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Juan A. Béjar-Martos, Antonio J. Rueda-Ruiz, Carlos J. Ogayar-Anguita,

Rafael J. Segura-Sánchez and Alfonso López-Ruiz
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Modeling Multi-Rotunda Buildings at LoD3 Level from
LiDAR Data
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Abstract: The development of autonomous navigation systems requires digital building models at
the LoD3 level. Buildings with atypically shaped features, such as turrets, domes, and chimneys,
should be selected as landmark objects in these systems. The aim of this study was to develop a
method that automatically transforms segmented LiDAR (Light Detection And Ranging) point cloud
to create such landmark building models. A detailed solution was developed for selected buildings
that are solids of revolution. The algorithm relies on new methods for determining building axes
and cross-sections. To handle the gaps in vertical cross-sections due to the absence of continuous
measurement data, a new strategy for filling these gaps was proposed based on their automatic
interpretation. In addition, potential points associated with building ornaments were used to improve
the model. The results were presented in different stages of the modeling process in graphic models
and in a matrix recording. Our work demonstrates that complicated buildings can be represented
with a light and regular data structure. Further investigations are needed to estimate the constructed
building model with vectorial models.

Keywords: LiDAR; LoD2; LoD3; 3D buildings; automatic building modeling

1. Introduction

Three-dimensional urban models represented in the CityGML 3.0 standard have
considerable potential for numerous applications, in particular navigation systems. These
applications are useful for designing transport systems for autonomous vehicles [1]. To
meet such needs, building models must be developed at the LoD3 (level of detail 3). In
LoD3, a building is represented as a solid, closed 3D geometry with separate components
for the walls, roof, and architectural elements to accurately depict structural details and
ornamental features [2–4]. In addition, LoD3 level models are also widely utilized in urban
microclimate studies to identify buildings in urban space, generate energy-saving plans,
and identify the sources of noise and noise propagation routes. Urban morphology models
will play an increasingly important role in the future [5].

Three-dimensional city models are often developed based on light detection and
ranging (LiDAR) data, which are collected with the use of aerial and terrestrial remote
sensing techniques [6,7]. The process of building modeling at various levels of detail, from
LoD0 to LoD2, has been extensively investigated [8–17]. New approaches to modeling
buildings are being proposed based on the density of point clouds [18], normal vectors on
minimal subsets of neighboring LiDAR points to determine characteristic points in roof
creases [15], shape descriptors, and cubes that divide the point cloud into roof surface
segments [19]. However, even sophisticated techniques will not be able to handle some
intrinsic modeling problems [20,21]. The density of point clouds acquired during airborne
scanning of urban areas differs sometimes between roofs and walls, and the presence of
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outliers and noisy data can lead to errors in the process of generating point clouds and
incorporating clouds into the reference system [17,22,23].

Once the LiDAR point cloud is classified into main classes such as terrain, buildings,
and vegetation [24], various methodologies have been proposed for automating the genera-
tion of mass-building models. Individual buildings must be distinguished and selected [25]
from compact dense urban development [26], and then modeled in 3D [27]. An algorithm
for identifying flat roofs and modeling individual buildings at the LoD3 level based on pla-
nar structures was proposed in [28]. A similar solution [29,30] for modeling buildings based
on planar primitives produces structures with more elaborate shapes. Planar primitives are
generated from a point cloud and are then reconstructed with the use of characteristic lines
identified in the acquired images. In the last step of the process, the generated models are
optimized by a polynomial curve fitting (PolyFit). Planar primitives are also used to model
buildings based on a dense triangulate irregular network (TIN) mesh [31].

Other algorithms for 3D building modeling integrate various sources of data. The
first solutions relied on old maps, plans, and cadastral data [32,33]. At present, LiDAR
data are increasingly combined with remote sensing datasets, machine learning methods,
and neural networks [10,34–38]. Window and door openings on walls are modeled at
the LoD3 level based on terrestrial laser scanning images and segmented 2D images [39].
These methods rely on deep machine learning techniques. In a graph-based model [40], the
structural complexity of a building facade can be automatically modeled, and geometric
data can be combined with semantic input.

Several automatic solutions have been proposed for generating mass building models,
in particular roofs, at the LoD2 level, based on aerial images and high-resolution remote
sensing data by artificial intelligence methods [41–43]. Artificial intelligence is also useful
for 3D modeling at the LoD3 level based on street view images [44]. These methods
produce satisfactory results when the modeled buildings have regular shapes, in particular,
when terrestrial laser scanning data are available. In spite of all these efforts, atypical
and irregularly shaped buildings with complex ornaments continue to pose a challenge to
state-of-the-art solutions. These buildings are particularly difficult to model based solely
on aerial images. The presented study in this paper was undertaken to further explore this
issue based on the authors’ previous findings [45].

2. Research Objectives

Buildings with irregularly shaped features often constitute landmarks in urban spaces.
They are important in navigation. One of the first attempts to automatically model atypical
buildings composed of rotational surfaces was made by Lewandowicz et al. [45]. This
cited study proposed an algorithm for rendering ornamental features in greater detail and
capturing these buildings’ unique ambiance. The method proposed in [45] was based on
modeling the rotunda based on only one point cloud cross-section.

The presented study in this paper intends to improve and extend the algorithm
proposed by Lewandowicz et al. [45] to capture and enhance the presentation of unique
structural elements of buildings. In this context, the novelties of our work, as well as the
objectives, are formulated as follows:

• Improvement of the method for determining the axis of buildings represented by
solids of revolution;

• Introduction of a new approach for the automatic generation of building cross-sections
and a gap-filling strategy when a complete set of points is not available;

• Evaluation and interpretation of deviated data points (outliers) in the process of
incorporating these data into the developed model.

As a result, a matrixial form of modified building models was developed in the last
stage of the study. The results were presented and visualized in different stages of the
modeling process.
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3. Datasets

The presented study uses point clouds acquired with the airborne laser scanning
(ALS) methods, representing distinctive buildings in the analyzed cities. These data were
obtained from the Polish Spatial Data Infrastructure (SDI). Buildings with atypical shapes,
features, and heights often constitute landmarks in urban spaces. They include sports and
entertainment arenas, water towers, buildings with domed roofs (such as planetariums), or
industrial buildings with tall chimneys (Figure 1).

 

Figure 1. Visualization of buildings (a1–e1), their 3d models with a database (a2–e2). Vertical cross-
sections of a point cloud of buildings selected for the study. The analyzed buildings are visible
with a red circle: (a3) sports and entertainment arena in Łódź; (b3) water tower in Bydgoszcz;
(c3) water tower in Siedlce; (d3) domed roof of the Nicolaus Copernicus Planetarium in Olsztyn;
and (e3) chimney of a heat plant in the Kortowo campus of the University of Warmia and Mazury
in Olsztyn.

These building models are largely simplified at the LoD2 level in the 3D models of
Polish cities developed. They are represented by cylinders or are overlooked in models
(Figure 1(a1,a2,b1,b2,c1,c2,d1,d2,e1,e2)). Points representing buildings that are rotational
surfaces can be extracted from a LiDAR. When classifying points by height and viewing
the vertical projections of the LiDAR sets, one can distinguish clusters of points showing
the tested objects in the shape of circles (Figure 1). Selected for the study are different types
of buildings (Figure 1a–c) and elements of building (Figure 1d,e).

Data files are acquired in LAZ format, while the point coordinates are expressed in the
ETRS_1989_Poland_CS92 (EPSG 2180) coordinate system. All points are assigned class ID,
signal intensity values, and RGB values from aerial images. The scanning was acquired
in 2017–2022 with a resolution of 12 or 4 points per square meter, depending on the year
of acquisition.
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4. Method

Successive stages of the modeling process are described in the following subsections.

4.1. Improve Vertical Cross-Section Point Cloud

From Figure 2a,b, it can be noted that the point density, as well as the point distribution
on the vertical walls of a tower point cloud, are heterogeneous. As an example, the
calculation of two vertical cross-sections of the point cloud illustrated in Figure 2b according
to two different directions (direction 1-1 and direction 4-4, as shown in Figure 2e) provides
two different results shown in Figure 2c,d. In fact, the difference between the two obtained
results is due to the irregular distribution of LiDAR points on the building facades. At
this stage, the major question that arises is in which direction (according to Figure 2e) the
vertical cross-section must be calculated to obtain the best representative result. This paper
proposes a new approach to calculate the best cross-section that considers all LiDAR points
describing the tower building.

Figure 2. (a) Tower_1 point cloud. (b) Tower_2 point cloud. (c) Point cloud of vertical cross-section
according to the direction 1-1 in (e). (d) Point cloud of vertical cross-section according to the direction
4-4 in (e). (e) Black circle is the horizontal cross-section of the given rotating tower, green circle is the
gravity center of the horizontal cross-section, and the blue lines are directions of suggested vertical
cross-sections.
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The first step is to project all points according to a circular trajectory and then group
them into one half vertical plane located on one side of the tower (Figure 3). To carry out
this operation, the cloud coordinates (X, Y, and Z) are transformed into a plane coordinate
system (X1 and Y1) according to Equation (1).

X1 = Yg +

√(
X − Xg

)2
+

(
Y − Yg

)2 Y1 = Z (1)

where Xg and Yg are the coordinates of the point cloud gravity center according to
Lewandowicz et al. [45] as shown in Equation (2).

Xg = minX +
Xmax − Xmin

2
, Yg = minY +

Ymax − Ymin
2

(2)

Figure 3. Rotating of points and grouping them to a half vertical plane located on one side of the
tower. (a,b) Consecutively 3D and 2D rotating illustrations.

To clarify this operation, the example illustrated in Figure 3b is detailed. In Figure 3b,
the distances are equal between all points of the circle and the gravity center (the circle
center) and equal to R (the circle radius). Point ‘a’ is projected in a circular trajectory on the
same circle, the obtained result is Point ‘c’. The same operation is applied to Point ‘b’, and
the obtained result will also be Point ‘c’. In Equation (1), as Points ‘a’ and ‘b’ have the same
Z value and their distances to the gravity center are the same, the new coordinate X1 of the
two points will be the same. At this stage, it is important to refer that this operation does
not represent a projection on gY’ axis. Indeed, the projection of Points ‘a’ and ‘b’ on axis gY’
are consecutively Points ‘d’ and ‘e’.

Thereafter, the new point cloud {X1, Y1} which represents the vertical cross-section,
should be put in descending order regarding the Z coordinate values. At this stage, it
can be noted that according to the point density, it is possible to present groups of points
having the same Z coordinate value. In fact, there are three considerations to present this
kind of point: LiDAR point accuracy, texture smoothing, and building architecture. The
basic hypothesis in the suggested approach is that one building surface consists of a main
rotating surface and some decoration parts added to this surface. Hence, in the case of
several points having the same Z values and different distances from the rotating axis, the

5
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nearest point to the rotating axis is located on the main rotating surface, whereas further
points are likely located on the decorations. If the building architecture reason is neglected,
then the basic frustum of a cone must pass through the central point. Moreover, if the point
accuracy and texture smoothing are neglected, then the basic frustum of a cone must pass
through the nearest point to the rotating axis. Furthermore, if it is desired to consider all of
the three reasons together, the points of the same Z coordinate value must be divided into
two groups: one group of points that belong to the main building surface and the other that
belongs to the decoration. This analysis needs more experiments to decide if it is efficient
or not. Finally, as all available points will be considered in the model equation, the errors
will only be located at places where points are missing.

In this paper, a new rule is added, as follows: if a group of points has the same Z
coordinate value, only the farthest point from the rotation axis is kept; the other points are
temporarily eliminated until the last modeling step.

This procedure allows for a reduction of the number of points of the vertical cross-
section. The new cross-section point cloud is noted as a reduced point cloud. In this context,
a new list that has the same length as the reduced point cloud is defined and named the
point-frequency list. This list represents, for each point of the reduced point cloud, the
number of points having the same Z coordinate value in the original point cloud. Another
list named dev_list is defined. For the points having point-frequency values greater than
one, the value of the corresponding dev-list cell is equal to the subtraction of the nearest
and farthest distances from the rotating axis. If the point-frequency value is equal to one, in
this case, the corresponding dev-list cell is assigned zero.

Figure 4a visualizes the reduced vertical cross-section of the tower point cloud shown
in Figure 2b. Figure 4b uses the histogram illustration to visualize the frequent list of point
clouds shown in Figure 4. In this figure, it can be noted that the frequency of the most
reduced point clouds is equal to one. The maximum value of the frequency is equal to
10. In fact, the importance of this list as well as the dev_list will be highlighted in the
third improvement step. Figure 4c utilizes histogram graphics to visualize the dev_list
of the point cloud shown in Figure 4a. In this figure, it can be stated that most reduced
cross-section points do not have deviations from the building model. Moreover, points
with deviations can be classified into two classes. The first class is the points with small
and neglected deviations comparable to the LiDAR point accuracy of 0.4 m or smaller. The
second class is the points having a deviation greater than 0.4 m due to the presence of
decoration or noise.

Figure 4. (a) Reduced vertical cross-section of the tower point cloud shown in Figure 2b.
(b) Illustration of the frequency list of the point cloud shown in (a). (c) Illustration of the dev_list of
the point cloud shown in (a).

6
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4.2. Gap Analysis and Filling

Once the cross-section point cloud is calculated and reduced, the next step is the
vertical cross-section gaps analysis. The mean expected distance between two neighboring
points depends on the point density. In the building point cloud, it is common to meet
neighboring points separated by distances greater than the mean expected distances; this
separation distance is named a gap. However, two kinds of such gaps can be distinguished:
horizontal gaps when the greater separation distance is horizontal (see blue arrow in
Figure 2a), and vertical gaps when the greater separation distance is vertical. In fact, there
are several reasons for the presence of these gaps, such as the obstacles that prevent the
laser pulses to arrive at the scanned surface, the geometric form of the reflecting object, the
physical nature of the scanned surface (e.g., the surface is made of glass), and the scanning
parameters such as the flying height and the building location regarding the sensor location.
Though the employment of the vertical cross-section to model the building can cancel
the direct influence of the horizontal gaps because it moves all building points through
a circular trajectory to group them into a vertical plane. But in the final obtained model,
the presence of the horizontal gaps may reduce the building model accuracy in the gap
zone due to the lack of information in this area. Concerning the vertical gaps, despite
their influence being reduced through using the vertical cross-section described in the last
section, sometimes these gaps still appear in the vertical cross-section (Figure 5) because all
cloud points are grouped into one vertical plane (Figure 3). Therefore, it is necessary to
add a special procedure to process the remaining vertical gaps and reduce the depicted
deformation due to these kinds of gaps.

Figure 5. Gap-filling strategy. (a) Tower point cloud. (b) Vertical cross-section. (c) Red points are the
gap’s upper points, green points are the gap’s lowest points, and blue points are points filled inside
the gap.

When a line segment is revolved around an axis, it mathematically draws a piece of
a cone called the frustum of a cone. This frustum of a cone could be a cylinder when the
line segment is parallel to the rotating axis. According to this principle and in the case of
vertical gaps (Figure 5a,b), if the upper and the lowest gap points have different distances
from the rotating axis (Figure 5b,c), the gap will generate a frustum of a cone connecting the
two consecutive frusta of cones or cylinders in the building model (Figure 6b). In fact, this
solution does not consider the main reason for the gap presence when the geometric form
of the scanned surface prevents the laser pulses to arrive at the scanned object. That is why
there is a great deformation in the gap area in the building model presented in Figure 6b.
Hence, to improve the calculated building model, this paper proposes a new strategy to fill
the gaps in the vertical cross-section as follows.

7
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Figure 6. (a) Tower image. (b)Tower model before filling the gaps. (c) Tower model after filling the
gaps. (d) Building point cloud; Red arrow shows gap.

In the last section, the reduced point cloud was put in descending order regarding the
Z coordinate values, which means that the first point in the list has the greater Z value and
the last point in the list has the lowest Z value. At this stage, a new list, named Zspacing,
is defined. The first cell in this list contains the value zero. Thereafter, the value of each
cell is calculated by subtracting the Z coordinates value of the corresponding point in the
reduced point cloud from its precedent point.

Figure 7 illustrates the visualization of the distribution of Zspacing cell values. In this
histogram, it can be noted that the vertical spacing between most of the reduced cross-
section cloud points is around zero. Moreover, the points having vertical spacing smaller
than a given threshold (e.g., 0.2 m) can be considered as points having accepted vertical
spacing and then having no gaps. Also, points having vertical spacing greater than the
same threshold are considered points having gaps. In fact, the employed threshold value
(THspacing = 0.2 m) depends on the point density. Its value can be considered equal to or
smaller than the mean expected distance between two neighboring points.

Figure 7. Vertical spacing between consecutive vertical cross-section points shown in Figure 3a.

Once the Zspacing list is calculated and the spacing threshold is determined, the point
gaps can be detected by comparing the vertical space values with the spacing threshold.
To fill a gap, a list of points is added within the gap. These points have the same abscissa
of the gap’s lowest point (Figure 5c) and have gradual ordinates starting from the gap’s
lowest point ordinate added to THspacing until the gap’s upper point ordinate.

Figures 6 and 8 show the modeling results of the building point clouds illustrated in
Figures 2b and 5a consecutively in the case of the application of the gap-filling strategy
and without applying this strategy. In Figure 8, the gap heights are smaller than those in
Figure 6, which is why the influence of the filling gap operation is less notable oppositely

8
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to the case of the building presented in Figure 6. In Figure 6b, the building model has a
great deformation in the gap area. This deformation disappears in Figure 6c thanks to the
gap-filling function. Moreover, the building model becomes more faithful to the original
building presented in Figure 6a after applying the gap-filling strategy.

Figure 8. Models calculated from the point cloud shown in Figure 2b. (a) Tower model before
fillingthe gaps. (b) Tower model after filling the gaps. (c) Tower model after considering all cloud
points. (d) Tower image.

4.3. Integrating Deviated Points in the Calculated Model

It can be observed from Figure 4b that most of the building cloud points have dis-
tinctive (non-duplicated) Z coordinate values. However, in the presence of several LiDAR
points having the same Z coordinate value, the suggested algorithm in the last section
considers only the nearest point to the rotating axis and neglects the other points. In this
section, the suggested algorithm will be extended to consider all cloud points without
neglect. For this purpose, the coordinates of non-considered points are used to modify the
rotating surface depicted by Equations (3)–(5) [45].

At this stage, it is important to show how Equations (3)–(5) are deduced. One rotating
surface can be divided into n horizontal slices according to the consecutive Z coordinate
values of the half -cross-section cloud (see Figure 4a). The points of each slice have the same
Zi coordinate value, which is why the elements of each row in the Z matrix are equal. Each
slice represents a circle because it belongs to a rotating surface. This circle can be divided
into m angular sectors. One rotating surface is expressed by three matrices X, Y, and Z.
This surface is composed of cells. The coordinates of the middle point of each cell will be
considered from the three corresponding cells of the last three matrices. The dimensions of
one cell can be calculated as a function of the thickness of the horizontal slice, the number
of angular sectors, and the cell circle radius value (R = Yi − Yg). The angle of each angular
sector equals 2π j

m , where j is the sector number. In Equation (5), the origin of β is the circle
center, but the origin of α is Yi. The application of basic sine and cosine relationships allows
deducing α and β equations where the value 3π

2 is added to the angle value for adapting
the signs.

Return to the integration of non-considered points, if one point (Xp, Yp, Zp) does not
belong to a rotating surface defined by Equations (3)–(5), it is desired to integrate this point
within this surface. Hence, this operation can be carried out by calculating the angle θ (see
Figure 9) using Equation (6). Thereafter, the angle θo measured from the rotating origin
Ro (see Figure 9) is calculated according to Equation (7). In the matrices X and Y, the row
number of the concerned cell can be calculated depending on the Z coordinate value (Zp).
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Furthermore, the column number of the concerned cell can be calculated depending on θo
value and the number of columns of the matrix X according to Equation (3).

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

Xg
Xg
Xg

Xg + β1,1
Xg + β2,1
Xg + β3,1

Xg + 2β1,2
Xg + 2β2,2
Xg + 2β3,2

. . .

. . .

. . .

. . .

. . .

. . .

Xg
Xg
Xg

.
XgXg + βn,1

.
Xg + 2βn,2

.
. . . . . . .

.
Xg

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1
Y2
Y3

Y1 + α1,1
Y2 + α2,1
Y3 + α3,1

Y1 + 2α1,2
Y2 + 2α2,2
Y3 + 2α3,2

..

..

..

..

..
. . .

Y1
Y2
Y3

.
Yn

.
Yn + αn,1

.
Yn + 2αn,2

.
. . . ..Yn

⎤
⎥⎥⎥⎥⎥⎥⎦

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

Z1
Z2
Z3

Z1
Z2
Z3

. . .

. . .

. . .

. . .

. . .

. . .

Z1
Z2
Z3

.

.
Zn

.

.
Zn

.

.
. . .

.

.
. . .

.

.
Zn

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

αi,j =
(
Yg − Yi

)
sin (

2jπ
m

+
3π

2
), βi,j =

(
Yg − Yi

)
cos (

2jπ
m

+
3π

2
) (5)

where Xg and Yg are the coordinates of the gravity center (Equation (2)); Xi, Yi, and Zi (i = 1
to n) are the point coordinates of the half cross-section; j = 1 to m; n is the number of points
in the half cross-section; αi and βi are the step values of X and Y, respectively; and m is the
number of columns in matrix X.

θ = arctan
abs(ΔY)
abs(ΔX)

= arctan
abs

(
Y − Yg

)
abs

(
X − Xg

) (6)

I f ΔX < 0 andΔY > 0 then θo =
3π
2 + θ

I f ΔX > 0 andΔY > 0 then θo =
π
2 − θ

I f ΔX < 0 andΔY < 0 then θo = π + θ

I f ΔX > 0 andΔY < 0 then θo =
π
2 + θ

(7)

CN = round
θo

2π
× m (8)

where CN is the column number in matrix X (Equation (3)), m is the number of columns in
matrix X, and “round” is a function that provides the round value of a given real number.

Figure 9. Integration of a new point within the constructed building model, Ro is the rotating origin,
g is the gravity center, and P is a point off the rotating surface.
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The new value of the corresponding cells in X and Y matrices are calculated using
Equation (9).

Xn = Xg +
(
Yg − Dispg

)× Cosθo

Yn = Yg +
(
Yg − Dispg

)× Sinθo
(9)

where Xn and Yn are the new value of the corresponding cells in X and Y matrices, Dispg is
the distance between the gravity center g and the given point P.

Once the new value of the corresponding cells in the X and Y matrices are calculated,
these values can be reassigned to the concerned cell in the matrices X and Y. This operation
can be carried out for all deviated points to consider them within the building model.

The red arrow in Figure 8c points to the influence due to the integration of the deviated
points within the building model. Unfortunately, the deviated points in the case of the
building illustrated in Figure 8 represent noisy points, which is why the constructed model
shown in Figure 8c has certain deformations due to the inclusion of noise points. However,
the inclusion of the deviated points may sometimes improve the model quality when the
deviated point density is high enough, and the deviated points represent building details
or decoration. Figure 10a,b show the tower model before and after the inclusion of the
deviated points. At the red arrow in Figure 10c, the geometry of the tower part covered
by the LiDAR points (see Figure 10c, which shows the superimposition of the point cloud
on the building model) was improved due to considering all LiDAR points. Moreover,
Figure 10c illustrates that the tower point cloud completely fits the improved constructed
model. Nevertheless, more investigations are needed to automatically classify the building
point cloud into building points and noise points.

 
Figure 10. (a) Tower model before including deviated points. (b) Tower model after including
deviated points. (c) Laying out point cloud over the tower model after including the deviated points;
LiDAR point cloud is in red color.

5. Discussion

In this section, the suggested modeling algorithm will be applied to different samples
of the tower point clouds. Then, the modeling accuracy as well as the faithfulness of the
obtained models will be discussed.
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5.1. Performance of the Method

Figures 6, 8 and 10–12 depict the tower models constructed by the proposed approach.
Figures 6 and 8 show the influence of gap-filling operation on the constructed building
model, where this influence is humble in the case of the building illustrated in Figure 8 be-
cause the geometric form of the tower does not contain a hidden area regarding the airborne
scanning, whereas in the case of building illustrated in Figure 6, the gap filling operation
is crucial in order to avoid the huge deformation within the hidden area. Nevertheless,
the success of the gap-filling procedure needs sufficient points to cover the tower body.
This situation can be illustrated in Figure 11i–l. The LiDAR points that cover the building
body are concentrated only on the upper part of the tower, in contrast to the other lower
parts, where very few points are laid on the building body’s outer surfaces. That is why the
obtained building model cannot show the steps of building architectural form (Figure 11k,l).
In the same context, the gap-filling procedure depends on the vertical spacing threshold
value, which is related to the point density as well as the LiDAR point accuracy.

Figure 11. (a,e,i) Tower images. (b,f,j) Tower point clouds. (c,g,k) Tower model before considering
all cloud points. (d,h,l) Tower model after considering all cloud points.
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Figure 12. (a,d,g) Tower point clouds. (b,e,h) Tower model before considering all cloud points. (c,f,i)
Tower model after considering all cloud points.

Moreover, in the building vertical cross-section, the accepted vertical spacing value
between neighboring points is variable regarding the regularity level of point distribution,
point accuracy, point density, building architectural form and complexity level, construction
material nature, and scanning angle. More investigation is needed to improve the selection
and effect of the vertical spacing between neighboring points.

Concerning the integration of deviated points operation, two cases may be envisaged.
First, when the deviated points represent noisy points, the integration of these points
within the building calculated model will produce undesired deformations (see red arrow
in Figure 8c). Second, if the deviated points do not represent noisy points, the integration
of these points into the constructed building model may improve its quality if their density
value is elevated enough because it will become more faithful to the scanned building
(Figure 10b,c, Figure 11, and Figure 12). On the other hand, if the deviated points’ density is
low, the introduced corrections may make the building model look deformed. Furthermore,
the resemblance level between the obtained building model and the original scanned
building will be related to the point density and accuracy values. At this stage, more
investigations in future research are requested about the effective integration of the deviated
points into the constructed tower model.

Though the high efficiency of the suggested approach is demonstrated regarding the
architectural complexity of the target buildings, it still suffers from some limitations that
deserve future efforts. These limitations can be summarized as follows:

• Undesirable distortions may appear in the constructed model when the input point
cloud has inconsistent quality regarding the point density, distribution regularity, and
homogeneity. Certain levels of balance may be desired that can comprise the data
volume, level of details for presentation, and the accuracy of the model;

• Like many other methods, the developed method can only reconstruct buildings that
meet certain assumptions, which in this case are rotating surfaces. Small attachments
or decorations of the main surface need to be treated separately. A promising effort is
to extend and/or integrate this method with other methods to handle complex and
diverse buildings.

5.2. Modeling Accuracy

Concerning the accuracy of the constructed building models, there are two main
accuracy estimating approach families [22]. First, the created building model is compared
with the reference model constructed manually or semi-automatically using LiDAR data or
other data sources such as aerial images [14,20,21]. In the second approach, the LiDAR point
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cloud is employed as a reference model, where the accuracy can be evaluated by calculating
the distances between the constructed building model and the point cloud [20,21,28]. In
this paper, the accuracy of modeling will be discussed through three viewpoints. First,
despite the undesirable deformations in the constructed building models, the accuracy
of the calculated building model is 100% when the building point cloud is considered
as a reference model. Indeed, the constructed model fits all building cloud points and,
consequently, the building model is completely faithful to the input building point cloud.
In this context, Tarsha Kurdi and Awrangjeb [22] compared the building point clouds with
the obtained building models. They concluded that the accuracy, regularity, as well as point
density of the building point cloud, may affect the faithfulness of the building model to the
original building even if the model greatly fits the point cloud.

From a second viewpoint, the cell’s dimension of the model can also express the
building model accuracy, because the cell size represents the interval where the LiDAR
point may be located. From Equations (3)–(5), the building model consists of a matrix of
cells connected through robust neighbor relationships. The cell’s dimensions are used as
an evaluation metric. The width (CW) and height (CH) of a cell can be calculated using
Equation (10).

CW =
2 × π × Dispg

m
; CH = Zi − Zi−1 �= 0 (10)

where Dispg is the distance between the gravity center g and the given point (Equation (11)),
m is the number of columns in matrix X.

Dispg =

√(
Xp − Xg

)2
+

(
Yp − Yg

)2 (11)

From Equation (10), it can be noted that the cell’s dimensions are related to the number
of columns in the building model matrices, the distance from the rotating axis, and the point
density. While the number of columns of the model matrices increases, the cell widths will
decrease. Also, CW and CH values are variable from point to point in the building model.
Hence, for each building model, the minimum, maximum, and mean values of these param-
eters are calculated (Table 1). In this context, the buildings illustrated in Figures 11 and 12
are considered to estimate the modeling accuracy by respecting their order.

Table 1. Accuracy of building models for m = 61.

Building Number Min CW (m) Max CW (m) Mean CW (m) Min CH (m) Max CH (m) Mean CH (m)

1 0.01 1.36 0.81 0.01 0.20 0.02

2 0.01 4.55 2.79 0.01 0.20 0.01

3 0.02 0.66 0.40 0.01 0.20 0.07

4 0.01 0.88 0.53 0.01 0.20 0.08

5 0.01 0.49 0.26 0.01 0.20 0.04

6 0.01 1.33 0.75 0.01 0.14 0.02

From Table 1, it can be noted that at least one dimension of the cell is related to the
building diameter. That is why it is advised to increase the m value with an increase in the
building radius. To conclude, two main factors that influence the dimension of the model
cells are the building diameter and the point density.

Finally, in the same context of the building model accuracy, the question of accu-
racy estimation by comparing the constructed building model with a reference model
constructed manually or semi-automatically [14,20,21] will also be discussed. In fact, the
target buildings by the proposed modeling approach have complicated architectural forms
(see Figures 6, 8 and 10–12), where their geometric forms contain curved surfaces as well
as decorations. That is why the construction of accurate models for them to be used as
references will need a huge amount of time and extra data and measurements. Moreover, if
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it is insisted to construct these reference models, a new question will arise concerning the
comparison between the reference model and the calculated models. Indeed, the references
model is supposed to have vectorial forms, whereas one calculated building model is
composed of three matrices (X, Y, and Z). Also, the visualization of the calculated models is
carried out using 3D pixel form because the model represents a novel modeling strategy in
the world of LiDAR data and is based on the concept of the rotating surface. Hence, the
comparison between the two building models needs more investigation.

To conclude, in this paper, only the comparison between the calculated building model
and its LiDAR point cloud is considered. In future research, a more thorough investigation
will be carried out to compare the constructed models with the reference models. Another
question about the improvement of quality as well as the accuracy of the calculated building
model will also be handled.

6. Conclusions

The novel proposed approach to modeling atypical landmark buildings at the LoD3
level has significant implications for all applications that rely on 3D building models. The
suggested algorithm is based on the hypothesis of the rotating surface form of the target
building. One building point cloud will be present by three matrices, X, Y, and Z. Moreover,
the visualization will be realized using 3D pixel form. Only buildings that are solids of
the revolution were modeled in the present study. A strategy for filling gaps in vertical
cross-sections was described for buildings whose unique features prevent laser pulses
from reaching the scanned surface. The developed strategy significantly improved the
quality of the generated models. The operation of integration of the deviated points into
the constructed building model aids in completely fitting the constructed model with the
point cloud, but it may generate undesirable deformation in the building model when the
deviated points represent noisy points, or their density is not great enough.

The main advantage of the suggested modeling algorithm is that it targets complicated
geometric buildings, and the model data volume is light. Further efforts are needed to
render building facades in greater detail because the deviated points (outliers) in the
calculated models can belong to the façade. These points can result from noise, residual
errors in the process of determining the building axis, or even permissible deviations from
the wall and roof surfaces stipulated in structural designs. Also, more investigations are
needed to estimate the constructed building model with vectorial models.

Finally, the novel suggested modeling strategy can be extended in future work to be
employed for most levels of building architectural complexity, especially when a high point
density is available. This approach can be extended for tree modeling as well as statues
and other solid objects.
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Abstract: Multiview stereo (MVS) achieves efficient 3D reconstruction on Lambertian surfaces and
strongly textured regions. However, the reconstruction of weakly textured regions, especially planar
surfaces in weakly textured regions, still faces significant challenges due to the fuzzy matching
problem of photometric consistency. In this paper, we propose a multiview stereo for recovering
planar surfaces guided by confidence calculations, resulting in the construction of large-scale 3D
models for high-resolution image scenes. Specifically, a confidence calculation method is proposed
to express the reliability degree of plane hypothesis. It consists of multiview consistency and patch
consistency, which characterize global contextual information and local spatial variation, respectively.
Based on the confidence of plane hypothesis, the proposed plane supplementation generates new
reliable plane hypotheses. The new planes are embedded in the confidence-driven depth estimation.
In addition, an adaptive depth fusion approach is proposed to allow regions with insufficient
visibility to be effectively fused into the dense point clouds. The experimental results illustrate that
the proposed method can lead to a 3D model with competitive completeness and high accuracy
compared with state-of-the-art methods.

Keywords: confidence calculation; depth estimation; multiview stereo; plane supplementation;
weakly textured regions

1. Introduction

Multiview stereo (MVS) is an important research topic in photogrammetry and com-
puter vision. Over the last few years, impressive results [1–4] have been achieved in terms
of the quality of 3D geometric representation reconstructed from multiview stereo. The re-
constructed 3D model is applied in real-scene applications, such as digital cities, unmanned
aerial vehicles (UAV), augmented reality (AR), and virtual reality (VR). The MVS, based
on the PatchMatch algorithm [5,6], represents the most advanced MVS method. It aims at
estimating depth maps using a set of 2D images with multiple views and then merging the
dense 3D point clouds of the objects or scenes via depth fusion.

The PatchMatch algorithm can be divided into two main parts, including depth
estimation and depth fusion. The depth estimation relies on the cost function based
on photometric consistency, which is computed as normalized cross correlation (NCC)
of corresponding patches between multiple views. Further, the NCC is expressed as the
similarity of luminosity (pixel values or grayscale values) between different images’ patches.
The PatchMatch algorithm achieves adequately reliable results in strongly textured regions
as well as in Lambert surfaces. However, it is mainly faced with the following challenges:

(1) Depending on the photometric consistency, traditional depth estimation [6,7] exhibits
the fuzzy matching problem in weakly textured regions. The fuzzy matching problem
is that even the erroneous plane hypothesis allows patches to match highly similar
regions between multiple views. This makes depth estimation insufficiently reliable
in weakly textured regions.
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(2) During depth estimation, some views are invisible and cannot accurately reflect a
reliable matching relationship due to occlusion and illumination. The matching cost
calculated via invisible view would be an outlier in the multiview matching cost,
which affects the accuracy of depth estimation.

In response to the above problems, some state-of-the-art methods [8–11] have been
proposed. For outliers caused by invisible views in the multiview matching cost, a good
idea is to determine the importance of each neighboring view, thereby altering the influence
of each view in the multiview matching cost. Refs. [12–15] explored the contribution of
neighborhood views to the multiview matching cost to achieve a highly accurate MVS.
Ref. [15] designs a view weight to adjust the contribution of neighboring views in the
multiview matching cost. It jointly estimates view selection and depth-normal information
via a probabilistic graphical model. By using a generalized expectation maximization
algorithm, each view would be assigned a view weight. The weighted multiview matching
cost function effectively achieves highly accurate depth estimation. However, the view
weights never change the essence of the fuzzy matching problem of photometric consistency.
It makes [15] suffer from a significant inadequacy in terms of the completeness of the
reconstruction, especially in weakly textured regions.

To solve the deficiency of [15] in completeness, we propose a plane supplement
module, which is based on plane hypothesis confidence calculation. The generated reliable
plane hypothesis is introduced into a confidence-driven depth estimation, which can
effectively improve the completeness of the reconstruction. Meanwhile, confidence is
embedded into the multiview matching cost as a constraint to overcome the fuzzy matching
problem faced in photometric consistency.

In structured scenes, surfaces with weakly textured regions can be approximately
characterized as identical planes. This allows the plane-based methodology [16–21] to
effectively guide the elimination of the fuzzy matching problem that occurs in weakly
textured regions, then improves the completeness of the reconstruction. Following their
previous work, the authors of [18,22] introduce the prior plane to help the recovery of
weakly textured regions. Firstly, the pixels with extremely small costs are selected for
triangulation and interpolation. The generated triangular prior planes can effectively
represent the planar structure of the scene. Secondly, the prior planes are introduced into
the multiview cost function through a probabilistic graphical model. The new matching
cost balances the photometric consistency with planar compatibility, thus improving the
quality of reconstruction.

However, the problem with [18] is that the generation of prior planes is overly de-
pendent on the photometric consistency cost, although incorrect prior planes may not
be available due to the multiview matching cost. To address the problem, we propose
a new confidence calculation method to express the reliability of the plane hypotheses
in depth estimation. The calculated confidence consists of multiview consistency and
patch consistency. Via the plane hypothesis confidence calculation, a confidence-driven
depth estimation combined with the proposed planar supplement is effective in estimating
reliable plane hypotheses.

In addition, the quality of the 3D models merged from the 2D depth maps is dependent
on the depth fusion. The authors of [6,7] employ a consistent-matching-based depth fusion
approach to obtain dense point clouds. A consistent match is defined as satisfying certain
consistency constraints. The plane hypothesis would be accepted when allowing at least
certain neighboring views satisfying the consistent match (view constraint). The pixels of
accepted plane hypothesis are projected into the 3D space and averaged into uniform 3D
points. Based on the depth fusion method of consistent matching, [15,18,22] tighten the
constraints of consistent matching using the geometric error.

However, the fusion approach used in [7,15,18,22] relies on the fixed parameters of
consistency constraints and view constrain. For regions that are only visible in finite
neighborhood views, a rigorous view constraint may make it difficult to be fused into the
point clouds. The regions are easily fused if the view constraint is loose, however, leading
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to a decrease in the accuracy of the point clouds. To address this problem, we propose a
depth fusion method that adaptively adjusts view constraint and consistency constraints to
improve the quality of the 3D point clouds.

In this paper, we propose an MVS pipeline using confidence calculation as guidance
to recover reliable planar surfaces for weakly textured planes. To quantifiably express the
reliability of the plane hypothesis in depth estimation, we propose a confidence calculation
method consisting of multiview consistency and patch consistency. The plane supplement
method is applied to additionally provide reliable planes, especially for the planar surfaces
in weakly textured regions. Then, the reliable planes selected by the confidence calculation
are embedded in the confidence-driven depth estimation. Finally, an adaptive fusion
method can efficiently merge invisible regions into dense point clouds, and achieve a good
balance between completeness and accuracy of reconstruction.

Our contributions are summarized as follows:

• To quantify the reliability of the plane hypothesis in depth estimation, a plane hy-
pothesis confidence calculation is proposed. The confidence consists of multiview
confidence and patch confidence, which provide global geometry information and
local depth consistency.

• Based on the confidence calculation, a plane supplement module is applied to gen-
erate reliable plane hypotheses and is introduced into the confidence-driven depth
estimation to tackle the estimating problem of weakly textured regions to achieve the
high completeness of reconstruction.

• An adaptive depth fusion method is proposed to address the imbalance in accuracy
and completeness of point clouds caused by fixed parameters. The view constraint and
consistency constraints for fusion are adaptively adjusted according to the dependency
of each view on different neighboring views. The method achieves a good balance of
accuracy and completeness when merging depth maps into dense point clouds.

2. Related Works

According to [23], the pipelines of multiview stereo can be divided into four categories,
which are voxel-based methods [24,25], surface evolution-based methods [26,27], feature
point growing-based methods [28], and depth map merging-based methods [6,8,11,15,29].

The depth map merging-based approach is divided into two steps, which are depth
map estimation and depth map fusion. Depth maps are estimated for all views, and then
all depth maps are merged into the point clouds model based on the relationship between
multiple views. Ref. [5] innovatively proposes slanted support windows to achieve highly
slanted surface reconstruction with subpixel precision for disparity detail. Ref. [6] ap-
plies PatchMatch to MVS to estimate depth maps, and fuses them into point clouds by
consistency matching.

The invisible neighboring view in multiple views becomes a disturbance to the accu-
racy of depth estimation. Ref. [12] heuristically selects the best view by minimum cost for
accurate depth estimation. Refs. [13,30] model scene visibility and local depth smoothing as-
sumptions by Markov random fields for pixel-level view selection. Ref. [14] jointly models
pixel-level view selection and depth map estimation via a probabilistic framework to adap-
tively determine pixel-level data associations between the current view and all elements of
neighboring views. By discussing the support window selection, visibility determination,
and outlier detection, Ref. [9] proposes an accurate visibility estimation method to achieve
high-accuracy reconstruction. Ref. [15] establishes a pixelwise view selection scheme and
jointly estimates the view selection, as well as depth-normal information, by a probabilistic
graphical model.

The sequential propagation in the PatchMatch-based MVS method is an important
factor affecting the efficiency of depth estimation. Ref. [10] implements a GPU-based
parallel propagation of the red-black checkerboard scheme to accelerate the propagation
process of MVS. Ref. [22] proposes adaptive checkerboard propagation and multihypothesis
joint view selection to obtain efficient and high-quality reconstruction, which is named
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ACMH. On this basis, reliable estimation of weakly textured regions at coarse scales
is applied to fine scales in combination with multiscale geometric consistency guidance,
which is named ACMM. Similarly based on the adaptive checkerboard propagation scheme,
Ref. [18] proposes the prior plane generation method and embeds it into the matching
cost calculation, utilizing a probabilistic graphical model. Ref. [4] integrates the two
aforementioned works to achieve an extremely competitive 3D reconstruction.

The fuzzy matching problem faced in weakly textured regions greatly affects the
completeness of the reconstruction. Ref. [1] adaptively adjusts the patch size by curvature
model to attenuate the ambiguity of matching. Ref. [31] considers local consistency in
the matching cost and completes the MVS with high integrity in the pyramid structure.
Ref. [3] combines dynamic propagation and sequential propagation and introduces coarse
inference within a universal window to eliminate artifacts to improve the completeness
of reconstruction. Ref. [16] proposes a texture-aware MVS and fills the vacant planes by
superpixels after filtering outliers. Ref. [17] improves a planar complementation method
by growing superpixels to complement the filtered depth map. Ref. [32] combines the
relationship between multiple views while using superpixels to make the complementation
more robust. Ref. [20] proposes a plane prior generation method by combining mean-
shift clustering and superpixel segmentation, then introduces planar priors and smooth
constraints into the cost. The image gradient is used to adaptively adjust the weights
of different constraints in the cost. Ref. [21] designs a quadtree-guided prior method
and embeds it into the matching cost calculation to improve the estimation of weakly
textured regions.

The reconstruction of geometric details is also an important research problem. Ref. [33]
proposes a selective joint bilateral propagation upsampling method for recovering the depth
maps at coarse scales to geometric details at fine scales. Ref. [2] focuses on the geometric
details of reconstruction, especially the preservation of geometric details of thin structures.
Ref. [34] considers three types of filters to achieve an outlier and artifact removal method
for MVS.

Recently, a popular research approach combines the traditional MVS pipeline with
deep learning, which is about confidence. Confidence prediction is widely used in stereo
problems [35–37]. In multiview stereo, the photometric consistency is stably supported
by multiple views but is still not reliable. Ref. [38] proposes a self-supervised learning
method to predict the confidence of multiview depth maps and constructs high-quality
reconstructions by confidence-driven and boundary-aware interpolation. Ref. [39] proposes
a confidence prediction method, which is a network structure where RGB images, normal
maps, and scale-robust TSDF are globally fused by U-Net architecture with intermediate
loss and refined by an iterative refinement module with a later-fusion layer and LSTM layer.
Ref. [40] customizes a confidence prediction network for MVS using DNNs and uses it for
depth map outlier filtering and depth map refinement. Ref. [41] uses a pyramid structure to
guide the fine-scale MVS process using a grid at coarse scales, and a deep neural network
is designed to predict the confidence.

The successful extraction of semantic information contributes to the further develop-
ment of the quality of 3D reconstruction. Refs. [42,43] explore the possibility of semantic
segmentation for application in MVS. Further, Ref. [44] utilizes semantic segmentation-
guided prior planes to tackle the weak texture problem in PatchMatch MVS. Ref. [19]
combines the MVS with PlaneNet to repair incorrect points by correcting and integrating in-
accurate prior information from pretrained CNN models and depth map merging methods,
then interpolating in weak support planes.

3. Review of Depth Estimation in ACMH

In this section, we review an advanced PatchMatch-based MVS algorithm, ACMH [22].
It follows the basic four-step PatchMatch-based MVS algorithm [6]. The purpose of this
section is to help clearly understand the details of the depth estimation in our framework.
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ACMH adopts a propagation scheme of adaptive checkerboard sampling, and ame-
liorates the calculation of the multiview matching cost function through multihypothesis
joint view selection, thus achieving extremely high accuracy while parallelizing. The entire
depth estimation can be summarized as follows:

3.1. Initialization

ACMH generates a random initial plane hypothesis for each pixel. Then, the bilateral
weighted NCC [15] is calculated as the matching cost between the current view and each
neighboring view. The initial multiview matching cost is calculated as the average of the
top five best matching costs.

3.2. Propagation

Based on the diffusion-like propagation scheme [10], ACMH modifies the selection of
neighborhood plane hypotheses to four V-shaped areas and four long strip areas (Figure 1).
According to the multiview matching cost, the plane hypothesis with the minimum cost is
selected as the candidate in each of the eight areas.

Figure 1. The adaptive checkerboard propagation scheme of ACMH. Each V-shaped area contains
7 sampling pixels, and each long strip area contains 11 sampling pixels.

3.3. Multiview Matching Cost Calculation

For each pixel p, the matching costs between all neighboring views are calculated
and embedded into a cost matrix M according to its original plane hypothesis and eight
candidate plane hypotheses obtained in propagation,

M =

⎡
⎢⎣

m(φ0, 1) · · · m(φ0, J)
...

. . .
...

m(φ8, 1) · · · m(φ8, J)

⎤
⎥⎦ (1)

where m(φi, j) is the matching cost between the i-th plane hypothesis φi corresponding to
the j-th neighboring view, and J is the total number of neighboring views.

To mitigate the impact of unreliable neighborhood views, ACMH selects an appro-
priate subset from all neighboring views according to the cost matrix. Then, the reliable
neighboring views are given large view weights.

In each column of the cost matrix, a voting decision is adopted to determine the
suitability of the view. For the neighboring view Vj of the t-th iteration, the Sgood is defined
as the set whose m(φi, j) < τ(t), and Sbad is the set whose m(φi, j) > τb. The parameter τb
is a constant, and τ(t) is modeled as

τ(t) = τinit · e−
t2
μ (2)
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where τinit is the initial cost threshold and μ is a constant. The selected subset of neighboring
views contains all neighboring views whose Sgood > n1 and Sbad < n2.

Furthermore, to determine the view weight of each neighboring view in the subset,
the cost confidence is calculated based on the matching cost,

C(m(φi, j)) = e
− m(φi ,j)2

2β2 (3)

Based on the cost confidence, the initial view weight of the neighboring view Vj is
calculated as

winit

(
Vj

)
=

⎧⎨
⎩

1
|Sgood| ∑

m(φi ,j)∈Sgood

C(m(φi, j)), Vj ∈ St;

0, else.
(4)

After iterative propagation, according to the most important view (the view with the
largest weight), the calculation of view weight is modified as

w′
j =

{ (
Λ
(
Vj = vt−1

)
+ 1

) · winit
(
Vj
)
, Vj ∈ St;

0.2 · Λ
(
Vj = vt−1

)
, else.

(5)

where Λ(·) means that Λ(true) = 1 and Λ( f alse) = 0. According to the calculated view
weight, the multiview matching cost is calculated as

m(p, φi) =

N−1
∑

j=1
w′

j · m(φi, j)

N−1
∑

j=1
w′

j

(6)

The original plane hypothesis of pixel p is updated to the plane hypothesis, with the
minimum multiview matching cost calculated in the set of plane hypotheses.

3.4. Refinement

In the refinement, each plane hypothesis is made as close as possible to the global
optimal solution after propagation. Random plane hypothesis (drand, nrand) and perturbed
plane hypothesis (dpert, npert) are generated based on the plane hypothesis (dp, np) of pixel
p. The new set of plane hypotheses is combined as (dp, np), (dprt, np), (drnd, np), (dp, nprt),
(dp, nrnd), (drnd, nrnd), (dprt, nprt). The plane hypothesis of pixel p is updated to the one
with the minimum multiview matching cost in the set.

Finally, the steps of propagation, multiview matching cost calculation, and refinement
are iterated several times to make the plane hypothesis of each pixel converge to the global
optimal solution.

4. Method

4.1. Overview

Given a set of views with known camera parameters, the goal of depth estimation is to
obtain each plane hypothesis in views, which contain both depth information and normal
information.

Then, all the depth maps are merged into dense point clouds. The whole framework
of our method is shown in Figure 2.

Firstly, the sparse point clouds are reconstructed via structure from motion (SFM).
Then, the set of views, camera parameters, and sparse point clouds are jointly input into
our framework. At the beginning of our framework, we follow the scheme in ACMH [22]
to obtain the coarse depth maps with structural details. Via the confidence calculation,
reliable plane hypotheses in coarse depth maps are identified and extracted. In plane
supplementation, the images with the extracted reliable planar hypotheses are divided into
multiple triangular primitives by Delaunay triangulation. For the low-confidence regions

23



Remote Sens. 2023, 15, 2474

in triangular primitives, new reliable planes are generated via triangular interpolation of
the extracted reliable plane hypotheses. Afterward, the most accurate plane hypotheses
between the supplement planes and coarse depth maps are retained and embedded into
the confidence-driven depth estimation. Finally, the depth maps are converted into dense
point clouds according to the adaptive fusion approach.

Figure 2. Overview of our method. The framework is divided into five parts, namely depth estimation
of ACMH, confidence calculation module, plane supplementation module, confidence-driven depth
estimation, and adaptive fusion. Further, both the depth estimation of ACMH and the confidence-
driven depth estimation follow the basic four steps of the PatchMatch-based MVS algorithm, namely
initialization, propagation, multiview matching cost calculation, and refinement.

4.2. Plane Hypothesis Confidence Calculation

During the original depth estimation, photometric consistency appears as the problem
of fuzzy matching in weakly textured regions. The problem is demonstrated by the fact that
the depth of the incorrect plane hypothesis can make it possible to match highly similar
regions between multiple views, making the multiview matching cost lack credibility.
Ref. [15] attempts to add geometric consistency constraints to the multiview matching cost
to reduce the erroneous plane hypotheses in weakly textured regions. Ref. [31] tries to add
local consistency constraints to eliminate incorrect plane hypotheses.

However, photometric consistency would perfectly characterize the structure of the
objects or scenes in structured scenes. Adding constraints to the matching cost certainly
allows the fuzzy matching problem that occurs in weakly textured regions to be solved to
some extent. However, the new constraints may blur the geometric details in the object
or scene.

In contrast, we would like to capture which plane hypotheses are accurate enough to
be represented the real objects or scenes after each depth estimate. Therefore, we propose
a new confidence calculation method. The confidence expresses the degree of reliability
of each plane hypothesis. For the plane hypothesis with large confidence, we consider
that the plane hypothesis would accurately indicate the real surface of the scene or object.
The plane hypothesis with low confidence is considered to be an incorrect estimation,
and these incorrect plane hypotheses need to be filtered or upgraded. In the confidence
calculation, the confidence is divided into two parts, including the multiview confidence
and the patch confidence.

In multiview stereo, an assumption is that a reliable plane hypothesis should be
geometrically stable between multiple views. Thus, based on the relationship of multiple
views, a measure of multiview confidence is established firstly, which means the consistency
degree of plane hypotheses among multiple views.

Note that the multiview confidence is calculated based on all neighboring views.
The component of multiview confidence, which is calculated between the current view and
one neighboring view, is defined as the view confidence.
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Given a pixel p, its plane hypothesis φp is (dp, np). The multiview geometry is ob-
tained as shown in Figure 3. The camera projection matrix from the current view Vi to
the neighboring view Vj is calculated according to dp. The pixel p is projected into the
neighboring view Vj to obtain the projected pixel q, and the plane hypothesis φq of q would
be obtained in the neighboring view. The pixel q is reprojected back into the current view
to obtain the reprojection point p′ according to the camera projection matrix from the
neighboring view to the current view, which is calculated with dq. By reprojecting the point
p′, the plane hypothesis φp′ of p′ corresponding to the current view Vi can be obtained.

Figure 3. The diagram of multiview geometry, which is using a neighboring view of multiple views
as an example. Ci and Cj are the camera center of the current view and neighboring view, respectively.

The view relationship between the current view and j-th neighboring view can be
described via the reprojection distance ξgeo, depth relative error ξd, normal pinch error ξn,
and the matching cost m

(
φp, j

)
. Therefore, ξgeo, ξd, ξn is calculated according to the pixel p,

p′ and the plane hypothesis (dp, np), (dp′ , np′). Then, the view confidence consists of the
geometric confidence Cgeo, the depth confidence Cd, the normal confidence Cn, and the cost
confidence Cc, which are calculated via the Gaussian function,

Cgeo = e
− ξ2

geo
2σ2

geo = e
−

(∥∥∥∥xp−xp′
∥∥∥∥
)2

2σ2
geo (7)

Cd = e
− ξ2

d
2σ2

d = e
− 1

2σ2
d

⎡
⎣

(
dp−dp′

)

dp

⎤
⎦

2

(8)

Cn = e
− ξ2

n
2σ2

n = e
−

[
arccos

(
np ·np′

)]2

2σ2
n (9)

Cc = e
− m(φp ,j)2

2σ2
c (10)

where σgeo, σd, σn and σc are constants in the Cgeo, Cd, Cn and Cc, respectively.
In a set of neighboring views V =

{
Vj | j = 1, 2, . . . , J

}
, there exist J sets of confidence

relations for neighboring view. The multiview confidence is calculated as the average of
the view confidence with all neighboring views:

C̄g =

J
∑

j=1

(
Cj

geo · Cj
d · Cj

n · Cj
c

)

J
(11)

25



Remote Sens. 2023, 15, 2474

A good plane hypothesis should be supported by multiple neighboring views. When
the number of neighboring views that maintain consistency is increased, the trustworthiness
of the planar hypothesis is improved. Meanwhile, the geometric stability in multiple
views is increased. However, the camera’s pose variation and the presence of occlusion
determine that not all regions in a view can be consistent with multiple views. Specifically,
some regions in a view are only visible in a limited number of neighboring views. Thus,
in these regions, calculating the view confidence with all neighboring views may cause the
correct plane hypothesis to be judged as unreliable. To this end, the multiview confidence
calculation is modified to be the average of the best K neighboring views among all
neighboring views.

Cg =

K
∑

j=1

(
Cj

geo · Cj
d · Cj

n · Cj
c

)

K
(12)

The global spatial information is fully considered in the multiview confidence, which is
based on the consistency of multiple measurements. The multiview confidence calculation
makes most plane hypotheses easy to calculate as reliable estimates with high confidence.
However, for some plane hypotheses that are correctly estimated in current view, erroneous
multiview confidences are calculated because of wrong plane hypotheses in neighboring
views. In addition, because of similar plane hypotheses in multiple views, some noise in
the current view may be calculated as high-confidence and retained, especially in weakly
textured regions.

In order to reduce the calculation of error confidence, a patch confidence measure based
on depth local consistency is added, which only relies on the information in the current
view. In the PatchMatch algorithm [5,45], a key statement is that relatively large regions of
pixels can be modeled by an approximately 3D plane. It allows the same plane hypotheses
to be shared within the pixel regions. The statement can be beneficial to help exploit the
local information in a view. To this end, the patch confidence is structured as a calculation
based on the consistency of local planes. For each pixel in the current view, a cruciform
patch is constructed, centered on the pixel. Firstly, a 3D local plane is constructed in
the camera coordinate via the central pixel’s 3D point Xc and its corresponding plane
hypothesis. Secondly, neighboring pixels in a cruciform patch are projected into the same
camera coordinate to obtain 3D points Xn. The average Euclidean distance from the 3D
points of neighboring pixels to the local 3D plane is calculated (refer to Figure 4),

ξ =
1
N

·
N

∑
n=1

ξn =
1
N

·
N

∑
n=1

nc · (Xc − Xn)√
n2

cx + n2
cy + n2

cz

(13)

where N is the number of pixels in a cruciform patch and nc is the normal of patch center
pixel. ncx, ncy, ncz are the three components of normal nc.

Based on the calculated average Euclidean distance, patch confidence is constructed
by the Gaussian function as well:

Cl = e
− ξ

2

2σ2
p (14)

where σp is a constant parameter of patch confidence.
Finally, via the calculated multiview confidence and patch confidence, the confidence

of the pixel p can be expressed as

C
(

p, φp
)
= Cg · Cl (15)
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(a) (b)

Figure 4. The diagram of patch confidence. (a) Building a cruciform patch with the local window of
3 × 3, which contains four neighborhood pixels. (b) Calculation of Euclidean distance in the camera
coordinate. The green point is the 3D point of the center pixel, the black line is the plane hypothesis
of the center pixel, the red points are 3D points corresponding to neighborhood pixels in the patch,
and the blue line is the Euclidean distance.

4.3. Plane Supplement and Confidence-Driven Depth Estimation

The purpose of the propagation scheme is that the reasonable plane hypotheses can be
propagated to other pixels in the same plane, making the estimation accurate and reliable.
However, in the weakly textured regions, it is difficult to select the correct plane hypothesis
using the matching cost function based on luminosity consistency, because the weakly
textured regions usually do not contain discriminative information. This makes it difficult
for incorrect plane hypotheses to be replaced by correct neighborhood candidate planes via
the propagation scheme, and these incorrect plane hypotheses may be propagated to other
pixels due to the propagation scheme.

This means that relying on existing plane hypotheses cannot help the reconstruction of
weakly textured regions. Ref. [18] chooses the base point via photometric consistency cost
to generate the prior plane and introduces them into the calculation of multiview matching
cost. However, the photometric consistency is not reliable in weakly textured regions,
giving prior planes wrong plane hypotheses. In addition, the photometric consistency
cost of incorrect planar hypothesis may be sufficiently small in weakly textured regions.
Despite using prior planes as a constraint in the calculation of multiview matching cost, it
does not allow these errors to recompute an aggregation cost large enough to be replaced
by correct plane hypotheses contained in prior planes. It keeps the wrong plane hypotheses
in weakly textured regions of depth maps.

In Section 4.2, the confidence is proposed to discriminate the accuracy and reliability
of plane hypotheses to avoid misjudgment of photometric consistency in weakly textured
regions. After the plane hypothesis confidence calculation, pixels with high confidence (we
set the confidence threshold δc to 0.8) are extracted from the coarse depth map. The key
observation behind this is that these pixels with high confidence mostly contain the struc-
ture of 3D scenes. Meanwhile, the planar hypotheses of extracted pixels are accurate and
reliable, because they are supported by multiple views and are consistent in local planes.
Using the extracted pixels as base points, the images are divided into multiple triangular
primitives with different sizes using Delaunay triangulation [46]. Then, based on the
depths of the three base points in the triangular primitives, a local 3D plane where the
triangular primitives are located is constructed. For the low-confidence pixels contained in
each triangular primitive, they are projected into the local 3D plane to obtain new depths,
resulting in additional supplemental depth maps.

The supplemental planes perform well in weakly textured regions, especially those
with large planes. However, some edge regions are blurred, which is contrary to photo-
metric consistency. The coarse depth map that depends on photometric consistency is
calculated with higher confidence than the supplemental depth map in these edge regions.
Conversely, the confidence of the supplemental depth map is better than the coarse depth
map in weakly textured regions.

27



Remote Sens. 2023, 15, 2474

Thus, the coarse depth map and supplemental depth map are jointly fed to a com-
parison module. Specifically, after obtaining the supplemental depth maps, the plane
hypothesis confidence calculation module is reapplied to calculate the confidence for each
plane hypothesis in the supplemental depth map. The confidences calculated in the supple-
mental depth map are compared with the coarse depth map, and the planar hypotheses
with higher confidence are retained.

Subsequently, the retained plane hypotheses are used as the initial values for the
confidence-driven depth estimation. An important reason for confidence-driven depth
estimation is that there are still some erroneous plane hypotheses mixed in with the retained
plane hypotheses. These noises tend to exhibit low confidence in both the supplemental
depth maps and the coarse depth maps. These noises can be effectively reduced with the
help of the propagation mechanism and the modified cost function. The results obtained by
combining the supplemental depth maps and the coarse depth maps lose partial structural
details. Since the photometric consistency cost has a significant result in textured regions,
it is possible to exploit this advantage to help the recuperation of these textured regions.
In addition, plane supplementation has a significant recovery for planar surfaces in weakly
textured regions. However, there is a subtle variation in the plane hypotheses in curved
surfaces of weakly textured regions, which causes a slight decrease in the accuracy of our
plane supplement. The propagation step and the refinement step in the depth estimation can
effectively help these curved surfaces to produce the correct variations of plane hypotheses
instead of keeping them in the same plane.

In the confidence-driven depth estimation, the processes of propagation and refine-
ment are kept in line with the ACMH [22], which are reviewed in Section 3. In particular,
for the multiview matching cost calculation, confidence is used as a constraint to limit the
propagation of incorrect plane hypotheses with low confidence to other pixels. Meanwhile,
planar hypotheses with high confidence can be easily propagated to other pixels of the
same plane with the help of the propagation scheme. According to the Equation (6),
the confidence-driven multiview matching cost function is modeled as

m
(

p, φp
)
=

N−1
∑

j=1
w′

j · m
(
φp, j

)
+ λ · (1 − C

(
p, φp

))
N−1
∑

j=1
w′

j

(16)

where C
(

p, φp
)

is the confidence of pixel p, which is calculated with the plane hypothesis
φp, and λ is a weight constant.

For weakly textured regions, the matching cost of photometric consistency computed
by different plane hypotheses is usually similar because of the lack of distinguishability
information. It causes the propagation mechanism in traditional MVS to easily transmit
erroneous plane hypotheses to other pixels in these regions, and is difficult to replace.
According to the modified confidence-driven multiview matching cost, the determining
factor for propagation mechanism to judge the reliability of the candidate plane hypotheses
is confidence. Because the confidence level calculated in the noise is small, the multiview
matching cost calculated in the noise is larger than the correct plane hypothesis. Thus,
the confidence-driven multiview matching cost would be helpful to address the problem
of propagation mechanism for candidate plane hypothesis selection. Meanwhile, plane
hypotheses with high confidence can be easily transmitted to pixels in the same plane
because they are computed at a low cost. For the structural detail regions, the important
factor that dominates the propagation mechanism’s selection of candidate plane hypotheses
changes to the photometric consistency matching cost. The reason is that the calculated
confidences are all great in these regions. Thus, the detail regions that were previously
blurred and erroneous would be improved.

To avoid the complexity of repeated confidence calculations due to changes in plane
hypotheses, the confidence-driven depth estimation is restricted to obtaining the final depth
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maps with one propagation. Via this confidence-driven depth estimation, the final depth
maps preserve the structural details well and improve the estimation quality of weakly
textured regions.

4.4. Adaptive Fusion

After depth estimation, all the depth maps of views are obtained. In the depth map
fusion step, all the depth maps are merged into the dense point clouds. In [6,7], all the
depth maps are fused by consistent matching with a fixed threshold. Specifically, for each
pixel, it is projected into each neighboring view via its depth of plane hypothesis. Then, it
is reprojected back to current view by the depth of hypothesis, which is in the neighboring
view. The corresponding matching relationship can be obtained based on the reprojected
point and the pixel in the current view. A consistent matching is defined as satisfying the
consistent constraints, including depth difference δd ≤ 0.01 and normal angle δn ≤ 10.
For all neighboring views, if there exist n ≥ δ neighboring views (defining δ as the view
constraint) satisfying the consistent matching, the hypothesis is accepted. Finally, all pixels
that satisfy the consistency matching are projected into the 3D space and averaged into
uniform 3D points, thus becoming part of the dense 3D point clouds. Refs. [15,18,22] further
tighten the consistent constraints of consistency matching on this depth fusion approach;
the reprojection geometry error δgeo ≤ 2 should be satisfied.

However, we observe that such a depth map fusion approach relies on fixed consistent
constraints and fixed view constrain. There are always situations where some regions of
the current view are only visible in a limited number of neighboring views. Then, too
large a view constraint will cause these regions cannot to be fused into the dense point
clouds, resulting in a lack of completeness. Too small a view constraint ensures the fusion
of these areas, but leads to a decrease in the overall reconstruction quality, especially in
terms of accuracy.

To solve this problem, an adaptive depth fusion approach is developed. Specifically,
the view weight is added to each neighboring view when calculating the multiview match-
ing cost. Such view weights can reflect the visibility relationships of pixels in multiple views.
At the end of the last depth estimation, the view weights corresponding to all neighboring
views of all pixels are retained. In the depth map fusion step, firstly, all neighborhood view
weights corresponding to each pixel are sorted from large to small. Secondly, based on
the distribution changes of neighborhood view weights, the view constraints δ(Vi) can be
adjusted adaptively.

δ(Vi) =

{
j, w′

j > δw ∩ w′
j < δw ∩ j ≤ 4;

4 j > 4.
(17)

where w′
j denotes the j-th sorted view weight of neighboring views. δw is the threshold of

the view weight. After sorting, the comparison starts from the largest neighborhood view
weight to the threshold of view weight. For the view weight w′

j ≥ δw, we consider the pixel
to be visible in corresponding neighboring view. The view constraint is adaptively adjusted
to the number of neighboring views accumulated. Until the j-th view weight w′

j ≤ δw, we
consider that the pixel’s visibility starts to be insufficient. In addition, the main goal of our
adaptive fusion is to ensure accuracy while improving the integrity of invisible regions.
The increase in view constraint indicates that the visibility of the regions is satisfied in
multiple neighborhood views, but it becomes difficult to satisfy the consistency of plane
hypotheses between multiple views. To prevent the influence of excessive view constraint
on the completeness of these regions, the view constraint is phased at the maximum value
of 4.

Simultaneously, to ensure as much as possible that the adaptive view constraints
are adjusted by visibility judgments rather than resulting in incorrect plane hypotheses,
the consistency constraints of consistent matching are adaptively adjusted according to
the size of the view constraint. For pixels with small view constraints, the consistency con-
straints are tightened to ensure that their plane hypotheses are accurate enough. For pixels
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with large view constraints, the consistency constraints are relaxed appropriately, allowing
the pixels supported via multiple neighboring views to be easily merged into point clouds
to improve the completeness of reconstruction.

δnew
d = [ln(2 · δ(Vi)− 1) + 1] · δd (18)

δnew
n = [ln(2 · δ(Vi)− 1) + 1] · δn (19)

δnew
geo = [ln(2 · δ(Vi)− 1) + 1] · δgeo (20)

where δd, δn, δgeo is the strictest consistency constraint when the view constraint δ(Vi) is 1.
With the view constraint increased, the consistency constraints become loose, making pixels
easy to be merged into dense point clouds when they are visible among multiple views.

In addition, for outdoor scenes, the sky regions become redundant in the dense
point clouds, because the sky regions lack true depth. Through a guided-filter-based mask
refinement method, Ref. [47] uses a neural network and weighted guided upsampling
to create accurate sky alpha masks at high resolution, resulting in the segmentation of
sky regions. Thus, before the beginning of the depth fusion step, the method in [47] is
applied to filter out the plane hypotheses of sky regions contained in the depth maps. The
sky-filtering step has almost no effect on the calculation of the quantifiers. However, we
can obtain clean depth maps as well as dense point clouds.

With the depth map fusion approach described above, we can obtain dense 3D point
clouds with high completeness and accuracy.

5. Experiments

The proposed CGPR-MVS is implemented in C++ with CUDA. To evaluate the pro-
posed pipeline, we perform quantitative and qualitative evaluations on the published
dataset ETH3D benchmark [48]. In addition, the qualitative evaluation is performed on
the sensefly dataset. The experiments were conducted on a machine equipped with Intel
Xeon E5-1630 v4 CPU, 64G RAM, and NVIDIA Quadro K2200 GPU.

The ETH3D benchmark contains both high-resolution datasets and low-resolution
datasets for the MVS task. Further, the high-resolution dataset is divided into the training
branch and the test branch, with all images having a resolution of 6048 × 4032. The training
branch dataset contains 13 sequences of indoor and outdoor scenes, with additional ground
truth point clouds and ground truth depth maps. The test branch dataset contains 12 se-
quences of indoor and outdoor scenes, and the evaluation is only available by uploading
to the online website, and the ground truth data are not publicly available. During the
evaluation, the quality of the reconstruction results is quantified in three metrics as accu-
racy, completeness, and F1 score. The accuracy is the percent fraction of the reconstruction,
which is closer to the ground truth than the evaluation tolerance. The completeness is
the percent fraction of the ground truth, which is closer to the reconstruction than the
evaluation tolerance. The F1 score is the harmonic mean of accuracy and completeness.
For details of the whole evaluation, please refer to [48].

The sensefly datasets are collected from real remote sensing images captured by vari-
ous drones with different cameras from AgEagle, a company that provides fixed-winged
drones and aerial imagery-based data collection and analytics solutions. The datasets
contain several different scenes, each with different flight heights and applied in different
practical applications. A challenging scene is selected to test in our experiment. The dataset
of Thammasat University campus in Bangkok, Thailand was collected by an eBee X drone
carrying an Aeria X photogrammetry camera. The drone flew at a height of 285 m, pho-
tographed scenes covering 2.1 square kilometers, and captured high-resolution images of
6000 × 4000. Usually, these collected datasets are used for 3D mapping, regular updating
of city maps, inspecting infrastructure, monitoring construction projects, and studying
architectural aspects.
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5.1. Parameter Settings

Firstly, the undistorted images are downsampled to the resolution of 3200 × 2130 for
reconstruction. For all datasets, the same set of parameters is used in the experiments.
The specific parameter settings are shown in Table 1.

Table 1. Parameter settings of experiments and their meaning.

Parameter Meaning Value

σgeo constant of geometric confidence 5.0
σd constant of depth confidence 0.05
σn constant of normal confidence 0.8
σc constant of cost confidence 0.5
K best K neighboring views 2
σp constant of patch confidence 1.0
δc confidence threshold 0.8
λ constant of confidence constraint in multiview matching cost 2.0
δw threshold of view weight 0.6
δd the strictest depth difference 0.01
δn the strictest normal angle 0.15

δgeo the strictest geometry error 1.5

5.2. Quantification

Some state-of-the-art MVS methods and our method were compared by quantita-
tive evaluation on the high-resolution of ETH3D benchmark, including Gipuma [10],
COLMAP [15], ACMH [22], OpenMVS [7], ACMP [18], CLD-MVS [38], QAPM [21].
The quantitative evaluation performance of the training branch dataset and the test branch
dataset are shown in Tables 2 and 3 respectively. Note that the evaluation tolerance is 2 cm,
as defaulted by the ETH3D benchmark. The quantitative evaluation of other approaches is
dependent on the published results on the online website of the ETH3D benchmark.

As shown in Table 2, the proposed method achieves the best performance of F1
score and completeness compared with other methods in the training branch dataset,
except for outdoor scenes, where completeness is slightly inferior to QAPM. The main
contribution of Gipuma is the parallelized red–black checkerboard propagation, which
brings a huge improvement in the efficiency of depth estimation. However, its performance
is far inferior to other schemes in the quality of reconstruction, because it simply selects
the top-k minimum matching cost for averaging to represent the multiview matching cost.
Both COLMAP and ACMH are based on the matching cost of photometric consistency. It
makes them suffer from fuzzy matching problems in weakly textured regions and perform
poorly in completeness, which in turn affects the F1 score. On the contrary, they possess
an extremely high accuracy attributed to their contribution to view selection strategy
and the check of geometric consistency. OpenMVS also uses the matching cost based on
photometric consistency. By relaxing the view constraint on depth fusion, it performs
poorly in terms of accuracy, but the increase in completeness results in an improvement
in the F1 score. ACMP introduces planar priors to improve completeness. However,
the generation of planar priors relies excessively on the multiview matching cost based on
photometric consistency, which allows erroneous planar priors to be generated and mislead
the computation of the improved cost function. CLD-MVS utilizes a boundary-aware
interpolation method, which improves completeness while decreasing its accuracy, and it
results in an inferior performance to our method. QAPM extracts pixel information with
the same plane by constructing the quadtree, then the plane priors are generated by a plane
fitting algorithm. However, the plane fitting algorithm is not implemented completely
for all quadtree blocks, which leads to a lot of vacancies in the generated prior planes.
In addition, nearly but not sufficiently accurate prior planes would affect the accuracy of the
reconstruction. The great success in completeness makes our method ahead of other SOTA
methods in the F1 score, while the accuracy is not overly behind the most accurate method
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COLMAP. The improvement in completeness is attributed to the fact that after utilizing the
confidence calculation method, the supplemental depth maps are generated based on it
and combined with the coarse depth maps. It allows for an effective recovery of weakly
textured regions, especially those planes in weakly textured regions, without blurring the
structural detail regions.

Table 2. Quantitative evaluation comparative results (F1 score, accuracy, completeness) at default
tolerance of 2 cm on high-resolution training dataset of ETH3D benchmark.

Method
All Indoor Outdoor

F1 Acc. Comp. F1 Acc. Comp. F1 Acc. Comp.

Gipuma [10] 36.38 86.47 24.91 35.80 89.25 24.61 37.07 83.23 25.26
COLMAP [15] 67.66 91.85 55.13 66.76 95.01 52.90 68.70 88.16 57.73

ACMH [22] 70.71 88.94 61.59 70.00 92.62 59.22 71.54 84.65 64.36
OpenMVS [7] 76.15 78.44 74.92 76.82 81.39 73.91 75.37 74.99 76.09

ACMP [18] 79.79 90.12 72.15 80.53 92.30 72.25 78.94 87.58 72.03
CLD-MVS [38] 79.35 82.75 77.36 81.23 87.22 77.29 77.16 77.54 77.45

QAPM [21] 78.47 80.43 77.50 80.22 84.34 77.43 76.43 75.86 77.59
OURS 82.64 86.66 79.39 85.03 88.52 82.13 79.86 84.48 76.19

The best results are marked in bold black.

Table 3. Quantitative evaluation comparative results (F1 score, accuracy, completeness) at default
tolerance of 2 cm on high-resolution test dataset of ETH3D benchmark.

Method
All Indoor Outdoor

F1 Acc. Comp. F1 Acc. Comp. F1 Acc. Comp.

Gipuma [10] 45.18 84.44 34.91 41.86 86.33 31.44 55.16 78.78 45.30
COLMAP [15] 73.01 91.97 62.98 70.41 91.95 59.65 80.81 92.04 72.98

ACMH [22] 75.89 89.34 68.62 73.93 91.14 64.81 81.77 83.96 80.03
OpenMVS [7] 79.77 81.98 78.54 78.33 82.00 75.92 84.09 81.93 86.41

ACMP [18] 81.51 90.54 75.58 80.57 90.60 74.23 84.36 90.35 79.62
CLD-MVS [38] 82.31 83.18 82.73 81.65 82.64 82.35 84.29 84.79 83.86

QAPM [21] 80.88 82.59 79.95 79.50 82.59 77.39 85.03 82.58 87.64
OURS 85.76 86.17 85.71 85.29 85.54 85.46 87.17 88.05 86.46

The best results are marked in bold black.

The performance of the proposed method is further demonstrated by the comparison
results of the test branch dataset shown in Table 3. Except for the outdoor scenes, where the
completeness is slightly inferior to QAPM, our method ranks first in both completeness and
F1 score. In addition, the comparison results of different scenes in the test branch dataset at
different distance tolerances are shown in Figure 5. It can be seen that our method almost
achieves the most competitive f1 scores for different sequences at each distance tolerance,
except for the ’exhibition hall’ sequence. It means that our method is robust for different
scene sequences, although at different evaluation tolerances. In addition, the accuracy
requirements for the reconstructed point clouds vary greatly in practical applications,
which gives all of the reconstruction results for different thresholds a reference significance
of comparison. Through the comparison between different sequences, it can be seen that
while the scenes contain a lot of weakly textured planes, our method achieves excellent
results for resolving the problems of luminosity consistency in these regions, resulting in
the most competitive F1 score. The ’lounge’ scene sequence is noteworthy among them
all. The ’lounge’ sequence is the one scene where all methods perform poorly because
of the presence of large reflective floor areas in this indoor scene. It causes a failure
in photometric consistency and makes depth estimation difficult. An important reason
for the best competitiveness of our method in this sequence is the proposed confidence
calculation method, then the planar supplement based on our confidence. ACMP and
QAPM are both planar-based methods, but their planar generation is based on photometric
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consistency, which makes them perform worse than us on this sequence. The interpolation
method of CLD-MVS blurs the geometric details and results in reduced accuracy, which
also affects the F1 score. In contrast, we perform plane supplementation and then combine
the supplemental depth maps with the coarse depth maps, which effectively improves
the deficiency of plane supplementation in geometric detail regions and provides reliable
planes in weakly textured regions.

(a) 1 cm (b) 2 cm

(c) 5 cm (d) 10 cm

Figure 5. Quantitative evaluation comparison results (F1 score) of different tolerances for all sequences
(botanical garden30, boulders26, bridge110, door7, exhibition hall68, lecture room23, living room65,
lounge10, observatory27, old computer54, statue11, terrace213) of the ETH3D benchmark’s high-
resolution test branch dataset.

5.3. Qualification

The qualitative evaluation is compared with some state-of-the-art PatchMatch-based
MVS methods in terms of both depth maps as well as dense point clouds. For the ETH3D
benchmark, all the dense point clouds are obtained from the results submitted on the online
website to fairly compare the reconstruction quality of all methods. The depth map results
with other methods are implemented in our machine via their open-source code. For the
sensefly dataset, both the dense point clouds and the depth map results are implemented
through open-source code.

For partial sequences of the ETH3D benchmark’s high-resolution dataset, the com-
parison of qualitative depth maps is shown in Figure 6. The challenges in the ETH3D
benchmark arise from a huge variation in camera angles between different images and the
magnification of weakly textured regions in the high-resolution images, while the former
leads to an increase in occlusion. The second aggravates the difficulty of reconstruction of
weakly textured regions, because the images in the benchmark contain a large number of
weakly textured surfaces (e.g., walls, floors, roads, ceilings). It can be seen that the depth
maps of OpenMVS and ACMH contain a large amount of noise, and these incorrectly esti-
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mated depths are detrimental to both accuracy and completeness. COLMAP also contains a
lot of noise; most of the noise is filtered out after the geometric consistency check, resulting
in accurate but extremely incomplete depth maps. ACMP improves the quality of the depth
maps via the plane priors. However, it is inferior to the depth maps of our method, which is
due to the generation of prior planes relying on the cost function of photometric consistency.
In contrast, the proposed confidence calculation would address well the unreliability of
photometric consistency in weakly textured regions. Thus, the depth maps with high
quality are estimated in combination with the plane supplement module.

A comparison of the qualitative depth maps for the university scene of the sensefly
dataset is shown in Figure 7. The challenges of the sensefly dataset are the poor overlap of
the images and the absence of common viewing areas. In addition, the weakly textured
regions in these remote sensing images are mostly concentrated on roads and building roofs.
As shown in Figure 7, the depth map of the COLMAP exhibits large vacancies. Besides the
weakly textured regions that fail to estimate the correct depths, the poor overlap of the
images leads to the misuse of geometric consistency in the COLMAP. The reason is that
some regions are invisible in partial—or even all—neighborhood views. This removes
the depth of these regions in the geometric consistency check, resulting in large vacancies.
OpenMVS and ACMH still perform poorly in the weakly textured planes, while ACMP
improves. In contrast, the depth maps of our method are most intact in these planar regions,
which indicates the successful recovery of our method in the weakly textured planes.

(a) Images (b) GT (c) COLMAP (d) OpenMVS (e) ACMH (f) ACMP (g) OURS

Figure 6. Comparative results of qualitative depth map with other methods on partial sequences
(pipes14, delivery44, relief31, electro45, terrains42, and courtyard38) of ETH3D benchmark’s high-
resolution training dataset. The black regions indicate no depth.

Through the proposed adaptive depth fusion approach, the obtained dense point
clouds are compared with other MVS methods. For the high-resolution training and test
datasets of the ETH3D benchmark, qualitative comparisons of the dense point clouds for
some sequences are shown in Figures 8 and 9, respectively. It can be seen that COLMAP and
ACMH exhibit large vacancies in weakly textured regions, which makes their point clouds
sparse. OpenMVS, which also utilizes the photometric consistency matching cost, sacrifices
significant accuracy for an increase in completeness by decreasing the view constraint
in depth fusion. Therefore, the point clouds of OpenMVS seem to be dense. However,
they contain a lot of redundancy, which severely reduces the accuracy of the point clouds.
The planar priors of ACMP bring a great improvement in completeness while maintaining
high accuracy. However, it can be seen that the point cloud still appears sparse and vacant
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in weakly textured regions, especially in weakly textured planar surfaces. This is due to
the incorrect prior planes generated in these regions, which are guided by the matching
cost of photometric consistency. In contrast, our method recovers completely in these
regions, especially in indoor scenes, which usually contain more weakly textured planar
surfaces (e.g., walls, floors). Due to the effect of adaptive fusion, although the regions
with insufficient visibility are effectively recovered in dense point clouds, some erroneous
redundancies inevitably appear. These redundancies are one reason why the accuracy
of our quantitative evaluation does not outperform other methods. However, the slight
decrease in accuracy is worth it compared to our great improvement in completeness.

(a) Images (b) COLMAP (c) OpenMVS (d) ACMH (e) ACMP (f) OURS

Figure 7. Comparative results of qualitative depth map with other methods on the university443

scene of the sensefly dataset.

(a) COLMAP (b) OpenMVS (c) ACMH (d) ACMP (e) OURS

Figure 8. Comparative results of qualitative point clouds with other methods on partial sequences
(relief231, facade76, delivery44, and courtyard38) of ETH3D benchmark’s high-resolution train-
ing dataset.
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(a) COLMAP (b) OpenMVS (c) ACMH (d) ACMP (e) OURS

Figure 9. Comparative results of qualitative point clouds with other methods on partial sequences
(door7, terrace213, observatory27, and statue11) of ETH3D benchmark’s high-resolution test dataset.

In addition, the comparison of point clouds on the sensefly dataset is shown in
Figure 10. It can be seen that the point clouds reconstructed by COLMAP and ACMH are
both sparse. ACMP has a better reconstruction in the weakly textured regions, but the
overall denseness is not as good as that of OpenMVS and ours. The point clouds of
OpenMVS, which are only based on the photometric consistency, show the densest point
clouds in the comparison. An important reason for the above observation is attributed to
the difference in depth fusion methods. COLMAP, ACMH, and ACMP all require a high
view constraint for depth fusion, which makes their reconstructed point clouds sparse,
although ACMP performs well in depth maps. In contrast, OpenMVS uses the most relaxed
view constraint for depth fusion, which results in the densest reconstructed point clouds.
Our adaptive fusion method dynamically adjusts the view constraint, which results in a far
denser point cloud than COLMAP, ACMH, and ACMP, but slightly sparser than OpenMVS.
However, the advantage of our method is that the reconstruction is more integral in the
weakly textured regions, especially the planar surfaces of these regions, such as the building
roofs and the water surface shown in the red box of Figure 10.

To further illustrate the effectiveness of our pipeline in weakly textured regions,
the comparison results of completeness visualizations are shown individually in Figure 11.
The completeness visualizations are provided on the online website of the ETH3D bench-
mark and are only available in the training branch dataset. It can be clearly seen that the
results of our method have more green parts (meaning the parts that are reconstructed
successfully) of point clouds compared to other methods. Most of the green parts of point
clouds belong to weakly textured regions. For the successful recovery in weakly textured
regions, our method can outperform other methods in terms of completeness.
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(a) COLMAP (b) OpenMVS (c) ACMH

(d) ACMP (e) OURS

Figure 10. Comparative results of qualitative point clouds with other methods on the university
scene of sensefly dataset.

(a) COLMAP (b) OpenMVS (c) ACMH (d) ACMP (e) OURS

Figure 11. Comparative results of completeness visualizations at default tolerance of 2 cm on partial
sequences (office, pipes, courtyard, and facade) of ETH3D benchmark’s high-resolution training
dataset. The green areas of point clouds are the parts that are less than the distance tolerance between
the reconstruction result and the ground truth. The red regions of point clouds are the ground truth
that cannot be accepted within the distance tolerance.

5.4. Ablation Study

To evaluate the effectiveness of each part of our proposed method, we conducted
ablation experiments on the high-resolution training dataset of the ETH3D benchmark.
The evaluation results are presented in Table 4. In the table, we list the results of removing
different modules from our proposed CGPR-MVS, including without all modules proposed
(baseline), without confidence calculation (CGPR-MVS/C), without plane supplement
(CGPR-MVS/S), without adaptive fusing (CGPR-MVS/A), and the whole pipeline in
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CGPR-MVS. For CGPR-MVS/C, we use the matching cost as a substitute for completing
the plane supplement module. For CGPR-MVS/S, we filter the unreliable estimation by
confidence after the confidence is computed in the confidence calculation module. For
CGPR-MVS/A, we set fixed-view constraint and fixed-consistency constraints for depth
fusion, like other pipelines [7,15,18,22].

Firstly, a quantitative comparison between CGPR-MVS and CGPR-MVS/A shows
that the adaptive fusion approach greatly balances the accuracy and completeness of the
reconstruction results. After removing adaptive fusion, the pipeline achieves extremely
high accuracy. Nonetheless, both accuracy and completeness are increased compared to
the baseline method. In CGPR-MVS/C, the proposed confidence calculation is replaced by
the multiview matching cost of photometric consistency to help the subsequent implemen-
tation of the plane hypothesis supplement. By comparing CGPR-MVS and CGPR-MVS/C,
the result without confidence calculation is that the completeness and accuracy of the
quantitative evaluation are significantly reduced. The results further illustrate the failure
of photometric consistency in the weakly textured regions, and prove that the proposed
confidence calculation is extremely effective for the improvement in reconstruction quality.
Compared to the quantitative evaluation results of CGPR-MVS and CGPR-MVS/S, there is
essentially no excessive change in accuracy, but there is a significant decrease in complete-
ness after removing the planar hypothesis supplement. Based on the implementation of
confidence calculation, the planar hypothesis supplement provides reliable planar hypothe-
ses for the weakly textured region, which helps converge to the global optimal solution.
In contrast, after losing the planar hypothesis supplement, the plane hypotheses of weakly
textured regions are limited to the wrong local optimal solution, resulting in the failure
of reconstruction.

Table 4. Ablation study results (F1 score, accuracy, completeness) at default tolerance of 2 cm on
high-resolution training dataset of ETH3D benchmark.

Method F1 Score Accuracy Completeness

Baseline 72.77 90.65 62.46
CGPR-MVS/C 74.40 76.59 73.70
CGPR-MVS/S 78.41 85.68 73.40
CGPR-MVS/A 79.71 90.72 71.87

CGPR-MVS 82.64 86.66 79.39

The best results are marked in bold black.

5.5. Time Evaluation

For each 3200 × 2130 resolution view in the high-resolution training dataset of the
ETH3D benchmark, the runtimes of each proposed section and the total runtime are listed
in Table 5. It can be seen that both the plane hypothesis confidence calculation module and
plane supplement module do not impose an excessive runtime burden for depth estimation.
Moreover, since the machine configuration is not expensive, the runtime results show that
the proposed pipeline can be equipped on low-performance machines without consuming
excessive computational resources.

In addition, the comparison results between the proposed method and some GPU-
based methods are shown in Table 6. The running times of all the methods are experi-
mentally obtained on our machines equipped with a single GPU. It can be seen that even
with the GPU, COLMAP [15] still has the longest running time, because of the sequential
propagation in depth estimation. Our pipeline takes more time than ACMP [18], but still
has a shorter running time than ACMM [22] and COLMAP [15]. The comparison results
further show that the proposed method is efficient enough and does not require more
computational resources.
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Table 5. Different modules’ running times for one image of 3200 × 2130 resolution on high-resolution
training dataset of ETH3D benchmark.

Module Time(s) Ratio (%)

depth estimation of ACMH 18.79 49.70
plane hypothesis confidence calculation 2.36 6.24

plane supplement 3.52 9.31
confidence-driven depth estimation 13.14 34.75

Total 37.81 -

Table 6. Comparison of running times for one image of 3200 × 2130 resolution on high-resolution
training dataset of ETH3D benchmark.

Method COLMAP ACMM ACMP OURS

Time(s) 129.9 43.0 23.7 37.8
The best results are marked in bold black.

6. Conclusions

In this work, we propose a novel MVS method, which is called confidence-guided
planar recovering multiview stereo (CGPR-MVS). After depth estimation, the confidence
calculation module is applied to depth maps to produce pixel-wise confidence, which
contains multiview consistency and patch consistency. Based on the plane hypothesis
confidence calculation, a Delaunay triangle-based plane supplement module additionally
provides reliable plane information. The supplemental depth map and coarse depth map
are fed into a confidence-driven depth estimation to achieve high-integrity recovery with-
out losing the structural detail regions. Via adaptive fusion, invisible regions can be merged
into dense point clouds. Qualitative and quantitative evaluations of high-resolution MVS
datasets demonstrate the efficiency and effectiveness of our method, especially in the re-
construction quality of weakly textured planes. In future work, we will focus on improving
the accuracy of texture detail regions while maintaining reconstruction completeness.

Author Contributions: Conceptualization, C.F. and N.H.; methodology, C.F.; software, C.F. and
Z.H.; validation, C.F., N.H., and S.C.; formal analysis, C.F., N.H., Z.H., and Y.L.; investigation, C.F.,
Z.H., and Y.L.; resources, C.F.; data curation, C.F.; writing—original draft preparation, C.F.; writing—
review and editing, C.F., N.H., and S.C.; visualization, C.F.; supervision, X.X., X.Z., and S.C.; project
administration, X.X., X.Z., and S.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Guangdong-Hong Kong-Macao Joint Innovation Field
Project (No.2021A0505080006), Research and Development Project in Key Field of Guangdong
Province, China (No.2022B0701180001), the Science Technology Planning Project of Guangdong
Province, China (Nos. 2019B010140002, 2020B111110002), and the National Natural Science Founda-
tion of China (61801127).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, Z.; Liu, Y.; Shi, X.; Wang, Y.; Zheng, Y. MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large
Scale Scene Reconstruction. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5980–5989. [CrossRef]

2. Zhou, L.; Zhang, Z.; Jiang, H.; Sun, H.; Bao, H.; Zhang, G. DP-MVS: Detail Preserving Multi-View Surface Reconstruction of
Large-Scale Scenes. Remote Sens. 2021, 13, 4569. [CrossRef]

3. Zhang, Q.; Luo, S.; Wang, L.; Feng, J. CNLPA-MVS: Coarse-Hypotheses Guided Non-Local PatchMatch Multi-View Stereo.
J. Comput. Sci. Technol. 2021, 36, 572–587. [CrossRef]

4. Xu, Q.; Kong, W.; Tao, W.; Pollefeys, M. Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo.
IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 4945–4963. [CrossRef] [PubMed]

39



Remote Sens. 2023, 15, 2474

5. Bleyer, M.; Rhemann, C.; Rother, C. PatchMatch Stereo-Stereo Matching with Slanted Support Windows. In Proceedings of the
British Machine Vision Conference (BMVC), Dundee, UK, 29 August–2 September 2011; pp. 14.1–14.11. [CrossRef]

6. Shen, S. Accurate Multiple View 3D Reconstruction Using Patch-Based Stereo for Large-Scale Scenes. IEEE Trans. Image Process.
2013, 22, 1901–1914. [CrossRef] [PubMed]

7. Cernea, D. OpenMVS: Multi-View Stereo Reconstruction Library. Available online: https://cdcseacave.github.io/openMVS
(accessed on 4 August 2022).

8. Fuhrmann, S.; Langguth, F.; Goesele, M. MVE—A Multi-View Reconstruction Environment. In Proceedings of the Eurographics
Workshop on Graphics & Cultural Heritage, Darmstadt, Germany, 6–8 October 2014.

9. Zhu, Z.; Stamatopoulos, C.; Fraser, C.S. Accurate and occlusion-robust multi-view stereo. ISPRS J. Photogramm. Remote Sens.
2015, 109, 47–61. [CrossRef]

10. Galliani, S.; Lasinger, K.; Schindler, K. Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. In Proceedings
of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 873–881.
[CrossRef]

11. Kuhn, A.; Hirschmüller, H.; Scharstein, D.; Mayer, H. A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction.
Int. J. Comput. Vis. 2016, 124, 2–17. [CrossRef]

12. Kang, S.B.; Szeliski, R.; Chai, J. Handling occlusions in dense multi-view stereo. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1,
p. I. [CrossRef]

13. Strecha, C.; Fransens, R.; Van Gool, L. Combined Depth and Outlier Estimation in Multi-View Stereo. In Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June
2006; Volume 2, pp. 2394–2401. [CrossRef]

14. Zheng, E.; Dunn, E.; Jojic, V.; Frahm, J.M. PatchMatch Based Joint View Selection and Depthmap Estimation. In Proceedings of
the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1510–1517.
[CrossRef]

15. Schnberger, J.L.; Zheng, E.; Pollefeys, M.; Frahm, J.M. Pixelwise View Selection for Unstructured Multi-View Stereo. In
Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016.

16. Romanoni, A.; Matteucci, M. TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. In Proceedings of the 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019.

17. Kuhn, A.; Lin, S.; Erdler, O. Plane Completion and Filtering for Multi-View Stereo Reconstruction. In Proceedings of the GCPR,
Dortmund, Germany, 10–13 September 2019.

18. Xu, Q.; Tao, W. Planar Prior Assisted PatchMatch Multi-View Stereo. In Proceedings of the AAAI Conference on Artificial
Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12516–12523.

19. Yan, S.; Peng, Y.; Wang, G.; Lai, S.; Zhang, M. Weakly Supported Plane Surface Reconstruction via Plane Segmentation Guided
Point Cloud Enhancement. IEEE Access 2020, 8, 60491–60504. [CrossRef]

20. Huang, N.; Huang, Z.; Fu, C.; Zhou, H.; Xia, Y.; Li, W.; Xiong, X.; Cai, S. A Multi-View Stereo Algorithm Based on Image
Segmentation Guided Generation of Planar Prior for Textureless Regions of Artificial Scenes. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2023, 16, 3676–3696. [CrossRef]

21. Stathopoulou, E.K.; Battisti, R.; Cernea, D.; Georgopoulos, A.; Remondino, F. Multiple View Stereo with quadtree-guided priors.
ISPRS J. Photogramm. Remote Sens. 2023, 196, 197–209. [CrossRef]

22. Xu, Q.; Tao, W. Multi-Scale Geometric Consistency Guided Multi-View Stereo. In Proceedings of the 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

23. Seitz, S.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A Comparison and Evaluation of Multi-View Stereo Reconstruction
Algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 1, pp. 519–528. [CrossRef]

24. Goesele, M.; Curless, B.; Seitz, S. Multi-View Stereo Revisited. In Proceedings of the 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), Seattle, WA, USA, 14–19 June 2006; Volume 2, pp. 2402–2409. [CrossRef]

25. Kostrikov, I.; Horbert, E.; Leibe, B. Probabilistic Labeling Cost for High-Accuracy Multi-view Reconstruction. In Proceedings of
the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 23–28 June 2014; pp. 1534–1541.
[CrossRef]

26. Hiep, V.H.; Keriven, R.; Labatut, P.; Pons, J.P. Towards high-resolution large-scale multi-view stereo. In Proceedings of the 2009
IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1430–1437. [CrossRef]

27. Cremers, D.; Kolev, K. Multiview Stereo and Silhouette Consistency via Convex Functionals over Convex Domains. IEEE Trans.
Pattern Anal. Mach. Intell. 2011, 33, 1161–1174. [CrossRef]

28. Lhuillier, M.; Quan, L. A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Trans. Pattern Anal.
Mach. Intell. 2005, 27, 418–433. [CrossRef] [PubMed]

29. Furukawa, Y.; Ponce, J. Accurate, Dense, and Robust Multiview Stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 2010,
32, 1362–1376. [CrossRef]

40



Remote Sens. 2023, 15, 2474

30. Strecha, C.; Fransens, R.; Van Gool, L. Wide-baseline stereo from multiple views: A probabilistic account. In Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, Washington, DC, USA, 27
June–2 July 2004; Volume 1, p. I. [CrossRef]

31. Liao, J.; Fu, Y.; Yan, Q.; Xiao, C. Pyramid Multi-View Stereo with Local Consistency. Comput. Graph. Forum 2019, 38, 335–346.
[CrossRef]

32. Jung, W.K.; Han, J.k. Depth Map Refinement Using Super-Pixel Segmentation in Multi-View Systems. In Proceedings of the 2021
IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–12 January 2021; pp. 1–5. [CrossRef]

33. Wei, M.; Yan, Q.; Luo, F.; Song, C.; Xiao, C. Joint bilateral propagation upsampling for unstructured multi-view stereo. Vis.
Comput. 2019, 35, 797–809. [CrossRef]

34. Yodokawa, K.; Ito, K.; Aoki, T.; Sakai, S.; Watanabe, T.; Masuda, T. Outlier and Artifact Removal Filters for Multi-View Stereo.
In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018;
pp. 3638–3642. [CrossRef]

35. Egnal, G.; Mintz, M.; Wildes, R.P. A stereo confidence metric using single view imagery with comparison to five alternative
approaches. Image Vis. Comput. 2004, 22, 943–957. [CrossRef]

36. Pfeiffer, D.; Gehrig, S.; Schneider, N. Exploiting the Power of Stereo Confidences. In Proceedings of the 2013 IEEE Conference on
Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 297–304. [CrossRef]

37. Seki, A.; Pollefeys, M. Patch Based Confidence Prediction for Dense Disparity Map. In Proceedings of the British Machine Vision
Conference (BMVC), York, UK, 19–22 September 2016; pp. 23.1–23.13. [CrossRef]

38. Li, Z.; Zuo, W.; Wang, Z.; Zhang, L. Confidence-Based Large-Scale Dense Multi-View Stereo. IEEE Trans. Image Process. 2020,
29, 7176–7191. [CrossRef]

39. Li, Z.; Zhang, X.; Wang, K.; Jiang, H.; Wang, Z. High accuracy and geometry-consistent confidence prediction network for
multi-view stereo. Comput. Graph. 2021, 97, 148–159. [CrossRef]

40. Kuhn, A.; Sormann, C.; Rossi, M.; Erdler, O.; Fraundorfer, F. DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo
Reconstruction. In Proceedings of the 2020 International Conference on 3D Vision (3DV), Fukuoka, Japan, 25–28 November 2020;
pp. 404–413.

41. Wang, Y.; Guan, T.; Chen, Z.; Luo, Y.; Luo, K.; Ju, L. Mesh-Guided Multi-View Stereo With Pyramid Architecture. In Proceedings
of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 2036–2045. [CrossRef]

42. Stathopoulou, E.E.K.; Remondino, F. Semantic photogrammetry—Boosting image-based 3D reconstruction with semantic labeling.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 685–690. [CrossRef]

43. Stathopoulou, E.K.; Remondino, F. Multi view stereo with semantic priors. arXiv 2020, arXiv:2007.02295. [CrossRef]
44. Stathopoulou, E.K.; Battisti, R.; Cernea, D.; Remondino, F.; Georgopoulos, A. Semantically Derived Geometric Constraints for

MVS Reconstruction of Textureless Areas. Remote Sens. 2021, 13, 1053. [CrossRef]
45. Barnes, C.; Shechtman, E.; Finkelstein, A.; Goldman, D.B. PatchMatch: A randomized correspondence algorithm for structural

image editing. ACM Trans. Graph. 2009, 28, 24. [CrossRef]
46. Delaunay, B. Sur la sphère vide. A la mémoire de Georges Voronoï. Bull. De L’académie Des Sci. De L’urss. Cl. Des Sci.

Mathématiques Et Na 1934, 6, 793–800.
47. Liba, O.; Movshovitz-Attias, Y.; Cai, L.; Pritch, Y.; Tsai, Y.T.; Chen, H.; Eban, E.; Barron, J.T. Sky Optimization: Semantically aware

image processing of skies in low-light photography. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14–19 June 2020; pp. 2230–2238. [CrossRef]

48. Schöps, T.; Schönberger, J.L.; Galliani, S.; Sattler, T.; Schindler, K.; Pollefeys, M.; Geiger, A. A Multi-View Stereo Benchmark
with High-Resolution Images and Multi-Camera Videos. In Proceedings of the Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

41



Citation: Elaksher, A.; Ali, T.;

Alharthy, A. A Quantitative

Assessment of LIDAR Data Accuracy.

Remote Sens. 2023, 15, 442. https://

doi.org/10.3390/rs15020442

Academic Editor: Gianluca Groppelli

Received: 20 October 2022

Revised: 20 December 2022

Accepted: 23 December 2022

Published: 11 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

A Quantitative Assessment of LIDAR Data Accuracy

Ahmed Elaksher 1,*, Tarig Ali 2 and Abdullatif Alharthy 3

1 College of Engineering, New Mexico State University, Las Cruces, NM 88003-0001, USA
2 Department of Civil Engineering, College of Engineering, American University of Sharjah,

Sharjah 26666, United Arab Emirates
3 Ministry of National Guard, Riyadh 11173, Saudi Arabia
* Correspondence: elaksher@nmsu.edu

Abstract: Airborne laser scanning sensors are impressive in their ability to collect a large number of
topographic points in three dimensions in a very short time thus providing a high-resolution depiction
of complex objects in the scanned areas. The quality of any final product naturally depends on the
original data and the methods of generating it. Thus, the quality of the data should be evaluated
before assessing any of its products. In this research, a detailed evaluation of a LIDAR system is
presented, and the quality of the LIDAR data is quantified. This area has been under-emphasized
in much of the published work on the applications of airborne laser scanning data. The evaluation
is done by field surveying. The results address both the planimetric and the height accuracy of
the LIDAR data. The average discrepancy of the LIDAR elevations from the surveyed study area
is 0.12 m. In general, the RMSE of the horizontal offsets is approximately 0.50 m. Both relative
and absolute height discrepancies of the LIDAR data have two components of variation. The first
component is a random short-period variation while the second component has a less significant
frequency and depends on the biases in the geo-positioning system.

Keywords: assessment; LIDAR; GPS; surveying; RMSE; accuracy

1. Introduction

Light Detection and Ranging (LIDAR) technology is a cost-effective, reliable, and a
fast source to collect dense and accurate elevation data for many surveying and mapping
applications [1–3]. Aerial LIDAR mapping systems are equipped with an active laser
sensor, a Global Positioning System (GPS), and an Inertial Navigation System (INS) [4]. The
laser sensor emits pulses at a near infrared wavelength of about 1000 nm [5]. Pulses travel
through the atmosphere [6] and are reflected from ground features back to the detector.
Their travel time multiplied by the speed of light is used to calculate the distance between
the laser scanner and the ground [7].

Manned and unmanned LIDAR systems are widely employed in different applications
including urban planning, damage assessment, natural resources, geomorphology, and
archaeology [8–14]. The assessment of LIDAR data is becoming increasingly important in
the geospatial and mapping communities. Several studies have been conducted to evaluate
the quality of LIDAR data and products from such data [15–17].

In [18], two LIDAR datasets were acquired from about 2000 m above ground over
two heavy tree coverage areas during leaf-off and snow-free seasons with an Optech
GEMINI Airborne Laser Terrain Mapper. Two DEMs were then interpolated from the
LIDAR datasets at one-meter ground resolution and resampled to three-, five-, and ten-
meter ground resolution using mean cell aggregation. Each DEM underwent a simple
low-pass smoothing filter using a mean filtering technique. Ground checkpoints were
collected through total station ground surveys. Total stations have a typical accuracy of
1–3 mm ± 1–3 parts per million. Discrepancies of about 0.70 m to 2.10 m were discovered.
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In [19], a Leica ALS50 Phase II was used to map an archaeological site that is eco-
logically and topographically diverse with alluvial terraces, foothills, mountains, and
vegetation. Data were collected at 15 points/m2 ground density with flight lines overlap-
ping more than 50%. Two control points surveyed with a Trimble R8 GNSS rover and a
Trimble R7 base were used to geospatially register the LiDAR data through a 3-D shift of
the LIDAR point cloud. Data were classified into bare-ground and manmade and natural
features points. A Digital Terrain Model (DTM) was generated from the bare-ground points
and a Digital Surface Model (DSM) was generated from all points. Results showed an
average accuracy of 0.5 m for the produced DTM and DEM.

LIDAR data popularity is increasing driven mainly by the demand for 3D data for
different applications ranging from 3D mapping to earth surface and city models. Common
earth surface representations created from LIDAR data are the digital elevation and surface
models [20–22]. In [23], the accuracy of LiDAR-driven DEMs interpolated from two LIDAR
point clouds collected during the leaf-off season with a Leica ALS60, flying at about 3000 m
above ground, for two watershed areas was evaluated. The DEMs were interpolated at
one-meter ground resolution using the “LAS dataset to Raster” tool in ArcMap. Four
interpolation methods in ArcMap were assessed including the inverse distance weighting
and nearest neighbor interpolation techniques. Reference data were collected with a GPS
ground survey. The 3-D coordinates of 45 LIDAR ground points were compared with those
collected with GPS. The Root Mean Square Error (RMSE) for elevation differences between
the LIDAR and GPS coordinates was 0.75 m.

In [24], the accuracy of LIDAR data collected with an Optech™ ALTM 3100 EA LIDAR
sensor, flying at an average altitude of 400 m, over four sites in forestry areas was assessed.
Original data was collected with an average point sampling density of 10 points/m2 then
thinned to two datasets of five and one points/m2. DTMs and DSMs with a grid size of
one meter were produced using the TerraScan software. Field surveys for 100 trees were
conducted with differentially corrected GPS data collected with a GeoXM 2005 receiver.
Mean differences and Root mean square errors (RMSEs) between LIDAR data and field
surveys were about 0.10 m and 1.25 m, consecutively.

In [25], the accuracy and usefulness of point clouds obtained by Airborne Laser Scan-
ners (ALS) and Unmanned Aerial Systems (UASs) in detecting and measuring individual
tree heights were compared. ALS data were collected with a Leica ALS80-HP laser scanner
over an area of 100 hectares. The average altitude during the scanning was 2700 m above
mean sea level. The UAS images were collected with an RGB SONY ILCE-5000 camera
mounted on a custom-built fixed wind UAS and processed in pix4D. Analysis of the dis-
crepancies in elevation data showed that elevations measured from the ALS data were
lower than those estimated from the UAS data by approximately 1.15 m with a standard
deviation of about 1.95 m.

The reliability and of LIDAR data for coastal geomorphological changes was investi-
gated [26]. Data was provided by the U.S. Geological Survey (USGS) and was collected with
the Experimental Advanced Airborne Research Lidar (EAARL) sensor from 300 m above the
ground. The LIDAR point cloud contained had a ground point density of 0.65 points/m2.
Ground truth data consisted of 734 points and was surveyed with two Trimble R10 and one
Leica GS12 geodetic GPS receivers configured for Real Time Kinematic (RTK) differential
correction. In vegetated dune topography areas, dissimilarities of about 0.5 m RMSE were
unveiled horizontally. However, better accuracies were attained in non-vegetated flat areas.
RMSE was reduced to 0.25 m after systematic offsets between LIDAR data and ground
truth were compensated for.

In [27], a point cloud obtained with a Riegl LMS-Q780 scanner, flying at an average
flight height of 1240 m above mean ground, was evaluated. The point cloud had an
average density of approximately 15 points/m2. Ground truth was collected with a DJI
Phantom 4 Pro UAS equipped with 5472 pixels × 3648 pixels digital camera. Captured
images were processed with Agisoft Metashape Professional® using structure-from-motion
photogrammetric techniques. Geodetic control was established with a Leica TS02 total
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station. Height comparisons between the LIDAR and UAS point clouds reviled that 98% of
the dissimilarities in elevations were in the range from −150 to +150 mm with an absolute
maximum of 0.75 m for the whole area.

A Riegl LMS-Q560, flown at an altitude of 750 m, was employed in [28] to assess
the accuracy of nine interpolation methods using cross-validation. The interpolation
methods examined were Delauney Triangulation, Natural Neighbor, Nearest neighbor,
Ordinary Kriging, Inverse Distance Weighted, and four spline-based interpolators. Data
was collected as a point cloud with a point density of 5.13 points/m2 and a subset was
held back for validation. Several DTMs were generated at 0.5-, 1.0-, 1.5-, and 2.0-meter
ground resolutions. For most of the algorithms, RMSE values between 0.11 and 0.28 m
were reported. Spline-based methods and the Natural Neighbor algorithm had vertical
errors of less than 0.20 m for over 90 percent of validation points.

The same dataset was used in another study to map a mountainous terrain area
covered by dense forest vegetation with a mixture of spruce and pine trees [29]. Ground
filtering was carried out to distinguish ground points from non-ground points using the
LasTools software and then manually checked. Data were resampled at different ground
point densities ranging from 0.89 points/m2 to 0.09 points/m2. It was found that DTM
accuracy is highly dependent on the ground point density as the RMSE ranged from 0.15 m
for the 0.89 points/m2 ground point density to 0.62 m for the 0.09 points/m2 ground
point density.

In [30], LIDAR data from the Golden Gate LiDAR Project was evaluated. The flying
altitude was about 2500 m above mean sea level. The data minimum point density was
2 points/m2 and was filtered using TerraScan providing a set of points classified as bare-
earth ground. In addition to the LiDAR data, a set of 753 points was surveyed by the USGS
using the RTK differential GPS technique. The distribution of the vertical dissimilarities
between the LIDAR elevation values and those observed by RTK was 19% less than 50 cm,
50% between 50 cm and 1 m, 30% between 1 cm and 2 cm, and only about 1% greater than
2 m.

From the presented literature, we can conclude that most of the previous research used
GPS ground surveys to assess the quality of the LIDAR data. Despite the fact that GPS in
general has higher accuracy than LIDAR data, the reliability of GPS is affected by distances
to the base point, time of observation, and satellite geometry. In addition, the lack of a
clear line of sight is occasionally found in urban geographic environments and this could
harm the quality of the GPS signals. Therefore, in our study we used traditional ground
surveying techniques, a total station, to assess the quality of the LIDAR data. Moreover,
most of the previous research focused on either relative or absolute assessment of LIDAR
data. In our study, we evaluated both the relative and absolute quality of the LIDAR data.
The LIDAR data set was collected with an Optech LIDAR system and ground control was
surveyed using conventional ground surveying techniques.

2. Data Acquisition and Dataset Characteristics

2.1. LIDAR Dataset

The data used in this research was collected in November 2014 using an Optech ALTM
3100 EA LiDAR flown at 600 m above the mean ground. Under optimal conditions, the
system is capable of achieving elevation accuracies as high as ±3 cm, 2-σ at 500 m elevation,
33 kHz Pulse repetition frequency (PRF) with ±10◦ scan angles, [31]. The instrument
operated with a scan angle of 18◦ and a laser pulse rate of 100 kHz. An Applanix POS/AV
510 system was co-mounted with LiDAR to record the aircraft’s 3-D position and attitude
(pitch, roll, and yaw). The reported positional accuracy of the system is 0.05–0.3 meter with
velocity uncertainty of 0.005 m/s, roll and pitch accuracies of 0.005◦, and heading accuracy
of 0.008◦ [32]. The accuracy of the GPS unit in RTK mode is 2 cm + 2 ppm. The reported
range resolution of the lidar is 1 centimeter with a resolution of 0.01◦ and beam divergence
of 0.1 mrad. The overlap between swaths was 30%. The point cloud on the ground had
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9.54 points/m2. The data consists of fourteen strips flown in the north–south direction.
Figure 1 below shows an across-band view, 500 m wide, of the fourteen strips.

Figure 1. Area coverage of a portion of the 14 strips.

Imprecision in the GPS positioning, the INS orientation, component misalignments,
errors in the angle encoder and other sources of error, cause the same ground spot in
two adjacent overlap strips to have two different coordinates. This leads to systematic
errors in position and attitude and may produce a tilt in the resulting scanned surface.
In order to reduce discrepancies between adjacent strips, we applied the mathematical
model presented in [33] for strip adjustment. In this model, errors are modeled by three
offsets, three rotations, and three time-dependent rotations. Tie points in adjacent strips
were identified and least squares matching was applied to laser scanner data points to
achieve higher relative accuracy between adjacent strips.

2.2. Reference Dataset

In order to evaluate the data set used in this research, a ground survey was conducted
on an area with a large athletic area, which contains tennis courts and soccer and basketball
fields representing the selected test area. The study area has two main useful characteris-
tics. First, the area is flat and horizontal with almost no significant slope over the tennis
courts or sports fields. This enables the examination of pure height accuracy because the
flatness and the lack of slope of the surface rule out any planimetric uncertainty effects.
Second, the presence of drainage ditches around the area facilitates the computation of
planimetric accuracy.

The fieldwork was conducted by surveying 440 points using a TOPCON (GTS–303)
total station. Three measurements were made for each point and the reported horizontal
and vertical RMSEs were less than one centimeter. Figure 2 shows a part of the surveyed
area. Those points were then used to establish the correspondence with the laser data based
on the spatial positions and consequently compute the absolute accuracy.
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Figure 2. The athletic area where the topographical survey was conducted.

3. Relative Accuracy of LIDAR Data

Airborne laser scanning data are acquired in a strip-wise pattern with a strip width
varying depending on the chosen scan angle and the flying height. Usually, those strips
are flown in parallel and overlapping until the entire region of interest has been covered.
Overlap between strips, as shown in Figure 3, provides a means to verify the relative
consistency between them. It is evident that imprecision in system positioning, orientation,
and ranging may cause the same point to have two different heights if scanned at two
different times, which always happens in neighboring overlapping data strips. These
points can be considered as tie points in strip adjustment to adjust strips and eliminate
or at least minimize relative error between them. However, the discrepancy between tie
points from adjacent strips gives an indication of the relative offsets without any strong
conclusion of the absolute error. In this section, the height discrepancy is examined between
adjacent strips.

Relative Height Offset

In the test data in this research, the percentage overlap between adjacent strips was
designed to be about 30% of the total swath width. A nominal swath width of 200 m would
then have an overlap region on either side of 60 m. However, due to the actual conditions
during the data collection, such as wind, overlap areas between strips ranged from less
than 60 m to as wide as 120 m as shown in Figure 4. Since the data consists of 14 strips,
13 overlap regions were examined to quantify the relative height discrepancies. The fact
that the data is dense and the overlap regions included in the testing are large increases the
likelihood of having coincident and nearly coincident data points. Therefore, the relative
height accuracy was obtained directly by computing the differences between such nearly
coincident data points.
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Figure 3. Profile of the overlap area (2 m width) between (a) strip 1 and 2, (b) strip 2 and 3.

Figure 4. Closer View of the Overlap Region.
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Three experiments were conducted during the testing. In order to minimize the effect
of slope and spatial position on the collected heights, the planimetric distance between
tested points was limited to be less than 0.05 m in the first test. In spite of these limitations,
there were some misinterpreted differences (more than a half meter) due to the height jump
between the tested points. Height jumps on building edges is one example. On building
edges, two points within a few centimeters could have a great height jump since one might
be on the ground and the other one is on the roof. Such outliers were detected based on the
statistical interpretation of the computed discrepancy. Consequently, they were deleted
from the data set to eliminate their influences. A manual examination verified the stated
assumption that these outliers coincided with abrupt height transitions. Then, to include
more points in the computation and strengthen the statistics, the planimetric-distance
constraint was increased to include points within 0.10 m and 0.25 m. Table 1 summarizes
the results for all of the 13 overlap regions with 0.05 m, 0.10 m, and 0.25 m planimetric
distance allowance. However, changing the planimetric distance and including more points
did not significantly change the discrepancy average in all overlap regions as shown in
Table 1. This is because the planimetric distance is less than the point density. In the rest of
the study, we used the 0.05 m planimetric distance allowance.

Table 1. Relative height discrepancy between adjacent data strips.

1,2 2,3 3,4 4,5 5,6 6,7 7,8 8.9 9,10 10,11 11,12 12,13 13,14

0.05 m

#pts 521 474 587 552 658 576 0.10 539 725 626 649 517 492

Mean
ΔH(m) 0.04 0.00 0.03 −0.04 −0.10 −0.12 −0.07 −0.11 −0.09 −0.10 −0.10 −0.06 −0.07

STD
m 0.12 0.14 0.14 0.14 0.10 0.10 0.10 0.09 0.11 0.11 0.12 0.12 0.13

0.10 m

#pts 2017 2019 2193 2108 2667 2304 3172 2087 2880 2583 2616 2085 2121

Mean
ΔH
m

0.04 0.00 0.03 −0.04 −0.10 −0.11 −0.07 −0.11 −0.09 −0.09 −0.10 −0.06 −0.07

STD
m 0.12 0.15 0.14 0.14 0.11 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.12

0.25 m

#pts 10,891 11,017 11,944 11,872 14,761 11,889 17,702 11,014 14,768 13,986 13,951 11,242 11,142

Mean
ΔH
m

0.04 0.00 0.03 −0.03 −0.10 −0.10 −0.07 −0.10 −0.08 −0.09 −0.10 −0.07 −0.06

STD
m 0.12 0.15 0.14 0.15 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.12 0.10

Figure 5 summarizes the behavior of the mean relative height offset between adjacent
strips. As shown in Table 1, the discrepancy did not show a well-defined behavior. However,
the discrepancy shows a trend with time (North–South direction) since the strips where
ordered on the time they were scanned (strip 1 was the first one to scan and strip 14 was
the last). In the first four overlap regions, the discrepancy was within ±0.04 m. Then, the
average discrepancy between strips (5–6, 6–7, 7–8, 8–10, 10–11, and 11–12) seems to increase
up to 0.10 m with a negative sign (since the discrepancy was computed by subtracting
the height of the right strip from the height of the left strip). Then, in the last two overlap
regions (12–13 and 13–14) the discrepancy dropped to −0.06 m.
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Figure 5. Mean Relative discrepancy behavior between adjacent strips, where the x-axis represents
the overlap regions (where 1 is the overlap region between strip one and two).

Figure 6a shows the discrepancy behavior with respect to time (North–South direction)
and Figure 6b shows the histogram of the computed discrepancy for the overlap region
between strips 1 and 2. In this overlap region, the average relative offset was 0.04m, which
means the left data strip (strip 1) was higher in average than the right-hand strip (strip 2).
On the other hand, Figure 7a,b show the relative height offset between strips 7 and 8
where the left strip (strip 7) seems to be below the right-hand one (strip 8) over most of the
overlap region.

In general, the mean of the discrepancies does not equal zero and is not consistent
with all strips. In addition, offsets are not purely a result of height differences at exactly cor-
responding points in the two strips since they are not error-free in planimetric positioning.
Consequently, due to this planimetric uncertainty, the compared points might not have the
same exact planimetric position and this mis-correspondence may contribute to the height
differences. This correlation between height and planimetric offsets is to be expected in
sloping surfaces.
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(a)

(b)

Figure 6. (a): Relative height discrepancy along the North–South direction in the overlap region
between the 1st and the 2nd strip. (b): The histogram of relative height discrepancy between the 1st
strip and the 2nd strip.
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(a)

(b)

Figure 7. (a): Relative height discrepancy along the North–South direction in the overlap region
between the 7th and the 8th strip. (b): The histogram of the relative height discrepancy between the
7th strip and the 8th strip.

4. Data Absolute Accuracy

Many sources of error affect the quality of airborne laser scanning data. Companies
that work in collecting such datasets usually publish a fixed number for the uncertainty of
their data. However, these numbers are usually not verified by the users because this is
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not a simple task. Correspondence between laser data points and ground points is not a
straightforward matter. The absolute displacements can be found by measuring the location
on the ground of a point or feature of known coordinates in the data set and comparing the
two measurements.

4.1. Absolute Height Accuracy

The ground points were collected in a specific pattern except when on distinct fea-
tures (ditches and curves on the ground). This pattern (lines) facilitates establishing a
correspondence between the two data types. A buffer zone (with a width of one meter)
was constructed around each ground data line and the data points inside that buffer zone
were identified. Then, for each laser data point that lies within a meter or less from two
ground data points, a corresponding height point with the same planimetric position was
interpolated from the surrounding ground-surveyed points. The absolute accuracy was
then estimated as the absolute difference between the laser height and the ground height.
Since the points are nearby and the surface is flat, a linear interpolation was used. In order
to minimize the effect of the planimetric uncertainty of the laser data, the interpolation
was limited to totally flat areas. The slope of those areas was restricted to not exceed 10%.
The slope was calculated as the rate of change of elevation for each LIDAR point using the
Surface Slope tool in ArcMap.

Direct differencing was applied to compute the discrepancy between the two data
points from the laser and ground, i.e., the laser height was subtracted from the ground
interpolated height. More than a thousand such differences were computed. Figure 8
shows the histogram of those differences. The histogram shows a bias in the differences of
−0.088 m with a standard deviation of ±0.082 m. Hence, the average height of the laser data
points included in the test is higher than the estimated ground by 0.088 m. Consequently,
the total RMSE of the LIDAR heights from the surveyed ground (zero in the histogram)
was 0.12 m with a mean value of zero. The calculated statistical characteristics represent
only a small sample of the data. The tested area covers less than 2 s of collection time (about
19,000 data points since the designed scanning rate is 10,000 points/s). The 19,000 data
points represent a small portion of the whole data set which is more than 3,000,000 data
points. However, only 1008 points were included in the real computation since it is not
practical to survey more points on the ground.

4.2. Absolute Planimetric Accuracy

Planimetric offsets are more complicated to determine since they require identifiable
spatial features to establish the correspondence between the two data sets. Such features
and locations for estimating the offsets might not be available, or when they exist, are
usually limited. Moreover, identifying these locations is costly in time and requires great
care in order to be reliable. Drainage ditches, terrain features, and building gable roofs
are some examples of such features. Procedures and results of estimating the planimetric
accuracy in both directions (Easting and Northing) are presented in this section.

Eight positions were identified and used in obtaining the planimetric accuracy. Six of
those locations were used to compute the offset in the X (Easting) direction and the other
two were utilized to compute the offset in the Y (Northing) direction. In each of these
locations the data points from both data sets, LIDAR and ground, were identified as shown
in part (a) of Figures 9–11. Parts (a) of these figures show the plan view of the points. From
each set, an estimate of the two shifts was made to realize the coincidence. The idea here is
to translate these two curves and obtain the shift that will maximize the match. Prior to
that, the height bias should be removed in order to exclude its effect in the matching. In
part (b) of the figures, the green dashed curve represents the LIDAR data after removing
the height bias between the two data curves.
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Figure 8. Height differences histogram between the laser height and the ground height.

(a) (b)

Figure 9. Cont.
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(c) (d)

Figure 9. (a–d) Planimetric offset in Easting (X) direction at location A.

(a) (b)

(c) (d)

Figure 10. (a–d) Planimetric offset in Easting (X) direction at location B.

54



Remote Sens. 2023, 15, 442

(a)
(b)

(c) (d)

Figure 11. (a–d) Planimetric offset in Northing (Y) direction at location G.

To get the best match between the two curves, the LIDAR data curve will be shifted
gradually around the ground data set in the direction of the computed offset (X as in
Figures 9 and 10, and Y as in Figure 11). The shift search window ranged from −2 m to 2 m
with an increment of 0.01m. At each increment, the discrepancy in Z of each ground point
and its interpolated-correspondence point from the LIDAR curve data is computed. The
sum of the squares of these offsets is considered as the matching cost at each location. Parts
(c) of the figures show the matching cost function behavior with respect to different shift
values. At the minimum matching cost, which is associated with the best match between
the two curves, the corresponding shift is obtained. Parts (d) show the original data curves,
after removing the height bias, and after the planimetric shift.

As stated above, eight locations were tested to obtain the planimetric shift. Table 2
summarizes the results at those selected locations. Regarding the offset in the X (Easting)
direction, which is across the flight direction and coincides with the scanning direction, six
locations were selected, three at the edge of the swath width of strip two and the rest at
the middle of the strip. As expected at the strip edge, the offset in the scanning direction
(−0.60 m as an average) was larger than at the middle of the strip (−0.30 m as an average).
However, those shifts were in the same direction. The same thing could be said for the
height bias, height offsets seem to be larger in magnitude at the edge of the strip. On the
other hand, two locations were selected to test the accuracy along the flight direction Y
(Northing), one at the middle of the strip and the other at the edge. The two locations had
the same direction.
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Table 2. Planimetric accuracy results.

Location Height Bias (m) Direction Plan. Offset Location Description

A −0.12 X −0.67 At the right edge of the swath
width of strip 2

B −0.03 X −0.29 At the middle of the swath
width of strip 2

C −0.23 X −0.54 At the right edge of the swath
width of strip 2

D −0.07 X −0.20 At the middle of the swath
width of strip 2

E −0.23 X −0.62 At the right edge of the swath
width of strip 2

F −0.08 X −0.43 At the middle of the swath
width of strip 2

G −0.04 Y −0.55 At the middle of the swath
width of strip 2

H −0.07 Y −0.40 At the middle of the swath
width of strip 2

4.3. Error Behavior with Respect to Time

To show how errors changed while the scanner was advancing, the LIDAR data points
over the test area were sorted based on the time they were scanned. Then, the calculated
height differences (1008 biases) were sorted by time. The test area covered only less than
two seconds of the scanning time, which contains about 19,000 data points. Figure 12 shows
the behavior of the absolute height error with respect to the time they were scanned.

In Figure 12, the height differences between the LIDAR points and their corresponding
ground-surveyed points show two types of variations. The two types can be divided in
two components: a bias in the geo positioning system and a random variation around that
bias. The first type of variation is called short-period variation. This variation seems to be
random and has a high frequency. This variation between two consecutive points could
reach 0.30 m as a maximum within 0.001 s. This random variation has a standard deviation
of 0.082 m. The short period variation, Figure 13, of the uncertainty of LIDAR heights
gives an indication of the system precision since the consecutive points are so close to each
other in the time domain and the test was conducted on a flat surface where the height is
approximately the same.

On the other hand, as shown in Figure 12, a trend (green spline) of the differences is
observed which is the second form of the variation. A trend is defined as the component
of a random phenomenon which has a period larger than the recorded data sample. The
trend in this test data represents the biases in the geopositioning system. Although the
test data represents only a small sample, this trend is very noticeable. The relative height
accuracy between data strips confirms this inference regarding the two forms of random
variation since the computation of the relative accuracy covers most of the data.

The total computed uncertainty of the LIDAR heights over the test area is about
±0.121 m. This uncertainty consists of two components: biases in the geopositioning of the
platform and random variation around these biases due to the ranging system uncertainty.
Regarding the planimetric accuracy, the computed offsets in the scanning direction over
the test area show two main outcomes. First, the planimetric uncertainty is larger (almost
double) at the end of the swath than at the middle. So, in general, the planimetric accuracy
seems to vary based on the location along the scan (cross-track) direction. At the edge of
the swath, the average offset was about 0.60 m, while at the middle it was about 0.30 m.
The second outcome is that the whole strip seems to be shifted in the east direction since all
the computed offsets have the same direction.
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Figure 12. Height accuracy (Ground—LIDAR) with respect to time.

Figure 13. Short period variation of the height biases.
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Both accuracies, relative and absolute, show two types of variation. The first variation
form is the short period random variation which has a high frequency with time. This
random variation seems to represent the actual precision of the LIDAR subsystem. The
other variation form is the long period variation or a trend. This trend has a much lower
frequency and seems to be a result of errors in the positioning/altitude subsystem. If
this trend is modeled and the data is adjusted accordingly, the accuracy of data will be
improved. Testing more samples that cover different parts with a longer period of time
would be needed to strengthen these conclusions.

5. Results Analysis and Discussion

The relative height offsets between LIDAR data strips were examined based on
the height offsets between coincident or partially coincident data points. More than
16,600 height offsets from all the 13 test overlap regions were computed. The results
show a variation in the height offset between adjacent strips. Among the 13 overlap regions
between adjacent strips, the average relative height offset ranges from 0 to 0.12 m. The
maximum offset between coincident laser measurements from two different strips is about
0.40 m. Two variation types are observed in the discrepancy between adjacent strips, short-
and long-period variations. The short-period variation is attributed with a high frequency
with time and has a standard deviation of about ±0.10 m. The long-period variation
has a much lower frequency than the first type. The source of the short-period variation
appears to be the uncertainty in the LIDAR subsystem. Ranging and scanning observation
uncertainty are some examples of error sources in the LIDAR subsystem. The short-period
variation appears to be random and represents the LIDAR subsystem precision. On the
other hand, the uncertainty in the navigation subsystem appears to be the source of the
long-period variation, which can be modeled and corrected and consequently improve the
data quality.

More than 1000 height discrepancies between the LIDAR data and collected ground
points were calculated in order to examine the height absolute accuracy of the LIDAR data.
The histogram of the computed differences shows a bias of about 0.088 m from the surveyed
ground with a standard deviation of ±0.082 m around the middle of the histogram. The
average height of the laser data points included in the test is higher than the estimated
ground by 0.088 m. However, the total variation of the LIDAR heights from the surveyed
ground is 0.120 m. This variation contains both the biases and its random differences. This
number (0.120 m) represents a sample of the real system height precision of the LIDAR
data. The computed discrepancies were then sorted based on the time they were scanned
in order to examine the error behavior with respect to time. The height differences between
the LIDAR points and their corresponding ground-surveyed points showed the two types
of variation that were shown in the relative height accuracy. However, this time the tested
sample is much smaller than in the relative height accuracy.

The variation between two consecutive points in time could reach 0.30 m as a maxi-
mum. The time span between two consecutive points in the test data is about 0.001 s since
the pulse rate is 10 kHz. This short-period variation of the uncertainty of LIDAR heights
gives an indication of the system precision since the consecutive points are so close to each
other in the time domain and the test was conducted on a generally flat surface where the
height is approximately the same.

In the scanning direction (across track), the planimetric offset of the LIDAR data from
the collected ground points varies based on the location in the swath. As expected, at the
strip edge, the offset in the scanning direction (−0.60 m as an average) was larger than at
the middle of the strip (−0.30 m as an average). However, those shifts were in the same
direction, which show the presence of a trend or bias. In the other direction (along track),
the average offset from the ground was about 0.47 m. In general, the root mean square
error of the planimetric offsets in both directions was estimated to be 0.50 m.
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6. Conclusions

Coincident LIDAR data points in overlap regions between adjacent strips show a
relative discrepancy in height. This discrepancy varies from one position to another
and varies with time. Regarding the absolute height accuracy, the data points show
a systematic departure from the collected ground reference and a random variation of
−0.088 m. The total computed RMSE of the test data from the ground reference was about
12 cm. Planimetric offset of the LIDAR data from the ground reference in the across flight
direction varies with the location in the swath. At the edge of the swath, the average
planimetric offset was almost double its value in the middle.

Both relative and absolute height discrepancies of the LIDAR data have two compo-
nents of variation. The first component is the short-period variation, which is random and
has high frequency with time. This short-period random variation runs over the second
component, which is the long-period variation. The long-period variation has a much
lower frequency than the first type and represents the biases in the geopositioning system.
The short-period variation is attributed to the LIDAR subsystem measurement uncertainty.
System ranging resolution and scanning system-pointing precision are some examples
of the error sources in the LIDAR subsystem. On the other hand, the uncertainty in the
navigation subsystem appears to be the source of the long period variation, which can be
modeled and accounted for in order to improve the quality of the data.

The LIDAR data accuracy evaluation is still an open area for more research and
analysis, particularly with the growing application of new UAV-LIDAR systems in many
applications. Such systems can provide centimeter-level accuracy and the procedure
outlined in this research has the capability to evaluate the accuracy of these systems with a
high degree of certainty. This will extend the use of LIDAR data in many applications such
as building information models (BIMs), 3D Geographic Information Systems (GIS), mobile
communications, disaster management, and city planning. Therefore, future research
will focus on assessing the quality of LIDAR data produced from UAV systems and best
practices of collecting LIDAR data for different applications.
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Abstract: We developed new measures of structural complexity using single point terrestrial laser
scanning (TLS) point clouds. These metrics are depth, openness, and isovist. Depth is a three-
dimensional, radial measure of the visible distance in all directions from plot center. Openness is the
percent of scan pulses in the near-omnidirectional view without a return. Isovists are a measurement
of the area visible from the scan location, a quantified measurement of the viewshed within the
forest canopy. 243 scans were acquired in 27 forested stands in the Pacific Northwest region of the
United States, in different ecoregions representing a broad gradient in structural complexity. All
stands were designated natural areas with little to no human perturbations. We created “structural
signatures” from depth and openness metrics that can be used to qualitatively visualize differences
in forest structures and quantitively distinguish the structural composition of a forest at differing
height strata. In most cases, the structural signatures of stands were effective at providing statistically
significant metrics differentiating forests from various ecoregions and growth patterns. Isovists
were less effective at differentiating between forested stands across multiple ecoregions, but they
still quantify the ecological important metric of occlusion. These new metrics appear to capture
the structural complexity of forests with a high level of precision and low observer bias and have
great potential for quantifying structural change to forest ecosystems, quantifying effects of forest
management activities, and describing habitat for organisms. Our measures of structure can be used
to ground truth data obtained from aerial lidar to develop models estimating forest structure.

Keywords: terrestrial lidar; TLS; forest structure; depth; openness; viewshed; Research Natural Areas;
forest vegetation

1. Introduction

1.1. Importance of Structure

The structural complexity of a forest (e.g., arrangement and amount of above-ground,
biophysical components) has profound influences on its ecological function and health [1–3].
Structural complexity influences everything from canopy closure and connectivity that
determines the amount of light infiltration to the forest floor, which influences the type and
amount of understory and midstory plant species. Biophysical components also heavily
influence the foraging and movement patterns of wildlife [4–7].

Quantifying structure is becoming increasingly important for resolving contemporary
forest management issues. In the Pacific Northwest (PNW) of the United States, efforts to
address some of these issues include developing late seral forest characteristics in young,
managed forests to promote habitat for threatened northern spotted owls (Strix occidentalis
caurina), landscape-level efforts to reduce fire fuel loads in dry forests after more than a
century of fire suppression, and developing programs to monitor the long-term effects
of climate change on natural and managed forests [8–11]. Each of these efforts requires,
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in part, the ability to quantify changes in the physical arrangement and amount of forest
structure over time.

Historical measures of structural complexity have included simple measures of struc-
tural elements (e.g., tree diameter, height, spacing, basal area, variance in diameter at breast
height (DBH)) and indices combining multiple measures (e.g., Shannon-Weiner Index, old
growth index, & diameter diversity index [DDI]) [12–15]. These measures have been used
successfully for a range of ecological applications, from single species habitat analysis at a
localized level, to broad landscape-level planning [16,17]. Given the importance of forest
structure, new methods are constantly being developed to quantify more nuanced and
subtle differences and changes as new technologies emerge [18–20]. While most historical
measures have relied on rudimentary hand tools, such as spherical densitometers or wedge
prisms that introduce observer bias [21,22], many of the new methods to quantify forest
structure leverage the more objective measurements derived from remote sensing platforms
such as lidar.

1.2. Lidar for Forest Structure

Lidar technology is increasingly being used for quantifying forest structure [23–25].
Lidar data can be acquired from a variety of platforms, depending on the accuracy, resolu-
tion, and spatial coverage needed. Airborne lidar can efficiently capture forest structure
across broad landscapes and has been used effectively to measure tree heights, leaf area
index, above ground biomass, and forest heterogeneity [25–28]. Aerial lidar is so ingrained
in current forest inventory assessments that it is a standard tool employed by many man-
agement organizations [29–31]. However, airborne lidar can miss much of the structural
complexity in understory and midstory layers, particularly in dense forests; hence, efforts
to quantify understory vegetation from ALS are limited in their characterizations [32–34].

Terrestrial laser scanning (TLS), also referred to as terrestrial lidar, is used to collect
structural data from the ground and provides much more detailed information about the
lower and middle layers of a forest than airborne lidar, especially in structurally complex
forests where tree canopies can obscure aerial detection of understory and mid-story
vegetation layers. Inversely, the upper canopy can be occluded from TLS in these same
structurally complex and dense forests. The resolution of TLS is also much finer, with
several hundred to many thousands of point returns captured per square meter (compared
to a few dozen for airborne lidar). Although limited in area covered, TLS only requires a
single operator and can be collected at any time weather conditions are favorable. TLS is
increasingly being used to measure structural elements such as amount of woody biomass
and basal area [35–37]. TLS has also been used to assess fire fuel loads and help predict
fire behavior [38–40]. Further, TLS has been used to quantify forest structure for ecological
analyses, including measuring forest stratification, wildlife habitat and prey cover, and
structural density [41–44].

Typically, studies using TLS for forestry applications use multiple scans stitched
together to create a comprehensive three-dimensional model. TLS point clouds are highly
susceptible to occlusion as close objects block everything located behind them relative
to the scanner position. The effects of this occlusion on derived forest metrics varies
depending on what metrics are being obtained [45,46]. In relatively open forest stands,
collecting multiple scans and creating a larger composite is a simple task of matching
shared features between the scans (e.g., specific TLS targets or natural elements such as
rocks or tree branches). In forest stands that have dense understory, stitching together
multiple scans can be extremely difficult and time consuming due to the extreme amount
of occlusion at each sampling location. Because of these limitations with using stitched
together TLS scans, there is increasing interest in the use of single TLS scans to derive
forest structural metrics. While single point TLS scans have been shown to be able to
derive typical forest metrics such as DBH or stem maps [47–49], typically, multiple scans
are required to replicate typical forest structure measurements [50]. The key to using single
point TLS scans for forest structure characterization is likely to focus on deriving different
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types of metrics that still relate to forest structure beyond trying to replicate conventional
sampling techniques (e.g., basal area and mean diameter). Richardson et al. [51] proposed
the Three-dimensional Vegetation Density Index (3DI), which is a metric based on median
distance traveled of each pulse between defined scan angles from the scanner. This method
can quantify differences between stands with markedly different forest structure such as
an area of dense understory vegetation compared to a stand where heavy cattle grazing
removed much of the understory vegetation. However, there are some major limitations to
the 3DI, namely that it does not account for slope effects on lidar point distances and thus
can only be used effectively in relatively flat areas.

Studies that have used single TLS scans for novel ecological characterizations include
using voxelization and point height statistics to quantify burn severity [52,53], using relative
point location, geometry, and intensity to differentiate between tree stems and leaves [54],
and correlating point height statistics with species richness [55]. While there has been work
deriving forest metrics from single terrestrial lidar scans, only a small portion explicitly deal
with how far individual pulses travel [56] or requires multiple scans to assess view area [57].

1.3. Objectives

We propose three different sets of metrics derived from single point TLS scans; depth,
openness, and isovists. All three of these metrics are created in a manner that contours
to localized plot topography and can be derived at sites that are both level and on a
significant slope. Depth is a measurement of the distance traveled by each individual
laser pulse stratified by the angle of the pulse leaving the scanner and corrected for slope.
Openness accounts for pulses that did not return to the scanner (i.e., did not interact
with any vegetation within the range of the scanner). Isovists, quantify the area visible
approximately at 1.4 m above ground level with a 360◦ view from a center location. This
metric is expressed as a percentage of total area visible at differing distances from the
scanner. We generated our metrics from TLS scans collected in natural (no previous timber
harvesting or other major human disturbance) forests that varied in structural complexity
and composition to explore whether the expected variation in forest structure could be
distinguished using our proposed metrics.

We then outline potential applications of these new metrics and discuss the potential
advantages and disadvantages of using single TLS scans to quantify forest structure parameters.

2. Materials and Methods

2.1. Site Selection

We selected twenty-seven forested stands across six ecoregions (Coast Range, Klamath
Mountains, Willamette Valley, West Cascades, and East Cascades [58]) within a 300 km
radius of Corvallis, Oregon for study. We chose stands within Forest Service and Bureau of
Land Management, Research Natural Areas (RNAs) and Areas of Critical Environmental
Concern (ACECs) because they represent relatively pristine forests with minimal anthro-
pogenic influence and allowed us to explore a wide range of natural variation in forest
structure [59] (Figure 1).

We used DDI as the primary metric for selecting stands that collectively represented a
gradient in structural complexity across the study area. DDI is a measure based on counts
of trees in four different size classes, with 0 indicating the absence of trees (non-forest)
and 10 indicating maximum representation of 4 size classes [13]. DDI values were derived
using gradient nearest neighbor (GNN) raster maps developed from LandSat satellite
data [60]. Site selection was done remotely using ESRI GIS software [61] and relevant data
layers. DDI raster values were smoothed using focal statistics, generating mean values
within a 3 × 3 cell dimension neighborhood. We divided forested DDI values (i.e., values
from 1–10) into nine classes (Table 1) and delineated patches of forest (i.e., stands) large
enough to include 9 plots (3 × 3 grid, with 100 m spacing between grid points). From this
pool of potential stands, we randomly selected three stands for each DDI class that could
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accommodate our plot grid to determine plot coordinates. We reselected a few stands due
to access issues.

Figure 1. Distribution of 27 natural areas in Oregon and Washington used to evaluate metrics of struc-
tural complexity derived from Terrestrial LIDAR scans collected between August and October, 2014.

Table 1. The ecoregion, name, and Landsat image gradient nearest neighbor diameter diversity index
(GNN DDI) for our 27 study stands.

Ecoregion Name GNN DDI

Coast Range

North Spit 1–2
New River 3–4

Mary’s Peak 8–9
Port Orford Cedar 8–9

East Cascades

Wechee Butte 1–2
Mokst Butte 2–3

Bluejay 3–4
Mill Creek 4–5

Smith Butte 5–6
Monte Cristo 7–8

Klamath Mountains

North Bank 2–3
Ashland 4–5

Crooks Creek 5–6
Hunter Creek Bog 7–8
Grayback Glades 8–9

French Flat 9–10
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Table 1. Cont.

Ecoregion Name GNN DDI

West Cascades

Goat Marsh 2–3
Sherwood Butte 3–4

Limpy Rock 4–5
Cultus River 6–7
Katsuk Butte 6–7
Three Creek 7–8

Carolyn’s Crown 9–10
Steamboat Mountain 9–10

Willamette Valley
Coburg Hills 1–2

Little Sink 5–6
Camas Swale 6–7

2.2. Scan Acquisition

One scan was taken at each plot location for a total of 243 scans across the 27 stands
(Figure 2). Scans were taken between 20 August and 9 October 2014, prior to leaf fall.
A Faro Focus 3D s120 terrestrial lidar scanner (Faro Technologies Inc., Laker Mary, FL,
USA) was used. Plot centers were located with a Garmin GPSmap handheld GPS unit
(Garmin Ltd., Olathe, KS, USA) with 5 m to 20 m accuracy depending on canopy closure
and weather conditions. TLS unit was set up at the plot center at approximately 1.4 m
above ground. Some variation in scanner height was due to topography. If the plot center
was too heavily occluded (e.g., within a dense shrub or directly next to a large tree) then
the closest location to plot center that offered a full 360◦ of the stand within 10 m of plot
center was used. This was to maximize area captured in the scan and to minimize occlusion
by trees and shrubs. The scanner reliably received returns for objects ≤60 m away within
a panoramic scan capturing a horizontal window from 0 to 360◦ and a vertical window
from −60 to 90◦. Vertical and horizontal scan lines were spaced every 0.035◦, resulting in a
10,266 horizontal × 4267 vertical resolution per scan. Each scan required approximately
10 min to complete once onsite.

Figure 2. Nine single point scans (represented by the points) were collected in each forest stand
placed at 100 m spacing. This was to get adequate representation of each forest type while limiting
spatial autocorrelation between scans.

2.3. Scan Processing

Initial scan processing consisted of filtering artifacts and noise present in the scan data
using preset filters in Faro Scene version 5.3.3 [62]. Dark scan points were isolated using
an intensity (return signal strength) threshold of 200. Stray or isolated scan points were
removed using a grid size of 3 px, distance threshold of 0.02 m, and allocation threshold
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of 33.3%. Noise and edge effects are inherent in all lidar data due to edge effects and
back scattering [63].

Processed scans were exported into Leica PTX format, which preserved scanning
acquisition structure with fixed angular increments between scan pulses [64]. We used PTX
reader [65] to create two-dimensional intensity (Online Supplement: Supplement A) and
depth (range) raster images using first-return point values, where each column of pixels
represented an individual scan line and each pixel represented an angular location where
the laser pulse was fired. Each scan resulted in a 10,266 × 4267 pixel raster, matching the
scanline resolution settings of the scanner. Because the rasters are 2D representations of a
3D point cloud, there are distortions in the image. This is essentially a cylindrical projection
of the point cloud. As long as pixels within the image are only compared to other pixels in
the same relative horizontal position, the distortion will be equivalent and allow for valid
comparisons. In these planar projections, if a scan is taken on a steep slope, the ground will
take on a wave-like appearance with the uphill slope appearing taller in the image and the
downhill slope appearing lowering the image (Figure 3).

Figure 3. Conceptual illustration of the process used to identify vertical layers and remove the
ground from the raster images. The raster data had 10,266 columns and each column was divided
into 100 sections between the top of the image and where the column hit the ground. In this figure
there are 8 sections drawn in magenta to illustrate how each column was subdivided into 100 sections
contoured to the hill slope, accounting for trees extending below the hillslope horizon, and excluding
returns from the ground. The upper, middle, and lower sections of the scan are denoted to help with
conceptualizing structural signatures.

This process of using raster depth maps to account for slope has significant advan-
tages over traditional lidar normalization processes for single TLS scans. Traditional lidar
normalization uses detailed ground models to remove elevation from each points Z value
leaving only the height above ground for each point. Using a single scan, only the ground
relatively near the scanner is captured. Slope, density of vegetation and other factors can
rapidly occlude the ground beyond a few meters. Normalization is dependent on having
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a robust ground model which cannot be generated beyond the area directly adjacent to
the scanner. Digital terrain models (DTMs) from airborne lidar can be used to normalize
TLS scans but this relies on there being ALS data available for all locations and accurately
geolocated scans. For our methods we only used the data collected from the single scan
and were not reliant on additional data.

Further, normalizing changes the viewshed from the scan location. Branches that were
visible can become occluded if normalized, and gaps form where occluded areas before
normalizing are moved.

2.4. Depth and Openness Metric Calculation

The ground, small herbaceous vegetation, and small woody debris was visually iden-
tified and removed in each depth raster. This was accomplished by manually tracing the
intersection where the trees and larger vegetation met the ground in the image. Conceptu-
ally this is depicted in Figure 3. Bézier curves were used to fit the contours of the “wavey”
hillslope when appropriate. The line created through this process was a hillslope horizon
line that accounted for vegetation. The ground and small vegetation pixels were simply
deleted, and a null value added to the raster. The number of pixels above ground in each
vertical scan line in the depth raster was divided into 100 equally spaced vertical increments
using a custom MATLAB [66] script (Figure 3).

This discretization process minimized potential slope effects within and across plots.
It also ensured that the same relative location on the trees present at a plot were being
captured within the same vertical layer. The lowest of the 100 sections uniformly sampled
the base of the trees while the highest of the 100 sections uniformly sampled the upper
canopy. We averaged both depth and percent of “no returns” (openness) for each increment
across the entire 360◦ horizontal view. Structural signatures were comprised of the average
value across all 9 scan plots at each of the 100 angular increments, at each stand. One
standard deviation from the mean included as a shaded band that is an indicator of the
forest structural heterogeneity. Additionally, overall means were calculated for the upper,
middle, and lower forest layers for both the depth and openness plots as structural indices.

2.5. Isovists

Isovists (polygons that enclose the visible area from a single vantage point) were
generated for each plot. First, a polyline (4 pixels wide) was digitized on each intensity
raster at 1.4 m above the ground (Figure 4A). Height above ground was determined by
measuring a subset of trees (3–8, depending on slope) in the scan using FARO Scene. Bézier
curves were fitted connecting the 1.4 m marks on the trees and contoured to the hill slope.
The number of trees varied depending on the number of visible trees in the scan. For a tree
to be used, the base needed to be visible. A cross section of points that fell along this line
was extracted using PTX reader and subsequently flattened to the XY plane by ignoring Z
(elevation) values.

Points within each cross section were imported into ESRI GIS software [61]. A circular
buffer was drawn around each point to account for the inherent gaps between sample
points. Given that the scanner operated on fixed angular increments rather than fixed
sampling distances, we increased the buffer size for each point as range from scanner
increased, using the following equation:

D_Bi = R_i·tan∅ + ∈ (1)

where:
DB = the diameter of the buffer (m) at point i,
R = the 3D Euclidean range from the scanner at the sample point i,
∅ = the angular sampling incremental (0.035◦ for this study), and
∈ = a small tolerance value to provide overlap to avoid small data gaps (0.003 m for

this study).
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The points in each scan were clipped to a horizontal radius of 55 m using circular
buffers from each cross section (Figure 4B). Isovist polygons were created by extending
10,266 rays (at 0.035◦ increments to match scan line intervals) from the scanner location
on the cross section and creating a point where each ray intersected a point buffer. The
percentage of visible area was calculated at 5 m radius increments from the plot center
resulting in 11 values per scan. Percentage was used rather than the actual area value to
normalize the isovist metric across all radii.

 

Figure 4. Illustration of the processes used to create isovist polygons at each plot: (A) Digitization of
a polyline on the panoramic pointcloud at 1.4 m above the ground; (B) Planar view of the extracted
cross section. This is followed by creating buffers around each point; (C) Generate visibility polygon
(isovist) to calculate percent occlusion and potentially identify tree locations and DBH.
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2.6. Comparisons
2.6.1. Depth and Openness Statistical Tests

Univariate linear regression was used to test for correlation (significant at 95% confi-
dence) between depth and openness (mean and variance between plots in each stand) to
ensure these variables were independent.

Principle componence analysis (PCA) [67] was used to visualize how well individual
plots in each ecoregion clustered, to determine which depth and openness angular incre-
ments most contributed to PC 1 and PC 2, and to visualize the relationships between depth,
openness, and GNN DDI vectors. Ordination was performed using all 243 plots with each
plot having all depth and openness values assigned to it, resulting in a 243 × 200 main
matrix and then simplified to only use the depth and openness angular increments that
most contributed to PC 1 and PC 2, and the GNN DDI values. Data was scaled to unit
variance before PCA was performed.

Analysis of variance (ANOVA) tests were used on depth and openness metrics at
every angular increment with plots grouped by stands to determine if our new metrics dif-
ferentiated between stands. For this step, 100 ANOVA tests were performed to test if there
was a significant difference at each of the 100 angular increment sections between stands.

ANOVA tests using Tukey’s honestly significant difference (HSD) [68] was performed
on plots using all 100 angular increment sections and grouping stands based on ecoregion
to determine if our new metrics differentiated between forest structure based on ecoregion.

2.6.2. Isovist Statistical Tests

ANOVA tests were conducted for each isovist radius grouping isovists by stand.
Stands were then aggregated into ecoregion groups to perform an ANOVA test with
Tukey’s HSD post hoc intergroup comparisons.

3. Results

3.1. Structural Signatures

Each of the 27 stands exhibited distinctly different structural signatures for both depth
and openness (Online Supplement: Supplement B). Some stands exhibited large amounts of
structural variation at all vertical levels (e.g., Limpy Rock; Figure 5) while others exhibited
relatively little variation (e.g., Hunter Creek Bog; Figure 5).

 

Figure 5. Cont.
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Figure 5. Structural signatures (shaded area is one standard deviation above and below mean) and
representative photo of Limpy Rock RNA (above) and Hunter Creek Bog ACEC (below).

Some stands had increasing structural variation from the ground to the canopy (e.g.,
Little Sink; Figure 6). Other stands exhibited low variation in the lower and middle layers
but abrupt increases in variation in the upper layers (e.g., Mokst Butte; Figure 6). Stands
with dense understories tended to have low mean depth values (e.g., Hunter Creek Bog &
Mokst Butte). Depth signature values tended to increase going from the ground to upper
canopy. This increase was more rapid in stands with an open understory (e.g., Limpy Rock).
Stands comprised of a mix of open and closed canopies could exhibit markedly varying
depth signatures at the upper canopy layers (e.g., Mokst Butte). Stands with large canopy
gaps had openness signatures that could reach 100% (e.g., Hunter Creek Bog and Mokst
Butte). Stands with dense vegetation at all levels had a correspondingly low openness
signature (e.g., Little Sink).

 

Figure 6. Cont.
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Figure 6. Structural signatures (shaded area is one standard deviation above and below mean) and
representative image of Little Sink RNA (above) and Mokst Butte RNA (below).

3.2. Depth and Openness Statistical Tests

No correlation was found between depth and openness (r2 < 0.01; p = 0.82) suggesting
the two metrics were independent.

3.2.1. Ordination

The top 5 variables that most contributed to PC 1 were the depth angular increments 55 to
59. This is just above the middle view from the scanner (Figure 3). The top 5 variables that most
contributed to PC 2 were the Openness angular increments 38 to 42. Our openness metric had a
negative relationship to the GNN DDI values when only usingthe angular increments that most
contributed to the PCA axis and adding the GNN DDI values (Figure 7).

Figure 7. Ordination plot of all 243 locations sampled during the study. PC 1 and PC 2 axis are label with
the amount of variation they explain. Depth, openness, and GNN DDI vectors are oriented relative to how
much they contribute to PC 1 and PC 2. Our openness metric has a negative relationship with GNN DDI.
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3.2.2. Depth and Openness ANOVA

There were significant differences in the depth values between stands at each of the
100 angular increments (all p values < 0.05 with the majority < 2.2 × 10−16). There were also
significant differences in the openness values between stands at each of the 100 angular
increments (all p values < 0.05 with the majority < 2.2 × 10−16). With p values less than 0.05
for an ANOVA test, we accept the null hypothesis that at least one of the group means was
significantly different than the others.

When grouped by ecoregion, there was a significant difference between all parings of
the depth and openness metrics except for the depth metric between ecoregions of Klamath
mountains and the coast range, as well as Willamette valley and the westside of the cascade
mountains (Figure 8). Our stands in the eastside of the cascades were most dissimilar to
stands in both the Klamath and coast ecoregions. Similar trends were also seen with the
Openness metric.

Figure 8. Tukey HSD results for the post hoc ecoregion comparison of both the depth and openness
metrics. The closer to the centerline, the more similar the two regions were in their respective metric.

3.3. Isovist Statistical Tests

When grouped by stand, the isovist percentage of area visible was significantly dif-
ferent (p = 4.116 × 10−5). In general, the area visible decreased as the radius of the isovist
increased (Figures 9 and 10). This decrease was typically about 40%. The percentage visible
ranking changed for many stands as the isovist polygon radius increased. For example,
New River (NR) had the least area visible with a 5 m radius isovist but at 25 m and beyond,
Wechee butte had the least area visible. While the rate of decrease was different between
stands, the spread of percentage visible was about 30–35% for the 5 m distance all the
way through the 55 m distance. When grouped by ecoregion, most of the combinations of
ecoregions had no significant difference in averaged percentage visible. The only ecoregion
that did have a statistically significant difference was the coast range (Figure 11).
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Figure 9. Average percent visible of area for each stand as measured by isovists. Area visible
uniformly decreased as the radius of the isovist increased.

Figure 10. Example isovist polygon at differing radii. The percentage of visible area declines as the
radius of the isovist is increased.

Figure 11. Tukey HSD paired comparison between isovist values grouped by ecoregion.
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4. Discussion

4.1. Depth and Openness

Our results suggest that depth and openness are two distinct measures of structural
complexity. Each of our 27 stands exhibited unique signatures and could be clearly distin-
guished from each other, suggesting that both depth and openness can capture the unique
variation in structural complexity found in natural forests and at relatively fine scales. The
structural signatures can be qualitatively assessed for stand openness and heterogeneity
while also providing quantitative values for statistical analysis.

One strength of these metrics is that specific height strata within a forest can be
extracted. For example, if only understory vegetation is of interest, then only the lowest
angular increment layers can be included in an analysis. Our suggestion of 100 angular
increments is a subjectively assigned value and fewer, or more increments can be used as is
warranted by the research question being addressed. It is important to consider that our
sampling was not a horizontal metric of canopy slices at different height strata, but rather
the angular view of different height strata from a ground perspective.

We have shown that the depth and openness metrics do return significantly different
values for stands at every angular increment, but more importantly, they also can be used
to differentiate forest structure when aggregated to ecoregion. The Tukey HSD results show
which regions have dramatically different vegetation structures and which ecoregions tend
to have structurally similar forests. Although not explicitly examined here, we would
expect a much higher degree of similarity among signatures in young forests managed for
timber production where within-stand structure tends to be relatively homogeneous (e.g.,
single tree species of a similar age cohort, uniform spacing between individual trees).

4.2. Isovists

The ability to quantify the structural differences between forest types and forest
of different ecoregions was less using the isovist approach compared to our depth and
openness metrics. However, this does not indicate that the isovists do not quantify an
important element of forest structure, as they are a direct measure of visual occlusion. As
such, their utility may be better suited to ecological questions where occlusion can be an
important component of habitat. Many wildlife species change behavior based on the area
visible at any given location or have active preferences for certain amounts of visibility for
hunting, denning, or relaxation [43,69,70]. For example, Canada lynx (Lynx canadensis), a
species of special conservation concern, appears to require high amounts of understory
cover (i.e., lower percentage of area visible) as part of quality habitat [71,72].

Our metrics are a direct measurement of understory vegetation structure and occlusion
that can be used as localized assessment of habitat quality. Beyond a localized assessment,
these metrics offer a high potential to be used as ground truth data for upscaling on the
ground measurements of understory vegetation structure to a region wide model using
airborne lidar. Such upscaling and modeling has already been done using cover boards to
quantify horizontal visibility levels [73], but we believe that TLS offers advantages over the
more subjective coverboard estimates in both time and effort required to obtain the data as
well as providing a more robust measurement of cover.

Calculating visual occlusion using TLS point clouds is not new. With robust multi-scan
TLS point clouds 3D viewshed analysis has been done for several wildlife studies [74,75]
using R packages such as viewshed3D [76]. The advantage of our method is the ability
to correct for slope without a ground model, but undoubtedly if full and comprehensive
multi-scan TLS point clouds are available then the generation of a 3D viewshed has obvious
benefits over our 2D option.

4.3. Potential Applications

We suggest our new metrics have a wide range of potential applications for both
management and research. For example, a primary goal for much of the timber harvesting
on federal lands in the Pacific Northwest is to move the structural trajectories of young,
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managed forests towards characteristics more typical of late-seral forest. TLS signatures
could be used to help define and describe the structural variation found in natural (un-
managed) forests, including diverse late-seral forests as evaluated in this study. In managed
forests, TLS signatures could help (1) assess pre-thinning structural condition; (2) assess
immediate post-harvest condition to determine if thinning met structural goals; (3) monitor
treated stands at regular intervals to follow the trajectory of structural development; and
(4) establish benchmark data from relevant natural stands for desired future condition.

Biomass estimates may also be possible with our proposed metrics. Biomass is an
important measurement as it relates to carbon storage, timber volume, and species habitat.
If the foliage density and viewshed at different angular increments can be related to on the
ground manual measurements of forest biomass, then such biomass measurements could
be done at further areas with a greatly reduced labor cost. Multi position TLS sans are
already widely used for biomass estimates [77–79] and biomass modeling from airborne
and space borne lidar has provided valuable estimates [80–82], but there is still an excellent
opportunity for future research deriving biomass estimates in highly occluded areas with a
single point TLS scan.

A subset of the full signature may also help assess change and characteristics at
different vertical strata within a forest. For example, upper canopy measures could be
used to evaluate effects of defoliating pathogens and insects. Lower sections could be used
to derive indices for understory shrub and sapling density or fire fuel loads. Similar to
biomass estimates, TLS has seen considerable research to quantify fire fuel loads, but the
vast majority of the work is dependent on multiple scans [38,39]. Both the point cloud data
and photographs generated with each TLS scan could also be used to determine actual
height layers of vegetation, and in some cases, plant species composition.

The point cloud data could be synthesized in other ways than we described here. For
example, we chose to divide the vertical scan lines into 100 sections to create signatures
because increasing the number of sections did not produce a visually discernible difference
in the level of detail. The number of sections could be increased if a higher resolution
signature was desired when more detail was necessary. There is also potential for fur-
ther development of structural measures using three-dimensional isovists for measuring
openness as distance increased in any direction.

4.4. Limitations

One important limitation of TLS is that the ability to detect objects diminishes with
increasing distance to objects (reliability of scan returns diminished substantially > 60 m
for this study). Multiple scans could be registered together to produce a more complete
three-dimensional model of each plot. Not only would this allow three-dimensional
modeling of individual trees, it would also allow calculation of structural signatures based
on height above ground (rather than angular increment). However, labor costs (field and
post-processing) to create these composite datasets would be markedly higher compared to
single-point scans, especially for forests with high levels of occlusion. Additionally, initial
filtering of the point clouds could have a substantial effect on our metrics. Structurally
complex objects such as trees are especially susceptible to noise due to edge effects and
backscattering. Overly aggressive point filtering can remove valid points and reduce point
cloud accuracy [83]. We suspect our methods are likely very susceptible to errors due to
noise and filtering and this is one avenue of future research. Lastly, while lidar technologies
are becoming more common and ubiquitous within the field of forest ecology, the units are
still expensive and the skillset to process data to final and meaningful ecological metrics
requires extensive training.

For our processing we relied on manual removal of ground points within the raster
depth maps and the creation of a hillslope horizon line that accounted for vegetation. This
is a subjective process and needs refinement. For the purposes of accounting for slope, this
process does have advantages over traditional lidar normalization for single scans, but
further removing the subjective element would be ideal. There may be a way to create a
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hybrid approach by classifying ground points before creating raster depth maps and then
removing all pixels within a set radius from a ground point. Further, this approach for
accounting for slope does not account for micro topography and abrupt changes in slope.

5. Conclusions

While no single metric of structure can possibly satisfy all needs for all applications,
we believe our depth and openness measures have significant advantages over many past
measures for quantifying forest structure. In addition to capturing the multi-dimensional
properties of forest structure, these new measures (1) are spatially and temporally scalable
(a few centimeters to tens of meters) in all directions; (2) are precise with low observer bias;
(3) can be rapidly collected in the field; (4) are based on point cloud data that is unlikely to
become obsolete in the foreseeable future; and (5) can be further synthesized in ways to
meet specific research questions and management needs. Next steps include testing the
usefulness of these new measures for quantifying wildlife habitat and periodic (5 to10-yr)
re-measurement of our study plots to test their sensitivity to capture structural change
over time. Additionally, using these metrics as ground truth data to create regional models
needs to be more fully explored. TLS metrics that are derived directly from point clouds
may be better suited as model inputs to estimate forest structure using larger area data sets
such as aerial lidar.
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Abstract: This paper presents an innovative approach to the automatic modeling of buildings
composed of rotational surfaces, based exclusively on airborne LiDAR point clouds. The proposed
approach starts by detecting the gravity center of the building’s footprint. A thin point slice parallel
to one coordinate axis around the gravity center was considered, and a vertical cross-section was
rotated around a vertical axis passing through the gravity center, to generate the 3D building model.
The constructed model was visualized with a matrix composed of three matrices, where the same
dimensions represented the X, Y, and Z Euclidean coordinates. Five tower point clouds were
used to evaluate the performance of the proposed algorithm. Then, to estimate the accuracy, the
point cloud was superimposed onto the constructed model, and the deviation of points describing
the building model was calculated, in addition to the standard deviation. The obtained standard
deviation values, which express the accuracy, were determined in the range of 0.21 m to 1.41 m. These
values indicate that the accuracy of the suggested method is consistent with approaches suggested
previously in the literature. In the future, the obtained model could be enhanced with the use of
points that have considerable deviations. The applied matrix not only facilitates the modeling of
buildings with various levels of architectural complexity, but it also allows for local enhancement of
the constructed models.

Keywords: 3D modeling; buildings; LiDAR; cross-section; rotating surface

1. Introduction

Remote measurement systems enable the development of digital models that depict
real-world objects with increasing accuracy. Light detection and ranging (LiDAR) tech-
nology, which collects point clouds using airborne laser Scanning (ALS), has particularly
contributed to advancements in remote measurement. Airborne LiDAR data are described
by three coordinates (attributes), which, in combination with aerial color images (red, green,
and blue; RGB), have led to the development of a new functionality in 3D modeling [1–3].
LiDAR data can be labeled by automatic point classification, where thematic subsets are cre-
ated based on attributes [2,4,5]. Classification is a crucial process in 3D modeling, because
the represented objects are characterized by increasing complexity [6,7]. A point cloud can
be classified using supervised learning methods that rely on statistical formulas [8–10] or
supervised methods based on machine learning classifiers [11–13]. During the classifica-
tion process, subsets must be verified, to identify and eliminate outliers. Classification is
combined with segmentation, to select subsets of points that represent individual objects.
The selected subsets facilitate 3D city modeling, mainly 3D buildings that represent most
infrastructure objects in urban areas. The segmentation of LiDAR datasets can be simplified
with the use of vector sets depicting the ground floors of buildings [14–16]. Classified and
segmented point clouds from aerial images fulfil the requirements for modeling buildings
at the LOD0, LOD1, and LOD2 levels of detail, as long as their visibility is not disturbed by
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natural and artificial curtains. Additional data (for example terrestrial scans) are needed
to generate LOD3 models, because extended facades of buildings are often rendered in
insufficient detail based on aerial images. LOD4 modeling is also applied to model building
interiors based on indoor scans. Building information modeling (BIM) technologies are
increasingly being used to create virtual 3D models of buildings with architectural details,
in building design and management. The BIM dataset generated in the process of designing,
modeling, and managing buildings meets the requirements for creating LOD models at
different levels of detail. BMI technologies offer an alternative to the above solutions [14,17].
The construction of virtual 3D city models in the CityGML 3.0 standard [18–20] requires
models of urban objects with varying levels of complexity and accuracy. The generation
of vector and object data with various levels of detail, based on point clouds, poses a
considerable challenge. Complex models (LOD3) should accurately depict the structural
features of buildings, such as gates, balconies, stairs, towers, and turrets. Vector 3D models
with varying degrees of complexity should be restricted to a single topology, which poses a
difficult task for researchers. Such models should not only enable rapid visualization of 3D
datasets at different scales and with varying complexity, but they should also facilitate data
processing during comprehensive analysis [19,21]. In the next stage of designing a smart
city, 3D datasets describing individual buildings must be linked with semantic data [22]
to create thematic applications [23]. The CityGML 3.0 Transportation Model also requires
highly detailed models of street spaces, in particular buildings. These models are utilized
in autonomous vehicles [22,24] and other mobile mapping systems.

Various approaches to modeling buildings based on point cloud data have been
developed. The proposed approaches rely on subsets of points describing buildings and, in
the next step, subsets describing roof planes. These points can be identified with the use of
various approaches:

• Methods based on building models that are represented in LOD0 [14,25,26].
• Methods involving algorithms that are based on triangulated irregular networks

(TIN) [16].
• Methods involving point classification, filtration, selection, and segmentation [27,28].
• Methods where points are classified by machine learning [12].
• Methods where points are selected based on neighborhood attributes [29].
• Methods where point clouds are filtered based on a histogram of Z-coordinates [7,30].

The modeling process is two-fold: modeling of roof planes and modeling of build-
ing surfaces [30]. These processes are often conducted manually, based on defined ref-
erence models that are available in libraries or are generated for the needs of specific
projects [31]. Other approaches involve different methods of processing subsets of LiDAR
points. In the generated point clouds, subsets that represent roof planes are extracted by
the developed algorithms [30,32]. In the next step, roof plane boundaries are modeled
as straight-line segments, and the topological relationships between these elements are
established [26,27,32–35]. Building facades are usually difficult to model, due to incomplete
datasets in point clouds. Therefore, it was assumed that a building’s outside walls should
be reconstructed based on the roof boundary. This approach supported the development
of numerous algorithms for automatically identifying and modeling buildings based on
LiDAR data at the LOD2 level. The generated algorithms are based on modeled roof
planes [32,35,36]. In the constructed models, the ground floor of a building is represented
by the contour of the roof [34,35]. This simplified approach was adopted to establish
topological relationships between geometric objects in building models [18,35,37]. The pro-
posed methods and algorithms for modeling buildings at different levels of detail always
give simplified results. Models rarely fully correspond to reality, because construction
technologies allow creating complex spatial structures that are difficult to render in 2D or
even 3D mathematical frameworks for virtual visualization of entire cities. The present
study was undertaken to search for new solutions to this problem.
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2. Research Objective

Most solutions for roof plane modeling in the literature are based on straight-line
geometric elements. In practice, roofs and roof structures tend to be more complex in
buildings that feature towers, turrets, or other ornamental structures, in the shape of
spheres or curved planes. In the proposed models, such elements are usually simplified or
even omitted. These differences become apparent when virtual LOD2 models of cities are
compared with Street View visualizations. Two 3D building models from the Polish Spatial
Data Infrastructure (SDI) geoportal are presented in Figure 1. The constructed models
present selected buildings in the Polish city of Olsztyn. Complex building structures,
including ornamental features, were not visualized because only straight-line 3D elements
were used in the modeling process. This problem had been previously recognized by
Huang et al. [35].

  
(a) ( ) 

  
( ) (d) 

Figure 1. Selected 3D building models from the Polish SDI Geoportal, including Street View visu-
alizations; (a) Model of the Olsztyn City Hall building; (b) Visualization of the Olsztyn City Hall
building; (c) Models of other representative buildings and their visualizations (d).

These observations indicate that towers, turrets, and other ornamental features consti-
tute structural blocks and require special modeling methods. Some of these structures can
be modeled by rotating straight-line segments. New methods for the automatic generation
of detailed building models are thus needed, to ensure compliance with the CityGML
3.0 standard. Therefore, the aim of this study was to develop an automated algorithm
for modeling the characteristics of tall structures in buildings, represented by solids of
revolution, and based on LiDAR point cloud data.

These observations indicate that:

• Towers, turrets, and other ornamental structures require special modeling methods.
• Some of these structures can be modeled by rotating straight-line segments.
• New methods for the automatic generation of detailed building models are thus

needed to ensure compliance with the CityGML 3.0 standard.

Therefore, the aim of this study was to develop an algorithm for modeling the charac-
teristics of tall structures in buildings, represented by solids of revolution, and based on
point cloud data.

3. Design Concept

The expected model that will be generated by the proposed modeling algorithm should
be described first. For this purpose, an experiment was designed to assess the similarity
between the envisaged model and the tower point cloud, and between the envisaged
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model and the tower building. The test was inspired by Tarsha Kurdi and Awrangjeb [38].
A 3D point cloud distributed irregularly on the tower’s outer surfaces can be measured
by airborne laser scanning. On the one hand, the relatively low point density, irregular
point distribution, accuracy of point location, presence of noisy points, and the geometric
complexity of the scanned building decrease the similarity between the scanned tower and
its point cloud. On the other hand, the generalization of the point cloud for calculating
a 3D model decreases the similarity between the constructed model and the point cloud.
Therefore, the fidelity of the constructed model decreases twice: during the scanning step
and during the modeling step.

The experiment consisted of two stages. First, a 3D tower model was developed
manually from the tower point cloud, without a reference to the original building image. In
the first stage, the calculated model was named Model1, and it is shown in Figure 2b. Both
the tower point cloud and the terrestrial image were used as inputs, to manually generate
the 3D tower model. In the second stage, the calculated model was named Model2, and
it is shown in Figure 2c. It should be noted that the model was generated with the use of
the official Polish GIS model, which was imported to CAD and is presented as a skeleton
in Figure 2c.

Figure 2. Tower of the Olsztyn City Hall building; (a) LiDAR point cloud; (b) Model 1 generated
directly from a point cloud; (c) Model 2 generated from the point cloud and the terrestrial image
shown in Figure 1b.

A comparison of the obtained tower models indicates that:

• Despite the fact that geometric details are not rendered with sufficient clarity in the
point cloud, they can be identified in Model 2, but not in Model 1.

• Model 2 preserves the tower’s geometric form, which can be observed in the terres-
trial image.

• Some errors in the diameters of different parts of the tower body in Model 2 result
from a greater focus on the image than the point cloud.

• Model 1 renders the geometric form of different tower parts with lower accuracy, but
it preserves dimensions with greater accuracy.

• Model 1 represents the point cloud more accurately than Model 2, whereas Model 2
represents the original tower more accurately than Model 1.

These observations suggest that in an automatic modeling approach, based only on
an airborne LiDAR point cloud, the processing parameters and measurements are applied
directly to the point cloud. Thus, the expected model will more accurately represent the
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point cloud describing the original building. Consequently, the constructed building may
be more similar to Model 1 than Model 2.

Figure 2b indicates that the tower can be regarded as a rotational surface. The tower
body is composed of five vertical parts (Figure 2); therefore, five horizontal cross-sections
were calculated from the tower point cloud to verify this hypothesis, as shown in Figure 3.

Figure 3. Five cross-sections in the tower point cloud.

The first three cross-sections are circular, but the last two are rectangular. Moreover,
the point density is low in the lower part of the tower, due to airborne scanning and the
presence of elements connecting the building with the tower, which is why cross-sections 4
and 5 are not complete. However, due to the tower’s architectural complexity and the fact
that similar towers can be presented geometrically by rotational surfaces (as discussed in
Section 4), the latter hypothesis was adopted, and tower points were modeled based on
rotational surfaces.

Finally, Model 1 was built with the use of the automatic modeling approach, which
relies on this strategy being applied to the point cloud, and all steps of the construction
process were automated.

4. Proposed Modeling Approach

The suggested modeling approach was applied to the 3D airborne LiDAR point cloud
of the tower. The presented algorithm was applied to automatically generate a 3D model
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of the scanned tower. The proposed method consists of five consecutive steps, which are
presented in Figure 4. First, to calculate the tower footprint gravity center, the tower point
cloud was projected onto a horizontal plane passing through the coordinate origin.

 

 

Input: 3D tower point cloud 

Projection of the point cloud onto a hori-
zontal plane  2D point cloud 

Calculation of the gravity center 
of the 2D point cloud 

Generation of a vertical cross-section 
passing through the gravity center 

Division of the vertical cross-section into two symmetrical parts with 
the use of a vertical line passing through the gravity center 

From top to bottom, each point defines a cylinder. Cylinder height 
is equal to the vertical distance between the considered point and 
the next one. The radius is equal to the distance between the point 

and the vertical line passing through the gravity center 

Figure 4. Workflow of a modeling algorithm for generating a building composed of rotational surfaces.

The projection on the horizontal plane OXY follows the lines parallel to the Z axis;
therefore, the result is a 2D point cloud with only X and Y coordinates (the same X and Y
coordinates as in 3D space). In other words, this operation could be realized by considering
only the coordinates X and Y, to define a new 2D point cloud that represents the tower
footprint. The elimination of the Z coordinate from the original point cloud enabled the
generation of the target 2D footprint point cloud. The resulting 2D point cloud of the tower
footprint is presented in Figure 5a. Due to an irregular distribution of 3D points on tower
surfaces, the density of the obtained point cloud is also irregular: greater on the right side
and smaller on the left side.
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Figure 5. (a) Projection of a 3D tower point cloud on a horizontal plane passing through the coordinate
origin; the red circle is the gravity center calculated based on extreme coordinate values; the green
circle is the gravity center calculated based on static moments. (b) Vertical cross-section passing
through the gravity center. (c) Semi-vertical cross-section.

In the second step, the gravity center coordinates of the projected point cloud
(Figure 5a) are calculated. For this purpose, the static moments of a 2D cloud are ana-
lyzed by considering the points as infinitely small elements. Therefore, static moment
equations were applied to the new point cloud, to calculate the gravity center of the tower
footprint (Equation (1) [39]).

The application of the static moment principle shifted the gravity center, due to an
irregular point density (see the green circle in Figure 5a). The tower footprint is symmetrical,
and this problem can be resolved by calculating gravity center coordinates using extreme
values of X and Y coordinates (minimum and maximum), as indicated in Equation (2) (see
the red circle in Figure 5a).

Xg =
∑n

i=1 Xi

n
Yg =

∑n
i=1 Yi

n
(1)

Xg = minX +
Xmax − Xmin

2
, Yg = minY +

Ymax − Ymin
2

(2)

where Xg and Yg are the coordinates of the gravity center; n is the number of points; Xi and
Yi are point cloud abscissas and ordinates in OXY.

In the third step, a vertical cross-section passing through the gravity center was
calculated, by identifying the points located in a slice with thickness ε around the considered
vertical plane. The ε value was considered according to Equation (3) (Figure 5b).

ε = 2 × Td Td =
1√
ϑ

(3)

where ε is the thickness of the vertical cross-section slice; Td is the mean horizontal distance
between two neighboring points [29]; and θ is the point density.

In the fourth step, the symmetrical vertical cross-section was divided into two parts
using the vertical line passing through the gravity center (Figure 5c). The obtained semi-
cross-section represents the basic graph that revolves around the vertical line passing
through the gravity center, to approximate the surface of revolution which represents the
3D tower model.

Mathematically, when a line segment is revolved around an axis, it draws a band.
This band is actually a piece of a cone called the frustum of a cone. This cone could be a
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cylinder when the line segment is parallel to the rotating axis. Finally, from top to bottom,
each point defines a cylinder, and the cylinder’s height is equal to the vertical distance
between the considered point and the next one, and the radius is equal to the distance
between the point and the vertical line passing through the gravity center. The analyzed
semi-cross-section (Figure 5c) is not continuous and contains gaps (see the red arrow in
Figure 5c). Due to the low point density and irregular point distribution, these gaps are
presented by the frustums of cones connecting the two consecutive cylinders.

The 3D tower model is calculated with the use of a matrix. Three matrices were used
for this purpose: X, Y, and Z (Equations (4)–(6)). These matrices represent the coordinates
of rotating surface pixels and have the same number of rows and columns. The number
of rows is equal to the number of points in the semi cross-section, whereas the number of
columns can be selected arbitrarily, but it must be greater than seven and multiples of four
added to one. In the model presented in Figure 6, the number of columns is equal to 25.

Figure 6. (a) Automatically generated 3D tower model; (b) superimposition of the tower point cloud
onto the tower model.

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

Xg
Xg
Xg

Xg + β1,1
Xg + β2,1
Xg + β3,1

Xg + 2β1,2
Xg + 2β2,2
Xg + 2β3,2

. . .

. . .

. . .

. . .

. . .

. . .

Xg
Xg
Xg

.
Xg Xg + βn,1

.
Xg + 2βn,2

.
. . . . . . .

.
Xg

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1
Y2
Y3

Y1 + α1,1
Y2 + α2,1
X3 + α3,1

Y1 + 2α1,2
Y2 + 2α2,2
Y3 + 2α3,2

. . .

. . .

. . .

. . .

. . .

. . .

Y1
Y2
Y3

. .
Yn YN + αn,1

.
Yn + 2αn,2

.
. . . . . . .

.
Yn

⎤
⎥⎥⎥⎥⎥⎥⎦

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

Z1
Z2
Z3

Z1
Z2
Z3

. . .

. . .

. . .

. . .

. . .

. . .

Z1
Z2
Z3

.

.
Zn

.

.
Zn

.

.
. . .

.

.
. . .

.

.
Zn

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

αi,j =
(
Yg − Yi

)
sin(

2jπ
m

+
3π

2
), βi,j =

(
Yg − Yi

)
cos(

2jπ
m

+
3π

2
) (6)
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where Xg and Yg are the coordinates of the gravity center (Equation 2); Xi, Yi, and Zi (i = 1
to n) are the point coordinates of the semi cross-section; j = 1 to m; n is the number of points
in the semi cross-section; αi and βi are the step values of X and Y, respectively; and m is the
number of columns in matrix X.

Figure 6 presents the 3D model of the tower point cloud shown in Figure 2a. This
model was constructed automatically using the described approach, based on rotational
surfaces. The generated model is similar to that shown in Figure 2b, because only the tower
point cloud was considered in both models. Both models represent a rotational surface and
consist of five parts that are vertically superimposed. Furthermore, their dimensions are
similar to the mean dimensions measured directly from the point cloud. In contrast, the
model shown in Figure 2c, where both the tower point cloud and the tower image were
considered, differs more considerably from the calculated model.

The suggested algorithm was implemented in MATLAB software, and the “surf
(X, Y, Z)” command was used to visualize the calculated building model. However, the
suggested algorithm has the following pseudocode (Algorithm 1):

Algorithm 1

Input (point cloud (X, Y, Z), m, θ)
Point cloud sorted in ascending order based on Z values
Xg = minX + Xmax−Xmin

2
Yg = minY + Ymax−Ymin

2
Td = 1√

ϑ
i = find (X > Xg − Td and X < Xg + Td and Y ≤ Yg)
SCS = [Y(i), Z(i)]
for i = 1 to length (SCS), Step = 1

for j = 0 to m, Step = 1
Zb (i, j+1) = SCS (i, 2)
Xb (i, j+1) = Xg + (Yg − SCS (i, 1)) × cos( 3×π

2 +
2×j×π

m )

Yb (i, j+1) = Xg + (Yg − SCS (i, 1)) × sin( 3×π
2 +

2×j×π
m )

Next j
Next i
Surf (X, Y, Z)

Where SCS is the list of semi-cross-section points; Surf is the 3D visualization function;
Xb, Yb, and Zb are the three matrices of the building model (Equations (4) and (5)).

In the previous pseudocode, the suggested algorithm was very short and simple.
The algorithm outputs three matrices that can be exported in raster or vector format.
The datasets used in the suggested approach will be presented in the next section. The
remaining results will be discussed and the accuracy of the modeling process will be
estimated in Section 6.

5. Datasets

The Polish SDI was developed by the Head Office of Geodesy and Cartography,
and constitutes a data source that is widely used in research. ALS data from LiDAR
measurements conducted in 2018 (12 point/m2), as well as LOD2 3D building models
generated in the CityGML 2.0 standard, were selected from SDI resources for the needs of
the study.

The 3D building models were generated by compiling three data sources: 2D building
contours from the Database of Topographic Objects in 1:10 000 scale, LiDAR data (building
class), and the Digital Terrain Model (DTM) with a mesh size of 1 m. Buildings were
modeled based on 2D building contours. The height of building contours was determined
based on the minimum height of building contour vertices in the DTM dataset. The 3D
building models were downloaded from the SDI, as individual vector files presenting roof
planes, building walls, and 2D building contours.
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The most characteristic buildings in Olsztyn, including the Olsztyn City Hall with an
ornamental tower (Figure 1a,b), a building with a chimney (Figure 7a), and water towers
(Figure 7b), were selected for the study. Two water towers with characteristic shapes,
located in the cities of Bydgoszcz (Figure 7c) and Siedlce (Figure 7d), were additionally
selected. ALS data were obtained from SDI resources.

Figure 7. Modeling four tower point clouds; (a–d): tower images from Google Street View; (e–h):
Tower point clouds; (i–l): 3D tower models.
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6. Results, Accuracy Estimation, and Discussion

In the literature, the accuracy of 3D building models generated based on LiDAR data
can be estimated using two approaches. In the first approach, the generated model is
compared with the reference model [15,40–42]. In the second approach, a LiDAR point
cloud is the reference model [15,38,43–45]. In the second approach, the accuracy is estimated
by calculating the distances between the 3D model and the point cloud. In the present
study, the reference model was the building point cloud. To estimate the accuracy of the
generated model, the point cloud is superimposed onto the built model, and the distances
between cloud points and the model are calculated. The point cloud is superimposed onto
the 3D tower model in Figure 6b. A histogram of the distances between cloud points and
the generated tower model (see Figure 6b) is shown in Figure 8. Figure 8 shows that a high
percentage of points fit the constructed tower model accurately, and the distances between
the points and the model are less than 0.30 m. A distance of less than 0.35 m is regarded as
acceptable. The accuracy of altimetry measurements, the texture of building surfaces and
ornaments, and the presence of noise shift cloud points around the mean building surfaces.
Moreover, some parts of the building do not support the hypothesis postulating that the
building is represented by a rotational surface. For example, the lower part of the tower in
Figure 3 is not exactly a rotational surface.

Figure 8. Histogram of deviations between cloud points and the 3D tower model.

In addition to the point cloud presented in Figure 2a, four different tower point
clouds were assessed, to analyze the accuracy of the models developed with the suggested
approach. The images, the point cloud, and the constructed models of four tower point
clouds are presented in Figure 7. The total number of points, the number of points that
deviate from the model within the interval (0, 0.3 m), the number of points with deviations
greater than 0.3 m, and the standard deviation of the distances from the constructed model
are presented in Table 1.

Table 1. Standard deviations and the number of points that deviate from the tower model within the
specified intervals.

Tower Number
Name–City

Number of
Points

Number of Points
σ (m)

Dist ε (0, 0.3 m) Dist > 0.3 m

1 Olsztyn City Hall 2330 1833 497 0.49

2 Building with a chimney in
Olsztyn 330 244 86 0.9
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Table 1. Cont.

Tower Number
Name–City

Number of
Points

Number of Points
σ (m)

Dist ε (0, 0.3 m) Dist > 0.3 m

3 Water tower in Olsztyn 4974 2217 2757 0.84

4 Water tower in Bydgoszcz 5500 5246 254 0.21

5 Water tower in Siedlce 4811 3825 986 1.4
Dist: deviation between a point and the constructed model; σ: standard deviation of the distance between the
cloud point and the tower model.

It should be noted that the same approach was used to calculate the values presented
in Table 1 and the histogram in Figure 8. Hence, the tower point cloud was superimposed
onto the calculated model, and the deviation of each point from the constructed model
was calculated. This operation was performed to calculate the deviation for each point. A
histogram of deviations is presented in Figure 8. The calculated deviations were analyzed,
and the results are presented in Table 1.

To calculate the deviation of a given Point P (Xp, Yp, Zp) in Figure 9, the Z coordinate
was used to determine the point’s location in matrix Z in Equation 5. The point can have
three locations. In the first case, if the point is located in a row where Zp = Zi (I = 1 to n),
the deviation can be calculated according to Equation (7) (as shown in Figure 9).

div =

√(
Xp − Xg

)2
+

(
Yp − Yg

)2 − Yg + Yi (7)

Figure 9. Deviation of Point P located in the horizontal plane, where Z = Zp.

In the second case, if Point P is located between two rows, the deviation is calculated
for each of the two rows, and the final deviation is estimated for the last two values. In
the third case, if Point P is located outside matrix Z values (up or down), it is considered a
noisy point and neglected.

In Figure 9, distance P P’ represents deviation, and distance P’G represents the radius
of rotation, which equals Yi − Yg. In Equation (6), angle È equals ((2.j.π)/m). It should be
noted that the deviation can be negative or positive, depending on the point’s location in
the calculated model. The deviation is negative if the point is located inside the model, and
positive if the point is located outside the calculated model. Standard deviation always has
a positive value.

In Table 1, tower No. 1 is the tower shown in Figure 2, whereas towers No. 2, 3, 4, and
5 are the towers shown in Figure 7, in the same order.

In Table 1, Tower 5 has the greatest standard deviation (σ = 1.4 m). This tower consists
of two main parts, separated by a step. The points located down the step are not shown
(see the red arrow in Figure 7h) because the object was scanned from an aerial view, and the
missed points are located within the hidden area. In fact, the suggested modeling algorithm
replaces the missing points with the frustum of a cone, which is why the obtained model
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was deformed in the hidden area (see the blue arrow in Figure 7l). Despite a high standard
deviation, most points fit the calculated model.

In building No. 3, the number of points that well fit the tower model is almost equal
to the number of points with a deviation greater than 0.3 m. In Figure 7b, the deviations
can be attributed to the highly ornamental building facades. From another viewpoint, the
reasonable standard deviation (σ = 0.84 m) confirms this result. Tower No. 2 has a simple
architectural design, and the deviation is below the minimal value of standard deviation
(σ = 0.21 m).

The suggested approach has certain limitations. The proposed algorithm assumes that
building facades are completely covered by LiDAR points. In fact, this hypothesis may not
always be valid. Therefore, when facade points disappear for whatever reason, the analyzed
building details will also disappear. Moreover, the discussed method is very sensitive to
noisy points, which can substantially deform the building model. Fortunately, this issue
can be resolved by considering point deviation values in addition to building symmetry.
Some geometrical forms create hidden areas that cannot be accessed by laser pulses, such
as the building shown in Figure 7d. These hidden areas may produce distortions in the
calculated building model.

It should be noted that most algorithms for modeling buildings based on LiDAR
data suggested in the literature are model-driven or data-driven approaches [39]. In
these approaches, the concept of a building model relies on the assumption that the
building consists of connected facets that are described by neighborhood relationships. The
connections between these facets form facet borders and vertices. A comparison of the
proposed modeling approach and the approaches suggested in the literature indicates that
the developed algorithm does not belong to the last two modeling approaches, because
the building concept differs entirely from the modeling approaches where one building is
represented by three matrices that describe the building’s geometric form.

However, modeling algorithms should be compared based on their performance.
Therefore, three selected approaches were compared with the proposed algorithm in
Table 2. In Table 2, standard deviation was used to estimate the accuracy of the generated
model. Despite differences in the architectural complexity of the target buildings in the
compared approaches, the accuracy of the suggested algorithm is still acceptable.

Table 2. Accuracy of the proposed approach and previous algorithms.

Approach Standard Deviation

Proposed algorithm 0.21 m to 1.41 m

Kulawiak [3] 0.29 m to 2.36 m

Ostrowski et al. [15] <0.3 m to >1 m

Jung and Sohn [42] 0.05 m to >3 m

To conclude, the suggested approach paves the way to developing new and general
modeling methods based on a matrix representation of buildings with both simple and
complex architectural features. In the future, the proposed model could be further im-
proved by integrating point deviations and improving the model’s fidelity to the original
point cloud.

7. Conclusions

This article proposes a methodology for automating the modeling of buildings with
ornamental turrets and towers based on LiDAR data. The proposed modeling procedure
was based directly on a point cloud. A vertical axis was generated from a LIDAR data
subset describing a tower. It was assumed that the tower was symmetrical about its axis.
A cross-section was introduced to the point cloud, with a plane passing through the axis,
which produced a vertical cross-section. The vertical cross-section was used to build a solid
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of revolutions, as the 3D model of the tower. The modeling algorithm relied on a matrix to
generate the building model in a mathematical form.

Five tower point clouds were used to evaluate the accuracy of the suggested method.
Hence, the deviation of points representing the obtained model was calculated, in addition
to the standard deviation. Despite the algorithm’s overall efficacy, it had three main
limitations. The tower was not covered by LiDAR data in its entirety. Moreover, some
geometric forms may generate hidden areas that can produce deformations in the model.
Moreover, the suggested algorithm is sensitive to the presence of noisy points. However,
facade ornaments, an insufficient accuracy of LiDAR data, and noisy points significantly
decreased the accuracy of the generated model. In the future, the building model can
be enhanced by considering points with considerable deviations. The matrix form of the
proposed algorithm facilitates local enhancements. In addition to the matrix, a vertical
cross-section can also be applied to develop a new approach for modeling buildings,
regardless of the level of architectural complexity. Finally, additional data, such as aerial or
terrestrial imagery, could be incorporated into the proposed modeling approach, to increase
the model’s fidelity to the original building.
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Abstract: The widespread use of LiDAR technologies has led to an ever-increasing volume of captured
data that pose a continuous challenge for its storage and organization, so that it can be efficiently
processed and analyzed. Although the use of system files in formats such as LAS/LAZ is the most
common solution for LiDAR data storage, databases are gaining in popularity due to their evident
advantages: centralized and uniform access to a collection of datasets; better support for concurrent
retrieval; distributed storage in database engines that allows sharding; and support for metadata
or spatial queries by adequately indexing or organizing the data. The present work evaluates the
performance of four popular NoSQL and relational database management systems with large LiDAR
datasets: Cassandra, MongoDB, MySQL and PostgreSQL. To perform a realistic assessment, we
integrate these database engines in a repository implementation with an elaborate data model that
enables metadata and spatial queries and progressive/partial data retrieval. Our experimentation
concludes that, as expected, NoSQL databases show a modest but significant performance difference
in favor of NoSQL databases, and that Cassandra provides the best overall database solution for
LiDAR data.

Keywords: LiDAR; point clouds; databases; NoSQL

1. Introduction

LiDAR scanning has become an indisputable tool in fields such as civil engineering,
surveying, archaeology, forestry or environmental engineering. The widespread use of
terrestrial and airborne LiDAR, powered by the fast evolution of scanning technology, is
generating an unprecedented amount of data. For instance, the scanning speeds of one
million points per second with an accuracy in the range of 3–5 mm have become common
today in terrestrial scanning [1]. Handling such a massive amount of data poses multiple
challenges related to its storage, transmission, organization, visualization, edition and
analysis, which are actually common to most Big Data applications [2].

LiDAR information has traditionally been stored and exchanged through system
files usually from standard formats such as LAS/LAZ. However, the use of databases
potentially has many advantages such as the centralized access, complex queries based on
metadata, spatial organization of data and distributed storage in databases that support
sharding. NoSQL databases are extensively used in Big Data applications because of their
performance in simple retrieval operations, their flexible schema and their ability to scale
horizontally.

Storing large raw LiDAR data files in a database does not provide any advantages
over system files. However, as stated above, the design of an appropriate database scheme
or the use of a spatial extension [3] allows organizing LiDAR data into a spatial data
structure such as a regular grid, quadtree or octree. This enables spatial data queries and
the selective/progressive transmission of data to clients. This organization requires splitting
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the original LiDAR dataset into data blocks that are associated with the corresponding
tree nodes or grid cells. The size of the data block can have a remarkable impact on the
performance of the database.

The main objective of the present work was to provide guidance to those responsible
for the design and implementation of LIDAR information storage and processing systems
on the performances of different database management systems. Four different NoSQL and
relational systems (Cassandra, MongoDB, MySQL PostgreSQL) were compared in terms of
the performance of their upload and retrieval operations in single and concurrent scenarios.
A complex database schema was used, with two nested spatial data structures and three
different data block sizes, following the conceptual model of SPSLiDAR [4].

The rest of this paper is organized as follows: Section 2 reviews some of the extensive
existing literature related to the storage of LiDAR information; Section 3 describes the
dataset used in the experimentation, the conceptual data model of SPSLiDAR, the features
of each database management system evaluated and the implementation of the conceptual
data model in them; Section 4 provides the details of the experimental comparison carried
out and outlines the results that are discussed in depth in Section 5. Finally, Section 6
summarizes the conclusions and proposes some future work.

2. Previous Work

LiDAR point clouds are currently a very valuable resource for all types of decision-
making processes involving spatial data from the real world. The evolution of LiDAR
systems enables the acquisition of massive spatial data models [5] whose volume is steadily
increasing. Current sensors allow, using various technologies, obtaining dense information
at different scales [6] from small objects to large digital terrain models, integrating them
into the Geospatial Big Data [7–10]. Recently, many research papers related to this matter
have been published [5,10–13].

The processing of LiDAR point cloud data involves a series of steps that range from
its acquisition to the extraction of relevant features, including registering, filtering, seg-
mentation, classification and conversion to other representation schemes. Each of these
steps has its own research topic, and in particular, the storage of massive point clouds
is one of the most notable. In recent years, with increasing processing power, memory
and communication bandwidth, the main challenge with LiDAR data is to make massive
information available for use in different applications [14]. In this sense, there are different
approaches focusing on mass storage in secondary memory, in a cluster of servers or in the
cloud [15–19].

Organizing 3D point clouds with data structures that subdivide space is a common
solution for increasing the performance of spatial queries. However, from a storage point
of view, it also brings the benefit of dividing a potentially massive amount of data into
smaller chunks that can be more efficiently managed, which is of key importance when
transmitting data over a network. The most widely used data structure for out-of-core
point cloud storage is the octree [20–23]. Other widely used structures are the Kd-tree [24],
variants of the R-tree [25], a sparse voxel structure [16] and simple grids [26].

Most spatial data structures can be adapted for out-of-core storage, and in this regard,
there are different variants and approaches. This is of utmost importance, since today it
is common to process LiDAR datasets that do not fit into main memory. The simplest
approach is direct storage in secondary memory using local files [15,19]. Another variant
consists of using storage in distributed file systems [27,28] typically indexed through a
spatial structure hosted in the form of a master index or in a database. LiDAR datasets
usually comprise one or more point cloud files encoded in non-standard ASCII formats,
the LAS format of the American Society for Photogrammetry and Remote Sensing (ASPRS),
its compressed variant LAZ [29], SPD [30], PCD, HDF5 and other general 3D data formats
such as OBJ or PLY. In addition, there are some proposals for specific formats, closely
related to applications which involve additional point attributes and custom compression
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algorithms. Understandably, file formats that focus on data compression are the most
useful [11,29,31].

Although file-oriented storage is the simplest and most common option, using databases
is the most versatile solution. An original way of storing a point cloud model in a database
is to use one row for each point in a relational database, including all its attributes. In the
past, this approach was common among GIS applications where sets of points of moderate
size were stored in a spatial database to support spatial queries, mainly 2D. However, this
scheme is not valid for a large amount of data [32], so the next logical solution is to store a
group of points in each row, as systems such as Oracle Spatial or PostGIS do. In addition to
this, there are other solutions based on relational databases to work with point clouds and
spatial information [8,21].

On the other hand, NoSQL databases have some advantages over relational databases
in Big Data applications. Among these, document-oriented databases (MongoDB, Cassan-
dra, Couchbase, etc.) have gained popularity due to their capability to efficiently handle
large volumes of data and are scalable through the use of sharding. Because of this, they
are usually the preferred option for storing point clouds with a Big Data approach for both
semi-structured and unstructured datasets [26,28,32]. However, the everlasting discus-
sion about the theoretical convenience of using the modern NoSQL approach instead of
relational databases for Big Data problems should not diminish the relevance of the latter,
particularly considering their maturity and widespread adoption [33]. In the case of point
cloud datasets, including LiDAR, several approaches use relational database management
systems (DBMSs) for processing information [21,34]. The most relevant part is the data
model of a DBMS that defines the logical structure of a database and that determines how
the data can be stored, organized, and retrieved. In this work, we use SPSLIDAR [4], a data
model with a reference implementation for a LiDAR data repository that can be used with
any spatial indexing.

3. Materials and Methods

In order to study the performance of the different database engines integrated into
SPSLiDAR, various datasets belonging to the city of Pamplona (Spain) were used. We chose
this particular area because of the public availability of LiDAR data acquired at different
moments and densities (0.5–10 points/m2). The areas covered by the LiDAR datasets are
located in the UTM zone 30N and were captured over 6 years to include a variety of terrains
(urban, rural, roads, etc.). Table 1 summarizes the characteristics of the four datasets, and
Figure 1 shows a partial rendering of Dataset 1.

Table 1. Datasets characteristics.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Name Pamplona 2011
Pamplona 2017b
(reduced version

of dataset 4)

Pamplona 2017c
(reduced version

of dataset 4)
Pamplona 2017

Number of
points 30,401,539 244,894,563 534,073,172 1,068,146,345

Density
(points/m2) 0.5 2.5 5 10

Grid size
(meters) 10,000 10,000 10,000 10,000

Size (MBs) 138.29 1850.21 4085.94 8054.36

Point data
record length 34 38 38 38

LAS point data
record format 3 8 8 8
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Figure 1. Partial view of Dataset 1 (Pamplona 2011).

3.1. SPSLiDAR

In previous work, a high-level conceptual model for a repository for LiDAR data,
namely SPSLiDAR, was proposed [4]. The conceptual model of SPSLiDAR, depicted in
Figure 2, comprises three entities: workspace, dataset and datablock. A workspace represents
a set of related datasets, such as, for instance, those generated by the LiDAR coverage of
several counties or provinces, or different scanning campaigns from related archaeological
sites. A dataset comprises one or more point clouds acquired at a particular site. The
points of a dataset are organized into a structure of datablocks starting at one or more
root datablocks. SPSLiDAR exposes its functionalities to the clients through a restful API,
allowing queries by spatial and temporal criteria, and the progressive download of partial
or complete datasets.

The original paper of SPSLiDAR proposed a reference implementation that used a
regular grid to organize datasets and an octree for the datablocks within a dataset. Mon-
goDB was chosen as the underlying database engine due to its flexibility, high performance
and sharding capabilities that allow handling up to petabytes of information distributed
across multiple data servers. The characteristics of the database management system have
a significant influence on the performance of SPSLIDAR, since each time a dataset is sent to
the system, one or more octrees are generated, and each one may comprise hundreds of
thousands of nodes and LAZ files that must be efficiently stored in the database—both in
terms of occupied time and space. Subsequently, the SPSLiDAR API enables the navigation
of the dataset octrees and the retrieval of the point clouds in the LAZ files associated
with the nodes of interest. The ability of the database to fetch the desired datablocks and
transmit the content of the associated point cloud files has a direct impact on latency times
and system throughput, especially considering that usually several clients may interact
with the system at the same time.
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Figure 2. Spatial data structures at the workspace and dataset levels. For the sake of clarity, octrees
are depicted as quadtrees at the dataset level.

3.2. Databases

In our experimentation, we used the original MongoDB-based implementation of
the SPSLiDAR and three different adaptations corresponding to the rest of the database
management systems evaluated. Even though the storage of large LiDAR datasets fits
the definition of Geospatial Big Data, we did not want to restrict ourselves only to non-
relational databases, usually considered the standard storage solution for applications in
this domain. Relational databases have also been used for the storage of massive amounts
of data [9,35] and may therefore meet the needs of our use case.

MongoDB, Cassandra, PostgreSQL and MySQL were the four technologies adopted.
All of them are well established products. Among non-relational databases, MongoDB
provides a document-oriented solution while Cassandra follows a wide-column approach.
In the category of relational databases, PostgreSQL and MySQL are among the most widely
adopted. In order to make the fairest comparison, the SPSLiDAR conceptual model was
implemented in each database in the most straightforward way.

3.2.1. MongoDB

MongoDB is a non-relational document-oriented database that uses JSON to encode
information. Documents in MongoDB present a flexible schema so that two documents
representing a similar concept can have different fields and new attributes may be added or
removed at runtime. MongoDB introduces the concept of collection as a means of grouping
documents which represent the same concept or type of information.

The GridFS specification is provided by MongoDB as a means of storing binary files
that surpass the 16 MB per document limit imposed by the system. GridFS uses two
collections to store files. One collection stores the file chunks (fs.chunks) and the other stores
file metadata (fs.files). Each file is decomposed into multiple chunks stored in the fs.chunks
collection, each one containing the binary data of the corresponding section of the file, an
order attribute that specifies its position in the sequence of chunks and a reference to the
file document in the fs.files collection. By default, the maximum amount of data per chunk
is set to 255 KB. The GridFS collections are depicted in Figure 3.

The storage of LAZ files in the database is one of the key points of the implementation
as it has a direct effect on performance. From a technical point of view, we could save these
files through GridFS or embedding the content in a document. We decided to use GridFS
as the standard way of storing files, since this enables the construction of octrees with any
arbitrary node size. A hybrid approach could also be followed to store the LAZ file through
an embedded field if it does not surpass the 16 MB size limit for MongoDB documents,
or via GridFS otherwise. This hybrid approach can easily be implemented in MongoDB
thanks to its flexible document schema, which allows encoding the file data in a BSON
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(Binary JSON) field or alternatively, to include a DBRef field with the _id of the document
saved in the fs.files collection of GridFS.

Figure 3. Database design for MongoDB. PK refers to primary key and FK refers to foreign key.

The final structure of documents and collections defined in MongoDB is depicted in
Figure 3, showing the relationships among the different entities. The details of the data
model, including the description of the workspace, dataset and datablock entities can be found
in an original paper describing SPSLiDAR [4]. A mainly denormalized approach was
followed: for instance, a datablock document will contain redundant information that
refers to the workspace, dataset, and grid cell it belongs to. These fields were indexed in
order to accelerate queries since datablock fetching is a crucial operation to access LAZ
data files.

3.2.2. Cassandra

Cassandra is a non-relational database with a partitioned row model. Rows are stored
in different partitions, identified by the partition key (PK) which may consist of one or
more columns. A partition may contain more than one row; in these cases, a clustered
key (CK) is also needed, which may also consist of more than one column and uniquely
identifies each row inside a partition. Therefore, a single row is defined by a composite key
formed by a partition key and optionally a clustered key.

No analogous specification to MongoDB GridFS exists in Cassandra; therefore, we
implemented a custom system that follows the same basic concepts. A new entity called
chunk was defined, which contains a column with binary data and is uniquely identified by
a composite key formed by the partition key of the datablock it belongs to and an additional
chunk_order attribute which identifies the position of the chunk content in the file data. As
a result, all the chunks belonging to the same file are stored on the same partition and
the chunk_order attribute facilitates a complete recovery of the chunks in ascending order,
enabling a straightforward reconstruction of the file. The maximum size of content for each
chunk was set to 255 KB—the same default value used by GridFS.

Figure 4 shows the tables and the columns defined for the persistence of our data
model in Cassandra. As we did in MongoDB, a denormalized approach was followed.
Cassandra recommends a model design based on the queries that will be performed, with
data duplication encouraged to increase reading efficiency.
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Figure 4. Database design for Cassandra implementation. PK refers to primary key and FK to
foreign key.

3.2.3. Relational Databases

Regarding relational databases, we integrated two different alternatives into the
system: namely PostgreSQL and MySQL. Due to their similarities, we used almost the
same implementation on the persistence layer, only modifying the types so that they adjust
to each database specification.

In the same way as with Cassandra, we implemented a tailored solution for the
storage of files. The proposed solution defines a new entity called chunk, with a composite
primary key formed by the primary key of its associated datablock together with an
additional attribute that represents the position of the attached binary data block in the
file. Normalization is usually a requirement in relational database schemas, but in order
to avoid table parameters that may adversely affect performance, we denormalized both
the datablocks and chunks entities. We consider that the time performance outweighs the
disadvantages of a denormalized schema for these particular tables since they are expected
to contain a large number of rows and support a high number of queries. In Figure 5, an
entity-relational diagram of the model is shown for both relational databases.

Figure 5. Database design for MySQL and PostgreSQL implementations. PK refers to the primary
key and FK to foreign key.
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4. Experiments and Results

To evaluate the performance of each of the databases with large LiDAR datasets, three
experiments were performed. These experiments are based on those proposed in [36]. The
first one (upload test) evaluates the upload time and total storage space required by the four
datasets. The second test (simple requests test) measures the average download time for
1M points from a single client. For this purpose, multiple random LAZ files are requested
until completing 20 M points, computing the average from the total download time. The
third test (concurrent requests test) evaluates the response of the system to high workloads
by measuring the average download time for multiple concurrent requests of 1M points
from several clients.

The upload test and simple requests test were both implemented through a Python
3.9 script that uses the Requests library [37] in order to perform the petitions to the server.
The concurrent requests test was developed using the LoadTest JavaScript package for
Node.js [38]. All operations were performed through the SPSLiDAR API. The tested data
correspond to the four datasets described in Table 1. For each of the datasets, three different
maximum datablock sizes were tested: 10,000, 100,000, and 1,000,000 points. These values
define the maximum number of points of the LAZ file stored at each node of the octree,
and consequently determine its complexity since a lower or higher number of levels would
be required to store the dataset.

All experiments were carried out by running the different implementations of the
SPSLiDAR repository on a server with Intel i7-10700 Octa-Core at 2.9GHz, 16 GB RAM,
and 1 TB SSD drive, running Windows 10 Enterprise 64. All databases were deployed
through Docker using images with MongoDB 4.2.10, Cassandra 3.11.0, MySQL 8.0.24, and
PostgreSQL 13.2. The client computer was a Mackbook Pro laptop with an Intel Core
i7-4770HQ Quad-Core at 2.2 GHz with 16 GB RAM and a 256 GB SSD Drive, running
macOS Big Sur. The connection between the server and client was made through a 1 GB/s
Ethernet cable network.

4.1. Upload Test

A dataset upload comprises two stages. First, the original dataset is preprocessed and
subdivided into a set of small LAZ files whose size is limited by the maximum datablock
size. These files are indexed through octrees that represent the original point cloud. Second,
the files and the octree metadata are stored in the database. The first stage is highly
computationally demanding and consumes most of the time. Therefore, the influence
of the database performance on the overall time is limited. The preprocessing stage is
deterministic and is external to the persistence layer, resulting in the insertion of the same
number of files in each database. Furthermore, note that, in practice, this upload operation
is only to be carried out once per dataset. For this reason, we consider that the results of
this test should have the least weight in the choice of the database.

Table 2 shows the average upload times for each combination of dataset and the maxi-
mum datablock size through three executions. The biggest differences among databases
occurred in Dataset 4 as the octree structure generated is the most complex, with the highest
number of LAZ files to store. Figure 6 shows a relative comparison of the upload times of
Cassandra, PostgreSQL and MySQL with respect to MongoDB. We compared them against
MongoDB because this was used in the reference implementation of SPSLiDAR.
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Table 2. Dataset upload times (in seconds) for the implementations based on MongoDB, Cassandra,
PostgreSQL and MySQL.

Dataset
Maximum
Datablock

Size
MongoDB Cassandra PostgreSQL MySQL

Dataset 1
1,000,000 67 68 69 70
100,000 218 211 224 213
10,000 1444 1373 1553 1411

Dataset 2
1,000,000 746 793 824 727
100,000 2089 2027 2016 1993
10,000 13,962 12,791 12,650 12,942

Dataset 3
1,000,000 1945 1806 1899 2191
100,000 3906 3843 3897 3962
10,000 25,176 24,528 26,823 23,307

Dataset 4
1,000,000 4131 4220 4150 4816
100,000 8460 8258 8887 8575
10,000 45,035 41,290 49,714 42,018

Figure 6. Relative comparison of upload times. Results for (a) Dataset 1; (b) Dataset 2; (c) Dataset 3;
and (d) Dataset 4.

Table 3 shows the final storage space required at the database level by the datasets
after the upload tests. This includes the LAZ files generated in the process in order for all
the entities necessary for the system to work correctly. The results shown are the average of
three upload operations, although we observed low variance among the results. Figure 7
depicts the information of Table 3 as a relative comparison in storage size with respect
to MongoDB.
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Table 3. Storage required (in MB) by the implementations based on MongoDB, Cassandra PostgreSQL
and MySQL.

Dataset
Maximum
Datablock

Size
MongoDB Cassandra PostgreSQL MySQL

Dataset 1
1,000,000 198 197 214 224
100,000 202 200 217 220
10,000 235 224 247 262

Dataset 2
1,000,000 1875 1882 1960 2118
100,000 1893 1884 1970 2109
10,000 2162 2056 2262 2603

Dataset 3
1,000.000 4233 4243 4413 4337
100,000 4313 4308 4486 4365
10,000 5062 4753 5377 6130

Dataset 4
1,000.000 8265 8291 8609 9116
100,000 8388 8478 8726 9397
10,000 9893 9160 10,270 12,406

Figure 7. Relative comparison of the required storage. Results for (a) Dataset 1; (b) Dataset 2;
(c) Dataset 3; and (d) Dataset 4.

4.2. Simple Requests Test

Table 4 shows a relative comparison of the average times required for reading 1M
points from a single client in the different implementations tested. The results are also
graphically summarized in Figure 8.
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Table 4. Average times (in seconds) of a request operation of 1M points in the implementations based
on MongoDB, Cassandra, PostgreSQL and MySQL.

Dataset
Maximum
Datablock

Size
MongoDB Cassandra Postgres MySQL

Dataset 1
1,000,000 0.107 0.11 0.264 0.268
100,000 0.333 0.303 0.965 0.425
10,000 2.547 1.824 5.997 1.72

Dataset 2
1,000,000 0.149 0.222 0.308 0.324
100,000 0.701 0.438 0.992 0.4
10,000 3.718 3.036 9.48 2.792

Dataset 3
1,000,000 0.17 0.237 0.304 0.469
100,000 0.429 0.332 1.094 0.551
10,000 3.559 2.453 8.991 2.223

Dataset 4
1,000,000 0.348 0.188 0.304 0.572
100,000 0.452 0.329 1.042 0.641
10,000 3.663 2.701 6.859 2.894

Figure 8. Relative comparison of the results of the simple requests test with (a) Dataset 1; (b) Dataset
2; (c) Dataset 3; and (d) Dataset 4.

4.3. Concurrent Requests Test

The third experiment evaluates the response time for several concurrent requests of 1M
points from different clients. Tables 5–8 show the results obtained for each implementation
with 10 and 100 concurrent clients, respectively. For the sake of simplicity, requests are only
performed on Dataset 1. Figure 9 graphically compares the throughput of the different
implementations.
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Table 5. Results of the concurrent requests test in Cassandra.

Concurrent
Users

Maximum
Datablock

Size

Average
Request
Time (s)

Maximum
Request
Time (s)

Throughput
(Requests

per Second)

Total Time
(s)

10
1,000,000 1.085 1.512 7 1.532
100,000 0.174 0.23 55 1.831
10,000 0.025 0.074 386 2.59

100
1,000,000 13.36 18.572 5 18.61
100,000 1.715 2.589 56 17.73
10,000 0.237 0.45 419 23.86

Table 6. Results of the concurrent requests test in MongoDB.

Concurrent
Users

Maximum
Datablock

Size

Average
Request
Time (s)

Maximum
Request
Time (s)

Throughput
(Requests

per Second)

Total Time
(s)

10
1,000,000 1.653 1.68 6 1.691
100,000 0.252 0.42 39 2.5705
10,000 0.038 0.076 259 3.8628

100
1,000,000 1.614 1.657 6 16.164
100,000 2.079 3.823 47 21.4625
10,000 0.269 0.527 370 27.011

Table 7. Results of the concurrent requests test in PostgreSQL.

Concurrent
Users

Maximum
Datablock

Size

Average
Request
Time (s)

Maximum
Request
Time (s)

Throughput
(Requests

per Second)

Total Time
(s)

10
1,000,000 2.386 3.002 3 3.024
100,000 0.224 0.503 42 2.352
10,000 0.035 0.4 274 3.646

100
1,000,000 23.3 38.57 3 38.62
100,000 3.763 16.51 26 38.691
10,000 0.279 0.597 356 28.071

Table 8. Results of the concurrent requests test in MySQL.

Concurrent
Users

Maximum
Datablock

Size

Average
Request
Time (s)

Maximum
Request
Time (s)

Throughput
(Requests

per second)

Total Time
(s)

10
1,000,000 1.547 1.579 6 1.604
100,000 0.232 0.296 42 2.36
10,000 0.044 0.113 223 4.493

100
1,000,000 25.422 34.841 3 34.886
100,000 9.316 23.556 10 95.749
10,000 0.416 0.633 239 41.86
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Figure 9. Comparison of the throughput of the different implementations with (a) 10 concurrent
users and (b) 100 concurrent users.

5. Discussion

NoSQL databases are the primary storage option in Big Data applications. Our
experiments with LiDAR datasets confirm in general terms the advantage of using NoSQL
databases over relational ones, although the performance of MySQL is close or even
superior in certain situations. Nevertheless, Cassandra is the clear winner, only beaten
by MongoDB when the spatial data structure was organized in large datablocks (1 M).
One possible explanation for this fact may be the superior performance of GridFS when
handling larger LAZ files. Among all the experiments, the upload tests show less conclusive
results, but in general terms, Cassandra and MySQL perform better with small or medium
datablocks, and therefore, larger octrees, while MongoDB beats the rest of databases with
large datablocks (i.e., smaller octrees). Regarding the storage space required, the two
relational databases clearly perform the worst; most notably MySQL requires up to 20%
more space than MongoDB when using small datablock sizes. This may be due to a
more complex internal organization of the information or a wider use of indexes, which is
necessary to be able to respond to more complex queries in the relational model.

In the simple requests test, Cassandra and MySQL showed the lowest latency with
smaller and medium datablocks up to 25% better than MongoDB, although the latter was
still overall the fastest database with a 1M datablock size. PostgreSQL is clearly the worst
option—up to twice as slow as Cassandra in some experiments.

In the third series of experiments related to concurrent requests, Cassandra showed
the highest throughput followed by MongoDB. Surprisingly, the MySQL performance was
much less satisfactory in situations with concurrent requests than with single requests, com-
ing in last position—even behind PostgreSQL. This is an important weakness of MySQL that
may discourage its use in applications which need to support high concurrent workloads.

In summary, our recommendation for any project that requires storage in a database of
large LiDAR datasets is Cassandra. Its performance is excellent in all operations. MongoDB
can be an interesting alternative when Big Data chunks have to be stored in the database,
thanks to the excellent performance of GridFS. Finally, if using relational databases is a
requirement of the project, MySQL is the option of choice, although its performance under
high concurrent workloads should be carefully observed.

6. Conclusions and Future Work

Databases are a versatile and robust option when storing LiDAR data. In this paper,
we tried to shed some light on the most appropriate choice of database management
system for this type of data. To this end, we compared the performance of four of the
most popular NoSQL and relational database management systems in several areas. Our
conclusion is that although NoSQL databases perform better than relational systems, the
gap, particularly with MySQL, is narrow. Overall, Cassandra shines in all areas, only
lagging behind MongoDB when datasets are split into large blocks.
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Many approaches use a database only for storing dataset metadata or spatial indexes,
keeping LiDAR data in external files. We store LiDAR data in the database because of its
clear advantages: simplicity, guaranteed consistency and distributed storage when using
database engines that support sharding. However, a further comparison of the performance
of the in-database vs. file system storage would provide useful information for decision
making when designing systems working with LiDAR data. The storage and processing
of massive volumes of LiDAR data usually requires a distributed architecture. For this
reason, a new experimentation similar to that carried out in this paper but using a cluster
of database nodes would be relevant. However, the relational databases management
systems analyzed are centralized, therefore additional solutions such as MySQL Cluster
CGE would be necessary. The use of this extra infrastructure and the decisions made during
the installation, configuration and tuning of the cluster and database nodes may influence
the experimentation and limit the validity of the results.
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Abstract: Recent public discourse regarding unmanned aerial vehicle (UAV) usage and regulation
is focused around public privacy and safety. Most authorities have employed key guidelines and
licensing procedures for piloting UAVs, however there is marginal consensus amongst regulators and
a limited view towards unified procedures. This paper aims to analyze the key challenges that affect
the use of UAVs and to determine if the current rules address those challenges. For this purpose:
privacy, safety, security, public nuisance and trespass are tested. A set of criteria are developed
to perform a comparative analysis against the existing UAV regulations to determine how they
are meeting the specified criteria. Within this framework, five countries are selected: Australia,
Canada, European Union (EU), United Kingdom (UK) and the United States of America (USA),
with usage data and length of time between regulatory reviews ensuring any analysis is realized on
updated protocols. The regulations of each country are then compared against the developed criteria.
The findings show there are shortfalls with the majority of regulations failing to meet some criteria
and the results confirm that key issues fail to be addressed. Finally, recommendations are suggested
for filling the gaps in the regulations.

Keywords: unmanned aerial vehicle (UAV); drone; regulations; restrictions; privacy; safety

1. Introduction

The use of commercial and private unmanned aerial vehicles (UAVs) is becoming
increasingly ubiquitous. In 2018, the number of remote pilot licenses in Australia had
increased by 53% over the previous year [1]. In 2021, approximately 22,000 remote pilot
licenses had been issued, averaging 300 new licenses per month [1].

With the increase in the number of UAVs, there comes a greater need for regulation to
ensure the safety and privacy of the public. On 19 December 2018, two drones were flown
close to the Gatwick Airport perimeter resulting in the airport being shut down for 33 h
and causing over 140,000 travelers to be affected [2]. The incident was the first time a major
airport was shut down due to a drone incursion and demonstrated how it could disrupt
the operations of a major airport and air traffic routes. The case remains unsolved, but the
incident focused political attention on drone operations.

As politicians and regulators aim to catch up with the increasing number of UAVs,
researchers urge caution should be applied as regulation can both promote and suppress
innovation [3], as UAV use and development needs surety to continue to be practicable.
Within the European market, the two most prevalent issues regarding regulation are security
and safety considerations [4]. However, as Europe contains multiple independent countries
with non-uniform regulations, over-regulation can be the principal hurdle to surmount.
In certain countries, the regulatory limitations imposed on the commercialization of the
technology were “notorious” [5].

Remote Sens. 2022, 14, 822. https://doi.org/10.3390/rs14040822 https://www.mdpi.com/journal/remotesensing111



Remote Sens. 2022, 14, 822

Public discourse regarding UAV usage and regulation centers around public privacy
and safety, which regulations aim to address [3,6,7]. Whilst most jurisdictions have im-
plemented key guidelines and licensing procedures for piloting UAVs, there is marginal
consensus amongst regulatory bodies and a limited view towards a universal standard [8].
Identical UAVs operating in identical flight circumstances are bound by different guidelines
and regulations depending on the country of operation. These regulations can differ signifi-
cantly for flying height, flying proximity to people/buildings and weight classes. These
regulatory differences add additional complexities for a person to navigate when planning
and flying UAVs, whether it’s for commercial or private use. Whilst UAV operators in
Australia are bound by a single regulator [9], a person in the European Union (EU) could
have to contend with and be well versed in a multitude of regulations encompassing
numerous jurisdictions [10].

This paper aims to compare existing UAV regulations across a number of diverse
jurisdictions to determine the key problems and issues that arise from the use of UAVs and
develop a set of criteria to attempt to resolve problems identified and determine if existing
regulations address these issues. By identifying if the key issues, such as privacy, safety and
security are being addressed, recommendations will be made to mitigate any discrepancies
found in the regulations. To conclude, the objectives of this research are as follows:

Determine the similarities and differences in existing regulations;
Define the key problems that arise from the use of UAVs;
Develop a set of criteria to resolve the key problems;
Using the criteria, examine if present restrictions address the key issues;
Provide recommendations addressing any shortfalls in the regulations.

Although this project seeks to research UAV regulations across a variety of jurisdictions,
due to time and scope constraints only a selection of regulations have been analyzed. These
are chosen based on UAV usage numbers, existing established UAV regulations and length
of time between regulatory reviews. Countries with limited regulations or limited usage
data available are excluded from the analysis. Other limitations are that although there
is significant data available relating to the employment of UAVs by the military, the
primary emphasis of this paper is on the commercial and private/recreational use of UAVs.
Numerous countries are investigating the need for changes to their UAV guidelines with
several jurisdictions in the process of transitioning to new regulations.

2. Literature Review

In this section, five points are investigated among the UAV guidelines which are
privacy, safety, security, public nuisance and trespass.

2.1. Privacy

The primary concern with the increased use and development of UAVs is what
Finn and Wright [11] describe as the potential for UAVs to infringe on the ethical and
privacy rights of people as a threat to civil liberties. Nelson et al. [12] use Floridi’s notions
of privacy to ascribe tangibility to privacy and define private space as areas “free from
sensory interference or intrusion, void of unwarranted interruptions”, such as sound, touch
and vision. Clarke [13] links the issue of privacy to UAVs and surveillance through his five
dimensions of privacy (person, data, behavior, communication, personal experience), of
which he attributes behavioral privacy and privacy of personal experience as being the
most important as they incorporate “the interests that are most directly impinged upon
by drone-base surveillance”. Finn et al. [14] further defines Clarkes behavioral privacy as
protection against disclosure of sensitive information, such as religious practices, sexual
practices or political activities.

Australia’s privacy regime is often out of date with current technology [15]. In this
context, the question of the ability for UAVs to enter private property, travel unnoticed
and record or live stream images and sounds creates significant opportunities for privacy
breaches to enter the public domain. The privacy question comes down to how it will be
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regulated and finding the line between regulation that achieves the technological benefits
without removing the right of recourse and remedy if an individuals’ privacy has been
invaded [15]. However, existing laws are either outdated or are lacking in definition and
provide remedy only in limited circumstances [13].

2.2. Safety

Sanz et al. [7] define safety as the state in which the system is not in danger or at risk,
free of injuries or losses. Clothier and Walker [16] state that for routine UAV procedures
to be combined into the civilian airspace, UAV developers, operators and regulators must
prove that the safety of UAVs is at a minimum, equal to conventionally piloted aircraft.
In this context, Clarke and Moses [17] observe that there are challenges to achieving this
standard due to low costs, limited safety features and the growing volume of UAVs that
there will unavoidably be low standards of pilot performance and the usual high costs in
detection, investigation and defining responsibility. There are three main factors that play a
major role in UAV safety as follows:

Collision–Aircraft: Prior to existing regulations, both commercial and private UAV
flights were able to fly close to airports, secure facilities and overpopulated areas [18]. This
initial freedom posed a serious threat to safety and security. An increasing number of
International Civil Aviation Organization (ICAO) members were becoming concerned with
UAVs flying within close proximity to commercial aircraft which was proving hazardous
to commercial aircraft [19]. Over half of all incidences concerning UAVs reported to ATSB
were close encounters involving manned aircraft and half of those again involved high-
capacity air transport aircraft [20]. ATSB [20] outlines a near encounter as when a UAV
interrupts or is seen in the vicinity of another aircraft. Furthermore, they found that in 8%
of cases, engine ingestion can be expected, and it is likely that when compared with bird
ingestion, engine damage and engine shutdown is expected to be higher. This increase in
damage was explained by UAVs being heavier and more rigid than the skeletal structure of
a bird. At this stage, IATA [21] emphasizes that manned aircraft encounters with UAVs are
the top safety risk to the aviation industry;

Collision–Terrain: Terrain collisions accounted for 26% of all reported UAV accidents
between 2012 and 2017, with almost half of these events occurring from loss of control of the
aircraft [20]. The collision with the terrain had the second highest incident occurrence out
of all incidents. Of these accidents, 84% resulted in the UAV being significantly damaged
or destroyed [20]. A terrain collision can occur when the operator fails to maintain a visual
line of sight (VLOS) with the UAV and is unable to account for changes in elevation in the
terrain or obstacles, such as trees and buildings;

Impact: The issue of direct physical UAV impact gives rise to potential harm to public
safety. There are also indirect threats where impact can lead to fire or explosion [17].
Magister [22] links UAV design shape and injury biomechanics relating to the blunt ballistic
impact of UAVs and found that the severity of injury in small UAVs (<15 kg) when operating
at minimal airspeed was “less than serious” when contacted with a blunt section of the UAV.
However, CASA [23] modeled human injury potential from impacts of small unmanned
aircraft and determined that an abbreviated injury scale (AIS) of 3 as the highest acceptable
injury allowed. They found UAV mass and velocity as well as the diameter of the UAV
determined how severe the injury would be. They noted that for a 2 kg UAV travelling
at 10 m/s for a head impact, it would cause a fractured skull when impacting with the
flat side of the UAV. In a total loss of control scenario where the UAV falls, reaching its
terminal velocity, any impact at such high speeds (> 30 m/s) would cause unacceptably
severe injuries regardless of the weight of the UAV [23]. Consequently, certain design and
operational criteria may reduce the risk of injury.

2.3. Security

The question of security relating to UAVs can be summarized into two major points:
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Loss of Control: CASA [24] states that loss of control of a UAV may be sudden and
recovery very difficult even for experienced remote pilots. Loss of control may happen
through several means: hijacking, global navigation satellite system (GNSS) jamming and
spoofing, hardware/software malfunction, electromagnetic interference, exceeding UAV
limitations, malicious software and user error. In this context, several examples can be cited
regarding loss of control. Shepard et al. [25] refer to an incident when a Central Intelligence
Agency (CIA) surveillance drone was captured by Iranian forces by jamming the UAVs
communication link forcing the UAV into autopilot mode using a predetermined global
positioning system (GPS) guidance to return to its base in Afghanistan. The UAV was able
to be commandeered by spoofing the UAV with new GPS coordinates causing it to land in
Iranian territory. Commercial UAVs on the market today are open to hijacking or hacking by
electronic interference. Skyjack is a UAV created by Samy Kamkar that will find vulnerable
UAVs in the air, discover an open network and change its service set identifier (SSID), which
eliminates any connected users [26]. Zhi et al. [27] discuss a hijack method that involves
GPS spoofing by broadcasting a false location and time with a universal software radio
peripheral (USRP), which leads to control over the target UAV. GPS signals are susceptible
to interference (both intentional and unintentional) due to the low power they have at the
earth’s surface [26]. Arteaga et al. [26] note that radio-frequency communication can be
exploited. They discuss a process called flooding where an adversary floods the wireless
fidelity (WIFI) channel with information interrupting the communication on the channel.
This is commonly referred to as denial of service (DoS). Electromagnetic interference may
cause a loss of connection. In 2018, a UAV collided with a cruise ship near Fort Hill Wharf,
Northern Territory, Australia, when the UAV lost signal. The UAV operator started return
home procedures when the UAV deviated from its path and collided with the ship and was
destroyed [20]. Finally, Maldrone is software that produces a backdoor in the targeted UAV
software and waits for a reverse TCP connection, which once received allows an attacker to
gain control over the now infected UAV [26];

Anonymity: UAVs can be purchased and flown anonymously. This creates security
problems as it is difficult to track and identify an offending UAV pilot that breaks the law.
Therefore, automatic dependent surveillance broadcast (ADS-B) transponders are used
on aircraft and obtain their position via GNSS. This position is then broadcast to control
towers and other aircraft which helps maintain safe self-separation while in the air. A
leading drone manufacturer is installing ADS-B receivers in all drones above 250 g [28].
Another parts manufacturer has developed an ADS-B beacon measuring 50 mm × 50 mm
and weighing 50 g. This allows it to be placed on smaller UAVs allowing their position to
be tracked.

2.4. Public Nuisance

Noise and nuisance were found to be the primary issues regarding public nuisance
and UAVs:

Noise: Noise causing environmental harm/nuisance negatively affects human health
and wellbeing by interfering with recreational activities, sleep and relaxation [29]. UAVs are
not quiet in their operation. Christian and Cabell [30] found that participants subjected to
psychoacoustic testing had a systemic variance between the annoyance response produced
by the noise of the UAVs and that of the road vehicles. Intaratep et al. [31] analyzed
the acoustic properties of a popular brand of quadcopter UAV and found that the sound
intensity at maximum thrust (80 dB) is equivalent to a freight train passing 15 m away.
At this level, it may cause annoyance in populated areas subject to high drone usage.
Christiansen et al. [32] measured the noise level of two multi-rotor UAVs at varying heights
above and below the water to determine the negative impact on UAVs flying over marine
animals. A mean value measured at a height of 10 m for each UAV was 80 and 81 dB re
20 μPa for the in-air recordings and 95 and 101 dB re 1 μPa for the underwater recordings.
However, decibels measured in the air do not directly link to decibels measured underwater.
Christiansen et al. [32] observed that the in-air dB values of UAVs flying at low altitudes
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will most likely have a disturbing effect on sea otters and pinnipeds when they were on
land or with their heads protruded from the water;

Nuisance: During the 2017 fire season in Victoria, Australia, there were four instances
where amateur UAV operators had engaged in nuisance behavior during fire suppression
activities and standard operating procedure when unauthorized UAVs are flying over
emergency areas is to ground the aerial fleet [19]. Pomeroy et al. [33] confirm that flights
over both Gray and Harbor seals were variable, with individual variation amongst seals of
the same species. Gray seals generally changed behavior from alert to moving at altitudes
from 10–50 m and a lateral distance of 15 to 210 m whilst Harbor seals showed little reaction
at a 30 m altitude. Nelson et al. [12] posit that as UAVs become more ubiquitous and people
become more familiar with them, a decrease in concern for privacy will occur and the issues
of UAV-bystander interaction will more likely shift towards nuisance rather than privacy.

2.5. Trespass

In Australia, New South Wales farmers had limited legal remedy when they’ve caught
UAVs trespassing on their property [19]. Farmers suggest punitive monetary penalties
for the lack of due diligence and potential harm caused by UAV operators. Additionally
discussed by the committee is the use of geofencing to prevent access to private property by
limiting the distance the UAV could travel from its pilot thus reducing the risk of trespass
and privacy infringement. New South Wales, South Australian, Tasmanian, Victorian and
Western Australian legislation states that there is no trespass or nuisance by aircraft flying
over the property at a reasonable height as long as air navigation regulations are adhered
to [34].

3. Methodology

To achieve our stated objectives, we pursued the following approach: Determine the
countries for analysis, extract the UAV regulations from the selected countries, develop
criteria from the identified issues found in the regulations and the examination of existing
regulations compared against the prescribed issues using the developed criteria. The first
three steps are detailed in this Section with the remaining step applied in Section 4.

3.1. Country Selection

To select five representative countries to analyze the UAV regulations, two criteria
are used. The first one is the number of users and ascertains if there is a strong user
base. The premise behind this question is that if a country has a large number of users,
then the regulations will be robust as there would be a greater opportunity for issues to
present themselves and be addressed. The second criterion determines if there has been
recent UAV regulatory reform. This criterion ensures that any comparison performed
will be realized on regulations that have been updated in parallel with any technological
developments. Consequently, greater consideration is given to countries that are in the
process of amending or transitioning to new regulations. In this context, three research
segments were identified to direct how the user base will be determined which are:

Countries that are acknowledged in prior research and market analysis;
Estimated numbers of UAVs;
Estimated users including reported licensed and/or certified operators.

Table 1 sorts in descending order the country’s most often identified in the litera-
ture [18,35,36].

From Table 1, it can be seen that Australia, Canada and USA are mentioned across the
three references, with China and UK mentioned twice. The USA have the largest market
size, is the most active country online and have the most documented flight operations per
country. China and France follow in second and third place, respectively [36].
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Table 1. Countries Most Mentioned in the Literature.

Choi-Fitzpatrick et al. [35] Vela et al. [18] GUAA [36]

USA USA USA

UK Brazil China

Australia Australia France

India UK Germany

Canada Indonesia Great Britain

China Mexico Australia

South Africa Japan

Chile Canada

Colombia Switzerland

Korea

Concerning the estimated numbers of UAVs, Figure 1 illustrates the estimated numbers
of UAVs of counties where UAVs are widespread [4]. The EU, USA, Germany, Canada,
China and Australia have the largest documented numbers of UAVs reported.
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Figure 1. Estimated numbers of UAVs per county.

An overview of the estimated numbers of UAVs and recreational/commercial users
from the most commonly mentioned countries from the previous studies is detailed below:

Australia—estimated 100,000 and 150,000 UAVs in the country and estimate of 50,000 recreational
users and 1720 commercial users [9];
Brazil—34,000 civil UAS registered with 65% being for recreational purposes and 35% for
commercial, estimated actual total numbers 100,000 [37];
Canada—337,468 UAVs in Canada 74% recreational and 26% commercial. 12% is the ratio
between manned aircraft pilots between the US and Canada. The same ratio was used to
compare the number of UAVs in the US to estimate the number of UAVs in Canada [38].
However, this number was revised down in 2018 to 193,500 estimated UAVs being flown in
Canada by 140,800 operators [39];
China—24,407 certificates to fly were administered at the end on 2017, however certification
is only needed if the UAV weighs over 7 kg [40];
European Union (macro-class)—1–1.5 million leisure UAVs and 10,000 commercial UAVs [41];
France—7471 referenced operators and 13,647 referenced UAVs in December 2018 [42];
Germany—500,000 drones in Germany. 455,000 are for private use and 19,000 for commer-
cial use. Over 10,000 employed in the drone industry [36];
India—A rough calculation of 40,000 UAVs, predominately civilian, but including military
and law enforcement UAVs as well [43];
United Kingdom—CAA estimated that during 2018 there would be 170,000 registered
drone operators. These estimates were based on registrations in other countries such
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as the US and Ireland [9]. There were 5383 registered commercial UAV operators as of
September 2019 [9];
United States—900,000 registered owners and 1.25 million estimated UAVs [44].

Finally, the estimated numbers of licensed operators are shown in Figure 2. The USA
has the highest number of users by far, followed by the UK and Canada of the countries
mentioned in Figure 2. The sources of statistics of Figure 2 are presented in Table 2.
At this stage, the regulations that have not been amended or revised in the last three
years will be excluded from the analysis. This ensures that comparisons are performed
against regulations that are attempting to address recent developments in technology and
user requirements.
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Figure 2. Estimated numbers of licensed operators per county.

Table 2. Sources of statistics in Figure 2.

USA UK Canada Australia Brazil China France Spain

FAA [44] CAA [9] Canada
Gazette [39] CASA [1] Unmanned

Airspace [37] Wangshu [40]
French Civil

Aviation
Authority [42]

Molina and
Campos [4]

For further analysis and by intersecting the data shown in Table 1, Figures 1 and 2, the
following five countries are selected:

• Australia—Large numbers of UAVs with a large user base and regulations recently updated;
• Canada—Large numbers of UAVs with a large user base and regulations recently updated;
• European Union—Currently in regulatory transition, encompasses a large population

and numerous jurisdictions;
• United Kingdom—Large numbers of UAVs with a large user base and regulations

recently updated;
• United States of America—The largest market of UAV operators with regulations

recently updated.

3.2. UAV Regulations in Selected Countries

UAV regulations for the five chosen countries are summarized (see Appendix A). The
primary source of information for the regulations is the respective government bodies
which are available online. These regulations are collated by year of inception. This ensures
that comparisons are performed against regulations that are attempting to address recent
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developments in technology and user requirements. The new European regulations will
be included in the comparison because no other regulation will encompass such a wide
variety of jurisdictions and a large population base.

At this stage, it is important to note that there is considerable variety of UAV re-
strictions between the selected countries, e.g., in the context of UAV security regulations
in controlled airspaces, the regulations have stipulated guidelines regarding UAV usage
near controlled or restricted airspaces. The shape of the restricted zones generally varies
significantly across jurisdictions from radial to shapes incorporating overlays of circles,
stadiums (oval shaped) and polygons with straight edges to encompass flight paths. For
more details see Appendix A.

3.3. Comparison Criteria Development

Section 2 identified privacy, safety, security, public nuisance and trespass as the over-
arching challenges with UAVs use. Privacy proved to be one of the most researched issues
with the primary concern being the ability for UAVs to infringe on people’s privacy rights.
Although no author outlined guidelines allowing for the practical avoidance of privacy
infringement, details could be inferred from the inherent nature for UAVs to “enter private
property, travel unnoticed and record or live stream images and sounds create significant
opportunities for privacy breaches” [15].

Research surrounding UAV safety of course proved to be munificent in highlighting
numerous challenges to UAV flight. Lack of operator knowledge was demonstrated to be
the primary cause of most reported near encounters with the risk of collision being the
consequence of this lack of knowledge with over half of near encounters involving UAVs.
Researchers established that visual line of sight was difficult to quantify and demonstrated
a formula enabling maximum VLOS to be determined using the width of the UAV whilst
being predicated on perfect vision in perfect visibility. Impact could be tied in with collision
but was separated as research was primarily focused on UAV design and specifications,
such as weight and flight speed instead of operator interference.

Security issues were at the forefront of the research with terrorism and loss of control
being of primary concerns. There are numerous ways an operator can lose control of a
UAV with user error and pushing the aircraft beyond its operational limits being most
likely, whilst others can be put down to a technologically sophisticated adversary or factors
beyond control of the operator. Anonymity was discussed with the main risk being UAVs
purchased and flown without the need for registration. However, major manufacturers
are stepping in with hardware developments, such as ADS-B beacons being installed on
UAVs above a certain weight class and now most manufacturers require registration prior
to first flight.

Regarding public nuisance, UAV noise was a cause for concern with research stating
that decibel readings taken close to the UAV were equivalent to a freight train passing 15 m
away. NASA concluded that UAVs were between slightly and moderately annoying even
up to 100 m away. Nuisance behavior created the greatest problems causing the cessation of
emergency operations when UAV operators were flying within proximity to water bombers
during firefighting operations or near rescue helicopters hindering rescues.

The following criteria were developed from the issues identified during the literature
review (Section 2). The purpose of the criteria below is to interrogate the regulations and
determine if and how they are addressing those issues:

• Privacy: The regulations shall address the privacy concerns of the general public or
provide guidelines to reduce the risk of infringing on a person’s right to privacy;

• Safety: Four major points are considered regarding the issue of safety. First, operators
shall possess a minimum level of knowledge to operate the UAV safely to reduce the
risk of injury to people or property. Knowledge could be demonstrated in the form of
an online examination, accreditation or a pilot’s certificate. Second, the regulations will
contain guidelines reducing the risk of collision including onboard collision sensors
and alarms. Third, maximum VLOS shall be defined as visual confirmation of the
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UAV with the naked eye but not further than 400 m. This value can be calculated from
Equation (1) [18].

Dmax =
W

2.arcsin
(

3θacc
2

) (1)

where W is the UAV width of 350 mm and θacc is the visual acuity of the pilot of 0.0167◦.

Fourth, the regulations will contain limitations on the design of the UAV and the flight
parameters reducing the risk of harm to people from direct impact. Weight classes and
flying speed limitations shall be implemented:

• Security: The regulations will stipulate guidelines including limitations reducing
the risk of losing control of the UAV. Furthermore, regulations have ensured that
UAVs and operators are identifiable and have limited the ability for UAVs to be
flown anonymously;

• Public Nuisance: The regulations will implement guidelines addressing the issue
of noise pollution from the use of UAVs, such as a maximum decibel value from an
environmental agency or placing limitations on flying times and distances. Moreover,
the regulations will implement guidelines reducing the risk of nuisance behavior and
specifically mention avoiding emergency personnel or placing limitations on flying
times and distances;

• Trespass: The regulations will implement limitations and guidelines preventing the
act of trespass;

In the next section, the regulations of the selected countries will be directly compared
with the developed criteria by simple comparative analysis. The regulation relevant to each
subheading of the designed criteria will be assessed against said criteria.

4. Results

This section aims to present the results of the comparison of the criteria formed from
the issues identified in Section 3.3 and the regulations of the selected countries in Section 3.1.
For each one of the selected countries, the five identified criteria will be analyzed. At this
stage, in the context of safety criterion, four points will be emphasized which are a minimum
level of knowledge, collision avoidance, VLOS and impact, whereas in the security criterion,
two points will be emphasized which are the loss of control and anonymity. Finally, in the
public nuisance criterion, noise and nuisance behavior will be investigated. Consequently,
it will be determined if the regulations are meeting the developed criteria, and if so, it will
be highlighted how by focusing on the differences and similarities between the regulations
and the criteria.

4.1. Australia

Privacy: CASA [24] stipulates that it does not consider privacy concerns when issuing
approvals. However, it does recommend that operators include privacy provisions in their
operations manuals. Recreational users are advised to respect personal privacy and not
record or photograph people without their consent. There are no guidelines within [41]
Part 101 Unmanned Aircraft and Rockets detailing how pilots can reduce the risk of
privacy violation;

Safety: Drone accreditation is needed if pilots are flying for fun (recreational users),
flying over their own land or flying a UAV weighing less than 2 kg. Commercial users
need a remotely piloted aircraft operator’s certificate (ReOC) as well as a remote pilot’s
license (RePL) if flying outside the drone safety regulations or fly UAVs weighing more
than 2 kg. There are no guidelines within [45] Part 101 Unmanned Aircraft and Rockets
stipulating the need for collision sensors or alarms onboard UAVs. There are defined
operational limits, such as maximum flying heights and distances to aerodromes. However,
collision is only mentioned within the definition of operated within VLOS, which states
that “a person has to be able to see the aircraft to uphold the operator’s separation and
collision avoidance responsibilities”. Advisory circulars released by CASA guide how the
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regulations should be interpreted, e.g., all UAVs operating in the non-excluded (included)
category should be painted for maximum visibility including collision avoidance lights
such as strobe lights (101-01 v2.1 [46]). If ADS-B transponders are fitted, they should meet
the required standards and be turned on.

Concerning the VLOS, subpart 101.074 (3) [46] of the regulations provides this defi-
nition of VLOS: “An unmanned aircraft is being operated within the VLOS of the person
operating the aircraft if the person can continually see, orient and navigate the aircraft to
meet the person’s separation and collision dodge responsibilities, with or without corrective
lenses, but without the use of binoculars, a telescope or other similar device” [46]. The
definition provided by CASA gives guidance on how an operator would define the VLOS to
their aircraft. It places the onus on the operator to determine the maximum VLOS without
providing a quantitative value which would reduce the risk of operators flying outside
their visual limits.

Finally, recreational users are limited to UAVs that weigh up to 2 kg. Commercial
operators are bound by the same weight restrictions unless they hold a remote pilot’s
license and operate under a remotely piloted aircraft operators’ certificate. The regulations
provide no speed limitations on UAV flights and there is no mention of design parameters
that would reduce the risk of harm from direct impact;

Security: Concerning the loss of control, there are no guidelines specifying procedures
on mitigating the risk of losing control of a UAV ([47] Part 101 Unmanned aircraft and
rockets). However, a brief overview of procedures for loss of control in an extended VLOS
(EVLOS) flight is given [47]. The operator’s procedures should ensure that the pilot can
re-establish control or end the flight without causing a hazard to life or property [47].
Ref. [47] (AC 101-01 v2.1) discusses how losing control can be harmful to the public. It also
details how mission plans should have procedures relating to how emergencies, such as
loss of control would be handled by the operator and provide examples of how fail-safe
devices would reduce the injury to bystanders. CASA also notes that data links between
the UAV and the operator should be monitored in real-time with warnings given in case
of failure.

Concerning anonymity, CASA is introducing registration for all UAVs flown for both
commercial and recreational purposes. The primary purpose of the registration initiative
is to ensure that people fly their UAVs responsibly and safely [1]. Apart from the ADS-
B requirements for larger UAVs, no other de-anonymizing requirement was found in
the regulations;

Public Nuisance: There are no guidelines within [45] specifying procedures on re-
ducing the issue of noise pollution generated by UAVs. Both 101-01 v2.1 and 101-10 v1.3
in [46] and confirm that UAV operators are bound by local noise abatement laws. These
include restrictions on altitude, flight path and the time of day of flights. Additionally, the
regulations state that unless additional flight permissions are obtained, the operational
hours for flying a UAV are during daylight hours as flights must be within VLOS.

Ref. [45] Part 101 unmanned aircraft and rockets specify that UAVs must not be flown
over an emergency operation or public safety event without the approval of the person
in charge. As noted above, the risk of nuisance behavior at night is reduced as most UAV
operators can only fly during daylight hours as flights must remain within VLOS;

Trespass: There are no guidelines within [45] Part 101 Unmanned Aircraft and Rockets
addressing the issue of trespass.

4.2. Canada

Privacy: Although not preserved within the Canadian Aviation Regulations [48],
Transport Canada [49] provides clear privacy guidelines for both recreational and commer-
cial UAV users. Operators are directed to a dedicated online resource specifically detailing
the privacy guidelines for flying UAVs. This resource discusses that although Canadas’s
privacy regulations do not specifically reference UAVs, the privacy laws in Canada do
apply to information that could be collected, such as video and pictures. Recreational
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users must abide by the previously mentioned five privacy principles, while commercial
operators are bound by the Personal Information Protection and Electronic Documents Act
(PIPEDA). PIPEDA applies to all businesses within Canada and ensures that consent is
obtained when collecting personal information and that the information is handled with a
high degree of professionalism;

Safety: To be allowed to fly a UAV in Canada with a MTOW between 250 g and
25 kg, recreational and commercial operators must obtain a pilot certificate with either
basic or advanced endorsement. Concerning collision, general operating and flight rules
specifically mentions the risk of collision and provides procedures and guidelines to reduce
its risk. Pilots should not increase the risk of collisions by flying close to other aircraft
(901.18 [48]). Take-off and landing sites must be suitable for the operation and that there
is no risk of collision with aircraft, bystanders or obstacles (901.33 [48]) and if the risk of
collision becomes too great then operators must cease any flights immediately (901.49 [48]).

Concerning the VLOS, (900.01 [48]) provides the following definition under the regu-
lation for VLOS means unaided visual contact at all times with a remotely piloted aircraft
that is adequate to be able to preserve control of the aircraft, know its location and be able
to scan the airspace in which it is functioning to perform the detect and avoid functions
in regard to other aircraft or objects”. No pre-defined distance is given regarding the
maximum visual line of sight. The responsibility is placed on the pilot to ensure that they
believe they have control of the UAV at all times.

Finally, the main operating categories being basic and advanced have weight limita-
tions on the types of UAVs that can be flown. UAVs weighing up to 25 kg can be flown
providing the operators adhere to the regulations under each of those categories. Drones
weighing over 25 kg can be flown but need special permission from Transport Canada [49]
in the form of a Special Flight Operations Certificate. The regulations provide no speed
limitations on UAV flights and there is no mention of design parameters that would reduce
the risk of harm from direct impact;

Security: Loss of control is termed a “fly-away” within the regulations and defined
as a loss of the command-and-control link between the operator and the UAV in which
the operator is unable to control the UAV. An operator should not pilot a UAV unless they
have procedures to handle emergencies, such as loss of the command-and-control link or a
fly-away (901.23 (1) [48]). Pilots should cease operations if the UAV becomes uncontrollable
(901.49 (1)(f) [48]). Minimal advice can be found within the regulations regarding how an
operator would limit the risk of a fly-away.

Concerning anonymity, all UAVs weighing from 250 g and up to and including 25 kg
need to be registered with Transport Canada. The operator’s name and address, date of
birth, purchase date, make, model, serial number, weight and type of UAV are recorded
against a registration number. This registration number must be marked on the UAV
with a permanent marker, permanent label or engraving. There are no other real-time
identification requirements within the regulations;

Public Nuisance: First, there are no guidelines within [48] addressing the issue of
noise pollution from the use of UAVs. Compounding the issue, night flights are permitted
as well providing the UAV has position lights enabling it to be seen during the night either
with or without night vision goggles worn by the operator (901.39 (1) [48]).

Second, A UAV must not be flown over or within an emergency security perimeter
established by a public authority responding to an emergency (901.12 (1) [48]). As noted
above, nuisance behavior is not limited to daylight hours as the regulations allow for UAV
flights at night as VLOS can be established using positioning lights;

Trespass: There are no guidelines within [48] addressing the issue of trespass.

4.3. European Union

Privacy: Regulations have been established to address the risk of privacy infringe-
ment [50]. One of the main aims of the regulations is to mitigate the hazards around the
protection of personal data and privacy [50]. If a UAV is capable of capturing personal data
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via a sensor (e.g., camera) attached to the UAV then the operator must be registered within
a Member State (Article 14 (5)(a)(ii) [51]). A competent authority is tasked with maintaining
a registration system for operators whose operations present a risk to privacy and personal
data protection (Article 18 (m) [51]). A statement is required from the operator confirming
that the planned operation will comply with all EU and national rules, in particular how
it will address privacy and data protection (Article 12 (1)(c) [51]). Privacy is defined as
one of the deciding factors when determining geographical areas where UAVs can operate
(Article 15 (1) [51]). Knowledge regarding privacy and data protection is to be demon-
strated via an examination delivered by a competent authority (UAS.OPEN.020 (4)(b) [51]).
These regulations are aimed towards operator awareness and education rather than hard
guidelines. Operators must demonstrate knowledge regarding privacy issues and the
regulations have been constructed to reduce the risk of privacy breaches.

Safety: All operators wishing to operate UAVs with CE markings from C1 to C4
must pass an online exam. If operators want to fly close to bystanders, an additional
theoretical exam must be taken and delivered by a recognized entity. Concerning collision,
the only guideline in place within the regulations for reducing the risk of collision is
(UAS.OPEN.060 (2) [50]). During the flight, the remote pilot shall keep the UAV in VLOS
to reduce the risk of collision with manned aircraft with the flight being discontinued
if there is an increase risk to aircraft, people, animals, environment or property. Any
UAV operations in the certified category must abide by (no 1332/2011 [51]), which define
operating procedures for airborne collision avoidance. These regulations include the need
for airborne collision avoidance systems (AUR.ACAS.1005 (3) [51]) and what to do when
they sound a collision alarm (AUR.ACAS.2005 (1) (2) [50]). These regulations, however,
only apply to the certified category of flight operations which are deemed high risk and
form a small portion of total flights. The European Union has defined five classes of UAVs
based upon their weight (C0, C1, C2, C3, C4) with the C1, C2 and C3 class UAVs to be
equipped with a geo-awareness system that allows for uploading and updating airspace
limitations, warning alerts to the remote pilot of imminent airspace breach detections and
also be able to alert the operator if the geo-awareness system is not functioning properly
(Part 2–5 [52]). The C1, C2 and C3 UAVs are to be equipped with lights with the stated
purpose being to aid in controlling the UAV and for increased visibility at night to able
people to distinguish between manned aircraft and the UAV.

Concerning the VLOS, it is described as: “a type of UAS operation in which, the remote
pilot is able to maintain continuous unaided visual contact with the unmanned aircraft,
allowing the remote pilot to control the flight path of the unmanned aircraft in relation to
other aircraft, people and obstacles for the purpose of avoiding collisions” (article 2 [51]).
No pre-defined distance is given regarding the maximum VLOS. During a flight, the pilot
shall maintain VLOS and consistently scan the surrounding airspace to avoid the risk of
collision (UAS.OPEN.060 (2) [51]).

The C0 class UAV, the maximum take-off mass (MTOM) is less than 250 g and a
maximum speed of 19 m/s (part 1 [52]). A C0 class UAV has to be designed to minimize
damage to people from impact, such as no sharp corners and design limits on propellers to
reduce injury from the fan blades. A C1 class UAV is to be made from materials and have
physical and performance specifications that if an impact at its maximum speed (terminal
velocity) to the human head exerts less than 80 J or has an MTOM of less than 900 g and a
maximum speed limit of 19 m/s (Part 2 (1) [52]). A C2 class UAV must weigh less than 4 kg
and by the nature of its design, limit the injury caused to people from impact by avoiding
sharp edges and reducing the damage that can be caused by fan blades (Part 3 [49]). A C3
class UAV must be under 25 kg with Part 4 limiting the physical dimensions of the UAV to
less than 3 m (Part 4 and 5 [52]);

Security: Concerning loss of control, guidelines are provided for how UAV manufac-
turers can provide solutions to mitigating the risk of losing control of the UAV unexpectedly
(parts 1–5 [49]). The regulations stipulate that for classes C0–C4, the manufacturer of the
UAV must place on the market a manual of operations that states how the UAV will behave
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during a loss of data link. There is also a requirement under each of the classes that when a
loss of data link has occurred, there will be a reliable and predictable way to recover the
data link or the flight will be terminated.

Concerning anonymity, the Commission Delegated Regulations [52] have provided
clear procedures to reduce the possibility of operators flying UAVs anonymously. All
UAVs with an MTOM of more than 250 g must have a direct remote identification system
equipped on the UAV. Direct remote identification is defined as a system that broadcasts
information locally about the UAV, such as the operator details and UAV specifications,
without the need to physically access aircraft (Article 2 [51]). A UAV shall have a direct
remote identification system that will periodically broadcast from the UAV, in real-time
during the flight, on an open transmission protocol that can be received by existing mobile
devices in broadcast range, the following information: operator registration number, unique
physical serial number of the UAV, the geographical position, height above the surface and
take-off point, the route that was taken by the UAV and the geographical position of the
UAV [52];

Public Nuisance: The Commission Delegated Regulations state it is important to
limit the noise emissions generated by UAVs to the greatest possible extent in order to
provide the highest level of environmental protection [52]. The Noise Test Code establishes
procedures for manufacturers to measure the noise generated from their UAVs, including
microphone placement and operating conditions during the test (Part 13 [52]). It details
the maximum sound power levels per class of UAV with those levels reducing over the
course of two and four years to give manufacturers a grace period to adjust their UAV
designs (Part 15 [52]). All operators are required to plan flights so as to minimize nuisances,
including noise to people and animals (UAS.SPEC.050 (1)(a)(v) [51]). Whilst it is specified
that operators should choose a UAV for the operation it is designed for to minimize noise
and other emissions (UAS.SPEC.050 (1)(i)(iii) [51]).

UAV operators must not fly close to areas where an emergency situation is ongoing un-
less they have permission from the emergency services (UAS.SPEC.060 (3) [51]). Nuisance
is mentioned throughout the regulations and is generally coupled with noise emissions
requiring operators to plan flights to minimize nuisances (UAS.SPEC.050 (1)(a)(v) [51]);

Trespass: Neither the Commission Implementing Regulations [51] nor the Commis-
sion Delegated Regulations [52] provide guidelines regarding UAVs and trespass.

4.4. United Kingdom

Privacy: The Civil Aviation Authority (CAA) [9] states its duty is limited to safety
and ensuring pilots are operating within the confines of their granted permissions. Their
responsibility does not include concerns over privacy and directs people to the Information
Commissioners Office as any privacy issues will not be dealt with by the UK CAA [9].
However, Air Navigation Order 2016 (ANO2016) [53] offers rules for UAV operators to
avoid privacy issues by clearly delineating between UAVs that have surveillance capabilities
and UAVs that do not. In this context, small unmanned surveillance aircraft are UAVs
that can achieve surveillance and data collection [53]. These aircraft have greater flight
restrictions placed on them with the regulations defining guidelines, such as keeping
greater distances from people during take-off or landing and increasing the distance when
flights are planned over or within congested areas and open-air assemblies. It can be
inferred that the purpose for defining UAVs with surveillance capabilities and placing
tighter flight restrictions on those aircraft, is to reduce the risk of the general public being
surveilled and having their right to privacy invaded;

Safety: Currently, recreational users are not required to demonstrate a minimum
level of knowledge and can fly UAVs legally following the regulations. However, from
November 2019, recreational users will have to pass a “drone test” and register with the
CAA. Guidelines are provided for collision avoidance with manned aircraft by restrict-
ing flights in certain airspaces involving the aerodrome traffic, proximity to aerodrome
boundaries and restricting the flying height of the UAV (article 94(4) [53]). The UAV must
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be in constant unaided visual contact with operators to maintain their collision avoidance
responsibilities (article 94(3) [53]). Sensors and collision alarms forming part of an onboard
collision avoidance system of technical ability at least equivalent to manned aircraft specifi-
cations are only required on beyond VLOS (BVLOS) (see Appendix A) flights and are not
required for recreational and most commercial applications [9].

Concerning VLOS, the UAV must be in constant unaided visual contact VLOS with
the operator to maintain their collision avoidance responsibilities [53]. Extended VLOS
operations are defined as flights that are performed beyond 500 m [54]. Therefore, it can
be construed from the regulations that the maximum VLOS before entering into extended
VLOS operations is up to 500 m.

Finally, two main operating categories are defined in the regulations, small unmanned
aerial vehicles and unmanned aerial vehicles. Small unmanned aerial vehicles are defined
as any unmanned aircraft weighing not more than 20 kg without its fuel [53]. Small UAVs
are bound by the operating guidelines in [53], whereas UAVs weighing more than 20 kg
around are subject to the entire UK aviation regulations. No speed guidelines are found in
the regulations or design limitations to reduce the severity of the injury to a person from an
impact with a UAV;

Security: Concerning loss of control, UAV operations in both segregated and non-
segregated airspace must have procedures in place for emergency recovery after a loss of
control data link [14]. Standard operating procedures should contain guidelines for loss
of data link and abort procedures after a critical system failure. These recommendations
are aimed at commercial operators flying in an air traffic service area. No loss of control
procedures are found in the regulations for recreational users.

No procedures were found in the regulations to ensure UAVs and their operators
are identifiable and unable to fly UAVs anonymously. CAA [9] proposes to introduce a
registration scheme by November 2019 for all UAVs weighing over 250 g to be required to
be registered with the CAA. Furthermore, operators will be registered instead of drones
with the registration number of the operator to be applied to all UAVs flown by that
operator [9];

Public Nuisance: No guidelines addressing the issue of noise pollution regarding the
use of UAVs were found in ANO2016. It does not make decisions regarding whether an
amount of noise would be annoying or damaging to people [9].

Additionally, no information was found within ANO2016 regarding nuisance flying,
such as avoiding emergency personnel. Limitations on how close operators can fly to people
are clearly defined in the regulations. Night-time VLOS flights are permitted provided the
guidelines for VLOS are adhered to. This criterion may be satisfied by an alternative act
outside the scope of this project [54];

Trespass: Operators must be aware of relevant trespass laws when conducting a flight
and to obtain permission before entering or operating from private property [54].

4.5. United States of America

Privacy: No mention of guidelines addressing privacy concerns is found in Part 107
of the USA Federal Aviation Administration (FAA) regulations [44]. Section 357 of FAA
Reauthorisation Act 2018 [55] states that it is the policy of the United States that UAVs
shall be operated in a matter that respects and protects personal privacy in line with
Federal, State and local law. Consideration was given to include privacy provisions [44];
however, given the FAA’s longstanding mission and authority as a safety agency, it would
be overreaching for the FAA to enact regulations concerning privacy rights [44];

Safety: No minimum level of knowledge is required under the regulations for recre-
ation users to fly UAVs; however, the FAA is implementing an aeronautical knowledge and
safety test and is currently developing a training module and exam in consultation with the
industry. Commercial operators must pass a knowledge test as regulated under Part 107
which includes a multitude of topics regarding collision, UAVs are prohibited to fly at
night and can only fly at civil twilight if fitted with anti-collision lights which are visible
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for 3 statute miles (part 107.29 [44]). All small unmanned aircraft are required to yield to
all aircraft and that no one should create a collision hazard by flying a UAV too close to
another aircraft (107.37 [44]). UAVs must not interfere with the operations of any airports
with (107.41 [44]) declaring classes of prohibited airspace (107.43 [44]). No reference has
been referred in the regulations necessitating collision sensors or collision alarms to be
equipped for UAVs.

Concerning the VLOS, it is defined as with vision unaided by any device other than
corrective lenses the operator of the UAV must be able to see the UAV throughout the entire
flight (107.31 [44]). No pre-defined distance is assumed regarding the maximum VLOS.

Finally, the ground speed is limited of small UAVs (55 lbs/25 kg) to 44 m/s (107.51 [44]).
No design limitations to reduce the severity of the injury to a person from an impact with a
UAV were present in the regulations;

Security: Concerning the loss of control, no loss of control guidelines are found in
the regulations. During an in-flight emergency, the operator can deviate from any rule
necessary to meet the emergency (107.21 [44]). Second, all UAVs flown either recreationally
or commercially have to be registered and the UAV noted with the registration number by
engraving, permanent label or permanent marker. There are no other real-time, in-flight
identification requirements within the regulations;

Public Nuisance: First, no guidelines addressing the issue of noise pollution were
found in the regulations. Second, operators are advised not to fly near emergencies, such
as accident response, firefighting and hurricane recovery;

Trespass: There are no guidelines within Part 107 or FAA Reauthorization Act 2018
addressing the issue of UAVs and trespass.

The comparative analysis performed above provides a detailed insight into how
current regulations are addressing the privacy, safety and security concerns of the general
public. As was expected and noted during the research phase of this project, not all criteria
were met by the regulations. This is discussed at length in the following section.

5. Discussion

This section discusses whether the regulations have met the prescribed criteria devel-
oped in Section 3.3. The differences and similarities between the regulations and criteria
are highlighted.

5.1. Privacy

Whether the regulations addressed the privacy concerns of the general public proved
to be a complex question. There is no common theme running through each of the regula-
tions tying into what the general public will see as a simple remit, protect a person’s right
to privacy. The regulations traverse the full breadth of the issue, from deflecting the issue of
privacy to another authority, to regulations whose primary aim is to address privacy issues.
Only Canada and the EU have attempted to guide operators to uphold privacy rights. From
the regulations of the five countries that were analyzed, all five were administered by safety
authorities. Three of the regulators state that privacy is not part of their responsibilities.
However, two of these regulators include privacy provisions in their regulations with one
delineating between surveillance and non-surveillance UAVs and the other providing a
privacy policy. One of the countries provide robust privacy guidelines external to the
regulations with detailed information regarding operator responsibilities and applicable
acts. Two countries place restrictions on UAVs that are capable of surveillance with only
one stating these restrictions are for privacy purposes.

Australian regulations provide limited guidance on reducing the risk of infringing
on people’s privacy, e.g., there are no additional limitations placed on UAVs equipped
with surveillance equipment, no requirement for real-time inflight identification of the
operator and UAV and no requirement for operators to demonstrate privacy knowledge.
Operators look to the regulator seeking guidance on how to navigate the privacy issues
but find limited information and are advised external to the regulations to respect personal
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privacy and not record or photograph people without their consent. Newly designed
regulations have provided an opportune time to address the concerns of the general public.
Through consultation with the Office of the Australian Information Commissioner [56],
privacy guidelines could have been developed that would put them in line with their
equivalent safety authorities in other countries that have been successful in addressing
privacy concerns.

Canada also does not provide privacy guidelines within their regulations. However,
Transport Canada [50] has given guidance to recreational users by providing an online
reference that explains how users can apply privacy rules to the flying of UAVs. Commercial
users are directed to the relevant privacy information and given a brief description of how
they can protect people’s privacy. The EU is implementing the most robust and progressive
privacy guidelines of any regulator. Operator registration is needed for flying UAVs capable
of performing surveillance, flight planning must take into account privacy concerns and
operators must demonstrate knowledge of privacy and data protection. Additionally,
operators will be able to be identified in real-time during flights, reducing the ability for
operators to infringe on privacy rights anonymously. Although in the UK, CAA considers
that its responsibility does not concern privacy, it has segregated UAVs that can conduct
surveillance from those that cannot and included greater flight restrictions distancing UAVs
from bystanders. However, distance does not negate the ability of sensors to capture and
store private information and data. CAA underlines that privacy issues should be directed
to the Information Commissioners Office or local police.

The USA provides a privacy policy within its regulations stating that UAV flights
should protect and respect personal privacy consistent with law, but provides no guidelines
directing operators on how those flights can stay within those legal boundaries. UAVs
and privacy ultimately are a multifaceted complex issue that is far beyond the scope of
this paper. Although the use of UAVs is regulated primarily by safety authorities, no other
organization is better positioned to provide guidelines for the protection of privacy as these
safety authorities have extensive knowledge of the minutia of UAVs and their applications.

5.2. Safety

All regulations surveyed require operators to have some form of prerequisite knowl-
edge demonstrated before operating UAVs. The depth of this knowledge varied greatly,
however, with some regulators only requiring a basic understanding of general safety,
while other regulators are expecting broader knowledge on topics, such as meteorology,
navigation and air law. All regulations in the comparison have limitations in place on how
close UAVs can be flown to aerodromes to reduce the risk of collision. Equally, height
restrictions are in place limiting the risk of UAV incursion into regulated airspace and
therefore collision as well. Regarding the implementation of collision sensors and alarms,
including broadcast beacons, this is only a requirement on larger UAVs above certain
weight/size class or operations performed BVLOS for all regulations.

All regulations analyzed include a clear definition of VLOS based on continuous
unaided visual contact with the UAV at all times. However, within their definitions, no
regulator has set a maximum distance that operations can be performed and still be within
VLOS. The regulators have put the onus onto the operators to use their best judgement
without providing a best-case scenario distance limitation. The UK regulations come close
to defining a limit stating that EVLOS is either within or beyond 500 m. Considering that
within most regulations the transition of the line of sight is VLOS–EVLOS–BVLOS, then
under the UK regulations it will then be assumed that the boundary between VLOS and
EVLOS is 500 m. All regulations included in the analysis have weight class restrictions.
Once again, these weight classes vary throughout the regulations with some regulators
limiting users to UAVs with a maximum weight of 2 kg, whilst a majority of the regulations
allowed up to 20–25 kg. Australia and the EU focus on keeping UAV weight classes low,
with Australia limiting UAVs to 2 kg without the need for a license and certification whilst
the EU requires UAVs weighing up to 2 kg to keep 50 m clear of people and a 150 m for
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UAVs weighing more up to 25 kg. The regulations of the remaining countries allow UAVs
up to 20–25 kg which rise the risk of injury and falls outside the recommended weights
(see Section 4).

UAV speed is only regulated in two countries, the USA and the EU. The USA regu-
lations have limited all small UAVs (<25 kg) to 44 m/s and the EU have stated that C0
class under 250 g and C1 class under 900 g must be kept under 19 m/s. These speeds
are outside the recommendations put forth in the literature. The EU regulators have set
precise design constraints for each class of UAV. The design specifications cover maximum
energy levels when impacting the human body and travelling at maximum speed. No
sharp edges are permitted on the UAV and propeller blades must be designed to limit
injury. No other regulations analyzed have applied limitations to UAV design apart from
weight restrictions.

5.3. Security

No analyzed jurisdiction provides guidelines on preventing the loss of control of the
UAV during a flight within their regulations. The responsibility is predominantly placed
on the operator to develop detailed protocols to be included in their standard operating
procedures. All regulators require either the operator or the UAV to be registered with a
competent authority allowing for the possible identification of the operator or UAV. The
EU goes even further and requires all UAVs weighing greater than 250 g to have a direct
remote identification system onboard that will allow the operators details, geographical
location of the UAV and operator and the route taken during the flight, to be accessible
by a mobile device without the need to access the UAV. This system is a considerable step
forward in eliminating the possibility of UAVs being flown anonymously and could solve
numerous other issues, such as invasion of privacy, ensuring safety regulations are being
adhered to and determining if a UAV has flown over private property without permission.

Finally, all analyzed jurisdictions have controlled or restricted airspace zone shapes
that may be either radial or a stadium shape and can include straight edge protrusions to
protect runway flight paths. Appendix A shows the various configurations for the combina-
tion shape, Table 3 outlines the general provision for the shape criteria of each jurisdiction.

Table 3. General class for controlled or restricted airspace zone shape criteria of each jurisdiction
(Author note: USA controlled airspace zones are predominantly radial and can be individually
tailored polygons surrounding an airport).

Australia UK USA Canada EU

Radial X X X � X

Combination–Radial/Stadium
curved shapes with Straight edge

protected flight paths
� � X X X

Variable–radial and/or combination
and/or polygonal shapes depending

upon airport or jurisdiction
X X � X �

�: Criteria is considered; X: Criteria is not considered.

5.4. Public Nuisance

Only the EU regulations provide guidelines addressing the issue of noise pollution.
The regulators state that noise emissions generated by UAVs must be limited to the greatest
possible extent and provide a noise test code within the regulations. The noise test code
aims to direct manufacturers on how to measure the noise generated by their UAVs to meet
the maximum sound power levels laid out in the regulations. Operators are also required to
plan their flights to minimize nuisance from noise pollution. No other regulations analyzed
included noise pollution reduction guidelines. Australian regulators directed the operators
to local noise reduction laws, whilst Canada and the UK go the other way and allow night
flights provided safety regulations are adhered to. These night flights can increase the risk
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of nuisance behavior through the interruption of peoples sleep. All restrictions provide
relief to emergency personnel from the incursion of UAVs into airspace near emergency
procedures or public safety events by prohibiting flights unless authorization is granted
from the person in charge. Throughout the regulations, nuisance behavior is also tied to
noise pollution requiring operators to plan flights to reduce nuisances.

5.5. Trespass

No analyzed jurisdiction tries to address rules regarding the issue of trespass. In
the next section, recommendations are suggested to address the regulatory shortfalls and
current gaps for meeting the concerns of stakeholders.

6. Recommendations

From the comparative analysis, it is clear that deficiencies have been identified in the
regulations. Existing investigations aim to identify and address these deficiencies. However,
there still appears to be marginal consensus which is evidenced when the regulations are
positioned against the prescribed criteria. What is apparent is regulators within their
distinct regulatory environments have attempted to amalgamate the necessary guidelines
and relevant acts making it easier for operators to identify information relevant to their area
of interest. Some regulations have still proven to be either ambiguous in their guidelines
placing the burden on the operator to decide on the most appropriate course of action, or
have become overly complex when trying to address the plethora of issues that present
when dealing with what is ultimately an extremely complicated matter. It is necessary
to provide a clear mandate including procedures and guidelines on how to mitigate the
risk of unmanned aerial vehicles infringing on the privacy rights of people. The following
recommendations aim to address the shortfall within the regulations and provide a basis
for future investigations:

• Specify guidelines and procedures centered around sound privacy principles inform-
ing unmanned aerial vehicle operators of their obligations to protect a persons’ right
to privacy;

• Ensure all operators attain a minimum level of knowledge regardless of maximum
take-off mass (MTOM) and usage;

• Existing requirements for demonstrating a minimum level of knowledge shall include top-
ics beyond the scope of safety and shall include a broader level of aeronautical knowledge;

• Set a maximum VLOS for a UAV under 350 mm in diameter to no greater than 400 m
in accordance with existing visual acuity research to reduce the risk of collision and
losing control of the aircraft;

• Limit aircraft MTOM to no greater than 2 kg and limit airspeed to 7.5 m/s in accordance
with existing research thus reducing the potential for impact injury;

• Place design restraints on UAVs limiting sharp edges, increasing large curves and
implementing frangible parts to absorb impact loads;

• Mandate clear loss of control protocols and procedures by incorporating manufac-
turing and design input and provide guidance on how to regain control of the UAV
including reference to how interference can affect flight control;

• Require all aircraft regardless of MTOM and usage to incorporate direct remote iden-
tification allowing real-time identification of the operator and UAV during flights
reducing the risk of privacy, safety and security infringements including trespass;

• Specify an upper limit on the noise generated by UAVs in accordance with existing
environmental protection guidelines and reduce noise pollution that would otherwise
cause harm/nuisance and negatively affect human health.

7. Conclusions

This paper aimed to examine how the current unmanned aerial vehicle regulations are
addressing the challenges and issues affecting the use of UAVs. From these issues, criteria
were created that enabled a comparative analysis between the criteria and the regulations
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to gain insight into whether the regulations were addressing the problems identified. Initial
research aimed to clarify what those challenges were and found that the primary issues
were centered on privacy, safety and security. There was little consensus amongst regulatory
bodies with the regulations differing greatly between countries. Privacy issues were a
primary concern and although it has been extensively investigated, UAVs and their privacy
implications were tethered only lightly to privacy law. Concerning safety, a lack of operator
knowledge was the main driver in the increase of near encounters as people are unaware of
the regulations or unfamiliar with the safety risks. Loss of control and anonymity were the
primary impediments found in the security analysis. Usage statistics, existing regulations
and length of time between regulatory reviews determined Australia, Canada, the EU, the
UK and the USA were chosen for analyses. Criteria were then developed from the issues
found in the literature review which included five themes: privacy, safety, security, public
nuisance and trespass. The regulations of the five countries were analyzed and compared
against the developed criteria which demonstrated a shortfall in the regulations with all
regulations failing to meet some of the criteria. These results confirm that although there
have been new regulations developed, privacy, safety and security are still issues needing
attention. Trespass proved to be a complex issue that ultimately fell outside the scope of
this paper and is included for investigation’s sake. Further investigations are requested
to define if and how UAVs can trespass. We have not conducted a statistical analysis of
measures regulated by relevant authorities and all the information and data provided in
the manuscript is directly sourced from the regulatory bodies of the selected countries
and is outside the scope of this paper. Hence, quantitative data and statistical analysis of
measures would be an excellent subject for a future paper and would represent a further
contribution to knowledge. Finally, the recommendations were suggested to act as a guide
for filling the gaps found in UAV regulations and should not be used as a reference for
training of operators or issuing licenses.
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Appendix A

UAV Regulations in five countries

This appendix summarizes the UAV regulations in five countries which are: Australia,
Canada, European Union (EU), United Kingdom (UK) and United States (USA).

Appendix A.1. Australia

The CASA is the principal government body charged with regulating the flying of
UAVs in Australia. The legislative instrument used to regulate the flying of UAVs is
the Civil Aviation Safety Regulations Part 101 (Unmanned Aircraft and Rockets) Manual
of Standards 2019. The information below provides a brief summary of the regulations
applicable to recreation and commercial users [47].
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Recreational users follow the standard operating conditions, which are designed to
protect the operator and the people around them. They include only flying one UAV at a
time and only flying within VLOS. Flights must remain under 120 m (400 ft) above ground
level and no closer than 30 m to people and not over or above people at any time. Operators
must not fly near emergency situations, is prohibited or restricted airspace and no closer
than 5.5 km to a controlled aerodrome or airfield. Recreational UAVs are limited to a
maximum weight of 2 kg.

Commercial users operating UAVs under 2 kg can operate under an excluded category
provided they adhere to the standard operating conditions, apply for an aviation reference
number and notify CASA prior to completing the flight. Commercial users operating
UAVs over 2 kg must have a Remote Pilot License (RePL) and a Remotely piloted aircraft
Operator’s Certificate (ReOC) or be working for a ReOC holder. ReOC’s and RePL’s enable
pilots to fly outside the standard operating conditions, such as follows:

Flying closer than 30 m to people: Closer than 30 m but not closer than 15 m providing
that the UAV has dual parallel redundant battery system with duplicated battery mounting
and able to fly with one motor inoperative at the MTOW. Return home functions must be
operational with at least 7 GNSS satellites. A risk assessment must be performed with all
identified risks appropriately mitigated and consent from all people located within 30 m of
the UAV. Written consent is preferred but not mandatory;

Area Approvals and Permissions: Flying 120 m above ground level in or within 5.5 km
of a controlled and non-controlled airspace. Moreover, flying over or within 5.5 km of a
controlled and non-controlled aerodrome or movement area;

Extended VLOS (EVLOS): A risk assessment must be performed with all identified
risks appropriately mitigated prior to application. All areas of the operational area must
always be under supervision from an observer. Either the pilot or an observer must
always have direct VLOS to the UAV. Both pilot and observer need CASA approval to
conduct EVLOS;

BVLOS: A risk assessment must be performed with all identified risks appropriately
mitigated prior to application. All flights must be conducted to the same level of safety as
manned flights focusing on aircraft controllability, fail-safe mechanisms, collision avoidance
and navigational and height accuracy. The UAV must be equipped with position lights, anti-
collision/strobe lights and landing lights, transponders, such as an ADS-B unit, navigation
equipment and aeronautical radio.

Flight restrictions around aerodromes: According to the Australian Government,
Federal Register of Legislation Civil Aviation Safety Regulations 1998 [45], Part 101 (Un-
manned Aircraft and Rockets) Manual of Standards 2019 [47] (as amended): No-fly zone of
a controlled aerodrome means any areas and airspace that are below 400 ft and:

Subject to this section, a person must not: (a) conduct Remotely Piloted Aircraft (RPA)
operations; or (b) Fly an RPA; in the no-fly zone of a controlled aerodrome.

A person who is: (a) A certified RPA operator, or (b) The remote pilot of a certified
RPA operator; may conduct, or fly as the remote pilot in, an RPA operation in the no-fly
zone of a controlled aerodrome if the operation is a tethered operation in accordance with
Section 4.4.

Approach and departure paths—controlled aerodromes:

1. Figure A1 shows the approach and departure paths of a controlled aerodrome.

As shown in Figure A1, the approach and departure path are up to 400 ft, as follows:

(a) Anywhere on or from the ground upwards in the area that is the runway or the
runway strip;

(b) Anywhere in the following areas which are the approach and departure paths for
the controlled aerodrome: (i) Subject to subparagraph; (ii) On or from the ground
upwards in the area that is shaded black; (A) To a distance of 7 km from the end of the
runway strip; (B) To a width that is initially 1 km until the splay exceeds 1 km, and
then to the width of the splay up to 3.85 km; (iii) anywhere from 300 ft (90 m) above
the ground (referenced to the aerodrome elevation) in the area that is between 7 km
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and 8.5 km from the end of the runway strip, with an initial splay width of 3.85 km
and a final splay width of 4.65 km (the area that is crosshatched);

(c) Anywhere from 150 ft (45 m) above the ground (referenced to the aerodrome elevation)
in the area that is shaded grey.

The area that is shaded black, which shows the approach and departure paths and the
ground below them, is described as follows:

(a) Symmetrical trapezoids with the shorter side coincident with the ends of a nominal
100 m wide runway strip and extending out at an angle of 15 degrees on either side
to a distance of 8.5 km, the width of the splay at that distance being no greater than
3.85 km;

(b) A rectangle extending 500 m on either side of the runway centerline and overlying the
runway strip until it intersects the trapezoids at a distance of approximately 1.68 km
from the end of the runway strip.

The area that is shaded grey is described as the racetrack shape comprised of two
semi-circles each: (a) with a radius of 4 km from the point on the centerline at each end of
the runway in the direction of the closest threshold (point 1); (b) ending at the point that is
perpendicular to point 1; and (c) extending in lines parallel to the centerline until the lines
extended from one semi-circle meet the lines extended from the other semi-circle.

Figure A1. Controlled aerodromes approach and departure paths, Figure reproduced courtesy of the
copyright holder, Australian Government 2021.

Appendix A.2. Canada

Transport Canada is responsible for the development of aviation regulations in Canada.
In 2019, Transport Canada published updated regulations for flying UAVs with the new
regulations apply to UAVs that weigh from 0.25 kg to 25 kg [49]. All UAVs must be
registered and marked with a registration number and all pilots are required to pass an
online exam to be awarded a pilot certificate in their operational category of choice. Two
operational categories were introduced: basic and advanced. Commercial and recreational
pilots are not treated differently and what defines which category is weight, distance from
bystanders and the airspace rules for the area the UAV will be flown. The information below
provides a brief summary of the regulations applicable to recreation and commercial users.

Basic operational category:

131



Remote Sens. 2022, 14, 822

• Must be over the age of 14 or under supervision of a person who is;
• Holds a “basic” pilot certificate;
• Fly in uncontrolled airspace;
• Fly more than 30 m horizontally from bystanders;
• Don’t fly over bystanders.

Advanced operational category:

• Must be over 16 years of age or under supervision of a person who is;
• Holds an “advanced” pilot certificate;
• Fly within controlled airspace;
• Fly over bystanders;
• Fly closer than 30 m to bystanders but not less than 5 m.

Any flights that deviate from the basic category automatically fall under the advanced
category. Additional rules apply to the advanced category depending on which condition
will not be met, such as seeking permission from air traffic control to fly in controlled.
Standard guidelines, such as flying within VLOS, below 122 m and no closer than 30 m
apply to all flights, as well as avoiding emergency operations (bushfires) and advertised
events (parades), 5.6 km from airports and 1.9 km from heliports, as well as far away from
other aircraft, such as other UAVs, helicopters and aeroplanes. UAVs that weigh under
0.25 kg do not fall under the new guidelines however they must fly within VLOS and always
fly responsibly. UAVs that weigh more than 25 kg must obtain special permission from
Transport Canada and apply for a Special Flight Operations Certificate (SFOC). A SFOC is
also required for:

• Flights BVLOS;
• Flights by a foreign operator or a pilot authorized to fly UAVs by a foreign state;
• Flights above 122 m;
• Operating more than five UAVs from a single control station;
• Flying over an advertised event;
• Transporting payloads.

Transport Canada [50] provides privacy guidelines for both recreational and commer-
cial UAV users. Recreational users are advised to follow five privacy principles:

• Be accountable: the pilot is responsible for all personal information collected during flights;
• Limit collection: take steps to avoid blanket collection of information and only record

data that is needed. Anonymizing data, such as blurring faces and number plates
is suggested;

• Obtain consent: yake all reasonable steps to obtain consent from people who will be
incorporated into the capture area;

• Store information securely: prohibit access to data that may contain personal information;
• Be open and responsive about your activities: respect the rights of others especially if

people complain that flights are infringing on their privacy.

Commercial users, like all other businesses in Canada, are bound by the PIPEDA.
Consent must be obtained when collecting, using and sharing personal information and
for that consent to be valid people must comprehend the consequences of consenting to
the collection of personal information. The Privacy Commissioner for Canada outlines an
additional five steps on top of the principles guiding recreational users [57] as follows:

• Identify the purpose of the data collection;
• Data collected must only be used for the purpose it was collected;
• Personal information collected must be accurate, complete and up to date;
• Individuals must be informed of the use and disclosure of their personal information

and have the right to access the information;
• The privacy principles of the organization can be challenged by an individual ensuring

compliance.
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Flight restrictions around aerodromes: According to the Transport Canada [49], a pilot
may not operate an RPA in controlled airspace unless he or she has received a written RPAs
Flight Authorization from the Air Navigation Service Provider (ANSP) (901.71(1) [48]).
Advanced Operations are for those intending to operate an RPA (901.62 [48]):

• Controlled airspace;
• Near people (horizontally less than 30 m, up to 5 m);
• Over people (horizontally less than 5 m over people);
• Within 3 NM from the center of an airport or a military aerodrome; (5.556 km);
• Within 1 NM from the center of a heliport (not runway based–where the center of the

airport is, does not include flight paths).

Appendix A.3. European Union

In June 2019, the European Union Aviation Safety Agency [50] published preliminary
UAV regulations that are applicable across all member states of the European Union. At the
time of writing, two primary acts contain the regulations: The Implementing Act and The
Delegated Act. These acts were in force at the end of June 2019 but will only be applicable
from June 2020. Recreational and commercial users are now viewed similarly with the
main intention being a risk-based approach. Three new categories are introduced: open
(low risk), specific (medium risk) and certified (high risk). The certified category relates to
larger UAVs that fly in controlled airspace and will require the pilot to be licensed, the UAV
to have an airworthy certificate and safety controlled by the National Aviation Authority.
The open category is considered to cover 90% of recreational and commercial flights. It has
three subcategories, A1, A2 and A3, and depending on the operational limits, requirements
of the pilot and technical requirements for the UAV, these will decide which subcategory
the operation falls under. The open category does not need prior authorization for flights
and there is no requirement for a pilot’s license.

The general provisions for the open category are flights cannot go above 120 m and
when flying within a horizontal distance of 50 m from a manmade structure greater than
105 m in height then the maximum height can be increased by a further 15 m at the request
of the person responsible for the structure. The minimum age for the open and specific
categories is 16 years; however, there is no age restriction if flying a toy UAV with a MTOW
less than 250 g and operating under the supervision of a remote pilot. Additionally, from
2022, UAVs will be required to have product regulation markings/labelling (CE) which
will detail the technical specifications of the aircraft. The labels will include information,
such as MTOW, maximum speed, maximum height attainable, electrical voltage and
geo awareness systems allowing airspace and altitude restrictions to be uploaded with
appropriate warning systems in place alerting when nearing those restrictions.

There are four categories of CE markings (C0–C4) with each marking indicating a
larger, heavier and more technical UAV. The purpose of these markings is to help identify
which subcategory the operator will fly in. The information below provides a brief summary
of the regulations applicable to both recreational and commercial users [50]:

Open–A1:

• Never fly over groups of people;
• Flying over bystanders is allowed if flying C0 rated UAV;
• Flying over bystanders is only allowed if flying C1 rated UAV and fly over time is as

short as possible;
• Flying a C1 rated UAV requires online training and examination.

Open–A2 (Only applies when operating a C2 rated UAV):

• Don’t fly over people or crowds;
• Don’t fly closer than 5 m to people and only if active low speed function is activated,

otherwise stay back 30 m;
• Pilot must hold a certificate of remote pilot competency, completed online training

course, self-practical training and pass theoretical exam.
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Open–A3 (Only applies when operating a C2, C3 or C4 rated UAV or a self-built UAV):

• Only fly where the operator reasonably expects no bystander will be put in danger
during the flight;

• Don’t fly closer than 150 m from residential, commercial, industrial or recreational areas;
• Same pilot competencies regarding certificate and training as Open–A2.

Specific Category: All flights operating outside the general provisions of the open
category fall under the specific category as they are deemed to have an increased risk. If a
standard scenario is not available for the intended operation, then a risk assessment needs
to be provided to authorities using a specified methodology. Standard scenarios relate to
particular flight operations and have had predetermined safety objectives and mitigation
steps established by EASA. The advantage of these pre-packaged risk assessments is that it
reduces the burden on the operator and the official assessing the application. An example
of a standard scenario would be flying BVLOS above 120 m over sparsely populated areas.

Flight restrictions around aerodromes: According to European Union Aviation Safety
Authority [50], each EASA member state will determine drone geographical zones, which
are areas where drones may not fly (e.g., national parks, city centers or near airports) or
may fly only under certain conditions, or where they need a flight authorization. Therefore,
it is important for you to consult your National Aviation Authority to check where you can
and cannot fly your drone (FAQ n.116463 [50]), e.g., in Portugal, stay a minimum of 8 km
away from airports.

Under new EASA regulations introduced 1.1.2021, including detailed regulations and
provisions for the operation of unmanned aircraft systems and remote pilot operators where
rules and procedures are established for operators and flight risk level criteria are used to
establish three categories of operations: ‘open’, ‘specific’ and ‘certified’ categories. The UK
has similar categories of operation subject to European Union exit transition changes in the
future (Sep 2021 Easy Access Rules for Unmanned Aircraft Systems [50]).

Flights within a controlled airspace could undertake operations in either the open or
the specific category depending upon the limitations placed in the open category (regardless
of category a permit would be required from the nearest airport to fly within their controlled
airspace). If a flight exceeds any limitations of the open category, then UAS operations for
the ‘specific’ category shall require an operational authorization issued by the competent
authority pursuant to Article 12 or an authorization received in accordance with Article 16,
or, under circumstances defined in Article 5(5), a declaration to be made by a UAS operator
(Sep 2021 Easy Access Rules for Unmanned Aircraft Systems [50]).

Specific Category: Considering the moderate level of risk involved, flights in this
category require authorization before the operation. The permission is given considering
the mitigation measures identified in an operational risk assessment, except in specific
standard scenarios where an operator declaration is sufficient [50].

Appendix A.4. United Kingdom

The Civil Aviation Act and ANO2016 [50] are the principal pieces of legislation gov-
erning the use of UAVs in the UK. The regulations have been updated to allow for a simpler
set of rules to apply to all UAVs that weigh 20 kg or less, which under the legislation are
viewed as small unmanned aircraft (SUA). UAVs that have a mass greater than 20 kg are not
deemed to be SUA and must comply with all the requirements of the ANO, such as licensed
flight crew, airworthiness certificates and permits to fly. Recreational and commercial
operators follow different exemptions and permissions. Exemptions allow for exceptions to
the law, whilst permissions are used when the law prevents the activity but has enabled the
possibility within the law for that activity to take place. The information below provides a
brief summary of the regulations applicable to recreation and commercial users [9].

Recreational Operators:

• Responsibility falls on the pilot to ensure all flights are performed in a safe and
responsible manner;
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• Flying UAVs over 0.25 kg require passing a test and registering the UAV with the CAA;
• The UAV must always be within VLOS;
• Flights must remain under 400 ft (122 m);
• Additional restrictions apply if flying a UAV weighing more than 7 kg in certain types

of airspace.

If the UAV is fitted with equipment capable of performing surveillance or capturing
data, such as a camera, then it is classed as a small unmanned surveillance aircraft (SUSA)
and must adhere to additional regulations as follows:

• Flights must remain 150 ft (50 m) from people, vessels, vehicles and structures;
• Flights must remain 500 ft (150 m) from congested areas (areas that are used for

residential, commercial, industrial or recreational and built-up areas);
• Flights must remain 500 ft (150 m) from open-air assemblies of more than 1000 from

any person;
• During take-off and landing the SUSA must remain 30 m from any person.

To operate beyond the regulations the CAA allows for permissions and exemptions to
be granted. There is a general exemption in place to allow for first person view flying (FPV).
Ordinarily, the headset would obstruct the operator’s field of view to the UAV and therefore
violate the VLOS rule. However, CAA [9] has given an exemption to this rule providing
the operator follows the remaining rules and is accompanied by a competent observer.

Commercial Operators:

• Any commercial operation using UAVs must have a permission issued by the CAA;
• Operators must have appropriate insurance coverage which is a condition of all

exemptions and permissions granted by CAA;
• Commercial operators must adhere to the same regulations as recreational operators;
• Permissions are required from the CAA to fly outside the standard;
• A ‘standard permission’ enables commercial flight over or within 150 m of congested

areas provided the pilot submits an operation manual, evidence of competency and
proof of insurance cover;

• Reduced distance permissions allow UAVs to fly within 50 m of people within a
congested area and less than 150 m from open air assemblies;

• Flights above 400 ft require operators to submit a risk assessment demonstrating the
flight will be performed safely;

• BVLOS / EVLOS and UAVs over 20 kg require exemptions and pilots must submit a
safety case with risk assessment proving flights will be conducted safely;

• BVLOS flights require the aircraft to have onboard collision avoidance equivalent to
manned aircraft, such as a detect and avoid capability and a block of airspace enabling
the UAV to be segregated from other aircraft;

• The collection of images of recognizable people are subject to the general data protec-
tion regulation and the data protection.

Flight restrictions around aerodromes: This section is taken from CAA 2020, Un-
manned Aircraft System Operations in UK Airspace–Guidance [51]. Flights of unmanned
aircraft around aerodromes that are designated as “protected aerodromes” are restricted.
Unmanned aircraft of any size must not be flown within the flight restriction zone (FRZ) of
a protected aerodrome, without appropriate permission. The flight restriction zone consists
of the following three elements (Figure A2):

• A zone with the same dimensions as the aerodrome traffic zone: a 2 nm (3.7 km) or
2.5 nm (4.63 km) radius “cylinder” around the aerodrome, extending 2000 ft above
ground level, centered on the longest runway;

• Runway protection zones: a rectangle extending 5 km from the threshold of each
runway away from the aerodrome, along the extended runway centerline and 500 m
either side, also to a height of 2000 ft above ground level;

• Additional zones: in the case where a line that is drawn 1 km beyond the boundary
of an aerodrome extends beyond the aerodrome traffic zone, and so would not be
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protected by it, the flight restriction zone will include a “bump” (the airfield boundary
+ 1 KM) to protect this part of the aerodrome.

 
Figure A2. Flight Restriction Zone, adapted from [9].

Drones and airports: This section is taken from (gatwickairport) website [58]. Anyone
flying a drone must stay well away from aircraft, airports and airfields. There is a 5 km
(author note-larger than 4.63 km) flight restriction zone around Gatwick (Figure A3) and it
is illegal to fly any unauthorized drones within this area. Drones must not fly above 400 ft
(approx. 120 m) at any time. It is a criminal act to break the no-fly zone and the operator
could put lives at risk and go to prison for up to five years.

 

Figure A3. Gatwick airport (FRZ) UK [32].

Appendix A.5. United States

The FAA [44] is an agency of the USA department of transportation which is charged
with the regulation of all civil aviation. The FAA reauthorization act signed in October 2018
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and establishes changes for the safe integration and use of UAVs, including new rules re-
garding recreational use of UAVs. Section 349 of said act lays out the regulations pertaining
to recreational operators as follows:

• The aircraft must be flown for recreation purposes only;
• The aircraft must weigh less than 55 pounds (25 kg);
• The aircraft is operated within the safety guidelines of a community-based organiza-

tion (CBO) which were codeveloped with the FAA;
• VLOS must be maintained at all times;
• Flights must not enter prohibited airspace or fly near other aircraft;
• Operators must not fly over groups of people, public events or stadiums;
• Flights must not fly near emergencies, such as brushfires and law enforcement activities;
• Flights close or within airspace at or near airports must comply with airspace restric-

tions and prohibitions and must have prior authorization from an administrator;
• In uncontrolled airspace flights must be below 400 ft;
• The aircraft must be registered with registration number marked on the outside of the

aircraft by engraving, permanent label or permanent marker;
• Operators must pass an aeronautical knowledge and safety test with proof of passing

carried during flights.

Commercial Operators can operate UAVs weighing less than 55 pounds under part 107
of the federal aviation regulations. A brief overview of the rules are as follows:

• Aircraft must weigh under 55 pounds;
• Operator must hold a remote pilot airman certificate with a small UAV rating or be

supervised by someone who has one;
• UAVs must be registered and marked as per recreational rules;
• VLOS maintained at all times either by the pilot or by an observer and the aircraft

must remain close enough to the pilot/operator to be seen with the naked eye;
• Aircraft must not operate over bystanders;
• Daylight operations only;
• Maximum ground speed of 100 mph (160 km/h);
• FPV can be used if see and avoid requirements are met in other ways;
• Maximum altitude of 400 ft above ground level;
• External payloads are allowed provided it is securely attached and aircraft airworthi-

ness is not unfavorably affected.

Waivers are documents issued by the FAA [44], which allows flight operations that
deviate from the standard regulations. Waivers provide an opportunity for pilots to, for
example, fly at night, fly over people and fly BVLOS.

Operation in certain airspace: This section is taken from the Department of Transporta-
tion, FAA Operation and Certification of Small Unmanned Aircraft Systems. No person
may operate a small unmanned aircraft in Class B, Class C or Class D airspace or within the
lateral boundaries of the surface area of Class E airspace designated for an airport unless
that person has prior authorization from Air Traffic Control (ATC).

Rules for recreational flyers: Fly at or below 400′ in controlled airspace (Class B, C,
D, and E) only with prior authorization by using LAANC or DroneZone, e.g., controlled
airspace Class C, although the configuration of each Class C area is individually tailored,
the airspace usually consists of a surface area with a five NM radius (USA Department
of Transportation, FAA 2016 Pilot’s Handbook of Aeronautical Knowledge Chapter 15
Airspace [44]). Fly at or below 400 feet in Class G (uncontrolled) airspace.

Note: Flying drones in certain airspace is not allowed. Classes of airspace and flying
restrictions can be found on our B4UFLY app or the UAS Facility Maps webpage.
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Abstract: This paper suggests a new algorithm for automatic building point cloud filtering based
on the Z coordinate histogram. This operation aims to select the roof class points from the building
point cloud, and the suggested algorithm considers the general case where high trees are associated
with the building roof. The Z coordinate histogram is analyzed in order to divide the building point
cloud into three zones: the surrounding terrain and low vegetation, the facades, and the tree crowns
and/or the roof points. This operation allows the elimination of the first two classes which represent
an obstacle toward distinguishing between the roof and the tree points. The analysis of the normal
vectors, in addition to the change of curvature factor of the roof class leads to recognizing the high tree
crown points. The suggested approach was tested on five datasets with different point densities and
urban typology. Regarding the results’ accuracy quantification, the average values of the correctness,
the completeness, and the quality indices are used. Their values are, respectively, equal to 97.9%,
97.6%, and 95.6%. These results confirm the high efficacy of the suggested approach.

Keywords: LiDAR; classification; modelling; filtering; segmentation

1. Introduction

Light Detection and Ranging (LiDAR) data provide considerable advantages over
other photogrammetric and remote sensing data sources. The data can be acquired at high
speed and density during the day or night, and have automated processing potential and
the possibility of simultaneous georeferenced detection of other supplementary data: laser
intensity, RGB, and infrared images [1]. In addition, the laser scanning technique differs
from other 3D data acquisition sensors such as optical cameras. The heavy demand for
LiDAR data necessitates an increased need for automatic processing tools. Of these tools,
the two main operations are the automatic classification and the automatic modelling of
LiDAR data. In urban areas, a point cloud consists of several classes such as terrain, roads,
buildings, vegetation, and other manmade objects. As each class has its own modelling
demands, it is necessary to separate the city classes before starting the modelling step. In
urban zones, the building class is of particular importance. Once this class is extracted,
two families of modelling approaches are available: model-driven and data-driven [2]. In
this context, the input data of any selected modelling algorithm is a building point cloud
consisting of a set of points mainly covering the roof surfaces, as the scanning is usually
achieved using an airborne vehicle. The building facades will be partially covered with low
point density depending on the building location in comparison to the scanning trajectory
and the orientation of the facade’s planes. In any case, the roof points will be distributed
into scanning lines formed according to the quality of the employed scanning system [3].
Moreover, the building point cloud may contain points covering the surrounded terrain

Remote Sens. 2022, 14, 430. https://doi.org/10.3390/rs14020430 https://www.mdpi.com/journal/remotesensing141



Remote Sens. 2022, 14, 430

in addition to the low and high vegetation that is associated with the building. Other
inconsequential points may be present in the building point cloud such as those that are
due to the objects located near the building and the decoration of the facade. However, the
modelling approaches used for constructing the building model use the hypothesis that the
building point cloud consists of only the roof surfaces (except for the vertical surfaces) [4],
which is why the building cloud points need to be classified into two classes: the roof points
and the nonroof (undesirable) points. In fact, the undesirable points sometimes represent
an obstacle in the modelling algorithms, especially when their percentage exceeds certain
limits. Sometimes they are considered as the main reason for automatic modelling failure
or the source for some deformations in the obtained building model [5].

Automatic filtering of LiDAR building point cloud has become a very hot research
topic. Shao et al. [6] develop a top-down strategy that starts by seed point sets’ detection
with semantic information. Then, the region-growing algorithm is applied to detect the
building roof point cloud. Moreover, for filtering the LiDAR data and extracting the
building class, Wen et al. [7] use Graph Attention Convolution Neural Network (GACNN).
This technique is directly applied to the city point cloud. In another way, Varlik and
Uray [8] prefer to project the LiDAR point cloud firstly onto a 2D plane before employing a
U-net architecture deep-learning network. Alternatively, after detecting the building class,
Hui et al. [9] apply multiscale progressive growth to optimize the obtained result.

Tarsha Kurdi et al. [10] suggested an algorithm for automatic extraction of the roof
point cloud from the building point cloud by analysis of the Z histogram of the building
point cloud. Unfortunately, this algorithm did not consider an important case, which is
the case of high trees associated with the building roof. The importance of this case arises
when the building mask is automatically extracted from the city point cloud by automatic
classification. In this case, a considerable number of buildings will be extracted with their
attached trees [11]. This paper suggests an extension of the filtering approach suggested
by Tarsha Kurdi et al. [10] for considering the case of high trees that occlude the building
roof. The suggested approach starts with the application of the algorithm suggested by
Tarsha Kurdi et al. [10] that detects the combined roof and tree crown point cloud. To
extract the building roof, three criteria are calculated and analyzed: the normal vector,
the standard deviation, and the change of curvature factor. At this stage, the employed
threshold values are automatically determined for each building point cloud independently
(smart thresholds). This procedure increases the filtering success percentage because it
considers the particularity of the point cloud of each building. Finally, the misclassified
points are correctly reclassified by using an image-processing operation.

This paper consists of eight sections. The first section introduces the problem of
the presence of high trees associated with the building roof which may be considered
as a real obstacle in the automatic building-modelling algorithm. Second, similar and
related approaches in the literature are discussed. Third, the approach suggested by
Tarsha Kurdi et al. [10] is summarized. Fourth, the limitation of the previous approach is
highlighted in the case of high trees associated with building roofs. Fifth, the suggested
approach is detailed step by step. Sections 6 and 7 discuss the accuracy and the limitations
of the suggested algorithm. Finally, the conclusion draws a panoramic budget and exposes
future work.

2. Related Work

In LiDAR data, the aim of the building-extraction algorithm is the extraction of
building class from the city point cloud [12]. Unfortunately, the majority of the classification
approaches suggested in the literature cannot perfectly achieve the classification task
because some misclassified points will be present in the classification result, e.g., the
recognition of trees associated with building roofs still represents a challenge, as it is
possible to detect a misclassified vegetation segment within the building class when the
distribution of the vegetation segment points is similar to that of the building roof. That is
why the detected building point cloud needs to be filtered before starting the modelling step.
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In the case of building extraction by separating the off-terrain from the terrain classes,
Demir [13] studied the case of low terrain slopes and detected the off-terrain objects via an
elevation threshold. Thereafter, the nonbuilding objects were cancelled because they have
no planar features. In the same context, modern approaches can use the machine-learning
paradigm as suggested by Maltezos et al. [11]. This algorithm employed a deep-learning
paradigm based on a convolutional neural network model for building detection from
the city point cloud. The successful extraction percentage was about 80%. Moreover, the
classification approach developed by Liu et al. [12] combined the Point Cloud Library (PCL)
region growth segmentation and the histogram. For this purpose, they employed a PCL
region growth algorithm to segment the point cloud and then calculated the normal vector
for each cluster. The histograms of normal vector components were calculated to separate
the building point cloud from the nonbuilding. Despite the classification result in this
approach being better than the former ones, the obtained results still need improvement
and filtering before starting the modelling step.

It is now understood why most of the modelling algorithms include a point cloud
filtering step. Tarsha Kurdi et al. [14] calculated the building Digital Surface Model (DSM)
by eliminating the undesirable points associated with vertical elements such as the building
facade. In fact, DSM is a 2D matrix where the pixel value is equal to the interpolated Z
coordinate of LiDAR points located in this pixel. This procedure cannot always eliminate
all these points, which is why Park et al. [15] eliminate the unnecessary objects by realizing
the cube operator to segment the building point cloud into roof surface patches, including
superstructures, removing the unnecessary objects, detecting the boundaries of buildings
and defining the model key points for building modelling. Zhang et al. [16] and Li et al. [17]
used a region-growing algorithm based on the Triangulated Irregular Network (TIN) or
grid data structures to detect the building roof point clouds.

In order to identify the roof points, some authors used additional data such as the
ground plan [18] or the aerial images [19–21], while many others (Jung and Sohn [22] and
Awrangjeb et al. [23]) considered only the extracted roof point cloud instead of the whole
building point cloud to construct 3D building roof models.

Hu et al. [19] filter the building point cloud through projecting back the building
points on imagery using the Normalized Difference Vegetation Index (NDVI). Then, the
Euclidean clustering is applied to remove vegetation clusters with small areas. In another
approach, the building point cloud is divided into two classes by using machine-learning
techniques [24]. These classes are the roof and the façade classes. For achieving this goal,
the TensorFlow neural network for deep learning is employed. Unfortunately, the result is
not so promising where the classification percentages of the semantic classes are less than
85%. In the context of façade point class recognition, another technique is suggested by
Martin-Jimenez et al. [25]. It suggests the calculation of the normal vector of the building
point cloud. For this purpose, the covariance matrix is calculated for each point and its
eight neighboring points. Then, the calculated normal vector is assigned to the tested point.
This method does not consider the presence of decorative elements in the building facades
in addition to the surrounding terrain point and small vegetation.

At this stage, it is important to note that the building point cloud may be divided into
two main classes, which are roof and nonroof classes. The roof class involves a point set
that is employed by the building construction algorithms, whereas the nonroof class is
a point set of undesirable and useless points for the building modelling algorithms. The
undesirable points represent the surrounding terrain, façade, vegetation, and noise. For
the purposes of this paper, we will use the term undesirable points to describe the nonroof
class, and the procedure of roof points extraction from the building point cloud will be
referred to as filtering.

3. Filtering of Building Point Cloud Which Does Not Contain High Trees

This section summarizes the filtering approach suggested by Tarsha Kurdi et al. [10]
because the suggested algorithm in this paper represents an extension of the previous one.
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Building point clouds can be extracted through the manual or automatic classification of
the city LiDAR point cloud. The approach suggested by Tarsha Kurdi et al. [10] detects
the roof points from the building point cloud based on the analysis of the Z coordinate
histogram. This algorithm supposes that the input building point cloud does not contain
high trees (the same height or higher than the roof). The basic hypothesis adopted is that
the point density of the roof surfaces is considerably greater than the building’s facades.
This algorithm starts by calculating the histogram of the Z coordinate of the building
point cloud (see Figures 1b,e and 2b,e). This histogram consists of a set of consecutive 1m
bins, each bar value representing the number of points within an altitude interval. The
ideal histogram step value is dependent on the altimetry accuracy of the point cloud, the
roof-texture thickness and the inclination of roof surfaces. For more details about the step
value assignment in addition to all technical characteristics and analysis please see Tarsha
Kurdi et al. [10].

Figure 1. (a,d) Building point clouds in Vaihingen and Hermanni datasets; (b,e) histograms of Z
coordinate of building point clouds consecutively of the last two buildings; (c,f) final results of
building point clouds’ filtering; The red dot in (b,e) is the PSTF; “1,2,3” in circles in (b,e) are building
section numbers.

From Figures 1 and 2, the histogram of the Z coordinate of the building point cloud
consists of three sections. Section 1 represents the terrain surrounding the building, low
vegetation, noise, and the lower parts of the façade. Section 2 represents the points spread
on the building façades, and Section 3 represents the roof point cloud. In order to determine
the limits between these three sections, eight rules are adopted as follows:

Rule 1: The leftmost bar of the histogram belongs to the terrain section.
Rule 2: The rightmost bar of the histogram belongs to the building roof section.
Rule 3: Location of PSTF (point separating terrain and façade) (the red dot in Figure 1b).

This point must be located within the four leftmost bars in the histogram. If the number
of terrain points is not negligible (case of a flat terrain), the PSTF will be located after the
bin with a significant population within the first four bars. If there is not a substantial
number of terrain points within the building point cloud (case of significant terrain slope),
the PSTF will be situated beside the fourth bar. In this case, the number of terrain bins
will increase but their populations will drop down. Moreover, the first four bins will be
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considered as terrain bins whereas the other terrain bins will appear in the façade section.
This misclassification is tolerated because it will not affect the final result, which is the
detection of the roof point cloud.

Rule 4: Each bin with a considerable population (given the threshold) after the PSTF
belongs to the roof surface section.

Rule 5: The roof points are presented in the histogram by one- or multi-bins situated
after the PSTF. All bins to the right of the previous roof surface bin belong to the roof.

Rule 6: The bar of the façade section that is immediately located before the roof surface
section may represent roof and façade points together. Therefore, the points belonging to
the upper half of this bar must be added to the roof section.

Rule 7: All undesirable point bars situated after the PSTF have small values (given the
threshold) in comparison to the values of roof surface bars.

Rule 8: In the histogram and after the PSTF, there are some bars with smaller values
than the roof surface bars and greater values than the undesirable point bars (red arrows in
Figure 1b). As these bars do not belong to the undesirable point or to the roof class, they
are described as fuzzy bars. This is why it is necessary to check the presence of small roof
planes amongst the points represented in the fuzzy bars.

Figure 2. (a,d) Building point clouds, respectively, in Toronto and Strasbourg datasets; (b,e) his-
tograms of Z coordinate of building point clouds consecutively of the last two buildings; (c,f) final
results of building point clouds’ filtering; The red dots in (b,e) are the PSTF; “1,2,3” in circles in (b,e)
are building section numbers.

In fact, the idea of fuzzy bars solves the problem of the sensitivity of threshold value
selection. Indeed, the point sets represented by fuzzy bars will be checked for the presence
of roof planes within them. This approach is well-known in remote sensing as applying
fuzzy logic [26]. For more details about this algorithm and the employed threshold values,
see Tarsha Kurdi et al. [10].

This rule list could be written as a pseudocode which clarifies all employed equations,
as follows:
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hi:1 to n = histogram
(

Zpoint cloud

)
hmax = max(hi); PSTF = 0
For i = 1 To 3

If hi − hi+1 > 0.5 × hmax Or hi − hi+2 > 0.6 × hmaxThen PSTF = i EndIf
Next i
If PSTF = 0 Then PSTF = 4 EndIf
hmrb = max(hi); i = From PSTF To length(hi)
hrb = zeros(n); S = 0; S1 = 0 (S1 is the first roof bar, S is the last roof bar)
For i = PSTF To n

If hi ≥ 1
3 × hmrb Then hrb(i) = hi; s = i

If S1 = 0 Then S1 = i EndIf
ElseIf hi ≤ 0.1 × hmrbThen h f bi = hi Else h f uz = hi EndIf

Next i
If S < n Then For i = S To n hrbi = hi Next i EndIf
IfhS1−1 ≤ hmrb

10 Then ZS1−0.5 To S1−1 ∈ hrb EndIf

Where n is the number of bars in the histogram; PSTF: point separating terrain and
façade; hrb: roof bars; hfb: façade bars; hfuz: fuzzy bars.

4. Results of Filtering Algorithm Application

The experiments illustrated in this section not only prove the necessity of improving
the previous filtering algorithm but also underline the differences between the extended
and nonextended filtering algorithms. The algorithm described in the last section was
tested with two sorts of building point cloud samples. The first ones represent building
clouds that do not contain high trees that occlude the roof, whereas the second samples
represent building clouds that contain high trees that occlude the roof. Figures 1 and 2
present the results of the last algorithm application on building clouds without associated
trees and Figure 3 shows the results with attached trees adjacent to the roofs.

In Figures 1 and 2 where the building clouds do not contain trees that occlude the roof,
the algorithm successfully eliminated all undesirable points and saved only the roof points
(see Figures 1c,e and 2c,e). By contrast, in Figure 3 where the building clouds contain trees
that occlude the roof, the algorithm eliminated all undesirable points except for the tree
crowns, and saved the tree crowns in addition to the roof points (see Figure 3c,e,f).

Although the tree crowns are not excluded in the filtering results, the façade points
which represent an obstacle in the building cloud filtering procedure are eliminated. This
shows, in the case of the presence of trees that occlude the roof, a path towards cancelling
the tree points based on the elimination of the vertical element points. At this stage, before
improving the filtering algorithm, two remarks have to be considered:

• The analysis of fuzzy bars in the building point cloud histogram has to be postponed to
the end of the tree point elimination. This choice is supported by the fact that the roof
planes, perhaps presented by fuzzy bars, are low in comparison to the building roof
level and have smaller areas. If these planes were to be extracted before eliminating
the tree points, they may be eliminated during the tree point recognition step.

• The application of the first seven rules on the building point cloud creates a new point
cloud that represents the building roof (without the planes of fuzzy bars) in addition
to the tree crown. This cloud will be named the noisy roof cloud.

At this stage, it is useful to state that the results of extended filtering approach of the
same samples mentioned in Figure 3 will be later illustrated in Figure 10, where the tree
crowns are successfully distinguished thanks to the extended algorithm. The next section
explains the suggested extension of the filtering algorithm.
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Figure 3. Results of filtering algorithm application in case of buildings which contain high trees
that occlude the roof. (a,d,g) The original building point clouds; (b,e,h) histograms of building
point clouds; (c,f,i) noisy roof point clouds; (a–c) building number 4; (d–f) building number 5; (g–i)
building number 6; The red dots in (b,e,h) are the PSTF; “1,2,3” in circles in (b,e,h) are building
section numbers.

5. Extended Filtering Algorithm

This paper suggests an extension of the filtering approach suggested by
Tarsha Kurdi et al. [10] to consider the case of building point cloud containing high trees
that occlude the roof. Figure 4 shows the workflow of the extended algorithm.

The extended algorithm starts by applying the first seven rules of histogram interpre-
tation to the building point cloud (see Section 3). This operation allows the elimination
of the majority of noisy points under the roof level except for the roof planes linked to
the fuzzy bars. The eliminated noisy points represent the façade points, the surrounding
terrain points, the low vegetation points, the high tree stem, and low branch points, and
all other noisy points such as objects located near the building. The obtained point cloud
represents the roof in addition to the associated tree crowns, which is why it is named
the noisy roof point cloud. The next section exposes the calculation of the Neighborhood
Matrix (Nm) of the noisy roof point cloud.
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Figure 4. Workflow of the extended filtering algorithm where σ is the standard deviation of the fitted
plane, ϕ◦ is the angle of the normal vector with the horizontal plane, Ccf is the change of curvature
factor, and Thσ, Thϕ and Thccf are their respective thresholds.

5.1. Selection of Neighbouring Points

To calculate the normal vectors and roof features of the noisy point cloud, the approach
suggested by Dey et al. [27] was adopted. This selection used the dynamic method for
selecting the neighborhood of each point. Consequently, only the necessary minimum
number of neighboring points were considered for each roof point. This leads to minimizing
the error during the estimation of the normal vectors and the roof features values.

The approach suggested by Dey et al. [27] starts by selecting the initial minimum
number of neighboring points by considering the case of a regular distribution of points
where each point has eight neighboring points. To reliably calculate a normal vector to a
plane, the point selection needs an evenly distributed sample of points from the plane. To
ensure the neighborhood is not limited to a single scanning line, the considered point and
its neighborhood are fitted to a 3D line where the standard deviation value represents an
indicator factor reflecting the number of scanning lines that are included in the neighboring
points. If the considered point and its neighborhood belong to more than one scanning
line, the estimated values of the normal vector and the roof features will correctly describe
the point’s geometric position regarding the roof facets. Alternatively, if the considered
point and its neighborhood belong to only one scanning line, the estimated values of the
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normal vector and the roof features may be inaccurate. In this context, an iteration loop is
employed to increase the number of neighboring points in each iteration until the selected
neighboring points are located on more than one scanning line. For more details about this
algorithm, please see Kumar Dey et al. [27].

The neighborhood is selected using only X and Y coordinates instead of X, Y and
Z. This choice is adopted because the 3D neighborhood selection leads to the detection
of all points situated within a sphere around the considered point, whereas in 2D, the
neighborhood selection allows the detection of all points situated within a vertical cylinder
around the considered point. In the case of a point located on a roof plane, the two selection
options provide almost the same result, but in the case of a point located on a tree, where
the LiDAR points are distributed on the branches and leaves, the neighborhoods differ.
Consequently, this choice helps to increase the difference between the roof and the tree
points when the normal vector and roof features are calculated, as shown in the next section.

The operation described in this section allows us to define a new matrix named the
Neighborhood Matrix (Nm). This matrix is determined from the neighboring points for each
cloud point. This matrix consists of n rows (n is the number of points of noisy roof cloud)
and N columns. The number N represents the maximum possible number of neighboring
points (please see Dey et al. [27]). Furthermore, In the point cloud list, the order of each
point is the point number, e.g., if the point number i has 45 neighboring points, then the
first 45 entries of the row number i will contain the neighboring point numbers, and the
rest of cells of this row will contain zeros. This matrix will be employed for calculating the
normal vector in addition to the roof feature values. Moreover, it will be used later (see
Section 5.4) to recognize the roof points.

Once the Nm is calculated, the normal vectors of the noisy roof cloud can be calculated.

5.2. Calculation of Normal Vectors and Change of Curvature Factor

Once the neighboring points are determined for each LiDAR point through the matrix
Nm, the best plane passing through each point can be fitted and the normal vector then
can be calculated. To achieve this objective, the plane equation will be fitted using the
eigenvectors of the covariance matrix which was employed by Sanchez et al. [28]. In this
paper, three criteria are employed for distinguishing the roof points from the tree ones.
These criteria are the standard deviation (σ) of the fitted plane (in meters), the angle (ϕ◦)
of the normal vector with the horizontal plane and the change of curvature factor (Ccf)
(unitless) which is calculated based on the eigenvalues according to Equation (1) [29].

Cc f =
λ3

λ1 + λ2 + λ3
(1)

where λ1, λ2, λ3 are the eigenvalues in descending order.
Once the target criteria are calculated for all cloud points, the next step is the filtering

of the noisy roof points from the tree ones.

5.3. Filtering of Noisy Roof Point Cloud

In order to recognize the roof points in the noisy roof cloud, the three criteria calculated
in the last section will be implemented. In this context, all points conforming to Equation (2)
are selected.

σi ≤ Thσ and ϕi ≥ Thϕ and Cc f i ≤ Thcc f (2)

where σi, ϕi and Ccf i are, respectively, the standard deviation, the angle (ϕ◦) and the
change of curvature factor of the point number i. Furthermore, Thσ, Thϕ and Thccf are the
assigned thresholds that are used for detecting the roof points. In this context, the employed
threshold values change from one building to other, and a stochastic method is adopted
for calculating the smart threshold values. This method relies on the histogram analysis as
shown in the next section.
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5.4. Calculation of Smart Threshold Values

For noisy roof cloud, Figure 5a,b and Figure 6 represent examples of the histograms of
σ, ϕ◦ and Ccf, respectively. The step values in these histograms are, respectively, equal to
0.2 m, 10◦ and 0.01 (unitless). These values are selected empirically depending on the range
of each parameter and the sensitivity of the parameter variation to the filtering results,
e.g., in Figures 5 and 6, the variation of ϕ◦ values has less influence on the filtering result
than the variation of Ccf parameter, which is why the number of bins of ϕ◦ histogram is
fewer than the number of bins of Ccf histogram. Though the high-quality results shown in
Section 6 demonstrate that the selected values of the three histogram steps are successful,
more investigations are needed to prove their optimal values, which can be applied to
different point densities and urban typologies.

Figure 5. (a,b) Histograms of standard deviation (σ) and the angle (ϕ◦) of normal vector with
horizontal plane of noisy point cloud.

Figure 6. Histogram of change of curvature factor (Ccf) of noisy point cloud.
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In Figure 5a, the longest bar, which is the leftmost bar, represents most of the points
that belong to the roof. Indeed, the majority of roof point neighborhoods (except for the roof
plane boundary points) have similar standard deviations. Moreover, seen in Figure 5a, the
value of roof standard deviation is at a minimum in comparison to the plane boundaries,
tree, and noisy points. In fact, the typical roof points’ neighborhood standard deviation
value is dependent on factors such as cloud altimetry accuracy and roof-texture thickness.
At this stage, it is important to note that some of the points represented by the roof section
of the histogram do not belong to the roof. This is because among the tree points it is
possible to find some points that fit a plane with their neighborhood with minimal standard
deviation. Moreover, some of the roof points such as the roof plane boundary points,
the points of roof details such as chimneys and windows, and roof noise points, may be
present in the other histogram bins. Despite the majority of roof points being represented
by the roof section bins in the histogram, the percentage in these bins differs from one
building to another. Indeed, the variation in texture thickness, the point density, and the
roof complexity play an essential role in determining this percentage. Notwithstanding
this, in all buildings, the majority of roof points will be represented by the roof section of
the standard deviation histogram. Nevertheless, the use of only the standard deviation
criterion is not enough to detect the roof points. Finally, the same analysis can be applied
to the histogram of Ccf presented in Figure 6.

In Figure 5b, knowing that the histogram is oriented from the left to the right, all bars
starting from the longest one to the right end of the histogram represent the majority of
roof points. All remarks in the last paragraph can also be applied to this histogram.

At this stage, there are three remarks that must be made. First, each one of the three
histograms illustrated in Figures 5 and 6 can be divided into two sections: a roof point
section that represents the majority of roof points and a noise section that represents the
majority of noise points. Second, in the roof point sections of the three histograms, the
percentage of roof points is different from one histogram to another. Third, the number of
points presented in the roof sections in the three histograms is not the same.

In order to smartly (automatically) determine the three threshold values employed in
Equation (2), four rules are empirically adopted. Figure 7 illustrates the used algorithm
for automatic calculation of the employed thresholds. The applied rule list could be
summarized as follows:

Rule 1: In the case of the building represented by Figure 5, the most frequent value
of the angle (ϕ◦) according to Figure 5b is 70◦. This value is very big with respect to the
other values in the interval of angle value [−60◦, 90◦]. This is why a tolerance value has to
be added in order to consider the small uncertainties of fitted plane orientations. These
uncertainties normally occur due to the use of a minimum number of neighboring points
for fitting the best plane. Consequently, the threshold Thϕ is shifted to two bins to the left
of the most frequent angle bin.

Rule 2: Rule 1 is applied for the Thσ threshold, except the threshold Thσ is shifted to
only one bar to the right of the most frequent standard deviation bar.

Rule 3: The threshold Thccf is considered to be the most frequent value in the histogram
(Figure 6) without shifting.

Rule 4: The threshold (among the last three) that allows the selection of the maximum
number of points is chosen, and the other two threshold values, are shifted so as to select a
similar number of points using each threshold individually.

The application of this strategy allows the value of thresholds to change from one
building to other (Table 1).

From Table 1, it can be noted that the threshold Thσ value is constant in eight buildings
(Thσ = 0.8 m). In fact, the nine buildings belong to the same point cloud (Vaihingen city)
and have the same urban typology and similar texture. On the other hand, the values
of the thresholds Thϕ and Thccf are related to the architecture complexity level of the roof,
e.g., Building 2 has the most architecturally complex roof. This is why the Thϕ value is the
smallest (30◦) and Thccf value is the largest (0.04).
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Figure 7. Algorithm flowchart for smart calculation of employed thresholds; Thi (Th_Fy, Th_Sd,
Th_Cf) are the used thresholds; εi are last shifts applied on thresholds; ei: are difference of number of
points detected by thresholds before applying the shifts εi.

Table 1. Values of calculated thresholds for the three buildings represented in Figure 3 in addition to
five other buildings from Vaihingen point cloud.

Thϕ (Degree) Thσ (m) Thccf (Unitless)

Building 1 40 0.8 0.01

Building 2 30 0.8 0.04

Building 3 50 0.8 0.02

Building 4 30 0.9 0.03

Building 5 30 0.8 0.02

Building 6 40 0.8 0.02

Building 7 30 0.8 0.01

Building 8 45 0.8 0.02

Building 9 30 0.8 0.02

Once the thresholds values are assigned, Equation (2) is applied for detecting the roof
points. Figure 8a shows the results of the application of this procedure. It may be observed
that all roof points are detected, except for the boundary points and the roof detail points.
To complete the recognition of roof points, the Nm matrix is employed. For each detected
point in Figure 8a, all its neighboring points have to be added to the roof class according to
the matrix Nm. Figure 8b illustrates the result of adding the neighboring points. At this
stage, all remaining points in the noisy point cloud will represent the tree class (red color in
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Figure 8c). Inside the black circles in Figure 8c, some roof points that were misclassified
as vegetation points can be seen. The process for improving this result is detailed in the
next section.

Figure 8. Separation roof points from high tree points. (a) Employment threshold result; (b) adding
neighboring points to the result; (c) building points are in blue and tree points are in red; black circles
refer to misclassified points.

5.5. Improvement of Filtering Results

The filtering algorithm presented previously separates the noisy roof cloud into two
classes, which are the roof class and the noise or vegetation class. In the obtained result
(see Figure 8c), there are some building points classified as noise and vice versa. In this
section, an additional operation will be added to the filtering algorithm for improving the
result. In this context, two normalized Digital Surface Models (nDSM) are calculated [30].
The first one is of the roof class (Figure 9b), whereas the second one is of the noise class
(Figure 9a). The two nDSM models have the same dimensions which correspond to the
dimensions of the whole noisy point cloud nDSM. At this stage, a new matrix is defined that
is named Noisy Cloud 2D Matrix (NC2DM). To calculate this matrix, the noisy point cloud
is superimposed over an empty matrix with the same dimensions as the last nDSM. Each
cell in this matrix will contain a set of points that are located within the cell borders [30].
In fact, NC2DM has special importance because it serves as a link between the nDSM
and the noisy point cloud, e.g., one nonzero pixel in nDSM corresponds to a list of points
(belonging to the noisy point cloud) that are located in this pixel. Consequently, if any pixel
of the roof nDSM is reassigned to the noise class, the list of points located in this pixel will
be extracted from the roof cloud and reassigned to the noise cloud. In this context, the
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matrix NC2DM offers the possibility of directly recognizing the set of points that is moved
from one class to another.

Figure 9. Visualization of normalized Digital Surface Models (nDSM) before improvement; (a)
vegetation class; (b) roof class.

Starting with the noise nDSM, a region-growing algorithm is applied for segmenting
the noise nDSM. For each segment, if it is entirely located within the roof perimeter then
it is considered as part of the roof, e.g., the segment situated within the white circle in
Figure 9a is located inside the roof perimeter, so it is reassigned to the roof class. Moreover,
a segment with an area smaller than 5 pixels and tangent to the roof is considered as part of
the roof, e.g., the segment within the red circle in Figure 9a is tangent to the roof perimeter
and its area is equal to 1 pixel, so it is reassigned to the roof class. The last two types of
pixels are cancelled from the noise class and reassigned to the roof class. Inversely, the
same operation is applied to the roof class.

Once the improved filtering algorithm is completed, rule 8 (Section 3) is applied to
add the result of fuzzy bars analysis. Figure 10 shows the final results of filtering the three
building point clouds illustrated in Figure 3. In this figure, all trees (in green color) are
recognized, and the building roof (in red color) is detected accurately.

Figure 10. Final filtering results of three building point clouds illustrated in Figure 3; (a) Building 1;
(b) Building 2; (c) Building 3. Green color represents vegetation and red color represents roof.

At this stage, it is important to note that the extended filtering algorithm can be
applied in the case of existing high trees associated with the building as well as in the
case of nonexistent high trees in the building point cloud. The difference between the two
cases is the processing time. Of course, if there are no high trees occluding the roof, the

154



Remote Sens. 2022, 14, 430

application of the original filtering algorithm will be faster because the processing time
consumed by the extended algorithm is greater than the original algorithm. In the next
section, the accuracy of the suggested filtering algorithm will be estimated using the five
point clouds exposed in Section 6.1.

6. Results

Before presenting the results of the suggested approach, it is unavoidable to detail the
used dataset samples. The next section introduces the employed point clouds.

6.1. Datasets

To evaluate the efficiency of the suggested approach, five datasets were used (Her-
manni, Strasbourg, Toronto, Vaihingen and Aitkenvale) (See Figure 11 and Table 2). These
five test sites contain 12, 56, 72, 68 and 28 buildings, respectively. The selected sites repre-
sent different urban typologies, and their point clouds have different point densities. While
some of them contain high trees associated with the building, others are vegetation-free.
This choice is adopted for estimating the reliability of the filtering approach in these two
cases. Table 2 shows the characteristics of the selected point cloud samples such as their
acquisition dates and height, the employed sensor and the point density.

Figure 11. Locations of the study areas: (a) Hermanni; (b) Toronto; (c) Aitkenvale; (d) Vaihingen;
(e) Strasbourg.
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Table 2. Tested datasets.

Hermanni Strasbourg Toronto Vaihingen Aitkenvale

Acquisition June 2002 September 2004 February 2009 August 2008 –

Sensor TopoEye TopScan (Optech
ALTM 1225)

Optech
ALTM-ORION M

Leica Geosystems
(Leica ALS50) –

Point density
(point/m2)

7–9 1.3 6 4–6.7 29–40

Flight height
(m)

200 1440 650 500 >100

The Hermanni dataset represents a housing area in Helsinki city, where multistorey
buildings are enclosed by trees. This data belongs to the building extraction project of
EuroSDR [31].

The Strasbourg point cloud in France represents Victory boulevard. This sample
has special importance because it has a low point density and it represents several urban
typologies. Toronto point cloud [32] in Canada, contains both low and high-storey buildings
with significant architectural variety.

The fourth dataset is selected in Germany, in Vaihingen city [32]. The scanned area
covers small detached houses within a zone rich in vegetation. The trees associated with
buildings represent a high variation of quality and volume. The last dataset is of Aitkenvale
in Queensland, Australia [33]. It contains 28 buildings with a high point density (29–40
point/m2). It covers an area of 214 m × 159 m and it contains residential buildings and tree
coverage that partially covers buildings. In terms of topography, it is a flat area.

6.2. Accuracy Estimation

To estimate the accuracy of the extended filtering algorithm, the roof point clouds of the
chosen building samples were manually extracted (point per point), since manual extraction
is supposed to be more accurate than automatic extraction [1], and then considered as
the reference.

Figure 12 compares the number of points between the building point clouds, the refer-
ence roof clouds, and the filtered roof clouds of the Vaihingen dataset. The first 51 buildings
have trees associated with the roofs and the last 17 buildings are high-vegetation-free. It can
be seen that the filtering algorithm performs the task of recognizing high trees associated
with the roofs well. Consequently, the results in the case of high-tree-occluded buildings
are comparable to the case of high-tree-free buildings. Indeed, the number of points of the
filtered roof clouds is similar to that of the reference models.

Figure 12. Comparison between number of points of building point clouds, reference roof clouds
and filtered roof clouds of Vaihingen dataset; the first 51 buildings have trees associated with roofs
and the last 17 buildings have no trees associated with roofs.
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In the context of error estimation, the confusion matrix is used for calculating the cor-
rectness (Corr), the completeness (Comp), and the quality indices (Q) (Equations (3)–(5) [1]):

Comp =
TP

TP + FN
(3)

Corr =
TP

TP + FP
(4)

Q = Corr × Comp (5)

where TP (true positive) means the common points of both reference and detected roof, FN
(false negative) means the points of the reference not found in the detected roof and FP
(false positive) means the points of the detected roof not found in the reference.

Table 3 shows the correctness, completeness and quality indices for the five datasets
used. It can be noted that the undesirable point proportion in the building point cloud is
considerable (average = 26.7%). The high accuracy of the suggested filtering algorithm can
be observed from the values of the correctness and completeness indices that were almost
always greater than 95%.

Table 3. Average values of three datasets’ filtering accuracy elements.

Dataset
Number of
Buildings

Number of
Points

Undesirable
Points

(%)

Corr
(%)

Comp (%)
Q

(%)

Average Values

Hermanni 12 7380 13.37 99.69 99.76 99.45

Strasbourg 56 1433 18.05 98.44 95.63 94.24

Toronto 72 14,700 23.25 98.56 95.57 94.23

Vaihingen 68 2542 41.65 94.85 98.39 93.37

Aitkenvale 28 9822 37.1 98.1 98.75 96.93

Average 7175 26.7 97.9 97.6 95.6
Corr: Correctness; Comp: Completeness; Q: Quality.

The quality value for the Toronto data (94.23%) is smaller in comparison to the Her-
manni data (99.45%). In fact, as mentioned in Section 6.1, the Toronto data represents tall
buildings with a wide variety of rooftop and façade structures and textures, e.g., in the
building illustrated in Figure 13a–c, a set of high-density points are detected inside the
building (see the red arrow in Figure 13a). These points are perhaps due to the quality of
the façade texture on that level. On one hand, as these points fit a plane and have a high
density, they are detected by the filtering algorithm. On the other hand, these points were
confusing for the operator who achieved the filtering manually because it is unusual to find
this quantity of points inside a building. To summarize, the cascading flat roof property
and texture variety in the data for Toronto play a major role in this result, and it is possible
that the quality value may be underestimated in this case.

From another viewpoint, the quality evaluation of Vaihingen, Toronto, Strasbourg,
and Aitkenvale filtering results are all smaller also than that of Hermanni dataset. Indeed,
the developed algorithm suffers from three limitations that decrease the accuracy of the
final filtering results. These limitations are:

• In the case of high buildings with a high point density, the small roof planes that are
not located in the main roof level may not be detected.

• In the case of buildings that consist of several masses with different heights, the
portions of façade points with the same altitudes of the low roof planes will not be
cancelled.

• Some of high tree points will not be eliminated.
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Figure 13. (a) Building point cloud in Toronto dataset; (b) histogram of Z coordinate of building
point cloud; (c) final result of building point cloud filtering; the red dot in (b) is PSTF; the blue arrow
in (c) façade points that are saved; the red arrow in (c) the missed small and low plane; “1,2,3” in
circles in (b) are building section numbers.

On one hand, these limitations may adequately explain why the FN values are slightly
greater than zero. On the other hand, the higher FN values may be due to the accuracy of
the manual extraction of the reference roof clouds. Indeed, in the manual extraction, the
presence of confusing points attached to the transparent surfaces of buildings sometimes
makes the operator unsure of the proper classification. Regarding the importance of the
last three points, they will be detailed in Section 7.

However, despite the difference in the typology, the point density and the undesirable
point percentage in these five point-clouds, the excellent results show the capacity of the
suggested filtering algorithm to process the majority of building and point cloud qualities.

7. Discussion

In this section, four ideas are discussed which are the accuracy discussion, accu-
racy comparison between the suggested approach and similar ones, comparison with
deep-learning-based methods and the ablation study applied on a building point cloud
containing high trees.

7.1. Filtering Accuracy Discussion

Concerning the algorithm limitations, if the roof area is large and the point density
is high, the threshold of the number of the façade points according to Rule 6 (Section 3)
will have a considerable relative size (10% of the greatest roof bar), e.g., if a flat roof
area = 500 m2 and the mean point density = 6 points/m2, the threshold of the number of
the façade points according to Rule 6 =300 points. Consequently, the detection probability
of a small and low roof plane (for example: area = 5 m2 and the number of points = 30
points) will be low because the number of the plane points in addition to the façade points
belonging to the same bar may be smaller than the selected threshold. In the same context,
when the building is high, this probability will decrease more because the point density of
the roof surface will be greater than the mean point density. Figure 13c shows that one low
and small roof plane is missed by the filtering algorithm (the red arrow points to a missed
roof plane).

The second case of probable filtering error is when the building consists of several
masses of differing heights. The portions of façade points that have the same altitudes of
the lower roof planes will not be cancelled (blue arrows in Figure 13c). Indeed, the saved
façade points in this case may belong to the same bins of the lower roof planes.

In the case of trees associated with roofs, despite the suggested algorithm’s ability
to recognize the majority of tree points, some tree points with the same characteristics of
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roof points (σ, ϕ and Ccf) may not be eliminated (see blue arrow in Figure 10b). In fact, the
percentage of these points in all tested buildings, in comparison to the number of the tree
points, was negligible (less than 1%), which is why their influence on the modelling step
was neglected.

Another limitation of the suggested algorithm is that it was tested only on the Lidar
point clouds. Therefore, more tests are required in the future for other point cloud types
such as the photogrammetric point clouds from oblique areal imaging, oblique scanners or
from Unmanned Aerial Vehicle (UAV) imagery.

In conclusion, despite the last limitations not being common, the algorithm could
be improved by considering them. Although the suggested filtering algorithm has the
previous limitations, it always conserves the main roof planes and eliminates the majority
of undesirable points (Q = 95.6%). The testing results on a great number of buildings,
illustrated in Figure 12, shows the proficiency of the suggested approach, where the
successful filtering rate is equal to 98% despite the variation in typology and point density
of selected samples.

7.2. Accuracy Comparison

In the literature, the building point cloud filtering procedure is applied in two contexts.
First, in the context of automatic classification of a point cloud when the classification
approach aims to detect the building point clouds, the filtering operation is applied on
the building mask to improve its quality [9,11]. Second, in the building modelling algo-
rithm, the filtering operation is applied to the building point cloud before starting the
construction of the building model. Hence, the filtering algorithm aims to eliminate the
undesirable points before starting the modelling step [34–36]. In the two last cases, the
filtering algorithm is merged with the classification or modelling approaches. This is why
it is rare to find independent accuracy estimations of a filtering algorithm in the literature.
Despite this, the influence of the employed filtering operation will appear in the quality
of the final product (building mask or building model). This is why the accuracy of the
suggested approach is compared with the accuracy of the approaches [7,9,11,34–36] in the
context of comparing the efficacity of the suggested approach with other similar approaches
suggested in the literature

To clarify how this comparison can be achieved, let us take this example. First, the
result of an urban point cloud classification is a building mask named m1. According to
the classification accuracy, a certain amount of nonbuilding points and noisy points may
be present in this mask. Second, a region-growing algorithm is applied to this mask to
detect each building independently and is then filtered by the suggested algorithm in this
paper. This procedure allows for generating a filtered building mask named m2. Third, a
2D outlines modelling algorithm is applied to m1, which produces a new model named m3.
Finally, the three calculated masks can be compared with a reference model to estimate their
accuracy through the confusion matrix. If the deformations generated by the modelling
algorithm in m3 are neglected, a comparison between the last three models’ accuracies can
be achieved, to judge which model is more faithful to the reference model.

According to Griffiths and Boehm [37], the high trees associated with the building roof
are considered the main source of incorrect results among the several LiDAR data proce-
dures such as automatic building extraction using convolutional neural networks [7,11] and
building outlines’ modelling [34–36]. In this context, it is useful to compare the accuracy of
the suggested approach with the accuracy of six previous studies (Table 4).

At this stage, it is more appropriate to compare algorithms as they perform on com-
mon datasets. This is why all selected approaches in Table 4 employ the Vaihingen
dataset (Table 2) provided by the ISPRS (International Society for Photogrammetry and
Remote Sensing).

From Table 4, it can be noticed that correctness and the quality factors in the suggested
approach (97.9% and 95.6%) are considerably greater than the other six approaches, where
the maximum values are equal to 96.8% and 93.2% in Zhao et al. [36]. These two measures
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consider the FP value (the points of the detected roof not found in the reference) which
represent, in this case, the high trees occluding to the roofs. The completeness factor
does not consider the FP value, which is why the values of completeness of the previous
approaches (99.4% in Widyaningrum et al. [35]) are sometimes greater than the same
measure in the suggested approach (97.6%). From this comparison, the importance of
elimination of the high trees associated with the roofs can be deduced.

Table 4. Accuracy comparison of suggested approach with previous studies.

Corr (%) Comp (%) Q (%)

Maltezos et al. [11] 85.3 93.8 80.8

Widyaningrum et al. [35] 90.1 99.4 89.6

Huang et al. [34] 96.8 96.2 93.2

Zhao et al. [36] 91.0 95.0 86.8

Hui et al. [9] 91.61 93.61 85.74

Wen et al. [7] 95.1 91.2 86.7

Suggested approach 97.9 97.6 95.6

It is important to note that the accuracy of the classification approaches which use the
convolutional neural networks [7,11] is lower than the accuracy of the suggested approach
(Table 4) when applied to the same Vaihingen dataset. This fact emphasizes the necessity
of recognition and elimination of the high trees associated with building roofs which
sometimes play the main role of accuracy dropping in the classification algorithms.

Finally, it is important to remember that the approach suggested by Tarsha Kurdi et al. [10]
did not consider the case of tree presence that is associated with the building roof, which is
why it gives the erroneous result shown in Figure 3, when there are trees attached to the
building roof.

7.3. Comparison with Deep-Learning-Based Methods

At this stage, a specific comparison with deep-learning-based methods can clarify the
importance of the suggested approach, which is a rule-based approach. One deep-learning-
based approach consists of three main steps: training, validation, and testing [11]. The
training operation permits calculating the architecture deep-learning network parameters
that allow for classifying the labelled input point cloud. For this purpose, the employed
labelled point cloud is divided into training and validation data. The same network with
the calculated parameters will be applied to the validation point cloud. Once the learn-
ing parameters are validated, they can be used for testing other datasets. Otherwise, the
rule-based filtering method is based on the physical behavior of the point cloud [38], and
consists of a list of operations connected through a suggested workflow network. On one
hand, the application of the deep-learning-based approach to LiDAR data envisages three
issues, which are the input feature selection, the training- and validation-data labelling,
and overfitting. On the other hand, its advantages regarding rule-based approaches are the
possibility of simultaneous application in different types of land, no need for parameter ad-
justment, and fast performance for high-volume data [38]. In fact, the suggested rule-based
approach does not suffer from the issues presented in deep-learning-based approaches.
Furthermore, the parameter adjustment problem is minimized by using the idea of fuzzy
bars among the Z-coordinate histogram analysis (see Section 3) and the employment of
smart thresholds (see Section 5.4). Finally, in order to be fair, the deep-learning-based
approaches for LiDAR data filtering nowadays represent a hot research topic that can profit
from all available rule-based approaches to recognize the efficient input features.
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7.4. Ablation Study

To show the contributions of the improved modules, an ablation study is applied to
the building point cloud shown in Figure 10a. As shown in Table 5, the total building
point cloud contains 2936 points and consists of three classes: roof, tree and undesirable
points. The filtering algorithm before the extension eliminates only the undesirable points
(433 points). Thereafter, for removing the high tree crown points, the employment of three
features together (ϕ◦, σ and ccf ) with the smart thresholds enable recognizing the roof
points accurately. Consequently, the results illustrated in Figure 5 underline the necessity
of the extension achieved on the original filtering algorithm.

Table 5. Number of points detected in each step of suggested algorithm.

Total
Build

Z_His ϕ◦ σ ccf ϕ◦+ σ + ccf Nm Imp Fuz Roof Tree Und

2936 2503 1456 1329 1368 1065 597 14 55 1727 776 433

Total Build: Building point cloud; Z_his: Z histogram analysis; Nm: neighborhood matrix; Imp: improvement of
filtering algorithm; Fuz: fuzzy bars analysis; Und: undesirable points; +: and.

8. Conclusions and Perspective

This paper suggested a new approach to automatic building point cloud filtering for
detecting the roof point cloud. This algorithm is important as the majority of building-
modelling algorithms try to construct the building models by focusing on the building roof
point cloud. Indeed, eliminating the undesirable points from the building point cloud helps
to improve the quality of the constructed building model and increases the probability of
success of the modelling algorithm, especially when the quantity of the undesirable points
is considerable. In this context, the suggested approach considers the general case when
there are trees occluding the building roof. Although the suggested algorithm suffers from
some limitations that may slightly reduce the accuracy of some results, the expounded
filtering algorithm conserves the building’s main roof cloud and eliminates most of the
undesirable points. Nevertheless, more investigations are envisaged in the future to make
allowance for the limitation cases. Although this algorithm was tested using five datasets
with different typologies and point densities, it still needs to be tested and extended in
future research to include other point cloud types, such as photogrammetric point clouds
from oblique areal imaging or from Unmanned Aerial Vehicle (UAV) imagery.
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Abstract: The pixels of remote images often contain more than one distinct material (mixed pixels),
and so their spectra are characterized by a mixture of spectral signals. Since 1971, a shared effort
has enabled the development of techniques for retrieving information from mixed pixels. The
most analyzed, implemented, and employed procedure is spectral unmixing. Among the extensive
literature on the spectral unmixing, nineteen reviews were identified, and each highlighted the
many shortcomings of spatial validation. Although an overview of the approaches used to spatially
validate could be very helpful in overcoming its shortcomings, a review of them was never provided.
Therefore, this systematic review provides an updated overview of the approaches used, analyzing
the papers that were published in 2022, 2021, and 2020, and a dated overview, analyzing the papers
that were published not only in 2011 and 2010, but also in 1996 and 1995. The key criterion is that the
results of the spectral unmixing were spatially validated. The Web of Science and Scopus databases
were searched, using all the names that were assigned to spectral unmixing as keywords. A total
of 454 eligible papers were included in this systematic review. Their analysis revealed that six key
issues in spatial validation were considered and differently addressed: the number of validated
endmembers; sample sizes and sampling designs of the reference data; sources of the reference data;
the creation of reference fractional abundance maps; the validation of the reference data with other
reference data; the minimization and evaluation of the errors in co-localization and spatial resampling.
Since addressing these key issues enabled the authors to overcome some of the shortcomings of
spatial validation, it is recommended that all these key issues be addressed together. However, few
authors addressed all the key issues together, and many authors did not specify the spatial validation
approach used or did not adequately explain the methods employed.

Keywords: mixed pixels; spectral unmixing; spatial validation; accuracy

1. Introduction

1.1. Background

A pixel that contains more than one “land-cover type” is defined as a mixed pixel,
and its spectrum is formed by combining the spectral signatures of these “land-cover
types” [1]. The presence of mixed pixels in the image constrains the techniques that can
be carried out to analyze, characterize, and classify the remote sensing images [2,3]. To
retrieve mixed-pixel information from remote sensing images, a shared research effort al-
lowed developing several methods (e.g., spectral unmixing, probabilistic, geometric-optical,
stochastic geometric, and fuzzy models [1]). However, the literature shows that, for over
40 years, spectral unmixing has been the most commonly used method for discrimination,
detection, and classification of superficial materials [4–6].

The spectral unmixing was defined as the “procedure by which the measured spectrum
of a mixed pixel is decomposed into a collection of constituent spectra, or endmembers,
and a set of corresponding fractions, or abundances, that indicate the proportion of each
endmember present in the pixel” [6]. It is important to point out that many names were
given to the spectral unmixing procedure: hyperspectral unmixing [7,8], linear mixing [9],
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nonlinear spectral mixing models [10,11], semi-empirical mixing model [12], spectral
mixing models [13–15], spectral mixture analysis [16–22], spectral mixture modeling [23,24],
and spectral unmixing [19,25,26]. In this paper, the term spectral unmixing was chosen.

The first studies that introduced the spectral unmixing procedure were carried out
about 40 years ago (Table 1). In order to study Moon minerals, Adams & McCord [27]
observed nonlinear behavior of the spectra of Apollo 11 and 12 samples that were measured
in the laboratory. In order to analyze the spectra of Mars, Singer & McCord [28] assumed
that the spectrum of the mixed pixel was a bilinear combination of the spectra of its two
constituent materials, and it was weighted by their abundances in the mixed pixel; their
model required two constraints: the sum of the weighing factors must be one, and their
values must not be negative. Hapke [29] proposed a nonlinear mixing model that was
called “isotropic multiple scattering approximation” by Heylen et al. [8]. Johnson et al. [12]
and Smith et al. [13] combined “spectral mixing model” with the modified Kubelka–Munk
model and principal component analysis, respectively. In order to analyze the spectra of
Mars, Adams & Smith [23] improved the “bilinear model”, which was proposed by Singer
& McCord [28], considering more than two constituent materials of the mixed pixel and
adding the residual error.

Table 1. Studies that introduced spectral unmixing procedure.

Paper Publication Year Study Area Spectral Range
Name Given to Spectral

Unmixing Procedure
Citations in Google

Scholar

Adams & McCord [27] 1971 Lunar 0.35–2.5 μm - 136
Singer & McCord [28] 1979 Mars 0.35–2.5 μm - 347

Hapke [29] 1981 Planets - 2200

Johnson et al. [12] 1983 Minerals 0.35–2.5 μm Semi-empirical
mixing model 288

Smith et al. [13] 1985 Minerals 0.60–2.20 μm Spectral mixing model 454
Adams et al. [23] 1986 Mars 0.35–2.5 μm Spectral mixture modeling 1634
Adams et al. [16] 1989 - 1.2–2.4 μm Spectral mixture analysis 131

Adams et al. [16] decomposed the “spectral mixture analysis” in two consecutive
steps: the first step decomposes the spectrum of each mixed pixel into a collection of
constituent spectra (called endmembers), and the second step determines the proportion
of every endmember present in the pixel. The literature highlighted two main models for
performing the first step: linear and nonlinear mixture models. To estimate the proportion
of every endmember (called fractional abundances), many solutions were proposed (e.g.,
Gram–Schmidt Orthogonalization [30], Least Square Methods [31], Minimum Variance
Methods [6], Singular Value Decomposition [32], Variable Endmember Methods [6]).

1.2. Reviews on the Spectral Unmixing Procedure

In order to more effectively understand the importance of spectral unmixing, a quan-
tification of the works that have studied, implemented, and applied this procedure since
1971 were provided. For this purpose, all names that were given to the spectral unmixing
procedure were exploited as terms in the search strategy. A total of 5768 and 5852 papers
were identified using Web of Science and Scopus search engines, respectively (accessed
on 19 May 2023). Among these papers, 19 reviews offered the status of spectral unmixing
(Table 2).

An interesting overview of the “linear models” developed up to 1996 was offered
by Ichoku & Karneili [1], who compared this method with four other unmixing models:
probabilistic, geometric-optical, stochastic geometric, and fuzzy models. The authors
summarized that evaluated spatial accuracies were not representative of the real accuracies
at the level of individual pixels because the spatial validation was performed for a few
test pixels.
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Table 2. Reviews on the spectral unmixing procedure.

Paper
Publication

Year
Publication Title

Number of References
Cited in the Review

Citations in Google
Scholar 1

Ichoku & Karneili [1] 1996 A review of mixture modelling techniques for
subpixel land cover estimation 57 281

Heinz &
Chein-I-Chang [33] 2001

Fully Constrained Least Squares Linear
Spectral

Mixture Analysis Method for Material
Quantification

in Hyperspectral Imagery

39 1955

Keshava &
Mustard [6] 2002 Spectral unmixing 40 2761

Keshava [34] 2003 A Survey of Spectral Unmixing Algorithms 3 641

Martinez et al. [35] 2006 Endmember extraction algorithms from
hyperspectral images 16 67

Veganzones &
Grana [36] 2008 Endmember Extraction Methods: A Short

Review 23 82

Bioucas-Dias &
Plaza [7] 2010

Hyperspectral unmixing: Geometrical,
statistical, and sparse regression-based

approaches
97 77

Parente & Plaza [37] 2010 Survey of geometric and statistical unmixing
algorithms for hyperspectral images 53 124

Bioucas-Dias &
Plaza [38] 2011

An overview on hyperspectral unmixing:
geometrical, statistical, and sparse regression

based approaches
51 78

Somer et al. [39] 2011 Endmember variability in Spectral Mixture
Analysis: A review 179 660

Bioucas-Dias et al. [40] 2012

Hyperspectral Unmixing Overview:
Geometrical,

Statistical, and Sparse Regression-Based
Approaches

96 2597

Quintano et al. [41] 2012 Spectral unmixing: a review 163 141

Ismail & Bchir [42] 2014 Survey on Number of Endmembers Estimation
Techniques for Hyperspectral Data Unmixing 22 1

Heylen et al. [8] 2014 A Review of Nonlinear Hyperspectral
Unmixing Methods 201 452

Shi & Wang [43] 2014 Incorporating spatial information in spectral
unmixing: A review 106 197

Drumetz et al. [44] 2016 Variability of the endmembers in spectral
unmixing: recent advances 26 34

Wang et al. [45] 2016
A survey of methods incorporating spatial

information in image classification and spectral
unmixing

280 75

Wei & Wang [5] 2020 An Overview on Linear Unmixing of
Hyperspectral Data 74 17

Borsoi et al. [4] 2021 Spectral Variability in Hyperspectral Data
Unmixing 317 63

1 Accessed on 31 January 2023.

Heinz & Chein-I-Chang [33] focused on the second constraint of linear spectral mixture
analysis (i.e., the fractional abundances of each mixed pixel must be positive), which is very
difficult to implement in practice. Reviewing the literature, the authors pointed out that
because most research did not know in detail the spectra present in the image scene, their
results did not necessarily reflect the true abundance fractions of the materials [33].

Keshava [42] exploited the hierarchical taxonomies to facilitate comparison of the
wide variety of methods used for spectral unmixing and revealed their similarities and
differences. Furthermore, the author restated that most of the methods developed to solve
problems were due to lack of detailed knowledge of ground truth. In their extensive
description of spectral unmixing methodology, Keshava and Mustard [6] focused on the
processing chain of linear unmixing methods applied to hyperspectral data. The authors
highlighted that the shortcomings in spatial validation were due to the lack of detailed
ground-truth knowledge; for this reason, the main focus of the research was on determining
endmembers, rather than recovering fractional abundance maps [6].
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Bioucas-Dias et al. [36] aimed to update the previous review, which was proposed by
Keshava and Mustard [6] 10 years earlier. Therefore, the authors extensively described the
methods that were proposed from 2002 to 2012 to improve the mathematical validity of
the spectral unmixing. Bioucas-Dias & Plaza [7,38], Parente & Palza [37], Veganzones &
Grana [40], and Martinez et al. [41] provided brief, but comprehensive reviews of methods
for statistical and geometric extraction of endmembers. Somers et al. [39] provided a
comprehensive and extensive review of the methods to address the temporal and spatial
variability of the endmembers in the spectral unmixing.

An introduction to nonlinear unmixing methods and an overview of the most com-
monly used approaches were provided by Heylen et al. [8]. These authors also pointed
out the lack of detailed ground truths for accurate validation of the spectral unmixing
procedures [8]. After performing a general review of spectral unmixing, Quintano et al. [41]
provided an interesting summary of its applications. Moreover, the authors pointed out the
difficulty in spatially validating the results of spectral unmixing results and identified two
main reasons: “(1) it is difficult to collect ground truth as scale directly corresponding to re-
motely sensed data resolution; (2) traditional classification accuracy analysis measurement
tools may not be suitable for mixed pixel analysis” [41].

Wei & Wang [5] presented an overview of four aspects of the spectral unmixing (i.e.,
geometric method, nonnegative matrix factorization (NMF), Bayesian method, and sparse
unmixing), whereas an overview of the methods that estimated the number of endmembers
was provided by Ismail & Bchir [39]. Shi & Wang [43] provided a comprehensive review
of the methods that combined spatial and spectral information for the spectral unmixing;
the authors called them “spatial spectral unmixing” [43]. To extract endmembers, select
endmember combinations, and estimate endmember fraction abundances, these methods
exploited the correlation between neighboring pixels [43]. Wang et al. [45] provided an
overview of the methods that incorporated the spatial information not only in spectral
unmixing, but also in the all image classifiers. The authors underlined that most of the
spatial accuracy was based on “the idea of area-weighted accuracy” because it was derived
from some validation samples.

The most recent review was offered by Borsoi et al. [4], who provided a comprehensive
review of the methods to solve the spectral variability problem in hyperspectral data.
The spectral variability is mainly due to atmospheric, illumination, and environmental
conditions [46,47]. Starting from the availability or non-availability of spectral libraries,
the authors organized the “Spectral Unmixing algorithms” “according to a practitioner’s
point of view, based on the necessary amount of supervision and the computational cost”
and highlighted that the algorithms with less supervision (i.e., Fuzzy Unmixing, MESMA—
Multiple Endmember Spectral Mixture Analysis—and variants, Bayesian models) are the
methods with high computational cost [4]. Moreover, the authors pointed out the difficulty
of assessing the accuracy of these methods due to the lack of detailed ground truths [4]. A
review of four of these methods, which address the spectral variability problem, was also
provided by Drumetz et al. [44].

It is important to mention that the spatial accuracy of spectral unmixing results can
be evaluated using images and/or in situ data and/or maps, and the spectral accuracy of
spectral unmixing results can be evaluated using spectral signatures that were acquired
in situ and/or in the laboratory and/or obtained from images [4,6,8,33,45]. However, an
independent validation dataset is required (i.e., the spectral library and/or the reference
maps) [48].
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1.3. Objectvives

In conclusion, since 1971 many methods have been introduced to improve the mathe-
matical validity of the spectral unmixing procedure, but the validation of the results still
needs much improvement, especially the spatial validation. In particular, the lack of de-
tailed ground-truth knowledge is the main reason of the many shortcomings in the spatial
validation of the spectral unmixing results. However, no author provided an overview
focusing on the spatial validation of the spectral unmixing results.

Therefore, this systematic review aims to provide readers with (a) an overview of
how the previous authors approached spatial validation of spectral unmixing results and
(b) recommendations for overcoming the many shortcomings of spatial validation and
minimizing its errors. The systematic review was carried out in accordance with the
Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) state-
ment [49,50]. The methodological approach employed in this systematic literature review
is explained in Section 2, whereas the results, discussion, and conclusions are presented in
Sections 3 and 4.

2. Materials and Methods

2.1. Identification Criteria

This systematic literature review aims to provide readers with an overview of the
approaches applied for spatial validation of spectral unmixing results and does not claim to
be exhaustive since too many works have studied, implemented, and applied this technique
since 1971. Therefore, the papers published in 2022, 2021, and 2020 were chosen to analyze
the current status, whereas those published not only in 2011 and 2010, but also in 1996 and
1995 were selected to assess the progress over time. The year 1995 was chosen as the initial
time for the systematic review, because in this year, spectral unmixing and other “mixture
modeling techniques” were well implemented and, thus, commonly employed [1,6,51–54].
The Web of Science (WoS) and Scopus search engines were used to identify the papers that
spatially validated the spectral unmixing results and were published in 2022, 2021, 2020,
2011, 2010, 1996, and 1995.

Initially, the papers that named the spectral unmixing in the titles, abstracts, and key-
words were identified. For this purpose, all the names assigned to spectral unmixing (i.e.,
hyperspectral unmixing, linear mixing, nonlinear spectral mixing models, semi-empirical
mixing model, spectral mixing models, spectral mixture analysis, spectral mixture mod-
eling, spectral unmixing) were employed as unique query strings (first yellow box in
Figure 1).

The total records identified from these databases was 2999. The subject areas of the
search engines were checked to refine the identification of the papers. Therefore, “4.169
Remote Sensing”, “4.174 Digital Signal Processing”, “4.17 Computer Vision & Graphics”,
“5.250 Imaging &Tomography”, “5.20 Astronomy & Astrophysics”, “5.191 Space Sciences”,
“8.8 Geochemistry, Geophysics & Geology”, “8.93 Archaelogy”, “8.19 Oceanography, Mete-
orology & Atmospheric”, “8.140 Water Resources”, “8.124 Environmental Sciences”, “3.40
Forestry”, and “3.45 Soil Science” were “Citation Topics” selected in the WoS database,
whereas “Earth and Planetary Sciences”, “Physics and Astronomy”, and “Environmental
Science” were the subject areas selected in the Scopus database. After refining the subject
areas, the identified papers became 2034 (second yellow box in Figure 1): 1396 were the
papers published in 2022, 2021, and 2020; 538 were the papers published in 2011 and 2010;
100 were the papers published in 1996 and 1995.
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Figure 1. PRISMA flow chart showing the different steps of the dataset creation, where ntot was the
total number of papers; n2022–2020 was the number of papers that were published in 2022, 2021, and
2020; n2011–2010 was the number of papers that were published in 2011 and 2010; n1996–1995 was the
number of papers that were published in 1996 and 1995.

2.2. Screening and Eligible Criteria

Reading the abstracts of the identified papers was conducted to select only those that
applied spectral unmixing to remote images. Excluding the duplicates, 760 papers were
selected with the first screening (orange box in Figure 1): 535 were the papers published in
2022, 2021, and 2020; 186 were the papers published in 2011 and 2010; 100 were the papers
published in 1996 and 1995.

Reading the full text of the screened papers was conducted to identify only those
that spatially validated the spectral unmixing results (bright red box in Figure 1). The last
analysis identified the eligible papers: 326 were the papers published in 2022, 2021, and
2020; 112 were the papers published in 2011 and 2010; 16 were the papers published in
1996 and 1995.

In conclusion, 454 eligible papers were included in this systematic review. In
Appendix A, the Tables A1–A7 summarize the characteristics of the eligible papers that
were published in 2022, 2021, 2020, 2011, 2010, 1996, and 1995, respectively.
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3. Results

3.1. Spatial Validation of Spectral Unmixing Results

The screening carried out showed that the number of studies that spatially validated
the results of spectral unmixing has significantly increased over the selected years (bright
red box in Figure 1): about 100 research papers per year were published in the past 3 years;
about 50 research papers per year were published in 2011 and 2010; about 10 research
papers per year were published in 1996 and 1995. The screening carried out showed
also that the number of studies that applied spectral unmixing has significantly increased
over the selected years (orange box in Figure 1): about 180 research papers per year were
published in the past 3 years; about 90 research papers per year were published in 2011
and 2010; about 20 research papers per year were published in 1996 and 1995. In order to
assess the importance of spatial validation in the spectral unmixing procedure, the papers
that applied spectral unmixing to remote imaging were analyzed (orange box in Figure 1).
Figure 2 shows the percentage of these papers that were not validated (the percentage in
grey wedges), spectrally validated (the percentage in yellow wedges), spatially validated
(the percentage in blue wedges), and spatially and spectrally validated (the percentage
in green wedges) the spectral unmixing results. Therefore, spatial validation was carried
out alone (blue wedges in Figure 2) or together with spectral validation (green wedges in
Figure 2).

Figure 2. Distribution of the papers that applied the spectral unmixing to remote images (orange box
in the Figure 1) according to different ways in which their results were validated, where n2022–2020

was the number of papers that were published in 2022, 2021, and 2020; n2011–2010 was the number of
papers that were published in 2011 and 2010; n1996–1995 was the number of papers that were published
in 1996 and 1995.

Considering all papers that performed spatial validation (blue and green wedges in
Figure 2), the percentage of these research published in 2022, 2021, and 2020 (61% of a total
of 326 papers) was comparable to that of the papers that were published in 2011 and 2010
(60% of a total of 112 papers), whereas these percentages were greater than those of the
papers that were published in 1996 and 1995 (41% of a total of 16 papers). Moreover, the
percentage of the research published in 2022, 2021, and 2020 that did not validate the results
(23%) was smaller than those of the papers that were published in the other 2 groups of
years (31%). In conclusion, these values highlighted not only the increasing application of
spectral unmixing over these years, but also the high priority given to the spatial validation.
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3.2. Remote Images

The eligible papers published in 2022, 2021, 2020, 2011, 2010, 1996, and 1995 are
summarized in Tables 3–9, according to the remote images to which spectral unmixing was
applied. Authors who applied only spatial validation were cited in the fourth columns of
Tables 3–9, whereas those who applied both spatial and spectral validation were cited in
the fifth columns.

Table 3. Eligible papers published in 2022.

Remote Image Analyzed Time Series Study Area Scale Spatial Validation Carried Out
Spatial and Spectral

Validation Carried Out

AMMIS * (0.5 m) [55] No Local [56,57]
Apex * (2.5 m) [58] No Local [59]

ASTER (15–30–90 m) [60] No Regional 1 [61]
ASTER (15–30 m) Yes 2 Local [62]

AVHRR (1–5 km) [63] Yes 1 Regional 1 [64] [65,66]
AVIRIS * (10/20 m) [67] No Local [57,68–87] [88–98]
AVIRIS-NG * (5 m) [99] No Local [100]

CASI * (2.5 m) [101] No Local [59,78]
DESIS * (30 m) [102] Yes 1 Regional 1 [103]

DESIS * (30 m) No Local [104]
EnMap * (30 m) [105] No Local [69]

GaoFen-6 (2–8–16 m) [106] No Regional 1 [107]
GaoFen-2 (3.2 m) Yes 1 Regional 1 [108]

GaoFen-1 (2–8–16 m) No Local [109]
HYDICE * (10 m) [110] No Local [59,68,76,77,79,81,82,85,86,90,111] [89,96,97]
Hyperion * (30 m) [112] Yes 1 Local [75]

Hyperion * (30 m) No Local [113] [114–116]
HySpex * (0.6–1.2 m) [104] No Local [104,117]

Landsat (15–30 m) [118] Yes 1 Continental 1 [119]
Landsat (15–30 m) Yes 1 Regional 1 [108,120–133] [134,135]
Landsat (15–30 m) No Regional 1 [107,136,137]
Landsat (15–30 m) Yes 1 Local [138,139] [62]
Landsat (15–30 m) No Local 2 [140,141]
Landsat (15–30 m) No Local [109,142]
M3 hyperspectral

image * [143] No Moon [143]

MIVIS * (8 m) [144] No Local [145]
MERIS (300 m) [146] Yes 1 Local [147]

MODIS (0.5–1 km) [148] Yes 1 Continental 1 [149]
MODIS (0.5 km) Yes 1 Regional 1 [108,150–152] [137]
MODIS (0.5 km) No Local [153]

NEON * (1 m) [154] No Local [154]
PRISMA * (30 m) [155] No Local [114,156–158]

ROSIS * (4 m) [159] No Local [56,57,78,81,85]
Samson * (3.2 m) [59] No Local [59,72] [89,97]

Sentinel-2 (10–20–60 m) [160] Yes 1 Regional 1 [108,133,161–163]
Sentinel-2 (10–20–60 m) No Regional 1 [136] [107,164,165]
Sentinel-2 (10–20–60 m) Yes 1 Local [166,167] [168]
Sentinel-2 (10–20–60 m) No Local 2 [104]
Sentinel-2 (10–20–60 m) No Local [169]

Specim IQ * [170] Yes 1 Laboratory [170]
SPOT (10–20 m) [171] No Local 2 [140]

WorldView-2
(0.46–1.8 m) [172] No Local [166]

WorldView-3 (0.31–1.24–3.7 m) No Local [166]

* Hyperspectral sensor; 1 Multiple images acquired from same sensor; 2 Multiple images acquired from
different sensors.
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Table 4. Eligible papers published in 2021.

Remote Image Analyzed Time Series Study Area Scale
Spatial Validation

Carried Out
Spatial and Spectral Validation

Carried Out

ASTER (15–30–90 m) No Regional 1 [173]
AVIRIS * No Local [174–201] [202–225]

AVIRIS-NG * (5 m) No Local [226]
CASI * No Local [174,227]

Simulated EnMAP * Yes 1 Regional 1 [228]
GaoFen-5 * (30 m) No Local [229]
HYDICE * (10 m) No Local [192,230–232] [204,212,214,216,218]
HyMap * (4.5 m) Yes Local [233]

Hyperion * (30 m) No Local [212,234,235]
Hyperion * (30 m) Yes 1 Local [236,237]

HySpex No Local [238]
Landsat (30 m) Yes 1 Regional 1 [239–244]
Landsat (30 m) Yes 1 Local 2 [245–253]
Landsat (30 m) No Local [227,254–259]
Landsat (30 m) No Regional 1 [260]

MODIS (0.5–1 km) No Local [254,261]
MODIS (0.5–1 km) Yes 1 Regional 1 [262–264]
PRISMA * (30 m) No Local [265]

ROSIS * (4 m) No Local [191,200,266] [217,267]
Samson * (3.2 m) No Local [188,232,268] [207,210,211,214,224,225,267]

Sentinel-2 (10–20–60 m) No Local [255,258] [226,269]
Sentinel-2 (10–20–60 m) Yes 1 Local [243,253,270] [229,271,272]
Sentinel-2 (10–20–60 m) No Regional 1 [273]
Sentinel-2 (10–20–60 m) Yes 1 Regional 1 [244]

UAV multispectral image [274] No Local [274]
WorldView-2 (0.46–1.8 m) Yes 1 Local [275]

WorldView-3 (0.31–1.24–3.7 m) No Local 2 [276]
ZY-1-02D * (30 m) [228] No Local [228]

* Hyperspectral sensor; 1 Multiple images acquired from same sensor; 2 Multiple images acquired from
different sensors.

Table 5. Eligible papers published in 2020.

Remote Image Analyzed Time Series Study Area Scale
Spatial Validation

Carried Out
Spatial and Spectral Validation

Carried Out

AISA Eagle II airborne
hyperspectral scanner * [277] No Local [277]

ASTER (15–30–90 m) No Regional 1 [278]
ASTER (15–30–90 m) Yes 1 Local 2 [279,280]

AVIRIS * No Local [281–298] [299–327]
AVIRIS NG * No Local [291]
AWiFS [328] Yes 1 Local 2 [328]

CASI * No Local [329]
Simulated EnMAP * (30 m) No Regional 1 [330]

GaoFen-1 WFV Yes 1 Local [331]
GaoFen-1 WFV Yes 1 Local 2 [332] [333]

GaoFen-2 No Local 2 [332]
HYDICE * (10 m) No Local [292,293,298,334,335] [299,307,309,310,316,318,321,322,324]

HyMAP * No Local 2 [280]
HyMAP * No Local [336]

HySpex * (0.7 m) No Local [337]
Hyperion * (30 m) No Local [336] [338]

Landsat (30 m) Yes 1 Local 2 [332] [280,339]
Landsat (30 m) Yes 1 Local [252,340–347]
Landsat (30 m) Yes 1 Continental 1 [348]
Landsat (30 m) Yes 1 Regional 1 [349–355] [356]
Landsat (30 m) No Regional 1 [357]

MODIS (0.5–1 km) Yes 1 Local [340,358–361] [333]
MODIS (0.5–1 km) Yes 1 Regional 1 [362,363]
MODIS (0.5–1 km) Yes 1 Local 2 [364,365] [279]

PlanetScope (3 m) [366] Yes 1 Local 2 [366]
PROBA-V (100 m) [367] Yes 1 Regional 1 [353,368–371]

ROSIS * (4 m) No Local [285,372] [373]
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Table 5. Cont.

Remote Image Analyzed Time Series Study Area Scale
Spatial Validation

Carried Out
Spatial and Spectral Validation

Carried Out

Samson * (3.2 m) No Local [284,374,375] [301,303,305,315,320,323,324]
Sentinel-2 (10–20–60 m) No Local 2 [332,376] [280,339]
Sentinel-2 (10–20–60 m) Yes 1 Local [328,340,377–382] [333,383]
Suomi NPP-VIIRS [354] Yes 1 Regional 1 [353]

UAV hyperspectral data * [384] Yes 1 Local [384]
WorldView-2 Yes 1 Local [342]
WorldView-2 Yes 1 Local 2 [385]
WorldView-3 Yes 1 Local 2 [385]

* Hyperspectral sensor; 1 Multiple images acquired from same sensor; 2 Multiple images acquired from
different sensors.

Table 6. Eligible papers published in 2011.

Remote Image Analyzed Time Series Study Area Scale
Spatial Validation

Carried Out
Spatial and Spectral

Validation Carried Out

AHS * [386] No Local [386]
ASTER No Local [387–389]
ASTER Yes 1 Local [390,391]

AVIRIS * No Local [307,392–403] [387,404–417]
CASI * No Local [418]

MERIS (300 m) No Local [419]
MODIS (0.5–1 km) Yes 1 Local [420–423]

HYDICE * No Local [392,424] [414,415,425]
HyMAP * No Local [392,426] [427]

Hyperion * (30 m) No Local [387,428]
HJ-1 * (30 m) [429] No Local [429,430]

Landsat (30 m) Yes 1 Local [431–433] [387]
Landsat (30 m) No Local [434,435]
Landsat (30 m) Yes 1 Local 2 [436–438]
Landsat (30 m) No Local 2 [423,439]

QuickBird (0.6–2.4 m) [440] No Local [441,442]
SPOT (10–20 m) No Local 2 [439,441]

* Hyperspectral sensor; 1 Multiple images acquired from same sensor; 2 Multiple images acquired from
different sensors.

Table 7. Eligible papers published in 2010.

Remote Image Analyzed Time Series Study Area Scale
Spatial Validation

Carried Out
Spatial and Spectral

Validation Carried Out

Airborne hyper-spectral
image * (about 1.5 m) [443] No Regional 1 [443]

AHS * (2.4 m) No Local [444]
ASTER (15–30–90 m) Yes 1 Local [445,446]
ASTER (15–30–90 m) Yes 1 Regional 1 [447]

ATM (2 m) [101] No Local 2 [101]
AVHRR (1 km) Yes 1 Regional 1 [448]
AVIRIS * (20 m) No Local [449–457] [458–463]

CASI * (2 m) No Local [101]
CASI * No Laboratory [464,465]

CHRIS * (17 m) [466] No Local [467]
DAIS * (6 m) [464] No Local [465]

DESIS * No Local [468,469]
HYDICE * No Local [455,470,471] [458,463]
HyMAP * No Local [471]

Hyperion * (30 m) No Local [472–474]
HJ-1 * (30 m) No Local [475,476]
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Table 7. Cont.

Remote Image Analyzed Time Series Study Area Scale
Spatial Validation

Carried Out
Spatial and Spectral

Validation Carried Out

Landsat (30 m) Yes 1 Regional 1 [477–483]
Landsat (30 m) No Regional 1 [484–489] [490]
Landsat (30 m) No Local 2 [491,492]
Landsat (30 m) No Local [493]
MIVIS * (3 m) No Regional 1 [494]

MODIS (0.5–1 km) Yes 1 Regional 1 [495]
MODIS (0.5–1 km) Yes 1 Continental 1 [496]
QuickBird (2.4 m) No Local 2 [491]
QuickBird (2.4 m) No Local [497,498]
SPOT (10–20 m) Yes 1 Regional 1 [480]

SPOT (2.5–10–20 m) No Local 2 [486,491,492]
SPOT (2.5–10–20 m) No Local [499] [500]

* Hyperspectral sensor; 1 Multiple images acquired from same sensor; 2 Multiple images acquired from
different sensors.

Table 8. Eligible papers published in 1996.

Remote Image
Analyzed

Time Series Study Area Scale
Spatial Validation

Carried Out
Spatial and Spectral

Validation Carried Out

AVIRIS * No Local [501,502] [503]
GERIS * [504] No Local [504]

Landsat (30 m) No Local [14,505] [506]
SPOT (2.5–10–20 m) No Local [507]

* Hyperspectral sensor.

Table 9. Eligible papers published in 1995.

Remote Image
Analyzed

Time Series Study Area Scale
Spatial Validation

Carried Out
Spatial and Spectral

Validation Carried Out

AVHRR (1–5 km) Yes 1 Regional 1 [508]
AVIRIS * (20 m) No Local [509] [510,511]
Landsat (30 m) No Local [512] [513]
MIVIS * (4 m) No Local [514]
MMR * [515] Yes 1 Local [515]

* Hyperspectral sensor; 1 Multiple images acquired from same sensor.

The first columns of Tables 3–9 and the second columns of Tables A1–A7 show the sensor
name and the spatial resolution of the images. Considering all eligible papers, 27 hy-
perspectral sensors and 16 multispectral sensors were employed. Hyperspectral sensors
were highlighted in the first columns of Tables 3–9 with an asterisk. The literature often
combined spectral unmixing with hyperspectral data because the number of bands must
be greater than the number of endmembers [4,5,42,44]. However, the percentage of papers
that employed hyperspectral data (57% of a total of 458 papers) is slightly higher than
the percentage of papers that employed multispectral data (43% of a total of 458 papers).
The second columns of Tables 3–9 show the papers that performed the time series stud-
ies, whereas the third columns of these tables show the papers that performed the local,
regional, or continental studies.
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The analysis of these data showed that most studies that analyzed hyperspectral
images were performed at the local scale and did not carry out the multitemporal studies,
whereas most studies that analyzed multispectral images were performed at the regional or
continental scale and carried out the multitemporal studies (more than one image was ana-
lyzed). Therefore, the spectral unmixing is widely applied to multispectral images, despite
their smaller number of bands than hyperspectral images, because these data are character-
ized by greater spatial and temporal availability than those of the hyperspectral data.

Moreover, the spectral unmixing was also applied to some hyperspectral and multi-
spectral images that were characterized with high spatial resolutions (e.g., AMMIS image
with spatial resolution equal to 0.5 m [56] and WorldView-3 image with spatial resolution of
0.31 m [166]). These papers confirm that, no matter how high the spatial resolution might be,
no image pixel results were completely homogeneous in spectral characteristics [9,516,517].

3.3. Accuracy Metrics

Accuracy, which is defined as “the degree of correctness of the map”, is usually assessed
by comparing the “ground truth” with the map retrieved from remote images [518,519]. Because
no map can fully and completely map the territory [520], ground truth is more correctly
called reference data [521]. To assess the differences between the reference data and results
of the spectral unmixing, the eligible papers exploited different metrics. Figure 3 shows the
pie chart of the distribution of the metrics that were adopted by eligible papers.

Figure 3. Distribution of the eligible papers according to the metrics employed to evaluate the
spatial accuracy.

The other 14 metrics were average accuracy [522], correct labeling percentage for
the unchanged pixels [141], correlation coefficient [150], Kling–Gupta efficiency [523],
mean abundance error [117], mean error [169], mean relative error [169], normalized
average of spectral similarity measures [524], producer’s accuracy [153], Receiver Operating
characteristic Curves (ROC) method [525], relative mean bias [165], separability spectral
index [526], signal-to-reconstruction error [56], and systematic error [109].

In conclusion, the authors of 454 eligible papers employed 22 different metrics, and
most authors employed more than 1 metric. Overall, 25% of the eligible papers did not
specify the accuracy metrics used. It is very important to note that some standard accuracy
assessments, such as the kappa coefficient, “assume implicitly that each of the testing
samples is pure”; therefore, some of these metrics were inappropriate for evaluating the
accuracy of the fractional abundance maps [41,518].
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3.4. Key Issues in the Spatial Validation

Since the literature highlighted many sources of error in accuracy assessment of
retrieved maps [518,519,521], the authors identified and carried out several “key issues” to
address and minimize these errors. Figure 4 and Tables A1–A7 summarize the key issues
that were identified.

Figure 4. Key issues in the spatial validation that were addressed by the eligible papers.

3.4.1. Validated Endmembers

Before analyzing the endmembers that were validated, it is necessary to remember that
the number of endmembers that were determined with the images must be less than the
number of sensor bands; therefore, the number of endmembers that were determined with
the multispectral data is less than the number of endmembers that were determined with
the hyperspectral data [6,23,527]. Therefore, the authors who elaborated the multispectral
images employed smaller levels of model complexity than authors who elaborated the
hyperspectral images [528,529]. For example, the VIS model was used to map only three
endmembers (Vegetation, Impervious surfaces, and Soil) in many urban areas that were
retrieved from multispectral data (e.g., [109,152,477,493]).

The third columns of Tables A1–A7 list the endmembers that were determined using
spectral unmixing; the fourth columns of these showed the number of these endmembers
that were validated. It is interesting to note that some authors validated smaller number of
endmembers than the number of the endmembers that were determined (i.e., 40 eligible
papers). Dividing the works that analyzed hyperspectral images from those that analyzed
multispectral data, Figure 5 shows the percentage of studies that validated the total or
partial number of endmembers. It is important to highlight that, since 4 eligible papers
analyzed both hyperspectral and multispectral data [104,227,231,281], the sum of papers
that analyzed hyperspectral data and papers that analyzed multispectral data (i.e., 458) is
greater than the number of eligible papers (i.e., 454).

176



Remote Sens. 2023, 15, 2822

Figure 5. Distribution of the eligible papers that fully or partially validated endmembers determined
with hyperspectral images (right) or multispectral images (left), where n was the number of papers
considered in each pie chart.

Therefore, only 2% of the studies that elaborated hyperspectral images partially val-
idated the determined endmembers, whereas 18% of the studies that elaborated multi-
spectral images partially validated the determined endmembers. As mentioned above,
hyperspectral images were used to carry out non-repeated surveys over time and at local-
scale studies (252 papers of a total of 262), whereas most multispectral images were used to
carry out regional- or continental-scale studies that were or were not repeated over time
(180 papers of a total of 196). Therefore, some of these authors, who analyzed more than one
image, chose to spatially validate only the materials or groups of materials on which they
focused their study. For example, Hu et al. [149] spatially validated only blue ice fractional
abundance maps that were retrieved from MODIS images covering the period 2000–2021 in
order to present a FABIAN (Fractional Austral-summer Blue Ice over Antarctica) product. It
should be noted that 5 and 12% of the papers that analyzed hyperspectral or multispectral
data, respectively, did not specify which endmembers were validated.

3.4.2. Sampling Designs for the Reference Data

The literature demonstrated that a possible source of error in spatial validation is due
to the choice of the sampling design for the reference data [518,519,521,530]. The sampling
design mainly includes the definition of the sample size and the sampling design of the
reference data [518]. Authors of eligible papers chose three kinds of sample sizes: the
whole study area; the representative area; small sample sizes (pixels, plots, and polygons
samples). The eighth columns of Tables A1–A7 show the different sample sizes that were
adopted by every eligible paper, and Table 10 shows the number of papers that adopted
the different sample sizes.

Table 10. Sample sizes of the reference data that were employed by the eligible papers.

Sample Sizes of the
Reference Data

Papers Published in 2022,
2021, and 2020

Papers Published in 2011
and 2010

Papers Published in 1996
and 1995

Whole study area 172 55 10
Small sample sizes 78 38 1
Representative area 21 7 0

Not specified 59 12 5
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Most authors of the eligible papers chose to validate the whole study areas, followed,
in descending order, by the choice to employ the different number of small sample sizes and
then the representative areas. It is also important to note the high percentages of the papers
that did not specify the sample size of the reference data: 18, 11, and 31%, respectively.

The literature also pointed out that the sampling designs for spatially validating maps
at local scale cannot be the same as the designs for spatially validating maps at regional
or continental scale [518,530]. As mentioned above, most of the studies that analyzed the
hyperspectral data were performed at local scale (252 papers of a total of 262), whereas the
studies that analyzed the multispectral images performed at regional or continental scale
(180 papers of a total of 196). Therefore, the eligible papers that analyzed hyperspectral
images were analyzed separately from those that analyzed multispectral images (Figure 6
on the right and left, respectively), not only to analyze the different sampling designs
adopted from the hyperspectral and multispectral data, but also to highlight the different
sampling designs chosen for local or regional/continental scale studies. Figure 6 shows
the percentage of the eligible papers that employed the different sample sizes and the
percentage of the eligible papers that employed a different number of small sample sizes.

Figure 6. Distribution of the eligible papers according to the sample sizes and the number of the
small sample sizes that were chosen to analyze hyperspectral (right) or multispectral (left) images,
where n was the number of papers considered in each pie chart.

Most papers that processed hyperspectral images validated the whole study area
(212 papers), whereas most papers that processed multispectral images employed small
sample sizes (94 papers).

The authors of eligible papers that employed small sample sizes adopted three different
sampling designs of reference data: partial, random, and uniform. The ninth columns
of Tables A1–A7 show the sampling designs of every eligible paper. Most authors who
published in 2022, 2021, and 2020 and published in 2011 and 2010 chose the random
distribution of reference data (78% for a total of 326 papers and 76% for a total of 110
papers, respectively), whereas the authors who published in 1996 and 1995 did not specify
the sampling designs employed. Stehman and Foody [519] highlighted that “the most
commonly used designs” that were chosen to assess the land cover products were “simple
random, stratified random, systematic, and cluster” designs. Therefore, these results
confirmed that random designs were the most commonly used approaches.
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3.4.3. Sources of the Reference Data

Eligible papers employed four different sources of reference data to spatially vali-
date spectral unmixing results: images, in situ data, maps, and previous reference maps.
Table 11 shows the number of the eligible papers that employed these reference data sources,
whereas the fifth columns of Tables A1–A7 detail the sources of the reference data.

Table 11. Reference data sources employed by the eligible papers.

Sources of Reference
Data

Papers Published in
2022, 2021, and 2020

Papers Published in
2011 and 2010

Papers Published in
1996 and 1995

Maps 13 2 8
In situ data 55 35 2

Images 106 31 6
Previous reference

maps 156 44 0

The number of authors who chose to utilize geological, land use, or land cover maps as
reference maps is the smallest (5% of the total eligible papers), followed, in ascending order,
by the number who chose to create the reference maps using in situ data (20% of the total
eligible papers), and then by the number of authors who chose to create the reference maps
using other images (31% of the total eligible papers). Firstly, the number of authors who
chose to use the previous reference maps is the largest (44% of the total eligible papers).

As regards the authors who chose to create the reference maps using other images,
most of them employed images at higher spatial resolutions than those of the remote
images analyzed (95% of a total of 143 papers). To create the reference maps from the
images, 47% of the eligible papers did not specify the method used to map the endmembers,
29% employed the photo-interpretation, 21% classified the images, 2% used the vegetation
indexes, and 2% used the mixed approach by classifying and/or photo-interpreting and/or
applying vegetation indexes (e.g., [114,145,531]). As regards the classification methods,
there are four works that applied the same classification procedure to analyze the remote
images and to create the reference maps [65,66,149,261]. Among these, the authors of 3 pa-
pers compared the fractional abundance maps that were retrieved from the multispectral
images at moderate spatial resolutions (10, 30, and 60 m) with the fractional abundance
maps that were retrieved from the multispectral data at coarse spatial resolutions (0.5 and
1 km) [65,66,149].

Moreover, the reference data sources that were chosen to validate the results of the
hyperspectral images were analyzed separately from those that were chosen to validate
the results of the multispectral images. Figure 7 shows the percentage of the papers that
adopted the different sources of the reference data to validate the results of hyperspectral
(right) and multispectral data (left).

As regards the papers that analyzed the multispectral data, most of the authors
chose to create the reference maps from the other images, whereas most of the authors
that analyzed the hyperspectral data chose to employ the previous reference maps. It is
important to emphasize that 97% of these reference maps are available online together
with hyperspectral images and/or reference spectral libraries (e.g., [532–535] Figure 8).
Therefore, these images were well known: Cuprite (NV, USA, e.g., [70,458]), Indian Pines
(IN, USA, e.g., [78,458]), Jasper Ridge (CA, USA, e.g., [68,97]), Salinas Valley (CA, USA,
e.g., [75,78]) datasets that were acquired with AVIRIS sensors; Pavia (Italy, e.g., [81,85])
datasets that were acquired with the ROSIS sensor; Samson (FL, USA, e.g., [59,89]) dataset
that was acquired with the Samson sensor; University of Houston (TX, USA, e.g., [59,78])
dataset that was acquired with the CASI-1500 sensor; Urban (TX, USA, e.g., [59,68]) and
Washington DC Mall (Washington, DC, USA, e.g., [81,90]) datasets that were acquired with
the HYDICE sensor.
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Figure 7. Distribution of the eligible papers according to the reference data sources that were chosen
to analyze hyperspectral (right) or multispectral (left) images, where n was the total number of
papers considered in each pie chart.
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(i) (j) 

Figure 8. Reference data available online together with hyperspectral images: (a) Jasper Ridge
reference map and spectral library [535]; (b) Cuprite reference map [536]; (c) Samson reference map
and spectral library [535]; (d) Indian Pines reference map [535]; (e) University of Houston reference
map [535]; (f) Salinas Valley reference map [535]; (g) Urban reference map [535]; (h) Pavia University
reference map [535]; (i) Washington DC reference map [535]; (j) Pavia center reference map [535].

Moreover, 93% of these papers proposed a method and tested it not only on these
“real” hyperspectral data, but also on created synthetic images. Borsoi et al. [4] highlighted
that in order to overcome “the difficulty in collecting ground truth data”, some authors
generated synthetic images. However, the authors complained because “there is not a
clearly agreed-upon protocol to generate realistic synthetic data” [4].

3.4.4. Reference Fractional Abundance Maps

“Misclassifications” of the reference data or “misallocations of the reference data” are
another possible source of error in spatial validation, defined as “imperfect reference data”
by [519] or “error magnitude” by [518]. The authors highlighted that these errors can be
caused also by the use of “standard” reference maps to validate the spectral unmixing
results (i.e., the fractional abundance maps) [41,518,519]. The difference between standard
reference maps and reference fractional abundance maps is that each pixel of the standard
reference map is assigned to a corresponding land cover class, whereas each pixel of the
reference fractional abundance map is labeled with the fractional abundances of each
endmember that is present in that pixel. Therefore, the values of the standard reference
map are equal to 0 or 1, whereas the values of the reference fractional abundance map are
greater than 2 and vary between 0 and 1 (100 values are able to fully validate the fractional
abundance of endmembers [114]).

The reference fractional abundance maps were employed by 133 eligible papers that
were published in 2022, 2021, and 2020; by 62 eligible papers that were published in 2011
and 2010; and by 13 eligible papers that were published in 1996 and 1995 (45% of the
total eligible papers). Moreover, among these works, 87, 47, and 8 papers estimated the
full range of abundances using 100 values (31% of the total eligible papers), whereas 41,
10, and 5 works partially estimated the fractional abundances using less than 100 values
(12% of the total eligible papers). It is important to note that 7% of the total eligible
papers did not specify if they used the standard reference maps or the reference fractional
abundance maps.

The eligible papers were separately analyzed according to reference data sources that
were adopted in order to find out how fractional abundances were estimated. In the four
parts of Figure 9, the eligible papers that were clustered according to the reference data
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sources are shown, and each part of Figure 9 shows the percentage of the papers that did
not specify the reference maps used and the number of the papers that fully or partially
estimated the reference fractional abundance maps.

  
(a) (b) 

  
(c) (d) 

Figure 9. Distribution of the eligible papers that did not specify the reference maps used, fully and
partially estimated fractional abundances according to the reference data sources, where n was the
total number of papers that were clustered according to the reference data sources and included in
the pie charts: (a) The papers that employed the maps; (b) The papers that employed in situ data;
(c) The papers that employed the images; (d) The papers that employed the previous reference maps.

High-spatial-resolution images were the most widely employed to make the reference
fractional abundance maps (81% of the total papers that employed the images), followed
by in situ data (68% of the total papers that employed in situ data), and then the maps
(50% of the total papers that employed maps). Moreover, in situ data were the most widely
employed to estimate the full range of fractional abundances (62% of the total papers that
employed in situ data), followed by high-spatial-resolution images (52% of the total papers
that employed the images), and then the maps (21% of the total papers that employed the
images). The previous reference maps were not employed to make the reference fractional
abundance maps.
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Many authors highlighted that it is not easy to create the reference fractional abun-
dances maps (e.g., [4,6,518,519]). Cavalli [145] implemented a method that was proposed
by [537] in order to create the reference fractional abundance maps. This method is able
to create the reference fractional abundance maps by varying the spatial resolution of the
high-resolution reference maps several times, and the range of fractional abundances can
be fully estimated according to the spatial resolution of the reference maps [114].

3.4.5. Validation of the Reference Data with Other Reference Data

In order to further minimize the errors due to “misclassifications” or “misallocations
of the reference data” [518,519], some authors validated the reference data using other
reference data: 61 eligible papers published in 2022, 2021, and 2020; 21 eligible papers
published in 2011 and 2010; 4 eligible papers published in 1996 and 1995. Therefore, 81% of
the total eligible papers did not take into consideration that the reference map may not be
“ground truth” and may be “imperfect” [519,520].

It is very important to point out that some authors took advantage of the online avail-
ability of reference data to validate reference data (e.g., [114,123,127,140,145,152,231,448,496]).
Many efforts are being made to create the networks of accurate validation data [48,538–540].
For example, Zhao et al. [140] exploited in situ measurements of the Leaf Area Index (LAI)
that were provided by the VALERI project [540], whereas Halbgewachs et al. [123], Lu
et al. [423], Shimabukuro et al. [353], and Tarazona Coronel [127] utilized validation data
that were provided by the Program for Monitoring Deforestation in the Brazilian Amazon
(PRODES) [541].

3.4.6. Error in Co-Localization and Spatial Resampling

The key issues described above addressed only the errors in the thematic accuracy
of the spectral unmixing results [518,519], whereas this key issue aimed to address the
geometric errors due to the comparison of remote images with reference data [542]. The
impact of co-localization and spatial resampling errors was minimized and/or evaluated
by 6% of the eligible papers: 20 eligible papers published in 2022, 2021, and 2020; 8 eligible
papers published in 2011 and 2010; 1 eligible paper published in 1996. In order to minimized
the errors, Arai et al. [368], Cao et al. [164], Li et al. [107], Soenen et al. [500], and Zurita-Milla
et al. [419] carefully chose the size of the reference maps; Bair et al. [254], Cavalli [114,145],
Ding et al. [152], Fernandez-Garcia et al. [256], Hamada et al. [441], Hajnal et al. [169], Lu
et al. [435], Ma & Chan [78], Rittger et al. [262], Sun et al. [263], Yang et al. [488], and Yin
et al. [151] spatially resampled the reference fractional abundance maps; Estes et al. [447]
compared different windows of pixels (i.e., 3 × 3, 7 × 7, 11 × 11, 15 × 15, and 21 × 21);
Pacheco & McNairn [480] selected the size and the spatial resolution of the reference maps;
Ben-dor et al. [507], Fernandez-Guisuraga et al. [342], Kompella et al. [328], Laamarani
et al. [343], and Plaza & Plaza [465] carefully co-localized the reference fractional abundance
maps on the reference maps; Wang et al. [366] expanded the windows of the field sample
size; Zhu et al. [64] resampled at “four kinds of grids” (i.e., 1100 × 1100 m, 2200 × 2200 m,
4400 × 4400 m, and 8800 × 8800 m) the reference fractional abundance map and compared
the results. Bair et al. [254], Binh et al. [341], Cavalli [114,145], Cheng et al. [543], and
Ruescas et al. [448] evaluated the errors in co-localization and spatial-resampling due to
the comparison of different data at different spatial resolutions. Moreover, Cavalli [145]
proposed a method to minimize the errors: the comparison of the histograms of the
reference fractional abundance values with the histograms of the retrieved fractional
abundance values.

It is important to point out that 94% of the total papers did not address the geometric
errors due to the comparison of remote images with reference data.
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4. Conclusions

The term validation is defined as “the process of assessing, by independent means,
the quality of the data products derived from the system outputs” by the Working Group
on Calibration and Validation (WGCV) of the Committee on Earth Observing Satellites
(CEOS) [48]. Since 1969, research has been involved to establish shared key issues to validate
the land cover products that were retrieved from the remote images [518,519,539,544].
These products can be obtained by applying classifications called “hard”, because they
extract information only from “pure pixels,” and classifications called “soft”, because they
also extract information from “mixed pixels” [519,544]. However, not only the literature
related to the spatial validation, but also every review on the spectral unmixing procedure
(i.e., a soft classification) highlighted that the key issues in the spatial validation of soft
classification results have yet to be clearly established and shared (e.g., [4,6,518,519]).

Since no review was performed on this fundamental topic, this systematic review aims
(a) to identify and analyze how the authors addressed the spatial validation of spectral
unmixing results and (b) to provide readers with recommendations for overcoming the
many shortcomings of spatial validation and minimizing its errors. The papers published in
2022, 2021, and 2020 were considered to analyze the current status of spatial validation, and
the papers published not only in 2011 and 2010, but also in 1996 and 1995, were considered
to analyze its progress over time. Since the literature on spectral unmixing is extensive, only
papers published in these seven years were considered. A total of 454 eligible papers were
included in this systematic review and showed that the authors addressed 6 key issues in
the spatial validation. In this text, the order in which the key issues were presented is not
an order of importance.

1. The first key issue concerned the number of the endmembers validated. Some authors
chose to focus on only one or two endmembers, and only these were spatially vali-
dated. This key issue was designed to facilitate the conduct of regional- or continental-
scale studies and/or multitemporal analysis. It is important to note that 8% of the
eligible papers did not specify which endmembers were validated.

2. The second key issue concerned the sampling designs for the reference data. The
authors who analyzed hyperspectral images preferred to validate the whole study
area, whereas those who analyzed multispectral images preferred to validate small
sample sizes that were randomly distributed. It is important to point out that 16% of
the eligible papers did not specify the sampling designs for the reference data.

3. The third key issue concerned the reference data sources. The authors who analyzed
hyperspectral images primarily used the previously referenced maps and secondarily
created reference maps using in situ data, whereas the authors who analyzed multi-
spectral images chose to create reference maps primarily using high-spatial-resolution
images and secondarily using in situ data.

4. The fourth key issue was, perhaps, the one most closely related to the spectral unmix-
ing procedure; it concerned the creation of the reference fractional abundance maps.
Only 45% of the eligible papers created the reference fractional abundance maps to
spatially validate the fractional abundance maps retrieved. These mainly employed
high-resolution images and secondarily in situ data. Therefore, 55% of the eligible
papers did not specify the employment of the reference fractional abundance maps.

5. The fifth key issue concerned the validation of the reference data with other reference
data; it was addressed only by 19% of the eligible papers. Therefore, 81% of the
eligible papers did not validate the reference data.

6. The sixth key issue concerned the error in co-localization and spatial resampling data,
which was minimized and/or evaluated only by 6% of the eligible papers. Therefore,
94% of the eligible papers did not address the error in co-localization and spatial
resampling data.
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In conclusion, to spatially validate the spectral unmixing results and minimize and/or
evaluate its errors, six key issues were considered not only from the eligible papers pub-
lished in 2022, 2021 and 2020, but also from those published in 2010, 2011, 1996, and 1995.
In addition, the results obtained from both hyperspectral and multispectral data were
spatially validated considering all key issues, but these were addressed in different ways.
All six key issues addressed together enabled rigorous spatial validation to be performed.
Therefore, this systematic review provided readers with the most suitable tool to rigorously
address spatial validation of the spectral unmixing results and minimize its errors.

The key difference between reference data suitable for hard and soft classifications
is that the latter reference maps must have higher spatial resolution than the resolutions
of the image pixels [6,114,518]. The optimal scale would be that 100 times larger than the
image pixel resolution [114]. However, many hyperspectral data were validated using
the previous reference maps at the same spatial resolution as the remote image, so these
standard reference maps can only create reference fractional abundance maps with the
help of other reference data. The employment of the standard reference maps instead
of the reference fractional abundance maps was also evidenced by the employment of
metrics to assess spatial accuracy that “assume implicitly that each of the testing samples is
pure” [37,217].

However, only 4% of eligible papers addressed every key issue, and many authors
did not specify which approach they employed to spatially validate the spectral unmix-
ing results. Moreover, most of the authors who specified the approach employed did
not adequately explain the methods used and the reasons for their choices. Six “good
practice criteria to guide accuracy assessment methods and reporting” were identified
by [519]. Therefore, these papers did not fully meet three good practice criteria: “reliable”,
“transparent”, and “reproducible” [519].

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In accordance with the PRISMA statement [49,50], 454 eligible papers were identified,
screened, and included in this systematic review: 326 eligible papers were published in
2022, 2021, and 2020; 112 eligible papers were published in 2011 and 2010; 16 eligible papers
were published in 1996 and 1995. The eligible criterion was that the results of the spectral
unmixing were spatially validated. Analyzing these papers, six key issues were identified
that were differently addressed to spatially validate the spectral unmixing results. The
different ways in which the key issues were addressed by the eligible papers published in
2022, 2021, 2020, 2011, 2010, 1996, and 1995 are summarized in Tables A1–A7, respectively.
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Abstract: Machine Learning (ML) applications on Light Detection And Ranging (LiDAR) data have
provided promising results and thus this topic has been widely addressed in the literature during
the last few years. This paper reviews the essential and the more recent completed studies in the
topography and surface feature identification domain. Four areas, with respect to the suggested
approaches, have been analyzed and discussed: the input data, the concepts of point cloud structure
for applying ML, the ML techniques used, and the applications of ML on LiDAR data. Then, an
overview is provided to underline the advantages and the disadvantages of this research axis. Despite
the training data labelling problem, the calculation cost, and the undesirable shortcutting due to
data downsampling, most of the proposed methods use supervised ML concepts to classify the
downsampled LiDAR data. Furthermore, despite the occasional highly accurate results, in most
cases the results still require filtering. In fact, a considerable number of adopted approaches use
the same data structure concepts employed in image processing to profit from available informatics
tools. Knowing that the LiDAR point clouds represent rich 3D data, more effort is needed to develop
specialized processing tools.

Keywords: LiDAR; Machine Learning (ML); classification; modelling; point cloud

1. Introduction

A Light Detection And Ranging (LiDAR) point cloud (airborne, terrestrial, static or
mobile) is a list of 3D points covering the surface of a scanned scene. Topographical data
obtained this way are rich in geometric features and lend themselves to the possibilities of
automatic processing [1]. There are two major forms of automatic processing operations:
automatic classification and automatic modelling [2]. Generally, one scanned scene will
consist of classes that have different geometric natures or characteristics, e.g., an urban point
cloud represents several classes such as terrain, buildings, vegetation, powerlines, roads,
railways, and other artificial objects [3]. As each class in the scanned area will require a
different modelling strategy depending on its specific geometric nature, e.g., the vegetation
class modelling algorithm will need to be different from the building class modelling
algorithm, it is necessary to classify the point cloud before starting the modelling stage.

In the first two decades since LiDAR technology’s appearance, most of the suggested
automatic processing algorithms belonged to the rule-based family [4]. In truth, a single
rule-based algorithm actually consists of a list of procedures connected through a proposed
workflow and depends on the physical structure of the point cloud [4]. Recently though,
in the domain of topographical LiDAR data processing, the general trend has been to
employ Machine Learning (ML) algorithms instead of rule-based ones, and the use of ML
techniques has become a popular research topic [5].

Supervised ML algorithms assign observations to data classes previously generated,
either manually or automatically, from the use of training data that could sometimes be
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generated automatically [6]. Alternatively, unsupervised ML algorithms do not need
training data and can be classified into four families: classification tree methods such as
the Random Forest (RF) algorithms, grouping and separability methods such as Support
Vector Machines (SVM), k-Nearest Neighbors (KNN), and rule application methods such
as Convolutional Neural Networks (CNN) [7].

This paper reviews the state-of-the-art ML algorithms developed for topographical
LiDAR data processing. The novelty of this paper is the classification and analysis of the
ML algorithms according to four different dimensions. First, the methods of point cloud
generation for input into ML approaches are analyzed and discussed. Second, the different
concepts of point cloud structure that are commonly used are studied and compared. Third,
the suggested approaches are classified according to the most employed ML techniques,
and then the main ML techniques are summarized. Finally, the most current applications
of ML techniques are classified and cited.

2. Input Data

Notwithstanding the quality of the employed laser scanning technology, airborne,
terrestrial, static, or mobile, all methods allow the creation of a 3D point cloud that covers
the scanned area. A LiDAR point cloud consists of a point list of co-ordinates X, Y, and
Z defined in 3D Euclidean space. For each point, in addition to the three coordinates,
laser intensity, waveform, and Red Green Blue (RGB) colors can be provided [8]. Further-
more, for the same scanned scene, additional data such as multispectral images, maps,
and orthophotos can often be provided. As a result, in the literature, the suggested ML
approaches for LiDAR data processing are not just limited to the LiDAR point cloud alone.
The following subsections explain the different point cloud generation methods for input
into ML algorithms.

2.1. LiDAR Point Clouds

The 3D point cloud is the primary output of a laser scanning operation (Figure 1). This
subsection deals with approaches that use only the point cloud, whereas the approaches
that use other additionally acquired data will be discussed in the following subsections.
The obvious advantage of approaches that use only the LiDAR point cloud is that they are
always available for use in all scanning projects. The point cloud does not just represent a
simple list of 3D points in the Euclidian space, it may be used as the input data to create a
Digital Surface Model (DSM) [1]. Furthermore, for each point, a list of neighboring points
can be defined in 3D space [9–11], where all points included inside a sphere surrounding
the focus point are considered, or in 2D space where all points included inside a cylinder
surrounding the focus point are considered [5]. After this stage is completed, each point
and its neighboring points allow for fitting a mean line or plane to analyze their relative
topologic positions through several indicators such as standard deviation, mean square
error, eigenvector, and eigenvalues [12]. Additionally, the eigenvector permits the calcula-
tion of a list of useful geometric features such as linearity, planarity, sphericity and change
of curvature [13,14]. In this context, other approaches are to superimpose the point cloud
on an empty 2D grid to allow for the analysis of the topological relationships between
neighboring points [15], or assuming that they represent one object, using one LiDAR point
and its neighborhood to allow calculation of a list of static moments that help to study
some of their geometric characteristics [16]. While this has its uses, it is important to note
that the employment of just the point cloud as input data does not produce promising
results in the general case, e.g., when identifying roofs in an airborne LiDAR point cloud
in an urban area, the range of roof point coordinates may be incorrectly allocated to an
incorrect building because of underlying topography of the scanned area. That is why the
application of the ML techniques in this case uses the point features instead of the point
coordinates as input data [9]. Consequently, a long list of geometric features that can be
calculated from the point cloud is needed to create a suitable environment to apply ML. The
ML techniques that have been applied to airborne and terrestrial LiDAR point clouds are
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shown in the next two subsections, with the use of laser intensity observations discussed in
the subsection that follows those.

Figure 1. (a) Aerial image of scanned scene; (b–d) 3D LiDAR point cloud visualization (b) using RGB
colors; (c) using laser intensity values; (d) using Z coordinate values.

2.1.1. Airborne LiDAR Point Cloud

Airborne LiDAR point clouds provide two obstacles to the applications of ML tech-
niques: variation in point density within the scanned scene [11] and the large number of
LiDAR points [17]. Point density plays a vital role in selecting the neighboring points for
the calculation of point features [9]. Point density can vary markedly within the same point
cloud with the location within the scanning strip, the terrain topography and the geometry,
and the orientation of the scanned object with regard to the scan line all having an affect [8].
For a large area, the data volumes can be excessive, meaning the training step will place
heavy demands on the computer capacity and processing time [17,18]. Lin et al. [19] and
Mao et al. [20] developed approaches to mitigate this problem and classify an urban point
cloud into nine classes: powerlines, low vegetation, impervious surfaces, cars, fences, roofs,
façades, shrubs, and trees. In this context, Mao et al. [20] developed a Receptive Field
Fusion-and-Stratification Network (RFFS-Net). An innovative Dilated Graph Convolution
(DGConv) and its extension, the Annular Dilated Convolution (ADConv), are fundamental
components of elementary building blocks. The receptive field fusion procedure was
applied with the Dilated and Annular Graph Fusion (DAGFusion) component. Thus, the
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detection of dilated and annular graphs with numerous receptive zones allows the acquisi-
tion of developed multi-receptive field feature implementation to improve classification
accuracy. To efficiently extract only one class from the urban point cloud, Ao et al. [21]
advised using a presence and background learning algorithm like a backpropagation
neural network.

2.1.2. Terrestrial LiDAR Point Cloud

This subsection focuses only on the ML approaches that use a static or mobile terres-
trial LiDAR point cloud as input data either indoors or outdoors. An indoor cloud may
focus on certain scanned objects such as tables, chairs, decorative statues, and mechanical
equipment [22,23] or it may carry out a panoramic scan [24] and use the LiDAR point
cloud to then extract the individual objects. An urban outdoor LiDAR point cloud will
most likely emphasize artificial or natural objects such as building facades and terrain [25]
while a rural scene, like Zou et al. [26] examined, may use a terrestrial LiDAR point cloud
of forestry areas to classify the tree species. In fact, most of the suggested approaches
that use ML techniques to process terrestrial LiDAR data do not use additional data with
the point cloud [17,27–32]. Point density variation has less influence in terrestrial when
compared to airborne data. Nevertheless, some authors do use additional data as input,
e.g., Xiu et al. [23] suggested a ML algorithm to process indoor point cloud represented
by 9 dimensions: X, Y, Z, R, G, B, and normalized location. He et al. [25] developed a
SectorGSnet framework for a ground segmentation of terrestrial outdoor LiDAR point
clouds. This framework consisted of an encoder in addition to segmentation modules. It
introduced a bird’s-eye-view segmentation strategy that discretizes the point cloud into
segments of different areas. The points within each partition are then fed into a multimodal
Point-Net encoder to extract the required features. Li et al. [33] suggested a Rotation
Invariant neural Network (RINet) which associated semantic and geometric features to
improve the descriptive capacity of scanned objects and classify the terrestrial data into
twelve classes.

Terrestrial laser scanning plays a major role in autonomous driving vehicles with
Silva et al. [34] developing a Deep Feature Transformation Network (DFT-Net) involving a
cascading mixture of edge convolutions and feature transformation layers to capture the
local geometric features by conserving topological relationships between points. Alter-
natively, self-learning algorithms appear as a practical solution to understand the corre-
spondence between adjacent LiDAR scan scenes [35]. Nunes et al. [36] used a momentum
encoder network and a feature bank in a self-learning approach [37,38] that aimed to learn
the structural context of the scanned scene. This approach applies the contrastive loss
over the extracted segments to distinguish between similar and dissimilar objects. Finally,
Huang et al. [39] used an unsupervised domain adaptation ML to classify terrestrial LiDAR
data and suggested using Generative Adversarial Network (GAN) to calculate synthetic
data from the source domain, so the output will be close to the target domain.

2.1.3. Point Cloud and Laser Intensity

In practice, LiDAR systems measure and provide the laser pulse return intensity
(Figure 1c). The intensity of emitted laser pulse is greater than the intensity of the reflected
laser pulse and with the difference being dependent on the double distance trajectory in
addition to the nature of the reflecting surface off which the pulse has returned [40]. Unlike
the RGB-measured values of the point cloud, the intensity could be detected regardless
of the illumination and can be provided in both airborne and terrestrial LiDAR. Some
authors have used the intensity and the 3D point cloud together as input data into their
ML algorithms.

In this regard, Wen et al. [41] proposed a Directionally constrained fully Convolutional
Neural network (D-FCN) where the input data were the original 3D point cloud in addition
to the LiDAR intensity. Since road line markings have a higher reflectance, and hence higher
intensity value than the surrounding ground, Fang et al. [42] considered the 3D LiDAR
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point cloud and the laser intensity as input data to their ML algorithm. Wang et al. [29]
employed the intensity component in semantic outdoor 3D terrestrial dataset to achieve
the cloud segmentation using Graph Attention Convolution (GAC) and Murray et al. [43]
calculated a 2D image from the intensity component of LiDAR data. This image was used
as input data for the CNN algorithm and then for the SVM.

2.2. Point Cloud and Imagery

In the image processing domain, many algorithms for feature extraction from images
have been implemented where the image’s spatial and textural features were extracted us-
ing mathematical descriptors, such as histograms of oriented gradients and SVMs [44]. The
combination of LiDAR data with high-resolution images can provide highly relevant data
for the analysis of scanned scene characteristics [45]. Indeed, numerous authors develop
classification ML networks using LiDAR point clouds in addition to digital images as input
data. Nahhas et al. [46] employed orthophotos in addition to airborne LiDAR point clouds
to recognize the building class by using an autoencoder-based dimensionality reduction
to convert low-level features into compressed features. Similarly, Vayghan et al. [3] used
aerial images and LiDAR data to extract building and tree footprints in urban areas while
Zhang et al. [47] fused the LiDAR data and a point cloud calculated from the aerial images
to improve the accuracy of a ML building extraction algorithm. Shi et al. [48] suggested
the use of an enhanced lightweight deep neural network with knowledge refinement to
detect local features from LiDAR data and imagery while preserving solid robustness for
day-night visual localization.

2.3. Multispectral LiDAR Data

Multispectral images have layers that represent the reflectance in a few wide and
disconnected spectral bands within given specified spectral intervals [49]. In the case of
airborne LIDAR data, some authors have used multispectral images in addition to the
LiDAR point cloud as input data for ML algorithms, because most objects on the Earth’s
surface have indicative absorption features in certain discrete spectral bands which can
help to create an accurate classification of the scanned scene [49]. Though the multispectral
data are not always available, where they are, they can be an asset for processing efficacity.
In this context, Marrs and Ni-Meister, [50] used LiDAR, hyperspectral, and thermal im-
ages on experimental forests and found that the combination of these two data can help
improve the classification of tree species. Yu et al. [51] used multispectral LiDAR data for
individual tree extraction and tree species recognition. Zhao et al. [52] used a FR-GCNet net-
work to increase the classification accuracy of multispectral LiDAR point clouds, whereas
Zhou et al. [53] applied an RF algorithm on a combination of hyperspectral images and
LiDAR data for monitoring insects. Peng et al. [54] suggested a MultiView Hierarchical
Network (MVHN) could be used to segment hyper spectral images and LiDAR point cloud
together. For this purpose, the hyper spectral images were divided into multiple groups
with the same number of bands to extract spectral features. Thereafter, ResNet framework
was implanted to detect the spectral-spatial information of the merged features.

2.4. Full-Waveform Representation and Point Cloud

Some airborne laser systems, called full waveform, can record the complete power
spectrum of the returned pulse. The different surface characteristics can influence the
reflected signal, so analysis of the laser pulse full waveform has been used to improve the
extraction of surface features [55] especially in forested areas. Five parameters are calculated
from the waveform of the return pulse, e.g., the amplitude of the highest peak, the total
energy, the full-width half-maximum return width, and the length of the sequence. In this
context, Guan et al. [56] constructed a geometric tree model based on the full-waveform
representation. Afterward, in order to classify the tree species, they applied a deep learning
algorithm to the last model to extract the high-level features. Blomley et al. [57] classified
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the tree species using the RF algorithm based on the geometric features calculated from the
full-waveform analysis.

Similarly, by means of an integrated system that acquired hyperspectral images,
LiDAR waveforms, and point clouds, Yang et al. [58] classified tree species after systematic
pixel-wised investigation of different features. For this purpose, the Canopy Height Model
(CHM) was extracted from the LiDAR data, and multiple features from the hyperspectral
images, including Gabor textural features. Shinohara et al. [59] suggested a semantic
classification algorithm named Full-Waveform Network (FWNet) based on PointNet-based
architecture [27], which extracted the local and global features of the input waveform
data. The classifier in this case consisted of 1D convolutional operational layers. Due to
the sensitivity of border points to the multi return difference value, to achieve the cloud
segmentation, Shin et al. [60] used multiple returns in addition to the point cloud as training
data using the PointNet++ network [61].

2.5. Different Other Data

Sometimes other data, not mentioned previously, may be used in addition to the Li-
DAR point cloud. For example, Zhang et al. [62] used the interaction of the high-resolution
L-band repeat-pass Polarimetric Synthetic Aperture Radar Interferometry (PolInSAR) and
low-resolution large-footprint full-waveform LiDAR data to estimate forest height. Park
and Guldmann [63] utilized a city LiDAR point cloud in addition to building footprint data
to extract building class before applying an RF algorithm and Feng and Guo [64] suggested
a segment-based parameter learning approach that fuses a 2D land map and 3D point
cloud together.

For detecting individual trees, Schmohl et al. [65] used an orthophoto to colorize the
point cloud for additional spectral features along with laser intensity and the number of
returns utilized as additional input. Kogut et al. [66] improved the classification accuracy
of seabed laser scanning (bathymetry data) by using the Synthetic Minority Oversampling
Technique (SMOTE) algorithm to evaluate the input data. Then, a Multi-Layer Perceptron
(MLP) neural workflow was applied to classify the point cloud. Barbarella et al. [67]
applied a ML network that trained a model able to classify a particular gravity-driven
coastal hillslope geomorphic model (slope-over-wall) including most of the soft rocks.
However, they used only geometric data which are morphometric feature maps computed
from a Digital Terrain Model (DTM) calculated from the LiDAR point cloud.

Finally, Duran et al. [68] compared nine ML methods: logistic regression, linear dis-
criminant analysis, K-NN, decision tree, Gaussian Naïve Bayes, MLP, adaboost, RF, and
SVM to classify LiDAR and colored photogrammetric point clouds into four classes: build-
ings, ground, low and high vegetation with the highest accuracy being attained with MPL.
For more details about these ML techniques, please see Mohammed et al. [69] and Kim, [70].

3. Concepts of Point Cloud Structure for Applying ML Algorithms

The 3D point cloud consists of a large number of 3D points covering the scanned
area. These points are normally distributed in an irregular way depending on the scanning
system quality and the scanned area geometric characteristics. In any event, to process,
classify, and model the LiDAR data using ML techniques, most of the suggested approaches
try to define a mathematical model that allows for the management, reduction, pooling,
and convolution of these data [71]. Consequently, most ML approaches consist of two
main steps, firstly preprocessing and then ML algorithm application. In this paper, the
mathematical model in addition to all operations realized on it before applying the ML
technique is named the data adaptation step (Figure 2). The data adaptation procedures
may play several roles. Some ML informatics tools for imagery data processing or other
data kinds, require the transformation of point cloud into novel data forms such as 2D
and 3D matrices before they can be used. As informatics tools for processing LiDAR data
require high time processing cost, two solutions are employed: either designing new ML
tools that correspond to the LiDAR data concept or, more commonly, reducing the LiDAR
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data. At this stage, it is important to refer that the interpolation or reduction of LiDAR data
is not always a preferable solution from the geomatics industrial viewpoint.

Figure 2. Structure of ML algorithm of LiDAR data processing.

In the next subsections, the main concepts of LiDAR data adaptation will be revealed
and discussed.

3.1. Voxelization

Voxelization, a 3D matrixial representation, may sometimes solve the issue of the irreg-
ular distribution of the 3D point cloud [56]. In practice, the LiDAR points are distributed
on the scanned surfaces which leads to a considerable number of empty voxels which cause
additional calculation costs. Moreover, course spatial resolution (large voxel size) may
cause the loss of information which will reduce the accuracy of data processing. Conversely,
if the spatial resolution is too small, that may increase the calculation cost, and the memory
usage [17].

In the literature, many authors suggest voxelizing the LiDAR point clouds. In this con-
text, Maturana and Scherer [72] developed the VoxNet network using the occupancy grid
algorithm. They divided the point cloud into many 3D grids and then normalized each grid
unit to enter the volume build layers and maximum pooling layers. Gargoum et al. [73]
suggested a voxel-based approach to classify the light poles of roads while Zou et al. [26]
proposed a voxel-based deep learning method to identify tree species in a three-dimensional
map. They extracted individual trees through point cloud density and used voxel rasteriza-
tion to obtain features. Guan et al. [56] used a voxel-based upward growth algorithm to
remove the ground point cloud and then segment a single tree species by European cluster-
ing and a voxel-based normalization algorithm. Shuang et al. [74] developed an Adaptive
Feature Enhanced Convolutional Neural Network (AFERCNN) for 3D object detection.
This algorithm is a point-voxel integrated network, where voxel features are extracted
through the 3D voxel convolutional neural network. These features are projected to the 2D
bird’s eye view and the relationship between the features in both spatial dimension and
channel dimension is learned. Wijaya et al. [75] applied a voxel-based 3D object detection
deep neural network on terrestrial LiDAR data where they minimized the features from a
3D into a 2D bird-eye view map before generating object proposals to save processing time.

However, voxelization tries to conserve the LiDAR point cloud 3D structure by de-
fining a spatial matrixial form that enables improved management of the point cloud.
Hence, the form will be limited by the available, the used memory, and the requested
processing time may represent the main limitations.

3.2. Graphic Structure

Using graphic structure to transform the 3D point cloud into a 2D regular grid has
the main advantage of transforming the point cloud classification question into the general
image processing one. Simonovsky and Komodakis [76] used edge labels to calculate
Edge Conditional Convolution (ECC) in the neighborhood of regular grids. Then, an
asymmetric edge operation was used to calculate the relationship between neighboring
points. Wang et al. [77] developed a SpecGCN network where the maximum pooling was
replaced with a recursive clustering. The nearest neighbor was applied to calculate a graph
regular grid. Thereafter, they combined a spectral graph convolution using a local graph,
with a pooling strategy. Nahhas et al. [46] suggested a deep learning approach based on
using an interpolated LiDAR point cloud and orthophotos simultaneously. This approach
employed object-based analysis to create objects, a feature-level fusion. Li et al. [78] devel-
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oped a deep learning network named Attentive Graph Geometric Moments Convolution
(AGGM Convolution) network to classify the LiDAR point cloud into four classes: trees,
grass, roads, and buildings. The Dynamic Graph Convolution Neurol Network (DGCNN),
suggested by Wang et al. [28], built the directed graph in both the Euclidean space and
the feature space, and dynamically updated the feature layers. A similar approach sug-
gested by Wang et al. [29] employed the attention mechanism in the graph-based methods.
The extended approach is named Graph Attention Convolution Network (GACNet) for
semantic point cloud segmentation.

In the same context, Wen et al. [79] presented a global-local Graph Attention Con-
volution Neural Network (GACNN) that could be directly applied to airborne LiDAR
data. The graph attention convolution module includes two types of attention mecha-
nisms: a local attention module that combines edge attention and density attention, and
a global attention module. The local edge attention module is designed to dynamically
learn convolution weights using the spatial relationships of neighboring points; thus, the
receptive field of the convolution kernel can dynamically adjust to the structure of the
point cloud. Zhao et al. [52] used a Feature Reasoning-based Graph Convolution Network
(FR-GCNet) to increase the classification accuracy of airborne multispectral LiDAR data.
Jing et al. [80] proposed a Graph-based neural Network with an Attention pooling strategy
(AGNet) where the local features were extracted through the point topological structure.
Chen et al. [81] improved the descriptiveness in the network ChebyNet [82] by increasing
the width of input to avert the above drawbacks. The suggested network, named WGNet,
is inspired by the image processing dilated convolution. This network is based on two
modules, the local dilated connecting and context information awareness. Wan et al. [83]
developed a Dilated Graph Attention-based Network (DGANet) for local feature extraction
on 3D point clouds. It was based on the dilated graph attention modules which allow the
network to learn the neighborhood representation by using the long-range dependencies
given by the calculated dilated graph-like region for each point.

To conclude, the use of graphic structure facilitates the point cloud processing duty
tasks by using image processing functions, but unfortunately at the cost of minimizing the
3D structure advantages.

3.3. Kernel-Based Convolution

The geometric structure of a point cloud can be defined through the Kernel correlation
layer [41]. The kernel size value can be suggested according to a different number of
neighboring points in the convolution layer. Points within the kernel can contribute to their
center point [84]. At this stage, Klokov et al. [85] proposed a K-NN algorithm that uses the
Euclidean metric to return the closest points inside the kernel. The kernel is defined by two
parameters: the inner and the outer radius to ensure that the closest and unique points will
be detected in each ring kernel. In the context of ML applications, Song et al. [86] employed
the kernel correlation learning block approach to recognize the local and global features at
different layers thus enhancing the network perception capacity. Zhang et al. [31] suggested
a Local k-NNs Pattern in Omni-Direction Graph Convolution Neural Network named
LKPO-GNN to capture both the global and local point cloud spatial layout. This approach
converts the point cloud into an ordered 1D sequence, to feed the input data into a neural
network and reduce the processing cost.

In fact, this approach allows applying all operations directly on the point cloud, but it
still requires an optimized neighborhood searching procedure.

3.4. Reducing of Point Cloud Density (Downsampling)

Most ML approaches applied to LiDAR data try to reduce data density and keep the
processing time within accepted limits. The successful use of the convolutional technique
within the image processing field has encouraged authors to use the same approach in
reducing LiDAR data and thus to solve the processing time issue. Although the most used
point cloud structures apply the idea of point cloud reduction, the suggested approaches in
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this subsection conserve the point cloud structure and reduce the point density. However,
the application of ML techniques is still in its infancy, and a lot of advancement is expected
in future research.

In the context of point cloud reduction, Wen et al. [41] developed a D-FCN network
architecture that included both downsampling and upsampling paths to enable multiscale
point feature learning. Several authors, Hu et al. [30], Wei et al. [17], and Du et al. [22]
used random downsampling to reduce the point cloud in the context of applying the
ML algorithm such as developing consecutively feed-forward MLPsRandLA-Net and
encoder–decoder structure (BushNet and ResDLPS-Net). Mao et al. [20] suggested three
downsampling layers to classify the LiDAR data.

Though the downsampling reduces the data volume, it loses an important information
quantity that may be useful to object recognition and modeling.

4. Employed ML Techniques

Currently, the advancement of digital technologies and data acquisition techniques in
different disciplines can lead to the generation of excessively large data sets. To manage
and process the oversized data sets, the questions of data classification and object recog-
nition have become ones of crucial importance. In this context, ML techniques occupy
an enviable position because they allow for automatic and efficient solutions. The ML
techniques can be classified into four categories according to the required input data (see
Mohammed et al. [69]): supervised learning, where labelled data are needed for training,
unsupervised learning, where labelled data are not needed, semi-supervised learning that
uses a mixture of classified and unclassified data, and reinforcement learning where no
data are available. Of these, the supervised and unsupervised techniques may be consid-
ered the main two categories. In each one of these two groups, several algorithms are
employed, e.g., supervised ML uses algorithms such as decision trees, rule-based classifiers,
Naïve Bayesian classification, k-nearest neighbors’ classifiers, RF, Neural Networks (NN),
linear discriminant analysis, and SVM, whereas unsupervised ML uses k-means clustering,
Gaussian mixture model, hidden Markov model, and principal component analysis.

In the LiDAR data-processing domain, the application of ML algorithms represents an
emerging research area. Despite the great number of papers published in this area, very few
new ML algorithms are employed. In the next subsections, more focused ML algorithms
will be introduced and discussed.

4.1. Random Forest (RF) and Support Vector Machine (SVM)

Tarsha Kurdi et al. [87] summarized the applications of RF classifiers for automatic veg-
etation detection and modelling using LiDAR point clouds. Many authors used RF exclu-
sively on LiDAR data [88], whereas other authors used additional data [89,90]. Yu et al. [91],
and Yu et al. [51] estimated tree characteristics such as diameter, height, and stem volume
using an RF classifier and Levick et al. [92] connected the DSM and field-measured wood
volume using an RF algorithm. Chen et al. [88] used the feature selection method and an
RF algorithm for landslide detection under forest canopy, where the DTM and the slope
model were constructed for the scanned area, and the features were calculated at the pixel
level. The same principle was used by Guan et al. [93] to identify the city classes in urban
areas and Ba et al. [94] employed RF for detecting the tree species.

Man et al. [90] applied an RF classifier to calculate a two-dimensional distribution
map of urban vegetation. In this study, individual tree segmentation was conducted on
a CHM and point cloud data separately to obtain three-dimensional characteristics of
urban trees. The results show that both the RF classification and object-based classification
could extract urban vegetation accurately, with accuracies above 99%, and the individual
tree segmentation based on point cloud data could delineate individual trees in three-
dimensional space better than CHM segmentation. Arumäe et al. [95] calculated a model
for predicting necessity thinning using the RF technique to retrieve the two indicative
parameters for requiring thinning, height percentage and the canopy cover. Park and
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Guldmann, [63] used an RF algorithm to classify building point clouds into four classes:
rooftop, wall, ground, and high outlier. To overcome the complexity of building geometry
of the Ming and Qing Dynasties’ Official Architecture style (MQDOAs), Dong et al. [96]
employed semantic roof segmentation. This method was composed of two stages. Some
geometric features such as the normalized symmetrical distance, relative height, and local
height difference are extracted and then the RF algorithm is applied to classify the roof
point cloud. Feng and Guo [64] suggested a segment-based parameter learning approach
in which a 2D land cover map is chosen to generate labelled samples, and a formalized
operation is then implemented to train the RF classifier. Liao et al. [97] fed in point cloud
super voxels and their convex connected patches into an RF algorithm. For this purpose,
they consider three types of features: point-based, eigen-based, and grid-based.

The SVM algorithm tries to find a hyperplane in high dimensional feature space to
classify some linearly correlative point distributions. While there could be many hyper-
planes that separate the target classes, the hyperplane that optimizes the boundary between
the classes is identified. Aside from just linear classification, SVM can carry out nonlinear
classification using the kernel trick by indirectly drawing their inputs into high-dimensional
feature spaces [69].

Though the SVM classifier is efficient for data classification when using rather small
data, it is also used by Ba et al. [94] to recognize tree species. Murray et al. [43] trained an
SVM on the passing and ongoing results of a CNN algorithm through pixel classification
and the interpolation result of the intensity vector as input data. Hoang et al. [98] introduced
a hybrid approach of a CNN and an SVM for 3D shape recognition, where eight layers of
the CNN are utilized for geometric feature extraction and afterward an SVM is applied to
classify them. Zhang et al. [99] suggested an object-based approach to classify an urban
airborne LiDAR point cloud. First, different point features such as geometry, radiometry,
topology, and echo characteristics are extracted and then the SVM classifier algorithm was
applied to detect five classes: terrain, vegetation, building, powerlines, and vehicles. To
detect powerlines, Shokri et al. [100] eliminated the undesirable points and then apply the
SVM after calculating the point geometric features.

In conclusion, RF and SVM are less used in recent years, and both are more basic clas-
sification models. Therefore, most modern approaches focus on deep learning techniques.

4.2. Neural Network and Deep Learning

Deep learning represents a sort of ML, and it can be defined as a ML technique that
employs a deep neural network such as the MLP neural network that contains two or
more hidden layers [70]. A Perceptron Neural network consists of single neurons that
have multiple inputs and generate a single output using an activation function. Figure 3
illustrates a deep learning algorithm functionality where the available data consist of
two sections: labelled and unlabeled data. The labelled data will be used in training the
suggested MLP neural network to correct the assumed weight values which will then be
used in the same neural network to label the unlabeled data. For more information about
deep learning techniques, please see Kim [70].

In the LiDAR data processing area, deep learning algorithms are widely applied
especially for data classification. Zou et al. [26] used a low-level feature representation
through voxel-based structure, and then classified tree species by using a deep learning
model. In regard to Generative Adversarial Networks (GAN), Goodfellow et al. [101]
have achieved a notable performance on pan-sharpening in the image processing domain.
Zhang et al. [62] developed a PolGAN deep learning network to determine the forest tree
heights. When applying a deep learning classification algorithm, Lin et al. [19] improved the
labelling stage to produce training data because the data labelling procedure for generating
training data consumes considerable time and effort. In this context, they suggested using
weak labelling that needs little annotation effort. The pseudo labels are then considered
as the input of a classification network [102]. Thereafter, an overlap region loss and an
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elevation attention unit are introduced for the classification network to obtain more accurate
pseudo labels.

Figure 3. Deep learning functionality; NN is a Neural network.

Zhao et al. [52] used a Feature Reasoning-based Graph Convolution Network (FR-
GCNet) to increase the classification accuracy of urban point clouds. Semantic labels were
assigned to pixels using global and local features. Based on the graph convolution network,
a global reasoning unit is embedded to find the global contextual features, while a local
reasoning unit is added to learn edge features with attention weights in each local graph.
Li et al. [103] compared three deep learning algorithms for classifying LiDAR point clouds,
these algorithms are PointNet++ [61], SparseCNN [104] and KPConv [105]. They found
that SparseCNN carries out a better classification accuracy than the other two approaches.

Where there are variations of point cloud density, Théodose et al. [106] suggested
adapting an object detection deep learning approach. For this purpose, some data layers
are randomly dismissed during the training step to grow the variability of the processed
data. Sheikh et al. [32] proposed a Deep Feature Transformation Network (DFT-Net) to
classify terrestrial LiDAR data. The suggested algorithm is based on graph analysis in
which the edges are dynamically extracted for each layer. Hoang et al. [107] extracted and
associated both global and regional features through Gaussian SuperVector and enhancing
region illustration deep learning Network (GSV-NET) for 3D point cloud classification.
Chen et al. [108] developed a Dynamic Point Feature Aggregation deep learning Network
(DPFA-Net) by selectively performing the neighborhood feature aggregation, dynamic
pooling, and an attention mechanism. In this semantic classification of the LiDAR point
cloud framework, the features of the dynamic point neighborhood are aggregated via a
self-attention mechanism. Finally, Song et al. [109] developed, in the context of automatic
LiDAR data classification, a 2D and 3D Hough Network (2D&3DHNet) by linking 3D global
Hough features and 2D local Hough features with a classification deep learning network.

4.3. Encoder–Decoder Structure

In the encoder–decoder structure, the network consists mainly of two subnetworks:
the encoder sub-network and the decoder sub-network [110]. In the encoder part, con-
secutive downsampling procedures increase the receptivity of the extracted features but
unfortunately, that reduces the point cloud resolution. In the decoder part, upsampling and
convolution operations are employed for resolution recapture and feature combination.

In laser scanning, several authors developed an encoder–decoder algorithms to clas-
sify LiDAR data. Wen et al. [79] created an end-to-end encoder–decoder network named
GACNN that is based on the graph attention convolution module and used it for de-
tecting multiscale features of the LiDAR data and achieving point cloud classification.
Wei et al. [17] proposed a network point cloud segmentation named BushNet which is
the classic encoder–decoder structure. In this context, a minimum probability random
sampling module is used for reducing the processing time and improving the convergence
speed. Thereafter, the local multi-dimensional feature fusion module is applied to make the
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network more sensitive to bush point cloud features. Thus, the employed multi-channel
attention module may improve the training efficiency.

Medina and Paffenroth [111] applied an encoder–decoder classifier for reduced Li-
DAR data by feeding the network with features calculated from the point neighborhood,
which showed high efficiency in distinguishing the non-linear features. Mao et al. [20]
developed an encoder–decoder architecture for point cloud classification named Receptive
Field Fusion and Stratification Network (RFFS-Net) that is based on the PointConv network
suggested by Wu et al. [112]. It consists of two steps: hierarchical graph generation and
encoder–decoders feature extraction and aggregation. The input is provided by a hierarchi-
cal graph generation model and point features after which the point features are aggregated.
Ibrahim et al. [113] used CNN architectures to semantically classify the terrestrial LiDAR
data. They divided the point cloud into angle-wise slices that are transformed in the next
step into enhanced pseudo images using the intensity and reflectivity values. Then, these
images are employed to feed an encoder–decoder CNN model.

Finally, despite the promising results obtained by deep learning as well as encoder–
decoder structure, more focus is needed on unsupervised learning techniques which may
cancel the request for training data.

Having presented the main ML algorithms used to process LiDAR data, the next
section will discuss current applications of ML technique on LiDAR point cloud.

5. Applications of ML on LiDAR Data

The use of laser scanning technology is widespread. It has been applied in urban, rural,
and forested areas to target natural as well as artificial objects such as buildings (inside and
outside), roads, railways, bridges, tunnels, and pipelines. Almost inevitably, a point cloud
of a scanned area will consist of several object classes such as terrain, vegetation, buildings,
standing water, noise, and artificial objects. As each class has a different modelling concept,
it is essential to classify the point cloud into its main classes before starting the modelling
step [5]. Once the point cloud of the scanned area is classified, the obtained classes can be
analyzed and modelled according to the project goal. In this context, a large list of class
modelling operations could be described. From the creation of laser scanning technology,
most of the suggested approaches in the literature have been rule-based. Within the last
five years, ML techniques have become an important approach for LiDAR data process-
ing [2,8]. Unfortunately, ML techniques have hitherto only been used to a limited number
of procedures, e.g., according to Hamedianfar et al. [114], the main applications of deep
learning algorithms in forest areas are biomass estimation and tree species classification. In
the next subsections, the main applications of ML techniques on LiDAR data are detailed.

5.1. Building Detection

The ML classifiers are sometimes focused on the building class in urban areas, with
the aim of classifying the scanned scene into two classes: buildings and non-buildings.
Nahhas et al. [46] suggested a deep learning approach based on the feature-level. CNN
was used to transform compressed features into high-level features, which were used
in building detection. Zhang et al. [47] used the U-NET model [115] to detect building
polygons from orthophotos. Hence, to increase the point cloud density, the LiDAR, and
photogrammetric point clouds are merged and employed for each polygon for feature
extraction goals. Ojogbane et al. [116] improved a deep learning network suggested by
Seydi et al. [117] to detect the building class. The suggested framework fuses the features
obtained from interpolated airborne LiDAR data into DSM, in addition to a very high-
resolution aerial imagery. Shin et al. [60] applied PointNet++ [61] for building extraction
using multiple returns data.

While ML algorithms are employed by several authors for building recognition, in fact,
the urban scene cannot just be simplified into building and non-building classes. Hence,
the next section will go further through applying ML to achieve full classification.
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5.2. Scene Segmentation

The classification question is widely discussed in this research area. One scanned
scene consists of several classes, and the question that arises is: can the classification
algorithm be used to extract the desired class list? Or can one algorithm only recognize
certain classes? For this reason, we have chosen to identify the classification algorithms
according to detected classes. With respect to airborne data, not all authors agree about
the ideal number of classes. Wen et al. [41] developed a deep learning network that
classified the airborne LiDAR data into nine classes: powerlines, low vegetation, cars,
fences, roofs, facades, shrubs, and trees. Despite Wang and Gu [118] using the same
number of classes, their class list is different: earth bar, grass, roads, buildings, trees, water,
powerlines, cars, and ships. Li et al. [78] suggested a deep learning pixel-based analysis
network to distinguish four classes in airborne data: trees, grass, roads, and buildings.
Another class list is suggested by Ekhtari et al. [119] classified their scene into six classes:
buildings, soil, grass, trees, asphalt, and concrete. An example of the final data set is
shown in Figure 4. Zhao et al. [52] made small modifications to these classes as follows:
roads, buildings, grass, trees, powerlines, and soil. Another modification to these classes is
suggested by Shinohara et al. [59]: roads, buildings, transmission towers, trees, powerlines,
and ground. Liao et al. [97] classified the airborne point cloud into three main classes:
terrain, buildings, and vegetation using the RF algorithm. Zhao et al. [120] suggested a
Point Expanded Multi-Scale Convolutional Network (PEMCNet) to classify the airborne
LiDAR data containing point cloud, intensity, and return number, into five classes: ground,
high vegetation, building, water, and raised road. To calculate the point features, it created
point expanded grouping units that combined the extracted features at diverse scales. It is
fair to say that the classes chosen in each study are a product of the study area and study
aim rather than a desire to develop a universal class set.

Figure 4. An example of a 3D point cloud classified into six classes (buildings, soil, grass, trees,
asphalt, and concrete) by Ekhtari et al. [119].

In the case of terrestrial data, a huge diversity of suggested class lists reflects the
diversity of scanned scenes. Wang et al. [28], Qi et al. [27], Wang et al. [29], Hu et al. [30],
Wei et al. [17], Zhang et al. [31], Xiu et al. [23], and Jing et al. [80] classified the terrestrial
LiDAR data into several classes according to the scanned objects. To classify the terrestrial
LiDAR data, Wen et al. [121] converted the LiDAR point cloud into a pseudo image and
applied a semantic segmentation algorithm named Hybrid CNN-LSTM that has a neural
network framework. Hence, the pseudo image is considered within Long Short-Term
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Memory (LSTM) network that combines the different channel features generated by a con-
volutional neural network. Shuang et al. [122] proposed for terrestrial LiDAR point cloud
classification, a Multi-Spatial Information and Dual Adaptive (MSIDA) network, which
consists of encoding and dual adaptive sub-networks. To encode the point coordinates,
each point and its neighborhood are transferred into a cylindrical and spherical coordinate
system. The DA sub-network comprises a Coordinate System Attention Pooling Fusion
(CSAPF) block in addition to a Local Aggregated Feature Attention (LAFA) one.

5.3. Vegetation Detection

Some classification algorithms are developed especially for forest areas, that focus on
the vegetation class. In this case, they classify the scanned scene into two classes: vegetation
and non-vegetation. Luo et al. [24] developed a semantic segmentation deep network to
extract vegetation points from the LiDAR point cloud, where the tree points are grouped
into a set of tree clusters using Euclidean distance clustering. A Pointwise Direction
Embedding deep network (PDE-net) is employed to calculate the direction vectors of tree
centers. Chen et al. [123] compared four ML algorithms: RF, Cubist, XGBoost, and CatBoost
with rule-based algorithms to improve the estimation performance of forest biomass. The
ML algorithms outperformed parametric stepwise regression, with the CatBoost network
being superior, followed by XGBoost, RF, Cubist, and stepwise regression.

In the context of individual tree detection, Schmohl et al. [65] exploited the 3D Li-
DAR point cloud by using a 3D NN to detect individual trees. A sparse convolutional
network was applied for feature calculation and feeding of the semantic segmentation
output. Furthermore, they defined five semantic classes obtained from the dataset: terrain,
buildings, low points, bridges, and vegetation. Luo et al. [124] proposed a tree detection
algorithm through a deep learning framework based on a multi-channel information com-
plementarity illustration. An adapted graph convolution network with local topological
information was developed to extract the ground class thus avoiding parameters selection
that did not consider different ground topographies. Then, a multichannel representation
in addition to Multi-Branch Network (MBNet) was used through fusing multi-channel
features. Corte et al. [125] used uncrewed aerial vehicle LiDAR point cloud to test four
different ML approaches to detect individual trees and estimate their metrics such as diam-
eter at breast height, total height, and timber volume. The tested methods were SVM, RF,
NN, and Extreme Gradient Boosting. Windrim and Bryson [126] isolated individual trees,
determine stem points, and further built a segmented model of the main tree stem that
encompasses tree height, and diameter. This approach used deep learning models passing
through multiple stages starting by ground characterization and removal, delineation of
individual trees, and segmentation of tree points into stem and foliage. An example of
output of their algorithm is shown in Figure 5. For extracting grasses and individual
trees, Man et al. [90] extracted the two-dimensional distribution map of urban vegetation
using the object-based RF classification method. Chen et al. [127] employed a PointNet
network [27] for segmenting the individual tree crowns using the voxelization strategy.

Finally, Vayghan et al. [3] extracted high-elevation objects from the LiDAR data using
the developed scan labelling method, and then the classification methods of a NN. Adaptive
Neuro-Fuzzy Inference System (ANFIS), and Genetic Based K-Means algorithm (GBKMs)
were used to separate buildings and trees with the purpose of evaluating their performance.
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Figure 5. An example of the output of Windrim and Bryson’s [126] (Figure 8) deep learning model
where (a) is the segmented point cloud, (b) isolated stem points, (c) RANdom SAmple Consensus
(RANSAC) algorithm circles attach stem section and (d) refined stem sections estimate based on
robust least-squares fitting process. Panel (e) shows examples of the final fitted stem model.

5.4. Classification of Tree Species

Zou et al. [26] suggested a voxel-based deep learning method to classify terrestrial
LiDAR point clouds of a forested area into species. They used three consecutive steps. After
the extraction of individual trees using the density of the point clouds, a low-level feature
voxel-based representation was constructed and then the classification of tree species was
achieved by using a deep learning model.

Marrs and Ni-Meister [50] compared NNs, k-nearest neighbors, and RF approaches
for recognizing tree species. The used variable reduction techniques and showed mixed
results depending on the exact set of inputs to each machine learner. Dimensionality
reduction based on classification tree nodes is a technique worth trying on multisource
datasets. Mizoguchi et al. [128] classified individual tree species using terrestrial LiDAR
based on CNN. The key component was the initial step of a depth image creation which
well described the characteristics of each species from a point cloud.

Ba et al. [93] employed SVM and RF algorithms to test the discrimination level between
tree genera. In this context, tree crowns were isolated and global morphology and internal
structure features were computed. Yu et al. [51], Budei et al. [129], and Blomley et al. [57]
estimated tree species based on an RF using tree features as predictors and tree species
as a response for correctly extracted trees. Figure 6 shows an example of a successful
detection phase. Yang et al. [58], and Nguyen et al. [130] both identified the tree species
from LiDAR data in addition to other airborne measurements such as hyperspectral images
using an SVM classifier. Hell et al. [131] tested the capacity of two deep learning networks
PointCNN [132], and 3DmFV-Net [133] for the classification of four different tree species,
both living and dead, using LiDAR data. It was shown that 3DmFV-Net is adequate for the
geometry of the single trees, whereas PointCNN permits the incorporation of other features.
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Figure 6. An example of the results of Yu et al. [51] tree detection stage from (a) a plan view and
(b) a 3D view.

5.5. Road Marking Classification

The high retro-reflective materials of road markings cause a high laser intensity with
respect to the surrounding areas. On one hand, this feature allows easy identification of
the road markings but unfortunately, the road markings are not only incomplete but also
contain discontinues. That is why the road marking classification represents a challeng-
ing task [42]. In this context, Wen et al. [134] used a modified U-net model to segment
road marking pixels to overcome the intensity variation, low contrast, and other obstacles.
(Ma et al. [135] developed a capsule-based deep learning framework for road marking
extraction and classification that consists of three modules. This approach starts with the
segmentation of road surfaces. Thereafter, an Inverse Distance Weighting (IDW) interpo-
lation is applied. Based on the convolutional and deconvolutional capsule operations, a
U-shaped capsule-based network is created, and a hybrid network is developed using a
revised dynamic routing algorithm and Softmax loss function. Fang et al. [42] proposed a
graph attention network named GAT_SCNet to simultaneously group the road markings
into 11 categories from LiDAR point clouds. The GAT_SCNet model builds serial com-
putable subgraphs and uses a multi-head attention mechanism to encode the geometric
and topological links between the node and neighbors to calculate the different descriptors
of road marking.

5.6. Other Applications

In addition to the main applications presented previously, several important attempts
to employ the ML for achieving other automatic operations on LiDAR data are documented
in the literature. Ma et al. [136] proposed a workflow for the automatic extraction of road
footprints from urban airborne LiDAR point clouds using deep learning PointNet++ [61].
In addition to the point cloud and laser intensity, the co-registered images and generated
geometric features are employed to describe a strip-like road. In this context, graph-cut and
constrained Triangulation Irregular Networks (TIN) are considered. Shajahan et al. [137]
suggested a view-based method called a MultiView Convolutional Neural Network with
Self-Attention (MVCNN-SA), which recognizes the roof geometric forms by considering
multiple roof point cloud views.

In self-driving cars, several applications such as object recognition, automatic classi-
fication, and feature extraction are carried out using ML techniques [34,36,138–142]. The
importance of data filtering before starting the modelling operation has been established
and Gao et al. [143] proposed a filtering algorithm that uses deep learning and a multi-
position sensor comparison approach to eliminate reflection noise. Nurunnabi et al. [144]
introduced a local feature-based non-end-to-end deep learning approach that generated a
binary classifier for terrain class filtering from which the feature relevance in addition to
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the models of different feature combinations were analyzed. Cao and Scaioni [145] applied
a deep learning algorithm for semantic segmentation of terrestrial building point clouds.
To reduce the number of labels, they suggested a label-efficient deep learning network
(3DLEB-Net) that obtained per-point semantic labels of building point clouds with limited
supervision. Shokri et al. [100] proposed an SVM approach for automated detection of
powerlines from a LiDAR point cloud. In roadside laser scanning system applications,
Zhang et al. [146] addressed the goal of a joint detection and tracking scheme by applying
PV-RCNN [147] to automatic vehicle and pedestrian detection from the measured moving
point cloud. Yin et al. [148] established a squeeze-excite mechanism in local aggregation pro-
cedures and employed deep residual learning through a suggested deep learning network
that classified complicated piping elements. Amakhchan et al. [149] applied an MLP to filter
the LiDAR building point cloud by eliminating the non-roof points. Mammoliti et al. [150]
applied the semi-supervised clustering which combined semi-supervised learning and
cluster analysis, to evaluate the rock mass discontinuities, orientation and spacing.

6. Conclusions

This paper has summarized and reviewed the state-of-the-art ML approaches applied
to topographical LiDAR data. Four aspects were considered to analyze the studied methods.
First, although all suggested approaches use an airborne or terrestrial LiDAR point cloud of
the scanned scene as input data, some of them use, sometimes simultaneously, additional
data such as real images, multispectral images, and waveforms to improve their efficiency.
Of course, prima facie, using supplementary data may improve the conditions for obtaining
the target result, but it is worth considering the contribution of the additional data to the
final result. How critical the additional data are to the success of the target task needs to
be verified.

Second, in literature, a long list of supervised and unsupervised ML techniques
is available. As the unsupervised methods do not need labelled data, the use of these
methods can solve the training data labelling problem. Unfortunately, most of the suggested
approaches focus only on three supervised ML techniques: NN, RF, and SVM. More
research is necessary to investigate the possible application, on LiDAR data, of other ML
techniques, especially the unsupervised variety. These may provide opportunities for more
efficient and lower cost solutions.

The third aspect is the concept of the LiDAR point cloud structure used within ML
algorithms. Many of the proposed algorithms try to transform the question of 3D LiDAR
data processing into 2D imagery processing so as to exploit the availability of the image
processing informatics tools. These transformations lead to loss of information partly
because of dimension reduction. Furthermore, the data reduction through downsampling
techniques is similar to the pooling operation employed in image processing algorithms.
This procedure is undesirable because it leads to the loss of information which may be
beneficial to classify the data successfully. In this context, more research is needed to
design a new methodology that simultaneously conserves the LiDAR data and saves the
processing time.

Fourth, in regard to the new tools or trends for large-scale mapping and 3D modelling,
ML techniques can mainly be employed to achieve five operations on topographical LiDAR
data which are: buildings class detection, data classification, point cloud segmentation
into vegetation and non-vegetation classes, separation of different tree species, and road
marking classification. Some other applications of ML appear rarely in the literature. In fact,
most feature-detection operations from topographical LiDAR data can be carried out with
the help of classification procedures such as the detection of lines, planes, vertices, surfaces,
breaklines, and borders. Filtering operations and modelling also represent an investigation
area to apply ML techniques. Clearly, more effort and investigation are needed to improve
and to apply ML algorithms on topographical LiDAR data.
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