested multiple times to verify the performance
in different targets. During the operation of the manipulator, a ROS node was utilized to
collect real-time joint parameters, which were recorded in the file for further analysis.
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The comparison between the manipulator’s end path and the planned trajectory is
illustrated in Figure 14. To accurately analyze the error, the trajectory was decomposed into
three axes: the x-axis, y-axis, and z-axis. Although there were errors in each axis direction
of the manipulator’s end path, the error was in a small range, which was consistent with
the deviation between the actual experiment and the planned path.
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Figure 14. The end trajectory of the manipulator.

According to Equation (13), the RMSE between the end effector trajectories of the four
targets and the planned trajectory is calculated, including the results in three axes directions.
The results shown in Table 7 are the average of 20 planning experiments. The results show
that the proposed algorithm can complete the experimental task of manipulator path
planning with high accuracy, and the error between the actual trajectory and the planned
trajectory is acceptable. The actual trajectory of the manipulator during operation may
have deviations from the planned results due to the inherent instability of the manipulator
and the influence of prior information such as environment modeling and motion models
in path planning. However, the small magnitude of the errors demonstrates that the
algorithm is capable of effectively solving the path planning problem for the manipulator
and achieves good effects in various tasks under different scenarios.

Table 7. The RMSE for each direction at the manipulator’s end position.

RMSE Scenario 1 Scenario 2 Scenario 3 Scenario 4

x-axis (cm) 2.1 3.2 2.6 1.4
y-axis (cm) 1.8 2.7 2.8 1.7
z-axis (cm) 3.1 1.3 1.7 3.1

6. Conclusions

Based on the RRT*, this paper introduces the DRL to carry out path planning for the
manipulator and seek an optimal path. To enhance the exploration ability of the TD3, an
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improved method called CDTD3 is proposed. Through simulation verification, this method
can effectively improve the insufficient exploration in the early stage of the TD3. Moreover,
a path planning method DRL-RRT* was designed that combines the random sampling
mechanism of the RRT* and the experience replay mechanism of DRL.

Path planning simulations were designed to validate the optimization ability of the
proposed CDTD3-RRT* on the original path. The simulation results demonstrated that in
three 2D environments, the original RRT* path achieved a reduction rate of 11.4%, 14.2%,
and 19.14%, respectively. The reduction rate in the 3D complex obstacle environment was
10.6%. In addition, the CDTD3 demonstrated a significant improvement in the success rate
of iterative optimization and reduction rate compared with the TD3 and DDPG. Finally,
an experimental platform for manipulator was established, and the application of path
planning methods in obstacle avoidance path planning tasks was analyzed. The results
demonstrate that the path length of CDTD3-RRT* was better than that of TD3-RRT*, and
DDPG-RRT* in multiple experiments. In the four experimental scenarios, the paths obtained
through the CDTD3-RRT* path planning method were more optimal in terms of length
compared to the paths obtained through RRT*. The reduction rates of the paths in the four
scenarios were 11.1%, 31%, 9.0%, and 20.4%, respectively, and the end path error of the
manipulator conformed to the results of planning and actual execution.
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Abstract: Kirigami is the art of cutting paper to create three-dimensional figures for primarily
aesthetic purposes. However, it can also modify the mechanical behavior of the resulting structure.
In the literature, kirigami has been applied to modify the material’s structural behavior, such as by
changing its elasticity, rigidity, volume, or any other characteristic. This article examines the behavior
of a pattern of rectangular kirigami cuts on a thermoplastic polyurethane soft material structure
and its influence on the mechanical parameters of the macrostructure. The results demonstrate that
rectangular kirigami patterns significantly affect the stiffness of the test specimens, changing from
1635 N/m to 4020 N/m. In elongation, there is a variation from 176.6% to 218% by simply altering
the height of the rectangular cut. This enables the adjustment of the soft material structure’s stiffness
based on the geometry of the propagating kirigami cuts.

Keywords: kirigami; soft; stiffness

1. Introduction

Kirigami and origami have been utilized in engineering for various purposes in the
design and production of sensors and actuators. The reported cutting patterns of kirigami
can be divided into those with an even distribution on the base material and those with a
non-uniform distribution. Similarly, the cuts can be classified into simple and complex cuts.
Simple cuts consist of linear cuts distributed along the base material, sometimes forming a
combination of straight lines, such as trapezoidal cuts and triangular cuts. Complex cuts
are defined as cuts forming curves of greater complexity than a simple straight line, such
as circular cuts, spiral cuts, and other shapes of greater complexity. The effects of simple
cuts on different base materials and geometries have been analyzed in [1–8] with the aim
of creating actuators and sensors that exploit material property tuning and deformations.
Refs. [9–13] investigate various cutting patterns using more complex geometries arranged
in a regular pattern on the base material, with cuts ranging from micrometric dimensions
to a few centimeters.

The applications of kirigami are diverse. For instance, in the field of soft robotics, a
triangular-cut kirigami pattern was used as a snakeskin on a pneumatic actuator in [14],
increasing the actuator’s drag capacity through a mechanism inspired by snake scales.
In [15] the author proposed a kirigami–like soft elastomeric skin used to cover a snake-arm
robot conformed by compliant vertebrae and controlled with cables. Other patterns were
also proposed in [16] that, when cut into a flat material and placed around a pneumatic
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actuator, increase its drag capacity. Flexible robots inspired by kirigami utilizing this type of
dragging actuation have been developed for medical applications. Ref. [17] demonstrated
the development of a robot in which kirigami patterns facilitate the navigation of robots
through cavities of the human body under complex conditions and restrictions using
hexagonal kirigami patterns. Meanwhile, ref. [18] showcases the development of a flexible
robot for medication dosing within the human body, proposing the combined use of two
kirigami patterns, one for navigation and another for medication dosing. Other actuators
that use kirigami as a key design element can be found in [19–22].

In the realm of sensing applications, kirigami has been widely applied for the develop-
ment of sensors. The cuts allow for the deformation of the material and its ability to adapt to
complex surfaces, enabling the indirect measurement of stresses or deformations produced
through the modification of the material’s geometry under external forces. Some of the sensors
reported in the literature include a heart rate sensor [23], an ECG signal probe [24], angular
deformation sensors for robotic actuators [25], and a biocompatible strain sensor [26].

The pattern of simple linear cuts has been widely studied and applied to various base
materials [7–32], even in different cut configurations, with most authors approximating the
cut thickness to be equal to zero for simplicity of analysis. The applications of this pattern
have been varied, including the development of actuators and sensors [30].

The pattern of rectangular cuts has attracted the attention of researchers in various
fields, and its study has been conducted from different perspectives and with different
configurations. Ref. [33] presents an experimental study of the rectangular cut configuration
manufactured on TPU. In their study, the experiment was conducted on a single column
of material upon which a rectangular cut was made followed by bonding material with
the next rectangular cut. The experimentation considers five cells of rectangular cuts and
obtains the parameters of rupture tension, elongation, and stiffness to characterize the
behavior of the cutting pattern. Meanwhile, ref. [34] conducted a study using a pattern
inspired by rectangular kirigami cuts distributed on TPU material plates manufactured with
thicknesses ranging from 2 to 10 mm. In this study, the walls of the test plate containing
the rectangular cuts were fully enclosed, which restricts material deformation, although
subsequently, the study was conducted on a cylindrical scheme onto which the rectangular
cutting pattern was projected. In this study, material stiffness was estimated against wall
thickness, and unit deformation was estimated against the reaction force presented by the
plate with cuts. Ref. [35], on the other hand, presented an inflatable actuator, which studies
various cutting patterns, including the pattern inspired by rectangular cuts. In their research,
they created actuators that, in their uninflated form, are configured with the pattern of
rectangular cuts. Subsequently, by joining the edges of two plates with rectangular cuts and
the central part forming conduction channels, the actuator was subjected to tensile tests and
then inflated to characterize its response, mainly its contraction response, thereby achieving
behavior similar to that of muscles. The pattern of rectangular cuts has also been studied
for sensor development, primarily in its single-column configuration, as shown in the work
developed by [36]. In their study, they used a rectangular cut–bonding material–rectangular
cut configuration similar to the configuration used by [33], all distributed on a polyamide
base as a substrate with synthesized graphene on a copper sheet via low-pressure CVD. In
this study, the aim was to characterize the material’s resistance behavior as it deforms since
the objective was to use the plate as a stress–strain sensor for use on human skin, and no
other mechanical tests were conducted in greater depth.

In this study, we propose an investigation into a pattern inspired by rectangular
kirigami cuts to characterize properties such as elasticity and stiffness. This investigation
involves varying the width of rectangular cuts applied to a 1 mm thick TPU plate. The
configuration of the pattern differs from those previously reported, featuring a greater
number of rectangular cutting cells distributed horizontally, with free edges following the
rectangular cutting pattern. This approach aims to facilitate the development of mecha-
nisms capable of rapidly adapting to specific needs in applications such as robotics, sensors,
and actuators based on thermoplastic polyurethane.
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2. Materials and Methods
2.1. Rectangular Pattern Cuts

The proposed pattern of rectangular kirigami cuts is shown in Figure 1. This pattern is
defined by the geometry of the rectangular cuts and their distribution on the supporting
material. In this work, it is proposed that the cuts have a uniform distribution throughout
the entire supporting material, including the edges where the cuts are interrupted by the
edge of the base material. The description of the rectangular cuts includes the width (w)
and the height (h), with all rectangles having the same dimensions. The distribution of the
cuts on the base material is defined by the distance (s) between cuts on the same line and
the distance (h1) between lines of cuts. The length (z) of the rectangular cut that coincides
with a section of the upper or lower cut is also described.
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Figure 1. Geometrical description of kirigami rectangular cuts.

The behavior of the kirigami cell can be analyzed by discretizing it and examining
the behavior of one of the cuts, which can then be used to propagate the deformation
phenomenon throughout the entire base material. To model the deformation that occurs
along the kirigami base material, a section surrounded by a dotted line, as shown in
Figure 2, is proposed to be considered as a representative section of any section along
the cell.
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Figure 2. Examined segment of the kirigami pattern delineated by a dashed border.

If it is assumed that when the application of force P begins, supports A and B are fixed,
as shown on Figure 3; then, it can be considered as if the element forming the section is
a small beam with fixed supports. This type of beam allows the ends to be fixed but can
undergo rotation, which is ignored in this analysis.

At the begin of the deformation, this structural element is subjected to a force P applied
at the center of the beam. By considering the geometry of the beam, in this case, the section
described is analyzed from support point A to the center of the beam with a length of L/2.
The material is considered to have a thickness t and a width w. The equation for the vertical
displacement at any point between support A and the center of the beam is valid for the
range 0 < x < L/2. The equation for analyzing deformation is derived through an analysis
of shear force and bending moment on the selected segment, as explained on [37]. The
development of the analysis leads us to Equation (1), considering the moment of inertia as
shown in Equation (2).
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Equation (3) indicates the displacement “y” of the central point of the beam in Figure 2,
which is the point where the displacement is at its maximum. This allows us to identify
the maximum deformation of the beam under the established considerations. Once the
deformation of the bar-like element is determined, we will illustrate the stages through
which the rectangular kirigami cut goes, involving other parameters related to the configu-
ration of the rectangular kirigami cut. Figure 3 shows the different states through which
the rectangular cut progresses as deformation advances, as obtained through an analysis
of images captured during the experimentation with the specimens. The images are pre-
sented as illustrations to more effectively emphasize the points of interest, illustrating the
location of various geometric parameters from the initial shape to highlight their impact.
In Figure 3a, the rectangular kirigami cut is shown in an initial stage of deformation, where
it maintains nearly the same shape, illustrating a single cut since, if the distribution of cuts
is uniform along the base material, all cuts not on the boundary exhibit similar behavior.

Figure 3b illustrates the same rectangular cut in a subsequent stage of deformation,
still revealing the proportions that constitute the cut, albeit with the rectangular shape
having deformed into an octagonal form. In Figure 3c, the kirigami cut is depicted in an
advanced stage of deformation, where the rectangular shape has been lost, and a more
defined octagonal shape has taken its place, with the sides dependent on the original
rectangular geometry, including the cut height “h”, the cut length “w”, and the intersecting
length “z” between the lower and upper cells (defined in Figure 1). Finally, Figure 3d
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presents the kirigami cut at its maximum stage of deformation, where the rectangular form
has been completely lost, and an octagonal figure has formed, with its sides delineated by
the constraints imposed by the original rectangular cut geometry.

From an analysis of Figure 3, we can observe that the displacement “y” as presented
in Equation (3) adds to the distance “h” as we progress toward maximum deformation.
Additionally, the maximum deformation is constrained by the distribution of the rectangu-
lar cut relative to the upper and lower cuts, as if the distribution of cuts between rows is
uniform and symmetrical, and the material between cut lines establishes a limit of “w−2z”
on the maximum achievable deformation. The maximum vertical deformation attained by
a rectangular cut cell transitioning from a height “h” to a maximum height “ymax” is

ymax ≈ h + 2z (4)

as the “h” distance increases, it allows for greater freedom of movement for the elements
depicted in Figure 2. It is also important to highlight that all rectangular cuts deform
uniformly and similarly, except for those at the edges where the uniform distribution over
the base material is disrupted. Thus, it becomes possible to sum the contribution of each
rectangular cut to estimate the maximum deformation achieved for a plate with rectangular
cuts in general.

2.2. FEM Simulation

To compare the proposed model, a finite element simulation was conducted using the
SolidWorks 2022 software. The TPU material was described using an Ogden hyperelastic
model with the following coefficients: µ1 = −30.921 MPa, α1 = 0.508, µ2 = 10.342 MPa,
α2 = 1.375, µ3 = 26.791 MPa, and α3 = −0.482. This model considers the effects of 3D
printing, as stated in reference [38]. The applied conditions are depicted in Figure 4. The
simulation used a triangular-type meshing, and a normal force was applied at one end
while an encastre restriction was applied at the other end to simulate a tensile test. In this
study, triangular meshing was employed to optimize simulation execution time. The finite
element method (FEM) study utilized a Dell G15 5510 laptop equipped with an Intel Core
i5-10500H CPU running at 2.50 GHz and 32 GB of RAM memory, operating on Windows
11 Home Single Language version 22H2.
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2.3. Experimental Setup

To compare the behavior of the kirigami pattern with rectangular cuts, an experimental
stress test was conducted on a cell with rectangular cuts. During the tensile test, one end of
the test specimen was fixed, and a force was applied to the other end, causing deformation
similar to that in the FEM simulation as depicted in Figure 5. The test was carried out using
the “LLOYD Instruments Texture Analyzer”.
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Figure 5. Experimental setup using tensile test device.

The test specimen was made of thermoplastic polyurethane (TPU) using a 3D print-
ing process with a Flash Forge Finder printer and their software, Flash Print 5.3.1. The
parameters of the printer were set to the default settings for flexible filaments. For the tests
conducted using the texture analyzer equipment, test specimens were fabricated while
taking into consideration the workspace constraints of the equipment and the clamping
requirements of the equipment’s jaws. The usable working area of the test specimens
measured 50 mm in height by 70 mm in width. The total height of the test specimen was
95 mm, including the material used for supporting the jaws of the tensile test machine.
The specimens were manufactured with a thickness of 1 mm, but with variations in the
width of the cuts, resulting in specimens with a minimum cut, 1.0 mm cut, and a 1.5 mm
cut. Six specimens test were used for each of the proposed variations in the distribution
of rectangular cuts. All tests conducted with the equipment were configured with the
parameters shown in Table 1.

Table 1. Configuration parameters of Flash Forge Finder 3D printer for TPU.

Velocity 2.5 mm/s

Specimen Length 95 mm
Specimen Width 70 mm

Thickness 1 mm

The testing equipment allows for the storage of data on applied force, displacement,
and time, as well as an estimation of stress.

3. Results

The results are presented below; mathematical modeling illustrates the evolution and
maximum estimated deformation. The FEM simulation is used to ascertain whether the
behavior aligns with experimental outcomes, demonstrating that the considered parameters
are accurate and enabling the simulation-based modeling of structures with rectangular cuts.
The experimental results are employed to analyze the behavior of cells with rectangular
cuts, as well as to validate the findings of the FEM study and the maximum deformation
results obtained through mathematical modeling.
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3.1. FEM Results

FEM analysis demonstrates how deformation occurs when force is applied. Figure 6
shows the transitional state of the kirigami-cut test specimen for one configuration. The
analysis indicates that all the cuts experience uniform deformation along the test specimen,
except for those at the extreme points. Due to varying constraints, these cuts do not reach
maximum deformation, in contrast to the central cuts. Deformations outside the plane of
the specimen also occur as the force increases, which are estimated by the FEM simulation,
as shown in Figure 6a and observed in experimentation. The FEM simulation also provides
us with the results of the patterns’ behavior concerning the strain–time simulation shown in
Figure 6b and the stresses at the nodes distributed along the central points of the specimen.
It is important to note that while the FEM study gives us results per node, the conducted
experiment considers the entire specimen as a single mechanical entity.
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Figure 6. FEM results show the evolution of kirigami cut deformation. (a) Test specimen deformation
shown at transitional state. (b) Strain–time evolution on central nodes of the specimen test simulation.

3.2. Experimental Results

The experimental results demonstrate that there is a variation in the behavior of the
different specimens in response to changes in the width of the cuts. Similarly, various
types of variations can be assessed, such as changes in width, length, and distribution.
However, the characterization of the specimens with rectangular cuts allows determining
their behavior in response to cut variations. In Figure 7a, the specimen with minimal
cuts is shown; these cuts were traced in the 3D printing process and subsequently made
directly with a knife. In Figure 7b, the specimen with 1 mm thick cuts is displayed, while in
Figure 7c, the specimen with 1.5 mm thick cuts is shown. A total of eighteen test specimens
were manufactured for the experimental development, with six specimens for each type
of cut and distribution presented. Finally, in Figure 7d, the tension test is shown being
conducted on the Lloyd Instruments Texture Analyzer, where it can be observed that one
end is secured while a vertical force is applied to the other end, causing displacements
and stresses.

Figure 8 displays the final condition before reaching the breaking point of the test
specimen. In this state, it is observed that if the distribution of the cuts is uniform, all
rectangular cuts deform uniformly along the test specimen, except for those at the extreme
points. Therefore, understanding the deformation experienced by a rectangular cut enables
the modeling of the behavior of an entire base material with rectangular-cut patterns
uniformly distributed on it.
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The variation in maximum elongation obtained with each cutting variation is displayed
in Figure 9. For the test specimen in which cuts with the greatest width (1.5 mm) were
performed, the highest average elongation of 218 percent was achieved. For the specimen
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with 1 mm cuts, the average elongation was 188 percent, while for the specimen with the
minimum cut, the average obtained elongation was 176 percent. In terms of the variation
observed across the tests, it is noted that this variation in final elongation increases with
the width of the cut applied to the specimen. Upon reviewing the experimental tests, it
was observed that the specimens tended to slip from the grips of the testing device as the
displacement increased. Additionally, for tests with a 1 mm wide cut, specimens reached
the rupture point at different locations. These variations are believed to be primarily
attributed to the manufacturing process.
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Furthermore, the stiffness associated with the response exhibited the following varia-
tion, as indicated by the results estimated by the testing device, and illustrated in Figure 10.
For the test specimen with the widest cuts (1.5 mm), the stiffness was 1635 N/m. In the
case of the specimen with 1 mm cuts, the average stiffness measured 3264.84 N/m, while
for the specimen with the minimum cut, the average stiffness was 4020.29 N/m.
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In Figure 11, the stress–strain relationship is shown for a set of experimental tests. It
can be observed that each group of specimens exhibits a behavior trend according to the
type of rectangular kirigami cut they had. Specimens with minimal cuts show higher stress
against the presented deformation, and similarly, the slope of these curves representing
stiffness is also higher. Specimens with a 1 mm wide cut reduced the amount of stress
for a similar unitary deformation, and the slope of the trend was also lower. Finally, for
specimens with a rectangular cut with a width of 1.5 mm, the stress decreased significantly,
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and the slope of the trend also decreased compared to that of the previous specimens. It
is important to note that in this test, not all specimens reached the breaking point due to
the test device’s stroke. This can be observed in the vicinity of strain 2, stress 1.5 MPa,
where measurements taken by the device are presented once a rupture point occurred in the
test specimens with minimal rectangular cuts and with 1 mm wide rectangular cuts. The
absence of points related to specimens with 1.5 mm wide cuts is because these specimens
did not reach the rupture point during the testing machine’s run (trajectories marked with
an asterisk on the graph).
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Figure 11. Stress–strain relationship for the conducted experimental tests, where each test group
exhibits a trend associated with the kirigami rectangular cutting pattern; when the cut is minimal
(with a width close to zero), the stiffness is higher, and as the cut increases, forming the rectangular
cell, the stiffness tends to decrease.

Regarding the strain behavior shown in Figure 6b, corresponding to the results of
the FEM simulation analyzed at the nodes of the test specimen, Figure 12 provides an en-
largement of the experimental tension test results. It illustrates that the same phenomenon
occurs experimentally at the onset of the test. Initially, the test exhibits some linear behavior,
but beyond a certain point (around a strain of 0.1 in Figure 12), there is a sudden drop
in the linear behavior. According to our analysis, this drop occurs because out-of-plane
deformations start to appear beyond this point. In the conducted experiment, these out-of-
plane deformations would symmetrically manifest along the z-plane. For other cuts in the
experimental tests, this change is not as pronounced, which we attribute to the resolution
limitations of the testing equipment.
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4. Discussion

The effect of rectangular kirigami cuts was primarily evidenced in the tensile tests
conducted on each specimen with rectangular cuts. The variations resulting from changes
in the size of the cuts were observed in these tests, and the behavior was validated through
finite element method (FEM) simulations. This confirms that the results align with the
parameters used in the simulation, ensuring consistency between the experimental and
simulated behaviors. The slope of the stress–strain curves corresponds to the stiffness of the
test specimen being tested. As seen in Figures 9 and 10, for test specimens with equal cuts,
the behavior trend is the same, whereas when comparing test specimens with different
cuts, there is a variation in behavior. This allows for the adjustment of variables such as
total deformation and test specimen stiffness in a macroscopic behavior.

Figures 9 and 10 provide a summary of the behavior in both maximum extension
and stiffness for each test group. It can be observed that as the variation in the width of
the rectangular cut increases, the total elongation also increases, but stiffness decreases.
For tests where the cut width was greater, the maximum elongation averaged 218 percent,
whereas for tests with the minimum cut, the maximum elongation decreased to an average
of 176.63 percent, representing an approximate 42% variation due to the increased cut
width. Regarding stiffness, tests with a rectangular cut width of 1.5 mm had an approximate
average stiffness of 1635 N/m, whereas for tests with a 1.0 mm width cut, the average
stiffness increased to 3264.84 N/m. Finally, for tests with the minimum cut, stiffness
increased to 4020.29 N/m. In other words, as the cut width increases, stiffness decreases
while maximum deformation increases.

Finite element simulation validates the way in which strain occurs along the nodes of
the specimen, as well as the behavior of stress response as strain increases. Furthermore,
the FEM simulation demonstrates that deformation propagates regularly through the test
specimen with rectangular cuts, except for those cuts located at the end of the cell just as it
occurs in the experimental stage. In other words, the analysis of a specific test specimen can
be used to approximate the behavior of an entire test specimen with “n” cuts distributed
along its length, and FEM simulation can predict the behavior of a design using a rectangular-
cut pattern using TPU. While FEM simulation validates that the variation in the specimen
corresponds to the evolution of deformation observed in the experimental tests, the variation
observed in the experimental tests is primarily attributed to the manufacturing process
of the specimens. Despite being manufactured under the same conditions, the entropy
associated with the 3D printing process is reflected in the behavior of the tensile tests.

These structures are proposed for deployment in both deformable robot development
and artificial muscle as potential applications. In Figure 13a, a proposed rehabilitation
device is depicted, in which a force is being applied to the test specimen with rectangular
cuts. This device can be tailored to the rehabilitation needs of the patient. In Figure 13b, the
device is shown when no force is being applied (at rest state).

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 15 
 

Finite element simulation validates the way in which strain occurs along the nodes 
of the specimen, as well as the behavior of stress response as strain increases. Furthermore, 
the FEM simulation demonstrates that deformation propagates regularly through the test 
specimen with rectangular cuts, except for those cuts located at the end of the cell just as 
it occurs in the experimental stage. In other words, the analysis of a specific test specimen 
can be used to approximate the behavior of an entire test specimen with “n” cuts distrib-
uted along its length, and FEM simulation can predict the behavior of a design using a 
rectangular-cut paCern using TPU. While FEM simulation validates that the variation in 
the specimen corresponds to the evolution of deformation observed in the experimental 
tests, the variation observed in the experimental tests is primarily aCributed to the manu-
facturing process of the specimens. Despite being manufactured under the same condi-
tions, the entropy associated with the 3D printing process is reflected in the behavior of 
the tensile tests. 

These structures are proposed for deployment in both deformable robot develop-
ment and artificial muscle as potential applications. In Figure 13a, a proposed rehabilita-
tion device is depicted, in which a force is being applied to the test specimen with rectan-
gular cuts. This device can be tailored to the rehabilitation needs of the patient. In Figure 
13b, the device is shown when no force is being applied (at rest state). 

  
(a) (b) 

Figure 13. Potential applications of rectangular kirigami-adjusted actuators. (a) Device under an 
axial load produced by the effort of opening the arm; rectangular cells deform under an axial load 
similar to the case in the study conducted. (b) Device in a resting state; cells return to a resting state 
close to the rectangular shape, albeit with the effect of residual stresses. 

Conversely, the rectangular-cut paCern is viable for incorporation into structural el-
ements constructed with TPU, such as the Fin Ray effect-inspired flexible gripper struc-
tures depicted in Figure 14. Investigation will assess the potential enhancement of gripper 
adaptability and grasping by strategically integrating rectangular cuts. Manufacture of 
these structures employs flexible materials like TPU through 3D printing. The primary 
advantage of utilizing flexible materials lies in their ability to absorb impact upon contact 
with other objects, mitigating damage to the colliding entity. 

Figure 13. Potential applications of rectangular kirigami-adjusted actuators. (a) Device under an
axial load produced by the effort of opening the arm; rectangular cells deform under an axial load
similar to the case in the study conducted. (b) Device in a resting state; cells return to a resting state
close to the rectangular shape, albeit with the effect of residual stresses.
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Conversely, the rectangular-cut pattern is viable for incorporation into structural ele-
ments constructed with TPU, such as the Fin Ray effect-inspired flexible gripper structures
depicted in Figure 14. Investigation will assess the potential enhancement of gripper
adaptability and grasping by strategically integrating rectangular cuts. Manufacture of
these structures employs flexible materials like TPU through 3D printing. The primary
advantage of utilizing flexible materials lies in their ability to absorb impact upon contact
with other objects, mitigating damage to the colliding entity.
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Figure 14. The kirigami rectangular-cut pattern will be projected onto TPU structures to adjust their
behavior, as seen in Fin Ray-inspired structures for flexible grippers.

A weakness of the study is the lack of analysis regarding the plastic behavior of the
test specimens. This is because, during the conducted experimentation, the test specimens
were taken to the point of rupture to understand their behavior in response to variations in
the width of the cut. Similarly, although this cutting pattern may be employed away from
the rupture zone, this study did not provide a fatigue analysis to determine the material’s
lifespan under the identified conditions.

5. Conclusions

The kirigami rectangular-cut pattern affects the stiffness and elongation properties of
a TPU specimen as the height of the cut is modified. For the studied configuration, stiffness
varies by more than 145% from the minimum cut configuration to the condition where
the cut height is 1.5 mm, passing through an intermediate state when the cut is 1 mm.
The maximum elongation is also affected, varying by 40% for the TPU material with the
described configuration when the cut is at a minimum compared to when the cut is 1.5 mm.
This feature, enabled using kirigami rectangular patterns, can be employed to fine-tune
the properties of a TPU section to adjust the deformation response to an applied load. The
consistent behavior of the test groups confirms that the material performance is uniform,
even though the specimens were manufactured through 3D printing rather than strictly
through material cutting.

The kirigami rectangular-cut pattern on TPU sheets yields different outcomes com-
pared to those reported by [34,35], who proposed studies similar to the one presented in
this research. However, they utilized different configurations in terms of the distribution of
rectangular cuts, boundary conditions, and the characteristics of the specimens used. For
example, in the study conducted in [34], the effect caused by out-of-plane deformations
in the stress–strain curves is not observed due to the lack of interaction with other groups
of continuous cells. When the pattern of linear cuts (non-rectangular) has been applied
to other materials, a greater elongation has been achieved at the expense of significantly
reducing the structure’s stiffness. In the presented case using rectangular cuts, a reduction
in structure stiffness is also observed, but it is not as drastic. On the other hand, the total
elongation is not as substantial as that reported in other studies applying the linear cut
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pattern. This may be due to the TPU specimen not necessarily being a sheet but having a
thickness of 1 mm. However, for robotic applications, it is undesirable for the structure’s
stiffness to decrease to levels where it cannot support itself.

Finally, it is worth mentioning that this study explores the behavior of the kirigami
rectangular-cut pattern on a TPU specimen using a different configuration regarding the
final distribution and boundary conditions of the test specimens. The interest in studying
this cutting pattern applied to TPU material stems from its envisioned integration into
actuators and sensors operating within more complex systems related to deformable
robotics. It is expected that the development of this study will support the modeling and
understanding of applications where this pattern is utilized, as discussed in Section 4. To
fully characterize the behavior, fatigue tests and analysis of the plastic zone behavior of the
constructed actuators and sensors will be conducted. Additionally, the study of new cut
configurations will be carried out, considering that small variations in both the distribution
and shape of the cuts could result in significantly different behavior.
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