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Flotation is a significant and widely used processing technique, effectively separating
valuable and gangue minerals. Mineral producers have long sought ways to consistently
monitor and control the flotation process to ensure optimal conditions for effective mineral
separation [1]. However, establishing such a sophisticated control system entails significant
financial investments in equipment, resulting in substantial costs. Additionally, ongoing
maintenance needs to be performed to uphold the system’s high standards, which will incur
additional expenses. To address these challenges, predictive models emerge as effective
and economically viable solutions to handling the intricacies of the flotation process [2].

In the flotation process, numerous linear and nonlinear relationships exist between
the operating parameters, chemical reagents, and minerals [3]. These connections can be
evaluated using various experimental and numerical methods. Over recent decades, a
variety of intelligent computing and statistical techniques, including machine learning,
genetic algorithms (GAs), artificial neural networks (ANNs), fuzzy systems, and image
processing, have been employed to predict the flotation process outcome and facilitate the
process control [4]. It is worth noting that the crucial role of these techniques in achieving
sustainable development across various industrial sectors was recognized more than a
decade ago.

The papers featured in this Special Issue of Minerals, titled ‘Design, Modeling, Opti-
mization, and Control of the Flotation Process’, explore innovative approaches for modeling,
optimizing, and controlling some flotation processes. These techniques aim to enhance
efficiency by maximizing the recovery of valuable minerals, while minimizing energy and
reagent consumption in relevant studied flotation processes. The manuscripts published in
this issue can be grouped into three broad categories.

The initial category focused on hydrodynamic and kinetic models to examine the
attachment of mineral particles to bubbles. The attachment process is intricate, involving
multiple physical and chemical interactions, such as adsorption, desorption, and chemical
reactions. These mechanisms were numerically represented through a variety of models,
employing sets of differential equations that illustrate the concentration of minerals and
chemical reagents within the flotation cell as time progresses [5–7].

The second group concentrated on modeling and optimizing the flotation process and
developing strategies to enhance our understanding of the effects of gas dispersion and its
regulation using dynamic models, multivariable linear models, and image analysis [8,9].
These studies explored the stability of the froth zone under varying flotation conditions
and highlighted the significance of the relationship between particle and bubble sizes as
critical factors impacting successful collection, froth transport processes, and the flotation
rate and efficiency.
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The third group of papers in this Special Issue delved into modeling and optimizing
the flotation process performance utilizing advanced computational tools and algorithms
such as the response surface methodology (RSM), GA, ANN, deep learning, and fuzzy
systems [10–14]. Some of the studies published in this Special Issue aimed to address the
challenges of recovering target elements more effectively using these methods. Generally,
the efficiency of the flotation process is assessed by examining the characteristics of the
concentrate, specifically its grade and recovery, which are crucial economic and technical
indicators for process management and improvement. Determining these parameters typi-
cally involves time-consuming procedures. While the grade can be constantly monitored
using an XRF analyzer, recovery is usually determined with mass balancing techniques [15].
However, the online measurement of these parameters using X-ray analyzers, although fea-
sible, requires expensive and complex equipment, along with ongoing maintenance, which
justifies the preference for models predicting the key performance indexes derived from
secondary variables [16]. Given the nonlinear and intricate nature of the flotation process,
coupled with the involvement of numerous variables and a limited understanding of its
physicochemical principles, accurately forecasting metallurgical performance parameters
presents a significant challenge.

The techniques outlined in the Special Issue have the potential to significantly im-
prove the optimization and control of flotation operation, aiming to maximize the process
efficiency. In the near future, with the increasing demand for metals and ongoing research
advancements, these innovative computational techniques are expected to become effective
solutions for monitoring and controlling the flotation process. We anticipate that this
Special Issue will serve as a platform for future multidisciplinary research in modeling,
designing, and optimizing the flotation process.
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Prediction of Sulfur Removal from Iron Concentrate Using
Column Flotation Froth Features: Comparison of k-Means
Clustering, Regression, Backpropagation Neural Network, and
Convolutional Neural Network
Fardis Nakhaei 1,* , Samira Rahimi 2 and Mohammadbagher Fathi 3
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Abstract: Froth feature extraction plays a significant role in the monitoring and control of the flotation
process. Image-based soft sensors have received a great deal of interest in the flotation process
due to their low-cost and non-intrusive properties. This study proposes data-driven soft sensor
models based on froth images to predict the key performance indicators of the flotation process.
The ability of multiple linear regression (MLR), the backpropagation neural network (BPNN), the
k-means clustering algorithm, and the convolutional neural network (CNN) to predict the amount
of sulfur removal from iron ore concentrate in the column flotation process was examined. A
total of 99 experimental results were used to develop the predictive models. Extracted froth features
including color, bubble shape and size, texture, stability, and velocity were used to train the traditional
predictive models, whereas in the CNN model the froth images were directly fed into the model. The
results comparison indicated that the three-layered feedforward NN model (17-10-1 topology) and
CNN model provided better predictions than the MLR and k-means algorithm. The BPNN model
displayed a correlation coefficient of 0.97 and a root mean square error of 4.84% between the actual
data and network output for both training and the testing datasets. The error percentages of the CNN,
BPNN, MLR and k-means models were 10, 11, 15 and 18%, respectively. This study can become a key
technical support for the application of intelligent models in the control of the operational variables
for the flotation process used to desulfurize iron concentrate.

Keywords: column flotation; sulfur removal; iron ore; prediction; multiple linear regression; neural
network; k-means clustering; convolutional neural network

1. Introduction

Flotation is a significant industrial technology for separating valuable minerals from
tailings. It is a complicated physical-chemical separation method that takes advantage of
differences in the surface properties of valuable and gangue minerals [1]. Due to the deple-
tion of high-grade iron reserves and the need for very fine grinding to improve liberation,
flotation is the most effective way to remove impurities from iron ore concentrate [2,3].

Although the flotation process has been widely used over a long period of time, how
to evaluate the operational conditions, the automatic control and robust model of the
process are challenging issues and still have not been fully considered by academic scholars.
Furthermore, the weakness of sufficiently accurate and reliable process measurements
amplifies this difficulty [4]. The ultimate goal in the flotation process is to maximize the
separation between valuable minerals (concentrate) and gangue minerals (tailings) [5].
Technically, the performance of the flotation process is described by the concentrate charac-
teristics (grade and recovery). These are important economic and technical indexes needed
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for process control and optimization [6]. Accurate values of these parameters are obtained
only after sampling, filtration, drying, preparation and chemical analysis of samples, which
are time-consuming operations [7]. In industrial plants, the grade can be continuously
measured using an XRF analyzer and the recovery can only be calculated from a mass
balancing [8,9]. The online measurement of these parameters with a relatively low accuracy
using an X-ray analyzer generally requires the purchase and maintenance of costly and
sophisticated equipment [5,10,11], which justifies the execution of models for the prediction
of key performance indicators based on secondary variables.

Due to the nonlinear and complex nature of the flotation process, the large number
of variables involved, and the very limited understanding of the physicochemical rules of
the flotation process, accurate prediction of grade and recovery parameters is a difficult
task [12–15]. Therefore, data-driven approaches requiring less prior knowledge about the
system state variables (the input/output) are viewed as alternative strategies for modeling
the flotation process. In the past few decades, modelling and predicting flotation behavior
based on operational variables (such as reagent dosages) using numerical techniques
has been extensively studied by researchers [16–22], although there is no universally
accepted forecasting model. Most of these models only used relatively few operational
parameters as the input variables so that they failed to enable the capture of the strong
nonlinear relationship between the variables in a wide range of operating conditions. These
models still have challenges, such as needing a large quantity of data, and have a complex
configuration that limits their application.

In the last ten years, several studies have shown that the froth’s appearance contains
a lot of valuable information, which plays a pivotal role in raising the flotation process
efficiency [23]. The froth’s surface appearance reflects the changes in the flotation process
induced by those affecting the operational variables, such as air flow rate and dosage of
reagents [24]. Then, it can be directly used for flotation metallurgical performance estima-
tion [25,26]. Traditionally, in the flotation plant the froth state is observed by experienced
workers in order to control and make a decision for the working conditions [7]. However,
decision-making based on the monitoring of froth surface changes just by the naked eye
is inaccurate; that is, a time-consuming operation that limits the real-time control of the
process. Therefore, the combination of froth imaging analysis techniques and the predictive
mathematical models could provide the soft sensors for modelling the effects of operating
variables on flotation process performance.

In recent years, there has been a rapid development in computing technology with an
increased interest in machine vision applications for monitoring, analyzing and controlling
the output of processes for most engineering purposes [27,28]. Machine vision is an
automated, non-destructive and cost-effective alternative method used for the on-stream
estimation of the efficiency of the flotation process. Image processing methods have been
developed for the extraction and interpretation of froth appearance features such as color
and texture [29–32], velocity [33,34], mineral loading rate [35], stability [11,36], and bubble
size [25,37]. These studies showed that many methods can be used to extract and analyze
the froth features; thus, several extracted features should be addressed at the same time for
a better interpretation of froth behavior.

The performance of the reverse flotation of iron ores is largely governed by the interac-
tions between the operational variables, which are complex. The prediction of the amount
of sulfur removal in the reverse flotation of iron ore concentrate is an important issue to
enhance the process efficiency. When the sulfur content of iron concentrate increases, the
sulfur recovery and efficiency will reduce. In this situation, the operators at concentrators
try to identify the problem and find a way to fix it based on the froth surface appearance.
Visual assessments by operators are time-consuming and difficult tasks that can be carried
out only at a given time. An image-based soft sensor with a view to monitor and control
the operating conditions could be a great help for operators at flotation plants. Due to
a dearth of reports on the properties of flotation froth during the desulfurization of iron
concentrate [38], this research opted to combine the machine vision system and different
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statistical and intelligent techniques with a view to investigating the relationship between
column flotation performance (sulfur recovery) and the froth features under different
operating conditions.

For this, a dataset of images was first captured from froth surfaces at defined time
intervals. Afterward, the bubble size and shape, froth color, texture and dynamic features
(froth velocity and stability) were considered as good supplements for operating condition
recognition prior to an offline extraction of the images from the desulfurization of iron ore
concentrate using the in-column flotation. Finally, a comparative study was carried out
using multiple linear regression (MLR), the k-means algorithm, the backpropagation neural
network (BPNN) and the convolutional neural network (CNN) to predict the flotation
performance based on froth features.

The machine learning models, such as NN, are widely used as a powerful approach for
classification and prediction because of their non-linear learning ability. The NN is a com-
putational method developed by copying human brain behavior. The NN is able to extract
the complex nonlinear relationships existing between input and output variables through
a highly interconnected system of simple processing elements (neurons or nodes) [39].
Recently, the models based on BPNN have been widely used as rapid and reliable tools for
forecasting flotation performance [40,41]. Many studies in the literature specialized in the
integration of machine vision and machine learning systems for improving the flotation
process control. The proposed soft sensors were capable of extracting and analyzing the
froth image features and using them as the inputs to the machine learning models [42,43].

MLR is another estimation tool which can help to predict the flotation performance
based on a number of froth image features. The MLR model is presented based on fitting a
linear equation to observed data. The main advantage of MLR is its simple form and easily
interpretable mathematical expression [44]. The MLR is easy to formulate and has been used
in flotation research to obtain models as an alternative to other mathematical methods [4,19].

The use of clustering algorithms has been widely used in diverse fields of study to offer
a favorable alternative to traditional prediction methods [45,46]. Clustering is a process of
organizing a set of objects into groups of similar objects, based on their characteristics. The
k-means algorithm is one of the well-known unsupervised clustering techniques which is
mainly applied in image and signal processing, pattern recognition and data mining [47].
K-means clustering is an iterative algorithm that tries to minimize variation within the
clusters, and maximize variation between clusters [48,49]. In this research, the k-means
algorithm is proposed to classify the froth characteristics to estimate the sulfur recovery in
the column flotation process at different operating conditions.

The above-mentioned models concentrate on extracting specific froth features such as
bubble size, color, and stability for classification of froth images to evaluate the flotation
process performance. The big challenge of these models is that the prediction accuracy
remarkably relies on the capability of feature extraction methods. Furthermore, these
models are not sufficiently effective and reliable because they employ only low-level
features without having enough mid-level and high-level features [50]. To overcome
this problem and develop the classification accuracy, a deep learning method has been
developed to classify image features under different conditions.

The convolutional neural network (CNN), one of the fastest-growing deep leaning
algorithms, was developed for the classification of objects in the fields of engineering [51,52].
This method obviates the complexity of image modification and allows users to enter the
original image directly to the model.

CNN was first implemented for froth image feature extraction in 2018 by Fu and
Aldrich. They proved that the CNN model could generate more accurate results than the
traditional models in the processing of flotation froth images. Recently, many researchers
have employed CNN as a robust and efficient model for the evaluation of flotation in-
fluencing factors and the prediction of metallurgical performance parameters [5,53,54].
This article provides the application of CNN to categorize the collected froth images dur-
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ing the column flotation process. Then, its classification accuracy was compared to the
traditional models.

Despite the fact that the above-mentioned methods were all individually used to
forecast the mineral flotation performance, there is still a gap in identifying the best method
with the highest prediction accuracy, especially the amount of sulfur removal from iron ore
concentrate. Thus, the current study compared four methods of MLR, k-means, BPNN, and
CNN to predict the amount of sulfur removal in the desulfurization of iron ore concentrate.
The aim of this work was to elucidate if these predictive models could predict column
flotation performance for the desulfurization of the iron ore concentrate with high accuracy
based on the analysis of froth image characteristics. Such studies can make a remarkable
contribution towards the improvement of soft sensors on the basis of froth image analysis
for the real-time monitoring and control of flotation process.

In the following section, the reverse column flotation process of iron ore concentrate
and the image-acquisition device are presented. Then, the techniques for extraction of
froth features and the predictive models are briefly introduced. In the third part, the
prediction results obtained by k-means, MLR, BPNN, and CNN methods are discussed. In
the Section 4, the performances of these methods are compared.

2. Materials and Methods
2.1. Iron Ore Concentrate

The sample used in the present study was taken from the feed stream of the mechanical
flotation cells in an iron ore concentrate plant in Iran. In this plant, the iron ore after
comminution, gravity and magnetic separation, is fed to the flotation cells. The feed
flotation has high sulfur (pyrite) content. In general, pyrite is considered as a gangue
mineral creating problems during the steelmaking processes [55]. Sulfur causes brittleness
and frangibility of steel at high temperatures, reduces weldability, increases corrosion,
air pollution during the pellet-firing process, increases limestone consumption and slag
production in the steelmaking procedure [56]. Pyrite and pyrrhotite are paramagnetic
minerals and are attracted by the magnetic field in the vicinity of iron ores (magnetite and
hematite). Therefore, they are not completely recovered by magnetic separators [57]. In
this plant, the concentrate from the magnetic separation generally presents a sulfur content
of 0.4 to 0.6%, which value surpasses the allowable limit for steel production (0.1%). The
reverse flotation conducted at the end of the processing circuit enables a reduction of the
sulfur content in the magnetic separation concentrate.

The representative flotation feed sample consisted of 63.3% Fe, 1.48% FeO with a
significant sulfur content 0.50%. The particle size analysis of the representative sample
188 gave the d80 equal to 95 µm.

Mineralogical and liberation degree studies of the sample were conducted using
optical microscope (Axio Plan 2, Zeiss, Germany) and wild zoom stereo microscope (Zeiss,
Germany), respectively. The main iron minerals were hematite, magnetite and goethite.
Calcite, quartz, dickite, chlorite and pyrite were the main gangue minerals. The results of
X-ray diffraction pattern (XRD) analysis of the sample are shown in Figure 1. The XRD
analysis confirmed the microscopic findings. Mineral liberation studies showed that more
than 90% of pyrite particles were liberated at -105 µm.
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Figure 1. X-ray diffraction pattern of sample used in this work.

2.2. Column Flotation Test

The tests were carried out in a plexiglass cell column of 400 cm in height, and 10 cm
inside diameter in order to desulfurize the iron ore concentrate. To provide the initial
feed, a tank equipped with a stirrer was used to prevent the material from settling while
being prepared. Two peristaltic pumps were used: one for sending the feed to the middle
of the cell and the other for withdrawing the pulp at the bottom of the cell. During the
experiments, the pulp pH was continuously measured by a digital laboratory pH meter
and adjusted to the desired value by adding sulfuric acid or NaOH.

Since the purpose of the in-column flotation operation was to reduce the sulfur content
in the final product, potassium amyl xanthate (PAX) as a collector and MIBC as a frother
were used. After adjusting the pH and sufficient mixing with chemical reagents (five
minutes), the pulp was entered into the cell at a flow rate of 1.5–2 L/min and a defined air
flow rate provided by a compressor. No wash water was used during the experiments. The
gas flow rate was measured by a flow meter and manually regulated by a needle valve.
The froth height was determined by direct observation as well as pressure transducers. The
control system of the froth height changed the speed of the discharging pump based on
the position of the pulp–froth interface relative to the set point. Prior to the sampling of
concentrate and tailing, the pulp–froth interface was kept constant to ensure that column
flotation operated under steady-state conditions. The froth overflowed from the top of
the cell as tailing product, while iron concentrate was discharged from the bottom of
the column. The froth and concentrate were filtered and dried and their sulfur content
determined. Figure 2 shows a schematic diagram of the experimental apparatus.

The image-acquisition system included a fixed device, a 100 W LED lamp, a protective
cover, and a digital camera, as shown in Figure 2. The camera was placed inside a fixed
chamber and positioned 250 mm away vertically from the top edge of the cell so that the
camera lens center matched that of the cell. The target area was illuminated by the light.
The color rendering index and color temperature of the light source were greater than
80 and 5000 K, respectively.

The froth surface appearance was indirectly varied by changing the process operation
conditions. The data acquisition was performed for 2 min during each test. In this study,
the most important froth features including bubble size and shape, color, texture, bubble
burst rate and velocity were primarily extracted offline from the froth images in each run
through image processing techniques. Then they were fed into the k-means algorithm,
regression, and NN models. Since the froth appearance might frequently change, a single
image could not fully elucidate the froth characteristics during the sampling period, thus
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eight random images were individually analyzed, and the mean value of each feature was
measured. In the CNN algorithm the froth images were directly fed into the model.

Figure 2. The flotation column and froth image-acquisition system.

The average of the gray, RGB, HSB (hue, saturation and brightness) and lab values
were extracted from images to describe the froth color descriptors. Furthermore, based
on each gray level co-occurrence matrix (GLCM), four texture features (entropy, contrast,
inverse different moment (IDM), and angular second moment (ASM) or energy) were
selected to describe the froth surface textural characteristics. A watershed technique was
applied to measure the bubble size distribution, roundness (circularity) and aspect ratio
(AR) (Figure 3a). The bubble burst rate (stability) and froth velocity (transport rate) which
are dynamic descriptors were extracted from an image pair. The pixel tracing algorithm was
applied to quantify the froth speed (pixel/s) between the consecutive frames (Figure 3b).
The bubble burst rate was computed by finding the difference between two consecutive
frames (Figure 3c). The particular implementation of the image processing techniques to
extract the froth features offline was presented by Nakhaei et al. [38].

Figure 3. (a) The initial image after contrast enhancement and watershed algorithm; (b) froth
transport rate measurement by the pixel tracing technique; (c) bubble burst rate measurement.
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Since the purpose of this study was to find a valid model to describe the relationship
between sulfur recovery and froth surface characteristics, the flotation experiments were
performed on a wide range of operational variables. Therefore, the most important opera-
tional variables including aeration rate, solid percentage, froth height, chemicals dosage
and pulp pH were changed for each run. A total of 99 experiments were designed and
performed. The technical parameters of the reverse in-column flotation experiments are
given in Table 1. The values of sulfur recovery spread out over a large range, as shown by
the high values of the standard deviations, due to the different conditions applied in the
flotation process (Table 2).

Table 1. Variables and levels used in column flotation experiments.

Variable Range

Collector concentration (g/t) 40–220
Frother concentration (g/t) 60–230

Froth height (cm) 10–40
Air flowrate (cm/s) 1.3–1.9

Solids (%) 10–35
Pulp pH 2.5–8

Table 2. The statistical measures of sulfur recovery (the output variable).

Metallurgical Factor Maximum Minimum Average SD

Recovery (%) 85.08 6.53 49.28 18.56

Table 3 summarizes the values of the input dataset (froth characteristics) for the k-
means algorithm, regression, and BPNN models. This dataset was extracted offline by
applying a wide range of operational conditions to form a robust predictive model for
sulfur recovery estimation.

Table 3. Descriptive statistics of the froth features obtained at different operating conditions as inputs
for the k-means algorithm, regression and BPNN models.

Features Maximum Minimum Average Features Maximum Minimum Average

Gray level 112 74 86.36 Energy (0º) 1 × 10−3 2.5 × 10−4 5.2 × 10−4

R 136 79 95.3 Contrast (0º) 260 45.81 128.5
G 111 78 89.03 IDM (0º) 0.39 0.15 0.23
B 101 63 76.01 Entropy (0º) 10.05 7.75 8.50

Hue 0.36 0.11 0.25 Bubble size 50.97 5.6 30.80
Saturation 0.41 0.19 0.28 Aspect ratio 1.75 1.10 1.43
Brightness 0.53 0.33 0.39 Circularity 0.81 0.34 0.51

L 45.4 33.66 37.68 Speed 26.01 10.77 16.41
a 10.44 −6.3 −0.17 Stability 85.02 57.88 74.31
b 15.71 4.62 9.2

According to the expert experiences, the process conditions (sulfur removal) can be
sorted into six groups: A–F (Table 4). Each group stands for a specific process condition. A
large number of froth images under various operating conditions were collected and directly
fed into the CNN model. The training and testing of the CNN model were performed using
2079 and 891 froth images, respectively.
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Table 4. Different froth classes in CNN model under various operating conditions.

Type Sulfur Recovery (%) Class Label Number of Images

Very low ≤20 A 180
Low 20–30 B 300

Low–medium 30–40 C 390
Medium 40–50 D 480

Medium–high 50–65 E 1140
High ≥65 F 480

2.3. Models

In a flotation plant, the sulfur content of the concentrate needs to be sampled in the
laboratory for analysis and this takes several hours. Consequently, when unexpected
events happen, the sulfur content in the iron concentrate may increase with a decrease in
the process efficiency. The late detection may lead this phenomenon to last for a long time
resulting in economic losses. A soft sensor based on mixed image analysis and mathematical
methods can predict the amount of sulfur removal in real-time and thus enable workers to
quickly tackle these problems. In this study, the applicability of k-means, MLR, BPNN, and
CNN methods for predicting the sulfur removal was compared. The general purpose of
using different methods is to find which model most accurately discovers the relationship
between inputs and output.

2.3.1. K-Means Clustering

Clustering is an unsupervised learning technique in the area of machine learning,
which categorizes objects with high similarity into the same cluster according to a certain
distance metric [45,58]. Thus, a cluster is a collection of similar data which are not similar
to the data located in other clusters [59,60]. The more similar the objects in the cluster, the
better the clustering effect [45]. Among various types of clustering methods, k-means is one
of the most widely used clustering algorithms. In this work, the k-means algorithm was
employed because of its high efficiency and simplicity in pattern recognition of massive
data. The k-means algorithm splits a dataset into K discrete non-overlapping clusters. The
clustering is performed by minimizing the sum of squares of distances between the center
and the data in each cluster [61]. Details of the k-means algorithm procedure are presented
in [47,61].

The simplest procedure of the k-means algorithm can be described as follows [48,62]:
(1) Choose random initial clusters centroids. (2) Compute the Euclidean distance between
each object to each cluster centroid according to Equation (1):

D =

√
∑n

i=1 ∑m
j=1

∣∣Xij − Cj
∣∣2 (1)

where D is the Euclidean distance; n is the number of data; m is the number of dimensions;
Xij is stated as the j dimensionality of the i-th data; Cj is the j dimensionality of the cluster
center [48].

(3) Assign data points to one of the clusters on the basis of the proximity to the centers.
(4) Assign new centroids for each cluster by averaging the data of each cluster. (5) Return
to step 2 and repeat the process until convergence is obtained.

In the current study, the k-means algorithm was applied to cluster the froth features’
dataset into specific groups (based on a given k value) depending on the flotation recovery
(low to high). The algorithm described above was implemented based on the code in
Python software (3.1, Python Software Foundation manufacturer).
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The efficiency of each cluster is evaluated using the accuracy criterion. The accuracy
of each cluster is the percentage of observations of the dataset that is correctly classified by
the model used. This can be written as:

Accuracy =
CN

CN + FN
× 100 (2)

where CN is the number of correct responses, FN is the number of false responses.

2.3.2. Multiple Linear Regression

MLR is one of the mathematical methods used to describe the linear relationship
between the independent variables and dependent variables [63]. MLR is used when the
value of a specific variable can be estimated based on the values of other variables. In MLR,
the model is fit by minimizing the sum of squares of the difference between the observed
and fitted values. The linear equation is as follows [64]:

Y = C0 + C1x1 + C2x2 + · · ·+ Cnxn + ε (3)

where Y corresponds to the output variable, Xi is the independent variables, Ci is the
regression coefficients, and ε represents the error term.

The froth features were taken as input variables for the MLR model to predict the
sulfur recovery. In the MLR modeling, 85% of data was randomly used for computing the
equation (84 runs) and 15% for testing (15 runs). The MLR analysis was performed using
the SPSS 27 software (Property of IBM Corp.).

2.3.3. Backpropagation Neural Network

NNs are nonlinear computational methods that have been successfully used in various
fields of science and technology over the past decade [65–67]. The main feature of the NN
is its ability to learn the complex relationships between input and output data. The main
advantages of the NN models are as follows: (1) It only considers the input and output
data without referring to the process phenomenology; and (2) it has a generalization ability
to accurately estimate the outputs corresponding to a new dataset that were not applied for
training of the model [39,68].

NN is a complex network structure consisting of three or more layers to learn the
nonlinear relationship between input and output data. The layers are processed with a
large number of interconnected neurons. Each neuron, has an associated weight and bias.
Figure 4 shows the NN structure, where X1 and Xn are the inputs. W is the corresponding
connection weight, b is the bias and Y is the output.

Figure 4. (a) The schematic of a three-layer NN; (b) signal-flow graph of a perceptron.

The modelling process is as follows: The first stage consists of choosing the network
configuration and the number of nodes in the layers, and giving the random value of the
weight and the bias matrixes. In the second stage, the input and the output matrixes are
entered. In the third stage, the hidden layer output matrix and the output matrix of the last
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layer are calculated; The next step is to compute the difference between the output of the
model and the actual output; if the error value is within the specified range, the training
ends; otherwise, the fifth stage is continued. In the fifth stage, the error is back-propagated
and the data are forwarded and the weight and bias matrixes are updated.

The dataset of the flotation tailing froth features is applied to train the network for
predicting the amount of sulfur removal from iron ore concentrate in the column flotation
process. In this study, 74 of 99 (75%) items in the dataset were used in training and the rest
25 (25%) in the test and validation of the network. The training process was carried out by
applying the backpropagation algorithm with the Levenberg–Marquardt training method.
The neural net fitting toolbox from MATLAB program, version R2022, was used to make
the code for the NN. The tansig, and purelin activation functions were used in the hidden
layer and the output layer, respectively. These complex functions offer the NN model the
ability to learn both linear and nonlinear relationships between the inputs and the outputs.

The proper choice of the number of neurons in the hidden layer is an important
task. According to the literature, as long as the number of neurons in the hidden layer
is appropriately specified within reasonable limits, a three-layer BPNN can be effectively
applied to model a wide range of complex problems [69]. Too many neurons may result
in increasing the computational time or overlearning so that the NN loses its ability to
generalize the patterns present in the training dataset. On the other hand, very few numbers
of neurons may cause underfitting so that the model is not complex enough to capture
patterns in the data [70,71].

In general, it is not possible to comment definitively on the number of neurons required
for a proper network execution. The best number of hidden neurons was determined by
trial and error, based on the evaluation of the mean square error (MSE). An empirical
formula has been proposed [72] to find the number of hidden neurons:

nh =
√
(ni + no) + c (4)

where nh, ni and no are the number of neurons in hidden, input and output layers, respec-
tively. c is an adjustment constant ranging from 1 to 10. In this article, based on Equation (4),
the number of hidden neurons was examined from 6 to 16 to determine the optimal value.

Performance Evaluation of the NN and the MLR Models

Three statistical indexes, including correlation coefficient (R2), root mean square error
(RMSE) and error percentage (E), were applied to assess the performance of the developed
NN and MLR models in order to find whether there was any significant difference in their
performance. These three performance indicators are calculated as follows [73,74]:

R2 =

[
n(∑ XY)− (∑ X)(∑ Y)√

(n ∑ X2 − (∑ X)2)(n ∑ Y2 − (∑ Y)2)

]2

(5)

RMS =

[
1
n ∑ (X−Y)2

] 1
2

(6)

E =
1
n ∑

∣∣∣∣
Y− X

X

∣∣∣∣ (7)

In these equations, X represents the measured values, Y is the estimated values, and n
is the number of data. The correlation coefficient can determine how the network output
changes according to the actual values, and when it is equal to one, there is a complete
correlation between the estimated and the measured values. The lower RMSE and error
percentage values represent the more accurate estimation results.
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2.3.4. Convolutional Neural Network

CNN is considered to be one of the most popular NNs for image classification prob-
lems. Basically, a CNN is a kind of feedforward NN which comprises two main sections:
The first section (feature extraction) comprises input layer, convolution and pooling layers
and the second section (classification) consists of a dense (flattened) layer, fully connected
layers and an output layer [75]. Figure 5 illustrates the architecture of a typical CNN.

Figure 5. The structure of the CNN model.

The convolutional layer (CL) is the main part of a CNN which extracts features by
convoluting the kernel (filter) over an original image (matrix). The filter works by moving
a window from left to right and top to bottom to multiply and sum each position of the
source pixel (Figure 6). Each convolution layer adopts a 3 × 3 filter with a stride of 1.
ReLU (rectified linear unit) is used as an activation function after each CL. ReLU is always
levelled as 0 and 1. The pooling layer decreases the dimension of feature maps while
keeping the most important information to avoid overfitting [76]. It is generally situated
between consecutive CLs. The maximum pooling function adopts a matrix of size 2 × 2
(Figure 7).

Figure 6. Schematic diagram of image convolution operation.

Figure 7. The maximum pooling function operation (2 × 2 filter and stride 2).
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After the pooling layer, the output feature maps are flattened in the dense layer
by transforming the input from multidimensional space to a one-dimensional array of
numbers to smooth the connection of nodes in the fully connected layer. The classification
of the input image is performed in the classification layer with the ability to adjust weights.
The number of nodes in the classification layer corresponds to the number of classes in
the output.

Many popular CNN architectures have been developed such as LeNet, GoogleNet,
VGG16, ResNet, and AlexNet to solve machine vision-based problems [65]. In this study,
ResNet18 was selected. MATLAB 2021a (The MathWorks, Inc. protected by U.S and
international patents), with Machine toolbox deep neural network designer, was used in
this experiment.

3. Results and Discussion
3.1. Correlation between Froth Features and the Process Metallurgical Performance

The predictive model performance depends on the data nature, and the variable
selection [77]. Feature selection should be considered to find the best set of variables to
build useful predictive models.

The correlation coefficient is a statistical measure that is commonly used to calculate
the strength of the relationship between two variables [78]. In order to select the appropriate
variables and minimize the required dataset, the Pearson correlation coefficients between
the froth features and the sulfur recovery were implemented. The values of the correlation
matrix between the froth images features and the recovery are shown in Figure 8. As
shown in the heatmap, color features obtained from the froth images except H and b
were strongly associated with the amount of sulfur removal, showing almost similar
correlation coefficients. As a result, these parameters were suitable for the sulfur recovery
estimation. Furthermore, there were very weak correlations between the H, b and the
recovery. Therefore, these two features were excluded from the model predictors due to
having a low contribution rate.

Figure 8. Pearson correlation matrix between the inputs and output. (a) color; (b) size and shape;
(c) dynamic; (d) textural properties.
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The color characteristics of the froth images are more related to the process perfor-
mance than to the geometric properties of the bubbles. Figure 8d shows the correlation
values between the textural properties of the froth images and the process performance
factor. There was a significant correlation between the textural features and the recovery.
Among the textural properties, the entropy and energy had a higher correlation with the
sulfur removal values. According to the heatmap, both geometric features and dynamic
factors were most associated with the recovery. The froth stability relative to the velocity
had a higher correlation with the process output variable.

Although the results of the correlation matrix between the amount of sulfur removal
and the froth visual properties showed that these features are somewhat in line with
expectations, the interaction between the factors may obscure the results. Therefore, the
use of nonlinear models for process modelling is justifiable. The input and output variables
of the proposed models for prediction of the output parameter are shown in Figure 9.

Figure 9. The structure of the inputs and output of the proposed models.

3.2. Sulfur Removal Estimation Based on K-Means Algorithm

In this study, the k-means algorithm was applied to cluster the froth image features
using Python software. The effect of the number of clusters (five and six) was examined.
According to the results of this study, a model with six clusters was optimal. The clusters
of samples based on k-means algorithm are visualized in Figure 10. The samples were clas-
sified into the different clusters with different colors. It is clear that the k-means algorithm
was able to classify the dataset. The number of samples in each cluster is given in Table 5.
It can be seen that clusters 3 and 2 had the highest and lowest populations, respectively.

Figure 10. K-means clustering (K = 6) applied to froth feature dataset in order to group the sulfur
removal value.
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Table 5. The number of samples in each cluster.

Cluster Number of Samples in Cluster

1 10
2 5
3 41
4 16
5 18
6 9

The statistical results obtained by applying the k-means method are shown in Table 6.
According to the results of the flotation experiments, the sulfur recovery was split into
six clusters, which were too low, low, low–medium, medium, medium–high and high, as
shown in Table 6. For example, cluster 5 was characterized by the highest level of sulfur
recovery (average = 73.74%). Clusters 3 and 2 were characterized by the medium–high and
the very low level of recovery, respectively. In other words, the average of sulfur recovery
in cluster 3 was higher than the average of the corresponding recovery in cluster 2.

Table 6. Statistical results of predicted values in each cluster.

Cluster Max. Min. Average SD Type Sulfur Recovery (%)

1 37.97 27.91 32.00 3.39 Low–medium 30–40
2 20.57 10.92 15.88 4.14 Very low ≤20
3 66.42 44.06 56.40 6.06 Medium–high 50–65
4 52.62 35.05 42.05 5.42 Medium 40–50
5 87.28 63.73 73.74 6.56 High ≥65
6 29.22 17.08 24.34 3.65 Low 20–30

The accuracy measure clarifies how well the k-means algorithm was able to group the
samples with similar features in the same cluster. To evaluate the errors, it was necessary to
check the members of each cluster to see if they were properly classified. The efficiency of
each cluster was evaluated using the accuracy criterion (Equation (1)). As shown in Table 7,
the results of the k-means algorithm almost matched the results of the actual classification.
Results demonstrated that the relationships between the froth characteristics and recovery
were successfully modelled using the k-means method with rational errors. In general, the
clustering results confirmed the principle that sulfur recovery is greatly affected by froth
features. The froth features classification could estimate the sulfur recovery more accurately
than human workers, avoiding the large fluctuation caused by the personal decisions of
different workers. The proposed classifier could be used to cluster other data whose class
label is not specified.

Table 7. The accuracy of each cluster.

Metallurgical Factor
Cluster

1 2 3 4 5 6

Misclassification 2 0 7 6 2 1
Classification accuracy (%) 80 100 83 63 89 89

3.3. Sulfur Removal Estimation Based on MLR

To predict the amount of sulfur removal from iron ore concentrate, the MLR model was
obtained by processing the full data, as shown in Figure 9. The data were split 85:15 into
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training (to constitute the regression equation) and test data sets. The results of ANOVA for
the regression model are shown in Table 8. The model is shown in the following equation:

SE = 212.04 + 0.204(Grey)− 1.25(Red)− 1.23(Green) + 0.30(Blue)− 106.71(S)
+361.62(I) + 0.66(L)− 1.35(a) + 62, 409.34(ASM)− 0.133(Contrast)
−164.25(IDM)− 5.99(Entropy)− 0.58(Buble size)− 13.34(AR)

(8)

Table 8. Results of ANOVA for regression model.

Sums of
Squares Regress

df
Regress

Sums of Squares
Residual df Residual Mean Squares

Regress
Mean Squares

Residual F P-Level

25,256.54 17 3772.41 66 1485.69 57.16 25.99 0.00

The relationship between measured and calculated values using the proposed math-
ematical model in Equation (8) is presented in Figure 11. The multivariable regression
equation predicted the sulfur recovery with a correlation coefficient of 0.92. The comparison
of the actual values and the estimated values for sulfur recovery in the validation stage is
presented graphically in Figure 12.
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training (to constitute the regression equation) and test data sets. The results of ANOVA for 

the regression model are shown in Table 8. The model is shown in the following equation: 

�� = 212.04 + 0.204(����) − 1.25(���) − 1.23(�����) + 0.30(����) − 106.71(�) 

+361.62(�) + 0.66(�) − 1.35(�) + 62,409.34(���) − 0.133(��������) 

  −164.25(���) − 5.99(�������) − 0.58(����� ����) − 13.34(��) 

(8)

Table 8. Results of ANOVA for regression model. 

Sums of Squares 

Regress 

df 

Regress 

Sums of Squares 

Residual 
df Residual 

Mean Squares 

Regress 

Mean Squares 

Residual 
F P-Level 

25,256.54 17 3772.41 66 1485.69 57.16 25.99 0.00 

The relationship between measured and calculated values using the proposed 

mathematical model in Equation (8) is presented in Figure 11. The multivariable 

regression equation predicted the sulfur recovery with a correlation coefficient of 0.92. 

The comparison of the actual values and the estimated values for sulfur recovery in the 

validation stage is presented graphically in Figure 12. 

 

Figure 11. The correlation between the experimental values and predicted values 

obtained using the MLR (a) training (b) validation. 

Figure 11. The correlation between the experimental values and predicted values obtained using the
MLR (a) training (b) validation.

Figure 12. The comparison of measured values and predicted values for sulfur recovery using MLR.

According to Figure 11, the R values in the training and validation data set for sulfur
recovery were 0.91. The descriptive statistics of the differences between the measured
and estimated values for the evaluation data are given in Table 9. Although the MLR has
been stated as a capable tool for data modelling, it could not accurately describe the sulfur
recovery within the entire process variables space (RMSE = 6.82). This may be due to the
complexity of the selected data covering a wide range of operational conditions. Thus, the
ANN model was examined as an alternative method and is discussed in the next section.
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Table 9. Descriptive statistics of errors between actual and BNN predicted values for the test data.

Variables Minimum Maximum Mean RMSE Error Percentage

Prediction error −11.02 12.14 1.04 6.82 15.4

3.4. Sulfur Removal Estimation Based on BPNN Model

The desulfurization of iron ore concentrate by the column flotation process is highly
nonlinear and complicated [34]. The main objective of the current study was to combine
image analysis methods with an intelligent predictive model such as NN to forecast the
amount of sulfur removal from the iron ore concentrate.

As stated, the visual properties of the flotation froth were included in the input layer
and the sulfur recovery in the output layer. The total 99 experimental data were randomly
divided into three subsets as training, testing and validation. The training data (74 runs)
were used by BPNN to learn how to map the inputs to the output by updating the network
weights. The validation data (10 runs) were applied to assess the quality of the model. The
ultimate check on the performance and generalization ability of the trained model was
performed using testing data (15 runs).

BPNNs with at least one hidden layer are able to effectively estimate any function with
the appropriate approximation, as long as the number of hidden neurons is appropriately
determined. In the hidden layer, only the number of neurons determines the structure of
the network and plays a major role in a network capability. Thus, if the number of neurons
is small, the model does not accurately reflect the nonlinear mapping between inputs and
outputs. On the other hand, if the number of middle layer neurons is too large, the model
becomes overtrained and loses its generalizability [79,80]. To choose the best structure, the
number of neurons in the hidden layer was changed to achieve minimum MSE.

The training settings of the BPNN model in this study are summarized as follows:
number of input nodes: 17, number of hidden neurons: from 6 to 16, number of output
nodes: 1, number of epochs: 1000. As stated in the literature [81], unlike changing the
number of hidden nodes, changing the activation function does not have a significant effect
on the model performance and results with similar MSE and R. The tangent sigmoid and
linear activation functions were used in the hidden and output layers, respectively.

The BPNN model consisting of 10 neurons in the hidden layer gave the lowest MSE
error among all the models studied. The network’s performance in the training stage is
shown in Figure 13. In the training stage, Mu first increased and then dropped, then fell to
0.01, and remained stationary, which shows that the model had reached its optimum state.
The number of validation checks, which describes the number of consecutive iterations that
the validation performance fails to reduce, was equal to six. In other words, if the number
of validation checks reaches six, the training phase will stop.

Figure 13. Training state and performance of the generated BPNN model.
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Figure 13 shows the MSE variation of the training, validation and testing stages versus
the iteration number. As shown in this figure, the large values for the MSE gradually
reduced to a smaller value as the weights were updated. Training stage stopped at the
seventh epoch, i.e., after epoch seven, there was no significant improvement in the per-
formance of the model. The best validation performance was 48.98 at epoch seven, and
after six error iterations (validation checks), the process stopped at epoch thirteen. In epoch
seven, the MSE values for training and testing phases were 18.87 and 31.83, respectively,
implying a good stable network behavior.

The comparison between the actual and predicted values of the sulfur recovery during
training, validation, and testing stages is displayed in Figure 14. The dashed line shows the
perfect result, i.e., outputs are equal to targets, while the solid line represents the best fit
linear regression.

Figure 14. The regression plot of the data used in the training, validation and testing phases.

In the training stage, the predicted data obtained from the BPNN modeling were close
to the actual data with a correlation of R = 0.98. Figure 14 shows the good fit attained in both
the validation and testing of the proposed model (R values above 0.96). Despite the high
variability and wide range of the output data, the overall R of the model was 0.97, which
showed the appropriateness of the training, testing, and validity. From these comparison
plots, it can be concluded that the BPNN is appropriately trained and shows consistency
in forecasting sulfur recovery. The R values obtained from this BPNN model are higher
than those reported in other studies in the literature for the prediction of metallurgical
performance of the flotation process [19,36,82]. The novelty and superiority of the proposed
BPNN model are its highest accuracy compared to the previously reported models to
predict the metallurgical performance parameters of the flotation process.

The BPNN error histogram (differences between actual and predicted values) for the
prediction of sulfur removal is illustrated in Figure 15. It can be observed that most of the
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errors were distributed between −1.43 and 2.54. Furthermore, the validation set and test
set had similar behavior with no occurrence of overfitting. The comparison of the predicted
recoveries with the measured values in the testing phase is shown in Figure 16. The values
estimated by utilizing the BPNN model were very close to the actual measurements. The
descriptive statistics of the errors in the testing stage (Table 10) confirmed that the BPNN
model based on selected froth features was able to estimate the sulfur recovery quite
precisely and satisfactorily. In the testing phase, the R, RMSE, and percent error values
were obtained as 0.97, 4.84 and 11.29%, respectively, which confirmed a precise and robust
prediction of the experimental data.

Figure 15. Error histogram with 20 bins for the training, validation and testing of BPNN for sulfur
recovery prediction.

Figure 16. Comparison of measured and predicted values in the BPNN testing phase.

Table 10. Descriptive statistics of errors between actual and BPNN predicted values for the test data.

Variables Minimum Maximum Mean RMSE Error Percentage

Prediction error 8.06 −7.59 0.57 4.84 11.29

It was demonstrated that a well-trained BPNN model based on froth features could
be used to predict sulfur recovery from iron ore concentrate by column flotation without
needing more experimental study requiring much time and high experiment costs.

3.5. Sulfur Removal Estimation Based on CNN

To classify the six groups of froth data, the ResNet18 deep learning classification
method was used. The CNN has 71 layers containing input, convolutional, pooling, fully
connected, ReLU, batch normalization, softmax and output layers. The layer structure of
the proposed CNN is given in Figure 17.

21



Minerals 2022, 12, 1434

Figure 17. Layer structure analysis for the CNN model training.

Figure 18 illustrates the confusion matrices of the CNN model in the classification
process. A confusion matrix explains the estimation results of a classifier. The diagonal
elements represent the number of correct predictions, while the off-diagonal elements repre-
sent incorrect estimations. This figure shows that the classification accuracy of the CNN for
six froth classes was high, indicating that the model could provide an accurate prediction
of the flotation performance (the amount of sulfur removal). The bottom and right values
display the overall accuracy of the classification model. The prediction accuracy using this
deep learning model was 90% which was much higher than the k-means algorithm.

Figure 18. Confusion matrix of the CNN classifier.
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The results showed that the CNN model was suitable for finding the process conditions
of the column flotation in desulfurization of iron ore concentrate with high accuracy and
efficiency. For example, if the froth images are categorized in Class A, Class B, or Class C,
it is a sign that the current condition is abnormal. In this circumstance, the plant workers
need to regulate the operating factors to achieve the desired performance.

3.6. Comparison of MLR, K-Means, BPNN and CNN Models

The results showed that all the proposed models, k-means, MLR, BPNN, and CNN,
could be considered for sulfur removal prediction in the desulfurization of iron ore con-
centrate using flotation froth images. However, when different statistical results such as R,
RSME, and percent error were examined, it was clear that the BPNN and CNN predicted
values were more accurate than those of the MLR and k-means models.

The total accuracy of the CNN and k-means algorithms were 91% and 82%, respectively.
In the k-means algorithm, regression and BPNN models, the froth features were firstly
extracted offline through image analysis techniques and then they were entered into the
models, whereas in the CNN model the froth images were directly fed into the model. Since,
the traditional predictive models were built based on off-line feature extraction techniques,
the training time for evaluation of the models was ignored. So, it can be concluded that the
CNN and BPNN were able to categorize the froth images with high performance.

The BPNN and CNN models were found to be more successful where nonlinear and
complex relationships were involved in the system, such as the desulfurization process of
iron ore concentrate using the column flotation process. Thus, it was possible to establish a
complex relationship between sulfur recovery and froth flotation features using the BPNN
and CNN models with an excellent accuracy level.

It is important to note that sometimes BPNN does not represent the most cost-effective
solution. In some cases, the interpretability of the network and weights may be difficult,
the determination of the optimum structure and parameters may be troublesome, and the
convergence of the training algorithm may be endless [81]. In these situations, MLR models
can have advantages in terms of accuracy, variability, and model creation; therefore, its
choice is preferred [83].

4. Conclusions

In the iron reverse flotation process, the amount of sulfur removal and the quality of
flotation concentrate are usually judged according to the froth’s surface appearance. Visual
assessments by workers are challenging tasks and often inaccurate; in practice, they can
only be performed at a given time. A machine vision system for monitoring and control
of the operating conditions of the flotation process can be a great help for workers and
iron and steel producers. Therefore, to forecast the amount of sulfur removal from the iron
concentrate in the flotation process, soft-sensor models based on extracted froth features
were proposed.

A total of 99 flotation column experiments were conducted in a wide range of different
operating conditions and the froth features were extracted for each run. In this study,
the abilities of four algorithms, including multiple linear regression (MLR), the k-means
algorithm, the backpropagation neural network (BPNN), and the convolutional neural
network (CNN) to predict the sulfur recovery, were examined and compared. In the first
three models, the different froth features such as color, bubble shape and size, texture, froth
stability, and velocity were primarily extracted offline through image processing techniques
and then they were fed into the models, whereas in the CNN model the froth images were
directly fed into the model.

The results showed that among the four algorithms implemented, the three-layer BPNN
and the CNN models outperformed the MLR and k-means techniques when predicting sulfur
recovery. The best NN model was a backpropagation network (topology 17-10-1) using a
Levenberg–Marquardt algorithm for the training step, showing R = 0.97, RMSE = 4.84 and
percent error = 11.29%. The total accuracy of the CNN and k-means algorithms were 91% and
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80%, respectively. Therefore, the sulfur recovery, which is the most important parameter
for control purposes of the flotation process, can be accurately predicted from the froth
surface appearance by the BPNN and CNN models. Considering the accuracy and time
consumed in measuring the metallurgical parameters of the flotation process, with the use
of BPNN and CNN models, satisfactory results can be predicted rather than measured
in the laboratory which thereby reduces the testing time and cost. As a result, it can be
confirmed that such modelling studies pave the way to find an alternative to the on-stream
analyzer, such as XRF, which is costly and not widely available.

In the future, the performance of the proposed models can be improved if more
machine learning techniques are tested on larger datasets. Finally, future studies should
concentrate on the validation and generalization of the proposed models in an industrial
flotation process.
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Abstract: This paper presents the development and validation of five different soft computing
methods for flotation performance prediction: (1) two models based on fuzzy logic (Mamdani and
Takagi-Sugeno fuzzy inference system) and (2) three models based on artificial neural networks.
Copper content in the ore feed, collector dosage in the rougher and the scavenger flotation circuits,
slurry pH in the rougher flotation circuit and frother consumption were selected as input parameters
to estimate the copper grade and recovery of final concentrate, as well as the copper content in the final
tailings of the flotation plant. The training and evaluation of the proposed models were performed
on the basis of real process data collected by the multiannual monitoring of industrial flotation plant
operation in “Veliki Krivelj Mine”. The results showed that the proposed soft computing-based
models well describe the behavior of the industrial flotation plant in a wide range of circumstances.
Among the proposed algorithms, artificial neural networks gave the most accurate predictions for
the final copper concentrate grade and recovery (R2 = 0.98 and R2 = 0.99, respectively) and copper
content in final tailings (R2 = 0.87). At some points, fuzzy logic models are almost equally efficient,
but artificial neural networks had lower values for all error functions.

Keywords: copper flotation; fuzzy logic; artificial neural network; mathematical modeling

1. Introduction

In the mining industry, the separation of valuable minerals from raw ores is carried
out using the flotation process to obtain qualified concentrate and to eliminate tailings.
Recovery and grade of the concentrate are the important metallurgical factors of the
flotation process. In an industrial flotation plant, the online prediction of the metallurgical
factors is costly and time-consuming. Since the flotation is a nonlinear process, modeling,
automatic monitoring and control of the industrial plants based on the metallurgical factors
have met with limited success at the present time. Furthermore, the process models based
on classical experimental methods do not provide sufficiently efficient results when it
comes to such complex systems [1]. To overcome these difficulties, the use of statistical and
artificial intelligence methods for control and monitoring purposes of the flotation process
has been developed [2]. Therefore, soft sensors based on problem-solving technologies
such as fuzzy logic and neural networks (NNs) emerged as perspective alternatives to
the classical modeling approaches. These methods, unlike the conventional mathematical
techniques, exhibit a certain tolerance to the imprecision and uncertainty of technological
parameters in the description of real systems [3–6].

The most commonly used soft computing methods in the modeling of flotation pro-
cess are different types of NNs due to their acceptable accuracy, robustness, simplicity
and nonlinearity [7–9]. NNs use very powerful computational techniques for modeling
the complex nonlinear processes. Among them, a frequently used NN is a multilayer
perceptron (MLP) based on which models for predicting various flotation parameters have
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been developed. For example, Al-Thyabat [10] examined the suitability of different MLP
architectures by considering the influence of three input parameters (mean particle size in
the feed slurry, collector dosage and impeller rotation speed) on the grade and recovery of
the concentrate obtained by the phosphate flotation process. Similarly, Farghaly et al. [11]
used an artificial neural network (ANN) model to investigate the effect of flotation time,
collector dosage, frother dosage and impeller speed on the grade and recovery of coal
concentrate. Jorjani et al. [12] formed two MLP architectures (7-10-3-1) and (5-30-2-1), for
predicting the recovery and grade of the coal concentrate, respectively.

Nakhaei et al. [13–15] proposed several ANN models for predicting the contents and
recoveries of copper and molybdenum in the column flotation concentrate. The authors
concluded that NNs proved to be a superior technique compared to the regression models.
The same conclusion was obtained by other researchers comparing the statistical methods
and techniques based on MLP for the modeling of copper minerals’ flotation process [16,17].
More recently, the researchers proposed ANN models for the prediction of the phosphate
concentrate grade [18], and removal Cu (II) ion in flotation systems [19].

Some authors have also considered the application of other types of NNs. For example,
Gholami et al. [20] used two types of recurrent neural networks (RNN)—Long short-
term memory network (LSTM) and Gated recurrent unit network (GRU)—to predict the
grade and recovery of copper concentrate within different operating conditions. They
compared the results obtained by the RNN with models based on classical NN and random
forest methods. They demonstrated that the RNN models have a better prediction ability.
The potential of RNNs was also considered by Nakhaei and Irannajad [15], where they
demonstrated good abilities to predict the content and recovery of Cu and Mo in the final
concentrate obtained in the flotation column (correlation coefficient greater than 0.8).

There are also numerous studies for the application of NN in the models related
to the identification, categorization and interpretation of flotation froth images [21–30].
These models typically use extracted features from flotation froth images. In recent times,
convolutional neural networks are increasingly being used to model the flotation process,
especially when it comes to the classification and feature recognition of froth images [31–35].

Fuzzy logic supports the ability of the human mind to effectively express a way of
reasoning that is more approximate than exact. It is a computation and reasoning system
where the objects of computation and reasoning are classes with fuzzy limitations. Fuzzy
logic system allows analysis for modeling complex and poorly defined systems in which
linguistic expressions are used rather than numerical variables [36].

Fuzzy inference is the process of formulating the mapping from a given input to an
output using fuzzy logic. The fuzzy logic generally presents a simple knowledge of the
complex and non-linear process in terms of if-then precise rules with different matching
degrees for a given operational situation [37,38]. This is especially valuable where models
are developed based on expert’s knowledge and individuals without a mathematical
background are involved. There are two kinds of fuzzy inference systems that can be
implemented in the Fuzzy Logic Toolbox: Mamdani and Sugeno types.

Fuzzy logic has been increasingly used in different mineral processing fields with a
variety purpose, such as crushing [39], grinding [40], flotation [4,41] and sample prepa-
ration [42] systems. Attempts to model flotation processes by a fuzzy logic approach are
numerous, whether it is about models related to the entire flotation system or to specific
subsystems that are its integral part.

Jahedsaravani et al. [16] used NN, adaptive neuro-fuzzy and regression methods for
modeling the metallurgical factors in the batch flotation process. Their results indicated
that intelligent techniques outperform statistical approaches. Carvalho and Durão [43]
proposed a model based on Mamdani’s fuzzy inference system within the control system
for stabilizing the operation of the flotation column in a two-phase system (air and water).
In another study, they more fully described the implementation of this model in the control
system of a pilot flotation plant [44]. Vieira et al. [45] employed a multiple-input and
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multiple-output (MIMO) model to identify the performance of a flotation column using the
fuzzy modeling technique, where the Takagi-Sugeno inference system was applied.

Liao et al. [46] created a fuzzy inference system within a slurry level control system in
a flotation column. They considered the position of the valve that regulates the slurry level,
depending on the error between the reference and measured slurry level and the change
rate of that error. Jahedsaravani et al. [47] developed a fuzzy model that simulates the
relationship between process conditions (air velocity, slurry solids content, frother dosage
and type) and metallurgical process parameters (grade and recovery) in an industrial copper
flotation column. This model was incorporated into an intelligent system for controlling
the flotation process. The simulation results demonstrated that the proposed model was
able to maintain the process performance at the desired values during an acceptable period
of time.

Recently, Zhou and Zhou [48] proposed a fuzzy logic-based methodology for bubble
edge detection in flotation froth images. Liang et al. [49] used a fuzzy logic model to
optimize the configuration of flotation circuit. Gao et al. [35] applied several soft computing
methodologies to develop a system that recognizes and classifies flotation froth images,
including fuzzy logic.

The importance of process modeling is reflected in several technological and produc-
tion aspects of flotation concentration. For example, models can be used for data analysis,
which, from the aspect of the complexity of the technological process, would not be easy
to achieve. Ali [50] provides several advantages that can be obtained by mathematical
modeling, optimization and flotation process simulation, such as: improvement of knowl-
edge management, better understanding of current problems, enhancement of technology
transfers, decision-making support systems for plant personnel, improvements in plant
work conditions, improvement in product quality, the reduction of potentially hazardous
experiments, reduction of waste in process development, etc. Proper prediction of metal-
lurgical performance factors of the flotation circuit leads to optimum production and high
profit margin for industrial mineral companies.

Despite the popularity of the flotation process, and the numerous published studies,
comprehensive and robust model that can represent the relationship between the operation
variables (such as grinding fineness, reagent regime, slurry pH and density, residence time
and similar) and performance parameters (usually concentrate quality and recovery of
useful components) of the whole industrial flotation circuit is a challenging task.

Hence, finding a robust and more accurate prediction method for estimating the
metallurgical performance parameters of an industrial flotation circuit is still necessary.
Therefore, this work aims to assess and compare the performance of the two predictive
methods that are ANN and fuzzy logic and to reveal the relevant approach for predicting
the metallurgical parameters in an industrial copper flotation plant. These models are
applied to a large set of industrial flotation circuit data and the results are compared in
terms of accuracy, complexity and suitability for control of the flotation process. For this
purpose, a real large dataset (obtained by multiannual monitoring) of the industrial copper
flotation plant (Veliki Krivelj) is used. The final copper grade and recovery of the flotation
circuit concentrate along with copper content in final tailings are predicted depending
on the five effective variables, which are copper content in the ore feed, collector dosage
in the rougher and the scavenger flotation lines, pulp pH in the rougher line and frother
consumption.

The purpose of modeling the production process in Veliki Krivelj is the possibility of
implementing the obtained models into an automatic control system of this process. This
system would include the application of controllers based on soft computing methods,
as a form of decision support for operators (fuzzy logic controller) or as an independent
control unit (ANN controller). Classic PID controllers, in this case, would be used at lower
hierarchical levels of control to regulate certain parameters such as: pulp level in flotation
cells, air flow, pH value, value of electrochemical potential (Eh) and the like.
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2. Materials and Methods
2.1. Input and Output Variables
2.1.1. Brief Description of the Veliki Krivelj Flotation Plant

The flow sheet of the Veliki Krivelj flotation circuit is shown in Figure 1. In the
comminution plant, the output of three-stage crushing is fed to the two-stage grinding
trains (rod mill and ball mill) in the closed circuit with cyclones to produce 58% of the
product finer than 74 µm. The product of the grinding circuit is separately fed to two
lines of roughing flotation cells. The first roughing flotation bank consists of 2 × 16 cells,
and the second one of 3 × 21 cells. The final copper concentrate is produced by three
stages of flotation cleaning. The first, second and third cleaning banks have 2 × 9, 1 × 8
and 1 × 18 cells, respectively. There is a scavenging flotation stage after the first cleaning.
The scavenging bank consists of 8 cells. The combined concentrates of the roughing and
scavenging lines are ground by using a regrinding mill. The tailings of the roughing and
scavenging cells are discarded as the final tails. In this flotation circuit, Potassium ethyl
xanthate (PEX) is used as collector and Dowfroth 250 (D-250) is used as frother. After the
flotation stages, a copper concentrate was produced with an average grade and recovery of
18%–22% and 80%–90%, respectively.
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Figure 1. Process flow diagram of Veliki Krivelj flotation plant: 1–6—conveyor belts; 7–9—rod
mills; 10–12, 21, 24, 29, 30, 33, 34—centrifugal slurry pumps; 13–15, 25—ball mills; 16–18, 26—
hydrocyclones; 19, 22—agitators; 20, 23—roughing flotation cells; 27—divider; 28—first cleaning
cells; 31—scavenging cells; 32—second cleaning cells; 35—third cleaning cells (Adapted from [4]).

2.1.2. Data Collection

The flotation process is characterized by a large number of influential parameters, i.e.,
input variables that influence the course of the process. All data (the input and output
parameters of the model) were collected by daily/shiftly process monitoring during the
multiannual plant’s operation. The samples on which the copper content is determined—
feed ore, final concentrate and final tailings—were taken at every hour. From the hourly
increments, shift composite samples are formed (one shift lasts 8 h). On these, composites
chemical analyses for copper are performed. The average consumption of reagents as
well as the pulp pH value during one shift are read from the control room. More details
about process parameters measurement and data collection are given in Appendix A.
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Furthermore, Appendix B contains information about all datasets that were used in the
process of model development and evaluation.

2.1.3. Selection of Variables

For the purposes of developing the process models, during the selection of the ap-
propriate influential parameters, their importance was taken into account on the basis of
expert analysis, as well as the availability of appropriate data. The key input variables are
shown in Table 1. Other variables are considered mainly at their constant values as shown
in Table 2. The output parameters of the models are shown in Table 3.

Table 1. Input (independent) parameters.

Type of Variable Label in the Model Unit of Measurement

Copper content in the feed FCU %
Collector consumption at rougher flotation circuit PXR g/t

Frother consumption FRT g/t
pH value of slurry at rougher flotation circuit PHR -

Collector consumption at scavenger flotation circuit PXS g/t

Table 2. Input variables that are considered constant.

Parameter Value Unit of Measurement

Grinding fineness 58 % of class −74 + 0 µm
Regrinding fineness 85 % of class −74 + 0 µm

Pulp density in rougher flotation circuit 1190 g/L
Pulp density in 1st, 2nd and 3rd cleaning 1150, 1130 and 1125 g/L
Pulp density in scavenger flotation circuit 1120 g/L

pH value in 1st, 2nd and 3rd cleaning 11.5, 11.8 and 12 -
pH value in scavenger flotation circuit 11.5 -

Residence time of rougher flotation circuit 21 minutes
Residence time of 1st, 2nd and 3rd cleaning 10, 20 and 19 minutes
Residence time of scavenger flotation circuit 10 minutes

Table 3. Output (dependent) parameters.

Type of Variable Label in the Model Unit of Measure

Copper content in the final concentrate CCU %
Copper content in the final tailings TCU %

Copper recovery in the final concentrate RCU %

The reasons for choosing constant variables are varied. For example, the liberation of
the mineral raw material, i.e., its particle size distribution after grinding and regrinding is
an important influencing parameter in the process. However, the analysis of the particle
size distribution on the sieves is not performed daily, but as needed, every few days. The
monitoring of the particle size distribution of the raw material mainly takes place on the
mining pan, so there was not enough information about the changes of this parameter
during each shift. Furthermore, when it comes to pulp density, there are shiftly data on
the density of hydrocyclone overflows at grinding and regrinding. However, it should be
taken into account that water is added to the roughing flotation cells, as well as to each
cleaning stage, with the aim of correcting the pulp density. Since there is no continuous
monitoring of pulp density in flotation cells, data on changes in pulp density in any of the
stages of flotation concentration were not available.

By analysis of data about pH values of the hydrocyclone overflow at the regrinding, it
was observed that they generally range between 9 and 10. Given that the first cleaning takes
place at a pulp pH of approximately 11.5, it is clear that in the stage of the first cleaning,
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with addition of lime milk, was almost always necessary to achieve the desired pH value.
Consequently, although there is regular monitoring and record keeping of pH values of
the hydrocyclone overflow at the regrinding, these data cannot be considered confident
for process model development. Choosing the consumption of the titrant in the cleaning
stages as input variables makes more sense; however, from the automatic process control
and regulation point of view, it is much more efficient to monitor pulp pH values (because
they can be directly and continuously measured). Bearing in mind this fact, it was decided
not to take the titration values into account in the modeling, but to consider the pH values
of the pulp at cleaning and scavenging as constants.

It should also be noted that one of the criteria when choosing the number of input
variables was the complexity of the fuzzy logic model. Specifically, when the number of
input parameter increases, the number of fuzzy rules will increase exponentially [51]. This
significantly increases the number of calculation and response time of fuzzy system. Therefore,
the decision was to adopt an optimally small number of input parameters in the model.

In order to gain a better insight into the range and characteristics of the input and output
variables, Table 4 presents some of the statistical indicators of the associated data sets.

Table 4. Statistical indicators of the input and output variables in the flotation system.

Statistical Indicator
Input Variables Output Variables

FCU PXR FRT PHR PXS CCU TCU RCU

Minimum 0.12 10.00 1.02 8.44 2.50 7.91 0.009 40.78
Maximum 0.51 49.98 16.97 11.97 7.90 28.09 0.149 96.48

Mean 0.26 32.27 6.19 10.40 5.38 19.24 0.041 84.24
Mod 0.26 33.50 3.80 9.85 5.00 18.48 0.035 90.77

Median 0.26 33.30 5.87 10.45 5.25 19.34 0.038 85.18
Standard deviation 0.046 5.046 2.319 0.645 0.774 3.129 0.017 6.751
Confidence interval 0.002 0.226 0.104 0.029 0.035 0.140 0.001 0.303

2.2. Methodology of Fuzzy System

Fuzzy logic is a mathematical rule-based system in which two human capabilities, which
are the reasoning ability and the ability to fulfill different mental tasks, are tried to be mech-
anized with IF–THEN rules [52,53]. Fuzzy modeling uses linguistic expressions instead of
numerical variables. The typical fuzzy logic architecture comprises four parts: 1. fuzzification,
2. fuzzy rule base, 3. fuzzy inference system (FIS) and 4. defuzzification, as it is illustrated in
Figure 2 [54].

To implement a fuzzy rule-based model, the following stages are needed. First, the
input and output variables are determined. Second, the fuzzy sets are determined for all
variables. Within the fuzzification process, membership functions were determined for
each of the input and output variable. In practice, different types of membership functions
are used (such as triangular, trapezoidal, Gaussian, sigmoidal, polynominal, etc.), and the
selection of the form of the membership functions will rely on the suitability of represent-
ing the element belonging to a given set and expert’s decision. In this research, several
membership functions—triangular, trapezoidal, Gaussian and sigmoidal right—are taken
into consideration, and the most appropriate membership functions: Gaussian, trapezoidal
and constant (Sugeno) were chosen. According to expert analysis, these functions gave the
response surfaces most corresponding to the real process.
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Figure 2. Fuzzy logic system [54].

FIS is the heart of the fuzzy logic system in which the classical numeric values are
translated to linguistic forms. These linguistic forms are related to membership function
which assigns them a membership degree (always in the interval between 0 and 1) [55]. FIS
is known as a decision-making platform, which syndicates fuzzification facts with a rule
base and performs the fuzzy reasoning process [56]. FIS includes membership functions,
IF-THEN rules and other logical operations. IF-THEN rules are made to describe the
association between input and output variables [53]. In this work, a set of the linguistic
variables of a fuzzy model are specified as Low, Medium and High (see Table 5).

For the purpose of the current research, the two most common FIS types were estab-
lished: the Mamdani fuzzy inference system marked as PMM and the other based on the
Takagi Sugeno fuzzy inference system, marked as PSM. There are some differences between
them. The PSM model is made by the appropriate transformation of the PMM model. The
output of the Sugeno is linear or constant, but the output of Mamdani is the membership
function. The final stage is the defuzzification in which the fuzzy results are translated to
crispy form values. Some of the defuzzification techniques are the mean of the maximum,
centroid, smallest of the maximum, and largest of the maximum.

In this study, the built fuzzy models are established, trained and authenticated to
predict the flotation performance parameters. The input parameters are FCU, PXR, FRT,
PHR, PXS, while CCU, TCU, RCU are considered as the output responses. The fuzzy
models are constructed by using a fuzzy toolbox of MATLAB®. The fuzzification of the
variables is performed based on the experiential knowledge of the flotation process as well
as the analysis of the collected data. During the training stage, the values of the fuzzy
numbers within the membership functions were adjusted. For each membership function,
an appropriate type and range are determined and assigned.

In order to see more clearly the type and range of the used membership functions,
in the following text, the mathematical formulas describing trapezoidal and Gaussian
functions are given. Trapezoidal membership function (µT) is specified by four parameters
(a, b, c, d) as follows:

µT(x; a, b, c, d) =





0, x ≤ a
x−a
b−a , a ≤ x ≤ b
1, b ≤ x ≤ c

d−x
d−c , c ≤ x ≤ d

0, d ≤ x





(1)

where the parameters a, b, c and d (with a < b ≤ c < d) determine the x coordinates of the
four corners of the underlying trapezoidal membership function. An illustration of this
membership function is given in Figure 3a.
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Table 5. Fuzzification of the range of variables in the PMM and PSM.

Variable Membership
Function Range of Values Range Fuzzification (Linguistic

Value of the Variable)

Input
(independent)

FCU Gaussian
σ/2 = 0.04778; c = 0.112 Low
σ/2 = 0.07976; c = 0.3008 Medium
σ/2 = 0.02871; c = 0.492 High

PXR Gaussian
σ/2 = 4.743; c = 10.5 Low
σ/2 = 6.37; c = 30.0 Medium
σ/2 = 4.678; c = 49.0 High

FRT Gaussian
σ/2 = 1.362; c = 0.325 Low
σ/2 = 1.486; c = 6.5 Medium
σ/2 = 5.335; c = 17.4 High

PHR Gaussian
σ/2 = 0.779; c = 8.08 Low
σ/2 = 0.598; c = 9.989 Medium
σ/2 = 1.071; c = 11.88 High

PXS Gaussian
σ/2 = 1.225; c = 2.2 Low
σ/2 = 0.7887; c = 6.0 Medium
σ/2 = 0.3802; c = 7.9 High

Output
PMM

CCU Trapezoidal
a = 3.439; b = 6.845; c = 8.015; d = 13.98 Low
a = 10.16; b = 12.36; c = 15.28; d = 21.66 Medium
a = 19.78; b = 24.18; c = 25.38; d = 28.08 High

RCU Trapezoidal
a = 34.32; b = 43.92; c = 54.12; d = 65.73 Low
a = 56.05; b = 71.45; c = 76.15; d = 94.35 Medium
a = 61.90; b = 82.32; c = 89.90; d = 100.0 High

TCU Trapezoidal
a = 0.0124; b = 0.0394; c = 0.0461; d = 0.0731 Low
a = 0.0609; b = 0.0878; c = 0.0946; d = 0.1216 Medium
a = 0.1227; b = 0.1497; c = 0.1565; d = 0.1834 High

Output PSM

CCU Constant
z = 8.8 Low

z = 15.08 Medium
z = 24.25 High

RCU Constant
z = 49.61 Low
z = 74.69 Medium
z = 83.07 High

TCU Constant
z = 0.0427 Low
z = 0.0912 Medium
z = 0.153 High
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Gaussian membership function (µG) is specified by two parameters (c, σ) as follows:

µG(x; c, σ) = e−
1
2 (

x−c
σ )

2
(2)

where c represents the membership functions center and σ determines the membership
function width. An illustration is given in Figure 3b.
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Table 5 shows the fuzzified linguistic values of the input and output variables. The
parameter labels given in the column entitled “Range of values” correspond to those in
Equations (1) and (2). Figures 4 and 5 show the examples of defined membership functions.
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Figure 5. Example of defining the parameters of membership functions in the PSM: (a) pH value at
rougher flotation circuit (PHR); (b) collector consumption in scavenging circuit (PXS).

As a starting point for defining fuzzy rules, Table 6 shows the interdependence matrix
of process parameters of the flotation process. The action, that is, the behavior of depen-
dent variables in the process, was considered for the case of an increase in the value of
independent variable factors (understood within the established range, with no influence
of the remained parameters).

By combining the linguistic values of the input and output variables using the logical
operators of conjunction (AND) or disjunction (OR), fuzzy rules of the following type were
formed (Table 7):

Fuzzy rules were formed based on literature review and expert knowledge of the
flotation process. In this process, 753 rules were constructed by using a rule editor in a
fuzzy toolbox environment. Figure 6 shows the details of rule bases for PMM and PSM
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models, where the rule constituents are expressed through membership functions. This
display of the rule base allows the possibility of setting the values of the input parameters
and insight into the resulting values of the output variables.

Table 6. Interdependence matrix of parameters in the flotation process.

Independent Variable
Action 1

CCU RCU TCU

FCU ↑ ↓ ↑
PXR ↑ ↑ ↓
FRT ↓ ↑ ↓
PHR ↑ ↓ ↑
PXS ↓ ↑ ↓

1 ↑—increase; ↓—decrease.

Table 7. Fuzzy rules formation.

IF FCU is “low” AND PXR is “high” AND FRT is “medium” AND PHR is “medium” AND PXS is “high”
THEN CCU is “medium” AND TCU is “low” AND RCU is “high”

IF FCU is “medium” AND PXR is “medium” AND FRT is “high” AND PHR is “low” AND PXS is “medium”
THEN CCU is “medium” AND TCU is “medium” AND RCU is “high”

IF FCU is “high” AND PXR is “medium” AND FRT is “medium” AND PHR is “high” AND PXS is “low”
THEN CCU is “high” AND TCU is “medium” AND RCU is “medium”

...
etc.

2.2.1. Fuzzy Logic Model Based on Mamdani Inference System—PMM

The elementary characteristics of the PMM model are as following:

• Mamdani inference system;
• Applied AND operator in all rules;
• Implication by the minimum method;
• Aggregation by the maximum method; and
• Defuzzification by the centroid method.

PMM model contains a base of 753 rules. The resulting surfaces are shown in Figures 7–9.
By observing the obtained surfaces, and taking into account predefined boundaries,

it can generally be concluded that these surfaces follow real dependencies of the process
parameters to an acceptable extent. Due to the existence of a large number of resulting sur-
faces, a detailed analysis of each surface would require a too extensive textual presentation.
Therefore, the authors decided to analyze two resulting surfaces of the PMM model:

(1) The surface that shows the dependence of the final concentrate grade (CCU) on copper
content in the feed (FCU) and collector consumption at a rougher flotation circuit
(PXR), Figure 7c;

(2) The surface that demonstrates dependence of the final grade of tailings (TCU) on the
copper content in the feed (FCU) and frother consumption (FRT), Figure 9a.

By visual analysis of the first chosen surface, Figure 7c, it can be observed that with
increasing the collector dosage to a certain extent, the copper grade of the final concentrate
increases and then decreases with a further increase in collector dosage. Similarly, with
increasing the copper content in the feed ore, the quality of the final concentrate also
increases. When we consider the second chosen surface, Figure 9a, it can be observed that
an increase in the frother dosage leads to the reduction of the copper content in the tailings.
These characteristics are in alignment with the literature [57–59].
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copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS); (e) 

frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother 

consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of 

Figure 7. Resulting response surfaces of the PMM model—dependence of final concentrate quality
(CCU) on input parameters. (a) copper content in the feed (FCU) and frother consumption (FRT);
(b) copper content in the feed (FCU) and pH value of slurry at rougher flotation circuit (PHR);
(c) copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR);
(d) copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS);
(e) frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother
consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of
slurry at rougher flotation circuit (PHR) and collector consumption at scavenger flotation ciruit (PXS);
(h) frother consumption (FRT) and collector consumption at rougher flotation circuit (PXR); (i) pH
value of slurry at rougher flotation circuit (PHR) and collector consumption at rougher flotation
circuit (PXR); (j) collector consumption at scavenger flotation ciruit (PXS) and collector consumption
at rougher flotation circuit (PXR).
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Figure 8. Resulting response surfaces of the PMM model—dependence of copper recovery in final
concentrate (RCU) on input parameters. (a) copper content in the feed (FCU) and frother consumption
(FRT); (b) copper content in the feed (FCU) and pH value of slurry at rougher flotation circuit (PHR);
(c) copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR);
(d) copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS);
(e) frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother
consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of
slurry at rougher flotation circuit (PHR) and collector consumption at scavenger flotation ciruit (PXS);
(h) frother consumption (FRT) and collector consumption at rougher flotation circuit (PXR); (i) pH
value of slurry at rougher flotation circuit (PHR) and collector consumption at rougher flotation
circuit (PXR); (j) collector consumption at scavenger flotation ciruit (PXS) and collector consumption
at rougher flotation circuit (PXR).
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Figure 9. Resulting response surfaces of the PMM model—dependence of copper content in final
tailings (TCU) on input parameters. (a) copper content in the feed (FCU) and frother consumption
(FRT); (b) copper content in the feed (FCU) and pH value of slurry at rougher flotation circuit (PHR);
(c) copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR);
(d) copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS);
(e) frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother
consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of
slurry at rougher flotation circuit (PHR) and collector consumption at scavenger flotation ciruit (PXS);
(h) frother consumption (FRT) and collector consumption at rougher flotation circuit (PXR); (i) pH
value of slurry at rougher flotation circuit (PHR) and collector consumption at rougher flotation
circuit (PXR); (j) collector consumption at scavenger flotation ciruit (PXS) and collector consumption
at rougher flotation circuit (PXR).
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2.2.2. Fuzzy Logic Model Based on Takagi Sugeno Inference System—PSM

The fuzzy logic model was formed by applying a suitable transformation of the PSM
model. Its basic methodological characteristics are as follows:

• Takagi-Sugeno inference system; applied AND operator in all rules;
• Implication by the product method;
• Aggregation by the sum method and
• Defuzzification by the weighted average method.

The surfaces obtained by the Takagi Sugeno methodology were smoother than those
obtained by the Mamdani fuzzy inference system, which is expected [60]. In general, it can
be concluded that these surfaces follow the real dependencies of the process parameters
somewhat better than the PMM model. As in the previous section, a detailed analysis of all
surfaces requires a substantial textual representation. Because of that, the analyses of two
selected resulting surfaces are given in this section:

(1) The surface that shows the dependence of the final concentrate grade (CCU) on
the copper content in the feed (FCU) and the pulp pH at the rougher circuit (PHR),
Figure 10b; and

(2) The surface that displays the dependence of copper recovery in the final concentrate
(RCU) on the copper content in the feed (FCU) and the consumption of the collector
at the scavenger circuit (PXS), Figure 11d.

It is known from practice that an increase in the pulp pH leads to an increase in the
copper grade of concentrate, which can also be observed from the first selected surface,
Figure 10b. At first glance, the question of the regularity of the given surface can be
imposed, considering that in this case only the pH value at the rough flotation is considered.
However, we should not ignore the fact that the pH values in the other stages of flotation
are considered optimal constants, and therefore this surface is justified from the aspect of
the flotation concentration process as a whole.

The main reason for adding the collector at the scavenger stage is to increase the
recovery of copper in the concentrate, which coincides with the appearance of the second
selected surface, Figure 11d.

In industrial conditions, the increase in the copper content in the feed ore increase
the concentrate grade. Moreover, if the feed is poor, recovery increases to a certain extent,
and with a further increase in Cu in the feed, recovery decreases, because a part of the
copper remains in the tailings. These technological actualities correspond to both observed
surfaces.

2.3. Artificial Neural Network

NNs are used for solving complex and nonlinear engineering problems. NNs is a
widely used model in mineral processing applications with the ability to recognize patterns
among parameters and predict the key performance parameters of the processes. A typical
NN comprises a large number of neurons or nodes, which are connected to each other. The
neurons are grouped in layers and connected by weighted links and bias. The output of
each neuron is transferred to the next layer as an input. Finally, the nonlinear basis function
set is used to calculate the outputs of NN. The model learning is modifying the weights and
biases to minimize the error, taking into account the targets. Details of the NN algorithm
procedure are presented by Nakhaei et al. [61,62].

In the current study, three feed-forward back-propagation learning algorithms were
employed for predicting the copper content in the final concentrate (NN1), copper recovery
in the final concentrate (NN2), and copper content in the final tailings (NN3). A simple
architecture for the model structures established in this study is shown in Figure 13.

The base also contains 753 rules, as well as the corresponding Mamdani model. The
resulting surfaces of the PSM model are presented in Figures 10–12.
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Figure 10. Resulting response surfaces of the PSM model—dependence of final concentrate quality
(CCU) on input parameters. (a) copper content in the feed (FCU) and frother consumption (FRT);
(b) copper content in the feed (FCU) and pH value of slurry at rougher flotation circuit (PHR);
(c) copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR);
(d) copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS);
(e) frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother
consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of
slurry at rougher flotation circuit (PHR) and collector consumption at scavenger flotation ciruit (PXS);
(h) frother consumption (FRT) and collector consumption at rougher flotation circuit (PXR); (i) pH
value of slurry at rougher flotation circuit (PHR) and collector consumption at rougher flotation
circuit (PXR); (j) collector consumption at scavenger flotation ciruit (PXS) and collector consumption
at rougher flotation circuit (PXR).
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Figure 11. Resulting response surfaces of the PSM model—dependence of copper recovery (RCU) in
final concentrate on input parameters. (a) copper content in the feed (FCU) and frother consumption
(FRT); (b) copper content in the feed (FCU) and pH value of slurry at rougher flotation circuit (PHR);
(c) copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR);
(d) copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS);
(e) frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother
consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of
slurry at rougher flotation circuit (PHR) and collector consumption at scavenger flotation ciruit (PXS);
(h) frother consumption (FRT) and collector consumption at rougher flotation circuit (PXR); (i) pH
value of slurry at rougher flotation circuit (PHR) and collector consumption at rougher flotation
circuit (PXR); (j) collector consumption at scavenger flotation ciruit (PXS) and collector consumption
at rougher flotation circuit (PXR).
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Figure 12. Resulting response surfaces of the PSM model—dependence of copper content in final
tailings (TCU) on input parameters. (a) copper content in the feed (FCU) and frother consumption
(FRT); (b) copper content in the feed (FCU) and pH value of slurry at rougher flotation circuit (PHR);
(c) copper content in the feed (FCU) and collector consumption at rougher flotation circuit (PXR);
(d) copper content in the feed (FCU) and collector consumption at scavenger flotation ciruit (PXS);
(e) frother consumption (FRT) and pH value of slurry at rougher flotation circuit (PHR); (f) frother
consumption (FRT) and collector consumption at scavenger flotation ciruit (PXS); (g) pH value of
slurry at rougher flotation circuit (PHR) and collector consumption at scavenger flotation ciruit (PXS);
(h) frother consumption (FRT) and collector consumption at rougher flotation circuit (PXR); (i) pH
value of slurry at rougher flotation circuit (PHR) and collector consumption at rougher flotation
circuit (PXR); (j) collector consumption at scavenger flotation ciruit (PXS) and collector consumption
at rougher flotation circuit (PXR).
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Figure 13. The structure of the NN models for the prediction of CCU, RCU and TCU from the
industrial flotation plant.

The ANN models consist of one input layer with five elements (FCU, PXR, FRT, PHR
and PXS), one hidden layer including the desired number of nodes, and the output layer
where the CCU, RCU and TCU values are calculated. The logsigmoid and purelin functions
(see Figure 14) are implemented as the activation functions in the hidden layer and the
output layer. The optimum NN structure is selected using the “trial and error” method by
adjusting the number of neurons in the hidden layer (from 10 to 100) in order to achieve
the best model by minimizing the errors. The widely applied Levenberg Marquardt (LM)
algorithm is used for the model training. For the purposes of designing the network,
1910 data were selected.
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The first idea was to develop one ANN model consisting of 5 input and 3 output
variables. However, the selected software tool considers the sets of output data as one set
and performs all calculations and interpretations based on it. Since the output parameters
are numerically independent and expressed in different units, this was not acceptable.
Moreover, ANN models were developed in order to compare their performances with
performances of fuzzy logic models. Given that fuzzy logic models were developed
based on original data (without normalization), the same procedure was applied to neural
networks. The building of new ANN models with 3 output variables, using more advanced
software tools and normalized data sets, is a topic for further research.

3. Results and Discussion
3.1. Performance Evaluation of the Fuzzy Models

The evaluation of the proposed models was carried out in the MATLAB software
package, by entering the real values of the input process variables from the industrial
flotation plant “Veliki Krivelj” and generating the corresponding outputs predicted by the
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models. Several standard statistical criteria, including the determination coefficient (R2),
root mean square error (RMSE), and standard deviation of prediction error (SDE), are used
to evaluate the performance of the developed models. R2 is an indicator of how much
changes in one variable are caused by changes in another variable, and is represented by
Equation (3), while RMSE shows the accuracy of the model’s predicted values versus the
actual, and is represented by Equation (4):

R2 =




n(∑ XY)− (∑ X)(∑ Y)√(
n ∑ X2 − (∑ X)2

)(
n ∑ Y2 − (∑ Y)2

)




2

(3)

RMSE =

√
∑n

i=1(X−Y)2

n
(4)

In these equations, X is the measured value, Y is the predicted value, and n is the
number of samples.

SDE shows how much, on average, the elements of the dataset deviate from the
arithmetic mean of that dataset and is expressed by Formula (5):

SDE =

√
∑n

i=1(x− µ)2

n
(5)

where n presents the number of elements in the dataset, µ is mean (average value) of the
dataset and x is the i-th member of the dataset.

Standard deviation is determined for absolute (SDE) and relative prediction error
(SDEr).

The prediction error (ε) and relative prediction error (εr), which served as the crite-
ria for evaluating the predictive properties of models, were calculated according to the
Formulas (6) and (7):

ε = Y− X (6)

εr =
Y− X

X
(7)

where X, Y have the same meaning as in Equations (3) and (4).
The descriptive statistics of differences between measured and estimated values for

the evaluation data are given in Tables 8 and 9. Figures 15–18 present the prediction errors
of the fuzzy models.

Table 8. Statistical analysis of actual and predicted values using the PMM model.

Statistical Parameters
Technological Indicator of the Flotation Process

CCU RCU TCU

R2 0.971 0.992 0.839
RMSE 3.126 7.007 0.034

Mean of prediction error, µ −0.886 −2.666 0.044
SDE 3.306 7.227 0.019

Maximum positive error (maximum) 10.644 36.739 0.100
Minimum positive error 0.00069 0.00689 0.00015
Minimum negative error −0.01968 −0.01318 −0.00001

Maximum negative error (minimum) −10.743 −25.233 −0.047
Mean of relative prediction error, µr −0.017 −0.024 1.485

SDEr 0.190 0.098 1.238
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Table 9. Statistical analysis of actual and predicted values using the PSM model.

Statistical Parameters
Technological Indicator of the Flotation Process

CCU RCU TCU

R2 0.970 0.993 0.847
RMSE 3.291 6.739 0.034

Mean of prediction error −0.288 −2.008 0.046
SDE 3.374 6.915 0.018

Maximum positive error (maximum) 10.961 39.619 0.091
Minimum positive error 0.00473 0.00232 0.00128
Minimum negative error −0.01028 −0.01190 −0.00019

Maximum negative error (minimum) −10.354 −17.502 −0.056
Mean of relative prediction error, µr 0.015 −0.0165 1.562

SDEr 0.198 0.096 1.244
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purple line value µ − 1 SDE.

By considering the results of the regression analysis shown in Table 8, it can be
observed that the values of the determination coefficients for predictions of the content and
recovery of copper in the final concentrate are high. This means that a strong relationship
has been established using the PMM model between the actual and the predicted values
of the metallurgical indicators. In other words, the proposed model well describes the
changes in the real values of the observed parameters related to their increase or decrease
over time.

Yet, when the prediction error is taken into account (Figure 15), it is noted that there
are insignificant and, in some occasions, relatively large deviations from the actual results.
Although the maximum and minimum errors of the estimation (margin of error) are high,
they occurred a few times and did not have a high frequency.
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Figure 18. Relative prediction errors of technological indicators according to the PSM model: (a)
CCU, (b) RCU and (c) TCU. The red line on the charts represents mean (µr), green line value µr + 1
SDEr and violet line value µr − 1 SDEr.

The red line on the charts represents mean (µ), green line value µ + 1 SDE and purple
line value µ − 1 SDE. This is generally applied to all charts where absolute and relative
prediction error is presented.

It should be noted that the complete regression analysis was based on a theoretical
assumption that if the actual values of the metallurgical indicators were equal to zero, in
that case the values predicted by the models would also be equal to zero. This statement was
adopted for practical reasons, in order to mitigate illogical oscillations, extreme deviations
and dispersion of values in real results, caused by imperfections in measurement, human
factor errors and the like, which can significantly affect the results of the model validation.
In this sense, this regression analysis should be given greater mathematical importance
than the practical.

By observing the trend of the prediction errors of the final concentrate grade, it can
be concluded that their values are mostly between ± 5% Cu, which is consistent with the
RMSE value of 3.126 (Table 8). The only major deviation from this trend can be observed
on the right half of the diagram, which corresponds to the beginning of the last third of the
observed time period of the plant operation. In this period, prediction errors are mostly
negative, which may indicate changes in the operation conditions of the plant. These large
fluctuations can be caused by changing some factors that were not taken into account
during modeling, such as changes in the feed ore hardness or changes in the quality of the
reagents.

Furthermore, by looking at the prediction errors of recovery, it is observed that a
positive prediction error for the recovery (predicted values are higher than the actual) is
quite well associated to a negative prediction error for the tailings grade. The reverse is
also true: a negative prediction error for the recovery is associated to a positive prediction
error for the tailings grade. Therefore, the recovery of copper in the final concentrate and
the copper content in the tailings are in alignment with each other. This matching indicates
a good general setting of the model, as well as the potential influence of process factors
that were considered constant during modeling.
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It should also be noted that the TCU prediction error is mostly positive, which means
that the values predicted by the model are, as a rule, slightly higher than the real ones
(offset error). This result indicates that the additional fine tuning of the model is needed.
Namely, the relatively small deviations of the predictive model results in relation to real
results, with the tendency to “translatory skip” the real values, indicating that fuzzy values
within the membership functions need to be additionally corrected. However, taking into
account the good correlation between fuzzy rule base outputs with the real flotation system
conditions, this is at the same time an indication that the performance of the model itself
has “hit” its own limits. In this sense, hybridization of this fuzzy logic model with other
soft computing methods is recommended.

By considering the data distribution in the range of ± 1 SDE, it was found that in this
range lies 67.6% of the prediction error values for CCU, 74.7% for RCU and 71.2% for TCU.

Besides the absolute prediction error, one of the criteria for assessing model adequacy
is the relative prediction error. This parameter can provide a clearer insight and additional
data on the effectiveness of the predictive model, because it is used as a basis for comparing
parameters that are expressed in different measurement units and different value ranges.
Figure 16 presents the relative prediction errors of the CCU, RCU and TCU parameters of
the PMM model.

By visual analysis of the charts in Figure 16, as well as consideration of the statistical
parameters, it can be observed that the smallest relative prediction error is obtained when
modeling RCU, and the highest when modeling TCU, which is consistent with their R2.

The relative prediction error of RCU has the smallest standard deviation, and 82.1% of
the results are in the range ± 1 SDEr. When it comes to relative prediction errors of CCU
and TCU, 73.6% and 79.0% of the results are within ± 1 SDEr., respectively.

Table 9 shows that the results obtained by the PSM model are very similar to the PMM
model results. The high values of determination coefficients indicate the existence of a
strong relationship between the actual and predicted values of metallurgical indicators.

Prediction error diagrams (Figure 17) have shown small (more frequently) and larger
(less frequently) deviations from the actual results. Margin errors (maximum and minimum)
are also high, as in the previous case (Figure 15), but such extremes occur very rarely.

The prediction error trends of the copper content and recovery of the concentrate is
almost identical to the trends shown in Figure 15.

Moreover, when it comes to the error of predicting the copper content in the tailings,
the trend largely coincides with the corresponding trend of Figure 15. The only difference
that is possible to observe is that a smaller number of error values are close to extremes.
This leads to the conclusion that the deviations between the predicted and actual tailings
grade are somewhat smaller, which also corresponds to the slightly higher value of the
determination coefficient of the PSM model for the TCU variable.

Generally, for both models (PMM and PSM), the values of TCU prediction errors are
mostly between ± 0.05% Cu, which is consistent with RMSE values (0.034 both, Table 9). It
can be concluded that both models provided effective predictions, overall. As for the PMM
model, the TCU prediction error is mostly positive, which indicates an offset error.

Similar to the PMM model, 67.7% of the prediction error values for CCU, 73.8% for
RCU and 72.1% for TCU are in the range ± 1 SDE.

When considering the relative prediction error presented in Figure 18, it is also con-
cluded that the results are very similar to the results of the PMM model.

In the range ± 1 SDEr are 73.1% of the relative prediction error results for CCU, 82.1%
for RCU and 79.4% for TCU (Figure 18).

3.2. Neural Network-Based Models
3.2.1. Model Performances

Three different models based on the principle of feed-forward backpropagation NN
were trained. Model NN1 predicts copper content in the final concentrate, model NN2
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predicts copper recovery in the final concentrate and model NN3 predicts copper content
in the final tailings.

The architecture of the NN that gave the smallest Mean Square Error (MSE) of vali-
dation (best validation performance) was chosen as the most favorable predictive model.
Mathematically, MSE can be defined as:

MSE =
1
n

n

∑
i=1

(X−Y)2 (8)

where X is the measured value, Y is the predicted value, and n is the number of samples.
The NN models consisting of 64, 43 and 24 neurons in the hidden layer gave the lowest

mean squared error among all models studied for NN1, NN2 and NN3, respectively. The
networks’ performances in the training stage are shown in Figures 19–21.
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Figure 19 demonstrates the MSE variation of the training, validation and testing stages
versus the iteration number. As shown in this figure, the large values for the MSE were
gradually reduced to a smaller value as the weights are updated. The training stage stopped
at 5th epoch, i.e., after epochs 5, there was not a significant improvement in the performance
of the model. The best validation performance was 8.35 at epoch 5, implying a good stable
network behavior. Then, after six error iterations (validation checks), the process stopped at
epoch 11. The similar explanation provided for Figure 19 can also be applied for Figures 20
and 21.
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Figure 21. Training state and performance of the generated NN3 model for TCU.

One of the important phenomena that can be observed from the Figures 19–21 is that
no overfitting occurred during training, testing and validation.

Overfitting can be spotted when the error on the training data decreases to a small
value, but the error on the test/validation data increases to a large value. Some reasons
for overfitting are: small size of the training dataset, very noisy dataset and complex ANN
architecture [63].

When the network tries to learn from a small dataset, it will tend to have greater
control over the dataset and to satisfy all the data points exactly. Therefore, the network is
trying to memorize every single data point and failing to capture the general trend from
the training dataset. In the observed case, a relatively large training dataset is applied,
containing 1336 samples.

Overfitting also occurs when the model tries to make predictions on data that is very
noisy, which results that the overfitted model is inaccurate, as the trend does not reflect the
reality present in the data. By using the early stopping technique (small number of epochs),
the network can be prevented from overfitting the noise in the data [63]. In the observed
case, the number of epochs is relatively small, i.e., 11, 15 and 12 epochs for NN1, NN2 and
NN3, respectively.

Increasing the number of hidden units and/or layers may lead to overfitting because
it will make it easier for the neural network to memorize the training set, but to avoid
generalization to unseen data. Therefore, a too large number of neurons in the hidden layer
is undesirable. There is an empirical formula for the optimal number of hidden neurons
(Nh) in the hidden layer [64]:

Nh =
Ns

α(Ni + No)
(9)

where Ni represents the number of input neurons, No is the number of output neurons, Ns
is the number of samples in training dataset and α is the scaling factor, which takes values
from 2 to 10.

If this formula is applied to the observed case, the number of hidden neurons should
vary between 22 and 111. NN1, NN2 and NN3 models contain 64, 43 and 24 hidden
neurons, respectively, which corresponds to the specified range. Since overfitting is not
occurred, the numbers of hidden neurons are correctly chosen.

3.2.2. Predictive Abilities of NN-Based Models

The predicted results demonstrate the R2 value 0.98 for CCU, 0.99 for RCU and 0.87
for TCU, demonstrating the success of the proposed NN models (Table 10). As it can
be observed from Table 10, the RMSE between predicted and actual data by using NN
models are very small, which means they can accurately predict the flotation performance
indicators within the entire process variables’ space.
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Table 10. Statistical analysis of actual and predicted values using NN1, NN2 and NN3 models.

Statistical Parameters
Technological Indicator of the Flotation Process

CCU RCU TCU

R2 0.982 0.994 0.867
RMSE 2.567 6.284 0.015

Mean of prediction error −0.017 −0.338 0.0015
SDE 2.589 6.323 0.016

Maximum positive error (maximum) 10.933 44.501 0.043
Minimum positive error 0.00102 0.00694 0.000003
Minimum negative error −0.00230 −0.01246 −0.00004

Maximum negative error (minimum) −10.892 −16.341 −0.113
Mean of relative prediction error, µr 0.019 0.002 0.222

SDEr 0.154 0.089 0.551

NN errors for the prediction of CCU, RCU and TCU are shown in Figure 22. It can
be observed that these errors are mostly between ± 2.7% Cu and ± 5% for CCU and
RCU, respectively. The prediction errors of the copper content and recovery in the final
concentrate are very rarely out of range of ± 5% Cu and ± 10%, respectively. This is
consistent with the RMSE values of 2.567 for NN1 and 6.284 for NN2 (Table 10).
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NN3 models. The red line on the charts represents mean (µ), green line value µ + 1 SDE and purple
line value µ − 1 SDE.

Analyzing the results obtained by the NN3 model from Figure 22, we explored that
the prediction errors of the TCU mostly take values in the range of ± 0.016% Cu, which
is consistent with its RMSE of 0.015 (Table 10). Examining the data distribution of the
prediction error in the range of ± 1 SDE, it was found that 68.9%, 74.3% and 72.1% data lies
within this range for CCU, RCU and TCU, respectively.

Figure 23 shows the relative error of the predictive models. Similar to the previous
observations (for PMM and PSM), the smallest relative prediction error with the smallest
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standard deviation was obtained for the RCU variable. This is consistent with the highest
coefficient of determination also achieved for the RCU (Table 10).
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The number of datum lying in the ± 1 SDEr range is similar to the previous two
models, and is 75.1% for the NN1 model, 81.4% for the NN2 model and 78.7% for the NN3
model.

In general, from the obtained results, it was found that the NN models are well fitting
the real data and have the ability to predict the output data. It can be concluded that the
NN models have good predictive properties, because of significant fluctuations in real
process data. The validation set and test set had similar behavior with no occurrence of
overfitting.

3.3. Summary Discussion

Comparative presentation of statistical parameters of every model is given in Figures 24–26.
According to Figure 24, the accuracy of the NN models is higher than the accuracy

of fuzzy models. The dependent variables (CCU, RCU and TCU) are better explained
in the NN models than in the fuzzy models by the independent variables (FCU, PXR,
FRT, PHR and PXS), since the determination coefficients are higher and the RMSE are
significantly smaller. It can be clearly observed that models based on NN demonstrate the
best predictive abilities, while both fuzzy models demonstrate very similar performances.
Therefore, practically there is no difference in the utilization of either the Mamdani or
Takagi Sugeno inference system under a wide range of operation conditions.

A similar conclusion can be made based on the results shown in Figures 25 and 26. The
smallest standard deviations of predictive error (both absolute and relative) have neural
networks when it comes to all output variables. A low standard deviation indicates that
the values tend to be close to the mean (also called the expected value) of the set, while a
high standard deviation indicates that the values are spread over a wider range.
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By analyzing the statistical parameters of the relative error, it is observed that the
RCU variable has the smallest standard deviations (SDEr) in all models, which corresponds
to the highest coefficients of determination for RCU variable in all models. Further, the
variable TCU has the highest standard deviations of the relative prediction error, which
also corresponds to the smallest values of R2 in relation to CCU and RCU (Tables 8–10).

The means of the absolute errors for CCU and RCU variables are negative, which
indicates that the models have a greater tendency to predict values that are less than the

57



Minerals 2022, 12, 1493

real ones. On the other hand, the means of errors for TCU are positive, which indicates that
the models have a tendency to predict higher values from real ones. In accordance with the
second observation are offset errors in the Figures 15c and 17c.

This study demonstrates that the developed models can be used as new tools to
estimate the performance of the flotation circuit based on operational conditions, which are
readily available at an industrial plant. Due to the dynamic nature and variations in real
data, building an appropriate model for the prediction of flotation process in an industrial
plant is a challenging task. More complex algorithms always require a larger amount
of data. The sample size would depend on the number of input features and degree of
nonlinearity between input and predicted variables (nature of the problem) [65]. In this
paper, more than 1900 samples were used to capture the complexity of the process. The
results indicate that the proposed NN and fuzzy models are able to predict the performance
indicators of the flotation process in an industrial plant based on a large dataset with a high
accuracy. The main reason why these models are more precise than some other presented
models is that such models reported in the past were based on a small data set [2,28,66].

4. Conclusions

In this study, the metallurgical parameters of an industrial copper flotation plant
were predicted by two fuzzy logic models (Mamdani and Takagi-Sugeno) and three back-
propagation neural network (BPNN) models. Since the grade and recovery of concentrate
are essential factors for decision making and control of the industrial flotation plant, their
predictive model accuracy is very important. Therefore, a large dataset (1910 samples) was
collected by daily/shiftly process monitoring during the multiannual plant’s operation.
The most effective parameters, namely copper grade in the ore feed, collector dosage
in the rougher and the scavenger circuits, slurry pH in the rougher circuit and frother
consumption, were selected and used in all models. The performance of each model was
evaluated by well-known evaluation criteria, RMSE, R2.and SD of prediction error. Based
on the obtained results, the following can be concluded:

• The purpose of modeling the production process in the Veliki Krivelj plant is the
possibility of implementing the obtained models into an automatic control system of
this process. This system would include the application of controllers based on fuzzy
logic or artificial neural networks.

• The NN and fuzzy logic models provided effective estimations due to the high R2 and
low RMSE values. However, the NN models were slightly more robust and accurate
in predicting the values of metallurgical factors compared to the fuzzy logic models.
The RMSE values of the NN models for the prediction of copper grade and recovery
of the final concentrate were 2.567 and 6.284, respectively.

• Neural networks have the smallest standard deviations of the absolute and relative
prediction error for all output variables.

• The differences between predicted and actual values are relatively small for all models.
The significant deviations between actual and predicted values most likely occurred
due to the fluctuations in real process data that can be caused by various factors, such
as changing process dynamics due to the downtime of the plant, oscillations in the
process parameters that were considered constant during modeling, changes in the
reagents’ quality, changes in process water quality, human factor, etc.

• The highest determination coefficients between actual and predicted values were
obtained when modeling the copper recovery in the final concentrate, and the lowest
when modeling the copper content in the final tailings. This can be applied to all
models. The reason may lie in that the values of copper content in tailings vary
in a relatively narrow range in relation to quality and recovery. Therefore, it may
happen that the influences of completely different values of input parameters are
integrated through very similar or the same copper contents in tailings, without
this being taken into account during modeling. Such a situation could significantly
affect the determination coefficient. Moreover, possible imperfections during tailings’
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sampling (which are particularly linked to instabilities in the operation of the plant)
should not be ignored, because the copper content in the samples is extremely low, and
therefore proper sampling is of crucial importance for obtaining the precise chemical
composition of the tailings.

• In accordance with the previous statement, the smallest standard deviations of the
relative prediction error were obtained with the models that predict Cu recovery in
the concentrate, and the largest with the models that predict Cu content in the tailings.

• By comparing the results of Mamdani and Takagi Sugeno fuzzy inference systems, it
can be inferred that they demonstrate very similar predictive performance.

• Further research will be focused on the inclusion of other independent variables into
the models, as well as on the modeling of individual parts of the flotation process
depending on the availability (i.e., continual measurement) of process data to evaluate
whether prediction results are improved or not.

• Sensitivity analysis of models, especially regarding the parameters considered con-
stant, can be very helpful when it comes to improving the performances of the models
and also represents the topic of future research.

• The application of more advanced software tools, as well as other soft computing
methods, can also be effective in modeling such systems based on relatively large sets
of input and output data.
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Appendix A

During the observed period, in which measurement and data collection was carried
out, the control and regulation system in the Veliki Krivelj flotation plant mainly relied on
a manual mode of operation. This means that there is no fully automated and continuous
monitoring of process parameters, but the role of controller is performed by experienced
plant operators. In order to maintain the technological process in the stable state, the
following technological parameters were measured and regulated:

• Particle size analysis of grinding products;
• Pulp density;
• Pulp level;
• Pulp pH value;
• Reagents’ consumption.

Particle size distribution of the grinding product is one of the parameters that gives
insight into the liberation degree of the mineral raw material. In order to determine the
particle size distribution of the finally ground product, a sample of the hydrocyclone
overflow is taken, and then sieved in the laboratory on the sieve with 0.074 mm aperture.
The percentage mass content of the −0.074 mm class should be within a certain range (i.e.,
58%–60%). If this content is lower than required, a correction is made at the feed to the rod
mill by reducing the ore processing capacity or reducing the grinding pulp density within
the prescribed range. If this content is higher than required, the ore processing capacity
increases. When it comes to the overflow of the hydrocyclone in regrinding circuit, the
regulation of the particle size distribution is conducted by reducing the amount of water (if
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the overflow is too coarse) or by increasing the amount of water (if the overflow is too fine)
that is added to the regrinding mill.

In addition to the control of the finally ground product, if necessary, control of the
grinding product of the rod mill, ball mill and regrinding mill is also carried out. Since the
process is continuous and there is a need for quick reaction and process corrections, it is
necessary to perform visual controls during the work. These controls are performed every
hour and consist of rinsing a sample of the hydrocyclone overflow on the mining pan.

Pulp density has a significant impact on the grinding, classification and flotation
process. The appropriate pulp density in the mills ensures the maximum capacity of the
mill, while in the classifier (hydrocyclone), it affects the coarseness of the overflow. The
optimal pulp density in the flotation cells provides adequate conditions for the optimization
of the copper mineral flotation process.

Pulp density control is performed at various points in the process, such as for example,
rod and ball mill discharges, hydrocyclone underflow and overflow, etc. Pulp density is
determined by the glass pycnometer method in the laboratory. However, due to the timely
reaction to changes in pulp density values in the process, it is necessary to perform a quick
control of the same in the flotation plant. This procedure is performed by measuring the
full “Denver” pycnometer on a “Denver” scale every 1–2 h.

Regulation of the pulp density is conducted by changing the amount of water added
at certain points of the process or by changing the ore processing capacity. Water is added
to the process manually, by means of a valve that corresponds to the given segment of the
process in which the regulation is carried out.

The optimum value of the pulp level ensures the optimum time required for the
hydrophobic mineral particles to adhere to the air bubbles. Regulation of the pulp level is
done manually—by raising the plugs (when it is necessary to decrease the pulp level) or by
lowering the plugs (when it is necessary to increase the pulp level), which are located in
the boxes of the flotation machines.

The optimal pH value of the pulp creates optimal conditions for collector action on
the surfaces of the mineral particles, as well as the selectivity of the flotation process. The
pH value is measured with pH-meters whose electrodes are immersed in the hydrocyclone
overflows. These values are read on the control panel display.

In addition, the pH values of all three cleaning tails are also determined. Samples are
taken manually, and the pH is determined with manual pH-meters or the pulp titration
method in the laboratory (this method is based on determining free lime in the clear part of
the solution. The volumetric quantity of titrant (in this case HCl) needed to react with all
Ca(OH)2 in the solution (end point of the titration) is measured, according to the equation
Ca(OH)2 + 2HCl = CaCl2 + 2H2O).

To regulate the pH value of the pulp, lime is used, which is added to the process in the
form of lime milk (6% aqueous solution of calcium oxide). When it comes to the grinding
process, reducing or increasing the dose of milk of lime, depending on the desired pH
value of the pulp, is conducted from the control panel, by adjusting the clearance of the
pneumatic valves located at each dosing point. The regulation of lime milk consumption in
each stage of cleaning is conducted manually.

Reagents are, as is known, one of the key elements for the success of the copper
flotation process. Control of the reagent dosage (collector and frother) is performed by
measuring the flow of reagents (which is read in the control room) and calculating their
consumption per ton of processed ore.

Potassium ethyl xanthate (PEX) is used as collector and dosed into the process in the
form of a 10% solution. PEX is added only to the roughing and scavenging circuit. The
regulation of collector consumption is a complex task that depends on a number of factors
in the plant. First of all, the information obtained from the mining pit about the ore
mineralogical composition and copper content is considered. In addition, a visual analysis
of the ground material, concentrate and tailings is performed by washing them on the
mining pan every hour (the analysis of intermediate products is also performed in this way,
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but with a lower frequency of testing). The appearance of the flotation froth in terms of its
color, bubble size, mineralization, etc., is also monitored.

Therefore, there are a number of factors that indicate whether it is necessary to in-
crease or decrease the dose of the collector. Experienced plant operators recognize these
indicators and take appropriate management action accordingly. Regulation of the collector
consumption is conducted manually, using the valves located at each dosing point.

Dowfroth 250 is used as a frother and added to the process in liquid form, concentrated.
Frother is only added in the agitation stage, just before the roughing. Its consumption
primarily depends on the stability of the flotation froth (i.e., whether the froth “grows” or
is prone to collapse), then on the presence of alumina in the feed, etc. The frother flow is
regulated in one place, by means of a manual valve.

Besides the mentioned parameters, which are controlled and regulated directly in
the “Veliki Krivelj” flotation plant, particle size distribution of the finally crushed ore is
determined daily, which can indicate the efficiency of the crushing process and the eventual
need to regulate the processing capacity in grinding. In addition, the copper content in the
feed ore, concentrate and tailings is determined by chemical analysis. Samples for chemical
analysis are taken every hour, and from the hourly increments, shift composite samples are
formed. Based on results of chemical analyses, feed capacity and concentrate quantity, the
recovery of copper in concentrate is calculated.

Data on the input parameters of the technological process, as well as data on the
concentration products, are collected by daily monitoring and stored in the record docu-
mentation. Data are stored for each individual shift as a shift average.

For the purposes of model development, a two-and-a-half-year period of continuous
plant production was chosen, with a total of 2553 shift data available to the authors. These
data are arranged in a time-line order. However, considering that during the plant operation
there is a stoppage due to various factors (such as device failures, the need for overhaul
and lack of ore from the open pit), the analysis found that data are missing for certain shifts,
either completely or partially. Moreover, due to errors that may occur during sampling,
or due to the imperfection of chemical analyses, imperfection of measuring instruments,
imperfection of calculations (human factor), etc., some shift data contained illogicalities
in the sense of extremely low or extremely high values of process parameters. Such shift
data were also eliminated from the primary dataset, so that the final and complete dataset
contained 1910 shift data. The time-line sequence in the data arrangement is preserved.

Analyzing these final datasets, it was still possible to notice data scattering, as well as
relatively large differences between minimum and maximum values for certain variables
(e.g., recovery). Still, one of the modeling goals was to use a maximal quantity of industrial
data and to, however is possible, follow the process continuity and the changes that
occur over time. Therefore, these scatterings were considered normal during the industrial
process, with the level of error in the process parameters determination up to 10%, according
to the experiences of process and chemical engineers.

Appendix B

Appendix B.1. Input Datasets

Input datasets, as well as their distributions, are given in Figures A1–A10.
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Table A1. Regression statistics parameters of PMM model training dataset.

Statistical Parameters
Technological Indicator of the Flotation Process

CCU RCU TCU

R2 0.971 0.992 0.851
RMSE 3.096 6.681 0.034

Testing Datasets

Information about the PMM model testing datasets is shown in Figures A20–A25 and
in the Table A2.
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Table A2. Regression statistics parameters of PMM model testing dataset.

Statistical Parameters
Technological Indicator of the Flotation Process

CCU RCU TCU

R2 0.972 0.993 0.840
RMSE 3.049 6.613 0.035

Appendix B.2.2. Artificial Neural Network-Based Model for CCU Prediction—NN1

Training, testing and validation data sets of this model are randomly chosen by the
network in the following way:

• A total of 60% of the data (1336 in total) are determined for training;
• A total of 15% of the data (287 in total) are determined for testing;
• A total of 15% of the data (287 in total) are determined for validation.

Information about the NN1 model training, testing and validation datasets is shown
in Figures A26–A31 and in the Table A3.

69



Minerals 2022, 12, 1493Minerals 2022, 12, x FOR PEER REVIEW 44 of 51 
 

 

 

Figure A26. NN1 model—training dataset. 

 

Figure A27. Prediction error of NN1 model training dataset. 

 

Figure A28. NN1 model—testing dataset. 

 

Figure A29. Prediction error of NN1 model testing dataset. 

Figure A26. NN1 model—training dataset.

Minerals 2022, 12, x FOR PEER REVIEW 44 of 51 
 

 

 

Figure A26. NN1 model—training dataset. 

 

Figure A27. Prediction error of NN1 model training dataset. 

 

Figure A28. NN1 model—testing dataset. 

 

Figure A29. Prediction error of NN1 model testing dataset. 

Figure A27. Prediction error of NN1 model training dataset.

Minerals 2022, 12, x FOR PEER REVIEW 44 of 51 
 

 

 

Figure A26. NN1 model—training dataset. 

 

Figure A27. Prediction error of NN1 model training dataset. 

 

Figure A28. NN1 model—testing dataset. 

 

Figure A29. Prediction error of NN1 model testing dataset. 

Figure A28. NN1 model—testing dataset.

Minerals 2022, 12, x FOR PEER REVIEW 44 of 51 
 

 

 

Figure A26. NN1 model—training dataset. 

 

Figure A27. Prediction error of NN1 model training dataset. 

 

Figure A28. NN1 model—testing dataset. 

 

Figure A29. Prediction error of NN1 model testing dataset. Figure A29. Prediction error of NN1 model testing dataset.

70



Minerals 2022, 12, 1493Minerals 2022, 12, x FOR PEER REVIEW 45 of 51 
 

 

 

Figure A30. NN1 model—validation dataset. 

 

Figure A31. Prediction error of NN1 model validation dataset. 

Table A3. Regression statistics parameters of NN1 model datasets. 

Statistical Parameters 
CCU 

Training Testing Validation 

R2 0.983 0.981 0.978 

RMSE 2.489 2.635 2.854 

Appendix B.2.3. Artificial Neural Network-Based Model for RCU Prediction—NN2 

Training, testing and validation data sets of this model are randomly chosen by the 

network in the following way (same as for NN1): 

 A total of 60% of the data (1336 in total) are determined for training; 

 A total of 15% of the data (287 in total) are determined for testing; 

 A total of 15% of the data (287 in total) are determined for validation. 

Information about the NN2 model training, testing and validation datasets is shown 

in Figures A32–A37 and in the Table A4. 

Figure A30. NN1 model—validation dataset.

Minerals 2022, 12, x FOR PEER REVIEW 45 of 51 
 

 

 

Figure A30. NN1 model—validation dataset. 

 

Figure A31. Prediction error of NN1 model validation dataset. 

Table A3. Regression statistics parameters of NN1 model datasets. 

Statistical Parameters 
CCU 

Training Testing Validation 

R2 0.983 0.981 0.978 

RMSE 2.489 2.635 2.854 

Appendix B.2.3. Artificial Neural Network-Based Model for RCU Prediction—NN2 

Training, testing and validation data sets of this model are randomly chosen by the 

network in the following way (same as for NN1): 

 A total of 60% of the data (1336 in total) are determined for training; 

 A total of 15% of the data (287 in total) are determined for testing; 

 A total of 15% of the data (287 in total) are determined for validation. 

Information about the NN2 model training, testing and validation datasets is shown 

in Figures A32–A37 and in the Table A4. 

Figure A31. Prediction error of NN1 model validation dataset.

Table A3. Regression statistics parameters of NN1 model datasets.

Statistical Parameters
CCU

Training Testing Validation

R2 0.983 0.981 0.978
RMSE 2.489 2.635 2.854

Appendix B.2.3. Artificial Neural Network-Based Model for RCU Prediction—NN2

Training, testing and validation data sets of this model are randomly chosen by the
network in the following way (same as for NN1):

• A total of 60% of the data (1336 in total) are determined for training;
• A total of 15% of the data (287 in total) are determined for testing;
• A total of 15% of the data (287 in total) are determined for validation.

Information about the NN2 model training, testing and validation datasets is shown
in Figures A32–A37 and in the Table A4.
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network in the following way (same as for NN1 and NN2): 

 A total of 60% of the data (1336 in total) are determined for training; 

 A total of 15% of the data (287 in total) are determined for testing; 
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Table A4. Regression statistics parameters of NN1 model datasets.

Statistical Parameters
RCU

Training Testing Validation

R2 0.994 0.995 0.993
RMSE 6.291 5.762 6.767

Appendix B.2.4. Artificial Neural Network-Based Model for TCU Prediction—NN3

Training, testing and validation data sets of this model are randomly chosen by the
network in the following way (same as for NN1 and NN2):

• A total of 60% of the data (1336 in total) are determined for training;
• A total of 15% of the data (287 in total) are determined for testing;
• A total of 15% of the data (287 in total) are determined for validation.

Information about the NN3 model training, testing and validation datasets is shown
in Figures A38–A43 and in the Table A5.

73



Minerals 2022, 12, 1493Minerals 2022, 12, x FOR PEER REVIEW 48 of 51 
 

 

 

Figure A38. NN3 model—training dataset. 

 

Figure A39. Prediction error of NN3 model training dataset. 

 

Figure A40. NN3 model—testing dataset. 

 

Figure A41. Prediction error of NN3 model testing dataset. 

Figure A38. NN3 model—training dataset.

Minerals 2022, 12, x FOR PEER REVIEW 48 of 51 
 

 

 

Figure A38. NN3 model—training dataset. 

 

Figure A39. Prediction error of NN3 model training dataset. 

 

Figure A40. NN3 model—testing dataset. 

 

Figure A41. Prediction error of NN3 model testing dataset. 

Figure A39. Prediction error of NN3 model training dataset.

Minerals 2022, 12, x FOR PEER REVIEW 48 of 51 
 

 

 

Figure A38. NN3 model—training dataset. 

 

Figure A39. Prediction error of NN3 model training dataset. 

 

Figure A40. NN3 model—testing dataset. 

 

Figure A41. Prediction error of NN3 model testing dataset. 

Figure A40. NN3 model—testing dataset.

Minerals 2022, 12, x FOR PEER REVIEW 48 of 51 
 

 

 

Figure A38. NN3 model—training dataset. 

 

Figure A39. Prediction error of NN3 model training dataset. 

 

Figure A40. NN3 model—testing dataset. 

 

Figure A41. Prediction error of NN3 model testing dataset. Figure A41. Prediction error of NN3 model testing dataset.

74



Minerals 2022, 12, 1493Minerals 2022, 12, x FOR PEER REVIEW 49 of 51 
 

 

 

Figure A42. NN3 model—validation dataset. 

 

Figure A43. Prediction error of NN3 model validation dataset. 

Table A5. Regression statistics parameters of NN3 model datasets. 

Statistical Parameters 
RCU 

Training Testing Validation 

R2 0.873 0.884 0.829 

RMSE 0.015 0.014 0.017 
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Abstract: Prediction of metallurgical responses during the flotation process is extremely vital to
increase the process efficiency using a proper modeling approach. In this study, two new variants of
the recurrent neural network (RNN) method were used to predict the copper ore flotation indices,
i.e., grade and recovery within different operating conditions. The model input parameters including
pulp pH and solid content as well as frother and collector dosages were first analysed and then
optimized using a two-step factorial approach. The statistical analysis showed a reliable correlation
between operating parameters and copper grade and recovery with coefficients of 99.86% and 94.50%,
respectively. The main effect plots indicated that pulp pH and solid content positively affect copper
grade while increasing the frother and collector dosages negatively influenced the quality of the
final concentrate. Despite the same effect from pulp pH, reverse effects from other variables were
observed for copper recovery. Process optimization revealed that maximum copper recovery of
44.39% with a grade of 11.48% could be achieved under the optimal condition as pulp pH of 10, solid
content of 20%, and frother and collector concentrations of 25 g/t and 9.9 g/t, respectively. Then, the
predictive efficiency of long short-term memory (LSTM) and gated recurrent unit (GRU) networks
with proper structure were evaluated using mean square error (MSE), root mean square error (RMSE),
mean absolute percentage error (MAPE), and correlation coefficient (R2). The simulation results
showed that the LSTM network with higher R2 of 0.963 and 0.934 for copper grade and recovery,
respectively, was more effective than the GRU algorithm with the corresponding values of 0.956 and
0.919, respectively. The results show that the LSTM model could be useful in predicting the copper
flotation behaviour in response to changes in the operating parameters.

Keywords: copper ore flotation; recurrent neural network; predictive geometallurgy; long short-term
memory (LSTM); gated recurrent unit (GRU)

1. Introduction

Nowadays, simulation and modelling science are widely used as a reliable, fast, and
low-cost solution to predict the behaviour of mineral processing units. Using simulations
and modelling before or instead of experimental studies involving a large number of
laboratory tests can significantly reduce executive and manpower costs. Furthermore, the
flexibility of such approaches makes it possible to change or modify various stages of
the process design without the need for a significant change in the initial redesign [1,2].
So far, several methods have been developed for modelling and simulation of mineral
processing units, of which empirical and semi-empirical types and statistical models are
the most common.
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Despite the widespread use of these models, especially in simulation software de-
velopment, each of the above approaches is associated with limitations that make their
application in real operational environments challenging. For example, empirical and
semi-empirical parametric models are developed based on a series of data sets from a
specific process or multiple processes. Therefore, their use in new processes with different
operating conditions leads to inefficiency and reduced accuracy in some cases. However,
most models have tried to manage this limitation to some extent by considering the calibra-
tion coefficients [3,4]. The development of statistical models is easier than empirical models.
However, the most important challenge of statistical models, in addition to being limited to
the initial data of model development, is to include parameters that usually lack physical
meaning. For example, variables that are the product of more than two major effects (the
primary variable) and are abundantly observed in the design of experiment (DOE)-based
models and cannot be interpreted in the model [5,6]. Besides, although mineral processing
processes have relatively simple mechanical and physical aspects, they have very complex
mechanisms, some of which still remain unknown. Metallurgical and operational factors
as well as their interactions are major factors responsible for such complexities. As such,
modelling and simulation of these processes have always posed a controversial topic.

In recent years, the use of expert system methods (ESM) such as artificial neural
networks, and genetic algorithms have been proposed to simulate complicated separation
techniques [7–9]. Intelligent algorithms process experimental data and transmit under-
lying knowledge in order to create a network structure. It is possible to apply ESM to
implement intricate functions in a wide range of fields such as process automation, con-
trol and monitoring, medical diagnosis, and image analysis. Nowadays, we can solve
difficult problems for humans and usual computers using efficiently trained intelligent
algorithms [10–12]. Forecasting with ESMs has been one of the main uses of the algorithms,
which have also shown excellent results. The good performance of ESMs has made them
popular in different scientific fields, including mining and mineral processing. For in-
stance, Jorjani et al. [13] used artificial neural networks to simulate the process of leaching
rare earth elements from apatite concentrate on an industrial scale and showed that a
reasonably accurate model could be developed using the improved ANN algorithm. In a
later study, Milivojevic et al. [14] simulated the nickel ore leaching process to demonstrate
that expert systems are more reliable than linear regression-based statistical models. In
another research, Hoseinian et al. [15] used a hybrid neural-genetic algorithm to simulate
copper recovery during a column leaching process of a copper ore sample on a pilot scale,
and found that using an appropriate algorithm could yield reliable prediction results. In
a recent study, using hybrid artificial neural networks and particle swarm optimization
(PSO), Sobouti et al. [16] simulated lead recovery during the leaching of lead concentrate.
The noteworthy aspect of the study was the wide range of operating parameters used in
the simulation, such as temperature, liquid/solid ratio, stirring speed, fluoroboric acid
concentration, and leaching time. They showed that an effective simulation of the process
could be achieved using an optimized ANN-PSO algorithm. Artificial neural networks
have also been successfully used to simulate mineral processing operations reported by
Vyas et al. [17]. In their study, ANN was used to simulate and predict the spent catalyst
bioleaching process with acceptable accuracy, and simulation results were presented in both
numerical and graphical forms. According to Ghobadi et al. [18], the copper flotation circuit
was modelled and optimized simultaneously using a genetic algorithm. They found that in
comparison to conventional mathematical methods, an oriented genetic algorithm reduces
the calculation time by 1/60 for a two-stage flotation system and can provide higher opti-
mization accuracy. In another study, Gholami and Khoshdast [19] found that with a limited
number of operating data, multiple metallurgical responses of the bioflotation process of
coal can be accurately simulated using the ANN method. Their investigation into different
algorithms for developing the ANN model demonstrated that the simulation accuracy is
greatly influenced by the choice of the network algorithm. Recently, Gholami et al. [20]
coupled historical data and deep learning techniques to predict the flotation behaviour of
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a copper mine in response to mineralogical and operational variables. They showed that
mixed statistical/intelligent methods can be a promising approach to accurately simulate
the flotation process with an accuracy of more than 95%.

The effective application of the recurrent neural network (RNN) method has also
been reported by a few researchers. For example, radial basis function neural network,
recurrent neural network, and multivariate nonlinear regression have been used to predict
the metallurgical performance of the flotation column [21]. It was shown that the recurrent
neural network forecasted the metallurgical performance of the flotation column better
than the radial basis function neural network and multivariate nonlinear regression models.
The same conclusions have also been recently reported by some other researchers [22,23]
to estimate the mineral grade in the field of flotation. Inapakurthi et al. [24] proposed
a method using RNN for simulation of industrial grinding circuit in the lead–zinc ore
beneficiation process. They also demonstrated that the RNN model can successfully control
a GC while tracking its set point without violating any constraints.

The main conclusion stemming from the above studies is that intelligent modelling
methods along with limited amount of data of operational/process parameters can be used
to simulate mineral processing operations successfully. Considering the results reported
in the above studies, the simulation has a high degree of accuracy in most cases, which
is highly desirable from an application perspective [25]. Hence, in this study, a mid-
size copper mineral processing plant was targeted to intelligent simulation using long
short-term memory (LSTM) and gated recurrent unit (GRU) networks as two well-known
RNN methods. Among intelligent modelling methods for time series and sequential data
predictions, RNNs are the commonly used ones. LSTM and GRU have a similar overall
structure, but LSTM is more complex. Therefore, in addition to accurate prediction of
output variables, a comparison of these two methods is also considered in this paper.
The main parameters on the efficiency of the flotation process including pulp pH, solid
content, and concentrations of frother and collector were first optimized by the DOE
method and then, were considered as inputs in the model. Moreover, an accuracy analysis
was performed to investigate the reliability of copper grade and recovery prediction.

2. Materials and Methods
2.1. A Brief Description of the Processing Plant

Studies were performed in the Takht Gonbad copper processing plant (Sirjan, Iran).
With a practical capacity of 230 t/h, this plant beneficiates a copper sulfidic ore with an
average copper grade of 0.45% to a concentrate with a grade of 22 ± 2% through several
stages of roughing and cleaning. The copper grade in the final tailings of this plant is about
0.1%. According to Figure 1, the crushed ore is first broken down by four ball mills with
capacities of 50 to 80 t/h to reduce the particle sizes to 80% finer than 100 µm. Comminuted
particles are fed to the hydrocyclone unit, classifying them into two fine and coarse parts.
The hydrocyclone overflow, consisting of particles 80% finer than 75 µm, is directed to
a conditioning tank with a capacity of 50 m3 to prepare the feed for the flotation circuit.
At this stage, flotation reagents including sodium isopropyl xanthate (Z11) and sodium
dithiophosphate (DTU) as copper mineral collectors, methyl isobutyl carbinol (MIBC) and a
polypropylene glycol with molecular weight of 395.61 g/mol (A65) as frothers, lime as pH
regulator, and NaHS as pyrite depressant (according to the mineralogical composition of the
input feed) are added to the pulp. The concentration of reagents is adjusted according to the
metallurgical conditions of the plant. The range of changes in the amount of consumption
of these reagents is presented in Table 1. Prepared pulp with a solid content of about 25%
(w/w) is first introduced into the rougher line with five 50 m3 tank cells. The concentrate of
this step is directed to an eight-cell row, including four cleaner and four recleaner cells to
increase the copper grade. The final concentrate of this stage leaves the circuit as the final
concentrate after several stages of recirculation in the cleaning circuit. The tailing is also
returned to the beginning of the rougher circuit. Rougher tailing transfers to the scavenging
circuit consisting of two 6-cell rows. The tailing of this unit is considered the final tailings
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of the plant, but the concentrate of the first two cells from both lines is returned to the
cleaning circuit, and the concentrate of the last four cells is fed to the rougher circuit.
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Table 1. Operating factors and their levels studied in the screening experimental design.

Factor Variable Unit Low Actual High Actual Mid Level Std. Dev.

A pH - 10 12 11 0.85
B Solid content (%) 20 30 25 4.26
C MIBC conc. (g/t) 5 35 20 12.79
D A65 conc. (g/t) 5 15 10 4.26
E DTU conc. (g/t) 5 35 20 12.79
F Z11 conc. (g/t) 5 25 15 8.53
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2.2. Ore Sample and Reagents Used

A representative sample was taken from the hydrocyclone overflow as the feed of
the flotation circuit (Figure 1) to determine the physical and mineralogical characteristics
of the studied ore. Samples were collected using an automatic scoop sampler with an
adjustable container size. Light microscopy (Axio Imager 2 Pol, Zeiss, Jena, Germany) was
used to determine the mineralogical composition of the ore. The particle size distribution
of the sample was measured using the standard dry sieve analysis method. All the applied
reagents, including MIBC and A65 frothers, Z11 and DTU collectors, and NaHS depressant
were sourced from the company’s warehouse.

2.3. Screening of Operational Variables

Due to the variety of the operating parameters, first, the effectiveness of each oper-
ational variable was evaluated using a fractional factorial experimental design utilizing
Design-Expert software (Demo version 7.0.0, from Stat-Ease Inc., Minneapolis, MN, USA).
The levels of each variable were selected based on monitoring the process over six months
(autumn and winter 2021). Table 1 lists the variables and their levels considered in the
screening design. The experimental design used for screening studies and their practical
results are presented in Table 2. These studies evaluated the grade and recovery of copper
in the rougher stage concentrate as the process responses.
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Table 2. The structure and practical results of the screening experimental design.

Operating Factors Responses

Run A: pH B: Solid Content
(%)

C: MIBC
(g/t)

D: A65
(g/t)

E: DTU
(g/t)

F: Z11
(g/t)

G: NaHS
(g/t)

Cu Grade
(%)

Cu Recovery
(%)

1 10 20 35 15 5 5 10 4.90 71.53
2 12 20 35 5 35 5 0 4.90 86.87
3 11 25 20 10 20 15 5 3.60 53.88
4 10 30 5 5 35 5 10 2.96 64.92
5 12 30 35 15 35 25 10 4.30 44.00
6 10 20 5 15 35 25 0 4.70 58.28
7 12 30 5 15 5 5 0 4.40 58.17
8 12 20 5 5 5 25 10 5.20 55.82
9 11 25 20 10 20 15 5 2.60 62.42

10 12 30 5 15 5 5 0 4.80 59.59
11 12 20 35 5 35 5 0 5.10 68.90
12 10 20 35 15 5 5 10 5.17 56.97
13 12 30 35 15 35 25 10 4.60 50.91
14 10 30 35 5 5 25 0 3.57 52.75
15 11 25 20 10 20 15 5 3.15 58.14
16 11 25 20 10 20 15 5 3.10 58.83
17 12 20 5 5 5 25 10 4.90 58.38
18 10 20 5 15 35 25 0 4.50 68.48
19 11 25 20 10 20 15 5 2.44 41.96
20 10 30 35 5 5 25 0 3.61 53.32
21 11 25 20 10 20 15 5 3.54 62.53
22 10 30 5 5 35 5 10 2.78 59.05

2.4. Statistical Optimization Studies

Influential operating variables for optimization studies were selected according to the
results of the screening studies as listed in Table 3. Then, a full factorial design was used to
investigate the real impact of each parameter, their interactions, as well as process optimiza-
tion. The optimization design with practical results is presented in Table 4. To evaluate
the nonlinear effects of each parameter, the centre point was used with six replications.
Moreover, each main experiment was replicated twice to achieve more reliable results and
eliminate bias in the effects. Alike the screening tests, copper grade, and recovery at the
rougher stage were considered as the process responses.

Table 3. Operating factors and their levels studied in the optimization experimental design.

Factor Parameter Unit Low Level High Level Mid Level Std. Dev.

A pH 10 12 11 0.92

B Solid
Content (%) 10 20 15 4.59

C A65 Conc. (g/t) 10 25 17.5 6.88
D Z11 Conc. (g/t) 0 20 10 9.18

Table 4. The structure and practical results of the optimization experimental design.

Operating Factors Responses

Run A: pH B: Solid
Content (%)

C: A65
(g/t)

D: Z11
(g/t)

Cu Grade
(%)

Cu Recovery
(%)

1 11 15 17.5 10 11.07 41.01
2 10 20 25 20 7.45 57.32
3 12 10 25 20 9.36 53.72
4 12 10 25 0 8.33 41.69
5 10 20 10 0 12.50 45.33
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Table 4. Cont.

Operating Factors Responses

Run A: pH B: Solid
Content (%)

C: A65
(g/t)

D: Z11
(g/t)

Cu Grade
(%)

Cu Recovery
(%)

6 11 15 17.5 10 11.00 44.18
7 10 10 10 0 12.30 40.67
8 12 10 25 20 9.21 58.05
9 12 20 25 20 12.93 44.11

10 10 10 10 20 3.82 27.09
11 10 20 10 20 14.10 38.82
12 12 10 25 0 8.39 42.41
13 10 20 10 20 14.05 38.59
14 10 20 25 0 16.83 37.40
15 10 10 25 0 7.81 50.11
16 10 10 25 20 4.00 62.39
17 11 15 17.5 10 10.97 46.31
18 11 15 17.5 10 10.89 50.27
19 12 20 25 20 12.89 45.49
20 11 15 17.5 10 10.99 53.26
21 12 10 10 0 10.80 55.61
22 10 20 10 0 12.40 47.01
23 10 10 25 20 4.20 61.19
24 11 15 17.5 10 11.10 50.42
25 12 20 10 0 10.60 47.07
26 10 20 25 0 16.11 39.09
27 12 20 10 20 12.80 44.21
28 12 10 10 0 10.50 56.77
29 12 20 10 20 12.50 47.39
30 10 10 10 0 12.50 44.46
31 12 10 10 20 7.81 40.29
32 12 10 10 20 7.75 40.85
33 12 20 25 0 11.90 45.40
34 10 10 25 0 7.88 50.21
35 12 20 25 0 11.70 45.66
36 12 20 10 0 10.80 46.32
37 10 20 25 20 7.51 58.60
38 10 10 10 20 3.75 27.00

2.5. Flotation Experiments and Calculations

All the experiments were carried out in a standard D-12 Denver® flotation machine
equipped with a 4 L cell. To perform each test in the screening (Table 2) and optimization
(Table 4) experimental designs, after setting the operating conditions according to the
run number in each design, the pulp mixture was agitated at impeller speed of 1000 rpm
for 5 min in the flotation cell to ensure that all ore particles were well suspended. After
conditioning, water was added to the cell to a specified level after conditioning. The pulp
level was maintained constant during each test by constantly adding water as required. At
the end of each experiment, the collected concentrates and tailings were weighed and dried
in an oven at 60 ◦C for 24 h. Samples were then sent to the analysis laboratory to determine
their copper content. The efficiency of the flotation process was evaluated in terms of final
recovery and the grade of Cu using the following equation [26,27]:

R =
C
F
× c

f
× 100, (1)

where R (%) is recovery, F (kg) and C (kg) are the total mass of feed and concentrate,
respectively, f (%) and c (%) are elemental grades (%) of feed and concentrate, respectively.
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2.6. Recurrent Neural Network Simulation
2.6.1. RNN-Based Methods

(A) Recurrent neural network: Since the long short-term memory (LSTM) and gated
recurrent unit (GRU) networks are improved variants of the recurrent neural network
(RNN) and are used in state-of-the-art deep learning applications, the structure of RNN
was discussed first. The RNN is a type of feedforward neural network that maintains
internal memory and is able to remember information throughout time. This property
makes it proper for processing time series and sequential data [28]. The network structure
and circuit diagram of RNN are shown in Figure 2.
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In the circuit diagram, RNN takes X0 from the input sequence and then delivers h0 as
the output, which together with X1 are the inputs of the next step. Similarly, h1 along with
X2 are the inputs to the next step, and so on. In such a manner, RNN constantly remembers
the information during the training. The current state formula is as follows:

ht = f (ht−1, xt), (2)

where xt and ht are the input and output sequence of a RNN unit, respectively. Equation (3)
is also used to apply tanh as the activation function, which helps to regulate the values that
flow through the network. Finally, yt is the network output [29]:

ht = tanh(Whhht−1 + Wxhxt), (3)

yt = Whyht, (4)

where W and h represent the weight and hidden vectors, respectively. Whh is the weight in
the previous hidden state, Whx is the weight in the current input state, and Why represents
the weight in the output state. tanh is an activation function that implements nonlinearity.
Although RNN is theoretically designed to predict time series, it is difficult to predict long
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time series in practice because of the length of information, which can cause a vanishing
gradient [30]. LSTM and GRU are the updated versions of RNN to overcome this challenge.

(B) Long short-term memory network (LSTM): LSTM is a special kind of RNN net-
work that was introduced first by Hochreiter and Schmidhuber [31] and is able to tackle
the problem of vanishing gradient and long length input processing of RNN. The LSTM
network has internal mechanisms called gates. These gates (including input gates, forget
gates, and output gates) control the data flow and also specify what data is important
in the sequence and should be retained and what data should be removed. In this way,
the network passes important information along the sequence chain to obtain the final
output [32]. A structure diagram of LSTM is shown in Figure 3.
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In Figure 3, xt, ht, and Ct are the input, the output, and the cell state at time t, re-
spectively. gf controls the information flow from the previous time step and is called the
forget gate. This gate determines whether or not the information from the previous step is
used. The update gate, which is indicated with gu, is responsible for controlling the new
information flow. This gate determines whether new information should be used at the
current time step. go is the output gate and specifies how much of the previous information
of time steps (previous and current) is transferred to the next time step. W, b, and σ are the
weight of the model, the bias of the model and the activation function, respectively. The
following equations represent the calculation process:

Ĉt = tanh(Wc·[ht−1, Xt] + bc), (5)

Ct = g f ·Ct−1 + gu·Ĉt, (6)

g f = σ
(

W f ·[ht−1, Xt] + b f

)
, (7)

gu = σ(Wu·[ht−1, Xt] + bu), (8)

go = σ(Wo·[ht−1, Xt] + bo), (9)

ht = go·tanh(Ct). (10)

(C) Gated recurrent unit network (GRU): GRU was introduced by Chung et al. [33]
to address the shortcomings of the traditional recurrent neural network and also to reduce
the overload of LSTM architecture. The GRU has only two gates, including update and
reset gates, compared with the LSTM. These gates are basically two vectors that are used
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to decide whether the information is transmitted to the output or not [34]. A structure
diagram of GRU is shown in Figure 4 and relevant equations can be found below:
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The reset gate specifies how much of the previous information is not needed (forgotten)
and how much of the previous step information is used in the current step. The update
gate specifies whether to use the previous state or current input (or a combination of both)
at a time step. xt is the input at time t, and σ is the activation function and ht and ht−1 are
the output at time t and t − 1, respectively. The calculation process is expressed by the
following equations:

Ĉt = tanh(W1·[gr·Ct−1, Xt] + bc), (11)

gu = σ(W2·[Ct−1, Xt] + bu), (12)

gr = σ(W3·[Ct−1, Xt] + br), (13)

Ct = gu·Ĉt + (1− gu)·Ct−1. (14)

where gr and gu are the outputs of reset gate and update gate at time t.

2.6.2. Modelling Process

RNNs are considered the state-of-the-art algorithm for sequential data. LSTM and
GRU are RNN-based algorithms that were developed with new designs to address the
weaknesses of traditional RNNs. In this study, four inputs were included as pH, solid
content (%, w/w), A65 concentration (g/t), and Z11 concentration (g/t); and the outputs
were Cu grade (%) and its recovery (%). To analyse the methods and estimate outputs,
four models were developed using the inputs. Table 4 shows the inputs and outputs as the
operation factors and responses, respectively. Although controlling the flow of information
is the same in both LSTM and GRU, LSTM wraps the hidden state into a memory unit,
and GRU just passes the full hidden content without any control directly to the next cell.
The models’ parameters, including number of hidden layers, number of epochs, etc., were
carefully examined and selected based on the complexity of the data and trial and error
procedure. Indeed, as a result of increasing the number of parameters, overfitting occurred.
An overfitted model has high accuracy on training data but low accuracy on test data. For
the number of epochs, increasing this parameter had no significant effect on the accuracy
of the model; it only increased the time it took to develop the model. The optimal amounts
of parameters were selected according to the mentioned points. In addition, the GRU and
LSTM algorithms are similar in general structure, and the most important difference is
that there are fewer parameters in GRU, which accounts for its faster training time. One
of the purposes of using these two algorithms in this project, in addition to effectively
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predicting the outputs, is to examine the results of these two models in order to select a
more appropriate algorithm. LSTM has a significant advantage over the GRU algorithm in
accordance with its more complex structure. Figure 5 shows the flowchart of the modelling
procedure to estimate the Cu grade and recovery using RNNs.
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Random forest (RF) and ANN with the Levenberg–Marquardt optimization algo-
rithm (ANN-LMA) as the two other popular prediction methods were also implemented
for comparison:

• Random forest is a powerful learning method for classification and regression prob-
lems by constructing a multitude of decision trees at training time. This non-parametric
method uses ensemble learning to avoid overfitting. To find the optimum number
of trees, different numbers were tested. Based on the results, 26 and 22 trees were
found to have the most accurate prediction for Cu grade and Cu recovery, respectively,
and increasing the number of trees did not have significant impact on the accuracy of
results. The optimum depth of the tree was also found to be 4 for both Cu grade and
recovery models, and increasing the maximum depth of trees resulted in overfitting;

• LMA is known as the preferred method for minimization in nonlinear least squares
problems. LMA interpolates between the Gauss–Newton algorithm and the gradient
descent method. Compared with Gauss–Newton, Levenberg–Marquardt is more
robust and, in many cases, it will find a solution even if it starts very far from the
final minimum. ANN-LMA was found to be superior in Ref. [19] against other
metaheuristic algorithms. The proper structure for ANN-LMA was found to be
5-12-4-1 for the Cu recovery model and 5-10-5-1 for the Cu grade model based on trial
and error.
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The coding and modelling process was implemented using MATLAB software (Math-
Works R2021b v9.11, MathWorks, Inc., Natick, MA, USA). Before modelling, normalization
was applied to improve the networks training phase using Equation (15) [12]:

xn =

(
xi − xmin

xmax − xmin

)
, (15)

where Xn and Xi are normalized and actual values, respectively. Xmin and Xmax are the
minimum and maximum values of each subset (inputs–outputs). Besides the modelling
process, the Spearman correlation analysis, to find out the relationship between inputs and
outputs, and sensitivity analysis to calculate the effectiveness of each input data on the
outputs were also applied; the outcomes are presented in the Section 3.

3. Results and Discussion
3.1. Results of Ore Characterization

The mineralogical results showed that chalcopyrite and chalcocite are the predominant
copper-bearing minerals in the ore. The most important gangue minerals were pyrite and
clay minerals. The particle size distribution of the studied ore sample is shown in Figure 6.
The feed to the flotation circuit contains 80% by weight of particles finer than 78 µm.
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3.2. Statistical Analysis of Screening DOE

To determine the most important parameters affecting metallurgical responses, Pareto
charts were drawn based on the results of variance analysis. Pareto charts are quick
tools used to assess the significance level and the type of impact (increasing or decreas-
ing) of the parameters under study. In these charts, effects with a value greater than
t-value are identified as the significant factors. The type of effect is also shown by
the software and based on the relevant statistical calculations with different colours.
According to Pareto charts of grade and copper recovery in Figure 7, it can be seen
that the most significant operating parameters affecting the grade of concentrate are
solid percentage (B) > pH (A) > and concentration of A65 frother (C). Generally, the copper
grade decreases significantly with the increasing solid content mainly due to transporting
gangue minerals (i.e., pyrite, silicates and clay minerals) into the concentrate through the
false flotation process [35]. This result is in line with the outcomes presented by previous
studies [20,36]. Copper grade is also significantly affected by pH and A65 concentration.
Although the effects of DTU (E) and MIBC (C) concentrations are relatively high, these
effects are not statistically significant.

88



Minerals 2022, 12, 857

Minerals 2022, 12, x FOR PEER REVIEW 12 of 27 
 

 

and based on the relevant statistical calculations with different colours. According to Pa-
reto charts of grade and copper recovery in Figure 7, it can be seen that the most significant 
operating parameters affecting the grade of concentrate are solid percentage (B) > pH (A) 
> and concentration of A65 frother (C). Generally, the copper grade decreases significantly 
with the increasing solid content mainly due to transporting gangue minerals (i.e., pyrite, 
silicates and clay minerals) into the concentrate through the false flotation process [35]. 
This result is in line with the outcomes presented by previous studies [20,36]. Copper 
grade is also significantly affected by pH and A65 concentration. Although the effects of 
DTU (E) and MIBC (C) concentrations are relatively high, these effects are not statistically 
significant. 

Although the solid content (B) and the concentration of Z11 (F) are the most effective 
factors affecting copper recovery, their effects are both negative. It should be noted that 
since the interaction effects of the parameters in factorial designs cannot be analysed due 
to bias, providing any physical interpretation for the main effects observed in these dia-
grams cannot be reliable. For this reason, the results of this design have only been used to 
select the most effective operational variables for detailed studies. In addition, according 
to the type of effect, the amount of levels considered in the optimization plan was also 
modified. For example, according to Figure 7, the effect of solid content on both responses 
is negative; therefore, the levels of this parameter in the screening design (20–30) were 
reduced in the optimization design i.e., 10–20, and similarly, the amount of levels was 
increased for the frother concentration and decreased for the collector concentration. The 
pH levels were not changed due to the operational limitations. 

  

  

Figure 7. Pareto charts showing the significance and type of main effects for metallurgical responses. 

3.3. Statistical Analysis of Optimization DOE 
The first step in analysing the impact of operational variables on the process re-

sponses is developing a parametric model that can accurately predict the desired response 
in the operating space, i.e., within the low to high levels intended for the variables [37]. In 
the second step, after developing the initial model by the software, abnormal data were 
identified by examining the model parameters and the model was optimized by the user 
to achieve the best fitting results. The result of these measures for the data obtained in the 
flotation experiments was the development of nonlinear models for all process responses 
as below: 

Figure 7. Pareto charts showing the significance and type of main effects for metallurgical responses.

Although the solid content (B) and the concentration of Z11 (F) are the most effective
factors affecting copper recovery, their effects are both negative. It should be noted that
since the interaction effects of the parameters in factorial designs cannot be analysed due to
bias, providing any physical interpretation for the main effects observed in these diagrams
cannot be reliable. For this reason, the results of this design have only been used to select
the most effective operational variables for detailed studies. In addition, according to the
type of effect, the amount of levels considered in the optimization plan was also modified.
For example, according to Figure 7, the effect of solid content on both responses is negative;
therefore, the levels of this parameter in the screening design (20–30) were reduced in the
optimization design i.e., 10–20, and similarly, the amount of levels was increased for the
frother concentration and decreased for the collector concentration. The pH levels were not
changed due to the operational limitations.

3.3. Statistical Analysis of Optimization DOE

The first step in analysing the impact of operational variables on the process responses
is developing a parametric model that can accurately predict the desired response in the
operating space, i.e., within the low to high levels intended for the variables [37]. In
the second step, after developing the initial model by the software, abnormal data were
identified by examining the model parameters and the model was optimized by the user to
achieve the best fitting results. The result of these measures for the data obtained in the
flotation experiments was the development of nonlinear models for all process responses
as below:

Cu Grade (%) = 10.17 + 0.35A + 2.15B− 0.39C− 1.16D− 0.65AB + 0.46AC + 1.30AD + 0.24BC +
0.62BD− 0.17CD + 0.54ACD− 1.26BCD + 0.68ABCD,

(16)

Cu Recovery (%) = 45.91 + 0.91A− 0.72B + 3.34C + 0.28D− 0.59AB− 3.41AC− 2.16BC + 0.91BD +
5.22CD + 1.71ABC− 0.97ABD− 1.53ACD− 1.78BCD− 1.90ABCD,

(17)

where the factors are described in a coded form. The validation parameters for the devel-
oped models are listed in Table 5. According to Fisher’s F-test and marginal probability
value (p model < 0.0001), which are shown in Table 5, all of the suggested prediction models
are significant. For assessing the significance of a predictive model, the residuals normal
probability plot is an effective tool [38]. According to the normal probability plots shown
in Figure 8, all responses were relatively uniform, confirming the assumptions of normality
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and the independent nature of residuals during the statistical analyses. In addition, the
high values of the adjusted correlation coefficients also indicate the significance of the
prediction models. The Pred R2 values were reasonably high, indicating that the model is
able to explain variability in the prediction of new observations with adequate accuracy,
which is in reasonable agreement with the Adj R2 values [39]. Another statistical measure,
called adeq precision, shows the signal-to-noise ratio, and any value over 4 is considered
desirable [6]. In this investigation, the ratios were 134.99 and 20.59 for copper grade and
recovery, respectively. These values show an adequate signal so that the models can be
used to navigate the design space and predict appropriately.

Table 5. Validation parameters showing the significance of the models for metallurgical responses.

Model F-Value p-Value R2 (%) Adj R2 (%) Pred R2 (%) Adeq Precision

Cu Grade 1251.23 <0.0001 99.86 99.78 99.57 134.99
Cu Recovery 24.07 <0.0001 94.50 90.58 88.62 20.59
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Model Equations (16) and (17) were used to assess the significance of operating
variables on process responses. Tables 6 and 7 show the ANOVA results within a confidence
interval of 95%. As shown in Tables 6 and 7, the effects of all operational variables on
process responses are statistically meaningful due to p-values less than 0.05. As seen in the
analysis of variance tables, no interaction was considered in the analyses. Moreover, except
in some cases for the copper recovery analysis, the dual interaction effects are significant.
The statistically meaningless interactions for copper recovery are those between pH and
solid content and Z11 concentration as well as the interaction between solid content and
Z11 concentration.
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Table 6. Analysis of variance results for copper grade to the rougher concentrate.

Source Sum of Squares df Mean Square F-Value p-Value (Prob > F)

Model 363.8967 13 27.99206 1251.234 <0.0001
A-pH 3.822613 1 3.822613 170.8693 <0.0001

B-Solid
Content 147.3186 1 147.3186 6585.085 <0.0001

C-A65 4.8672 1 4.8672 217.562 <0.0001
D-Z11 43.29151 1 43.29151 1935.114 <0.0001

AB 13.4162 1 13.4162 599.699 <0.0001
AC 6.826513 1 6.826513 305.1425 <0.0001
AD 54.2882 1 54.2882 2426.662 <0.0001
BC 1.814513 1 1.814513 81.10801 <0.0001
BD 12.5 1 12.5 558.7452 <0.0001
CD 0.973012 1 0.973012 43.49328 <0.0001

ACD 9.46125 1 9.46125 422.9142 <0.0001
BCD 50.6018 1 50.6018 2261.881 <0.0001

ABCD 14.71531 1 14.71531 657.7688 <0.0001
Pure Error 0.485733 21 0.02313
Cor Total 367.9095 37

Table 7. Analysis of variance results for copper recovery to the rougher concentrate.

Source Sum of Squares df Mean Square F-Value p-Value (Prob > F)

Model 2266.4 15 151.0933 24.07371 <0.0001
A-pH 31.7761 1 31.7761 10.309121 0.0043

B-Solid
Content 35.5092 1 35.5092 12.092561 0.0031

C-A65 356.5785 1 356.5785 56.81369 <0.0001
D-Z11 44.2345 1 44.2345 14.291302 0.0021

AB 11.3288 1 11.3288 1.805019 0.1934
AC 372.5085 1 372.5085 59.35182 <0.0001
AD 16.4738 1 16.4738 2.624772 0.1201
BC 149.5585 1 149.5585 23.82917 <0.0001
BD 26.3538 1 26.3538 4.198954 0.0531
CD 873.411 1 873.411 139.1607 <0.0001

ABC 93.91351 1 93.91351 14.96325 0.0009
ABD 29.9538 1 29.9538 4.772542 0.0404
ACD 74.48101 1 74.48101 11.86707 0.0024
BCD 100.891 1 100.891 16.07498 0.0006

ABCD 115.596 1 115.596 18.41792 0.0003
Pure Error 131.8018 21 6.276278
Cor Total 2408.51 37

3.3.1. Interpretation of the Main Effects

The main effect plots can be used to analyse the effects of the operating variables on
the process response. These plots are an effective tool for assessing the influence of each
variable on the target response. The response variation is shown in these plots for the level
of variables used in the experimental design. Design Expert software uses, by default,
the developed prediction model (Equations (16) and (17)) to calculate the response values
for parameters varying within their experimental levels. In contrast, other variables are
maintained at their mid-levels. The main effects plots of different operating variables are
shown in Figures 9 and 10 for copper grade and recovery, respectively.

91



Minerals 2022, 12, 857Minerals 2022, 12, x FOR PEER REVIEW 16 of 27 
 

 

  

  

  

Figure 9. Main plots showing the effect of operating variables on copper grade. 

Increasing the pH, in addition to improving the grade of copper, has also increased 
the recovery (Figure 10). As the pH increases, the efficiency of the xanthate collectors (Z11 
in this study) improves, resulting in increased particles floatability. For this reason, parti-
cle recovery is also expected to improve. The negative effect of solid content on the recov-
ery can be evaluated according to the interaction of this factor with the frother concentra-
tion, which is presented in Section 3.3.2. Given that the main effect plot for each factor is 
plotted while other factors are kept constant at their mid-level, the individual effect of the 
solid content may lead to the misleading conclusion that increasing the solid content in 
any condition causes reduction, leading to recovery. 

Figure 9. Main plots showing the effect of operating variables on copper grade.

According to Figure 9, the copper grade increases with the increasing pH. Obviously, as
the pH increases, the pyrite depression rate also increases, and as a result, the copper grade
in the concentrate improves. The effect of increasing the solid content on copper grade is
also positive and increasing. This effect can be attributed to the improved particle distri-
bution within the flotation cells, thereby increasing the probability of copper-containing
particles colliding with the bubbles and transporting them to the froth and concentrate.
However, as shown in Figure 10, copper recovery decreased with the increasing solid
content, which can be ascribed to the interaction between the solid content and the frother
concentration, as will be discussed later. Increasing the concentration of both frother and
collector reduces the grade of copper in the concentrate. With an increasing frother concen-
tration, due to increased bubble stability and increasing the rate of bubbly regime in the
pulp zone, the entrainment rate will most likely increase due to the swarm phenomenon,
and finally, the copper grade decreases as a consequence of the gangue particles transfer to
the concentrate [40,41]. The effect of increasing the collector concentration is also due to
the increase of hydrophobicity level and floatability of gangue minerals and, as a result,
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their transfer to the concentrate. Therefore, the copper grade in concentrate is expected
to decrease. These phenomena, namely the increase in entrainment rate and the improve-
ment of gangue floatability, will increase the solid transfer rate into the concentrate and,
consequently, increase the recovery; this prediction is clearly seen in Figure 10.
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Figure 10. Main plots showing the effect of operating variables on copper recovery.

Increasing the pH, in addition to improving the grade of copper, has also increased
the recovery (Figure 10). As the pH increases, the efficiency of the xanthate collectors (Z11
in this study) improves, resulting in increased particles floatability. For this reason, particle
recovery is also expected to improve. The negative effect of solid content on the recovery
can be evaluated according to the interaction of this factor with the frother concentration,
which is presented in Section 3.3.2. Given that the main effect plot for each factor is plotted
while other factors are kept constant at their mid-level, the individual effect of the solid
content may lead to the misleading conclusion that increasing the solid content in any
condition causes reduction, leading to recovery.
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3.3.2. Evaluation of the Interactive Effects

The surface plots of the response of a process against other independent variables
can provide valuable insights into not only the individual effect of operating factors, but
the potential interaction between them as well [42,43]. Thus, the surface plots for the
studied flotation experiments were presented. As shown in Figures 11 and 12, the surface
response plots illustrate the nonlinear effects of most interactions among four variables.
As mentioned earlier, the interaction between solid content and frother concentration
(Figure 12) shows that maximum copper recovery can be obtained at a low level of frother
concentration, whereas individual effects yielded contrary results. This conclusion can be
directly attributed to the significant interaction between those variables. Due to this effect,
it seems that the balance between the amount of particles in the system and the number
of stable bubbles plays a significant role in improving the process efficiency. The same
behaviours are observed for copper grade, as it may be concluded that the highest copper
grade can be achieved at a high level for pH and solid content and a low level for reagents
dosages when referring to the main effect plots. However, Figure 11 clearly shows different
results. Similar results are observed in the case of copper recovery when evaluating the
interactions given in Figure 12.
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3.3.3. Process Optimization and Verification Studies

Maximum Cu grade and recovery were separately defined as target responses to find
suitable operating conditions for each case. The operating conditions and the predicted
results suggested by the software are given in Table 8. To assess the accuracy of the
predictions in Table 8, the plant was permitted to operate for 10 days under the suggested
operating conditions and the metallurgical responses were monitored by regular sampling
from each operating shift. Finally, an average value was reported as the final practical
result, as given in Table 8. Compared to the grade values, the higher differences between
the practical recovery results and predicted values are due to the lower accuracy of the
prediction model developed by the software (Table 5).

Table 8. The predicted and practical results for copper grade and recovery under optimal conditions.

Goal (Max) pH
Solid Content

(%) A65 Conc. (g/t) Z11 Conc. (g/t)
Predicted Responses (%) Practical Results (%)

G. R. G. R.

Grade (G) 10.00 20.00 25.00 0.14 16.44 38.41 15.32 34.03
Recovery (R) 10.00 19.93 25.00 9.91 12.00 47.72 11.48 44.39

3.4. Simulation Results
3.4.1. Correlation Coefficient Analysis

Correlation coefficient is an indicator that is used to measure the dependence or
relationship between two variables. The correlation coefficient between each variable and
the outputs (Cu grade and Cu recovery) confirms the existence of correlation. In this study,
the Spearman correlation coefficient was used, which is defined as Equation (18) [44]:

ρ = 1− 6 ∑ d2
i

n(n2 − 1)
, (18)
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where ρ is Spearman’s rank correlation coefficient, di is the difference between the two ranks
of each variable, and n is the number of samples. The correlation coefficient between each
variable and the outputs is presented in Figure 13 and Table 9. The coefficients indicate
that the variables had a good correlation and could be used to estimate Cu grade and
Cu recovery.
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Table 9. The correlation coefficient of the variables with Cu grade and Cu recovery.

Variable pH Solid Content (%) A65 Conc. (g/t) Z11 Conc. (g/t)

Cu grade (%) 0.7391 −0.8936 0.7234 0.3155
Cu recovery (%) 0.3653 −0.7880 0.4490 −0.8041

According to Table 9 and for this study, pH and A65 concentration had a good positive
correlation with Cu grade; on the contrary, the solid content had a strong negative effect
on Cu grade. It means that should the pH increase, the Cu grade decreases, as was
also reported in Ref. [45]. For the Cu recovery, Z11 concentration and solid content had
high negative correlation with this output, and pH and A65 concentration had positive
correlation, although their correlation coefficient is lower than 0.5. It is important to note
that in the correlation coefficient methods, the closer the coefficient is to 1 and −1, indicates
a direct or inverse relationship between the two variables. However, a cause-and-effect
relationship is not necessarily present, and the conclusion cannot be drawn on this basis.

3.4.2. Sensitivity Analysis

In order to determine the effect of each input on the amount of output, a sensitivity
analysis was also applied. In this paper, the input parameters were pH, solid content, A65
concentration, and Z11 concentration, and output parameters were Cu recovery and Cu
grade. To calculate the sensitivity analysis, the following equation was used [46]:

Rij =
∑n

k=1

(
xik × xjk

)

√
∑n

k=1 x2
ik ∑n

k=1 x2
jk

, (19)

where xi and xj are the input and output datasets, respectively. The effect of each input
parameter on the outputs is shown in Figure 14.
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Figure 14. Sensitivity analysis to determine the effect of each input parameter on Cu recovery (a) and
Cu grade (b).

It can be seen in the figure that the solid content influenced both Cu recovery and
grade the most. The results also confirm the correlation results to a great extent. Using
the results of different tests, the variables that had a greater impact on the outputs were
selected, which ultimately led to simulation models with greater accuracy and less error.

3.4.3. Model Prediction Analysis

The dataset was divided into three categories, including training (65%), validating
(15%), and testing (20%). The validation dataset helps to tune hyper-parameters during the
training of the models to prevent the models from over-fitting in the testing phase. The test
performance of the ‘RNNs’ models is shown in Figures 15 and 16.

Minerals 2022, 12, x FOR PEER REVIEW 21 of 27 
 

 

3.4.3. Model Prediction Analysis 
The dataset was divided into three categories, including training (65%), validating 

(15%), and testing (20%). The validation dataset helps to tune hyper-parameters during 
the training of the models to prevent the models from over-fitting in the testing phase. 
The test performance of the ‘RNNs’ models is shown in Figures 15 and 16. 

Mean square error (MSE), root mean square error (RMSE), mean absolute percentage 
error (MAPE), and R2 were computed using the following equations in order to evaluate 
the performance of each model [43,44]: 𝑀𝑆𝐸 = ∑ 𝑦 − 𝑦 , (20)𝑅𝑀𝑆𝐸 = ∑ 𝑦 − 𝑦 , (21)𝑀𝐴𝑃𝐸 = ∑ | |, (22)

𝑅 = ∑ ̅∑ ∑ ̅ , (23)

where 𝑦 is the actual data, 𝑦 is the estimated data, 𝑎 is the mean of actual data, �̅� is the 
mean of the estimated data, and N is the number of sample sets. 

 
Figure 15. Correlation between the estimated and measured data by LSTM (a,c) and GRU (b,d) net-
works at the testing phase. 

Figure 15. Correlation between the estimated and measured data by LSTM (a,c) and GRU (b,d)
networks at the testing phase.

97



Minerals 2022, 12, 857Minerals 2022, 12, x FOR PEER REVIEW 22 of 27 
 

 

 
Figure 16. Comparison of estimated Cu grade and recovery vs. actual data by LSTM (a,c) and GRU 
(b,d) in the testing process. 

The performance of the LSTM, GRU, RF, and ANN-LMA models in predicting Cu 
grade and its recovery is shown in Tables 10 and 11. Based on the results, the performance 
of the RNNs is better than the other models; however, in the estimation of Cu recovery, 
the RF and ANN-LMA results are so close to the GRU. The RNN results are also close to 
each other (LSTM provides better accuracy). Although RF has a better result than ANN-
LMA due to its tree structure in Cu grade estimation, when there are many calculations, 
a large number of trees can make the algorithm too slow and ineffective for real-time pre-
dictions. Both GRU and LSTM could validly estimate Cu grade and recovery. The results 
demonstrate that LSTM and GRU are useful deep networks for predicting time series and 
sequential data. 

Table 10. Performance of the models to estimate Cu grade. 

Model MSE RMSE MAPE R2 
LSTM 5.5 × 10−3 0.074 5.7 × 10−5 0.963 
GRU 8.7 × 10−3 0.093 6.3 × 10−5 0.956 
RF 9.8 × 10−3 0.098 7.4 × 10−5 0.939 

ANN-LMA 1.3 × 10−2 0.114 8.6 × 10−5 0.921 

Table 11. Performance of the models to estimate Cu recovery. 

Model MSE RMSE MAPE R2 
LSTM 0.017 0.132 7.8 × 10−5 0.934 
GRU 0.026 0.162 9.6 × 10−5 0.919 
RF 0.028 0.167 1.1 × 10−4 0.915 

ANN-LMA 0.029 0.170 1.3 × 10−4 0.914 

Although the accuracy of the RNN models is close, the number of parameters and 
time efficiency of the algorithms should be considered in practical applications [47-48]. 

Figure 16. Comparison of estimated Cu grade and recovery vs. actual data by LSTM (a,c) and GRU
(b,d) in the testing process.

Mean square error (MSE), root mean square error (RMSE), mean absolute percentage
error (MAPE), and R2 were computed using the following equations in order to evaluate
the performance of each model [43,44]:

MSE =
1
n ∑n

i=1(yi − ŷi)
2, (20)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2, (21)

MAPE =
1
N ∑N

i=1
|ŷi − yi|

ŷi
, (22)

R2 =


 ∑N

i=1(yi − a)(ŷi − e)√
∑N

i=1(yi − a)2
√

∑N
i=1(ŷi − e)2




2

, (23)

where y is the actual data, ŷ is the estimated data, a is the mean of actual data, e is the mean
of the estimated data, and N is the number of sample sets.

The performance of the LSTM, GRU, RF, and ANN-LMA models in predicting Cu
grade and its recovery is shown in Tables 10 and 11. Based on the results, the performance of
the RNNs is better than the other models; however, in the estimation of Cu recovery, the RF
and ANN-LMA results are so close to the GRU. The RNN results are also close to each other
(LSTM provides better accuracy). Although RF has a better result than ANN-LMA due to
its tree structure in Cu grade estimation, when there are many calculations, a large number
of trees can make the algorithm too slow and ineffective for real-time predictions. Both
GRU and LSTM could validly estimate Cu grade and recovery. The results demonstrate that
LSTM and GRU are useful deep networks for predicting time series and sequential data.
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Table 10. Performance of the models to estimate Cu grade.

Model MSE RMSE MAPE R2

LSTM 5.5 × 10−3 0.074 5.7 × 10−5 0.963
GRU 8.7 × 10−3 0.093 6.3 × 10−5 0.956
RF 9.8 × 10−3 0.098 7.4 × 10−5 0.939

ANN-LMA 1.3 × 10−2 0.114 8.6 × 10−5 0.921

Table 11. Performance of the models to estimate Cu recovery.

Model MSE RMSE MAPE R2

LSTM 0.017 0.132 7.8 × 10−5 0.934
GRU 0.026 0.162 9.6 × 10−5 0.919
RF 0.028 0.167 1.1 × 10−4 0.915

ANN-LMA 0.029 0.170 1.3 × 10−4 0.914

Although the accuracy of the RNN models is close, the number of parameters and
time efficiency of the algorithms should be considered in practical applications [47,48].
The study showed that GRU performed faster with less CPU usage because it has fewer
parameters for training. LSTM is more sophisticated and provides more parameters such
as the number of weight matrices, number of bias vectors, learning rates, etc. This can be
considered as a penalty for such models, as described in detail by Hassanzadeh et al. [49].
A model’s learning rate controls how quickly it can adapt to a new problem and is a crucial
parameter for efficient training [29]. Larger learning rates result in rapid changes and
require fewer training epochs; however, smaller learning rates allow the model to learn
a more optimal set of weights, but may take significantly longer to train. The structure
of GRU is more straightforward. It has one gate less than LSTM, which reduces matrix
multiplication, and it can save time. However, through empirical research and as reported
by Cahuantzi et al. [50] and Yang et al. [51], the advantage of GRU is only relevant for small
datasets and when you have little memory. In other scenarios, when dealing with more
extensive sequences, LSTM is preferred. Generally, it can be concluded that if the dataset is
small, the GRU algorithm is preferable, whereas LSTM is favourable and more accurate
for larger datasets. Furthermore, parameter optimization for the purpose of studying the
influence of different setting parameters on these networks could be investigated in future
research. To find insights on the structure of the estimation models, the importance and
impact of each input variable on the outputs should be specified. The model estimation
error was calculated when input values were randomly shuffled in order to assess the
features importance. It is expected that permutation will increase the model’s estimation
error if the model relies on an input value for estimation. Due to the superior performance
of LSTM models for Cu grade and recovery, this process was applied to LSTM models and
the results are shown in Figure 17. Features importance results are well aligned with results
obtained through the Spearman correlation and sensitivity analysis. Besides, LSTM’s
success in developing models and extracting meaningful characteristics from training
data can also be confirmed by the results of feature importance and statistical analysis
(Section 3.2).
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4. Conclusions

The metallurgical response of a copper processing plant was predicted using two
efficient variants of the recurrent neural network (RNN) method based on the effective
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operating parameters, including pulp pH and solid content as well as the concentrations
of the frother and collector. For this purpose, the process was first evaluated using a
two-step screening/optimization DOE based on factorial designs. Statistical results based
on analysis of variance showed that there is a reliable correlation between the metallurgical
responses, i.e., copper grade and recovery in concentrate, and operating variables. ANOVA
results indicated that all operating variables significantly affect the metallurgical responses,
such that the copper grade increased by increasing the pulp pH and solid content and
decreased as the dosage of frother and collector were increased. Contrary results were
observed with respect to the copper recovery, with the exception that, like grade, copper
recovery increased with the increase of pulp pH due to interaction effect with other factors.

Afterwards, the optimization process was performed based on the identified significant
factors and by applying particular adjustment in terms of the technical aspects of the process.
The effect of the studied variables was also interpreted based on the main and interaction
effects to obtain a meaningful vision for the simulation step. The correlation coefficient,
mean, root mean square, and mean absolute percentage errors as well as variance account
for values for the training and testing datasets for the copper grade and recovery using the
long short-term memory (LSTM), and gated recurrent unit (GRU) networks were compared.
The results showed that the LSTM algorithm was more efficient than the GRU network and
can be applied to predict the metallurgical responses during the flotation process.
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Abstract: Multiple-input and multiple-output (MIMO) systems can be found in many industrial
processes, including mining processes. In practice, these systems are difficult to control due to the
interactions of their input variables and the inherent uncertainty of industrial processes. Depending
on the interactions in the MIMO process, different control strategies can be implemented to achieve
the desired performance. Among these strategies is the use of a decentralized structure that considers
several subsystems and for which a SISO controller can be designed. In this study, a methodology
based on global sensitivity analysis (GSA) to design decentralized control structures for industrial
processes under uncertainty is presented. GSA has not yet been applied for this purpose in process
control; it allows us to understand the dynamic behavior of systems under uncertainty in a broad
value range, unlike approaches proposed in the literature. The proposed GSA is based on the Sobol
method, which provides sensitivity indices used as interaction measures to establish the input–output
pairing for MIMO systems. Two case studies based on a semi-autogenous grinding (SAG) mill
and a solvent extraction (SX) plant are presented to demonstrate the applicability of the proposed
methodology. The results indicate that the methodology allows the design of 2 × 2 and 3 × 3
decentralized control structures for the SAG mill and SX plant, respectively, which exhibit good
performance compared to MPC. For example, for the SAG mill, the determined pairings were fresh
ore flux/fraction of mill filling and power consumption/percentage of critical speed.

Keywords: global sensitivity analysis; uncertainty; control structure; SX process; SAG mill

1. Introduction

Most industrial control systems are multiple-input and multiple-output (MIMO) sys-
tems, as the goal of multivariable control includes keeping multiple variables controlled
at independent set points. For instance, mining plants, oil refineries, biorefineries, and,
in general, chemical manufacturing plants contain MIMO processes. In these systems,
each manipulated variable (input) can affect several controlled variables (outputs) caus-
ing interactions between them and consequently generating coupling in the system. In
practice, such interactions result in difficulties in analyzing and controlling a given system.
Furthermore, the parameters used to define the input and output variables may present
uncertainty, vary with time, or be unknown [1]. For these reasons, the analysis of how to
control MIMO systems is often more complex compared to single-input and single-output
(SISO) systems.

Depending on the interactions in the MIMO process, different control strategies can
be applied to achieve the desired performance: decentralized, centralized, or decoupled
control. The centralized structure considers the design of a complete multivariate controller
to control n output variables using n manipulated variables, yielding that n2 number of
controllers prevail. However, these control systems are complex and lack integrity [2].
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The decentralized structure considers several subsystems for which a SISO controller is
designed. Thus, only n controllers prevail for each n output variable, since it uses single-
loop or diagonal controllers [3]. The decoupling structure uses separate elements, known
as decouplers, or simply controllers, to compensate for the strong interactions present in
the system [4]. Decoupling can be divided into static and dynamic decoupling according
to the characteristics of time, or can be classified into total and approximate decoupling
according to the degree of decoupling.

The decentralized control technique is still widely used in many industrial control
systems due to its simple implementation, proficient maintenance, simple tuning, and
robust performance even under model mismatches and uncertainties [5]. The key issue
when designing a decentralized control system is the control structure design (CSD), that
is, the selection of inputs and outputs and how they are paired [6]. The available literature
proposes several mathematical measures to quantify the degree of interaction between
input–output pairs. Probably the most widely used measure is relative gain array (RGA),
which was proposed by Bristol in 1966 and requires only the steady-state gain of the
plant model. This information can be obtained by step test methods. The simplicity of
RGA is the main reason for its popularity [7]. RGA has been studied and used by several
authors to propose new interaction measures. For example, Niederlinski [8] proposed
the use of an index based on the gain matrix to provide direct information on the ability
of a decentralized control to stabilize a 2 × 2 MIMO system. A variation of RGA was
reported by Zhu [9], known as relative interaction array (RIA). This is based on the concept
of viewing the interaction as an unmodeled term for a particular pairing. A dynamic
extension of RGA was proposed by Kinnaert [10] which can be applied to analyze plants
at any frequency. Mc Avoy et al. [11] also proposed a dynamic extension of RGA which
assumes the availability of a dynamic process model that is used to design an optimal
proportional output controller.

RGA provides limited knowledge; specifically, it does not indicate when to use mul-
tivariable controllers or how to carry out CSD. Therefore, some authors have proposed
alternative approaches. Salgado and Conley [12] considered observability and control-
lability Gramians in so-called participation matrices (PMs). Using a similar approach,
Wittenmark and Salgado [13] introduced the Hankel interaction index matrix (HIIA). These
Gramian-based interaction measures help to overcome most of the disadvantages of RGA.
Specifically, these measures seem to provide suggestions for designing controller structures.
Hanzon [14] showed that the PM is closely related to the direct Nyquist array, which was
introduced by Rosenbrock in 1970. Birk and Medvedev [15] proposed an alternative to
HIIA. They used theH2 andH∞ norms as the basis for new interaction measures. Mean-
while, Halvarsson et al. [16] proposed a different approach to obtain interaction measures
based on linear quadratic Gaussian (LQG) control. Moreover, many MIMO systems present
uncertainty, creating a set of possible systems for which the interaction measures may differ.
Consequently, the control structure design (CSD) may differ between models. For example,
Jain and Babu [17] analyzed the sensitivity of RGA to model uncertainty. Specifically, they
studied how the process dynamics can affect CSD decisions proposed by RGA in systems
under uncertainty.

As outlined above, there are currently many rigorous methods of CSD based on
process control theory. On the other hand, there is a large gap between research and
industrial application, which means process control engineers in industry today still use
a strongly empirical approach to CSD, basing their decisions on practical knowledge or
principles of common sense and experience [6]. For instance, in the milling process, input–
output pairing has been established based on practical knowledge or trial and error under
uncertainty [18–20], or not [21–23]. In solvent extraction (SX) [24], froth flotation [25], and
melting furnaces [26], input–output pairing was settled using classical RGA. These works
verify the need to have one methodology to help establish CDS under uncertainty for
devices implemented in mineral processing.
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Within this context, global sensitivity analysis (GSA) is proposed in this work as an
alternative to decide on the CSD. Sensitivity analysis (SA) is a commonly used method of
identifying the important input variables that determine the behavior of a model under
uncertain conditions. SA can be performed locally or globally, and according to Saltelli [27],
the latter is more robust and reliable even for nonlinear models. There are several methods
of performing GSA and among them, due to their versatility and efficiency, those based on
variance decomposition stand out [28]. Because these methods involve high computational
cost, Homma and Saltelli [29] introduced the concept of total sensitivity indices to overcome
this disadvantage. These indices indicate the average effect of a given input variable on a
specific output of the model, taking into account all possible interactions with the other
input variables of the system. A significant advantage of this method is that it can be used
in both steady-state and dynamic systems [27].

In this work, GSA is proposed to determine the CSD for nonlinear MIMO systems
under time-varying and uncertain conditions. GSA has not yet been applied to this purpose
in process control; it allows us to understand the dynamic behavior of systems under
uncertainty in a broad value range, unlike approaches proposed in the related literature.
The first order and total sensitivity indices provided by GSA are used as measures of input–
output interactions for the CSD. The methodology is illustrated with two case studies from
the mining industry: a semi-autogenous grinding (SAG) mill and an SX plant. The open-
loop modeling and simulation of these processes have been studied previously [30,31],
so in this work, the analysis of CSD based on GSA is presented first. Subsequently, for
the purpose of comparing control performance levels, several controllers were designed
based on different control structures (reported structures vs. CSD proposed in this work)
and control strategies (proportional–integral (PI) control and model predictive control
(MPC)). The results of the GSA in both cases studies were obtained using the Sobol–Jansen
method, which allowed quantification of the interactions of variables over time as well as
observation of the changes in the output variables due to the uncertainty of input variables.
The information generated by GSA allowed a reduction of the CSD of the SAG process
from a 3 × 3 to a 2 × 2 MIMO system, and that of the SX process from a 4 × 5 to a 3 × 3
MIMO system. Finally, these control structures were implemented for the control strategies
described above and better closed-loop performance was obtained when reduced CSDs
were implemented.

2. Materials and Methods
2.1. Uncertainty Analysis (UA)

Mathematical models are fundamental tools in decision-making and are developed
considering assumptions and sometimes little-known information, introducing uncertainty
in the modeling. Uncertainty can be classified as either stochastic or epistemic [32]. The for-
mer is also known as variability, inherent uncertainty, irreducible uncertainty, or uncertainty
due to chance and is related to variations inherent in a given system, usually as a result
of the random nature of model inputs. The latter is also known as reducible uncertainty,
subjective uncertainty, or uncertainty due to a lack of knowledge. This uncertainty type, as
a source of non-deterministic behavior, derives from a lack of knowledge of the system or
the environment. Uncertainty in numerical models has many origins: input data, model
simplification, algorithm structure, calibration process, calibration and validation data, and
equifinality. In this context, UA corresponds to determining the uncertainty in the output
variables as a result of the uncertainty in the input variables. UA can be addressed using
probability theory, imprecise probability, probability bound analysis, evidence theory, or
possibility theory [33]. In this work, UA is applied using probability theory, with a proce-
dure that includes four steps: first, the uncertain input variables are described using the
probability distribution function (PDF); second, a sample is generated from the PDF using
random sampling, such as the Monte Carlo method; third, the values of the model output
variables are determined for each element of the sample; fourth, the behavior of the model
output variables is characterized by graphs, descriptive statistics, and statistical tests.
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2.2. Sensitivity Analysis (SA)

According to Saltelli [34], SA can be defined as an examination of how the uncertainty
in the output of a model can be apportioned among different sources of uncertainty in the
model’s input variables. This analysis can be done locally or globally. The latter quantifies
the importance of model inputs and their interactions with respect to model outputs. GSA
provides an overall view of the influence of inputs on outputs, as opposed to the local
view based on partial derivatives, which has the disadvantage of depending on the choice
of the evaluation point. The general objectives of GSA are as follows [35]: to identify
significant and insignificant variables in a given model, aiming to reduce its dimension;
to improve the understanding of model behavior, specifically highlighting interactions
between input variables and finding combinations of input variables that result in high or
low values for the model output. GSA considers six steps [36]: (1) determine the objective
function, (2) select the input variables of the model, (3) assign a range and type of PDF
to the input variables, (4) apply a sampling design to generate samples, (5) assess the
model for the generated samples, and (6) implement the results of step 5 to perform GSA
and determine the importance of the input variables on the model outputs. The related
literature reveals that there are several methods of performing GSA and those based on
variance decomposition are used more often due to their versatility and efficiency [28]. In
this category, approaches based on the method of Sobol can be found. The latter considers a
squared-integrable function f on Ωm =

{
x/0 ≤ xj ≤ 1, j = 1, 2, . . . , m

}
that is represented

in terms of increasing dimensions [27]:

f = f0 + ∑j f j + ∑
j

∑
k>j

f jk + . . . + f1,2,...,m (1)

where f j = f j
(
xj
)
, f jk = f jk

(
xj, xk

)
, and so on; whereas f0 = E(Y), f j = E

(
Y/xj

)
,

f jk = E
(
Y/xj, xk

)
− f j − fk − E(Y), and so on. Here, Y = f (x1, x2, . . . , xm) and E repre-

sents the mathematical expectation. Note that these last expressions have the following
properties: Vj = V

(
f j
(
xj
))

= V
(
E
(
Y/xj

))
, Vjk = V

(
f jk
(

xj, xk
))

= V
(
E
(
Y/xj, xk

))
−

V
(
E
(
Y/xj

))
−V(E(Y/xk)), and so on. Here, V represents the variance. The square integra-

tion of Equation (1) on Ωm allows us to obtain the so-called ANOVA-HDMR decomposition
or its normalized equivalent:

V(Y) = ∑j Vj + ∑
j

∑
k>j

Vjk + . . . + V1,2,...,m (2)

1 = ∑j

Vj

V(Y)
+ ∑

j
∑
k>j

Vjk

V(Y)
+ . . . +

V1,2,...,m

V(Y)
(3)

In Equation (3), j = 1, 2, . . . , m, V(Y) represents the model variance, Vj represents the
first order effect for each input variable xj, and Vjk to V1,2,...,m represent the interactions of
the m input variables. The calculation of Equation (3) has a high computational cost that can
be overcome by calculating total sensitivity indices [29]. These indices allow us to determine
the average effect of a given input variable, considering all possible interactions of the
respective variable with all other input variables. In this work, the Sobol–Jansen method
was used, which allows calculation of the first order sensitivity index (Sj) and the total
sensitivity index (ST

j ) for input variable xj of the mathematical model. The Sobol–Jansen
method has been used to analyze flotation circuits [37,38], heap leaching [31], grinding [30],
and the lithium supply chain [39]. In addition, it exhibits high performance when analyzing
chemical processes [40]. This method considers 5 steps [28]: first, choose an integer N;
second, generate a matrix of size (N, 2r) of quasi-random numbers from the sampling of
input variables of their respective PDF (r represents the number of input variables); third,
divide the matrix into 2 submatrices, A and B, of size (N, k); fourth, form matrix Dj from
the columns of matrix A, except the jth column, which is taken from matrix B, and similarly,
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form matrix Cj from the columns of matrix B, except the jth column, which is taken from
matrix A; fifth, assess the model output in matrices A, B, Cj, and Dj, obtaining YA = f (A),
YB = f (B), YCi = f (Ci), and YDi = f (Di), and subsequently use the following equations:

Sj =
V
(
E
(
Y/xj

))

V(Y)
=

V(Y)− 1
2N ∑N

i=1

(
Y(i)

B −Y(i)
Dj

)2

V(Y)
, j = 1, 2, . . . , m (4)

and

ST
j = 1− V

(
E
(
Y/xj

))

V(Y)
=

1
2N ∑N

i=1

(
Y(i)

A −Y(i)
Dj

)2

V(Y)
, j = 1, 2, . . . , m (5)

Other expressions to estimate the sensitivity indices can be found elsewhere [28,36,40];
these use one or another matrix defined earlier, e.g., the Sobol–Jansen method uses matrices
A, B, and D. The interpretation of the indices is straightforward: the higher the sensitivity
index of an input variable, the greater its influence on the model output. The first order
index allows us to determine the most important input variable, while the total sensitivity
index allows us to identify the input variables that do not influence the model outputs. In
this sense, if input variable xj of the model does not interact with the other input variables,
the sensitivity indices satisfy Sj ≈ ST

j , otherwise Sj < ST
j . If ST

j ≈ 0, input variable
xj does not influence the model output and can be fixed at its nominal operating value
and consequently the dimension of the mathematical model can be reduced [27]. Note
that, ideally, UA precedes SA, as before uncertainty can be apportioned, it needs to be
estimated [41].

2.3. Solving the Model in MATLAB–Simulink

The models were implemented as a Mask subsystem in MATLAB–SimulinkTM.
SimulinkTM (R2020a-Academic Version) is a programming system that uses blocks, i.e.,
graphical programming, to solve differential equations. In this work, such equations were
solved using the ode4 solver based on the fourth order Runge–Kutta formula. In addition,
SimulinkTM allows users to program their own blocks across functions. This feature and
the possibility to use specific toolboxes, such as PID control and MPC, provide a powerful
platform for the development of prototypes.

2.4. Methodology for Control Structure Design (CSD)

A computational method of developing control structures is proposed and presented
in Figure 1. In the first step, the multivariable system is modeled using mathematical
and computational tools, such as differential equations and MATLAB software (R2020a-
Academic Version), respectively. In the second step, the process variables are classified as
manipulated, controlled, supervised, or disturbed. Furthermore, the variables manipulated
under uncertainty are characterized by distribution functions after determining the type
of uncertainty. In the third step, GSA is carried out using methods based on variance
decomposition, such as the Sobol–Jansen method, after carrying out UA. Here, the GSUA
toolbox [42] is implemented, and the sample size for each uncertain manipulated variable
is defined as one thousand. According to [43], this value allows us to obtain robust results
from UA and GSA. Subsequently, the input–output pairing is selected according to the total
sensitivity indices provided by GSA. Here, it was important to analyze the behavior of total
sensitivity indices over the simulation time to establish such pairing, which allowed us to
obtain a decentralized structure whose SISO subsystems can be controlled using PID or PI
controls. In the fourth step, the designed control structure is evaluated through simulations
and experiments. Specifically, the control structure is subject to different set points and
compared with other approaches proposed in the related literature. If the control structure
provides satisfactory results, it is considered robust; otherwise, we return to the second
step. The latter considers changing the nominal operating conditions or parameters used
to define the distribution functions.
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Figure 1. Methodology used for CSD using GSA and UA.

3. Results

The methodology proposed for CSD is illustrated considering grinding and SX pro-
cesses to demonstrate the methodology’s capacity to address systems with different degrees
of freedom.

3.1. Semi-Autogenous Grinding (SAG)

Step 1. Modeling
From an energy point of view, mineral milling is decisive in the evaluation of operating

cost, representing 50–80% of the total operating cost of a mineral concentrator plant. Various
modeling trends are proposed in the literature based on the principles that govern the
grinding phenomenon; this is how the models based on population models stand out,
which were used for this case study. The milling model presented by Austin et al. [44,45]
was considered. The SAG mill model is generally divided into two zones, the grinding
chamber and the sorting zone, as shown in Figure 2. The F particles entering the mill are
introduced into the grinding chamber. The product obtained, P*, faces the classification
zone, where, according to a classification probability ci, the particles can return to the
crushing chamber or become part of product P of the SAG mill.

Figure 2. Schematic representation of a SAG mill, adapted from [30].

It is commonly assumed that the SAG mill behaves like a perfectly mixed reactor,
with a mass retained (W) in the volume (V) of the mill and first order kinetics. Some
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authors indicate that second order kinetics might be able to model the breakage of coarse
particles better than first order kinetics [46,47]. However, computational experiments were
carried out under conditions where first order kinetics provided reliable estimations [48,49].
According to Austin et al. [44], F is the fresh ore flux fed to mill and the ith size fraction in F
is KiwiW. In this expression, wi is the weight fraction of retained mass in the mill and Ki is
the specific breakage rate of the ith size fraction. When a fraction of size i breaks, a fraction
bij of the broken material is sent to size j. The dynamic mass balance in each size i is:

d[wi(t)·W]
dt = Fi − Pi + W

i−1
∑

j=1
i>j

bijKjwj − KiwiW,

wi(0) = wi0, i = 1, 2, . . . , n; n ≥ i ≥ j ≥ 1

(6)

where n is the number of species present in the fresh feed, Fi is the fraction of ore
flux (F) fed to the mill, Pi is the fraction of flux discharged (P), and ci is the classifica-
tion efficiency of the internal grid, which affects the mass flow recirculated internally
(C∗ = ∑

i
ciwi/ ∑

i
wi(1− ci)). The complete model equations and parameter values can be

found in Appendix A and [30]. In the appendix, the reader can see the expressions used to
model the cumulative breakage distribution function and its implementation to determine
bij, as well as expressions used to estimate the classification efficiency of the internal grid
mill, which is required to calculate recirculated mass flow. In [30], the reader can find
comminution-specific energy, mill power consumption, and the fraction of mill filling
expressions, among other equations.

The design of the grinding process by Magne et al. [49] is considered in this work.
Here, a SAG mill was implemented to process copper sulfide ore 1.83 m in diameter (D)
and 0.61 m in length (L). The operating conditions of the SAG mill were as follows: ore
flux fed (F) at 3.45 t/h with granulometry of 12% for 4”, 8% between 4” and 2”, and
80% below 2”; mill volume occupied by the discharge mill (Jb) equal to 8.5% by volume;
percentage of solids in the discharge mill (Yd) equal to 74%; operating speed equal to 72%
of critical speed (ϕc); flow of water fed (Fa) equal to 1.2 m3/h; a classification grill with an
opening of 1

2 ”. The SAG mill model was simulated using Simulink, obtaining fraction of
mill filling (J), power consumption (Mp), and retained mass (W) equal to 0.22, 9.8 kW, and
0.41 t/h, respectively.

Step 2. UA and GSA
For the MIMO system (see Figure 3a), the main output variables are J, Mp, and W,

while the possible manipulated input variables are F, Fa, ϕc, F1, F2, and F3. The manip-
ulated input variables were described using distribution functions that allow the effect
of uncertainty in the system to be included. In this context, the SAG mill feed fractions
exhibit stochastic uncertainty due to geological uncertainty, while the other SAG mill in-
put variables exhibit epistemic uncertainty due to insufficient measurements, as reported
in [49]. Considering that the particle size distribution of the feed to the mill can be repre-
sented by a normal distribution [50] and that the particle fragmentation exhibits a fractal
nature [51], the fractions in the SAG mill feed are described using the normal distribution.
According to the principle of indifference, a uniform distribution should be implemented
to describe epistemic uncertainty in the absence of information [52]. Then, manipulated
input variables were described as follows: F ∼ U[3.24, 3.65] t/h, Fa ∼ U[1.02, 1.39] m3/h,
ϕc ∼ U[0.7, 0.74], F1 ∼ N[12, 0.70]%, F2 ∼ N[8, 0.80]%, and F3 ∼ N[80, 0.73]%.

The MIMO system for the SAG mill is shown in Figure 3a, and Figure 3b–d show
the UA results considering a sample of 6000 instances of operation. Here, it can be ob-
served that J, Mp, and W present values around the responses obtained using nominal
operating conditions (red line) when the SAG mill was simulated under operational un-
certainty, which is consistent with previously reported results [30,49]. Thus, the grinding
model provides robust estimates under uncertainty; subsequently, the uncertainty must be
apportioned. The GSA results using the Sobol–Jansen method are shown in Figure 4.
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Figure 3. (a) SAG mill as MIMO system, and UA results using (b) mill filling, (c) power consumption,
and (d) mass retained as output variables.

Figure 4. GSA results using (a) mill filling, (b) power consumption, and (c) mass retained as
output variables.
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Figure 4 shows the normalized total sensitivity indices of the input variables for
each output variable of the SAG mill. Here, the first-order indices are not shown because
the total sensitivity indices provide more relevant information for the purpose of this
work. According to these results, it can be concluded that all output variables

(
J, Mp, W

)

strongly depend on F and ϕc, and there is a negligible effect of Fa, F1, F2, and F3. Then,
the input–output pairing is selected using this information. These results suggest that
the manipulated input variables should be F and ϕc, while the disturbances should be
Fa, F1, F2, and F3.

Step 3. CSD
Now, the process variables can be classified as manipulated, controlled, supervised,

or disturbed, allowing the SAG mill model to be expressed in a standard control notation
(Figure 5) as follows:

.
x = f (x, u, d, p), x(0) = x0 ; dim(x) = 3 , dim(u) = nu (7)

y = h(x) ; dim(y) = ny (8)

where the vector-valued function of time f , defined by the right-hand side of Equation (6),
depends on vectors of states (x), manipulated input variables (u), disturbances (d), and
model parameters (p). For the SAG mill, the states (x) correspond to the weight fraction of
the mill retention (wi), while the outputs (y) in Equation (8) are the variables to be regulated
at desired values (controlled variables).

Figure 5. General control system.

For the MIMO system of the SAG mill (see Figure 3a), and for comparison purposes,
two structures are defined for the CSD:

(a) A traditional structure (3 × 3) previously reported for the SAG mill [53], with
nu = ny = 3:

u =




F
Fa
ϕc


 , y =




J
Mp
W


 , d =




F1
F2
F3


 , x =




w1
w2
w3


 (9)
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(b) A reduced structure (2 × 2) obtained in step 2 (considering W as a supervised vari-
able, which is kept in a range depending on grinding design capacity [54]), with
nu = ny = 2:

u =

[
F
ϕc

]
, y =

[
J

Mp

]
, d =




F1
F2
F3
Fa


 , x =




w1
w2
w3


 (10)

In addition to the two control structures designed using total sensitivity indices,
two other control strategies are considered to evaluate performance and robustness: a
conventional proportional–integral–derivative (PID) controller and an advanced MPC. So,
in the next step, three control schemes are evaluated and analyzed, as shown in Figure 6:
2 × 2 PID control, 2 × 2 MPC, and 3 × 3 MPC.

Figure 6. Control systems for SAG mill: (a) 2 × 2 PID control, (b) 2 × 2 MPC, (c) 3 × 3 MPC.

Step 4. Closed-loop validation
Subsequently, the designed control systems were implemented in MATLAB and com-

pared with their corresponding open-loop dynamics, as shown in Figure 7. It is important
to note that the tuning parameters for the PID and MPC controllers were determined using
the automatic tuning tool included in Simulink. It can be seen in Figure 7a,b that the
SAG mill load and energy consumption responses for a step change in the set point are
satisfactory. To quantify the quality of these results, the integral absolute error (IAE) was
calculated using the formula IAE =

∫
|e(t)|dt, where e(t) is the difference between the set

point and the controller response [55]. Table 1 shows a summary of IAE values obtained
for the three controllers.

In the case of J, Table 1 shows that the 2× 2 PID, 3× 3 MPC, and 2× 2 MPC controllers
provide IAE values of 0.001, 0.020, and 0.075, respectively. Thus, the PID control designed
using the pairing J/F proposed by the CSD methodology provides high performance
compared to the other controllers. In the case of Mp, Table 1 shows that the 3 × 3 MPC,
2 × 2 MPC, and 2 × 2 PID controllers provide IAE values of 0.111, 0.299, and 0.630,
respectively. Therefore, the PID control designed using the pairing Mp/φc proposed by
the CSD methodology demonstrates sufficient performance compared to the others. In the
first case, the high performance might be based on the strong influence of the feed flux on

113



Minerals 2022, 12, 736

mill load, regardless of time and uncertainty (approximately 0.95; see Figure 4a). In the
second case, the percentage of critical velocity and feed flux influence power consumption
0.75/0.25 regardless of time and uncertainty, this feed flux effect could explain the sufficient
performance of the 2 × 2 PID controller. This could also explain the offset observed in the
behavior of manipulated variables (Figure 7d).

Figure 7. Dynamic responses of controlled variables: (a) SAG mill load (J); (b) power consumption
(Mp) and manipulated variables; (c) feed (F); (d) percentage of critical speed (ϕc).

Table 1. Analysis and interpretation of results obtained by controllers, SAG mill.

Control

IAE

Controlled Variables Manipulated Variables

J Mp F φc

High performance PID 2 × 2 MPC 3 × 3 PID 2 × 2 PID 2 × 2
0.001 0.111 6.437 0.793

Good performance MPC 3 × 3 MPC 2 × 2 MPC 3 × 3 MPC 3 × 3
0.020 0.299 6.081 0.240

Sufficient performance MPC 2 × 2 PID 2 × 2 MPC 2 × 2 MPC 2 × 2
0.075 0.630 9.594 0.995

Reference
Open-loop

0.255 11.536
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3.2. Solvent Extraction (SX) Process

Step 1. Modeling
The SX process includes an extraction and a re-extraction system (Figure 8), which can

be located in different configurations, both in parallel and in series. The model proposed by
Komulainen et al. [56] consists of four units, three for extraction and one for re-extraction.
The flow input to the process comprises pregnant leach solutions (PLS) with mineral to
be recovered, F1a and F2a; solution with a copper concentration, c0a; poor electrolyte flow,
F1e, with a concentration of c0e; the flow of the loaded organic (LO) solution, FLO. The LO
solution is recycled in the process, but the flow can be managed through the organic storage
tank, c3o. The results of the process are rich copper concentration, c1e, and refined copper
concentrations, c1a and c3a.

Figure 8. Schematic representation of SX process, adapted from [24].

In the extraction, the copper is transferred from the aqueous to the organic phase.
Each of the three extraction units is modeled using dynamic mass balances for organic (cio),
aqueous (cia), and electrolyte (cie) phases:

dci,phase(t)
dt =

Fi,phase(t)
Vmix,i(t)

[
ci−1,phase(t− t0)− ci,phase(t)

]
+ Ki

[
ci,phase(t)− c∗i,phase(t)

]

ci,phase(0) = ci,phase,0

i = 1, . . . , 4 f or phase = o; i = 1, 2, 3 f or phase = a; i = 1 f or phase = e

(11)

where ci represents concentrations, Fi represents flow rates, Vmix represents the mixing
volumes, Ki represents the mass transfer coefficients, and the settler, always following the
mixer, is described by a pure time delay, ti. The complete model equations and parameter
values can be found in Appendix B and Komulainen et al. [56]. Here, the SX process con-
siders the following operating conditions: organic flow (FLO) of 17.83 m3/min, electrolyte
flow (F1e) of 6.26 m3/min, aqueous flow (F1a) of 16.88 m3/min with concentration (coa) of
1.53 g/L, and aqueous flow (F2a) of 16.88 m3/min with concentration (c2a) of 3.37 g/L. The
SX process model was simulated using Simulink (see Figure 9b–f), obtaining c1e, c1a, c3a,
c3o, and c4o values of 51.58, 0.254, 1.38, 6.62, 1.01 and 3.532 g/L, respectively.
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Figure 9. (a) SX plant as a MIMO system, and UA results using (b) c1a, (c) c4o, (d) c1e, (e) c3o, and
(f) c3a as output variables.

Step 2. UA and GSA
For the MIMO system (see Figure 9a), the main output variables are c1e, c1a, c3a, c3o, and

c4o, and the possible manipulated input variables are FLO, F1a, F2a, F1e, c0a1, c0a2 , and c0e.
The manipulated input variables of the SX process exhibit epistemic uncertainty due to
insufficient information collected from the related literature. Again, according to the
principle of indifference, a uniform distribution must be implemented to describe the
epistemic uncertainty in the absence of information. In this way, manipulated input vari-
ables were described as follows: FLO ∼ U[16.04, 19.6] m3/h, F1a ∼ U[15.19, 18.56] m3/h,
F2a ∼ U[14.19, 18.56] m3/h, F1e ∼ U[5.63, 6.88] m3/h, c0a1 ∼ N[1.53, 0.5] %, and c0a2 ∼
N[3.37, 0.5]%.

Figure 9b–f shows the SX plant responses when subjected to UA, considering a sample
of 7000 instances of operation. Here, it can be observed that c1a and c4o present values
similar to those obtained using nominal operating conditions despite the uncertainty, while
c1e, c3o, and c3a exhibit lower values than the responses obtained using nominal operating
conditions (red line), which indicates the influence of operating uncertainty on SX plant
responses. The estimates provided by the SX model under uncertainty are consistent with
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the related literature [24,56]. The next step is to study the uncertainty apportion using the
Sobol–Jansen method.

Figure 10 shows the normalized total sensitivity indices of the input variables for each
output variable of the SX plant. According to this figure, FLO, F1a, and F1e have an influence
on c1o, c1a, and c1e, respectively, and they should be selected as manipulated input variables,
while c0a1, c0a2 , and c0e should be selected as disturbances.

Figure 10. GSA using (a) c1a, (b) c1e, (c) c3a, (d) c3o, and (e) c4o as output variables.

Step 3. CSD
In this step, the variables of the process are classified as manipulated, controlled,

supervised, or disturbed, allowing the SX model to be expressed in a standard control
notation (Figure 3) as follows:

.
x = f (x, u, d, p) , x(0) = x0 ; dim(x) = 8, dim(u) = nu

y = h(x) ; dim(y) = ny
(12)
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where the vector-valued function of time, f , is defined by the right-hand side of Equation (11).
For the SX process, the states (x) correspond to concentrations c10, c20, c30, c40, c1a, c2a, c3a,
and c1e, while the manipulated input variables (u) are selected according to the output
variables (y) to be regulated at desired values.

For the MIMO system of the SX process (see Figure 11a), and again for comparison
purposes, the two structures are defined as follows:

(a) A traditional structure (4 × 5) reported previously [24], with nu = 4 and ny = 5:

u =




FLO
F1a
F2a
F1e


, y =




c1e
c1a
c3a
c3o
c4o




, d =




c0a1
c0a2
c0e


 (13)

(b) A reduced structure (3 × 3) obtained in step 2, with nu = ny = 3:

u =




FLO
F1a
F1e


, y =




c1e
c1a
c3o


, d =




c0a1
c0a2
c0e


 (14)

These two CSDs are proposed using total sensitivity indices, and again, two control
strategies are considered to evaluate performance and robustness: a conventional controller
(PID) and an advanced controller (MPC). In the next step, three control systems for the
SX plant are evaluated and analyzed, as shown in Figure 11: 3 × 3 PID, 3 × 3 MPC, and
4 × 5 MPC.

Figure 11. Control systems for SX plant: (a) 3 × 3 PID, (b) 3 × 3 MPC, (c) 4 × 5 MPC.

Step 4. Closed-loop validation
The designed control systems were implemented in MATLAB and compared with

their corresponding open-loop dynamics, as shown in Figure 11. Again, the parameters
of the PID and MPC controllers were determined via the automatic tuning tool included
in Simulink. In Figure 12, it can be seen that the dynamic responses of all variables for
the 3 × 3 PID and 3 × 3 MPC are satisfactory, while the performance of the 4 × 5 MPC
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controller is poor. To quantify the quality of these results, IAE was calculated, and the
values are given in Table 2.

Figure 12. Dynamic response of controlled variables (a) c1e, (c) c3o, and (e) c1a and manipulated
variables (b) FLO, (d) F1e, and (f) F1a.

In the case of c1e, Table 2 shows that the 3 × 3 PID, 3 × 3 MPC, and 4 × 5 MPC
controllers provide IAE values of 0.008, 0.096, and 0.112, respectively, for a step change in
the set point. In other words, the PID controller designed using total sensitivity indices
exhibits high performance compared to the other controllers, which is related to the strong
influence of F1e on c1e. In the case of c1a, Table 2 shows that the 3 × 3 PID, 3 × 3 MPC, and
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4 × 5 MPC controllers provide IAE values of 0.072, 0.090, and 2.234, respectively. Again, the
controller designed using total sensitivity indices shows high performance compared to the
other controllers, even though FLo and F1e have a side effect on c1a. In the case of c3o, Table 2
shows that the 3× 3 PID, 3× 3 MPC, and 4× 5 MPC controllers provide IAE values of 0.001,
0.060, and 2.636, respectively. Here, the controller designed using total sensitivity indices
exhibits high performance compared to MPC despite the secondary influence of F2a on c3o.
The good and sufficient performance of MPC could be explained by the cross-influence of
some input variables on the SX plant responses detected in the GSA (Figure 10).

Table 2. Analysis and interpretation of results obtained by controllers, SX plant.

Control

IAE(10−3)

Controlled Variables Manipulated Variables

c1e c1a c3o F1e F1a FLo

High performance PID 3 × 3 PID 3 × 3 PID 3 × 3 MPC 3 × 3 MPC 3 × 3 MPC 3 × 3
0.008 0.072 0.001 2.300 9.088 9.365

Good performance MPC 3 × 3 MPC 3 × 3 MPC 3 × 3 PID 3 × 3 PID 3 × 3 PID 3 × 3
0.096 0.090 0.060 2.545 10.230 10.660

Sufficient performance MPC 4 × 5 MPC 4 × 5 MPC 4 × 5 MPC 4 × 5 MPC 4 × 5 MPC 4 × 5
0.112 2.234 2.636 21.598 85.689 110.112

Reference
Open-loop

2.180 0.099 0.605

4. Conclusions

A methodology was presented to design decentralized control structures. This method-
ology considers the use of GSA based on the Sobol–Jansen method to establish the control
structure design (input–output pairing) for MIMO systems operating under uncertainty
conditions. These control structures are made using total sensitivity indices provided by the
Sobol–Jasen method, and their behavior depends on the dynamics of the studied process
and the magnitude of the uncertainty. In this sense, the Sobol–Jansen method provides
graphical results that help in understanding the dynamic behavior of systems under un-
certainty. The methodology was illustrated using a SAG mill and an SX plant operating
under uncertainty. For the SAG mill, the methodology allowed us to design a 2 × 2 de-
centralized control structure whose pairings J/F and Mp/φc exhibited high and sufficient
performance, respectively, compared to MPC. For the SX plant, the methodology allowed
us to design a 3 × 3 decentralized control structure whose pairings c1o/FLO, c1a/F1a, and
F1e/c1e exhibited high performance compared to MPC. The proposed methodology for the
design of the control structure using GSA was illustrated with mineral processes, and it can
be applied to any other process that operates under uncertainty; therefore, it could provide
satisfactory results for a wide range of operating conditions.
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Nomenclature

For SAG model:
A ore impact breakage parameter
a parameter of specific breakage rate model
aS parameter of specific breakage rate model
Bij cumulative breakage distribution function
B values of input variables that provide desired behavior of output milling model
B− values of input variables that provide unwanted behavior of output milling model
bij ore impact breakage parameter
n breakage distribution function
C∗ number of species present in fresh feed
ci mass flow recirculated internally by grill
c f classification efficiency of internal grid mill
c f solid weight percentage in mill charge
D mill diameter
Ecs comminution specific energy (kWh/t)
F fresh ore flux fed to mill, t/h
fi fraction of fresh ore flux fed to mill
J fraction of mill filling
Jb percentage of mill volume occupied by steel balls
Ki specific breakage rate
L mill length
M parameter of classification efficiency model
Mp mill power consumption
m total number of input variables in model Y
R total number of simulations
Sj first-order sensitivity index for input variable xj
ST

j total sensitivity index for input variable xj

V mill volume
R total number of simulations
V(Y) variance of model Y
W mass retained in mill
Wa water in mill charge
wa ratio between ore mass and water mass retained inside mill
wi weight fraction of retained mass in mill
Yd percentage of solids in discharge mill
x0 parameter of specific breakage rate model
xi particle size of species present in fresh feed
x50 parameter of classification efficiency model
Z parameter of classification efficiency model
α characteristic parameter of material
α1 parameter of specific breakage rate model
αs parameter of specific breakage rate model
β fraction of fines produced in a single fracture event
β1 parameter of classification efficiency model
γ parameter of cumulative breakage distribution function
µ parameter of specific breakage rate model
Ψ parameter of specific breakage rate model
Λ parameter of cumulative breakage distribution function
∅j percentage of critical speed
∅c parameter of classification efficiency model
For SX model:
F1a flow inputs to process, pregnant leach solution (PLS)
F2a flow inputs to process, pregnant leach solutions (PLS)
c0a solution with a copper concentration
F1e poor electrolyte flow
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Appendix A. SAG Model

The mathematical expression used to model the breakage distribution function bij is
based on Bij, the cumulative breakage distribution function, given by:

Bij = φj

(
xi−1

xj

)γ

+
(
1− φj

)
(

xi−1

xj

)β

(A1)

where φj and γ are parameters with values ranging from 2.5 to 5 and 0.5 to 1.5, respectively,
and β represents the fraction of fines produced in a single fracture event. Considering that
Bij is a cumulative distribution, this can be expressed as:

Bi,j = bn,j + bn−1,j + . . . + bi,j =
n

∑
k=i

bkj (A2)

so that
Bi,j − Bi+1,j = bij (A3)

The classification efficiency of the internal grid mill, ci, is calculated with the following
expression:

ci = ψβ(xi M)(β−1)exp
(
−ψ(xi M)β

)
+

1

1 +
(

x50
xi

)Z (A4)

where ψ, Z, M, x50, and β are parameters of the model. In the case of specific breakage rate
Ki, related theory suggests that this parameter varies with particle size; the typical form
of specific breakage rate has three regions. Magne et al. [48,49] proposed the following
equation to estimate the specific breakage rate in the three regions:

Ki = a
(

xi
x0

)α 1

1 +
(

xi
µ

)Λ + as

(
xi
x0

)αs

(A5)

where α, µ, Λ, a, as, x0, and αs are parameters of the model.

Appendix B. SX Model

The mass balances of the SX process are given below.
Organic–aqueous balance in E1P:

dcorg
1 (t)
dt

=
Forg

1 (t)
Vmix,1(t)

·
[
corg

4 (t− t0)− corg
1 (t)

]
+ K1

[
corg

1 (t)− corg∗
1 (t)

]
(A6)

dcaq
1 (t)
dt

=
Faq

1 (t)
Vmix,1(t)

·
[
caq

0 (t)− caq
1 (t)

]
− K1

[
corg

1 (t)− corg∗
1 (t)

]
(A7)

Organic–aqueous balance in E1S:

dcorg
2 (t)
dt

=
Forg

2 (t)
Vmix,2(t)

·
[
corg

1 (t− t1)− corg
2 (t)

]
+ K2

[
corg

2 (t)− corg∗
2 (t)

]
(A8)

dcaq
3 (t)
dt

=
Faq

2 (t)
Vmix,2(t)

·
[
caq

2 (t)− caq
3 (t)

]
− K2

[
corg

2 (t)− corg∗
2 (t)

]
(A9)

Organic–aqueous balance in E2S:

dcorg
3 (t)
dt

=
Forg

3 (t)
Vmix,3(t)

·
[
corg

2 (t− t2)− corg
3 (t)

]
+ K3

[
corg

3 (t)− corg∗
3 (t)

]
(A10)
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dcaq
2 (t)
dt

=
Faq

2 (t)
Vmix,3(t)

·
[
caq

0 (t)− caq
2 (t)

]
− K3

[
corg

3 (t)− corg∗
3 (t)

]
(A11)

Organic–electrolyte balance in S1H:

dcorg
4 (t)
dt =

Forg
4 (t)

Vmix,4(t)
·
[
corg

3 (t− t3)− corg
4 (t)

]
− K4

[
cel

1 (t)− cel∗
1 (t)

]

dcel
1 (t)
dt =

Fel
1 (t)

Vmix,4(t)
·
[
cel

0 (t)− cel
1 (t)

]
+ K4

[
cel

1 (t)− cel∗
1 (t)

] (A12)

From the described balance equations, the following relationships are established:

FLO = Forg
1 = Forg

2 = Forg
3 = Forg

4 (A13)

c(RE) = cel
1 (t− t4) (A14)

c(Ra f f P) = caq
1 (t− t1) (A15)

c(Ra f f S) = caq
3 (t− t2) (A16)

c(LO) = corg
3 (t− t3) (A17)

c(BO) = corg
4 (t− t4) (A18)

Theoretical equilibrium values for extraction and re-extraction are determined from
the McCabe–Thiele diagram, presented in Figure A1. Isotherms assume that extraction
and re-extraction are constant, while the operating lines are constantly changing according
to the organic/aqueous volume ratio in each tank. The equilibrium value in a tank is the
point of coincidence of the equilibrium isotherm and the inverse operating line, weighted
by the efficiency coefficient α.

In extraction, the equilibrium isotherm is not linear:

corg = Acaq/(B + caq) (A19)

and in re-extraction it is linear:
corg = C·caq + D (A20)

In extraction, the theoretical equilibrium point (100% efficiency) is determined by:

y = 1/2a
(
−(Ba− A + b)−

√
(Ba− a + b)2 − 4aBb

)
(A21)

Figure A1. McCabe–Thiele diagram: two extraction stages and one re-extraction stage (adapted
from [56]).
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The equilibrium value for aqueous and organic concentrations is the weighted effi-
ciency of the theoretical value:

caq∗ = αix∗ + (1− αi)·caq
0 (A22)

corg∗ = αy∗ + (1− α)·corg
0 = α·(ax∗ + b) + (1− α)·corg

0 (A23)

Here, a and b are parameters of the equilibrium isotherm, where the slope a of the
operating line is:

a = −Faq/Forg (A24)

while b is the linear term that combines the input concentrations of the organic and
aqueous phases:

b = corg
0 − a·caq

0 (A25)

In re-extraction, the isotherm parameters are C and D and a and b; in the same way,
the equilibrium point is solved by:

y = Cx + D = ax + b (A26)

resulting in the theoretical equilibrium concentration of the aqueous phase x*:

x∗ = (b− D)/(C− a) (A27)
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Abstract: This work is aimed at obtaining new knowledge in the field of interactions of polydisperse
hydrophobic surfaces in order to increase the extraction of mineral microdispersions via flotation.
The effect of high velocity and the probability of aggregating fine particles with large ones are
used to increase the extraction of finely dispersed gold in this work. Large particles act as carrier
minerals, which are intentionally introduced into a pulp. The novelty of this work lies in the fact
that a rougher concentrate is used as the carrier mineral. For this purpose, it is isolated from three
parallel pulp streams by mixing the rougher concentrate, isolated from the first stream of raw
materials, with an initial feed of the second stream; accordingly, the rougher concentrate of the
second stream is mixed with the initial feed of the third stream, and the finished rougher concentrate
is obtained. In this mode of extracting the rougher concentrate, the content of the extracted metal
increases from stream to stream, which contributes to the growth in its content in the end product.
Moreover, in order to supplement forces involved in the separation of minerals with surface forces
of structural origin in the third flotation stream, the pulp is aerated for a short time (about 15%–25%
of the total) with air bubbles filled with a heat carrier, i.e., hot water vapor. Within this accepted
flotation method, the influence that the surface currents occurring in the wetting film have on its
thinning and breakthrough kinetics is proposed to be in the form of a correction to a length of a
liquid slip in the hydrophobic gap. The value of the correction is expressed as a fraction of the
limiting thickness of the wetting film, determined by the condition of its thickness invariability
when the streams are equal in an interphase gap: outflowing (due to an action of the downforce)
and inflowing (Marangoni flows and a thermo-osmotic stream). Gold flotation experiments are
performed on samples of gold-bearing ore obtained from two deposits with conditions that simulate
a continuous process. Technological advantages of this developed scheme and a flotation mode
of gold microdispersions are shown in comparison with the basic technology. The purpose of
this work is to conduct comparative tests on the basic and developed technologies using samples
of gold-bearing ore obtained from the Natalka and Olimpiada deposits. Through the use of the
developed technology, an increase in gold extraction of 7.99% and in concentrate quality (from
5.09 to 100.3 g/t) is achieved when the yield of the concentrate decreases from 1.86 to 1.30%, which
reduces the costs associated with its expensive metallurgical processing.

Keywords: gold microdispersions; flotation; carrier minerals; wetting film; stability; slip; correction
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1. Introduction

The main peculiarity of ores currently involved in processing is the increased content of
small fractions of extracted valuable components in them [1]. For example, the proportion
of disseminated gold contained in sulfide minerals (such as pyrite or arsenopyrite) can
reach up to 15%–35%. Taking into account peculiarities of the material composition of
currently processed ores, a strategy for the development of the mineral resource base of
the Russian Federation until 2035 has been established. It provides for improvements in
the theory and methods of extracting and enriching solid mineral raw materials of natural
and technogenic origin [2]; in particular, flotation technology [3] represents one of the main
processes for the primary processing of the majority of ore [4] and non-metallic minerals.

In the case of the traditional approach to the problem of effectively extracting fine
particles (whose size does not exceed 10–30 µm) via flotation, a flotation complex formation
has been investigated using a thermodynamics apparatus, which considers the physical
and chemical patterns of the action of applied flotation reagents [5]. This approach is the
most rational when solving technological problems, for example, water treatment, when the
completeness of a collective extraction of all solid particles present in an aqueous phase is a
necessary and sufficient condition. During ore flotation, a requirement of the completeness
of extracting valuable components is supplemented by a condition of selective separation
of minerals [6,7].

During the selective flotation of minerals, the flotation complex is formed as a result
of the inertial collision of a particle with a bubble surface. The thinning (when a particle
slips along a bubble surface from its upper pole to equator) of a wetting (interphase) film
separates a particle and a bubble up to a thickness at which surface adhesion forces acquire
a noticeable intensity [8,9] and the formation of the contact angle [10]. Moreover, contact
angles should reach values at which the continuous transportation of a particle, adhering
to a bubble surface, into a foam layer is ensured under dynamic (turbulent) conditions of
the flotation process. A strong adhesion of a particle to a bubble surface is possible with a
sufficiently extended wetting perimeter and a large contact angle. Fine particles are fixed
in an aft part of a bubble under the action of a hydrodynamic downforce without forming
a contact angle in a distant potential pit. When the particle size decreases from 100 to
1 µm, the releasing force decreases 106 times [11]. Selective flotation is possible only with
forming a flotation complex according to the first mechanism: when particle sizes decrease,
the probability of their non-selective fixation on the bubble surface increases without the
contact angle formation.

Increasing the completeness of the extraction of fine (inertialess) particles is achieved
by enlarging them, due to introducing polymers or high-molecular flocculants into the
flotation system. It happens less often by recharging bubbles and using flotation machines
of a special design. Hydrophobic glass beads and crushed copper ore have been used as
carrier materials in order to extract graphite microdispersions [12]. When the flotation
carrier platform, in the form of hydrophobic chalcopyrite and malachite microdispersions,
was approached at a distance of up to 8.6–12.5 nm, significant attractive forces appeared
between them due to hydrophobic interactions [13–19].

In this work, to increase the completeness and selectivity of the extraction of microdis-
persions of minerals, large particles, or a solid wall, are used, and the rate of adhesion (as
well as induction time [20,21]) is two orders of magnitude higher than the rate at which fine
particles aggregate among themselves [14]. When studying an aggregation of hydrophobic
polydisperse particles, basic mechanisms of the DLVO theory (van der Waals (dispersion)
forces and electrostatic interaction) are complemented by “non-DLVO” forces [22–27], i.e.,
surface forces of a structural origin associated with a difference between a water structure
of boundary layers and a liquid volume [28–32]. A sweep effect contributes to an increase
in the rate of liquid removal from an interphase gap (and, as a result, an increase in an
adhesion probability) between hydrophobic particles [32–37].

The aim of this work is to study the possibility of increasing the extraction of fine
metal fractions from gold-bearing ores using new technological solutions. These are
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the introduction of carrier minerals and additives to air, supplied for aeration of the
flotation system, and a coolant into the pulp, which, from the viewpoint of industrial and
environmental safety, fully fits into the context of the Agenda for the field of sustainable
development up to 2030, which was adopted by the UN [38–40].

2. Methods and Materials

Field experiments on flotation using the developed method were performed with
ore samples from the Natalka deposit (Magadan region) and the Olimpiadinsky deposit
(Krasnoyarsk region).

To determine the chemical composition of the samples (Table 1), a spark mass spec-
trometer of the JMS-BM2 type (JEOL, Tokyo, Japan) equipped with inductively coupled
plasma (ICP-MS analysis) was used.

Table 1. Chemical composition of ore samples from the Natalka deposit.

Name of the
Element,

Component
Content, %

Name of the
Element,

Component
Content, %

SiO2 63.5 Fegen. 4.17
Al2O3 14.2 Feok 2.95
K2O 3.27 Fes 1.22
CaO 2.65 Sgen. 0.84
MgO 1.95 Ssulph. <0.25
MnO 0.12 Zn 0.0070
P2O5 0.22 Pb 0.0018
TiO 9.56 Cu 0.0020

Na2O 2.33 As 0.253
Cgen 2.48 Sb <0.005

CO2 carb 4.55 Au 1.47
Corg 1.24 Ag 0.60

According to the scintillation spectral analysis, gold in an ore sample of the Natalka
deposit is randomly distributed by size classes. Table 2 shows the results of the scintillation
spectral analysis of the gold distribution by size classes in the sample of ores from the
Natalka deposit.

Table 2. Gold distribution by size classes in the sample of ores from the Natalka deposit.

Size Class, µm Gold Distribution,
% Size Class, µm Gold Distribution,

%

0–5 29.7 38–71 1.4
5–9 19.4 71–100 12.0

9–12 4.0 100–150 4.4
12–15 0.7 150–250 12.8
15–25 7.0 250–500 2.8
25–38 5.8

Seven ore samples, obtained from the Natalka deposit, were taken. For each of these
samples, the purity of gold in that ore was determined by an assay test. An average value
of the gold purity was 801 (values in the studied samples ranged from 795 to 807).

In the sample of ores from the Olimpiadinsky deposit, sulfides are represented by
arsenopyrite, pyrrhotite and antimonite, placed in a form of an insignificant impurity in a
mass of non-metallic minerals: calcite (35%–40%), quartz (30%–43%), muscovite (8%–10%)
and biotite (10%–15%), chlorite, sericite and a number of other minerals.

Free gold in ores is represented by finely dispersed and pulverized fractions (Table 3).
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Table 3. Distribution of gold by size classes in the sample of ores of the Olimpiadinsky deposit.

Grain-Size Class,
µm

Gold Distribution,
%

Grain-Size Class,
µm

Gold Distribution,
%

3–5 31.7 12–15 9.9
5–9 29.0 15–25 14.3

9–12 15.1

Native gold is associated with quartz (35%), arsenopyrite (35%), pyrite and marcasite
(15%), pyrrhotite (5%), berthierite and antimonite (5%), carbonates (5%), as well as (single
grains) with chalcopyrite, tetrahedrite and muscovite. When grinding ores to a size of
74 µm, the content of free gold is 15%.

A bulk consists of gold grains, whose surface has been subjected to a technogenic
impact. Gold is represented by rolled thin plates, whose contours are torn; gold grains of
an oblong shape are indicated. A gold color is bright yellow and straw yellow. A surface
of individual grains is covered with oxide films. A grain surface texture is mainly bumpy,
porous and rough. High-grade gold is 950‰; it contains mercury, silver, copper, iron,
antimony, arsenic, sulfur in the form of impurities. A phase analysis of gold in an ore
sample was performed (Table 4).

Table 4. Results of a phase analysis of a gold sample of initial ore (when a grinding size of 98% of a
class is 74 µm).

Form of Finding Gold
Natalka
Deposit

Olimpiadinsky
Deposit

Natalka
Deposit

Olimpiadinsky
Deposit

Au Content, g/t Au Distribution, %

Free gold and in
accretions, cyaninated 1.04 1.43 70.70 47.70

Gold associated with
sulfides 0.28 0.86 19.15 28.70

Gold in films and
“jackets” of iron

hydroxides
0.036 0.37 2.48 12.40

Gold encased in quartz 0.11 0.34 7.67 11.20
Initial sample 1.47 3.00 100.00 100.00

In the flotation experiments, a countercurrent column (D × L = 0.6 × 7.4 m) was used
when an initial feed was supplied between a purification zone (1.6 m high) and a mineral-
ization zone (5.8 m high) and the airlift unloading of tailings. During hydraulic transport
of tailings, 0.045 m3/(min ×m3) of air under a pressure of 0.14 MPa was supplied to an
airlift. The reduced pulp velocity (a ratio of a productivity to a column cross-section) was
1.03 cm/s. The steam consumption was 1.07 × 10−2 kg·s−1·m−2 (under an overpressure
of 0.15 MPa) and the air consumption was 2.61 kg·s−1·m−2. The flotation machine was
equipped with a confuser–diffuser type aerator when water vapor was supplied (an electric
steam generator of an EPG-50 type) to a low-pressure zone created by a working airflow (a
compressor of a 4BU1-5/9 type). The gas content in the flotation column was 14%–15%.
No rinsing water was applied to the foam layer.

2.1. Flotation of Ores Using the Basic Technology

A schematic block diagram of ore flotation using the basic technology is shown in
Figure 1.

Gold was extracted from the ores using a gravity–flotation technology, similar to that
adopted at an operating gold extracting factory. An experiment was performed according to
a scheme simulating a closed enrichment cycle. A total of 65.43% of Au was extracted into a
“golden head” (817.88 g/t of Au) by gravity. Gold was extracted from gravity tailings using
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a flotation method. The flotation flowsheet included a rougher flotation operation, whose
rougher concentrate was recleaned three times; tailings of the rougher flotation operation
were subjected to two control flotation operations. In the experiment that simulated a
closed flotation cycle, intermediate flotation products (tailings of recleaning and foam
products of control flotation operations) were sent from subsequent flotation operations
to previous ones. At a rate of 500 g/t, starch was used to suppress organic carbon, which
allows a reduction in the carbon content in a concentrate from 6.1 to 1.4% and the extraction
from 47.0 to 1.4%. Gold-bearing sulfides were activated with copper sulfate when loading
sodium carbonate up to pH 8.5–8.7. Another 15.28% of Au was extracted into a flotation
concentrate, using butyl xanthogenate and a foam agent T-92.
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2.2. Flotation of Ores Accompanied by Isolating the Rougher Concentrate in “Three Steps”

Figure 2 shows the results of flotation of ores from the Natalka deposit (a cycle of
extracting gold by gravitational methods and a cycle of basic flotation), using the rougher
concentrate as carrier minerals to extract gold microdispersions. The results were obtained
in the experiment modulating a closed flotation cycle.

A structural and technological scheme of ore flotation (and a reagent mode of mineral
separation), using the rougher concentrate as carrier minerals, intended for extracting gold
microdispersions, was similar to that used in the basic technology (Section 2.1, Figure 1).
The finishing of the rougher concentrate consisted in its three re-cleanings; the finishing of
tailings of three main flotation operations consisted of two control flotation operations.
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the rougher concentrate in “three steps”.

3. Theoretical Provisions

Upon approaching a bubble, large particles collide with a bubble surface, deviating
under the action of inertia forces from fluid flow lines, flowing around a bubble. Inertia
forces decrease along with the decreasing particle size, which makes it difficult for them
to collide with the bubble surface. Therefore, with large particles, a process of flotation
complex formation is limited by an adhesion stage, while with fine particles it is limited
by their transfer to the bubble surface [41]. Based on peculiarities of the interaction of fine
particles with an air bubble, the completeness of extracting fine particles by flotation can be
increased by their preliminary aggregation with large particles.

Based on the geometric probability of a collision, we can prove the predominant
aggregation of large Ri and fine Rj particles in a polydisperse mineral system.
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Polydisperse particles move in a laminar stream along an Ox axis between a surface
y = 0 and y = h; a field of external forces is oriented across streams (Figure 3).

Minerals 2024, 14, x FOR PEER REVIEW 7 of 24 
 

 

A structural and technological scheme of ore flotation (and a reagent mode of min-
eral separation), using the rougher concentrate as carrier minerals, intended for extract-
ing gold microdispersions, was similar to that used in the basic technology (Section 2.1, 
Figure 1). The finishing of the rougher concentrate consisted in its three re-cleanings; the 
finishing of tailings of three main flotation operations consisted of two control flotation 
operations. 

3. Theoretical Provisions 
Upon approaching a bubble, large particles collide with a bubble surface, deviating 

under the action of inertia forces from fluid flow lines, flowing around a bubble. Inertia 
forces decrease along with the decreasing particle size, which makes it difficult for them 
to collide with the bubble surface. Therefore, with large particles, a process of flotation 
complex formation is limited by an adhesion stage, while with fine particles it is limited 
by their transfer to the bubble surface [41]. Based on peculiarities of the interaction of fine 
particles with an air bubble, the completeness of extracting fine particles by flotation can 
be increased by their preliminary aggregation with large particles. 

Based on the geometric probability of a collision, we can prove the predominant 
aggregation of large Ri and fine Rj particles in a polydisperse mineral system. 

Polydisperse particles move in a laminar stream along an Ox axis between a surface 
y = 0 and y = h; a field of external forces is oriented across streams (Figure 3). 

 
Figure 3. Scheme used for calculating the geometric probability of the collision of polydisperse 
particles. 

According to the diagram (Figure 1), a particle with a size of ij RR <  begins to 
move along with a stream at point B having an ordinate: 

( ) ( )hjihВ yψR,R,yy =ϕ=  (1)

Specifying the size of the large particle Ri and an ordinate of its entry into the yA, 
stream allows for the determination of an AK path and an abscissa of a point of its colli-

Figure 3. Scheme used for calculating the geometric probability of the collision of polydisperse particles.

According to the diagram (Figure 1), a particle with a size of Rj < Ri begins to move
along with a stream at point B having an ordinate:

yB = φ
(
yh , Ri , Rj

)
= ψ (yh) (1)

Specifying the size of the large particle Ri and an ordinate of its entry into the yA,
stream allows for the determination of an AK path and an abscissa of a point of its collision
with a wall—xK = 0 K. This means that particles of an Ri size, when moving along an AK
trajectory, can only collide with particles that have crossed an AB segment and have a size
of Rj (Rj < Ri).

Provided that particles of j-size are separated from each other by a distance of:

δj =
Rj

3
√

c f
(

Rj
)

∆ Rj

(2)

The geometric probability of a collision of polydisperse particles can be determined
by the following formula:

pi j =

{ (
Ri + Rj

)2/ δ2
j when

(
Ri + Rj

)
≤ δj

1 when
(

Ri + Rj
)
> δj

(3)

where f
(

Rj
)
—mass differential function of particle size distribution; c—fraction of a large

particle surface occupied by fine particles (a density factor of packing fine particles on the
large particle surface).

We will divide a segment of 0 y1 into n = h / ∆ y parts, and a BK segment will be
divided into l (k) parts (where ∆ y = δj, l (k) = (yh − y1) / δj).
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Then, the geometric probability of a collision of polydisperse particles will be:

pi j h = 1 −
[
1 −

(
Ri + Rj

)2/ δ2
j

] l (h)
(4)

If a volumetric unit of a suspension contains C′ f (Ri) ∆ Ri / R2
i particles of i-th

size, then the number of particles of the same size crossing a ∆S strip having an area of
∆ S = 1 · δj per unit time at the entrance is equal to:

∆ ni|δj
= c Q δj f (Ri) ∆ Ri /

(
R3

i h
)

(5)

Following [42], the expression for determining the mathematical expectation of the
number of collisions of large Ri and fine Rj particles in a suspension of volume V can be
written as:

M
(

Ri / Rj
)
=

n
∑

k = 1
pi j k ∆ ni =

= C′ V f (Ri) ∆ Ri
R3

i h

n
∑

k = 1

{
1 −

[
1 −

( Ri + Rj
δj

) 2
]l (k)

}
δj

(6)

Applying Expressions (4) and (5), as well as taking into account the fact that
∆ y = δj << 1 , n >> 1, Expression (6) can be rewritten as:

M
(

Ri / Rj
)
=

n
∑

k = 1
pi j k ∆ ni =

= c V f (Ri) ∆ Ri
R3

i h

n
∑

k = 1



1 −

[
1 −

( Ri + Rj
δj

) 2
] h Y − ψ (h Y)

δj
d Y





(7)

where Y = y / h.
If Rj < Ri, the mathematical expectation of the number of collisions of particles,

whose size is Ri ∈
[
R′i , R′′i

]
and R′i ∈

[
R′ i , R′′i

]
when ∆ δi → 0 , equals:

M
(

R′i ≤ Ri ≤ R′′i
∣∣ Rj

)
= c V

i=i′′

∑
i=i′

f (Ri)

R3
i
×

×
{

1 −
1∫

0

[
1 −

( Ri + Rj
δj

) 2
] α

d Y

}
∆ Ri

(8)

where α =
h Y − φ (h Y , r , Rj)

δj

As a result, we can find the ratio of the number of collisions of large particles Ri with
fine particles Rj to the number of large particles n:

M
(

Ri
∣∣ Rj

)
/ ni = 1 −

1∫

0



1 −

(
Ri + Rj

δj

) 2




h Y − ψ (h Y)
δj

d Y (9)

Equation (16) allows for the conclusion that particles of the same size moving
along the same trajectory practically do not collide with each other. On the contrary,
ψ (hY) ≈ 0 ,

(
Ri + Rj

)2 / δ2
j < 1 and a relative collision frequency of large and fine

particles is close to 1.
In this work, the effect of a high velocity and the probability of aggregating fine

particles with large ones is used to increase the extraction of finely dispersed gold: it is
extracted after the preliminary aggregation with carrier minerals. Large particles that act
as carrier minerals are intentionally introduced into the pulp. Moreover, as carrier minerals
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(solid walls), a material as homogeneous as possible with extracted fine particles is used,
i.e., a rougher concentrate, which is isolated for this purpose in “three steps” (Figure 4).
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For this purpose, the rougher concentrate is isolated from three parallel streams (jets)
of the pulp. A rougher concentrate isolated in the first flotation jet is mixed with an initial
feed of the second flotation jet; accordingly, the rougher concentrate of the second jet is
mixed with an initial feed of the third jet, releasing the finished rougher concentrate.

In this mode of extracting the rougher concentrate, the content of extracted metal
increases from jet to jet. Consequently, when using the developed flotation scheme, the
achievement of a “synergetic” technological effect is possible due to the aggregation of
fine particles with carrier minerals, as well as because of increasing a valuable component
content in the basic flotation operation, which contributes to an increase in its extraction.

In order to supplement forces, involved in the separation of minerals by surface forces
of structural origin in the third flotation stream, a pulp was aerated during a short time
(about 15%–25% of the total) with an air mixture containing hot (≥104 ◦C) water vapor
(steam–air mixture).

It is possible to analyze the relationship between the content of a valuable component
α in an initial feed and an amount of its extraction ε.

We can assume that along an enrichment curve ε0 (α), with a planned content of
an extracted metal in an initial ore (equal to α0), a level of achieving its extraction into
concentrate (Figure 5) is ε0 (α0). Let us choose other arbitrary values of a metal content in
the initial ore α and an operating mode of a flotation unit, at which a metal extraction level
along the enrichment curve is ε0 (α). For the selected mode, an extraction of a metal into a
concentrate ε, reduced to α0, will be:

ε (α0) = ε (α) − ε0 (α) + ε0 (α0) (10)
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since
ε (α) − ε0 (α) = ε (α0) − ε0 (α0) (11)
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The value ε (α0) does not depend on the position of the curve ε0 (α) in the graph in
Figure 5, based on the fact that:

ε (α0) = ε (α) − ε1 (α) + ε1 (α0) (12)

Figure 6 shows the dependence of extracting gold into a concentrate on its content
in the initial feed for ores of the Olimpiadinsky deposit, obtained during the study of
ores for enrichment.
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The results provided in Figures 4 and 5 do not contradict data of other researchers [10]
and the practices of the operation of enriching factories [11].

In practice, a necessary increase in the content of an extracted metal in a basic flotation
operation is achieved by returning middling products to it, i.e., tailings I of the re-cleaning
and the concentrate of the control flotation operation. When the initial feed is mixed with
rich middling products, the content of an extracted metal in the basic flotation operation
increases. However, a uniformity condition for the separation of the resulting mixture is
not fulfilled, because an equality of metal contents in mixed products is not equivalent
to their identity in terms of a separation ability. With such a discrepancy, rapidly and
slowly floated fractions of extracted and suppressed minerals appear in a flotation cascade.
When middling products are mixed with an initial feed, an increase in the metal content
in it is achieved mainly via an increase in the concentration of the most difficult-to-float
forms of the extracted mineral. A consequence is a decrease in the contrast of a material
in terms of flotation properties due to the appearance of extracted minerals of a wide
range of floatability. A ratio of flotation rate constants of separated minerals (Beloglazov’s
selectivity index) turns out to be close to 1: the flotation rates of a slowly floated fraction of
an extracted mineral and a rapidly floated fraction of a suppressed mineral are aligned.

A jet movement of an initial feed and a rougher concentrate ensure a high content of
an extracted metal in a basic flotation operation without the appearance of an undesirable
distribution of minerals by floatability in the scheme.

Therefore, two possible reasons for increasing the completeness of an extraction of mi-
crodispersions of minerals were identified. One reason may be a high rate and a probability
of an aggregation of fine minerals with minerals of a rougher concentrate (containing carrier
minerals). Another reason may be an increase in the content of an extracted metal in the basic
flotation operation when using a rougher concentrate in circulation.

In the general case, the number of parallel streams depends on the content of an ex-
tracted metal in ore. Enrichment processes are characterized by a monotonous increase
in the extraction of the metal into the concentrate when decreasing the metal content
in it. At the same time, when controlling the process, the most important limitation is
imposed on the content of the base metal in the concentrate: as a rule, the metal content
in the concentrate must correspond to (or exceed) a planned indicator. Based on the
limitations imposed on the quality of the concentrate, when determining the number of
streams, the goal is to achieve maximum extraction at a given concentration degree in a
basic flotation operation.

Isolation of a finished rougher concentrate in the third flotation jet.
Based on the analysis of the density functional of a liquid in a thin gap, the authors

demonstrated [42] that a non-uniform decrease in the density of a film thickness led to the
appearance of attractive forces, whose magnitude in the case of thin films could significantly
exceed van der Waals forces. A distinctive feature of such forces is not a decrease, as was
assumed in [43], but the increase in the absolute magnitude of forces when the temperature
increases. It also involves a decrease in minimum time required for fixing a particle on
the surface of a bubble (induction time) [44] and an increase in the contact angle [45].
Therefore, to complement forces, participating in a separation of minerals, with surface
forces characterized by high sensitivity to temperature, it is sufficient to heat a layer of
water 4 to 8 nm thick near a bubble, inside which an action of surface forces is localized. In
this work, water in the boundary layer of bubbles is heated due to heat of condensation of
hot water vapor when a bubble contacts cold water. For this purpose, a pulp was aerated
with an air mixture containing hot (≥104 ◦C) water vapor (steam–air mixture). Steam–air
flotation is carried out in a laboratory countercurrent column (Figure 7).

The initial feed is supplied from a mechanical agitator (3) into a column (1) from above
under a foam layer (at a distance of ~1/3 of a column height) towards air bubbles generated
by a pneumatic atomizer (2) installed in the bottom part of the column. A chamber product
is unloaded using an airlift (5), and during emergency unloading it is unloaded through a
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gate valve (6). There is a system (4) that supplies water to a foam layer (with a secondary
concentration of minerals by washing out non-float particles from the foam layer).
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Figure 7. A laboratory-scale plant of column flotation equipped with an aerator: (a)—general column
flotation scheme; (b)—steam and air mixer scheme.

The concurrent streams of air and water vapor are created using a steam generator
(13) equipped with a steam line and a pneumatic system assembled on the basis of an air
blower (7). It is supplied with fine-adjustment valves (8) and a flow meter (9) at an outlet;
a pressure gauge (12) with shut-off and control valves (10, 11) is installed in front of the
atomizer to control the air pressure. To supply air to an airlift, there is an independent
pneumatic system based on a compressor (14) equipped with a flow meter (15), a gas valve
(16) and a pressure gauge (17).

138



Minerals 2024, 14, 108

A study of the effect of water temperature in boundary layers of bubbles on the results
of flotation consisted in analysis of the temperature dependence of the hydrophobic slip
and the associated limiting thickness hlim of the interphase film. Physically, hlim corresponds
to a limiting distance that a particle can cover to approach a bubble surface under given
conditions of their hydrodynamic interaction.

Slipping (inaccurate observance of a boundary condition of the sticking–slipping of
a liquid stream over a solid surface) is associated with the presence on a hydrophobic
surface of a layer of reduced viscosity (formed due to a stratification of a saturated gas–
liquid solution during thinning an interphase gap (Figure 8a) [46–49]) or microcavities
(submicrocavities) containing gas bubbles 10−4–10−2 cm in size retained by surface tension
forces (with a rough surface (Figure 8b) [50,51]). Macroscopic slipping on such a surface is
a consequence of reduced friction between a liquid and a gas.
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The Navier slipping condition (with a zero normal component of a velocity vector
un = 0, a tangent component of a velocity us is proportional to a tangent stress τ) is as
follows [52]:

us = be f f

(
∂ u
∂ n

)
(13)

where beff—apparent slipping length, whose value with a thickness hgl of a wall-mounted
gas–liquid layer can be found from the following ratio [53]:

be f f = hgl

(
ηl
ηgl

)
(14)

During flotation with a steam–air mixture [52–55], a slip length should be taken into
account by a correction kE in the form of:

kE =
∆ σΓ

∆ σT
, (15)

considering the appearance of tangential stresses associated with the adsorption layer of a
surface active agent (SAA):

∆ σΓ = (∂ σ / ∂ Γ) Γ (16)

and a temperature gradient:

∆ σT = (∂ σ / ∂ T) ∆ T. (17)
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Moreover, a rate of a heat transfer is higher than a rate of a mass transfer (Schmidt
number is three orders of magnitude higher than Prandtl number) and when kE < 1, an
adsorption convection is completely suppressed by an oncoming Marangoni thermal flow
towards a periphery of a wetting film.

When kE~1, there is a dynamic balance between counter-tangential stresses, in which
a generated concentration and heat fluxes have approximately the same intensity. Under
these conditions, at a tangential velocity of a liquid outflow from an interphase gap of
u (r, z), a wetting film is formed, whose limiting thickness hlim is given by an expression
in [56,57]. An expression for determining a velocity u in a shear flow of a liquid at a point
x, located in a gap of a thickness L (along an Ox axis) between two parallel plates, can be
obtained in the form of:

u = uS + uhgl

x
hgl

when 0 < x < hgl (18)

u = uS + uhgl
+
(

∆ u − 2 uhgl

) x − hgl

L − 2 hgl
when hgl < x <

(
L − hgl

)
(19)

u = uS + ∆ u + uhgl

x − L
hgl

when
(

L − hgl

)
< x < L (20)

Here, us , uhgl
—velocity of a liquid on a surface of a solid and at a distance of a

thickness of a liquid layer hgl with a structure and properties changed compared to volume;
∆u—relative velocity of a liquid flow relative to an Oy axis. Consequently:

ηgl
uhgl

he f f
= ηl

∆ u − 2 uhe f f

L − 2 he f f
(21)

and uhe f f

he f f
=

ηl

ηgl L − 2 hgl

(
ηl − ηhe f f

) =
ηl
ηgl

∆ u

L + 2 he f f

(
ηl
ηgl
− 1

) (22)

Based on a sticking condition (13), an expression for a slipping length is obtained in
the form of (Figure 9):

be f f = he f f

(
ηl
ηgl
− 1

)
. (23)

Here, a value heff is given by the following expression:

heff = hgl (1 + kh) (24)

where kh—dimensionless thickness of an interphase film. A limiting thickness of the film is
used as a characteristic value hcr:

kh =
hlim
hcr

(25)

The relationship between a limiting thickness of the interphase film hlimb and the time
of contact of a particle with a bubble surface is as follows:

tbp = Rb / ub (26)

and relaxation time to a state of a new equilibrium of the film (defined as the time after
which a volume of an outflowing liquid differs by no more than 1% from the total volume
change during the transition of the film from one equilibrium state to another) [58]:

trel =
(

2 η R2
0 hm−2

0

)
/ m A ≈ a2 / Ds (27)
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where R0—radius of a curvature of an undisturbed film (meniscus); A—Hamaker constant;
m = 1 for a film on a cylinder and m = 2—on a sphere) was obtained in the form of [59]:

hlim =
γ

η

9 π R
48

a
b

tg2 θ

2

∞

∑
n=1

1

µ2
n

(
1 + 1

2 µ2
n χ
) (28)

where

χ =
tbp

trel

tK − tΣ∣∣∣ε × cos θe f f × trel

∣∣∣
=

tind∣∣∣ε × cos θe f f × trel

∣∣∣
(29)
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Here, tc—time of contact of a particle with a surface of a bubble. tΣ = b
υΓ

+ b
υT

+ b
υχ

—correction for fluid slippage; υΓ = Rb η−1
l (∂ σ / ∂ C) ∆ C—capillary condensation

flow rate [56–58]; υT = Rb η−1
l (∂ σ / ∂ T) ∆ T—thermocapillary flow rate [60–62];

υχ = 2 h χ Rb T / ( ∂ T / ∂ Rb)—thermosmotic flow rate [58]; θeff—effective receding
contact angle; ∆T, ∆C—difference in a length of an interphase film of temperature and
SAA concentration; tind—induction time; ε—proportion of stuck particles at a given
contact time tc.

A value of a contact angle θ (θ ∈ 90 ÷ 1800) is determined by the physico-
chemical properties of a solid surface, and in a mode of a heterogeneous wetting of a
rough Cassie—Baxter surface, a relationship of an effective receding contact angle θeff
with a contact angle determined by a Young equation θ0 is provided by the following
ratio [63,64]:

cos θe f f = f (r × cos θ0 + 1) − 1 (30)

where θeff—effective receding contact angle, determined in a wetting mode, when a surface
is heterogeneous, composed of areas having a Young’s contact angle θ0 and depressions
partially or completely filled with air. f ∈ 0 ÷ 1—proportion of a surface area wetted in a
homogeneous Wenzel–Deryagin regime; r—coefficient considering a deviation in Young’s
contact angle from a contact angle measured on a rough surface. When f→1, the Wenzel–
Deryagin regime of the homogeneous wetting corresponding to a boundary minimum of
free energy, which replaces a local minimum corresponding to a heterogeneous Cassie–
Baxter wetting. Conversely, when f→0, minimum free energy becomes global (less than a
boundary one, which leads to decreasing the wettability of a solid surface).
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4. Results and Discussion

The results of calculating (in the Maple 2021) the values of limiting thickness hlim of an
interphase film with Formula (33) with various flotation factors (Figure 10) are presented.
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Figure 10. Results of analyzing the dependence of a limiting thickness hlim of an interphase film
on flotation factors: the dependence of hliim on a magnitude of correction for stabilization of an
interphase film χ (when a crossing angle θ of a particle and a bubble ranges from π/100 to 6π/100
(a) and the crossing angle θ varies from 8π/100 to 10π/100 (b)) and on the crossing angle θ of a
particle and a bubble (when changing the value of correction for stabilizing an interphase film χ

from 0.01 to 10) (c).

The fixation of a particle on a bubble surface is possible when a wetting film thickness
is h = hcr ≈ 10 nm, at which the hydrophobic interaction intensity (structural attraction
forces) begins to increase, and the hydrophilic interaction (structural repulsion forces)
weakens, which, along with the subsequent thinning of the wetting film, changes the
sign of a structural component of wedging pressure. Based on this condition, a high
probability of a particle deposition on a bubble surface exists only near its upper pole,
when a particle trajectory deviates from a vertical axis of a bubble by an insignificant angle
θcr—θ < π/100 = θcr (Figure 10a). When counter flows formed by a pressure drop,
created by an inertia force of a particle approaching a bubble, and a Marangoni convection
are aligned in an interphase gap, a capture efficiency becomes negligible (Figure 10b).

At low values of a χ << 1 ratio, an intensity of the surface current, caused by shear
stress associated with a concentration SAA gradient, is limited by the diffusion process.
And during the time of contact of a particle with a bubble surface, it does not have time to
significantly influence, as follows from Formula (23), a limiting thickness of a wetting film.

On the contrary, under a condition of χ >> 1, the driving force for reducing the limiting
thickness hlim of the wetting film is a flow, caused by surface SAA diffusion and directed
from the center to the periphery of the film (Figure 10c).

In laboratory conditions, studies were conducted to assess the efficiency of a technol-
ogy of flotation enrichment of gold-bearing ores using a rougher concentrate isolated from
a part of ore as carrier minerals to increase the extraction of gold microdispersions.

In the first experiment, tests were performed on a sample of ores from the Natalka
deposit. Gold was extracted from ores using two technologies. The first basic technology is
described in Section 2.1. The second modified technology is described in Section 2.2.

The difference between the basic technology (Section 2.1, Figure 1) and the modified
technology (Section 2.2, Figure 2) is that, in a cycle of a basic flotation operation, a rougher
concentrate is isolated in “three steps” from three parallel pulp streams: the finished rougher
concentrate is obtained through mixing a recycled rougher concentrate twice with an initial
feed. Such countercurrent movement of the recycled rougher concentrate and the initial

142



Minerals 2024, 14, 108

feed is performed for two purposes. Firstly, a material of the recycled rougher concentrate
acts as carrier minerals, whose presence allows for the extraction of gold microdispersions
by means of the most effective flotation mechanism of inertialess particles, i.e., sticking
to a hydrophobic “solid wall” extremely related to them in genesis and physico-chemical
properties. In addition, when recycling the rougher concentrate, the extracted metal content
in the feed of the basic flotation operation increases, which enables separating the mixture
via flotation of a greater technological efficiency. The effects of introducing carrier minerals
and increasing the content of an extracted valuable component are complemented by a
flotation mode with a steam–air mixture, whose duration is approximately 15%–25% of the
flotation time in an operation [62–64].

Concentrates obtained in the first two experiments were analyzed for the distribution
of gold in them by size classes using sedimentometric analysis (Figure 11).
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(b) technologies.

A comparison of results obtained during flotation of ores from the Natalka deposit,
using two competing technologies, allows for the conclusion that one of the factors con-
tributing to an increase in gold extraction (Figures 8 and 9) is an increase in the extraction
of small fractions of a gold-bearing material into a concentrate (Figure 10).

Selective enrichment of a feed of a basic flotation operation contributes to a gold
extraction increase, which changes the ratio of useful and polluting minerals in a favorable
direction: the content of an extracted metal in a concentrate obtained using the newly de-
veloped technology was 100.3 g/t versus 65.09 g/t obtained applying the basic technology.
When the feed is enriched with a flotation-active rougher concentrate, a load on a surface
of air bubbles is increased with an extracted mineral, and their mineralization with rock
particles and other minerals decreases. A consequence of a “competition for space” on an
air bubble surface is an improvement in the concentrate quality. As a result of improving
the concentrate quality, its yield decreased from 1.86 to 1.30%, which enables reducing costs
associated with its expensive metallurgical preparation before leaching gold.

Studying the new technology in laboratory conditions was continued on the basis of
a sample of sulfide ores from the Olimpiadinsky deposit. As in the previous experiment,
indicators obtained during ore flotation performed according to basic (adopted at an
operating gold extracting factory) and newly developed technologies were compared
(Figure 12).
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Figure 12. Basic block diagrams of flotation of ores from the Olimpiadinsky deposit according to the
basic technology (a) and that accompanied by a rougher concentrate isolation in “three steps” (b).

The basic scheme of ore flotation (Figure 12a) included a flotation cycle of primary ore
and a flotation cycle of industrial products. The first cycle consisted of the main flotation
operation involving two re-cleanings of an isolated rougher concentrate, as well as two
control flotation operations on tailings of a basic flotation operation. Gold reflotation was
realized from an industrial product consisting of tailings I of re-cleaning and concentrate I
of control flotation.

After optimizing the reagent flotation mode according to the basic scheme, an experi-
ment on six parallel ore charges was conducted on the principle of a continuous process
(when a movement direction of intermediate products was adopted in a canonical flotation
scheme). The gold content in tailings of five–six ore charges was stabilized (after some
growth observed in previous charges), which indicated that a closed cycle mode had been
reached. In the control experiment, gold extraction into a concentrate from six ore charges
was 84.0% when the concentrate quality was 65.74 g/t of Au.

When switching to the technology of isolating a rougher concentrate in “three steps”
(Figure 12b), the increase in gold extraction was 2.72% (the gold content in the tailings
decreased from 0.514 to 0.409 g/t) when the concentrate quality increased from 72.94
to 97.07 g/t. An important technological effect of using the new technology is a 24.9%
decrease, thus relatively a concentrated yield.

The gold distribution by size classes of concentrates obtained during the experiment
was established by sedimentometric and optical–geometric analysis methods (Figure 13).

The results of sedimentometric and optical–geometric analyses of flotation concen-
trates (Figure 13) allow for the conclusion that the set goal, i.e., to increase the extraction of
gold microdispersions, has been achieved.

Improving the efficiency of flotation provides a solution to the problem of rational
environmental management, which allows not only a technical and economic effect to be
obtained, but also respect for the environment [65].
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5. Conclusions

This work is focused on increasing the extraction of microdispersions of minerals
by flotation.

Employing the example of flotation of two gold-bearing ores, the possibility of using
high velocity and the probability of the sticking of fine particles to large ones to increase
the extraction of finely dispersed gold, when introducing carrier minerals into a pulp in the
form of a rougher concentrate, has been shown.

Carrier minerals are isolated from three parallel pulp streams, and the initial feed of
the subsequent pulp stream is mixed with the rougher (recycled) concentrate isolated from
the previous pulp stream. The ready-made rougher concentrate is isolated from the third
pulp stream in a mode of flotation with the air mixture, containing hot water vapor, and is
sent for recleaning.

During flotation with the vapor–air mixture, the stability of wetting films is determined
by the surface flow of the liquid caused by a temperature-dependent surface-tension
gradient (and the shear stress associated with it). The influence of such flows on the
thinning rate of wetting films has been proposed to be considered in the form of correction
to a sliding length of a liquid in a hydrophobic gap. A correction value is expressed in
fractions of a critical thickness of a wetting film: at these distances between a particle and a
bubble, the influence of surface forces of structural origin begins to manifest itself: forces of
hydrophobic attraction and those of hydrophilic repulsion.
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Abstract: This work is aimed at the analysis of the development of flotation technology by applying
carrier minerals. Based on the concepts of continuum mechanics, a theoretical analysis of the influence
of the carrier minerals (wall) on the motion of a single solid particle is provided, taking into account
their hydrodynamic interaction (in the case of low Reynolds numbers). A correction was obtained in
the form of a ratio of the particle size to its distance from the wall to take into account the influence of
the wall on the hydrodynamic force acting on the particle. The influence of the wall is manifested
through a rapid approximation of the liquid vortex flow in the gap between the solid wall and the
particle to the steady-state mode, accompanied by the suppression of the transverse movement of
particles. When the liquid slides along a wall-mounted gas–liquid layer with a reduced viscosity,
the liquid flow increases in the interfacial gap, which can be analyzed by a dimensionless correction
that includes values describing the properties of a continuous medium (dynamic viscosity) and a
disperse phase (geometric particle size). The reason for the decrease in the induction time when gold
grains adhere to each other is assumed to be due to the forces of hydrophobic attraction (when the
grains have a mirror-smooth surface) and the sliding of the flow along the hydrophobic surface of the
particles along the gas layer (when the grains have a rough surface). When polydisperse particles
are aggregated, the threshold energy of the fast coagulation was established to be lower than that
arising during the interaction of monodisperse particles, whose aggregation requires a large depth
of the potential pit. Performing natural experiments on the ore using a rougher concentrate as a
carrier material showed that the concentrate yield decreases by 20.52% rel. In the second case, the
gold extraction was higher by 4.69% abs. While maintaining the achieved level of gold extraction,
the double mixing of the rougher concentrate and the initial feed increased the gold content in the
rougher concentrate from 4.97 to 6.29 g/t.

Keywords: gold-bearing ore; flotation; fine particles; flotation scheme; carrier minerals; wall
correction; slip correction; field experiments

1. Introduction

Modern gold mining companies in Russia and worldwide are facing problems with
optimizing production costs. These are caused by intense price competition on the one hand
and deteriorating the mining and geological conditions on the other hand, subsequently
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decreasing the gold content of the ore, increasing the depth of development, and reducing
unallocated reserves [1]. One of the current trends of sustainable economic development
existing in the country, taking into account the need to increase the reserves and the
consumption of mineral resources, is the introduction of innovative technologies that use a
wide range of minerals [2].

A significant part of gold ore resources are represented by sulfide ores, which are diffi-
cult to obtain via extraction and require the application of highly efficient new technologies
for processing low-grade and refractory materials [3]. Extracting the ores and concentrates,
in which fine gold is associated with pyrite or arsenopyrite, needs much more complex
technological schemes due to the fact that, during grinding, such gold is only slightly
revealed, and the bulk of it remains in the sulfides. It is not dissolved during cyanidation,
and in the processes of gravity and flotation enrichment, it is extracted together with the
carrier minerals [4].

In recent decades, the gold content of ores has significantly decreased, and the share
of poor and rather difficult-to-uncover, refractory, gold-bearing raw materials involved in
processing has increased to 40% [5].

Improving the efficiency of processing hard-to-process gold-bearing ores and concen-
trates, which are characterized by complex mineralogical and geochemical compositions,
submicroscopic grain sizes, heterogeneous textures, and a variety of genetic processes of
ore formation, leads to a fine dispersion of gold particles in waste rock minerals. This
also requires the assessment of structural and textural parameters [6] and the modeling
of technological processes [7], the possible use of selective disintegration and separation
technologies [8], and reducing the amount of gold in waste rock minerals.

The main enrichment process for such ores is flotation, which is a complex, multiphase
process, and the works of many researchers have focused on optimizing this operation as a
key link in enrichment technology [9].

The ores in which finely disseminated gold is associated with sulfide minerals, such
as pyrite, arsenopyrite, or antimonite, are processed using complex technological schemes.
In the case of fine dissemination of gold in sulfide minerals, the very fine grinding of
ores is required. However, in the case of a significant decrease in the particle size, the
hydrodynamic field of the bubbles that flow up significantly reduces the efficiency and
selectivity of the flotation process [10–12]. Due to inertia forces, coarse particles are known
to approach the surface of bubbles along a rectilinear trajectory, either by the impact or
by the effect followed by sliding along the surface of the bubbles. When the particle size
decreases, its hydrodynamic interaction with the bubbles depends on the fact that, during
the contact time (the time of the particle’s movement from the upper pole of a bubble to
its equator and below), the trajectory of the particle’s movement and the liquid flow lines
flowing around the bubble curve become twisted and coincide. The inertia-free interaction
with a bubble, i.e., displacement along with a liquid flow without contact with the surface
of a bubble up to its lower hemisphere, is the main reason for the loss of fine particles
during flotation, including gold [13,14]. Regardless of the nature of the liquid flow near
the surface of the bubble (Reynolds number is Re = (2 Rb υb/ν) >> 1) or viscous Stokes
(Re < 1), there is a quadratic dependence of the collision efficiency E on the value of the
Rp/Rb ratio. In this case, υb is the velocity of the bubble with radius Rb, ν is the kinematic
viscosity of the liquid, and Rp is the particle size.

If the high losses of the fine particles are caused by a decrease in the collision efficiency
and a decrease in the particle size due to hydrodynamic interactions, then the deterioration
in the selectivity of their separation is associated with the developing balance of the surface
forces [15–19] acting on the separated particles.

An obvious (but technically far from being simple) solution to the problem of fine
particle flotation is the use of nanobubbles [20–23]. Another promising direction in the
flotation of fine particles is their preliminary aggregation [24,25].

The adhesion of the fine particles to the surface of the bubble is possible under the con-
dition of their convergence to distances coinciding with the long-range potential minimum.
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But the collision followed by the subsequent adhesion of the particle to the surface of the
bubble without the formation of a contact angle is indiscriminate, and, in the case of the
selective flotation of ores, it reduces the efficiency of the mineral separation process.

To increase the flotation efficiency of the microdispersions of minerals, conditions are
created for their preliminary aggregation with coarse minerals [26,27]. These technologies
are based on the fact that the rate of the adhesion of the fine particles to coarse ones is
400–500 times higher than the rate of the aggregation of the fine particles among them-
selves [28,29]. And the frequency of the collision of the particles with significantly different
sizes tends to unity, while in the case of fine particles, it is negligible [30].

We can assume that during the flotation processes, the particles move in an unlimited
liquid, since the value of the ratio is R/l >> 1. Here, R and l are the particle size and the
distance from the center of the particle to the wall of the apparatus or to a single coarse
particle in the case of a polydisperse system, respectively. The liquid flow lines induced
by the motion of the single particles in the unlimited liquid are close to infinity [31,32].
However, when several particles move together, their hydrodynamic interaction manifests
itself in the fact that the movement of each particle in the group is influenced by the
movement of neighboring particles [33–35]. As a result, a single particle is influenced by a
greater (than that determined by the Stokes formula) viscous drag force than that which
influences each particle in the group. When the value of the R/l ratio decreases, the effect of
the volume substitution and the alternating motion of the liquid caused by it, in which the
particle participates, begins to manifest itself. The change in the hydrodynamic resistance
during the transition from the movement of a single particle in the unlimited liquid to the
movement of a group of the particles (or near the wall) was quantitatively described by
Brenner [36,37]. The convergence resistance is lower in the case of fine particles, which may
be the reason for their effective adhesion to coarse particles [26–28].

During the hydrodynamic interaction of the hydrophobic particles, the sliding of the
liquid decreases the hydrodynamic resistance to the liquid flow in the gap between the
particles. This effect of increasing (against the expected one by calculation when meeting
the adhesion condition) the liquid flow is a consequence of its sliding along the gas layer
(or nanosized gas bubbles) owing to a large difference in the dynamic viscosity of water
and gas (ηl/ηg~50) [38–40].

Gold is effectively recovered by flotation after loading xanthogenate [41–46].
Valderrama L. demonstrated [23,47] that, due to the adhesion to coarse particles, the
extraction of fine gold by xanthogenate is increased by 24%, and the retention is increased
by 50% when the flotation rate is increased 3–4 times. Two flotation peaks were revealed
when the shear energy was 0.5–2.0 and 3.0–4.0 kW/m3.

The overall positive effect of using analogue technologies based on the aggregation
of polydisperse particles is an increase in the extraction of fine-dispersed fractions of the
target component. For example, hydrophobic glass beads [48], paraffin, organic polymers,
magnetized iron (or magnetite) isolated from ores, and specially prepared monominerals
are used [27,49]. However, the development of the attractive forces between polydisperse
particles is possible only at a high concentration of coarse particles [50]; in the presence of a
large number of microdispersions, the conditions established for the extraction of coarse
particles become critical. Therefore, up to 200% (of the mass of the fine particles) of carrier
minerals must be introduced into the flotation system [51]. Such flotation carrier platforms
are expendable. The organization of the regeneration of their surface for the purpose of
reuse in most cases is inefficient and increases capital expenditures and operating costs for
conducting the flotation process.

This work is focused on studying the techniques of improving the technology of fine
gold flotation using carrier minerals. To improve the technical and economic performance
of this technology, the efficiency of using a maximally homogeneous material, including
fine gold, i.e., the rougher concentrate isolated from a part of the ore, as carrier minerals is
proven [51,52]. The rougher concentrate is the most flotation-active part of the raw material
enriched with gold. When it is mixed with the initial feed, an increase in the fine gold
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extraction is possible due to two effects: the adhesion of the fine particles to the coarse ones
and an increase in the gold content in the flotation feed, which is unattainable when using
inert materials [30].

The fact that the flotation of the fine particles is a qualitatively new process is proven
by using special terms, such as “microflotation” [26] and the flotation of “inertialess par-
ticles” [30], when discussing the results of researching it. In terms of modern colloidal
chemistry, microflotation is an orthokinetic heterocoagulation. This allows for interpreting
the experimental data on the aggregation of hydrophilic particles using two approaches that
form the basis of the DLVO theory: dispersion (van der Waals) forces and ion-electrostatic
interactions. However, in the case of the aggregation and the flotation of hydrophobic
particles, in order to harmonize the theory and the experiment, it is necessary to apply
new mechanisms of long-range surface forces. They are collectively called “non-DLVO”
forces in the literature [53–55] and are taken into account by the extended DLVO theory
(XDLVO [56–58]). The relationship between the particle adhesion to the bubble during
flotation and the interaction forces caused by the altered structure of the liquid present in
the wetting film, i.e., hydrophobic attractive forces, is shown in [41,59], including during
gold flotation with xanthogenate [44,60,61].

The achieved level of understanding the physical regularities of the flotation of fine
particles has allowed for developing the technologies for extracting minerals from ores,
reaching high technical and economic indicators. However, the problem of reducing the
losses of mineral microdispersions involving flotation waste is still relevant.

The purpose of the work is to develop a flotation technology for gold-bearing ores
based on the revealed patterns of the hydrodynamic interaction of polydisperse hydropho-
bic surfaces used as carrier minerals of fine gold.

2. Materials and Equipment
2.1. Research Object

The research object was composite ore samples obtained from two sites of the
Bereznyakovsky gold ore field. The samples were composed of a witness core of the
wells and ditches (77 samples 50 mm in size, whose total weight was 143 kg) located at
various hypsometric levels. When they were processed at the gold recovery factory, the
gold size in the flotation tailings was characterized by the histograms shown in Figure 1.
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Figure 1. Experimental curves of the grain size distribution of gold in the flotation tailings during the
flotation of the ores of the first (a) and second (b) samples obtained at the gold recovery factory.

The histograms of the size distribution of gold grains are based on the results of
measuring 100 grains in each sample. The histograms of the size distribution of the gold
grains in the flotation tailings of both ore samples have a pronounced asymmetric nature.

The mineralogical studies were conducted using a Nikon Eclipse LV 100 Pol mi-
croscope. The X-ray diffraction phase analysis (DRON-3M, Cu-Kα radiation) and the
mineralogical studies (Nikon Eclipse Lv 100n Pol microscope, Nikon Instruments Inc.,
Tokyo, Japan) allowed for revealing the fact that 35%–40% of the material of the two sam-
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ples belonged to quartz and about 50% of the material was represented by pyrophilite,
illite, sericite, and paragonite. The bulk of the sulfides that were present in the samples
was composed of pyrite (up to 10% by weight). Tahr ores, secondary copper sulfides, and
sulfosalts together amounted to no more than 0.6%, while sphalerite, chalcopyrite, and
galena accounted for 0.10%–0.45% (sphalerite predominated, amounting to 0.4%). Pyrite
grains (of idiomorphic, hypidiomorphic, and framboidal shapes) had a size ranging from
1–5 µm to 0.05–0.10 mm.

The gold in the ores was mainly accompanied by pyrite, recovered at the operating
gold processing plant by flotation into a concentrate, which is subjected to cyanidation after
the autoclave gold extraction.

2.2. Flotation Equipment

Full-scale tests of the flotation technology using the rougher concentrate as a carrier
mineral were performed on a laboratory bench (Figure 1) [30].

The flotation method of extracting gold was chosen followed by constructing a flow
diagram according to the jet principle [28–30]. In the experiments on flotation, a laboratory-
scale plant with a square cross-section of 47 × 47 mm in size was used for the column
flotation (Figure 2).
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gold processing plant by flotation into a concentrate, which is subjected to cyanidation 
after the autoclave gold extraction. 
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Figure 2. Machine flow sheet of the laboratory bench of the column flotation: 1—columns; 2—pump;
3—thin-layer platelike mixer; 4—distribution grid; 5—side-mounted pneumohydraulic aerator of the
confusor–diffuser; 6—airlift; 7—Teflon gate.

The bench was based on three column-type flotation machines, each of which received
1/3 of the initial feed. The columns were interconnected by a rougher concentrate flow.
The concentrate isolated on the first flotation column was mixed with the initial feed of the
second flotation column. Then, the concentrate of the second flotation column was mixed
with the initial feed of the third flotation column, and a ready-made rougher concentrate
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was obtained. Therefore, the ready-made rougher concentrate was isolated in three steps,
using the concentrate material of the first two flotation columns as the carrier minerals.

The main part of the bench (Figure 1) consisted of three columns (1) made of corrosion-
resistant steel (of the 8X18H10 type) with a square cross-section (47 × 47 mm) that was
2070 mm in height. The feeding depth was 767 mm. The initial feeding system included
a sand pump (2) equipped with a thin-layer platelike mixer (3) of the Jones sampler type.
The column was countercurrent and was supplied with the initial feed from above the
distribution grid (4) and the gas phase from below. The air was supplied by a side-mounted
pneumohydraulic aerator of the confusor–diffuser type (5). An airlift (6) served to unload
the chamber product; during the emergency unloading of the column, the pulp was
discharged through a Teflon gate (7).

Monominerals were floated in a countercurrent column-type flotator that was 64 mm
in diameter and 1.7 m in height when the initial feed was supplied under the cleaning zone
to a depth of 0.46 m. The flotator was equipped with a pneumohydraulic aerator of the
confusor–diffuser type. The cylindrical mixing chamber was placed between the confusor
(Ø was 1 mm) and the conical expanding diffuser (Ø was 5.1 mm). The diffuser outlet was
closed with a polyurethane mesh, which allowed for calculating the size of the formed
air bubbles. The total length of the aerator was 152 mm. Air was supplied to the mixing
chamber by a compressor through a vertically mounted connecting pipe with a nozzle of Ø
1.47 mm at a rate of 1.35 m3/min per 1 m2 of the chamber cross-section. The aerator was
installed in the bottom part of the column on its outer side and on the side.

The column capacity in terms of the initial feed was 1.5 m3/min per 1 m2 of the
chamber section.

The column water balance allowed for the conclusion that at a washing flow rate
of 0.34 m3/min per 1 m2 of the column section, the water flux flowing into the tailings
exceeded the water flux flowing into the feed by 7%–8%, which made it possible to suppress
the mechanical removal of non-floating minerals into the concentrate.

Potassium butyl xanthate was supplied at a rate of 25 mg/dm3 for recleaning.
The air pressure at the entrance to the airlift was 0.14 MPa at a flow rate of 0.045 m3

per 1 m3 of the pulp removed into the tailings.

2.3. Flotation Mode

The base ore, which was 3 mm in size, was ground in a rod mill at a ratio of S:W = 1:1
to a grain size of 80% of a 71 µm class in the presence of sodium sulfide (112 g/t). After
being activated with copper sulfate (15 g/t), the sulfides were floated with potassium butyl
xanthogenate (85 g/t) and a foaming agent T-92 (35 g/t).

When performing the flotation, the reduced air velocity was 1.75 × 10−2 m/s at a
flow rate of 3.85 × 10−5 m3/s. The airflow rate was measured by a diaphragm rheometer
(sequentially connected to the pneumatic system) or a gasometer of the UGIMETERS type
(in some cases, by the volumetric method); the air pressure at the inlet to the ejector was
measured by a mercury pressure gauge. The excess air pressure in the pneumatic system
could be adjusted in the range from 1.1 × 10−2 to 1.4 × 10−2 MPa. The air supply to the
ejector was controlled by an adjustable clamp. The indicators of the gas flowmeters were
verified by calculating the static pressure drop of the flotation chamber atmosphere, as
measured by a U-shaped meter.

The liquid workflow into the ejector was fed from an overflow tank (to maintain a
constant level of filling with water) by a water pump through a flow meter equipped with
fine-adjustment valves and pressure control implemented by pressure gauges installed
at the inlet and outlet. A laboratory shut-off-and-control valve was mounted on the feed
pipe; in the working jet, the water pressure was changed in the range from 20.01 × 10−2 to
25.20 × 10−2 MPa.

The washing water consumption was 0.4 m3/min per 1 m2 of the chamber section,
which provided a 7%–8% excess of the water flow into the tailings compared to the amount
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of water flow into the feed and the removal of rock minerals that were mechanically trapped
from the foam layer.

Air was supplied to the airlift by a compressor through a flow meter, a shut-off
armature, and a pressure gauge.

During the flotation, the volumetric capacity of the flotation column was maintained
at 1.59 × 10−5 m3/s when the reduced pulp velocity was ~1 × 10−2 m/s.

3. Results and Discussion
3.1. Studying the Hydrodynamic Interaction of Polydisperse Solid Particles with Carrier Minerals
under Flotation Conditions

During flotation using carrier minerals, the formation of a flotation complex should be
preceded by the aggregation of polydisperse particles; the accumulation of fine gold occurs
on its coarse particles. In order to preliminarily aggregate the polydisperse gold particles,
the rougher concentrate isolated from a part of the initial ore is mixed with another part of
the ore, and only then flotation is implemented.

At a sufficiently close distance from each other, the particles enter into a hydrodynamic
interaction, which manifests itself in the perturbation of the fields of local liquid flows
occurring near them. The factors influencing this interaction are, first of all, the sizes of
the interacting particles, their velocity, the forces causing their movement, the orientation
relative to each other, etc.

The subject of this study is the hydrodynamic interaction of polydisperse particles
under flotation conditions, i.e., the adhesion of fine gold onto the coarse particles of a
rougher concentrate (carrier minerals). The interaction of a coarse particle and a single
solid particle moving along it (a micron-sized mineral) in the case of its Stokes flow
is investigated.

Let us assume that the flow of the liquid is symmetrical with respect to the 0z axis
and that, therefore, the resultant of forces F of the viscous resistance (rrθ) and pressure (trr)
applied to the particle are also directed along the 0z axis and coincide with the direction of
the liquid flow (Figure 3).
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Integrating the sum of the projections of the pressure forces (trr) and viscous friction
(trθ) on the 0z axis over the entire surface of the particle provides:

F =
∫
S
(− trr cos θ + trθ sin θ) d S =

= 2 π
π∫
0
(− trr cos θ + trθ sin θ) R2sin θ d θ = 3 π µ υ∞ R

π∫
0

sin θ d θ +

+ 2 π R3 ρ g
π∫
0

cos2 θ sin θ d θ

(1)
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or
F = 6 π µ υ∞ R +

4
3

π R3 ρ g. (2)

Therefore, when:
R e = υ∞ Rp / ν << 1 (3)

from the side of the flow of the viscous unlimited liquid, the resistance force acts on a solid
particle moving in it [36], which consists of two forces. First, this is the Stokes drag force:

FStk = 6 π η υ∞ Rp (4)

which tends to compensate for the velocity difference between the surrounding liquid and
the particle, and, second, the inertial buoyancy force arises:

FArh = 4/3 π R3 ρ g. (5)

In the case under consideration, the system of basic differential equations of fluid
hydrodynamics, taking into account external volumetric forces (external mass forces are
neglected) acting on the liquid, consists of the continuity equation:

d ρ

d t
+ ρ div

→
υ = 0 (6)

and the Stokes equation:

− 1
ρ
∇ p + ν ∆

→
υ = 0 (7)

provided that the hydrodynamic force acts on a solid particle whose dimensions Rp are
small compared to its distance from the wall l:

R/l << 1. (8)

In this case, Re—Reynolds number; υ∞—typical velocity scale (an absolute value of the
vector of the velocity of the incident flotation of the liquid); ν = η / ρ, η—kinematic and
dynamic viscosity; ρ—density; Rp—size of the body, streamlined by the liquid or the inner
radius of the pipe through which the liquid is flowing; g—free-fall acceleration; t—time;
→
υ —velocity vector; and p—hydrostatic pressure. When writing Equations (6) and (7), the
following notations were used:

∇ =
→
i

∂

∂ x
+
→
j

∂

∂ y
+
→
k

∂

∂ z
; ∆
→
υ = i → ∆ υx +

→
j ∆ υy +

→
k ∆ υz (9)

where
→
i ,
→
j ,
→
k are unit vectors along the directions of the Ox, Oy, Oz axes of the Cartesian

coordinate system and ∆ is the Laplace operator.
The inequality (8) corresponds to the condition of the near-hydrodynamic interaction

between the coarse (wall) particle and the fine one moving at a speed of:

→
u =

→
i u (10)

where i → is the unit vector along the Ox axis.
Provided that the surface S of the fine particle is on the surface of the coarse particle

(wall) Σ, we can write the boundary conditions as follows:

→
υ
(1)
∣∣∣∣ S = u ;

→
υ
(1) → 0 when r → ∞ ; (11)

→
υ
(2)
∣∣∣∣Σ = −→υ (1)

;
→
υ
(2) → 0 when r → ∞ ; (12)
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→
υ
(3)
∣∣∣∣ S = −→υ (2)

;
→
υ
(3) → 0 when r → ∞ ; (13)

Taking into account the linearity of Equations (6) and (7), we may represent the fields
of local pressures as the sum of the fields:

⇀
υ β∗ = p =

⇀
υ
(1)

β∗ +
⇀
υ
(2)

β∗ +
→
υ
(3)

β∗ + · · · = p(1) + p(2) + p(3) + · · · (14)

where β is the dimension sliding factor and velocities:

→
υ =

→
υ
(1)

+
→
υ
(2)

+
→
υ
(3)

+ · · · , (15)

each member of which satisfies the boundary conditions (11)–(13).
From the side of the unlimited extent of the liquid, the particle moving in it is influ-

enced by the initial field of the velocities
→
υ
(1)

and the force corresponding to it:

→
F
(1)

=
←
F ∞. (16)

The boundary condition (12) is equivalent to the field of the velocities
→
υ
(2)

neutralizing

the initial field
→
υ
(1)

on the surface of the carrier mineral Σ. The determination of
→
υ
(2)

allows
for finding the field

→
υ
(3)

that, in accordance with the boundary condition (16), neutralizes

the field
→
υ
(2)

on the surface S of the fine particle.
The calculation of the individual contributions of the fields to the local field of the

velocity
→
υ makes it possible to find the force

→
F acting from the side of the liquid, bounded

by the carrier mineral, on the fine particle moving along it. At the same time, we should
note that, in accordance with the boundary conditions (11)–(13), only the velocity fields

with odd indices contribute to the magnitude of the force
→
F :

→
F =

→
F
(1)

+
→
F
(3)

+ . . . (17)

In accordance with the selected conditions (16) and (17), the total force
⇀
F acting on the

particle from the side bounded by the liquid wall and the force
⇀
F ∞ determining the first

contribution to it are opposite to the movement direction of the particle:

⇀
F ∞ == −

⇀
i F∞

⇀
F = −

⇀
i F

. (18)

Provided that the fine particle moves along the surface Σ or in the plane that is
perpendicular to its symmetry, it is possible to write:

⇀
υ
(2)

= −
⇀
i υ(2)

⇀
F
(3)

= F∞
⇀
υ
(2)

u
⇀
F
(3)

= −
⇀
i F(3)

F(3) = F∞
⇀
υ
(2)

u

(19)

Since the conditions are considered according to G. Lamb, its influence on the hy-
drodynamic interaction occurring in the system of polydisperse particles consists in the

coincidence of the fields created by the moving particle and the force
→
F ∞, located in its

center, which can be considered by the following expressions:
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⇀
υ
(1)

β = p(1) =
1

4 π

(
⇀
F ∞· ∇

)
1
r
+ o

(
1
r2

)
(20)

→
υ
(1)

= −
→
F ∞

6 π µ r
− r2

24 π µ

(→
F ∞ · ∇

)
∇ 1

r
+ o

(
1
r

)
. (21)

Using (17), we can obtain an expression for the total resistance force acting on the fine
particle from the side of the resistance force limited by the liquid wall:

F = F∞ ×
(

1 − υ2

u

)−1

· β (22)

where β is a nondimensional sliding coefficient.

Proceeding from (22), between the magnitude of the velocity
⇀
υ
(1)

and the magnitude
of the force F∞ acting on the particle in the unlimited extent of the liquid, there is a
directly proportional dependence. On the other hand, in accordance with the conditions

(14) and (15), the velocity
⇀
υ
(1)
S on the fine particle surface and the velocity

⇀
υ
(2)
Σ on the

carrier–mineral surface (wall) are interrelated linearly. The force
⇀
F introduced into the

expression (22), is proportional to the liquid viscosity µ and the value
⇀
υ
(2) → 0 , provided

that l → ∞ , i.e., when the distance between the particle and the wall is increasing unlimitedly.
Then, the analysis of the dimensionalities leads to the conclusion that the above

dimensional quantities are related by the following ratio:

⇀
υ
(2)

=
F∞

6 π µ l
. (23)

By substituting the expression (23) into (21), we obtain an expression for the correction
to the hydrodynamic resistance force acting on the fine particle from the liquid side bounded
by the wall (the surface of the carrier mineral):

F =
F∞

1 − F∞
6 π µ l u

· β. (24)

Taking into account [36], the expression for the force acting at the time moment t on
the solid particle moving in the liquid at the velocity

→
u can be written as:

F
6 π η R u

= 1 +
R√
π ν t

+
9
16

R
l

K
(

l√
ν t

)
. (25)

Let φ = l /
√

ν t, and when ϕ < 1, the decomposition for the function K(ϕ):

K (φ) = 1 − 16
9
√

π
φ +

8
9
√

π
φ3 − 1

6
φ4 + O

(
φ5
)

(26)

will be substituted into the expression for the resistance force (25), and for steady flow
when t→∞, we can obtain:

F
6 π η R u

= 1 +
9
16

R
l
+

1
2
√

π

R
l

(
l√
ν t

) 3
(27)

At the initial moment of time t, the particle is located at a sufficiently large distance
from the wall, so that ϕ > 1 and, substituting the decomposition of the function K(ϕ),
we have:

K (φ) =
1
3

φ−2 +
4

3
√

π
φ−3 + O

(
φ−4

)
(28)
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In the ratio (27), we have an expression for the force in the absence of the wall:

F
6 π η R u

= 1 +
R√
π ν t

+
9

16
R
l

(
ν t
3 l2

) 3
(29)

According to the expression (27), near the coarse particle, the velocity of the approach-
ing of the vortex (nonstationary) liquid flow to the steady state will change in the same
way as the value t−3/2 does. Based on the expression (29), at large distances between
the particles (in the case of the particle motion in the unlimited liquid), the correction
conditioned by the unsteadiness of the liquid flow will be changed in the same way as the
value t−1/2 will be. In the case of the Stokes flow, the correction to the hydrodynamic force
acting on the particle is of the R/l order. Consequently, during the flotation involving the
carrier minerals in the gap between the fine particle and the coarse one, the velocity of the
approaching of the liquid flow to the steady-state mode is increased.

During the flotation, the particles hydrodynamically interact with plane
(two-dimensional) and axisymmetric (two-dimensional and three-dimensional) fluid flows,
for which the components of the velocity vector and the pressure field are determined
based on the expressions:

υr (r , θ) = − υ∞ cos θ
(

1 − 3
2

R
r + 1

2
R3

r3

)
;

υθ (r, θ) = υ∞ sin θ
(

1 − 3
4

R
r − 1

4
R3

r3

)
;

p (r, θ) =
(

3
2 µ υ∞ R

r2 + ρ g r
)

cos θ

(30)

In the case of these two flows, the distribution of the velocity and the pressure depends
on two coordinates (r, θ are polar coordinates), and the continuity equation contains the
sum of two derivatives, which allows for introducing a scalar Stokes current function
depending on these two coordinates, i.e., the current function ψ (r , θ). In this case, the
constituent velocities υr and υθ of the liquid are determined based on the current function
in accordance with the equalities:

υr = υ∞ cos θ = − 1
r2 sin θ

∂ ψ

∂ θ
; υθ = − υ∞ sin θ =

1
r sin θ

∂ ψ

∂ r
. (31)

The hydrodynamic interaction of the polydisperse particles can be estimated by the
value of the current function for the current line (surface), the movement along which for
the deposition of the fine particle on the surface of the coarse one is the boundary ψcr:

E = ψcr / υ0 Rp (+) (32)

where υ0 is the velocity of the incoming undisturbed flow, provided that:

r = Rp (+) + Rp (−) ; θ = π / 2 ;
D =

[
Rp (+) − Rp (−) / Rp (+)

]
<< 1

D0 = Rp (−) / Rp (+)
(33)

Equation (32) can be obtained in the form of:

E = 2
v

υ0

[
Rp (−)
Rp (+)

] 2

. (34)

Here,
v = υ0

2 (2.00− ln Re) ;
Re = 2 Rp (+) υ0 / ν

(35)

where ν is the liquid kinematic viscosity.
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The expression for the particle collision efficiency (34) is obtained under the assump-
tion that the condition of the liquid adhesion to the hydrophilic surface of the mineral is
observed. In the flotation conditions, during the hydrodynamic interaction of hydrophobic
polydisperse particles, when determining the collision efficiency, it is necessary to take into
account an inaccurate compliance with the adhesion condition, i.e., the sliding of the liquid
along the hydrophobic surface. The change in the hydrodynamic mode of the interaction
during the transition from hydrophilic solid particles to hydrophobic solid polydisperse
particles can be considered by obtaining an expression for the current function when taking
into account the liquid sliding.

Based on Oseen’s equation:

(
⇀
υ ∞ · ∇

)
⇀
υ = − 1

ρ
∇ p + ν ∆

⇀
υ , (36)

the velocity components are:

υr = − A0
r2 + 2 A1 cos θ

r3 − C0 e−k r (1− cos θ)

2 k r2 [1 + k r (1 − cos θ)] + υ∞ cos θ

υθ = A1 sin θ
r3 + C0 sin θ

2 r e−k r (1 − cos θ) − υ∞ sin θ
(37)

when δ r << 1 (where δ = υ∞ / 2 ν) has the following form:

υr = A0
r − A1

cos θ
r2 + υ0 cos θ−

− C0
2

[
1

δ r + cos θ −
(

γ + ln 1
2 δ r

)
cos θ

]
,

(38)

υθ = − A1
sin θ

r2 − υ0 sin θ − C0

2

(
γ + ln

1
2

δ r
)

sin θ. (39)

Here, γ is the Euler constant, and A0, A1 and C0 are the constants whose values must
be obtained from the boundary conditions.

Based on the boundary condition that υr = 0, when r = Rp (+) by equating the
coefficient to zero, when cos θ, and when a member does not contain cos θ, the following
is true:

A0 =
C0

2 δ
; A1 = υ0 R2

b
C0 R2

p (+)

2

(
1 − γ − ln

1
2

δ r
)

. (40)

If the condition υθ = 0 corresponds to the adhesion of the liquid, then the condition of
the equality of the tangential stress pr θ to the tangential force takes into account the sliding
of the liquid along the surface of the coarse particle r = Rp (+):

υ0 β∗ = pr θ = η

(
∂ υθ

∂ r
+

∂ υr

r ∂ θ
− υθ

r

)

r = Rp (+)
. (41)

Using (38) and (39), based on (41), when r = Rp (+), we have:

A1

(
β∗

η
+

4
Rp (+)

)
= − β∗

η
R2

p (+)

[
υ0 +

C0

2

(
λ + ln

1
2

δ r
)]

, (42)

from which:
C0 = 2 υ0

(1− γ− ln 1
2 δ Rp (+))− 1

2

(
1+ 2 η

β∗ Rp (+)

)−1 ;

A1 = − C0 R2
p (+)

4
(

1+ 2 η

β∗ R2
p

)
(43)

Proceeding from the condition that:

160



Minerals 2024, 14, 88





d ψ = r υr d θ − υθ d r
ψ = 0 ghb r = Rp (+)

η
β∗ Rp (+)

<< 1
, (44)

we will obtain:

E = 2
v

υ0

(
Rp(−)
Rp (+)

) 2 (
1 +

2 η

β∗ Rp (−)

)
. (45)

The comparison of the expressions (34) and (45) allows for stating that the correction
for slip is given by the expression:

fE =

(
1 +

2 η

β∗ Rp (−)

)
. (46)

In view of this, taking into account the sliding, the efficiency of the collision the fine
particle with the coarse one is higher by correction, whose value is determined by the
ratio (46).

A comparison of the expressions (20), (22) and (26), (37) allows for stating that during
the flotation of the microdispersions of minerals using carrier minerals, the adhesion of fine
particles to coarse ones is facilitated by the rapid approach of the vortex liquid flow in the
interphase gap to the steady-state mode accompanied by suppressing transverse particle
movements. In the case of the Stokes flow, this fact can be considered by the correction
having the R/l order to the hydrodynamic force acting on the particle. The coefficient value
of the capturing by a bubble of an aggregate consisting of hydrophobic particles is higher
by the slip correction value in the form of:

(
1 +

2 η

β∗ Rp (−)

)
.

3.2. Flotation of Gold Microdispersions Using Carrier Minerals

Based on the obtained estimates, the influence of the polydispersity of the particles
and the conditions of adhesion/sliding of the liquid along the hydrophobic surface on the
result of their hydrodynamic interaction was analyzed. This was analyzed according to the
method related to the preliminary adhesion of hard-to-extract forms of the minerals (their
microdispersions) to the carrier minerals that were specially introduced into the flotation
system. The purpose of this section of the work was to obtain experimental evidence for
the technological effectiveness of the flotation technology using the rougher concentrate as
carrier minerals.

The aggregation process of the minerals in the flotation cells occurs in the turbulent
mode of their movement. Therefore, the methods used for studying the aggregation in
a calm suspension, even after mixing, cannot fully reflect the ongoing changes in the
particle size. The method of studying the aggregation of the fine particles during their
mixing should more fully reflect the change in the dispersed composition of the mineral as
compared to static methods.

In order to study the kinetics of the thinning and breakthrough of the symmetric
interphase films formed during the interaction of the polydisperse grains of gold, the
induction time was measured when the grains adhered to each other. The influence of
temperature and the gold samples on the induction time was studied. To solve this problem,
a change was introduced to the device design: the system used for generating a gas bubble
was replaced by a cantilever beam (probe) containing a grain of gold, glued according to
the method that was developed and tested in [62]. When assembling the probe, the most
flattened grains were selected: thin plates, scales, and leaves of native gold. The selected
gold grains, when mounted on the probe, were oriented towards the material placed in the
cuvette by a larger surface, i.e., a face (wall). Providing a predetermined grain position on
the probe, the induction time was measured when individual grains adhered to the “gold
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wall” and not to its edge or corner. Nevertheless, the lack of geometric similarity of the
interphase gap during the interaction of the flat wall with the polyhedral gold grains in the
material layer was the main reason for the measurement error.

Gold grains of a given coarseness were isolated by sedimentometric analysis.
For the first experiment (Figure 4a, curve 1), native gold grains with a mirror-smooth

surface without any relief, corrosive shells on the periphery of the grains, or signs of hy-
pergenic transformation of the gold faces were selected. On the contrary, for the second
experiment (Figure 4a, curve 2), the research object was non-rounded gold grains with a
shagreen (rough), pitted, and bumpy surface. When using the high-resolution electron mi-
croscope, randomly (mosaic) located micron-sized depressions (ranging from fractions of a
micron to 1–3 microns in size) of a geometrically regular shape in the form of “honeycombs”
were marked on the faces of the gold grains.
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The native gold grains were treated with a 10−3 M solution of ethyl xanthogenate.
In the first case (Figure 4a, curve 1), the induction time decrease when the temperature

increased can be explained by an increase in the hydrophobic interaction forces, i.e., an
endothermic process associated with the difference in the structure and properties of the
water located in the boundary layer and in the volume [19,59,63]. This also includes the
cases of adsorption of ethyl xanthogenate on the gold surface [42,44,64]. A sharp increase
in the dependence of the induction time on temperature when the rough surface particles
interact (Figure 4a, curve 2) can be associated with the manifestation of the effect of the
water flow sliding along the hydrophobic surface of the particles as a result of stratifying the
wall-mounted gas–liquid layer [65,66] or separating stable nanobubbles from the surface
relief irregularities [39,67].

The experimental results were processed along with rejecting the measurement runs;
if the empirical dispersion of the measurement runs was noticeably greater, then the
significance of its difference from the rest was checked by comparing it according to
Cochran’s test (G-criterion). The critical (tabular) values of the G-criterion were determined
at a significance level of 0.95. The points shown in Figure 4 belong to the midpoints of the
confidence intervals constructed using Student’s t-distribution.

The induction time measurement was supplemented by an experiment conducted
on the flotation of native gold of different sizes and samples. The experiments were
carried out in a counterflow flotation column that was 64 mm in diameter when the
xanthogenate concentration was 15.6 mg/L and the foaming agent concentration was
0.025 mg/L. Washwater was not supplied to the foam layer.
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To determine the diameter of the air bubbles (db, mm), its dependence (approximation
accuracy was R2 = 0.98) on the pressure drop occurring between the phases (p, MPa) and
the outlet hole diameter (d, mm) was in the form of [57]:

db = −33.81× 10−2 + 60.08× p + 18.15× d + 430.02× p d. (47)

In the experiments, high-assay copper (870‰–930‰) native gold (of reddish color)
admixed with platinum and with inclusions of ilmenite and magnetite was used; no signs
of hypergenic transformations were noted on the surface of the angular gold grains. Only
individual grains had a low assay (680‰–770‰); their surface differed by a heteroge-
neous structure, and they had endogeneous deformation signs and corrosion shells. Small
classes of coarseness were enriched with lamellar and flake morphotypes of semiangular
grains. Native gold of three size classes was used: (−100 + 71) µm (Figure 4b, curve 1),
(−71 + 40) µm (Figure 4b, curve 2), and −20 µm (Figure 4b, curve 3).

The flotation rate constant was determined to decrease (Figure 4b) when the bubble
size increased and the Rp/Rb ratio value decreased. The obtained result is explained by the
influence of the hydrodynamic interaction of the particles with the bubbles on the flotation
complex formation. The result can be explained by the low efficiency of the collision of the
fine particles with the large bubbles (the action of viscous forces) and the high efficiency of
the collision of the coarse particles with the bubble surface due to the action of inertia forces.

The change in the inertia forces during flotation by the developed method is possible
due to the adhesion of gold microdispersions to the coarse particles of the carrier minerals.
Moreover, there is an interaction of the particles whose surface is hydrophobized by a
collecting reagent. The surface hydrophobization increases the area of the isotherm of the
wedging pressure in the region of its negative values (from S1 to S2), under which the
attraction forces prevail over the repulsion forces (Figure 5).
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The decrease in the surface hydrophilicity was associated with the adsorption of the
collector, whose hydrocarbon radicals were the cause of the appearance of the interaction
forces caused by a change in the structure of the liquid, i.e., the forces of hydrophobic
attraction. When the thickness h of the wetting film decreased, when the particles ap-
proached, the energy of their interaction U was determined by the additive contribution of
the energies of a different nature [68–70]:

• Molecular attraction VA

VA =
A123

6 h
Rp1 Rp2

Rp1 + Rp2
(48)

• Electrostatic repulsion VR
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The values |Umin| / kT were calculated during the interaction of the gold grains, whose
sizes were Rp1 = 1–10 µm and Rp2 = 100–150 µm (Figure 6b). The calculation conditions
were as follows. A123 = 4.1 × 10−12 erg is the Hammaker constant for the interaction
of gold grains (indices “1” and “2”) through a symmetrical film of water (index “3”).
ε0 = 8.85 × 10−12 F/m is the electrical constant of the dispersion medium.
ϕ1, ϕ2 = −14.7 mV is the Stern potential of the particles (approximated by their ζ-potential,
whose experimental values were determined by the electrophoretic mobility of the parti-
cles in water using the Henry equation, a Dispersion DT-310 electroacoustic spectrometer
(Dispersion Technology Inc., New York, the United States) and a Zetasizer Nano ZS device,
Malvern Instruments Ltd, Malvern, United Kingdom). σ0 = 3 × 1014 charge/cm2 is the
surface-charge density of the gold grains. κ = 0.92 × 106 cm−1 is the parameter of the
double electric layer corresponding to the inverse Debye shielding radius (the parameter κ
was determined based on the electrical conductivity data). h is the distance between the
particles Rp1 and Rp2 (κh < 3). K is the parameter characterizing the magnitude of surface
structural forces, J/m2 [58,71]. θ = 640 is the contact angle. λ is the parameter characterizing
the long-range action of the forces, nm [58,71]. e = 2.718 is the transcendental constant.
k = 1.381 × 10−23 J/K is the Boltzmann constant. T = 293 K is the absolute temperature.
The calculations were performed in the Maple 2021 environment.
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Figure 6a shows the change in the potential energy of the interaction of the particles
when the distance between them was increased from r1 to r2. The selected distance between
the particles corresponds to the length of the long-range potential minimum; starting from
the distance r ≥ r1, the potential energy of the interaction of the particles is U < 0; r2 is the
distance between the particles, at which the energy of their interaction is |U| = k T.

When the size of the fine particles increased (Figure 6b), the absolute value of the
threshold depth of the long-range potential minimum decreased from 0.56 (when the
minimum coordinate was rmin = 11.6 nm) to 0.36 (when rmin = 15.4 nm). Therefore, when
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the particle size increased, the area of their interaction increased; the polydisperse particles
were aggregated at a smaller depth of the long-range potential minimum.

The results of studying the aggregation and flotation of gold allowed for reaching a
conclusion about the probability of efficiently recovering the microdispersions of minerals,
including native gold, by flotation using the carrier minerals intended for sticking the
fine particles onto the coarse ones. This process is followed by the flotation of the formed
aggregates containing the bubbles of a reduced size.

Using the two samples of ores, which differed in gold content, experiments were
set up to compare the technological indicators obtained using competing technologies
that have been adopted at an operating gold recovery factory and developed using the
rougher concentrate as carrier minerals. The set of the experiments differed in the fact
that the ready-made concentrate was obtained on the ore of sample-1 according to the
full technological scheme, and the ore of sample-2 allowed for releasing only the rougher
concentrate. This made it possible to evaluate the technological regularities of the scheme
as a whole and the main flotation operation efficiency in particular. The experiments were
conducted according to the continuous process principle.

During the flotation of the ores of sample-1 according to the technological scheme
adopted at the operating gold extraction factory, 82.93% of the gold was extracted into
a sellable concentrate when the concentrate yield was 3.07% and the gold content was
20.80 g/t.

During the flotation and proceeding according to the scheme shown in Figure 6, when
the rougher concentrate was first mixed with the base ore, the gold content in the main
flotation feed increased from 0.77 to 1.22 g/t and up to 1.62 g/t during the second mixing,
i.e., by 58.4 and 110.4% rel. with respect to the base ore. The consequence of increasing
the gold content in the initial feed of the rough flotation operation was the operational
extraction increase in the metal from 83.74 to 91.28 and 94.40%, respectively. The gold
extraction into a sellable concentrate was 87.62% when the Au content was 27.65 g/t and
the ∆γ concentrate yield decreased by:

∆ γ =
3.07− 2.44

3.07
× 100 = 20.52%.

Table 1 shows the experimental results of extracting the rougher concentrate from
the ores of sample-2 in the mode adopted at the operating gold processing factory and
the results of testing the flotation mode using the rougher concentrate material as carrier
minerals (Figure 2).

Figure 7 shows a qualitative and quantitative scheme of the sample-1 flotation when
the rougher concentrate was mixed twice and provided with the initial feed.

Table 1. Results of the experiments on the ore flotation using competing flotation schemes.

No. Item Product Name Yield, % Au Content, g/t Au Extraction, %

Sample-2 flotation in the factory mode

1 Rougher concentrate 14.417 4.97 74.95
2 Flotation tailings 85.583 0.280 25.05
3 Base ore 100.0 0.956 100.0

Sample-2 flotation using carrier minerals

4 Rougher concentrate 11.40 6.29 74.95
5 Tailings-1 29.76 0.297 9.24
6 Tailings-2 29.42 0.274 8.43
7 Tailings-3 29.42 0.240 7.38
8 General tailings 88.60 0.270 25.05
9 Base ore 100.0 0.956 100.0
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Table 1 concludes that, while maintaining the achieved level of gold extraction (74.95%),
the double-mixing of the rougher concentrate with the initial feed made it possible to
increase the gold content in the rougher concentrate from 4.97 to 6.29 g/t (the gold concen-
tration degree increased from 5.199 to 6.579) when the concentrate yield decreased.
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Figure 8 demonstrates the dependences of the operational gold extraction on the metal
content in the initial feed of the main flotation operation obtained using the material of
sample-1 (Figure 8a) and sample-2 (Figure 8b). A similar dependence (Figure 8c) proceeded
from the data processing results obtained at the stage of the preliminary research works
related to developing the ores of the deposit.
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Figure 8. Gold extraction as a function of its content in the initial feed of the flotation operation for
sample-1 (a), sample-2 (b), and according to research works (c).

Figure 8 shows that when using the rougher concentrate material as carrier minerals,
a mixture was obtained, which, in terms of the extracted mineral content and the flotability,
was identical to the base ore with an increased content of the valuable component.

Various methods of processing refractory sulfide gold concentrates are possible;
their implementation requires significant operating expenses. Therefore, reducing the
gold concentrate amount delivered for metallurgical processing provides a significant
economic effect.

The cost of processing the persistent sulfide flotation concentrates by various technolo-
gies was calculated using the data given in [72]. When using the developed method of the
ore flotation, the possibility of reducing operating costs attributed to 1 ton of the initial ore
has been established, which increases the economic efficiency of its processing.

4. Conclusions

A flotation technology of processing gold-bearing ores, which was developed in order
to increase the completeness of extracting the fine particles of the valuable component, was
studied in this paper.

A correction was obtained for the hydrodynamic drag force acting from the liquid side
on the fine particles under conditions of their flotation applying the carrier minerals.

A decrease in the induction time when the temperature increases was revealed when
studying the kinetics of the thinning and breakthrough of the symmetrical interphase films
formed by the gold grains with a mirror-smooth surface without any relief. The obtained
results can be explained by an increase in the forces of hydrophobic interactions. The
decrease in the induction time, when the gold grains adhere to the rough surface, can be
associated with the manifestation of the effect of the liquid sliding along the gas layer.

The influence of the liquid sliding effect is considered by a dimensionless correction to
the magnitude of the collision efficiency of the aggregate of hydrophobic particles with an
air bubble. The correction expression includes the values that describe the properties of a
continuous medium (dynamic viscosity) and a disperse phase (geometric particle size); the
correction value is always greater than one.

We have revealed that the flotation rate constant decreases when the size of the bubbles
increases and the ratio of the particle size to the bubble size decreases.
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We have found that during the aggregation of polydisperse particles, the threshold
energy of the rapid coagulation is lower than that occurring during the interaction of
monodisperse particles, whose aggregation requires a large depth of the potential pit.

When performing full-scale experiments using the ore of sample-1, sellable concen-
trates were obtained according to two complete technological schemes. The first has been
adopted at the existing gold recovery factory and the second uses the rougher concentrate
as a carrier material. We have established the fact that when the concentrate yield decreased
by 20.52% rel. in the second case, the gold extraction was 4.69% abs. higher.

According to the example of the ore of sample-2, when comparing two technologies
used for extracting the rougher concentrate (the factory one and the developed one using
the rougher concentrate as a carrier material), we have shown that while maintaining the
achieved level of gold extraction (74.95%), the double-mixing of the rougher concentrate
with the initial feed allowed for obtaining an increase in the gold content in the rougher
concentrate from 4.97 to 6.29 g/t. At the same time, the degree of the gold concentration
increased from 5.199 to 6.579.

A possible level of increasing the commercial efficiency indicators of production has
been shown when using the developed approach to extracting microdispersions of minerals.
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Abstract: This study investigates the flotation kinetics of individual platinum-group elements (PGEs)
and gold, namely Pt, Pd, and 2E+Au (i.e., Pt+Pd+Au), in the context of Platreef ore flotation. Experi-
mental tests were conducted on a Platreef ore feed using various dosages of depressants, frothers, and
collectors under controlled agitation and pH conditions. The recoveries of the individual PGEs were
analysed using six kinetic models, with the modified Kelsall model identified as the most suitable for
accurately describing the flotation kinetics and predicting elemental recovery. Notably, the model
incorporates two rate constants (kfast and kslow) to account for the distinct flotation behaviours of
the PGEs. The results indicate that Pt has the fastest floatability, followed by Pd and 2E+Au. The
modified Kelsall model demonstrates high effectiveness in predicting the recovery of these PGEs.
Three empirical correlations for Pt, Pd, and 2E+Au recoveries based on the modified Kelsall model are
proposed, enhancing the understanding and optimisation of PGE recovery in Platreef ore flotation.

Keywords: PGM species; PGE floatability; kinetic model; Platreef; recovery

1. Introduction

Platinum group elements (PGEs) comprise a group of six metallic elements, namely,
platinum, palladium, rhodium, ruthenium, iridium, and osmium [1,2]. These elements
display common physical and chemical properties, including high melting points, resistance
to wear and tear, and exceptional catalytic activity [3]. Due to their unique properties, PGEs
are considered rare and valuable and find numerous applications in various industries such
as automotive [4], aerospace [5], electronics [6,7], production of fertilisers [8], plastics [9],
and pharmaceuticals [10].

PGEs make up platinum-group minerals (PGMs), and the latter are mainly found
in deposits that are rich in nickel, copper, and other metals. The primary sources of
PGMs are deposits in South Africa, Russia, and Canada, with smaller deposits being
found in Zimbabwe, Australia, and the United States [11]. The Bushveld Complex in
South Africa holds approximately 75% of the world’s Pt resources and 50% of its Pd
resources, with these precious metals being predominantly found in the Merensky, UG2,
and Platreef layers [12,13]. The Platreef is a layered mafic-ultramafic intrusion located in
the northern limb of the Bushveld Complex. This is a complex assemblage of different
rock types, including serpentinites, pyroxenites, and calc-silicates, hosting predominantly
PGE tellurides, alloys, arsenides, and sulphides. While Pt and Pd tellurides are the major
contributors to the PGM assemblage, the Platreef is characterised by a scarcity of Pt-Pd
sulphides compared with other reefs in the Bushveld Complex. The high concentration of
telluride minerals in the Platreef is primarily represented by merenskyite and moncheite,
whereas the arsenides are mainly composed of sperrylite and palladoarsenide [14–16].

The recovery of PGEs from the Platreef is achieved through flotation, a selective
separation process based on differences in hydrophobicity of minerals [17]. Platreef ore
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poses a challenge in flotation as the ore contains a larger proportion of fine-grained PGMs in
association with gangue minerals compared with other reefs in the Bushveld Complex [18].
This disturbs the froth stability owing to the low mass and high surface area of fine
particles [19], unlike Merensky ore, with a straightforward flotation process [18]. Froth
stability in flotation is essential for effectively recovering valuable minerals and preventing
the entrainment of gangue minerals during water recovery [20]. Consequently, the frother
dosage is slightly higher (30–50 g/t) for Platreef ore due to froth instability and bubble
challenges compared with other reefs. The overall floatability of valuable minerals in the
ore results in varying collector requirements, where each collector performs a different
action and therefore may target different sized particles [21].

The development of a kinetic model exclusively tailored through data-fit constants for
Platreef ore flotation considering the reagents and test conditions stands as a significant
advancement, distinct from UG2 and Merensky ores within the Bushveld Complex. This
study aims at quantifying Pt, Pd, and 2E+Au (i.e., Pt+Pd+Au) behaviour through modelling
the unique flotation response to variable reagent dosages for Platreef ore. By focusing
solely on Platreef ore flotation, the model captures the intricacies and complexities inherent
to this particular reef, allowing for the prediction of flotation behaviour.

The flotation behaviour of PGMs can be influenced by several factors, including the
mineralogy (such as mineral association), particle size, reagent regime, and flotation condi-
tions. The choice of flotation reagents and their concentrations can significantly affect the
recovery of PGMs, and the effectiveness of these reagents may depend on the mineralogical
attributes of the PGM species [22]. Flotation conditions, such as pH, temperature, and
agitation rate, can also influence the recovery of PGMs [23–25].

In the early days of flotation, the initial flotation model developed by Gaudin [26] in the
1930s expressed flotation recovery as an exponential function of time. Since then, a range of
flotation models has been proposed, published, and refined over time. These models often
take into account various factors, including particle size, reagent chemistry, and process
conditions, to predict flotation performance and optimise process efficiency [27]. They
range from simple empirical equations to more complex and mechanistic formulations. The
selection of an appropriate kinetic model for a given flotation experiment or plant depends
on the specific conditions and objectives.

One key aspect of the flotation process is the rate at which the commodity of value
is recovered. An example of a model to describe the rate is the first-order model, which
assumes that the rate of mineral recovery decreases exponentially over time. Nonetheless,
other models have also been developed based on the probability of particle–bubble collision,
attachment, detachment, particle size distribution, and distribution of floatability [28–30]. In
recent years, the growing knowledge of the sub-processes that occur in the flotation cell has
led to the development of more efficient flotation models that are used for process analysis,
simulation, and optimisation. These models can be used to predict the flotation performance
of different materials and machine types, as well as to optimise the operating conditions
for maximum recovery and grade. However, the application of these models in the plant is
challenged by the uncertainties and complexities of industrial operations. Therefore, the
development of accurate and reliable kinetic models is crucial for the optimisation of froth
flotation in the mineral processing industry. Readers are referred to the review papers and
theses cited here [27,31,32].

The prevailing scientific consensus holds that the flotation process is governed by a
first-order kinetic model that is characterised by a dependence on particle concentration
and a rate constant. This view has primarily been advanced in [33–35], among others [27].
To monitor and quantify the efficacy of this process, it is customary to evaluate the recovery
of a specific component over time, known as R [12,36].

In practice, the most common approach for characterising each fraction involves using
deterministic k-Rmax pairs. This approach assumes that the flotation rate constants are
deterministic and time-invariant for narrower fractions with respect to particle properties.
However, such an approach may not be flexible enough to represent slow and sustained
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increasing recovery trends that are often observed in flotation responses with slow-floating
components. In addition, over-fitting can occur when using a large number of discrete
rate constants to represent a category, especially when the number of model parameters is
comparable to the number of experimental data points. The use of more flexible models to
represent such responses [37–39] has thus been suggested.

The attachment of mineral particles to bubbles is a complex process that involves
several physical and chemical mechanisms, including adsorption, desorption, and chemi-
cal reactions. These mechanisms can be described mathematically using various models,
which typically involve a set of differential equations that describe the concentration of
particles and reagents in the flotation cell as a function of time [40,41]. The efficiency and
selectivity of the flotation process are usually evaluated by measuring mineral recoveries
and enrichment ratios at specific flotation or residence times. However, in many cases, it is
necessary to investigate the performance of the process over time [42]. This is achieved by
analysing the kinetic response of the process, which is essentially the change in mineral
concentrations or cumulative recovery over time. The kinetic response has several impor-
tant applications in mineral processing, including determining the maximum achievable
recoveries, comparing different flotation types, investigating the effects of various operating
conditions, scaling up metallurgical results, designing flotation circuits, and simulating
flotation processes [32,43–45]. This study presents a novel and comprehensive investiga-
tion into the flotation kinetics of Pt, Pd, and 2E+Au based on experimental studies [46]
using Platreef ore samples. The optimised parameters for the dosage of depressant, frother,
and collector, as well as the monitoring of agitation rate and pH under different reagent
conditions, allowed for a thorough and detailed assessment of the flotation performance.
This paper is the first ever study to predict individual PGE flotation kinetics for the Platreef
ore, achieving strong predictability despite the complex nature of the ore body as well as
the reagent dosages. Notably, the most successful model demonstrated excellent capability
for extrapolation.

2. Materials and Methods
2.1. Materials

A detailed description of the materials, methods, and experimental procedure is
outlined in [46]. The chemicals employed in this investigation consisted of a frother
(Senfroth522), depressant (Sendep30E), and collector (sodium isobutyl xanthate (SIBX)
obtained from SENMIN. The Platreef ore feedstock was derived from a 100 kg bulk sample
originating from the southern Platreef deposit.

2.2. Experimental Equipment and Procedure

The schematic of the experimental set-up is displayed in Figure 1. The experimental
apparatus used in this study comprised a D12 Denver flotation machine with a cell capacity
of 2.5 L. The cell was equipped with mechanical agitators to ensure uniform pulp mixing
and an aeration system for controlled air bubble introduction with airflow measurements
using a rotameter. This employs a linear scale, wherein 100% corresponds to an airflow
rate of 21 NL/min at an absolute line pressure of 4.85 bar. This system is equipped with a
pressure regulator to facilitate control. The incoming air is subjected to filtration through an
in-line air cleaner, serving to inhibit the ingress of particulate matter and oil contaminants
originating from the air compressor, thus safeguarding the integrity of the flotation cell [47].
Furthermore, a reagent addition system allowed precise dosing of chemicals. Within this
configuration, the overflow from each test was designated as the rougher concentrate (RC),
representing the fraction enriched with the desired minerals. Conversely, the collective
effluent from the final experiment constituted the rougher tailing (RT), encompassing the
particles that did not respond favourably to the flotation process. All products (concentrates
and tails) were dried, and a sub-sample was split out for subsequent chemical analysis
and mineralogical analysis. The samples were analysed using inductively coupled plasma
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atomic emission spectroscopy (ICP-OES), and the mineral liberation of PGMs was obtained
using a mineral liberation analyser (MLA).
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The behaviour of individual PGM species was investigated by liberating PGM grains
from Platreef ore through fine grinding of the feed sample to 90% passing 75 µm. This fine
grind was selected as the flotation response of liberated PGE species and was the focal point
of our study. The Platreef feed sample contained PGE with a grade of approximately 2.8 g/t
2E (Au = 0.12 g/t, Pd = 1.61 g/t, and Pt = 1.17 g/t). The ore was subsequently crushed to
100% passing 1.7 mm using a jaw crusher and cone crusher, and 1 kg sub-samples were
obtained using a rotary splitter for flotation test work.

Flotation test work was performed at a solids concentration of 35% and an impeller
speed of 1200 rpm with a constant airflow. Tap water from the South African Rand Water
supplier was used as the flotation medium. Table 1 presents the levels of cations, anions,
conductivity, total dissolved solids (TDS), and pH identified in the tap water used for
this study.

Table 1. Concentrations of selected ions in the sampled water [46].

Ions Concentrations/ppm Ions Concentrations/Unit

Ag <1 Si <0.05 (ppm)
Al <1 Li <0.05 (ppm)
Ca 26.6 K 1.91 (ppm)
Cr 0.05 NO3

− 5.14 (ppm)
Fe 0.51 Sulphide S <0.05 (mg/L)
Mg 7.55 Conductivity 227 (uS/cm)
Pb 0.061 TDS 113.8 (mg/L)
V 0.06 pH 8.02

To investigate the response of individual liberated PGM species, reduced collector,
depressant, and frother, dosages were tested. Figure 2 shows backscattered electron images
of liberated PGM in the feed and concentrate.

The impact of the collector dosage on the recovery and flotation kinetics of PGEs was
studied, while the frother’s indirect effect was examined through froth phase effects. The
reagents used and conditioning times are presented in Table 2. SIBX was introduced, and the
slurry underwent a 2-min conditioning period. Sendep30E was added, and conditioning
continued for an additional 3 min. Lastly, Senfroth522 was introduced, and the slurry
underwent a final 1-min conditioning stage. The concentrate was manually collected by
scraping once every 15 s using paddles.

Five timed RCs and an RT were produced from each test to ensure the reproducibility
and statistical significance of the result. After each stage, an RC was collected, resulting
in five rougher concentrates obtained at different cumulative flotation times of 1, 3, 7, 20,
and 40 min, respectively (Table 2). Flotation progressed, resulting in the recovery of RC1 at
1 min, RC2 at 3 min after RC1 was taken, RC3 at 7 min after RC2, RC4 at 20 min after RC3,
and RC5 at 40 min.

174



Minerals 2023, 13, 1350Minerals 2023, 13, x FOR PEER REVIEW 5 of 22 
 

 

(a) (b) 

Figure 2. Backscattered electron image of (a) PtAs in the feed and (b) PdBiTe associated with PtAs 
in RC1. 

The impact of the collector dosage on the recovery and flotation kinetics of PGEs was 
studied, while the frother’s indirect effect was examined through froth phase effects. The 
reagents used and conditioning times are presented in Table 2. SIBX was introduced, and 
the slurry underwent a 2-min conditioning period. Sendep30E was added, and condition-
ing continued for an additional 3 min. Lastly, Senfroth522 was introduced, and the slurry 
underwent a final 1-min conditioning stage. The concentrate was manually collected by 
scraping once every 15 s using paddles. 

Table 2. Platreef sample flotation test conditions. 

Reagents & Dosages Conditioning Time/min Float Time/min 
SIBX: 30 and 120 g/t  2  - 
Sendep30E: 300 and 500 g/t  3  - 
Senfroth522: 30 and 50 g/t  1  - 
Rougher concentrate 1 (RC1) - 1  
Rougher concentrate 2 (RC2) - 3  
Rougher concentrate 3 (RC3) - 7  
Rougher concentrate 4 (RC4) - 20  
Rougher concentrate 5 (RC5) - 40 

Five timed RCs and an RT were produced from each test to ensure the reproducibility 
and statistical significance of the result. After each stage, an RC was collected, resulting in 
five rougher concentrates obtained at different cumulative flotation times of 1, 3, 7, 20, and 
40 min, respectively (Table 2). Flotation progressed, resulting in the recovery of RC1 at 1 
min, RC2 at 3 min after RC1 was taken, RC3 at 7 min after RC2, RC4 at 20 min after RC3, 
and RC5 at 40 min. 

The rougher flotation circuit is a vital component of the mineral processing circuit 
since it aims to achieve maximum recovery of valuable minerals from the feed material. 
Consequently, understanding the behaviour of PGM minerals during rougher flotation 
was crucial for optimising the overall recovery and efficiency of the mineral processing 
circuit. 

2.3. Modelling 
Various kinetic models have been studied to produce a comparative overview of their 

performance and to develop an accurate predictive tool. Flotation modelling has become 
increasingly sophisticated, with more advanced models being developed to incorporate 

PdBiTe 

PtAs 
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Table 2. Platreef sample flotation test conditions.

Reagents & Dosages Conditioning Time/min Float Time/min

SIBX: 30 and 120 g/t 2 -
Sendep30E: 300 and 500 g/t 3 -
Senfroth522: 30 and 50 g/t 1 -
Rougher concentrate 1 (RC1) - 1
Rougher concentrate 2 (RC2) - 3
Rougher concentrate 3 (RC3) - 7
Rougher concentrate 4 (RC4) - 20
Rougher concentrate 5 (RC5) - 40

The rougher flotation circuit is a vital component of the mineral processing circuit
since it aims to achieve maximum recovery of valuable minerals from the feed material.
Consequently, understanding the behaviour of PGM minerals during rougher flotation was
crucial for optimising the overall recovery and efficiency of the mineral processing circuit.

2.3. Modelling

Various kinetic models have been studied to produce a comparative overview of their
performance and to develop an accurate predictive tool. Flotation modelling has become
increasingly sophisticated, with more advanced models being developed to incorporate
additional complexities, such as the effect of particle size, the impact of froth zone tur-
bulence, and the influence of inter-particle forces. However, the batch flotation models
presented in this table remain highly relevant, especially in the context of the rougher stage
of flotation processes.

Table 3 lists the flotation kinetic models parameterised in this study, including details
on their equations, parameters, and associated references. The Classic, Klimpel, and second-
order Klimpel models describe the mineral recovery over time in batch flotation processes,
where R represents the recovery, k represents the flotation rate constant at which the
minerals are recovered during the flotation process, t represents time, and Rmax represents
the species maximum recovery.
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Table 3. Kinetic models for flotation separation.

Model Name Equation Kinetic Parameters Ref.

Classical first-order model R = Rmax
(
1− e−Kt) Rmax and k [28]

Klimpel model R = Rmax

[
1− 1

kmax t

(
1− e−kmax t

)]
Rmax and kmax [29]

Second-order R = Rmax
2kmax t

1+Rmaxkmax t Rmax and kmax [28]

Second-order Klimpel R = Rmax

[
1− 1

kmax t ln(1 + kmaxt)
]

Rmax and kmax [30]

Kelsall R = R f ast

(
1− e−k f astt

)
+ Rslow

(
1− e−kslowt

) 100% = R f ast + Rslow
kslow and k f ast

[47]

Modified Kelsall R = R f ast

(
1− e−k f astt

)
+ Rslow

(
1− e−kslowt

) Rmax = R f ast + Rslow
kslow and k f ast

[33,34]

In the Kelsall and modified Kelsall models, Rfast and Rslow represent the fractions of
species undergoing fast and slow flotation, respectively, while kfast and kslow denote the
corresponding fast and slow flotation rate constants. In the Kelsall model, species are
categorised as either fast or slow floaters, ensuring that the combined fractions of these
species always amount to 100%, as demonstrated in Equation (1). However, in the modified
Kelsall model, the sum of these fractions corresponds to Rmax, signifying the maximum
recoverable fraction of species, as depicted in Equation (2):

R f ast+Rslow = 100%, (1)

R f ast+Rslow = Rmax. (2)

The provided flotation models were assessed to gauge their accuracy in predicting
the behaviour of PGEs, including Pt, Pd, and 2E+Au. To evaluate their performance, each
model was fitted to experimental data to obtain the most appropriate kinetic parameters.
The effectiveness of each model was subsequently determined by comparing its projected
flotation kinetics with the actual kinetics observed during laboratory testing.

2.4. Statistical Analysis

In statistical evaluation, R-squared (R2) and root mean squared error (RMSE) were
used to assess the effectiveness of regression models. The formula used to calculate R2 is
given in Equation (3):

R2 = 1− RSS
TSS

, (3)

where RSS is the sum of the squared residuals (the difference between actual and predicted
values), and TSS is the total sum of squares (the difference between actual values and the
mean value). The formula used to calculate RMSE is shown in Equation (4):

RMSE =

√
∑N

i=1

(
z fi
− zoi

)2
/N. (4)

Here, z fi
is the predicted value, zoi is the actual value, N is the number of observations

in the dataset, and the sum is taken over all observations.

3. Results and Discussion

Regression analysis was used to determine the best data fit model among the models
listed above that could provide a quantitative understanding of the underlying mechanisms
that influence the flotation process. The residual study, a statistical method used to assess
the accuracy of the models, was used to evaluate the goodness of fit of the models.
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3.1. Experimental Results

Table 4 provides the recovery percentages of the three elements—Pt, Pd, and Au—at
different stages of flotation using different combinations of collector, frother, and depressant.
Table 4 focuses on the cumulative recovery percentage. For example, at 4 min (1+3 min),
the recovery data are collected from both rougher concentrate 1 (collected after 1 min) and
rougher concentrate 2 (collected after 3 min). Recovery is defined as the percentage of
the valuable elements present in the ore that is recovered to the concentrate product. The
outcomes indicate that the overall Pt recovery remains stable under diverse test conditions,
whereas the recovery percentages for Pd are impacted by variations in reagent dosages.
The optimal Pd recovery of 86.27% is achieved under the experimental parameters of 30 g/t
collector, 30 g/t frother, and 300 g/t depressant.

Table 4. Impact of collector, frother, and depressant concentrations on the flotation performance
of Platreef ore with cumulative times of 1, 4, 11, 31, and total of 40 min for the tests from RC1 to
RC1+2+3+4+5, respectively.

Cumulative Platinum % Palladium % 2E + Au %

Collector 120 g/t, frother 50 g/t, and depressant 300 g/t

RC1 55.44 52.28 52.13
RC1+RC2 72.63 68.64 68.37

RC1+RC2+RC3 78.45 75.48 74.56
RC1+RC2+RC3+RC4 83.57 80.99 79.74

RC1+RC2+RC3+RC4+RC5 86.96 84.64 83.16

Collector 30g/t, frother 50 g/t, and depressant 300 g/t

RC1 56.69 53.57 56.01
RC1+RC2 72.76 69.70 71.39

RC1+RC2+RC3 78.96 76.54 77.68
RC1+RC2+RC3+RC4 84.59 82.05 83.06

RC1+RC2+RC3+RC4+RC5 86.84 84.62 85.45

Collector 120 g/t, frother 30 g/t, and depressant 300 g/t

RC1 67.65 56.50 62.16
RC1+RC2 77.40 69.43 73.21

RC1+RC2+RC3 80.89 75.06 77.71
RC1+RC2+RC3+RC4 84.38 79.39 81.57

RC1+RC2+RC3+RC4+RC5 86.81 82.43 84.29

Collector 120 g/t, frother 50 g/t, and depressant 500 g/t

RC1 60.87 46.23 53.21
RC1+RC2 74.45 63.27 68.35

RC1+RC2+RC3 79.55 70.57 74.48
RC1+RC2+RC3+RC4 83.88 77.53 80.10

RC1+RC2+RC3+RC4+RC5 86.72 81.92 83.71

Collector 30 g/t, frother 30 g/t, and depressant 300 g/t

RC1 64.32 57.03 60.32
RC1+RC2 73.98 70.40 72.01

RC1+RC2+RC3 79.51 76.99 78.12
RC1+RC2+RC3+RC4 83.71 82.47 83.03

RC1+RC2+RC3+RC4+RC5 86.63 86.27 86.43

As expected, the results reveal that the selection of collector, frother, and depressant
can significantly impact the recovery of the valuable elements. This is likely due to better
selectivity achieved at the lower collector concentration. The higher dosage of SIBX is more
applicable to UG2; compared with Platreef, UG2 ore may require a slightly higher dosage
due to the limited floatability of valuable mineral species in combination with a co-collector
such as dithiophosphate [19]. In contrast, the Platreef ore’s complex composition may
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contain Pd minerals with a high affinity for collectors, allowing for effective flotation at
lower dosages. To address the issue of higher gangue recovery, many operations have opted
to utilise higher concentrations of depressants [48]. However, increasing the depressant
concentration from 300 g/t to 500 g/t with the same collector and frother dosage resulted
in a decrease in recovery for Pd, likely due to the excessive use of depressant, leading to
hindered collector attachment and froth destabilisation. In this context, the disparities in Pt
concentrations are insignificant.

3.2. Kinetic Model

Figure 3 presents recovery percentages of Pt and Pd at various flotation stages, using
different combinations of collector, frother, and depressant. Appendix A contains extra
model results for 2E+Au. The results reveal distinct variations in the floatability of these
PGEs. Among the models employed, the modified Kelsall model exhibited remarkable
performance, demonstrating high Rmax values and yielding excellent R2 and low RMSE
values (Table 5). The recovery percentages on the graphs have been adjusted to enhance
visibility within the range of 45–85%, and the graphs commence from an initial recovery of
zero at time zero. This suggests that the modified Kelsall model accurately captured the
flotation kinetics and proved effective in predicting the floatability of Pt and Pd. Notably,
Pt demonstrated favourable floatability, as indicated by its high Rmax value and the model’s
robust fit. Pd exhibited slightly lower Rmax values but still demonstrated good flotation
response according to the model.

Table 5. Modified Kelsall model for PGE recovery.

Modified
Kelsall Rmax Rfast

kfast
min−1

kslow
min−1 R2 RMSE

Collector 120 g/t, frother 50 g/, and depressant 300 g/t

Pt 0.888 0.700 1.52 0.050 0.99822 0.006
Pd 0.856 0.646 1.561 0.060 0.99758 0.005
2E+Au 0.844 0.649 1.543 0.056 0.99787, 0.005

Collector 30 g/t, frother 50 g/t, and depressant 300 g/t

Pt 0.874 0.683 1.668 0.071 0.99935 0.002
Pd 0.849 0.646 1.6411 0.077 0.99886 0.002
2E+Au 0.859 0.668 1.706 0.073 0.99910 0.001

Collector 120 g/t, frother 30 g/t, and depressant 300 g/t

Pt 0.895 0.758 2.170 0.037 0.99900 0.001
Pd 0.829 0.659 1.841 0.063 0.99785 0.002
2E+Au 0.855 0.708 2.025 0.051 0.99842 0.001

Collector 120 g/t, frother 50 g/t, and depressant 500 g/t

Pt 0.877 0.715 1.827 0.056 0.99846 0.002
Pd 0.859 0.651 1.618 0.049 0.99741 0.011
2E+Au 0.859 0.651 1.618 0.049 0.99790 0.005

Collector 30 g/t, frother 30 g/t, and depressant 300 g/t

Pt 0.870 0.704 2.293 0.066 0.99796 0.000
Pd 0.876 0.666 1.826 0.056 0.99730 0.002
2E+Au 0.873 0.683 2.018 0.060 0.99758 0.001
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Figure 3. PGEs recovery data fit results for Pt and Pd, using different combinations of collector,
frother, and depressant.
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Experimental data; --- classic model; --- Klimpel model; --- second order,
--- second-order Klimpel; --- Kelsall; and --- modified Kelsall.
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3.3. Model Extrapolation Performance

Table 5 presents parameters and statistics for the modified Kelsall model under dif-
ferent reagent conditions. Additional model results are provided in Appendix A. The
modified Kelsall model’s high Rmax values for Pt, Pd, and 2E+Au suggest efficient recovery
due to favourable floatability. It effectively captures flotation kinetics, offering insights into
particle attachment and detachment. The modified Kelsall model demonstrates accuracy in
predicting Pt, Pd, and 2E+Au flotation in Platreef ore with strong correlations (R2) and low
RMSE values. The Rfast for Pt exhibits the highest floatability, followed by 2E+Au and Pd.
Pd-bearing minerals are found to be more oxidised than Pt-bearing minerals, which could
be a contributing factor since they offer fewer active sites for collector adsorption [49].

Based on Ramlall, the flotation for 2E+Au in the UG2 deposit involved the use of
SIBX as collector at 150 g/t, KU5 as frother at 30 g/t, and dowfroth 200 as depressant
at 20 g/t [31,47]. The high value of Rmax (88.26%) suggests efficient flotation recovery,
indicating the successful separation of the valuable 2E+Au. In the flotation tests for Platreef
ore, different reagents were utilised compared to UG2, including different combinations
of collector, frother, and depressant. The highest achieved recovery (Rmax) of 87.60% in
Platreef ore was observed for 2E+Au under the optimal variable conditions, including
collector at 30 g/t, frother at 30 g/t, and depressant at 300 g/t. The flotation testing results
for 2E+Au in UG2 and Platreef indicate successful separation of the valuable minerals
using various reagent combinations.

Irrespective of different reagents and dosages in the tests, for Platreef ore, Rmax was
determined as 0.873, comprising 0.68 Rfast and 0.19 Rslow. In contrast, UG2 ore demonstrated
a higher Rmax of 0.8826, divided into 0.62 Rfast and 0.26 Rslow [31,47]. UG2 ore demonstrated
a slightly higher overall recovery compared with Platreef ore. Moreover, Platreef ore
exhibited a higher proportion of fast-floating particles, while UG2 ore demonstrated a
larger fraction of slow-floating species.

For the Platreef ore, the rate constant values for 2E+Au at the optimum condition of
collector 30 g/t, frother 30 g/t and depressant 300 g/t are calculated as kfast = 2.02 min−1

and kslow = 0.06 min−1. In contrast, the UG2 ore demonstrates higher rate constant values,
with kfast = 2.26 min−1 and kslow = 0.13 min−1. Platreef ore exhibits a comparatively lower
kfast, indicating a slower initial attachment of particles to bubbles. Conversely, UG2’s
higher kfast points to a swifter initial particle–bubble interaction. The variance in kslow
values mirrors a similar trend: Platreef ore presents a relatively lower rate of slow flotation
compared to UG2, which is affected by the differences in the mineralogy of the two ores as
mentioned in the introduction.

The study on recovering Pt, Pd, and 2E+Au from Platreef ore has identified the
modified Kelsall model as the most fitting model for the system, among others tested.
The modified Kelsall model’s superior performance is attributed to its ability to capture
the nuances of the flotation process through its incorporation of two rate constants, kfast
and kslow, which describe the flotation behaviour of two distinct fast and slow floating
populations. The model’s success is also due to its balance between accuracy and complexity.
Despite its increased complexity compared to alternative models, the modified Kelsall
model remains interpretable and practical, making it an ideal tool for both understanding
the flotation of Platreef ore and optimising process conditions. Moreover, the model’s
capacity to handle changes in reagent conditions tested for Platreef ore more effectively
than other models likely contributes to its enhanced accuracy in representing the flotation
process. Generally, higher k values suggest faster flotation kinetics. In this case, the k values
for the three elements are relatively consistent across the different tests, indicating that the
flotation kinetics are not significantly affected by the changes in reagent dosages.

Table 6 lists three empirical correlations based on the modified Kelsall model to pre-
dict the flotation of individual PGEs/PGE groupings from Platreef ore for the frother,
collector and depressant dosages in the ranges of 30–50, 30–120, and 300–500 g/t, respec-
tively. Figure 4 depicts the recovery data fit results of modified Kelsall for Pt under all
the conditions tested. In the case of the Platreef ore, a depressant dosage of 300 g/t of
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Sendep suppresses gangue minerals with stronger flotation tendencies. An elevated dosage
improves inhibition, thereby enhancing selectivity for valuable minerals.

Table 6. Empirical correlation based on modified Kelsall model to predict the flotation of individual
PGEs/PGE groups from Platreef ore for the collector, frother, and depressant dosage ranges of 30–120,
30–50, and 300–500 g/t.

PGEs Model

Pt R = 0.71
(
1− e−1.86t)+ 0.17

(
1− e−0.06t)

Pd R = 0.64
(
1− e−1.65t)+ 0.21

(
1− e−0.06t)

2E+Au R = 0.67
(
1− e−1.77t)+ 0.18

(
1− e−0.06t)
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PGEs/PGE groups from Platreef ore for the collector, frother, and depressant dosage ranges of 30–
120, 30–50, and 300–500 g/t. 

PGEs Model 
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Figure 4. Recovery data fit results of Pt for all the conditions tested. ___ modified Kelsall; depressant,
collector, and frother concentrations of � 300, 120, and 50; # 300, 30, and 50; � 300, 50, and 30; × 500,
120, and 50; and + 300, 120, and 50.

The ability of the modified Kelsall model to accurately describe the data as per findings
here suggests that it is an appropriate model for predicting metal recovery from Platreef
ore under different reagent dosage conditions. Moreover, the residual analysis of the data
demonstrated that the modified Kelsall model fitted in this study was able to extrapolate
results beyond the range of the data used to fit the model, while the precision of predictions
requires further consideration. While the model’s predictions consistently approximate
the true value, an asymmetrical distribution of error values and deviation from the mean
indicates a lack of precision in predictions.

Figure 5 depicts the scatter of residuals as red rings, which provide a one-sided
representation of the deviation from the precision of the data fit model in relation to
experimental results. The relatively small error figures suggest that a single correlated
modified Kelsall model is highly accurate overall. However, this finding implies that the
model may not be able to make precise predictions for extended flotation tests, which can
be a critical aspect of mineral processing optimisation.

Figures 6–9 showcase the recovery and residuals for Pd and 2E+Au species. Despite
the observed deviations for Pt (see Figure 3), the modified Kelsall model has exhibited
superior performance in these instances, with the residuals scattering randomly around
both sides of the coordinates.
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Figure 5. Residual study of modified Kelsall model for Pt recovery in five different tests. # Discrep-
ancies associated with each data point when compared to experimental measurements.
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Figure 6. Recovery data fit results of Pd for all the tested conditions: __ modified Kelsall; depressant,
collector, and frother concentrations of � 300, 120, and 50; # 300, 30, and 50; � 300, 50, and 30; × 500,
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Figure 7. Residual study of modified Kelsall model Pd recovery in five different tests. # Discrepancies
associated with each data point when compared to experimental measurements.
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Figure 8. Recovery data fit results of 2E+Au for all the tested conditions: __ modified Kelsall;
depressant, collector, and frother concentrations of � 300, 120, and 50; # 300, 30, and 50; � 300, 50,
and 30; × 500, 120, and 50; and + 300, 120, and 50.
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Figure 9. Residual study of modified Kelsall model 2E+Au recovery in five different tests.
# Discrepancies associated with each data point when compared to experimental measurements.

4. Conclusions

Experimental data were generated for the flotation of Platreef ore using various
depressant, frother, and collector dosages at a controlled agitation rate, and the recoveries of
individual PGE (Pt, Pd, 2E+Au) have been analysed using six different kinetic models. The
modified Kelsall model was found to be the most suitable model for accurately describing
the kinetics of the flotation process and predicting metal recovery under different reagent
dosage conditions. The model’s ability to account for the distinct flotation behaviours of
two distinct PGE, viz., Pt and Pd, as well as 2E+Au, through the incorporation of two rate
constants, kfast and kslow, is a significant advantage in modelling the complex Platreef ore
flotation system. The findings suggest that Pt has the fastest floatability, followed by Pd
and 2E+Au. Pd minerals, with higher oxidation levels, may have fewer active adsorption
sites, possibly accounting for the collector adsorption difference compared to Pt minerals.

The modified Kelsall model is a highly effective method among models studied for pre-
dicting the recovery of Pt, Pd, and 2E+Au from Platreef ore through flotation. The residual
analysis approach enabled the refinement of the model and increased confidence in its abil-
ity to accurately predict data outside the range of the training data. Three empirical correla-
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tions following the modified Kelsall model were proposed for Pt, Pd, and 2E+Au recoveries,
making this a novel advancement for Platreef ore flotation performance prediction.
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Appendix A

The test conditions are summarised in Table A1 and represented in Figures A1–A5.

Table A1. Experimental flotation tests on the Platreef samples with different reagent dosing.

Test
No. Depressant 1 Collector 1 Frother 1 Mixer Rate 2 pH Representation

1 300 120 50

1200 (all tests) 9 (all tests)

Figure A1
2 300 30 50 Figure A2
3 300 120 30 Figure A3
4 500 30 50 Figure A4
5 500 30 30 Figure A5

1 Reagent concentration in g/t. 2 Mixer rate in rpm.
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Figure A1. PGE recovery data fit results 2E+Au with depressant, collector, and frother concentrations
of 300, 120, and 50 g/t, respectively.
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Experimental data; --- classic model; --- Klimpel model; ---
second order, --- second-order Klimpel; --- Kelsall; and --- modified Kelsall.
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Figure A2. Recovery data fit results 2E+Au with depressant, collector, and frother concentrations of
300, 50, and 30 g/t, respectively.
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Experimental data; --- classic model; --- Klimpel model; --- second
order, --- second-order Klimpel; --- Kelsall; and --- modified Kelsall.
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Figure A3. Recovery data fit results 2E+Au with depressant, collector, and frother concentrations
of 300, 120, and 30 g/t, respectively.
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Experimental data; --- classic model; --- Klimpel model;
--- second order, --- second-order Klimpel; --- Kelsall; and --- modified Kelsall.

Minerals 2023, 13, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure A3. Recovery data fit results 2E+Au with depressant, collector, and frother concentrations of 
300, 120, and 30 g/t, respectively.  Experimental data; --- classic model; --- Klimpel model; --- sec-
ond order, --- second-order Klimpel; --- Kelsall; and --- modified Kelsall. 

 
Figure A4. Recovery data fit results 2E+Au with depressant, collector, and frother concentrations of 
500, 120, and 50 g/t, respectively.  Experimental data; --- classic model; --- Klimpel model; --- sec-
ond order, --- second-order Klimpel; --- Kelsall; and --- modified Kelsall. 

 
Figure A5. Recovery data fit results 2E+Au with depressant, collector, and frother concentrations of 
300, 30, and 30 g/t, respectively.  Experimental data; --- classic model; --- Klimpel model; --- sec-
ond order, --- second-order Klimpel; --- Kelsall; and --- modified Kelsall. 

45

55

65

75

85

0 10 20 30 40

Re
co

ve
ry

 %

Time / min

45

55

65

75

85

0 10 20 30 40

Re
co

ve
ry

 %

Time / min

45

55

65

75

85

0 10 20 30 40

Re
co

ve
ry

 %

Time / min

Figure A4. Recovery data fit results 2E+Au with depressant, collector, and frother concentrations
of 500, 120, and 50 g/t, respectively.
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Experimental data; --- classic model; --- Klimpel model;
--- second order, --- second-order Klimpel; --- Kelsall; and --- modified Kelsall.
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Table A2 presents PGE recovery data fit results of Pt, Pd, and 2E+Au with depressant,
collector, and frother concentrations of 300, 120, and 50 g/t, respectively. The analysis
of various flotation models for Pt, Pd, and 2E+Au in Platreef ore for this experimental
condition reveals that the modified Kelsall model performs exceptionally well in predicting
the flotation behaviour of these PGEs. The model exhibits high Rmax values for Pt, Pd, and
2E+Au, indicating their favourable floatability and potential for efficient recovery. The
model’s ability to capture the kinetics of flotation, including fast and slow flotation rate
constants, provides valuable insights into the attachment and detachment processes of
PGM particles during flotation. With high correlation coefficients (R2) and low root mean
square error (RMSE) values, the modified Kelsall model (parameterised for this work)
demonstrates its accuracy and reliability in predicting the flotation performance of Pt, Pd,
and 2E+Au in Platreef ore. Overall, Pt demonstrates the highest floatability, followed by Pd
and 2E+Au.

Table A3 presents recovery data fit results of Pt, Pd, and 2E+Au with depressant,
collector, and frother concentrations of 30, 50, and 300 g/t, respectively. The results reveal
distinct variations in the floatability of these PGEs. Among the models employed, the
modified Kelsall model exhibited remarkable performance, demonstrating high Rmax values
and yielding excellent R2 and low RMSE values. This suggests that the modified Kelsall
model accurately captured the flotation kinetics and proved effective in predicting the
floatability of Pt, Pd, and 2E+Au. Notably, Pt demonstrated favourable floatability, as
indicated by its high Rmax value and the model’s robust fit. Pd exhibited slightly lower Rmax
values but still demonstrated good flotation response according to the model. On the other
hand, 2E+Au displayed lower Rmax values compared to Pt and Pd, indicating relatively
lower floatability for this PGE group.

Table A4 presents PGE recovery data fit results of Pt, Pd, and 2E+Au with depressant,
collector, and frother concentrations of 120, 30, and 300 g/t, respectively. Among the models
employed, the modified Kelsall model exhibited excellent performance, with high Rmax
values, strong R2, and low RMSE values. This indicates the model’s ability to accurately
describe the flotation kinetics of Pt, Pd, and 2E+Au under condition 3. Notably, Pt displayed
favourable floatability, as evidenced by its high Rmax value and the robust fit obtained from
the model. Pd exhibited slightly lower Rmax values but still demonstrated good flotation
response according to the model. In contrast, 2E+Au exhibited relatively lower Rmax
values compared to Pt and Pd, indicating reduced floatability for this PGE grouping under
condition 3.
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Table A2. PGE recovery data fit results (a) Pt, (b) Pd, and (c) 2E+Au with collector, frother, and
depressant concentrations of 120, 50, and 300g/t, respectively.

Pt

Classic Rmax = 0.808, k = 1.119 min−1, R2 = 0.92580, RMSE = 0.414
Klimpel Rmax = 0.839, k = 2.619 min−1, R2 = 0.97588, RMSE = 0.509
Second order Rmax = 0.850, k = 2.077 min−1, R2 = 0.98560, RMSE = 0.473
Second-order Klimpel Rmax = 0.870, k = 4.686 min−1, R2 = 0.99281, RMSE = 0.275
Kelsall Rfast = 0.717, kfast = 1.448 min−1, kslow = 0.019 min−1, R2 = 0.99758, RMSE = 0.020
Modified Kelsall Rmax = 0.888, Rfast = 0.70, kfast = 1.52 min−1, kslow = 0.05 min−1, R2 = 0.99822, RMSE = 0.006

Pd

Classic Rmax = 0.780, k = 1.058 min−1, R2 = 0.90703, RMSE = 0.560
Klimpel Rmax = 0.811, k = 2.427 min−1, R2 = 0.96647, RMSE = 0.664
Second order Rmax = 0.824, k = 1.939 min−1, R2 = 0.97979, RMSE = 0.650
Second-order Klimpel Rmax = 0.846, k = 4.153 min−1, R2 = 0.98972, RMSE = 0.452
Kelsall Rfast = 0.678, kfast = 1.434 min−1, kslow = 0.018 min−1, R2 = 0.99614, RMSE = 0.027
Modified Kelsall Rmax = 0.856, Rfast = 0.646, kfast = 1.561 min−1, kslow = 0.060 min−1, R2 = 0.99758, RMSE = 0.005

2E+Au

Classic Rmax = 0.769, k = 1.086 min−1, R2 = 0.91573, RMSE = 0.474
Klimpel Rmax = 0.799, k = 2.514 min−1, R2 = 0.97094, RMSE = 0.574
Second order Rmax = 0.811, k = 2.063 min−1, R2 = 0.98258, RMSE = 0.552
Second-order Klimpel Rmax = 0.832, k = 4.389 min−1, R2 = 0.99127, RMSE = 0.360
Kelsall Rfast = 0.677, kfast = 1.434 min−1, kslow = 0.016 min−1, R2 = 0.99669, RMSE = 0.025
Modified Kelsall Rmax = 0.844, Rfast = 0.649, kfast = 1.543 min−1, kslow = 0.056 min−1, R2 = 0.99787, RMSE = 0.005

Table A3. PGE recovery data fit results (a) Pt, (b) Pd, and (c) 2E+Au with collector, frother, and
depressant concentrations of 30, 50, and 300 g/t, respectively.

Pt

Classic Rmax = 0.812, k = 1.162 min−1, R2 = 0.92237, RMSE = 0.382
Klimpel Rmax = 0.859, k = 2.757 min−1, R2 = 0.97779, RMSE = 0.00
Second order Rmax = 0.853, k = 2.171 min−1, R2 = 0.98509, RMSE = 0.543
Second-order Klimpel Rmax = 0.872, k = 4.94 5 min−1, R2 = 0.99336, RMSE = 0.366
Kelsall Rfast = 0.719, kfast = 1.514 min−1, kslow = 0.0197 min−1, R2 = 0.99719, RMSE = 0.020
Modified Kelsall Rmax = 0.874, Rfast = 0.683, kfast = 1.668 min−1, kslow = 0.071 min−1, R2 = 0.99935, RMSE = 0.002

Pd

Classic Rmax = 0.787, k = 1.095 min−1, R2 = 0.91489, RMSE = 0.4490
Klimpel Rmax = 0.819, k = 2.70 min−1, R2 = 0.97530, RMSE = 0.00
Second order Rmax = 0.830, k = 2.033 min−1, R2 = 0.98381, RMSE = 0.601
Second-order Klimpel Rmax = 0.851, k = 4.431 min−1, R2 = 0.99285, RMSE = 0.408
Kelsall Rfast = 0.691, kfast = 1.453 min−1, kslow = 0.018 min−1, R2 = 0.99591, RMSE = 0.028
Modified Kelsall Rmax = 0.849, Rfast = 0.646, kfast = 1.6411 min−1, kslow = 0.077 min−1, R2 = 0.99886, RMSE = 0.002

2E+Au

Classic Rmax = 0.798, k = 1.174 min−1, R2 = 0.91997, RMSE = 0.368
Klimpel Rmax = 0.827, k = 2.767 min−1, R2 = 0.97316, RMSE = 0.552
Second order Rmax = 0.838, k = 2.238 min−1, R2 = 0.98393, RMSE = 0.561
Second-order Klimpel Rmax = 0.857, k = 5.016 min−1, R2 = 0.99264, RMSE = 0.394
Kelsall Rfast = 0.707, kfast = 1.532 min−1, kslow = 0.018 min−1, R2 = 0.99664, RMSE = 0.020
Modified Kelsall Rmax = 0.859, Rfast = 0.668, kfast = 1.706 min−1, kslow = 0.073 min−1, R2 = 0.99910, RMSE = 0.001
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Table A4. PGE recovery data fit results (a) Pt, (b) Pd, and (c) 2E+Au with collector, frother, and
depressant concentrations of 120, 30, and 300 g/t, respectively.

Model Parameters

Pt

Classic Rmax = 0.824, k = 1.712 min−1, R2 = 0.95475, RMSE = 0.047
Klimpel Rmax = 0.990, k = 3.00 min−1, R2 = 0.98522, RMSE = 0.00
Second order Rmax = 0.847, k = 4.403 min−1, R2 = 0.98621, RMSE = 0.342
Second-order Klimpel Rmax = 0.858, k = 4.686 min−1, R2 = 0.99161, RMSE =0.296
Kelsall Rfast = 0.767, kfast = 2.101 min−1, kslow = 0.014 min−1, R2 = 0.99879, RMSE = 0.002
Modified Kelsall Rmax = 0.895, Rfast = 0.758, kfast = 2.170 min−1, kslow = 0.037 min−1, R2 = 0.99900, RMSE = 0.001

Pd

Classic Rmax = 0.768, k = 1.304 min−1, R2 = 0.92176, RMSE = 0.227
Klimpel Rmax = 0.794, k = 3.161 min−1, R2 = 0.97113, RMSE = 0.485
Second order Rmax = 0.802, k = 2.752 min−1, R2 = 0.98062, RMSE = 0.528
Second-order Klimpel Rmax = 0.819, k = 6.074 min−1, R2 = 0.98958, RMSE = 0.413
Kelsall Rfast = 0.689, kfast = 1.677 min−1, kslow = 0.014 min−1, R2 = 0.99624, RMSE = 0.012
Modified Kelsall Rmax = 0.829, Rfast = 0.659, kfast = 1.841 min−1, kslow = 0.063 min−1, R2 = 0.99785, RMSE = 0.002

2E+Au

Classic Rmax = 0.793, k = 1.518 min−1, R2 = 0.93867, RMSE = 0.101
Klimpel Rmax = 0.941, k = 2.759 min−1, R2 = 0.97315, RMSE = 0.006
Second order Rmax = 0.821, k = 3.548 min−1, R2 = 0.98561, RMSE = 0.431
Second-order Klimpel Rmax = 0.834, k = 8.474 min−1, R2 = 0.99007, RMSE = 0.361
Kelsall Rfast = 0.726, kfast = 1.902 min−1, kslow = 0.014 min−1, R2 = 0.99768, RMSE = 0.005

Modified Kelsall Rmax = 0.855, Rfast = 0.708, kfast = 2.025 min−1, kslow = 0.051 min−1, R2 = 0.99842, RMSE = 0.001

Table A5 presents recovery data fit results of Pt, Pd, and 2E+Au with depressant, col-
lector, and frother concentrations of 120, 50, and 500 g/t, respectively. Among the models
applied, the modified Kelsall model demonstrated superior performance, exhibiting high
Rmax values, strong R2, and low RMSE values. This indicates the model’s effectiveness in
describing the flotation kinetics of Pt, Pd, and 2E+Au under this test condition. Notably,
Pt displayed favourable floatability, as evidenced by its high Rmax value and the excellent
fit obtained from the model. Pd exhibited slightly lower Rmax values but still exhibited
satisfactory flotation response according to the model. In contrast, 2E+Au exhibited rela-
tively lower Rmax values compared to Pt and Pd, suggesting reduced floatability for this
PGE grouping.

Table A6 presents recovery data fit results of Pt, Pd, and 2E+Au with depressant,
collector, and frother concentrations of 120, 50, and 500 g/t, respectively. Among the models
applied, the modified Kelsall model exhibited excellent performance, demonstrating high
Rmax values, strong R2, and low RMSE values. This indicates the effectiveness of the
model in describing the flotation kinetics of Pt, Pd, and 2E+Au. Pt displayed favourable
floatability, as evidenced by its high Rmax value and the excellent fit obtained from the
model. Pd exhibited slightly lower Rmax values but still demonstrated satisfactory flotation
response according to the model. 2E+Au exhibited relatively lower Rmax values compared
to Pt and Pd, indicating its reduced floatability.
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Table A5. PGE recovery data fit results of (a) Pt, (b) Pd, and (c) 2E+Au with collector, frother, and
depressant concentrations of 120, 50, and 500 g/t, respectively.

Pt

Classic Rmax = 0.813, k = 1.359 min−1, R2 = 0.93434, RMSE = 0.181
Klimpel Rmax = 0.839, k = 3.369 min−1, R2 = 0.97721, RMSE = 0.421
Second order Rmax = 0.847, k = 2.834 min−1, R2 = 0.98469, RMSE = 0.450
Second-order Klimpel Rmax = 0.863, k = 6.731 min−1, R2 = 0.99200, RMSE = 0.333
Kelsall Rfast = 0.737, kfast = 1.712 min−1, kslow = 0.017 min−1, R2 = 0.99756, RMSE = 0.009
Modified Kelsall Rmax = 0.877, Rfast = 0.715, kfast = 1.827 min−1, kslow = 0.056 min−1, R2 = 0.99846, RMSE = 0.002

Pd

Classic Rmax = 0.771, k = 1.129 min−1, R2 = 0.88364, RMSE = 1.010
Klimpel Rmax = 0.801, k = 2.614 min−1, R2 = 0.95269, RMSE = 0.912
Second order Rmax = 0.812, k = 2.148 min−1, R2 = 0.97116, RMSE = 0.859
Second-order Klimpel Rmax = 0.832, k = 4.592 min−1, R2 = 0.98391, RMSE = 0.618
Kelsall Rfast = 0.673, kfast = 1.520 min−1, kslow = 0.017 min−1, R2 = 0.99664, RMSE = 0.035
Modified Kelsall Rmax = 0.859, Rfast = 0.651, kfast = 1.618 min−1, kslow = 0.049 min−1, R2 = 0.99741, RMSE = 0.011

2E+Au

Classic Rmax = 0.771, k = 1.129 min−1, R2 = 0.90524, RMSE = 0.436
Klimpel Rmax = 0.801, k = 2.614 min−1, R2 = 0.96364, RMSE = 0.625
Second order Rmax = 0.812, k = 2.148 min−1, R2 = 0.97652, RMSE = 0.646
Second-order Klimpel Rmax = 0.832, k = 4.592 min−1, R2 = 0.98711, RMSE = 0.483
Kelsall Rfast = 0.673, kfast = 1.520 min−1, kslow = 0.017 min−1, R2 = 0.99702, RMSE = 0.017
Modified Kelsall Rmax = 0.859, Rfast = 0.651, kfast = 1.618 min−1, kslow = 0.049 min−1, R2 = 0.99790, RMSE = 0.005

Table A6. PGE recovery data fit results of (a) Pt, (b) Pd, and (c) 2E+Au with collector, frother, and
depressant concentrations of 30, 30, and 300 g/t, respectively.

Pt

Classic Rmax = 0.810, k = 1.563 min−1, R2 = 0.92304, RMSE = 0.104
Klimpel Rmax = 0.833, k = 4.058 min−1, R2 = 0.96640, RMSE = 0.487
Second order Rmax = 0.839, k = 3.560 min−1, R2 = 0.97401, RMSE = 0.583
Second-order Klimpel Rmax = 0.853, k = 8.671 min−1, R2 = 0.98363, RMSE = 0.546
Kelsall Rfast = 0.733, kfast = 2.051 min−1, kslow = 0.017 min−1, R2 = 0.99641, RMSE = 0.004
Modified Kelsall Rmax = 0.870, Rfast = 0.704, kfast = 2.293 min−1, kslow = 0.066 min−1, R2 = 0.99796, RMSE = 0.00

Pd

Classic Rmax = 0.793, k = 1.232 min−1, R2 = 0.89751, RMSE = 0.339
Klimpel Rmax = 0.822, k = 2.895 min−1, R2 = 0.95712, RMSE = 0.662
Second order Rmax = 0.833, k = 2.358 min−1, R2 = 0.97028, RMSE = 0.741
Second-order Klimpel Rmax = 0.852, k = 6.527 min−1, R2 = 0.98247, RMSE = 0.623
Kelsall Rfast = 0.692, kfast = 1.684 min−1, kslow = 0.020 min−1, R2 = 0.99615, RMSE = 0.012
Modified Kelsall Rmax = 0.876, Rfast = 0.666, kfast = 1.826 min−1, kslow = 0.056 min−1, R2 = 0.99730, RMSE = 0.002

2E+Au

Classic Rmax = 0.801, k = 1.374 min−1, R2 = 0.90802, RMSE = 0.205
Klimpel Rmax = 0.827, k = 3.355 min−1, R2 = 0.96085, RMSE = 0.576
Second order Rmax = 0.836, k = 2.821 min−1, R2 = 0.97148, RMSE = 0.670
Second-order Klimpel Rmax = 0.852, k = 6.526 min−1, R2 = 0.98271, RMSE = 0.593
Kelsall Rfast = 0.711, kfast = 1.839 min−1, kslow = 0.019 min−1, R2 = 0.99623, RMSE = 0.007
Modified Kelsall Rmax = 0.873, Rfast = 0.683, kfast = 2.018 min−1, kslow = 0.060 min−1, R2 = 0.99758, RMSE = 0.001
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Abstract: The operation of a froth flotation column can be described by a nonlinear
convection–diffusion partial differential equation that incorporates the solids–flux and drift–flux
theories as well as a model of foam drainage. The resulting model predicts the bubble and (gangue)
particle volume fractions as functions of height and time. The steady-state (time-independent) ver-
sion of the model defines so-called operating charts that map conditions on the gas and pulp feed
rates that allow for operation with a stationary froth layer. Operating charts for a suitably adapted
version of the model are compared with experimental results obtained with a laboratory flotation
column. Experiments were conducted with a two-phase liquid–bubble flow. The results indicate good
agreement between the predicted and measured conditions for steady states. Numerical simulations
for transient operation, in part for the addition of solid particles, are presented.

Keywords: froth flotation; drainage; drift flux; mathematical model; partial differential equation;
steady state; numerical simulation

1. Introduction

Froth flotation is the most important concentration operations in mineral processing
and is widely used for the recovery of valuable minerals from low-grade ores (cf. [1], ([2],
Chapter 12) or ([3], Part 7)). This unit operation is an important stage particularly for
copper mining in Chile. The flotation process selectively separates hydrophobic materials
(that are repelled by water) from hydrophilic (that would be attracted to water), where
both are suspended in a viscous fluid. It is well known that a flotation column works as
follows: gas is introduced close to the bottom and generates bubbles that rise through the
continuously injected pulp that contains the solid particles.

The hydrophobic particles (the valuable mineral particles) attach to the rising bubbles,
forming froth that is removed through a launder. The hydrophilic particles (slimes or
gangue) do not attach to bubbles but settle to the bottom (unless they are trapped in
the bulk upflow) and are removed continuously as flotation tailings. Close to the top,
additional wash water can be injected to assist with the rejection of entrained impurities
and to increase the froth stability [1,4,5]. This unit operation is particularly suitable for
processing low-grade ores, such as copper ores in Chilean deposits; however, this requires
huge amounts of process water.
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Since water is a scarce resource for most economic activity in Chile—in particular in the
desert areas where most mines are located—the improvement of the scientific understand-
ing of flotation processes and the development of suitable tools for the design, simulation
and control of flotation devices is of critical economical, ecological and societal importance.
This situation has motivated collaborative research between applied mathematicians and
metallurgical engineers at Universidad de Concepción.

Modelling flotation and developing strategies to control this process are research areas
that have generated many contributions [6–15]. The development of control strategies requires
dynamic models along with a classification of steady-state (stationary) solutions of such
models. These models should focus on the separation process aligned with gravity and are,
therefore, spatially one-dimensional. (In fact, we wish to avoid the additional computational
effort associated with spatially two- or three-dimensional models, mostly based on compu-
tational fluid dynamics (CFD) that also involve the solution of additional equations for the
motion of the mixture; we refer to [16] for a review on CFD-based models of flotation).

The sought unknowns are the volume fractions of gas (bubbles), liquid, and possibly
solid particles as functions of both time and spatial position, so that the resulting governing
equations are partial differential equations (PDEs). With the aim of developing controllers,
some authors [9–12] used hyperbolic systems of PDEs for the froth or pulp regions coupled
to ordinary differential equations (ODEs) for the lower part of the column. These include
the attachment and detachment processes; however, with their approaches, the phases
seem to have constant velocities, which is not in agreement with the established drift–
flux theory [17] that establishes that the velocity of a unit of the disperse phase (droplet,
bubble or particle) is a function of the local volume fraction (or concentration). Nonlinear
dependence of the phase velocities on the volume fractions gives rise to discontinuities in
the concentration profiles, which was confirmed experimentally [6].

Narsimhan [18] showed realistic conceptual transient solutions of an initially homoge-
neous bubble–liquid suspension. The rising bubbles form a layer of foam at the top, which
can undergo compressibility due to gravity and capillarity. Separate equations are derived
for the foam region, and boundary assumptions between regions have to be imposed.
The purpose of our previous contribution [19] (see also [20]), which is utilized herein in a
slightly modified form, is to let one single equation govern the bubble–liquid behaviour in
the whole column under any dynamic situation without any imposed boundary conditions.

Such are automatically assumed by the PDE solutions, which satisfy the so-called
entropy conditions by definitions of the PDE coefficients that are discontinuous across the
feed, discharge and overflow levels of height. When solids are also fed into the column,
an additional equation modelling the settling of solids outside the bubbles is needed—still
without any imposed boundary conditions.

Phenomenological models for two-phase systems with bubbles rising (or, analogously,
particles settling) in a liquid, are derived from the physical laws of conservation of mass
and momentum [21,22]. Under certain simplifying assumptions on the stress tensor and
partial pressure of the bubbles/solids, one can obtain first- or second-order PDEs involving
one or two constitutive (material specific) functions, respectively. The resulting first-order
PDE modelling such a separation process in a one-dimensional column of rising bubbles is
a scalar conservation law

∂tφ + ∂z jb(φ) = 0, (1)

where t is time, z is a spatial position (height), φ = φ(z, t) is the sought volume fraction of
bubbles, and

jb(φ) := φṽ(φ) (2)

is the bubble (aggregate) batch flux density function, where ṽ(φ) is a given drift–flux veloc-
ity function. The formulations (1) and (2) are in agreement with the drift–flux theory [17].
With additional bulk flows due to the inlets and outlets of the column, that theory has
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mostly been used for investigations of steady states of flotation columns [5,23–26]. Models
of and numerical schemes for column froth flotation with the drift–flux assumption and
possibly simultaneous sedimentation have been presented in [27–30].

The analogy of the drift–flux theory for sedimentation is the established solids–flux
theory [17,31–33]. With an additional constitutive assumption on sediment compressibility,
the corresponding model becomes a second-order degenerate parabolic PDE [21]. Sedimen-
tation in a clarifier–thickener unit is mathematically similar to column flotation. A full PDE
model of such a vessel necessarily contains source terms and spatial discontinuities at both
inlets and outlets. Steady-state analyses, numerical schemes, dynamic simulations and the
control of such models are reported in [32,34–37].

The first-order PDE of the flotation process advanced in [28] does not include capil-
larity in the foam. Such effects have been studied intensively [38–40]; see also [13]. Solids
motion in froth was investigated in [41]. A generalized model PDE that captures both
the rising bubbles of low concentrations and the formation and drainage of froth at high
concentration was recently presented in [19]. That article contains a generalized model
when settling particles are also present in a specific flotation column with a common feed
inlet for both pulp and gas.

In this contribution, we adjust the generalized drainage model to an experimental
laboratory flotation column with separate inlets for gas and mixture (Figure 1), derive the so-
called desired steady state (which has a foam layer in the upper part and no bubbles leaving
at the underflow) and find a single set of parameters in the model that qualitatively captures
several steady state experiments. The numerical simulations presented here are made with
the numerical method in [19] and adapted to the setup of the pilot column (Figure 1).
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Figure 1. Conceptual drawing of the model of the pilot flotation column: (left) denomination of
zones, (middle) height axis (z-axis) showing the locations of the feed and discharge levels and (right)
schematic of the column. The green open circles and solid magenta dots represent bubbles and
hydrophilic particles (bubbles and particles are not drawn to scale), respectively. The information
to the right indicates the overflow rate, volume feed rates and concentrations and the underflow
volume rate along with limitations that the feed concentrations must satisfy. The denomination of
zone 2 as a “collection zone” is common in mineral processing, although the process of collection (the
adhesion of hydrophobic particles to bubbles) is not part of the model.
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2. Materials and Methods
2.1. Pilot Flotation Column and Experimental Setup

The experiments were conducted at the laboratory of the Department of Metallur-
gical Engineering of Universidad de Concepción with a laboratory-scale flotation col-
umn; see Figure 2a. This column was made of acrylic to visualize the internal phe-
nomena that occur in both the collection and cleaning areas. The column had a vol-
ume of 54.7 L and an interior diameter of 6 inches so that its cross-sectional area was
A = (π/4)(0.1524 m)2 ≈ 0.0182415 m2 and was 2.8 m high (see Table 1).

The air was injected from the lower central part of the column through a sparger
whose pores were 1 mm in diameter. The locations of the inlets and outlets are detailed in
Figure 1. The column was instrumented as shown in Figure 2b. For the tests, the use of
solids was not considered, the only reagent to be used was a mix (1:1) of MIBC (methyl
isobutyl carbinol, an organic chemical compound used primarily as a frother in mineral
flotation) and polyglycol as a frother at a dosage of 100 g/L of water.

Table 1. Dimensions of the pilot flotation column.

Symbol Significance Value

zU underflow level 0 m
zG gas feed level 0.07 m
zF pulp feed level 2.20 m
zW wash water feed level 2.80 m
zE overflow level 2.80 m
A interior cross-sectional area 0.018241 m2

(a) (b)

Figure 2. (a) Photograph of the laboratory column and (b) schematic of the piping and instrumenta-
tion devices (P & ID). See Table 2 for explanation.
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Table 2. Legend of the P & ID schematic (Figure 2, right).

Instrument Tag Quantity Measured Connected to PLC?

Mass flowmeter transmitter FIT-01/02 feed/discharge flowrate yes
Mass flowmeter controller FIC-03 air flowrate yes
Magnetic flowmeter FT-01 wash water flowrate yes
Variable frequency drive SV-01/02/03 pump velocity yes
Differential pressure transmitter PT-01 holdup yes
Feed manual valve V-01 —— no
Discharge manual valve V-02 —— no
Air manual valve V-03 —— no
Pressure taps valve V-04 —— no
Wash water manual valve V-05 —— no

Equipment Tag Type Range/Dimensions and Unit

Feed pump P-01 centrifuge 20–110 L/min
Discharge pump P-02 peristaltic 0–18 L/min
Wash water pump P-03 peristaltic 0–12 L/min
Regulator filter with water decanter FLR manual 0–16 bar
Pulp tank T-01 plastic cylinder 200 L
Flotation column T-02 acrylic tube 55 L
Wash water tank T-03 plastic cylinder 200 L

2.2. Experimental Determination of Stability Regions

We performed five steady-state experiments; see Table 3. There are 36 data points
in the interval [0, 1.630] of the underflow velocity qU = QU/A. The resulting upper and
lower limits of qF within which a pulp–froth interface is present in zone 3 are presented in
Figures 3 and 4. The enclosed region between the two curves may be called the stability
region since, for values of (qU, qF) therein, a stable pulp–froth interface in zone 3 was
observed experimentally. On the other hand, for choices of (qU, qF), outside that region,
unstable operation was observed, which means that either no froth layer was produced
at all or that the froth layer reached into zone 2 and possibly that bubbles left through
the underflow.

A stable pulp–froth interface in zone 2 is a valid stationary solution (corresponding
to a mode of operation in which the pulp feed acts as a submerged feed source), but such
steady states are very difficult to control, and we, therefore, address them as “unstable
operation”. This procedure is consistent with the theoretical steady-state analysis of [19]
(see also Section 3.4) and in particular the construction of operating charts in which any
theoretical situation in which the froth level cannot be accommodated within zone 3 is
deemed “unstable,” independently of whether the parameters permit a froth layer within
zone 2 or not (i.e., bubbles leave through the underflow).

Table 3. Overview of the five steady-state experiments.

Experiment No. 1 2 3 4 5

φG [−] 1 1 1 1 1
φF [−] 0 0 0 0 0
qG [cm/s] 1.3 1.8 2.3 1.8 1.8
qW [cm/s] 0 0 0 0.3 0.5
qU [cm/s] [0, 1.630] [0, 1.630] [0, 1.630] [0, 1.630] [0, 1.630]
qF [cm/s] see Figure 3 see Figure 3 see Figure 3 see Figure 4 see Figure 4
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Figure 3. Experiments 1–3 (no wash water added): stability regions enclosed between two curves
formed by points in the (qU, qF) plane.
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Figure 4. Experiments 4 and 5 (with wash water added): stability regions enclosed between two
curves formed by points in the (qU, qF) plane.
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In order to ensure the reproducibility of the experiments, the tests were performed in
duplicate and randomly, and we report only the average values. The standard deviation of
the tests was less than 5%.

3. Theory
3.1. Mathematical Model

The governing model combines the setup with separated inlets for gas and the pulp
formulated in [27] with the approach of describing foam drainage developed in [19].
The model is formulated as a three-phase model formed of the gas bubbles and (hydrophilic
gangue) solid particles as primary and secondary disperse phases that move in the fluid
that forms the continuous phase.

The present experimental support refers to a two-phase flow model only, but for
illustrative purposes, we present one numerical simulation corresponding to a (hypothet-
ical) solids feed. The three phases and their (dimensionless) volume fractions are the
fluid φf = φf(z, t), the solids ψ = ψ(z, t) and the bubbles (aggregates) φ = φ(z, t), where
φf + ψ + φ = 1. A mixture of fluid and solid particles is addressed as a suspension. The
volume fraction of solids within the suspension that fills the interstices between bubbles ϕ
is defined by

ϕ :=
ψ

ψ + φf
=

ψ

1− φ
.

The system of PDEs that governs the evolution of φ and ψ can be formulated as

A(z)∂t

(
φ
ψ

)
+ ∂z

(
A(z)

(
J(φ, z, t)

−F̃(ψ, φ, z, t)

))

= ∂z

(
A(z)γ(z)

(
1

−ψ/(1− φ)

)
∂zD(φ)

)
+ ∑

S∈{G,F,W}
QS(t)

(
φS(t)
ψS(t)

)
δ(z− zS).

(3)

Apart from the variables introduced in the context of (1) and above, here, A = A(z) is
the cross-sectional area of the tank, and J = J(φ, z, t) and F̃ = F̃(ψ, φ, z, t) are convective
flux functions that depend discontinuously on z at the locations of the gas inlet (z = zG),
the pulp feed inlet (z = zF), the wash water inlet (z = zW), the underflow outlet (z = zU) at
the bottom and the overflow outlet (z = zE) at the top; see Figure 1.

The system (3) is valid for t > 0 and all z, −∞ < z < ∞. The characteristic function γ
indicates the interior of the tank:

γ(z) :=

{
1 inside the tank, i.e., if zU ≤ z ≤ zE,
0 outside the tank, i.e., if z < zU or z > zE.

The nonlinear function D, see Figure 5, models the capillarity present when bubbles
are in contact and is given by

D(φ) :=
∫ φ

0
d(s)ds, (4)

where the function d (introduced in [19] and specified later in this work) is assumed
to satisfy

d(φ) = D′(φ)

{
= 0 for 0 ≤ φ ≤ φc,
> 0 for φc < φ ≤ 1.

(5)

Consequently, at each point (z, t) where φ(z, t) ≤ φc, there holds D(φ(z, t)) = 0, and
therefore (3) degenerates at such points into a first-order system of conservation laws of
hyperbolic type. (Precise algebraic definitions of J, F̃ and d are provided further below).
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The last term on the right-hand side describes three singular sources located at the
level z = zS, S ∈ {G, F, W}, where QS(t) is the corresponding volume feed rate (as a
given function of time) and φS(t) and ψS(t) are the respective bubble and solids feed
concentrations. Of course, under normal circumstances the solids feed concentration at
the gas inlet should be zero (ψG ≡ 0), the bubble feed concentrations at the pulp feed inlet
should be zero (φF ≡ 0), and the concentrations of both disperse phases at the wash water
inlet should be zero (φW ≡ 0, ψW ≡ 0). Outside the tank, the mixture is assumed to follow
the outlet streams. Consequently, boundary conditions are not needed; the conservation of
mass determines the outlet volume fractions in a natural way.

Figure 5. Functions d(φ) (left) and D(φ) (right) modelling the capillarity. In both figures, we set
φc = 0.74.

Since the wash water is located at the top of the column, we have zW = zE. Thus,
the interior of the flotation column can be subdivided into three zones. In what follows,
for the ease of discussion, we refer to the z-subintervals z ≥ zE as “the effluent zone,”
zF ≤ z < zE as “zone 3,” zG ≤ z < zF as “zone 2,” zU ≤ z < zG as “zone 1” and z < zU as
“the underflow zone.”

Applying the conservation of mass to each of the three phases, introducing the volume-
average velocity, or bulk velocity, of the mixture q and the relative velocities of both the
aggregate suspension and the solid–fluid, Bürger et al. [28] derived a PDE model similar
to (3) without the capillarity function D(φ) and assuming that there is one joint inlet for
both the pulp and the gas. Extending this approach to the present setup, we obtain the flow
rates (velocities) in and out of the flotation column

q(z, t) :=





qE := (−QU + QG + QF + QW)/A in the effluent zone,
q3 := (−QU + QG + QF)/A in zone 3,
q2 := (−QU + QG)/A in zone 2,
q1 = qU := −QU/A in zone 1 and the underflow.

(6)

The drift–flux and solids–flux theories utilize constitutive functions for the aggregate
upward batch flux jb(φ) and the solids batch sedimentation flux

fb(ϕ) := ϕvhs(ϕ),

where vhs(ϕ) is the hindered–settling function. For simplicity, we employ the Richardson–
Zaki expression [42]

vhs(ϕ) = v∞(1− ϕ)nRZ , where nRZ > 1, (7)
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and v∞ is the velocity of a single particle. In the underflow and effluent zones, all phases are
assumed to have the same velocity, i.e., they follow the bulk flow. Then, the total convective
fluxes for φ and ϕ are given by

J(φ, z, t) =





jE(φ, t) := qE(t)φ in the effluent zone,
j3(φ, t) := q3(t)φ + jb(φ) in zone 3,
j2(φ, t) := q2(t)φ + jb(φ) in zone 2,
j1(φ, t) := q1(t)φ + jb(φ) in zone 1,
jU(φ, t) := q1(t)φ in the underflow zone,

(8)

F(ϕ, φ, z, t) =





fE(ϕ, φ, t) := −(1− φ)qE(t)ϕ in the effluent zone,
f3(ϕ, φ, t) in zone 3,
f2(ϕ, φ, t) in zone 2,
f1(ϕ, φ, t) in zone 1,
fU(ϕ, φ, t) := −(1− φ)q1(t)ϕ in the underflow zone,

(9)

with the zone-settling flux functions (positive in the direction of sedimentation, that is,
decreasing z)

fk(ϕ, φ, t) := (1− φ) fb(ϕ) +
(

jb(φ)− (1− φ)qk(t)
)

ϕ

= (1− φ) fb(ϕ) +
(

jk(φ, t)− qk(t)
)

ϕ, k = 1, 2, 3.

Here, the batch drift–flux function jb = jb(φ) is given by (2), where ṽ(φ) is given by

ṽ(φ) :=





vterm(1− φ)nb for 0 ≤ φ ≤ φc,

vterm
(1− φ)2nS+1

(1− φc)2nS+1−nb
for φc < φ ≤ 1.

(10)

Here, vterm is the constant velocity of a single bubble in liquid, and nb is a dimension-
less constant. The expression in the first case of (10) is valid as long as the bubbles are
not all in contact with each other. This contact is assumed to occur whenever φ exceeds
the critical concentration φc. The expression in the second case of (10) is derived from a
compatibility condition that makes it possible to express the drainage velocity of the liquid
in the froth relative to the bubbles with respect to gravity and dissipation in terms of vterm
and the dimensionless constant nS.

The latter emerges from empirical connections between the radius of the Plateau
borders in the foam, the radius of the bubbles and the volume fraction of the liquid in the
foam 1− φ; see [19] for all details. The function d(φ) arising in (5), and which describes
capillarity, is given by

d(φ) :=





0 for 0 ≤ φ ≤ φc,

vtermdcap
φ(1− φ)nS

(1− φc)2nS+1−nb
for φc < φ ≤ 1,

(11)

where dcap is a capillarity-to-gravity constant present in the froth when φ > φc and involv-
ing, among others, the surface tension of water; see [19]. In light of (11), we obtain

D(φ) =





0 for 0 ≤ φ ≤ φc,

vtermdcap
ω(φc)−ω(φ)

(1− φc)2nS+1−nb(nS + 1)(nS + 2)
for φc < φ ≤ 1,

(12)
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where ω(φ) := (1− φ)nS+1((nS + 1)φ + 1), and we reconfirm the property (5). Finally, we
define the total convective flux for the solids appearing in the governing system (3) by

F̃(ψ, φ, z, t) :=





F
(

ψ

1− φ
, φ, z, t

)
if 0 ≤ φ < 1,

0 if φ = 1.

3.2. Reduced Model for Two-Phase Flow of Bubbles in Liquid

The description provided so far refers to the full model that involves a feed of both gas
bubbles and solids in the water. The currently available experimental data, however, are,
for the moment, limited to a two-phase gas–liquid system; measurements of the system
behaviour with solids feed are currently being made and will be presented in forthcoming
work. We here focus on the dynamics of the gas–liquid system considering the effects of
froth drainage. Furthermore, since the pilot column is cylindrical, we assume that A is
constant (we utilize A = 0.0182415 m2 as indicated in Section 2.1).

Under this assumption (that is, the presence of particles is neglected) the model
reduces to the scalar PDE

∂tφ + ∂z J(φ, z, t) = ∂z
(
γ(z)∂zD(φ)

)
+ ∑

S∈{G,F,W}
qS(t)φS(t)δ(z− zS), (13)

where we define the velocities

qS(t) := QS(t)/A, S ∈ {G, F, W},

and the definitions J(φ, z, t), (8), D(φ), (12) and γ(z) remain in effect. These and other
variables have the range of values given in Table 4.

Table 4. Range of parameters according to the literature (typical values employed in [43–47]) and
used in the present work.

Parameter Symbol Working Range
Range (Literature) in Present Work

Froth height [m] 0.5–2.0 0.5–1.5
Bubble diameter [mm] 0.5–2.0 0.5–1.3
Hold-up in zone 2 φ2 [−] 0.05–0.30 0.09–0.20
Gas feed rate qG [cm/s] 0.5–3.0 1.3–2.3
Pulp feed rate qF [cm/s] 0.2–2.0 0.8–1.5
Discharge rate qU [cm/s] 0.2–2.0 1.0–1.4
Wash water rate qW [cm/s] 0.2–1.0 0.3–0.5

3.3. Numerical Method

The numerical method used for the solution of the complete model is outlined, and in
part analysed, in [19]. It is based on subdividing the computational domain, corresponding
to a z-interval that encloses the tank (that is, the interval [zU, zE] into a number N of layers
(subintervals) of equal height ∆z, and time is discretized through time points tn = n∆t,
n = 0, 1, 2, . . . . Without entering into any details, assume that the unknowns of the scheme
are φn

j and ψn
j , where these quantities are approximate values of φ and ψ in cell j at time tn,

respectively. The general scheme can then be written in the form

φn+1
j = H

(
φn

j−1, φn
j , φn

j+1, j, n
)
,

ψn+1
j = K

(
φn

j−1, φn
j , φn

j+1, ψn
j−1, ψn

j , ψn
j+1, j, n

)
, j = 1, . . . , N; n = 0, 1, 2, . . . ,

(14)

We refer to [19] for all details regarding the precise algebraic forms of the functionsH
and K, which are chosen in such a way that (14) represents a consistent finite difference
approximation of the system (3) and all ingredients outlined in Section 3.1. While any
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specific information is omitted here (for brevity), the general formulation (14) is useful
to indicate some particular properties of the numerical scheme of [19]: first, the scheme
is explicit, that is, from the given initial values φ0

j and ψ0
j , j = 1, . . . , N, one successively

calculates φ1
j and ψ1

j , j = 1, . . . , N, then φ2
j and ψ2

j , j = 1, . . . , N and so on for n = 3, 4, . . . .
Furthermore, the system (3) is triangular, which means that the first equation, the PDE

for the update of φ, contains, apart from ∂tφ, only terms that depend on known functions
and φ and its z-derivatives. On the contrary, the second PDE, for the update of ψ, contains,
apart from ∂tψ, terms that depend on both φ and ψ. Thus, the bubble volume fraction φ
can be updated independently from the solids volume fraction ψ, which is also reflected in
the different arguments ofH and K in (14).

Consequently, the first update formula of (14) is a valid numerical scheme for the
one-equation reduced model outlined in Section 3.2. Furthermore, the functionsH and K
are based on particular numerical fluxes that satisfy the so-called monotonicity property,
which ensures that, if the initial values are physically relevant, i.e.,

φn
j ≥ 0, ψn

j ≥ 0, φn
j + ψn

j ≤ 1 for all j

is in effect for n = 0, then the same property is valid for all n = 1, 2, . . . . The latter
property makes the approach of [19] interesting for practical applications. That said, for
a given layer thickness ∆z, one needs to choose the time step ∆t in such a way that the
Courant–Friedrichs–Lewy (CFL) condition is satisfied. Such a condition also ensures that
the numerical approximations converge (as ∆z, ∆t→ 0) to an exact solution of the model
as is outlined in [48].

3.4. Desired Steady States for the Two-Phase System

There are many different steady-state solutions of (13) depending on the values of
all the feed velocities in and out of the column and volume fractions of the inlets. We
are interested in the desired steady states, which means that no bubbles leave through the
underflow, and there is a froth level. This is the interface in zone 3 (above the feed inlet
z = zF) above which the froth is located. Similar desired steady states were presented
in [19] for the general model (3) but for the special case when the gas and slurry feed
inlets coincide.

We here follow the description in [19], which, in turn, refers to [28,49], and we leave
out the mathematical details. The latter involves uniqueness issues and entropy conditions
for discontinuities of the solution φ = φ(z, t). Such discontinuities arise in three different
situations, namely: (1) in regions where φ(z, t) < φc and the PDE is hyperbolic; (2) across
the discontinuity from a lower concentration φ < φc up to the critical concentration φc,
beyond which the PDE is parabolic; and (3) across the z-positions of inlet and outlets, where
the total flux function J = J(φ, z, t) of (13) is discontinuous (with respect to z).

We directly let φF = 0, since there is no gas in that feed inlet. If we write the delta
symbol on the right-hand side of (13) formally as δ(z− zS) = H′(z− zS), where

H(x) =

{
0 if x ≤ 0,
1 if x > 0

is the Heaviside function, then time-independent solutions φ = φ(z) of (13) satisfy the
second-order ODE

d
dz

(
J(φ, z)− γ(z)

dD(φ)

dz
− qGφGH(z− zG)− qWφWH(z− zW)

)
= 0.

This ODE can be integrated with respect to z to yield

J(φ, z)− γ(z)d(φ)
dφ(z)

dz
− qGφGH(z− zG)− qWφWH(z− zW) = M for all z, (15)
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where the constant mass flux per area unit M can be determined by considering (15) outside
the tank—that is, for setting either z < zU or z > zE, such that γ(z) = 0, and hence

M = jU(φU) = −qUφU,

M = jE(φE)− qGφG = qEφE − qGφG, (16)

Since, in a desired steady state, φU and M = 0, (16) implies that the effluent concentra-
tion is given by

φE =
qGφG

qE
=

qGφG

qW + qF + qG − qU
. (17)

In zone 2, we want a solution that satisfies φ2(z) < φc; hence, d(φ2) = 0, and choosing
z ∈ (zG, zF) in (15), we obtain

j2(φ; q2)− qGφG = 0, (18)

where writing out the dependence of j2 on q2 is convenient when investigating the depen-
dence of steady-state solutions on the bulk velocities. We denote by φ̄2 the smallest solution
of (18), which is thus the constant solution φ2(z) = φ̄2 in zone 2. The conditions for this
solution are

qGφG ≤ j2(φM
2 (q2); q2), (19)

φ̄2 ≤ φ1Z(q1), (20)

where φM
2 is the maximum point of j2 for given q2 and φ1Z(q1) the positive zero of j1(φ; q1);

see [19] for exact definitions. The analogous conditions can be found in [19].
In Figure 6 (left), we can see a possible steady-state value for zone 2, with φ̄2 ≤ φM

2 and
satisfying both conditions (19) and (20). Another steady state with high volume fractions
greater than φM

2 in the entire zone 2 could, in some cases, be possible theoretically; however,
this is not a desirable steady state. Here, and in the rest of the text, φ2M(q2) will denote
the local minimum point greater than the inflection point of j2, analogously for φ3M(q3);
see [19] for details.

Figure 6. Possible steady-state values φ̄2 satisfying condition (18) for zone 2 (left) and φ̄3 satisfy-
ing (23) for zone 3 (right). Note that, in zone 1, we suppose φ̄1 = 0, since we suppose that that
no bubbles leave through the underflow. These graphics were obtained using φG = 1, φF = 0,
qU = 0.5 cm/s, qG = 1.3 cm/s, qF = 1.035 cm/s and qW = 0 cm/s.

With z in zone 3, Equation (15) yields

j3(φ; q3)− d(φ)
dφ(z)

dz
= qGφG, zF < z < zE. (21)
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As in [19], we construct a solution in zone 3, which is

φ3(z) =

{
φ̄3, zF < z < zfr,
φ3par(z), zfr < z ≤ zE,

(22)

where φ̄3 is a constant volume fraction above z = zF and below the pulp–froth interface
located at z = zfr. Flux continuity and an entropy condition not detailed here yield that φ̄3
is the smallest solution of

j3(φ; q3) = j2(φ̄2; q2), (23)

which means that φ̄3 < φ̄2 when qF > 0. Furthermore, in (22), φ3par(z) is the strictly
increasing solution of the ODE

dφ(z)
dz

=
j3(φ; q3)− qGφG

d(φ)
; φ(zfr) = φc, φ(zE) = φE (24)

(see (21)), where zfr is the unknown location of the pulp–froth interface φ = φc. Thus, prob-
lem (24) defines a function Zfr from all input variables to the pulp–froth interface zfr via
(recall that φE is given by (17))

zfr = Zfr(φF, qG, qF, qU, qW).

Necessary conditions for the existence of a steady-state solution profile φ3 = φ3(z)
given by (22) are

qG

(
1− φG

φc

)
< qU − qF − qW ≤ qG(1− φG), (25)

zF < Zfr(φG, qG, qF, qU, qW), (26)

qGφG

{
< j3(φ3M(q3); q3) if φ3M(q3) < φE,
≤ j3(φE; q3) if φ3M(q3) ≥ φE.

(27)

In Figure 6 (right), we can see a possible steady-state value for zone 3, with φ̄3 < φ3
M

satisfying (23). Note that, in this case, there does not exist a steady-state value with φ̄3 > φM
3 ,

since the straight line given by qGφG does not intersect with the flux function j3(φ, t) for
values of φ > φM

3 . Moreover, since condition (27) is not satisfied for the values of the
volumetric flows chosen, the solution in zone 3 will be constant and equal to φ̄3, i.e., the
solution φ3par(z) of the ODE (24) does not exist, and hence a froth layer is not possible in
this scenario.

In conclusion, the desired steady state for the two-phase gas–liquid system is, thus,

φSS(z) =





0 in the underflow zone and zone 1,
φ̄2 in zone 2,
φ̄3 in zone 3 for zF < z < zfr,
φ3par(z) in zone 3 for zfr < z < zE,
φE in the effluent zone.

(28)

In Figure 7, some desired steady states of this type are shown. This solution can only be
obtained if the conditions (19), (20) and (25)–(27) are satisfied. We visualize these conditions
in two-dimensional operating charts in the (qU, qF)-plane for given qG, φG and qW. To
exemplify, we illustrate these conditions in Figure 8 for the first steady-state experiment.
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(a) (b) (c) (d)

Figure 7. Examples of desired steady states for the gas phase, given by (28). To obtain these fig-
ures, we used fixed values of φG = 1, φF = 0, qU = 1 cm/s, qG = 1.3 cm/s and qW = 0 cm/s,
and we varied qF, choosing: (a) qF = 1.3 cm/s, (b) qF = 1.1 cm/s, (c) qF = 1.04 cm/s and
(d) qF = 1.032 cm/s. With these values for the volumetric flows, we obtained a pulp–froth in-
terface located at (a) zfr = 2.7856 m, (b) zfr = 2.7062 m, (c) zfr = 2.4628 m and (d) zfr = 2.2155 m,
respectively, and an effluent volumetric fraction of (a) φE = 0.8125, (b) φE = 0.9286, (c) φE = 0.9701
and (d) φE = 0.9760.

Figure 8. Operating charts showing the theoretical conditions for a steady-state with a froth present
in the upper part of the flotation column for the first steady-state experiment. A white region means
that the condition is satisfied. The superposition of all these charts results in a white strip, which can
be seen in the (qU, qF)-plane in Figure 9 (Experiment 1). The labels (FIa), (FIb), (Froth1), (Froth2), and
(Froth3) correspond the notation in [19] and to the respective inequalities (19), (20), (25), (26), and
(27) in the present work.
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Figure 9. Experiments 1–3 (no wash water): Comparisons between the model with stationary
conditions. Here, and in Figure 10, each (qU, qF)-plane shows the operating chart in which the white
region shows the theoretical conditions for a pulp–froth level above the feed level z = zF (cf. Figure 8).
The red lines in that plane (see also Figures 3 and 4) show the experimental lower and upper values
of qF for each given qU, in between which, a pulp–froth level was observed. The yellow surface is the
graph of the function (qU, qF) 7→ Zfr(φF, qG, qF, qU, qW), i.e., the estimated height of the pulp–froth
interface by the model.

Figure 10. Experiments 4 and 5 (with wash water added): comparisons between the model and
experiments with stationary conditions.
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4. Results
4.1. Choice of Parameters

The model contains several parameters. We fixed φc = 0.74 and nS = 0.46 with
the arguments given in [19] for a general froth and let nb, vterm and dcap be those that
should be adjusted to reproduce the experiments—at least qualitatively. We thus aimed
to find the same fixed values for all experiments. As stated in [28], there exist a number
of methods to calculate vterm. The generalized correlation by Wallis [50] is recommended;
see [23], Appendix A for details. This correlation involves additional quantities, such as
the equilibrium surface tension and the viscosity of the fluid. Its discussion is beyond
our focus.

Values for nb normally range from 2 to 3.2. For given values of qU and qG, the constant
volume fraction φ̄2 in zone 2 could be estimated experimentally. Equation (18) could then
be used to estimate

vterm =
qGφG + (qU − qG)φ̄2

φ̄2(1− φ̄2)nb
, (29)

where φG = 1 in our experiments. Choosing nb = 2, we obtained the value vterm = 15 cm/s,
which gave qualitatively similar operating charts by the model as from the experiments. As
for the capillary-to-gravity parameter dcap involved in the modelling of the capillary effect
in the froth, we found that the single value dcap = 2 cm could be used for a qualitative
description of all five steady-state experiments.

All the numerical results were obtained with a spatial discretization of N = 800
computational cells, which means a spatial step size of ∆z = 3.50× 10−3 m and a time step
∆t = 4.43× 10−3 s satisfying the CFL condition.

4.2. Comparison between the Model and Experimental Stationary Data

Comparisons between the model and the five steady-state experiments can be seen
in Figures 9 and 10. The goal is that the region between the two experimental lines
coincides with the white region of the theoretical operating chart, i.e., the (qU, qF)-plane. The
qualitative agreement between the experimental data and the model must be considered
very good, considering that the theoretical model contains several idealized assumptions
and several parameters whose values were taken from the literature for a general sludge.
We emphasize that the same parameter values were used in the model for all experiments.
The model prediction of the froth level zfr is given by the yellow surface in each subplot of
Figures 9 and 10.

In Figure 11, we explain the use of the operating charts of Figures 9 and 10 for
the particular case of Experiment 1 (Figure 9a). For a fixed value of qU = 1.02 cm/s,
we chose four values of qF on the line (1.02, qF)—shown in dark green in the 3D plot
(Figure 11a) inside the white region of the operating chart. For each point chosen, using
the correspondence (qU, qF) 7→ Zfr(φF, qG, qF, qU, qW), we know the estimated height of
the pulp–froth interface given by the model; see Figure 11b. In Figure 11c–f, we show the
graphs of the steady states for the gas phase recovered with the values of (qU, qF) chosen,
which are in accordance with the results shown in Figure 11b.

Figure 12 shows a dynamic simulation of the model from a column initially filled
with only water and with the parameters of Experiment 1. As can be seen, a steady-state
solution arises with a froth layer at the top and with constant volume fractions of bubbles
in each zone otherwise. In particular, the steady-state concentration in zone 2, φ̄2, is slightly
larger than the volume fraction φ̄3 in the lower part of zone 3 as the theoretical steady
states predict.
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(a) (b)

(c) (d) (e) (f)

Figure 11. Experiment 1: Example of the use of the operating charts in Figures 9 and 10. (a) Enlarged
view of Figure 9a. For a fixed value of qU = 1.02 cm/s, the line (qU, qF) is marked in dark green, and
four points with qF between 1.0568 and 1.2039 cm/s inside the white region of the operating chart
were chosen. (b) Cross section of the surface Zfr(φF, qG, qF, qU, qW) for qU = 1.02 cm/s (the qF-axis
is oriented in decreasing order for ease of comparison with plot (a)). (c–f) Steady states for the gas
phase obtained with the points (qU, qF) marked in plots (a,b). The values used in each figure are (c)
qF = 1.2039 cm/s, (d) qF = 1.1150 cm/s, (e) qF = 1.0628 cm/s and (f) qF = 1.0568 cm/s.

The qualitative agreement between the model and experiments lies in the fact that
both the model and the experiments confirm that it is only for a small region in the four-
dimensional space of (qU, qG, qF, qW)-values that a froth layer exists. Both the model and
the experiments verify that, once a steady state has been found with a froth level, a small
change in any of the bulk velocities will either make the froth layer be flushed out upwards
or the entire column filled with bubbles, which also leave through the underflow.
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Figure 12. First row: Numerical simulation of a fill-up process (left) and operating chart (right) of
the model with parameter values of Experiment 1 and bulk velocities (qU, qF) = (1.178, 1.292) cm/s,
which is the red point inside the white region. Second row: Zoom in time of the fill-up process during
the first 50 s (left) and a zoom in space showing the top of the column, where the foam formation in
zone 3 is clearly seen during the first 100 s (right).

4.3. Simulation of Dynamic Behaviour and a Case with a Solids Feed
4.3.1. A Dynamic Simulation of Two-Phase Bubble–Liquid Flow

We start with the tank full of only fluid at time t = 0 s (φ(z, 0) = ψ(z, 0) = 0 for all z)
when we start pumping gas and fluid, with φF = 0 and ψF = 0 at the feed inlet and φG = 1
and ψG = 0 at the gas inlet. We choose the flow rates

(qU, qF, qG, qW) = (1.132, 1.292, 1.8, 0) cm/s

in the white region of the theoretical operating chart in Figure 13—marked in red colour.
With these parameters, we obtain a desired steady state with a froth layer at the top of
the column and no bubbles leaving through the underflow after about t = 600 s; see
Figure 13 (left).

Once the system is in a steady state at t = 600 s, we make a step change from
qF = 1.292 cm/s to qF = 0.9 cm/s. The new point chosen lies in the grey region of
the theoretical operating chart—marked in blue in Figure 13 (right). As one expects after
this change, the froth layer increases, and bubbles at high volume fractions fill the entire
column as can be seen in Figure 13 (left). This illustrates how our model is capable of
predicting changes in the system and thus is able to take the appropriate control actions.
In this case, the control action leads to an undesired steady state since there are gas bubbles
leaving through the underflow.
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Figure 13. Dynamic simulation of a bubble–liquid flow. (Left) Time evolution of the volumetric
fraction profile of loaded gas bubbles φ from t = 0 s to t = 1500 s. (Right) Theoretical operating
chart for the simulation in Section 4.3.1. The point marked in red corresponds to (qU, qF, qG, qW) =

(1.132, 1.292, 1.8, 0) cm/s and the one in blue to (qU, qF, qG, qW) = (1.132, 0.9, 1.8, 0) cm/s.

4.3.2. A Dynamic Simulation of Three-Phase Bubble–Solids–Liquid Flow

As in the previous example, the column is initially full of only fluid when we start
pumping bubbles and solids with the volume fractions φG = 1, ψG = 0, φF = 0 and
ψF = 0.1 along with fluid and wash water. We choose the flow rates

(qU, qG, qF, qW) = (1.087, 1.8, 1.120, 0.3) cm/s

Figure 14 shows the time evolution of the volume fractions φ and ψ. It can be seen
that a desired steady state arises with a layer of froth at the top, while the solids are present
only below the feed level zF where they settle to the bottom.

Figure 14. Dynamic simulation of bubble–solids–liquid flow. Time evolution from t = 0 s to t = 500 s
of the volume fraction profiles of bubbles φ (left) and solids ψ (right).

5. Discussion

The theoretically derived PDE model automatically captures several different phenom-
ena (hindered bubble rise, hindered settling of particles and the formation of foam) without
any boundary conditions. The model predicts that a desired steady-state solution with a
froth layer above the feed level is only possible in a thin region in (qU, qG, qF, qW)-space.
The same set of model parameters was used for all comparisons with the five experiments.
The model involves nonlinearities in both the convective and diffusive parts and is strongly
degenerate in the diffusive part and, therefore, gives rise to discontinuities in the concen-
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tration profiles, which was confirmed experimentally [6] (as emphasized in [19]; see also
([3], p. 915, Figure 3)).

This property is inherent to drift–flux analyses (that disregard a diffusive term that,
in our context, models capillarity) (see, for instance, [5,23–25,27]). However, this contrasts
with the approaches by Azhin et al. [11,12] and Tian et al. [9,10] that are based on linearized
models and where continuity conditions and boundary conditions are imposed explicitly,
and therefore continuous steady-state profiles are obtained. The qualitative agreement
between our model and the experiments is interesting and shows the possibilities for
further investigations and model calibration. A reason for the discrepancies between the
model output and the experimentally determined regions in the operating charts, when a
stationary froth level in zone 3 is possible (see Figure 9), is the following.

Above the white region in each theoretical operating chart, i.e., the (qU, qF)-plane,
the combination of the bulk velocities are such that no layer of foam can exist according to
the PDE model. In decreasing the value of qF for fixed qU, qG and qW such that the point
(qU, qF) lies in the white region, then a froth level zfr is possible in zone 3 (zF < z < zE). In
the upper strip of the white region, the model predicts a froth level zfr (the yellow surface)
close to the effluent level zE, which means a very thin layer of froth. It may well be that such
thin froth layers were not registered as valid in the experiments. It is therefore natural that
the upper experimental red line lies some distance below the upper line of the white region.

The fact that the lower red line, at least when wash water is present, lies further
down in the grey region, means that a froth level is observed close to, but above, the feed
level zF, i.e., almost the entire zone 3, is filled with froth. The theoretical model does not
fully capture this behaviour and predicts that, for points (qU, qF) below the white region,
the entire zone 3 is filled with foam, and there are possibly bubbles dragged down to the
underflow. This discrepancy between the model and experiments near the location of the
pulp–froth interface when wash water is applied should be further investigated.

In the model development in [19], several reasonable assumptions (partially verified
by reported experiments) for the drainage in the froth were assumed to hold for volume
fractions close to but above the critical concentration φc in order to obtain a unified model.
It appears that further modelling is needed for the behaviour near the pulp–froth interface.
That said, we suggest that that the foam model and the description of that interface by a
critical concentration is consistent with the approach by Neethling and Cilliers [39] (which
is further elaborated, e.g., in [40]).

6. Conclusions

The conclusions arising from the specific findings of our theory, simulations and ex-
periments are outlined in Section 5. In summary, we can say that the model (3), plus
constitutive equations and specifications of control functions, is based on several existing
theories (the drift–flux and solids–flux models as well as the model of foam drainage) and
lays the ground for a complete simulator of a flotation column in one space dimension
without the need to impose boundary conditions or track, for instance, the pulp–froth
interface. We once again refer to [19] for an exposition of all technical details. Let us
emphasize here the following aspect.

Our previous work [19,28,29], as well as the transient simulations presented herein,
have demonstrated that the (theoretical) steady-state theory is consistent with (numerical)
simulations of transient scenarios in the sense that steady states are assumed precisely when
the various parameters are chosen such that the point (qU, qF) lies in the “white region”
of the corresponding operating chart. In addition, the model does not catastrophically
“break down” when the desired steady-state conditions are violated but makes precise
predictions of the “unwanted” behaviour (e.g., bubbles leave through the underflow
as seen in Figure 13). This consistency is internal to the mathematical model; however, the
comparison with experimental results conducted in this work are the first results that
indicate that the model is also consistent with experimental observations. That said, further
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experiments and comparisons with simulations should be conducted with a focus on
transient behaviour and involving solids.

With respect to the potential use of the model in real flotation practice (for instance, to
optimize the flotation performance) we mention that the model presented is an advance-
ment of the phenomenological models currently reported in relation to the description
of the foam level within the column as well as the gas hold-up. Although it does not yet
consider the attachment and detachment mechanism of particles to bubbles, the model is
reasonably accurate in determining the stable operating zones, which would allow its use
as a complement to current control systems [7,8,10,12–15,45]. Examples of control systems
based on the involved phenomenological models (coupled PDEs) have been reported and
used in other unit operations [32,51–56].

The present approach captures the multiphase hydrodynamics of aggregates (bubbles)
and gangue particles in the column but does not model the aggregation process itself
(that is, the attachment of hydrophobic (valuable) particles to gas bubbles). That process
usually takes place in the collection zone (zone 2 in Figure 1). To add realism and to explore
the interdependence of velocities and reaction kinetics, the flotation model (3) should be
extended to include the process of attachment of hydrophobic (valuable) particles. One
option consists of considering the valuable and gangue particles as two independent
disperse solid phases (while the present approach only includes the gangue) and adding
another field variable that describes the local state of aggregation. This procedure leads
to two additional PDEs for the two new variables and likely involves spatial variants of
known kinetic models for the adhesion of particles (as reviewed, for instance, in [16]).
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Glossary

List of Symbols
The following symbols are used in this manuscript:
Symbol Significance and Unit
A interior cross-sectional area of column [m2]

D(φ) integrated capillarity function [m2/s]
J(φ, z, t) convective flux function of bubbles [m/s]
F(ϕ, φ, z, t) convective flux function of solids [m/s]
F̃(ψ, φ, z, t) convective flux function of solids [m/s]
H(z) Heaviside step function [−]
N no. of numerical subintervals for numerical method [−]
Q volumetric flow [m3/s]
Zfr(φG, qG, qF, qU, qW) function giving height of pulp–froth interface [m]

d(φ) capillarity function [m2/s]
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dcap capillarity constant [m]

jb bubble batch flux function [m/s]
fb solids batch sedimentation flux function [m/s]
nb constant exponent in bubble batch flux [−]
nS constant exponent related to Plateau borders in foam [−]
nRZ Richardson–Zaki exponent [−]
q bulk velocity, flow rate [m/s]
t time [s]
ṽ(φ) drift–flux velocity function [m/s]
vhs(φ) hindered–settling velocity function [m/s]
vterm terminal velocity of single bubble [m/s]
v∞ terminal velocity of single particle [m/s]
z height [m]

zfr height of pulp–froth interface [m]

∂t� = ∂�/∂t [s−1]

δ Dirac delta distribution [m−1]

∆t temporal step size of numerical method [s]
∆z spatial step size of numerical method [m]

γ(z) characteristic function; = 1 inside column; = 0 outside [−]
φ volume fraction of bubbles (aggregates) [−]
φSS(z) steady-state solution [−]
φc critical volume fraction [−]
φf volume fraction of fluid [−]
φn

j volume fraction of bubbles of numerical method [−]
ϕ volume fraction of solids in suspension outside bubbles [−]
ψ volume fraction of solids [−]
Subscripts and Superscript
The following sub- and superscripts are used in this manuscript:
Sub-/Superscript Significance
�1, �2, �3 zone 1, zone 2, zone 3
�E effluent
�F feed
�G gas
�M (local) minimum point
�SS steady state
�U underflow
�W wash water
�Z zero (of a function)
�c critical
�b batch
�f fluid
�fr froth
�par parabolic
�M (local) maximum point
Abbreviations
The following abbreviations are used in this manuscript:
CFD computational fluid dynamics
CFL Courant–Friedrichs–Lewy (condition)
MIBC methyl isobutyl carbinol
ODE ordinary differential equation
PDE partial differential equation
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Abstract: This paper studies the correlation between different macroscopic features of image regions
and object properties with the Sauter diameter (D32) of bubble size in flotation. Bubbles were sampled
from the collection zone of a two-dimensional flotation cell using a McGill Bubble Size Analyzer,
and photographed bubbles were processed using image analysis. The Sauter mean diameters were
obtained under different experimental conditions using a semiautomated methodology, in which
non-identifiable bubbles were manually characterized to estimate the bubble size distribution. For
the same processed images, different image properties from their binary representation were studied
in terms of their correlation with D32. The median and variability of the shadow percentage, aspect
ratio, power spectral density, perimeter, equivalent diameters, solidity, and circularity, among other
image or object properties, were studied. These properties were then related to the measured D32

values, from which four predictors were chosen to obtain a multivariable model that adequately
described the Sauter diameter. After removing abnormal gas dispersion conditions, the multivariable
linear model was able to represent D32 values (99 datasets) for superficial gas rates in the range of
0.4–2.5 cm/s, for four types of frothers and surfactant concentrations ranging from 0 to 32 ppm. The
model was tested with 72 independent datasets, showing the generalizability of the results. Thus, the
approach proved to be applicable at the laboratory scale for D32 = 1.3–6.7 mm.

Keywords: gas dispersion; flotation; bubble size; Sauter diameter

1. Introduction

Flotation rate and efficiency critically depend upon the relationship between particle
size and bubble size; both parameters play a significant role in successful collection and
froth transport processes [1–5]. Since the development of bubble size analyzers, a better
understanding of the impact of gas dispersion on flotation performance has been achieved.
The most used analyzers consist of a bubble viewer for sampling along with an image
processing tool to characterize bubbles [6–8]. These devices proved to have a good trade-off
between the number of identified bubbles and their applicability at different flotation
scales. More basic image processing algorithms identify bubbles by a single or a variety
of shape factors, such as circularity, solidity, and others [9–11], removing irregular objects
and overlapped bubbles from the analysis. This approach has been widely used in the
flotation literature [10–12]; however, significant biases have been observed in bubble size
estimations, especially in the presence of large bubbles [13–15]. To avoid these biases, some
applications also incorporate segmentation algorithms to separate or identify bubbles in
clusters (i.e., Watershed and Hough transforms) [7,13,16–19]. In any case, most current
algorithms focus on the individualization of bubbles, removing objects that are not identifi-
able (e.g., complex clusters or cap-shaped bubbles) from a predefined performance criterion
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or threshold. This strategy has proven to be effective only under specific gas dispersion
regimes [20]. Thus, robust bubble size characterizations have been limited to spherical and
spherical-ellipsoidal regimes, which hinders the generalization of experimental results to
non-ideal conditions.

Some alternative or indirect estimations of bubble size have been proposed in the
literature. These approaches take advantage of either signals that are generated from
bubble motion or correlations between bubble size with other measurable variables. For
example, Steinemann and Buchholz [21] used conductivity measurements to estimate
bubble size and bubble velocity. A two-point probe was proposed, in which terminals
were disturbed by the rising bubbles. These disturbances generated pulse trains asso-
ciated with bubble properties. Geometrical and physical relationships allowed for the
bubble size estimations, for bubbles larger than 1.0 mm. Meernik and Yuen [22] pre-
sented an optical method based on disturbances to laser beams to estimate bubble size.
Optical fiber was used at the injection and detection terminals, and a photodiode was
employed as a transmitter. The measurement system was limited by the optical beam
length to characterize single bubbles. Kracht et al. [23] proposed a stochastic approach
based on the covariance function of the image backgrounds to determine bubble size distri-
butions (BSDs). That methodology was successfully tested under a spherical regime from
10 images generated at the laboratory scale. Image simulations also supported this
study. Kracht and Moraga [24] estimated the Sauter mean diameter of bubble popula-
tions D32 = ∑ d3

i / ∑ d2
i from acoustic measurements. Bubbles were exposed to an acoustic

disturbance, whose responses (demodulated signals) were related to bubble size. An
approximated linear trend between the signal intensities and the Sauter diameter was
observed for D32 ≈ 0.8–2.7 mm. The reference D32 values (ground truth) were estimated
from image analysis. Vinnett and Alvarez-Silva [25] related the shadow percent from binary
bubble images with D32 at different superficial gas rates, JG. A linear model was proposed,
which incorporated JG and the shadow percent as predictors. This model presented accept-
able results from laboratory and industrial datasets. However, the trends were rather noisy.
Vinnett et al. [26] reported a technique to estimate D32 from the power spectral density
of pulses generated by bubbles in binary images. The spatial bandwidth proved to be
non-linearly correlated with D32. A piecewise algorithm based on conventional image anal-
ysis in a spherical regime and a bandwidth correlation of D32 > 2.0 mm was proposed for
industrial measurements [20]. Ilonen et al. [27] used the two-dimensional discrete Fourier
transform to estimate BSDs in pulp delignification. The results provided by different circle
detection techniques were compared with the estimations obtained from the 2D power
spectral density. Principal component analysis was employed to reduce dimensionality. In
addition, multivariable linear regression was used to obtain the bubble counts in ten size
classes from the power spectral density. The technique showed adequate performance in
spherical regimes. Bu et al. [28] correlated gas dispersion parameters with the variability
of differential pressure measurements in a flotation column. A linear model was proposed
for the bubble size, using the standard deviation of the differential pressure as a predictor.
This model led to a coefficient of correlation of 0.77. High variability was obtained with
this methodology.

The information provided in the previous paragraph shows that bubble size can be
determined by several techniques, which involve parameters that can be measured or are
influenced by the characteristics and behavior of bubbles in a swarm. Some techniques
directly use bubble viewers along with image analysis, whereas other physical parameters
may also be correlated with photographed bubble populations (e.g., differential pressure
measurements and gas hold-up variability). This paper studies correlations between dif-
ferent image and object properties in binary representation and the Sauter mean diameter
of bubble size distributions. These properties and their variability can be automatically
determined, with negligible bias. A semiautomated algorithm that allowed all bubbles to be
processed was used to obtain the Sauter diameters employed as ground truth. A multivari-
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able linear model is proposed to estimate D32 from image and object features, which does
not require the individualization of every single bubble in the photographed populations.

2. Materials and Methods
2.1. Experimental Procedure

Bubble size measurements were conducted in the laboratory-scale flotation cell de-
picted in Figure 1. This 2D cell emulated a slice of an industrial machine with a 140 × 140 cm
cross-section and a width of 15 cm. The forced air was controlled and fed from 24 porous
spargers. A McGill bubble size analyzer (MBSA) [6] was used for bubble sampling and
image recording. This device was initially filled with conditioned water at the same surfac-
tant concentration as in the flotation cell. The rising bubbles were then photographed in a
2D plane with a digital video camera (version, Teledyne Dalsa, Waterloo, ON, Canada), at
a sampling rate of one frame per second. All measurements were conducted for 3 minutes
at a resolution of 0.056 mm/pxl.
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Figure 1. Two-dimensional flotation cell and installation of the McGill bubble size analyzer [29]. 

Four types of frothers were studied: methyl isobutyl carbinol (MIBC), AeroFroth® 70 
(Cytec, Woodland Park, NJ, USA), OrePrep® F-507 (Cytec, Woodland Park, NJ, USA), and 
Flotanol® 9946 (Clariant Mining Solutions, Louisville, KY, USA). AeroFroth® 70 contains 
MIBC and diisobutyl ketone [30], OrePrep® F-507 contains glycol and other non-hazard-
ous components [30], and Flotanol® 9946 corresponds to a 2-ethyl hexanol distillation bot-
tom [31]. The experimental data were divided into training and testing datasets. Tables 1 
and 2 present all the evaluated experimental conditions, including the distribution of the 
training and testing datasets. Frother concentrations of 0, 2, 4, 8, and 16 ppm were evalu-
ated for all types of frothers, whereas 32 ppm was also assessed for AeroFroth® 70, Ore-
Prep® F-507, and Flotanol® 9946. The superficial gas rates were set to 0.5, 1.0, 1.5, 2.0, and 
2.5 cm/s for MIBC, and to 0.4, 0.8, 1.2, 1.6, and 2.0 cm/s for the rest of the frothers. Condi-
tions with high JG and low concentrations of MIBC favored the transition toward a churn-
turbulent regime from an ellipsoidal regime, which was detected in the analysis. All tests 
were conducted at two locations in the flotation cell. From Tables 1 and 2, 104 experi-
mental conditions were used in the training procedure and 72 for testing. 

 

Figure 1. Two-dimensional flotation cell and installation of the McGill bubble size analyzer [29].

Four types of frothers were studied: methyl isobutyl carbinol (MIBC), AeroFroth® 70
(Cytec, Woodland Park, NJ, USA), OrePrep® F-507 (Cytec, Woodland Park, NJ, USA), and
Flotanol® 9946 (Clariant Mining Solutions, Louisville, KY, USA). AeroFroth® 70 contains
MIBC and diisobutyl ketone [30], OrePrep® F-507 contains glycol and other non-hazardous
components [30], and Flotanol® 9946 corresponds to a 2-ethyl hexanol distillation bot-
tom [31]. The experimental data were divided into training and testing datasets. Tables 1
and 2 present all the evaluated experimental conditions, including the distribution of the
training and testing datasets. Frother concentrations of 0, 2, 4, 8, and 16 ppm were evaluated
for all types of frothers, whereas 32 ppm was also assessed for AeroFroth® 70, OrePrep®

F-507, and Flotanol® 9946. The superficial gas rates were set to 0.5, 1.0, 1.5, 2.0, and 2.5 cm/s
for MIBC, and to 0.4, 0.8, 1.2, 1.6, and 2.0 cm/s for the rest of the frothers. Conditions with
high JG and low concentrations of MIBC favored the transition toward a churn-turbulent
regime from an ellipsoidal regime, which was detected in the analysis. All tests were
conducted at two locations in the flotation cell. From Tables 1 and 2, 104 experimental
conditions were used in the training procedure and 72 for testing.
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Table 1. Flotation tests for training.

Type of Frother Location Frother Concentrations, ppm Superficial Gas Rate, cm/s

MIBC 1 and 2 0, 2, 4, 8, 16 0.5, 1.0, 1.5, 2.0, 2.5
AeroFroth® 70 1 0, 2, 4, 8, 16, 32 0.4, 1.2, 2.0

OrePrep® F-507 1 0, 2, 4, 8, 16, 32 0.4, 1.2, 2.0
Flotanol® 9946 1 0, 2, 4, 8, 16, 32 0.4, 1.2, 2.0

Table 2. Flotation tests for testing.

Type of Frother Location Frother Concentrations, ppm Superficial Gas Rate, cm/s

AeroFroth® 70 2
0, 2, 4, 8, 16, 32 0.8, 1.6

0, 2, 8, 32 0.4, 1.2, 2.0

OrePrep® F-507 2
0, 2, 4, 8, 16, 32 0.8, 1.6

0, 2, 8, 32 0.4, 1.2, 2.0

Flotanol® 9946 2
0, 2, 4, 8, 16, 32 0.8, 1.6

0, 2, 8, 32 0.4, 1.2, 2.0

2.2. Semiautomated Image Processing

The BSDs and Sauter mean diameters used as reference (ground truth) were obtained
by a semiautomated application based on the Image Processing Toolbox of MATLAB (11.4,
The MathWorks Inc., Natick, MA, USA). A field of view of 45 × 35 mm was chosen for
image analysis. The images were firstly converted to their binary representation. Bubbles
observed as isolated spheres and ellipsoids were identified based on solidity [26]. Objects
that presented low solidity were first segmented using Watershed, followed by Hough trans-
forms [13,32]. The previous automated steps were complemented by manual processing:
(i) false positives obtained in the automated processing were corrected; (ii) non-identified
bubbles (bubbles in clusters and irregular bubbles) were manually estimated. This pro-
cedure avoided the biases caused by removing bubbles from the analysis as reported in
the literature [13–15]. The size of each identified bubble was estimated as an equivalent
ellipsoid diameter. The D32 values obtained from the semiautomated algorithm were used
as references to evaluate the ability to predict bubble size. We recorded 180 images per
experimental condition, from which a subset was randomly chosen to process a minimum
of 1500 bubbles per test. However, at least 10 images were processed in all cases. This
limit for the number of processed images was especially defined for conditions with a
high gas hold-up. All images were analyzed when operating the cell with no frother. For
further details on the semiautomated procedure, please refer to Vinnett, Urriola, Orellana,
Guajardo and Esteban [29]. Appendix A presents examples of the bubble size distributions
obtained by the semiautomated approach.

2.3. Region Properties and Their Association with Bubble Size

The same images that were processed by the semiautomated algorithm were studied in
terms of their region properties from their binary representation. The statistical parameters
of these properties were analyzed based on their association with the Sauter mean diameter
of the BSDs. For example, for the binary image shown in Figure 2a, the object and region
properties summarized in Table 3 were calculated. For each experimental condition and
all processed images, the statistics of the properties of all objects (e.g., circularity, solidity,
aspect ratio, and perimeter) were estimated to obtain the median and some indicators of
variability. In addition, the shadow fraction (black region with respect to the region of
interest) and the spatial bandwidth were obtained for each image. The spatial bandwidth
was an indicator of the average pulse width generated by the black pixels associated with
the bubbles (i.e., disturbances of bubbles over the gray line in Figure 2a). This bandwidth
was obtained at −20 dB with respect to the peak in the power spectral density, as shown in
Figure 2b [26]. The shadow fraction and the spatial bandwidth have been proven to be cor-
related with D32 [25,26]. Most of the object features were directly obtained from the Image
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Processing Toolbox of MATLAB (11.4, The MathWorks Inc., Natick, MA, USA). Circularities,
aspect ratios, eccentricities, perimeters, solidities, equivalent diameters, and the number
of objects were obtained from the regrionprops function of this toolbox. The estimations of
the shadow fractions and spatial bandwidths have been proven to be straightforward, as
reported by Vinnett and Alvarez-Silva [25] and Vinnett, Sovechles, Gomez and Waters [26].
Table 3 also presents the variable symbols for each studied feature. The computations of all
region and object properties were limited by the bandwidth estimations, whose processing
times were proven to be shorter than those of conventional image analysis [26]. The median
(subscript 50) along with variability indexes were correlated with D32. Variability was
evaluated by the relative standard deviation (subscript RSD), relative interdecile range
(subscript RIDR), relative interquintile range (subscript RIQQR), and relative interquartile
range (subscript RIQR). Only one variability indicator was used per feature, which was
chosen based on the highest level of association with the D32 values.
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Figure 2. (a) Example of binary image, and (b) normalized power spectral density and
bandwidth estimation.

Table 3. List of studied region and object properties.

Property Variable Symbol Statistical Index

Shadow Fraction SF

Median
Relative Standard Deviation
Relative Interdecile Range

Relative Interquintile Range
Relative Interquartile Range

Circularity, 4π area/P2 C
Aspect Ratio, major axis length/minor axis length AR

Eccentricity E
Perimeter, mm P

Solidity S
Equivalent Diameter,

√
4 area/π, mm ED

Number of Objects per mm2, 1/mm2 N
Spatial Bandwidth, pxl/mm BW

All properties were related to the measured D32 values using the Pearson coefficient
of correlation (R) and the maximal information coefficient [33]. The former measures linear
correlation, whereas the latter indicates the level of association between the evaluated
variables, not constrained to linear relationships [33]. The maximal information coefficient
(MIC) was used to detect variables that were non-linearly related to the Sauter diameter
and did not lead to a high coefficient of correlation.

It should be noted that the experimental conditions with no frother and JG = 0.4, 1.2,
and 2.0 cm/s were run six times in different locations of the flotation cell. Manual processing
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for these three conditions was conducted by 4, 3, and 3 different users, respectively. The
relative standard deviations of the estimated D32 were 6.2%, 3.7%, and 2.8%, respectively.
These variabilities included the experimental and spatial variability, and uncertainties in
the manual processing. The latter was considered acceptable for the purpose of this study.

3. Results

All analyzed region and object properties shown in Table 3 were related to the mea-
sured Sauter diameters using the Pearson coefficient of correlation and the maximal in-
formation coefficient. Only the training datasets were included in this analysis. Table 4
shows the 12 predictors with the most significant (absolute) coefficients of correlation. From
these results, the highest absolute coefficients of correlation did not consistently agree with
the highest MICs because the latter were able to detect non-linear associations. Figure 3
presents examples of correlations between some region or image properties and the Sauter
diameter of the BSDs. Figure 3a,c illustrate the increasing trends between predictors (rela-
tive interquintile range for the shadow fraction and perimeter median) and D32. Except for
the variability, which is higher at high D32, these trends are compatible with linear depen-
dencies. The coefficients of correlation between these predictors and D32 thus resulted in
higher values compared with other trends. The maximal information coefficients were also
high or moderately high for these trends. Figure 3b,d present non-linear trends between the
spatial bandwidth and the number of objects per unit area, and D32, respectively. Although
clear relationships were observed, the coefficients of correlation resulted in lower values
with respect to Figure 3a,b. The maximal information coefficient was therefore effective
in determining non-linear associations between the predictors and the Sauter diameter. It
should be noted that D32 values greater than 6.0 mm were observed, which were mainly
associated with experimental conditions under high superficial gas rates and with MIBC
as a frother. These experimental conditions transitioned to churn-turbulent regimes, as
exemplified in Appendix B.

Table 4. Twelve properties that led to the highest coefficients of correlation with D32.

Title P50 SFRIQQR ED50 NRSD BW50 EC50 ARRSD C50 ECRIDR N50 AR50 BWRSD

R 0.838 0.831 0.829 0.822 −0.820 0.766 0.762 −0.750 −0.730 −0.717 0.700 0.650
MIC 0.942 0.794 0.960 0.859 1.000 0.813 0.969 0.754 0.798 0.953 0.813 0.477

The results from Table 4 and Figure 3 show that different fractions of the D32 variability
can be explained by the variability of some region and object properties. A multivariable
linear model was implemented to obtain the Sauter diameter from all studied predic-
tors. This model was obtained from the training datasets. Predictors that had non-linear
trends in relation to D32 were transformed to favor linearity, which was applied to BW50
(Figure 3b), BWSRSD, and N50 (Figure 3d). Thus, 1/BW50, 1/N50, and ln(BWSRSD) were
employed in the linear regression. The model incorporated a constant term; therefore,
19 parameters were estimated. Robust linear regression was used from the Statistics and
Machine Learning toolbox of MATLAB (The MathWorks Inc., Natick, MA, USA). Ordinary
least-squares estimation was sensitive to leverage points associated with abnormal gas
dispersion conditions, as illustrated in Appendix B. Robust regression performs iteratively
reweighted least-squares estimations, assigning a weight to each residual based on its
magnitude [34]. This approach was then used to reduce the impact of data points that
were far from the main trends. Figure 4 presents the model fitting. A good agreement was
observed, except for some tests with D32 > 5.0 mm. According to the procedure reported by
Vinnett et al. [35], experimental conditions with relative standard deviations greater than
0.7 in the shadow fraction were removed from the overall dataset, allowing abnormal gas
dispersion conditions to be skipped from the analysis.
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Figure 4. Measured versus modelled Sauter diameters: robust linear regression in the presence of
churn-turbulent conditions.
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Five data points were removed from the training dataset. Thus, 99 conditions were
used for model fitting. To reduce over-parameterization, ordinary linear regression was
conducted using the best-subset approach. All combinations of predictors were used in the
model fitting to choose the model structure that led to the lowest predicted residual error
sum of squares (PRESS). The PRESS is obtained as the sums of squares of the prediction
residuals, after removing one data point at a time. Four predictors were then chosen in the
model structure: C50, EDRIQR, NRSD and BW50 (reciprocal). The root mean squared error
was 0.214 with these four predictors, compared with an RMSE of 0.204 when including
all predictors in the regression. Figure 5 shows the model fitting for the training datasets
along with the comparisons for the testing datasets. An adequate D32 description was
observed for D32 = 1.3–6.7 mm, after removing abnormal gas dispersion conditions. Higher
variability was observed for D32 ≥ 4.0 mm, which was caused by the sensitivity of the
Sauter diameter to large bubbles. The testing results proved that the model was generaliz-
able to independent datasets. Again, higher dispersion was observed for D32 ≥ 4.0 mm.
It should be noted that the modeled D32 values were automatically estimated without
individualizing every single bubble. Although the D32 values observed in the 2D cell corre-
sponded to intermediate- and large-size ranges from industrial databases [18,20,36], poorer
bubble size estimations are observed for D32 ≥ 2.0 mm by conventional image analysis, as
reported by Vinnett, Yianatos, Arismendi and Waters [20]. Thus, the correlation presented
here is suitable for ellipsoidal regimes and in the transition toward turbulent regimes.
Conventional image analysis (shape factors and object segmentation) is recommended for
D32 < 2.0 mm, as no significant bias was observed with this method from industrial data.
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Figure 5. Measured versus modeled Sauter diameters: training and testing datasets, after removing
abnormal conditions.

Equation (1) presents the D32 model, in which all parameters were significant at the 95%
confidence level. All p-values and 95% confidence intervals of the predictors are presented
in Appendix C. From Equation (1), a D32 increase is related to variability increases in the
number of objects per millimeter square (NRSD) and in the equivalent diameter (EDRIQR).
The former is caused by the variability in the gas hold-up when transitioning from spherical
to ellipsoidal and turbulent conditions [35]. This transition also increased the variability
in the equivalent diameter because more irregular bubbles, coexisting with small bubbles,
are typically observed at higher D32 values. Lower D32 values were observed at lower
median circularities (C50) as small bubbles are consistently observed as spheres in a bubbly
regime. As the spatial bandwidth is an indicator of the horizontal and vertical pulse widths
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that are caused by bubbles (Figure 2a), wider pulses (and lower BW) lead to higher Sauter
diameters [26]. A sensitivity analysis proved that BW50 was the most significant predictor.
The increases in C50, EDRIQR, NRSD, and BW50 from the 25th percentile to the 75th percentile
led to D32 variations of −0.13, 0.27, 0.20, and 1.90, respectively. The spatial bandwidth
was previously tested with industrial data, adequately explaining the D32 variability for
D32 ≈ 2.0–6.0 mm, under normal gas dispersion conditions. Vinnett, Sovechles, Gomez and
Waters [26] proposed D32 = α/BWβ to estimate bubble size, obtaining α = 3.7 and β = 1.1
by non-linear regression. As the linear model proposed here incorporates the bandwidth
by its reciprocal (β = 1.0), any bias in the industrial variability explained by BW will be
moderate with respect to the laboratory results in Figure 5 and Equation (1). It should
be noted that Equation (1) only allows for the estimation of the Sauter mean diameter;
therefore, additional correlations are required to automatically obtain unbiased BSDs.

D32 = 1.14− 1.80C50 + 0.785EDRIQR + 1.52NRSD +
3.49

BW50
(1)

The results from Table 4 and Figures 3–5 show that some image properties were
linearly or non-linearly correlated with the Sauter mean diameter. Except for abnormal
gas dispersion conditions, these image properties proved to be applicable as predictors to
automatically estimate bubble size, without individualizing all single bubbles or removing
irregular objects. Additional predictors can be incorporated into the model structure to
improve its predictability, using cross-validation to control over-parameterization. The
modeling strategy presented here can also be extended to different machine learning tools,
considering the continuous improvement in the training stage after increasing D32 and
image databases. Thus, gas dispersion data from different flotation machines and scales
can be incorporated into the algorithms for model generalizations. Further developments
are being made to expand D32 estimations using experimental data from different flotation
machines, operating conditions, and flotation scales.

4. Conclusions

One hundred and four images and D32 datasets were studied, correlating different
image and object properties (from binary representations) with bubble size. All properties
were automatically determined, whereas the D32 values were obtained from a semiau-
tomated approach that did not remove bubbles from the analysis. The main results are
summarized as follows:

• Several image and object properties showed moderate or strong correlations, linear
and non-linear, with the Sauter diameter.

• The maximal information coefficient was successfully used to detect non-linear as-
sociations between image and object properties with bubble size. These associations
were not clearly detected with the coefficient of correlation. The strongest associations
were observed with the median of the spatial bandwidth, median of the equivalent
diameter, relative standard deviation of the aspect ratio, and median of the number of
objects per unit area.

• After removing churn-turbulent conditions and linearizing non-linear associations,
a multivariable linear model was proposed, which was able to estimate bubble size
in the range 1.3–6.7 mm. This model was obtained from four predictors: median
of the circularity, relative interquartile range of the equivalent diameter, relative
standard deviation of the number of elements per unit area, and median of the spatial
bandwidth. These predictors were chosen from the best subset of all possible linear
models, minimizing PRESS.

• The linear model was successfully tested on 72 independent datasets, which showed
the generalizability of the model structure.

The strategy to indirectly characterize bubble size from image and object properties
proved to be applicable at laboratory scale, without individualizing all single bubbles or
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removing irregular bubbles and clusters. This approach can be continuously improved
by including additional predictors and expanding gas dispersion databases from different
experimental conditions.
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Appendix A

Figure A1 illustrates five BSDs, which are presented as cumulative distribution func-
tions. These BSDs were associated with the 10, 30, 50, 70, and 90 percentiles of the measured
Sauter diameters. Higher D32 values were related to higher mean (or median) bubble sizes
as well as to longer distribution tails. The latter was caused by the presence of a low
percentage of large bubbles in the analyzed populations.
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Appendix B

Experimental conditions using MIBC as a frother and JG = 2.5 cm/s favored the tran-
sition to churn-turbulent regimes in the flotation cell. Figure A2 illustrates examples of
images from one abnormal flotation test. Although this abnormality can be automatically
detected, the incorporation of these datasets into the proposed regression approach dis-
torted the correlations due to leveraging. The high Sauter diameters were influenced by
the high sensitivity of this parameter to large bubbles.
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Appendix C

Table A1 presents the p-values along with the 95% confidence intervals for the predic-
tors used in Equation (1). All parameters were significant at the chosen confidence level.

Table A1. p-values and 95% confidence intervals for the predictors used in Equation (1).

Title p-Values 95% Confidence Intervals

Constant 0.0453 (0.0242, 2.25)
C50 0.000420 (−2.78, −0.822)

EDIQR 6.90 × 10−11 (0.573, 0.997)
NRSD 2.14 × 10−5 (0.843, 2.19)
BW50 1.11 × 10−43 (3.22, 3.76)

References
1. Gorain, B.K.; Franzidis, J.P.; Manlapig, E.V. Studies on impeller type, impeller speed and air flow rate in an industrial scale

flotation cell. Part 4: Effect of bubble surface area flux on flotation performance. Miner. Eng. 1997, 10, 367–379. [CrossRef]
2. Gorain, B.K.; Napier-Munn, T.J.; Franzidis, J.-P.; Manlapig, E.V. Studies on impeller type, impeller speed and air flow rate in

an industrial scale flotation cell. Part 5: Validation of k-Sb relationship and effect of froth depth. Miner. Eng. 1998, 11, 615–626.
[CrossRef]

3. Finch, J.A.; Dobby, G.S. Column Flotation; Pergamon Press: Oxford, UK, 1990.
4. Rojas, I.; Vinnett, L.; Yianatos, J.; Iriarte, V. Froth transport characterization in a two-dimensional flotation cell. Miner. Eng. 2014,

66–68, 40–46. [CrossRef]
5. Jameson, G.J.; Nam, S.; Young, M.M. Physical factors affecting recovery rates in flotation. Miner. Sci. Eng. 1977, 9, 103–118.
6. Hernandez-Aguilar, J.; Gomez, C.; Finch, J. A technique for the direct measurement of bubble size distributions in industrial

flotation cells. In Proceedings of the 34th Annual Meeting of the Canadian Mineral Processors, Ottawa, ON, Canada, 22–24
January 2002; pp. 389–402.

7. Mesa, D.; Quintanilla, P.; Reyes, F. Bubble Analyser—An open-source software for bubble size measurement using image analysis.
Miner. Eng. 2022, 180, 107497. [CrossRef]

8. Grau, R.A.; Heiskanen, K. Visual technique for measuring bubble size in flotation machines. Miner. Eng. 2002, 15, 507–513.
[CrossRef]

9. Acuña, C.; Vinnett, L.; Kuan, S.H. Improving image analysis of online bubble size measurements with enhanced algorithms. In
Proceedings of the 12th International Mineral Processing Conference, Procemin, Santiago, Chile, 26–28 October 2016.

10. Bailey, M.; Gomez, C.O.; Finch, J.A. Development and application of an image analysis method for wide bubble size distributions.
Miner. Eng. 2005, 18, 1214–1221. [CrossRef]

11. Sovechles, J.M.; Waters, K.E. Effect of ionic strength on bubble coalescence in inorganic salt and seawater solutions. AIChE J. 2015,
61, 2489–2496. [CrossRef]

12. Grau, R.A.; Heiskanen, K. Gas dispersion measurements in a flotation cell. Miner. Eng. 2003, 16, 1081–1089. [CrossRef]

226



Minerals 2022, 12, 1528

13. Riquelme, A.; Desbiens, A.; Bouchard, J.; del Villar, R. Parameterization of Bubble Size Distribution in Flotation Columns. IFAC
Proc. Vol. 2013, 46, 128–133. [CrossRef]

14. Karn, A.; Ellis, C.; Arndt, R.; Hong, J. An integrative image measurement technique for dense bubbly flows with a wide size
distribution. Chem. Eng. Sci. 2015, 122, 240–249. [CrossRef]

15. Ma, Y.; Yan, G.; Scheuermann, A.; Bringemeier, D.; Kong, X.-Z.; Li, L. Size distribution measurement for densely binding bubbles
via image analysis. Exp. Fluids 2014, 55, 1860. [CrossRef]

16. Grau, R.A.; Heiskanen, K. Bubble size distribution in laboratory scale flotation cells. Miner. Eng. 2005, 18, 1164–1172. [CrossRef]
17. Lau, Y.M.; Deen, N.G.; Kuipers, J.A.M. Development of an image measurement technique for size distribution in dense bubbly

flows. Chem. Eng. Sci. 2013, 94, 20–29. [CrossRef]
18. Vinnett, L.; Yianatos, J.; Alvarez-Silva, M. Gas dispersion measurements in industrial flotation equipment. In Proceedings of the

8th Copper International Conference, Copper 2013, Santiago, Chile, 1–4 December 2013.
19. Wang, J.; Forbes, G.; Forbes, E. Frother Characterization Using a Novel Bubble Size Measurement Technique. Appl. Sci. 2022,

12, 750. [CrossRef]
20. Vinnett, L.; Yianatos, J.; Arismendi, L.; Waters, K.E. Assessment of two automated image processing methods to estimate bubble

size in industrial flotation machines. Miner. Eng. 2020, 159, 106636. [CrossRef]
21. Steinemann, J.; Buchholz, R. Application of an Electrical Conductivity Microprobe for the Characterization of bubble behavior in

gas-liquid bubble flow. Part. Part. Syst. Charact. 1984, 1, 102–107. [CrossRef]
22. Meernik, P.; Yuen, M. An optical method for determining bubble size distributions—Part II: Application to bubble size measure-

ment in a three-phase fluidized bed. J. Fluids Eng. 1988, 110, 332–338. [CrossRef]
23. Kracht, W.; Emery, X.; Paredes, C. A stochastic approach for measuring bubble size distribution via image analysis. Int. J. Miner.

Processing 2013, 121, 6–11. [CrossRef]
24. Kracht, W.; Moraga, C. Acoustic measurement of the bubble Sauter mean diameter d32. Miner. Eng. 2016, 98, 122–126. [CrossRef]
25. Vinnett, L.; Alvarez-Silva, M. Indirect estimation of bubble size using visual techniques and superficial gas rate. Miner. Eng. 2015,

81, 5–9. [CrossRef]
26. Vinnett, L.; Sovechles, J.; Gomez, C.O.; Waters, K.E. An image analysis approach to determine average bubble sizes using

one-dimensional Fourier analysis. Miner. Eng. 2018, 126, 160–166. [CrossRef]
27. Ilonen, J.; Juránek, R.; Eerola, T.; Lensu, L.; Dubská, M.; Zemčík, P.; Kälviäinen, H. Comparison of bubble detectors and size

distribution estimators. Pattern Recognit. Lett. 2018, 101, 60–66. [CrossRef]
28. Bu, X.; Zhou, S.; Sun, M.; Alheshibri, M.; Khan, M.S.; Xie, G.; Chelgani, S.C. Exploring the Relationships between Gas Dispersion

Parameters and Differential Pressure Fluctuations in a Column Flotation. ACS Omega 2021, 6, 21900–21908. [CrossRef]
29. Vinnett, L.; Urriola, B.; Orellana, F.; Guajardo, C.; Esteban, A. Reducing the Presence of Clusters in Bubble Size Measurements for

Gas Dispersion Characterizations. Minerals 2022, 12, 1148. [CrossRef]
30. Saavedra Moreno, Y.; Bournival, G.; Ata, S. Classification of flotation frothers—A statistical approach. Chem. Eng. Sci. 2022,

248, 117252. [CrossRef]
31. Arends, M.A. Reactivos de Flotación: Evaluación de Colectores y Espumantes; Clariant: Muttenz, Switzerland, 2019.
32. Grau, R.A. An Investigation of the Effect of Physical and Chemical Variables on Bubble Generation and Coalescence in Laboratory Scale

Flotation Cells; Helsinki University of Technology: Helsinki, Finland, 2006.
33. Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti,

P.C. Detecting novel associations in large data sets. Science 2011, 334, 1518–1524. [CrossRef]
34. Holland, P.W.; Welsch, R.E. Robust regression using iteratively reweighted least-squares. Commun. Stat.-Theory Methods 1977, 6,

813–827. [CrossRef]
35. Vinnett, L.; Yianatos, J.; Acuña, C.; Cornejo, I. A Method to Detect Abnormal Gas Dispersion Conditions in Flotation Machines.

Minerals 2022, 12, 125. [CrossRef]
36. Vinnett, L.; Yianatos, J.; Alvarez, M. Gas dispersion measurements in mechanical flotation cells: Industrial experience in Chilean

concentrators. Miner. Eng. 2014, 57, 12–15. [CrossRef]

227



Citation: Zhang, W.; Liu, D.; Wang,

C.; Liu, R.; Wang, D.; Yu, L.; Wen, S.

An Improved Python-Based Image

Processing Algorithm for Flotation

Foam Analysis. Minerals 2022, 12,

1126. https://doi.org/10.3390/

min12091126

Academic Editors: Fardis Nakhaei,

Ahmad Hassanzadeh and Luis

A. Cisternas

Received: 12 August 2022

Accepted: 30 August 2022

Published: 4 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

An Improved Python-Based Image Processing Algorithm for
Flotation Foam Analysis
Wenkang Zhang 1,2,3, Dan Liu 1,2,3,*, Chunjing Wang 1,2,3, Ruitao Liu 1,2,3, Daqian Wang 1,2,3 , Longzhou Yu 4

and Shuming Wen 1,2,3

1 State Key Laboratory of Clean Utilization of Complex Nonferrous Metal Resources, Kunming 650093, China
2 Yunnan Key Laboratory of Green Separation and Enrichment of Strategic Mineral Resources,

Kunming 650093, China
3 Faculty of Land and Resources Engineering, Kunming University of Science and Technology,

Kunming 650093, China
4 Yunnan Amade Electrical Engineering Company, Kunming 650033, China
* Correspondence: kgkjxld@kust.edu.cn

Abstract: For industrial flotation foam image processing, accurate bubble size measurement and
feature extraction are very important to optimize the flotation process and to improve the recovery
of mineral resources. This paper presents an improved algorithm to investigate mineral flotation
foam image segmentation for mineral processing. Several libraries implemented for the Python
programming language are used for image enhancement and compensation, quantitative analysis
of factors influencing the image segmentation accuracy, and suggestions for improvement of the
flotation foam image processing. The bubble characteristics-size and morphology-and the influence
of the flotation conditions on the flotation foam image are analyzed. A Python implementation of the
Retinex image compensation method-region-adaptive and multiscale-is proposed to address known
issues of uneven illumination and shadows affecting flotation foam images, thereby improving
brightness uniformity. Finally, an improved version of the watershed segmentation algorithm
included in the Python Open Source Computer Vision library is used for segmentation analysis.
The accuracy of the flotation foam image segmentation is 3.3% higher than for the standard watershed
algorithm and the segmentation time is 9.9% shorter.

Keywords: flotation foam; image processing; image segmentation; machine vision; intelligent

1. Introduction

Mineral resources are extremely important for human development. They represent
critical materials for the industry, and they ensure security, economic growth and self-
sufficiency for a country. China has a long history of mineral resource exploitation. The
mineral industry has not only accelerated the Chinese urbanization process, but it has also
allowed for the coordinated development of Chinese regions and has been fundamental
for employment and social stability [1]. Mineral resources are non-renewable Because
of increasing consumption and intensive exploitation of larger, more accessible deposits,
new extraction methods focus on smaller deposits of finer, lower-grade ore. Concurrently,
extraction efficiency is constantly improved to increase the quantity of available mineral
resources. Mineral flotation is the most widely used technology in the mineral processing
industry. It was developed in the late 19th Century and gradually applied to industrial
production in the early 20th Century. Since then, flotation equipment and technology have
been investigated and regularly improved [2].

Currently, more than half of the non-ferrous metal ore is extracted using froth flotation
processes. Froth flotation is a method of mineral separation that differentiates minerals by
their surface physical and chemical properties. Despite extensive worldwide research on
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flotation processes, there is currently no mathematical model to characterize such processes
accurately or to optimize flotation control [3].

In China, current flotation processing sites rely on human observation to determine
the state of the flotation foam and to adjust the dosage and ventilation volume. This
method is not appropriate to meet the current demand in mineral separation for social and
economic development [4] and to comply with current requirements of energy saving and
emission reduction for climate change mitigation. Surface characteristics of flotation foams
strongly depend on the flotation conditions and can be used as indicators. Automating the
analysis by replacing human observation and combining data acquisition, processing, and
display into a single computer operation would greatly simplify the extraction process [5].
Flotation process parameters can be characterized more clearly from the visual features of
a computer-generated foam image. These results can then be used to build a prediction
and monitoring model of the flotation system, in order to achieve flotation process control
and real-time detection, thereby improving flotation efficiency and reducing errors caused
by manual observation [6]. Indeed, although experienced operators can infer the flotation
system operation status from the foam, more subtle structural changes in the foam cannot be
diagnosed manually. Therefore, stability detection and real-time regulation of the flotation
system are difficult to achieve [7,8].

Since the late 20th Century, extensive research has been conducted worldwide to
replace manual monitoring with machine vision. The European Union—within the Euro-
pean Strategic Programme on Research in Information Technology/Long Term Research
framework—launched the “Machine Vision-based Bubble Structure and Color Representa-
tion” project, involving several universities and companies in Finland and Sweden [9,10].
Wang et al. [11] proposed using valley edge detection and tracking to segment foam images.
High-illumination points were used to define illumination thresholds for foam bubble
classification, then valley bottom edges were tracked in four directions [11]. Citir et al.
proposed a two-iteration method for bottom edge tracking, first using pixel minima to
mark local regions, then applying the results to refine the edges [12]. Sadr-Kazemi and
Cilliters [13] applied the morphological watershed method to flotation foam segmentation.
Their robust method used histogram equalization and the “marker” concept—the maxima
within the foam bright spots become the identifiers [13]. Bonifazi et al. also applied the
watershed method to flotation foam segmentation analysis [5]. Forbes postulated that the
combination of texture feature analysis and the watershed method could improve segmen-
tation accuracy [14]. Zhang et al. proposed a watershed segmentation algorithm based on
optimal labeling for bubble size measurement [15]. Lezoray et al. proposed an unsuper-
vised clustering classification and region-merging method for color image segmentation,
which achieved good results [16].

Despite extensive research, the high accuracy of foam image processing is difficult
to achieve for all working conditions and in complex environments [17]. Therefore, the
complexity and specificities of flotation foam must be studied. Accurate measurements
of the flotation foam bubble size are especially important [18]. Recently, the industrial
technology for machine vision monitoring and control has become largely automated. To
fully exploit limited mineral resources—such as lean ore or refractory mineral dressing—
and to improve their recovery and utilization rates, technologies using machine vision
must be applied to mineral flotation detection.

This paper presents an in-depth analysis of flotation foam generation mechanisms
and of the correlation between bubble size and working conditions. To improve the
characterization—size and morphology—of foam bubbles and the measurement accuracy,
the paper defines several methods to evaluate flotation foam image properties—clarity,
illumination uniformity, and multiscale enhancement. Furthermore, an adaptive foam
image segmentation method is proposed for parameter measurement. Finally, segmentation
accuracy and efficiency are assessed to improve the accuracy and robustness of the flotation
foam segmentation algorithm [19].
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2. Error Analysis and Characterization of Flotation Foam Images

The flotation process is the separation of minerals from finely ground ore at a liquid–
gas interface. The foam bubble properties—structure, stability, size, shape and number—all
affect mineral flotation. For example, even if the ore selection conditions are suitable for
flotation, improper adjustment of the foam bubble shape might negatively influence flota-
tion. Flotation foam characteristics are adjusted by modifying the physical and chemical
conditions during the flotation process.

2.1. Factors Influencing the Flotation Foam

The characteristics of mineral flotation foam depend mainly on the flotation agent, the
pulp concentration, the mineral particle size, the wind pressure, the foam layer thickness
and the work environment. For example, the lighting conditions in a milling plant influence
the flotation conditions. Furthermore, industrial flotation is a mechanized process that
generates noise, with a possible effect on the flotation image bubble extraction accuracy [20].
Therefore, flotation foam image denoising is an important step of the flotation process.

The qualitative relationship between the flotation operation variables and the foam
bubble morphology is shown in Table 1.

Table 1. Relationship between flotation operation variables and foam bubble morphology.

Operation Variable Description Bubble Characteristics

The amount of foaming agent is large Bubbles are small and bubbles are stable

Small amount of foaming agent Bubbles are large and bubbles are unstable

The more inhibitor The bubbles are small and round, and the foam
load is small

The less inhibitor Bubbles are large, elliptic, sticky and
slow moving

The pH value of the pulp increases Bubble increase

The pH value of the pulp decreases Bubble decreases

High pulp concentration The bubbles are large, elliptic, slow moving
and high bearing rate

Low pulp concentration The bubbles are small, round and unstable

Air pressure is high The bubbles are large, elliptic, fast and
low mineralization

Air pressure is down Bubbles are small, round, slow and
highly mineralization

2.2. Compensation of Machine Vision Errors during the Flotation Process
2.2.1. Model Definition for Machine Vision Image Recognition

Statistical modeling provides new possibilities for automatic detection, measurement,
analysis and identification of flotation foam images with the random accumulation of
mineralized bubbles at the surface. Currently, most statistical image models use parameter
quantization methods, because they are simple to implement and easy to understand [21,22].
A schematic representation of statistical image modeling by parameter quantization is
shown in Figure 1.

During the statistical image modeling process, a specific mathematical image trans-
formation is applied to the original image pixels. The statistical pixel distribution analysis
is then performed in the transform domain. The most common image transformation
operators for industrial mineral processing are the wavelet transform, the Gabor filter, and
high-order Gaussian derivative filter banks. Empirical probability density functions are
then used to fit the statistical pixel distribution and characterize the image.
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Figure 1. Schematic diagram of statistical image modeling by parameter quantization.

2.2.2. General Principle for Statistical Analysis of Flotation Foam Images

An image, as perceived by the human body, is a form of physical information (light) col-
lected and interpreted by the eye–optical nerve–visual cortex processing system. A digitized
(computerized) image, such as the foam image shown in Figure 2, is stored only as a two-
dimensional pixel value matrix. Specific information on the image—shapes, granularity—
or on the physical process—uneven foam surface, specific flotation conditions—is not
included. Therefore, the purpose of machine vision monitoring is to allow the computer to
emulate the observation capabilities of the human visual system. If the algorithm is accurate
enough to automatically derive surface information from the foam images, flotation control
and flotation process operations can be automated.
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2.2.3. Flotation Foam Image Spectrum Characteristics

For an observation system, the pixels composing a digital image represent discrete
point sources. Mathematically, point sources can be represented by the Dirac delta function
(or distribution). The two-dimensional delta function δ(x, y) can be expressed as:

x

x,y
δ(x, y)dxdy = 1 (1)

By definition, δ(x, y) = ∞ when x = 0 and y = 0, and its value is zero everywhere else.
The δ function is a generalized function over the real numbers. Therefore, for any function
f (x, y) that is continuous at a point (x0, y0), the function value at that point is expressed as:

x

x,y
f (x, y)δ(x− x0, y− y0)dxdy = f (x0, y0) (2)
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Assuming f (x, y) is an analog image, its amplitude f and coordinates x and y must be
discretized to convert it into a digital image for computer image processing. This digital
image is the matrix form—obtained by sampling and quantization—of the continuous,
analog f (x, y). If f (x, y) is sampled on a uniform grid with sampling intervals ∆x and ∆y
in the x direction and y direction, respectively, the coordinates of the sampling points on
the image are x = m∆x and y = n∆y, where m and n are signed integers. The sampling
function for one point is defined by a δ function. The discrete image sampling function
s(x, y) is thus:

s(x, y) =
∞

∑
m=−∞

∞

∑
n=−∞

δ(x−m∆x, y− n∆y) (3)

The sampled image f s(x, y) is the product of the original simulated image f (x, y) and
the sampling function s(x, y):

fs(x, y) = f (x, y)s(x, y) (4)

To obtain the image spectrum, the Fourier transform operator is applied to both sides
of Equation (4). We define the Fourier transforms of f (x, y) and s(x, y) as F(u, v) and S(u, v),
respectively. Applying the convolution theorem, the Fourier transform of fS(x, y) is then
expressed as:

Fs(u, v) = F(u, v) ∗ S(u, v) (5)

Equation (5) can be written in its specific integral form as:

Fs(u, v) =
1

∆x∆y

∞∫

ω=−∞

∞∫

ω=−∞

F(ω1, ω2)
∞

∑
m=−∞

∞

∑
n=−∞

δ(u−ω1 −m∆u, v−ω2 − n∆v)dω1dω2 (6)

After calculation, Equation (6) becomes:

Fs(u, v) =
1

∆x∆y

∞

∑
m=−∞

∞

∑
n=−∞

F(u− m
∆x

, v− n
∆y

) (7)

Equation (7) shows that the spectrum of the sampled image is composed of the
original continuous image spectrum and of an infinite number of periodic translation
spectra. Therefore, the spectrum derived from the foam image by Fourier transform gives
the energy of all frequencies forming the image. The number of frequencies corresponds to
the number of pixels in the spatial domain image.

We consider the following continuous image function:

f (x, y) = [3 sin(2πn1x +
π

3
) + 4 cos(2πn2x)] · [3 sin(2πn1y +

π

3
) + 4 cos(2πn2y)] (8)

The sampled image and the Fourier spectrum of f (x, y) corresponding to scheel-
ite, coal gangue and lead-zinc ore flotation foams for n1 = 3 and n2 = 4 are shown
in Figures 3–5, respectively.

The autocorrelation function of an image characterizes distance and orientation corre-
lations between pairs of image pixels. Thus, the image spectrum is directly related to the
autocorrelation function. By examining the spectra in Figures 3–5, we conclude that there
are correlations between image pixels for each mineral. Therefore, determining the image
autocorrelation function would yield information on the image.
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We define a foam image I(x, y) and its Fourier transform Î(ξ, η). The frequency energy
spectrum A(f ) is equal to | Î2(ξ, η)|, where f =

√
ξ2 + η2 is the direction of average energy

in the frequency domain. The spectrum A and the spatial frequency f are related by:

A = b/ f a (9)
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This is equivalent, in logarithmic coordinates, to:

log A = log b− a log f (10)

Because the image spectrum shows the same energy in each frequency band, the image
is scale-invariant.

E f−2 f =
x

f 2≤ξ2+η2≤(2 f )2

∣∣∣ Î2(ξ, η)
∣∣∣dξdη =

∫ 2 f

f
2 ∗ π ∗ x ∗ const

xa/2 dx (11)

Substituting the approximate value of constant a (a = 2) into Equation (11), we note
that Ef-2f depends only on frequency. To investigate the frequency spectrum of flotation
foam images, an image database containing images acquired under different flotation
production conditions is first constructed. The size of each image is 300 × 300 pixels with
256 levels of gray (8-bit coding).

2.2.4. Retinex Image Compensation

The Retinex—composite of retina and cortex —theory was developed by E. H. Land
in 1963 [23]. It is used for image enhancement under varying illumination conditions [24].

Jobson et al. later defined a multiscale version of the Retinex algorithm [25]. By
adjusting a scale parameter, the algorithm produces de-illuminated images at different
scales. The final output is expressed as:

R(x, y) =
N

∑
k=1

Wk{log S(x, y)− log[S(x, y) ∗ Gk(x, y)]} (12)

where N represents the number of scales and Wk is the weight corresponding to scale k. For
N = 1—when W1 = 1—the algorithm reverts to the standard single-scale Retinex algorithm.

When performing operations in the logarithmic domain, pixel values can become
negative or fall outside of the display range. To ensure that the range of values is suitable
for display, a compensation operation—consisting of a translation and a compression—is
often applied to the initial range. For the output image RMi of the multiscale Retinex
algorithm at scale Mi (for color spectrum component i), the “compensated” image is:

R
′
Mi(x, y) = GRMi (x, y) + b (13)

where G is the gain (compression factor) and b is the compensation (translation value). A
common compensation method is the automatic gain compensation method, for which a
linear stretching is applied to the range of gray values to map values outside of the range
onto a new range suitable for display. The mapping operation is defined as:

R
′
Mi
(x, y) =

RMi (x, y)− Rmin

Rmax − Rmin
× dmax (14)

where R’Mi is the image obtained after linear gray stretching, Rmin and Rmax are the mini-
mum and maximum gray values of the input image, respectively, and dmax is the dynamic
gray value range of the output display device. For 8-bit devices, the maximum number of
gray values is 255 and the gain and compensation are constant:

G =
dmax

Rmax − Rmin
, b = − Rmin

Rmax − Rmin
(15)

To improve the image appearance on the display, it is generally necessary to truncate
the gray value range of the original image by excluding the minimum and maximum gray
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values of each color spectrum component, then to stretch the truncated range onto the
dynamic range of the display device:

R
′
=

Rci − Rlow
Rup − Rlow

× dmax (16)

where Rci is the output gray value corresponding to Ri after truncation, and Rlow and Rup
represent the minimum and maximum truncated gray values, respectively. The final gray
value range—after truncation and stretching—is [Rlow, Rup] and the gain and compensation
are constant:

G =
dmax

Rup − Rlow
, b = − Rlow

Rup − Rlow
(17)

2.2.5. The LoG Edge Detection Operator

The Laplacian of Gaussian (LoG) operator is often used in edge extraction and bina-
rization of digital images. A target image is first smoothed using a Gaussian filter, then
the image Laplacian—second-order derivative—is calculated to enhance the image fea-
tures. Finally, the edges are determined by detecting zero crossings—where the values
of neighboring pixels change sign—in the filtered image. The zero-crossing points of the
Laplacian (second-order derivative) correspond to the local maxima or minima of the first-
order derivative. If necessary, the detected edge positions can be refined at the subpixel
resolution level using a linear interpolation method.

The edge detection algorithm is detailed hereafter:

(1) Image Smoothing

The image f (x, y) is smoothed with a two-dimensional Gaussian filter that approxi-
mates the characteristics of the human visual system:

G(x, y) =
1

2πσ
exp(− 1

2πσ2 (x2 + y2)) (18)

G(x, y) is a circular symmetric function. The strength of the smoothing is controlled by
the scale parameter—standard deviation—σ. A smoothed image is obtained by convolving
the initial image f (x, y) with the Gaussian filter:

g(x, y) = f (x, y)× G(x, y) (19)

(2) Image Enhancement

After Gaussian smoothing, the Laplacian operator is applied to the smoothed image
g(x, y) to calculate the second-order image derivative:

h(x, y) = ∇2( f (x, y)× G(x, y)) (20)

(3) Edge Detection

The edge detection criterion is a change of sign of the second-order derivative, i.e.,
between adjacent pixels—the zero-crossing points—in the filtered image h(x, y), correspond-
ing to local maxima or minima of the first-order derivative. Practically, only zero-crossing
points with a first-order derivative greater than a fixed threshold are selected as edge
points to avoid the detection of non-significant edges. Applying the Laplacian operator
to the smoothed image g(x, y) is equivalent to applying the Laplacian to the Gaussian
operator and convolving the result with the initial image f (x, y). Therefore, Equation (20) is
equivalent to:

h(x, y) = f (x, y)×∇2G(x, y) (21)
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∇2G(x, y) is the LoG filter, defined as:

∇2G(x, y) =
∂2G
∂x2 +

∂2G
∂y2 =

1
πδ4 (

x2 + y2

2δ2 − 1) exp(− 1
2δ2 (x2 + y2)) (22)

Second-order derivative filters are very sensitive to noise. By applying a Gaussian
smoothing filter before the Laplacian sharpening filter, the image noise is smoothed out
before edge detection, resulting in better detection performance. Results of the edge
detection algorithm for flotation foam images of scheelite, coal gangue and lead-zinc ore
are shown in Figures 6–8, respectively.
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2.3. Screening and Analysis of Factors Influencing the Flotation Process
2.3.1. Image Preprocessing

(1) Grayscale Transformation

A grayscale transformation is a point-by-point image transformation that corrects the
pixel gray values of the original input image to determine a corresponding output gray
value for each pixel. The general expression is:

s = T(r) (23)

where T is the grayscale transformation function, R is the matrix of gray level values before
transformation, and S is the output matrix containing the transformed gray values.

If T is determined, then the output gray values are also known. The properties of
function T determine the effect of the grayscale transformation.

(2) Gray-Level Histogram

The histogram of a grayscale image counts the number of image pixels for each gray
level value. When divided by the total number n of image pixels, the resulting normalized
histogram also represents the probability density function p(rk)—in the interval [0, 1]—for
each gray value rk and directly reflects the occurrence probability of each gray value. For an
image with n = 256, if nk is the number of pixels with a gray value rk, then the occurrence
probability of rk is:

p(rk) =
nk
n

, (k = 0, 1, · · · , L− 1, nk ≥ 0) (24)

where L represents the odd gray level in the image.
The histogram is easily calculated by counting the number of pixels for each gray level

and sorting them in ascending order of gray value. The Open Source Computer Vision
(OpenCV) library is a software package dedicated to machine vision and developed for the
Python open-source programming language. OpenCV provides a histogram calculation
function (calcHist) that calculates gray-level histograms for multiple images, multiple
channels and different ranges of gray values simultaneously. The histograms calculated
with calcHist for flotation foam images of scheelite, coal gangue and lead-zinc ore are
shown in Figures 9–11, respectively.
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Histograms form the basis of image recognition. Figures 9–11 clearly show marked
histogram differences between the gray-level distributions of the three flotation foams. Such
information is fundamental for parameter adjustment in the next image processing step,
thereby strongly improving the efficiency and accuracy of the image recognition algorithm.
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togram (right).
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2.3.2. Linear Regression Model for Factors Influencing the Flotation Process

NumPy is the most widely used numerical analysis library for scientific computing
in Python. NumPy provides high-level mathematical functions and algorithms and is
very useful to build linear regression models. Furthermore, to eliminate model errors
caused by algorithm randomness, the scikit-learn package—a Python package for machine
learning—was used to simulate observations, train and evaluate the model independently,
and assess the possibilities for further model optimization [26,27]. Unary linear regression
models for light and noise intensity were built and trained on the dataset. Output models
derived for light and noise intensity from 1000 simulation experiments are shown in
Figures 12 and 13, respectively.
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There are discrepancies between the regression models and the data, notably for the
noise intensity. This is expected because light and noise intensity are only two of the
main factors affecting image segmentation. Without accounting for other factors such as
dosage, pulp density, wind pressure, and foam layer thickness, the fitted values necessarily
differ from the original data. To evaluate the quality of the regression models and the
correlation between influencing factors and segmentation accuracy, the goodness-of-fit is
estimated from the coefficient of determination and the linear correlation is evaluated from
the correlation coefficient. Results for the light and noise intensity models are shown in
Table 2.

Table 2. Coefficients of determination and correlation coefficients for both regression models.

Influence Factor Coefficient of Determination Coefficient of Association

Noise intensity 0.6764 −0.7639
Light intensity 0.9431 −0.9169

Table 2 shows that the coefficient of determination for light intensity is higher than 0.9,
indicating high goodness-of-fit, whereas the coefficient of determination for noise intensity
is lower than 0.7, indicating low goodness-of-fit. The absolute value of the correlation
coefficient for light intensity is also higher than 0.9, indicating a strong linear correlation.
The corresponding value for noise intensity is higher than 0.75, also showing a good linear
correlation. However, because of the low goodness-of-fit for the noise intensity regression
model (67.64%), only light intensity is considered hereafter.

3. Improvement of the Watershed Segmentation Algorithm Using the OpenCV Library

Image segmentation is an important part of image analysis. To retrieve and measure
all features of interest from the full image, the original must be separated into meaningful
subsets or regions.

3.1. The OpenCV Watershed Segmentation Algorithm

The purpose of image thresholding is to separate the pixel set into subsets defined by
their gray level value, with each subset or region corresponding to the real scene. Each
region is described by consistent internal attributes that are different from those of adjacent
regions. Subsetting can be achieved by selecting appropriate gray-level thresholds [28].

The watershed algorithm in OpenCV improves on the original algorithm by adding a
preprocessing step: converging and non-converging valleys are selected before segmenta-
tion. To avoid a known oversegmentation issue affecting the original watershed algorithm,
OpenCV uses a series of predefined markers to guide the image segmentation definition.
As input, the OpenCV algorithm requires a labeled image for which pixel gray values are
32-bit signed positive numbers and each non-zero pixel represents a label.
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During the segmentation process, the top regions of the bubbles are identified first
and optimal structural elements are selected using an adaptive segmentation parameter se-
lection method. Then, the output of the watershed algorithm is obtained by morphological
processing of the foam image, which becomes coarsely segmented.

Uneven bubble mixing produces under- and oversegmented regions. To minimize
this effect, we use a fuzzy texture spectrum algorithm—with good real-time texture feature
extraction and area segmentation (fuzzy c-means clustering algorithm)—and a support
vector machine for regional identification. After identifying undersegmented and overseg-
mented areas, finer segmentation is applied to the undersegmented areas. This method can
effectively be used to solve the problem of inappropriate segmentation [29].

3.2. Flow Improvement for the OpenCV Watershed Segmentation Algorithm

As mentioned in Section 3.1, the foam image is first clustered with the Fuzzy C-means
clustering algorithm—implemented in the “fuzzy-c-means” Python module [30]—and the
top regions of the bubbles are identified. An adaptive segmentation parameter selection
method is used to select the optimal structural elements, morphological processing is
applied to the foam image to derive the watershed algorithm output image, then the foam
image becomes coarsely segmented. The algorithm flow is shown in Figure 14.

3.3. Comparison of Experimental Results from Segmentation Simulations

For this analysis, a library of 80 flotation foam images acquired in December 2021 was
selected from the image database of a lead-zinc mine in Yunnan Province. The selected
images were extracted from video footage recorded during two work shifts in different
working conditions. Because the images show a flotation foam without background non-
uniform adhesion, segmentation must meet the real-time performance requirements of the
flotation process. To evaluate the segmentation performance, this manuscript compares the
original and improved versions of the OpenCV watershed segmentation algorithm with
the result of expert manual segmentation.

Full evaluation of the algorithm performance includes a subjective evaluation and
an objective assessment. The subjective evaluation is conducted by skilled personnel who
visually evaluate the segmentation results. The objective evaluation is a statistical analysis
of the automatic segmentation results using expert manual segmentation as a reference.
A segmentation evaluation index k is defined to compare the automatic segmentation
algorithms and the manual segmentation reference:

k = 2× N(M ∩ S)
N(M) + N(S)

× 100% (25)

Here, M and S are the results from expert manual segmentation and from the automatic
segmentation algorithms, respectively; the intersection M∩S represents the segmentation
regions common to the manual and automatic results; and N represents the number
of regions identified during the manual—N(M)—and automatic—N(S)—segmentation
experiments or common to both—N(M∩S). Operation time is also compared.

An image acquired in typical working conditions is randomly selected from the
80-image library for a segmentation simulation. The original gray image is shown in
Figure 15a and the enhanced image after Retinex compensation is shown in Figure 15b.
Segmentation results for the standard watershed segmentation algorithm are shown in
Figure 15c. Results for the improved watershed segmentation algorithm proposed in
this paper, after enhancement with the Retinex image compensation method, are shown
in Figure 15d. For the selected image, representative of typical working conditions, the
standard watershed algorithm segments the foam image into 55 bubbles, but the improved
watershed algorithm yields 66 bubbles.
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The difference between the standard and improved versions of the watershed seg-
mentation algorithm is apparent in Figure 15c,d. Both versions yield good results, with
generally accurate segmentation of the foam image into conventional regions. In good
working conditions, segmentation results are similar for both algorithms. However, the
selected image (Figure 15a) includes several bright spot areas near the edges of the frame.
In this case, operating assumptions for the watershed algorithm are not met. Thus, uneven
illumination causes improper segmentation for both algorithm versions relative to the man-
ual segmentation reference, but with comparatively better performance of the improved
watershed algorithm. The improved algorithm developed in this work is markedly more
robust and accurate, and yields results closer to manual segmentation. Therefore, it is more
suitable for foam image segmentation under less favorable working conditions.

3.4. Statistical Analysis of the Segmentation Simulation Results

Simulation results for the standard and improved versions of the watershed segmen-
tation algorithm are given in Table 3.

Table 3. Evaluation of the segmentation results for the standard watershed algorithm and for the
improved version defined in this work.

Algorithm Mean Split Time (s) Average Segmentation
Accuracy (%)

Watershed algorithm 5.863 88.73
Improved watershed algorithm 5.285 92.06
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To compare the real-time performance of both algorithms, 50 flotation foam images
were randomly selected for segmentation from the image library. To reduce the manual
segmentation error, the results of five manual segmentation operations were averaged to
produce a reference segmented image. Segmentation accuracy relative to the reference
and operation time is calculated for both algorithms. As seen in Table 3, the accuracy of
the improved watershed algorithm is 3.3% higher than that of the standard algorithm and
the operation time is reduced by 9.9%. Segmentation results from both algorithms are
comparable when the image is segmented. However, the proposed algorithm is faster
and yields markedly higher segmentation accuracy for non-uniform flotation foam images
under fluctuating working conditions.

4. Conclusions

During the industrial mineral flotation process, bubble size and morphology reflect
real-time changes in the flotation conditions. Accurate foam image segmentation algo-
rithms must be able to adapt to such fluctuating conditions. In this paper, we proposed an
improved version of the watershed segmentation algorithm implemented in the OpenCV
library of the versatile, open-source Python programming language. The improved al-
gorithm was applied to flotation foam images and segmentation results were compared
with results from the OpenCV standard watershed segmentation algorithm and from
manual segmentation.

(1) First, the flotation foam images were enhanced with the Retinex image compensation
method—also implemented in a Python module. Strong-contrast area recognition and
illumination compensation of the flotation foam image were improved, with a better
visual result and more possibilities to extract useful details from the foam image.

(2) A linear regression model was developed, also in Python, to analyze major factors
influencing the segmentation accuracy. Application of the model to light and noise
intensity showed that both factors had an influence on flotation foam segmentation,
larger for light intensity.

(3) The improved version of the OpenCV watershed segmentation algorithm proposed
in this paper, also written in Python, yielded better results than the standard version.
Segmentation time was 3.3% shorter and segmentation accuracy increased by 9.9%.
Comparison with results from the standard watershed algorithm and from manual
segmentation showed that the proposed algorithm is accurate and robust.
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