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This Special Issue is a collection of papers from some of the leading researchers dis-
cussing new findings or cutting-edge developments relating to all aspects of fluid mechanics.

Amongst the various forces acting on particles in a fluid, the Basset force, related
to the fluid inertial effects, is one of the most difficult to study. Procopio and Giona [1]
developed a modal expansion of the force acting on a micrometric particle. They show that
the viscoelastic effects of the fluids studied induce the regularization of inertial memory,
stemming from the finite propagation velocity. They derive an analytical expression for the
fluid inertial kernel for a Maxwell fluid, and they also propose a general method to provide
accurate approximations of this expression for complex fluids.

Hydropower plants have a high storage capacity and are capable of quick responses;
as a result, they are increasingly being used to facilitate and integrate the intermittent
energy from other renewable sources of energy, for example, wind and solar energy. At
times, the operation of hydro turbines is limited by the formation of a Rotating Vortex
Rope (RVR) in the draft tube. Arabnejad et al. [2] studied this phenomenon by using scale-
resolving methods, namely, SST-SAS, wall-modeled LES (WMLES), and zonal WMLES.
Their numerical simulations consider the effects of different scale-resolving methods on
capturing flow, and the results indicate that for a small amount of vapor, cavitation induces
broadband high-frequency fluctuations, and as the amount of cavitation increases, these
fluctuations tend to have a dominant frequency different from that of the RVR.

There has been a tremendous increase in the applications of fractional calculus as a
new and efficient mathematical tool for analyzing the properties of non-linear materials
and relating the parameters in the models to experimental results. Lenzi et al. [3] studied
the solutions of a generalized diffusion-like equation using a spatial and time-fractional
derivative; in their equations, the presence of the non-local terms, related to reaction or
adsorption–desorption processes, are also accounted for. They used the Green function
approach to obtain solutions. Their study can help us to understand the different scenarios
that can occur in connection with diffusion and anomalous diffusion processes.

The study of oscillating airfoils at moderate Reynolds numbers is a suitable candidate
for testing the transition and modification needed in the standard Reynolds-Averaged
Navier–Stokes (RANS) equations. Alberti et al. [4] used a high-order discontinuous
Galerkin solver to study two-dimensional flapping foils at moderate Reynolds numbers
when subject to different prescribed harmonic motions. Their simulations show an increase
in the effectiveness in predicting loads, which is the case at low Strouhal numbers. Further-
more, their transition model seems to accurately predict wake topology, which is directly
related to thrust/drag generation.

Methane pyrolysis appears to be among the new benign technologies for produc-
ing hydrogen with zero greenhouse gas emissions, and it is especially suitable for solar
energy applications with high-temperature process heat. Msheik et al. [5] examined the
possibility of using solar methane pyrolysis as a decarbonization process, producing both
hydrogen gas and solid carbon with zero CO2 emissions. They designed a novel hybrid
solar/electric reactor at the PROMES-CNRS laboratory to handle the difficulties associated
with direct normal irradiance (DNI). They also used Computational Fluid Dynamics (CFD)
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simulations and investigated the performance of this reactor under different operating
conditions. The results of their numerical simulations agree with their experimental results,
indicating the applicability of the proposed solar hybrid reactor design for efficient methane
decomposition performance.

Vortex stretching and bursting are among the main causes of turbulence and the
interactions at different scales of energy transfer; these are generally related to some of
the terms in equations of motion, inertia, compression, diffusion, and dissipation. The
vortex filament is also noticed in the Taylor–Green vortex, which is different from the
simulation results based on the Navier–Stokes equations. Caltagirone [6] studied this
problem using spectral analysis and by allowing the decay of kinetic energy to be a function
of the wave number.

Waris and Lappa [7] studied the mixed buoyancy–Marangoni convection of a fluid
over an inclined layer heated from below and unbounded from above. They used a
thermographic visualization technique and took multiple temperature measurements at
different points. Using a computer-based reconstruction of the spatial distribution of
wavelengths, they show that this flow arrangement can develop interesting patterns, such
as spatially localized cells, longitudinal wavy rolls, and finger-like structures.

Flow over rough surfaces occurs in many engineering applications and in nature (for
example, flow inside pipes, around turbine blades, atmospheric boundary layers, etc.).
The effects of roughness and its impact on flow have been studied extensively. Salomone
et al. [8] studied flow over strips placed regularly along the mean stream. They used
wall-modeled large-eddy simulations (WMLES) and improved delayed detached-eddy
simulations (IDDES) (a hybrid method solving the Reynolds-averaged Navier–Stokes
(RANS)) equations near the wall, while the large-eddy simulations (LES) were used in
the core of the flow. They noticed that the modifications due to roughness can produce
certain non-equilibrium effects, and memory of the upstream conditions also seem to be an
important factor in the computational modeling of this flow.

Peristaltic flow occurs in many biological processes, such as digestion, which is an
important component of any in silico model of the stomach. Obtaining an analytical
solution that can be used for model verification is highly desirable. Liu et al. [9] used a
smooth particle hydrodynamics (SPH) code (from CSIRO) and developed a model for use
in the stomach wherein wall motion, buoyancy, acid secretion, and food breakdown are
included. They used two different numerical methods, namely, the Finite Volume Method
(FVM) and the SPH, to study this problem. The simulations show that both methods
provide very good agreement with the analytical model.

Studies on synthetic jet actuators (SJAs) have shown a potential to delay flow sep-
aration over surfaces, offering applications in aerodynamics, where flow control can be
achieved via injection through the external excitation of an enclosed cavity volume. In
general, SJAs are smaller than an aircraft’s wingspan, and as a result, they are used in an
array form. Arafa et al. [10] experimentally studied the effect of the excitation frequency
of SJAs on the mean jet velocity issuing from an array of circular orifices. They focused
on the acoustic excitation characteristics of the actuator’s cavity. They noticed that a large-
aspect-ratio-cavity volume with multiple peaks can correspond to the standing-wave-mode
shapes of the cavity.

The rheological responses of complex materials such as suspensions, dispersion,
slurries, etc., are generally different from those of Newtonian fluids; some of these fluids
exhibit non-linear effects such as yield stress, and among the most-used models with yield
stress are the Bingham, Herschel–Bulkley, and Casson models. Calus et al. [11] studied
the two-dimensional linear stability of a regularized Casson fluid flowing down an incline.
Their results, which were obtained using the long-wave approximation method, indicate
that the critical Reynolds number at which instability arises depends on the material
parameters, the angle of inclination, and the prescribed inlet discharge. They also show that
the flow of a Casson-type material over an inclined plane becomes increasingly stable as
yield stress increases. This behavior, interestingly, is the opposite of that for a Bingham fluid.
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Double-diffusive convection in a porous medium is a challenging topic of study due
to the non-linearity inherent in the problem, where, in addition, the Darcy law can cause
large-scale damping. Liu and Knobloch [12] studied thermal convection with salinity as
a passive scalar; they used direct numerical simulations (DNS), and through the single-
mode solutions, they reproduced the root-mean-square and mean temperature profiles of
time-dependent states at high Rayleigh numbers. Their results show the potential for this
single-mode approach to be applied to other flow configurations where coherent structures
are dominant due to the presence of large-scale damping.

With the further requirement and demand for the use of renewable energy to produce
electricity, steam turbine power plants are being operated at a low load, where it is possible
for the steam turbine rear stages to absorb power from the turbine shaft; this can lead to
the so-called “ventilation phenomenon”. Mambro et al. [13] correlated the state of the
steam within the rotor channel to the measurements obtained downstream of the blades
for different ventilation regimes. In their case, the ventilation power was related to the
drag force that acts on the moving blades. Their results indicate that the drag coefficient is
highly correlated with the Reynolds number based on the reverse blade height.

Computational studies related to membrane system design have shown the effective-
ness of performance measures, where, for example, fouling and flow unsteadiness can
be induced via different spacer configurations. Heinz et al. [14] numerically studied the
local mass distributions in membrane systems and showed that the collective interaction
of operation conditions (OCs) can provide further insight into understanding the related
problems in the advection–diffusion equation. Using a Fourier series model (FSM), they
obtained the exact solutions of an advection–diffusion equation for a wide range of OCs.

Amongst the promising approaches to turbulence modeling, one can mention the
two-equation turbulence models in the framework of Reynolds-averaged Navier–Stokes
(RANS) equations. As pointed out by Heinz [15], the existing hybrid RANS-LES methods
suffer from some inherent problems, which can be alleviated by using a generalization of
the continuous eddy simulation (CES) methods. It is also shown that the minimal error
methods associated with flows of incompressible fluids can be extended to stratified and
compressible flows; this can provide valuable input for the design of consistent turbulence
models for cases with significant modeling uncertainties.

The measurement of mass transfer intensity in bubbly flows is an important challenge
in innovative bioreactor design. To acquire a better understanding of these multiphase
flows, Computational Fluid Dynamics (CFD) approaches can be used to describe flows
in the bioreactor loop. Starodumov et al. [16] presented the results they obtained when
using a developed thermometry method to evaluate the key performance in a bioreactor,
for example, the volumetric mass transfer coefficient, which is an important parameter
in the design, operation, scaling-up, and optimization of bioreactors. They designed a
mass-transfer apparatus for growing different microorganisms to study a jet bioreactor
with the recirculation of liquid and gas phases of a given rheology system.

Bubble dynamics, including bubble formation and dissolution, significantly impact
industrial applications, ranging from the production of beverages to foam-manufacturing
processes; the rate of bubble expansion or contraction is one of the most important parame-
ters affecting these processes. Maloth et al. [17] studied the motion and expansion of an
isolated bubble due to mass transfer in a pool of a supersaturated gas–liquid solution. They
numerically solved the advection–diffusion equation and examined the effects of gas–liquid
solution parameters, such as the inertia, viscosity, surface tension, diffusion coefficient,
system pressure, and solubility of the gas, on the solution. They noticed that surface tension
and inertia do not significantly influence bubble expansion, whereas viscosity, pressure,
diffusion, and solubility have a noticeable impact on bubble growth.

Recent experimental results indicate that rising gas columns can produce interesting
oscillations. Gergely and Néda [18] numerically studied the convective flows of heated
fluid columns in a gravitational field using a simplified 2D geometry. They used the
FEniCS package to solve the coupled Navier–Stokes and heat equations. In their study,
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they examined a hydrodynamics computer simulation where, for simplicity, heated fluid
columns are used instead of ascending Helium columns; this way, they were able to
reproduce the experimentally observed data.

The flow of a bubble through a confining pore can be affected by the surface roughness
and the geometry of the pore. Studies have shown that pore-scale interactions, in addition
to the entrance critical pressure and a strong interaction of an isolated dispersed phase and
pore geometry, can lead to additional pressure at the exit of the pore geometry. Ansari and
Nobes [19] investigate the motion of an isolated bubble through different pore geometries;
their simulations indicate that pore shape and surface roughness have a significant effect on
the passage of the isolated phase. They were also able to detect the phase-pinning pressure,
which can cause a delayed response in multiphase flows in the pore structures.

Dilute flows of gas–solid particles occur in various aspects of industry, such as pneu-
matic transport, fluidized beds, vertical risers, cyclones, flow-mixing devices, etc. To
understand the interaction between a fluid and particles, it is important to know the
forces acting on the particles. In the numerical simulation of such flows, the Lagrangian
Particle-Tracking method is often used, where packets of individual particles are tracked,
recognizing that the main forces acting on the particles are those of gravity and drag.
Dodds et al. [20] performed a CFD analysis to study the effects of particles situated both
perpendicular and parallel to the flow direction; their results show that the neighboring
particles perpendicular to the flow seem to increase the drag force at close separation
distances, whereas when entrained particles are co-aligned with the flow, the drag force
seems to be reduced for close separation distances and increases as the distance increases.

The main role of the mitral valve (MV), which has an elliptical shape and is composed
of an annulus and two leaflets, is to enable and regulate the appropriate flow of blood into
the left ventricle (LV). Valve asymmetry presents a special challenge for modern cardiac
surgery. Collia and Pedrizzetti [21] performed a systematic numerical study using a healthy
ventricle and an ideal valve with varying degrees of valve asymmetry. As they indicate,
their computational model should not be confused with an FSI model, since, in their
approach, they do not include the elastic properties of the tissues. Their results can provide
some important pre-surgical information as to which type of valve asymmetry can be used
for correct valve repair/replacement.

Fluid/fluid interfaces and interfacial rheology are important areas of research for
rheologists and modelers. These types of processes can occur in flows of foam and emulsion-
based applications along with certain chemical processes such as liquid–liquid extraction,
froth flotation, wastewater treatment, or tertiary oil recovery. Guzmán et al. [22] provide a
review of this topic, focusing on the study of the fluid/fluid interfaces with dilatational
stresses. The authors examine the available experimental and theoretical models for the
dilatational rheology of fluid/fluid interfaces and discuss the effect of the non-linear
character of dilatational deformation on the rheological response of these interfaces.

Finally, I would like to thank all the authors who contributed to this Special Issue.
Without their contributions and without the help of qualified reviewers, it would not
have been possible to organize this Special Issue. I am also grateful to all the anonymous
reviewers for their help. I would like to extend a personal note of appreciation and
gratitude to Ms. Wing Wang and the Editorial staff of the Fluids Office; without their help
and assistance, Fluids could not publish high-quality papers in a short period of time.
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Abstract: This article develops a modal expansion (in terms of functions exponentially decaying
with time) of the force acting on a micrometric particle and stemming from fluid inertial effects
(usually referred to as the Basset force) deriving from the application of the time-dependent Stokes
equation to model fluid–particle interactions. One of the main results is that viscoelastic effects
induce the regularization of the inertial memory kernels at t = 0, eliminating the 1/

√
t-singularity

characterizing Newtonian fluids. The physical origin of this regularization stems from the finite
propagation velocity of the internal shear stresses characterizing viscoelastic constitutive equations.
The analytical expression for the fluid inertial kernel is derived for a Maxwell fluid, and a general
method is proposed to obtain accurate approximations of it for generic complex viscoelastic fluids,
characterized by a spectrum of relaxation times.

Keywords: microparticle dynamics; complex viscoelastic fluids; fluid inertial effects; time-dependent
Stokes equations; modal expansion

1. Introduction

Microfluidics and the study of fluid–particle interactions at a microscale represent not
only a vast area of practical engineering applications [1,2] as they provide the opportunity of
addressing fundamental physical questions in fluid dynamics [3–5], such as the relevance of
acoustic propagation in liquid hydrodynamics [6–8], the nature of the boundary conditions
and the occurrence of slip effects [9–11], as well as the role of the finite propagation velocity
in the evolution of internal stresses [8,12].

A significant role in this research is played by the study, both theoretical and exper-
imental, of Brownian motion, i.e., of the motion of micrometric particles in a quiescent
fluid. This is due to the fact that Brownian motion is a central problem in statistical physics,
from the early age of Einstein, Langevin, Smoluchowski, Perrin, [13–16] up to now [17,18],
providing a direct way of quantifying the influence of thermal fluctuations and of studying
the interactions between a fluid and a particle, thus permitting the investigation of the
role and the relative relevance of different hydrodynamic effects. In this sense, Brownian
motion represents an invaluable probe to verify experimentally fundamental fluid dynamic
properties at short time and length scales [11,19].

The last two decades have seen an increasing attention on the experimental analysis
of Brownian motion at short time scales in different fluids (gases and liquids) [20–24], with
different rheological properties (Newtonian, viscoelastic) [25]. The experimental results have
confirmed many predictions of the hydrodynamic theory of Brownian motion [26–28], and
in some cases have raised fundamental questions involving basic principles of statistical
mechanics [29].

The analysis of the velocity autocorrelation function of a micrometric particle in a
liquid phase has shown the importance of fluid inertial contributions, expressed by the
occurrence of the Basset force and of the added-mass term [30] in the expression of the force
exerted by a fluid on a rigid object [22,23]. These terms arise in the low-Reynolds number
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hydrodynamics, using the time-dependent Stokes equations, and provide a power-law
decay of the particle velocity autocorrelation function [25], to be compared with the expo-
nential decay occurring if solely the Stokesian drag is considered [31,32]. Indeed, the use of
the time-dependent Stokes equation, instead of the instantaneous Stokes formulation, is
well justified and appropriate when addressing micrometric particle motion in liquids at
short time scale, due to the high frequencies characterizing thermal fluctuations. Conse-
quently, while the Reynolds number is extremely small in these systems, the product of
the Reynolds number times the Strouhal numbers is order of unity, justifying the inclusion
of the inertial contribution expressed as the time derivative of the velocity in the hydro-
dynamic equations. In the case of viscoelastic fluids, characterized by time-dependent
constitutive equations, this statement is a fortiori valid.

The rheological modeling of complex viscoelastic fluids is well consolidated as regards
the quantitative description of viscoelastic properties [33]. As regards the dynamics of
a microparticle, this corresponds to the formulation of a generalized Langevin equation
with a dissipative memory kernel [34–36]. This class of equations has been introduced
by Zwanzig in connection with the interaction of a physical system with a heat bath,
and the fluctuation–dissipation theorem for this class of systems has been obtained by
Kubo [37]. On the other hand, the hydrodynamic analysis of Brownian motion and the
numerical simulation experiments by Alder and Wainwright [38] have clearly indicated
that fluid inertial contributions are of paramount importance in order to correctly predict
particle dynamics.

The current approach to particle motion in complex fluids is essentially based on the
direct hydrodynamic simulation of particle motion [39,40]. What is missing is a physically
consistent and computationally tractable formulation of particle dynamics in viscoelastic
fluids, analogous to the corresponding equation of motion (which includes Stokes friction,
the Basset force and the added mass effect) that apply for Newtonian ones. These equations
can be derived into two steps: (i) via the detailed characterization of the fluid inertial
contribution to particle motion in a complex fluid, expressing it in a computationally
effective representation, and (ii) by generalizing the Kubo fluctuation–dissipation theory in
order to include fluid-inertial contributions. In this article, we focus essentially on the first
issue, leaving the second one to a forthcoming work.

Albeit the present analysis is focused on the hydrodynamic theory of particle motion,
its application to microfluidic engineering for particle separation and nanoparticle produc-
tion and optimization is significant. Indeed, the obtained result could be directly applied to
the design of microfluidic systems enforcing the rheological properties of complex fluids in
the limit of Stokesian hydrodynamics. In point of fact, the importance of inertial effects
and rheological properties in separation devices is well known, e.g., in connection with
the Segré-Silberberg effect [40,41], although this effect involves flows at non-vanishing
Reynolds numbers [4,42].

The aim of this article is two-fold. A first goal involves the development of the
modal representation of the fluid inertial contributions in the expression of the particle
equation of motion in a fluid phase. This naturally leads to a simple field-theoretical
representation of these effects. The second goal involves the mathematical structure of the
inertial memory kernels entering the convolutional representation of the Basset forces, and
their basic qualitative properties derived from fundamental physical principles. Specifically,
it is shown that for any viscoelastic fluid (and all the liquids fall in this category, even if
their characteristic relaxation times could be extremely small), the inertial memory kernel
accounting for the generalized Basset contribution is bounded and non-singular near time
t = 0.

The article is organized as follows. Section 2 introduces the hydrodynamic problem,
the representation of fluid inertial effects and their implications in microparticle dynamics.
Section 3 analyzes the modal representation of the Basset force, and its compact description
in terms of a simple field equation. Moreover, it is shown in Section 3.2 that the modal
representation also provides an efficient computational tool to study inertial particle motion.
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This is an important topic that recently emerged in the fluid-dynamic literature [43–45] in
connection with the numerical solution of the Maxey–Riley equation [46] (see also [47] and
references therein). Specifically, the modal expansion transforms the integro-differential
equations of motion into a system of ordinary differential equations. Section 4 addresses the
boundedness of the resulting memory kernels in the presence of viscoelastic constitutive
equations, outlining the physical and computational relevance of this result. For a simple
Maxwell fluid, the expression of this kernel is obtained in closed form, and a general
method for approximating it for generic complex viscoelastic fluids is proposed. Finally,
Section 4.3 describes the connection between the present theory and the generalization of
the Kubo fluctuation–dissipation theory to include fluid inertial effects in the stochastic
equations of motion for a microparticle in a heat bath at constant temperature.

2. Fluid–Particle Interactions and Inertial Effects

Consider the motion of a micrometric rigid spherical particle of radius R in a un-
bounded incompressible fluid. Assume that the fluid is Newtonian, and ρ and μ represent
its density and viscosity, respectively. Without loss of generality, assume neutrally buoyant
particles (i.e., possessing the same density as the liquid), as the inclusion of Archimedean
forces is immaterial in the present analysis. Let BR be the domain representing the space
occupied by the particle, ∂BR its boundary and Vp(t) its translational velocity. Since we
are considering the motion of a Brownian particle in a still liquid (the liquid is referred
to be still if its velocity field originates exclusively from thermal motion of the immersed
Brownian particle), the momentum balance equation for the particle reads

m
dVp(t)

dt
= F f→p[Vp(t)] + S(t) (1)

where F f→p[Vp(t)] represents the force exerted by the fluid on the particle, and is a func-
tional of the particle velocity, expressed by the surface integral over ∂BR,

F f→p[Vp(t)] = −
∫

∂BR
(τ + p I) · er dS (2)

where τ is the shear stress tensor, p the pressure, I the identity matrix and er is the unit
radial vector (we consider a reference system with the origin at the center of the spherical
particle) and S(t) is a stochastic contribution describing the thermal force fluctuation.

Indicating with v(x, t) the fluid velocity field, in the low-Reynolds number regime it
is the solution of the time-dependent Stokes equations

ρ
∂v

∂t
= −∇ · τ −∇p , ∇ · v = 0 , x ∈ R3/BR (3)

equipped with the boundary and initial conditions,

v(x, t)|x∈∂BR = Vp(t) , v(x, t)|t=0 = 0 (4)

Equation (4) corresponds to the no-slip assumption. For an incompressible Newtonian
fluid,

τ = −μ
(
∇v +∇vT

)
(5)

where the superscript “T” indicates transpose, so that Equation (3) is a linear partial
differential equation for v(x, t) (the time-dependent Stokes equation)

ρ
∂v

∂t
= μ∇2v −∇p (6)

where, from Equation (3), the velocity field v(x, t) is incompressible. Owing to the linearity
of Equations (5) and (6), the functional F f→p[Vp] is a linear and causal functional of the
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particle velocity Vp(t). Causality means that F f→p[Vp(t)] depends solely on the velocity
history in the interval [0, t).

Under these conditions, the force exerted by the fluid onto the rigid spherical particle
can be expressed analytically. Let us indicate with F̂ f→p(s) the Laplace transform of
F f→p[Vp] (henceforth, we will indicate with f̂ (s) =

∫ ∞
0 e−s t f (t) dt the Laplace transform

of any function f (t) of time t, and with s the complex-valued Laplace variable), F̂ f→p(s)
attains the expression [48,49]

− F̂ f→p(s) = 6 π μ R V̂p(s) + 6 π

√
ρ μ

s
R2

(
s V̂p(s)

)
+

2
3

ρ π R3
(

s V̂p(s)
)

(7)

Transforming Equation (7) back into the time domain, one obtains

F f→p[Vp(t)] = −6 π μ R Vp(t)

−6
√

π ρ μ R2
p

∫ t

0

1√
t − τ

(
dVp(τ)

dτ
+ Vp(0) δ(τ)

)
dτ − 2

3
ρ π R3 dVp(t)

dt
(8)

where Vp(0) is the initial condition for the particle velocity at t = 0. The first term at the
r.h.s. of Equation (8) is the Stokesian friction, with the factor η = 6 π μ R, corresponding
to the only dissipative term occurring also in the case of the instantaneous Stokes regime.
The two other contributions at the r.h.s. stem from fluid inertial effects, and depend on the
history of particle acceleration up to time t. The first of these terms is the convolutional
integral of dVp(t)/dt with the kernel k(t) given by

k(t) =
6
√

π ρ μ R2
√

t
(9)

and it is usually referred to as the Basset force. Let us observe that kernel k(t) is singular at
t = 0. This property will be thoroughly analyzed in Section 4. The last term at the r.h.s. of
Equation (8) is an instantaneous inertial contribution proportional to the actual value (i.e., at
time t) of the acceleration dVp(t)/dt of the particle, and it defines the hydrodynamic added
mass ma = 2ρ π R3/3, equal to half of the mass of the fluid displaced by the particle [31].
Let us observe within the Basset term the occurrence of a contribution proportional to
Vp(0)δ(τ), in the case Vp(0) �= 0. Equation (8) can be compactly written as

me
dVp(t)

dt
= −η Vp(t)− k(t) ∗

(
dVp(t)

dt
+ Vp(0) δ(t)

)
+ S(t) (10)

where me = m + ma is the extended mass and “∗” indicates convolution. The physical
importance of the Basset contribution can be appreciated by considering the velocity auto-
correlation tensor of a Brownian particle, Cv(t) = 〈Vp(t)⊗ Vp(0)〉, where “⊗” indicates
the dyadic tensor product and “〈·〉” the ensemble average over the probability measure
of the thermal fluctuations. Since 〈S(t) ⊗ Vp(0)〉 = 0, as it is physically reasonable to
assume that the thermal fluctuations S(t) at time t ≥ 0, are independent of (uncorrelated
to) the velocity fluctuations at any previous time instant t = 0 [32,37] (this principle is
by some authors referred to as the principle of causality [50], and it essentially states the
non-anticipativity of the action of thermal fluctuations as regards its effects on the particle
velocity), by taking the tensorial product of both members of Equation (10) and averaging
over the statistics of thermal fluctuations (the operations of time derivative and convolution
commute with 〈·〉), we obtain the evolution equation for Cv(t),

m∗ dCv(t)
dt

= −η Cv(t)− k(t) ∗
(

dCv(t)
dt

+ Cv(0)
)

(11)

9
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equipped with the isotropic initial condition

Cv(0) = 〈V2〉 I (12)

where 〈V2〉 is the squared variance of any entry Vp,h(t), h = 1, 2, 3 of the particle veloc-
ity vector (proportional at thermal equilibrium to the temperature of the fluid). There-
fore, due to this symmetry, the velocity autocorrelation function can be expressed as
Cv(t) = 〈V2〉 cv(t) I, where the scalar function cv(t) satisfies Equation (11) with cv(0) = 1.
The occurrence of the Basset contribution determines a qualitative change in the long-term
scaling of cv(t) with respect to the purely dissipative case (corresponding to considering
the fluid motion in an instantaneous Stokes flow). In the latter case, the long-term decay
is exponential, i.e., cv(t) = e−η t/m while inertial effects induce an asymptotic power-law
scaling cv(t) ∼ t−γ, with γ = 3/2 in the free space [25,37].

The application of Equation (10) in the Lagrangian analysis of particle motion, in
the case the kernel k(t) attains the Basset form expressed by Equation (9), raises three
main issues:

• A computational issue, as the presence of a convolution in the equations of motion
implies that the entire history of Vp(t) over the time interval [0, t) should be stored in
order to evaluate it;

• An analytical issue, associated with the singularity of the Basset kernel k(t) at t = 0;
• A physical issue, related to the determination of the stochastic force S(t), in the case

that inertial effects are accounted for.

The first problem is analyzed in the next section, in terms of modal representations.
The second one is treated on physical grounds in Section 4. The last point, related to the
determination of S(t), is one of the main issues of fluctuation–dissipation theories [32,37].
To the best of our knowledge, a computationally valid approach to the determination
of S(t) in the presence of the Basset term is lacking, although formal results have been
proposed [51]. This point will be addressed in forthcoming works, as it pertains mostly to
statistical physics than to strict hydrodynamic theory.

3. Modal Representation

The idea behind modal representations lies in the expression of the fluid inertial mem-
ory term entering the particle equation of motion as a linear superposition of elementary
stochastic modes, susceptible of a simple evolution. We use the diction “stochastic” in
this context, to pinpoint the fact that since S(t) �= 0, the velocity Vp(t) is itself a stochastic
process, as well as any other process functionally dependent on Vp(t).

Let us consider Equation (10), and without loss of generality let us set Vp(0) = 0. Since
the problem of Brownian motion in the free space is isotropic, we can exclusively consider a
scalar formulation of it, setting Vp(t) instead of Vp(t). Let us assume in the remainder that
the stochastic representation of S(t) (replacing S(t) as a scalar formulation is considered)
is known.

Consider a family of stochastic processes y(t; λ) parameterized with respect to
λ ∈ [0, ∞) and fulfilling the equations

dy(t; λ)

dt
= −λ y(t, λ) + q

dVp(t)
dt

(13)

where q is a constant to be determined. Let us suppose y(t = 0; λ) = 0 so that

y(t; λ) = q
∫ t

0
e−λ (t−τ) dVp(τ)

dτ
dτ (14)

The inertial memory kernel can be expressed as a linear superposition of these pro-
cesses. To this end, let p(λ) the probability density of occurrence of y(t; λ), so that p(λ) dλ

10
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represents the infinitesimal weight factor in the representation of the memory inertial
contribution. Thus, the particle equation of motion can be expressed as

m∗ dVp(t)
dt

= −η Vp(t)− q
∫ ∞

0
p(λ) y(t; λ) dλ︸ ︷︷ ︸

I

+S(t) (15)

The integral I entering Equation (15) can be rewritten in convolutional form as

I =
∫ t

0

[
q
∫ ∞

0
p(λ) e−λ(t−τ) dλ

]
dVp(τ)

dτ
dτ = kp(t) ∗ dVp(t)

dt
(16)

thus defining the kernel kp(t).
Let us assume for p(λ) the following expression

p(λ) =
{

A λ−1/2 λ < λc
0 otherwise

(17)

where λc > 0, and A is the normalization constant such that
∫ ∞

0 p(λ) dλ = 1. In this case,
setting z = λc t,

kp(t) =
q A√

t

∫ λc t

0

e−z
√

z
dz (18)

Let us observe that kp(0) = q, while for t > 0, and for large λc, λct can be approximated
by an infinite value, and thus

kp(t) =
q A√

t

∫ ∞

0

e−z
√

z
dz =

q A π√
t

(19)

The constant q can be always defined in order to match the asymptotics of the Basset
kernel Equation (9). Therefore, the modal expansion Equation (15) provides an inertial
kernel that does not match the singular behavior of the Basset kernel near t = 0, but still
represents an excellent approximation of it for t large enough. The regularity of the inertial
kernel will be questioned in the next section starting from physical arguments.

If one is interested in obtaining exactly the modal expansion for the Basset kernel,
a slightly different parameterization can be chosen by considering the modes y(t; k),
k ∈ [0, ∞), still satisfying the linear relaxation dynamics Equation (13), with the relax-
ation rates λ = λ(k) depending quadratically on the parameter k, i.e.,

λ(k) = λ0 k2 (20)

with λ0 > 0, consequently,

y(t; k) = q
∫ t

0
e−k2(t−τ) dVp(τ)

dτ
dτ (21)

Assuming that all the modes at different ks concur uniformly in the expansion of
the inertial force, i.e., that the weight function does not have a probabilistic meaning, the
integral I in the k-representation becomes

I =
∫ ∞

0
y(t; k) dk = kk(t) ∗

dVp(t)
dt

, kk(t) = q
∫ ∞

0
e−λ0 k2t dk (22)

providing

kk(t) =
q
2

√
π

λ0 t
(23)
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and thus the parameters q and λ0 can be always determined in order to exactly match the
Basset kernel Equation (9).

3.1. Diffusional Field Representation

The quadratic spectral representation based on the dispersion relation Equation (20)
suggests the Basset inertial term could be viewed as the consequence of the interaction of
diffusional models associated with a scalar field with the particle. It is therefore interesting
to further develop this field approach.

Let u(x, t) be a scalar field of fluctuations, evolving according to a pure diffusion
equation over the real line, perturbed by an impulsive forcing term F(x, t)

∂u(x, t)
∂t

= α
∂2u(x, t)

∂x2 + F(x, t) (24)

with α > 0 and
F(x, t) = δ(x − xc) f (t) (25)

where f (t) is a generic function of time. The forcing F(x, t) represents the action of the
particle onto the field (corresponding to the fluid continuum) while the scalar field u(x, t)
represents the fluid flow. Set u(x, t = 0) = 0, the solution of Equations (24) and (25) can be
expressed in terms of the diffusional Green function as

u(x, t) =
∫ t

0
dτ

∫ ∞

−∞

1√
4 π α (t − τ)

e−(x−x′)2/4 α (t−τ)F(x′, τ) dτ

=
∫ t

0

1√
4 π α (t − τ)

e−(x−xc)2/4 α (t−τ) f (τ) dτ (26)

Let uc(t) = u(x = xc, t). From Equation (26) it follows that

uc(t) =
1√

4 π α

∫ t

0

f (τ)√
t − τ

dτ (27)

which admits the same functional form of the Basset memory integral. This formal result
has also been obtained in [45] (see also [47]), with a different approach, and with a purely
computational motivation. Below we are interested in going beyond the pure mathematical
formalism, providing a physical interpretation of the field representation of the Basset force.

Let us consider a one-dimensional approximation of the momentum exchange between the
fluid, with velocity v(x, t), and the particle, with velocity Vp(t). This can be modeled by consid-
ering a one-dimensional moment balance equations in the fluid of purely diffusional nature

ρ
∂v(x, t)

∂t
= μ

∂2v(x, t)
∂x2 + f (x, t) (28)

where f (x, t) is the force density exerted by the particle onto the fluid which can be written
as an impulsive contribution centered at the particle center of mass xc,

f (x, t) = ρ Lc δ(x − xc)
dVp(t)

dt
(29)

where, from dimensional analysis, the parameter Lc has the dimension of a length, and
corresponds to length scale of inertial influence, in the fluid, due to the perturbation induced
by the motion of the particle. From physical reasons, Lc is of the order of magnitude of the
particle radius, and the choice

Lc = D = 2R (30)

12
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where D is the particle diameter, provides, as shown below, the correct value of Lc matching
the Basset force. The inertial force exerted by the fluid onto the particle F(i)

f→p can be viewed
as a dissipative Stokesian contribution evaluated at the fluid velocity vc(t),

F(i)
f→p = −6 π μ R vc(t) (31)

Comparing Equations (24) and (25) with Equations (28)–(30), and making use of
Equation (27), it follows that

vc(t) =
√

ρ

4 π μ
D

∫ t

0

1√
t − τ

dVp(τ)

dτ
dτ (32)

and from Equation (31) one finally obtains

F(i)
f→p = −6 π μ

√
ρ

4 π
D R

1√
t
∗ dVp(t)

dt
= −6

√
π ρ μ R2 1√

t
∗ dVp(t)

dt
(33)

that is exactly the Basset force. This result is physically interesting and requires some
interpretation. It indicates that the inertial Basset contribution can be viewed as the inertial
dissipation of the fluid elements nearby the solid particle, due to the perturbation exerted
by the particle onto the fluid itself. This physical interpretation bears some analogies with
Darwin’s description of fluid inertial effects [30]. The fact that a scalar model correctly
describes the fluid inertial effects onto particle dynamics is a remarkable property, as
the fluid hydrodynamics involves vectorial entities, the velocity field v(x, t), subjected
to constraints, in the present case the solenoidal nature of v(x, t), stemming from the
incompressibility of a liquid phase, corresponding to the case of principal theoretical and
engineering interest. Whether this would be a purely mathematical result, or a deeper
physical property is a matter that we leave open to future investigation. Interpreted on
physical grounds, this result indicates that the fluid inertial contributions to the dynamics
of immersed bodies are completely independent of the compressibility of the fluid. If this
observation would be correct, it follows that in any isotropic problems, as the particle
motion is in a unbounded fluid phase, a scalar field model would correctly describe
the physics of a fluid–particle inertial interaction. This situation is altogether similar to
the properties of the other inertial contribution, namely the added-mass term, which is
independent of the constitutive equations in the fluid, and for this reason it can be estimated
from the inviscid (Eulerian) approximation of the flow [31].

3.2. A Numerical Case Study

Let us consider the modal expansion in Equations (20)–(22) and its discretization with
respect to k. Let kmax be the maximum value of k considered, and Δk the step size in the
discretization. Assuming q = 2/

√
π, for the sake of normalization, the expression for kk(t)

becomes

kk(t) =
2 Δk√

π

N

∑
i=1

e−(i Δk)2 t (34)

where N = [kmax/Δk] and [x] represents the closest integer to the real-valued x. In the limit
for Δk → 0, and kmax → ∞, kk(t) defined by Equation (34) converges to k∞(t) = 1/

√
t.

Figure 1a depicts the behavior of the discretized kk(t) at kmax = 10 for decreasing values
of Δk. As expected, as Δk decreases to zero, the deviations of kk(t) from k∞(t) become
negligible for t > 1/k2

max.
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Figure 1. Behavior of the discretized kk(t) defined by Equation (34) for different discretizations. Panel
(a) refers to kmax = 10, lines and symbols (a) to (c) correspond to Δk = 1, 0.1, 0.01, respectively. Line
(d) represents k∞(t) = 1/

√
t. Panel (b) kmax = 100, Δk = 0.01 (line a), while line (b) depicts k∞(t).

Similarly, the value of kmax controls the convergence to k∞(t) at short time scales.
Figure 1b depicts the behavior of kk(t) at kmax = 100, Δk = 0.01. An accurate representation
for k∞(t) is achieved for t > 10−4. The analysis of these data indicates that kmax controls
the behavior of kk(t) near t = 0, which reaches a finite limiting value k(0) � kkmax. This
property seems to be a basic limitation of any discretization of the Basset force. In point of
fact, as shown in the next section, the occurrence of a bounded value of kk(0) is a physical
constraint derived from the viscoelastic nature of a liquid phase. And all the fluid, including
water at room temperature, possesses a characteristic non vanishing relaxation time.

Consider Equation (10) for a macroscopic particle (radius greater than a millimeter
or higher), for which the stochastic fluctuations could be neglected. Substituting on it the
modal expansion Equation (34), we have

me
dVp(t)

dt
= −η Vp(t)− 2 β Δk√

π

N

∑
i=1

e−(i Δk)2 t ∗
(

dVp(t)
dt

+ Vp(0) δ(t)
)

= −η Vp(t)− 2 β Δk√
π

N

∑
i=1

zi(t) (35)
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where β = 6
√

π ρ μ R2, as it stems from Equation (9), and zi(t), i = 1, . . . , N is a system
of N auxiliary degrees of freedom accounting for fluid inertial effects, the equations for
which read

dzi(t)
dt

= −μi zi(t) +
dVp(t)

dt

= −(μi + η) zi(t)− 2 β Δk√
π

N

∑
i=1

zi(t) (36)

where μi = (i Δk)2, and the impulsive initial contribution has been included into the initial
condition for zi(0) = Vp(0).

Equation (35) represents a major advantage of the model expansion compared to
the more recent computational approaches for addressing inertial particle motion [47],
as it reduces the integro-differential particle equations of motion to a system of ordinary
differential equations that can be solved using standard numerical routines. The analysis
here presented for a quiescent fluid can be straightforwardly extended to the presence of a
macroscopic (e.g., pressure-driven) velocity field in the fluid phase.

4. Regularity of Inertial Kernels

The second main issue addressed in this article concerns the regularity of the inertial
memory kernels k(t), once basic physical requirements (such as the bounded propagation of
any physical phenomenon, limited by the speed of light vacuo, as a consequence of relativ-
ity theory) are taken into account. We have seen in Section 2 that the Basset kernel diverges
at t = 0, as seen in Equation (9). As explained below, this is a consequence of the infinite
propagation velocity of the internal stresses that characterize the Newtonian constitutive
Equation (5). This phenomenon is altogether analogous to the divergence of interfacial
fluxes in heat/mass transfer parabolic problems in the presence of a discontinuity between
the initial and the boundary conditions at a boundary. This problem can be resolved by
removing the paradox of infinite propagation velocity intrinsic to any Fickian/Fourier
constitutive equation, simply considering the hyperbolic extension of the transport prob-
lem [52].

In the hydrodynamic case, the corresponding hyperbolic generalization merely con-
sists in accounting for fluid viscoelasticity, which is a generic property of any liquid
phases. In point of fact, even water at ambient conditions (temperature T = 300 K, pres-
sure p = 105 Pa) behaves as a viscoelastic fluid, but its characteristic relaxation time,
θc � 1 ps [53,54], is so small that it can be neglected in the overwhelming majority of
hydrodynamic problems, since the observation time scales in most of the practical cases of
interest are widely larger than θc.

To begin with, let us consider the case of a viscoelastic fluid characterized by a single
relaxation time θc (Maxwell fluid). Neglecting the nonlinear terms in the objective definition
of the viscoelastic constitutive equation involving the Oldroyd upper convective deriva-
tive [33] (which are small for the typical conditions of Brownian and micrometric particles in
microchannels), Equation (5) is replaced by the following viscoelastic constitutive equation:

θc ∂τ

∂t
+ τ = −μ

(
∇v +∇vT

)
(37)

that in the Laplace domain takes the following simple expression:

τ̂(x, s) = −μ̂e(s)
[
∇v̂(x, s) +∇v̂(x, s)T

]
(38)

where
μ̂e(s) =

μ

θc (s + 1/θc)
(39)
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Consequently, the Laplace transform of F̂ f→p(s) of the force subjected by the particle is
still given by Equation (7), with the constant viscosity μ replaced by the function μ̂e(s). As
well known, this modifies the instantaneous dissipative Stokesian friction F

(d)
f→p[Vp(t)] =

−η Vp(t) into a memory term

F
(d)
f→p[Vp(t)] = −η

1
θc

∫ t

0
e−(t−τ)/θc

Vp(τ) dτ (40)

while the inertial Basset term attains in the Laplace domain the form −k̂(s) sV̂p(s) with

k̂(s) =
β√
θc

1√
s (s + 1/θc)

(41)

where β = 6 π
√

ρ μ R2. It is easy to see that the presence of a non-vanishing relaxation time
θc > 0 determines a finite value of k(t) for t = 0. Enforcing the initial value theorem of
Laplace transforms, we have from Equation (41)

lim
t→0

k(t) = lim
s→∞

s k̂(s) =
β√
θc

(42)

In point of fact, the inverse Laplace transform of k̂(s) is given by

k(t) =
β√
θc

e−t/2θc
I0

(
t

2 θc

)
(43)

where I0(ξ) is the modified Bessel function of the first kind, which possesses the following
asymptotic behaviors:

I0(0) = 1 , I0(ξ) =
eξ

√
2 π ξ

[
1 + O

(
1
ξ

)]
(44)

From Equation (44), the asymptotics of the Newtonian Basset kernel is recovered for
t � θc. This phenomenon is depicted in Figure 2 for several values of θc. The viscoelastic
kernel practically coincides with the Basset counterpart of a Newtonian fluid for t > 5 θc.

10-1

101

103

105

10-10 10-8 10-6 10-4 10-2 100

a

b

c

d

k
(t

)/
β

t

Figure 2. Rescaled inertial kernel k(t)/β, Equation (41) vs t for a simple Maxwell fluid, characterized
by the relaxation time θc. Lines (a) to (c) refer to θc = 10−4, 10−6, 10−8, respectively. Line (d) depicts
the asymptotic nondimensional Basset curve, k(t)/β = 1/

√
π t.
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The occurrence of a finite value for k(0) has been observed in Newtonian fluids once
slip boundary conditions are enforced at the surface of the solid particle [55–57]. The
physical reason for this occurrence, and the eventual analogy with the viscoelastic case, is
still an open question.

4.1. Field-Theoretical Analysis

The result expressed by Equation (43) can be recovered from the field approach
addressed in the previous section. The presence of viscoelastic effects characterized by a
single relaxation time θc implies to substitute the parabolic diffusion model Equation (28)
with the hyperbolic Cattaneo equation

ρ θc ∂2v(x, t)
∂t2 + ρ

∂v(x, t)
∂t

= μ
∂2v(x, t)

∂x2 + f (x, t) (45)

while f (x, t) is identical to Equation (29). The solution of this impulsive model, with
v(x, 0) = ∂v(x, t)/∂t|t=0 = 0, takes the following form (see [58], p. 320):

v(x, t) =
1
2

√
ρ θc

μ

D
θc

∫ t

0
e−(t−τ)/2 θc

I0

(
1

2 θc

√
(t − τ)2 − (x − xc)2 ρ θc/μ

)
dVp(τ)

dτ
dτ (46)

that for x = xc, and t ≥ τ reduces to

vc(t) =
1
2

√
ρ

μ θc D
∫ t

0
e−(t−τ)/2 θc

I0

(
t − τ

2 θc

)
dVp(τ)

dτ
dτ (47)

providing the same expression for k(t) derived above, as seen in Equation (43).

4.2. Extension to Complex Fluids

The analysis developed above for a viscoelastic fluid possessing a single relaxation
time can be generalized to more complex and real fluids. The problem can be stated as
follows. Consider a real fluid and suppose to have obtained from rheological experiments
the functional form of the dissipation memory kernel G(t) entering the expression of the
dissipative contribution to the force exerted by the fluid on a spherical particle

F
(d)
f→p[Vp(t)] = −6 π R

∫ t

0
G(t − τ)Vp(τ) dτ (48)

Does this information provide a way to quantify the inertial contribution, and specifi-
cally the expression for the generalized Basset force in this fluid?

This problem can be tackled as follows. The convolutional nature of Equation (48)
suggests that the constitutive equation for the shear stresses is of the form

Lt[τ] = −μ
(
∇v +∇vT

)
(49)

where Lt is a linear operator acting on the stress tensor τ, and containing its derivatives of any
order n, n = 0, 1, . . . , with respect to time, and eventually also its fractional time derivatives
(Riemann–Liouville operators) [59]. In the Laplace domain, Equation (49) becomes

�̂(s) τ̂(x, s) = −μ
[
∇v̂(x, s) +∇v̂(x, s)T

]
(50)

where �̂(s) is a function of the Laplace variable s. Equation (50) coincides with Equation (38),
and μ̂e(s), coinciding with Ĝ(s), is now expressed by

μ̂e(s) =
μ

�̂(s)
= Ĝ(s) (51)
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The analysis developed above for a Maxwell fluid can be applied to this more gen-
eral problem, providing for the Laplace transform of the inertial memory kernel the
following expression:

k̂(s) = 6
√

ρ R2

√
Ĝ(s)

s
(52)

The inverse Laplace transform k(t) of k̂(s) defined by Equation (52) cannot be ob-
tained analytically for generic Ĝ(s). Nevertheless, it is always possible to derive accurate
representations for k(t) enforcing Equation (52).

In order to make a practical example, consider the rheological data for polydime-
thilsiloxane at T = 25 ◦C reported in [33], for which an accurate representation involves
the occurrence of N = 5 relaxation rates λh, h = 1, . . . , N,

G(t) =
N

∑
h=1

ah e−λh t (53)

where λh = 1/θc
h, h = 1, . . . , N are the relaxation rates i.e., the reciprocal of the relaxation

times θc
h. The values for λh and for the expansion coefficients ah can be found in [33] (p. 114),

and the graph of the resulting G(t) is depicted in Figure 3a. Applying Equation (52) to this
case we obtain

k̂(s) = α

√√√√1
s

N

∑
h=1

ah
s + λh

, α = 6 π
√

ρ R2 (54)

The graph of k∗(s) = k̂(s)/α is depicted in Figure 3b (symbols). The data can be
accurately approximated over the time scales of interest by a linear combination of the
inertial contributions obtained for the simple Maxwell fluid Equation (41), each of which is
characterized by a different relaxation time

k∗(s) =
Ni

∑
h=1

ch√
s (s + bh)

(55)

Making use of Equation (43), the memory inertial kernel k(t) is given in this case by
the expression

k(t) = α
Ni

∑
h=1

ch e−bh t/2 I0

(
bh t
2

)
(56)

For the use made above of the solutions obtained for the simple Maxwell fluid, each
term of the form (41) in the Laplace domain, and (43) in the time domain, can be referred to
as a “prototypical visco-inertial mode”. In the present case, it is sufficient to consider the
combination of Ni = 2 prototypical visco-inertial modes, and the resulting approximation
is depicted in Figure 3b. The values of the parameters are c1 = 125 a.u., b1 = 1.52 s−1,
c2 = 420 a.u., b2 = 65 s−1. The corresponding inertial memory kernel k(t), i.e., the graph of
Equation (56), is depicted in Figure 4.
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Figure 3. Panel (a) G(t) vs t for polydimethilsiloxane at T = 25 ◦C. Panel (b) (symbols) k∗(s) = k̂(s)/α

vs s for the same fluid, obtained from Equation (54). The solid line is the approximation of these data
using Ni = 2, prototypical visco-inertial modes, as discussed in the main text.
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From this practical example, we can draw the following conclusions:

1. Enforcing the constitutive model Equation (49), corresponding to the rheological
description of a complex viscoelastic fluid, it is possible to derive the functional form
of the fluid inertial kernel k(t) from rheological data, i.e., from the functional form
of G(t);

2. The fluid inertial kernel k(t) can be expressed as linear combination of a few proto-
typical visco-inertial modes;

3. The number Ni of modes required to provide an accurate representation of k(t)
does not necessarily coincide with the number N of dissipative (exponential) modes
adopted for reconstructing G(t).

Of course, it is possible to provide alternative representations of k(t), e.g., adopting the
modal decomposition discussed in Section 3. While for an accurate representation of the
classical Basset kernel, a uncountable system of exponentially decaying modes is required,
the physical constraint of bounded k(t) permits to achieve accurate approximation for k(t)
using a finite (and relatively small) number of exponentially decaying modes.

4.3. Toward a Comprehensive Theory of Brownian Motion

To conclude, we can frame another central issue that takes advantage of the present
theory. For a microparticle in a quiescent fluid (Brownian particle), the equations of motions
in a real complex fluid, accounting for viscoelastic dissipation, fluid inertial effects and
thermal fluctuations can be expressed in the form

me
dVp(t)

dt
= −h(t) ∗ Vp(t)− k(t) ∗

(
dVp(t)

dt
+ Vp(0) δ(t)

)
+ S(t) (57)

where h(t) is the viscoelastic kernel proportional to G(t) defined by the linear functional
form Equation (53), and k(t) is the corresponding fluid inertial kernel, the properties of
which have been addressed in the previous section. From rheological data, the viscoelastic
kernel can be expressed as a linear combination of N modes, where usually N < 10 for
most of the fluids [33], i.e., h(t) = ∑N

j=1 hj e−λj t. In a similar way, the fluid inertial kernel
k(t) analyzed in the previous section can also be accurately approximated by means of a
system of exponentially decaying modes,

k(t) �
Ni

∑
i=1

ki e−μi t (58)

where the rates μi > 0, i = 1, . . . , Ni, are in general not related to the relaxation rates λj,
j = 1, . . . , N and Ni � N. The property that k(0) is bounded ensures, as discussed in
the previous section, that the approximation Equation (58) can be arbitrarily accurate in
the metrics of continuous functions. This means that for any ε > 0, there exist a finite
Ni, and finite rates μi > 0, i = 1, . . . , Ni, such that

∣∣∣k(t)− ∑Ni
i=1 ki e−μi t

∣∣∣ < ε for any t ≥ 0.
Consequently, Equations (57) reduce to the form

me
dVp(t)

dt
= −

N

∑
j=1

hj e−λj t ∗ Vp(t)−
Ni

∑
i=1

ki e−μi t ∗
(

dVp(t)
dt

+ Vp(0) δ(t)
)
+ S(t) (59)

In order to solve these stochastic differential equations, the expression for S(t) should
be determined, and it would constitute the generalization of the celebrated Kubo fluctuation–
dissipation theorem of the second kind [32,37], of which the original formulation is re-
stricted to the pure dissipative case (i.e., to k(t) = 0). The analysis of this problem is
beyond the scope of this article and it will be addressed in a forthcoming work [60]. It
can however be anticipated that the occurrence of a finite value of k(0), coupled with
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the modal expansion of the memory kernels (h(t) and k(t)) provide the key physical and
formal ingredients toward an elegant solution of this problem.

5. Concluding Remarks

This article has presented a comprehensive description of the mathematical properties
of the fluid inertial kernel entering the particle equation of motion in a complex viscoelastic
fluid. Two main conclusions can be drawn from the present analysis and results. The
modal expansion addressed in Section 3 naturally leads to a simplified field-theoretical
representation of the fluid inertial effects. The latter has been successfully applied to
non-trivial cases, such as a Maxwell fluid, in order to relate the disappearance of the
k(t)-singularity at t = 0 with the physics of stress propagation. It is noteworthy that a
simple one-dimensional field-theoretical description could capture the inertial fluid–particle
interactions in isotropic conditions (free space). This point deserves further investigation.

The boundedness of k(0) is indeed a consequence of the finite propagation velocity of
the internal shear stresses, and this is in agreement with fundamental physical principles
(special relativity theory). The importance of this result is that the regularity of the fluid
inertial kernel has been derived from physical principles, and not as the result of ad hoc
mathematical regularization/mollification techniques. In rheological modeling, this simply
corresponds to the occurrence of a viscoelastic constitutive model with non-vanishing
relaxation times. For the sake of clarity, the inclusion of viscoelasticity does not ensure
either that the corresponding hydrodynamic model is Lorentz covariant [61] nor that all the
hydrodynamic perturbations (for instance, density and pressure waves) would propagate
at finite speed. In order to match the latter condition, the occurrence of acoustic modes
should be included in the description of hydromechanical phenomena as discussed in [8].

The case of a Maxwell fluid, characterized by a single relaxation time, not only provides
an analytic expression for the fluid inertial kernel k(t), but it represents the prototypical
model for expressing the fluid inertial effects of more complex fluids. The representation of
k̂(s) starting from rheological data on the dissipation kernel G(t) is a simple but relevant
result, which applies to any complex fluids.

We have considered in this article spherical micrometric particles, but the obtained
results are independent of the geometry of the particles and of the flow domain. Con-
sequently, these results can be extended to particles of arbitrary shape, and to confined
geometries of flow devices, provided that the parameters controlling the expression for the
force acting on the particle (attaining a tensorial character [5,49]) are known in the case of a
Newtonian fluid.

The results obtained in this article are also propedeutical for addressing and solv-
ing the other crucial problem associated with micrometric particle motion mentioned in
Sections 2 and 4.3, namely the determination of an analytical representation for the stochas-
tic force S(t) at thermal equilibrium in the presence of fluid inertial effects. This represents,
in the terminology introduced by Kubo [32,37], the fluctuation–dissipation relation of the
second kind (see [32], p. 37 and the discussion therein), in the presence of fluid inertial
effects. This topic is outside the scope of the present article and it will be addressed else-
where [60]. Nevertheless, it is important to mention that the key ingredient for an elegant
solution of this problem is represented by the boundedness of the fluid inertial kernel
k(t), proved in the present work for viscoelastic fluids. This could lead to an entropic
characterization of the dissipation effects deriving from rheological/inertial properties of
complex fluids into which a diffusing Brownian particle is immersed and moves under
constant temperature conditions.
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Abstract: The integration of intermittent renewable energy resources to the grid system requires that
hydro turbines regularly operate at part-load conditions. Reliable operation of hydro turbines at these
conditions is typically limited by the formation of a Rotating Vortex Rope (RVR) in the draft tube. In
this paper, we investigate the formation of this vortex using the scale-resolving methods SST-SAS,
wall-modeled LES (WMLES), and zonal WMLES. The numerical results are first validated against the
available experimental data, and then analyzed to explain the effect of using different scale-resolving
methods in detail. It is revealed that although all methods can capture the main features of the RVRs,
the WMLES method provides the best quantitative agreement between the simulation results and
experiment. Furthermore, cavitating simulations are performed using WMLES method to study
the effect of cavitation on the flow in the turbine. These effects of cavitation are shown to be highly
dependent on the amount of vapor in the RVR. If the amount of vapor is small, cavitation induces
broadband high-frequency fluctuations in the pressure and forces exerted on the turbine. As the
amount of cavitation increases, these fluctuations tend to have a distinct dominant frequency which
is different from the frequency of the RVR.

Keywords: cavitating simulations; rotating vortex rope; scale-resolving simulations; synchronous
pressure fluctuations

1. Introduction

Due to their large storage capacity and quick response, hydro power plants are more
and more being used to facilitate the integration of intermittent energy produced by other
renewable sources of energy such as wind and solar to the grid system. This requires
that hydro power plants expand their range of operation and also operate frequently at
off-design conditions. In such off-design operation, the flow in different components of
a hydro power plant is prone to complex behaviors and instabilities. One example is the
formation of a Rotating Vortex Rope (RVR) in the draft tube which is associated with a
high level of pressure fluctuations in the system. These pressure fluctuations can cause
oscillation in the mechanical loading of the runner, causing a significant swing in the power
produced by the hydro power plant [1,2]. Furthermore, the pressure drop in the core of
the RVR can lead to the formation of vapor pockets in the water flow, known as cavitation.
The presence of cavitation in hydro turbines is known to have several undesirable effects,
such as cavitation erosion [3], performance degradation [4], and increased level of pressure
fluctuations and vibration [5].

The detrimental effects of the RVR for hydro turbines operating at off-design conditions
have motivated several experimental studies with the aim to investigate the formation of the
RVR and its associated cavitating structures. Nishi et al. [6] experimentally examined non-
cavitating and cavitating RVRs at different flow conditions. They observed that the pressure
fluctuations induced by the RVR can be decomposed into synchronous and convective
components. Iliescu et al. [7] studied the dynamics of non-cavitating and cavitating RVRs
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using High-Speed Visualization (HSV) and Particle Image Velocimetry (PIV) measurements.
They concluded that the formation of vapor pockets in an RVR can lead to fluctuations in
its geometrical features. Favrel et al. [8] and Arpe et al. [9] studied the effect of cavitation
on the pressure fluctuations induced by the RVR. They both concluded that cavitation
formation in the RVR can influence both the amplitude and the frequency of the pressure
fluctuations. Further, Landry et al. [10] showed that the presence of cavitation in the RVR
can alter the eigenfrequency of the hydraulic system by changing the sound propagation
speed in the liquid. This can lead to severe vibrations and power swing if there is a match
between this eigenfrequency and the frequency of induced pressure fluctuations by the
RVR [1,2].

In addition to experimental investigations, CFD simulations have been used to inves-
tigate this flow. In the majority of these simulations, Reynolds-averaged Navier–Stokes
(RANS) approaches are used as they have lower computational cost compared to scale-
resolving methods. These RANS simulations have been shown to have deficiencies in
capturing the correct behavior of RVRs. Ciocan et al. [11] studied the dynamics of the
RVR using unsteady RANS and showed that their results under-predicted the level of
swirl in the flow entering the draft tube and differed by 13% in RVR frequency compared
to the experimental data. Similar deficiency has been observed by Liu et al. [12] who
performed unsteady RANS simulations of the RVR in a draft tube and compared the level
of pressure fluctuations with the experimental data. Furthermore, the simulations by
Ruprecht et al. [13] have shown that using a RANS approach over-estimates the decay of
the swirling flow around the RVR, which results in the under-prediction of the pressure fluc-
tuations caused by the RVR. Despite these deficiencies, a few studies have used the RANS
approach to study the effect of cavitation on the behavior of RVRs. Yu et al. [14] performed
RANS simulations of a cavitating RVR and revealed that the presence of cavitation affects
the vorticity production around the RVR as well as the pressure fluctuations generated in
the draft tube. Jošt et al. [15] performed simulations of cavitating and non-cavitating flows
in a Francis turbine and compared the results with experimental data. They showed that it
is necessary to consider cavitation in the simulation to correctly reproduce the RVR-induced
pressure fluctuations in the experiment.

To avoid the limitation of RANS approaches in capturing the correct behavior of
RVRs, several numerical studies have used scale-resolving approaches to examine non-
cavitating and cavitating RVRs. Salehi et al. [16] and Salehi and Nilsson [17] investigated
the formation of RVRs during the startup and shutdown in a Francis turbine using a scale-
resolving approach. By analyzing the results, they were able to explain the complex flow
behavior leading to the formation of RVRs in the draft tube. Foroutan and Yavuzkurt [18]
studied the RVR using DES and found a good agreement between their numerical results
and experimental data. By analyzing the DES results, they postulated that the RVR is
created in the shear layer between the region of low axial velocity in the center of the
draft tube cone and the flow outside of this region, due to Kelvin–Helmholtz instability.
Minakov et al. [19] used DES to study the RVR in the draft tube at different guide vane
openings, and found that changing the guide vane opening leads to a different swirl
number and discharge coefficient, which leads to different behavior of the RVR. Rajan
and Cimbala [20] studied the flow in a simplified draft tube using the DES approach
for different discharge coefficients. It was shown that the level of pressure fluctuations
increases substantially when the RVR is formed in the draft tube. Guo et al. [21] used
the LES approach to simulate cavitating flows in the draft tube. They highlighted the
importance of including the runner to predict the low-pressure region in the center of the
RVR. Pacot et al. [22] performed LES simulations for cavitating RVRs and showed that
a large amount of cavitation in the RVR can prevent its precession motion, leading to a
reduction of the RVR-induced pressure fluctuations.

Although the numerical studies reviewed above have highlighted the importance
of using scale-resolving methods to capture the correct behavior of the RVR, only a few
of them have performed a detailed comparison between the performance of different
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scale-resolving approaches. Furthermore, detailed analyses of how cavitation affects the
flow features of the RVR are also scarce in the literature. To address this knowledge gap,
in the present paper, the formation of non-cavitating and cavitating RVRs in the Francis-
99 turbine is investigated using three scale-resolving methods. The simulation results
are compared with the experimental data provided through the Francis-99 workshop,
and the differences between the results obtained by different scale-resolving methods are
highlighted. Then, cavitating simulations are performed for three cavitating conditions,
covering the condition near the inception of cavitation in the RVR to the fully cavitating RVR.
Using these simulations, the effect of cavitation on the behavior of the RVR, the generated
pressure fluctuations and the forces exerted on different component of the turbine are
discussed in detail. This paper is organized into five sections. After this introduction, the
next section briefly summarizes the employed numerical set-up. Then, the studied turbine
and flow conditions are described in the following section. The results are presented in the
fourth section, where first the effects of different scale-resolving methods on capturing the
flow features are discussed, and then, the effects of cavitation on the flow features of the
RVR are explained in detail.

2. Numerical Set-Up

In this paper, the modified interPhaseChangeFoam solver [23–25] from the OpenFOAM-
2.2.x framework [26] is used to perform the simulations. The governing equations in
this solver are the incompressible Navier–Stokes equations for two-phase (liquid-vapor)
isothermal flows. Using the homogeneous mixture approach, only one set of equations
is solved for the two-phase mixture. Similar to turbulent single-phase flows, turbulent
two-phase mixture flows include a wide range of scales. For engineering flow, RANS, LES,
or zonal hybrid RANS/LES approaches can be employed, where the governing equations
of a two-phase mixture with homogeneous assumption read

∂

∂t
(ρ) +∇ · (ρũ) = 0, (1)

∂

∂t
(ρũ) +∇ · (ρũ ⊗ ũ) +∇ · ([pI − τ]) +∇ · (τunres) = 0, (2)

where ρ is the mixture density, u is the velocity vector, p is the pressure, I is the identity
tensor, τ is the viscous stress tensor, and τunres is the stress tensor due to unresolved
turbulence in the flow. The tilde operation on the velocity vector in the above equations, ũ,
represents a time-averaging operation in the RANS approach or spatial filtering in the LES
approach. Assuming that the mixture of liquid and vapor is homogeneous and that the
dynamic viscosity and the density in each phase are constant, the mixture viscous stress
tensor, τ, and the mixture density ρ can be obtained from

τ = (αlμl + αvμv)S, (3)

ρ = αlρl + αvρv, (4)

where S is the mixture strain tensor, and αl , αv, ρl , and ρv are, respectively, the liquid
volume fraction, the vapor volume fraction, the density of the liquid and the density of the
vapor. In order to close the governing equations, αl , αv and τunres should be determined. In
non-cavitating simulations, the liquid volume fraction, αl , is equal to 1 while the volume
fraction of the vapor phase, αv, is equal to zero in the entire domain. For two-phase
cavitating flows, αl is obtained using a transport equation, reading

∂

∂t
(αlρl) +∇ · (αlρl ũ) = ṁ, (5)
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where ṁ is the mass transfer term due to vaporization and condensation. The vapor volume
fraction, αv, is then determined using αv + αl = 1. To model the mass transfer term, ṁ, the
Schnerr–Sauer model [27] is used in this paper. This term can written as

ṁ = αl
(

ṁαl
v
− ṁαl

c

)
+ ṁαl

c
, (6)

where ṁαl
c

and ṁαl
v

are, respectively, condensation and vaporization terms and can be
defined as

ṁαl
c
= Ccαl 3ρlρv

ρRB

√
2

3ρl

√
1

|p − pv|max(p − pv, 0), (7)

ṁαl
v
= Cv

(
1 + αNuc − αl

)3ρlρv

ρRB

√
2

3 ρl

√
1

|p − pv|min(p − pv, 0). (8)

In the above equations, Cc and Cv, the condensation and vaporization constants, are 1, pv is
the vapor pressure, αNuc is the initial volume fraction of nuclei, and RB is the radius of the
nuclei which is obtained from

RB =
3

√
3

4πn0

1 + αNuc − αl

αl . (9)

The initial volume fraction of nuclei is calculated from

αNuc =

πn0d3
Nuc

6

1 + πn0d3
Nuc

6

, (10)

where the average number of nuclei per cubic meter of liquid volume, n0, and the initial
nuclei diameter, dNuc, are assumed to be 1011 and 10−5, respectively.

To model the τunres term, the eddy-viscosity hypothesis is used as

τunres = −2μunresS̄ +
2
3

kunresI, (11)

where μunres is the eddy viscosity and kunres is the unresolved turbulent kinetic energy. In
this paper, we use three models to approximate μunres and kunres which are explained in
the following.

2.1. SST-SAS RANS Approach

The eddy viscosity, μunres, and unresolved turbulent kinetic energy, kunres, represent,
respectively, the turbulent viscosity, μt, and the turbulent kinetic energy, kt within the
context of the RANS approach. Here, these terms are modeled using the Shear Stress
Transport-based Scale-Adaptive Simulation model (SST-SAS) [28,29]. In this turbulence
model, the turbulent kinetic energy, kt, and the turbulent specific rate of dissipation, ωt, are
calculated using transport equations. These two terms are then used to calculate μt as

μt = ρa1
kt

max(a1ωt, b1F23S)
, (12)

where S is the invariant measure of the strain rate, a1 and b1 are constants, and F23 is a
blending function. The transport equation for kt in SST-SAS is the same as the equation in
the k-ω SST turbulence model [30], and can be written as

∂kt

∂t
+∇ · (ũkt) = Pk +∇2

[
1
ρ
(μ + μt)kt

]
− β∗ωtkt, (13)
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where Pk and β∗ are, respectively, the production term and a constant. The transport
equation for ωt can be read as

∂ωt

∂t
+∇ · (ũωt) = α

Pk
μt

−∇2
[

1
ρ
(μ + μt)ωt

]
− βω2

t − 2(F1 − 1)ρσw2
1
ω
∇kt∇ωt + QSAS, (14)

where α, β, and σw2 are constants, F1 is a blending function, and QSAS is an extra term com-
pared to the equation in the k-ω SST turbulence model. This extra term can be obtained as

QSAS = max

[
ρζ2κS2

(
L

LvK

)2
− C

2ρkt

σΦ
max

(
|∇ωt|2

ω2
t

,
|∇kt|2

k2
t

)
, 0

]
, (15)

where ζ2, κ, σΦ, and C are constants. In Equation (15), L and LvK are the modeled turbulence
length scale and the von Karman length scale, respectively, which are defined as

L =

√
k

c1/4
μ ω

, LvK = max

(
κS

|∇2ũ| , Cs

√
κζ2

β/cμ − α

)
, (16)

where cμ, β, Cs and α are constants.

2.2. WALE LES Approach

Within the LES context, μunres and kunres are the sub-grid scale viscosity, μsgs, and the
sub-grid turbulent kinetic energy, ksgs, respectively. Here, the wall-adapting local eddy-
viscosity (WALE) LES model proposed by Nicoud and Ducros [31] is used to model these
terms as

μsgs = CkΔ
√

ksgs, (17)

ksgs =

(
C2

wΔ
Ck

)2
(S̃dS̃d)3((

S̃S̃
)5/2

+
(
S̃dS̃d

)5/4
)2 , (18)

where Δ is the cell length scale calculated based on the cubic root of the cell volume and
Ck = 1.6 and Cw = 0.325 are the model constants. S̃ and S̃d are also, respectively, the
resolved-scale strain rate tensor and traceless symmetric part of the square of the velocity
gradient tensor.

2.3. Zonal RANS/LES Approach

In the zonal approach, the SST-SAS RANS and WALE LES approaches are used in
predefined regions of the domain. To mark these predefined regions, a scalar field rLES is
set to 1 in the LES regions and zero in the RANS regions. Using this scalar field, the μunres
and kunres can be obtained as

μunres = rLESμsgs + (1 − rLES)μt, (19)

kunres = rLESksgs + (1 − rLES)kt, (20)

where μsgs and ksgs are obtained using the WALE LES approach from Equations (17) and (18),
while μt and kt are determined using the SST-SAS RANS approach from Equations (12) and (13).

2.4. Discretization Schemes and Solution Algorithm

To discretize convective terms in the momentum equations, the Linear-Upwind Stabi-
lized Transport (LUST) convection scheme is used. This scheme blends 2nd order upwind
(25%) and central differencing (75%) schemes [32]. The discretization of diffusion terms in
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the momentum equations are done using the linear scheme. For the convective term in the
liquid volume fraction transport equation, the first-order upwind scheme is used. Using
this scheme is consistent with the mixture assumption and is recommended in the original
publication [33] for the Schnerr–Sauer model. A second-order backward implicit scheme
is used for time discretization and a pressure-based PIMPLE approach, a combination of
SIMPLE and PISO algorithms, is employed to solve the discretized equations. To ensure
the convergence of the algorithm, the residual target for the pressure and velocities are set
to 10−13 for the simulations with cavitation and 10−7 for the simulations without cavitation.
For more details about the solution procedure, the reader can refer to Asnaghi et al. [24]
and Bensow and Bark [23].

3. The Francis-99 Turbine and Computational Mesh

In this paper, the Francis-99 turbine model is used. This turbine is a scaled-down
model of the prototype Francis turbine installed at the Tokke power plant in Norway [34].
The computational domain shown in Figure 1 includes the spiral casing, the stay vanes, the
guide vanes, the runner, and the draft tube. There are 14 stay vanes and 28 guide vanes. The
runner includes 15 splitter blades and 15 full-length blades. The inlet and outlet diameters
of the runner are 0.63 m and 0.347 m, respectively. The mesh in different components
of the turbine are produced using the Pointwise V18.3 mesh generation software. The
mesh specifications for each component are shown in Table 1. The mesh has 20.88 M
cells, which according to the mesh dependency studies performed for simulations of the
Francis-99 turbine found in the literature [35–39] is enough for mesh-independent results
of the flow in the draft tube. The table also shows that the average y+ value is larger than
1 for all components; therefore, the wall function based on Spalding’s law is used at the
walls [25,40,41]. It should be mentioned that using the wall function for the simulations of
the flow in the draft tube of Francis turbines is justified as the work by Wilhelm et al. [42]
showed that resolving near-wall regions instead of using the wall function has insignificant
effects on the captured flow in the draft tube.

Figure 1. Computational domain and mesh in the runner and draft tube.

Table 1. Mesh resolution.

Components # of Cells Average y+

SC+SV+GV 10.12 M 20

RU 5.13 M 12

DT 5.63 M 14

Total 20.88 M 17
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As mentioned in Section 2, we use a zonal WMLES approach where the RANS and
WMLES approaches are used in different regions of the domain. Since the focus of the
paper is to investigate the RVR in the draft tube, we use the WMLES approach in the draft
tube (region labeled by DT in Figure 1) and in the rest of the domain (regions labeled by
RU, SC, SV, and GV in Figure 1), the SST-SAS RANS approach is employed.

The experimental data used for validation in the present study are from the second
Francis-99 workshop. These data include both pressure and velocity measurements at dif-
ferent locations. The velocity measurements includes the axial and horizontal components
over three lines in the draft tube, Line 1, Line 2, and Line 3 in Figure 2a. The data also
include the static pressure fluctuations at two probes in the draft tube, Probe 2 and Probe 3
in Figure 2a and the static pressure in the vaneless region between the guide vane blades
and runner blades, is marked by Probe 1 in Figure 2b.

(a)

(b)

Figure 2. Measurement probes and lines in the experimental data provided by the second Francis-99
workshop. (a) Measurement probes and lines in the draft tube, (b) probe between guide vanes
and runner.

3.1. Studied Flow Conditions

In this paper, the part-load (PL) condition in the second Francis-99 workshop is
studied. In this condition, the guide vane opening is α = 6.72◦, the runner angular speed is
n = 332.84 r/min, and the discharge is Q = 0.13962 m3/s. In order to study the effect of
cavitation in this PL condition, the simulations are performed for both non-cavitating and
cavitating conditions. The cavitation number, σ, in these simulations is defined as

σ =
(p2 − pv)/ρl +

1
2 (Q/A2)

2

gH
, (21)

where p2 and A2 are, respectively, the pressure and the cross-section area at the draft tube
outlet, pv is the vapour pressure, ρl is liquid density, and H is the turbine head. Here,
we study the flows at σ = {0.07, 0.06, 0.05} which includes the near-inception cavitation
in the RVR (σ = 0.07) as well as the condition corresponding to the fully cavitating RVR
(σ = 0.05).

4. Results

The results are divided into two parts. The first part presents the effect of turbulence
modeling on capturing the global quantities, the velocity profiles and the pressure fluctua-
tions in the draft tube. The second part is devoted to studying the effects of cavitation on
the same flow features.
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4.1. Effect of Turbulence Modeling

In Table 2, the global quantities captured with different turbulence modeling tech-
niques are compared with the experimental values. The relative errors in this table are
obtained by dividing the difference between the experimental and numerical values by the
experimental values. This comparison shows that all of the turbulence modeling techniques
can capture these global quantities with a relatively small error, although a slightly lower
relative error can be seen in the WMLES results. According to Čelič and Ondráčka [43], this
error can be due to neglecting the labyrinth seal and disk friction losses.

Table 2. Effect of turbulence modeling technique on predicted global quantities, torque, Mz, head, H,
and efficiency η.

Quantities SAS Zonal WMLES WMLES Exp.

Mz (Nm) 440.57 440.51 439.68 420.79

Relative error for Mz 4.7% 4.7% 4.5% -

H (m) 12.71 12.70 12.48 11.87

Relative error for H 7.1% 7.0% 5.1% -

η 88.14 88.19 89.58 90.13

Relative error for η 2.2% 2.2% 0.6% -

Figure 3 compares the time-averaged experimental and numerical velocity profiles
along the three lines shown in Figure 2a. The experimental profiles are taken from the
data provided by the second Francis-99 workshop [44]. The experimental axial velocity
over Line 1 and Line 2 indicates that a region with low values of absolute axial velocity
exists near the center of the draft tube. The comparison between the numerical results
in Figure 3a,c indicates that this region is captured by all simulations, although there are
some quantitative differences between the different results. As it can be seen in the axial
velocity profiles on Lines 1 and 2 (Figure 3a), the regions with low values of absolute
axial velocity in the SAS and zonal WMLES results are more confined to the center of the
draft tube cone compared to the WMLES results and the experimental data. The axial
velocity along the centerline (Figure 3c) shows that while the WMLES simulation predicts
a negative averaged axial velocity along the entire Line 3, similar to the experimental
data, positive values for the time-averaged axial velocity can be seen in the SAS and zonal
WMLES results. Considering the definition of the axial direction (z), shown in Figure 2a,
this positive axial velocity means that there is a reversed flow along the centerline of the
draft tube cone in these two simulations. The cause of this difference is explained later
in this paper. The horizontal velocity profiles (Figure 3b,c) show that the simulations can
capture the trends similar to the experiment. However, the values of horizontal velocity in
these simulations are shifted compared with the experimental values. It should be noted
that the absolute value of the horizontal velocity is very close to zero over the measurement
lines, the relative uncertainty for these velocities is higher compared with that for the axial
velocities according to Salehi and Nilsson [45]. This higher uncertainty can be one reason
for the difference between the results for these velocity profiles.

It is well-established that the region with low values of absolute axial velocity shown
in Figure 3 is caused by the formation of the RVR in the draft tube at part-load condition.
Figure 4 shows snapshots of the RVRs of the different numerical results. In this figure, the
RVRs are visualized using an iso-surface of Q, which is the second invariant of the velocity
gradient tensor. The level of the iso-surface is 5000 s−2, which is chosen for an optimal
visualization of the RVRs. In the zoom-in view, it can be seen that the RVR consists of
many vortices wrapping around each other. At the location of these vorticies, the positive
value of axial velocity (red color in the figure) indicates the presence of a reversed flow.
The figure also presents the time history of the axial velocity on Line 1 for one period of
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the RVR rotation. The time instance corresponding to the snapshot of the iso-surfaces is
shown by black dashed lines. These time histories show that as the RVR passes Line 1, the
axial velocity on these lines becomes positive (red regions). The sweeping motion of the
vortices causes the tilted streaks seen in the time history. A comparison between the results
from the different simulations indicates that the number and size of the vortices in the RVR
are strongly influenced by the selection of the turbulence modeling technique. In the SAS
simulation, the RVR consists of a small number of large vortices, as shown in the zoom-in
views, and this leads to fewer and large streaks in the time history of the axial velocity.
In the zonal WMLES and WMLES simulations, however, the RVR has a large number of
smaller vortices, which creates thinner streaks in the time history.

(a) (b)

(c)
Figure 3. Comparison between the averaged velocities along the measurement lines in Figure 2a in the
experiment [44] and the simulations. (a) Axial velocity, Lines 1 (upper) and 2 (lower). (b) Horizontal
velocity, Lines 1 (upper) and 2 (lower). (c) Axial (right) and horizontal (left) velocities, Line 3.

As mentioned earlier and shown in Figure 3, the region with a low value of absolute
axial velocity in the center of the draft tube cone is affected by the selection of the turbulence
modeling. To provide a reason for this effect, the phase-averaged axial velocity over Lines 1
and 2 in the experiment and simulations is shown in Figure 5. To obtain the phase-averaged
values in this paper, the data signal corresponding to one cycle of the RVR rotation, TRVR,
is divided into 30 windows. The data corresponding to each window are averaged together.
Two instances A and B are marked in these figures. At instance A, the axial velocity has a
high positive value which is due to the passage of the RVR over the measurement lines.
At instance B, the RVR has rotated further and left the measurement lines, which leads to
the observed decrease in the axial velocity toward the negative values. The comparison
in Figure 5 shows that when the vortex passes the measurement lines at instance A, all
simulations predict a distribution of axial velocity which is quite similar to the experimental
data. However, this is not case for the instance when the RVR leaves the measurement lines
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(instance B). At this instance, the axial velocity over Line 1 near the center of the draft tube
(y = 0 mm) has positive values in the SAS and zonal WMLES simulations while the values
in the experiment and the WMLES simulations are negative. The reason for this difference
is that the RVR in the SAS and zonal WMLES simulations rotates on a path which is closer
to the center of draft tube as compared with the experiment and the WMLES simulation.
To clearly show this, the figure shows vertical black lines passing through the maximum
values of axial velocity when the RVR is on the measurement line. The distance between
these lines is also shown. It can be seen that distance between these lines is larger in the
experiment and the WMLES results as compared with the other two simulations. This
difference means that a portion of the RVR in the SAS and zonal WMLES simulations has
overlaps with Line 1 near the center of the draft tube all through the rotational cycle of
the RVR. Since the axial velocity in the RVR is positive according to Figure 4, this overlap
would lead to the positive values of axial velocity over Line 1 at instance B in the SAS and
zonal WMLES simulations. It also leads to the positive values of the averaged axial velocity
in these two simulations which is shown in Figure 3.

(a)

(b)

(c)
Figure 4. RVR (left figures) and its effect on the axial velocity at Line 1 during one RVR cycle
(right figures), (a) SAS, (b) zonal WMLES, (c) WMLES. The vortices are shown by the iso-surface
Q = 5000 s−2.
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(a)(a)

(b)(b)

(c)(c)

(d)
Figure 5. Phase-averaged axial velocity over Lines 1 and 2 in the experiment and simulations,
instance A corresponds to RVRs being on the line and instance B corresponds to RVRs leaving the
lines. (a) Exp., (b) SAS, (c) zonal WMLES, (d) WMLES .

The RVR in the draft tube creates a large amount of pressure fluctuations which can
lead to vibrations. To evaluate how well these pressure fluctuations can be captured by
the different turbulence modeling techniques, Figure 6 compares the experimental and
numerical pressure fluctuation signals in Probe 2 in the draft tube. For each signal, the
Root Mean Square (RMS) of the fluctuations is noted in the plot. It can be seen that in
all of the numerical results, the RMS values are lower compared with the values in the
experiment. The numerical RMS values however increase towards the experimental one
as the resolution of the turbulence modeling technique increases. It can be seen that, as
expected, it is mainly the smaller scales of the fluctuations that differ between the results
from the different turbulence modeling techniques, while the amplitude and frequency of
the large-scale RVR motion are similar.
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Figure 6. The signal of pressure fluctuations at Probe 2 shown in Figure 2a in the experiment
and simulations.

To investigate the reasons why the RMS values of the pressure fluctuations are lower
in the simulations compared with the experiment, Figure 7 shows a frequency analysis of
the pressure fluctuations. For the experiment, the analysis (Figure 7a) includes the power
spectrum analysis of the pressure signal from Probe 2 (left plot), the coherence (middle
plot), and the phase difference (right plot) between the pressure signals from Probes 2 and 3.
The coherence and phase difference between the two signals are calculated from the cross-
spectral density, Pxy, which is obtained using Welch’s method [46]. The frequency analysis
of the experimental pressure signal (left plot) indicates the existence of two dominant
frequencies, f1 and f2. For these dominant frequencies, the coherence between the signals
at Probes 2 and 3 (middle plot) is almost one, which means that these dominant frequencies
also exist in the signal from Probe 3. The phase difference between the two signals (right
plot) is π for the dominant frequency f1 and its harmonic 2 f1. Considering that the locations
of Probes 2 and 3 are exactly at opposite sides of the cone region in the draft tube, this phase
difference suggests that the dominant frequency, f1, is due to the precession of the RVR in
the draft tube cone. It should be mentioned that the precession frequency 0.29 frunner is in
the range 0.2–0.4 frunner, which has been found in previous studies [7,47]. For the dominant
frequency f2, the phase difference is almost zero indicating that the corresponding pressure
fluctuations are synchronous meaning that they have the same phase and amplitude for the
pressure sensors located in the same cross section of the draft tube. The frequency analyses
of the pressure signals in the simulations with different turbulence modeling techniques
show that the dominant frequency of the RVR, f1, and its harmonic, 2 f1, is captured by all
turbulence modeling techniques. The experimental dominant frequency f2 can however
not be seen in any of the numerical results, which causes a reduced RMS value.

To investigate the origin of the dominant frequency f2 in the experiment, Figure 8
shows a spectral analysis of the pressure fluctuations in the draft tube at the Best Efficiency
Point (BEP) and High Load (HL) conditions for which there is no RVR. Similar to the PL
condition, a dominant frequency at f2 can be seen also for BEP and HL (left plots). As
for the PL condition, the coherence (middle plots) is close to one and the phase difference
(right plots) is zero for this frequency. This indicates a synchronous nature of these pressure
fluctuations, at a frequency that is rather independent of the operating condition. Based on
this observation, we can conclude that the synchronous pressure fluctuations seen in the
experimental results is related to a component in the system rather than the flow features
in the components studied here. It should be mentioned that similar synchronous pressure
fluctuations have been observed by Favrel et al. [8], Arpe et al. [9], with frequencies in
the range of 2–4 frunner. These studies, however, have shown that this type of pressure
fluctuations occurs in cavitating conditions and can be attributed to the interaction between
the cavitating RVR and the elbow in the draft tube.

To further analyze the high-frequency content of the signals and its effects on the RMS
values, the fluctuations are decomposed into two components as

p′ = p′RVR + p′Other, (22)

where p′RVR denotes the pressure fluctuations due to the precession of the RVR and p′Other
denotes the pressure fluctuations due to other sources. To perform this decomposition, we
assume that the pressure fluctuations due to RVR at Probe 2 have a phase difference of π
with the corresponding fluctuations at Probe 3. This assumption is shown to be true in
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Figure 7a. Based on this assumption, the frequencies of pressure fluctuations due to RVR
are determined. These frequencies are then filtered from the signal of pressure fluctuations
to obtain the pressure fluctuations due to other sources, p′Other. The fluctuations due to RVR,
p′RVR, then can be obtained by subtracting p′Other from the original pressure fluctuation
signal according to Equation (22).

(a)

(b)
Figure 7. Spectral analysis of pressure signals from Probes 2 and 3 in the draft tube in the experiment
and simulations. (a) Frequency analysis of pressure signal from Probe 2 (left plot), the coherence
(middle plot) and the phase difference (right plot) between the pressure signals from Probes 2 and 3
in the experiment. (b) Frequency analysis of the pressure signals from Probe 2 in the draft tube in the
simulations with different turbulence modeling techniques.

(a)

(b)
Figure 8. Spectral analysis of pressure signal from Probes 2 and 3 in the draft tube in the experiment
at (a) Best Efficiency Point (BEP), and (b) High Load (HL), frequency analysis of pressure signal
from Probe 2 (left plot), the coherence (middle plot) and the phase difference (right plot) between the
pressure signals from Probes 2 and 3 in the experiment.

Figure 9 shows the different components of the pressure fluctuations at Probe 2
according to Equation (22) and their corresponding RMS values from the results of the
simulations and experiment. For the pressure fluctuations due to the RVR, the difference
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between the predicted RMS values and the experimental RMS value correspond to 16%,
14% and 4% for the SAS, zonal WMLES and WMLES simulations, respectively. The reason
for these differences will be explained later. The corresponding differences for the pressure
fluctuations due to other sources are 77%, 59%, and 39%. The reason for these large
differences is mainly that (as shown before) the numerical fluctuations do not include
the synchronous pressure fluctuations with the experimental dominant frequency of f2
shown in Figure 7a. The comparison between the results of the different simulations also
shows that the RMS values of p′Other are very sensitive to the selected turbulence modeling
technique. This type of pressure fluctuations includes the pressure fluctuations due to
wakes of the guide vanes, runner blades, and runner crown which are captured to a larger
extent in the WMLES simulation compared with the zonal WMLES and SAS simulations,
for which the region upstream the draft tube is resolved using a RANS approach.

(a)

(b)
Figure 9. Different components of pressure fluctuations at Probe 2 (shown in Figure 2a), (a) due to
the rotation of RVR, (b) due to other sources than RVR.

The comparison between the RMS values of the pressure fluctuations due to the RVR
in Figure 9a showed that the predicted value from the WMLES simulation is closer to the
experimental value than the values using the other turbulence modeling techniques. In
order to investigate the reason for this and also study the effect of turbulence modeling on
the pressure field in the draft tube, Figure 10 shows the phase-averaged pressure over Line 1
with the different turbulence modeling techniques. The core of the RVR, where the pressure
is low, passes Line 1 at instances A and B. It can be seen that the RVR core pressure drops
more in the WMLES results compared with the results of the other turbulence modeling
techniques. A more quantitative comparison is shown in Figure 10d, at time instance
B only. It can be seen that the pressure field far from the vortex core (y > 50 mm) is
almost the same in all simulations. However, the pressure in the near-field of the RVR
(y < 0 mm) is affected by the choice of turbulence modeling technique. In the WMLES
results, the minimum pressure in the near-field is lower and the extent of the low pressure
region is larger and slightly closer to the nearest wall compared with the other two results.
This can explain the higher RMS level of the pressure fluctuations due to the RVR in the
WMLES simulation as shown in Figure 9a. It should particularly be stressed that capturing
the correct pressure drop in the RVR is very important for cavitating simulations as this
pressure drop is the driving force of the cavitation formation. In WMLES simulations,
where a larger pressure drop can be captured, a larger volume of cavitation should be
expected in cavitating simulations.

To explain the reason for the larger pressure drop in the RVR of the WMLES simulation,
Figure 11 shows the phase-averaged normal velocity over Line 1 at time instance B that
was shown in Figure 10. The center of the RVR approximately corresponds to Un = 0 due
to the rotating flow around the center of the RVR. The comparison between the numerical
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results shows that the gradient of the normal velocity ∂Un
∂y is larger around the center of the

RVR in the WMLES result than with the other turbulence model techniques. This indicates
that the swirling motion around the RVR in the WMLES simulation is stronger, which leads
to the larger pressure drop shown in Figure 10.

(a) (b)( )

(c)

( )

(d)

Figure 10. Phase-averaged pressure over Line 1 with different turbulence modeling techniques,
(a) SAS, (b) zonal WMLES , (c) WMLES, (d) comparison over line at instance B. Instances A and B
correspond to RVR passing Line 1.

Figure 11. Phase-averaged distribution of the normal velocity over Line 1, for time instance B in
Figure 10.

4.2. Effect of Cavitation

As mentioned in Section 3.1, cavitation simulations using WMLES are performed for
three different cavitation numbers to study the effect of cavitation on the global quantities,
the velocity profiles and the pressure fluctuations in the draft tube. It should be mentioned
that since there are no experimental data for cavitating conditions in a Francis-99 turbine,
no comparison is made between the simulation results and experimental ones. To show the
extent of the cavitating region in these simulations, Figure 12 presents the cavitating part
of the RVR using a blue iso-surface of αv = 0.99. This figure also shows the variation of
the total volume of vapor in the RVR as well as a spectral analysis of this variation. It can
be seen that the cavitation inception at σ = 0.07 happens at the root of the RVR near the
runner crown. The total vapor content at this condition exhibits significant fluctuations,
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indicating that the cavitation is highly unstable. The spectral analysis of the vapor volume
variation shows that this instability in the cavity volume does not have any dominant
frequency. By decreasing the cavitation number to σ = 0.06, the cavitation starts to incept
in the small vortices further downstream the runner exit. Similar to the previous condition,
the cavitation is unstable, although with a lower frequency. The spectral analysis indicates
that although there is an increase in the PSD level of frequencies lower than f = 3 frunner,
this increase does not lead to a dominant peak in the PSD level. By further decreasing
the cavitation number to σ = 0.05, the cavitating region covers almost the entire root
of the RVR near the runner exit. The variation of vapor volume indicates that there are
fluctuations in the size of the cavitating region of the vortex. Unlike the other two cavitating
conditions, the spectral analysis shows that these fluctuations have a dominant frequency
at f3/ frunner = 0.43.

(a)

(b)

(c)
Figure 12. Cavitating regions in the RVR, shown by the blue iso-surface of αv = 0.99, for different
cavitation numbers, (a) σ = 0.07, (b) σ = 0.06 , (c) σ = 0.05, The RVR is shown by a transparent gray
iso-surface of Q = 5000 s−2. Plots show variation of total volume of vapor (with different scales on
y-axis for different cavitation numbers) in the RVR as well as spectral analysis of this variation.

Table 3 presents the global quantities in the form of torque, Mz, head, H, and efficiency
η, for the different cavitation numbers and for the non-cavitating condition (σ = ∞). It can
be seen that the cavitation number does not have any significant effect on these quantities,
as the maximum variation in these quantities with respect to the cavitation number is
less than 0.2 percent. This is expected, as the studied cavitation numbers are far from the
cavitation breakdown for the studied turbine [48].

Table 3. Effect of cavitation number on the torque, Mz, head, H, and efficiency η.

σ ∞ 0.07 0.06 0.05

Mz (Nm) 439.68 439.02 439.00 438.99

H (m) 12.48 12.46 12.46 12.46

η 89.58 89.61 89.60 89.60
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To study the effect of cavitation on the velocity field, Figure 13 shows the time-averaged
velocity profiles on Lines 1–3 (shown in Figure 2) for different cavitation numbers. It can
be seen that cavitation does not have any effect on these velocity profiles for σ = 0.06 and
σ = 0.07. For these conditions, the size of the region with low values of absolute axial
velocity is almost identical to the size of this region in the non-cavitating condition. In the
fully cavitating RVR in the simulation with σ = 0.05, however, the velocity profiles are
slightly affected by the presence of cavitation. This effect is more dominant in the profiles
for Line 1 as this line is closer to the cavitating part of the RVR.

(a) (b)

(c)
Figure 13. Comparison between the time-averaged velocities over the lines in Figure 2 for different
cavitation numbers. (a) Averaged axial velocity over Lines 1 and 2. (b) Averaged horizontal velocity
over Lines 1 an 2. (c) Averaged horizontal (left) and axial (right) velocities over Line 3.

In order to investigate the effects of cavitation on the structure of the RVR and the
instantaneous velocity field, Figure 14 presents the iso-surface of the Q criterion (left plots)
and the history of the axial velocity over Line 1 for one period of vortex rotation (right
plots) for different cavitation numbers. The iso-surface of the Q-criterion shows that similar
to the non-cavitating condition, shown in Figure 4c, the RVR of the cavitating conditions
consists of small vortices and there is a reverse flow at the location of these small vortices.
The plots of history of the axial velocity on Line 1 show that streaks are formed as these
vorticies and their reverse flows pass Line 1. A comparison between the results for the
different cavitation numbers shows that the reversed flow in these streaks is highly affected
by the presence of cavitation. At σ = 0.07, for which the amount of cavitation in the RVR is
small, the reverse flow in the streaks is quite similar to the non-cavitating condition (see
Figure 4c). As the amount of cavitation increases, for σ = 0.06 and σ = 0.05, the reverse
flow in the streaks becomes weaker.

Figure 15a shows the pressure fluctuations at Probe 2 for different cavitation numbers,
including their RMS values. It can be seen that the inception of cavitation (at σ = 0.07) leads
to spikes in the pressure fluctuations, which is due to the collapse of the cavitation region.
This can be seen in Figure 15b, where the total vapor volume decreases to near-zero values
at the time of the pressure spikes. Due to these spikes, the RMS of the pressure fluctuations
increases by 54% compared to the non-cavitating case. It should be noted that the spikes
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are truncated in the plot in order to keep a scale that still shows the variations due to the
RVR. By slightly increasing the amount of cavitation (for σ = 0.06), the spikes are not as
frequent as those at σ = 0.07, which indicates that the cavitation region is less frequently
entirely collapsing. This is confirmed in Figure 12b, where the total volume fraction goes
to zero less frequently than in Figure 12a. There is however a further increase in the RMS
value as the cavitation number is decreased from σ = 0.07 to σ = 0.06, indicating that
the collapses of the larger cavitation regions give higher pressure pulses. Again, it should
be noted that the spikes are truncated in the plot. In the case of the fully cavitating RVR,
at σ = 0.05, most of the spikes are gone. This indicates that the cavitation region never
collapses entirely (confirmed in Figure 12c), and that the collapses of smaller cavitation
regions in the freestream give much smaller pressure spikes. This leads to smaller RMS
values. On the other hand, it can clearly be seen that the variations due to the RVR is much
less periodic at σ = 0.05 than for the other cavitation numbers, indicating that the general
flow features are influenced to a larger extent. In accordance with the increase in the RMS
value compared to the non-cavitating condition, the cavitation increases the amplitude of
the variations due to the RVR as a major contributor to the RMS value.

(a)

(b)

(c)
Figure 14. RVR, visualized by Q = 5000 s−2 (left), and its effects on the velocity at Line 1 during one
cycle (right) for different cavitation numbers, (a) σ = 0.07, (b) σ = 0.06, (c) σ = 0.05.

41



Fluids 2023, 8, 61

(a)

(b)
Figure 15. Pressure fluctuations and total volume of vapor in the cavitating simulations, (a) pressure
fluctuations at Probe 2 (shown in Figure 2a) for different cavitation numbers, (b) total volume of
vapor for σ = 0.07.

Figure 16 shows spectral analyses of the pressure fluctuations at Probe 2 for the differ-
ent cavitation numbers, as well as the phase difference between the pressure fluctuations at
Probes 2 and 3. The spectral analyses show that the dominant frequency, f1/ frunner = 0.3, is
not affected by the presence of cavitation. As mentioned earlier, this frequency is related to
the frequency of the RVR rotation. A comparison between the non-cavitating and cavitating
conditions indicates that cavitation mostly affects the PSD level of the higher frequencies
rather than that of the relatively low RVR frequency. For σ = 0.07, at cavitation inception,
an increase can be seen in the PSD level of frequencies larger than 2.0 frunner. By further
increasing the amount of cavitation, at σ = 0.06, the increase in the PSD level of the pressure
fluctuations happens already at f > frunner. At σ = 0.05, the increase in the PSD level
approaches the f1 frequency, with a local peak at f3/ frunner = 0.43, and the PSD level of
the higher frequencies again decreases. The frequency of the additional peak is the same as
the dominant frequency of the vapor volume fluctuations for this cavitation number, as
shown in Figure 12c. The phase difference between the pressure fluctuations at Probes 2
and 3, shown in Figure 16b, shows that for the frequencies where there is an increase in
the PSD level due to cavitation, the phase difference is highly reduced (approaching zero).
This means that the increased pressure fluctuations in these frequencies are synchronous.

(a)

(b)
Figure 16. Spectral analysis of the pressure fluctuations in draft tube for different cavitation numbers.
(a) Frequency analysis of the pressure fluctuations at Probe 2. (b) Phase difference between the
pressure fluctuations at Probes 2 and 3.
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Figure 17 shows the effects of cavitation on the different components of the pressure
fluctuations and their RMS values, decomposed according to Equation (22). It can be seen
that the cavitation has insignificant effects on the RMS values of the pressure fluctuations
due to the RVR, as the maximum difference between the RMS values for the different
cavitation numbers is around 7%. However, the RMS values of the other sources are highly
affected by the presence of cavitation. Similar to the trends shown in Figure 15a, the RMS of
the synchronous pressure fluctuations first increases as the amount of cavitation increases
(σ = 0.07 and σ = 0.06 ), and then decreases when the RVR is fully cavitating (σ = 0.05).

(a)

(b)
Figure 17. Different components of pressure fluctuations at Probe 2 shown in Figure 2a in the
simulations with different cavitation numbers, (a) the pressure fluctuations due the rotation of RVR,
(b) the pressure fluctuations due to other sources than RVR.

Figure 18 shows the effects of cavitation on the forces exerted on the runner and draft
tube in the frequency domain. For the runner, only the z-component of the force (the blue
curve) is affected by the cavitation, while for the draft tube, both the x- and z-components
of the forces (red and blue curves, respectively) are affected by the cavitation. The trends of
the changes due to cavitation, however, are the same for these affected force components,
and they are quite similar to the trends for the pressure fluctuations shown in Figure 16a.
At σ = 0.07, where the amount of cavitation is small, there is an increase in the PSD level
of the high-frequency fluctuations of the affected force components. The same increase
can be seen for σ = 0.06, although the increase in the PSD level starts to appear already at
lower frequencies. At σ = 0.05, this increase in PSD level leads to the dominant frequency
f3/ frunner = 0.43, which is the same as the dominant frequency of the vapor volume
fluctuations as shown in Figure 12c. It should be mentioned that the changes in the forces
discussed here are caused by cavitation-induced pressure fluctuations, which are shown to
be synchronous in Figure 16. Due to the synchronous nature of these pressure fluctuations,
they affect only the forces in the directions where the geometry is asymmetrical. In the
symmetrical directions, the changes in the forces due to these pressure fluctuations cancel
each other out. For the runner, the geometry is almost symmetrical with respect to the x-
and y-directions, and therefore, the cavitation-induced pressure fluctuations can affect only
the forces in the z-direction. In the draft tube, however, the geometry is symmetric only
with respect to the y-direction, and the effects of cavitation can be seen both in the x- and
z-components of the forces.
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Figure 18. Effect of cavitation on the forces exerted on the runner and draft tube. Curve colors
correspond to colors of coordinate directions.

5. Conclusions

In this work, we examine non-cavitating and cavitating RVR (Rotating Vortex Rope)
in the Francis-99 turbine model using scale-resolving approaches. The non-cavitating simu-
lations are performed using the SST-SAS, zonal wall-modeled LES and wall-modeled LES
(WM) approaches, and the results are compared with the experimental data made available
by the Francis-99 workshop. Furthermore, cavitating simulations are conducted for three
cavitation numbers using the WMLES approach. The results from these simulations are
used to study the effects of cavitation on the flow features, such as the velocity distribution
and pressure fluctuations in the draft tube, and the forces acting on the draft tube and
the runner.

The comparison between the results of the non-cavitating simulations and the ex-
perimental data reveals that the averaged velocity profiles and the pressure fluctuations
predicted by the WMLES approach are in better agreement with the experimental data
compared with the SST-SAS and zonal WMLES approaches. It is shown for the first time
that the better velocity prediction is related to a correctly predicted rotating path of the
RVR in the WMLES simulation. In the SST-SAS and zonal WMLES simulations, the RVR
rotates on a path which is closer to the center of the draft tube as compared to the WMLES
simulation and experiment. This yields an over-prediction of the influence of the RVR
on the time-averaged velocity profile near the center of the draft tube. The comparison
between the numerical results and the experimental data also shows that all methods
under-predict the RMS values of the pressure fluctuations in the experiment, although the
predicted RMS of the pressure fluctuations using the WMLES approach is closest to the
experimental value. Using a detailed analysis of the pressure fluctuations in the simulations
and experiment, the reason for the difference between the numerical and experimental
values is shown to be related to a synchronous type of fluctuations only appearing in the
experimental data, with a dominant frequency of around 2.8 times the frequency of the
runner. An analysis of the pressure fluctuations in the experimental data shows that this
synchronous pressure fluctuations can be seen also at the BEP and HL conditions, which
suggests that these synchronous pressure fluctuations are created by a component in the
system rather than the RVR. Such a finding has not been reported in the previous studies
on the Francis-99 turbine. It is also shown that the WMLES simulation can capture a larger
pressure drop in the center of the RVR compared to the other two approaches, which is
shown to be due to the larger swirling velocity around the RVR in the WMLES simulation.

The results from the cavitating simulations reveal that cavitation slightly affects the
average velocity profiles in the draft only if there is a large amount of cavitation in the RVR.
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They also show that the presence of cavitation damps out the instantaneous reverse flow in
the small vortices in the RVR. The pressure fluctuations are also shown to be significantly
affected by the presence of cavitation. Cavitation induces synchronous pressure fluctuations
with a frequency larger than the frequency of the RVR. Capturing these synchronous
pressure fluctuations in simulations has previously not been reported in the literature.
When the amount of cavitation in the RVR is small, these fluctuations have a broadband
high-frequency spectrum, while in the case of a fully cavitating RVR, they have a dominant
frequency close to the dominant frequency of the RVR. The analysis of the forces reveals
that the cavitation-induced pressure fluctuations have different effects on the forces exerted
on the runner and draft tube. In the runner, the presence of cavitation induces significant
force fluctuations only in the direction aligned with the rotational axis of the runner, while
the force fluctuations in the draft tube are additionally affected in the direction of the bend.
This finding can be used to design a method to detect cavitation in the turbine based on the
direction of the vibrations in the draft tube and runner.

Author Contributions: Conceptualization, M.H.A., R.E.B. and H.N.; methodology, M.H.A.; valida-
tion, M.H.A.; Analysis, M.H.A.; investigation, M.H.A.; writing—original draft preparation, M.H.A.;
writing—review and editing, R.E.B. and H.N.; supervision, R.E.B. and H.N.; project administration,
R.E.B. and H.N.; funding acquisition, R.E.B. and H.N. All authors have read and agreed to the
published version of the manuscript.

Funding: The work was funded by Chalmers Energy Area of Advance and was carried out as a part
of the “Swedish Hydropower Centre - SVC”. SVC is established by the Swedish Energy Agency,
EnergiForsk and Svenska Kraftnät together with Luleå University of Technology, The Royal Institute
of Technology, Chalmers University of Technology, and Uppsala University. The computations were
enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at NSC
and C3SE partially funded by the Swedish Research Council through grant agreement no. 2018e05973.
The investigated test case is provided by NTNU, Norwegian University of Science and Technology,
under the Francis-99 workshop series.

Data Availability Statement: The data that support the findings of this study can be available from
the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rheingans, W. Power swings in hydroelectric powerplants. Trans. ASME 1940, 62, 171–184.
2. Valentín, D.; Presas, A.; Egusquiza, E.; Valero, C.; Egusquiza, M.; Bossio, M. Power swing generated in Francis turbines by part

load and overload instabilities. Energies 2017, 10, 2124.
3. Arndt, R.E.; Voigt, R.L., Jr.; Sinclair, J.P.; Rodrique, P.; Ferreira, A. Cavitation erosion in hydroturbines. J. Hydraul. Eng. 1989,

115, 1297–1315. [CrossRef]
4. Avellan, F. Introduction to Cavitation in Hydraulic Machinery; Technical Report; Politehnica University of Timis, oara: Timis, oara,

Romania, 2004. [CrossRef]
5. Brennen, C. Cavitation and Bubble Dynamics; Cambridge University Press: Cambridge, UK, 2014.
6. Nishi, M.; Kubota, T.; Matsunaga, S.; Senoo, Y. Study on swirl flow and surge in an elbow type draft tube. In Proceedings of

the 10th IAHR Symposium on Hydraulic Machinery and Cavitation, Tokyo, Japan, 28 September–2 October 1980; Volume 1,
pp. 557–568.

7. Iliescu, M.; Ciocan, G.; Avellan, F. Analysis of the cavitating draft tube vortex in a Francis turbine using particle image velocimetry
measurements in two-phase flow. J. Fluids Eng. 2008, 130, 021105.

8. Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F. LDV survey of cavitation and resonance effect on the precessing
vortex rope dynamics in the draft tube of Francis turbines. Exp. Fluids 2016, 57, 1–16. [CrossRef]

9. Arpe, J.; Nicolet, C.; Avellan, F. Experimental evidence of hydroacoustic pressure waves in a Francis turbine elbow draft tube for
low discharge conditions. J. Fluids Eng. 2009, 131, 081102. [CrossRef]

10. Landry, C.; Favrel, A.; Müller, A.; Nicolet, C.; Avellan, F. Local wave speed and bulk flow viscosity in Francis turbines at part load
operation. J. Hydraul. Res. 2016, 54, 185–196. [CrossRef]

11. Ciocan, G.; Iliescu, M.S.; Vu, T.C.; Nennemann, B.; Avellan, F. Experimental study and numerical simulation of the FLINDT draft
tube rotating vortex. J. Fluids Eng. 2007, 12, 146–158. [CrossRef]

12. Liu, S.; Zhang, L.; Nishi, M.; Wu, Y. Cavitating turbulent flow simulation in a Francis turbine based on mixture model. J. Fluids
Eng. 2009, 131, 051302 . [CrossRef]

45



Fluids 2023, 8, 61

13. Ruprecht, A.; Helmrich, T.; Aschenbrenner, T.; Scherer, T. Simulation of vortex rope in a turbine draft tube. In Proceedings
of the 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland, 9–12 September 2002; Volume 1,
pp. 259–266. [CrossRef]

14. Yu, A.; Zou, Z.; Zhou, D.; Zheng, Y.; Luo, X. Investigation of the correlation mechanism between cavitation rope behavior and
pressure fluctuations in a hydraulic turbine. Renew. Energy 2020, 147, 1199–1208.

15. Jošt, D.; Škerlavaj, A.; Morgut, M.; Nobile, E. Numerical prediction of cavitating vortex rope in a draft tube of a Francis turbine
with standard and calibrated cavitation model. J. Phys. Conf. Ser. 2017, 813, 012045. [CrossRef]

16. Salehi, S.; Nilsson, H.; Lillberg, E.; Edh, N. An in-depth numerical analysis of transient flow field in a Francis turbine during
shutdown. Renew. Energy 2021, 179, 2322–2347. [CrossRef]

17. Salehi, S.; Nilsson, H. Flow-induced pulsations in Francis turbines during startup-A consequence of an intermittent energy
system. Renew. Energy 2022, 188, 1166–1183. [CrossRef]

18. Foroutan, H.; Yavuzkurt, S. Flow in the Simplified Draft Tube of a Francis Turbine Operating at Partial Load—Part I: Simulation
of the Vortex Rope. J. Appl. Mech. 2014, 81, 061010. [CrossRef]

19. Minakov, A.; Platonov, D.; Dekterev, A.; Sentyabov, A.; Zakharov, A. The analysis of unsteady flow structure and low frequency
pressure pulsations in the high-head Francis turbines. Int. J. Heat Fluid Flow 2015, 53, 183–194. [CrossRef]

20. Rajan, G.; Cimbala, J. Computational and theoretical analyses of the precessing vortex rope in a simplified draft tube of a scaled
model of a francis turbine. J. Fluids Eng. 2017, 139, 021102. [CrossRef]

21. Guo, Y.; Kato, C.; Miyagawa, K. Large-eddy simulation of non-cavitating and cavitating flows in the draft tube of a Francis
turbine. Seisan Kenkyu 2007, 59, 83–88. [CrossRef]

22. Pacot, O.; Matsui, J.; Suzuki, T.; Tani, K.; Kato, C. LES Computation of the Cavitating Vortex Rope in the Draft Tube of a Francis
Turbine. In Proceedings of the 13th Asian International Conference on Fluid Machinery, Tokyo, Japan, 7–10 September 2015.

23. Bensow, R.; Bark, G. Implicit LES predictions of the cavitating flow on a propeller. J. Fluids Eng. 2010, 132, 041302.
24. Asnaghi, A.; Feymark, A.; Bensow, R. Improvement of cavitation mass transfer modeling based on local flow properties. Int. J.

Multiph. Flow 2017, 93, 142–157. [CrossRef]
25. Asnaghi, A. Developing Computational Methods for Detailed Assessment of Cavitation on Marine Propellers. Licentiate Thesis,

Chalmers University of Technology, Goteborg, Sweden, 2015. [CrossRef]
26. Weller, H.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented

techniques. Comput. Phys. 1998, 12, 620–631.
27. Sauer, J. Instationär Kavitierende strömungen-Ein Neues Modell, Basierend auf front Capturing (VoF) und Blasendynamik. Ph.D.

Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2000. [CrossRef]
28. Menter, F.; Egorov, Y. A scale adaptive simulation model using two-equation models. In Proceedings of the 43rd AIAA Aerospace

Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005; p. 1095.
29. Egorov, Y.; Menter, F. Development and application of SST-SAS turbulence model in the DESIDER project. In Advances in Hybrid

RANS-LES Modelling; Springer: Berlin/Heidelberg, Germany, 2008; pp. 261–270.
30. Menter, F. Zonal two equation kw turbulence models for aerodynamic flows. In Proceedings of the 23rd Fluid Dynamics,

Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993; p. 2906.
31. Nicoud, F.; Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust.

1999, 62, 183–200.
32. Weller, H. Controlling the computational modes of the arbitrarily structured C grid. Mon. Weather. Rev. 2012, 140, 3220–3234.

[CrossRef]
33. Schnerr, G.H.; Sauer, J. Physical and numerical modeling of unsteady cavitation dynamics. In Proceedings of the Fourth

International Conference on Multiphase Flow, New Orleans, LA, USA, 27 May–1 June 2001; Volume 1. [CrossRef]
34. Trivedi, C.; Cervantes, M.; Gandhi, B.; Dahlhaug, O. Experimental and numerical studies for a high head Francis turbine at

several operating points. J. Fluids Eng. 2013, 135, 111102.
35. Wallimann, H.; Neubauer, R. Numerical study of a high head Francis turbine with measurements from the Francis-99 project. J.

Phys. Conf. Ser. 2015, 579, 012003. [CrossRef]
36. Mössinger, P.; Jester-Zürker, R.; Jung, A. Investigation of different simulation approaches on a high-head Francis turbine and

comparison with model test data: Francis-99. J. Phys. Conf. Ser. 2015, 579, 012005. [CrossRef]
37. Jošt, D.; Škerlavaj, A.; Morgut, M.and Mežnar, P.; Nobile, E. Numerical simulation of flow in a high head Francis turbine with

prediction of efficiency, rotor stator interaction and vortex structures in the draft tube. J. Phys. Conf. Ser. 2015, 579, 012006.
[CrossRef]

38. Aakti, B.; Amstutz, O.; Casartelli, E.; Romanelli, G.; Mangani, L. On the performance of a high head Francis turbine at design and
off-design conditions. J. Phys. Conf. Ser. 2015, 579, 012010. [CrossRef]

39. Yaping, Z.; Weili, L.; Hui, R.; Xingqi, L. Performance study for Francis-99 by using different turbulence models. J. Phys. Conf. Ser.
2015, 579, 012012. [CrossRef]

40. Huuva, T. Large Eddy Simulation of Cavitating and Non-Cavitating Flow. Ph.D. Thesis, Chalmers University of Technology,
Göteborg, Sweden, 2008. [CrossRef]

41. Lu, N.; Bensow, R.E.; Bark, G. LES of unsteady cavitation on the delft twisted foil. J. Hydrodyn. Ser. B 2010, 22, 784–791.

46



Fluids 2023, 8, 61

42. Wilhelm, S.; Balarac, G.; Métais, O.; Ségoufin, C. Analysis of head losses in a turbine draft tube by means of 3D unsteady
simulations. Flow Turbul. Combust. 2016, 97, 1255–1280. [CrossRef]
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Abstract: We investigate the solutions of a generalized diffusion-like equation by considering a
spatial and time fractional derivative and the presence of non-local terms, which can be related to
reaction or adsorption–desorption processes. We use the Green function approach to obtain solutions
and evaluate the spreading of the system to show a rich class of behaviors. We also connect the results
obtained with the anomalous diffusion processes.

Keywords: fractional dynamics; heterogeneity; unusual spreading; diffusion process; flow

1. Introduction

Fractional calculus has quickly become a new efficient mathematical tool to analyze
different properties of a given system and connect them with experimental results. A simple
extension of the differential operators incorporating non-integer indexes has serious conse-
quences, connecting the formalism with memory effects, long-range correlations, and many
other features characterizing complex systems. In this manner, it has brought great insights
into many fields of science [1–6]. One of them occurs for the diffusion processes, which have
been found through fractional calculus a suitable approach to incorporate several effects
which are not suitably described in terms of the classical integer order calculus. For instance,
infiltration in porous building materials [7], the electrical response of electrolytic cells [6,8],
amorphous semiconductors [9], and micellar solutions [10]. In these situations, there is a
nonlinear time dependence exhibited by the mean-square displacement, which, in general,
is characterized by 〈(x − 〈x〉)2〉 ∼ tα, where α characterized the diffusion, e.g., α < 1, α = 1,
and α > 1 correspond to the sub-, usual, and superdiffusion, respectively. This behavior
of the mean square displacement and effects related, e.g., non-Markovian processes and
fractal structure has motivated the analysis of different approaches, which extend the
usual approach, such as fractional diffusion equations [11–13], master equation [14,15],
generalized Langevin equations [16], and random walks [17]. One noticeable point regard-
ing these extensions is that the behavior of the solutions is characterized by power laws
and stretched exponential for fractional differential operators. In particular, the previous
scenarios concerning the diffusion on fractals have indicated that the asymptotic form of
the propagator, such as the Sierpinski gasket, is essentially in this form [11,18]. A similar
situation is also found in fluid flow through porous media [19–21]. Other applications can
be found in transport in the porous pellet [22], transport of chloride in concrete [23], and
oxidation behaviors of needle-punched carbon/carbon composites [24].
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Fluids 2023, 8, 34

Here, we consider the following extension of the diffusion equation:

∂

∂t
ρ(x, t) = 0Dγ

t

∫ μ

0
dμp(μ)Dμ,η

x ρ(x, t) +
∫ t

0
dt′Λ(t − t′)ρ(x, t′) , (1)

with 1 ≤ μ ≤ 2, −1 < η, p(μ) is a distribution, 0Dγ
t (· · · ) is a fractional time operator, and

Dμ,η
x (· · · ) is a spatial fractional operator [12,25]. The last term can be related to different

processes, such as absorption and adsorption–desorption, depending on the choice of the
kernel Λ(t). It can also be related to reaction processes of the first order, i.e., irreversible
reaction processes or reversible processes depending on the choice of Λ(t). The fractional
time operator 0Dγ

t (· · · ) is defined in terms of a generalized kernel Kγ(t) as follows:

0Dγ
t ρ(x, t) =

∂

∂t

∫ t

0
dt′Kγ(t − t′)ρ(x, t′) . (2)

Note that depending on the choice of Kγ(t) in the previous equation, we may connect
it to different integrodifferential operators with singular or non-singular kernels. One
of them is the Riemann–Liouville fractional operator, i.e., Kγ̄(t) = t−γ̄/Γ(1 − γ̄) [26],
which implies

∂γ̄

∂tγ̄
ρ(x, t) =

1
Γ(1 − γ̄)

∂

∂t

∫ t

0
dt′ 1

(t − t′)γ̄
ρ(x, t′), (3)

another one is the Fabrizio–Caputo fractional operator, for Kγ̄(t) = Nγ̄e−
γ̄

1−γ̄ t/(1 − γ̄), i.e.,

∂γ̄

∂tγ̄
ρ(x, t) =

Nγ̄

1 − γ̄

∂

∂t

∫ t

0
dt′e−

γ̄
1−γ̄ (t−t′)

ρ(x, t′) , (4)

or the Atangana–Baleanu fractional operator, for Kγ̄(t) = Nγ̄Eγ̄(−γ̄tγ̄/(1 − γ̄))/(1 − γ̄),
given by

∂γ̄

∂tγ̄
ρ(x, t) =

Nγ̄

1 − γ̄

∂

∂t

∫ t

0
dt′Eγ̄

(
− γ̄

1 − γ̄
(t − t′)γ̄

)
ρ(x, t′), (5)

where Nγ̄ is a normalization constant [27–29]. These operators may be related to different
scenarios in connection with anomalous diffusion, which implies memory effects, long-
range correlation, and fractal structures, among others. In particular, these fractional
operators have been used in many contexts such as boundary value problems [30,31],
electric circuits [32,33], and electrical impedance [34,35] (see also Refs. [36–38]). It is also
possible to consider other kernels for Equation (2), with different implications for the
relaxation processes (see, e.g., Refs. [39,40]).

Following the developments performed in Ref [12,25], the spatial operator is defined
as follows:

1
2

∫ ∞

−∞
dxψ±,η(x, k)

(
Dμ,η

x ρ(x, t)
)
≡ −|k|μ+ηρ̃±(k, t), (6)

with the integral transform given by:

1
2

∫ ∞

−∞
dxψ±,η(x, k)ρ(x, t) = ρ̃±(k, t) , (7)

1
2

∫ ∞

−∞
dkψ±,η(x, k)ρ̃±(k, t) = ρ(x, t), (8)
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where

ψ+,η(x, k) = (|k||x|) 1
2 (1+η)J−ν

(
2(|k||x|) 1

2 (2+η)/(2 + η)
)

and (9)

ψ−,η(x, k) = xk(|k||x|) 1
2 (1+η)−1Jν

(
2(|k||x|) 1

2 (2+η)/(2 + η)
)

, (10)

where ψ+,η(x, k) and ψ−,η(x, k) refer to the odd and even functions, ν = (1 + η)/(2 + η),
and Jν(x) is the Bessel function [6]. Equations (7) and (8) may be related to a generalized
Hankel transform [41–44] and for μ = 2, we can directly relate the fractional operator
present in Equation (6) with standard differential operators as follows:

D2,η
x (· · · ) ≡ ∂

∂x

{
|x|−η ∂

∂x
(· · · )

}
. (11)

This case allows us to relate Equation (6) with a diffusion process in heterogeneous
media. Such behaviors are also exhibited by diffusion-related problems, such as diffusion
on fractals [45,46], turbulence [47,48], diffusion and reaction on fractals [49], and solute
transport in fractal porous media [50], where the properties of the media promote an
anomalous diffusion. In these scenarios, we have non-Gaussian distributions related to
these processes and nonlinear behavior of the mean square displacement. Equation (11)
also allows us to connect Equation (1), for p(μ) = δ(μ − 2), directly with the continuity
equation with an additional term as follows:

∂

∂t
ρ(x, t) +

∂

∂x
J (x, t) =

∫ t

0
dt′Λ(t − t′)ρ(x, t′) , (12)

with the current density given by

J (x, t) = − 0Dγ
t

{
|x|−η ∂

∂x
ρ(x, t)

}
. (13)

Notice that |x|−η∂x(· · · ) ≡ (1 + η)∂|x|1+η (· · · ), i.e., it corresponds to a fractal deriva-
tive [51–53], respectively. Thus, the spatial fractional operator defined above by Equation (6)
can be considered a mixing between the Riesz–Wely operator [11] and fractal operators [54].
This feature implies that the solutions of Equation (6) can be related to Lévy distribu-
tions and/or distributions with characteristics of stretched exponential. From the above
discussion, Equation (1) has a particular case of several situations analyzed in different
scenarios and allows analyzing the mixing between different effects on the diffusion process
connected to these fractional operators. Further, the reaction term may be connected to
different processes, particularly the stochastic resetting [55,56].

We aim to analyze Equation (1) by considering different scenarios. The first considers
the absence of the non-local term, i.e., Λ(t) = 0. For this case, we obtain solutions by
considering different spatial and time fractional operator choices. In particular, we also
consider the case p(μ) = χμδ(μ− μ) + χ2δ(μ− 2), where χμ and χ2 are constants. After we
incorporate the non-local term, i.e., Λ(t) �= 0, in our analysis. We obtain exact solutions in
the framework of Green’s function approach for all cases. These formal developments are
shown in Section 2. Section 3 discusses the main results and concludes with some remarks.

2. Fractional Dynamics and Diffusion

Let us start our discussion about Equation (1) by establishing the boundary conditions,
which are limx→±∞ ρ(x, t) = 0. An arbitrary function represents the initial condition,
i.e., ρ(x, 0) = ϕ(x). After establishing the boundary and the initial condition, Equation (1)
in the absence of the non-local term is given by

∂

∂t
ρ(x, t) = 0Dγ

t

∫ μ

0
dμp(μ)Dμ,η

x ρ(x, t) . (14)
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Formally, we can write the solution for this equation as follows:

ρ(x, t) =
∫ ∞

−∞
dx′G(x, x′, t)ϕ(x′) , (15)

where the Green’s function [57], G(x, x′, t), satisfies the following equation:

∂

∂t
G(x, x′, t)− 0Dγ

t

∫ μ

0
dμp(μ)Dμ,η

x G(x, x′, t) = δ(x − x′)δ(t) . (16)

The Green’s function is subjected to the following conditions: limx→±∞ G(x, x′, t) = 0
and G(x, x′, t) = 0 for t < 0. In terms of the Equations (9) and (10), it is possible to write
Green’s function as

G(x, x′, t) =
1
2

∫ ∞

−∞
dk
[

ψ+,η(x, k)G̃+(k, x′, t) + ψ−,η(x, k)G̃−(k, x′, t)
]

. (17)

Equation (16) can be simplified by using the integral transform defined by Equations (7)
and (8), yielding

∂

∂t
G̃±(k, x′, t) + 0Dγ

t

∫ μ

0
dμp(μ)|k|μ+η G̃±(k, x′, t) =

1
2

ψ±,η(x′, k)δ(t) , (18)

which, after applying the Laplace transform, has the solution given by

̂̃G±(k, x′, s) =
ψ±,η(x′, k)

2s
(
1 +Kγ(s)

∫ μ
0 dμp(μ)|k|μ+η

) . (19)

The inverse Laplace transform of Equation (18) depends on the choice of the fractional
time operator, i.e., the option performed to Kγ(t).

Let us start with the case Kγ(s) = 1/s (Kγ(t) = const) with p(μ) = χμδ(μ − μ).
Applying these conditions in Equation (19) , we have that

G̃±(k, x′, t) =
1
2

ψ±,η(x′, k)e−χμ |k|μ+η t . (20)

By applying the inverse of the integral transform, it is possible to show that

G(x, x′, t) = G+(x, x′, t) +
xx′

|x||x′| G−(x, x′, t), (21)

with

G±(x, x′, t) =
(2 + η)2

2(μ + η)|x|2+η

(|x||x′|) 1
2 (1+η)

× H1,0,1,1,1
2,[0:1],0,[0:2]

⎡⎢⎢⎢⎣
( |x′ |

|x|
)2+η

Υμ,η t
2+η
μ+η

|x|2+η

∣∣∣∣∣∣∣∣∣

( 2∓ν
2 , 1

)
;
( 2±ν

2 , 1
)

−−; (0, 2+η
μ+η )

−−;−−(∓ ν
2 , 1

)
;
(± ν

2 , 1
)
; (0, 2+η

μ+η ), (0, 2+η
μ+η )

⎤⎥⎥⎥⎦ , (22)

where Υμ,η = (2 + η)2χ
2+η
μ+η
μ and

HL,M,M1,N,N1
E,[A:C],F,[B,D]

⎡⎢⎢⎣ x
y

∣∣∣∣∣∣∣∣
(ε1, ω1), · · · , (εE, ωE)

(a1, α1), · · · , (aA, αA); (c1, β1), · · · , (cC, βC)
(ξ1, �1), · · · , (ξF, �F)

(b1, β1), · · · , (bB, βB); (d1, δ1), · · · , (dC, δD)

⎤⎥⎥⎦ (23)
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is the generalized H−function of Fox [58–60].
For the particular case μ = 2, it is possible to simplify Equation (22) and to show that

G(x, x′, t) =
1

(2 + η)χμt
(|x||x′|) 1

2 (1+η)e
− 1

(2+η)2χμ t (|x|
2+η+|x′ |2+η)

×
{

I−ν

(
2(|x||x′|) 1

2 (2+η)

(2 + η)2χμt

)
+ sgn(xx′)Iν

(
2(|x||x′|) 1

2 (2+η)

(2 + η)2χμt

)}
, (24)

where Iν(x) is the Bessel function of order ν of modified argument [57]. Note that the
mean square displacement for this particular case is given by σ2

x =
〈
(x − 〈x〉)2

〉
∼ t2/(2+η)

evidencing the anomalous behavior of the system with the time evolution.
Now, we extend the previous case for Kγ(s) = 1/sγ, which corresponds to considering

the Riemann–Liouville fractional time derivative. For this case, with p(μ) = χμδ(μ − μ),
we have that

G̃±(k, x′, t) =
1
2

ψ±,η(x′, k)Eγ

(−χμ|k|μ+ηtγ
)

, (25)

where Eγ(x) is the Mittag–Leffler function, defined as follows:

Eγ(x) =
∞

∑
n=0

xn

Γ(1 + γn)
. (26)

An interesting point concerning the Mittag–Leffler function is the asymptotic behavior
governed by a power law instead of an exponential. This feature has implications for the
random process connected to these functions, characterized by waiting time distributions
with long-tailed behavior. This point can be verified by using the continuous time random
walk approach, for example, in Ref. [11], which connects the fractional diffusion equations
with a random process. The solution for this case is also given by Equation (21) with

G±(x, x′, t) =
(2 + η)2

2(μ + η)|x|2+η

(|x||x′|) 1
2 (1+η)

× H1,0,1,1,1
2,[0:1],0,[0:2]

⎡⎢⎢⎢⎣
( |x′ |

|x|
)2+η

Υμ,η t
γ

2+η
μ+η

|x|2+η

∣∣∣∣∣∣∣∣∣

( 2∓ν
2 , 1

)
;
( 2±ν

2 , 1
)

−−; (0, 2+η
μ+η )

−−;−−(∓ ν
2 , 1

)
;
(± ν

2 , 1
)
; (0, 2+η

μ+η ), (0, γ
2+η
μ+η )

⎤⎥⎥⎥⎦ .(27)

Equation (27) mixing three different parameters, which in connection with a random
walk, can be connected to the waiting time and jumping distributions. The parameter
γ related to the fractional time derivative is connected to the waiting time distribution,
and the other parameters η and μ are connected to the jumping probability. We can have
a short or a long-tailed behavior for the spatial distribution depending on the choice of
the parameter η and μ. Figures 1 and 2 show the behavior of G+(x, x′, t) and G−(x, x′, t)
for different values of the parameters γ, η, and μ. In particular, it is possible to observe
that depending on the choice of the parameters, the previous Green functions can exhibit
a unimodal or a bimodal behavior. Figure 3 shows the behavior of the Green function
G(x, x′, t) given by Equations (21) and (27). It is worth mentioning that different choices for
the parameters imply different behaviors obtained with the mixing of different behaviors.

In addition, by using the scaling arguments [13], it is possible to show that the so-
lution can be written as ρ(x, t) = ρ(ξ)/tγ/(μ+η) with ξ = |x|/tγ/(μ+η) and, consequently,
σ2

x ∼ t2γ/(μ+η) for
∫ ∞
−∞ dξξ2ρ(ξ) finite. This result implies that for 2γ/(μ + η) less, equal,

or greater than one, we have subdiffusion, usual diffusion, or superdiffusion, respectively
(see Figure 4).
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Figure 1. Trend of G+(x, x′, t) and G−(x, x′, t) obtained from Equation (22) for μ = 2 and different
values of γ and η. We consider, for illustrative purposes, χ2 = 1, x′ = 1, and t = 1. Note that in
(a,b) show that G+(x, x′, t) and G−(x, x′, t) have different behavior, in particular, near the origin.

Figure 2. Trend of G+(x, x′, t) and G−(x, x′, t) obtained from Equation (27) for different values of
μ, γ and η, with p(μ) = χμδ(μ − μ) + χ2δ(μ − 2). We consider, for illustrative purposes, χ2 = 1,
x′ = 1, and t = 1. Note that in (a,b) show that G+(x, x′, t) and G−(x, x′, t) have different behavior, in
particular, near the origin.
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Now, we consider the case p(μ) = χ2δ(μ− 2)+χμδ(μ−μ). This case can be connected
to the mixing of two different behaviors. For this case, we have that Equation (19) can be
written as follows:

̂̃G±(k, x′, s) =
1
2

ψ±,η(x′, k)
s + s1−γ

(
χ2|k|2+η + χμ|k|μ+η

) . (28)

Figure 3. Trend of G(x, x′, t) obtained from Equations (21) and (22) for different values of μ, γ and η,
with p(μ) = χμδ(μ − μ). We consider, for illustrative purposes, χμ = 1, x′ = 1, and t = 1.

Applying the inverse of the Laplace transform, we obtain that

G̃±(k, x′, t) =
∞

∑
n=0

(−1)n

Γ(1 + n)
(
χμ|k|μ+ηtγ

)nE(n)
γ

(
χ2|k|2+ηtγ

)
=

∞

∑
n=0

(−1)n

Γ(1 + n)
(
χμ|k|μ+ηtγ

)n H1,1
1,2

[
χ2|k|2+ηtγ

∣∣∣(0,1)
(0,1),(−γn,γ)

]
. (29)

Performing the inverse of the integral transform, we obtain that

G±(x, x′, t) =
2 + η

2|x|2+η

(|x||x′|) 1
2 (1+η)

∞

∑
n=0

(−1)n

Γ(1 + n)

(
χ2,μt

2−μ
μ+η γ

)n

× H1,0,1,1,1
2,[0:1],0,[0:2]

⎡⎢⎢⎢⎢⎣
( |x′ |

|x|
)2+η

χ2tγ

|x|2+η

∣∣∣∣∣∣∣∣∣∣

( 2∓ν
2 , 1

)
;
( 2±ν

2 , 1
)

−−; ( 2+η
μ+η n, 1)

−−;−−(∓ ν
2 , 1

)
;
(± ν

2 , 1
)
;
(

2+η
μ+η n, 1

)
,
(
− 2−μ

2+η nγ, γ
)
⎤⎥⎥⎥⎥⎦ ,(30)

where χ2,μ = χμ/χ
(μ+η)/(2+η)
2 and χ2 = (2 + η)2χ2.
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Figure 4. Trend of the mean square displacement σ2
x versus t for different values of γ, μ, and η. Note

that depending on the value of the parameter, different behaviors can be obtained.

Figure 5 shows the behavior of the Green function for the previous case, which
considers the mixing between two different differential operators.

Figure 5. Trend of G(x, x′, t) obtained from Equations (21) and (22) for different values of μ, γ and
η, with p(μ) = χμδ(μ − μ) + χ2δ(μ − 2). We consider, for illustrative purposes, χμ = 1, χ2 = 0.6,
x′ = 1, and t = 1.

For the initial condition given by ρ(x, 0) = δ(x), the solution is illustrated in Figure 6
for different values of the parameters γ, μ, and η. We also illustrate the behavior of
1/[ρ(0, t)]2, which is connected to the mean square displacement related to this case.
In particular, from Figure 6b, it is possible to observe the presence of different diffusion
regimes depending on the choice of the parameters.
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Figure 6. (a) shows the profile of ρ(x, t) obtained from Equations (15), (21) and (22) for different
values of μ, γ and η, with p(μ) = χμδ(μ − μ), t = 1, and ρ(x, 0) = δ(x). (b) shows the behavior of
1/[ρ(0, t)]2 to illustrate the spreading of the system. We consider, for illustrative purposes, χμ = 1
and t = 1.

We can consider a different fractional time operator for the previous scenarios defined
by Equation (14). One of them is the Caputo–Fabrizio fractional operator [28]. In this case,
Equation (14) can be written as follows:

∂

∂t
ρ(x, t) =

∫ μ

0
dμp(μ)Dμ,η

x ρ(x, t) + r
(
δ(x − x′)− ρ(x, t)

)
, (31)

with r = γ/(1− γ), for the initial condition ρ(x, 0) = δ(x − x′). It is worth mentioning that
Equation (31) corresponds to a system subjected to a stochastic resetting [61]. In particular,
it extends the processes described in Ref. [56]. By using the previous approach, it is possible
to show that the solution for this case is given by

ρ(x, t) = e−rtG(x, x′, t) + r
∫ t

0
dt′e−rt′ G(x, x′, t′) (32)

with the Green function given by Equations (21) and (27). For the particular case, p(μ) =
χμδ(μ − μ) with x′ = 0, we have that the Green function is given by

G(x, 0, t) =
2 + η

2(μ + η)|x|Γ
(

3+η
2+η

) H2,1
2,3

[
|x|2+η

(2 + η)2
(
χμtγ

) 2+μ
2+η

∣∣∣∣∣
(

1, 2+η
μ+η

)
,
(

1, 2+η
μ+η

)
(

1
2+η ,1

)
,
(

1, 2+η
μ+η

)
,(1,1)

]
. (33)

Figure 7a shows the behavior of Equation (32) and Figure 7b shows the behavior of
1/[ρ(0, t)]2 to illustrate the spreading of the system for different values of the parameters
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η and μ with γ = 1/2. From this figure, we observe that the system has long been
stationary. It is also interesting to mention that Equation (32) with the Green function given
by Equation (33) allows us to investigate a diffusive process in heterogeneous media with
stochastic resetting.

Figure 7. (a) shows the profile of ρ(x, t) obtained from Equations (31) and (33) for different values of
μ, γ and η, with p(μ) = χμδ(μ − μ), t = 1, and ρ(x, 0) = δ(x). (b) shows the behavior of 1/[ρ(0, t)]2

to illustrate the spreading of the system. We consider, for illustrative purposes, χμ = 1 and r = 1.

Now, we consider the presence of a non-local term in the diffusion equation. We also
consider, for simplicity, the initial condition ρ(x, 0) = δ(x), p(μ) = χμδ(μ − μ), and the
Riemann–Liouville fractional time operator. For this case, we can apply the previous
procedure based on integral transforms, yielding

̂̃ρ+(k, s) =
1
2

ψ+(0, k)
s + s1−γχμ|k|μ + Λ(s)

. (34)

After performing a series of expansions, we have that

̂̃ρ+(k, s) =
1
2

ψ+(0, k)
s + s1−γχμ|k|μ

∞

∑
n=0

(−1)n
[

Λ(s)
s + s1−γχμ|k|μ

]n
, (35)

which, after performing the inverse integral transforms, yields

ρ(x, t) = G+(x, 0, t) +
∞

∑
n=1

(
−1

2

)n ∫ t

0
dtn

∫ ∞

−∞
dxnΥ(x, xn, t − tn) · · ·

×
∫ t2

0
dt1

∫ ∞

−∞
dx2 Υ(x2, x1, t2 − t1)Υ(x1, 0, t1) (36)
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where Υ(x, ξ, t) =
∫ t

0 dt′G+(x, ξ, t − t′)Λ(t′).

3. Discussion and Conclusions

We have investigated a generalized diffusion equation which has, in particular cases,
several situations. We have started our analysis by considering the fractional spatial
operator and analyzed the influence of the fractional time operators on the solutions. In this
scenario, we have obtained the time behavior of the mean square displacement by using
scaling arguments when fractional space and time derivatives are present in the diffusion
equation. In this case, we consider a singular kernel for the fractional time derivative that
allows a connection with the Riemann–Liouville fractional time derivative. For the spatial
fractional operator, we have also considered an operator of distributed order. In particular,
we analyzed the mixing between two cases, i.e., p(μ) = χμδ(μ − μ) + χ2δ(μ − 2). In each
case, the solutions can be directly connected to the stretched exponential or power laws,
depending on the choice of the parameters characterizing the spatial fractional operator.
We have also considered Fabrizio–Caputo fractional time operator. For this case, we have
related this case with a stochastic resetting process following the approach presented in
Ref. [28] and analyzed the behavior of the solutions. For each case, the solutions were
obtained using the Green function approach. In addition, we have also considered the
solutions for an arbitrary non-local term in the generalized diffusion equation. Finally, we
hope that the results found here can be helpful in the discussion of different scenarios in
connection with diffusion and anomalous diffusion processes.
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Abstract: Numerical simulations based on a high-order discontinuous Galerkin solver were per-
formed to investigate two-dimensional flapping foils at moderate Reynolds numbers, moving with
different prescribed harmonic motion laws. A Spalart–Allmaras RANS model with and without
an algebraic local transition modification was employed for the resolution of multiple kinematic
configurations, considering both moderate-frequency large-amplitude flapping and high-frequency
small-amplitude pure heaving. The propulsive performance of the airfoils with the two modelling
approaches were tested by referring to experimental and (scale-resolving) numerical data available in
the literature. The results show an increase in effectiveness in predicting loads when applying the
transition model. This is particularly true at low Strouhal numbers when, after laminar separation
at the leading edge, vorticity dynamics appears to have a strong effect on the forces exerted on the
profile. Specifically, the transition model more accurately predicts the wake topology emerging in the
flow field, which is the primary influence on thrust/drag generation.

Keywords: discontinuous Galerkin; oscillating foil; thrust efficiency; reduced frequency; NACA0012;
SD7003; algebraic transition model; Spalart–Allmaras; moderate Reynolds number

1. Introduction

Starting from the pioneering work of Knoller [1] and Betz [2], the fluid dynamics
aspects of oscillating foils have drawn the attention of researchers such as Burgers and
von Kármán [3], Lighthill [? ], and many others, whose endeavours have been extensively
reported in a recent review by Wu et al. [5].

In particular, several experimental and numerical studies [6–12] have been carried
out at moderate Reynolds numbers, for which transitional effects can be relevant. In this
circumstance, the use of the standard, fully turbulent, Reynolds-averaged Navier–Stokes
equations (RANS) approach can be erratic, while scale-resolving simulations, namely large
eddy simulations (LES) and direct numerical simulations (DNS), are still prohibitively
expensive, particularly when a large-scale investigation is required. Hybrid LES-RANS
approaches [13–16] allowed the reduction in the computational cost while retaining large-
scale solution accuracy through a mesh size relaxation at solid boundaries ; despite this,
the required computational resources remain closer to a LES rather than a RANS. A viable
alternative consists of using RANS equipped with a transition model [17–19], which may
require the solution of additional partial differential equations (PDE). Among all the
possibilities, the local algebraic approach is well suited for unstructured solvers, because it
does not increase the computational effort and, at the same time, significantly improves the
prediction capabilities. For instance, when the Reynolds number is of the order of 104 or
105, employing a transition model enables capture of phenomena such as formation of a
laminar separation bubble over an airfoil and more accurate prediction of the onset of the
stall. Despite the availability of results involving transition models applied to airfoils at
moderate Reynolds number, even recently [20], the authors are not aware of studies that
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specifically consider the oscillating motion of airfoils using RANS and a local transition
algebraic model. This is the main subject of this work. Note that in the literature it is
possible to find flapping foils at moderate Reynolds number simulated solving both the
two-dimensional Navier–Stokes (Ashraf et al. [21] at Re = 20,000 and Li et al. [22] at
Re = 40,000) and the fully turbulent RANS governing equations (Young and Lay [23] at
Re = 10,000–80,000 and Wang et al. [24] at Re = 13,800), so the purpose of this article is
also to establish the limits of applicability of the latter approach.

In particular, the analysis proposed here is focused on performance evaluation concern-
ing the prediction of loads, efficiency, and flow structure emerging from the dynamics of
two-dimensional oscillating airfoils given by a Spalart–Allmaras (SA) RANS approach with
and without the contribution of a local algebraic transition model referred to as SA-BCM.
The choice of the SA model relies on its extensive use in aerodynamic applications and its
suitability to simulate turbulent flows past an airfoil, all while having a low computational
expense. Within the subject of oscillating foils, the same model has been adopted in [10]
for comparing numerical results with experimental particle image velocimetry (PIV) data.
Therein, the model performance are considered satisfactory; however, in Section 3 we
will show how the approach presented here can further increase the agreement between
simulations and experimental visualizations for moderate Reynolds numbers. As far as
the transition model is concerned, the implementation considered in this work follows the
mathematical description sketched in [25], which will be explored in more detail in the
dedicated section (Section 2.2). The appeal for algebraic models stems from the absence of
any additional transport equation for the intermittency field, which is instead modelled
through a suitable empirical correlation with local flow quantities and embedded within
the transport equation for an eddy viscosity-like variable. Its effect consists of determining
the activation of the eddy viscosity-like production term corresponding to the regions
exhibiting turbulent features. This algebraic transition approach proved to increase the
accuracy of the solution considerably over a wide range of Reynolds numbers without
significant variation in the computational cost [25–27].

Both models are implemented on top of a discontinuous Galerkin (DG) solver. This
method preserves high-order accuracy independently from the grid characteristics, and
it has been exploited here to ensure the resolution independence of the solutions through
p-refinement. Moreover, as a side result, it is shown that the transition-modified SA model
does not compromise the scheme robustness, despite the well-known stability issues due
to the implementation of RANS equations within high-order frameworks.

As far as the airfoil motion is concerned, two oscillatory configurations have been
considered: (1) a two-dimensional flapping motion, composed of a vertical translation with
a superimposed rotation around a pivotal point and (2) a two-dimensional, high-frequency
small-amplitude vertical oscillation with a constant angle of attack. These two prescribed
motions allowed testing of the models with kinematic configurations producing rather
different effects. Specifically, the flapping motion may be assimilated to the tail movement
of oscillatory swimmers, such as tuna and sharks, and it has been thoroughly investigated
as a propulsive mechanism, whereas high-frequency heaving has been proposed as a
motion strategy aimed at drag reduction and flight stability improvement of air vehicles.

To validate the derived results, enabling the capture of consistent conclusions over the
performance of the two models, suitable reference works have been used as a foundation.
Concerning the flapping motion, the work of Schouveiler, Hover and Triantafyllou [8]
has been taken as a benchmark for the evaluation of hydrodynamic forces and propulsive
efficiency. In order to be able to make comparisons with their experimental results, the
simulations were performed by changing the motion parameters in such a way to simulate
Strouhal numbers in the range 0.1 < St < 0.45 for two different values of maximum angles
of attack, i.e., αmax = 15◦, 30◦. A more detailed description of the parameters will be
outlined in the dedicated section (Section 3.1). For the second motion condition, namely
high-frequency plunging, the work of Visbal [11] and Krais et al. [12] have instead been
used as a reference. In [11], a three-dimensional LES analysis was provided for a plunging
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SD7003 airfoil, considering different values of Reynolds number and motion parameters,
together with validation of the experimental results [10]. The comparison between SA
and SA-BCM models was carried out using the previously reported configurations with a
frequency k = 3.93 at Re = 40,000 and k = 10 at Re = 60,000. A more detailed description
will be given in Section 3.2. The work of Krais et al. [12] provides additional data, once again
derived from scale-resolving simulations (ILES) employing a nodal DG solver adopting
the plunging configuration characterized by k = 3.93 and Re = 40,000 defined in [11] as a
test case.

The overall organization of the manuscript is as follows: in Section 2.1 the parametriza-
tion of the profile motion is reported. This is followed in Section 2.2 by an outline of
the high-order DG method and the implemented turbulence models. In Section 3, the
results obtained from simulating both NACA0012 (Section 3.1) and SD7003 (Section 3.2)
are provided. Finally, in Section 4, the main findings are summarized and discussed.

2. Simulation Setup

2.1. Kinematic Framework

The airfoil motion is fully defined by the following periodic kinematic functions:

θ(t) = α0 + θ0 sin(2π f t)

h(t) = h0 sin(2π f t + ψ) ,
(1)

where α0 is the mean angle of attack; h0 and θ0 are the vertical and angular displacement,
respectively; f is the frequency of oscillation; and ψ is the phase shift between the heaving
and pitching sinusoidal waves. In terms of velocity, the vertical oscillation reads as

ut
2(t) = 2π f h0 cos(2π f t + ψ) = U0 cos(2π f t + ψ) (2)

where U0 = 2π f h0 is the maximum vertical velocity associated with the oscillating motion.
Similarly, the angular pitching velocity is

ωt
3(t) = 2π f θ0 cos(2π f t) . (3)

The effective angle of attack α, according to our sign convention, is related to the other
kinematic quantities through

α(t) = θ(t) + arctan
(

ut
2(t)
U∞

)
. (4)

The maximum value assumed by α during the oscillating cycle is denoted with αmax.
An illustration of the various kinematic variables is given in Figure 1.

h(t)

 (t)

 (t)

U

u2(t)t

x

y

Figure 1. Scheme of the NACA0012 airfoil.
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The amplitude-based Strouhal number of the oscillation (St) and/or the reduced
frequency (k),

St =
U0

πU∞
, k = π

cSt
2h0

, (5)

are the non-dimensional numbers used to characterize the foil motion. In particular, St
represents the ratio between the maximum heave velocity U0 and the free-stream speed
U∞, except for an additional π in the denominator. Finally, the Reynolds number is, as
usual, defined as Re = U∞c/ν, where c is the foil chord and ν is the kinematic viscosity.
Note that c and U∞ are hereafter used as reference scales of length and velocity.

In order to identify the position of the profile during its motion for the different cases
explored, the notation adopted in [10,11] is followed. According to that, the instantaneous
vertical position of the foil is expressed in terms of a parameter Φ, called the motion phase,
which expresses the vertical coordinate as a percentage of the oscillating period. In this
way, the vertical positions of interest will be denoted in the following way: Φ = 0 indicates
the maximum upward displacement, Φ = 0.25 the neutral position during downstroke,
Φ = 0.5 the maximum downward displacement, and Φ = 0.75 the neutral position
during upstroke.

2.2. Numerical Framework

The numerical simulations were performed using a DG solver (see [28–31]). The
advantage of using such a class of methods is related to the ability to provide accurate
high-order solutions on stretched, curved, and unstructured computational grids. In this
work, we consider a two-dimensional incompressible DG code, which is able to deal with a
non-inertial reference frame to account for the foil oscillations. Note that the results here
reported are not DG specific and the high-order accuracy, up to the seventh order, was only
exploited in order to reach the numerical resolution independence. The governing equations
are expressed in terms of the absolute velocity ui, a vector in the inertial frame observed
by the non-inertial frame attached to the foil (see, for example, [32,33]). Consequently,
the inter-frame velocity components are Ui = ut

i(t) + εijkωt
j(t)(xk − x0,k), where x0,k is the

centre of rotation. Note that, for the sake of convenience, in the Ui identity we adopted
the same ut

i(t) notation already used in Equation (2); however, here the heaving velocity
should be interpreted as defined in the rotating frame and not in the inertial one. The
resulting PDE system reads as

∂ui
∂xi

= 0 ,

∂ui
∂t

+
∂uiuj

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
(ν + νt)

∂ui
∂xj

)
− εijkωt

j uk + Uj
∂ui
∂xj

,

∂ν̃

∂t
+

∂ν̃uj

∂xj
= γBCCb1S̃ν̃ +

Cb2
σ

∂ν̃

∂xj

∂ν̃

∂xj
− Cw1 fw

(
ν̃

d

)2
+

1
σ

∂

∂xj

(
(ν + νt)

∂ν̃

∂xj

)
+ Uj

∂ν̃

∂xj
,

(6)

where p is the pressure divided by the density, νt is the kinematic eddy viscosity, d is the
minimum distance from the wall, and εijk is the Levi-Civita tensor. Note that in Equation (6),
taking advantage of the identity ∂Ui/∂xi = 0 and deviating from the process that is usually
performed in the literature, the divergence of the convective fluxes does not contain the
relative velocity, and all the non-inertial terms are moved to the right-hand side.

Following the standard RANS approach and Boussinesq’s hypothesis, the flow-
governing equations are combined with a closure model for the turbulent Reynolds stresses.
More precisely, the Spalart–Allmaras one-equation model has been used, with the eddy
viscosity-like variable identified by ν̃. The eddy viscosity is computed according to the
equation νt = fv1ν̃, where fv1 = χ3/(χ3 + C3

v1) and χ = ν̃/ν.
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In order to fully define the SA model, the following functions should be also specified:

S̃ = S +
ν̃

k2d2 , r =
ν̃

S̃k2d2
, g = r + cw2

(
r6 − r

)
, fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, (7)

where k = 0.41 is the Von Kármán constant and S = (2ΩijΩij)
1/2 is the magnitude of the

vorticity tensor, Ωij = 1/2(∂ui/∂xj − ∂uj/∂xi). As performed in several SA implementa-
tions, the trip term is ignored in Equation (6). Thus, the base model is fully turbulent.

For the sake of compactness, the model constants, such as Cb1, Cb2, etc., will not
be given in this paper. Interested readers can refer to the original work of Spalart and
Allmaras [34]. In the following, the algebraic transition model proposed in [26] and more
recently modified in [25,27] will be introduced. The latter version solves an issue regarding
the Galilean invariance of the prior version, which is obviously crucial for the type of
application handled here.

For the SA standard, fully turbulent model, the intermittency function γBC is set to 1
in Equation (6), and for the transition model, it is evaluated as

γBC = 1 − e−
√

T1−
√

T2 , T1 = max
(

Reθ − Reθc
χ1Reθc

, 0
)

, T2 = max
(

νt

χ2ν
, 0
)

, (8)

where χ1,2 = 0.002, 50 are calibration constants of the model. Thanks to the observation
(see [35]) that the momentum thickness Reynolds number, Reθ , is proportional to the
vorticity Reynolds number, Rev = d2/νS, the former is evaluated as Reθ = Rev/2.193.
Finally, the critical momentum thickness Reynolds number, Reθc, is computed according to
the empirical correlation Reθc = 803.73(Tu∞ + 0.6067)−1.027. Note that the value of Tu∞ is
not assigned to the inflow/far-field boundary conditions, because the SA model does not
consider the turbulent kinetic energy. As explained in [26], the term T1 establishes the onset
of transition, whereas the term T2 propagates high levels of the intermittency function γBC
within the boundary layer.

Moreover, we decided to complement the model with the recent low Reynolds correc-
tion of Spalart and Garbaruk [34], which seems very well suited to deal with transitional
flows. Following the latter approach, the model constant cw2 = 0.3 in Equation (7) is
changed to the function

cw2,LRe = cw4 +
cw5

(χ/40 + 1)2 , (9)

with cw4 = 0.21 and cw5 = 1.5.
The DG discretization can be obtained by expressing the system of Equation (6) in

variational form, decomposing the domain by elements, and defining an appropriate
polynomial space of order q within each element. In this work, the convective numerical
fluxes that are used to couple the solution at the interior faces of the mesh are computed
through the artificial compressibility flux method of [36]. On the other hand, the second
form of the Bassi and Rebay scheme (see [28]) has been used for the viscous terms. The DG
discretized system can be written in the following compact form

M0 dW
dt

= R(W, t), (10)

where W is the global vector of the degrees of freedom (DOF), M0 is a modified mass matrix
with null entries corresponding to the pressure DOF, and R is the vector of residuals. This
system of differential algebraic non-linear equations is integrated in time through a linearly
implicit Rosenbrock-type Runge–Kutta scheme named ROS3P by [37]. The advantage of
this class of schemes is that the non-linear solution process is completely avoided and the
Jacobian matrix ∂R/∂W has to be computed only once for each time step. The resulting
time-discretized equations can be stated as
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Wn+1 = Wn +
s

∑
j=1

mjYj ,

(
M0

γiiΔt
− ∂R

∂W
(Wn, tn)

)
Yi = R

(
Wn +

i−1

∑
j=1

aijYj, tn + αiΔt

)
+

+ M0
i−1

∑
j=1

cij

Δt
Yj + γiΔt

∂R
∂t

(Wn, tn) , i = 1, . . . , s

(11)

where the superscript n refers to the marching time step, s = 3 is the number of stages
and mj, γi, γii, aij, αi are the coefficients of the scheme, which can be found in [37]. The last
term of Equation (11) considers that the system is non-autonomous. In fact, due to the non-
inertial frame, the absolute velocity vector ui changes at the non-slip, wall, and free-stream
boundary conditions to follow the airfoil motion. Moreover, in Equation (6), Uj and ωt

j are
not constant in time. At the wall, ν̃ is set to zero, and the free-stream value depends on the
choice of the model. Fully turbulent standard computations are performed with ν̃∞ = 3ν,
and for the transitional simulations this value is set to 0.02ν. These data are consistent
with the recommendations found in the current literature (see, for example, [27,38]). The
requirement to use smaller ν̃∞ boundary data highlights the need of a strategy to prevent
negative (spurious and non-physical) values of ν̃, which may result in the blow up of the
simulations. This stability issue is exacerbated when a high-order scheme is adopted. Our
approach is described in [30], where the details of our SA implementation are given.

The solution of the linear systems arising from Equation (11) were handled using a
flexible generalized minimal residual (GMRES) solver preconditioned by a highly parallel
efficient p-multigrid algorithm, described by [39].

3. Results

In the following section, we present the results obtained for two test cases that in-
clude a symmetric (NACA0012) and an asymmetric (SD7003) airfoil. The numerical grids,
generated using the open-source software GMSH [40], are unstructured, as illustrated in
Figure 2. In both cases, the outer boundary is a circle with a radius equal to 25c. The
boundary layer region is discretized using structured-like quadrangular elements suitably
curved to accurately represent the foil’s curvature. To this end, a piece-wise third-order
polynomial approximation of the faces of the elements is employed. The height of the
first cell, expressed in wall friction units, is at most of the order of y+ = 1 for all the
computations here reported. The NACA0012 grid was significantly refined behind the
airfoil because we paid particular attention (see the following section) to the wake topology.
For this reason, the NACA0012 mesh consists of more elements: 7416 instead of 2875. We
did not perform a classical grid refinement study, but rather we verified the numerical
resolution by raising the polynomial order q of the solution. See Sections 3.1 and 3.2.2
for examples of the solution convergence analysis. If not otherwise stated, the results
here reported are obtained with q = 6, ensuring a seventh-order space accuracy for the
velocity components and the eddy viscosity and sixth-order accuracy for pressure. The
time step size was also carefully verified, and in this work it ranges between 10−3c/U∞
and 10−2c/U∞. In regard to the choice of the value of Tu∞ in the transition model, we did
not find any clear statement in the references available for NACA0012 (e.g., [8]), thus we
arbitrarily decided to use a small value such as 0.2%. For the SD7003 computations, instead,
we used Tu∞ = 0.1%, in agreement with the experimental data reported in [10]. However,
multiple tests showed that the results are quite insensitive to small changes of Tu∞.
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The forces Fi acting on the airfoil expressed in the inertial frame and the momentum
M3 are non-dimensionalized using the chord c and the free-stream velocity U∞, obtaining
the following drag, lift, and moment coefficients:

CD =
F1

1/2 ρ S U2
∞

, CL =
F2

1/2 ρ S U2
∞

, CM =
M3

1/2ρ cS U2
∞

, (12)

where ρ is the fluid density and S is the reference area, which is the chord c times a unit’s
span-wise length.

(a) (b)

Figure 2. Mesh of NACA0012 (a) and SD7003 (b).

3.1. NACA0012

The first analysis focused on a sinusoidal pitching/plunging, two-dimensional NACA0012
airfoil at Re = 40,000. The motion laws are given by Equation (1), with α0 = 0. The heav-
ing amplitude was fixed at h0 = 0.75c. Meanwhile, the axis of rotation was positioned at
a distance of 1/3 chords from the leading edge. The heaving signal led the pitching har-
monic by a quarter period, so ψ = 90◦, which is known to be the optimal value in terms of
efficiency ([7–9]).

Analysis was conducted through the comparison of propulsive performance and flow
structure for several kinematic configurations. Specifically, we studied propulsive attributes
at αmax = 15◦ and αmax = 30◦ while ranging St from 0.1 to 0.45 with an interval of 0.05. On
the other hand, flow fields were inspected for cases at αmax = 20◦ and αmax = 30◦, both
with St = 0.45. The polynomial degree was adapted to the value of the frequency, with a
minimum of q = 3 for low St and a maximum of q = 6 for high St, because as the Strouhal
number increases, the vortical structures become smaller, requiring a greater spatial res-
olution. Results were then compared with the experiments of Schouveiler et al. [8] for
validation, although the experimental data available in the literature appear to be scattered.

The series of surveys, aiming to perform a direct comparison to the models, are fo-
cused on the examination of propulsive performance sensitivity to St, as heaving/pitching
amplitude and frequency are the main factors influencing the wake topology [41–44]. The
shape of the wake is in fact directly correlated with the thrust that the airfoil is able to
create, as explained in [3]. This means that simulating a broad spectrum of combinations of
θ0 and f constitutes a solid benchmark to test the goodness of the numerical models.

Propulsive performance was assessed in terms of the thrust coefficient CT = −CD and
propulsive efficiency ηp, defined as

ηp =
CT

CP
. (13)
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The terms CT and CP are, respectively, the mean thrust and mean power coefficient,
computed as

CT =
1

ncT

∫ ncT

0
CT dt , CP = − 1

ncT

∫ ncT

0

[
CL

ut
2

U∞
+ CM

cωt
3

U∞

]
dt , (14)

where ut
2 and ωt

3 are defined in Equations (2) and (3), respectively; nc indicates the number
of cycles considered for the average; and T represents the motion period.

Note that the definition of Equation (13) admits negative values of ηp when the
flapping foil experiences drag, whereas it is positive when thrust is generated.

The results are collected in Figure 3.

(a) (b)

Figure 3. Propulsive efficiency and mean thrust coefficient as a function of the Strouhal number for
αmax = 15◦ (a) and αmax = 30◦ (b). Experimental data digitized from [8].

At a high angle of attack, both models seem to perform in a quite similar fashion,
retracing well the experimental data points at medium/high frequencies, especially if we
consider ηp. As f decreases, the gap between simulations and experiments starts to widen.
Indeed, at St = 0.1 we have that ηpexp ≈ −40.7%. Instead, the transition and fully turbulent
models predict efficiencies of −68.3% and −63.0%, respectively. Nonetheless, throughout
the frequency spectrum analysed, SA always provides a moderately higher thrust than
SA-BCM, which translates into a greater efficiency. This is probably attributed to the more
diffusive nature of the fully turbulent model, which postpones separation and contributes
positively to thrust generation. At a small angle of attack, the situation changes drastically,
as the transition and fully turbulent models largely differ at low frequencies. For example,
at St = 0.1, SA estimates a mean thrust coefficient of 0.100, whereas SA-BCM provides a
value of CT = 0.056, which is very close to the experimental value of 0.061. In addition to
this, the efficiency of SA is characterized by ηp = 56.2%, whereas SA-BCM shows a value
of ηp = 26.9%, much closer to the value of 37.1 obtained from the experiments. This seems
to imply a better performance of the transition model, as it is also able to replicate the drop
of the ηp curve at small values of f , unlike the fully turbulent model.

In order to gain insight on this diverse behaviour at a small angle of attack, it is useful
to exploit the phase space (CL, CD) representation composed of the instantaneous lift and
drag coefficient curves, as proposed in [45], coupled with a visualization of the flow fields.

Figure 4 depicts (CL, CD) phase maps at the extremes of our frequency range for
the case αmax = 15◦. As expected, when St = 0.1, the two models trace a completely
different orbit. Instead, when St = 0.45, the curves are more or less overlapped. At high
frequencies, the transition model moves between larger negative and positive values of
the lift coefficient than the fully turbulent model and it is capable of revealing ‘richer’
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dynamics as the airfoils generate resistance (CD > 0), but the overall paths are coincident.
Furthermore, SA-BCM does not hold a perfectly periodic trajectory due to the unsystematic
activation/deactivation of γBC within multiple periods. At small frequencies, the models
follow their own trajectory, with SA-BCM featuring an imperfectly symmetric curve with
respect to CL = 0 and a much longer portion in drag conditions (CD > 0). The reason
why this happens can be sensed by examination of the vorticity fields in Figure 5. It is
evident how the transition model captures flow separation. Meanwhile, the classic Spalart–
Allmaras model only causes a thickening of the boundary layer. At high frequencies, where
just a trailing-edge vortex (TEV) detaches from the profile, this approximation is sufficient
for replication of the wake pattern. At low frequencies, separation is anticipated, and there
is the creation of a LEV that travels along the suction surface, eventually interacting with
the TEV. The lack of this interaction when using SA causes little to no separation and leads
to a streamlined wake. This supports the thesis of Guglielmini et al. [46], which states that
in order to accurately evaluate performances of oscillating foils, flow separation must be
modelled at the leading and trailing edges. Animations showing the physical mechanisms
involved in the arise of flow instabilities are provided as Supplementary Material, although
we will not focus on those aspects as it is beyond the purpose of this work.

(a) (b)

Figure 4. (CL, CD) phase diagram for αmax = 15◦ using transition and fully turbulent model with
St = 0.1 (a) and St = 0.45 (b). The curves cover a total of two time periods; solid circles (•) identify
the starting point of the oscillating cycle and empty circles (◦) indicate the point where vorticity fields
in Figure 5 are depicted.

(a) (b)

Figure 5. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 5. Contour plot of the instantaneous vorticity field for αmax = 15◦ using the transition and
fully turbulent models. The snapshots are taken at Φ ≈ 0.183 for St = 0.1 and at Φ ≈ 0.385 for
St = 0.45. (a) St = 0.1, SA-BCM; (b) detail I; (c) St = 0.1, SA; (d) detail II; (e) St = 0.45, SA-BCM;
(f) detail III; (g) St = 0.45, SA; (h) detail IV.

The inability of the fully turbulent model to capture flow detachment is confirmed by
Figure 6. At αmax = 20◦ and St = 0.45, the transition model displays swirling structures
forming at the leading edge, as portrayed in Figure 6f, instead in the fully turbulent model
the flow remains attached (see Figure 6h). Despite this clear contrast, the fast dynamics
appears to uniform the flow field at the trailing edge, yielding a good similarity in the wake
topology, which also finds a good agreement with the visual recordings in [8]. This seems
to imply that, for αmax ≤ 20◦, both models perform well if St is high enough, but as soon
as St decreases, SA-BCM becomes much more accurate than SA. That said, Figure 6e,g
still exhibit some minor differences. In particular, adopting the designation introduced by
Williamson and Roshko [41], we have that SA-BCM draws a 2P + 2S wake, with a pair of
corotating vortices (denoted by the letter ‘P’) plus a single vortex (denoted by the letter
‘S’) formed during each half cycle, whereas the wake resulting from SA falls into the 2P
category, because the single vortex becomes embedded into the tail of the paired eddies.
The only configuration where SA also reveals a separated flow upstream the trailing edge is
at a high angle of attack and high frequency (αmax = 30◦, St = 0.45), due to the fact that the
turbulence level is so high that even a standard RANS model is suitable. Indeed, SA-BCM
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and SA both induce a 2P + 2S wake, as shown in Figure 6a,c, which once again manifest a
good resemblance to the visualizations obtained experimentally by Schouveiler et al. [8].
We point out that each wake in Figure 6 evolves in a 2S reverse von Kármán vortex street
after ≈ 10c for αmax = 20◦ and ≈ 7c for αmax = 30◦; hence, they all generate thrust.

(i) (j)

(k) (l)

(m) (n)

(o) (p) Detail IV

Figure 6. Contour plot of the instantaneous vorticity field using transition and fully turbulent model
for St = 0.45. All snapshots are taken at Φ = 0.25. (a) αmax = 30◦, SA-BCM; (b) Detail I; (c) αmax = 30◦,
SA; (d) Detail II; (e) αmax = 20◦, SA-BCM; (f) Detail III; (g) αmax = 20◦, SA; (h) Detail IV.

For completeness, it is worth finally providing an example of the convergence study of
the solutions here reported. Space and time resolution-independence have been guaranteed
through a polynomial refinement of the space discretization q and the choice of the time
step size Δt. It should be noted that by raising the degree of the polynomial approxima-
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tion, the order of accuracy of the solution increases, although this also corresponds to a
significant growth in the number of degrees of freedom. For instance, moving from q = 3
to q = 6, the total number of variables goes from 296,640 to 830,592. An increase by a
factor almost equal to 3 in the dimension of the numerical problem may be observed as
a result of such a raise in the polynomial-order approximation. The solutions’ accuracy
was verified by examining the behaviour of both the average performance coefficients and
the (CL, CD) phase diagrams. For the sake of conciseness, in the following we only report
the convergence results referring to the particular case with αmax = 20◦ and St = 0.45. Its
stringent requirement for high spatial and temporal resolutions due to the large St makes
it indeed a most challenging scenario. Considering the SA-BCM model, which presents
relatively stricter accuracy constraints compared to the standard SA due to its algebraic
modification, the average drag coefficient and efficiency have been observed to remain
substantially unchanged throughout the performed space–time refinement: moving from
q = 3 and Δt = 10−2c/U∞ up to q = 6 and Δt = 2.5 × 10−3c/U∞, we have that CD ranges
between −1.016 and −1.017, whereas ηp spans between = 0.548 and 0.551. In Figure 7,
the (CL, CD) phase diagrams for different polynomial approximations are reported over
one cycle. It is easy to notice that for q ≥ 3 the results are almost indistinguishable. When
only adopting SA-BCM, very small differences arise; however, as previously mentioned,
with this model an imperfectly periodic behaviour of the solution is often observed, and
small differences can be seen even between consecutive cycles performed at the same
polynomial order, as will be further shown in Section 3.2.2. Note that another detailed
space convergence study is also presented for the SD7003 profile in Section 3.2.2.

(a) (b)

Figure 7. Single−period (CL, CD) phase diagram at increasing polynomial degree q for the case
with αmax = 20◦ and St = 0.45, using transition (a) and fully turbulent model (b). (i) q = 3,
Δt = 10−2c/U∞; (ii) q = 4, Δt = 5 · 10−3c/U∞; (iii) q = 5, Δt = 2.5 · 10−3c/U∞; (iv) q = 6,
Δt = 2.5 · 10−3c/U∞. Solid circles (•) identify the starting point of the oscillating cycle, empty circles
(◦) indicate the point where vorticity fields in Figure 6e–h are depicted.

3.2. SD7003

For the SD7003 airfoil, the turbulence models were investigated by considering a high-
frequency plunging at a constant angle of attack. Two different kinematic parametrizations
have been explored; in both cases, the pitch angle of the profile was kept constant by
switching off its time dependence in Equation (1), placing θ0 = 0.

3.2.1. Case 1

In this configuration, the airfoil was set to describe a plunging motion with reduced
frequency k = 3.93, amplitude h0 = 0.05c, and a constant angle of attack α0 = 4◦ at
Re = 40,000. The corresponding Strouhal number can be easily derived by inserting the
values of k and h0 in Equation (5), giving St = 0.125.
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During the downward motion, the effective angle of attack increases as a consequence
of the vertical velocity of the profile. In particular, substituting ut

2 into Equation (4) leads
to α > 20◦. This high value determines a boundary layer separation at the leading edge
resulting in the formation of several LEVs trailing downstream.

Even though an accurate capture of the LEV dynamics, and thus an overall accurate
flow description, is thought to be fundamental for precise computation of the forces exerted
on the profile, the simulated configuration revealed to be solely dominated by the dynamics
of the profile motion rather than the flow structure itself. Such an observation seems to be
justified by the small difference in the forces predicted by the two models, even though
SA-BCM allowed the derivation of a much more accurate representation of the relevant
flow features with respect to the standard SA, especially when compared with the three-
dimensional results in [11,12]. To demonstrate this, in Table 1 the thrust coefficients derived
from the two models are reported as averages realized over five motion periods together
with the aforementioned experimental and numerical reference values. It is possible to
note that the models employed in the two-dimensional computations present no significant
difference in terms of mean drag coefficient, placing both at a similar distance from the
three-dimensional results.

Table 1. Comparison of the mean drag coefficient CD between the different models, together with
experimental and numerical reference data.

SA SA-BCM Visbal [11] Krais et al. [12]

−0.072 −0.073 −0.083 −0.082

This is further supported by examining the instantaneous behaviour of the hydrody-
namic forces given in Figure 8, where the variations occurring in the phase plane (CL, CD)
are jointly reported with the associated time dynamics over two periods. In these figures, it
is possible to note that the curves related to the two models overlap almost entirely, aside
from a minor offset in the trajectories drawn in the phase plane. Moreover, in Figure 8a,
there is also a fairly good agreement between the CD signal of both models and the scale-
resolving data from [11]. This suggests a substantial model independence in terms of
instantaneous and mean force computations.

On the other hand, significant differences can be found by examining the details of the
vorticity dynamics at the solid surface and the associated vortex development as a result of
boundary-layer instabilities. From the instantaneous contours of the span-wise vorticity
reported in Figures 9 and 10, it can be noted that while the results of the two models in the
aft portion of the profile are fairly congruent, a quite significant deviation is observed at
the fore region close to the leading edge.

(a) (b)

Figure 8. (a) Time behaviour of drag and lift coefficients for SA, SA−BCM, and scale−resolving 3D
model obtained via image digitization of data in [11]. (b) Phase plane representation of drag and lift
coefficients for SA and SA−BCM model.
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Considering the transition model computations, it is possible to see that when the
profile reaches the top position Φ = 0, (Figure 9a,b), two vortices develop over the lower
surface of the profile due to boundary-layer separation, discernible by the regions of
strongly negative vorticity generated by the wall-enforced no-slip condition. On the upper
surface, the boundary layer appears to be fully attached on a relatively large zone past
the leading edge, but a strongly diffused vorticity structure, a remnant of the previous
cycle, travels downstream. Three-dimensional reference data in [11] clearly highlight the
span-wise homogeneous character of the laminar boundary-layer instabilities at the onset
corresponding to the front part of the airfoil. As a consequence, this region exhibits a local
physical behaviour that is purely two-dimensional and is fully captured by the transition
model. Conversely, the standard SA model at the same position presents a much smoother
vorticity distribution over the profile surface (Figure 10a,b). Even though separation at the
lower surface is still visible in the small layer of negative vorticity produced at the wall,
the enhanced diffusivity here induces a coalescence of the two vortices into a single vortex.
Furthermore, a single core of vorticity is again visible on the upper surface, which seems,
however, to remain more closely attached to the solid surface.

As the position Φ = 0.25 is reached, the profile assumes its maximum downward
velocity. By examination of the vorticity contour of the SA-BCM model in Figure 9c,d, it is
possible to note a separation with the subsequent incipient roll-up of the boundary layer in
the region close to the leading edge at the upper surface, resulting in a thinning of the layer
in the immediate vicinity. The two formed vortices, upon their interaction with the solid
surface, generate two visible regions of positive-sign vorticity arising from the boundary.
This region is found to exhibit striking similarities with the field predicted by the three-
dimensional simulation (see [11]), once again justified by the two-dimensional character of
the instabilities at their onset. On the contrary, by examination of Figure 10c,d referring to
the SA model, it is evident that all the aforementioned details of boundary-layer instability
are not adequately captured due to the absence of any modifications accounting for the
transition. In particular, the characteristic ripples of the boundary layer edge are completely
absent, implying that the local flow acceleration toward the solid surfaces resulting from
boundary roll-up is completely sheared out, and the flow almost immediately reattaches at
the boundary without any flow organization in a coherent structure. Similar observations
are also true for the dynamics of the lower surface boundary layer; although the SA-
BCM model predicts the presence of three clockwise-rotating structures, the use of a fully
turbulent SA closure does not seem to be able to capture any vorticity ejection into the fluid
domain. The higher accuracy resulting from the application of a transition model is made
evident upon inspection of the three-dimensional results in [11,12]. The early transition
state at the upper surface, with the presence of span-wise homogeneous vortices, seems to
be exactly captured by the SA-BCM model. In contrast, the scale-resolving results show that
the lower vortex trailing downstream exhibits a significant non-homogeneous spanwise
character, suggesting a less accurate description given by the two-dimensional simulation
due to the absence of three-dimensional mechanisms of vorticity redistribution.

At Φ = 0.5, the profile reached the maximum downward displacement. Considering
again the referenced three-dimensional results [11,12], the presence of two distinct turbulent
regions over the upper surface of the profile separated by a laminar, spanwise homogeneous
zone can be seen. By examination of Figure 9e, it can be seen that, corresponding to those
regions, the SA-BCM model predicts the presence of two large, highly diffused vorticity
regions. The vortex close to the leading edge (see Figure 9f), in particular, arises as a
result of the diffusion-induced coalescence of the previously formed vortex into a single
structure, attributed to the activation of the source term in the model. Behind this single
core region, the boundary layer reattaches laminarly—with the intermittency function
(not displayed for this phase) locally assuming a value of zero—before separating again.
This second separated region, as can be seen by the presence of the positive sign of the
vorticity below the rippled boundary layer edge, gives rise to three spanwise-homogeneous
distinct vortices that have also been observed in [11,12]. By examining the corresponding
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field reported by the SA model in Figure 10e,f, the upper surface single vortex is again
observable. However, in this case, it emerges as a single structure after boundary-layer
separation at the leading edge. Further downstream to such structure, the boundary layer
reattaches and then simply increases its thickness along the downstream direction; no
significant instability phenomena nor further separation region can be appreciated in the
boundary layer by adopting the SA model.

Finally, at Φ = 0.75 the profile reaches the maximum velocity in its upstroke motion.
The three-dimensional results [11,12] show the formation of complex vorticity organization
over a large portion of the upper surface as a consequence of interactions between the profile
and the previously formed vortex structures. In the SA-BCM model, such interactions seem
to be captured in a more adequate manner with respect to the SA model, even though not
exactly due to the two-dimensional nature of the simulation. By examination of Figure 9g,h,
it is possible to observe the single leading-edge vortex being pushed towards the solid
surface by the vertical, motion-induced velocity as it becomes advected downstream. As a
consequence of this wall–vortex interaction, a region of positive-sign vorticity is formed
and subsequently ejected into the fluid domain. The two-dimensional instantaneous
vorticity contours derived via implementation of SA-BCM model appear to be in fairly
good agreement with the planar vorticity distribution reported in [11,12]. On the contrary,
in the SA case, Figure 10g,h, the situation is significantly different: the vorticity distribution
is much smoother with respect to the three-dimensional findings. Moreover, the leading-
edge vortex appears to be much more heavily diffused and stretched in the streamwise
direction with only a small, positive vorticity region confined close to the solid wall.
Further downstream, no visible sign of boundary-layer instability can be identified over
the upper surface. The overall effect of the upward motion in the SA case is a compression
of the boundary layer towards its bounding solid wall without generation of any clearly
detectable instability.

To further demonstrate the improvement brought on by the application of a transition
model over the common RANS approach, another detail of vortex generation due to leading-
edge separation corresponding to the position Φ = 0.35 is reported in Figure 11, and com-
parison is drawn again from the spanwise vorticity distribution provided in [11,12] at the
same position. Once again, striking similarities can be seen between the two-dimensional
SA-BCM results and the fields computed in the three-dimensional simulations reported
in the previously mentioned works. In more detail, at this stage of the motion the profile
is decelerating towards its maximum downward displacement position; three coherent,
clockwise-rotating structures are clearly detectable close to the leading edge, separated
by regions of positive-valued vorticity. The last of these formed at previous stages of
motion become further stretched and are transported away from the solid boundary upon
interaction with the upward-moving fluid of the negative vorticity cores. The interactions
between these counter-clockwise-rotating regions then trigger instability mechanisms in-
volving the spanwise direction, as clearly highlighted in [11], inducing a transition to a
fully turbulent regime characterized by the collapse of the generated structures into smaller
scales. Obviously, such mechanisms cannot be captured by two-dimensional simulations;
however, the implementation of a transition model enables description with a sufficient
degree of accuracy of the onset and the initial evolution of the boundary-layer spanwise
instabilities that eventually evolve into the turbulent structures that are resolved in the
three-dimensional problems.

Figure 11b provides the instantaneous value of the intermittency factor γBC modulat-
ing the activation of the eddy viscosity-like production. As the parameter reaches unitary
value according to the local flow features, it induces a local increase in diffusivity exactly
corresponding to the regions that also appear to develop a fully turbulent behaviour based
on the three-dimensional results. In more detail, the model activates, triggering a local
enhancement of momentum diffusivity corresponding to the region occupied by the three
clockwise-rotating structures close to the leading edge and both on the lower and upper
surface extending from the trailing edge up to half-profile length. It could be speculated
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that the localized increase in diffusivity in the fore region determines the coalescence of
the three structures therein present, in turn determining the emergence of the single vortex
core observed in Figure 9f.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. SA−BCM model. Contour of instantaneous spanwise vorticity. From top to bottom,
the vertical positions are presented in the sequence: (a,b) Φ = 0; (c,d) Φ = 0.25; (e,f) Φ = 0.5;
(g,h) Φ = 0.75. The right column reports the details of the instability developing at leading edge.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. SA model. Contour of instantaneous spanwise vorticity. From top to bottom, the vertical
positions are presented in the sequence: (a,b) Φ = 0; (c,d) Φ = 0.25; (e,f) Φ = 0.5; (g,h) Φ = 0.75. The
right column reports the details of the instability developing at leading edge.
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(a) (b)

Figure 11. SA−BCM model. Vertical position Φ = 0.35. Contour of instantaneous spanwise
vorticity (a) and intermittency function γBC (b).

The implementation of the transition SA-BCM model for this case of the plunging
airfoil at a moderate Reynolds number is found to provide an overall improved flow
structure prediction when compared to the three-dimensional results with respect to the
more commonly used Spalart–Allmaras RANS approach. It should be noted that this comes
without any variation in terms of the magnitude of neither the mean nor instantaneous
force computations.

3.2.2. Case 2

The second explored case for the asymmetric SD7003 profile has been proposed as a
mechanism for stall suppression based on high-frequency small-amplitude oscillations. The
mean angle of attack was increased to α0 = 14◦, the Reynolds number to Re = 60,000, and
the reduced frequency assumed a value of k = 10. The vertical amplitude of the oscillations
has been set to a value equal to 0.5% of the chord length , i.e., h0 = 0.005c. Analogously to
the previous case, the corresponding Strouhal number may be derived upon substitution
of the above parameters into Equation (5), resulting in St = 0.03.

For this configuration, the two models have been firstly tested by considering sta-
tionary simulations in a static stall condition, fixing the profile at the constant angle of
attack reported above. Table 2 collects the values of CD resulting from different polynomial
approximations to provide an example, relative to the steady case, of the space convergence
study. The presence of a plateau in the drag coefficient value suggests that an independence
of the solution with respect to the adopted space discretization is achieved.

Table 2. Steady case. Space convergence shown by means of the trend of the drag coefficient CD at
increasing polynomial degree q.

q SA SA-BCM

1 0.210 0.215
2 0.196 0.204
3 0.194 0.204
4 0.194 0.205
5 0.194 0.205
6 0.194 0.205

Moving to the steady case results, no noticeable difference could be appreciated
between the two models, neither in terms of flow structures nor from the viewpoint of
mean drag coefficient. Such a situation is depicted in Figure 12: due to the large separated
region, the intermittency function of the SA-BCM model is active over a major portion of
the domain such that both cases adopt the same eddy diffusivity equation over a critically
large region, providing a justification for the essentially overlapping results.
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(a) (b)

Figure 12. Stationary case. Contour of streamwise velocity u1. SA−BCM model (a) and SA model (b).

As far as the time-dependent analysis is concerned, the motion prescribed according
to the parametrization given above has been observed to exhibit a significant reduction
in the average dimension of the separated region with a parallel diminishing of the drag
coefficient up to 40% in three-dimensional, scale-resolving simulations [11].

Figure 13 reports the mean streamwise velocity field of the two-dimensional case for
both the SA and the SA-BCM models. The SA-BCM (Figure 13a) shows a significantly
larger reduction in the size of the recirculation region behind the profile when compared
with the corresponding effect given by the SA model in Figure 13b. Indeed, the local
flow reattachment is a result of the interactions between the stall vortex detaching from
the leading edge and the moving surface, so an adequate resolution of such structures
appears to be fundamental for capture of an effective stall reduction. When adopting a fully
turbulent SA model, instabilities are immediately sheared out by the turbulent stresses
so that the mean flow strongly accelerates past the leading edge as a result, exhibiting a
neat separation.

(a) (b)

Figure 13. Time−dependent case. Contour of the mean streamwise velocity u1. SA−BCM model (a)
and SA model (b).

Conversely to the case previously explored in Section 3.2.1, an adequate capture of
stall reduction phenomena seems to be intimately dependent upon an accurate resolution
of the flow structures emerging from leading-edge separation, which is in turn better
guaranteed by the application of a transition modification rather than a standard, globally
diffusive RANS.
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By examining the behaviour of the hydrodynamic forces over multiple cycles in the
(CL, CD) plane (see Figure 14), it is possible to note that whilst the SA curve exhibits a
substantial periodicity, the orbit drawn by the transition model moves within a bounded
area in the phase plane.

(a) (b)

Figure 14. Time−dependent case. Instantaneous phase space representation of hydrodynamic forces
over multiple motion cycles (a) and relative enlargement (b).

In particular, the non-periodic SA-BCM solution is characterized by a low-frequency
variation in the single-period average drag coefficient between two finite values, both
of which are reported in Table 3. Furthermore, it is worth noting that the two CD limits
provided by SA-BCM are significantly smaller than the value predicted by SA and is closer
to the three-dimensional reference data in [11].

Table 3. Comparison of CD between the different models and experiments for the steady (first row)
and high-frequency plunge (second row) cases. The values reported for SA−BCM in the plunging
configuration are the minimum and maximum value of the single-period average drag coefficient.

Case SA SA-BCM Visbal [11]

k = 0, h0/c = 0 0.193 0.205 0.225
k = 10, h0/c = 0.005 0.158 0.133–0.148 0.133

4. Conclusions

In the present work, two-dimensional high-order DG methods have been applied to
the problem of oscillating airfoils at moderate Reynolds numbers, adopting both a standard
SA-RANS approach and its algebra-based, transition modification SA-BCM as closure
models. Two different profiles, namely NACA0012 and SD7003, have been used under
different Strouhal regime and motion conditions to explore the relevant differences between
the two models in terms of flow structure and force prediction capabilities.

As far as NACA0012 is concerned, for which a composed flapping motion was consid-
ered, the transition model seemed to behave adequately in the entire range of kinematic
configurations explored. Moreover, at a low Strouhal number, an overall improved agree-
ment with the experimental results has been observed upon the application of SA-BCM.
The latter, in particular, proved to be able to capture flow separation more accurately on the
surface of the airfoil for low-frequency oscillations. In contrast, the SA succeeded in this task
only when separation was very intense, i.e., for high angles of attack and/or fast dynamics.
Similar considerations can be made for the SD7003 profile. The high-frequency plunging
configurations showed, upon confrontation with the scale-resolving studies [11,12], that the
embedding of a transition model into the standard SA equations guarantees a significant
increase in the accuracy of the flow field close to the solid boundary. In particular, at
k = 10 the reattachment of the mean flow was captured only by the SA-BCM model, whose
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prediction of the mean drag was significantly closer to the three-dimensional references
with respect to the standard SA.

In conclusion, the distinct transitional aspects of the flow induced by oscillating airfoils
at moderate Reynolds numbers, featured by laminar separation followed by turbulent
reattachment, make them suitable candidates to test transition modification of standard
RANS models. The embedding of an intermittency function γBC locally modulating the
magnitude of the production term within the closure eddy viscosity-like equation allows
for an exact resolution of the spanwise-homogeneous region at the leading edge during the
early transition state. This, in turn, enables more accurate assessment of the dynamics of
the coherent structures arising from such instabilities in comparison to the standard SA. For
motion configurations characterized by very low Strouhal numbers, where the interactions
of the LEV with the TEV are crucial for correct evaluation of the hydrodynamic forces,
the application of the SA-BCM provided results more in line with the experimental data.
Contrarily, model performances were found to be almost identical when the dynamics were
characterized by combinations of high frequency and large amplitude, where an abrupt
separation of the boundary layer occurs. In such cases, γBC reaches the unit value in a
considerably large zone, so SA-BCM and SA basically solve an identical set of equations.
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Time evolution of the vorticity field in Figure 5e. Video S6: Time evolution of the vorticity field in
Figure 5f. Video S7: Time evolution of the vorticity field in Figure 5g. Video S8: Time evolution of
the vorticity field in Figure 5h. Video S9: Time evolution of the vorticity field for Case 1, SA-BCM
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Abbreviations

The following abbreviations are used in this manuscript:

DG Discontinuous Galerkin
DNS Direct numerical simulation
DOF Degrees of freedom
GMRES Generalized minimal residual method
ILES Implicit large eddy simulation
LES Large eddy simulation
LEV Leading-edge vortex
PDE Partial differential equation
PIV Particle image velocimetry
RANS Reynolds-averaged Navier–Stokes
SA Spalart–Allmaras
SA-BCM Spalart–Allmaras—Bas-Cakmakcioglu-Mura
TEV Trailing-edge vortex
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Abstract: Methane pyrolysis is a transitional technology for environmentally benign hydrogen
production with zero greenhouse gas emissions, especially when concentrated solar energy is the
heating source for supplying high-temperature process heat. This study is focused on solar methane
pyrolysis as an attractive decarbonization process to produce both hydrogen gas and solid carbon
with zero CO2 emissions. Direct normal irradiance (DNI) variations arising from inherent solar
resource variability (clouds, fog, day-night cycle, etc.) generally hinder continuity and stability of
the solar process. Therefore, a novel hybrid solar/electric reactor was designed at PROMES-CNRS
laboratory to cope with DNI variations. Such a design features electric heating when the DNI
is low and can potentially boost the thermochemical performance of the process when coupled
solar/electric heating is applied thanks to an enlarged heated zone. Computational fluid dynamics
(CFD) simulations through ANSYS Fluent were performed to investigate the performance of this
reactor under different operating conditions. More particularly, the influence of various process
parameters including temperature, gas residence time, methane dilution, and hybridization on the
methane conversion was assessed. The model combined fluid flow hydrodynamics and heat and
mass transfer coupled with gas-phase pyrolysis reactions. Increasing the heating temperature was
found to boost methane conversion (91% at 1473 K against ~100% at 1573 K for a coupled solar-electric
heating). The increase of inlet gas flow rate Q0 lowered methane conversion since it affected the gas
space-time (91% at Q0 = 0.42 NL/min vs. 67% at Q0 = 0.84 NL/min). A coupled heating also resulted
in significantly better performance than with only electric heating, because it broadened the hot zone
(91% vs. 75% methane conversion for coupled heating and only electric heating, respectively). The
model was further validated with experimental results of methane pyrolysis. This study demonstrates
the potential of the hybrid reactor for solar-driven methane pyrolysis as a promising route toward
clean hydrogen and carbon production and further highlights the role of key parameters to improve
the process performance.

Keywords: methane cracking; hydrogen production; hybrid reactor; concentrated solar energy; CFD
simulation; gas-phase pyrolysis

1. Introduction

Most of the hydrogen demand worldwide is mainly produced by steam methane re-
forming (SMR) [1]. Although this route is still the most economical, the derived greenhouse
gas emissions represent a significant concern [2]. Environmental norms involve capture
and sequestration of the produced CO2 (CCS) in underground depositories located in
unpopulated areas. Such sequestration techniques are still not efficient enough for safe and
long-term storage [3]. Moreover, this obligation implies additional cost to the process [4].
On the other hand, water splitting (electro/thermo/photo-chemical) for hydrogen produc-
tion has also been investigated because of its green asset. Such a process does not generate
any CO2. Although it could be promising in the future thanks to relative water abundance
on earth, the hydrogen production cost is higher than in common routes (1.81 $/kg H2
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and 1.98 $/kg H2 from SMR without and with CO2 sequestration, respectively, against
3.38 $/kg H2 from water electrolysis using wind energy) [5,6].

Among the other interesting pathways for potentially clean hydrogen production,
methane cracking is especially suitable because it is an endothermic reaction yielding
both solid carbon and hydrogen gas (Equation (1)) [7–10]. Therefore, methane pyrolysis is
clean if the heating source is derived from a renewable energy such as concentrated solar
energy [11–13]. Regardless of the heating means, there are two possibilities to dissociate
methane: conventional gas-phase (or solid/gas-phase in case there is a solid catalyst)
or molten media methane pyrolysis [6]. Both routes can involve either catalytic or non-
catalytic reactions. Pyrolysis in molten media (e.g., liquid metals) is mainly suggested
to enhance heat transfer in the reactor and carbon separation at the liquid surface. In
conventional pyrolysis, some limitations hinder process stability. A gas phase has generally
weaker heat transfer rates than liquids. Moreover, reactor clogging and catalyst coking (if
used) are possible locks in conventional pyrolysis [14–16]. Such issues might be overcome
by pyrolysis in molten metals/salts. Herein, methane is bubbled, and thus decomposes
while rising in a hot liquid bath. The molten medium can be either a molten metal (such
as tin [17–19], magnesium [20], tellurium [21], or metallic alloys [22,23]), a molten salt
(KCl, KBr, NaCl, NaBr, etc.) [24–26], or a molten metal phase overlaid by a molten salt [27].
Others used catalytic solid metals dispersed in molten media [28]. Thus, heat transfer may
be improved, hydrogen is released with outlet gases, and carbon floats on the surface of
the bath due to the difference of density [29]. This pathway is still new, quite challenging,
and not thoroughly investigated to date [6].

CH4(g) → 2H2(g) + C(s) ΔH298 K = 74.85 kJ/mol of CH4 (1)

Both cracking routes allow operation at high temperatures in a wide range with no
CO2 emissions thanks to solar heating [8,30,31]. High operating temperatures eliminate
the need for catalysts, since methane molecules dissociate entirely above 1673 K for long-
enough residence time. This phenomenon is known as the thermal decomposition of
methane (decomposition under only the effect of temperature) [32]. Alternatively, the
use of metal- [33,34] or carbon-based catalysts [35–38] appears as an option to reduce the
operation temperature to around 1273 K. However, solar direct normal irradiance (DNI)
variations caused by weather changes may hinder the process continuity. A hybrid so-
lar/electric reactor appears as a possible solution for continuous and stable processing
under fluctuating solar irradiation conditions [39,40]. Methane pyrolysis in a novel hybrid
solar/electric reactor was considered in this work. The reactor was modeled by computa-
tional fluids dynamics (CFD) in the case of gas-phase pyrolysis to assess the influence of
various process parameters including temperature, gas residence time, methane dilution,
and hybridization on the methane conversion. Consequently, the main influencing factors
affecting methane pyrolysis were considered in CFD simulations. The model combines
fluid flow hydrodynamics and heat and mass transfer coupled with gas-phase pyrolysis
reaction. Experimental validation was further considered by comparing simulation results
with experimentally measured methane conversions under different conditions. The objec-
tive of this study was to demonstrate the potential of the hybrid reactor for solar-driven
methane pyrolysis as a promising route toward clean hydrogen and carbon production,
and to assess the impact of key operating parameters affecting the process performance.

2. Design of the Hybrid Reactor

Coupling electric and solar heating in the same reactor design allows operation with a
variable DNI by compensating solar energy fluctuations with electric heating. In addition,
for a non-solar operation, methane pyrolysis should still be possible thanks to electric
heating, thus enabling round-the-clock operation. On the other hand, in the case of sufficient
DNI, both solar and electric heating can be activated simultaneously. Therefore, the heating
is more efficient throughout a larger part of the reactor. Then, the reaction zone (heated zone)
also becomes enlarged, thus increasing the effective gas residence time inside the reaction
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zone, which may improve the methane conversion. This unique design is applicable for
both conventional and molten media methane pyrolysis.

Figure 1a,b shows the hybrid reactor configuration. Two coaxial tubes, the outermost
being closed at one end, are centered in an insulated circular layer to reduce conductive
heat losses to the environment. The tubes are made of alumina (Al2O3) to allow operation
at high temperatures (1273–1673 K). Heating is possible using either a solar cavity receiver
or an electric heater located a few centimeters below the cavity, or even using both heating
modes when DNI is not high enough for a fully on-sun operation. The height of the electric
heater set at the bottom of the reactor is 115 mm. The maximal power of the heater is 400 W,
which is high enough to reach temperatures in the range of 1273–1673 K. Then, a 25 mm-
thick insulation layer is set between the electric heater and the solar cavity. The height of
this cavity is 50 mm, with an aperture of 15 mm (Figure 1) for concentrated solar radiation
entrance. The cavity absorbs the concentrated solar flux received from a 1.5 kW (thermal)
heliostat-parabola solar system (2 m diameter parabolic dish with a peak concentration
ratio of about 10,000).

Figure 1. Hybrid solar/electric reactor installed at PROMES-CNRS (Odeillo, France): (a) real picture
of the implemented reactor, (b) representative scheme of the reactor configuration, (c) photo of the
hot cavity just after a solar run.

For experimental processing, solar and electric heating are both achieved progressively
and slowly enough to avoid thermal shocks in the reactor. The average time of reactor
heating is almost 30–40 min to reach the operating temperature (1273–1473 K). Solar and
electric heating are controlled through an adjustable shutter (input solar power) and a
command box with variable current and voltage (input electric power), respectively. It
should be noticed that, for the experimental validation part of this work, only electric
heating was applied. The reactive gas flows downward in the inner tube and then upward
in the annular space between both tubes.

For the reactor design, simulations were performed using computational fluid dynam-
ics (CFD) simulations (using ANSYS Fluent, Canonsburg, WA, USA). Numerical simulation
results of the hybrid reactor achieved in the case of gas-phase pyrolysis revealed promising
thermochemical performance.

3. Modeling and Simulation Methods

3.1. System Geometry

The model geometry of the hybrid reactor described in Figure 1 was developed and
designed to provide a fast-enough convergence of the Fluent solver. Only the tubular
reaction zone was simulated. In particular, the solar cavity receiver and the electric heater
were not implemented. In place, the wall temperature was set as a boundary condition.
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Constant wall temperature was chosen as a first approach because homogeneous tempera-
tures are expected when reaching thermal equilibrium, both in the solar cavity (black-body
behavior, heated length corresponding to the cavity height: 50 mm) and in the electric
heater (uniform heating along the coil, the effective heated length of the electric resistance
was assumed to be 85 mm).

Figure 2 represents the 2D axisymmetric geometry of the reactor designed through
Design Modeler software. The inner tube has a thickness of 1.5 mm, an inner diameter
of 3 mm, and a length of 310 mm. The outer tube has a thickness of 2.5 mm, an inner
diameter of 25 mm, and a length of 320 mm. All faces (solid walls + interior of the tubes)
were meshed as quadrilaterals of 0.6 mm size (reference case), as shown in Figure 3. In
addition, other finer and coarser quadrilateral meshing of 0.2 mm, 1 mm, 2 mm, 3 mm,
and 4 mm mesh sizes were tested to check the independence of the results on the grid,
more particularly regarding the chemical conversion of methane (Figure 3). The results of
grid independence study are provided in the Results and Discussion section. Insulation
layers are perfectly insulated walls with the heat flux boundary condition set to zero in the
Fluent solver. In parallel, the top parts of both tubes are water-cooled, and thus a fixed
boundary temperature condition of 300 K is assigned to each. The walls standing for the
electric heater (85 mm height) and the solar cavity (50 mm height) are defined with a fixed
temperature (equal to the desired heating temperature for pyrolysis).

 

Figure 2. Simplified representative scheme of the 2D hybrid reactor geometry along with
boundary conditions.

3.2. Modelling Methods
3.2.1. Species, Models, and Boundary Conditions

Methane, argon, hydrogen, and solid carbon were selected from the FLUENT database.
Intermediate products such as acetylene, ethylene, etc., were not considered.

The simulation was converged in steady state and in axisymmetric 2D space. The grav-
ity was enabled and set to 9.81 m/s2. Reynolds number of the flow varies with the medium
temperature because the latter affects the dynamic viscosity of the gas (μ = 1.1 × 10−5 Pa.s
at T = 300 K and μ = 2.53 × 10−5 Pa.s at T = 1473 K). Reynolds number calculations for
the gas flow mixture in both coaxial tubes reveal a laminar flow, thus the laminar model
was chosen (Re = 311–135 in the inner tube vs. Re = 2–4 in the outer tube annular space).
Concerning the radiation model, discrete ordinates (DO) was adapted to allow for radiative
heat transfer between the fluid zone and the inner solid parts of the reactor. Species trans-
port was enabled, and a mixture template was set for the reaction. The methane cracking
reaction was considered as a first order reaction, and a finite rate (Arrhenius type) was set
with an activation energy of 281 kJ/mol and a pre-exponential factor of 2 × 1010 s−1 [32,41].
Behind these models, there are mainly three transport conservation equations solved in
CFD: (i) conservation of mass, also known as continuity equation, (ii) conservation of
momentum, and (iii) conservation of energy. These equations are expressed as follows [42]:

Continuity equation:
∂

∂t

(
ρ f

)
+∇

(
ρ f .

→
v f

)
= 0 (2)
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where ρ f is the density of the fluid mixture (kg/m3) and
→
v f is the flow velocity vector field

(m/s). The latter can be calculated through Equation (3):

→
v f =

∑n
k=1 αkρk

→
v k

ρ f
(3)

where n is the total number of existing species, k is the index for species k, αk is its volumetric
fraction, ρk is its relevant density, and

→
v k is its velocity vector field.

 
Figure 3. Quadrilateral meshing sizes for the study of independency on meshing: (a) mesh
size = 0.2 mm; (b) mesh size = 0.6 mm; (c) mesh size = 1 mm; (d) mesh size = 2 mm; (e) mesh
size = 3 mm; (f) mesh size = 4 mm.

The density of the mixture is defined by:

ρ f =
n

∑
k=1

αkρk (4)

Conservation of momentum:

∂

∂t

(
ρ f

→
v f

)
+∇

(
ρ f

→
.v f .

→
v f

)
= −∇p +∇

(
μ f

(
∇→

v f +
(
∇→

v f

)T
))

+ ρ f
→
g +

→
F +∇(

n

∑
k=1

αkρk
→
v dr,k

→
v dr,k) (5)
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where
→
F is an eventual external force (N), p is the static pressure (Pa),

→
g is the gravitational

acceleration vector (m/s2), μ f is the fluid mixture viscosity (kg/m/s), and
→
v dr,k is the

derivative velocity of species i (m/s). The mixture viscosity is written in Equation (6):

μ f =
n

∑
k=1

αkμk (6)

Energy conservation equation:

∂

∂t

n

∑
k=1

(αkρkEk) +∇
n

∑
k=1

(αk
→
v k(ρkEk + p)) = ∇

(
ke f f∇T

)
+ SE (7)

where ∇.
(

ke f f∇T
)

represents the conductive heat transfer, while SE represents every other
heating source. ke f f is the effective conductivity (W/m/K) and can be defined as follows:

ke f f = ∑ αk(kk + kt) (8)

where kt is the turbulent conductivity, which is actually equal to zero in this study, since
the flow is laminar (Re < 2000).

For the ideal incompressible gas model, pressure loss in the reactor is negligible,
therefore Ek = hk, where the latter is the sensible enthalpy of species k (J/kg).

The radiative heat transfer was computed based on the discrete ordinates model,
whose equation is:

d
(

I
(→

r ,
→
s
))

ds
+ (a + σs)I

(→
r ,

→
s
)
= an2 σT4

Π
+

σs

4Π

∫ 4Π

0
I
(→

r ,
→
s
′)

ϕ
(→

s ,
→
s
′)

dΩ′ (9)

where
→
r is the position vector,

→
s is the direction vector,

→
s
′

is the diffusion direction vector, s
is the path length (m), a is the absorption coefficient (1/m), n is the refraction index, σs is the
diffusion coefficient (1/m), σ is the Stefan–Boltzmann constant (5.672 × 10−8 W/m2·K4),
I
(→

r ,
→
s
)

is the total luminescence (W/m2/sr), T is the local temperature (K), ϕ is the phase

function, and Ω′ is the solid angle (steradian).
The reaction rate was computed using an Arrhenius expression given in Equation (10)

coupled with the conservation equations. The chemistry was thus coupled with the heat
and mass transfer via the net rate of production/consumption of each species by chemical
reaction [42].

r = k·[CH4]t = A·e− Ea
R·T ·[CH4]t (10)

where r is the reaction rate, k is the kinetic constant, A is the pre-exponential factor (s−1), Ea
is the activation energy (J/mol), R is the universal gas constant (8.314 J/mol·K), and T is
the operating temperature (K).

Assuming a plug flow reactor (PFR), k can be calculated as follows:

k =
−β·(1 + α)·ln(1 − XCH4

)− α·β·XCH4

τ
(11)

where α is the chemical expansion factor and τ is the gas (methane + argon) space-time.
The boundary conditions of the model are detailed in Figure 2. Heating wall tempera-

ture was set to the desired operating temperature. For the base case, a 1 m/s inlet velocity
in the inner tube was defined (equivalent to 0.42 NL/min flow rate). In the species, inlet
methane mole fraction was set to 0.5, the rest being argon. The outlet was simulated as an
outflow. A value of 10−6 was chosen for residuals to warrant satisfactory convergence.

89



Fluids 2023, 8, 18

3.2.2. Parametric Study

The effect of reactor hybridization via coupled solar-electric heating, residence time,
methane dilution, and temperature was studied. In order to provide insights into the
associated trends in the conversion of methane, a reference case was first simulated (Table 1).
In this case, referred to as case 1, both heating sources (electric and solar) were enabled
with a fixed wall temperature of 1473 K. The initial total inlet volumetric flow rate was
0.42 NL/min (CH4 + Ar), while the molar fraction of methane was 0.5. Other cases were
simulated as described in the following paragraph.

Table 1. Operating conditions simulated through ANSYS Fluent.

Telectric (K) Tsolar (K) Q0 (NL/min) y0,CH4 Mesh Size (mm) Parameter Effect

Case 1 (ref) 1473 1473 0.42 0.5 0.6 Reference case: hybridization
(coupled heating)

Case 2 1473 Insulated 0.42 0.5 0.6 Electric heating only
Case 3 1473 1473 0.84 0.5 0.6 Residence time
Case 4 1473 1473 0.42 0.3 0.6 Methane dilution
Case 5 1573 1573 0.42 0.5 0.6 Heating temperature

To illustrate the effect of hybridization (case 2), solar heating was turned off (the solar
cavity was assumed as an insulated wall), while the total inlet flow rate and the species
mole fraction in the reacting flow were kept constant. This approach was used to clearly
identify the difference between a reactor with only one heating source and a hybrid one
with both solar and electric heating. To investigate the gas residence time effect (case 3), the
total inlet flow rate was varied. A different flow rate indeed modifies the gas velocity in the
reactor tubes, which implies a different gas residence time (the total flow rate was doubled
in case 3). The dilution effect can be examined by changing the inlet methane molar fraction
while keeping the inlet total flow rate constant (inlet methane mole fraction was reduced
to 0.3 in case 4). Finally, the temperature effect can be readily studied by increasing the
heating temperature of both the electric and solar heating zone (this temperature was set to
1573 K in case 5). The effect of meshing quality on methane conversion in the reactor was
checked separately in Section 4.1 (grid independence study).

4. Results and Discussion

The first section focuses on the mesh independence study. Once the quality of the mesh
was successfully checked, a study on the model sensitivity to the activation energy was
achieved in order to confirm the suitability of the considered kinetic rate law of methane
decomposition. Then, the numerical model was validated based on a comparison with the
results of an experimental work to demonstrate its ability to predict relevant results. Once
validated, different operating conditions were simulated to investigate the effect of various
parameters. Table 2 recaps the results of the numerical simulations. Telectric and Tsolar are
the temperatures of heating in the electric and the solar section, respectively. Q0 is the total
inlet volumetric flow rate, and y0,CH4 is the methane mole fraction in the inlet gas mixture.
The mesh size is also reported. The effective residence time is the time spent in the reaction
zone where operating conditions allow chemical reaction.

The total residence time in a reactor is given by:

τ =
Vr

QT,P
=

Vr

Q0. P0.T
P.T0

(12)

where Vr is the total tubular reactor volume (150 × 10−6 m3), QT,P is the volumetric flow rate
at the actual operating conditions (m3/s), Q0 is the total inlet flow rate at normal conditions
(m3/s), P0 is the atmospheric pressure (101,325 Pa), T0 is the normal temperature (273 K),
P is the operating pressure (Pa), and T is the operating temperature (K). The effective
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residence time corresponding to electric (τe) and solar (τs) heating zones can be calculated
with the same expression as in Equation (12) by replacing Vr with the relevant heated
volume only (the heated volume is relevant to the heated height: Vr-electric = 42 × 10−6 m3,
Vr-solar = 25 × 10−6 m3). The summation of τe and τs is the total effective residence time,
entitled τtotal. It is important to notice that these residence times were only calculated
based on physical expansion of the gas (effect of both temperature and pressure). Chemical
expansion due to the formation of H2 was not considered. XCH4 and YH2 are methane
chemical conversion and hydrogen yield at the outlet, respectively. They can be calculated
as follows:

XCH4 =
FCH4 in − FCH4out

FCH4 in
(13)

YH2 =
FH2 out

2FCH4in

(14)

where FCH4-in and FCH4-out are methane molar flow rates in the inlet and the outlet stream,
respectively (mol/s). FH2-out is the hydrogen molar flow rate in the outlet stream (mol/s).

Table 2. Results of parameter effects on performance metrics of gas-phase methane pyrolysis.

Telectric

(K)
Tsolar (K)

Q0

(NL/min)
y0,CH4

Mesh Size
(mm)

τe (s) τs (s) τtotal (s)
CH4

conversion,
XCH4 (%)

H2 yield,
YH2 (%)

Case 1 (ref) 1473 1473 0.42 0.5 0.6 0.94 0.56 1.5 91 92
Case 2 1473 Insulated 0.42 0.5 0.6 0.94 0 0.94 75 74
Case 3 1473 1473 0.84 0.5 0.6 0.47 0.28 0.75 67 73
Case 4 1473 1473 0.42 0.3 0.6 0.94 0.56 1.5 95 94
Case 5 1573 1573 0.42 0.5 0.6 0.88 0.52 1.4 100 100

4.1. Effect of Mesh Size (Grid Independence Study)

The independence of results (especially temperature, CH4 conversion, and H2 yield)
on the meshing was checked using different sizes of quadrilateral meshes for both interior
and solid walls. Reference mesh was of 0.6 mm size, and the finer one was 0.2 mm, whereas
the larger ones were 1 mm, 2 mm, 3 mm, and 4 mm (Table 3). The convergence through
Fluent was longer when decreasing the mesh size, as expected. For the largest meshing
(with mesh size = 4 mm), the solver diverged, indicating that meshing was not fine enough
nor appropriate for a physical convergence (Figure 4). In contrast, meshes of 0.2 mm,
0.6 mm, and 1 mm led to very similar results in terms of output species mole fractions
(Table 3). However, coarser meshing was associated with higher errors. Results such as
CH4 and H2 mole fractions, methane conversion, and temperature profile revealed no
noticeable difference between 0.2 mm, 0.6 mm, and 1 mm meshes (Figure 5). For H2 yield
in the outlet stream, calculations showed a slight decrease from 92% to 90% with the finer
meshing, which is also insignificant. Consequently, one can say that the selected reference
mesh (0.6 mm size) was a fair compromise between fast convergence and reliable results,
as it was of good quality and fine enough to let the solver converge with minimal errors.

Table 3. Study of the meshing influence on the CFD numerical results.

Telectric

(K)
Tsolar

(K)
Q0

(NL/min)
y0,CH4

Mesh Size
(mm)

τe (s) τs (s) τtotal (s) XCH4 (%) YH2 (%)

Mesh 1 1473 1473 0.42 0.5 0.2 0.94 0.56 1.5 91 90
Mesh 2 1473 1473 0.42 0.5 0.6 0.94 0.56 1.5 91 92
Mesh 3 1473 1473 0.42 0.5 1 0.94 0.56 1.5 91 90
Mesh 4 1473 1473 0.42 0.5 2 0.94 0.56 1.5 90 88
Mesh 5 1473 1473 0.42 0.5 3 0.94 0.56 1.5 90 86
Mesh 6 1473 1473 0.42 0.5 4 0.94 0.56 1.5 Divergence
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Figure 4. Residuals of the Fluent solver for different meshing sizes. (white: continuity, red: x-velocity,
green: y-velocity, dark blue: energy, light blue: density, pink: CH4 mass balance, yellow: H2 mass
balance, orange: C mass balance).

 

Figure 5. Effect of meshing on temperature profile: (a) mesh 1, (b) mesh 2, and (c) mesh 3; CH4 mole
fraction profile: (d) mesh 1, (e) mesh 2, and (f) mesh 3; H2 mole fraction profile: (g) mesh 1, (h) mesh
2, and (i) mesh 3.
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4.2. Model Sensitivity to Activation Energy

The kinetic model of methane pyrolysis may have a high impact on the simulation
results. The activation energy Ea and the pre-exponential factor A used in Arrhenius law
(Equation (10)) could indeed change results drastically. However, for simplification, the
A value was fixed [32] while Ea was varied in order to get an accurate kinetic model for
methane pyrolysis. Different values of Ea were reported (for uncatalyzed methane pyrolysis)
in a very broad range (for example, Ea = 281 kJ/mol in [32], while Ea = 422 kJ/mol in [43]).
The model sensitivity against Ea was studied to show the importance of choosing a proper
kinetic model.

Four different values of Ea were studied (200–281–310–350 kJ/mol) at a fixed tempera-
ture (1473.15 K), gas inlet flow rate (0.5 NL/min), and methane inlet mole fraction (0.5).
Only electric heating was activated. Results are shown in Figure 6.

Figure 6. CFD results sensitivity to different values of activation energy.

Based on Arrhenius law, Ea is inversely proportional to the reaction rate of methane
decomposition. Increasing Ea decreases the reaction rate and results in lower methane
conversion and hydrogen yield. CFD simulation confirmed such a tendency and showed
complete methane conversion and hydrogen yield with Ea = 200 kJ/mol and decreasing
performance as Ea was increasing. With Ea value of 350 kJ/mol, there was almost no
methane decomposition (XCH4 = 2% and YH2 = 1%).

The aim of this sensitivity analysis was to validate the value of the activation energy
chosen in the kinetic model based on experimental data. Thus, an experimental run was con-
ducted with electric heating under the same operating conditions (i.e., temperature = 1473 K,
gas inlet flow rate = 0.5 NL/min, and methane inlet mole fraction = 0.5) and resulted in 71%
methane conversion and 65% hydrogen yield. Such a result was obviously very close to
the numerical one when Ea was 281 kJ/mol [28] (XCH4 = 68% and YH2 = 68%). Therefore,
one can consider that the selected kinetic model (with Ea = 281 kJ/mol [28]) is relevant to
simulate methane cracking in the reactor.

4.3. Experimental Validation of the Model

The reliability of the model simulations was addressed and validated with an experi-
mental study. The aim was to compare the simulation with experimental results regarding
both the effect of heating temperature (1273–1573 K) and inlet gas flow rate (0.5–1 L/min)
on methane conversion and hydrogen yield. Methane pyrolysis was experimentally studied
in the reactor with an electric heating, as shown in the geometry in Figure 2. No solar heat-
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ing was applied. Instead, insulation rings (polycrystalline mullite/alumina wool (PCW)
and special inorganic fibers and binders) replaced the solar heating zone. For both studies
(numerical and experimental), there was only electric heating (case 2 in Table 1) with a fixed
methane inlet fraction (y0,CH4 = 0.5). Two different parameters were studied: (i) the temper-
ature (T = 1273–1373–1473–1573 K) at a fixed methane inlet fraction (y0,CH4 = 0.5) and gas
inlet flow rate (Q0 = 0.5 NL/min), and (ii) the gas inlet flow rate (Q0 = 0.5–0.75–1 NL/min)
at a fixed temperature (T = 1573 K) and a fixed methane inlet fraction (y0,CH4 = 0.3).

Figure 7 shows the comparison of the numerical model with the experimental perfor-
mance of the reactor. In Figure 7a, a high degree of coherence can be observed between
numerical and experimental results in terms of both methane conversion and hydrogen
yield at all temperatures. For instance, at 1373 K, numerical and experimental values
of methane conversion and hydrogen yield were very close (XCH4 = 31% vs. 30% and
YH2 = 30% vs. 27%). At the other temperatures, the results were also consistent (for ex-
ample, at 1573 K: XCH4 = 96% vs. 91% and YH2 = 96% vs. 89%). The small gap between
simulation and experiments might arise from several factors. In particular, the simula-
tion does not consider partial decomposition of methane, which, in fact, results in some
secondary intermediate hydrocarbons (C2H2, C2H4, and C2H6).

 

Figure 7. Comparison of numerical and experimental results in terms of methane conversion and
hydrogen yield as a function of (a) operating temperature and (b) gas inlet flow rate.

In Figure 7b, the numerical model still fits the experimental data with higher differ-
ences in terms of hydrogen yield, because the simulation does not consider secondary
byproducts (such as secondary hydrocarbons C2Hm). It is thus normal that the experimen-
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tally measured values are lower than the simulation values, especially at higher kinetic rates
(i.e., at lower flow rates). Thus, the highest difference between numerical and experimental
values corresponds to Q0 = 0.5 NL/min (XCH4 = 99% vs. 93% and YH2 = 99% vs. 89%,
respectively), while a more accurate fit between numerical and experimental performance
is observed at Q0 = 1 NL/min (XCH4 = 86% vs. 85% and YH2 = 86% vs. 82%, respectively).

In summary, the experimental study shows very close results to those predicted by
the numerical model. This experimental validation confirmed the suitability of the model
to simulate the methane pyrolysis process in the hybrid reactor. Thus, the considered ap-
proach can be considered reliable to investigate methane cracking under specific operating
conditions. Moreover, this model could be further developed to simulate methane cracking
in molten media, which is a novel technology that has not been numerically modelled yet.

4.4. Effect of Hybridization

Figure 8a,b provides the temperature distribution throughout the entire reactor volume
(fluid zone) when only electric heating is activated (case 2) compared to the case in which
both heating sources are implemented (case 1). The heated length is longer in the latter case,
as expected, because the additional heating zone extends the heated part. The reactional
zone thus becomes larger, which increases the total effective residence time of methane
molecules from 0.94 s (τe) to 1.5 s (τe + τs). Figure 8c–f shows higher methane conversion
and hydrogen production in case 1 than in case 2. Methane conversion significantly
increases from 75% (case 2) to 91% (case 1), while hydrogen yield increases from 74% to
92%, as shown in Table 2.

 
Figure 8. Effect of hybridization on temperature profile: (a) case 2 and (b) case 1; CH4 mole fraction
profile: (c) case 2 and (d) case 1; H2 mole fraction profile: (e) case 2 and (f) case 1.

The plots of temperature and outlet mole fractions of methane and hydrogen in the
annular region of the tube along the x-axis are shown in Figure 9. The x-axis of the curves
is actually the red line shown in Figure 9a. In Figure 9b, temperature plots were overlaid
up to x = 0.1 m, which almost represents the end of the electric heating zone. Further from
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x = 0.1 m, toward the reactor outlet (x = 0.32 m), the temperature in the hybrid heating case
(case 1) was much higher than in case 2. For instance, at x = 0.2 m, the temperature was
still 1473 K in case 1, while T was lower than 1000 K in case 2. This was clearly caused
by the solar heating in case 1 that enlarged the hot zone throughout the reactor. Such an
effect improved the decomposition of methane. Therefore, a clear difference in methane
and hydrogen outlet mole fractions is observed after x = 0.1 m (Figure 9c). Methane mole
fraction continued to decrease down to 0.025 in case 1 (hybrid heating) vs. 0.075 in case 2
(electric heating only). In parallel, hydrogen mole fraction reached almost 0.47 in case 1 vs.
only 0.42 in case 2.

 

Figure 9. Effect of heating on temperature and outlet mole fractions of methane and hydrogen.
(a) Scheme of the reactor annular region including the x-axis of the curves, (b) temperature plot,
(c) outlet mole fractions plot.

4.5. Effect of Residence Time

The residence time effect was evidenced in the previous section by increasing the
heated length, and thus the heated volume Vr. Another approach to study this parameter
consists of modifying the total inlet flow rate while fixing the methane mole fraction. Thus,
a modification of the total flow rate Q0 changes the residence time. In case 3, Q0 was
doubled (0.84 NL/min) in comparison to case 1. Thus, based on Equation (12), the resulting
effective residence time was divided by two (0.75 s). CH4 and H2 mole fraction profiles
(Figure 10c–f, respectively) confirm this effect on methane conversion. At a high inlet gas
flow rate (0.84 NL/min), CH4 conversion and H2 yield drop from 91% to 67% and from
92% to 73%, respectively.

In fact, a higher gas velocity in the reactor decreased the residence time. Figure 11 rep-
resents the gas velocity (velocity streamlines) inside the reactor in both cases to emphasize
the impact of Q0 on methane conversion. Regardless of the inlet flow rate (Q0), the velocity
is higher in the inner tube since the cross section is smaller, and the velocity is maximal in
the center and null near the walls.
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Figure 10. Effect of residence time on temperature profile: (a) case 3 and (b) case 1; CH4 mole fraction
profile: (c) case 3 and (d) case 1; H2 mole fraction profile: (e) case 3 and (f) case 1.

 

Figure 11. Velocity streamlines in the reactor with a zoom at the bottom part: (a) case 1 and (b) case 3.
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Figure 12 plots the velocity for case 1 and case 3 according to the direction of the y-axis
(vertical direction) 20 mm above the bottom of the reactor (i.e., along the green line in the
small reactor scheme in Figure 12 that indicates the location where the velocity was plotted).
In case 1 (blue curve in Figure 12a), when Q0 was 0.42 NL/min, the maximal velocity in
the inner tube was almost 9 m/s at the axis (in the center of the inner tube). This velocity
decreased progressively to zero near the walls (at x = 0.0015 m). In the annular space (blue
curve in Figure 12b), the same aspect was observed: the maximal velocity was almost
0.14 m/s (at x = 0.0065 m), and it progressively decreased to zero when approaching the
walls (x = 0.003 m and x = 0.0125 m). The velocity in the annular space was much smaller
than in the inner tube due to the higher cross section.

 
Figure 12. Velocity plots according to the direction of the y-axis 20 mm above the bottom (along the
green line): (a) velocity in the inner tube and (b) velocity in the annular space. Blue curves: case 1;
red curves: case 3.

In case 3 (red curve in Figure 12a), when Q0 was 0.84 NL/min, the maximal velocity
in the inner tube was almost 17.5 m/s at the axis (x = 0 m). This velocity decreased
progressively to zero near the walls (at x = 0.0015 m). In the annular space (red curve in
Figure 12b), the maximal velocity was almost 0.29 m/s (at x = 0.0065 m) and decreased to
zero near the walls (x = 0.003 m and x = 0.0125 m). As a comparison, the maximal velocities
were higher in case 3 than in case 1 (17.5 m/s vs. 9 m/s in the inner tube and 0.29 m/s
vs. 0.14 m/s in the annular space). Such results confirm the high impact of Q0 on the gas
residence time, which is a key parameter in gas-phase methane cracking.

4.6. Effect of Methane Molar Fraction

To study the dilution effect, all parameters were kept constant as the reference case
while reducing inlet methane molar fraction from 0.5 to 0.3 (case 1 versus case 4). Tempera-
ture and species mole fraction contours are shown in Figure 13. Differences in contours
are not noticeable. Some previous works concerning methane cracking reported a slight
increase in conversion when the inlet methane mole fraction was increased [13,44]. How-
ever, simulation results show that the methane conversion increased from 91% to 95%,
accompanied by a hydrogen yield increase from 92% to 94% when the methane mole
fraction was reduced from 0.5 to 0.3. Theoretically, methane conversion should rather de-
crease when dilution increases because the reaction rate is directly proportional to methane
concentration (first order reaction). On the other hand, the diluted gas could allow more
efficient heating of methane to achieve a higher decomposition extent. In addition, the real
residence time of methane is affected by chemical expansion, which is increased when more
methane dissociates (2 moles of H2 formed per mole of CH4). Thus, a lower methane mole
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fraction could slightly increase the residence time, and thus the conversion according to the
effect of residence time. Thus, there is a subtle balance between residence time and methane
molar fraction effects. This aspect should be further analyzed thanks to real residence time
distribution extracted from Fluent.

 

Figure 13. Effect of methane inlet mole fraction on temperature profile: (a) case 4 and (b) case 1; CH4

mole fraction profile: (c) case 4 and (d) case 1; H2 mole fraction profile: (e) case 4 and (f) case 1.

4.7. Effect of Heating Temperature

Methane cracking is an endothermic reaction that requires external energy as a process
heat source [6]. Thus, an increase in the heating temperature improves the conversion.
When the temperature was increased from 1473 K to 1573 K, for both heating sources, the
methane concentration in the reactor was reduced (Figure 14c compared to Figure 14d),
hence resulting in higher methane decomposition. Hydrogen concentration profiles also
reflect a higher hydrogen yield in Figure 14e than in Figure 14f. Simulation results (Table 2)
confirm this effect with a complete conversion at 1573 K (case 5). Experimental studies on
methane cracking also confirm that complete conversion is reachable above 1673 K [44–47].
However, the residence time is also an important parameter to be considered for explaining
this result. In all those experimental works, the gas residence time was in the order of a
few milliseconds (<100 ms). In this study, the effective residence time was significantly
higher (about 1.4 s), which explains the complete conversion reached at the outlet for a
lower temperature.
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Figure 14. Effect of heating temperature on temperature profile: (a) case 5 and (b) case 1; CH4 mole
fraction profile: (c) case 5 and (d) case 1; H2 mole fraction profile: (e) case 5 and (f) case 1.

5. Conclusions

Solar methane cracking is worth investigating to develop a sustainable process for
clean hydrogen production. Indeed, the methane cracking process is advantageous com-
pared with conventional methane reforming since it produces hydrogen without green-
house gas emissions, while solid carbon material is formed as a high-value marketable
co-product with various potential applications. A hybrid solar/electric reactor was de-
signed and simulated at PROMES-CNRS to overcome solar radiation variability. Such a
reactor is proposed for continuous and stable operation when the DNI is low or unstable,
thanks to the possibility of additional heating by electric means. Thus, the process con-
tinuity is made possible. When the DNI is not high enough for stable on-sun operation,
the process can still be maintained by enabling the two heating sources (both electric and
solar). The benefits of coupled hybrid heating were illustrated through numerical CFD
simulation for methane cracking in gas-phase using ANSYS Fluent. The kinetic model was
assessed beforehand to confirm its reliability for the numerical study. A good agreement
was shown between experimental and CFD results with an activation energy of 281 kJ/mol.
Consequently, the numerical study was achieved and showed that activating both heating
sources enlarged the reaction zone inside the reactor. Consequently, the effective residence
time increased, improving the methane conversion significantly. However, when solar
heating is not possible, reactor operation under only electric heating results in a reasonable
methane conversion (75%). The effects of operating parameters on the reactor performance
were also numerically studied via simulation. The inlet volumetric flow rate modifies the
gas residence time of the reactant molecules in the reactor. A higher inlet volumetric flow
rate decreases the residence time and, consequently, the methane conversion. Increasing di-
lution slightly favors methane conversion. Finally, the temperature is also a key parameter
in methane cracking, since the endothermic reaction requires external energy. Increasing
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the temperature increased the rate of the reaction and enhanced the methane conversion.
In addition, the model was further validated by methane pyrolysis experiments. A good
agreement between numerical and experimental results was demonstrated, confirming the
reliability of the numerical model. These CFD simulations validated the proposed design
of the solar hybrid reactor for efficient methane decomposition performance. Moreover,
this numerical model could be extended to simulate methane cracking in molten media as
a novel technology that has not been modelled yet.
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Abstract: The decay of the kinetic energy of a turbulent flow with time is not necessarily monotonic.
This is revealed by simulations performed in the framework of discrete mechanics, where the kinetic
energy can be transformed into pressure energy or vice versa; this persistent phenomenon is also
observed for inviscid fluids. Different types of viscous vortex filaments generated by initial velocity
conditions show that vortex stretching phenomena precede an abrupt onset of vortex bursting in high-
shear regions. In all cases, the kinetic energy starts to grow by borrowing energy from the pressure
before the transfer phase to the small turbulent structures. The result observed on the vortex filament
is also found for the Taylor–Green vortex, which significantly differs from the previous results on
this same case simulated from the Navier–Stokes equations. This disagreement is attributed to the
physical model used, that of discrete mechanics, where the formulation is based on the conservation
of acceleration. The reasons for this divergence are analyzed in depth; however, a spectral analysis
allows finding the established laws on the decay of kinetic energy as a function of the wave number.

Keywords: turbulence cascade; vortex stretching; vortex bursting; discrete mechanics; conservation
of acceleration; Helmholtz–Hodge decomposition; inertial curvature

1. Introduction

The phenomena of vortex stretching and bursting are the main mechanisms for
the appearance of turbulence and interactions between the different scales of energy
transfer: [1–4]. From the physical point of view, these phenomena are related to the balance
of the different actions associated with the terms of the equations of motion, inertia, com-
pression, diffusion, and dissipation. The production of turbulence, the transfer of energy,
and energy decay are described by the different contributions of the law of motion. The
progress on the physical understanding of turbulence analyzed on experiments has been
corroborated by simulations produced from the Navier–Stokes equation.

An alternative to the Navier–Stokes equation was recently implemented to search
for solutions related to fluid flows or two-phase flows. The corresponding equation of
motion [5] was also used to represent fluid–structure interactions or heat transfer on small
time scales. The solutions of the discrete formulation and the Navier–Stokes equation for
fluids or the Navier–Lamé equation for solids are the same despite important differences in
the physical models.

The discrete formulation is here implemented in the framework of turbulent vortex
flows. Indeed, the discrete formulation includes a different modeling of the physical
effects; this is the case, in particular, for the inertia that is formulated in two terms of a
Helmholtz–Hodge decomposition [6]. These terms play a very important role in the energy
transfer mechanism of vortices on different spatial scales. The form of the equation of
motion causes inertial effects to be intertwined with compressive effects. In a turbulent flow,
pressure plays a regulating role, allowing local energy storage and energy redistribution in
the form of kinetic energy; this phenomenon is present in all turbulent flows, including
incompressible ones. The analysis of a rotating flow of a solid body clearly shows that
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the discrete formulation satisfies the rotational invariance of the equation of motion. In
this sense, it extends the Galilean invariance of translational motion to the rotations of the
solid body.

Several cases of inviscid or viscous vortex filament are analyzed in a first step to
understand and verify that energy exchanges between turbulent structures are due to both
vortex stretching and, occasionally, vortex bursting. The evolution of the mean kinetic
energy and pressure fields shows inverse variations even for inviscid flows. The last part is
devoted to the simulation of a Taylor–Green vortex at a Reynolds number of Re = 1600. The
result is consistent with the previous long-term validations but shows a different behavior
of the variation in the mean kinetic energy in the first instants of the flow. Contrary to the
simulations performed with the Navier–Stokes equation, the kinetic energy increases by
transforming the potential energy. As in a vortex filament, the velocity increases in the
core at the expense of the pressure energy, while maintaining its angular momentum. A
thorough analysis is provided to explain the observations and to give the reasons for the
disagreements with the Navier–Stokes equation.

2. Discrete Mechanics Framework

2.1. Physical Principles

The fundamental principles of discrete mechanics have already been described Cal19a,
Cal21b. Its presentation is developed here in a more synthetic way by specifying the most
essential aspects related to the described phenomena. Some concepts of classical mechanics
are abandoned, such as the existence of a global inertial reference frame, which forces us to
abandon the principles of one-point derivation, integration, and analysis in general. At the
same time, the notion of continuous medium is disregarded, it is the very reason for the
creation of a global reference frame. Similarly, mass is an abstraction that is not necessary
for the description of the laws of physics, as is momentum; in fact, the physical quantities
that are expressed using mass are all of the first order, which allows the same quantities to
be defined per unit of mass.

The main concepts introduced by discrete mechanics can be summarized by:

• A primary one-dimensional view of mechanical equilibrium governed by acceleration,
thus preserving the notion of relativity of velocity. The one-dimensional geometrical
description is fixed by the existence of a rectilinear segment delimited by two extremi-
ties and a length dh, called a discrete horizon. The extension of the physical model to
several dimensions of space is realized by cause and effect, with the interactions being
established through the extremities common to several segments.

• A translation invariance in time that, according to Noether’s theorem, ensures the
conservation of energy. The discrete equation of motion is therefore the same at all
times. With the exception of acceleration, which is an absolute quantity, the other
quantities of physics are subject to the principle of invariance, which allows us to
evaluate the value of a quantity at time t from its knowledge at an earlier time to.
This incremental process allows building a continuous memory model where velocity,
energy, and other quantities are updated by a time integration.

• A local reference frame linked to a segment, which inhibits any change in reference
frame, allows building an equation of motion on a geometrical structure, where the
spatial dependencies from one segment to another are ensured by the principle of
causality. The dynamics of a material medium or a particle in a one-dimensional space
is limited by the velocity of the medium (the propagation of the swell, the acoustic
signal, and the light). To use the concept of change in reference frame, the velocity
must be constant, which is not guaranteed. Therefore, any interaction is limited by a
horizon defined by the velocity of the medium.

• Classical notions of scalar, vector, pseudo-vector, and tensor are replaced by a unique
concept of amplitude parameter defining the value of the intensity of the quantity
attached to a point, segment, surface, etc. If this parameter is attached to a point, it is a
scalar; if it is attached to a segment, it is a vector, etc. For example, kinetic energy is a
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scalar when it is defined at a point and becomes a vector when it is associated with a
segment.

• Conservation of the total energy per unit of mass: mass and energy are two homolo-
gous forms of the equivalence principle of relativity. The laws of classical mechanics
require several equations to translate the conservation of mass, momentum, and energy;
they are redundant. The conservation of discrete energy also conserves acceleration as
well as angular momentum, so it is not necessary to explicitly conserve mass.

• The association to the principles of equivalence and relativity of an additional concept,
the Helmholtz–Hodge decomposition, which consists of writing that any acceleration
is the sum of a solenoidal contribution and an irrotational one. The intrinsic acceler-
ation of the particle or of the material medium is thus the sum of the gradient of a
scalar potential and of the curl of a vector potential. This decomposition gives very
valuable properties to the conservation laws written in this form.

• A principle included in Maxwell’s analysis to synthesize the laws of electrostatics
and magnetism by introducing the time dependence of the fields. Direct and in-
duced unsteady currents are the two possible alternatives for the creation of fields in
electromagnetism. These two forms are associated with the two components of the
Helmholtz–Hodge decomposition. The extension of these concepts to mechanics leads
to consider compressive effects as direct actions and viscous effects as induced actions.

2.2. One-Dimensional Model

Discrete mechanics is developed from a one-dimensional view of dynamic equilibrium.
Figure 1 represents a rectilinear segment Γ oriented by the vector t bounded by the two
vertices a and b; its length dh = [a, b] is named a discrete horizon in reference to the
maximum distance perceived by an observer located on one of the ends. This distance is
related to the wave velocity c (swell, acoustic, and light) and to a duration dt corresponding
to the observation time of the phenomenon by the relationship dh = c dt.

The intrinsic acceleration of the material medium or of a particle on the segment Γ
is denoted γ; it is both a scalar γ defined on the oriented segment and a vector γ = t,
but also the component of the acceleration vector of a space for which knowledge is not
necessary. In the same way, the velocity v is the component of a vector of space V projected
on Γ. While the velocity is relative and is given only at a constant, the acceleration γ is
considered absolute. The derivation of the equation of motion in discrete mechanics is
based on the equality of the accelerations: those due to the external actions h and the
intrinsic acceleration γ of the material medium or of a particle. This law expresses the
conservation of acceleration, it is written as:

γ = h (1)

where h is the sum of the accelerations: those of the effects of compression and shear but
also all the other potential source terms: gravitation, capillary acceleration, etc.

The law (1) does not disagree with the fundamental principle of dynamics m : γ = F;
in the case where the force is associated with gravity, we have m : γ = m : g, where m is
the moving mass, or γ = g. Galileo’s principle of equivalence expresses that the effects of
inertia and gravitation are of the same nature. However, the presence of mass poses two
problems: (i) its generalization to any acceleration other than gravity; (ii) the association of
a necessarily volumetric quantity, mass, and another essentially vectorial one, acceleration.
Paradoxically, the force seen as a vector in the context of classical mechanics is the product
of two disjoint quantities. The law (1) restricts the principle of equivalence to accelerations
only by expressing that the intrinsic acceleration of a medium is equal to the sum of the
accelerations applied to it.

Mass is at the center of Copernican and Galilean mechanics, which is attributed to the
understanding of planetary motion. This importance continues today even if the theory of
special relativity introduces the equivalence between mass and energy; moreover, mass
is still present in the expression of energy e = m c2. In the same way, the actual law of
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fluid mechanics is a conservation of momentum, q = m v, the product of mass and velocity.
Discrete mechanics abandons the notion of momentum to define an equivalent quantity
per unit of mass, the acceleration.

Figure 1. Local frame of reference of discrete mechanics; the rectilinear segment Γ oriented by t is
the constitutive element of the primal structure and the support of the intrinsic acceleration γ or
imposed by the exterior h. This segment, limited by its extremities a and b, is of length dh and called
the discrete horizon. The dual structure is schematized by the contour Δ, which defines the induced
actions then projected on Γ.

The principle of relativity must be respected; the velocity is a relative quantity that has
no absolute reference, not even the velocity that is a strictly independent physical quantity.
Velocity v at time to + dt is calculated from the acceleration in the form v = vo + γ dt,
where vo is the velocity at time to. In the same way, the displacement u is calculated from
the velocity in the form u = uo + v dt. These two quantities are thus updated from their
values at time to. Many other quantities are relative, in particular energy, which is defined
only to a constant. If we define the total energy per unit mass Φ, then its variation along
the segment takes the form:

Φb − Φa =
∫ b

a
γ · t dl (2)

The intrinsic acceleration γ is that of an isolated particle that follows the trajectory
Γ or that of the material medium, and the acceleration h of the law (1) is the sum of
the external accelerations on Γ. In one dimension of space, the intrinsic acceleration is
written as γ = dv/dt = ∂v/∂t +∇(|v|2/2

)
. The quantity |v|2/2 is the kinetic energy; it

is also written as 1/2(v · v). It is both a scalar assigned to the oriented segment Γ and
the vector 1/2(v · v) t. This quantity can also be defined on the extremities a and b of the
segment, where ∇(|v|2/2

)
represents an acceleration opposing the increase or decrease in

the velocity over time. This is the principle of inertia, which tends to establish a uniform
motion in the absence of any external acceleration h.

2.3. Extension of Physical Model to Other Dimensions

The discrete physical model is one-dimensional, represented by the segment Γ on
which all direct and induced accelerations are projected, whether intrinsic or applied. The
extension to a higher dimension is immediate; it is realized by assembling the segments by
their extremities. These extremities become the vertices of the primal structure formed of
planar polygons delimited by the collection Γ∗ of the sides of the triangle in Figure 2. This
primal structure is thus composed of vertices, segments, and polygonal facets; contrary to
other approaches coming from differential geometry, mimetic methods, discrete exterior
calculus, or the cell method, discrete mechanics does not address volumes even if the
assembly of facets forms polyhedra with planar faces.
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The absence of a global reference frame is both a disadvantage and an advantage. It
is no longer possible to express the invariance of the system of equations in a change of
reference frame, for example, or to project each term on axes in an inertial reference frame
to ensure mechanical equilibrium, as in continuum mechanics. The advantage is the ability
to extend the principle of inertia to uniform rotational motions. The interactions from
one local reference frame to another are realized by cause and effect. The celerity c of the
waves is defined locally including for the celerity of light c0, which can vary according to
the medium.

Figure 2. Geometric structures of discrete mechanics: the primal structure (in blue) is composed of a
collection of segments Γ oriented by a unit vector t bounded by the ends a or b; these segments form
a polygonal planar surface S , whose barycenter, denoted c, defines the normal n that is positively
oriented according to Maxwell’s rule. The dual structure (in red) has a flat polygonal surface D
bounded by segments Δ. The unit vectors are orthogonal by construction, n · t = 0.

Energies per unit volume of compression carried by φo and of rotation, represented
by ψo, are defined at time to and are named the retarded potentials in reference to the
electromagnetic potentials of Liénard [7].

φo = −
∫ to

0
c2

l ∇ · v dτ; ψo = −
∫ to

0
c2

t ∇× v dτ (3)

where cl and ct are the longitudinal and transverse celerities.
They express the accumulation of the respective energies over time from an initial

state, where all quantities (v, φo, ψo) satisfy the equation of motion. From this point of
view, the discrete equation of motion is a physical model with continuous memory.

2.4. Discrete Equation of Motion

The conservation of the total energy Φ corresponds to the integration of the acceler-
ation on the segment Γ, but γ and the velocity v are average values on this segment. It
is then possible to derive an equation of motion whose unknowns are the velocities v on
the basis of discrete operators, the divergence ∇ · v, gradient of a scalar ∇φ, primal curl
∇× v, and dual curl ∇d × ψ. The law of discrete mechanics (1) expresses that the intrinsic
acceleration of an isolated particle or of the material medium is equal to the sum of the
accelerations imposed by the exterior, mainly the compressive and rotational accelerations.
Intrinsic acceleration is simply the material derivative γ = dv/dt.

Discrete mechanical equilibrium corresponds to the equality on the accelerations
γ = h, which becomes γ = −∇φ +∇d × ψ in the framework of a Helmholtz–Hodge
decomposition where φ = φo + dφ is the scalar potential, and ψ = ψo + dψ is the potential
vector of the intrinsic acceleration; φo and ψo are named the retarded potentials in reference
to the electromagnetic potentials [7,8]. Physical modeling of the increases in potentials, dφ
and dψ, can be found in the references associated with discrete mechanics [9,10]. The relative
increase in compression is a function of the divergence of the velocity, and that of the
rotation is obtained by the primal curl of the latter. The equation of motion becomes:
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dv
dt

= −∇
(

φo − c2
l dt ∇ · v

)
+∇d ×

(
ψo − c2

t dt ∇× v
)
+ hs

αl φo − c2
l dt ∇ · v �−→ φo

αt ψo − c2
t dt ∇× v �−→ ψo

(4)

where hs represents the acceleration due to sources, gravitation, capillary effects, etc.; αl
and αt are the attenuation factors for longitudinal and transverse waves, respectively. For
a Newtonian fluid, αl ≈ 1 and the factor αt is equal to zero for characteristic times lower
than t ≈ 10−11 s; transverse waves are dissipated very quickly.

The discrete equation of motion is accompanied by two updates of the scalar φo and
vector ψo potentials computed from the divergence and the primal curl of the velocity.
Symbol �−→ means that the potentials are updated from the retarded potentials. The
discrete equation is self-contained: it does not require any additional mass conservation
law or constitutive laws. The variable is the velocity v on each of the segments of the
primal structure. The quantity dt is the time lapse between two observations of the physical
system. It is closely related to the physical phenomenon studied, and its value can be very
large for the simulation of stationary phenomena, at 10−20 s to translate the propagation
of light, where c0 ≈ 108 ms−1. In all unsteady cases, it is necessary to choose a time span
dt << dh/c. Even if the velocity of the medium is very large, the compression energy is not
zero. Indeed, the grouping dφ = dt c2 ∇ · v is the energy increase between two observations
of the evolution of the physical system; dφ remains constant because ∇ · v ≈ 1/c2. Thus,
a medium considered rather incompressible can propagate sound waves, for example, in
water. The discrete equation of motion applies to any incompressible or compressible flow.

The system (4) is an alternative to the Navier-Stokes equation and the conservation of
mass. It is primarily a law of conservation of total energy per unit mass, i.e., acceleration.
As mass is a form of energy, it is not necessary to keep the mass or density in the equation
of motion; it would be an overabundant quantity. Moreover, all the quantities of physics
that are currently functions of mass make this one appear at the order one, which allows the
definition of equivalent quantities per unit of mass. The length dh and time dt are the only
two fundamental quantities to define any law of mechanics and, more generally, of physics.

Finally, the acceleration or the material derivative [6] in one or more space dimensions
is written as:

γ =
dv
dt

=
∂v
∂t

+∇
( |v|2

2

)
−∇d ×

( |v|2
2

n

)
(5)

This discrete form significantly differs from that of continuum mechanics. In particular,
the last term is here a dual curl with zero divergence, whereas the corresponding term
in continuum mechanics, the Lamb vector, L = −V ×∇× V, is the gradient of another
potential. The two terms of inertia or the equivalent form V · ∇V have projections on each
of the three axes of a global reference frame. In discrete mechanics, the two terms of inertia
(5) have as support the same segment Γ of the local reference frame.

The cornerstone of the discrete model is precisely the formulation of the inertia;
Figure 1 well schematizes the competition between the compression term and the rotation
term of the relation (5). The first contribution is fixed by the gradient of the inertial potential
|v|2/2 defined on the vertices a and b,and the second contribution is represented by the
dual curl of the vector potential |v|2/2n. Within a turbulent flow, the energy exchange
between these two forms of inertial acceleration is most likely the force driving the transfer
between the different spatial scales.
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2.5. Discrete Kinetic Energy Theorem

It is important to specify the differences in the kinetic energy theorem between contin-
uum mechanics and discrete mechanics. These differences are not so much related to the
presence or absence of mass as to the fact that we consider the integration on an elemen-
tary volume specific to the notion of continuous medium. Let us take the Navier-Stokes
equation multiplied by the velocity vector of space V and, to simplify the matter, let us
consider the only contribution of the pressure and an incompressible flow. Let us consider
an elementary volume Ω limited by an impermeable surface Σ; the conservation of kinetic
energy is written as follows:

∫
Ω

ρ
d|V|2

dt
dv = −

∫
Ω

V · ∇p dv (6)

The term V · ∇p can be transformed into the form V · ∇p = ∇ · (p V)− p ∇ · V; the last
term in (6) vanishes when incompressibility is taken into account, and the equation becomes:

∫
Ω

ρ
d|V|2

dt
dv = −

∫
Σ

p V · n ds (7)

and, as the surface is impermeable, V · n = 0, we obtain:

∫
Ω

d|V|2
dt

dv = 0 (8)

This observation translated by (8) is perfectly legitimate if we stick to the equilibrium
on the volume Ω. For a material point dEk/dt = 0, the kinetic energy remains constant
when we follow the medium in its motion; this local form is, however, questionable. In the
presence of viscous forces, the form adopted by many authors Bra84, Van11, Wan13 only
takes into account the latter terms, and the energy decay becomes:

−d|V|2
dt

= ε (9)

considered as the evolution of the only dissipation ε = 2 ν S : S, where S denotes the
deviating part of the rate-of-strain tensor. The problem remains for compressible flows
where the divergence is not zero.

The major objection to this conclusion lies in the notion of the continuous medium itself;
the use of a transformation of a weak integral formulation leads to a loss of information:
it amounts to asserting that locally one imposes V · ∇p = 0 but these two vectors are
not necessarily orthogonal. In continuum mechanics, the kinetic energy theorem specifies
that the sum of the forces applied to a material medium is equal to the variation in its
kinetic energy.

Its transposition into discrete mechanics is immediate: the sum of the accelerations
applied to a material medium is equal to the variation in the kinetic energy per unit of
mass; this is noted ek. It is both a scalar attached to the vertices of the primal structure and
a vector related to the Γ segment, ek = 1/2 (v · v) t because the vector v is associated with
the segment Γ. This is not a new law; it is deduced from the equation of motion. In discrete
mechanics, the equation of motion (4) is multiplied by v and integrated over the length of
the segment:

∫
Γ

1
2

d|v|2
dt

= −
∫

Γ
v · ∇φ +

∫
Γ

v · ∇d × ψ (10)

The potential φ =
(
φo − c2

l dt ∇ · v
)

is the compression or translational kinetic energy
and ψ =

(
ψo − c2

t dt ∇× v
)

is the rotational energy or angular kinetic energy. The form (4)
of the equation of motion includes from the start the balance of the sum of the forces but
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also the moments. The acceleration γ is not only related to the translational motion but
also translates the conservation of angular momentum.

Contrary to classical mechanics, where the vector V is not necessarily collinear with
the pressure gradient vector ∇p and similar to viscous forces, the discrete formulation
removes any interpretation on the orientation of the terms in the kinetic energy equation. v
is well collinear to ∇φ and to ∇d × ψ; the results of the scalar product allow us to consider
that −v · ∇φ and v · ∇d × ψ are, at the same time, scalars on the oriented segment and
vectors. With the unknown of the equation of motion being v, the local kinetic energy is
simply obtained by a scalar product ek = 1/2(v · v) = 1/2|v|2. The quantity ek considered
as an average on a segment allows the definition of the discrete theorem of the local
kinetic energy:

dek
dt

= −v · ∇φ + v · ∇d × ψ (11)

It is possible to define an average value Ek on the whole physical domain of the kinetic
energy per unit of mass from its value on each segment of the primal structure ek:

Ek =
1

[Γ∗]

∫
Γ∗

1
2
|v|2 dl (12)

where [Γ∗] is the length measure of all segments. Similarly, the global compression energy
Ec is represented by an integral over the primal volume Ω:

Ec =
1
[Ω]

∫
Ω

φo dv (13)

Returning to the local form (11), the velocity v is aligned not only with ∇φ but also
with ∇d × ψ. This last term corresponds to the rotation of the medium but only reflects
dissipation in the case of a viscous fluid for which the potential vector is of the form
ψ = ν ∇× v. In this situation, the transverse waves are completely attenuated over very
small time constants (τ ≈ 10−11s). The local variation in the kinetic energy of a material
medium during its motion can thus be positive or negative, but the most important aspect is
that the integration to the whole volume Ω of the considered flow cannot be limited a priori
to a monotonous decay. Indeed, the discrete law of motion (4) expresses the conservation of
the total energy Φ = Ec + Er, where Ec is the compression energy per unit of mass, and Er
is the rotation energy. The kinetic energy Ek is only a part of the total energy. In the absence
of viscous friction for a fluid, there remain two energies, Ec and Ek, the sum of which is
indefinitely conserved over time from an Eulerian view. For a given flow, the velocity v and
the potential φ are nonzero and fixed by the initial condition. The evolution in time of the
system is governed by only the equation of motion (4). Equation (11) is only a consequence
of it. Like any mechanical system, the kinetic energy and the potential energy evolves in
such a way as to preserve the total energy. The following form of the equation of motion
allows us to be convinced of this:

∂v
∂t

= −∇
(

φo +
1
2
|v|2 − c2

l dt ∇ · v
)
+∇d ×

(
ψo +

1
2
|v|2 n − c2

t dt ∇× v
)

(14)

The two terms of the right-hand side are two Lagrangians associated, respectively,
with the conservation of the compression and rotation accelerations. Noether’s theorem
applied to laws of physics in the form of Lagrangians or Hamiltonians allows us to invoke
the invariances of a mechanical system. In particular, the pressure energy defined by φo

and the kinetic energy 1/2 |v|2 can change over the course of time while keeping the total
energy. In particular, the total kinetic energy can increase while the pressure decreases.

In the case of a vortex filament where the angular velocity is v and the potential φ
depend only on the distance to the axis of rotation, these two quantities are orthogonal
and v · ∇φ = 0, and the flow remains axial. When a modulation of the velocity along
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the axial direction is introduced, this condition is no longer met and axial currents are
generated to try to re-establish the axisymmetric equilibrium; this is the phenomenon of
vortex stretching.

2.6. Conservation of Angular Momentum

The equation of motion (4) is a law of conservation of total energy per unit mass, but
it also conserves angular momentum along with momentum. In continuum mechanics, the
angular momentum theorem is a separate law from the equation of motion expressing the
conservation of the quantity r × p, where p is the momentum, and r is the distance from
the axis of rotation.

Let us consider an incompressible rotational motion without longitudinal effects; in
these conditions, the discrete equation of motion becomes:

∂v
∂t

= ∇d ×
(

ψo +
1
2
|v|2 n − c2

t dt ∇× v
)
+ hs (15)

The first term of the parenthesis is the potential ψo, which would represent a possible
mechanical action that would be associated with a storage of the mechanical energy of
rotation, for example, a balance spring of a watch or a pendulum. The second term is
a kinetic energy per unit of mass; it is the rotational inertia and ∇d × ψi is the inertial
acceleration related to the rotation. The term −c2

t dt ∇× v is the instantaneous energy
that is redistributed to the other components of the equation over time. In an unsteady
rotational motion, all these terms are related, but the total rotational energy is conserved.
The dual curl of the sum of these is the rotational acceleration, i.e., the angular momentum
per unit mass. In the absence of viscous dissipation, the angular momentum is conserved.

For example, the application of Equation (15) to a simple pendulum oscillating under
the effect of the acceleration of gravity hs = −g sin θ t allows us to find the result of
Newtonian or Lagrangian mechanics, including in the nonlinear regime. In the linear
domain, the solution is then θ(t) = θ0 cos(

√
g/rt), and the period T = 2 π

√
r/g, where

θ0 is the initial angle of the pendulum, and r is its length.
In the case of a purely viscous flow, the term dt c2

t is replaced by the kinematic viscosity
ν, and the attenuation factor αt is equal to unity, the transverse waves are attenuated in a
very short time. The retarded vector potential at time to is equal to ψo = −ν ∇× vo, but
the exchanges between the rotational inertia and the other terms of the equation, including
pressure terms, persist. In classical mechanics, the formulation of the inertia is not at all
the same as in discrete mechanics, and the Navier–Stokes equation does not preserve a
priori the angular momentum. In turbulence, this discrepancy can be of the first order in
the representation of the interactions between vortices.

3. Turbulent Flows in Vortex Filaments

Examples of vortex filaments for a perfect or viscous fluid are analyzed in order to
highlight the phenomena of vortex stretching and bursting in configurations simpler than a
developed turbulent flow. The objective is to show that the kinetic energy can increase, even
in cases of decreasing turbulence. Finally, the reference case of the Taylor–Green vortex at a
Reynolds number of Re = 1600 is taken again to highlight these same phenomena and to
demonstrate to a disagreement with the previous results and to attribute it to the chosen
physical model.

3.1. Inviscid Vortex-Filament

The appearance of turbulence is first analyzed on a cylindrical vortex of an inviscid
fluid in the first moments of the flow before the creation of small structures leads to its
divergence. The physical domain corresponds to a cylinder of dimensions [(0, π/2), (0, 2 π),
(−π, π)]. In cylindrical coordinates (r, θ, z), the initial velocity field is given by the vector:

V = [0, cos r (1 + α cos z), 0] (16)
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where α is a modulation factor of the velocity perturbation along the z direction. The initial
scalar potential (pressure) is directly deduced from the equation of motion and the imposed
velocity (16).

If α = 0, the initial streamlines are circles, vθ = cos r, and the potential field φ(r) is
purely radial. Under these conditions, the vector quantities v and ∇φ are orthogonal, and
the evolution of the kinetic energy per unit mass during its motion given by:

dek
dt

= −v · ∇φ (17)

is zero. We notice that the components v and ∇φ are carried by the same segment Γ; they
are thus collinear. This is not a paradox because they are components of the velocity V

and not of the velocity vector itself. Moreover, when v and ∇φ are oriented along the
radius, the velocity component is indeed null and vice versa for the orthoradial direction.
The simulation of this case with the system (4) leads to a strictly angular motion with
constant velocity and a kinetic energy ek constant in time. Contrary to a common idea,
the nonexistence of a 2D turbulent motion is not due to a 2D restriction of the physical
space. By applying the curl operator to the Navier–Stokes equation, we find the form on
ω = ∇× V:

∂ω

∂t
+ V · ∇ω − ω · ∇V = ν ∇2ω (18)

where V · ∇ω represents the advection of the vortex, and a term ω · ∇V, which cancels
out in the two dimensions of space because the velocity is defined in this planar surface
whereas ω is orthogonal to it. The result obtained in discrete mechanics shows that a
vortex without longitudinal modulation leads to an invariance of the kinetic energy, even
in three dimensions.

In the case where there is a velocity modulation along the z direction with α = 0.2, the
problem is different. Indeed, V and ∇φ are no longer orthogonal, and a longitudinal motion
is superimposed on the rotational motion of the vortex. As the flow is incompressible and
the boundary conditions are such that V ·n = 0, the motion generates positive and negative
longitudinal velocities, which in turn generate pressure variations along the axis of the
vortex. This phenomenon of stretching and compression of the vortex can be observed in
Figure 3 from an initial condition fixed by the velocity field (16). This vortex stretching
shows that the axial velocities in the core of the vortex are higher than on the periphery.
In the image of the center, we can see that the kinetic energy is more important in the
central core.

Figure 3. Inviscid vortex filament initiated by the velocity field (16); initial potential field φo (left),
potential field at t = 6 decorated by the local kinetic energy (center), and a snapshot of stream-
lines (right).
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Figure 4 shows the evolution over time of the kinetic energy defined by the average
over all segments of the local energy on each segment 1/2|v|2. We observe that the varia-
tions in the kinetic energy Ek and potential are in phase opposition even if the definitions of
these quantities are different. They reflect the periodic movements of the vortex stretching
phenomenon. To understand these oscillations, we return to the equation of motion for an
inviscid flow:

∂v
∂t

= −∇
(

φo +
1
2
|v|2 − c2

l dt ∇ · v
)

(19)

First, it is necessary to recall that the incompressibility of the flow is not fixed a priori
but established by the term c2

l dt ∇ · v, which becomes constant for a lapse of time dt
because the divergence of the velocity is of the order of magnitude of the inverse of c2

l .
This term corresponds to the update of the scalar potential linked to a modification of the
equilibrium between the compression energy characterized by the retarded potential φo

and the kinetic energy. Equation (19) is solved for an inviscid flow (ν = 0) for several
spatial approximations and the solution well converges, but, in all cases, the numerical
solution diverges for a time t > 15. It is not possible to obtain a very long-term solution
without viscosity. However, a stable flow can be maintained by introducing a very low
viscosity in order to find the behavior obtained for Re = ∞.

Figure 4. Evolutions of the mean kinetic energy Ek and the scalar potential φo where Ek and φo are
given in m2 s−2 and t in s.

The exchange between kinetic energy and pressure energy is a major element for
the understanding of turbulent flows, including for incompressible flows. The discrete
equation of motion (4) has the essential characteristic of interweaving the compression
and rotation accelerations with the two components of inertia within the same law. Any
splitting aiming at separating the conservation of the total energy from the conservation of
the mass can lead to unpredictable artifacts.

3.2. Vortex Filament at Re = 1600

The case treated now is of another nature: the modulation of the initial velocity of
the previous problem is replaced by a very important shear generated by the inversion
of the direction of rotation of the flow along the longitudinal direction. It is close to
the Taylor–Green vortex benchmark discussed later. For a physical domain defined by
L3 = [(−π/2, π/2), (−π/2, π/2), (−π, π)], the initial condition of the vortex is fixed by
the velocity in Cartesian coordinates:⎧⎨⎩

u = − cos x sin y cos z
v = sin x cos y cos z
w = 0

(20)

The potential field φ, the pressure in the presence of a density ρ = 1, is defined
unilaterally as the quantity which translates the mechanical equilibrium by the equation of
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motion for the velocity field (21). Indeed, in the case of an incompressible flow, it is useless
to specify the pressure field corresponding to this equilibrium. From this, simulations
were carried out for three configurations representing a vortex filament: (i) a cylinder of
radius π/2 and height 2 π tessellated by curvilinear hexahedra in cylindrical coordinates,
(ii) a prism circumscribed to the previous cylinder represented by a mesh based on prisms
with triangular sections, and (iii) a parallel channel with square section whose meshes
are Cartesian hexahedra. The approximations used have approximately the same number
of cells, about 2203, which corresponds to a number of unknowns ne = 30 × 106, the
number of edges of geometric structure. The Reynolds number adopted in the three cases
is Re = v0 L/ν = 1600, where v0 = 1. Details of the numerical methodology are provided
in several cited papers including [10]. The objective of this section is to show that although
the geometries of the three configurations are different, the turbulence appears in the same
way; however, the turbulent structures generated are impacted by the shape of the vortex
filament considered.

Figure 5 shows three snapshots corresponding to time t = 10 s. The Bernoulli scalar
potential field φo

B = φo + |v|2/2 is colored by the local kinetic energy.

Figure 5. Snapshots of potential fields decorated by kinetic energy for three vortex filaments with
circular, hexagonal, and square bases.

In all three cases, we observe that the turbulent structures are animated by an impor-
tant velocity in the zones of important shear. The number of structures resulting from vortex
busting closely depends on the geometry of the chosen physical domain. Figure 6 shows
the evolution of the mean kinetic energy Ek over time for the cases of the cylindrical and
square-based filaments; the evolution corresponding to the prismatic structure is roughly
the same as for the cylinder. In the cases, we observe a rapid increase in the mean kinetic
energy over time for a time t < 4, which is accompanied, as for the inviscid filament, by a
decrease in the scalar potential φo.

The potential energy characterized by φo is transformed from the first instants into
kinetic energy, while the impact of viscosity is negligible. In the case of the cylinder, we
observe the effect of the vortex stretching phenomenon similar to that of inviscid vortex-
filament. Beyond a time t ≈ 4, the vortex bursting creates finer and finer structures, which
are then dissipated by viscosity; for the hexahedral geometry, the evolution of the kinetic
energy presents three phases: (i) an increase until the appearance of the vortex bursting at
t < 4, (ii) a decrease characterizing the transfers between the large and small structures, and
(iii) a decreasing exponential evolution for t > 18 characterizing the viscous dissipation.
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Figure 6. Evolution of the kinetic energy with time in the case of a cylinder (left) and for the geometry
with square base (righ).

The mechanisms leading to the appearance of vortex bursting turbulence in viscous
and nonviscous cases having now been described, it is necessary to confront the discrete
physical model with a reference case that has been the subject of numerous theoretical
studies and numerical simulations: the Taylor–Green vortex at Re = 1600.

3.3. Taylor–Green Vortex at Re = 1600

The Taylor–Green vortex test case is emblematic of the turbulence decay of a three-
dimensional velocity field, initially introduced into a cubic cavity of dimensions
L3 = [−π, π]3, where the boundary conditions are periodic for velocity and pressure.
This test case is widely used to verify the convergence properties of numerical methods;
the results are broadly reported in the literature, for example, [11]. The Reynolds number
chosen is the one whose results are most often found, namely Re = 1600, a value adopted
for the benchmark corresponding to [12]. The Reynolds number is defined by Re = v0 L/ν,
where L = π, v0 = 1, and ν = (v0 : L)/Re is the kinematic viscosity, assumed constant.
The initial condition is defined in Cartesian coordinates by the components of the vector
V = u ex + v ey + w ez: ⎧⎨⎩

u = − sin x cos y cos z
v = cos x sin y cos z
w = 0

(21)

The potential field φo is obtained from the conservation of acceleration Equation (4),
consistent with the constraint ∇ · v = 0, where v is the discrete velocity. The simulation
from this initial condition allows us to obtain at each instant the solution (v, φ, ψ). The
associated instantaneous quantities, the kinetic energy per unit of mass Ek, the dissipation
ε, and the enstrophy per unit of mass are saved in time. The time evolutions of the global
kinetic energy Ek and the compression energy Ec as a function of time are shown in Figure 7.

As for the vortex filament cases, the kinetic energy Ek increases until a time t ≈ 3.5,
where the first turbulent structures appear in the form of vortex bursting, mainly in the
shear zones generated by the initial conditions (21).

In correlation with the growth of the kinetic energy, the compression energy Ec de-
creases; the mechanical equilibrium defined by the invariance of the total energy imposed
by the Equation (4) allows the exchanges between the two terms of inertia, pressure, and
effect of the limited viscosity in this phase. From a time t ≈ 3.5 begins the energy cas-
cade phase toward the small structures, which is marked by a quasilinear decrease in
the kinetic energy in time and irregular variations in the pressure energy. Beyond a time
t = 18 begins the dissipation phase, marked by a decay toward zero of the kinetic and
compression energies.
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Figure 7. Global kinetic energy Ek and compression energy Ec at Reynolds number Re = 1600 for
nc = 2563 cells and ne ≈ 50 × 106 unknowns.

The observation of the velocity and pressure fields shows that the energy cascade
where the kinetic energy is globally decreasing is due to the phenomena of vortex stretching
and vortex bursting at different scales. Instantaneous variations in the fields, in particular
of the pressure, reveal very sudden increasing variations of the pressure, which can reach
local values several times higher than v2

0/2, the initial maximum kinetic energy. Figure 8
shows the Bernoulli potential field φo

B decorated by the local kinetic energy for time t = 20.

Figure 8. Snapshot of the potential field decorated by the kinetic energy for t = 20, nc = 2563 et
ne ≈ 50 × 106 unknowns

This representation of the turbulent field is quite consistent with the fields given by
the many authors who have simulated this benchmark.

The energy cascade in the inertial zone is very comparable to the evolutions previously
obtained by different authors. More precisely, the spectral analysis in wavelengths k for
Reynolds number Re = 1600 and time t = 20 allows us to show the spectrum Ek(k) in
Figure 9. The Kolmogorov law Ek ∝ k−5/3 is approximately satisfied by discrete mechanics.

However, if the energy decay phase in the domain seems to qualitatively be the
same, the first phase of increase in Ek presented in Figure 7 is radically different from the
results obtained by the many authors who have studied this configuration since 1983. The
following section provides an analysis of the underlying reasons for this disagreement.

3.4. Behavior as a Function of Reynolds Number

Like other simulations performed with the proposed model, the numerical solutions
obtained are convergent to order two in space and time. The specificity of turbulent
flow simulations lies in the ability to capture the smallest spatial and temporal scales of
turbulence by using adapted meshes and time steps. The decrease in the scales to capture
those related to viscosity is all the more important as the Reynolds number increases;
the range of Reynolds numbers studied is therefore necessarily limited. Considering the
available means, the Reynolds number of 1600 has been chosen in most of the simulations
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on this test case. In order to verify that this value corresponds to a case of developed
turbulence, other values of Reynolds number have been used for the numerical simulations:
Re = 100, Re = 500, and a case of flow for an inviscid fluid. For Re = 100, the flow is
clearly laminar, while the one corresponding to Re = 500 is transient but presents strong
similarities on the turbulence decay to the Re = 1600 case.

Figure 9. Energy spectrum as a function of the wave number Ek(k) for t = 20 on one-quarter of
the domain.

Figure 10 presents the evolutions of kinetic energy Ek for these values
(Re = 500, 1600, ∞) as a function of the time limited to t = 5 s; indeed, the solution
for the inviscid case explodes beyond this time, whereas it is perfectly represented for
the lower times. The structure of the flows is the same in all three cases at this time; the
shearing of the fluid filaments generates a vortex bursting similar to those observed on
the individual filaments simulated before. These results at different Reynolds numbers
show very similar behaviors even though, just after the vortex bursting, the decay shows
limited differences.

Figure 10. The evolution of the kinetic energy Ek corresponding to the Taylor–Green vortex case
shows a similar behavior at Reynolds numbers of Re = 500, 1600 and for an inviscid fluid.

4. Analysis

Let us take the incompressible Navier–Stokes equation with constant density used for
many decades for the Taylor–Green vortex and especially in reference [12]:
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⎧⎪⎪⎨⎪⎪⎩
∂V

∂t
− V × ω = −∇

(
p +

1
2

V2
)
+ ν ∇2V

∇ · V = 0

(22)

where ω = ∇× V is the curl of the velocity vector. The inertia is here split into a part with
zero rotation to form the Bernoulli pressure and the Lamb vector −V × ω, which is a priori
not a curl. The incompressibility constraint −∇ · V = 0 is taken into account in a different
way according to the authors, whereas others have used a compressible formulation at
low Mach numbers. In all cases, among which include [12–17], the results obtained with
the model (22) are very close. This problem is now considered as a benchmark to present
new physical models or innovative numerical methodologies of high accuracy. Direct
simulations of the TGV case at Reynolds number Re = 1600 can be summarized by the
time variations in the kinetic energy and dissipation ε = −dEk/dt; they are represented in
Figure 11,where the values are borrowed from W. van Rees [11].

The kinetic energy Ek on the volume decreases toward zero in a monotonic way over
time with a very slight decrease for times lower than t = 4 due to the viscosity of the
fluid. For times 4 < t < 18, the inertial zone is characterized by a fast decrease in Ek. The
dissipation ε = −dEk/dt, calculated from the expression ε = 2 ν S : S or directly from Ek,
shows a maximum of this quantity around t ≈ 9.5.

Figure 11. Taylor–Green vortex at Re = 1600; the spectral simulation provides the evolution of Ek
and dissipation rate ε = −dEk/dt for the Navier–Stokes model after W. van Rees [11], file Re-1600-
512.gdiag.

The comparison between the discrete kinetic energy in Figure 7 and the Navier–Stokes
one (11) reveals profound discrepancies in the behavior of the flow at t < 5. These
differences are not due to the method of performing the statistics or to the form of the
kinetic energy theorem because it is directly derived from the physical model used. The
numerous simulation results from discrete mechanics on reference flows all show a very
good agreement with those of continuum mechanics [5,6,18,19]. For the first time, for the
TGV flow, the results diverge.

In discrete mechanics, the unknowns of the equation of motion are the velocities v on
the segment Γ, and the velocity vector V is not necessary to model the flow. The kinetic
energy per unit mass ek = 1/2 v · v is a quantity attached to Γ but is also defined on the
vertices of the primal structure, a or b, and on the barycenters of the S facets. The global
kinetic energy Ek computed on the segments, on the dual volumes or on the facets has an
identical behavior over time; Ek(t) increases in the preinertial phase, whereas it remains
almost constant in continuum mechanics.

The growth of the kinetic energy can only be possible at the expense of the potential
energy represented by the Bernoulli scalar potential φo

B. Indeed, in the region t ∈ [0, 4], the
viscous effects are not perceptible. Numerous simulations at different Reynolds numbers
all show the same phenomenon, including for an inviscid flow; in this last case, the vortex
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bursting phenomenon for t ≈ 4 logically leads to a divergence in the simulation. The
conservation of the total energy given by the discrete Equation (4) associates the two inertia
terms, the compression term, and the viscous term. The energy exchanges due to inertia
and compression effects are reciprocal because compression does not lead to dissipation of
acoustic waves on these spatial scales. Thus, a decrease in compression energy φo can be
transformed into an increase in kinetic energy ek and vice versa. This is the phenomenon
observed in the first phase where the potential pressure energy is converted into kinetic
energy. Let’s take the inertia term from the Navier-Stokes equation:

V · ∇V = ∇
(

1
2
|V|2

)
− V ×∇× V (23)

The two equivalent formulations are established within the concept of a continuous
medium and therefore valid at a point of it. To be able to calculate explicitly each term it
becomes necessary to project the equation on a global reference frame.

In discrete mechanics the mechanical equilibrium is realized within a local reference
frame. Solving the discrete equation of motion (4) implicitly entangle all the terms of
this nonlinear equation over time and it is difficult to predict the behavior of the solution.
Observation of the simulation results shows that the roles of the Bernoulli scalar potential
φo

B = φo + φi are related to compression and that they correspond to the rotational inertia ψi.
The inertial potentials φi and ψi also exchange their energy; the longitudinal compression
generates a modification of the rotation and vice versa. The inertial acceleration, κi, is
written as:

κi = ∇
(

1
2
|v|2

)
−∇d ×

(
1
2
|v|2 n

)
(24)

This quantity, κi, is globally conserved in the absence of external accelerations, notably
viscous effects. The physical meaning of the inertial vector κi is illustrated by the vortex
schematized in Figure 12.

Figure 12. Scheme of the inertia vector κi on the oriented segment Γ and the respective representations
of its two components such that κi = ∇φi −∇d × ψi.

A change in the compression energy represented by ∇φi = (|vb|2 − |va|2)/( 2 dh)
generates a variation in the velocity v on Γ and, consequently, of the velocities on the other
segments of the four primal structures. The circulation of the velocities on these lead us
to define a potential vector ψi carried by the unit vector n. The dual curl of this vector,
∇d × ψi, is in turn carried by the segment Γ. Thus, the compression energy is compensated
by an equivalent variation in the rotational kinetic energy, i.e., a variation in the velocity on
the dual contour Δ. More precisely, a stretching in the t direction associated with a decrease
in ∇φi leads to an increase in the rotational inertial term ∇d × ψi. The vortex stretching
mechanism is closely related to the energy exchange between the two components of the κi
vector; while the angular momentum is conserved in the rotation of a vortex filament, the
kinetic energy increases.
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This expression of the inertia in the form of a Helmholtz–Hodge decomposition gives
the physical model particular properties, for example, when the divergence or curl operators
are applied to κi, which allows the suppression of one of its components. Let us consider the
velocity field corresponding to a solid body rotation Vr = Ω × r = ω r eθ . In the framework
of continuum mechanics, the inertia would be written as κi = ω2 r er + ω2 r eθ , which does
not conform to the classical view of a mechanical equilibrium defined by component. In
discrete mechanics, each v component has a direct acceleration and an induced acceleration,
both associated with the same Γ segment. The assembly of the segments in a geometrical
structure such as the one represented in Figure 2 leads to an entanglement of the inertia
terms. In turbulence, rotation and inertia play major roles in the production of kinetic
energy, in the exchange between vortices, and in the decay of energy at small scales. The
classical (23) and discrete (24) forms are very different and lead to divergences in the
specific cases of turbulence in rotating flows.

The law of motion of discrete mechanics represents the conservation of total energy per
unit mass, i.e., acceleration. It has the particularity of strongly entangling the terms of pres-
sure and inertia; this dynamic entanglement is a strict coupling of the scalar potential and
the divergence of the velocity. There is no adjoint equation; mass, or density, is absent from
the discrete equation of motion also for flows with variable density [10]. The scalar φo and
vector ψo potentials are completely subject to acceleration. There are also no constitutive
laws to take into account. Whether the flows are compressible or incompressible, the energy
increase associated with compression is always dφ = −dt c2

l ∇ · v and that of rotation at
dψ = −dt c2

t ∇× v; only the velocities cl and ct must be known. From a fixed velocity field,
we derive the scalar potential field φo satisfying the initial mechanical equilibrium. Then,
all the terms of the equation come into action and exchange energy in the course of time. It
is very difficult to predict the behavior of each term, but we know that the energy initially
introduced in the form of kinetic and potential energy decreases towards zero through
viscous dissipation. Thus, the TGV case solved in discrete mechanics shows an increasing
evolution of the kinetic energy in the first instants, in contradiction with the phenomenon
observed in continuum mechanics. The dynamic entanglement of inertia and compression
effects represents the essence of the creation of turbulence and its evolution in time.

5. Conclusions

The proposed formulation is essentially based on (i) the conservation of the total
energy, the sum of the compressive energy, and the rotational energy; and (ii) the form of
the inertia, which is decomposed into a curl-free part and a divergence-free part:

• The observation of the solutions on the turbulent vortex filament cases and on the
Taylor–Green vortex case shows a nonmonotonic decay in the kinetic energy. This
observation is consistent with the principle of conservation of angular momentum for
a vortex-like flow for an inviscid fluid where the potential and kinetic energies can
be mutually exchanged over time. However, the Taylor–Green vortex at Re = 1600,
considered as a reference for the study of turbulence decay and as a benchmark for
numerical methods, approached with the Navier–Stokes equation, shows a monotonic
decay over time of the kinetic energy. The reasons for this disagreement are attributed
to the essential discrepancies between discrete and continuum mechanics, and the
derivation of the equation of motion on a segment instead of a volume model. Discrete
mechanics leads us to consider the conservation of the total energy on the segment
as an equality between the intrinsic acceleration of the material medium and the
accelerations imposed on it.

• In the particular cases of turbulence in vortices, inertia plays a very important role
in the energy exchange; the very different form adopted in discrete mechanics helps
to explain the discrepancy in behavior in the inertial zone, even though the decay
in the kinetic energy in the transfer zone is very similar to the observations made
from the Navier–Stokes equation. The numerous simulations carried out from this
equation are not questioned: only the choice of the physical model can explain the
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differences observed. Discrete mechanics develops another point of view that remains
consistent with the fundamental principles of mechanics; it has particular properties
whose effects should be specified in the future.
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Abstract: Alongside classical effects driven by gravity or surface tension in non-isothermal fluids,
the present experimental study concentrates on other exotic (poorly known) modes of convection,
which are enabled in a fluid layer delimited from below by a hot plate and unbounded from above
when its container is inclined to the horizontal direction. By means of a concerted approach based
on the application of a thermographic visualization technique, multiple temperature measurements
at different points and a posteriori computer-based reconstruction of the spatial distribution of
wavelengths, it is shown that this fluid-dynamic system is prone to develop a rich set of patterns.
These include (but are not limited to), spatially localized (compact) cells, longitudinal wavy rolls,
various defects produced by other instabilities and finger-like structures resulting from an interesting
roll pinching mechanism (by which a single longitudinal roll can be split into two neighboring rolls
with smaller wavelength). Through parametric variation of the tilt angle, the imposed temperature
difference and the volume of liquid employed, it is inferred that the observable dynamics are driven
by the ability of gravity-induced shear flow to break the in-plane isotropy of the system, the relative
importance of surface-tension-driven and buoyancy effects, and the spatially varying depth of the
layer. Some effort is provided to identify universality classes and similarities with other out-of-
equilibrium thermal systems, which have attracted significant attention in the literature.

Keywords: Marangoni convection; hydrothermal wave; solid particles; patterning behavior

1. Introduction

In this study, the properties of mixed buoyancy-Marangoni convection are investigated
in an inclined layer uniformly heated from below and unbounded from above (in contact
with a gaseous ambient at constant temperature). A justification for our interest in this
specific subject stems from the paucity of similar results in the literature. Apart from the
relevance of this problem to the general kingdom of thermal convection (which naturally
makes it a fundamental topic of interest to fluid physicists and other scholars), additional
obvious aspects making it a subject worthy of analysis are the various areas of applications
it is somehow connected to. A first example is represented by the sector of crystal ‘growth
from the melt’, where crystals of materials of various kinds (e.g., silicon, semiconductors
or oxides) to be used for advanced electronic or opto-electronic devices are typically
produced through melting and re-solidification ‘in well-controlled conditions’ of an initially
polycrystalline substance; it is known that even tilt angles as small as 0.5◦ can cause non-
axisymmetric growth conditions in such processes and related detrimental effects (see, e.g.,
Markham and Rosenberger [1]; Bachran et al. [2]; Mizev and Schwabe [3]).

Similar concepts apply to the solidification of metal alloys (e.g., Jones [4]; Coriell et al. [5];
Webb and Viskanta [6]; Forth and Wheeler [7]) where inclination-induced shear flow can
lead to serious morphological instabilities. Another relevant case is represented by phase
change materials (PCMs), typically used in ‘energy-saving’ applications. These substances
(ideally suited to store energy during melting and release it during solidification) can
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support during these repeated cycles of solid/liquid transition the emergence of both
buoyancy and surface-tension driven convection (Lappa [8]); moreover, the liquid domain
produced accordingly has often a variable depth (see, e.g., Salgado Sanchez et al. [9,10]).

In all these instances, mixed buoyancy-Marangoni convection can be produced by
gradients of temperature (Lappa [11]), gradients of concentration (Zhang et al. [12]) or
both effects (Boura and Gebhart [13], Qin and Grigoriev [14]). In the present study, we
concentrate on the situation where convection is produced by thermal effects only. In
particular, the reader is referred to Figure 1 for the required details about the configuration
used here to ‘mimic’ situations such as those occurring in the abovementioned technological
applications. The greater proximity of the free surface to the heated bottom in the areas
where the depth of the layer is smaller is responsible for the emergence of a temperature
inhomogeneity at the interface, thereby giving rise to fluid convection directly driven by
the Marangoni effect. This flow is also supported by buoyancy. Indeed, the component of
gravity parallel to the bottom plate, causes relatively warm fluid to flow up along this wall
(from left to right in Figure 1) and in the opposite direction along the free interface. The
magnitude ratio of buoyant and surface-tension-driven effects can be varied by changing
the overall amount of fluid, i.e., its average depth. The larger the depth, the higher the
relative importance of gravitational effects in comparison to surface tension ones. The
most important implication of this observation is that relevant links also exist between
this problem and a series of problems of meteorological, oceanographic and geophysical
interest (see, e.g., Lipps [15] and Thorpe [16] for the atmosphere; Farrow and Patterson [17]
for the hydrosphere and Richter [18] for analogous considerations about the mantle of
our planet).

 

Figure 1. Sketch of the considered problem.

It is also worth noting that, from a purely theoretical standpoint, the considered
problem may be regarded as a specific realization of a more general category of phenomena
where a ‘shear flow’ breaks the in-plane isotropy of the system (see, e.g., Weber [19]). This
effect can cause a deviation from the known dynamics of out-of-equilibrium systems, which
are invariant with respect to translations in a direction parallel to the bottom boundary
such as the canonical Rayleigh-Bénard and Marangoni-Bénard flows.

Until now, the former has been explored for fluid domains with “uniform thickness”
tilted with respect to the horizontal direction. In these cases, the isotropy is lost due to the
mismatch in the symmetry of the boundary conditions in relation to the applied body force
(gravity). This condition can make the perfect stationary bifurcation typical of Rayleigh-
Bénard (RB) convection structurally “unstable to the tilt” (and “imperfect” even if the
tilt angle is as small as O(10−3), see Cliffe and Winters [20]; Mizushima and Adachi [21]).
Studies conducted in the past two decades have conclusively established that, depending
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on the inclination, the considered fluid, the size of the system and the applied temperature
difference, many complexities and a rich variety of flow phenomena can take place. Works
of relevance to the subject include those by Clever and Busse [22], Weber [23], Chen and
Pearlstein [24], Shadid and Goldstein [25], Busse and Clever [26], Fujimura and Kelly [27],
Kaloni and Qiao [28].

According to all these studies, the emerging (gravitational) modes of convection in
tilted enclosures can be broadly classified/categorized into two groups; namely, transverse
rolls and longitudinal rolls. A dichotomy is generally introduced between these because,
while the former have essentially a shear driven nature, the latter have a strong thermal
(buoyant) origin (Daniels et al. [29,30]; Tao and Busse [31]; Subramanian et al. [32]).

As even a cursory perusal of the existing literature on these subjects would imme-
diately reveal, in comparison to gravitational convection, studies on systems driven by
surface-tension-driven effects where the isotropy of the classical heated-from-below config-
uration is broken, are much more rare and sparse. Some interesting efforts exist for the case
where the isotropy-breaking shear flow has been obtained by inclining the temperature
gradient with respect to the liquid-gas interface rather than by inclining the layer itself
(i.e., a temperature difference resulting from the combination of heating from below and
horizontal differential heating). As an example, after the problem’s initial popularization
by Nepomnyashchy et al. [33] and Ueno et al. [34], additional insights into this specific situ-
ation have been provided by Shklyaev and Nepomnyashchy [35], Mizev and Schwabe [3]
and Patne et al. [36]. Most interestingly, these efforts have revealed that, despite the shift in
the driving force from buoyancy to Marangoni effects, the duality in terms of transverse
and longitudinal modes of convection still holds in these case (with the classical compact
hexagonal cells typical of Marangoni-Bénard (MB) convection being recovered only in the
limit as the horizontal contribution to the overall temperature difference tends to zero).

One may therefore conclude that a line of inquiry dedicated to thermal flows and
related instabilities in inclined systems (or systems with an inclined temperature gradient)
only exists for the case in which the geometry has a constant thickness along the entire
extension of the heated wall, which may be regarded as the main justification or motivation
for the present work.

Here, the problem is tackled experimentally (see Section 2) and analyzed from both
the traditional coarse-grained macroscopic (i.e., patterning behavior) perspective (see
Section 3) and from a fine-grained micromechanical level in which an interpretation for the
underlying mechanisms is sought in the light of the existing literature for problems that
share a significant degree of similarity (see Section 4).

2. The System

2.1. The Geometry

A sketch of the considered fluid-dynamic system is shown in Figure 1. While the
bottom of the cavity has a constant temperature higher than that of the external gaseous
environment (air), the lateral walls are thermally insulated.

The inclination of the container causes the liquid to redistribute its volume in such
a way that its surface remains perfectly horizontal with respect to an external observer
(on tilting the system, the liquid-gas interface adjusts its orientation in order to remain
perpendicular to gravity). Since the resulting liquid depth is not independent from the
z coordinate, this naturally causes a breakage in the horizontal translational invariance
(isotropy) of the system. Notably, given its spatially varying depth, the problem would not
be isotropic even by replacing gravity with a force perfectly perpendicular to the bottom
wall. Similarly, no isotropy would be recovered by considering a quiescent state, i.e., a
condition where the fluid does not move. Obviously, the loss of horizontal translational
invariance is reinforced by the presence the shear flow induced by the inclination of the
heated bottom wall, which contributes to this effect as it does in classical problems dealing
with inclined thermal convection in constant-thickness layers. Remarkably, all these factors
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are expected to expand the set of possible solutions with respect to those identified in
earlier studies.

2.2. The Liquid

The physical properties of the used fluid (Emkarate RL22H oil) as a function of the
temperature are summarized in Figure 2 (these figures also include the related fitting laws
in the form of polynomial expressions).

  
(a) (b) 

  
(c) (d) 

Figure 2. Cont.
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(e) (f) 

  
(g) (h) 

Figure 2. Physical Properties of Emkarate RL22H as a function of temperature as provided by
the manufacturer: (a) Dynamic viscosity μ (exp. measurements); (b) Density ρ (exp. measure-
ments); (c) Specific Heat at constant pressure Cp (exp. measurements); (d) Thermal conductivity
λ (exp. measurements); (e) Kinematic viscosity ν (derived quantity, ν = μ/ρ, 1 cSt = 10−6 m2/s);
(f) Thermal diffusivity α (derived quantity, α = λ/ρCp); (g) Prandtl number (derived quantity,
Pr = ν/α), (h) Surface tension σ.

These figures are instrumental in showing that the physical properties of the con-
sidered fluid display a variable degree of sensitivity to temperature depending on the
considered property (density ρ, specific heat Cp, thermal conductivity λ, thermal diffusivity
α, dynamic viscosity μ, kinematic viscosity ν). The quantities ρ, Cp, λ and α (Figures 2b,
2c, 2d and 2f, respectively) undergo a 10% percentage variation (or even smaller) over a
range of 100 K. Nevertheless, the corresponding change in terms of μ and ν is much more
significant (see Figures 2a and 2e, respectively).
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The fluid Prandtl number can be introduced following the classical definition as:

Pr =
ν

α
(1)

The dependence of this parameter on temperature can be gathered from Figure 2g
where it is shown that for the considered oil a relatively high increase in the average
temperature is equivalent to considering a fluid with a much smaller value of the Prandtl
number (e.g., a value of the Prandtl Pr ∼= 520 for T ∼= 20 ◦C is reduced to a value as small as
Pr ∼= 170 for T ∼= 50 ◦C).

2.3. Characteristic Numbers

In order to make the outcomes of the present experimental study more general, follow-
ing a common practice in the literature, it is convenient to define non-dimensional groups
by which the number of influential parameters can be drastically reduced and the related
interpretation of the system dynamics strongly simplified. In the considered problem, these
are the classical Prandtl number (Equation (1)) and the canonical Rayleigh and Marangoni
numbers. Introducing the average (or “equivalent”) depth of the layer (d) as ratio between
the effective volume (Ω) of liquid present in the container and the area of the container
base (corresponding to constant depth of the fluid when no tilt is applied), the last two
numbers can be cast in compact form as:

Ra =
gβTΔTd3

ν0α0
(2)

Ma =
σTΔTd
μ0α0

(3)

where ΔT accounts for a representative temperature difference, namely, the difference
between the temperature of the bottom plate (Tplate) and that of the ambient (Tair), i.e.,
ΔT = Tplate − Tair, (this temperature difference, much higher than that effective through
the liquid, is used for practical purposes as the temperature of the free liquid-gas interface
is not known a priori and behaves as a spatially varying quantity in the presence of
convection); moreover, g and βT are the gravity acceleration and the thermal expansion
coefficient, 9.81 ms−2 and ∼= 7.7 × 10−4 K−1 of the considered fluid, respectively; σT is
the surface tension derivative coefficient (∼=0.218 mNm−1K−1 for the considered fluid, see
Figure 2h). The subscript “0” refers to a reference temperature, which in the present work,
for simplicity and without loss of generality, is assumed to be the temperature T0 of the
environment (i.e., Tair). These two characteristic numbers can be further combined into a
third non-dimensional group, generally known as the dynamic Bond number:

Bodyn =
Ra
Ma

=
ρgβTd2

σT
(4)

Although this should be regarded as a ‘derived’ parameter, the convenience in using it
stems from its independence from the temperature difference and the immediate informa-
tion it provides on the relative importance of buoyancy and surface-tension driven effects
according to whether it is larger or smaller than 1 (buoyancy effects being more important
in the former case).

3. Experimental Apparatus

The containers used for the present experiments are shown in Figure 3. They differ
about both shape and size. While one container has a square symmetry and characteristic
internal size 8 cm (Figure 3a), the other has the cylindrical symmetry and an internal
diameter of 13.3 cm (Figure 3b). Experiments are conducted in these containers for the
same conditions (same liquid depth, temperature of the bottom plate and overall system
inclination) to distillate out the role played in the considered dynamics (if any) by the solid
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lateral wall and the aspect ratio A of the fluid domain (defined as ratio of the container
horizontal size and the depth of the liquid).

 
(a) 

(b) 
Figure 3. Three-dimensional sketch of the fluid container delimited by sidewalls of Perspex:
(a) square container, (b) cylindrical container.
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In order to set a well-defined temperature difference between the bottom of the
container and the external environment, we rely on a commercial component, namely,
a MS-H280-Pro Round ceramic coated Steel Hotplate/Stirrer, able to produce a uniform
temperature Tplate with an accuracy of 1 ◦C up to 280 ◦C (the reader being referred to Table 1
for other specifications).

Table 1. Specifications of MS-H280-Pro Round ceramic coated Steel Hotplate/Stirrer.

Parameter Value/Range

Work plate Dimension Diameter 135 mm
Work plate material Stainless steel cover with ceramic
Motor type Brushless DC motor
Motor rating input 5 W
Motor rating output 3 W
Power 515 W
Heating output 500 W
Voltage 100–120/200–240 V 50/60 Hz
Heating temperature range Room temp.–280, increment 1◦C
Control accuracy of work plate ±1 ◦C (<100◦C) ±1%(>100 ◦C)
External temperature sensor PT1000 (accuracy ±0.5 ◦C)
Dimension [W × D × H] 150 × 260 × 80 mm
Weight 1.8 kg

In line with other successful attempts in the literature (see, e.g., Cerisier et al. [37,38];
Ismagilov et al. [39]; Chauvet et al. [40]; Wang et al. [41]; Wu et al. [42]; Sobac et al. [43];
Tönsmann et al. [44]), the distribution of temperature on the free surface of the considered
liquid is observed using a FLIR C3-X Compact Thermal Imaging Camera (the related IR
sensor has a resolution of 128 × 96 px and thermal sensitivity of 70 mK; moreover, it can
detect and measure temperatures between −20 ◦C and +300 ◦C to an accuracy of ±3%).

The overall inclination of the system is measured using a digital inclinometer with an
accuracy of 0.01◦ (Neoteck NTK033-V). The following cases are investigated in terms
of liquid depth: 0.5 ≤ d ≤ 0.75 cm corresponding to 0.86 ≤ Bodyn ≤ 1.94, moreover,
Tair

∼= 21 ± 1 ◦C.

4. Results

4.1. Canonical States of Thermal Convection in the Horizontal Case

Following a logical approach, we start from the simplest case, i.e., the perfectly hori-
zontal configuration (ϑ = 0◦) for which convection is expected to emerge in the form of rolls
or hexagonal cells according to whether buoyancy or surface-tension effects are dominant,
respectively (Rayleigh-Marangoni-Bénard convection). In this regard the first set of figures,
collected in Figure 4 for the case with constant liquid depth 0.5 cm, is instructive as these
figures show that the pattern-less state visible in the first panel (Figure 4a) is taken over
by a recognizable distribution of rolls and localized convective cells as soon as the critical
threshold for the onset of convection is exceeded (Figure 4b–d).

These are made evident by the rising (descending) currents of hot (cold) fluid mani-
festing themselves as localized spots or strips with temperature higher (smaller) than the
surrounding fluid.

On increasing the depth of the layer, as expected the horizontal extension of the
convective features grows accordingly (compare, e.g., each panel of Figure 5 with the
corresponding one in Figure 4). Another key observation stemming from Figure 5 concerns
the complexity of the pattern and the number of convective features, which in qualitative
agreement with other results in the literature, keep increasing with the ΔT, i.e., grow with
the distance from the critical conditions.
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(a) (b) 

  
(c) (d) 

Figure 4. Surface temperature distribution for d = 0.50 cm (Ω = 32 mL) and no inclination
(A = 16, Bodyn

∼= 0.86, Ra ∼= 2.5 × 102 × ΔT, Ma ∼= 2.94 × 102 × ΔT): (a) ΔT = 13 ◦C, (b) ΔT = 18 ◦C,
(c) ΔT = 21 ◦C, (d) ΔT = 27 ◦C.

4.2. Convection in Inclined Square Layer

The simplest way to undertake a discussion of the situation where the layer is inclined
to the horizontal is to start from the major remark that, unlike the canonical case considered
in Section 4.1, for ϑ �= 0 the basic state is not in quiescent conditions. Rather it consists of
a symmetry-breaking shear flow induced by the horizontal component of the temperature
gradient (see the related discussion in the introduction). Put differently, no critical ΔT
has to be exceeded in order to induce fluid flow, i.e., convection is produced as soon as a
temperature difference is established.

Following up on the previous point, Figure 6 provides a first glimpse of the patterning
behavior in such conditions when ϑ ∼= 3.5◦.
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(a) (b) 

  
(c) (d) 

Figure 5. Surface temperature distribution for d = 0.75 cm (Ω = 48 mL) (A = 10.6, Bodyn
∼= 1.94,

Ra ∼= 8.6 × 102 × ΔT, Ma ∼= 4.4 × 102 × ΔT): (a) ΔT = 15 ◦C, (b) ΔT = 21 ◦C, (c) ΔT = 27 ◦C,
(d) ΔT = 33 ◦C.

The significance of this figure primarily resides in its ability to make evident that
the inclination leads to two remarkable effects. The first concerns the hybrid (spatial)
nature of the visible pattern. In place of the scattered distribution of spots occupying all
the available space in Figure 4, the surface temperature exhibits in this case an almost
feature-free region localized in the part of the physical domain where the depth of the layer
is smaller (Figure 6a). Moreover, the random distribution of rolls (in terms of direction
in the xz plane) seen in the constant-depth case is taken over by a much more ordered
arrangement where the convective features display a tendency to align with the z axis (the
vertical direction in the figures, see, e.g., the black dashed lines in Figure 6c).

Notably, although these may immediately be classified as ‘longitudinal rolls’ (their axes
being parallel to the tilt direction), their specific spatial configuration bares characteristic
ingredients, which also need to be pinpointed suitably here. Their cross-extension, i.e., the
typical size in a direction perpendicular to the roll axis undergoes remarkable variations
along the z (tilt) direction, which indicates that the dimensional wavelength is not constant in
the physical domain. Here, this quantity is defined as the distance between two consecutive
corresponding crests or “points of the same phase” along the x axis for a fixed value of z.
The related behaviors are quantitatively substantiated in Figure 7, where the wavelength
has been plotted as a function of the z coordinate for a representative ΔT. Interestingly, as
the ΔT is increased, some other interesting changes show up. The length of the rolls along
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the z direction grows (compare, e.g., Figure 6a,f, the reader being also referred to the data
reported in Figure 8).

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 6. Surface temperature distribution for d = 0.50 cm (Ω = 32 mL) and ϑ ∼= 3.5◦ (A = 16,
Bodyn

∼= 0.86, Ra ∼= 2.5 × 102 × ΔT, Ma ∼= 2.94 × 102 × ΔT): (a) ΔT = 15 ◦C, (b) ΔT = 18 ◦C,
(c) ΔT = 21 ◦C, (d) ΔT = 24 ◦C, (e) ΔT = 27 ◦C, (f) ΔT = 30 ◦C (the x and z axes correspond to the
horizontal and vertical directions in all the panels).
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Figure 7. Transverse roll extension as a function of the longitudinal direction z for ΔT = 27◦C (square
container, A = 16, d = 0.50 cm, Bodyn

∼= 0.86, ϑ ∼= 3.5◦).

Superimposed on these trends, most interestingly, in some cases, in place of the striped
pattern, which one would expect in the ideal situations of parallel longitudinal rolls, tree-
like shapes can be distinguished in the surface temperature distribution. These give an
external observed the illusion of a roll with a fork-like structure (two strips originating
from a single initial strip, see the black rectangle in Figure 6d,e).

Given the complexity of such phenomena, which seem to escape a possible simple
definition or classification within the framework of the past lines of research (still retaining,
however, some affinities with the typical features and salient ingredients pertaining to such
categories), in the following, we implement a peculiar modeling and analysis hierarchy in
order to ‘filter out’ already known facts and concentrate selectively on new mechanisms.
More specifically, this modus operandi is based on the step-by-step variation of the distinct
(independent) parameters controlling the various degrees of freedom of the considered
system, these being the characteristic temperature ΔT (whose effects have already been
outlined before), the tilt angle ϑ, the volume of liquid and the shape and aspect ratio of
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the considered container. While the effect of the ΔT has already been outlined before (see
gain Figure 8), the overall volume of liquid is expected to influence the dynamics through
the related value of the dynamic Bond number based on the average depth of the liquid,
which accounts for the relative importance of buoyancy and surface-tension driven effects.
Similarly, the shape and aspect ratio of the considered container may influence the pattern
selection mechanism through confinement and other geometrical effects.

 
Figure 8. Longitudinal extension of the rolls as a function of ΔT (square container, A = 16, d = 0.50 cm,
Bodyn

∼= 0.86, ϑ ∼= 3.5◦).

As a first step of this analysis hierarchy, we consider a larger value of the incli-
nation angle for the same conditions of Figure 6 (same volume of liquid and set of
temperature differences).

As immediately made evident by Figure 9, an increase in ϑ can produce a mitigation
of the aforementioned roll pinching mechanism (by which a single longitudinal roll can
be split into two neighboring rolls with smaller wavelength). A slightly larger values of ϑ
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has also another remarkable consequence; on average, it causes a small (non-negligible)
growth of the transverse extension of the rolls (we will return to this effect later).

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 9. Surface temperature distribution for d = 0.50 cm (Ω = 32 mL) and ϑ ∼= 5◦ (A = 16,
Bodyn

∼= 0.86, Ra ∼= 2.5 × 102 × ΔT, Ma ∼= 2.94 × 102 × ΔT): (a) ΔT = 15 ◦C, (b) ΔT = 18 ◦C,
(c) ΔT = 21 ◦C, (d) ΔT = 24 ◦C, (e) ΔT = 27 ◦C, (f) ΔT = 30 ◦C (the x and z axes correspond to the
horizontal and vertical directions in all the panels).
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The reduced tendency of the system to support roll pinching mechanism is qualita-
tively substantiated in Figure 10. On closer inspection, indeed, this figure reveals that
the number of peaks visible at each station z remains almost constant throughout the
longitudinal extension of the domain (until no well-defined peaks can be seen as a certain
limiting value of z is exceeded, which corresponds to the transition from the patterned to
the spot-free region).

 

Figure 10. Profiles of temperature at different stations along the longitudinal direction z (square
container, A = 16, d = 0.50 cm, Bodyn

∼= 0.86, ΔT = 27◦C, ϑ ∼= 5◦).

Towards the end of getting a better grasp on how all these dynamics are affected by
the depth of the layer, the next set of figures refers to the case where the average depth
of the liquid is 0.75 cm (see Figure 11, yet for ϑ ∼= 5◦). Along these lines, taken together
Figures 9 and 11 are instrumental in showing that an increase in the relative importance of
buoyancy forces with respect to surface-tension driven effects (as witnessed by the related
rise in the dynamic Bond number) can help to make the roll-pinching mechanism even less
frequent in favor of a more regular (parallel) distribution of longitudinal rolls. As even a
fleeting glimpse into Figure 11 would immediately reveal, in fact, the patterned surface
now corresponds to the entire free liquid-gas interface of the fluid layer, i.e., no cell-free
area can be identified in this case (a kind of “saturated state” is attained in terms of roll
extension along the tilt direction z).

Additional insights follow naturally from a cross-comparison of Figures 10 and 12. It
can be seen that the number of rolls sitting in the cavity is reduced in the d = 0.75 cm case
(as clearly demonstrated by the smaller number of recognizable peaks at any given station
in comparison to the equivalent ones visible in Figure 10 for d = 0.5 cm).

All these trends are finally summarized in Figure 13 in terms of roll extension along x
as a function of the longitudinal coordinate z for different values of the layer average depth
and inclination.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11. Surface temperature distribution for d = 0.75 cm (Ω = 48 mL) and ϑ ∼= 5◦ (A = 10.6,
Bodyn

∼= 1.94, Ra ∼= 8.6 × 102 × ΔT, Ma ∼= 4.4 × 102 × ΔT) (a) ΔT = 15 ◦C, (b) ΔT = 18 ◦C,
(c) ΔT = 21 ◦C, (d) ΔT = 24 ◦C, (e) ΔT = 27 ◦C, (f) ΔT = 30 ◦C (the x and z axes correspond to
the horizontal and vertical directions in all the panels).
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Figure 12. Profiles of temperature at different stations along the longitudinal direction z (square
container, A = 10.6, d = 0.75 cm, Bodyn

∼= 1.94, ΔT = 27 ◦C, ϑ ∼= 5◦).

Having completed a description of the observed phenomena in the square geometry
case, we now turn to considering briefly the equivalent dynamics emerging in the cylin-
drical container. As already explained to a certain extent before, this practice finds its
justification in the two-fold purpose of assessing the role played by the system aspect ratio
(ratio of the horizontal and average vertical extension) and the shape of the side boundary.

4.3. Convection in Inclined Cylindrical Layer

As the reader will immediately realize by inspecting Figure 14, moving on from
the case with square boundary to that with cylindrical sidewall (compare with Figure 6),
no significant or appreciable changes can be discerned in terms of patterning behavior.
The flow still displays a set of coexisting rolls, which originate from the side where the
fluid depth is larger and protrude into the pattern-less region located at the other end of
the container.

Although from a qualitative standpoint, the scenario is essentially the same, however, a
discrepancy or departure from the equivalent dynamics shown in Figure 6 can be identified.
It is represented by the tendency of the rolls to assume an oblique configuration with respect
to the tilt direction (North-West/South-East in the different panels of Figure 14, see, e.g.,
the black dashed lines in Figure 14c,f).

Moreover, as revealed by a closer (quantitative) assessment of the pattern in terms of
wavelength, this difference in the prevailing roll orientation occurs in conjunction with an
appreciable increase in the roll transverse extension (Figure 15).
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Figure 13. Transverse roll extension as a function of the longitudinal direction z for ΔT = 27 ◦C for
different average fluid depths and inclinations (square container).

On the one hand, these results indicate that the scenario does not depend significantly
on the shape of the domain, on the other hand, they provide evidence that, if the geometrical
aspect ratio is increased (A = 26.6 as opposed to A = 16), the pattern is allowed to “relax”
in the horizontal direction, thereby causing an increase in the dimensional wavelength.
Another (more obvious) outcome of the cylindrical nature of the outer solid boundary is
the modulation of the longitudinal extension of the rolls along the x axis for any fixed value
of ΔT (the rolls closer to left and right side of the container having smaller longitudinal
extension than those located in the center).
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 14. Surface temperature distribution for d = 0.50 cm (Ω ∼= 70 mL) and ϑ ∼= 3.5◦ (A = 26.6,
Bodyn

∼= 0.86, Ra ∼= 2.5 × 102 × ΔT, Ma ∼= 2.94 × 102 × ΔT): (a) ΔT = 15 ◦C, (b) ΔT = 18 ◦C,
(c) ΔT = 21 ◦C, (d) ΔT = 24 ◦C, (e) ΔT = 27 ◦C, (f) ΔT = 30 ◦C (the x and z axes correspond to the
horizontal and vertical directions in all the panels).
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(a) 

(b) 

Figure 15. Transverse roll extension analysis (d= 0.50 cm, Bodyn
∼= 0.86, ΔT = 27 ◦C, ϑ ∼= 3.5◦):

(a) Temperature as a function of the transverse coordinate x at z= 4 cm, (b) Roll extension along x as a
function of the longitudinal direction z.
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Figure 16 naturally complements Figure 14, where additional evidence is provided
that, on increasing the inclination, the transverse wavelength can be made higher (especially
for intermediate values of z).

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 16. Surface temperature distribution for d = 0.50 cm (Ω ∼= 70 mL) and ϑ ∼= 5◦ (A = 26.6,
Bodyn

∼= 0.86, Ra ∼= 2.5 × 102 × ΔT, Ma ∼= 2.94 × 102 × ΔT): (a) ΔT = 15 ◦C, (b) ΔT = 18 ◦C,
(c) ΔT = 21 ◦C, (d) ΔT = 24 ◦C, (e) ΔT = 27 ◦C, (f) ΔT = 30 ◦C (the x and z axes correspond to the
horizontal and vertical directions in all the panels).

143



Fluids 2023, 8, 12

Figures 17 and 18 complete this sequence by illustrating the behavior for larger average
depth of the layer (Figure 18 to be compared for analogous cicumstances with the findings
about the square layer in Figure 11).

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 17. Surface temperature distribution for d = 0.75 cm (Ω = 104 mL) and ϑ ∼= 3.5◦ (A = 17.7,
Bodyn

∼= 1.94, Ra ∼= 8.6 × 102 × ΔT, Ma ∼= 4.4 × 102 × ΔT) (a) ΔT = 15 ◦C, (b) ΔT = 18 ◦C, (c) ΔT = 21 ◦C,
(d) ΔT = 24 ◦C, (e) ΔT = 27 ◦C, (f) ΔT = 30 ◦C (the x and z axes correspond to the horizontal and
vertical directions in all the panels).
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 18. Surface temperature distribution for d = 0.75 cm (Ω = 104 mL) and ϑ ∼= 5◦ (A = 17.7,
Bodyn

∼= 1.94, Ra ∼= 8.6 × 102 × ΔT, Ma ∼= 4.4 × 102 × ΔT) (a) ΔT = 15 ◦C, (b) ΔT = 18 ◦C,
(c) ΔT = 21 ◦C, (d) ΔT = 24 ◦C, (e) ΔT = 27 ◦C, (f) ΔT = 30 ◦C (the x and z axes correspond to
the horizontal and vertical directions in all the panels).
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Figure 19 finally provides an ensemble perspective on the system response for all the
cases considered in Sections 4.2 and 4.3. A number of interesting functional dependences
can be discerned accordingly. In addition to the aforementioned tendency of the transverse
wavelength to attain larger values as the inclination and/or the liquid average depth
(volume) are increased (with the values for the cylindrical domain being generally located
above the corresponding ones for the square container with smaller aspect ratio), some
interesting non-monotonic behaviors can be spotted there.

 

Figure 19. Transverse roll extension as a function of the longitudinal direction z for all the cases
considered in the present work (ΔT = 27 ◦C).

In the cylindrical case, for d = 0.5 cm (Bodyn
∼= 0.86) and ϑ ∼= 5◦ the wavelength curve

is entirely located above the corresponding one for the square domain (refer to the red
branches in Figure 19). The cylindrical case, however, displays a maximum for z = 7 cm,
followed by a branch of decreasing behavior. Notably, an interval of the z coordinate can be
identified accordingly where the wavelength for ϑ ∼= 5◦ is smaller than that attained for the
same average liquid depth (d = 0.5 cm) and ϑ ∼= 3.5◦ (z < 5.2 cm). The same concept applies
to the curve for d = 0.75 cm (Bodyn

∼= 1.94) and ϑ ∼= 5◦. Although, the wavelength is larger
than the corresponding one for d = 0.5 cm over almost the entire longitudinal extension
of the fluid domain, this relationship is inverted in the range 5.7 < z < 7.7 cm. This curve
even intersects the corresponding one for the square container for z ∼= 3.8 cm (refer to
the blue branches in Figure 19), which indicates that circumstances exist where the wave-
length in the cylindrical case can become smaller than the equivalent square-domain value
(Bodyn

∼= 1.94, ϑ ∼= 5◦ and z < 3.8 cm).
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5. Discussion

It is a well-known concept that, regardless of whether the underpinning processes are
different or not, systems that are driven out of equilibrium often display similar behaviors
or patterns (Lappa [11]). To put the present work in perspective, therefore, in this section
some effort is provided to emphasize on some prior research displaying some potential
links with the results described in Section 4. In other words, we sift through existing studies
with different foci in order to glean hints and draw inferences about possible affinities in
terms of underlying mechanisms with the present phenomena.

In particular, in our endeavor to do so, the discussion is articulated along two differ-
ent threads. Namely, first, we consider the existing literature on surface-tension driven
convection in horizontal layers with inclined temperature gradient and then we review
the existing studies on pure gravitational convection in inclined shallow enclosures with
constant depth (geometries with a rectangular transverse section).

In the former case, some commonality can be seen the existence of a symmetry breaking
shear flow, which can deeply influence the effective patterning behavior. A detailed
classification of the fundamental modes of surface-tension-driven convection developed
by horizontal layers with an inclined temperature gradient can be found in the linear
stability analysis by Nepomnyashchy et al. [33], where these were categorized as stationary
longitudinal rolls (LR) essentially driven by the same thermal effects that can produce
classical MB convection and transverse rolls for which shear plays a much more important
role (manifesting as traveling entities through the layer). Hydrothermal waves (HTW) were
also identified in the case for which the horizontal component of the temperature gradient
becomes so strong that it can hinder the concurrent mechanisms driven by the vertical
component (this being the opposite extreme case with respect to that where the vertical
component of the temperature gradient is dominant, thereby producing the classical MB
hexagonal cells).

Due to the lack of HTWs in the present case even in the situation for which the depth
of the layer is minimal (Figures 6, 9, 14 and 16), we infer that the present conditions are far
from those for which these specific modes of convection can be excited. Another possible
explanation could be rooted in another class of studies dealing with hybrid Marangoni-
buoyancy convection in differentially heated liquid layers (the gradient of temperature
being parallel to the free interface in this case). Evidence has been provided in the literature
that if buoyancy is sufficiently strong in comparison to surface-tension driven effects, the
HTW (which would represent the preferred mode of supercritical Marangoni convection) is
taken over by longitudinal rolls with axes parallel to the (horizontal) temperature gradient.
Relevant examples of related findings can be found in the experimental studies by Gillon
and Homsy [45], Braunsfurth, and Homsy [46], Burguete et al. [47] and Pelacho et al. [48],
to which the interested reader is referred for additional details.

In such a context, another work deserving a quote is that by Shklyaev and Nepom-
nyashchy [35]. These authors shed additional lights on the pure Marangoni-flow case with
inclined temperature gradient by gaining relevant information about the effective morphol-
ogy of the emerging convection structures through non-linear numerical simulations. For a
sample liquid with Pr = 7, they could determine the morphological changes undergone
by the compact cells typical of MB convection under the effect of a superimposed shear
flow (leading to cells that “drift” in the physical domain) and show that between the
areas of the existence of the hexagonal patterns and the longitudinal rolls (obtained for a
horizontal temperature gradient larger than that needed to produce the drifting cells), there
is a stability domain of “oblique rolls”, i.e., rolls inclined with respect to the direction of the
horizontal temperature gradient. Most interestingly, they also found states with half of the
convective pattern consisting of oblique rolls with positive inclination angle and the other
half displaying rolls with a negative inclination angle of the same modulus.
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Yet, for the case with inclined temperature gradient, Ueno et al. [34] were the first
to report on stationary longitudinal rolls and drifting cells by means of experiments with
layers of silicone oils with viscosity 2, 5, 10 and 20 cSt (Pr = 27.9, 67.0, 111.9 and 206.8 at
room temperature, respectively) up to 2 [mm] in depth. Later, Mizev and Schwabe [3]
conducted an experimental campaign to assess the role played in such dynamics by the
depth of the layer (10 cSt silicone oil with a thickness d varying from 1.0 to 6.0 mm). These
authors found that as the layer thickness increases the Marangoni– Bénard cells elongate
along the direction of thermocapillary motion. Finally, when the longitudinal size of the
cells reaches the horizontal size of the layer, a new flow structure appears in the form of LRs.
More precisely, they observed that for any depth of the layer in the considered range, while
an increase in the horizontal component of the temperature gradient for a fixed vertical
contribution can cause a transition from drifting cells to LRs, vice versa, an increase in the
vertical component of the temperature gradient for a fixed horizontal contribution leads to
the opposite transition.

Although several analogies might be identified between these behaviors and the
present findings, we should recall at this stage that in the present case, in addition to the
inclination of the temperature gradient with respect to the free interface, the depth of the
liquid layer is not constant.

Moreover, drawing a parallelism with the existing findings for surface-tension driven
convection may not be exhaustive because buoyancy should be expected to play a signifi-
cant role in the situations considered here for which Bodyn > 1. Along these lines, a critical
analysis of the existing literature for pure buoyancy flow in inclined shallow enclosures (no
free interface) might also lead to interesting insights.

The simplest way to do so, perhaps, is to start from the simple remark that for inclined
systems subjected to buoyancy only and relatively small angles of inclination such as those
considered in the present work, these systems tend to develop stationary longitudinal
rolls (LR), i.e., rolls of essentially buoyant nature that aligns with the direction of the
shear flow are the typical outcome of the primary instability of these systems. Only if the
inclination angle is relatively large, the ground is left to transverse rolls (TR), i.e., rolls with
axes perpendicular to the shear flow essentially driven by shear (Chen and Pearlstein [23]).
Fujimura and Kelly [26] clarified that the transition angle essentially depends on the Prandtl
number of the considered fluid and it is less than 90◦ only if the Prandtl number is smaller
than 12.47 (Fujimura and Kelly [26]), which implicitly leads to the conclusion that LR
should be regarded as the primary pattern forming process in oils and other fluids with
relatively large values of the Prandtl number.

The present findings (see, in particular, Figure 11 for the case in which buoyancy is
dominant) confirm that such a trend (i.e., the tendency to favor LRs for small tilt angles)
still holds although situations with non-constant depth of the layer have been considered.

Remarkably, Figures 17 and 18 also provide a hint or clue for another interesting con-
nection or affinity with the dynamics described in the studies by Shadid and Goldstein [24]
and Busse and Clever [25]. In this regard, it is worth recalling that the former authors
could observe experimentally in the case of a fluid with Pr = 90 (reagent grade ethylene
glycol) that, for low to moderate angles of inclination and a sufficiently high value of the
Rayleigh number, the longitudinal rolls can become unstable against a three-dimensional
“wavy” instability (in line with the predictions of the linear stability analysis by Clever
and Busse [22]). Two instability mechanisms were revealed accordingly, i.e., an instability
of the cross-roll type, by which a disturbance perpendicular to the original roll axis is
produced, and a pinching process able cause coalescence of adjacent rolls. Apart from these
steady-rolls wavelength-changing mechanism, Shadid and Goldstein [24] also reported on
unsteady longitudinal rolls taking over for Ra > 104 over the interval 5 ≤ θ≤ 25◦. By means
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of numerical simulations, Busse and Clever [25] could confirm that a three-dimensional
“wavy” instability is the main mechanisms responsible for the emergence of the so-called
undulations patterns.

As even a cursory comparative assessment of Figures 11 and 18 would immediately
confirm, similar phenomena show up in the present circumstances when the lateral confine-
ment is relaxed. Indeed, the latter figure clearly reveals a tendency of the present system to
develop oblique rolls characterized by sinusoidal spatial distortions as the aspect ratio is
increased from 10.6 to 17.7 and the straight (parallel) sidewalls are replaced by a curved
boundary (although at this stage the role played in such a process by surface-tension effects
in the present case is not clear).

As a concluding remark for this section, we wish to remark that these arguments
should obviously be regarded for what they are, i.e., observations stemming from the
quest for universality classes through the observation of companion or somehow re-
lated phenomena. Nevertheless, they point to interesting similarities in the underlying
physics or mechanisms, which would require additional investigation in the frame of the
linear stability analysis approach or other numerical techniques. Some general conclu-
sions stemming from the present experimental work are elaborated accordingly in the
next section.

6. Conclusions

Hybrid Marangoni-buoyancy convection in a fluid domain with variable fluid depth
and inclined temperature gradient with respect to the horizontal direction has been investi-
gated in the attempt to enrich the current knowledge about the fluid-dynamic behavior
of these systems. In particular, the unique examined configuration should be regarded as
an intentional attempt to move beyond the models adopted so far by the community of
theoretical physicists and engineers, which has essentially been based on the paradigm of a
series of different idealized setups and has not yet branched out to heated systems with
irregular transversal thickness.

It has been shown that, in analogy with the companion cases represented by Marangoni
convection in horizontal layers with temperature gradient inclined to the free liquid-gas
interface and buoyancy convection in constant-thickness tilted enclosures, the preferred (or
dominant) mode of convection for relatively small tilt angles is represented by longitudinal
rolls. These manifest with a wavelength that increases with the layer depth. A relaxation in
the lateral confinement can also contribute to increase their transverse extension, which
indirectly proves that the sidewalls play role in the wavenumber selection mechanism in
the considered range of aspect ratios.

A coherent picture of the richness of possible scenarios in terms of roll transverse
size, longitudinal extension and orientation with respect to the tilt direction has been
provided by varying parametrically the system influential factors, namely the temperature
difference, liquid volume (average layer depth), inclination angle and the aspect ratio of the
fluid container.

It has been shown that the hallmark of the considered dynamics is a modulation of
the abovementioned transverse wavelength along the longitudinal direction, which should
be regarded as an important distinguishing factor with respect to the “similar” behaviors
displayed by these modes of convection in systems with a constant depth, regardless
of whether the main driving force is represented by thermocapillarity or buoyancy. An
increase in the temperature difference generally causes an increase in the longitudinal
extension of the rolls.

Future attempts shall be devoted to clarify the nature of the interesting roll pinching
mechanism (by which a single longitudinal roll can be split into two neighboring rolls
with smaller wavelength), found in the case for which the lateral confinement is significant
(small aspect ratio) and the layer depth is relatively small. Critical comparison with the
existing literature has revealed that although most of existing results can be organized
in well-studied universality classes, the interpretation of some experimental realizations
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is not always a relatively simple task. Factors contributing to the inherent complexity
of this objective are the essentially counter-intuitive non-linear behavior displayed by
these systems and the blending of convective modes (normally operating separately) due
to the nature of the specific problem considered here. Another open question relates to
the influence of container shape. Although it has been proven here that the patterning
behavior does not depend significantly on it (longitudinal rolls being selected over the
entire space of parameters) and that the main impact of a variation in the aspect ratio is
limited to a modification of the transverse roll extension, additional care shall be put to
discern separately the role played by the container aspect ratio and its shape. The latter
might indeed be the root cause of the differences observed in terms of monotonic or non-
monotonic nature of the curves providing the relationship between the roll wavelength
and the longitudinal coordinate.

Author Contributions: Conceptualization, M.L.; methodology W.W.; software, M.L.; formal analysis,
M.L. and W.W.; investigation, W.W.; data curation, W.W. and M.L.; writing—original draft preparation,
M.L.; writing—review and editing, M.L.; visualization, W.W.; supervision, M.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Markham, B.L.; Rosenberger, F. Diffusive-convective vapor transport across horizontal and inclined rectangular enclosures. J.
Cryst. Growth 1984, 67, 241–254. [CrossRef]

2. Bachran, A.; Reinshaus, P.; Seifert, W. Influence of Thermal Processing Parameters and Material Properties on Velocity Con-
figurations in Semiconductor Melts during the Vertical Bridgman Growth Technique. Cryst. Res. Technol. 1998, 33, 27–36.
[CrossRef]

3. Mizev, A.I.; Schwabe, D. Convective instabilities in liquid layers with free upper surface under the action of an inclined
temperature gradient. Phys Fluids 2009, 21, 112102. [CrossRef]

4. Jones, A.D.W. Spoke patterns. J. Cryst. Growth 1983, 63, 70–76. [CrossRef]
5. Coriell, S.R.; McFadden, G.B.; Boisvert, R.F.; Sekerka, R.F. Effect of a forced Couette flow on coupled convective and morphological

instabilities during unidirectional solidification. J. Cryst. Growth 1984, 69, 15–22. [CrossRef]
6. Webb, B.W.; Viskanta, R. Natural-convection-dominated melting heat transfer in an inclined rectangular enclosure. Int. J. Heat

Mass Transf. 1986, 29, 183–192. [CrossRef]
7. Forth, S.A.; Wheeler, A.A. Coupled convective and morphological instability in a simple model of the solidification of a binary

alloy, including a shear flow. J. Fluid Mech. 1992, 236, 61–94. [CrossRef]
8. Lappa, M. On the Formation and Propagation of Hydrothermal waves in Solidifying Liquid Layers. Comput. Fluids 2018, 172,

741–760. [CrossRef]
9. Salgado Sanchez, P.; Ezquerro, J.M.; Fernandez, J.; Rodriguez, J. Thermocapillary effects during the melting of phase-change

materials in microgravity: Steady and oscillatory flow regimes. J. Fluid Mech. 2021, 908, A20. [CrossRef]
10. Salgado Sanchez, P.; Porter, J.; Ezquerro, J.M.; Tinao, I.; Laverón-Simavilla, A. Pattern selection for thermocapillary flow in

rectangular containers in microgravity. Phys. Rev. Fluids 2022, 7, 053502. [CrossRef]
11. Lappa, M. Thermal Convection: Patterns, Evolution and Stability; John Wiley & Sons, Ltd.: Chichester, UK, 2009.
12. Zhang, J.; Sekimoto, A.; Okano, Y.; Dost, S. Numerical simulation of thermal-solutal Marangoni convection in a shallow rectangular

cavity with mutually perpendicular temperature and concentration gradients. Phys. Fluids 2020, 32, 102108. [CrossRef]
13. Boura, A.; Gebhart, B. The stability of a vertical flow which arises from combined buoyancy modes. AIChE 1976, 22, 94–102.

[CrossRef]
14. Qin, T.; Grigoriev, R.O. A numerical study of buoyancy-Marangoni convection of volatile binary fluids in confined geometries.

Int. J. Heat Mass Transf. 2018, 127, 308–320. [CrossRef]
15. Lipps, F.B. Two-dimensional numerical experiments in thermal convention with vertical shear. J. Atm. Sci. 1971, 28, 3–19.

[CrossRef]
16. Thorpe, S.A. Transitional phenomena and the development of turbulence in stratified fluids: A review. J. Geophys. Res. 1987, 92,

5231–5248. [CrossRef]

150



Fluids 2023, 8, 12

17. Farrow, D.E.; Patterson, J.C. On the stability of the near shore waters of a lake when subject to solar heating. Int. J. Heat Mass
Transf. 1993, 36, 89–100. [CrossRef]

18. Richter, F.M. Convection and the large-scale circulation of the mantle. J. Geophys. Res. 1973, 78, 8735–8745. [CrossRef]
19. Weber, J.E. On the stability of thermally driven shear flow heated from below. J. Fluid Mech. 1978, 87, 65–84. [CrossRef]
20. Cliffe, K.A.; Winters, K.H. A numerical study of the cusp catastrophe for Bénard convection in tilted cavities. J. Comput. Phys.

1984, 54, 531–534. [CrossRef]
21. Mizushima, J.; Adachi, T. Structural Stability of the Pitchfork Bifurcation of Thermal Convection in a Rectangular Cavity. J. Phys.

Soc. Jpn. 1995, 64, 4670–4683. [CrossRef]
22. Clever, R.M.; Busse, F.H. Instabilities of longitudinal convection rolls in an inclined layer. J. Fluid Mech. 1977, 81, 107–125.

[CrossRef]
23. Chen, Y.; Pearlstein, A.J. Stability of free-convection flows of variable-viscosity fluids in vertical and inclined slots. J. Fluid Mech.

1989, 198, 513–541. [CrossRef]
24. Shadid, J.N.; Goldstein, R.J. Visualization of longitudinal convection roll instabilities in an inclined enclosure heated from below.

J. Fluid Mech. 1990, 215, 61–84. [CrossRef]
25. Busse, F.H.; Clever, R.M. Three-dimensional convection in an inclined layer heated from below. J. Eng. Math. 1992, 26, 1–19.

[CrossRef]
26. Fujimura, K.; Kelly, R.E. Mixed mode convection in an inclined slot. J. Fluid Mech. 1993, 246, 545–568. [CrossRef]
27. Kaloni, P.N.; Qiao, Z. On the nonlinear stability of thermally driven shear flow heated from below. Phys. Fluids 1996, 8, 639.

[CrossRef]
28. Daniels, K.E.; Bodenschatz, E.; Pesch, W.; Brausch, O. Pattern formation in inclined layer convection; Session QC28—Topics in

Pattern Formation and Nonlinear Dynamics. In Proceedings of the APS Centennial Meeting, Atlanta, GA, USA, 20–26 March 1999;
Available online: https://flux.aps.org/meetings/YR99/CENT99/abs/S6255001.html (accessed on 20 November 2022).

29. Daniels, K.E.; Plapp, B.B.; Bodenschatz, E. Pattern Formation in Inclined Layer Convection. Phys. Rev. Lett. 2000, 84, 5320–5323.
[CrossRef]

30. Daniels, K.E.; Brausch, O.; Pesch, W.; Bodenschatz, E. Competition and bistability of ordered undulations and undulation chaos
in inclined layer convection. J. Fluid Mech. 2008, 597, 261–282. [CrossRef]

31. Tao, J.; Busse, F.H. Oblique roll instability in inclined buoyancy layers. Eur. J. Mech. B/Fluids 2009, 28, 532–540. [CrossRef]
32. Subramanian, P.; Brausch, O.; Daniels, K.E.; Bodenschatz, E.; Schneider, T.M.; Pesch, W. Spatio-temporal patterns in inclined layer

convection. J. Fluid Mech. 2016, 794, 719–745. [CrossRef]
33. Nepomnyashchy, A.A.; Simanovskii, I.B.; Braverman, L.M. Stability of thermocapillary flows with inclined temperature gradient.

J. Fluid Mech. 2001, 442, 141–155. [CrossRef]
34. Ueno, I.; Kurosawa, T.; Kawamura, H. Thermocapillary Convection in Thin Liquid Layer with Temperature Gradient Inclined to

Free Surface. In Proceedings of the IHTC12, Grenoble, France, 18–23 August 2002.
35. Shklyaev, O.E.; Nepomnyashchy, A.A. Thermocapillary flows under an inclined temperature gradient. J. Fluid Mech. 2004, 504,

99–132. [CrossRef]
36. Patne, R.; Agnon, Y.; Oron, A. Thermocapillary instabilities in a liquid layer subjected to an oblique temperature gradient. J. Fluid

Mech. 2021, 906, A12. [CrossRef]
37. Cerisier, P.; Pantaloni, J.; Finiels, G.; Amalric, R. Thermovision applied to Benard-Marangoni convection. Appl. Opt. 1982, 21,

2153–2159. [CrossRef]
38. Cerisier, P.; Rahal, S.; Azuma, H. Pattern dynamics of the Bénard-Marangoni instability in a medium aspect ratio container. J.

Phys. Conf. Ser. 2007, 64, 012004. [CrossRef]
39. Ismagilov, R.F.; Rosmarin, D.; Gracias, D.H.; Stroock, A.D.; Whitesides, G.M. Competition of intrinsic and topographically

imposed patterns in Bénard–Marangoni convection. Appl. Phys. Lett. 2001, 79, 439–441. [CrossRef]
40. Chauvet, F.; Dehaeck, S.; Colinet, P. Threshold of Bénard-Marangoni instability in drying liquid films. EPL Europhys. Lett. 2012,

99, 34001. [CrossRef]
41. Wang, J.M.; Liu, G.H.; Fang, Y.L.; Li, W.K. Marangoni effect in nonequilibrium multiphase system of material processing. Rev.

Chem. Eng. 2016, 32, 551–585. [CrossRef]
42. Wu, D.; Duan, L.; Kang, Q. Wavenumber Selection by Bénard–Marangoni Convection at High Supercritical Number. Chin. Phys.

Lett. 2017, 34, 054702. [CrossRef]
43. Sobac, B.; Colinet, P.; Pauchard, L. Influence of Bénard–Marangoni instability on the morphology of drying colloidal films. Soft

Matter 2019, 15, 2381–2390. [CrossRef]
44. Tönsmann, M.; Scharfer, P.; Schabel, W. Critical Solutal Marangoni Number Correlation for Short-Scale Convective Instabilities in

Drying Poly(vinyl acetate)-Methanol Thin Films. Polymers 2021, 13, 2955. [CrossRef]
45. Gillon, P.; Homsy, G.M. Combined thermocapillary-buoyancy convection in a cavity: An experimental study. Phys. Fluids 1996, 8,

2953–2963. [CrossRef]
46. Braunsfurth, M.G.; Homsy, G.M. Combined thermocapillary-buoyancy convection in a cavity. Part II. An experimental study.

Phys. Fluids 1997, 9, 1277–1286. [CrossRef]

151



Fluids 2023, 8, 12

47. Burguete, J.; Mukolobwiez, N.; Daviaud, N.; Garnier, N.; Chiffaudel, A. Buoyant-thermocapillary instabilities in extended liquid
layers subjected to a horizontal temperature gradient. Phys. Fluids 2001, 13, 2773–2787. [CrossRef]

48. Pelacho, M.A.; Garcimartin, A.; Burguete, J. Travel instabilities in lateral heating. Int. J. Bifurcat. Chaos 2001, 11, 2881–2886.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

152



Citation: Salomone, T.; Piomelli, U.;

De Stefano, G. Wall-Modeled and

Hybrid Large-Eddy Simulations of

the Flow over Roughness Strips.

Fluids 2023, 8, 10. https://doi.org/

10.3390/fluids8010010

Academic Editor: Mehrdad

Massoudi

Received: 10 November 2022

Revised: 17 December 2022

Accepted: 20 December 2022

Published: 27 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Wall-Modeled and Hybrid Large-Eddy Simulations of the Flow
over Roughness Strips

Teresa Salomone 1,2,∗, Ugo Piomelli 1 and Giuliano De Stefano 2

1 Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
2 Engineering Department, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy
* Correspondence: teresa.salomone@queensu.ca or teresa.salomone@unicampania.it

Abstract: The flow over alternating roughness strips oriented normally to the mean stream is studied
using wall-modeled large-eddy simulations (WMLES) and improved delayed detached-eddy simula-
tions (IDDES) (a hybrid method solving the Reynolds-averaged Navier–Stokes (RANS) equations
near the wall and switching to large-eddy simulations (LES) in the core of the flow). The calculations
are performed in an open-channel configuration. Various approaches are used to account for rough-
ness by either modifying the wall boundary condition for WMLES or the model itself for IDDES or
by adding a drag forcing term to the momentum equations. By comparing the numerical results with
the experimental data, both methods with both roughness modifications are shown to reproduce the
non-equilibrium effects, but noticeable differences are observed. The WMLES, although affected by
the underlying equilibrium assumption, predicts the return to equilibrium of the skin friction in good
agreement with the experiments. The velocity predicted by the IDDES does not have memory of
the upstream conditions and recovers to the equilibrium conditions faster. Memory of the upstream
conditions appears to be a critical factor for the accurate computational modeling of this flow.

Keywords: turbulent flows; large-eddy simulation; Reynolds-averaged Navier–Stokes; wall model;
delayed detached-eddy simulation; roughness

1. Introduction

Roughness occurs in many applications in engineering and the natural sciences, such
as in pipes, turbine blades, atmospheric boundary layers and plant canopies. Because
of its practical importance, the effects of roughness on flow have been studied for many
years, starting from the seminal work in [1], which was reviewed in [2,3] and can be
summarized as (1) increased drag [1,4], (2) decreased anisotropy of the Reynolds stresses [5],
(3) modification of the near-wall region through break-up of the streaky structures and (4) the
presence of an additional production mechanism for the turbulent kinetic energy [2,6].

In many cases, roughness is not uniform; rather, regions of varying roughness heights
are adjacent to each other. This occurs, for instance, in boundary layers over plant canopies
or mixed terrain, where built areas, woods and planted fields can be present. In all these
cases, a sudden change in the wall boundary condition (BC) occurs that modifies the
flow, and its effects can be significant. The simplest type of heterogeneous roughness is
represented by the abrupt transition from a two-dimensional rough patch oriented normally
to the flow to a smooth surface or from a smooth to a rough patch. Although very simple,
this particular configuration is compelling because it can be found very often, for example,
in atmospheric boundary layers [7,8] or in meteorological flows [9]. Downstream of the
transition, an internal boundary layer is formed that can be separated into two regions: an
equilibrium inner layer, in which the flow has adjusted to the change of the BC, and an
outer one, in which the flow still has memory of the different upstream BC.

Several investigators have studied this flow either experimentally [8,10–14] or numeri-
cally [15–19]. A common observation is that after the transition, the flow variables return to

Fluids 2023, 8, 10. https://doi.org/10.3390/fluids8010010 https://www.mdpi.com/journal/fluids153



Fluids 2023, 8, 10

equilibrium at different downstream locations. For instance, the skin friction adapts more
rapidly to the new conditions than the mean velocity and Reynolds stresses.

Experimentally, it was found that the skin friction measurement is very strongly
affected by the technique used. With an indirect method that infers the wall shear stress
from outer flow data, two sources of error arise: first, the use of equilibrium relations is not
justified (the Clauser plot, for instance), and second, if the data are taken from locations
outside the equilibrium region of the internal boundary layer, the effect of the transition
might not propagate yet to the measurement location. Additionally, if the measurements
are taken very close to the wall, then in the equilibrium region, the viscous component of
the drag can be evaluated, but the form drag prediction is unreliable.

Wall-resolved numerical simulations such as direct numerical simulations (DNSs) and
large-eddy simulations (LESs) can provide more insights than experiments, since the flow
inside the roughness sublayer is known and the contributions of both the form and viscous
drags to the skin friction can be evaluated. However, these simulations are limited to low
or intermediate Reynolds numbers by their high computational cost, which is particularly
significant due to the opposite requirements that the roughness size should be small enough
to avoid blockage but large enough to achieve the fully rough regime [3].

The first fully resolved simulation of the flow over a rough-to-smooth transition was
performed by Ismail et al. [19], who confirmed the long recovery region required to reach
self-similarity. Li et al. [14] complemented their experimental database with a fully resolved
simulation, demonstrating that a good estimation of the skin friction recovery in the vicinity
of the transition can only be attained by using direct methods.

Unfortunately, the engineering need for the prediction of high Reynolds number
flows cannot be met by computationally expensive wall-resolved calculations, while tur-
bulence models for the affordable Reynolds-averaged Navier–Stokes (RANS) simulations
have difficulties in predicting flows that are strongly out of equilibrium (such as for het-
erogeneous roughness). Furthermore, typical corrections used to include the effects of
roughness [20–24] were developed using equilibrium assumptions (typically fully rough
flow in the absence of pressure gradient) and are therefore not very accurate in non-
equilibrium rough wall boundary layers [25].

Methods that combine the LES approach in the outer region of the flow with a simpler
methodology near solid surfaces are gaining popularity, due to their ability to capture the
outer layer non-equilibrium naturally with much lower computational costs compared
with wall-resolved calculations. These savings, of course, are at the expense of additional
modeling. The two most common techniques of this type are wall-modeled large-eddy
simulation (WMLES) and hybrid RANS/LES methods. In the first case, the outer layer is
obtained from the solution of the filtered Navier–Stokes equations that govern LES, and ap-
proximate methods (for instance, correlations based on the log law or other shape functions)
are used to derive the wall stress from the outer layer data. In hybrid RANS/LES methods,
the character of the turbulence model changes in such a way that the RANS approach is
used near the wall while switching to LES at some distance from the surface. Corrections
for roughness have been developed for both of these approaches. Comprehensive reviews
of these methods can be found in [26–29] for WMLES and [30,31] for hybrid RANS/LES.
Although they tend to be based on equilibrium arguments, these methods may be more
accurate than their RANS analogs, since the inner layer eddies have shorter time scales
than the outer layer ones and tend toward equilibrium faster, while the non-equilibrium
effects are accounted for by the outer layer LES [28].

Several investigators have performed WMLES of the flow over heterogeneous rough-
ness and strips normal to the flow direction in particular, which are the focus of the present
study. Bou-Zeid et al. [15,32] imposed locally the law of the wall to evaluate the wall shear
stress from the LES field. They pointed out how surface heterogeneity highly affects the
flow, inducing sharp variations in the velocity profiles and discontinuities in the shear stress.
Saito and Pullin [17] instead derived an ordinary differential equation for the friction veloc-
ity based on filtered quantities supplied by the outer LES. Their work was centered on the
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effects of different Reynolds numbers and roughness heights for a smooth-rough-smooth
surface arrangement. They concluded that in both smooth-to-rough and rough-to-smooth
transitions, a slower initial response in the recovery of the wall shear stress was found
when increasing the Reynolds number, whereas the response was faster when increasing
the roughness height. Chamorro and Porté-Agel [8] proposed a new model to estimate
the velocity profile over a rough-to-smooth transition, using a weighted average between
two limiting logarithmic profiles. The first one corresponded to the upstream equilibrium
velocity, while the second log law was adjusted to the downstream local flow conditions
after recovery. This methodology has the potential to be implemented as a BC for the
LES field.

In the investigations described above, only one type of modeling approach for the wall
BC was considered, but of crucial importance is understanding how different modeling
approaches predict the flow behavior in step changes in surface roughness, particularly
identifying the limitations of the different methodologies. The purpose of the present
work is to complement the above investigations by assessing the accuracy of two typical
techniques, which are WMLES and hybrid RANS/LES, in predicting the sudden transition
from a smooth surface to a rough one, and vice versa. In addition to this, roughness is
included using two different methods: the modification of either the log law or model
equations and the use of a localized drag force [33]. Because of the independence of
the drag model from the particular turbulence model used, this technique is particularly
attractive, since it does not require ad hoc adjustments when the model for the resolved
scales is changed.

In the following, the problem formulation, including model equations and roughness
corrections, will be presented first. The numerical method and BCs used will then be
described, and the numerical results will be discussed. Our final conclusions and directions
for future work will close the paper.

2. Methodology

2.1. Governing Equations

The governing equations for incompressible flow can be formally written the same
way for both LES and unsteady RANS approaches:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+
∂

∂xj
(uiuj) = − ∂P

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂τij

∂xj
, (2)

where the overbar represents either the LES spatial filtering or the Reynolds-averaging
operation. In the above equations, ui stands for the resolved velocity, P = p/ρ is the
(resolved) kinematic pressure, ν is the constant kinematic viscosity and τij = uiuj − uiuj
represents the residual (unresolved) stresses. The latter have to be interpreted as either the
subfilter-scale (SFS) stresses in LES or the Reynolds stresses in unsteady RANS simulations
and need to be modeled.

2.2. Turbulence Models

The unknown residual stresses are normally approximated using an eddy viscosity
assumption for the deviatoric part of the stress tensor:

τd
ij ≡ τij − 1

3
δijτkk = −2νTSij , (3)

where

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(4)
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is the resolved strain rate tensor. For incompressible flows, the isotropic part of the stress
tensor may be absorbed into an effective resolved pressure field. The present WMLES
method uses the eddy viscosity SFS model proposed by Vreman [34], which was constructed
in such a way that the modeled dissipation is relatively small in the near-wall regions. The
standard value of the model constant was used.

The hybrid RANS/LES method used in this work follows the improved delayed
detached-eddy simulation (IDDES) approach [35]. The IDDES in its formulation with the
Spalart–Allmaras (SA) turbulence model was used, in which a transport equation for the
eddy viscosity νT is solved [36]. The RANS and LES fields are coupled by introducing a
hybrid turbulent length scale, which is modified as follows. Near the wall, according to
the SA model, the distance from the wall is used, whereas in the outer layer, a blending
function is formulated that allows shifting from the RANS levels of the eddy viscosity in
the near-wall region to the LES levels of the eddy viscosity in the core of the flow. The two
regions are separated by a zone where the eddy viscosity is very low to allow the rapid
generation of eddies. More details on the IDDES formulation can be found in the original
paper [37].

2.3. Numerical Model

The simulations were conducted using the open-channel configuration sketched in
Figure 1, where x, y and z represent the streamwise, wall-normal, and spanwise directions,
respectively. The domain size was Lx × Ly × Lz = 56δ× δ× 14δ, where δ is the open-channel
height and the rough strip, whose length is Lr, occupies 66% of the domain. The present
geometry corresponds to the experimental set-up in [14], where a spatially developing
boundary-layer flow was examined rather than the periodic open channel used here. The
Reynolds number based on the bulk velocity was Reb = Ubδ/ν = 121,000, which roughly
corresponds to the experimental value at the rough-to-smooth interface. Following the
notation used in [14], the transition location was indicated by xo, and x̂ = x − xo stands for
the relative streamwise position.

௫ܮ = 56

ܮ = 37 ݔ
ݕ ݖ

௭ܮ = 14

ℎ݃ݑܴ ܹ݈݈ܽ
ℎݐ݉ܵ ܹ݈݈ܽ

௬ܮ = 1

Figure 1. Sketch of the computational domain (not to scale).

A fractional step method was used to advance the governing equations in time. The
Crank–Nicolson time advancement was used for the wall-normal diffusion, and a third-
order Runge–Kutta scheme was used for the remaining terms. Spatial discretization was
performed using conservative second-order finite differences on a staggered grid. In the
WMLES, the spatial grid was uniform and isotropic, while for the IDDES, it was suitably
stretched in the wall-normal direction, with the first grid point being located at y+ < 1
(where a plus denotes scaling in the inner units).

Periodic BCs were applied in the homogeneous streamwise and spanwise directions,
simulating an infinite domain of alternating rough and smooth strips, while a symmetry
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condition was imposed at the top boundary. For IDDES, no-slip conditions were applied at
the wall. For WMLES, the wall stress was obtained, given the velocity at the interface, by
satisfying the log law of the wall. Details will be given in the next subsection.

2.4. Roughness Modeling

Depending on the particular approach followed, different methods were used to
incorporate the effect of roughness on the flow. One consisted of modifying either the
model for the unresolved scales (for IDDES) or the wall BC (for WMLES). The other was
based on the addition of a drag force to the resolved momentum in Equation (2). Aupoix
and Spalart [23] proposed two different extensions of the SA model to include the effect of
roughness. The so-called “Boeing extension”, which is employed here, consists of a change
in the BC for the eddy viscosity field, which must satisfy the following relation at the wall:

∂ν̃

∂n
=

ν̃

d
, (5)

instead of ν̃ = 0, where ν̃ is the modified eddy viscosity used in the SA model (which is
proportional to νT). In addition, the length-scale d must be modified to account for the fact
that y = 0 corresponds to a virtual wall where the turbulent quantities are non-zero. They
suggested using d = do + y, where do = 0.03 ks is the distance between the virtual wall
and the bottom of the roughness sublayer and ks is the equivalent sand grain roughness
height. In the WMLES case, as mentioned above, the wall stress is obtained using an
approximate integration of the equations of motion between the inner and outer layer
interface at y = yi f and the wall [26]. We follow the simplest (and most common) approach
(i.e., the use of the logarithmic law of the wall) [38]. If the wall is rough, a roughness
function ΔU+ = f (k+s ) is introduced to account for the increased wall stress caused by the
form drag on the roughness elements. Therefore, the logarithmic law of the wall takes the
following forms for the smooth and the rough strips, respectively:

u+
i f =

1
κ

log y+i f + B (for x̂ > 0) , (6)

u+
i f =

1
κ

log
yi f

ks
+ 8.5 (for x̂ < 0) , (7)

where the subscript i f denotes quantities evaluated at the inner and outer layer interface,
which is located at y = 0.05δ. Note that yi f exceeds the location of the first grid point to
allow better development of the near-wall eddies [39]. In the above expressions, κ = 0.41
is the von Kàrmàn constant, and B = 5.0. The present roughness height ks matches the
experimental value at the transition location k+s � 130 [14], which results in ΔU+ � 8.2 for
the roughness function.

As an alternative, one can employ the drag model recently proposed in [33]. Roughness
effects are included by adding a forcing term to the right-hand side of the Equation (2).
The drag force, which is active in a volume region adjacent to the wall, referred to as the
“roughness zone”, is defined by

fi = αij|urz|urz,j (8)

where αij = diag{αt, αt, αn} determines the force intensity, with the subscripts t and n
denoting the wall-tangential and wall-normal components, respectively. Note that the
roughness zone extends in the wall-normal direction up to a distance corresponding to
the mean peak height of the rough surface. In this study, the normal component was set
to zero, and the tangential component was chosen to give the same roughness function
obtained by using the equivalent sand grain roughness height modification. Practically,
αij = diag{α, α, 0} was prescribed.

By combining the two turbulence models and the two roughness models introduced
above, four different methods were tested in this work. In the following discussion,
WMLES-ks and IDDES-ks denote the simulations with roughness model modifications,
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whereas WMLES-DM and IDDES-DM are the calculations that use the drag model. In
addition, angle brackets will denote quantities averaged over time and in the spanwise
direction, with a prime representing the resolved fluctuations.

3. Results

3.1. Grid Convergence Study

A grid convergence study was conducted for the WMLES. Several meshes were used,
whose parameters are listed in Table 1. The corresponding mean velocity profiles at the ends
of the rough and smooth strips are shown in Figure 2. The medium grid was considered to
have converged and was used to generate the results presented in the following section.

Figure 2. WMLES grid convergence study: mean velocity profiles at 95% of the length of the (left)
rough and (right) smooth strips. Normalization is carried out with the center line velocity 〈U〉cl and
the displacement thickness δ∗.

Regarding the IDDES, a rigorous grid convergence study could not be carried out
since the character of the solution (in particular at the RANS/LES interface) depended on
the grid size. Then, the same resolution as the grid-converged WMLES was used in the
wall-parallel directions while increasing the number of points in the wall-normal direction
such that y+ < 1 for the first grid point away from the wall. The maximum grid spacing
(close to the top boundary) was 0.025 δ, which was slightly larger than that of WMLES but
fine enough to resolve the outer layer structures.

Table 1. WMLES grid-convergence study: summary of mesh parameters.

Resolution Grid Points Δx = Δz Δx+r = Δz+r 1 Δx+s = Δz+s 1

Coarse 1024 × 60 × 256 0.055 400 279
Medium 1792 × 60 × 448 0.031 219 155

Fine 2240 × 60 × 560 0.025 175 124
1 The subscripts r and s represent values at the end of rough and smooth strips, respectively.

3.2. Skin Friction

Figure 3 shows the skin friction coefficient predicted by the four models. In all cases,
the sudden increase and decrease in Cf at the interface was predicted. However, some
discrepancies existed. At the end of the rough strip, the WMLES were in good agreement
with each other, reflecting the fact that both the wall BC and the drag model were calibrated
using fully developed rough channel data. There was a significant difference between
the IDDES results, however, which was probably due to the sensitivity of the drag model
constant α to the grid resolution when coupled with IDDES. This parameter was actually
calibrated in reference simulations for which coarser resolutions (but sufficient for achieving
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grid convergence) were used. Here, the grid was finer in the streamwise direction to resolve
the surface discontinuity, and a new calibration appears to be necessary. In IDDES, the
grid plays a very important role because of the definition of the model’s length scale,
whose changes affect not only the eddy viscosity level in the outer layer but also (and more
importantly) the location of the RANS/LES interface.

Figure 3. Skin friction coefficient development over rough and smooth strips.

The recovery length on the smooth strip predicted by the IDDES was much shorter
than that obtained from the WMLES. This issue will be discussed further momentarily.
After the smooth-to-rough interface, the IDDES showed a small dip that was not present
in the WMLES. A similar undershoot was found in the WMLES of [17], becoming more
prominent when the Reynolds number or the roughness height were increased. This
phenomenon was due to the global mass conservation that was enforced in the channel. To
explain this behavior, the mean velocity profile with the IDDES-ks model at four locations
around the dip region was compared with that at the reference location on the rough
strip, which was close to fully developed rough conditions. Before the dip (Figure 4a), the
velocity was higher than the reference throughout the layer, still resembling the smooth strip
profile. At the dip itself (Figure 4b), the mean velocity profile in the wall layer matched the
reference location, whereas the outer layer, which adapted more slowly to the new surface
conditions, was still accelerated. After this location, the outer layer begins to approach a
fully developed rough state, as is shown in Figure 4c. The mass flux is maintained to be
constant, and thus the velocity decrease in the outer layer must be balanced by a velocity
increase elsewhere. Since the wall region has a faster response to disturbances propagating
from the outer layer, the velocity increase takes place in the wall region, resulting in a
higher velocity gradient at the wall and the subsequent formation of the dip in the skin
friction coefficient. After the dip (Figure 4d), the inner and outer layer recovered at the
same speed, attaining self-preservation. The aforementioned effects all took place below
the WMLES interface (y/δ = 0.05), which explains why with this methodology, the dip
was not present.
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Figure 4. IDDES-ks model: mean velocity profile at the locations shown in the insets, compared
with the mean velocity profile at the rough reference location. The different positions are located:
(a) before the dip, (b) at the dip, (c) at the crest, (d) after the crest.

Figure 5 compares the skin friction coefficient on the smooth strip with the experimen-
tal data [8,14]. Here, the skin friction coefficient was normalized by Cf ,re f (i.e., the value of
Cf at 95% of the smooth strip). The position was normalized by either the open channel
height δ in the numerical simulations or the boundary layer thickness δbl at the transition
location in the experiments. It is worth noting a substantial difference in the Cf prediction
between the two experimental datasets. The experiments by Chamorro and Porté-Agel [8]
were carried out at a higher Reynolds number of Re∞ = U∞δbl/ν � 273, 000 (where U∞ is
the freestream velocity), while the equivalent sand grain roughness height was k+s � 479
(evaluated at the end of the rough-to-smooth transition). The experiments by Li et al. [14],
on the other hand, were performed at Re∞ � 110,000 with k+s � 130 at the same location. In
addition, the measurement techniques were different, as near-wall hot wire measurements
were performed in [8], whereas oil-film interferometry (OFI) was used in [14]. Because
both experimental techniques take information within the viscous sublayer, they were
expected to give approximately the same results. Therefore, differences may be attributed
to the discrepancy in the Reynolds number and equivalent sand grain roughness height, as
was also conjectured by Li et al. [14]. In the present simulations, the freestream Reynolds
number at the transition location was Re∞ = U∞δ/ν � 142,000 (where for a channel flow,
U∞ is the centerline velocity), and as mentioned in the previous section, k+s = 130. In this
way, since the current flow conditions were much closer to those used in [14], one would
expect better agreement with this experimental dataset.

Figure 5. Normalized skin friction coefficient on the smooth strip compared with experimental
results [8,14].
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The normalization by Cf ,re f removed the discrepancies due to errors in the prediction
of the fully developed roughness, highlighting the response of the models to the change
in the BC. The roughness modeling did not affect the recovery length significantly. The
WMLES accurately reproduced the recovery of the skin friction coefficient at the flow
conditions in [14]. The IDDES predictions, however, agreed better with the higher-Re
results. The reason for this difference will be discussed later. Another distinction between
the IDDES and WMLES is the fact that in the WMLES, the wall stress depended on
the velocity at the interface. The BC change did not affect the velocity at the interface
immediately but required some downstream distance to penetrate to the height of the
interface. In other words, with WMLES, the wall stress has memory of the upstream flow.
In the IDDES, on the other hand, the BC transition was immediately felt throughout the
layer because of the model modifications. This issue will be discussed in Section 3.4.
Furthermore, as will be shown later, the Reynolds shear stress predicted by the IDDES was
higher than that obtained by the WMLES, as the enhanced mixing caused the mean velocity
profile to be flatter and the wall stress to increase.

3.3. Mean Velocity

The mean velocity profiles are shown in Figures 6 and 7. In the first figure, the velocity
is plotted in the outer units (i.e., normalized by the center-line velocity 〈U〉cl) as a function of
y/δ∗. Four streamwise locations after the transition were considered. The closer prediction
of the skin friction coefficient obtained with WMLES was accompanied by better agreement
with the experimental data in [14] in terms of the mean velocity profiles as well. The velocity
profiles obtained from the IDDES were flatter, reflecting the overpredition of the wall stress
due to its faster recovery (observed in Figure 5). In particular, a region of a higher velocity
is visible near the wall (Figure 6). Regarding roughness modeling, little difference was
observed between the drag force method and the model modifications. The mean velocity
profiles in the inner units, i.e., 〈U〉+ = 〈U〉/uτ and y+ = yuτ/ν, where uτ represents the
local friction velocity depending on the x position, are shown in Figure 7. Apparently, in
the experiments, the flow preserved some memory of the rough wall condition even after
the transition, as evidenced by the presence of a downward displacement of the logarithmic
layer (the roughness function) at the first location. The boundary condition in Equation (6),
on the other hand, forced the WMLES to match the standard log law at the interface. As a
consequence, the reversion to the equilibrium log law was immediate. Above the interface,
however, the velocity profile was parallel to the experimental one, reflecting the fact that
the error was due to the incorrect wall stress prediction, while the outer flow was captured
accurately. The IDDES did not suffer from the same constraint. However, the shift of the
log law was not as significant as in the experiments, again indicating a faster recovery
toward equilibrium.

3.4. Eddy Viscosity and Reynolds Stresses

To better understand the difference between the two different turbulence modeling
approaches, in Figure 8, the contour maps of the normalized eddy viscosity 〈νT〉/ν are
shown. It should be pointed out that νT represents the subfilter-scale eddies only in the
WMLES calculations, while it parameterized the effect of all the eddies in the RANS region
of the IDDES, although only the subfilter ones in the outer LES zone. As far as IDDES are
concerned, the roughness modifications employed by the IDDES-ks enhanced the eddy
viscosity level close to the wall. At the rough-to-smooth interface, the model changed
abruptly as the roughness modifications were removed, resulting in a discontinuous eddy
viscosity field. On the contrary, when the drag model was used for the IDDES-DM, the
eddy viscosity smoothly varied across the interface. Very close to the wall, νT increased
slightly because of the near-wall flow acceleration, which was due to the removal of the
forcing term outside of the roughness zone. This change, which occurred suddenly, affected
the model’s length scale, which depended on both the grid size and the solution itself (see
the discussion in Section 2 of [37]). Practically, for the IDDES-DM, the sudden change
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in roughness modified the eddy viscosity indirectly (affecting the velocity, which in turn
changed the length scale and thus νT). Therefore, the variation was weaker than that for
the IDDES-ks, where the model modifications directly affected the modeled eddy viscosity.

Figure 6. Mean velocity profiles in outer units at (a) 3%, (b) 10%, (c) 19% and (d) 63% of the length of
the smooth strip compared with experimental results [14].

Figure 7. Mean velocity profiles in inner units at (a) 3%, (b) 10%, (c) 19% and (d) 63% of the length of
the smooth strip. The thin line represents the log law (6), and the vertical dashed line represents the
location of the inner/outer layer interface for WMLES [14].
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In the WMLES, on the other hand, the eddy viscosity field was continuous, and a
decrease was observed at the interface, reflecting the mean velocity changes. Note that the
form of the eddy viscosity model did not change at the interface, and νT reacted only to the
velocity changes. Most of these effects occurred below the inner/outer layer interface.

Figure 8. Contours of eddy viscosity normalized by the fluid viscosity. The horizontal dashed line
indicates the location of the inner/outer layer interface for WMLES.

Furthermore, Figure 9 shows the eddy viscosity profiles near the rough-to-smooth
interface at four different streamwise locations. At the end of the roughness strip, where a
quasi-equilibrium rough wall flow condition was reached, the νT predicted by the IDDES-ks
was significantly higher than that for the IDDES-DM, as can be seen in Figure 9a. In fact,
in the former case, the increased drag due to roughness was entirely accounted for by the
wall shear stress definition:

τw = (ν + νT)
∂U
∂y

∣∣∣
y=0

, (9)

where, since νT > 0 at the wall, the modeled eddy viscosity leads to increased friction.
On the other hand, for the drag-model case where νT = 0 at the wall, the additional force
(Equation (8)) supplies the drag due to the roughness elements, while the turbulence model
is not directly modified. Since both approaches were calibrated using Nikuradze’s data [1],
they provided the same effective drag and the same velocity profile. Immediately after
the interface, in the IDDES-ks, the eddy viscosity at the wall changed from a finite value
to zero, as illustrated in Figure 9b, and took on very low values, especially for y/δ � 0.01.
Since this region was in the RANS zone, a lower νT implied decreased total stress, which
resulted in the flow acceleration near the wall (and led to the excessively rapid increase in
Cf observed in Figure 5). Within a sort distance (less than half the height of a channel), as
illustrated in Figure 9d, νT fell below the smooth wall value in the RANS region while it
was relatively unchanged in the LES zone. This fact also contributed to the higher velocity
further from the wall observed in Figure 6. For x̂/δ � 1, the value of νT predicted with the
two approaches was the same, and the equilibrium smooth wall condition was achieved
within 8δ. The WMLES, as observed before, had a much more gradual response to the
change in the surface roughness, since the changed BC did not affect the outer flow for
some distance. The fact that memory of the upstream conditions was maintained allowed a
more accurate prediction of the eddy viscosity and velocity.
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Figure 9. Profiles of the normalized eddy viscosity 〈νT〉/ν near the rough-to-smooth interface at
(a) −0.2%, (b) 0.2%, (c) 1% and (d) 5% of the smooth strip length. The shaded regions show the eddy
viscosity variation between the fully smooth and fully rough limits (corresponding to the lower and
upper boundaries, respectively).

Figure 10 shows the streamwise development of various quantities of interest near
the rough-to-smooth interface. Two y positions were chosen for the IDDES solutions: one
very close to the wall and another one in the outer LES zone. Near the wall, the mean
velocity predicted by the IDDES in Figure 10a showed the sudden acceleration discussed
in Section 3.3. A smoother behavior only occurred further away from the wall. The eddy
viscosity behaviors discussed earlier are perhaps most clearly shown in Figure 10b. Note
the jump in νT , which becomes less significant away from the wall.

Considering the Reynolds shear stress, in the IDDES-ks, the discontinuous eddy
viscosity led to the jump in the modeled stress. The point closest to the wall was in the
RANS region, and the modeled stress was predominant. The increase in resolved shear
stress −〈u′v′〉 immediately after the interface, which can be observed in Figure 10c, was
insufficient to balance it. The total stress reached the values expected for a smooth wall
very quickly, as shown in Figure 10d. This decrease, as mentioned above, caused the flow
acceleration downstream of the interface. On the other hand, in the WMLES case, the eddy
viscosity and thus the total stress were continuous across the interface while decreasing
quite slowly downstream, which reflects the decreased turbulence level over the smooth
wall. As a consequence, the flow acceleration was milder, as illustrated in Figure 10a.

Similar but reversed behaviors can be observed for the smooth-to-rough transition.
The eddy viscosity predicted by the IDDES-ks had an upward jump that was not balanced
by the reduction in resolved shear stress, and the flow decelerated in the near-wall region.
This sharp velocity gradient immediately drove the flow toward rough conditions in the
near-wall region (Figure 4b), leading to a faster recovery for Cf than what occurred for the
WMLES. As explained in Section 3.2, since the outer region is less affected by the rapid
changes experienced near the wall in WMLES, the flow requires more time to readjust,
forcing the near-wall region to further accelerate and creating the dip shown in Figure 3.
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Figure 10. Streamwise development near the rough-to-smooth interface for (a) mean velocity, (b) eddy
viscosity, (c) resolved Reynolds shear stress and (d) total Reynolds shear stress.

4. Conclusions

Two modeling approaches (i.e., the log law-based wall-modeled large-eddy simula-
tions (WMLES) and the improved delayed detached-eddy simulations (IDDES)), were used
to predict the flow over alternating rough and smooth strips oriented normally to the mean
stream in an open-channel configuration. Comparisons with experimental data highlighted
that the WMLES captured the recovery of the skin friction to equilibrium flow conditions
downstream of the rough-to-smooth transition and predicted fairly accurately the mean
velocity profile. However, being constrained to match the log law at the inner/outer layer
interface, the WMLES were unable to reproduce the variation in the roughness function
after the rough-to-smooth transition. The IDDES predicted a much faster recovery for both
the mean velocity and the skin friction.

In the IDDES, there was a strong coupling between the boundary conditions and the
modeled eddy viscosity, particularly if both the model and boundary conditions were
modified to account for the roughness. This coupling resulted in the excessively rapid
variation in the Reynolds shear stress and a disproportionate flow acceleration (on the
rough-to-smooth interface) or deceleration (on the smooth-to-rough surface), which resulted
in too rapid a return to equilibrium. In terms of the mean velocity profile normalized in
the inner units, the IDDES were not constrained to match the log law as the WMLES
were, and they should be able to predict the recovery of the roughness function to the
zero equilibrium value of the smooth strip, as provided by the experiments. However,
because of the excessively rapid return to equilibrium, the readjustment of the roughness
function was incorrectly predicted with IDDES. In the WMLES, on the other hand, the
wall shear stress was calculated based on the outer layer information. Because of this, the
perturbation introduced by the change in the boundary condition must propagate away
from the wall before the wall model reacts. The WMLES effectively retained memory of the
upstream conditions, producing a smooth recovery of the modeled shear-stress and skin
friction coefficient.
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When comparing the two approaches to roughness modeling, they gave essentially
the same results, which largely depends on the fact that both approaches are calibrated to
match Nikuradze’s data [1]. The drag model, which is much simpler to implement, appears
to be very promising, even if additional studies in different configurations are needed to
reach more general conclusions.

Finally, in the present arrangement of roughness strips, the WMLES were found to
give better prediction of the flow field than IDDES. In addition, IDDES have a much
higher computational cost, and the model length scale appears to be extremely sensitive
to the flow conditions. However, since log law-based WMLES are not expected to be
accurate in other complex flow configurations (in the presence of strong pressure gradients
or flow separation, for instance), the development and testing of wall models that have
memory of the upstream conditions (such as the one recently proposed by Fowler et al. [40])
is desirable.
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WRLES wall-resolved large-eddy simulation

References

1. Nikuradse, J. Strömungsgesetze in Rauhen Rohren. VDI-Forschungsheft 1933, 361, 1–64.
2. Raupach, M.R.; Antonia, R.A.; Rajagopalan, S. Rough-wall boundary layers. Appl. Mech. Rev. 1991, 44, 1–25. [CrossRef]
3. Jiménez, J. Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 2004, 36, 173–196. [CrossRef]
4. Colebrook, C.F. Turbulent flow in pipes, with particular reference to the transition region between smooth and rough pipe laws.

J. Inst. Civ. Eng. 1939, 11, 133–156. [CrossRef]
5. Shafi, H.S.; Antonia, R.A. Anisotropy of the Reynolds stresses in a turbulent boundary layer on a rough wall. Exp. Fluids 1995,

18, 213–215. [CrossRef]
6. Finnigan, J. Turbulence in plant canopies. Annu. Rev. Fluid Mech. 2000, 32, 519–571. [CrossRef]
7. Cheng, H.; Castro, I.P. Near-wall flow development after a step change in surface roughness. Bound. Layer Meteorol. 2002,

105, 411–432. [CrossRef]
8. Chamorro, L.P.; Porté-Agel, F. Velocity and surface shear stress distributions behind a rough-to-smooth surface transition: A

simple new model. Bound. Layer Meteorol. 2009, 130, 29–41. [CrossRef]
9. Garratt, J.R. The internal boundary layer—A review. Bound. Layer Meteorol. 1990, 50, 171–203. [CrossRef]

166



Fluids 2023, 8, 10

10. Bradley, E.F. A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface
roughness. Q. J. R. Meteorol. Soc. 1968, 94, 361–379. [CrossRef]

11. Antonia, R.A.; Luxton, R.E. The response of a turbulent boundary layer to a step change in surface roughness. Part 1. Smooth to
rough. J. Fluid Mech. 1971, 48, 721–761. [CrossRef]

12. Antonia, R.A.; Luxton, R.E. The response of a turbulent boundary layer to a step change in surface roughness. Part 2. Rough to
smooth. J. Fluid Mech. 1972, 53, 737–757. [CrossRef]

13. Hanson, R.E.; Ganapathisubramani, B. Development of turbulent boundary layers past a step change in wall roughness. J. Fluid
Mech. 2016, 795, 494–523. [CrossRef]

14. Li, M.; de Silva, C.M.; Rouhi, A.; Baidya, R.; Chung, D.; Marusic, I.; Hutchins, N. Recovery of wall-shear stress to equilibrium
flow conditions after a rough-to-smooth step change in turbulent boundary layers. J. Fluid Mech. 2019, 872, 472–491. [CrossRef]

15. Bou-Zeid, E.; Meneveau, C.; Parlange, M.B. Large-eddy simulation of neutral atmospheric boundary layer flow over heteroge-
neous surfaces: Blending height and effective surface roughness. Water Resour. Res. 2004, 40, W02505. [CrossRef]

16. Abkar, M.; Porté-Agel, F. A new boundary condition for large-eddy simulation of boundary-layer flow over surface roughness
transitions. J. Turbul. 2012, 13, N23. [CrossRef]

17. Saito, N.; Pullin, D.I. Large eddy simulation of smooth–rough–smooth transitions in turbulent channel flows. Int. J. Heat Mass
Trans. 2014, 78, 707–720. [CrossRef]

18. Ismail, U.; Zaki, T.A.; Durbin, P.A. The effect of cube-roughened walls on the response of rough-to-smooth (RTS) turbulent
channel flows. Int. J. Heat Fluid Flow 2018, 72, 174–185. [CrossRef]

19. Ismail, U.; Zaki, T.A.; Durbin, P.A. Simulations of rib-roughened rough-to-smooth turbulent channel flows. J. Fluid Mech. 2018,
843, 419–449. [CrossRef]

20. Wilcox, D.C. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 1988, 26, 1299–1310.
[CrossRef]

21. Hellsten, A.; Laine, S. Extension of the k-omega-SST turbulence model for flows over rough surfaces. In Proceedings of the 22nd
AIAA Atmospheric Flight Mechanics Conference, New Orleans, LA, USA, 11–13 August 1997.

22. Knopp, T.; Eisfeld, B.; Calvo, J.B. A new extension for k − ω turbulence models to account for wall roughness. Int. J. Heat Fluid
Flow 2009, 30, 54–65. [CrossRef]

23. Aupoix, B.; Spalart, P.R. Extensions of the Spalart–Allmaras turbulence model to account for wall roughness. Int. J. Heat Fluid
Flow 2003, 24, 454–462. [CrossRef]

24. Aupoix, B. Roughness corrections for the k − ω shear stress transport model: Status and proposals. ASME J. Fluids Eng. 2015,
137, 021202. [CrossRef]

25. Dutta, R.; Nicolle, J.; Giroux, A.M.; Piomelli, U. Evaluation of turbulence models in rough-wall boundary layers for hydroelectric
application. Int. J. Fluid Mach. Sys. 2017, 10, 228–239. [CrossRef]

26. Piomelli, U.; Balaras, E. Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 2002, 34, 349–374. [CrossRef]
27. Piomelli, U. Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci. 2008, 44, 437–446. [CrossRef]
28. Larsson, J.; Kawai, S.; Bodart, J.; Bermejo-Moreno, I. Large eddy simulation with modeled wall-stress: Recent progress and future

directions. Mech. Eng. Rev. 2016, 3, 1–23. [CrossRef]
29. Bose, S.T.; Park, G.I. Wall-modeled large-eddy simulation for complex turbulent flows. Annu. Rev. Fluid Mech. 2018, 50, 535–561.

[CrossRef]
30. Spalart, P.R. Detached-Eddy Simulation. Annu. Rev. Fluid Mech. 2009, 41, 181–202. [CrossRef]
31. Heinz, S. A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications. Prog. Aerosp. Sci. 2020, 114, 100597.

[CrossRef]
32. Bou-Zeid, E.; Parlange, M.B.; Meneveau, C. On the parameterization of surface roughness at regional scales. J. Atmos. Sci. 2007,

64, 216–227. [CrossRef]
33. Varghese, J.; Durbin, P.A. Representing surface roughness in eddy resolving simulation. J. Fluid Mech. 2020, 897, A10. [CrossRef]
34. Vreman, A.W. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids

2004, 16, 3670–3681. [CrossRef]
35. Travin, A.K.; Shur, M.L.; Spalart, P.R.; Strelets, M.K. Improvement of delayed detached-eddy simulation for LES with wall

modelling. In Proceedings of the European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006, Bergen, The
Netherlands, 5–8 September 2006; Wesseling, P., Oñate, E., Pèriaux, J., Eds.; TU Delft: Delft, The Netherlands, 2006; pp. 410–432.

36. Spalart, P.R.; Allmaras, S.R. A one-equation turbulence model for aerodynamic flows. Rech. Aerosp. 1994, 1, 5–21.
37. Shur, M.L.; Spalart, P.R.; Strelets, M.K.; Travin, A.K. A hybrid RANS/LES model with delayed DES and wall-modeled LES

capabilities. Int. J. Heat Fluid Flow 2008, 29, 1638–1649. [CrossRef]

167



Fluids 2023, 8, 10

38. Schumann, U. Subgrid-scale model for finite difference simulation of turbulent flows in plane channels and annuli. J. Comput.
Phys. 1975, 18, 376–404. [CrossRef]

39. Kawai, S.; Larsson, J. Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy. Phys. Fluids 2012,
24, 015105. [CrossRef]

40. Fowler, M.; Zaki, T.A.; Meneveau, C. A Lagrangian relaxation towards equilibrium wall model for large eddy simulation. J. Fluid
Mech. 2022, 934, 1–37. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

168



Citation: Liu, X.; Harrison, S.M.;

Cleary, P.W.; Fletcher, D.F. Evaluation of

SPH and FVM Models of Kinematically

Prescribed Peristalsis-like Flow in a

Tube. Fluids 2023, 8, 6. https://

doi.org/10.3390/fluids8010006

Academic Editor: Mehrdad

Massoudi

Received: 5 December 2022

Revised: 18 December 2022

Accepted: 20 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Evaluation of SPH and FVM Models of Kinematically Prescribed
Peristalsis-like Flow in a Tube

Xinying Liu 1, Simon M. Harrison 2, Paul W. Cleary 2 and David F. Fletcher 1,*

1 School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW 2006, Australia
2 CSIRO Data61, Clayton South, VIC 2168, Australia
* Correspondence: david.fletcher@sydney.edu.au; Tel.: +61-2-9351-4147

Abstract: Peristaltic flow is important in many biological processes, including digestion, and forms
an important component of any in silico model of the stomach. There is a clear need to verify
the simulations of such flows. An analytical solution was identified that can be used for model
verification, which gives an equation for the net volumetric flow over a cycle for an applied sinusoidal
wall motion. Both a smooth particle hydrodynamics (SPH) code (from the CSIRO), which is being
used to develop a stomach model that includes wall motion, buoyancy, acid secretion and food
breakdown, and the Ansys Fluent Finite Volume Method (FVM) solver, that is widely used in
industry for complex engineering flows, are used in this exercise. Both give excellent agreement
with the analytic solution for the net flow over a cycle for a range of occlusion ratios of 0.1–0.6. Very
similar velocity fields are obtained with the two methods. The impact of parameters affecting solution
stability and accuracy are described and investigated. Having validated the moving wall capability
of the SPH model it can be used with confidence in stomach simulations that include wall motion.

Keywords: peristaltic flow; CFD; smooth particle hydrodynamics; finite volume method; model
verification

1. Introduction

Peristaltic flow arises when a series of contraction and expansion movements prop-
agate along elastic tube-shaped structures. The fluid and/or solid content inside moves
along with the wave as it propagates. In physiology, peristaltic waves are generated by
the longitudinal and circular muscular fibers along the wall [1]. This motion is essential
in the digestive system for its role in transporting and mixing food/nutrients in the gas-
trointestinal tract (GIT) [2–6]. The peristaltic motor patterns in the human gut are very
complex and governed by multiple mechanisms and factors, including muscle activity,
the thickness of the muscularis, and muscle tissue characteristics (elasticity, contractility,
extensibility) [7–10].

In vivo studies provide the most relevant insights into the digestion process due to
the complexity and inter-person variabilities of the digestion system. Researchers usually
use animal models to study digestion because human subjects are not easy to recruit,
experiments are hard to perform and to get measurements from, and complex ethical
approval is required [11]. Even though animal models are often used as an alternative
to humans [12–15], they do not necessarily accurately reflect the human situation and
still require strict ethics approval and specific technical skills. Therefore, in vitro models
(e.g., test tube-based or similar) are designed to replicate the digestion process. These
experimental studies are constructed with an aim to replicate the fluid flow conditions,
shear stresses and complex chemistry in the GIT. Detailed reviews of in vitro digestion
models are provided by Li et al. [16], Zhong and Langrish [17], Bornhorst and Singh [11],
Dupont et al. [18] and Hur et al. [19]. In vitro models allow control of many factors
that cannot be controlled in the in vivo system [11], which affords a better systematic
understanding of individual factors.
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However, these experimental systems can be hard to design to replicate local flow
and concentration fields that occur in the body and can be very hard to customize to
represent in vivo scenarios. With the massive improvements in numerical methods and
computing power over the last few decades, in silico methods have the huge advantage
that local data can be obtained for all variables, such as velocity, pressure, and species
concentration [3,4,6,20–23]. Therefore, if a suitably accurate computational model of an
in vivo system can be constructed, the in silico results can provide insights into the in vivo
system behavior. Although the primary aim is to understand in vivo behavior, in silico
models can guide in vitro experimental design after being validated by data from the
in vitro model. This synergistic approach is important in model developments that utilize
in silico models that benefit from the verification work performed here. Ultimately, the
in silico and in vitro work will lead to in silico models that can simulate the full digestion
process happening in the human stomach.

In the past two decades, many numerical models of this process based on Compu-
tational Fluid Dynamics (CFD) methods have been developed. Models have been built
for different parts of the GI tract, including the esophagus [24], stomach [4,25,26] and
intestine [3,20–23,27,28]. These models provide valuable insights into the flow pattern of
the digestion content, which is not easily quantified in both in vivo and in vitro studies.
In the early developed models, single-phase fluid was simulated with various densities
and viscosities. Recently, multiphase flow simulations (including with free surfaces and
particles) have been implemented and improved by Sinnott et al. [3] and Harrison et al. [4].
Some models also include gastric secretion [6] and electrophysiology [27]. The developed
models have demonstrated their capability and high potential in simulating this complex
system but, to date, lack systematic validation for replicating physical outcomes. It is there-
fore important to verify and validate the components of established models to demonstrate
their accuracy and stability.

An analytical solution [29], described later, can be used to calculate the detailed
peristaltic-induced fluid motion for an idealized tube geometry. However, numerical analy-
sis is needed to understand complicated systems, such as the intestine and the stomach,
which involve the combination of fluid flow, free surfaces, complex boundary conditions,
and solids content. The capability of SPH in simulating the digestion model has been
demonstrated in the intestine models developed using the CSIRO SPH code [3,20–23,28]
and the stomach model developed by Harrison et al. [4]. Peristaltic flow is a fundamental
component of all these models, and it is therefore useful to validate computational mod-
els for this process and then to perform additional validation as more physics is added,
knowing that the underlying moving wall flow model is well validated.

The main aim of this paper is to validate the accuracy of the smooth particle hydrody-
namics (SPH) method when applied to the peristaltic motion of a single-phase Newtonian
fluid. Once the model is validated for this simple system, it will provide a high level
of confidence for other applications, where peristalsis is involved in more complicated
systems. The Finite Volume method (FVM) is also employed in the study and acts as a
comparison approach. Compared with the novel mesh-free SPH method, FVM is a tradi-
tional mesh-based method that has been well-established for decades [30]. By comparing
the performance of both numerical methods, their accuracy and efficiency can be explored.

2. Analytical Solution

Several studies have investigated flow in a tube during simplified peristalsis driven by
a moving wall [1,29,31,32]. Under constrained flow conditions the flow field and pressure
distribution can be calculated from the amplitudes of the wall deformations only. In this
study, the analytical solution of Shapiro et al. [29] is used to validate the numerical models of
peristalsis. A continuous sinusoidal wave train moving in one direction along the tube axis
with a constant speed is used to determine the instantaneous shape of a moving boundary
wall on a tube of uniform initial diameter. The applied motion generates a volumetric flow
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which can be compared with analytic results. An illustration of the fluid-filled tube, which
has a deforming wall that is one wavelength long, is shown in Figure 1.

 

Figure 1. Illustrations of tube geometry used in the peristalsis validation model.

In the simulations, the wavelength λ of the imposed wave is specified, which is related
to the wavenumber by:

k =
a
λ

(1)

where a is the radius of the tube. Using these definitions, a Reynolds number can be formed as

Re =
ρac
μ

× a
λ

(2)

where c is the speed of the imposed wave, μ is the dynamic viscosity and ρ is the
fluid density.

The analytical model assumes a continuous train of waves and inertia-free fluid flow,
which requires two criteria to be met. Firstly, the wavenumber (k), which is the ratio of
the radius to the wavelength, should be close to zero, as it is assumed to be zero in the
analytical solution. Under this condition, the transverse velocities and pressure gradients
are negligible compared with their longitudinal counterparts. Secondly, the Reynolds
number (Re), which gives the ratio of inertial to viscous forces must be close to zero, as it is
again assumed to be zero in the analytical solution.

From Fung and Yih [1], the equation for the imposed peristaltic waves is:

b(x, t) = aφ sin 2π

(
x − ct

λ

)
(3)

where b(x, t) denotes the wall deformation in the radial direction, x is the longitudinal
location, t is time and φ = b/a is the amplitude ratio, which is set to a range of 0.1 to 0.6,
corresponding to occlusions of 10% to 60%, deemed to be sufficient given the purpose of
this study.

The effect of changing the amplitude ratio, φ, on the fluid flow is investigated. In the
analytical solution, the fluid is assumed to be incompressible. The fluid flows through the
tube with constant static pressure at the tube boundaries. The dimensionless time-average
volumetric flow rate (

.
V) is a good measure of the flow behaviour and is dependent on the

amplitude ratio (φ) [29]:
.

V =
φ(4 + φ)

2 + 3φ2 (4)

3. Setup of the Numerical Model

3.1. Physiological Parameters

The physiological data for the human ureter [1] are used in the peristalsis model
developed in this work. As shown in Table 1, the input parameters include the tube
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dimensions, the characteristics of the imposed motion and the properties of the fluid inside
the tube. Both the wavenumber and Reynolds number are close to zero as required.

Table 1. Parameters used in the numerical models.

Geometrical Dimensions

Radius a 0.001 m
Length L 0.05 m

Peristaltic Waves Characteristics

Wave speed c 0.03 m/s
Wavelength λ 0.05 m

Amplitude ratio φ 0.1–0.6

Fluid Properties

Dynamic viscosity μ 0.01 Pa·s
Density ρ 1000 kg/m3

Conditions

The ratio of tube radius to wavelength k 0.02 (close to 0)
Reynolds number Re 0.06 (close to 0)

The nodes on the boundary are displaced radially according to the profile given by
Equation (3) in both the SPH and FVM simulations. The wall location used in the simulation,
H(x, t), is determined from the imposed wave motion given by b(x, t) (Equation (3)) with
the inclusion of a ramp to start the simulation gradually to prevent mesh distortion:

H(x, t) = a
(

1 + min
(

t
ti

, 1
)
× φ sin 2π

(
x − ct

λ

))
(5)

where ti is the ramp time, set to λ/c. Results before time ti are not included when calculating
the averaged flow rate.

The following equations are applied to convert the equations into Cartesian coordinates.

θ = tan−1
(

z
y

)
(6)

y = H(x, t) cos(θ) (7)

z = H(x, t) sin(θ) (8)

where y and z are the transformed coordinates in a Cartesian coordinate system.
The problem described above is next set up and solved using both SPH and FVM

so that the results can be compared for the same geometry, boundary conditions and
fluid properties.

3.2. SPH Model

In the SPH approach, the Navier–Stokes equations are used to solve fluid dynamics
problems, with particles representing discrete “lumps” of fluid, that are tracked in a
Lagrangian framework. The formulation of the model results in a set of ordinary differential
equations describing the motion of fluid particles [33]. More details of the method can be
found in Monaghan [34,35] and Cleary et al. [20,33]. The CSIRO SPH code [36] is used in
this study.
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To obtain values of quantities such as density and velocity at a given point, data must
be obtained from the surrounding region. The interpolated value of a function A at a point
r, is the sum over all particles within a radius of distance related to h from point r [34]:

A(r) = ∑
b

mb
Ab
ρb

W(r − rb, h) (9)

where Ab is the value of A at rb, mb is the mass of fluid particle b, and W is an interpolation
kernel function with a smoothing length of h evaluated at a distance |r − rb| from the
position of interest. In this work, h is set to be 1.2 times the initial particle separation
distance, Δx. The concept of a smoothing kernel is shown in Figure 2 below.

Figure 2. Schematic representation of a typical kernel. Reprinted with permission from Cummins
et al. [37]. Copyright 2022 John Wiley and Sons.

The kernel is essential to the entire method as it is used for the calculation of both
spatially interpolated values and gradients. The effect of three different kernels is examined
in this work for the same smoothing length. The dimensionless distance used in the kernel
is defined as

Δ =
rab
h

(10)

where rab is the distance between particles b and a.
The quartic spline kernel [37] is used for the base case in this study

W(rab, h) =
1

20πh3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2.5 − Δ)4 − 5(1.5 − Δ)4 + 10(0.5 − Δ)4, Δ ≤ 0.5

(2.5 − Δ)4 − 5(1.5 − Δ)4, 0.5 ≤ Δ ≤ 1.5
(2.5 − Δ)4, 1.5 ≤ Δ ≤ 2.5

0, Δ ≥ 2.5

(11)

The fifth-order Wendland kernel [37,38] is also studied:

W(rab, h) =
7

85.336πh3

{
(2 − Δ)4(1 + 2Δ), 0 ≤ Δ ≤ 2

0, Δ ≥ 2
(12)

as well as the cubic spline kernel [35,39]:

W(rab, h) =
1

πh3

⎧⎪⎨⎪⎩
1 − 3

2 (Δ)
2 + 3

4 (Δ)
3, Δ ≤ 1

1
4 (2 − Δ)3, 1 ≤ Δ ≤ 2

0, Δ ≥ 2
(13)

A comparison of the kernel shapes is shown in Figure 3. To display them the dimen-
sionless kernel W(rab, h)h3 was plotted as a function of the normalized distance.
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Figure 3. Comparison of the kernels used in this work.

From Figure 3 several important observations can be made:

(1) The value of any variable at a given point depends on all particle values inside a
sphere of radius nh centred on that point. In SPH this is usually referred to as a kernel
having compact support with radius nh. For the cubic and Wendland kernels n = 2,
and for the quartic kernel n = 2.5. Therefore, for any given particle configuration the
quartic kernel involves summation of more particles over a greater spatial extent than
the other two.

(2) The kernels give different relative weighting to particles closer to the point of interest.
This impacts not only the value but also the gradients of variables.

The gradient of the function A is obtained by differentiating Equation (9):

∇A(r) = ∑
b

mb
Ab
ρb

∇W(r − rb, h) (14)

The conservation equation for mass can then be formulated as [34,40]:

dρa

dt
= ∑

b
mbvab·∇aWab (15)

where ρa is the density of fluid particle a, t is time, vab = va − vb, is the relative velocity
between particles a and b.

The fluid pressure can then be calculated based on the particle density. Although the
analytic solution is derived for an incompressible fluid, a weakly compressible approach is
adopted here and is configured to have low compressibility. This approach is applied by
introducing an equation of state of the form:

P = P0

[(
ρ

ρ0

)Υ
− 1

]
+ Poff (16)

where P is the fluid pressure; P0 is the pressure scale factor; ρ is the particle density; ρ0
is the reference density, set to 1000 kg/m3 for water in this work; Poff is a background
pressure that is added to avoid negative pressure values.

Weakly compressible SPH is designed for free surface flow prediction [34] with an
essential component being the ability of diverging fluid (which has a negative pressure
when calculated by Equation (16) when Poff = 0) to create new free surface. In a fully
enclosed expanding flow this will allow unphysical internal void formation. However,
the analytical model assumes that the tube content is a single-phase fluid without internal
free surfaces. The equation of state therefore needs to be adapted to ensure that P > 0
throughout the tube and for the entirety of the simulation. This is achieved by including
a pressure offset, Poff, which is sufficiently large to guarantee that the pressure remains
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positive. Since the fluid dynamical force only depends on the pressure gradient, the addition
of such a constant has no other effect aside from ensuring the positivity of the pressure.

The effect of this offset pressure in the current work is very important, as shown
in Figure 4. Without the offset pressure voids are created, which are not present in the
single-phase flow being modelled here. A background pressure of 100 Pa is found to be
sufficient to ensure P > 0 and therefore inhibit this internal free surface generation and is
used for all cases.

Figure 4. Addition of a background pressure is used to prevent void formation. The contours show
velocity, but the key point is the breakup of the fluid in the top picture is avoided when the offset
pressure is present.

The pressure scale factor P0 in Equation (16) is given by

γP0

ρ0
= cs

2 = (10V)2 (17)

where γ is 7, which is a material constant defined for water [41]; cs is the local speed of
sound, which needs to be large enough to make sure the density variations are small and
the fluid is close to incompressible, but it also needs to be low enough to avoid the need for
unnecessarily small timesteps [41] (see later); cs needs to be at least 10 times larger than the
characteristic fluid velocity in the flow field (V), which corresponds to a Mach number of
0.1 or smaller and gives a density variation of less than 1% [34].

The conservation equation for momentum becomes:

dva

dt
= −∑

b
mb

[(
Pb

ρ2
b
+

Pa

ρ2
a

)
− ξ

ρaρb

4μaμb
(μa + μb)

vab·rab(
r2

ab + η2
)]∇aWab + ∑

k
fak (18)

where Pa and Pb are the pressure of particles a and b, μa is the viscosity of particle a, ξ
is a calibration factor associated with the viscous term, which is calculated during the
simulation. The calculation of this factor is described in Cleary [42]; η is a small parameter
used to regularise the singularity when rab = 0. The term fak represents the particle–
wall force between particle a and wall particle k and is present only near boundary walls
(see [20,37] for details).

An explicit integration scheme [34] is used in the simulations. The timestep is governed
by the Courant condition modified to account for the viscous term to ensure simulation
stability. The details of the modification can be found in Cleary [36] and gives

Δt = min
a

(
0.5h

cs + 2ξμa/hρa

)
(19)

For this application, a constant spatial resolution h and a constant particle size are used.
Adaptive resolution can be used to improve accuracy in regions of high wall deformation,
but the simpler uniform resolution SPH is sufficient for the deformations of interest (φ up
to 0.6). For the base case simulation, a particle size of 0.10 mm is used to construct the
domain in the SPH model. The tube is filled with 158,000 particles, representing the fluid
content, with an initial spacing of 0.10 mm.

The tube wall is represented by 66,000 SPH boundary particles with a particle size
of 0.10 mm. The boundary particles are arranged with an equidistant spacing around
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the circumference and length of the tube. At each timestep, their position, velocity and
normal vector are updated using Equation (5), which are functions of time. Interaction
between boundary and fluid particles is calculated using a Lennard Jones penalty force
in the direction of the wall normal vector and a no-slip boundary condition in the plane
perpendicular to this [34]. The inlet and outlet of the tube are set to be periodic boundaries,
meaning that the velocity from the downstream boundary is applied at the upstream
boundary, so that vinlet = voutlet. The average volumetric flow rate is calculated based on
the average velocities of the particles at the mid-plane of the tube.

Once the velocity of the particles is known (from Equation (18)) their position can be
updated using Equation (20).

dra

dt
= va + 0.5 ∑

b

2mb
ρa + ρb

(vb − va)Wab (20)

The first term represents the usual dynamical behavior, whilst the second is the XSPH
smoothing term which is advantageous for solution stability [43]. Details of the solution
process used by the CSIRO SPH code are given elsewhere [36].

3.3. FVM Model

In FVM, the mass and momentum conservation equations employed for incompress-
ible flow with a moving mesh are:

∇·(u − ug
)
= 0 (21)

∂(ρu)
∂t

+∇·(ρ
(
u − ug

)⊗ u
)
= −∇P +∇·

(
μ
(
∇u +∇uT

))
(22)

where u is the fluid velocity, ug is the velocity of the moving mesh, ρ is the fluid density, t is
time, μ is the dynamic viscosity, and P is the pressure.

The FVM model is developed using Ansys Fluent, 2022R2, a commercial software
package that has undergone extensive verification and validation [44]. Using the Ansys
SpaceClaim Meshing tools, the geometry is split into 68,000 hexahedral elements. Figure 5
shows the computational mesh generated on the tube in the longitudinal and transverse
directions. The mesh is swept between the inlet and outlet faces. Two inflation layers are
placed on the boundary. The minimum orthogonal quality of the generated mesh is 0.64,
and the maximum skewness is 0.69. The undeformed cell volume varies from 1.2 × 10−12

to 3.9 × 10−12 m3, which is equivalent to cell sizes of 0.11–0.16 mm.

Figure 5. Computational mesh for the undeformed tube in the transverse and the longitudinal
directions. (Only a short section of the longitudinal mesh is displayed).

Figure 6 shows the computational mesh in the transverse direction for the deformed
tube when φ = 0.6. The original element aspect ratio is 3:1 (Figure 5). The volume of
the cell is maintained when deformed and therefore the aspect ratio of the cells changes.
When deformed, the aspect ratio is roughly 2:1 at the widest section (Figure 6b) and 6:1 at
the narrowest section (Figure 6c), which is well inside the acceptable range for the Ansys
Fluent solver.
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Figure 6. Computational mesh for the deformed tube in the transverse direction.

The tube wall is prescribed to have a no-slip boundary condition. A diffusion-based
method is used to distribute the boundary motion uniformly throughout the interior mesh
with the number and connectivity of the mesh cells remaining constant. The inlet and
outlet of the tube are again set to be periodic boundaries. The initial values for the gauge
pressure, x, y and z velocity components are set to zero.

The transient, pressure-based solver is used with the laminar flow assumption. The
SIMPLE [45] algorithm is used for pressure–velocity coupling, with the first-order implicit
transient scheme. Gradients are determined using the least-squares cell-based method,
the pressure is determined using a second-order method, and the bounded second-order
upwind scheme is used for the momentum equation. A time step of 0.01 s is chosen
after assessing the timestep effect upon results. The simulation is run for 8000 steps for
each amplitude ratio. The maximum iteration number for each time step is set to 20,
with 5 iterations typically being needed for convergence. Convergence is deemed to have
occurred when the locally scaled root-mean-square (RMS) residual values for continuity
and the three velocity components are below 10–5.

The mass flow rate passing through the mid-plane of the tube is recorded during the
simulations. The mass flow rate is then converted to a volumetric flow rate and integrated
over time to retrieve the time–mean volumetric flow rate (Q). The integration process is
conducted using Matlab R2020a.

4. Simulation Results

Figure 7 shows the axial velocity contours on the mid-longitudinal plane for a single
wavelength and different amplitude ratios for both models. In the FVM, nodal values are
interpolated onto a longitudinal cross-sectional plane and in the SPH model data from
adjacent particles (which are disordered) are interpolated onto the plane. As the amplitude
of the wave increases, larger deformation results in faster flow through the tube. The
data show a larger region of positive flow in the expanded region and a smaller region of
negative flow in the contracted region. The positive flow region becomes much larger than
the negative region as the occlusion ratio is increased. The flow patterns achieved by both
methods show good agreement. Visually the regions of high positive and negative velocity
are slightly larger for the FVM results, principally because the gradients are higher so there
is a smaller region of the duct occupied by transition values.

The volumetric flow rate at the mid-plane from both models is recorded over time
and is shown in Figure 8 for the six levels of contraction. The quartic spline kernel is used
for the base case in the SPH model (see later). The overall patterns from both models are
very similar. The periodic behavior is established in both models after the ramp time has
elapsed and the flow pattern is smooth for all amplitude ratios.
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Figure 7. Axial velocity contours at 5 s from the FVM model (top) and the SPH model (bottom).
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(a) 

(b) 

Figure 8. Volumetric flow rate at the mid cross-section over time: (a) SPH, (b) FVM.

After the initial ramp-up period, there is a strong forward flow with a shorter period
of reverse flow that becomes relatively less important as the amplitude ratio is increased.
The reverse flow magnitude is sensitive to the applied wave amplitude ratio. At low
amplitudes the difference between the forward and backward flow is small making the
net flow sensitive to this balance. However, as the wave amplitude is increased there is
a significant increase in the forward flow which completely overwhelms the reverse flow.
Both methods show very similar behavior.

Figure 9 compares FV and SPH results for volumetric flow rate at different amplitude
ratios over time. There is good agreement between the two methods for all the amplitude
ratios studied. The volumetric flow rates at the two extremes are slightly different with
the SPH model giving slightly higher extreme values compared with the FVM model for
all amplitude ratios. However, as the amplitude ratio increases, this difference becomes
proportionally smaller bringing the results closer together.
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Figure 9. Volumetric flow rate at the mid cross-section over time from both models.

The dimensionless time-averaged volumetric flow (V∗) recorded from both models is
then calculated based on the time–mean volumetric flow rate (Q).

V∗ = Q

πa2c
(

2φ − 1
2 φ2

) (23)

The dimensionless results are compared with the analytical solution in Figure 10. The
volumetric flows from both models match the analytical solution very well for all occlusion
ratios. This shows that both methods are very well suited to this problem and give high
and comparable accuracy.

Figure 10. Comparison of computed dimensionless volumetric flow for the two numerical methods
with the analytical solution.
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5. Sensitivity Study

The influence of numerical parameters is tested here to examine the sensitivity of both
methods. In the FVM method, the resolution of a simulation is checked by investigating the
sensitivity of the results to both the computational mesh size and the timestep. In the FVM,
if the solution is independent of these, the accuracy of the results is then determined by the
order of the discretization scheme (typically for the convective term in the equation) and
level of convergence (i.e., how well matrix equations are solved) [46]. Typically bounded
second-order differencing is used for the temporal and spatial derivatives (albeit that in
some regions these must be modified to first order to preserve solution boundedness). This
is a highly researched topic and although a huge number of different schemes exist, most
software uses a set that has been tried and tested [46].

The situation is much less well-developed in the case of SPH. This arises partly because
there has been much less development of this method compared with the FVM but mainly
from the difficulty of performing detailed mathematical analysis when the data are stored
at the center of disordered particles that can be arranged in an arbitrarily complex manner
in space that evolves with the solution. Just as the results from the FVM depend on the
computational mesh and choice of the differencing scheme, the SPH results depend on the
particle size, choice of the kernel and initial particle separation as discussed earlier.

5.1. SPH Model
5.1.1. Effect of Initial Particle Arrangement

It is non-trivial to populate an arbitrarily shaped region of matter evenly with SPH
particles, which is the equivalent of generating a high-quality mesh in the FVM. Certain
arrangements are thought to contribute to lower solution quality, for example when a line
of particles is compressed perfectly along that line, they can exhibit an artificial resistance to
compression followed by a buckling failure. In this work, the aim is to fill a cylinder evenly
with a precise volume of SPH particles. Despite the tube geometry (Figure 1) being simple
in shape, it has not been established which type of particle packing will lead to optimal
results. Thus, three different particle filling approaches are examined: a cubic arrangement,
a cylindrical arrangement, and a hybrid of the two above. Here, we describe the properties
of each filling approach:

• A cubic arrangement of particles with the center of each adjacent particle located on a
cubic grid that is spaced by the particle size in each of the Cartesian directions.

• A cylindrical arrangement of particles with the particle centers one particle diameter
apart in the longitudinal direction and arranged in concentric rings around the longi-
tudinal axis of the cylinder that are spaced by one particle diameter and particles in
each ring approximately one particle diameter apart on the circumference of the ring.

• A hybrid of the above two approaches: a cylindrical arrangement of one ring of
particles near the boundary surface and a cubic arrangement of particles within.

The initial particle arrangements at a cross-section for the three cases described above
are shown in Figure 11. The hybrid discretization approach was used in the base case
presented above.

A cylindrical packing approach is the most obvious choice for fitting particles evenly
but is likely to lead to circumferentially adjacent particles having artificial resistance to
radial compression, rather than smoothly re-arranging as randomly located particles would.
A cubic packing is easy to implement for any arbitrary geometry but poor initial align-
ment of fluid particles with boundary particles typically occurs and often leads to non-
representative early results as boundary layers of particles are established. A hybrid of both
methods where the external surface of the fluid closely matches the boundary surface, but
the internal particle distribution minimizes any risk of artificial resistance to compression
may prove optimal and is used in the base case here for this reason.
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Figure 11. Initial particle arrangement for different assumptions.

The volumetric flow rate history over time shows very similar results for the different
initial particle arrangements. The only differences observed are during the ramp time,
as shown in Figure 12. The flow pattern for the cylindrical arrangement is less smooth
compared with the other two. For the 0.3 amplitude ratio case the cylindrical case also
shows greater reverse flow than the other two. The ease of rearrangement of the particles as
the tube contracts and expands causes these differences—with the cylindrical packing being
harder to rearrange with the cylindrical shells of particles at each radius being able to resist
deformation, as expected. The averaged flow rates resulting from the three approaches are
compared with the analytical solution in Figure 13. Only small differences are observed,
with all three approaches yielding high accuracy, as shown in Table 2.

Figure 12. Volumetric flow rate history during the ramp time for different initial particle arrangements.

Figure 13. Effect of initial particle arrangement in the SPH model on the dimensionless volumetric flow.
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Table 2. Effect of particle arrangement in the SPH simulations.

Arrangement
Normalized
Flow Rate

Variation from
Analytic Result

Normalized
Flow Rate

Variation from
Analytic Result

Normalized
Flow Rate

Variation from
Analytic Result

φ = 0.1 φ = 0.3 φ = 0.6

Cubic 0.207 3% 0.540 5% 0.901 0.5%

Cylindrical 0.197 3% 0.529 7% 0.903 0.8%

Hybrid 0.207 2% 0.546 4% 0.904 0.8%

5.1.2. Effect of Kernel Choice

The choice of the kernel is important in this study. A comparison between results
obtained with different kernels is given in Figure 14. It shows that the results obtained
using the quartic kernel give the best match to the analytic solution. The Wendland kernel
shows slightly worse agreement, while the cubic kernel performs the worst of these three
commonly used SPH kernels. Figure 15 shows the axial velocity contour at 5 s from the SPH
models with different kernels. The quartic kernel provides the smoothest and least diffused
pattern compared with the Wendland and cubic kernel, with this effect being most obvious
in the φ = 0.1 case, where external forcing is the smallest. Therefore, the quartic option is
the best kernel for this problem as it shows the smoothest result and the best agreement
with the analytical solution. This can potentially be explained by the shape of the kernels,
shown in Figure 3. Firstly, the quartic kernel has larger compact support (2.5h instead of 2h
for the other two) so can resolve steep gradients better. Secondly, it appears that the greater
emphasis placed on the nearest particles of the Wendland kernel compared with the cubic
kernel is advantageous in this case. The quartic kernel and to some extent the Wendland
kernel capture the boundary layer near the wall better (see Figure 15), which is important
in resolving the overall flow field, which in turn determines the net peristaltic flux.

Figure 14. Comparison of dimensionless volumetric flow for the SPH models with different kernels.
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Figure 15. Axial velocity contour at 5 s from the SPH models with different kernels.

5.1.3. Effect of Fluid Sound Speed

As shown in Equations (17) and (19), the local sound of speed (cs) controls the pressure
scale for the fluid flow and the timestep used in the model. In this work, a characteristic
velocity, V, is estimated based on the wall wave speed (0.03 m/s). cs for φ = 0.1 is set to be
20 times the wave speed, making sure the density variation is less than 1%. A numerical
convergence study is conducted on the fluid sound speed for the different amplitude
ratios listed in Table 3. The results are shown in Figure 16. The chosen base fluid sound
speed is acceptable as neither decreasing nor increasing this speed has an impact on the
simulation results.

Table 3. Tested sound speed for different amplitude ratios.

cs (m/s) φ = 0.1 φ = 0.3 φ = 0.6

Base 0.60 0.68 0.79
Lower (5% lower than base) 0.57 0.64 0.75

Higher (5% higher than base) 0.63 0.71 0.83
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Figure 16. Effect of the fluid sound speed on the net volumetric flow rate for changes in the
sound speed.

5.1.4. Effect of Spatial Resolution

A test of convergence is performed on the spatial resolution used in the SPH model.
The effect of four different particle sizes (0.15, 0.125, 0.1, and 0.0875 mm) is tested and the
results are shown in Table 4. As the particle size decreases, the variation of the normalized
flow rate from the analytic results decreases for the different amplitude ratio cases. As
shown in Figure 17, the results for particle sizes of 0.1 mm and 0.0875 mm are very close,
demonstrating that the solution is well converged and that 0.1 mm particle size is sufficient
for accurate prediction, with its results being very close to the analytical solution.

Table 4. Effect of particle size in the SPH simulations.

Particle
Size (mm)

Number of
Particles

Normalized
Flow Rate

Variation from
Analytic Result

Normalized
Flow Rate

Variation from
Analytic Result

Normalized
Flow Rate

Variation from
Analytic Result

φ = 0.1 φ = 0.3 φ = 0.6

0.15 77,000 0.077 62% 0.333 42% 0.583 35%

0.125 124,000 0.185 9% 0.444 22% 0.767 14%

0.1 224,000 0.207 2% 0.546 4% 0.907 1%

0.0875 320,000 0.197 2% 0.550 3% 0.903 1%

Figure 17. Dimensionless volumetric flow for different particle sizes.
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5.2. FVM Model
Mesh and Timestep Independent Studies

A simulation with a refined mesh is made to establish mesh independence. The
number of mesh elements was increased from 68,000 to 240,000. The average element size
decreased from 0.15 mm to 0.1 mm. A smaller timestep, by a factor of 10, is used to examine
the effect of timestep on the numerical results. The results of these analyses are shown
in Figure 18. It is evident that the simulations are properly resolved using the original
solution parameters.

 

Figure 18. Mesh and timestep independence studies on the FVM model.

6. Conclusions

Two numerical methods, FVM and SPH, are used to solve a peristaltic flow problem
and results from these are compared with the analytical solution. Simulation results show
that both methods yield very good agreement with the analytical model results across the
large range of occlusion amplitudes that are found in peristalsis. The moving wall boundary
condition results in flows in the forward and reverse directions. As the occlusion ratio
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increases the forward flow component increases much faster than the negative component
resulting in a significant increase in the net flow rate.

The results of both approaches depend on the resolution of the simulation and the
choice of solution settings used, but with sufficient resolution, both methods tend to an
asymptotic result that matches the analytic model. The spatial resolution in the FVM model
depends on the mesh size, while in the SPH model it depends on the chosen particle size.
Both methods gave resolution independent results for the base case. In the FVM model, the
mesh was refined near the wall but in the SPH model a constant particle size was used.

The dissimilar underlying methodologies of the two solvers meant that different
assumptions were made in the two approaches. The FVM model assumed incompressible
flow, used implicit time-stepping and solved a Poisson’s equation to determine the pressure
field. The SPH method assumed a weakly compressible flow, and uses an explicit time
integration method, which required a characteristic numerical sound speed to be set based
on the expected flow velocities to obtain the pressure field. Despite these differences, both
methods gave the same well-resolved solution for the cases presented, in terms of the
transient flow history, the net flow over a cycle and the local velocity fields. This work
also highlights the very different experience that is needed for use of these complementary
solution methods.
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Abstract: The effect of the excitation frequency of synthetic jet actuators on the mean jet velocity
issuing from an array of circular orifices is investigated experimentally, focusing on the acoustic
excitation characteristics of the actuator’s cavity. Two cavity configurations are considered. In the first
configuration, synthetic jets are generated by exciting a single, large cavity having an array of sixteen
orifices via sixteen piezoelectric elements. In the second configuration, the cavity volume of the first
configuration is divided into eight isolated compartments, each with two orifices and two piezoelectric
elements. Several distinct resonant peaks were observed in the frequency response of the synthetic
jet actuator built with a single large-aspect-ratio cavity, whereas the case of compartmentalised
cavities exhibited a single resonant peak. Acoustic simulations of the large-aspect-ratio-cavity volume
showed that the multiple peaks in its frequency response correspond to the acoustic standing-wave
mode shapes of the cavity. Due to its large aspect ratio, several acoustic mode shapes coexist in
the excitation frequency range aside from the Helmholtz resonance frequency. When the actuator’s
cavity volume is compartmentalised, only the Helmholtz resonance frequency is observed within the
excitation frequency range.

Keywords: jet noise; synthetic jets; flow control; acoustic simulations

1. Introduction

Previous work on synthetic jet actuators (SJAs) has proven their potential to delay flow
separation over critical aerodynamic surfaces [1–4]. Like many other active flow control
techniques [5,6], SJAs have the promising aspect of being tuned to control-separated flow
in different conditions. In this technology, flow control is achieved by injecting flow via the
external excitation of an enclosed cavity volume. SJAs contain a piezoelectric diaphragm
that alternates the air volume in the cavity and produces the synthetic jet through an
orifice [7,8]. SJAs are generally smaller than an aircraft wingspan, so they are usually used
in array form to cover long spans in aeronautical applications [9,10]. There have been
several studies in the literature that first focused on the design of a singular SJA unit and
then utilized these units in arrays for a magnified effect. SJAs may comprise a number
of discrete cavities excited by isolated piezoelectric elements [11,12] or a large, unified-
cavity volume excited simultaneously by several piezoelectric elements. In the latter case,
the single, large cavity may have several orifices [10] or a large-aspect-ratio rectangular
slot [13,14]. Tang et al. [12] characterized a single cube-shaped cavity-volume unit powered
by four piezoelectric elements and used ten of these SJA units, keeping them isolated, in
an array form along an aerofoil span. In the frequency response of the single SJA unit,
Tang et al. [12] observed a single peak corresponding to the Helmholtz resonance frequency
for different excitation voltages. Therefore, they recommended operating the actuator
near its Helmholtz frequency to achieve the highest possible jet velocity. Jabbal et al. [9]
also used discrete, inclined cavities in an array form, where each chamber was powered
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by a single piezoelectric element of its own. They showed that inclining the cavities
allows for the overlapping of the actuators and thereby reduces the size of the array with
respect to the non-inclined version while maintaining a comparable mean jet velocity.
Both Feero et al. [13] and Amitay et al. [15] employed synthetic jets issuing from a large-
aspect-ratio rectangular slot to control flow separation over the span of an aerofoil. The
internal cavity in their SJAs contained a single large-aspect-ratio cavity covering the length
of the rectangular slot. Exciting such a single, large cavity with multiple piezoelectric
elements brings the advantage of amplifying the output jet velocity compared to isolated
volumes. Both groups showed that SJAs with large cavities and several excitation elements
exhibit complex frequency responses when compared to isolated units. Currently, there
is no general consensus on the design approach for SJA arrays, and it would be very
important to understand the difference between using arrays of isolated SJA units or a
single connected unit. Hence, insight into the characteristics of SJA arrays of different
cavity types is needed for optimum design and flow-control output.

It is generally recommended to match the excitation frequency of SJAs to a flow insta-
bility to improve the flow-control effectiveness of the actuator [16]. Amitay and Glezer [16]
showed that when the excitation frequency matches the frequency of the wake instability,
unsteady flow reattachment over an aerofoil can be achieved via large-scale vortices that
attract the flow towards the trailing edge of the aerofoil. On the other hand, when the excita-
tion frequency matches the frequency of the shear-layer instability—which is approximately
one order of magnitude higher than the frequency of the wake instability—flow control is
achieved by the induction of small-scale vortices that may suppress the flow separation in
a large eddy sheet or the separated layer [17]. Moreover, for efficient SJA performance it
is suggested to use an excitation frequency that maximises the mean jet velocity injected
into the crossflow to magnify the momentum flux into the crossflow [18]. Therefore, the
excitation frequency in a well-designed SJA should match one of the instability frequencies
and provide maximum jet velocity. These considerations should also leave some room for
fine-tuning. Maximising the jet velocity from a cavity is generally achieved by exciting the
cavity at its Helmholtz resonance frequency. Alternatively, the mechanical resonance of
the oscillating diaphragm may also be targeted so that the excitation frequency amplifies
the jet velocity [19]. Gallas et al. [20] proposed modelling the SJA components as elements
of an equivalent electrical circuit using the Lumped Element Modelling (LEM) method to
characterise the SJA response based on its geometry and material properties. This method
could predict the interaction of the Helmholtz resonance frequency and the mechanical
resonance frequency of the oscillating diaphragm when these frequencies are close to each
other. The Helmholtz resonance frequency for the cavity volume, fH, can be estimated
theoretically using the cavity and orifice dimensions as follows:

fH =
c

2π

√
A

LeV
(1)

where c is the speed of sound, A is the cross-sectional area of the orifice, Le is the equivalent
depth of the orifice neck, and V is the cavity volume [21]. However, it should be noted
that the Helmholtz equation is formulated for an ideal spherical volume in which the
sound-wave propagation matches the volume boundaries. The mechanical-resonance
frequency of the diaphragm can be formulated based on its geometric, material, and
electrical properties [22]. It is also affected by the clamping condition of the diaphragm
circumference, which may deviate the actual resonance frequency of the diaphragm from
its theoretical formulation. If the Helmholtz resonance frequency of the cavity and the
mechanical resonance frequency of the diaphragm used in the SJA are too close to each
other, a coupled frequency response would be obtained in which the two peaks deviate
from their theoretically estimated values and merge into one peak, which may maximise
the peak jet velocity [22,23]. Such a situation is unpredictable and may be overlooked in
the initial design phase, but would be discovered upon SJA implementation.
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Another design aspect related to frequency is the noise generated from the actuator.
Several studies in the literature were aimed at enhancing the SJA designs by reducing
the resulting noise. This was achieved through several methods such as having out-
of-phase dual-acting orifices [24], introducing phase miss-matching [25], soundproofing
the cavity walls [26], or using different orifice shapes [27]. These studies showed very
promising results. However, they also indicated the need for more understanding of the
acoustic excitation characteristics of SJAs to reach a better design. Van Buren et al. [23,28]
investigated the synthetic-jet-cavity acoustics to determine the effects of the orifice size and
cavity volume on the resonance frequency of the SJA. They showed that, for a ‘pancake-
shaped’ (high-aspect-ratio disk) cavity, the Helmholtz equation overestimates the value of
the resonance frequency. They concluded that the acoustic resonance frequency is better
estimated by a quarter-wavelength resonator equation when the cavity is thin and the
orifice opening is relatively large. This is because this cavity volume shape tends towards
having the necessary boundaries for the quarter-wavelength excitation (with an open-end
condition at the orifice and a closed end at the cavity wall opposite to the orifice). On the
other hand, as the width of the cavity increases with respect to diameter (diverging from
the pancake shape) and the orifice size decreases, the Helmholtz equation becomes better
in determining the resonance frequency while the accuracy of the quarter-wavelength
resonator equation reduces. This can be attributed to the fact that the cavity widens and
approaches an ideal Helmholtz-resonator shape (more detailed work on the effects of
Helmholtz and quarter-wave resonators on cavity acoustics can be found in Ref. [29]). The
work of Van Buren et al. [28] demonstrated that the geometry of the cavity volume controls
the phenomenon responsible for the acoustic resonance of the SJA cavity. Therefore, the
Helmholtz resonance equation may be insufficient to estimate the resonance frequency of
SJA cavities, especially when considering geometries that significantly differ from the ideal
Helmholtz resonator.

Feero et al. [30] investigated the effect of the synthetic jet injection location on the
control of flow past an aerofoil. They used sixteen piezoelectric elements to excite a single
large-aspect-ratio-cavity volume (similar to what will be investigated herein). The synthetic
jet was introduced through a high-aspect-ratio rectangular slot encompassing a slender
cavity volume. They observed that the mean jet-velocity response of the SJA depicts several
local peaks at various excitation frequencies. An observation of multiple peaks in the
jet-velocity response implies that the acoustic excitation characteristics of their cavity are
not as simple as a Helmholtz excitation case and need further understanding. The literature
lacks comprehensive studies on the acoustic excitation features of SJA cavities and how
they may impact the generated jet velocities. It is crucial to understand all aspects related
to the acoustic excitation phenomena in SJA cavities for designing SJAs with maximum
actuator performance, which is the main motivation of the current study.

This paper investigates the frequency response of an SJA with emphasis on determin-
ing the effect of the cavity shape on the acoustic excitation characteristics of the SJA. Focus
is placed on synthetic jets emanating from an array of circular orifices into the span of a flat
plate under quiescent flow conditions. The effect of the excitation frequency on the mean
jet velocity emanating from the SJA is characterized. Furthermore, on- and off-resonance
excitation frequencies are used to capture the impact of the acoustic resonance excitation
on the uniformity of the jet velocity along the span of the array. This work also compares
the acoustic excitation characteristics of a single, large-aspect-ratio-cavity volume to those
resulting from isolated volumes covering the same spanwise length. This shall provide a
better understanding of the complex acoustic excitation characteristics of these cavity types.

2. Experimental and Numerical Techniques

The SJA used in this investigation contained an array of sixteen piezoelectric disks,
arranged into eight pairs mounted on the facing walls of the SJA cavity, and sixteen circular
orifices, as shown in Figure 1a. For this SJA array, two cavity configurations were tested:
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(a) A single, large-aspect-ratio cavity encompassing the entire array of actuator disks, gener-
ated by leaving the region between the piezoelectric elements connected, as depicted
in Figure 1a,

(b) Eight single-cavity isolated compartments, created by using geometrical dividers between
each pair of piezoelectric elements, as shown in Figure 1b.

Figure 1. Exploded view of the SJA showing (a) the single cavity case, with 16 piezoelectric elements
and 16 orifices, and (b) 8 single-compartmented cavities, where the cavity volume plate illustrates
how the division of the array cavity into 8 equal compartments is achieved. Dashed lines show the
assembly lines.

The air volume entrained within each cavity configuration is depicted in Figure 2a. The
air volume shown in Figure 2b is 7.54 × 10−6 m3, which is equal to 1/8th of the large-aspect-
ratio-cavity volume depicted in Figure 2a. In both cavity configurations, synthetic jets were
developed through sixteen orifices distributed over a span of 285 mm on a flat plate (as
seen in Figure 1a) under quiescent conditions. Note that, in the compartmented cavity
configuration, each cavity compartment opens to two orifices, depicted in in Figure 2b.
Each of the sixteen orifices have a diameter of 3.42 mm and the spacing between the orifices
is 19 mm (centre-to-centre).

Figure 2. (a) The air volume existing inside the single array cavity, excited by the 16 piezoelectric
elements, and (b) the air volume entrained within one of the cavity compartments, excited by two
piezoelectric elements, i.e., this is one of the eight compartments shown in Figure 1b.

All experiments were performed inside an anechoic room located at the University
of Toronto Institute for Aerospace Studies. A signal generator (Model: Rigol, DG1022Z)
powered all piezoelectric elements simultaneously by providing discrete, sinusoidal ex-

193



Fluids 2022, 7, 387

citations which were amplified by a linear power amplifier (Model: Mide QuickPack,
QPA3202) to give an amplified excitation amplitude of 150 Vpp to all piezoelectric elements
(peak-to-peak amplitude). The piezoelectric elements were all operating in-phase through a
parallel connection to the amplifier. During the experimental investigations, the jet velocity
was measured by a single-sensor hot-wire probe (Dantec miniature probe, 55P11) across
and at the centre of each orifice. A two-dimensional traverse mechanism controlled the
location of the hot wire in the wall–normal and spanwise directions (i.e., Y and Z directions
based on the coordinate system introduced in Figure 1a), with a motion resolution of
0.0025 mm. The velocity was sampled at a 32 kHz sampling frequency over 30 s, which
was found to be sufficient to avoid aliasing and any measurement or sampling errors. The
sinusoidal input signal sent to the piezoelectric elements was acquired simultaneously
with the velocity data to obtain phase-correlated information between the jet velocity and
the input excitation signal. The input signal was also used as a reference for the hot-wire
measurements conducted non-concurrently over different orifices, eliminating the need for
simultaneous measurements above all sixteen of the orifices.

Acoustic simulations were performed to investigate the acoustic excitations of the air
volume inside the unified, large-aspect-ratio SJA cavity and its compartmented counterpart.
The COMSOL software [31] was utilized to perform an eigenfrequency study for the cavity
volumes entrained in both cases (the volumes are shown in Figure 2). Solving the wave
equation for the eigenfrequencies and the eigenmodes gave the acoustic natural frequencies
and the corresponding acoustic mode shapes or pressure distributions at these frequencies,
respectively [32]. This wave equation is given by:

∂2 p
∂x2 +

∂2 p
∂y2 +

∂2 p
∂z2 =

1
c2

∂2 p
∂t2 (2)

where p is the acoustic pressure and c is the speed of sound. Unstructured tetrahedral
elements of various sizes were used to capture all details of the internal cavity geometries.
The number of elements used for the large, unified-cavity volume case was 800,000, while
around 100,000 elements were utilized for the compartmented cavity. The average meshing
element size was 7.5 × 10−2 mm3. This mesh size was reached following a size-decremental
iterative procedure until the values of the acoustic mode frequencies from simulations
matched those observed experimentally and did not change any further with the reduction
in the mesh size. For the boundary conditions, all solid surfaces were modelled as stagnant
walls, the orifices were modelled as pressure openings, and the surfaces adjacent to the
piezoelectric diaphragms were modelled as rigid, moving walls. The excitation input
was simulated by sinusoidally forcing all surfaces adjacent to piezoelectric diaphragms
to oscillate in phase with a uniform amplitude. The elasticity of the diaphragms was not
modelled to avoid interaction with structural flexural modes, which are not the focus of
this work. It is important to note that the eigenfrequency study presented here provided a
standing-wave solution for the natural frequencies and the corresponding acoustic mode
shapes. A transient, or time-dependent travelling wave, solution for a specific excitation
frequency or amplitude is not the focus of this work, as the motivation for this work was
focused more on assessing the frequency response and excitation characteristics rather that
the changes in the time domain for a given frequency.

3. Results

3.1. Jet-Velocity Measurements for the Unified, Large-Aspect-Ratio Cavity

Two sets of experiments were performed to characterize the frequency response of the
SJA configuration that had one large, unified cavity. First, the mean jet-velocity response
at the exit of one of the orifices was determined as a function of the excitation frequency.
Second, the mean jet velocities over all sixteen of the orifices were measured at a single
excitation frequency to explore whether the jet velocity varied from orifice to orifice over the
array. Figure 3a shows the phase-averaged jet velocity at the exit of the orifice that is located
in the middle of the array (i.e., the orifice numbered as n = 8 based on the convention used
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in Figure 2a, where the measurement point is X/D = Y/D = Z/D = 0) in response to the
sinusoidal input signal shown in Figure 3b, which excited the piezoelectric elements at a
frequency of fe = 1220 Hz and an amplitude of E = 150 Vpp. Here, for the positive amplitudes
of the excitation input signal (i.e., where the phase of the input signal was 0 < ϕ < π) the
piezoelectric elements deflected inward into the cavity, leading to the expulsion of the jet,
while for the negative excitation amplitudes (i.e., π < ϕ < 2π) the piezoelectric elements
deflected outward, corresponding to the ingestion stroke. The velocity signals detected
by the single-wire probe used in this investigation were always positive. As a result, the
direction of the jet flow could not be distinguished from these velocity signals. However, it
was noted that the jet velocity over the return stroke (π < ϕ < 2 π) seemed marginally lower
than the expulsion stroke. This is because some of the returning flow to the cavity was
drawn from the edges of the orifice, following a path parallel to the orifice cross-section
rather than normal to the orifice cross-section. The error bars in Figure 3a show the standard
deviation around the phase-averaged jet velocity at each phase. It should be pointed out
here that the hot-wire data always demonstrated a lag (or, in other words, a phase-angle
difference) with respect to the input excitation. This phase difference between the hot-wire
output and the excitation input was not significant for the case presented in Figure 3a,
where the excitation frequency corresponded to a resonant frequency. However, phase-
angle variations from orifice to orifice were observed for cases driven by other excitation
frequencies, which will be discussed in further detail in Section 4.

Figure 3. (a) Phase-averaged jet velocity, 〈u(φ)〉, at the exit of the orifice Y/D = 0 in response to
(b) the sinusoidal excitation at the frequency of fe = 1220 Hz and the excitation voltage of E = 150 Vpp.
Error bars mark the standard deviation in estimating the phase-averaged jet velocity.

It is common in the literature to define the time–mean jet velocity as the time average
of the synthetic jet velocity over the expulsion half of the cycle [33]. Hence, it is essential
to distinguish the expulsion stroke in the measured velocity signal since the measured
data were not phase-locked to the excitation. Given that the measured velocity data had
an excitation-frequency-dependent phase-angle difference from the excitation input, as
indicated above, the expulsion stroke on the phase-averaged velocity cycle was determined
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by taking the phase of the maximum jet velocity as a reference point. The phase-angle
range corresponding to the expulsion stroke in a cycle was then considered to be a quarter
cycle (π/2) before and after the phase angle of the maximum jet velocity. Based on this
convention, the time–mean jet velocity during the expulsion stroke was found by:

〈UJ〉 = 1
τ/2

∫ t2

t1

〈u(t)〉 dt (3)

where τ is the period of one cycle, t1 is the onset time of the expulsion stroke, and t2 is the
ending time of the expulsion stroke. Notice here that, as the expulsion stroke occurred
over half of the excitation cycle (i.e., from 0 to τ/2) the denominator in Equation (3) equals
t2 − t1 = τ/2. In Equation (3), the jet velocity was first phase-averaged and then integrated
over the expulsion stroke so that the results were independent of the excitation frequency
and the phase-angle difference.

Figure 4 shows the mean jet velocity of the expulsion stroke for the unified-cavity
volume configuration, computed using Equation (3) for different excitation frequencies
ranging from 300 Hz to 2200 Hz at the exit of the orifice that was located in the middle
of the array (i.e., the orifice was numbered as n = 8 and the measurement location was
X/D = Z/D = Y/D = 0). This frequency response revealed several peaks in the frequency
range of fe = 800 to 1400 Hz. Equation (1) for the Helmholtz resonance frequency, fH, can be
rearranged for round orifices using lumped elements to:

fH =
c

2π

√
3A

4hV
(4)

where c is the speed of sound, A is the orifice area, h is the depth of the orifice neck, and V is
the cavity volume [21]. Using this formula, the theoretical value of the Helmholtz frequency
was estimated to be 1232 Hz for the dimensions of the current cavity. This estimation is
very close to the resonant peak observed at 1220 Hz in the experimental data presented in
Figure 4. However, it can be seen in Figure 4 that, other than this resonant frequency, three
more frequencies exist at which the jet velocity peaked. A similar frequency response for
the jet velocity was obtained above all other orifices, which confirmed that the existence of
these frequency peaks is a characteristic of the cavity excitation affecting the whole actuator.

Figure 4. Time–mean velocity, 〈Uj〉, at the centre of the jet exit plane (X/D = Y/D = 0) as a function of
the excitation frequency, fe, for the unified array cavity at the exit of the orifice located in the middle
of the array (n = 8), E = 150 Vpp. Estimated Helmholtz frequency value is shown by dotted line.
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To gain additional insight into these frequency peaks, further measurements and
analyses were performed. To begin, the time–mean jet velocity across adjacent synthetic jets
was acquired for different excitation frequencies to explore the possibility of an interaction
between injected jets from neighbouring orifices. Figure 5 shows the time–mean jet profiles
across two consecutive orifices at the height of one orifice diameter above the orifice exits
(i.e., at Y/D = 1) for the excitation at the resonance frequency of 1220 Hz. In this figure, the
first jet, centred around Z/D = 0, emanated from the orifice located in the middle of the
array, n = 8, while the subsequent jet, centred around Z/D = 5.57, was injected from the
adjacent orifice, n = 9. It can be observed that both synthetic jets showed a typical mean
velocity profile that was similar to that of a steady jet with a local maximum at the centre
of each jet, which agrees well with the literature [34,35]. It is also clear that the jets were
not interacting with each other. Only a slight difference in the maximum jet velocity at the
centreline was observed between these two consecutive jets. Cross-jet profiles captured
over orifices located further away from each other depicted a similar jet profile but a
significant difference in the peak jet-velocity value. In fact, when the mean jet velocity
along all sixteen of the orifices in the array was captured one orifice-diameter above each
orifice at the centreline of the jets, a significant variation in jet-velocity peak was observed
over the array span. The shape of this variation was found to depend on the excitation
frequency, as shown in Figure 6, where the mean jet velocity over the centre of each orifice
is depicted for two representative excitation frequencies (the frequencies of fe = 1200 Hz
and fe = 800 Hz). Notice that the relatively similar values observed for the velocity peaks of
the jets issued from the orifices n = 8 and 9 in Figure 5 are also detectable in Figure 6 for the
same orifices at the same excitation frequency. It can be seen from Figure 6 that, when the
SJA array was excited near the resonant-frequency peak of 1220 Hz, the mean jet velocity
increased over two sections: namely, over the orifices n = 3 to 6 and n = 10 to 14. On the
contrary, when the excitation was supplied at a frequency of 800 Hz, the orifices n = 2 to 4
showed an increase in jet velocity while the orifices n = 9 to 14 showed a reduction. The
origins of the additional resonant peaks, detected in Figure 4, and the rationale behind the
variation of the jet velocity over the array of orifices, seen in Figure 6, will be revealed in
Section 4 from the acoustic simulation results. However, before delving into these results, it
was important to determine if the variation in the jet velocity over the orifice array could
be avoided altogether. To this end, the internal cavity volume was divided into separate
compartments, as is depicted in Figure 1b. The next section will discuss the experimental
results for such a design.

Figure 5. The mean jet velocity during the blowing stroke across two consecutive synthetic jet orifices
(n = 8 and n = 9) for the excitation frequency fe = 1220 Hz. Velocity measurements are performed at
one orifice diameter above the exit of the orifices (Y/D = 1). The excitation voltage is E = 150 Vpp.
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Figure 6. Variation of the peak mean jet velocity during expulsion stroke along the array of orifices at
Y/D = 1 (measured at each orifice centreline) for two excitation frequencies (fe = 800 Hz and 1200 Hz)
for the unified-array-cavity volume. Error bars show the standard deviation of measurements at each
point. The excitation voltage is E = 150 Vpp.

3.2. Jet-Velocity Measurements for the Compartmented Array Cavity

In Figure 7 (below), the time–mean jet velocity over the expulsion stroke from one
of the orifices of the compartmented cavity design is given as a function of the excitation
frequency with the hot wire located at the centre of the orifice exit. It is observed that this
frequency response exhibited only one resonant peak around 1200 Hz, which matches
the theoretical Helmholtz resonance frequency estimated earlier. This is a significant
difference from the multiple peaks observed for the unified-cavity volume before. Notice
that each singular compartment has the same Helmholtz resonance frequency as the unified-
cavity case because, when dividing the unified, large-cavity volume into eight isolated
compartments, both the cavity volume and the total orifice area in Equation (4) are divided
by 8, rendering the same Helmholtz resonance frequency for both configurations. Similar
frequency-response graphs were observed when hot-wire measurements were performed
above other isolated cavity compartments. The mean jet-velocity profiles above different
orifices of the compartmented case were also found to be comparable with no significant
differences. In fact, the maximum mean jet velocity, detected at the centre of each jet, varied
only slightly for the array of orifices, as is shown in Figure 8. When the compartmented
cavities were excited near their resonance frequency, fe = 1200 Hz, the standard deviation
in the maximum time-averaged jet velocity was very small, as the error bars in Figure 8
show. On the other hand, at an off-resonance excitation of fe = 800 Hz, the standard
deviation around the time-averaged value of the time–mean jet velocity was relatively
larger. These observations correspond to the characteristics of acoustic excitation of a
cavity at its Helmholtz resonance frequency. When the cavity was excited at its Helmholtz
resonance frequency, the measured velocity signal was very close to the sinusoidal shape
of the tonal-input excitation. Therefore, the standard deviation is relatively small when the
signal is phase-averaged. However, in the case of off-Helmholtz resonance excitation, the
velocity response to the input excitation was still sinusoidal but exhibited a larger standard
deviation (or inconsistencies) in the signal.

The existence of only the Helmholtz resonance peak in the frequency response of
every single compartment in the compartmented-cavity design suggests that only one
mechanism of exciting the cavity volume can be at play for the compartmented case, and
this is the reason why the jet velocity does not exhibit any considerable variation along the
array span in this case. The next section discusses acoustic simulations of the two actuator
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configurations (the configuration with the unified, large-aspect-ratio cavity and the one
with compartmented cavities) to further explore the acoustic excitation mechanisms for
each case.

Figure 7. Time–mean velocity, 〈Uj〉, at the jet centre over the expulsion stroke as a function of the
excitation frequency, fe, for one of the eight cavity compartments at the exit of the orifice located in
midspan of the array, n = 8. Estimated Helmholtz frequency value is shown by dotted line.

Figure 8. Variation of the time–mean jet velocity during expulsion stroke along the array of orifices at
Y/D = 1 (measured at each orifice centreline) for two representative excitation frequencies (fe = 800 Hz
and 1200 Hz) for the case with compartmented cavities.

4. Acoustic Simulations Results

Acoustic simulations of the air volume entrained within each of the two cavity config-
urations considered in this study were carried out following the methodology explained in
Section 2. The simulations were conducted for the exact geometry of the cavity, shown in
Figure 2. For the large-aspect-ratio cavity, the simulations gave several eigenfrequencies in
the simulated range of excitation frequencies. Some of these frequencies closely matched
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the frequency peaks detected experimentally in the jet-velocity measurements (presented
in Figure 4), shown in Table 1. Figure 9 shows the instantaneous acoustic-pressure dis-
tribution within the entire unified, large-aspect-ratio-cavity volume for the four resonant
frequencies shown in Table 1. The acoustic pressure levels resulting from these simulations
were arbitrary but comparative due to the nominal boundary condition used at the surfaces
of the piezoelectric elements. Therefore, the acoustic pressure levels were normalized by
the maximum pressure level detected in the cavity for any given case. Figure 9a reveals
that, at the natural frequency of 956 Hz, two parts of the cavity volume exhibited opposing
acoustic-pressure distributions (shown by red and blue contours). The opposing direction
of the acoustic pressure in these simulations indicated an out-of-phase excitation at these
cavity regions. That is, the acoustic pressure fluctuated in an opposite manner between the
two parts of the cavity volume when the cavity was excited at this acoustic mode frequency.
Figure 9c shows that, at the natural frequency of 1252 Hz, while two parts of the cavity
volume exhibited higher acoustic-pressure distributions in one direction (indicated by red
contours), the parts at the two ends and in the middle (shown by blue) displayed opposing
pressure distributions. The other two natural frequencies, 1126 and 1331 Hz, also exhibited
acoustic-pressure variations, giving their respective mode shapes as shown in Figure 9b,d.
The acoustic mode distributions in Figure 9a,c for the two frequencies, fs = 956 and 1252 Hz,
agreed well with the experimentally observed variation of the mean jet velocity over the
array of orifices for the excitation frequencies of fe = 800 and 1200 Hz, respectively (see
Figure 6), where stronger or weaker jet velocities were obtained above the positive and
negative acoustic-pressure regions inside the cavity, respectively.

Inspecting the acoustic simulation results and the experimental results of the mean
jet-velocity variation over the orifices, it can be concluded that the excitation of an acoustic
mode inside the cavity had a direct effect on the jet velocity exiting from each orifice during
the expulsion stroke, which led to the non-uniform jet velocity pattern detected experi-
mentally in Figure 6. It is important to note that the acoustic-pressure distributions shown
in Figure 9 corresponded to the peak of the expulsion stroke, i.e., when the piezoelectric
elements deflected to their inward-most location. In the other half of the excitation cycle,
the acoustic-pressure regions would have been inverted, but that half-cycle would have cor-
responded to the ingestion stroke (which is not included in the jet-velocity plots discussed
earlier). Hence, averaging the jet velocity during the expulsion strokes over the whole
sampling time always gave high jet velocity at positive pressure regions and a weaker
velocity at the negative pressure regions. Although the excitation of the large-aspect-ratio
cavity configuration at the frequency of fe = 800 Hz was initially thought to be off-resonance,
it seems that the fluctuations in acoustic pressure locked onto the closest acoustic mode
to this excitation frequency. However, the excitation of the cavity at fe = 800 Hz generally
generated lower jet velocities over the span compared to the fe = 1200 Hz excitation case.
The reason behind the induction of much larger jet velocities for the 1200 Hz excitation
frequency could be due to the coupling of one of the acoustic modes with the Helmholtz
resonance frequency.

Table 1. Comparison of the natural frequencies, in Hz, obtained from acoustic simulations with
resonant frequencies extracted from experimental measurements for the unified, large-aspect-ratio-
cavity volume.

Mode Index 1 2 3 4

Simulations 956 1126 1252 1331
Experiments 960 1140 1220 1360

200



Fluids 2022, 7, 387

(a) (b)

(c) (d)

Figure 9. Results of acoustic simulations showing the instantaneous acoustic-pressure distribution,
i.e., acoustic mode, within the unified, large-aspect-ratio-cavity volume for different natural frequen-
cies. The frequencies are (a) fs1 = 956 Hz, (b) fs2 = 1126 Hz, (c) fs3 = 1252 Hz, and (d) fs4 = 1331 Hz.

To gain further insight into the correlation of the excited acoustic mode shape of the
cavity with the jet velocities emanating from the orifices, the phase-angle difference of
the mean jet velocity between all of the orifices of the SJA array was determined. This
phase-angle difference can be extracted from the experimental phase-averaged jet velocity
measurements by comparing the phase of the highest phase-averaged jet velocity during
the expulsion stroke to the phase of the maximum amplitude of the sinusoidal excitation
(see Figure 3). Since the input excitation was recorded simultaneously with the measured
jet velocity, the phase-averaged correlation can be extracted and compared for different
excitation frequencies. Figure 10a shows the phase-angle variation of the jet velocity
over the orifices for the large-aspect-ratio and unified-cavity volumes, determined from
experimental measurements at fe = 1200 Hz, and Figure 10b gives the acoustic mode
distribution inside the same cavity volumes extracted from acoustic simulations of the
cavity volume for excitation at fs =1252 Hz. Figure 10b reveals that the excited acoustic
mode shape at fs = 1252 Hz exhibited a negative acoustic-pressure region around the middle
of the array (given in blue), i.e., between the orifices n = 8 to 9. As seen in Figure 10a, the
phase-angle difference between the phase-averaged jet velocity and the input excitation for
these orifices was close to 0 degrees since both orifices were in the same acoustic-pressure
region. Figure 10b also shows high acoustic-pressure levels in two regions of the cavity
(indicated by red contours), containing the orifices n = 3 to 6 and n = 11 to 14. Around
these same orifices, the phase-angle difference between the velocity of the jet and the input
excitation was found to be non-zero and generally comparable, indicating the excitation
of the acoustic mode shape seen in Figure 10b. Therefore, the jet velocities measured at
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the orifices in these two regions were relatively higher than the velocities in the middle
and far sides of the cavity, which were observed earlier in Figure 6. It is important to
mention again that the exact value of the phase angle itself was not the target here, but
the proximity in phase-angle values is an indicator that the jets are synchronized, or that a
similar acoustic-pressure distribution persists inside the cavity for these orifice regions.

Figure 10. (a) Variation of the phase-angle difference between the phase-averaged peak jet velocity at
the orifice centre and the peak input excitation along all 16 orifices for the excitation of the unified
cavity at the frequency of fe = 1200 Hz, which is an on-resonance peak, and (b) the variation of the
instantaneous acoustic pressure within the unified-cavity volume for the corresponding acoustic
mode at the natural frequency of fs = 1252 Hz.

It has been previously discussed that, at the excitation frequency of fe = 800 Hz, the
acoustic-pressure distribution within the large cavity locked onto the closest acoustic mode
shape obtained at fs = 956 Hz, which is given in Figure 11b. For this mode shape, there
were two out-of-phase acoustic-pressure regions, shown by the blue and red contours in
Figure 11b. These two out-of-phase regions fell somewhere between the orifices n = 5 to 6
and n = 11 to 12. The phase-angle variation of the phase-averaged jet velocity in reference
to the input signal for the fe = 800 Hz case, shown in in Figure 11a, depicted that the jet
velocities were within 90 to 120 degrees out of phase between these two regions. The fact
that the jet velocities at the two regions were out of phase with each other suggests the
excitation of the acoustic mode shape of the fe = 956 Hz case and explains why there would
be a difference in the shape of the jet velocity measured above the array of orifices, as
was shown earlier in Figure 6. These results point out a significant challenge for the SJA
array, which is achieving a uniform synthetic jet injection along the array of orifices for
consistent flow control. The slenderness of the unified, large cavity led to the excitation
of different acoustic modes, which was responsible for the variation of the jet velocity
over the array. That variation in mean jet velocity depended solely on the excitation
frequency and the corresponding acoustic mode shape having been excited in the unified,
large-aspect-ratio cavity.
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Figure 11. (a) Variation of the phase-angle difference between the phase-averaged peak jet velocity at
the orifice centre and the peak input excitation along all 16 orifices for the excitation of the unified-
cavity configuration at the frequency of fe = 800 Hz and (b) the variation of the instantaneous acoustic
pressure within the unified-cavity volume at the closest resonance frequency of an acoustic mode
(fs = 956 Hz).

Acoustic simulations were also performed for the singular case of the compartmented
cavity configuration, which had two piezoelectric elements within each unit (see Figure 2b).
The instantaneous acoustic-pressure distribution—i.e., acoustic mode shapes—that corre-
sponded to the first two acoustic modes are presented in Figure 12. The simulations also
provided several other acoustic modes happening at higher frequencies, listed in Table 2.
All of those frequencies were outside of the experimentally tested excitation frequency
range, and none of the acoustic-mode frequencies matched the value of the Helmholtz reso-
nance frequency. As a result, a reasonably uniform velocity distribution (seen in Figure 8)
was developed over the SJA configuration with compartmentalized cavities when excited
by the Helmholtz frequency, given that it was the only observed peak in the frequency
response, as is shown in Figure 7. Additionally, at 800 Hz, a uniform jet velocity along
the span was observed experimentally (provided earlier in Figure 8) because no acoustic
modes exist in this range.

Although the smaller cavity compartment had a similar Helmholtz resonance fre-
quency to that of the large-aspect-ratio–cavity volume, its shape did not result in acoustic
modes close to the Helmholtz resonance frequency. The slenderness of the large cavity
was the main reason for the generation of acoustic modes within the excitation frequency
range, leading to jet-velocity variations. In the present large-aspect-ratio case, one of the
acoustic modes also ended up coupling with the Helmholtz resonance frequency, inducing
even larger jet velocities. However, this large jet velocity was still associated with large
variations along the span following the acoustic mode shape. In conclusion, to gain high jet
velocity and avoid spanwise jet-velocity variations over an SJA array, care should be given
so that any acoustic modes will fall far away from the Helmholtz resonance frequency.
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Figure 12. Instantaneous acoustic-pressure distribution, i.e., acoustic mode shape, inside a single
compartment from the compartmented cavity configuration for the first two natural frequencies
(a) fs1 = 4664 Hz and (b) fs2 = 5410 Hz.

Table 2. The natural frequencies (in Hz) corresponding to the acoustic mode shape of the single-cavity
unit within the compartmented cavity design.

Mode Index 1 2 3 4

Simulations 4664 5410 6890 7667

5. Conclusions

Frequency response and acoustic-cavity-excitation characteristics of synthetic jet ac-
tuators (SJAs) with an array of circular orifices were investigated experimentally and
numerically. The array consisted of sixteen circular orifices and was powered by sixteen
piezoelectric elements with either a single large-aspect-ratio cavity or eight isolated cavity
compartments. In the case of a single, unified cavity, several excitation frequencies were
observed to yield peaks in the mean jet velocity. For different excitation frequencies, the
mean jet velocity of the expulsion stroke showed different spanwise variations over the
array of orifices. In the case of isolated cavity compartments, only a single peak was
observed in the frequency response and no variation in the mean jet velocity was detected
over the array of orifices for the same excitation frequency range used in the unified-cavity
configuration. Acoustic simulations of the large-aspect-ratio-cavity volume of the SJA
design showed that each resonant frequency peak observed in the frequency response of
the SJA corresponded to an acoustic mode shape of the cavity volume. The different mode
shapes resulted in a distinct acoustic-pressure distribution within the cavity, leading to a
corresponding variation in the jet velocity from one orifice to another within the array. The
phase-angle variations of the jet velocity along the orifices were linked to the acoustic mode
shapes of the cavity. Additionally, it was shown that if an acoustic mode fell close to the
Helmholtz resonance frequency value, the jet velocity at the exit was amplified.

It was also noted that for an acoustic mode shape to form inside the cavity and induce
related jet-velocity variations through the orifices, the excitation frequency did not have
to be precisely equal to the associated acoustic natural frequency. With an off-resonance
input excitation frequency to the SJA, the acoustic-pressure fluctuations within the cavity
could still lock onto the closest acoustic mode, inducing a jet velocity variation over the
array. The jet velocity and phase-angle variations observed along the orifices point out
possible challenges in developing uniform control schemes across long-span aerofoils using
an array of circular orifices from a single chamber. In the present work, by dividing the
unified, large cavity into isolated cavity compartments, the acoustic mode shapes of each
cavity compartment were put outside of the excitation frequency range and away from the
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Helmholtz resonance frequency value. As a result, each compartment ejected the same jet
velocity, and no variation was observed along the span of the array. This indicates that,
while designing an SJA array, cavity/cavities with acoustic mode shapes falling outside
of the excitation frequency range of the SJA should be selected to ensure uniform mean
jet-velocity output throughout the array. The trade-off is that the resultant jet velocity will
be relatively less than what would be obtained when using a large, unified-cavity volume.
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Abstract: In this paper, we study the two-dimensional linear stability of a regularized Casson fluid
(i.e., a fluid whose constitutive equation is a regularization of the Casson obtained through the
introduction of a smoothing parameter) flowing down an incline. The stability analysis has been
performed theoretically by using the long-wave approximation method. The critical Reynolds number
at which the instability arises depends on the material parameters, on the tilt angle as well as on
the prescribed inlet discharge. In particular, the results show that the regularized Casson flow has
stability characteristics different from the regularized Bingham. Indeed, for the regularized Casson
flow an increase in the yield stress of the fluid induces a stabilizing effect, while for the Bingham case
an increase in the yield stress entails flow destabilization.

Keywords: regularized Casson fluid; regularized Bingham fluid; linear stability analysis; long-wave
approximation

1. Introduction

The rheological behaviour of materials such as suspensions, dispersion, and polymer
solutions, is distinctly different from that of Newtonian fluids. In particular, such materials
often exhibit flow properties characterized by a critical value of stress (i.e., yield stress,
usually denoted as τ∗

0 ), below which the materials do not deform, and above which they
flow accordingly to their rheological properties. They are usually referred as viscoplastic
materials, which include, e.g., the Bingham [1], the Herschel–Bulkley [2], and the Casson
model [3].

The flow stability analysis of these models can have useful application in several
industrial processes (e.g., food and pharmaceutical industries) and environmental phenom-
ena (e.g., debris and lava flow). In general, flows are unstable when the corresponding
Reynolds is larger than a critical threshold usually referred to as critical Reynolds num-
ber and denoted as Rec. The pioneering works on stability of Newtonian flow down an
incline has been reported in [4,5]. In these papers the authors provide a proportionality
relation between the so-called critical Reynolds number, Rec, and the tilt angle θ and later
experimentally validated in [6]. Then, the interest to properly describe fluids with complex
rheological behaviour led to an increase in theoretical, numerical, and experimental studies,
see e.g., [7–32].

Recently, the onset of instability for viscoplastic fluids, flowing down an incline,
has been investigated in [10,16]. In particular, a stability analysis has been performed
numerically by using a spectral method in [16] and the long-wave approximation in [10],
through a regularization of the Bingham law. The Bingham law describes a material
characterized by the presence of a yield stress below which the continuum behaves like a
rigid body and above which it flows as a linear viscous fluid. In this paper, we theoretically
investigate the flow stability through the long-wave approximation technique following
the approach reported in [10] and in [28]. In particular, we focus on a fluid modelled as
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a regularized Casson, since it has the advantage of being easy to handle analytically. The
Casson constitutive law is widely used to model blood flow [33]. Recently, studies regarding
the peristaltic Casson flow (important to understand artery and vein physiology [34,35]),
has been developed in [36–41].

In the “ideal” Casson model the stress is undetermined at zero strain rate. The presence
of a yield stress has been widely discussed [42–46] and it is still an open debate. The use
of a regularized model allows to avoid the problems due to this singularity and so to
avoid several analytical and numerical issues [47,48]. Indeed, the singularity at zero strain
rate can be smoothed out and the exact model can be recovered through introduction
of a positive parameter, chosen quite arbitrarily, which accounts for the accuracy of the
approximation [10,16,49,50].

To the best of the authors’ knowledge, the analysis of the onset of instability of a
flow down an incline when the fluid is modelled as a regularized Casson material has not
been presented in the literature before, and this motivates our investigations. Actually, the
aim and novelty of this paper is two-fold. First, we study the stability properties of the
regularized Casson flow down an incline. Then, we compare the obtained results with
the one illustrated in [10] regarding the flow of a regularized Bingham. In particular, our
findings highlight that the regularized Bingham fluid and the regularized Casson fluid
have stability properties dramatically different. Indeed, although the two models belong
to the same “viscoplastic family”, they show an opposite stability behaviour as the yield
stress increases.

The paper is organized as follows: in Section 2 and 3 we formulate the mathematical
problem and the main characteristics of a regularized Casson flow down an incline, respec-
tively. In Section 4, following [10,16,51], we briefly recall linear stability analysis by using
the long-wave approximation method. Then, in Section 5 and 6, we report results and some
final remarks.

2. Mathematical Model

We proceed similarly to [10,16] briefly reporting the main theoretical background.
Throughout the paper the “*” represents a dimensional quantity. Let us consider a reference
framework x∗Oy∗ as the one depicted in Figure 1. We denote the tilt angle as θ ∈ (0, π/2)
and suppose that the flow domain of the flow is given by

D =
{
(x∗, y∗) ∈ R2|0 ≤ x∗ ≤ L∗, 0 ≤ y∗ ≤ h∗(x∗, t∗)

}
,

where L∗ is the length of the domain and y∗ = h∗(x∗, t∗) is the upper free surface (not a
priori known) and H∗ = max{h∗}.

Figure 1. Reference framework.

We denote by T∗ the Cauchy stress tensor and set

T∗ = −p∗I + τ∗, (1)

where τ∗ is the deviatoric part.
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The governing equations for the two-dimensional incompressible flow, v∗ = u∗i + v∗j, are⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ∗(u∗
t∗ + u∗u∗

x∗ + v∗u∗
y∗) = −p∗x∗ + τ∗

11,x∗ + τ∗
12,y∗ + ρ∗g∗ sin θ,

ρ∗(v∗t∗ + u∗v∗x∗ + v∗v∗y∗) = −p∗y∗ + τ∗
12,x∗ + τ∗

22,y∗ − ρ∗g∗ cos θ,

u∗
x∗ + v∗y∗ = 0,

(2)

where g∗ is gravity and ρ∗ is the constant material density and, to take the notation as light

as possible, we denote (·)t∗ =
∂(·)
∂t∗ , (·)x∗ =

∂(·)
∂x∗ , (·)y∗ =

∂(·)
∂y∗ . We consider the non-slip

and impermeability conditions u∗ = v∗ = 0 on y∗ = 0 and the kinematical–dynamical
conditions on h∗, namely ⎧⎪⎨⎪⎩

h∗t∗ + u∗h∗x∗ = v∗, y∗ = h∗,

T∗n = 0, y∗ = h∗,

(3)

where n is the outer normal (see Figure 1).
Exploiting (2)3, we rewrite (3)1 as

h∗t∗ +
(∫ h∗

0
u∗dy∗

)
x∗

= 0. (4)

We introduce the characteristic quantities

τ∗
c =

μ∗U∗

H∗ , p∗c =
μ∗U∗

H∗ , (5)

and the strain-rate γ̇∗ = 1/2
(
∇∗v∗ +∇∗v∗T

)
. Next, we consider the following dimen-

sionless variables
x =

x∗

H∗ , v =
v∗

U∗ , t =
U∗

H∗ t∗, (6)

h =
h∗

H∗ , p =
p∗

p∗c
, τ =

τ∗

τ∗
c

, γ̇ =
H∗

U∗ γ̇∗, (7)

where U∗ denotes the reference velocity which will be selected to normalize the dimension-
less longitudinal velocity. Exploiting (5)–(7), the system (2) becomes⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Re
(
ut + uux + vuy

)
= −px + τ11,x + τ12,y + ξ,

Re
(
vt + uvx + vvy

)
= −py + τ12,x + τ22,y − ξ cot θ,

ux + vy = 0,

(8)

where

ξ =
Re

Fr2
sin θ =

ρ∗g∗H∗2

μ∗U∗ sin θ, (9)

and

Re =
ρ∗U∗H∗

μ∗ , Fr2 =
U∗2

g∗H∗ , (10)

are the Reynolds number and Freude number, respectively.
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Finally, we recall that the flow is driven prescribing the inlet discharge which we
assume to be constant in time. So, denoting as Q∗ the flow rate per unit fluid layer width,
we have

Q∗ = U∗H∗
∫ 1

0
u(y)dy, (11)

provided that the layer is flat and its thickness is H∗ (which does not vary in time). From (9)
and (10) we have

H∗ =
(

ξμ∗2

ρ∗2g∗ sin θ
Re

)1/3

,

U∗ = μ∗

ρ∗H∗Re =
(

g∗μ∗ sin θ

ξρ∗

)1/3
Re2/3.

(12)

Therefore, the flow rate Q∗ can be rewritten in terms of Re and ξ for given physical (τ∗
0 , μ∗,

ρ∗) and geometrical (θ) parameters. In the sequel, we shall see that Q∗ can be also expressed
only on terms of the Reynolds number through the normalization of the dimensionless
longitudinal velocity.

3. Regularized Casson

Similarly to [10,16,52], we introduce a dimensional regularization parameter ε∗ into
the dimensionless Casson model, setting

τ = r(|γ̇|)γ̇, r(|γ̇|) =
(√

2 +

√
B√|γ̇|+√

ε

)2

, (13)

where |γ̇| =
√

tr(γ̇2)/2, B =
τ∗

0 H∗

μ∗U∗ is the Bingham number, which represents the ratio

between the yield stress and the characteristic viscous stress, with τ∗
0 the yield stress, and

ε = 2ε∗H∗/U∗, so that when ε∗ → 0 we formally retrieve the Casson constitutive law [38].
We recall that for a regularized Bingham fluid the function r, see [10,16], is given by

r(|γ̇|) = 2 +
B

|γ̇|+ ε
. (14)

The plot of r, by using (13) and (14), with respect to |γ̇| for selected values of B and ε is
shown in Figure 2. In particular, the function r(|γ̇|) gives the regularized relation between
the shear stress τ and shear strain rate γ̇.

By using (9) and (10) the Bingham number and the regularization parameter can be
rewritten in terms of Re, namely

B = X
ξ2/3

Re1/3 , (15)

with

X =
λ1

(sin θ)2/3 , λ1 =
τ∗

0

(g∗μ∗)2/3ρ∗1/3 , (16)

and

ε =
λ2

(sin θ)2/3
ξ2/3

Re1/3 , (17)

with

λ2 =
ε∗μ∗1/3

ρ∗1/3g∗2/3 , (18)

respectively. The parameters λ1 and λ2 do not depend on the flow and on the tilt angle θ,
so that the parameter X is constant once the fluid and the tilt angle have been selected, i.e.,
it depends only on the “material” and geometrical properties.
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Figure 2. Plot of r(|γ̇|) given by (13) and (14) for B = 1.1 and ε = 0.1. Although the regularized Bingham
and the regularized Casson belong to the same viscoplastic family, they have different behaviour.

We look for a solution in the form v = u(y)i, h = 1, thus system (8) is reduced to⎧⎪⎨⎪⎩
0 = −px + τ12,y + ξ,

0 = −py − ξ cot θ,

(19)

which leads to
p = ξ cot θ(1 − y). (20)

Thus, we have τ12 = ξ(1 − y), and, from (13)

uy

(
1 +

√
B√uy +
√

ε

)2

= ξ(1 − y),

which, by integrating with respect to y with u(0) = 0, leads to

u(y) = − ξ

4
y2 − N1(y)

12ξ
3
2

y − 1

12ξ
3
2
(N2(y) + N3(y) + N4(y)), (21)

where

N1(y) = M1(y)M2(y)− 6ξ
5
2 + 8a(y) B

1
2 ξ

3
2 − 6c,

N2(y) = −72εξ
1
2

(
2ε

1
2 B

1
2

3
+ B

)
log

(
ε

1
2 − B

1
2 + a(y) + M2(y)

)
,

N3(y) = M2(y)
{

a(y)
[
3ξ

3
2 + ξ

1
2

(
−3ε + 8ε

1
2 B

1
2 + B

)]
− b + ξ

1
2

[
B

3
2 + ε

1
2

(
3ε − 47ε

1
2 B

1
2 + 11B

)]}
,

N4(y) = −8a(y) ξ
3
2 B

1
2 + 8ξ2B

1
2 + M3 + M4,

M1(y) = −3a(y) ξ
3
2 + b,

M2(y) =
[
2a(y)

(
ε

1
2 − B

1
2

)
+ c + a2(y)

] 1
2 ,

M3 =
(

3ε
1
2 + 5B

1
2

)
ξ

3
2 − B

3
2 ξ

1
2 + ε

1
2 ξ

1
2

(
−3ε + 47ε

1
2 B

1
2 − 11B

)
− M5 ξ

(
−3ε + 8ε

1
2 B

1
2 + B+ 3ξ

)
,

M4 = 72εξ
1
2

(
−2ε

1
2 B

1
2

3
+ B

)
log

(
ε

1
2 − B

1
2 + ξ

1
2 + M5

)
,

M5 =

[
B+ 2B

1
2

(
ε

1
2 − ξ

1
2

)
+
(

ε
1
2 + ξ

1
2

)2
] 1

2
,

a(y) = ξ
1
2 (1 − y)

1
2 , b = 3ξ

3
2

(
ε

1
2 +

5
3
B

1
2

)
, c =

(
ε

1
2 + B

1
2

)2
.

(22)
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Now, we normalize the velocity of the free surface so that u(1) = 1, obtaining the
implicit relation between Re and ξ, i.e.,

F (Re, ξ) = 1, (23)

where
F (Re, ξ) = − 4

ξ
3
2 Re

1
3
(D1(Re, ξ) log(D2(Re, ξ)) + (D3(Re, ξ)), (24)

and

D1(Re, ξ) = −X
1
2 ε

3
2 ξ

5
6 Re

1
6 +

3
2

X εξ
7
6 ,

D2(Re, ξ) = ε
1
2 + ξ

1
2 − X

1
2 ξ

1
3

Re
1
6

+ A(Re, ξ),

D3(Re, ξ) = D4(Re, ξ) + D5(B, ξ) + D6(Re, ξ),

D4(Re, ξ) =
A(Re, ξ)

16

[
1
3

X
1
2 ξ

1
3

Re
1
6

P1(Re, ξ) + P2(Re, ξ)

]
,

D5(Re, ξ) = P3(Re, ξ) log(2ε
1
2 )ε,

D6(Re, ξ) =
P5(Re, ξ)

16

(
X

1
2 ξ

1
3

Re
1
6

P4(Re, ξ) + ε
3
2 Re

1
3 ξ

1
2 +

11
3

ε
1
2 Xξ

7
6

)
+ P6(Re, ξ),

P1(Re, ξ) = −Xξ
7
6 + Re

1
3

[
5ξ

3
2 + ε

1
2

(
47ε

1
2 ξ

1
2 − 8ξ

)]
,

P2(Re, ξ) = −11
3

ε
1
2 Xξ

7
6 + ε

1
2 Re

1
3 ξ

3
2 − 1

3
Xξ

5
3 − Re

1
3

(
ε

3
2 ξ

1
2 − εξ + ξ2

)
,

P3(Re, ξ) = X
1
2 ε

1
2 ξ

5
6 Re

1
6 − 3

2
Xξ

7
6 ,

P4(Re, ξ) =
1
3

(
−47εξ

1
2 Re

1
3 + Xξ

7
6

)
,

P5(Re, ξ) = ε
1
2 +

X
1
2 ξ

1
3

Re
1
6

,

P6(Re, ξ) = −X
1
2 ξ

1
3 Re

1
6

4

(
ξ

3
2 ε

1
2 − 2

3
ξ2
)
− 1

8
εξ

3
2 Re

1
3 − 1

16
ξ

5
2 Re

1
3 − 1

8
Xξ

13
6 ,

A(Re, ξ) =

[
2

X
1
2 ξ

1
3

Re
1
6

(
ε

1
2 − ξ

1
2

)
+

Xξ
2
3

Re
1
3
+
(

ε
1
2 + ξ

1
2

)2
] 1

2

.

(25)

As expected, we obtain a one-to-one relation between Re and ξ and we denote by ξ̂
the unique solution to (23) such that u(1) = 1. The plot F (Re, ξ) is displayed in Figure 3.
Moreover, we recall that B is expressed in terms of Re through (15), where now ξ̂ is the
solution of (23). Relation (23) defines as F (Re, ξ) = 1 which, as expected, is a one-to-one
relation between Re and ξ. The plot of F (Re, ξ) is displayed in Figure 4, which highlights
that, for given λ1, λ2, and θ, there exists a unique (Re, ξ) fulfilling (23). Consequently,
recalling that Equation (23) derives from the normalization of u, for any Re we obtain a
unique value of ξ, which we denoted as ξ̂, such that u(1) = 1.
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Figure 3. Plot of F (Re, ξ) for λ1 = 0.1 and θ = 5◦ for the regularized Casson model (given by (23)).

Figure 4. Plot of u(y) given by (21) (empty circles) and (26) (solid line) with λ1 = 0.1 and θ = 1◦ for
different values of ε. It is worth noting that the “exact” profile of u(y), given by (26), can be retrieved
from the regularized one, given by (21). In fact, the two profiles become very similar when ε < 10−2.

We remark that for ε → 0 we retrieve the Casson flow whose normalized velocity field
is given by

u(y) =

⎧⎪⎪⎨⎪⎪⎩
− ξy2

2 + (ξσ + 2B)y +
4
√
B
[
−(ξσ+B)3/2+(ξσ−yξ+B)3/2

]
3 ξ , if 0 ≤ y ≤ σ,

1, if σ ≤ y ≤ 1,

(26)
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with

σ = 1 − τ∗
0

ρ∗g∗H∗ sin θ
= 1 − B

ξ
, (27)

is the flat yield surface [10,16]. The velocity field is normalized so that u(σ) = 1, i.e.,

− ξσ2

2
+ (ξσ + 2B)σ +

4
[
−√

B(ξσ + B)3/2 + B2
]

3 ξ
= 1, (28)

that leads, using (15) and (27), to the following implicit relation between ξ and Re

F (Re, ξ) = 1, (29)

where

F (Re, ξ) = −X2

6
ξ

1
3 Re−

2
3 − 4

3

√
ξ

√
X ξ

2
3 Re−

1
3 + X ξ

2
3 Re−

1
3 +

ξ

2
. (30)

The regularized and the “exact” profiles of u(y) are given by (21) and (26), respectively.
They become very similar when ε < 10−2 as shown in Figure 4.

It is worth noting that in case B = 0, i.e., Newtonian flow, Equation (23), for ε → 0,
and Equation (29) simply reduce to F = ξ − 2 = 0, whose trivial solution is ξ̂ = 2.

The equations governing the regularized and exact Bingham flow have been reported
in [10]. In this paper, we have adopted the same notations as in [10], thus the comparison
between the two models can be performed easily.

4. Linear Stability Furthermore, Long-Wave Approximation

In this section, we briefly recall the main characteristic of the linear stability analysis as
reported in [10,16,51] and we refer the readers to [10,16] for more details on the derivation
of the formulas here summarized.

We consider the basic flow consisting of h(x, t) = hb, with hb = 1, vb = ub(y)i with
ub given by (21), and, p = pb(y) where, recalling (20), pb(y) = ξ̂ cot θ(1 − y). Then, we
perturb the basic flow superimposing small disturbances, in the form of travelling waves,
so that

h = 1 + ĥ(y)eiα(x−ct), u = ub + û(y)eiα(x−ct),

v = v̂(y)eiα(x−ct), p = pb + p̂(y)eiα(x−ct),
(31)

and
γ = γb + γ̂, τ = τb + τ̂, (32)

where α ∈ R is the wave number, c ∈ C is the complex wave speed and the notation ˆ(·)
represents the infinitesimal disturbance. We write the velocity field in terms of the stream
function, i.e.,

ψ̂(x, y, t) = φ(y)eiα(x−ct),

as
û = ψ̂y = φ′(y)eiα(x−ct), v̂ = −ψ̂x = −iαφ(y)eiα(x−ct), (33)

where, here and in the sequel, (·)′ denotes the differentiation with regard to y. Defin-
ing by �(c) and �(c) the real and imaginary part of c, we recall that �(c) gives the
growth/attenuation factor of the αth mode. Hence, the basic flow hb, vb, pb(y) is unstable
when the parameters involved in the problem, namely Re, λ1, λ2 and θ, are selected so that
�(c) > 0. The transition between the two regimes is identified by the so-called marginal or
neutral curve, i.e., the set of Re, λ1, λ2 and θ at which �(c) = 0.
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Then, we consider disturbances of long wavelength 2π/α � 1, i.e., α � 1, expanding
φ and c in powers of α up to the first order in α, namely

φ(y) = φ0(y) + αφ1(y),

c = c0 + αc1,
(34)

where (φ0, c0) and (φ1, c1) solve⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s(y)φ0(y)′′)′′ = 0,

φ0(0) = φ′
0(0) = 0,

φ′′
0 (1)− φ0(1)

ξ̂

s(1)(c0 − 1)
= 0,

s(1)φ′′′
0 (1) + φ0(1)

ξ̂s′(1)
s(1)(c0 − 1)

= 0,

(35)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s(y)φ′′
1 (y))

′′ = iRe
[
φ′′

0 (y)(ub(y)− c0)− u′′
b (y)φ0(y)

]
,

φ1(0) = φ′
1(0) = 0,

φ1(1) = 0,

φ′′
1 (1) + φ0(1)

ξ̂c1

s(1)(c0 − 1)2 = 0,

−is(1)φ′′′
1 (1) + φ′

0(1)Re(c0 − 1)− φ0(1)
ξ̂

s(1)

(
s(1)cotθ
c0 − 1

− i
c1s′(1)
(c0 − 1)2

)
= 0,

(36)

with

s(y) =
1
2

[
r
(

u′
b

2

)
+

u′
b

2
dr
dz

(
u′

b
2

)]
,

and r given by (13). In particular, we have that �(c0) = 0, while �(c1) = 0, thus

φ(y)eiα(x−ct) = φ(y) eiα(x−c0t)︸ ︷︷ ︸
travelling wave

eα2�(c1)t︸ ︷︷ ︸
growth/attenuation

. (37)

In particular, we can find the critical value of Re, denoted as Rec, such that

�(c) = �(c1(Rec, λ1, λ2, θ)) = 0, (38)

by prescribing the material characteristics and the tilt angle (i.e., λ1, λ2, and θ). Hence, for
Re < Rec the αth mode is stable, while instability arises when Re > Rec, since �(c1) < 0
for Re < Rec and vice versa. Moreover, we eventually remark that the identification of Rec
means, from the practical point of view, the identification of a critical discharge, Q∗

c , above
which the flow becomes unstable.
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5. Results

The critical value of the Reynolds number, Rec, is computed by solving the system
given by the system of algebraic Equations (23) and (38) with MATLAB® 2022a, using the
function FSOLVE.

Figure 5 shows the variation of Rec with respect to the tilt angle θ for different value
of the material parameter λ1, when ε = 0.01 by considering the regularized Bingham and
Casson model. Similar to [10], at a given θ, Rec decreases for increasing values of λ1 and
coincides with 5/4 cot θ, when λ1 = 0, i.e., B = 0. However, recalling the proportionality
relation (16) between λ1 and τ∗

0 , we have that (see Figure 5A) the yield stress destabilizes
the flow when this is modelled using a regularized Bingham flow, while (see Figure 5B)
the regularized Casson flow is more stable than the Newtonian flow (i.e., the yield stress
has a stabilizing effect on the flow when the material is modelled as a regularized Casson
fluid). Coherently, in the case of regularized Casson fluid, Rec is an increasing function of
λ1, namely an increase in the yield stress τ∗

0 leads to a flow stabilization (Figure 6C,D). For
the regularized Bingham, we have an opposite behaviour. Indeed, Figure 6A,B highlight
that Rec decreases as λ1 (i.e., τ∗

0 ) increases. Moreover, it is worth noting that, as physically
expected, an increase of θ leads to flow destabilization in both cases.

In Table 1, we report the values of Rec and c0 when θ = 5◦ for various values of λ1
when a regularized Bingham and Casson models are considered. We notice that c0 = 2
when λ1 = 0, i.e., when the flow is Newtonian, as in [10]. Again, coherently with the
results obtained in [10], as λ1 increases the superficial wave speed increases also for the
regularized Casson fluid.

Figure 5. Evolution of the critical Reynolds number, Rec, with respect to the tilt angle, θ, with
ε = 0.01 for different values of λ1 in the case of the flow modelled as a regularized Bingham (A) and
regularized Casson (B) fluid. The theoretical Newtonian flow (i.e., 5/4 cot θ) is given by the red circles.
The continuous line is the Newtoian flow computed by our code. We emphasize that the theoretical
curve and the computed one coincide.

Table 1. Values of Rec and c0 for given values of λ1 with θ = 5◦ and ε = 0.01 for both the regularized
Bingham and Casson models.

λ1 Rec c0

Reg. Bingham Reg. Casson Reg. Bingham Reg. Casson

0 14.29 14.29 2 2
0.01 14.08 15.61 2.03 2.15
0.1 12.45 19.08 2.34 2.52
0.5 9.05 28.13 4.31 3.30
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Figure 6. Plot of the critical Reynolds number, Rec, as a function of λ1 with ε = 0.01 for different val-
ues of θ for a regularized Bingham (A,B) and regularized Casson (C,D) fluid. The case of Newtonian
flow corresponds to λ1 = 0, i.e., B = 0.

6. Conclusions

In this paper, the stability analysis of a free surface regularized Casson flow down
an incline has been theoretically investigated and compared to the one obtained for the
regularized Bingham flow. In both cases the benchmark represented by the Newtonian
case (i.e., when λ1 = 0, thus B = 0) has been recovered. Our results show that for a
regularized Casson fluid Rec increases with increasing values of the “material” parameter
λ1 (that is proportional to τ∗

0 see (16)), while for a regularized Bingham fluid Rec decreases
when λ1 (i.e., τ∗

0 ) increases [10,16]. Therefore, our findings (obtained within the long-wave
approximation method) show that the flow of the regularized Casson fluid is stabilized by
increasing yield stress τ∗

0 contrary to what happens with the regularized Bingham.
The stability analysis of the exact Bingham model, investigated in [16], shows that the

flow down an incline is unconditionally stable for every Reynolds number. Therefore, our
results are unexpected, highlighting that, although in a regularized formulation, models be-
longing to the same class of viscoplastic fluids can have stability characteristics completely
different. Although we are not aware of any studies on the stability of the Casson fluid
flowing down an incline, we suppose that the results of [12] can also be extended to this
case. Therefore, we show that (as for the regularized Bingham fluid [10]) the regularized
Casson can have stability properties that are different from the classic Casson flow. It
is worth remarking that the our study has been developed by applying the long-wave
approximation to the flow of regularized Bingham and Casson fluids down an incline.

We have in fact shown that the flow along an incline of a Casson-type material becomes
increasingly stable as the yield stress increases. Exactly the opposite behaviour occurs with
the Bingham fluid. Therefore, this feature can be used, from an experimental point of view,
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to highlight the difference between the two rheological models. We believe that our results
can pave the way to experimental studies on the flow down an incline.
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Abstract: This work employs single-mode equations to study convection and double-diffusive
convection in a porous medium where the Darcy law provides large-scale damping. We first consider
thermal convection with salinity as a passive scalar. The single-mode solutions resembling steady
convection rolls reproduce the qualitative behavior of root-mean-square and mean temperature
profiles of time-dependent states at high Rayleigh numbers from direct numerical simulations (DNS).
We also show that the single-mode solutions are consistent with the heat-exchanger model that
describes well the mean temperature gradient in the interior. The Nusselt number predicted from
the single-mode solutions exhibits a scaling law with Rayleigh number close to that followed by
exact 2D steady convection rolls, although large aspect ratio DNS results indicate a faster increase.
However, the single-mode solutions at a high wavenumber predict Nusselt numbers close to the
DNS results in narrow domains. We also employ the single-mode equations to analyze the influence
of active salinity, introducing a salinity contribution to the buoyancy, but with a smaller diffusivity
than the temperature. The single-mode solutions are able to capture the stabilizing effect of an
imposed salinity gradient and describe the standing and traveling wave behaviors observed in DNS.
The Sherwood numbers obtained from single-mode solutions show a scaling law with the Lewis
number that is close to the DNS computations with passive or active salinity. This work demonstrates
that single-mode solutions can be successfully applied to this system whenever periodic or no-flux
boundary conditions apply in the horizontal.

Keywords: convection in a porous medium; single-mode solutions; double-diffusive convection

1. Introduction

The single-mode equations (‘single-α mean-field theory’) obtained from a severely
truncated Fourier expansion in the horizontal were likely first proposed by J. Herring [1,2]
in analyzing the thermal transport of Rayleigh–Bénard convection (RBC) with either stress-
free or no-slip boundary conditions at the top and bottom. Such single-mode equations
reduce the governing equations from three spatial dimensions to equations for the vertical
solution profile associated with a prescribed horizontal planform. Although the single-
mode approach significantly simplifies the horizontal structure, solution profiles in the
vertical and the Nusselt number (Nu) from single-mode equations show the expected be-
havior when compared with experimental measurements [1,2]. The single-mode equations
are not only able to provide a useful approximation to steady convection rolls, but their
time-dependent behavior also provides a reasonable approximation to that observed in two-
dimensional (2D) simulations [3]. The single-mode equations can also incorporate more
general planforms such as hexagonal planforms by introducing appropriate self-interaction
terms [4,5], again with qualitative agreement with experimental results.

Single-mode equations have also been applied to double-diffusive convection. For ex-
ample, Gough and Toomre [6] focused on oscillatory double-diffusive convection (ODDC)
characterized by the competition between a stabilizing salinity gradient and a destabilizing
temperature gradient, a configuration that is subject to a diffusion-driven instability even
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when the fluid density is dynamically stable, and showed that the flux ratio is insensitive
to the density ratio (called stability parameter there) consistent with experimental mea-
surements [7–9]. Paparella et al. [10] employed single-mode equations allowing for the
formation of large-scale shear, and described its interaction with oscillatory convection,
producing intermittent overturning of the fluid with significant mixing. Single-mode
equations can also be used to characterize the case where a destabilizing salinity gradient
competes with a stabilizing temperature gradient, and used to demonstrate that the result-
ing salt-finger convection may trigger large-scale shear, producing a staircase-like profile
in density [11] with mixed regions separated by an interface with a large density gradient.
In fact such staircase profiles form even in the absence of shear instabilities, and their
stability properties for Prandtl numbers relevant to both oceanographic and astrophysical
conditions can be analyzed [12].

The severe truncation of the horizontal Fourier modes within the single-mode equa-
tions is expected to be valid for well-organized columnar structures associated with limited
interaction between different horizontal harmonics. Such limited interaction between
harmonics arises naturally when the dominant flow structures are associated with a small
horizontal length scale. This is the case in the asymptotic limit of high wavenumber
convection leading to tall and thin flow structures, a limit employed to provide insight
into high Rayleigh number RBC [13], convection in a porous medium [14], and salt-finger
convection [15]. This high wavenumber asymptotic limit corresponds to small horizontal
domain size in two-dimensional numerical simulations. As a result, single-mode solu-
tions show an excellent agreement with DNS results in a small horizontal domain as is
the case in vertically confined salt-finger convection [12]. Well-organized columnar flow
structures also arise in the presence of strong restraining body forces [16]. For example,
rotation constrains the flow variation in the direction of the rotation axis as described by the
Taylor–Proudman theorem [17,18]. In the rapidly rotating regime, single-mode solutions
of the asymptotically reduced equations show a close agreement with direct numerical
simulations (DNS) at moderate reduced Rayleigh numbers; see, e.g., Figures 12 and 13
from [19] and [16,20]. A strong imposed magnetic field plays a similar role, and DNS of
rotating magnetoconvection also show results approaching the single-mode solutions [21]
at moderate reduced Rayleigh numbers [22]. The stabilizing temperature gradient in
salt-finger convection serves as large-scale damping [23,24], leading to well-organized
columnar structures known as salt fingers, and single-mode solutions of vertically confined
salt-finger convection agree well with DNS near the onset of instability and display scaling
laws between the Sherwood number (Sh) and density ratio with a scaling exponent that
agrees well with DNS [12].

In this work, we focus on convection in a porous medium modeled by a Darcy law,
which also provides large-scale damping as compared with the Navier–Stokes equation
describing pure fluids. In contrast to RBC, convection in a porous medium is dominated
by well-organized columnar structures even at high Rayleigh numbers as shown in DNS
in both 2D [25,26] and 3D [27,28] configurations; see the review [29]. Flow structures in
the interior of convection in a porous medium are well approximated by a heat-exchanger
model obtained by assuming no vertical variation of fluctuations and a constant mean
temperature gradient [25,27,29]. Such well-organized structures are also characterized by a
power spectrum density [27] and time-averaged Fourier coefficients [26] that both suggest
that a single mode dominates in the interior. The horizontal wavenumber of the dominant
flow structures in both the interior and near the boundaries increases with increasing
Rayleigh number [25,27,29] leading to improved agreement with the heat-exchanger model
at high Rayleigh numbers [27].

Convection and double-diffusive convection in a porous medium have a wide range
of geophysical and engineering applications [30–32], for example, in understanding large-
scale convection in a geothermal reservoir [33]. Convection in a porous medium driven by
concentration gradients models groundwater transport in saline aquifers [34,35] and may
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be used to understand the possibility and risks of storing carbon dioxide (CO2) in large
porous underground reservoirs to mitigate CO2 emissions [36,37].

Porous media convection is also widely studied in enclosures that are closer to an
experimental setup [38–45]. Such an enclosure configuration typically adopts impermeable
boundary conditions (B.C.) in the horizontal, with no horizontal thermal and salinity fluxes,
a configuration that will be referred to as the no-flux case. One major difference between
no-flux and periodic boundary conditions in the horizontal is that the latter allow well-
defined traveling waves, while no-flux B.C. require a large horizontal domain in order
to observe propagating disturbances [43]. Such traveling waves are typically associated
with reduced heat transport compared with steady convection rolls [43]. Two-dimensional
traveling waves in horizontally periodic domains have been widely studied theoretically in
the context of oscillatory double-diffusive convection [46,47] and oscillatory binary fluid
convection [48,49] as well as experimentally using Hele-Shaw geometry [50,51]. Moreover,
standing waves that are unstable to perturbations in the form of traveling waves within a
horizontally periodic domain become stable with no-flux B.C., suggesting that standing
waves can also be observed in direct numerical simulations [43].

This work employs single-mode equations to analyze convection and double-diffusive
convection in a porous medium and to explore the physics aspects that can be included
within this approach. The single-mode equations preserve the nonlinear interaction be-
tween the horizontally averaged mode and a single Fourier mode while fully resolving
the vertical direction leading to strongly nonlinear solutions. We first focus on thermal
convection with salinity as a passive scalar. The single-mode solutions show qualitative
agreements with DNS results for the root-mean-square (RMS) temperature, vertical velocity
and horizontal velocity. The RMS values in the interior also exhibit certain trends with the
Rayleigh number similar to the DNS results [25,27]. We demonstrate that the single-mode
solutions are consistent with the heat-exchanger model, which describes well the mean
temperature gradient in the interior obtained in DNS [25,27]. The Nusselt number Nu
scaling with the Rayleigh number obtained from the single-mode solutions is consistent
with that for exact 2D steady convection rolls computed numerically [26] and respects
upper bound theory [52].

We further employ single-mode solutions to analyze the influence of active salinity
that provides an additional contribution to the buoyancy term, but with a smaller diffusivity
than the temperature. The single-mode solutions are able to capture the stabilizing effect of
the imposed salinity gradient with progressively lower Nu and Sh as the salinity gradient
increases [40]. The single-mode solutions are also able to predict traveling and standing
waves and the associated Nu and Sh, both of which are reduced in comparison with steady
convection rolls, a prediction also consistent with DNS observations [43]. The Sh obtained
from single-mode solutions shows a scaling law with the Lewis number (Le) close to the
DNS observation for both active [40] and passive [39] salinity. Single-mode solutions also
show agreement with DNS with no-flux boundary conditions in the horizontal [39,40,43]
after mirroring the domain.

The remainder of this paper is organized as follows. Section 2 describes the formu-
lation of the single-mode equations for double-diffusive convection in a porous medium.
Section 3 then compares the single-mode solutions against a wide range of DNS re-
sults [25–28,39,40,43], exact 2D steady convection rolls [26] and upper bound theory [52].
We conclude the paper with a discussion of future directions in Section 4.

2. Single-Mode Solutions for Double-Diffusive Convection in a Porous Medium

We consider a fluid-saturated porous layer between two infinitely long parallel hori-
zontal plates separated by a distance h. The temperature and salinity at these two plates are
maintained at constant values with the lower plate maintained at a higher temperature and
salinity. The equation of state (ρ∗ − ρr∗)/ρr∗ = −α(T∗ − Tr∗) + β(S∗ − Sr∗) is linear, with
constant expansion/contraction coefficients α, β and reference density, temperature, and
salinity ρr∗, Tr∗, Sr∗, respectively. The subscript ∗ indicates a dimensional quantity. In the
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following, we normalize the temperature T∗ by the temperature difference between the
bottom and top layer, T = T∗/ΔT (ΔT = Tbot − Ttop > 0), and likewise for the salinity,
S = S∗/ΔS (ΔS = Sbot − Stop > 0). Spatial coordinates are normalized by the height h
of the layer while time and velocity are normalized using the time σh2/κT and the speed
κT/h, respectively. Here, σ is the saturated porous medium to fluid heat capacity ratio and
κT is the thermal diffusivity of the saturated porous medium, respectively. We decompose
the temperature and salinity into a linear base state and deviation,

T = 1 − z + T̃, S = 1 − z + S̃, (1)

and introduce the velocity field u := (u, v, w) in Cartesian coordinates (x, y, z) with z as the
upward vertical direction. Dropping the tildes and adopting the Darcy–Oberbeck–Boussinesq
equations [30] in the infinite Darcy–Prandtl number limit, we arrive at the governing equations:

u =−∇p + RaT(T − RρS)ez, (2a)

∇ · u =0, (2b)
∂T
∂t

+ u ·∇T − w =∇2T, (2c)

ε
∂S
∂t

+ u ·∇S − w =
1
Le

∇2S. (2d)

Here, the governing non-dimensional parameters include the Rayleigh–Darcy number
RaT , the density ratio Rρ, the Lewis number Le and the normalized porosity ε of the
porous medium:

RaT :=
gαΔTKh

κTν
, Rρ :=

βΔS
αΔT

, Le :=
κT
κS

, ε :=
ε

σ
, (3)

where g is the gravitational acceleration, K is the permeability of the porous medium, ν is
the viscosity of the fluid, κS is the salinity diffusivity, ε is the porosity of the porous medium,
and ez is the unit vector in the vertical direction. In this work, we fix the normalized porosity
as ε = 1 and suppose that the top and bottom boundaries are impermeable and maintained
at constant temperature and salinity, i.e., that w and the temperature and salinity deviations
T and S satisfy

w(x, y, z = 0, t) = w(x, y, z = 1, t) (4a)

= T(x, y, z = 0, t) = T(x, y, z = 1, t) (4b)

= S(x, y, z = 0, t) = S(x, y, z = 1, t) (4c)

= 0. (4d)

We impose periodic boundary conditions in the horizontal on all variables.
We now formulate the single-mode equations following similar procedure in related

problems [1,2,6,12,14]. We decompose the temperature into a horizontally averaged temper-
ature deviation T̄0(z, t) from the conduction state and a single harmonic in the horizontal
direction associated with the wavenumber pair (kx, ky) and a complex amplitude T̂(z, t).
The salinity, velocity and pressure are decomposed similarly:

u(x, y, z, t) =ū0(z, t) + û(z, t) ei(kx x+kyy) + c.c., (5a)

T(x, y, z, t) =T̄0(z, t) + T̂(z, t) ei(kx x+kyy) + c.c., (5b)

S(x, y, z, t) =S̄0(z, t) + Ŝ(z, t) ei(kx x+kyy) + c.c., (5c)

p(x, y, z, t) = p̄0(z, t) + p̂(z, t) ei(kx x+kyy) + c.c., (5d)
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where c.c. indicates a complex conjugate. Equation (5) assumes a horizontal planform in
the form of a square (kx = ky) or a roll (ky = 0), both motivated by the heat-exchanger
model (Equation (3.2) from [27]), although more general planforms can be included within
the single-mode approach [4,5].

We next substitute (5) into the governing equations (2) and balance the horizontally
averaged component and the harmonic components, respectively. Using the boundary
conditions in (4) and the momentum equation in (2a), we obtain ū0 = 0, a major difference
from the nonporous case described by Navier–Stokes equations where large-scale shear is
allowed and may play an important role [10–12]. We eliminate the horizontally averaged
pressure ∂z p̄0 = RaT(T̄0 − RρS̄0) and the harmonic components of the horizontal velocity
and pressure using the horizontal momentum equations and the continuity equation:

û(z, t) = −ikx p̂(z, t), v̂(z, t) = −iky p̂(z, t), p̂(z, t) = −∂zŵ(z, t)
k2

x + k2
y

. (6)

Dropping all higher-order harmonics, we obtain the desired single-mode equations:

∇̂2ŵ =∇̂2
⊥RaT(T̂ − RρŜ), (7a)

∂T̂
∂t

+ ŵ∂zT̄0 − ŵ =∇̂2T̂, (7b)

ε
∂Ŝ
∂t

+ ŵ∂zS̄0 − ŵ =
1
Le

∇̂2Ŝ, (7c)

∂T̄0

∂t
+ ∂z(ŵ∗T̂ + ŵT̂∗) =∂2

z T̄0, (7d)

ε
∂S̄0

∂t
+ ∂z(ŵ∗Ŝ + ŵŜ∗) = 1

Le
∂2

z S̄0, (7e)

where ∇̂2 := ∂2
z − (k2

x + k2
y), ∇̂2

⊥ := −(k2
x + k2

y) and the superscript ∗ denotes a complex
conjugate. The corresponding boundary conditions obtained from (4) are:

ŵ(z = 0, t) = ŵ(z = 1, t) (8a)

= T̂(z = 0, t) = T̂(z = 1, t) = Ŝ(z = 0, t) = Ŝ(z = 1, t) (8b)

= T̄0(z = 0, t) = T̄0(z = 1, t) = S̄0(z = 0, t) = S̄0(z = 1, t) (8c)

= 0. (8d)

The harmonic terms in the single-mode equations in (7a)–(7c) are closely related to
the heat exchanger model that is an exact solution in a vertically periodic domain and that
describes well the interior of the convecting state in a porous medium [25,27,29]. These
harmonic components also resemble the elevator mode that plays an important role in
double-diffusive convection; see. e.g., [53–55]. However, the single-mode equations in (7)
also apply to a vertically confined domain with the nonperiodic B.C. (8) as well as to the
nonlinear interaction between harmonic components and the horizontally averaged modes.
As a result, the single-mode equations used here can be understood as an extension of the
heat exchanger model to a vertically confined domain with the nonlinear interaction with
the horizontally averaged mode included.

In the following, we use the numerical software pde2path [56,57] to compute strongly
nonlinear solutions of the single-mode equations in (7) as a function of the system parameters.
The vertical direction is discretized using the Chebyshev collocation method with derivatives
computed using the Chebyshev differentiation matrix [58] implemented following Uecker [59].
The number of grid points used, including the boundary, is chosen as Nz = 257 for the thermal
convection results, while all other results use Nz = 129. Selected solution profiles of steady
convection rolls are validated against the nonlinear boundary value problem (NLBVP) solver
in Dedalus [60] with grid points Nz = 1024. In order to validate the single-mode equations
and associated nonlinear solutions, we reproduce the steady convection rolls of single-mode
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equations for RBC [1,2,5] as well as the high wavenumber asymptotic single-mode solutions
of RBC (Section 3 in [61]) and convection in a porous medium (Section 3 in [14]). We deter-
mine the stability of steady solutions and of traveling waves in a comoving frame from the
eigenvalues of the associated Jacobian matrix computed with the eigs command focusing
on a finite subset of the eigenvalues.

The horizontal translation symmetry in the governing Equation (2) corresponds to the
observation that ŵ, T̂ and Ŝ in (7) multiplied by eiθ (θ is a constant phase angle) continue to
satisfy the equations. The presence of horizontal translation symmetry within the single-
mode equations requires a phase condition whenever kx �= 0 in order to fix the solution
phase and obtain a unique solution. The implementation of this condition following
Rademacher and Uecker [62] requires the predictor φ(z, t) from a solution φold(z, t) to be
orthogonal to iφold(z, t):

∫ 1

0
iφold(z, t)[φ(z, t)− φold(z, t)]∗dz = 0, (9)

where

φ(z, t) :=
[

T̂(z, t), Ŝ(z, t)
]T

. (10)

The horizontally averaged modes are not involved in setting the phase. The vertical velocity
ŵ does not need to be involved in (9) because its phase is completely determined by the
phase of T̂ and Ŝ; see Equation (7a).

To compute a steady nonlinear wave traveling in the x direction with speed c, we
write Equations (7b)–(7c) in the comoving frame,

∂T̂
∂t

− ickxT̂ + ŵ∂zT̄0 − ŵ =∇̂2T̂, (11a)

ε
∂Ŝ
∂t

− ickxεŜ + ŵ∂zS̄0 − ŵ =
1
Le

∇̂2Ŝ, (11b)

and set the time derivatives in these equations and in (7d)–(7e) to zero. With the phase
condition in (9), the resulting problem has a unique nonlinear eigenvalue c and associated
solution profile. Both are updated at each step of the continuation procedure. Steady
solutions are associated with c = 0.

To compute standing waves, we perform the numerical simulation of single-mode
equation using the initial value problem (IVP) solver in Dedalus [60] with the additional
assumption that ŵ, T̂ and Ŝ are real functions. This assumption breaks the horizontal
translation symmetry and mimics no-flux boundary conditions in the horizontal. As a
result, supercritical but unstable standing waves in a horizontally periodic domain are
stabilized, allowing the use of DNS to compute such solutions.

3. Comparisons of Single-Mode Solutions with Direct Numerical Simulations

In this section, we compare the single-mode solutions with DNS for two types of bound-
ary conditions in the horizontal. The first uses periodic boundary conditions [25–28,43,52],
and thus the horizontal wavenumber kx = 2π/Lx corresponds to a domain size Lx whenever
a single harmonic corresponding to a pair of counter-rotating convection rolls is present. If
multiple horizontal modes are present, we use the wavenumber scaling law obtained from
DNS data [25,27] as described later. We also compare the single-mode solutions with the corre-
sponding results for an enclosure described by no-flux B.C. in the horizontal, i.e., impermeable
boundaries with zero thermal and salinity fluxes corresponding to Neumann boundary con-
ditions (NBC) [39,40,43]. Combining such a no-flux solution with a horizontally reflected
solution generates a solution of the periodic B.C. case. Thus, the associated wavenumber is
computed as kx = nπ/Lx,NBC, where n is the number of convection cells in the enclosure and
Lx,NBC is the enclosure domain size with no-flux horizontal B.C. Note that traveling wave
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solutions are excluded in no-flux cases. We also compare the single-mode solutions with
exact 2D steady convection rolls computed by Newton–Kantorovich iteration [26] or reached
by DNS [39,40,43]. The exact 2D steady convection rolls obtained by these methods include
higher-order harmonics in the horizontal, an effect not included in the single-mode solutions.

3.1. Thermal Convection with Passive Salinity Rρ = 0

In this subsection, we set Rρ = 0, indicating that the salinity is passive, in order to
compare the results with thermal convection and transport of a passive scalar in a porous
medium without additional contributions to the driving buoyancy term [25–28,39,52]. This
subsection first compares the single-mode solutions with DNS results [25–28], as well
as exact 2D steady convection rolls [26] and upper bound theory [52], all with periodic
boundary conditions in the horizontal. We also compare the single-mode solutions with
exact 2D steady convection rolls reached by DNS with no-flux B.C. in the horizontal [39].

Selecting a suitable wavenumber is the main difficulty of applying single-mode so-
lutions [1,4]. Here, we choose ky = 0 to model a 2D flow and the wavenumber scaling
kx = 0.48Ra0.4

T obtained from the Fourier spectrum at z = 0.5 in 2D DNS (Figure 10a in [27])
and (Figure 5 in [29]). For 3D results, we select the wavenumber kx = ky = 0.17Ra0.52

T based
on measurement at z = 0.5 in 3D DNS (Figure 10a in [27]). These scaling laws represent
the best-fit power laws over the range of RaT accessible to DNS.

We first compare the harmonic components of single-mode solutions resembling
steady convection rolls with the RMS temperature and velocity from DNS. We compute the
RMS value over the horizontal direction from steady single-mode convection rolls using

Trms(z) =
√

2|T̂(z)|, wrms(z) =
√

2|ŵ(z)|/RaT , urms(z) =
√

2|û(z)|/RaT , (12)

consistent with the corresponding DNS results [25,27], where the buoyancy velocity scale
is employed to normalize velocities. Figure 1 shows that the RMS distribution over the
vertical direction z of the single-mode solutions reproduces the qualitative behavior of the
RMS values from 3D DNS (Figure 8b in [27]). For example, the temperature RMS values
from both the single-mode solutions and the DNS results exhibit a peak near the top and
bottom boundaries, and the location of this peak is closer to the boundary at a higher
Rayleigh number. The RMS values of both temperature and vertical velocity show a nearly
uniform profile in the interior (z = 0.5) for both single-mode solutions and DNS results.
For the RMS value of the horizontal velocity, the single-mode solutions also reproduce
the peak values at the top and bottom boundaries as observed in the DNS. However, the
single-mode solutions always predict a zero horizontal velocity RMS in the interior similar
to the heat-exchanger model [25,27], although the DNS results indicate a non-zero value.

(a) (b) (c)

Figure 1. RMS profiles of (a) Trms(z), (b) wrms(z) and (c) urms(z) at RaT = 4000, 8000, 16,000
associated with the 3D wavenumber kx = ky = 0.17Ra0.52

T obtained from single-mode solutions
(lines) compared with DNS results (Figure 8b in [27]) (lines with markers). Legend for all three panels
is provided in panel (b).
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Figure 2 then compares the mean temperature 1 − z + T̄0 obtained from single-mode
solutions with DNS results in both 2D (Figure 3a in [25]) and 3D (Figure 7 in [27]) at the cor-
responding Rayleigh number. Here, we observe that the single-mode solutions accurately
reproduce the mean temperature gradient in the interior from DNS, in particular at high
Rayleigh numbers. The heat-exchanger model which is an exact solution for unbounded
convection in a porous medium was shown to describe well the mean temperature gradient
in the interior; see 2D (Equations (3) and (4) in [25]) and 3D (Equation (3.2) in [27]). Con-
sidering the single-mode solutions satisfying (7) and making the reasonable assumption
∂2

zŵ(z = 0.5) = 0 (cf. Figure 1), we notice that the single-mode solutions reduce to

−1 + ∂zT̄0(z = 0.5) = − k2
x + k2

y

Ra
. (13)

The mean temperature gradient in (13) is the same as that within the heat-exchanger
model [25,27]. Here, the single-mode solutions also reproduce the trend observed in
DNS data [25,27] that the mean temperature gradient is closer to zero (isothermal inte-
riors) at a larger Rayleigh number in 2D results (Figure 2a), but farther from zero in 3D
results (Figure 2b), observations based on the assumed wavenumber scaling kx ∼ Ra0.4

T
in 2D [25] and kx = ky ∼ Ra0.52

T in 3D [27]. This wavenumber-Rayleigh-number scaling
explains, in conjunction with (13), the different Rayleigh number trends of the interior
mean temperature gradient observed in 2D and 3D using single-mode solutions.

(a) 2D (b) 3D

(c) 2D (d) 3D

Figure 2. Comparisons of the mean temperature profiles obtained from single-mode solutions (lines)
with DNS (lines with markers). Panel (a) displays 2D results at RaT = 10, 000, 20,000 and 40,000 using
kx = 0.48Ra0.4

T and ky = 0 compared with 2D DNS (Figure 3a in [25]). Panel (b) shows 3D results at
RaT = 4000, 8000 and 16,000 using kx = ky = 0.17Ra0.52

T compared with 3D DNS (Figure 7 in [27]).
Panels (c) and (d) show zooms of panels (a) and (b) near the bottom boundary, respectively.

The comparisons presented in Figure 2 also show that the single-mode solutions repro-
duce the mean temperature overshoot, a thin stably stratified layer near both boundaries.
This overshoot appears closer to the boundary at higher Rayleigh numbers, a fact evident
in both the single-mode solutions and DNS results; see the zoom near the bottom boundary
in Figure 2c,d. Although the precise values of the overshoot temperature in the single-mode
solutions are not fully accurate, this observation nonetheless suggests that the single-mode
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solutions preserve certain physical mechanisms responsible for this overshot, which is
also present in single-mode solutions for RBC [1–3]. In the high Rayleigh number and
high wavenumber asymptotic regime of porous media convection, an overshoot near the
boundary is also found (Figure 3 in [14]), but is absent in the same asymptotic regime in
RBC [13]. Such mixed convective-stably-stratified fluids are extensively studied in pen-
etrative convection (Section 7.3.4 in [63]) using both numerical simulations [64–67] and
experiments [67–71]; see the recent review [72].

In Figure 3, we compare the Rayleigh number trend of the RMS values in the interior, at
z = 0.5, obtained from single-mode solutions with DNS results in both 2D (Figure 3b in [25])
and 3D (Figure 8a in [27]). Evidently, the single-mode theory substantially underestimates
Trms(z = 0.5) and wrms(z = 0.5) at large RaT , which appear to saturate with increasing
RaT in DNS results, but continue to decrease within single-mode theory, although the latter
reproduces the DNS observation that these quantities approach one another at high RaT .
In fact, the single-mode quantities overlap at large RaT , a direct consequence of (7a) and the
assumption that ∂2

zŵ(z = 0.5) = 0 at high RaT , together with (12). However, this relation
breaks down at low Rayleigh numbers as shown in both DNS and single-mode solutions.
We also examined the profiles of the single-mode solutions at a low Rayleigh number (not
shown here), and found that ŵ is no longer uniform in the interior, leading directly to the
observed difference between Trms(z = 0.5) and wrms(z = 0.5). For high Rayleigh numbers,
the DNS results indicate that both Trms(z = 0.5) and wrms(z = 0.5) tend to a constant
value, which is not observed in the single-mode solutions. Moreover, in single-mode theory
urms(z = 0.5) remains zero at the Rayleigh numbers reported here, while the DNS data
show a non-zero value with a slow decrease to zero as RaT increases.

(a) 2D (b) 3D

Figure 3. Comparisons of the RMS values at z = 0.5 obtained from single-mode solutions (lines) with
DNS (markers). Panel (a) shows 2D results with DNS data obtained from Figure 3b in [25], while
panel (b) displays 3D results with DNS data obtained from Figure 8a in [27].

We next analyze the heat transport by computing the Nusselt number

Nu := 1 − 〈∂zT̄0(z = 0, t)〉t. (14)

where 〈·〉t is the average over time. Figure 4a shows Nu as a function of RaT obtained
from single-mode solutions with the 2D kx = 0.48Ra0.4

T wavenumber scaling compared
with 2D DNS data (Figure 2 in [25] and Figure 5b in [26]), exact 2D steady convection rolls
(Figure 5b in [26]), and upper bound theory (Figure 5 in [52]). Figure 4b shows the corre-
sponding results with the 3D kx = ky = 0.17Ra0.52

T wavenumber scaling compared with
DNS data (Figure 2a in [27] and Table 1 in [28]) and upper bound theory (Figure 5 in [52]).
Near onset, RaT ≤ 100, the single-mode solutions deviate from the DNS results because
the employed wavenumber scaling based on high RaT DNS data may not apply in this
regime. Compared with DNS data [25–27], the single-mode solutions overpredict Nu in
the small Rayleigh number regime RaT ∈ [100, 1000], but underestimate it in the high RaT
regime. We also fit Nu over RaT for RaT ∈ [103, 8.4 × 104] to obtain Nu ≈ 0.154Ra0.666

T for
single-mode solutions with the 2D wavenumber scaling. For the 3D results, the Nu scaling
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is Nu ≈ 0.108Ra0.723
T for RaT ∈ [103, 5.8× 104]. Here, we note that the scaling exponent η of

Nu ∼ Raη
T is lower than that observed in DNS suggesting Nu ∼ RaT at high RaT [25–28].

Such an inconsistent Nu scaling may result from the underlying single-mode assumption
precluding the presence of proto-plumes that emerge near the boundary [25,27] but display
a different wavenumber scaling from that employed here (Figure 10 in [27]). The steady-
state assumption may also lead to a difference in Nu from DNS results: the exact 2D steady
convection rolls involving higher order harmonics computed by Newton–Kantorovich
iteration exhibit a scaling law Nu ∼ Ra0.6

T [26] that differs from the Nu ∼ RaT scaling
observed in DNS [25–28,52]. Moreover, the secondary Hopf bifurcation of exact 2D steady
convection rolls present in DNS leads to secondary boundary modes [26,73–75], but such
a secondary bifurcation is absent from the single-mode formulation. However, the Nu
scaling obtained from the single-mode solutions remains lower than the upper bound from
upper bound theory [52], as shown in Figure 4.

(a) 2D (b) 3D

Figure 4. Nu as a function of RaT from single-mode solutions (black lines). Panel (a) shows 2D
results with kx = 0.48Ra0.4

T , ky = 0 compared with DNS data (Figure 2 in [25] and Figure 5b in [26]),
exact 2D steady convection rolls (Figure 5b in [26]), and upper bound theory (Figure 5 in [52]). Panel
(b) displays 3D results with kx = ky = 0.17Ra0.52

T compared with DNS data (Figure 2a in [27] and
Table 1 [28]) as well as upper bound theory (Figure 5 in [52]). The single-mode solutions are stable
within this severe truncation.

The Nu scaling obtained from single-mode solutions also depends on the assumed
wavenumber, and the single-mode solutions of RBC suggest a suitable wavenumber re-
sulting in Nu close to experimental measurement [5]. Here, we further investigate the
wavenumber influence on Nu to identify the parameter regime in which the single-mode
solutions provide a valid description of the system, focusing on 2D results (ky = 0).
Figure 5 shows Nu for a range of kx and RaT . These values are then compared with the Nu
of exact 2D steady convection rolls reached in DNS (Figure 6 and Table 3 in [39]), where
the domain size of the enclosure is varied. Note that the enclosure is associated with no-flux
horizontal boundary conditions, and thus the associated wavenumber is computed as
kx = nπ/Lx,NBC. In the high wavenumber regime corresponding to a narrow convection
cell, the single-mode solutions predict Nu close to the DNS results, but the prediction
begins to deviate for larger horizontal domain sizes (smaller kx). This deviation can be
traced to the interaction between different horizontal harmonics present in larger domains
that lead to non-sinusoidal solution profiles in the horizontal (Figure 5 in [39]). A similar
result is found in salt-finger convection when the corresponding single-mode solutions
are compared against DNS results (Figures 2, 6 and 11 in [12]). At lower RaT , closer to the
onset, the agreement between the single-mode solutions and DNS improves; see Figure 5b,
as also found in salt-finger convection (Figure 18 in [12]).
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(a) (b)

Figure 5. Nu as a function of the horizontal wavenumber kx for RaT = 50, 100, 200, 400, 1000 and
2000 (from bottom to top) obtained from single-mode solutions (lines) and compared with DNS
results (black squares) with kx = nπ/Lx,NBC using n and Lx,NBC appropriate to no-flux horizontal
B.C. (Figure 4 and Table 2 in [39]). Panel (b) is a zoom of panel (a).

Figure 6 shows isocontours of the streamfunction ψ, the total temperature 1 − z + T
and the total salinity 1 − z + S. Here, the streamfunction for a two-dimensional flow is
constructed as

ψ(x, z, t) =ψ̂(z, t)eikx x + c.c. with (15a)

ψ̂ =ŵ/(ikx). (15b)

The total temperature and total salinity are both constructed from the single-mode ansatz
in (5) and adding the background linear profile as in Equation (1). Figure 6 reproduces
the qualitative behavior in the parameter regime of Figure 5 in [39] despite its sinusoidal
structure in the horizontal. In fact, the nonsinusoidal nature of the streamfunction of the
exact 2D steady convection rolls reached in DNS accounts for the Nu difference between the
single-mode equations and DNS shown in Figure 5. The total salinity at the higher Lewis
number Le = 20 shown in Figure 6d displays a relatively well-mixed interior compared
with the corresponding result at Le = 4 in Figure 6c, as also found in DNS observations
(Figure 5 in [39]).

(a) ψ (b) 1 − z + T (c) 1 − z + S (d) 1 − z + S

Figure 6. Solution profile of single-mode solutions displaying isocontours of (a) streamfunction
ψ, (b) total temperature 1 − z + T and (c) total salinity 1 − z + S at RaT = 200, kx = 1.89π, and
Le = 4. Panel (d) shows the isocontours of total salinity 1 − z + S at Le = 20 with other parameters
unchanged. This figure is to be compared with the corresponding DNS results (Figure 5 in [39]).

We now turn to the properties of the Sherwood number quantifying salinity transport
and defined as

Sh := 1 − 〈∂zS̄0(z = 0, t)〉t. (16)

Figure 7 shows Sh as a function of Le for passive salinity (Rρ = 0) for a range of RaT ,
compared with the DNS results (Figure 6 and Table 3 in [39]), on the assumption that kx =
π, 1.25π, 2π, 3π and 5.83π for RaT = 50, 100, 200, 400 and 1000, respectively, based on the
expression kx = nπ/Lx,NBC with n and Lx,NBC obtained from [39]. Here, the single-mode
solutions predict Sh that overlaps with the DNS results at RaT = 50 over a wide range
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of Le. For high RaT and Le � 1 the single-mode equations over-predict Sh in comparison
with the DNS. The single-mode solutions show a scaling law Sh ∼ Leη with η = 0.52 for
RaT = 50 and η = 0.51 for RaT = 100, 200, 400 and 1000 fitted within Le ∈ [10, 100]. This
scaling law is close to the scaling law Sh ∼ Le0.5 observed in DNS results [39].

Figure 7. Sh as a function of Le from single-mode solutions (lines) with Rρ = 0 compared with
DNS (markers) from Figure 6 and Table 3 in [39]. The horizontal wavenumbers are chosen as kx = π,
1.25π, 2π, 3π, 5.83π for RaT = 50, 100, 200, 400, 1000 based on kx = nπ/Lx,NBC with n and Lx,NBC

as in [39].

3.2. Double-Diffusive Convection with Rρ �= 0

In this subsection, we investigate the effect of an active salinity that also contributes to the
buoyancy (Rρ �= 0). Here, Rρ > 1 corresponds to an overall stably stratified (bottom-heavy)
configuration. The resulting configuration differs substantially from the passive case Rρ = 0
in that it admits oscillations about the conduction state. This overstable case manifests itself in
the presence of a Hopf bifurcation that precedes the steady onset studied in the preceding
section. In this subsection we compare the resulting standing waves, traveling waves and
steady convection rolls computed from the single-mode equations with the corresponding 2D
DNS results using both no-flux and periodic B.C. in the horizontal [40,43].

Figure 8a shows a standing wave (SW) over one oscillation period obtained from a
simulation of the single-mode equations with real [ŵ, T̂, Ŝ] in terms of the quantities

nu(t) :=1 − ∂zT̄0(z = 0, t), (17a)

sh(t) :=1 − ∂zS̄0(z = 0, t), (17b)

ψmid(t) :=max
x

ψ(x, z = 0.5, t), (17c)

displaying values close to the 2D DNS results with no-flux B.C. in the horizontal (Figure 5 in [43])
as compared in Table 1. The oscillation period from the single-mode equations is Tp = 1.568,
which is also close to the DNS observation of Tp = 1.535 [43], p. 77. Figures 8b,c show
isocontours of the streamfunction at the minima and maxima of ψmid(t), indicating a complete
flow reversal between these instants, in agreement with DNS results (Figure 6 in [43]) and
SW observed in related problems [47,76]; the quantities nu(t) and sh(t) are quadratic and so
oscillate with half the oscillation period.

Figure 9a shows the bifurcation diagram for the single-mode equations at RaT = 53,
Le = 5, kx = 2π/Lx = π corresponding to Lx = 2. This parameter regime displays travel-
ing waves (TW) in DNS with periodic B.C. in the horizontal at Rρ = 0.1 (Figure 8b in [43]).
Here, the single-mode solutions also show a branch of TW (in red) and the TW branch
is stable at Rρ = 0.1, consistent with DNS observation [43]. The TW branch loses sta-
bility at Rρ = 0.0954 through a secondary Hopf bifurcation prior to its termination on
the lower branch of steady convection (in black). Figure 9a shows that both TW and
SW bifurcate supercritically from the trivial solution, and that the TW branch displays a
larger Nu than the SW branch. This is consistent with the prediction that a stable branch
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emerges from a Hopf bifurcation with O(2) symmetry whenever both TW and SW branches
bifurcate supercritically and that the larger amplitude branch measured by Nu is then
stable [46,48,77].

(a) (b) (c)

Figure 8. (a) One period of a standing wave computed from the single-mode equations at RaT = 55,
Rρ = 0.1, Le = 5, kx = π and ky = 0 displaying 10[nu(t)− 1], sh(t) and ψmid(t) as a function of
t ∈ [13.077, 14.645] with oscillation period Tp = 1.568. Panels (b) and (c) show the isocontours of
the streamfunction at t = 13.077 and t = 13.861, respectively. This figure is to be compared with the
corresponding DNS results (Figures 5 and 6 in [43]).

Table 1. Comparison of max
t

ψmid(t), max
t

nu(t), max
t

sh(t) and the oscillation period Tp of standing

waves obtained from the single-mode equations and DNS (Figure 5 and p. 77 in [43]) at RaT = 55,
Rρ = 0.1 and Le = 5. The single-mode solutions are associated with kx = π, ky = 0 while the DNS
results [43] are computed with no-flux B.C. in a horizontal domain of size Lx,NBC = π/kx = 1.

max
t

ψmid(t) max
t

nu(t) max
t

sh(t) Period Tp

Standing waves from DNS [43] 0.670 1.052 1.594 1.535
Standing wave from single-mode 0.705 1.058 1.652 1.568

(a) (b)

Figure 9. (a) Bifurcation diagram of single-mode solutions at RaT = 53, Le = 5, kx = π and ky = 0,
showing steady convection rolls ( ), SW (�) and TW ( ). Thick lines indicate stable solutions
and thin lines represent unstable solutions. (b) The temporal frequency ω = 2π/Tp of SW (�)
and TW ( ), the latter computed from ω = |c|kx. The Hopf frequency is ωHopf = 5.36981 at the
Hopf bifurcation point Rρ = 0.10615 (�) from the trivial solution. Near the termination of the SW

branch, the frequency ω decreases to zero at R(SW)
ρ as ω ∼ 1/[− ln(Rρ − R(SW)

ρ )] ( . ) as predicted
theoretically [78]. Near the termination of the TW branch, the phase velocity c of the waves decreases

to zero at R(TW)
ρ as c ∼

√
Rρ − R(TW)

ρ ( ) as also predicted theoretically [79,80].

Figure 9b displays the oscillation frequency ω = 2π/Tp for both TW and SW. Both
start at ωHopf = 5.36981 at the Hopf bifurcation point Rρ = 0.10615 from the trivial solution,
and both decrease to zero with decreasing Rρ, at which point they terminate on the lower
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branch of (unstable) steady rolls. The TW terminate in a local parity-breaking bifurcation

at R(TW)
ρ = 0.0918 and do so as ω ∼

√
Rρ − R(TW)

ρ [49,79,80] while the SW terminate

at R(SW)
ρ = 0.06966838 in a global bifurcation and do so as ω ∼ 1/[− ln(Rρ − R(SW)

ρ )],
cf. [48,78]. The resulting bifurcation diagram resembles those found in [47,49,79].

At the slightly different Rayleigh number RaT = 55, the other parameters being the
same (Le = 5, Rρ = 0.1, Lx = 2), DNS with periodic B.C. in the horizontal instead shows
the existence of steady convection rolls (Figure 8a in [43]), while the single-mode solutions
also give steady convection rolls, as shown in the top row of Figure 10. For comparison, the
bottom row of Figure 10 shows the corresponding solution profiles for the TW at RaT = 53.
Here, both steady convection rolls and traveling waves show streamlines resembling
counter-rotating rolls, but the isocontours of the total temperature and total salinity of the
traveling waves reveal profiles that are less well-mixed than in steady convection, as also
found in DNS (Figure 8 in [43]). The left-right asymmetry of the TW profiles is indicative
of propagation.

(a) ψ (b) 1 − z + T (c) 1 − z + S

(d) ψ (e) 1 − z + T (f) 1 − z + S

Figure 10. Top: solution profiles for steady convection rolls from the single-mode equations at
RaT = 55 with isocontours of (a) streamfunction ψ, (b) total temperature 1 − z + T and (c) total
salinity 1 − z + S. Bottom: solution profiles for a left traveling wave with c = −1.07 in the comoving
frame from the single-mode equations at RaT = 53 with isocontours of (d) streamfunction ψ, (e) total
temperature 1 − z + T and (f) total salinity 1 − z + S. Other parameters are Rρ = 0.1, Le = 5, kx = π

and ky = 0 as used in 2D DNS with periodic B.C. in the horizontal and period Lx = 2π/kx = 2
(Figure 8 in [43]).

Table 2 further reports the maximum value of streamfunction ψmax := max
x, z, t

ψ(x, z, t),

Nu and Sh of steady convection rolls and traveling waves obtained from single-mode
solutions. These values are then compared with the DNS values reported in Figure 8 in [43].
Table 2 also includes the phase speed c of traveling waves obtained from single-mode
solutions for comparison with DNS results [43], p. 79. Note that c = 0 for steady solutions
by definition. The comparison in Table 2 shows that the single-mode solutions quite
accurately predict the correct values of ψmax, Nu, Sh and c for both steady convection rolls
and traveling waves.
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Table 2. Comparison of ψmax, Nu, Sh and c between single-mode solutions and DNS for steady
convection rolls at RaT = 55 and traveling waves at RaT = 53. Other parameters are Rρ = 0.1, Le = 5,
kx = π and ky = 0; the DNS results are computed with periodic B.C. in the horizontal with period
Lx = 2π/kx = 2 (Figure 8 and p. 79 in [43]).

ψmax Nu Sh c

Steady convection rolls from DNS (RaT = 55) [43] 1.924 1.371 3.320 0
Steady convection rolls from single-mode (RaT = 55) 1.812 1.341 3.387 0
Traveling wave from DNS (RaT = 53) [43] 0.869 1.087 1.865 −1.03
Traveling wave from single-mode (RaT = 53) 0.848 1.083 1.828 −1.07

Figure 11a shows the bifurcation diagram for RaT = 100, Le = 20, kx = π and ky = 0.
Here, the stable TW branch connects to the upper branch of steady convection rolls instead
of the lower branch. The connection stabilizes steady rolls for Rρ < R(TW)

ρ . A similar
bifurcation diagram with the TW branch terminating at the upper branch was computed
for binary fluid convection (Figure 1 in [81]). The transition between the diagrams in
Figures 9 and 11 is the result of increasing RaT and Le and occurs when the TW termination
point R(TW)

ρ passes through the fold on the branch of steady rolls, cf. Figure 3 in [49].
Figure 11a also shows Nu for the unstable SW but these may undergo a fold at lower Rρ

that renders them unstable even with no-flux B.C. Figure 11b displays ω = 2π/Tp for SW
and ω = |c|kx for TW, both of which start from ωHopf = 23.40889 at the Hopf bifurcation
point Rρ = 0.58548 from the trivial solution and decrease with decreasing Rρ. Near

R(TW)
ρ = 0.129, where the TW branch connects to the upper branch of steady convection

rolls, the TW branch once again displays the c ∼
√

Rρ − R(TW)
ρ behavior consistent with

theoretical analysis [49,79,80].

(a) (b)

Figure 11. (a) Bifurcation diagram of single-mode solutions at RaT = 100, Le = 20, kx = π and
ky = 0 showing steady convection rolls ( ), SW (�) and TW ( ). Thick lines indicate stable solutions
and thin lines represent unstable solutions. (b) The temporal frequency ω = 2π/Tp of SW (�) and
TW ( ), the latter computed from ω = |c|kx. The Hopf frequency is ωHopf = 23.40889 at the Hopf
bifurcation point Rρ = 0.58548 (�) from the trivial solution. Near the termination of the TW branch

the phase velocity c of the waves decreases to zero at R(TW)
ρ as c ∼

√
Rρ − R(TW)

ρ ( ) as predicted
theoretically [79,80].

Figure 12 shows the solution profile at Rρ = 0.4 for both unstable steady convection
rolls and stable traveling waves. Here, the mean temperature of the traveling waves is
closer to a linear profile, a fact that is consistent with the lower Nu of traveling waves
shown in Figure 11. The isocontours of total temperature and salinity of traveling waves
also show profiles that are less well-mixed in the interior than in the corresponding steady
convection rolls, cf. Figure 10.
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(a) (b) ψ (c) 1 − z + T (d) 1 − z + S

(e) (f) ψ (g) 1 − z + T (h) 1 − z + S

Figure 12. Top: unstable steady convection rolls from single-mode equations showing (a) mean
temperature 1 − z + T̄0 and isocontours of (b) streamfunction ψ, (c) total temperature 1 − z + T and
(d) total salinity 1 − z + S. Bottom: stable left traveling wave convection in the comoving frame with
phase speed c = −5.31 from single-mode equations showing (e) mean temperature 1 − z + T̄0 and
isocontours of (f) streamfunction ψ, (g) total temperature 1 − z + T and (h) total salinity 1 − z + S.
The parameters are RaT = 100, Rρ = 0.4, Le = 20, kx = π and ky = 0.

Figure 13 shows Sh and Nu for single-mode solutions in the form of steady con-
vection rolls as a function of Rρ for RaT = 100, 150, 300 and 600 with wavenumbers
kx = nπ/Lx,NBC = π, 2π, 2π, and 4π, respectively. We select these wavenumbers
based on Lx,NBC = 1 and the number of convection cells observed in the DNS [40],
p. 1266. Here, single-mode solutions also reproduce the qualitative trend observed in
DNS (Figure 5 in [40]), namely that Sh and Nu decrease as Rρ increases, corresponding to
a stronger stabilizing effect of the salinity gradient. In particular, the single-mode solutions
predict Nu and Sh larger than or equal to those of steady convection rolls reached by
DNS for these RaT values, similar to the observations in Figures 5 and 7 as well as the
comparison in salt-finger convection [12]. Single-mode solutions in the form of steady
convection rolls also exist in the stably stratified regime Rρ > 1 as a result of diffusivity
difference between temperature and salinity. The single-mode solutions fold at Rρ = 1.665
when RaT = 600, which is consistent with DNS observation showing that the final state at
Rρ = 3 is the conduction state (Figure 7 in [40]).

(a) (b)

Figure 13. (a) Sh and (b) Nu, both as a function of Rρ from the single-mode equations (lines) at
Le = 20, ky = 0 and RaT = 100, 150, 300 and 600 with wavenumbers kx = nπ/Lx,NBC = π, 2π, 2π,
4π, respectively, compared with the corresponding DNS results (markers) (Figure 5 in [40]).
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Finally, Figure 14 fixes Rρ = 0.2 and presents Sh and Nu as a function of Le. The
wavenumber kx employed for each RaT is selected in the same way as in Figure 13 to
facilitate direct comparison with the corresponding DNS results (Figure 4 in [40]). We see
that for the single-mode solutions Sh ∼ Leη within Le ∈ [10, 100] with η = 0.53, 0.56, 0.53
and 0.54 for RaT = 100, 150, 300 and 600, respectively. These scaling laws closely follow
the trend Sh ∼ Le0.5 observed in the DNS data [40], although a slight difference exists.
The influence of Le on Nu is also relatively smaller compared with Sh, as also found in
DNS [40]. Moreover, the plot of Nu as a function of Le within the range Le ∈ [10−2, 102]
shows a minimum near Le ≈ 1 similar to the trend ψ ∼ Le at Rρ = 0.1 (Figure 11b in [43]).
This is undoubtedly a consequence of the fact that when Le = 1 the system ceases to be
double-diffusive.

(a) (b)

Figure 14. (a) Sh and (b) Nu, both as a function of Le, from the single-mode equations (lines) at
Rρ = 0.2, ky = 0, and RaT = 100, 150, 300 and 600 and wavenumbers kx = nπ/Lx,NBC = π, 2π, 2π,
4π, respectively, compared with the corresponding DNS results (markers) (Figure 4 in [40]).

4. Conclusions and Future Work

This work employs single-mode equations to analyze both convection and double-
diffusive convection in a porous medium where the Darcy law provides large-scale damp-
ing. The single-mode equations are obtained from a severely truncated Fourier expansion
in the horizontal, but preserve the nonlinear interaction between horizontally averaged
mode and a single harmonic mode of the convective state. The single-mode equations
fully resolve the vertical direction providing strongly nonlinear solutions. Despite the
shortcomings of this approach, we found the single-mode solutions reproduce much of the
observed phenomenology identified in high Rayleigh number simulations.

We first considered thermal convection where salinity can be viewed as a passive
scalar (Rρ = 0). In this case, convection sets via a steady state bifurcation. The resulting
steady convection rolls are well captured by steady solutions of the single-mode equations,
which reproduce the qualitative behavior of the RMS profiles (vertical velocity, horizontal
velocity and temperature), and the mean temperature profile of the time-dependent state
at high Rayleigh numbers, obtained using DNS [25,27]. The single-mode solutions are
also consistent with the heat-exchanger model that describes well the mean temperature
gradient in the interior [25,27]. The Nu predicted by the single-mode solutions lies below
the theoretical upper bound [52] and reveals a scaling law with Rayleigh number close
to that followed by exact 2D steady convection rolls [26]. This prediction differs from
large aspect ratio DNS results [25–28] where the presence of additional degrees of freedom
apparently enhances heat transport but agrees with DNS in small horizontal domains [39]
where such degrees of freedom are suppressed.

When the salinity gradient is stabilizing (Rρ �= 0) the situation is quite different: the
system becomes overstable and the conduction state loses stability to oscillations. The
resulting traveling and standing waves can still be computed within single-mode theory
and both are found to bifurcate supercritically and terminate on the subcritical branch of
steady rolls as predicted by theory [78–80]. Of the two competing states, TW and SW, the
larger amplitude state as measured by the Nusselt number, is stable, also in agreement with
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theoretical prediction [48] and consistent with DNS observations [43]. The Sh obtained from
single-mode solutions shows a scaling law over Le close to DNS observation for both active
[40] and passive [39] salinity. The single-mode solutions are derived with the assumption
of horizontal periodic boundary conditions, but also show agreement with DNS using
no-flux boundary conditions in the horizontal [39,40,43] after mirroring the domain.

The results here suggest the promise of this computationally tractable single-mode
approach and open up new directions for future work. For example, single-mode solutions
may be further applied to other flow configurations where columnar coherent structures are
dominant due to inherent or imposed large-scale damping. The single-mode equations also
have the potential to be further improved by systematically including higher-order harmon-
ics in a computationally efficient manner. For example, DNS results show a wavenumber
scaling near the boundary different from that in the interior in high Rayleigh number
convection [27], directly motivating a "two-mode" reduced-order model. Including higher
order harmonics may also suffice to capture the secondary Hopf bifurcation of exact 2D
steady convection rolls leading to wall modes [26,73–75], promising further improvement
in the predictive power of this approach.
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Abbreviations

The following abbreviations are used in this manuscript:

DNS Direct numerical simulations
RBC Rayleigh-Bénard convection
ODDC Oscillatory double-diffusive convection
B.C. Boundary conditions
NBC Neumann boundary conditions
CO2 Carbon dioxide
2D Two-dimensional
3D Three-dimensional
c.c. complex conjugate
RMS Root mean square
NLBVP Nonlinear boundary value problem
SW Standing waves
TW Traveling waves
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Abstract: On the basis of previous experimental and numerical studies, the windage operation of
low-pressure turbine rear stage is investigated. The state of the steam within the rotor channel was
correlated to measurements carried out downstream of the blades for different ventilation regimes.
Considering very-low-volume flow conditions, the ventilation power was related to the drag force
acting on the moving blades. A correlation was identified between the drag coefficient and a Reynolds
number relative to the reverse flow height. This correlation can be used in order to predict the power
loss of a last-stage moving blade operating at low load.

Keywords: steam turbine; low load operation; ventilation power; drag resistance; Reynolds number

1. Introduction

It is generally recognized that, during low-load operation, steam-turbine rear stages
may absorb power from the turbine shaft leading to the so-called “ventilation phenomenon”.
The absorbed power is converted into heat [1], increasing the temperature of the ventilat-
ing stages. The resulting flow and blade-metal temperatures depend on the operational
conditions, such as inlet mass flow and temperature, and condenser pressure, and some
geometrical parameters such as blade height and pitch-to-chord ratio [2].

Despite this phenomenon having been studied since 1970 [3–5], its importance was
mainly confined to the start-up and shut-down of the unit.

Today, with the growing role of renewables energy in the electricity market, steam
turbine power plants operate more frequently at a low load [6,7].

Ventilation losses are generated by flow separation and the formation of recirculation
zones in the last-stage moving blades [8].

Flow separation starts in correspondence of the blade hub, causing a limited separation
in the diffuser cone, as described by Sauchev et al. [9]. There are two different zones that
can be identified at the trailing edge of the last-stage moving blades (LSMBs): a reverse-
flow region and a through-flow region (Figure 1) [8]. The separated region initially does
not have any significant effect on the net power produced by the LSMB. As soon as the
volumetric flow reduces, the recirculating region increases, and the reverse flow height
increases accordingly [10]. The steam flow starts to be centrifugated in the radial direction,
leading to an increase in negative power and flow temperature in correspondence of the tip
region of the moving blade. As soon as the dimension of the through-flow region reduces,
the net power associated with the last-stage blades decreases accordingly, as reported by
Shnee et al. [5]. There is a point where the net power of the last-stage blades becomes
negative, producing heat that leads to an increase in flow and blade metal temperatures [11].
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Figure 1. Schematic representation of flow-reversal phenomenon [12].

The capability of accurately assessing the ventilation power and the resulting temper-
ature rise is a key aspect in today’s energy market. It enables power plants to:

• Define and operate at the lowest admissible volumetric flow. This has a direct impact
on the fixed and variable costs. Fixed costs are related to the potential modifications
of the existing steam generator to allow for continuous low-load operation, and in
defining the size of any potential auxiliary boiler that can run only when a low load is
required [13].

• Run continuously at a low load to avoid cycling operation, which usually has an impact
on the lifetime of key mechanical components such as turbine shafts, economizers,
and reheater and superheater tubes.

• Optimize hood sprays, minimizing the risk of trailing edge erosion. A cooling system
based on water sprays is installed at the low-pressure turbine exhaust. A temperature
sensor is installed within the flow path to provide the signal for the automatic start
and control of the spray-water quantity. The sizing of the nozzle sprays and the
amount of sprayed water must be related to the ventilation power: if the ventilation
power is underestimated, there would not be enough water to cool down the exhaust
and the LSMB. The unit may trip for high temperature. If the ventilation power is
overestimated, the resulting hood sprays are oversized. The injected water does not
evaporate because not enough heat is produced by the ventilation power experienced
by the LSMB. The droplets sprayed in the exhaust are dragged by the recirculating
flow, eroding the trailing edge of the LSMB. This contributes to the degradation of the
LSMB performance over the time, and could lead to the generation and propagation
of cracks at the trailing edge of the last moving blades. This issue can be critical for
blades characterized by high dynamic stresses in correspondence of the root or for
moving blades produced from materials that have low fracture toughness such as
titanium. Therefore, even when using hood spays, it is very important to assess the
ventilation power in the most accurate way. In addition, hood sprays have no effect
on the penultimate stages [14].

• Place the expansion line of the low-pressure turbine in the superheated region to avoid
water droplet erosion.

In previous works, the authors investigated in depth the windage phenomenon,
characterizing it and introducing several useful correlations for turbine design [14,15].
In [16], different ventilation regimes were identified. In particular, for very-low-flow
coefficients, the separated flow occupies most of the rotor channel. In this condition, the
blade moves in a stagnant fluid, dissipating power because of the drag resistance. The aim
of the present paper is to correlate the drag force intensity to the thermofluidic dynamic
conditions of the flow by introducing a characteristic drag coefficient. Such a relationship
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can be useful in developing models able to predict the operational conditions of turbines
running at a very low load.

Some details of both the plots and the mathematical relationships cannot be shown for
confidentiality reasons.

2. Experimental and Numerical Methods

In previous works, the low-load phenomenon has been investigated in detail through
both experimental and numerical analyses.

Below is shown only a brief summary of the experimental and numerical campaigns
carried out. Please refer to the references for more details and insights.

2.1. Experimental Setup

The experimental approach was widely described in [14]. Low-volume tests were
carried out in a scaled model steam turbine, which was the same as that described by
Megerle in [17]. The maximal output power generated by the steam turbine was between
6 and 8 MW, depending on the condenser pressure and the size of the last-stage blades.

The steam turbine is characterized by four stages (two front stages and two rear stages)
and a radial diffuser, which is about 1/3 of the full size. Its configuration and equipment
allow for performing detailed measurements relative to the ventilation power absorbed
by the penultimate and last stages. Temperature, pressure, and velocity measurements
along the blade span were taken on the different planes of CS52, CS61, and CS62, and at
the different circumferential locations of S05, S06 and S07 (Figure 2).

Figure 2. Detailed view of the model steam turbine rear stages and rake temperature measurements [18].

Pressure and velocity measurements were performed with a conventional pneumatic
probe or using a dynamic pressure sensor. Temperature measurements were taken with
thermocouples of type K installed on a rake. The thermocouples on rake CS62 were not
regularly located: the radial pitch in the tip region was rather small in order to ensure the
measurement of the maximal flow temperature [12].

2.2. Numerical Setup

The numerical setup was extensively described in previous works, for example, in [12,19].
Briefly, 3D calculations were performed by means of the ANSYS CFX code. The ensemble
averaged Navier–Stokes equations coupled to the energy equation and the SST turbulence
model were solved by means of an implicit element-based finite-volume formulation. A
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streamline curvature correction was also considered in order to overcome some drawbacks
due to the eddy viscosity approach.

Steam properties were calculated on the basis of the IAPWS-97 steam table [20].
The whole scaled turbine and the exhaust box were modelled in ANSYS ICEM-CFD

and ANSYS Turbogrid, with the front stages as a single pitch, and the rear stages as a
full annulus.

By means of the multiple-mixing-plane approach [21], each stage was modelled with
4 sectors, as shown in Figure 3, discretizing in each of them a single stator and a rotor blade.

 
Figure 3. Grid details. (a) Multiple mixing plane at the interface between the LSMB and the diffuser
and (b) last-stage moving blade discretization [19].

As the authors in [12] showed, the CFD model is able to reproduce windage phe-
nomena in the turbine rear stages well. For example, the maximal temperature difference
between measurements and calculations was about 10 ◦C for each considered test case,
while the reverse flow height was always well-predicted.

3. Results

3.1. Low-Load Tests

Different sets of rear stages were tested with different thermodynamic boundary
conditions and rotational speed levels.

All tests were performed below 10% of the steam turbine nominal load. Therefore, the
resulting thermodynamic state of the steam at the last-stage blade outlet was superheated
for all the test cases, as reported by Mambro et al. [15].

A summary of the different last-stage blade layout is reported in Table 1, while Table 2
shows some details of the rear stage that are analyzed in this paper [17]. In particular, the
low-load test cases reported in Table 3 are considered.

Table 1. Experimental setup of low-pressure turbine rear stages and diffuser.

Full-Size Exhaust Area/Reference Exhaust Area Free Tip Snubber
Pitch/Chord
(Midsection)

1.6 x Yes 0.703
1.3 x Yes 0.703
1.0 x Yes 0.703
1.1 x Yes 0.6653
1.0 x Yes 0.784
1.0 x no 0.784
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Table 2. Main last-stage design parameters for the reference exhaust area.

Last Stage Blades

Full-size exhaust area/reference exhaust area 1.0
Pitch-to-chord ratio (midsection) 0.784

Hub-to-tip ratio LSMB 0.45
Tip-clearance/moving-blade height ratio (%) 0.8

Part span connection yes

Table 3. Summary of some representative test cases.

Test
Case

Mass Flow (% of
Maximal Design Value)

Inlet Temperature
(T/Tref)

Condenser
Pressure (p/pref)

Flow
Coefficient (φ)

1 5 1.05 1.8 0.022
2 5 1.03 1.25 0.045
3 8 1.13 1.15 0.071
4 8 1.15 1.05 0.09
5 11 1.23 1 0.12

Referring to Table 3, the flow coefficient is defined as:

φ =
Cax

Uav
(1)

where Cax is the average axial velocity at the exhaust, and Uav is the blade rotational velocity
calculates at the midsection. The reference temperature Tref is the minimal tested steam tur-
bine inlet temperature. The reference pressure pref is the minimal tested condenser pressure.

3.2. Experimental and Numerical Results

Figure 4 shows the distribution of measured axial velocities downstream of the LSMB.
They were derived from the direct measurement of the absolute velocity and the rotational
speed on the measurement plane. Conventionally, the crossing point between the velocity
distribution and the zero axial velocity determines the so-called reverse-flow height [15].
Figure 4 also shows that the reverse-flow height increased when the flow coefficient decreased.

Figure 4. Distribution of the axial velocity along the blade span. (left) Mean values on CS62 plane;
(right) mean reverse flow height. Axial velocity and flow coefficient values are not shown for
confidentiality reasons.

The extension of the reverse-flow height also influenced the temperature field, as
shown in Figure 5. The measured temperature distribution shifted towards higher values
as soon as the flow coefficient decreased. For each test case, as per usual for low-volume-
flow operation, the maximal temperature was reached in the upper part of the blade.
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Figure 5. Measured temperature downstream of the LSMB. Temperature values are not shown for
confidentiality reasons.

The CFD analyses carried out in [15,16,19] better clarify the experimental results
(Figure 6). According to the characteristic ventilation regimes identified in [16], the first two
test cases fell within the highest ventilation zone where the recirculating flow downstream
of the LSMB was predominant compared to the through-flow area (Zone A). Test Case
3 was characterized by a significant reverse-flow area, but it was still comparable to the
active area; the LSMB ventilated, and the overall net power was negative (zone B). Test
Cases 4 and 5 fell within the transitional region where the flow started to separate to the
hub. The recirculating flow region was negligible; thus, the overall net power produced by
the LSMB was positive even though rather small (Zone C).

Figure 6. Schematic representation of the variation in blade reverse-flow height for different flow
coefficients. (1–5) show the flow field for the different test cases [16].

When the flow separated to the hub, the recirculating fluid was pushed along the blade
span by the centrifugal action. The blade rotated in a stagnant fluid and was subjected to a
resistant force that delivered power to the fluid; this power (i.e., the ventilation power) was
converted into heat. The extension of the reverse-flow height influenced the ventilation
power produced by the blades and the amount of generated heat. The flow coefficient was
smaller, and the reverse-flow height and generated heat were larger.

Maximal temperatures were reached at the tip of the blade where the centrifugal
action that compressed the fluid against the machine casing was maximal, as shown in
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Figure 7. A secondary vortex tended to form at the tip of the blade; however, this secondary
recirculation area was much smaller than the main recirculation area.

Figure 7. Test Case 2—calculated axial velocity and flow temperature field.

At the blade tip, numerical results also show that the axial velocity field pushed
the fluid towards the measurement rake placed downstream of the LSMB. Then, the
temperature transducers grasped the maximal temperatures reached in the blade channel.

At the hub, instead, the axial velocities were equal to or less than zero. The measure-
ment rake detected the fluid temperature coming from the exhaust, which was significantly
smaller than that inside the blade channel.

However, the radial distribution of the temperature within the majority of the reverse-
flow height could be assumed to be uniform both in the blade channel and downstream of
the trailing edge, where the measurement rake was located.

Referring to the reverse flow region, Figure 8 shows the difference between the mean
temperature calculated into the blade channel and the measured one downstream the blade.
For high-enough flow coefficients, there was still a steam expansion between the rotor
channel and downstream of the blade (Zone C, Figure 6). The more the flow coefficient
reduced, the more the stagnant fluid remaining into the blade channel was compressed,
increasing the steam temperature, as shown in Figure 7.

 

Figure 8. Difference in temperature between calculated data within the blade channel and measure-
ments downstream of the blade. Flow coefficient values are not shown for confidentiality reasons.

The trend shown in Figure 8 is of key importance to build up a transfer function that
allows for the assessment of the flow temperature in the reverse-flow region inside the blade
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channel where the ventilation phenomena occur from the measured temperature in the
exhaust via the rake. This difference depends on the flow coefficient via a linear function.

This correlation can be useful in estimating the properties of steam recirculating within
the moving blade channel, starting from data measured downstream of the trailing edge.

Drag Coefficient Estimation

At windage operation, the LSMB delivers work to the steam. This power can be
expressed as:

P = Pv − Pa (2)

where Pv is the power dissipated to move the blade through the stagnant fluid, while Pa is
the power that the steam flow delivers to the blades moving through the active area.

For very-low-volume flows, such as for test cases within Zone A, Pa could be neglected,
i.e., the measured ventilation power could be considered to be significantly predominant
compared to the active power.

Following this approach, the ventilation power due to viscous drag on a blade rotating
at rotational speed ω is given by:

Pv = ωRF (3)

where F is the frictional force on the blade in the reverse-flow height; R is the radius of the
pressure center, approximated to be equal to the mean radius of the reverse-flow height.

The frictional force can be calculated according to Equation (4):

F = CD AK (4)

where CD is a drag coefficient, K is the kinetic energy per volume unit, and A is the
characteristic area that is the wetted airfoil area. This is calculated as the airfoil perimeter
at the midsection of the reverse-flow height multiplied by the latter, as shown in Figure 9.

 

Figure 9. Schematic representation of the airfoil perimeter at the midsection and reverse-flow height.

K is calculated according to Equation (5):

K = 0.5ρU2
rev , (5)

where
Urev = ωR (6)

is the average rotational speed of the blade in the reverse flow area, while ρ is the mean
steam density in the reverse-flow height.
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Lastly, starting from the measured data, the drag coefficient could be calculated
according to Equation (7):

CD =
Pv

0.5AρU3
rev

(7)

A relationship between the drag coefficient and a Reynolds number was identified for
the last-stage blades of different sizes, pitch-to-chord ratios, and rotational speed levels, as
shown in Figure 10, which shows the results relative to a wide range of mass flows, inlet
temperatures, and condenser pressures always running the LSMB in windage conditions
(i.e., the LSMB always delivering work to the fluid).

 

Figure 10. Calculated drag coefficient vs. Reynolds number for different steam turbine last-stage
blades—values per blade. CD,ref is the minimal drag coefficient found.

The Reynolds number was related to the reverse-flow height according to Equation (8):

ReRFH =
UrevDrev (8)

where Drev is the outer diameter of the reverse-flow height, and is the mean value of the
kinematic viscosity of the steam recirculating in this region.

The kinematic viscosity (Equation (8)) and steam density (Equation (5)) were calculated
from the condenser pressure and the flow temperature in the reverse-flow height.

The condenser pressure could be used with good approximation because there was
practically no pressure recovery in the turbine exhaust due to the separated flow coming
from the rear-stage turbine.

According to the measurements and CFD calculations, the flow temperature could also
be assumed to be rather uniform in the LSMB channel. This temperature was estimated by
correcting the temperature measured downstream of the stage by means of the relationship
shown in Figure 8.

As highlighted by the markers relative to Test Cases 3–5, ReRFH increased with the
RFH; thus, extreme windage regimes are characterized by the highest values of ReRFH .

Figure 10 also highlights a clear link between the drag coefficient and the Reynolds number
for cases in which the recirculation area does not affect the whole blade span (Test Case 3).

This link can be expressed according to Equation (9), for which a coefficient of deter-
mination equal to 0.97 was found.

CD = α·Reβ
RFH (9)
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4. Conclusions

The results presented in this paper are useful in further understanding the behavior of
low-pressure turbines operating in windage conditions. In particular, the found relation-
ships can be useful in assessing the ventilation power that the last moving blade delivers to
the fluid.

Temperature data measured downstream of the blade were correlated to the mean
temperature of the recirculating steam within the blade channel. For high ventilation
regimes, this allows for calculating the drag force opposite to the blade motion and the
relative blade drag coefficient. A large number of experimental tests prove that this drag
coefficient is well-correlated to a Reynolds number defined for the reverse blade height.
This good correlation was found not just for extreme windage conditions, but also for each
operating condition in which the turbine delivers mechanical power to the steam.
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Nomenclature

A Characteristic area
Cax Axial velocity
CD Drag coefficient
CD,ref Reference drag coefficient
CFD Computational fluid dynamics
Drev Outer diameter of the reverse flow height
F Frictional force on the blade in the reverse flow height
K Kinetic energy per volume unit
LSMB Last-stage moving blades
P Power delivered to the steam by the LSMB at windage operation
Pa Active power
Pv Ventilation power
R Mean radius of reverse flow height
ReRFH Reynolds number calculated as: RERFH = Urev Drev

RFH Reverse flow height
T Inlet temperature
TC Test case
Tref Reference temperature
Uav Average circumferential velocity of the blade
Urev Average rotational speed of the blade in the reverse flow area
α, β Constant values
υ Mean value of the kinematic viscosity of the steam recirculating in the reverse flow area
p Condenser pressure
pref Reference pressure
ρ Mean steam density in the reverse flow height
φ Flow coefficient calculated as: φ = Cax

Uav

ω Rotational speed
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Abstract: The numerical calculation of local mass distributions in membrane systems by computa-
tional fluid dynamics (CFD) offers indispensable benefits. However, the concept to calculate such
distributions in response to separate variations of operation conditions (OCs) makes it difficult to
address overall, flow-physics-related questions, which require the consideration of the collective
interaction of OCs. It is shown that such understanding-related relationships can be obtained by the
analytical solution of the advection–diffusion equation considered. A Fourier series model (FSM) is
presented, which provides exact solutions of an advection–diffusion equation for a wide range of
OCs. On this basis, a new zeroth-order model is developed, which is very simple and as accurate
as the complete FSM for all conditions of practical relevance. Advection-dominated blocked and
diffusion-dominated unblocked flow regimes are identified (depending on a Péclet number which
compares the flow geometry with a length scale imposed by the flow), which implies relevant require-
ments for the use of lab results for pilot- and full-scale applications. Analyses reveal the equivalence
of variations of OCs, which offers a variety of options to accomplish desired flow regime changes.

Keywords: membrane; mass transport; flow regimes

1. Introduction

Computational studies of membrane systems as illustrated in Figure 1 enable very
valuable insight into the effectiveness of performance measures, e.g., with respect to con-
centration polarization and fouling [1–11], as well as evaluating flow unsteadiness induced
by different spacer configurations [12–28]. Such computational insights are invaluable
given the experimental challenges associated with directly quantifying such phenomena.
In one recent study, Liang et al. [29] used two-dimensional (2D) computational fluid dy-
namics (CFD; the use of this term refers here to the numerical solution of partial differential
equations) simulations to resolve the roles played by bulk flow and slip velocities at a
membrane surface for generating shear forces at the membrane surface. From this work,
it was determined that the origin of shear induction was less important when compared
with the resonant frequency of the perturbations themselves for increasing flux through the
disruption of foulant and concentration polarization boundary layers. Similarly valuable
insights into improving the hydrodynamic conditions within spiral wound membrane
elements were made by Foo et al. [30]. Using CFD, these researchers identified optimum
spacer geometries for enhancing water flux (up to a 40% flux enhancement) through a mem-
brane through maximizing unsteady-state shear forces at a membrane surface. Reaching
this outcome, as is the case in other similar studies, required computationally intensive
evaluations of the hydrodynamic environments within the membrane flow channels. Re-
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gardless of the complexities involved, the impacts that such studies have on improving the
performance and energy efficiency of membrane processes is obvious.

permeate channel

feed channel

x

y
membrane

flow direction

Figure 1. Membrane system illustration.

Despite the indispensable benefits of CFD, the use of such numerical investigation
methods is non-trivial, time-consuming, dependent on the availability of numerical codes,
and affected by the numerical schemes applied [31–39]. For example, the influence of
Péclet numbers (see Equation (6)) has consequences for the equation type considered and
the numerical solution of these equations. The equation shows a parabolic (hyperbolic)
behavior if the Péclet number is small (large). The numerical solution of such equations
becomes increasingly difficult as the Péclet number increases due to the onset of spurious
oscillations or excessive numerical damping if standard finite difference or finite element
formulations are used [40]. A particular problem is the usual application of Reynolds-
averaged Navier–Stokes (RANS) equations. If spacers are involved, separated flow will
appear (recirculation zones), and RANS equations are known to not have the capability to
deal with such flow features (the latter requires the use of rather sophisticated, partially
resolving flow simulation methods [41–48]). On top of knowledge about detailed mass
distributions in membrane systems for specific operation conditions OCs provided by CFD,
knowledge of specific flow regimes (which may have desired or undesired characteristics)
is very helpful for the membrane system design process. Diffusion–advection processes are
characterized by diffusion-dominated and advection-dominated flow regimes, which are
separated by corresponding Péclet numbers [40,49]: when this number is small (large), then
diffusion (advection) dominates. However, there is a large variety of Péclet numbers that
can be considered [50], there are often fuzzy criteria for characterizing different flow regimes
(such as Péclet numbers larger or smaller than unity), and the practical consequences of
such regime separations are not always obvious. So, there are questions regarding the
membrane system design (see also Figure 2):

Q1. What determines the existence of qualitatively different mass transport regimes?
Which interplay of geometry and OCs is implied, which matters to upscaling?

Q2. How is it possible to accomplish desired flow regime changes by equivalent variations
of OCs?

Q3. For different flow regimes, how is it possible to understand the overall mass transport
through membranes and characteristic mass distribution features?

The CFD approach often provides an inappropriate basis to address these questions: sep-
arate parameter variations hardly allow conclusions about collective parameter effects.

x

y

x�� �� x��

y��

y��

c= f(y )*
c =x* �

c =y* �

c = cy* �� �

Pey
Pe

A	

flow regimes see Fig.
 ��

overall mass transport

c c x y y A Pe Pey� 
  � �  	� � �� , , )

equivalence conditions of OC

Figure 2. An illustration of the flow configuration considered and flow physics questions addressed
(in blue). Operation condition parameters are given in red. Partial derivatives (cx∗and cy∗) are
indicated here by subscripts.
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In addition to CFD, the use of analytical simulation methods is beneficial because of
several reasons. Their use hardly depends on the availability of codes. They are by orders
of magnitude more efficient than the numerical integration of partial differential equations
in time because of the independence of discretizations and the need to honor numerical
stability criteria under significant model parameter variations. Such analytical simulation
methods can be used for the verification of numerical solvers because they provide exact
results (i.e., independent evidence is not needed to support them). However, first of all,
the availability of such models offers the chance to address questions about basic mass
transport mechanisms, e.g., regarding the questions Q1–Q3 presented above.

One question related to the use of analytical simulation methods is about their required
complexity and simplicity of using them. For the case considered, analytical simulation
methods are given by Fourier series representations, there is the question of whether the
complexity of such Fourier series representations can be significantly reduced to enhance
the clarity of conclusions. Another question related to analytical simulation methods is
that their development requires the neglect of effects of spacers, which modify basic flow
characteristics implied by geometry, inflow and boundary conditions. The specification of
spacer effects on the basic flow configuration varies in the literature [30,51,52]. There are
indications that spacers can produce higher fluxes of about 30–40% compared with cases
without spacers [30,51,52]. This means analytical simulation methods can be expected to
provide valuable guidelines for the characterization of basic flow features, even under
conditions where spacers and other effects (flow unsteadiness) are involved. Thus, there
are questions in addition to Q1–Q3 considered above:

Q4. What is the most simple analytical model which still enables accurate calculations
equivalent to complete Fourier series solutions?

Q5. Given the required approximate representation of the flow field, which arguments sup-
port the use of analytical simulation methods under more complex flow conditions?

Analytical solutions obtained by Laplace transforms were presented for a variety
of problems, for example, in regard to turbulent dispersion of air pollution [53] and dif-
fusion of oxygen into the blood [54], but no corresponding solutions were presented in
regard to membrane systems. The corresponding value of analytical simulation methods is
demonstrated here by addressing the questions Q1–Q5 presented above. Fourier analysis is
applied for the derivation of analytical results, which offers (via the analysis of eigenvalue
regimes) essential new insight. The model development is presented in Section 2 in con-
junction with the consideration of questions about the model evaluation and computational
aspects. Model applications are reported in Section 3 by focusing on the influence of OCs
on species concentration distributions. Section 4 deals with conclusions about the questions
considered.

2. Model Development

2.1. Equation Considered

Incompressible flow and a 2D domain are considered, see the illustration in Figure 2.
The velocity field is approximated by assuming constant velocities U and V in the x and
y directions, which is a requirement to obtain analytical solutions. The suitability of this
assumption is considered in Section 4, conclusion #5, in conjunction with mass transport
properties. A mixture (e.g., an oil-in-water emulsion) of a continuous phase (e.g., water) and
a dispersed phase (e.g., oil at low concentrations) is considered. The solutions presented
below are not specific to oil-in-water emulsions, they can be applied to many other systems.
According to refs. [7,10,55], the dispersed phase transport equations in the feed/permeate
region and membrane region (see Figure 1), respectively, read

∂c
∂t

+ U
∂c
∂x

+ V
∂c
∂y

= DM

( ∂2c
∂x2 +

∂2c
∂y2

)
,

∂εpc
∂t

+ U
∂c
∂x

+ V
∂c
∂y

= Dc

( ∂2c
∂x2 +

∂2c
∂y2

)
. (1)

Here, c refers to the dispersed phase concentration, t is time, DM refers to the molecular
diffusion (of oil in water), Dc refers to the capillary diffusion, and εp is the membrane
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porosity. The constant diffusivities DM and Dc are considered in consistency with the
consideration of constant velocities U and V. Diffusion in x direction (which is sometimes
neglected) is included. No attempt is made to differentiate between the velocities U and
V involved in Equation (1) because these equations are covered by one equation in the
following, in particular, the advection–diffusion equation of the membrane region,

∂c
∂t

+ Û
∂c
∂x

+ V̂
∂c
∂y

= D̂c

( ∂2c
∂x2 +

∂2c
∂y2

)
. (2)

Here, Û = U/εp, V̂ = V/εp, and D̂c = Dc/εp are introduced. The solution obtained can
be easily applied as a solution to the feed/permeate region equation by a corresponding
adjustment of model parameters (by setting εp = 1 and replacing Dc by DM). The domain
considered is 0 ≤ x ≤ x2 and y1 ≤ y ≤ y2; see the illustration in Figure 2. By involving
imposed functions g(x, y) and f (y), the initial distribution and x boundary conditions
(BCs) at x = x1 = 0 and x = x2 are given by

c(x, y, 0) = g(x, y), c(0, y, t) = f (y),
∂c
∂x

(x2, y, t) = 0. (3)

The latter condition applies to the case that diffusion in x direction is included. The y BCs
at y = y1 and y = y2 are given by

∂c
∂y

(x, y1, t) = 0, c(x, y2, t)V̂/δ + D̂c
∂c
∂y

(x, y2, t) = 0. (4)

The y BCs modify a constant mass transfer (zero gradient) along y by the condition at
y2, which leads to an accumulation of the dispersed phase in the membrane region; see
the discussion in the beginning of Section 3. The parameter δ introduced here enables
variations of the mass transfer at y2; Equation (A2) in the Appendix A shows that 2/δ
represents the standardized membrane permeability. The introduction of δ is relevant to the
identification of the critical Péclet number Pec = 4/(2+ δ) in Section 3.1. The measurement
of δ is addressed in Section 3.2. Implications of these BCs may be well seen in figures below
(although the effects may be small, see the distributions along x∗).

An important property of the solution c(x, y, t) is its boundedness: if the initial and
boundary values of c(x, y, t) lie within a minimum and maximum, cmin ≤ c ≤ cmax, then all
c(x, y, t) values are bounded by this range [56]. The consideration of an advection–diffusion
equation for the dispersed phase is equivalent to the consideration of a stochastic particle
model for this phase (a random model for the positions of oil droplets, a Brownian motion
model originally applied to describe the motion of pollen grains in water) where the mass
concentration represents a non-normalized probability density function (PDF) [57]: the
concentration has all the properties of a PDF except that it is not normalized.

It is helpful to introduce normalized variables: x∗ = Ûx/(2D̂c), y∗ = V̂y/(2D̂c), and
t∗ = V̂2t/(4D̂c). By using these normalized variables, Equation (2) reads

∂c
∂t∗

+ 2
U2

V2
∂c

∂x∗
+ 2

∂c
∂y∗

=
U2

V2
∂2c
∂x2∗

+
∂2c
∂y2∗

. (5)

The equations derived in the following reveal that c = c
(
x∗, y∗ − y1∗, t∗|x2∗, Δ, δ, U/V

)
,

where Δ = y2∗ − y1∗. It is convenient to introduce usually applied non-dimensional
numbers, the aspect ratio A, the Péclet number Pe, and the Péclet number Pey in y direction,

A =
x2

y2 − y1
, Pe =

Ûx2

D̂c
, Pey =

V̂(y2 − y1)

D̂c
. (6)
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Pe and Pey represent the product of corresponding Reynolds numbers (Ûx2/ν and V̂(y2 −
y1)/ν, respectively) with the Schmidt number ν/D̂c, where ν is the kinematic viscosity. By
applying the relationships

x2∗ = Pe/2, Δ = Pey/2, U/V = Pe/(APey), (7)

the solution c = c
(
x∗, y∗ − y1∗, t∗|x2∗, Δ, δ, U/V

)
can be written in the following way:

c = c
(
x∗, y∗ − y1∗, t∗|A, Pe, Pey, δ). (8)

The solution c(x∗, y∗, t∗) to Equation (5) involves two ingredients, the stationary solution
s(x∗, y∗) for infinitely large t∗ and the transitional solution w(x∗, y∗, t∗),

c(x∗, y∗, t∗) = s(x∗, y∗) + w(x∗, y∗, t∗). (9)

The stationary and transitional solutions s(x∗, y∗) and w(x∗, y∗, t∗), which are referred
to as stationary Fourier series model (FSM) and transitional Fourier series model (FSM),
are given by Equation (A3) and Equation (A17), respectively; see the explanations in the
Appendix A.

2.2. Validation of the Model Implementation

The equations were implemented in an in-house code written for this application. In
numerical model applications, the use of the stationary and transitional FSMs obtained
ensures exact solutions to the advection–diffusion equation considered. Relatively sim-
ple analysis also shows that the use of the structures of Xn(x∗) and Un(y∗) given in the
Appendix A ensures the correct upper and lower y∗ BCs and outflow BCs. However, the
inflow BCs represented by the sum of Fourier series contributions in the model implemen-
tation require validation because they are affected by the numerical implementation, for
example, the correct calculation of eigenvalues. This question is addressed in terms of
Figure 3, which shows the concentration distribution along y∗/Δ for reference parameters
Pey = 1, Pe = 102, A = 103, δ = 10, and δ = 1 at x∗ = 0. The dashed lines represent the
imposed profile, the colored lines arise from imitated implementation errors: the neglect
of one eigenfunction contribution, and the incorrect calculation of one eigenvalue (βm

0 or
β

p
0, respectively) given by a modification by a factor of 2 or 0.5. It may be seen that such

incorrect implementations have serious consequences. Both the neglect of one eigenfunc-
tion contribution or an eigenvalue modification (by a factor of 2 or 0.5) implies that the
model is incapable to correctly provide the imposed profile. Therefore, checks whether con-
centration calculations are in consistency with imposed profiles are sufficient to conclude
that the model implementation is correct. A relatively simple way to provide additional
support for the correct model implementation is to ask whether the solutions obtained
satisfy the boundedness of mass transport requirement. This is, e.g., not the case for the
cases with implementation errors presented in Figure 3: such model results disagree with
the boundedness of mass transport because concentration values below zero and above
one are obtained. For all the cases presented below, it was found that the boundedness
requirements were satisfied by model solutions.

2.3. Computational Cost

The computational cost of the presented method depends very much on the conver-
gence behavior of Fourier representations involved. The stationary solution is driven
by the convergence of y∗ eigenfunctions. A scaling analysis reveals that Un(y2∗) ∼
(q1 − q2)Pey/n2 at sufficiently high n, where q1 and q2 are positive and negative numbers
of order unity (which are related to the two contributions to an in Table A1). Correspond-
ingly, transitional solution contributions scale with w2(y2∗, 0) ∼ q1Pey/n2, where q0 is
a positive number of order unity. The easiest way to see these scalings is to multiply
series contributions with the inverse scaling to demonstrate that series contributions do
not change with n and parameter variations. Let us suppose the convergence requirement
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that the related Fourier series contributions need to be smaller than 10−9. This implies
the condition Pey/N2 ≤ 10−9, i.e., N ≥ 104.5Pe1/2

y ≈ 3.2 × 104Pe1/2
y . For usual values

Pey ≤ 1, this condition can be easily satisfied (in less than a minute). A corresponding
scaling analysis of x∗ eigenfunctions involved in the transitional solution part shows that
w1(x2∗, 0) ∼ (−1)n+1qPe(1 + 2/Pe)/n3, where q is a positive number of order unity. By
using again a convergence criterion that corresponding Fourier series contributions need
to be smaller than 10−9, the corresponding convergence condition reads Pe/N3 ≤ 10−9

for sufficiently high Pe, this means N ≥ 103Pe1/3. For Pe = (102, 103, 104), for example,
one finds N ≥ (4.6 × 103, 104, 2.2 × 104). Such simulations take much less than a minute
on a personal computer. A very essential observation is the following. In contrast to the
stationary solution s(x∗, y∗), the transitional solution w(x∗, y∗, t∗) = cinw1(x∗, t∗)w2(y∗, t∗)
is given by separated variations in x∗ and y∗. This makes computations by orders of mag-
nitude more efficient because a double loop over x∗ and y∗ eigenvalues does not appear.

c

� ���

��Pey

���A
�

����Pe

no ��

m

���

m

��� ��

m

� �a

y
*
��

no ��

p

���

p

��� ��

p
� �b

� ��

��Pey

���A
�

����Pe

c

y
*
��

Figure 3. The concentration distribution along y∗ from y1∗ (lower bound) to y2∗ (upper bound) for
reference parameters Pey = 1, Pe = 102, A = 103, and δ = 10 in (a) and δ = 1 in (b) at x∗ = 0
(dashed lines). The red lines refer to the neglect of βm

0 or β
p
0 , respectively, eigenfunction contributions.

The blue and green lines refer to a modification of βm
0 or −β

p
0 , respectively, by the given factors

(2 and 0.5).

The computational development of the simulation method leads to four observations.
(i) The computational method is computationally highly efficient: exact solutions are
obtained on a personal computer in less than a minute. (ii) A specific question related
to the computational cost is about the scaling of cost with model parameters such as the
Péclet numbers involved (Pe and Pey). It was shown that such model parameter variations
have very minor effects on the solution convergence with respect to both the stationary and
transitional solution. (iii) One key element of correct solutions is the exact iterative solution
of eigenvalue equations for all parameter regimes, which represents a challenging task. An
efficient algorithm for handling this question was presented here. (iv) Another key element
is, in particular, the correct identification of the lowest order eigenvalues for all parameter
regimes, otherwise the method simply does not work.

3. Model Application

Results using the model obtained are presented now by focusing for simplicity on the
stationary solution (the transitional solution is discussed in Section 3.2)

c = c
(
x∗, y∗ − y1∗|A, Pe, Pey, δ). (10)

The parameters involved are given by Equation (6). As shown in the Appendix A
in the paragraph below Equation (A6), the critical parameter that separates different
eigenvalue regimes is given by p = 2/δ − (1 + 2/δ)Pey/2 (see also the illustration
in Figure 4). To restrict attention, it is assumed that δ ≥ 0. According to the BC,
s(x∗, y2∗) + [δ/2][∂s/∂y∗](x∗, y2∗) = 0, which implies a negative concentration gradient
at y2∗; this is equivalent to the calculation of a concentration (of oil) that has at the lower
boundary y1∗ a larger value than at the upper boundary y2∗. It is worth noting that the
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assumption δ < 0, which implies decreasing concentration values toward the lower bound-
ary, may well be in conflict with the boundedness of mass transport for the conditions
considered because concentration values larger than unity can be obtained.

�

Pey

advection
dominated

���p���p

diffusion
dominated

Figure 4. Parameter regimes: the black curve shows Pey values for which p = 2/δ − (1 +

2/δ)Pey/2 = 0.

3.1. FSM: Flow Regimes and Equivalent OC

The concentration distribution at x∗ = x2∗and y∗ = y1∗ is shown in Figure 5 for
varying parameters A, Pe, Pey, and δ. The most relevant observation is that p = 2/δ −
(1 + 2/δ)Pey/2, which separates different eigenvalue regimes and also separates different
concentration regimes; see Figure 5a. For p < 0, one finds high concentration values which
do not change much with δ. We refer to this case as blocked flow below. For p > 0, one
finds much lower concentration values which are, approximately, linearly controlled by δ.
We refer to this case below as unblocked flow. The critical Pey for which p = 0 reads Pec =
4/(2 + δ), which is bounded, 0 ≤ Pec ≤ 2. Hence, p can be written p = 2(1 − Pey/Pec)/δ.
Here, Pey/Pec represents a normalized Péclet number. By introducing L f = PecD̂c/V̂, it
can be written Pey/Pec = (y2 − y1)/L f . Correspondingly, the conditions for the unblocked
(blocked) flow regimes are given by

y2 − y1 < L f (y2 − y1 > L f ), (11)

respectively. Here, L f represents a characteristic length scale which depends only on flow
properties. Equation (11) state, therefore, the requirement that the domain height has to be
sufficiently small to enable unblocked flow. The relationship between unblocked/blocked
flow and diffusion/advection-dominated flow regimes can be seen as follows. In unblocked
flow, the diffusion dominates: molecular transport governs this regime basically unaffected
by the directional influence of advection. It is, therefore, very natural to identify the
unblocked (blocked) flow regimes as diffusion (advection)-dominated flow. According to
p = 2(1− Pey/Pec)/δ, a Péclet number Pey/Pec smaller (larger) than unity is the condition
to have diffusion (advection)-dominated flow.

Figure 5b–d shows the same huge discrepancies between blocked and unblocked flow
regimes seen in Figure 5a. Figure 5c,d indicates an equivalence between Pe and inverse A
effects. The structure of A curves can be seen as follows. An increased A−1 = (y2 − y1)/x2
is equivalent to a decreased x2, which implies a higher Û to keep Pe = Ûx2/D̂c unchanged.
The higher the Û, the higher is the concentration reduction. The same mechanism implies
Pe effects: an increased Pe is equivalent to a higher Û. With respect to Figure 5b, it is
worth noting the following. According to Equation (A4), the x∗/x2∗ dependence of the
concentration distribution is basically controlled by U/V: x∗/x2∗ variations will disappear
if U/V vanishes. This case is almost irrelevant to applications, because usually U >> V.
For Pey > 1 in Figure 5b, one finds Pe/(APey) = U/V < 0.1, i.e., this range of variations
is unlikely to be seen in applications. For Pey ≤ 1, the Pey = V̂(y2 − y1)/D̂c effects
result from the following. An increased Pey implies a larger y2 − y1 and x2 to keep A
unchanged. This implies a smaller Û to keep Pe constant. Hence, an increased Pey increases
the concentration.
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Figure 5. The concentration distribution at x∗ = x2∗, y∗ = y1∗ (dashed lines) and y∗ = y2∗ (solid
lines) for reference parameters δ = 10, Pey = 1, Pe = 102, and A = 103. Variations of δ, Pey, Pe, A are
shown in (a), (b), (c), and (d), respectively. The reference parameters kept constant are also given. In
(a,b), the vertical line separates p > 0 and p < 0 cases. In (c,d), both p > 0 and p < 0 cases are shown.

Spatial concentration distributions are shown in Figures 6 and 7. The figures confirm
the close relation between Pe, A−1 and Pey effects. As discussed above, an increase in
Pe and A−1 reflects an increase in Û, i.e., a change in Pe can be accomplished by a cor-
responding change in A−1. An analysis of such changes in the blocked flow regime (by
looking at requirements for equivalent variations) reveals that increasing Pe by a factor k is
approximately equivalent to dividing A by k1.5. The relation between Pey and A variations
is slightly different; see the discussion related to Figure 5. Different patterns can be seen for
U/V < 0.1. However, according to the discussion related to Figure 5, this is the regime of
little relevance to applications. Apart from this regime, an analysis shows that multiplying
A by a factor k is approximately equivalent to multiplying Pey with a factor slightly larger
that k (1.2k or 1.3k), i.e., there is an equivalence of Pey and A variations.

The huge discrepancy between the high-concentration blocked flow and much lower-
concentration unblocked flow regimes can be seen again in Figures 6 and 7. In addition to
this difference, there is another factor coming into play: U/V = Pe/(APey), which controls
the x∗/x2∗ variation according to R = [1 + (1 + β2

n)U2/V2]1/2. In the small U/V regime,
which is of little relevance to applications (see above), one finds the following features. For
U/V = 0.05 − 0.1, there are almost linear variations; see Figure 7b,c. For U/V < 0.05, one
finds relatively minor concentration variations along x∗/x2∗, including almost constant
concentration values if U/V << 0.05; see Figure 7b. This is the region where U/V has
almost no influence on the concentration distribution. Otherwise, for U/V > 0.1, one
observes a significant (exponentially) spatial concentration reduction, even for the blocked
flow regime; see Figure 7c. Regarding the y∗/Δ variations shown in Figure 6, there are
almost homogeneous concentration distributions. The latter is a consequence of two facts:
the inflow distribution at y∗ = y1∗, and the boundedness of scalars which excludes the
appearance of minimum and maximum values in between boundary values.
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Figure 6. The concentration distribution along y∗ from y1∗ (lower bound) to y2∗ (upper bound) at
x∗ = 0 (dashed lines) and x∗ = x2∗ (solid lines). Reference values δ = 10, Pey = 1, Pe = 102, and
A = 103 are considered in (a–d) in conjunction with variations of δ, Pey, Pe, A. In (e,f), complementary
cases to (c,d) are considered to cover the p > 0 case, where Pey = 0.1 in contrast to Pey = 1 in (c,d).
The reference parameters kept constant are also given. The black dots on curves indicate p > 0 cases.
The x∗ = 0 profiles are unaffected by Pe, A variations. In (e,f), all solid curves coincide.
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Figure 7. The concentration distribution (a–f) along x∗ at y∗ = y2∗ (solid lines) by following the
notation applied in Figure 6. The dashed lines show the results of model Equation (12).

3.2. Zeroth-Order Model

The relevance of the lowest eigenvalue contributions is certainly of interest. To address
this question, the stationary FSM is reduced to only these contributions by considering
s0(x∗, y∗) = ey∗ a0X0(x∗)U0(y∗). By involving the BC Equation (A13), a more appropriate
writing reads s0(x∗, y∗) = f (y∗)X0(x∗), i.e.

s0(x∗, y∗) =
= c1

(
1 − (y∗−y1∗)2

Δ(Δ+δ)

)
e(1−R0)x∗ 1+R0−(1−R0)e−2R0(x2∗−x∗)

1+R0−(1−R0)e−2R0x2∗ ,
(12)
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where R0 = [1 + (1 + β2
0)U

2/V2]1/2, x2∗ = Pe/2, Δ = Pey/2, and U/V = Pe/(APey).
Depending on negative or positive p values, one needs to use either βm

0 or β
p
0, respec-

tively, in R0. Here, β
p
0 and βm

0 have to be found iteratively by solving Equation (A8) and
Equation (A10), respectively; this means they are found via

β
p
0Δ = arctan

{
β

p
0

1 + δ(1 + [β
p
0 ]

2)/2

}
, βm

0 Δ = arctanh
{

βm
0

1 + δ(1 − [βm
0 ]

2)/2

}
. (13)

Figure 8 demonstrates that simple approximations for these eigenvalues (simple functions
of Pey or δ) are unavailable, meaning that they need to be determined iteratively via
Equation (13). A simple alternative is to use an online calculator [58] to accurately solve
the equations considered. According to Figure 8, zero eigenvalues may be found if Pey =
Pec = 4/(2 + δ). The model Equation (12) is referred to below as zeroth-order model
(ZOM). For given model parameters Δ(Δ + δ) = Pey(Pey + 2δ)/4, R0, and Pe, this model
completely specifies the structure of the concentration distribution via the imposed BC
f (y∗) and X0(x∗), which represents exponential decay along x∗.

� ���

Pey

��

� ��
� ����

��

m

���

p

� �a

��

�

��Pey

����Pey

����Pey

� �b

��

m

���

p

Figure 8. Eigenvalues βm
0 and −β

p
0 as function of (a) Pey (depending on δ) and (b) δ (depending on

Pey). The vertical lines separate βm
0 from −β

p
0 .

The performance of Equation (12) is also shown in Figure 7. It may be seen that the
performance of this model is excellent with one minor exception: the U/V < 0.05 cases
in Figure 7b. However, as discussed in relation to Figure 5, this is a case that is almost
irrelevant to applications. On the one hand, the performance of Equation (12) reveals the
fundamental relevance of including the eigenvalues of lowest order. On the other hand,
this performance enables it to perform accurate simulations based on the simple analytical
model Equation (12).

Figure 9, where the same cases are considered as in Figure 7, confirms the assumption
that the same applies to the transitional solution (a constant initial value c(x∗, y∗, 0) = cin =
1 is considered): the reduction of Equations (A17)–(A19) to only considering the lowest
eigenvalue contributions results in transitional solutions that do not show any visible
difference from the complete solutions (A17)–(A19). As given in regard to the stationary
solution, this fact enables the use of a simple analytical formula for performing highly
accurate simulations.

First, the ZOM is very beneficial regarding the characterization of the concentra-
tion distribution by global maximum and minimum values, which exist because of
the boundedness of mass transport. The spatial concentration distributions shown in
Figures 6 and 7 reveal a global concentration maximum and minimum at (x∗, y∗) = (0, y1∗)
and (x∗, y∗) = (x2∗, y2∗), respectively. The ZOM then provides the maximum and mini-
mum values

smin = s0(x2∗, y2∗) = c1

[
1 − Δ/(Δ + δ)

]
X0(x2∗), smax = s0(0, y1∗) = c1. (14)

Thus, by involving Pey = 2Δ, the stationary ZOM solution is found to be bounded by
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c1

[
1 − Pey

Pey + 2δ

]
X0(x2∗) ≤ s0(x∗, y∗) ≤ c1. (15)

Second, the ZOM is very beneficial regarding the estimation of model parameters,
which are required to apply the ZOM and FSM and are relevant to scaling questions
(upscaling). The aspect ratio A = x2/(y2 − y1) is known, but a relevant question is
about how δ, Pe = Ûx2/D̂c, and Pey = V̂(y2 − y1)/D̂c can be determined. This question
is not trivial because Pe = Ûx2/D̂c and Pey = V̂(y2 − y1)/D̂c involve the membrane
diffusivity D̂c, which is difficult to measure, and δ, too, is difficult to determine on the
basis of s(x∗, y2∗) + [δ/2][∂s/∂y∗](x∗, y2∗) = 0. This question is considered by assuming
the measured values of the stationary solution provided by the ZOM. It is possible to
address this question in a more general set up, but for simplicity, it is assumed here that
U/V is known in addition to A. Because of X0(0) = 1, it is found that s0(0, y∗) = f (y∗) =
c1(1 − (y∗ − y1∗)2/[Δ(Δ + δ)]). Hence, concentration values taken at two appropriate
positions enable us to determine Δ = Pey/2 and δ. Because U/V is known, δ, Pey, and
Pe = APeyU/V are found.

c
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Figure 9. The concentration distribution (a–f) as function of time t∗ at x∗ = x2∗, y∗ = y2∗ (solid lines)
by considering the same cases as in Figure 7 (solid lines). The dashed lines show the results of using
only the lowest eigenvalue contributions in Equations (A17)–(A19): there is no visible difference to
solid curves.

Third, the ZOM can be used to obtain exact conclusions about the equivalence con-
ditions for model parameter variations discussed in Section 3.1. As a first example, let us
consider s0(x∗, y1∗) = c1X0(x∗) by excluding variations of Pe and δ. In this case, X0(x∗) is
affected by variations of Pey and A only via (1 + β2

0)/[Pe/(APey)]2 in R0. Then, variations
of A can be compensated by variations of Pey which ensure an unchanged X0(x∗). As a
second example, let us consider s0(x∗, y1∗) = c1X0(x∗) by excluding variations of Pey and
δ. Then, X0(x∗) is unchanged in response to A variations if Pe is calculated by the condition
to have an unchanged X0(x∗). As a third example, let us consider the parameter Δ/(Δ + δ),
which determines the minimal concentration along y∗ according to Equation (15). This
parameter can be used to balance membrane fouling reflected by a change in δ from δ1 to δ2.
The latter requires to determine a change Δ2 of Δ1 such that Δ1/(Δ1 + δ1)= Δ2/(Δ2 + δ2).
The latter requirement can also be written δ2/δ1 = Pey,2/Pey,1. This means an increase in
δ2 (a reduced flux) can be compensated by a corresponding higher Pey.
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4. Summary

An analytical FSM for the mass transport in membrane systems is presented here.
Our method is computationally highly efficient and exact, i.e., no independent evidence
is needed for model results, only the implementation needs justification. Evidence for
the validity of results and computational features is described in Sections 2.2 and 2.3.
Our conclusions were obtained by Fourier analysis, which provides analytical results that
cannot be obtained by experimental or numerical studies.

Let us summarize the answers obtained in regard to the questions Q1–Q5 presented
in Section 1. For doing so, the OCs (A, Pe, Pey, δ) are assumed to be known; questions in
this regard can be addressed by following the discussion at the end of Section 3.2. Based
on our core results, the identification of flow separation conditions y2 − y1 ≶ L f (see
Equation (11)), the discussions of equivalent OC variations (see Section 3), and the ZOM
s0(x, y) = f (y)X0(x) (see Equation (12)), there are the following conclusions:

1. Arguably, our most relevant observation is that p = 2(1 − Pey/Pec)/δ, which sepa-
rates different eigenvalue regimes and also separates different mass transport regimes,
in particular diffusion (p > 0, y2 − y1 < L f ) and advection (p < 0, y2 − y1 > L f )-
dominated regimes. These regime separation conditions compare geometric condi-
tions (the domain size) with the characteristic length scale L f imposed by the flow.
Given a membrane size considered, knowledge of the regime separation conditions
is beneficial for the understanding of upscaling requirements, i.e., the use of lab re-
sults for pilot- and full-scale applications; with respect to the same flow properties,
upscaling can imply transitions from very efficient to very inefficient flow regimes. A
very relevant observation is that diffusion-dominated and advection-dominated flow
regimes correspond to unblocked (low concentration values) and blocked (high con-
centration values) flow. Hence, the mathematical characterization of the dominance of
one process has relevant physical consequences. Advection-dominated flow implies
blocked flow because the dominance of advection inhibits molecular diffusion, i.e.,
the reduction in concentration gradients.

2. Knowledge of analytical equivalence conditions for A, Pe and Pey parameter varia-
tions for cases of practical relevance enables the use of various parameter variations
to realize desired effects (under conditions where certain parameter variations are
inappropriate). The understanding of several ways to accomplish regime changes
enables transitions to preferred flow regimes (see the discussion related to Figure 7).
The ZOM can provide exact conclusions about equivalent variations of OCs.

3. The FSM, but in particular the ZOM, provide an answer to question Q3 about the
understanding of the overall mass transport and characteristic mass distribution
features: for both flow regimes, the ZOM explains the difference between (input and
output) boundary values implied by OCs and characteristic concentration variations
in between these bounds. In particular, the ZOM enables the explicit calculation of
global maximum/minimum concentration values c1(1 − Pey/[Pey + 2δ])X0(x2∗) ≤
s0(x∗, y∗) ≤ c1, which is helpful for the understanding of concentration variations.

4. Based on the FSM, the ZOM s0(x, y) = f (y)X0(x) was presented, which be can be
easily applied. The ZOM performance was found to be excellent for all regimes of
practical relevance; see above. The significant advantages offered by the ZOM are
described above (see second and third points).

5. According to Equation (2), the mass transport is affected by mass transport properties
(diffusivity D̂c), mass transport initial and BCs, and the structure of the velocity field.
The transport properties are known, and there is no problem to exactly satisfy mass
transport initial and BCs. Although the velocity field is only approximately repre-
sented, the boundedness property of mass transport ensures then proper transitions
between the imposed exact BCs, i.e., more complex flow conditions can be covered by
the method considered.
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Our conclusions support the membrane system design via providing relevant guide-
lines for applications; see the preceding paragraph, in particular the conclusions regarding
questions Q1–Q3. It can be expected that the results obtained provide valuable guide-
lines for CFD and experimental studies, even under conditions where spacers and other
effects are present (see the conclusion to question Q5). Direct applications of our method
to membrane system design are not the scope of our paper, the latter requires extensive
comparisons with corresponding CFD results for a wide range of parameter variations.

The results presented may be seen as modeling of the solute concentration of oil-in
an oil-in-water emulsion (see the reference to a corresponding stochastic particle system
in Section 2.1). However, in fact, the same equations can be used to model a variety of
other systems, as, for example, saltwater systems for brackish water and seawater reverse
osmosis. It is worth noting that the method presented actually represents a design strategy
that can be applied to other (radial) geometries; it can be extended to three-dimensional
analyses, and it can be applied with other initial and boundary conditions. Results obtained
on this basis can be expected to provide valuable additional information and conclusions
in support of numerical and experimental studies of membrane systems.
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Nomenclature

A aspect ratio, x2/(y2 − y1)

c dispersed phase concentration
cin initial value in c(x∗, y∗, 0) = cin
c1 model parameter, see Equation (A13)
DM molecular diffusion coefficient
Dc capillary diffusion coefficient
D̂c Dc/εp
f (y) imposed boundary condition
g(x, y) imposed initial condition
L f characteristic length, PecD̂c/V̂
Pe Péclet number, Ûx2/D̂c
Pey Péclet number, V̂(y2 − y1)/D̂c
Pec critical Péclet number, 4/(2 + δ)

p parameter, 2/δ − (1 + 2/δ)Pey/2
R parameter, [1 + (1 + β2

n)U2/V2]1/2

s, w stationary, transitional solutions
t time
t∗ non-dim., V̂2t/(4D̂c)

264



Fluids 2022, 7, 369

Un shifted y eigenfunction
U, V velocities in x, y directions
U/V non-dim., Pe/(APey)

Û, V̂ U/εp, V/εp
Xn x eigenfunction
x, y positions in space
x1, x2 x domain bounds
y1, y2 y domain bounds
x∗, y∗ non-dim., Ûx/(2D̂c), V̂y/(2D̂c)

x2∗ non-dim., Ûx2/(2D̂c) = Pe/2
y1∗, y2∗ non-dim., V̂y1/(2D̂c) , V̂y2/(2D̂c)

β0, βm
0 , β

p
0 eigenvalues, see Equations (12) and (13)

Δ non-dim., y2∗ − y1∗ = Pey/2
δ−1 membrane permeability in Equation (4)
εp membrane porosity
ν kinematic viscosity
()min,max minimum, maximum values
()0 zeroth order contributions

Appendix A. Stationary and Transitional Solutions

Appendix A.1. Stationary Solution

The stationary solution satisfies the stationary partial differential equation

2
U2

V2
∂s

∂x∗
+ 2

∂s
∂y∗

=
U2

V2
∂2s
∂x2∗

+
∂2s
∂y2∗

, (A1)

combined with non-homogeneous BCs,

s(0, y∗) = f (y∗), ∂s
∂x∗ (x2∗, y∗) = 0, ∂s

∂y∗ (x∗, y1∗) = 0,
s(x∗, y2∗) + δ

2
∂s

∂y∗ (x∗, y2∗) = 0.
(A2)

The solution s(x∗, y∗) of Equation (A1) can be obtained by separation of variables [56]. It
reads

s(x∗, y∗) =
N

∑
n=0

sn = ey∗
N

∑
n=0

anXn(x∗)Un(y∗), (A3)

where N → ∞ is supposed. The x∗ eigenfunctions, which read the eigenvalues βn of y∗
eigenfunctions, are given by

Xn(x∗) = e(1−R)x∗ 1 + R − (1 − R)e−2R(x2∗−x∗)

1 + R − (1 − R)e−2Rx2∗
, (A4)

where R = [1 + (1 + β2
n)U2/V2]1/2. Equation (A3) applies the modification Yn(y∗) =

ey∗Un(y∗) of y∗ eigenfunctions, which simplifies the ordinary differential equation (ODE)
for y∗ eigenfunctions because of a vanishing first-order derivative. For n = 1, 2, . . ., the
modified eigenfunctions are found to be given by

Un(y∗) = βncos[βn(y∗ − y1∗)]− sin[βn(y∗ − y1∗)]. (A5)

For the case n = 1, 2, . . . considered, the y∗ eigenvalues βn satisfy the equation

π−1βn(y2∗ − y1∗)− n = π−1arctan
{

βn

1 + δ(1 + β2
n)/2

}
. (A6)

This equation can be solved iteratively starting with βn = nπ/(y2∗ − y1∗) on the right-hand
side (RHS). The solution is obtained after fewer than 20 iterations. The converged solution
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can be written βn = νπ/(y2∗ − y1∗), where ν refers to the shifted eigenvalue (in contrast to
n). Depending on the BCs (the setting of δ), it turns out that ν is bounded, n ≤ ν ≤ n + 1/2.
Here, the lower and upper limits correspond to δ → ∞ and δ = 0, respectively.

However, there are also contributions for n = 0. In particular, these contributions
are determined by the sign of p = 2/δ − (1 + 2/δ)Δ, where Δ = y2∗ − y1∗ is applied [56].
Here, p arises from the BCs of U [56]. One finds 0 = U′(y1∗)− p1U(y1∗) and 0 = U′(y2∗) +
p2U(y2∗), where p1 = −1 and p2 = 1 + 2/δ. The latter implies p = p1 + p2 + p1 p2Δ. Let
us consider these two cases in the following two paragraphs (the consideration of p = 0
has little practical value because it implies a specific setting for Δ which can be avoided).

(a) Case p > 0: In this case, there is one additional positive eigenvalue (denoted by
β

p
0, p refers to a positive eigenvalue) below β1 = π/(y2∗ − y1∗). The eigenfunction follows

Equation (A5),

Up
0 (y∗) = β

p
0cos

[
β

p
0(y∗ − y1∗)

]
− sin

[
β

p
0(y∗ − y1∗)

]
. (A7)

The eigenvalue β
p
0 is determined by the solution of Equation (A6) with n = 0,

β
p
0(y2∗ − y1∗) = arctan

{
β

p
0

1 + δ(1 + [β
p
0 ]

2)/2

}
. (A8)

This equation was solved iteratively in the same way as Equation (A6) by applying, how-
ever, 1000 iterations starting with βm

0 = 10−8.
(b) Case p < 0: In this case, there is one additional negative eigenvalue (denoted by

βm
0 , m refers to a negative eigenvalue). The corresponding eigenfunction reads

Um
0 (y∗) = βm

0 cosh[βm
0 (y∗ − y1∗)]− sinh[βm

0 (y∗ − y1∗)] =
= γ−1

2 eβm
0 (y∗−y1∗) + γ+1

2 e−βm
0 (y∗−y1∗),

(A9)

where βm
0 is given by the solution of

βm
0 (y2∗ − y1∗) = arctanh

{
βm

0
1 + δ(1 − [βm

0 ]
2)/2

}
. (A10)

An alternative formulation of this equation, which is based on the solution of the quadratic
equation for βm

0 , reads

βm
0 = − 1

δ tanh(βm
0 Δ)

+

√
1

δ2tanh2(βm
0 Δ)

+ 1 +
2
δ

. (A11)

The latter equation was found to deal correctly with the limit βm
0 → 1. It was numeri-

cally solved in the same way as Equation (A8) by applying 1000 iterations starting with
βm

0 = 10−6.
The coefficients an in Equation (A3) are chosen such that the stationary solution s

matches an imposed boundary function f (y∗) at x∗ = 0; this means s(0, y∗) = f (y∗).
The key for deriving the coefficient formula is to make use of the orthogonality of Un(y∗)
eigenfunction,

∫ y2∗
y1∗ Un(y∗)Um(y∗)dy∗ = δnmw2

n, where the squared norm w2
n of Un is given

in Table A1.
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Table A1. Fourier coefficients an and am
0 of the stationary solution, where ap

0 = a0.

Positive eigenvalues

an = c1
sin(βnΔ)

w2
n

e−y2∗ − c1
e−y2∗ [k1ncos(βnΔ) + k2nsin(βnΔ)]− 4βne−y1∗

w2
nΔ(Δ + δ)(1 + β2

n)2
,

k1n = 2βn

[
2 + (1 + β2

n)Δ
]
, k2n = 1 − 2β2

n +
[
1 + (1 + β2

n)Δ
]2

,

w2
n =

1 + β2
n

2
Δ − 1 − β2

n
4βn

sin(2βnΔ) +
1
2

cos(2βnΔ)− 1
2

Negative eigenvalue

am
0 = c1

sinh(βm
0 Δ)

w2
m

e−y2∗ − c1
e−y2∗

[
k1mcosh(βm

0 Δ) + k2msinh(βm
0 Δ)

]− 4βm
0 e−y1∗

w2
mΔ(Δ + δ)(1 − [βm

0 ]
2)2

,

k1m = 2βm
0

[
2 + (1 − [βm

0 ]
2)Δ

]
, k2m = 1 + 2[βm

0 ]
2 +

[
1 + (1 − [βm

0 ]
2)Δ

]2
,

w2
m =

1
2
− 1 − [βm

0 ]
2

2
Δ +

(1 − βm
0 )

2

8βm
0

e2βm
0 Δ − (1 + βm

0 )
2

8βm
0

e−2βm
0 Δ

By using this property, one obtains

an =
1

w2
n

∫ y2∗

y1∗
e−y∗ f (y∗)Un(y∗)dy∗. (A12)

The requirement for the imposed function f (y∗) is that it needs to satisfy the BCs. In order
to do so, it is assumed that

f (y∗) = c1

{
1 − (y∗ − y1∗)2

Δ(Δ + δ)

}
. (A13)

The use of this expression in Equation (A12) provides an as given in Table A1. The ab-
breviations ap

0 and am
0 are used to refer to the coefficients related to positive and negative

eigenvalues, respectively. It is worth noting that w2
n and w2

m refer to the squared norm of
Un and Um

0 , respectively. In correspondence to the notation used before, w2
0 refers to the

squared norm of Up
0 . With respect to am

0 , there arises a question about the limit βm
0 → 1,

which is relevant to some parameter regimes. In this limit case, one finds am
0 to be given by

am
0 = c1

sinh(βm
0 Δ)

w2
m

e−y2∗ − c1
1 − e−2Δ(1 + 2Δ + 2Δ2)

4w2
mΔ(Δ + δ)

e−y1∗ . (A14)

The latter expression was applied for |βm
0 − 1| ≤ 10−8. The model (A3) obtained in this

way represents the stationary Fourier series model (FSM).

Appendix A.2. Transitional Solution

The transitional solution satisfies the non-stationary equation,

∂w
∂t∗

+ 2
U2

V2
∂w
∂x∗

+ 2
∂w
∂y∗

=
U2

V2
∂2w
∂x2∗

+
∂2w
∂y2∗

, (A15)

combined with homogeneous BCs,

w(0, y∗, t∗) = ∂w
∂x∗ (x2∗, y∗, t∗) = ∂w

∂y∗ (x∗, y1∗, t∗) = 0,
w(x∗, y2∗, t∗) + δ

2
∂w
∂y∗ (x∗, y2∗, t∗) = 0,

(A16)

and the initial condition w(x∗, y∗) = g(x∗, y∗). The solution w(x∗, y∗, t∗) of Equation (A15)
can be found via separation of variables. It is given by

w(x∗, y∗, t∗) = cinw1(x∗, t∗)w2(y∗, t∗), (A17)
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where (by supposing N → ∞ and M → ∞)

w1(x∗, t∗) =
M

∑
m=1

cmsin(αmx∗)exp
{

x∗ − (1 + α2
m)[U/V]2t∗

}
, (A18)

w2(y∗, t∗) =
= ∑N

n=0 bn

[
βncos[βn(y∗ − y1∗)]− sin[βn(y∗ − y1∗)]

]
exp

{
y∗ − (1 + β2

n)t∗
}

.
(A19)

With respect to w2(y∗, t∗), the terms of zeroth order are provided in dependence on p
as described above regarding the stationary solution; see cases (a) and (b). This means,
for p > 0 Equation (A19) is applied, whereas sin[. . .] and cos[. . .] are replaced by the
corresponding sinh[. . .] and cosh[. . .] functions for p < 0.

In consistency with Table A1, the y∗ Fourier coefficients (which were determined by
the condition to integrate to one, meaning no initial y∗ variation was considered) are given
in Table A2.

Table A2. y∗ Fourier coefficients bn and bm
0 of the transitional solution (bp

0 = b0).

Positive eigenvalues

bn =
sin(βnΔ)

w2
n

e−y2∗ , w2
n =

1 + β2
n

2
Δ − 1 − β2

n
4βn

sin(2βnΔ) +
1
2

cos(2βnΔ)− 1
2

Negative eigenvalue

bm
0 =

sinh(βm
0 Δ)

w2
m

e−y2∗ , w2
m = −1 − [βm

0 ]
2

2
Δ +

1 + [βm
0 ]

2

4βm
0

sinh(2βm
0 Δ)− 1

2
cosh(2βm

0 Δ) +
1
2

The corresponding x∗ Fourier coefficients can be calculated on the basis of the orthogonality
property of x∗ eigenfunctions,

∫ x2∗
0 sin(αnx∗)sin(αmx∗)dx∗ = δnmw2

x, where the squared
norm of x∗ eigenfunctions is given by

w2
x =

x2∗
2

− sin(2αmx2∗)
4αm

. (A20)

The x∗ eigenvalues αm in Equation (A18) satisfy the equation

π−1αmx2∗ − n = −π−1arctan(αm). (A21)

Here, n = 1, 2, . . . refers to non-disturbed eigenvalue numbers. The technique to solve
this equation for n = 1, 2, . . . is equivalent to the solution of Equation (A6) related to the
stationary solution, where 20 iterations were applied. There is one positive eigenvalue
below α1 = π/x2∗ which is included in the solution of Equation (A22) for n = 1, 2, . . ..

With respect to the x∗ Fourier coefficients, the condition reads

cm =
1

w2
x

∫ x2∗

0
e−x∗ g(x∗)sin(αmx∗)dx∗, (A22)

where g(x∗) is an imposed x∗ profile. Regarding the latter,

g(x∗) = cinex∗−x2∗
[
1 + (x2∗ − x∗)(1 + 1/x2∗)

]
x∗/x2∗ (A23)

is applied. This function follows the ex∗ variation of w1(x∗, t∗); the factor ex2∗ is included for
normalization. The function g(x∗) is positive, bounded, and correctly satisfies the x∗ BCs;
this means g(0) = 0 and g′(x2∗) = 0. By using Equation (A22), the x∗ Fourier coefficients
obtained read

cm =
2(1 + 1/x2∗)e−x2∗

x2∗w2
xα3

m

[
1 − cos(αmx2∗)

]
. (A24)
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The model Equation (A17) obtained represents the transitional Fourier series model (FSM).
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Abstract: Hybrid RANS-LES methods are supposed to provide major contributions to future turbu-
lent flow simulations, in particular for reliable flow predictions under conditions where validation
data are unavailable. However, existing hybrid RANS-LES methods suffer from essential problems. A
solution to these problems is presented as a generalization of previously introduced continuous eddy
simulation (CES) methods. These methods, obtained by relatively minor extensions of standard
two-equation turbulence models, represent minimal error simulation methods. An essential obser-
vation presented here is that minimal error methods for incompressible flows can be extended to
stratified and compressible flows, which opens the way to addressing relevant atmospheric science
problems (mesoscale to microscale coupling) and aerospace problems (supersonic or hypersonic flow
predictions). It is also reported that minimal error methods can provide valuable contributions to the
design of consistent turbulence models under conditions of significant modeling uncertainties.

Keywords: computational fluid dynamics (CFD); large eddy simulation (LES); Reynolds-averaged
Navier–Stokes (RANS) equations; hybrid RANS-LES methods

1. Introduction

The introduction of two-equation turbulence models in the frame of Reynolds-averaged
Navier–Stokes (RANS) equations is seen to be a very relevant milestone of the development
of simulation methods for turbulent flows [1,2]. The specific advantage of such methods is
their much improved ability to provide proper scale information (the characteristic length
scale of turbulent motions) for turbulent flow simulations. However, it is well known that
such methods seriously suffer from their inability to reflect the physics of flows that cannot
be properly modeled, as is the case for separated turbulent flows. Reliable simulations of
such flows (as illustrated, for example, in Section 3) require the inclusion of flow resolution.

The first method used to overcome this problem is the introduction of flow-resolving
simulation methods, as given by large eddy simulation (LES). The LES concept is actually
simple. A much smaller characteristic length scale of turbulent motions is applied than that
used in RANS. (Usually, the filter width Δ is used as the length scale.) The consequence is
the need to use much finer computational grids than those applied in RANS. Thus, LES
suffers from its huge computational requirements, especially in regard to simulations of
wall-bounded turbulent flows at a high Reynolds number (Re). The practical consequence
is that LES is inapplicable to many high Re flows that need to be considered. A concrete
illustration of the dimension of this problem is given in Section 3.1.

The second method applied to overcome the fundamental shortcomings of RANS
methods is the hybridization of RANS and LES (i.e., the development of hybrid
RANS-LES) [3–5]. We have traditionally applied methods such as wall-modeled LES (WM-
LES) [6–8] and detached eddy simulation (DES) [4,9–11], as well as a variety of other meth-
ods, including scale-adaptive simulation (SAS) methods [4,12,13], lattice Boltzmann (LB)
methods [14], Reynolds stress-constrained LES (RSC-LES) [15], unified RANS-LES [16–22],
partially averaged Navier–Stokes (PANS) [23], partially integrated transport modeling
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(PITM) methods [24,25], and continuous eddy simulation (CES) methods [5,26–32]. The
problem is that such hybrid RANS-LES methods suffer from fundamental problems. In
particular, under conditions where validation data are unavailable, the problem is that such
methods cannot reliably deal with simulations of flows that require flow resolution (see the
explanations in Section 2). Thus, such methods face the same problem as RANS equations.

It has to be expected that this development will continue for a long time, as long as
there is no clarification of what specifically causes the problems of existing RANS-LES
methods, what the implied consequences are, and how it is possible to overcome these
issues. The latter questions will be addressed here in Sections 2–4, respectively. Specific
emphasis is placed on the explanation of the structure of novel minimal error hybrid
simulation methods, which generalize CES methods (see the illustration in Figure 1). These
methods may be seen as a relatively simple, mathematically exact modification of the
originally introduced RANS two-equation turbulence models. A specific motivation is to
significantly extend the corresponding methods developed thus far to the modeling of
stratified and compressible flows. Section 5 describes applications of the novel methods
presented thus far, and the conclusions are presented in Section 6.

RM

MM

LES RANS-LES CES

disconnected MM, RM:

MM

hardly MM:

RANS

Goal: reliable and feasible predictions of high separated turbulent flows in absence of validation dataRe

only MM:

MM RM

unreliable too expensive unreliable

connected MM, RM:

RM+MM=const.

Figure 1. Abilities of computational methods in regard to reliable and feasible predictions of high Re
flows that require flow resolution. Here, hybrid RANS-LES refers to popular methods, MM (RM)
refers to modeled (resolved) motion, and CES refers to continuous eddy simulation.

2. Basic Problems of Existing Hybrid RANS-LES Methods

The most relevant problem P1 of hybrid RANS-LES is (particularly under conditions
where validation data are unavailable) the lack of predictive power of flow simulations
that require the inclusion of flow resolution. A physically correct simulation mechanism
requires a swing between the amounts of resolved motion (fluctuations implied by the
grid and Re) and the modeled motion imposed by the model equations. The model’s
contribution needs to decrease (increase) in response to a higher (lower) amount of resolved
motion. However, in existing hybrid RANS-LES methods, the model does not receive
(correct) information about the amount of resolved motion [32], which does not allow a
(proper) model response. This implies the following: simulations for which validation data
are hardly available (see the challenges described in Section 3) will involve a certain amount
of resolved motion, which changes with the grid and Re. Then, if there is no guidance
about an appropriate set-up of modeled motion, such simulations will produce random
results in general. In particular, Re effects calculated on this basis cannot be considered
to be reliable. By taking reference to Figure 1, an illustration of this problem is given in
Figure 2.

RM implied
by grid & Re

a) Desired: RANS-LES swing

+ MMs =const.

b) Reality: random model MM MM ; unreliable predictions at high� s Re

RM implied
by grid & Re

+
MM: imposed,
indep. of RM

=const. MM MMs� �

Figure 2. Problem P1 illustration. MM (RM) refers to modeled (resolved) motion, and MMs is MM
implied by swing. (a) Desired: RANS-LES swing. (b) Reality: random model MM – MMs, with
unreliable predictions at high Re.
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The second problem P2 is closely related to P1. In many cases, we need reliable hybrid
methods that are (1) applicable on coarse grids in almost RANS mode and (2) reliable
hybrid methods that are applicable in almost resolving mode independent of the LES
resolution requirements (which are hard to assess and control). The essential ingredients to
properly deal with these requirements are (1) a stable dependence of the modeled length
scale on the resolved length scale (the latter reflects fluctuations (i.e., this stable dependence
of length scales ensures a stable involvement of fluctuations even under almost RANS
conditions)) and (2) an appropriate representation of the characteristic LES length scale
independent of the filter width Δ. Existing hybrid RANS-LES methods do not involve these
ingredients (i.e., they cannot reliably cover these two regimes).

The third problem P3 of existing popular hybrid RANS-LES methods is the lack of
guidance through exact theory, which has several consequences. Most hybrid RANS-LES
methods were introduced on the basis of empirical reasoning, but some hybrid RANS-
LES methods were introduced on the basis of sound theoretical concepts [5]. However,
there is the question of which theoretical concept should be preferred. The lack of an
answer to this question leads to a large variety of potential methods that can be used
in applications. In addition, existing hybrid RANS-LES methods suffer from significant
uncertainty in their predictions in the absence of validation data. For example, the WMLES,
DES, and PANS results depend significantly on the model option settings [5]. Thus, it is
usual practice to choose such settings to produce the best possible agreement with the
available data. The search for the best model and best model set-up is demanding and
time-consuming. Another problem is implied by the fact that hybrid RANS-LES methods
include a RANS component, but such RANS equations can be significantly affected by
modeling uncertainties, in particular for stratified and compressible flows.

3. Challenges

Concrete examples for the relevance of such RANS problems will be given next. In partic-
ular, Section 3.1 addresses the need to overcome the problem P1, whereas Sections 3.2 and 3.3
illustrate the requirement to also overcome the problems P2 and P3.

3.1. NASA’s CFD 2030 Vision

There are many computational challenges related to incompressible flow, such as
NASA’s 2030 Computational Fluid Dynamics (CFD) Vision Report challenge to accomplish
LES of a powered aircraft configuration across the full flight envelope [33–36]. This case
focuses on the ability of CFD to simulate the flow about a complete aircraft geometry at
the critical corners of the flight envelope including low-speed approach and takeoff condi-
tions, transonic buffet, and possibly undergoing dynamic maneuvers, where aerodynamic
performance is highly dependent on the prediction of turbulent flow phenomena such as
smooth body separation and shock–boundary layer interaction [34]. A specific overview of
the essential further steps required to deal with the challenge was provided by Slotnick
and Mavriplis [37].

A specific indication of this challenge arises from the computational cost analysis
offered by Probst et al. [35] and the Federal Republic of Germany’s research centre for
aeronautics and space (DLR), which considers the cost of resolving LES simulations of
a full three-dimensional (3D) wing of an aircraft at flight Re. The conclusion of this
conservative cost estimation was the following: Even with exclusive access to the largest
existing cluster of Xeon-CPUs comparable to DLR’s “Tianhe-2A” with almost 5 million
cores, such a simulation would take around 650 years when extrapolated linearly. The
computational cost required for addressing this partial problem clearly demonstrates the
relevance of properly functioning hybrid RANS-LES models. In particular, as pointed out
by Slotnick et al., progress toward this goal can be measured through the demonstration of
effective hybrid RANS-LES and WMLES simulations with increasing degrees of modeled
versus resolved near-wall turbulence structures with increasing geometric complexity [34].
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However, existing hybrid RANS-LES methods face significant problems in this regard (see
Section 2).

3.2. Atmospheric Mesoscale to Microscale Coupling

Another motivation for the development of exact hybrid RANS-LES models arises
from the coupling of atmospheric mesoscale and microscale simulations (The term mi-
croscale simulation refers here to methods aiming at flow resolution, in contrast to flow
modeling). The latter is an essential requirement to predict, for example, the performance
of wind farms under the influence of large-scale weather processes. The usually related
problems of such simulations are shown in Figure 3. A direct coupling of simulation
methods as illustrated in Figure 3 is inappropriate, as the outer RANS simulation blocks
the simulation of resolved motions in the inner domain, and (depending on the set-up)
the abrupt decay of modeled motion in the transition region can provide inappropriate
boundary conditions for the outer RANS simulation. Thus, it needs a transitional region
between the two RANS and LES regions which applies relatively coarse grids. This implies
a fundamental problem (referred to as the Terra Incognita problem by Wyngaard [38]): such
simulations contradict basic RANS or LES principles, their value is at least questionable.

Usual coupling problems:
- inconsistent turbulence equations
- inconsistent scaling assumptions
- inconsistent resolved motion
- inconsistent modeled motion

Microscale

LES

O m

( )

~ ( )	

Mesoscale RANS

O km

( )

~	 
 �

Figure 3. Typical problems related to the coupling of mesoscale (RANS) and microscale (LES)
methods, where Δ refers to the characteristic grid size used in simulations.

There are obvious requirements for dealing with this problem. It needs hybrid RANS-
LES equations that are able to cover both LES and RANS regimes (including the need
that the length scale information used in the RANS is able to provide correct length
scale information for LES independent of the LES filter width Δ). The most important
requirement is the model’s ability to respond correctly to the amount of resolved motion by
appropriate changes of the model’s contribution to the simulation. In other words, it needs
minimal error hybrid RANS-LES models, which have this ability. Because of the coarse
grids that usually need to be applied for atmospheric boundary layer (ABL) simulations,
a specific aspect of the problem considered is the need for hybrid RANS-LES simulation
methods that work stably in the almost RANS regime. As a matter of fact, it also needs
a significant extension of previously developed methods: the inclusion of stratification
effects, which is needed to simulate ABL processes. The latter is affected by modeling
questions (see the discussion below Equation (22)). Thus, in addition to the need to deal
with problem P1 described Section 2, it also requires solutions to problems P2 and P3 in
this case.

3.3. High Angle of Attack Supersonic and Hypersonic Flow Predictions

The challenges described in Section 3.1 are significantly enhanced if aircraft are con-
sidered which fly at very high (supersonic or hypersonic) speeds. Commercial transports
rarely fly at an angle of attack larger than 10◦, but tactical aircraft and missiles can fly at
much higher angles of attack [39]. Therefore, on top of the problems described in Section 3.1,
additional challenges arise from the much bigger variety of flow separation induced by
angle of attack variations and structural flow variations induced by compressibility [16].
Arguably, the biggest challenge of such flow simulations arises from the questionable
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basis given by model equations for compressible flows. There is, for example, an ongoing
debate about the structure of the dissipation rate equation considered in conjunction with
the modeled kinetic energy equation (see [40,41] and the discussion below Equation (26)).
It is worth noting that such RANS model issues are transferred to LES models via the
required k transport equation [42]. Correspondingly, existing hybrid RANS-LES methods
that combine RANS and LES components suffer from the same problem.

First, the conclusion is the same as in regard to the problems described in Section 3.1:
it needs hybrid RANS-LES models which properly function under significant variations of
resolved motion. Second, another question concerns the theoretical basis of such simula-
tions. The possibility to develop minimal error hybrid methods depends on the structure
of the model equations considered. This leads to the question of whether the minimal error
design approach can provide valuable guidelines for the establishment of compressible
flow models. Given the lack of a theoretical basis to deal directly with this issue, it is
difficult to see which other approaches can help to overcome this relevant problem. Third,
the development of exact hybrid RANS-LES models is needed because of the following.
Different from the need for such methods described in Section 3.2 (which requires well-
functioning methods under almost RANS conditions), for highly compressible flows, we
need methods that can be used as resolving methods independent of the LES resolution
requirements. This ability is is the most reliable way to deal with several flow physics
questions (e.g., about structural compressibility effects) that need clarification. Thus, in
addition to the need to address the problem P1 described in Section 2, we see here again
the need for solutions to the problems P2 and P3.

4. Minimal Error Methods

Mimimal error hybrid simulation methods will be presented in the following three
subsections in regard to incompressible flows, stratified flows, and compressible flows. It is
worth noting that the presentation of such methods for incompressible flows in Section 4.1
provides the technical basis for extensions to the stratified and compressible flows in
Sections 4.2 and 4.3, respectively.

4.1. Incompressible Flows

The design of minimal error methods will be described first for incompressible flows
with respect to the widely used k − ε model (other turbulence models were considered
elsewhere [32]). The suitability of this model is well known in the context of RANS equa-
tions. Evidence for the suitability of this model to also provide resolved motions on
appropriate grids is given by corresponding PANS [23] and PITM [24,25] methods. The
model considered is given by the incompressible continuity equation ∂Ũi/∂xi = 0 and the
momentum equation

DŨi
Dt

= −∂( p̃/ρ + 2k/3)
∂xi

+ 2
∂(ν + νt)S̃ik

∂xk
. (1)

Here, D/Dt = ∂/∂t + Ũk∂/∂xk denotes the filtered Lagrangian time derivative, and the
sum convention is used throughout this paper. Ũi refers to the ith component of the spa-
tially filtered velocity. We have here the filtered pressure p̃, the constant mass density
ρ, the modeled energy k, the constant kinematic viscosity ν, and the rate-of-strain tensor
S̃ij = (∂Ũi/∂xj + ∂Ũj/∂xi)/2. The modeled viscosity is given by νt = Cμkτ = Cμk2/ε.
Here, ε is the modeled dissipation rate of the modeled energy k, τ = k/ε is the dissipa-
tion time scale, and Cμ has a standard value Cμ = 0.09. For k and ε, we consider the
transport equations

Dk
Dt

= P − ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α

)
+ Dε. (2)
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The diffusion terms reads Dk = ∂[νt ∂k/∂xj]/∂xj, Dε = ∂[(νt/σε) ∂ε/∂xj]/∂xj, and P = νtS2

is the production of k, where S = (2S̃mnS̃nm)1/2 is the characteristic shear rate. Cε1 is a
constant with a standard value Cε1 = 1.44, and σε = 1.3. In RANS, α = Cε2 /Cε1 , where
Cε2 = 1.92 [2] implies α = 1.33.

One possibility to hybridize Equation (2) is to consider a variable α∗ (instead of a
constant α) combined with an appropriate calculation of α∗:

Dk
Dt

= P − ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α∗

)
+ Dε. (3)

The diffusion terms are adjusted accordingly such that we have the expressions
Dk = ∂[ν∗t ∂k/∂xj]/∂xj and Dε = ∂[(ν∗t /σε) ∂ε/∂xj]/∂xj. The setting of ν∗t will be addressed
below. The determination of α∗ will be described by applying variational analysis. We
consider variations of model parameters (α∗) and related variations of model variables
(such as k and ε). The question is which model coefficient satisfies the variation equations
implied by the turbulence model considered. The analysis follows the approach presented
in [26]. The technical framework applied to derive these results was provided by an anal-
ysis of Friess et al. [11]. The significant difference with the latter findings is that Friess et
al. focused on a different question: for given PANS/PITM-type relations between model
coefficients and resolution indicators, they determined the equivalence criteria for hybrid
methods based on other turbulence models. A relevant assumption made throughout this
paper is that the energy partition (δk/k and δε/ε; see below) does not change in space and
time. This assumption is not a restriction but a desired stability requirement, as it ensures
that physically equivalent flow regions are equally resolved without significant oscillations
of δk/k or δε/ε [26–28].

In an exact analysis option O1, we set ν∗t = νt,tot in Dk = ∂[ν∗t ∂k/∂xj]/∂xj and
Dε = ∂[(ν∗t /σε) ∂ε/∂xj]/∂xj and introduce a hybridization error λ1 as a residual of the
ε equation:

λ1 = Cε1

ε2

k

(P
ε
− α∗1

)
+ Dε − Dε

Dt
= Cε1

ε2

k

(1
ε

Dk
Dt

+ 1 − Dk
ε

− α∗1
)
+ Dε − Dε

Dt
, (4)

where the k equation is used to replace P/ε in the previous expression. The subscript 1
refers to option O1. The normalized error reads as follows:

λ1

ε
=

Cε1

τ
(1 − α∗1) +

Cε1

k

(Dk
Dt

− Dk

)
− 1

ε

(Dε

Dt
− Dε

)
. (5)

Justification for the normalization applied can be obtained by taking the variation of λ1 and
combining the terms that involve λ1. In the first order of variations (denoted by δ), we have

δ(Dk/Dt)
Dk/Dt

=
δDk
Dk

=
δk
k

,
δ(Dε/Dt)

Dε/Dt
=

δDε

Dε
=

δε

ε
. (6)

Correspondingly, we find that the variation of the last two terms in Equation (5) disappears
because of

δ
[1

k
Dk
Dt

]
= δ

[Dk
k

]
= δ

[1
ε

Dε

Dt

]
= δ

[Dε

ε

]
= 0. (7)

Thus, the variation of Equation (5) provides

δ
(λ1

ε

)
=

Cε1

τ
(1 − α∗1)

[ δα∗1
α∗1 − 1

− δτ

τ

]
. (8)

An extremal error is found by setting the first variation equal to zero:

δα∗1
α∗1 − 1

=
δτ

τ
. (9)
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This equation can be integrated from the RANS state to a state with a certain level of
resolved motion

∫ α∗1
α dx/(x − 1) =

∫ τ
τtot

dy/y. We obtain it in this way:

α∗1 = 1 + τ+(α − 1), (10)

where τ+ = τ/τtot refers to the modeled-to-total time scale ratio, which is calculated as L+

(see the explanations in regard to option O2 below). For all models considered in this paper,
we find a zero second variation, and we need to ask whether λ1 provides a minimum or
maximum error. The results were equal to the variational results obtained by considering
λ1 = 0; that is, the analysis presented implies minimal error models.

A different analysis option O2 is as follows. The analysis option O1 is exact, but the
disadvantage is the need to involve νt,tot in the equations solved in the simulations. The
latter is avoided in analysis option O2, where the substantial derivatives Dk/Dt and Dε/Dt
are neglected in regard to the derivation of model coefficients. This approach appears to be
well justified for most applications. It was found to work very well in previous applications
to periodic hill flows [27]. Correspondingly, we consider (the subscript 2 refers to the
analysis option O2) ν∗t = νt in Dk and Dε in conjunction with the hybridization error:

λ2 = Cε1

ε2

k

(P
ε
− α∗2

)
+ Dε = Cε1

ε2

k

(
1 − Dk

ε
− α∗2

)
+ Dε, (11)

where the k equation is used again to replace P/ε in the previous expression. The normal-
ized error reads as follows:

λ2

k2 =
Cε1

L2

(
1 − α∗2

)
− Cε1

εDk
k3 +

Dε

k2 , (12)

where the modeled length scale L = k3/2/ε is introduced in the first term on the right-hand
side (RHS). Because of ν∗t = νt, we find in the option O2 in the first order of variations
the relations

δDk/Dk = 3δk/k − δε/ε, δDε/Dε = 2δk/k, (13)

which imply that the variation of the last two terms in Equation (12) disappears because of

δ
[ εDk

k3

]
=

εDk
k3

[ δDk
Dk

+
δε

ε
− 3

δk
k

]
= 0, δ

[Dε

k2

]
=

Dε

k2

[ δDε

Dε
− 2

δk
k

]
= 0. (14)

Thus, the variation of Equation (12) provides

δ
[λ2

k2

]
=

Cε1

L2

(
1 − α∗2

)[ α∗2
α∗2 − 1

− δL2

L2

]
. (15)

An extremal error is found by setting the first variation equal to zero:

δα∗2
α∗2 − 1

=
δL2

L2 . (16)

This equation can be integrated from the RANS state to a state with a certain level of

resolved motion:
∫ α∗2

α dx/(x − 1) =
∫ L2

L2
tot

dy/y. We obtain in this way

α∗2 = 1 + L2
+(α − 1), (17)

where L+ = L/Ltot refers to the modeled-to-total length scale ratio. A relevant tech-
nical detail is the calculation of L+ (τ+ is calculated correspondingly). The turbulence
length scale resolution ratio L+ = L/Ltot involves the modeled (L) and total contributions
(Ltot) [26]. The modeled contribution is calculated by L = 〈k〉3/2/〈ε〉, where the brackets
refer to the averaging over time. The total length scale is calculated correspondingly by
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Ltot = k3/2
tot /εtot. Corresponding to ktot = 〈k〉 + kres, εtot is the sum of the modeled and

resolved contributions εtot = 〈ε〉+ εres. Here, the resolved contributions are calculated by
kres =

(〈
ŨiŨi

〉− 〈
Ũi
〉〈

Ũi
〉)

/2, εres = ν
(〈

∂Ũi/∂xj∂Ũi/∂xj
〉− 〈

∂Ũi/∂xj
〉〈

∂Ũi/∂xj
〉)

.
The consideration of Equation (3) is one possibility to hybridize the equations consid-

ered. Another possibility is to consider

Dk
Dt

= P − ψαε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α

)
+ Dε, (18)

where the dissipation ε in the k equation is modified by introducing the unknown ψα. By
following the analysis of Equation (3), we consider the hybridization error λ1 in analysis
option O1:

λ1 = Cε1

ε2

k

(P
ε
− α1

)
+ Dε − Dε

Dt
= Cε1

ε2

k

(1
ε

Dk
Dt

+ ψα − Dk
ε

− α1

)
+ Dε − Dε

Dt
, (19)

where the k equation is used to replace P/ε in the previous expression. The comparison
with Equation (4) shows the equivalence of both approaches, provided that α∗ = 1+ α−ψα.
The comparison of the corresponding λ2 in analysis option O2 leads to the same conclusion.

4.2. Stratified Flows

In regard to stratified flows, we begin with describing the typical structure of an ABL
microscale model [43]. We have the incompressible continuity equation ∂Ũi/∂xi = 0, and
the momentum and potential temperature equations read as follows:

DŨi
Dt

= −∂( p̃/ρ + 2k/3)
∂xi

+ 2
∂(ν + νt)S̃ik

∂xk
− εikn fkŨn − gi, (20)

DΘ̃
Dt

=
∂

∂xk

[( ν

Pr
+

νt

Prt

) ∂Θ̃
∂xk

]
+ Sθ . (21)

Here, Θ̃ is the potential temperature. In addition, gi is the gravity vector, fk is the Coriolis
vector, and εijk is the Levi-Civita symbol. In the Θ̃ equation, we have the molecular and
turbulent heat diffusivities ν/Pr and νt/Prt, where Pr and Prt are the Prandtl number and
turbulent Prandtl number, respectively. The effect of radiation can be taken into account
via the source term Sθ . Equations (20) and (21) are combined with the k − ε model [43]:

Dk
Dt

= P + Pb − ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
+ Cb

Pb
ε

− α
)
+ Dε. (22)

The diffusion terms read Dk = ∂[νt ∂k/∂xj]/∂xj and Dε = ∂[(νt/σε) ∂ε/∂xj]/∂xj, and
P = νtS2 is the production of k. In regard to Equation (2), Cε1 has a standard value
Cε1 = 1.44, σε = 1.3, and α = Cε2 /Cε1 = 1.33 in RANS equations. The effect of buoyancy
is reflected by the buoyancy production Pb = −RiP/Prt, where Ri = βg∂Θ̃/∂x3S−2 is the
gradient Richardson number [16,44–46]. The buoyancy coefficient Cb is characterized by a
large uncertainty: its values range from −1.4 to +1.45 [47,48], including Cb = 1 [49]. For
simplicity, we assume Cb = 1 in the following, in line with the recommendation of Mellor
and Yamada [49].

Corresponding mesoscale models actually represent equivalent or simplified versions
of the microscale model given by Equations (20)–(22). A hierarchy of model versions can
be considered [50–54]. Several options will be considered in the following with the under-
standing that the model version considered is applied to both the microscale and mesoscale.

The first option is referred to as CES-MIME. CES stands for continuous eddy simula-
tion, and MIME stands for microscale-mesoscale model, meaning that the model can be
continuously applied through microscales and mesoscales. This model is equivalent to
Equations (20)–(22). Although the use of this model on the mesoscale is not the common
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choice, there exist several applications of corresponding models [55–59]. One possibility
for hybridizing this model is to consider a variable α∗ (instead of a constant α) combined
with an appropriate calculation of α∗. Hence, in conjunction with Cb = 1, we consider

Dk
Dt

= P + Pb − ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
+

Pb
ε

− α∗
)
+ Dε. (23)

We introduce the hybridization error according to the analysis option O1 in conjunction
with replacing νt in Dk = ∂[νt ∂k/∂xj]/∂xj and Dε = ∂[(νt/σε) ∂ε/∂xj]/∂xj by νt,tot:

λ1 = Cε1

ε2

k
(p − α∗1) + Dε − Dε

Dt
= Cε1

ε2

k

(1
ε

Dk
Dt

+ 1 − Dk
ε

− α∗1
)
+ Dε − Dε

Dt
, (24)

where the abbreviation p = (P + Pb)/ε is used. It turns out that this equation is equal to
Equation (4), which means that the implications presented above are recovered. The same
conclusion is obtained in regard to the analysis according to option O2, where νt is not
replaced by νt,tot in the diffusion terms. Another possibility for hybridizing the CES-MIME
model version is to hybridize the k equation via introducing ψα. This means we consider

Dk
Dt

= P + Pb − ψαε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
+

Pb
ε

− α
)
+ Dε. (25)

The same analysis as that presented in Section 4.1 leads to the conclusion that this approach
represents an equivalent approach as long as the model coefficients are properly related by
α∗ = 1 + α − ψα.

The second option is the CES-MIME-AE model. This model is a reduced version of
CES-MIME, where ε in Equations (20)–(22) is provided by an algebraic expression (AE
refers to an algebraic ε equation). This option is, for example, applied in conjunction with
Mellor and Yamada’s level 2.5 closure model [49] (see also the last paragraph of Section 4.2),
which is a standard model applied for mesoscale simulations [60]. A usually applied ε
expression reads ε = Cμk3/2/(

√
2Sml). Here, Sm is a stability function, and l is a length

scale that is algebraically provided [43]. A corresponding analysis of the CES-MIME-AE
model version is presented in Appendix A.

A third option is the CES-MIME-HH set-up, which is a reduced version of either
the CES-MIME or CES-MIME-AE model where horizontal transport processes are ne-
glected [49,61,62] (HH refers to horizontal homogeneity of the ABL). With respect to this
model option, the analysis in Section 4.2 shows that this option is independent of the
hybridization, and the hybridization functions α∗ and ψα are unaffected. Given that the
neglect of horizontal transport is often considered to be appropriate in a mesoscale model,
the consequence of this simplification will be a discontinuous transition between mesoscale
and microscale models, (Usually, the neglect of horizontal transport processes will be at
least questionable for microscale simulations.) but this assumption will not hamper the
combined model’s ability to maintain a meaningful balance of resolved and modeled motions.

Another often-applied approximation is to replace the turbulent viscosity νt with
algebraic expressions depending on the vertical coordinate and stability. In this case, there
is no need for a k or an ε equation [43]. However, this modeling assumes that the turbulent
viscosity is always fully modeled in terms of RANS-type variables (total variables). This
concept does not provide a meaningful basis for hybridization. Thus, this option is not
considered here.

In regard to the developments presented here, it is worth noting that the applicability
of these methods is not limited to eddy viscosity models, applied for simplicity. The same
approach can be applied, for example, in the frame of Reynolds stress models, as given by
Mellor and Yamada’s closure model [49,60] (see the explanations given in Appendix B).
A Reynolds stress model is a k equation extended by Reynolds stress anisotropy and
combined with a scale model (usually for ε), which provides scale information for the
Reynolds stress model via τ = k/ε or L = k3/2/ε. If an ε transport equation is involved,
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then the hybridization can be driven through the ε equation as described above. If an
algebraic ε expression is applied, then the hybridization can be driven by the k equation
implied by the Reynolds stress model as described above. This case is usually considered
in Mellor and Yamada’s closure model because the original Mellor and Yamada master
length scale formulation provides inappropriate results [60].

4.3. Compressible Flows

Compressible flow modeling will be addressed by considering the spatially filtered
mass density ρ̄, and tilde variables will be used to reflect the mass density-weighted
variables by following the notation used above. The continuity and momentum equations
considered are then given by

Dρ̄

Dt
= −ρ̄S̃kk,

DŨi
Dt

= −1
ρ̄

∂( p̃ + 2ρ̄k/3)
∂xi

+
2
ρ̄

∂ρ̄(ν + νt)S̃ik
∂xk

. (26)

Here, D/Dt = ∂/∂t+ Ũk∂/∂xk, and the modeled viscosity is given by νt = Cμkτ = Cμk2/ε.
Many different methods have been applied to provide k and ε for compressible
flows [16,40,41,63–65]. We follow the usual approach of involving explicit compressibility
corrections (the dilatational dissipation εd and pressure dilation Πd) only in the k equa-
tion [63–65]:

Dk
Dt

= P +
Πd
ρ̄

− ε − εd + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α

)
+ Dε. (27)

The production is given here by P = νtS2 − (2k/3)S̃nn. The usual models for εd and
Πd, which are not applied because there is no need to do so, are εd = α1M2

t ε and
Πd/ρ̄ = −α2M2

t P + α3M2
t ε [63], where α1, α2 , and α3 are the model parameters and the

turbulence Mach number is defined by M2
t = 2k/a2, where a refers to the speed of sound.

For simplicity, we only consider the option to hybridize the k equation via introducing
ψα in the following. This means we consider

Dk
Dt

= P − (ψα + pd)ε + Dk,
Dε

Dt
= Cε1

ε2

k

(P
ε
− α

)
+ Dε, (28)

where pd = [εd − Πd/ρ̄]/ε, the production to dissipation ratio due to dilatational com-
pressibility effects, is introduced as an abbreviation. These equations are equivalent to
Equation (18), where ψα is replaced with ψα + pd. The same analysis presented above
implies that α∗ = 1 + pd,tot + α − ψα − pd, where pd,tot refers to the total value of pd. In the
two options O1 and O2 considered, we have α∗1 = 1 + τ+(α − 1) and α∗2 = 1 + L2

+(α − 1)
(see Equation (10) and Equation (17)). Hence, the incompressible flow models presented
above can be easily extended to the compressible flow.

5. Applications: Periodic Hill Flow Simulations

In regard to the problems P1, P2, and P3 of the hybrid RANS-LES model described
in Section 2, we observe the following. The analysis presented in Section 4 provides the
desired guideline with respect to problem P3. For several turbulence model structures
and hybridization types, the use of the minimal error technique provides exactly one
optimal computational method. A question that is unaddressed in this way is about the
computational performance differences of different model structures and hybridization
options. The analysis presented in Section 4 also provides a solution to the problem P2.
With respect to the almost RANS regime, the relationship α∗2 = 1 + L2

+(α − 1), (for an
example, see Equation (17)), implies a stable dependence of the modeled length scale
L = k3/2/ε calculated via the k − ε model on the resolved length scale involved in the
definition of L+. In regard to the almost LES regime, the modeled length scale L = k3/2/ε
calculated via the k − ε model can serve as an LES length scale independent of the LES filter
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width Δ (i.e., the usual LES resolution requirement that Δ needs to be sufficiently small
does not apply). However, an answer to the question of whether the methods presented in
Section 4 can also overcome the problem P1, which requires a well functional “RANS-LES
swing”, requires computational evidence.

The latter question was addressed by the simulations of periodic hill flows reported
in [27]. Figure 4 illustrates the flow configuration considered, a channel flow (flowing from
the left to the right) with periodic restrictions (hills). This considered flow configuration
is often used for the evaluation of turbulence models. It creates a variety of relevant flow
features such as separation, recirculation, and natural reattachment. The hill crest is located
at (x/h, y/h) = (0, 1). The height h and bulk velocity Ub are used as scaling variables, they
define Re. The simulations were performed by using the OpenFOAM CFD Toolbox [66]. A
CES model formulation corresponding to option O2 was applied, including the comparison
of different hybridization options. A range of Re and grids was considered. Re ranged from
Re = 37, 000 to Re = 500, 000. The data for model validation were only available for the
Re = 37K case [67]. Several grids were used, with the finest (coarsest) grid applied having
500, 000 (120, 000) grid points. The grids were referred to as G500 and G120, respectively. An
almost complete flow resolution was accomplished at Re = 37K using the finest G500 grid,
and an almost RANS simulation was accomplished at Re = 500, 000 using the coarsest
grid (G120).

Figure 4. Periodic hill flow velocity streamlines obtained by CES at Re = 37, 000 on G500 (G500 refers
to 500, 000 grid points). Reprinted with permission from [27]. Copyright 2020 AIP Publishing.

The observations obtained by these simulations are the following:

• Problem P1: The most relevant fact is the conclusion that the “RANS-LES swing” was
fully functional. There was a stable redistribution between the resolved and modeled
motions, depending on the grid and Re variations. In particular, a spatially relatively
uniform mode variation reflected by the resolution indicator L+ was found.

• Problem P2: In regard to the almost RANS regime, a stable generation mechanism
of turbulent velocity fluctuations was observed. In particular, fluctuations were
not extinguished even for very high Re values and very coarse grids. In regard to
the almost LES regime, it was found that the characteristic length scale provided
by CES, which was independent of the LES filter width Δ, properly worked. The
LES simulations performed on this basis (with 500, 000 grid points) showed better
performance than almost resolving LES using 20 million grid points.

• Problem P3: Another relevant observation is that different model hybridization op-
tions worked equally well; there were hardly differences regarding the simulation
results obtained. This fact confirms the applicability of the CES approach to at least
several turbulence model structures, as long as the “RANS-LES swing” is functional.

6. Summary

The current stagnation of the development of computational simulation methods for
turbulent flows was addressed here by clarification of what specifically causes the problems
of existing RANS-LES methods, what the implied consequences are, and how it is possible
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to overcome these issues (see Sections 2–4). The facts presented here can be summarized
as follows:

1. The minimal error approach presented here (which generalizes CES methods) min-
imizes the hybridization error among many other hybrid RANS-LES methods. It
provides a theoretical solution to the problems P1, P2, and P3. Applications demon-
strated the excellent performance of such simulation methods (see Section 5). It is
essential to note that these methods represent a relatively minor extension of standard
two-equation turbulence models.

2. An essential observation presented here is that minimal error methods for incompress-
ible flows [32] can be extended to stratified and compressible flows. This opens the
way to addressing relevant atmospheric science problems (mesoscale to microscale
coupling) and aerospace problems (supersonic and hypersonic flow predictions) (see
the discussions in Section 3). It was argued that such simulations need, in particular,
the ability to perform reliable predictions under almost RANS and almost LES conditions.

3. Hybrid RANS-LES models are based on RANS equations, and such RANS equa-
tions face relevant modeling questions, particularly for stratified and compressible
flows. Minimal error methods are in line with standard modeling options, and they
exclude many other options. Thus, minimal error methods can provide valuable
contributions to the design of consistent turbulence models. In regard to compressible
flows, models are excluded that include a variety of compressibility effects in the ε
equation [40,41]. In regard to stratified flows, a welcome byproduct of considering
the hybridization of the closure model of Mellor and Yamada [49] (see Appendix B) is
the correct specification of the length scales involved, which is seen as a major issue
of such simulations.

4. From a more general view point, the relevance of the minimal error methods presented
is the following. We need reliable methods to simulate high Re flows. LES models and
experiments are restricted by resolution requirements, and popular hybrid RANS-LES
models are known to be unreliable. In this situation, minimal error methods can
provide an error-free simulation contribution in response to the flow resolution (see
the illustration in Figure 2). The latter is the essential requirement for providing
reliable predictions under conditions where validation data are unavailable.
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Appendix A

Let us consider the CES-MIME-AE model, which makes use of an algebraic expression
for ε instead of using the transport equation considered in the CES-MIME version. Because
of the lack of an ε transport equation, the basis for this approach is given by the k equation

Dk
Dt

= P + Pb − ψαε + Dk = (p − ψα)ε + Dk. (A1)
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Here, ψα appears as an unknown function considered for setting up the hybridization, and
the abbreviation p = (P + Pb)/ε was used. Then, the latter equation can be written:

p − ψα =
1
ε

Dk
Dt

− Dk
ε

. (A2)

In an exact analysis option O1, we have Dk = ∂[νt,tot ∂k/∂xj]/∂xj, and Dk/Dt is
involved. The hybridization error λ1 divided by k reads as follows:

λ1

k
=

ψα − p
k

+
1
kε

(Dk
Dt

− Dk

)
. (A3)

Here, ε is unaffected by variations. This is a requirement, the assumption of an algebraic
model is equivalent to assuming that ε is given by its total value. Equation (7) applies,
leading to the fact that the variation in the last two terms on the RHS disappears. The
variation of Equation (A3) then implies

δ
[λ1

k

]
=

ψα − p
k

( δ(ψα − p)
ψα − p

− δk
k

)
. (A4)

By setting the first variation equal to zero, we have

δ(ψα − p)
ψα − p

=
δk
k

. (A5)

We can integrate from the RANS state to a state with a certain level of resolution to obtain

ψα = p + k+(1 − ptot), (A6)

where ptot refers to the total value of p (including contributions such as ktot and εtot).
In the analysis option O2, we have Dk = ∂[νt ∂k/∂xj]/∂xj, and Dk/Dt is not involved.

The hybridization error λ2 divided by k3 reads as follows:

λ2

k3 =
ψα − p

k3 − Dk
k3ε

. (A7)

According to Equation (14), the variation of the last term on the RHS disappears, and we
obtain the variational equation

δ
[λ2

k3

]
=

ψα − p
k3

( δ(ψα − p)
ψα − p

− 3
δk
k

)
. (A8)

We set the first variation equal to zero and obtain

δ(ψα − p)
ψα − p

= 3
δk
k

(A9)

Then, we integrate from the RANS state to a state with a certain level of resolution to obtain

ψα = p + k3
+(1 − ptot). (A10)

Appendix B

We consider a usual, incompressible flow Lagrangian stochastic particle model for the
position x∗i , velocity U∗

i , and scalar (potential temperature) Θ∗ [16]. We have dx∗i /dt = U∗
i

combined with

dU∗
i

dt
= Γ̃i −

[ c∗1
2τ

δik − c∗2
∂Ũi
∂xk

](
U∗

k − Ũk
)
+ Fi + (C0ε)1/2 dWi

dt
,
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dΘ∗

dt
= Ω̃ − c∗θ1

τθ

(
Θ∗ − Θ̃

)
. (A11)

The terms Γ̃i and Ω̃ ensure consistency with the mean velocity and potential temperature
equations, respectively [16]. With respect to the velocity field, we applied the usual
Rotta assumption. In regard to the scalar field, we excluded a stochastic source term and
specified the scalar mixing frequency with c∗θ1/τθ . This mixing frequency is not assumed
to be proportional to τ−1 (τθ refers to the scalar dissipation time scale and is related to
the scalar dissipation rate by εθ = kθ/τθ , where kθ = θ̃2/2). In addition, dWi/dt refers to
the derivative of a Wiener process [16], and c∗1, c∗2, c∗θ1, and C0 are the model parameters.
The body forces involved are represented by Fi = −εikn fkU∗

n − βθ giΘ∗. Here, βθ is the
coefficient of thermal expansion (the inverse reference temperature).

The particle model Equation (A11) implies the following exact Reynolds stress equa-
tions [16,28]:

Dũiuj

Dt
+

∂τijk

∂xk
− Pij + βθ

(
gjũiθ + giũjθ

)
+ fk

(
εjknũnui + εiknũnuj

)
= − c∗1

τ

(
ũiuj − 2k

3
δij

)
+ 2c∗2

(∂Ũi
∂xk

ũkuj +
P∗
3

δij

)
− 2

3

(
c∗1 + c∗2

P∗
ε

− 3
2

C0

)
εδij, (A12)

Dũiθ

Dt
+

∂τikθ

∂xk
− Piθ + βθ gi θ̃2 + fkεiknũnθ = −

[ c∗1
2τ

+
c∗θ1
τθ

]
ũiθ + c∗2 ũkθ

∂Ũi
∂xk

, (A13)

Dθ̃2

Dt
+

∂τkθθ

∂xk
− 2Pθ = −2

c∗θ1
τθ

θ̃2. (A14)

We have here P∗ = −ũkun∂Ũn/∂xk, where τijk, τijθ , and τiθθ refer to the corresponding
triple correlations, and we introduce the abbreviations

Pij = −ũkuj
∂Ũi
∂xk

− ũkui
∂Ũj

∂xk
, Piθ = −ũiuk

∂Θ̃
∂xk

− ũkθ
∂Ũi
∂xk

, Pθ = −ũkθ
∂Θ̃
∂xk

. (A15)

The consistency of these equations with the definitions of the dissipation rates ε = k/τ

and εθ = kθ/τθ in the transport equations for k = ũnun/2 and kθ = θ̃2/2 requires two
coefficient relations:

c∗1 + c∗2 P∗/ε − 3C0/2 = 1, c∗θ1 = 1/2. (A16)

Equations (A12)–(A14) agree with the level 4 closure model of Mellor and Yamada [49],
with the exception of Mellor and Yamada’s neglect of higher-order anisotropy effects,
leading to an isotropic version of the c∗2 term on the RHS of Equation (A12) (which then
reads 8kc∗2 S̃ij/3) and the neglect of the last term in Equation (A13). A comparison of the
coefficients applied here with coefficients �1, �2, Λ1, and Λ2 applied by Mellor and Yamada
reveals, in conjunction with c∗θ1 = 1/2, the relations

c∗1
τ

=
(2k)1/2

3�1
,

4c∗2
3

= 2C1, ε =
(2k)3/2

Λ1
,

c∗1
2τ

+
1

2τθ
=

(2k)1/2

3�2
,

c∗θ1
τθ

=
(2k)1/2

Λ2
, (A17)

We find, in addition to the relationship C1 = 2c∗2/3, the following condition for �1, �2, Λ1
and Λ2:

(�1, Λ1, �2, Λ2) =
( 1

2c∗1
, 3,

1
c∗1 + Γ

,
3

2c∗θ1Γ

)23/2

3
L. (A18)

Here, L = k1/2τ and the mechanical-to-scalar time scale ratio Γ = τ/τθ are involved. (A
constant Γ = 1.5 was applied for stratified flow [68,69]) Equations (A12)–(A14) receive
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scale information via τ or L; that is, τ or L needs to be provided in a physically meaningful
way under changing stratification.
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50. Muñoz-Esparza, D.; Kosović, B.; Mirocha, J.; van Beeck, J. Bridging the transition from mesoscale to microscale turbulence in

numerical weather prediction models. Boundary Layer Meteorol. 2014, 153, 409–440. [CrossRef]
51. Sanz Rodrigo, J.; Chavez Arroyo, R.A.; Moriarty, P.; Churchfield, M.; Kosović, B.; Réthoré, P.E.; Hansen, K.S.; Hahmann, A.;
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Abstract: The development of energy-efficient solutions for large-scale fermenters demands a deep
and comprehensive understanding of hydrodynamic and heat and mass transfer processes. Despite a
wide variety of research dedicated to measurements of mass transfer intensity in bubble flows, this
research subject faces new challenges due to the topical development of new innovative bioreactor
designs. In order to understand the fluid dynamics of the gas–liquid medium, researchers need to
develop verified CFD models describing flows in the bioreactor loop using a progressive physical
and mathematical apparatus. In the current paper, we represent the results of evaluating the key
performance indicator of the bioreactor, namely the volumetric mass transfer coefficient (kLa) known
as a parameter of dominant importance for the design, operation, scale-up, and optimization of biore-
actors, using the developed thermometry method. The thermometry method under consideration
was examined within a series of experiments, and a comparative analysis was provided for a number
of various regimes also being matched with the classical approaches. The methodology, experiment
results, and data verification are given, which allow the evaluation of the effectiveness and prediction
of the fluid flows dynamics in bioreactors circuits and ultimately the operational capabilities of the
fermenter line.

Keywords: gas–liquid flow; bioreactor; fermentation; mass transfer coefficient; thermometry method;
kLa; two-phase media; multiphase flows; scale-up; numerical modeling; jet fermenter

1. Introduction

Despite the impressive recent development of the practice of applying modern numer-
ical and computational methods to hydrodynamic flow analysis [1–9], as well as machine
learning methods [10–13] for modeling, analyzing, and evaluating the performance pa-
rameters of various engineering solutions in the field of fermentation [14,15], a number
of questions remain as an open challenge for the scientific community [16–18]. Among
them lies a fair assessment of fermenters’ performance indicators [19–21] for the case of
the large-scale transition from laboratory to industrial solutions. Another indisputable
challenge for researchers in the field of biotechnology is the development and implemen-
tation of analytical modules for the control system of mass transfer characteristics of the
fermentation process [22–25]. Both of these problems require an adequate verified descrip-
tion of the behavior of bubbles in a two-phase gas–liquid medium of a bioreactor [26–29],
in particular, the development of relevant experiments and methods for evaluating the
mass transfer in the system [14,30–32]. The latter is particularly relevant since, together
with the energy consumption associated with the fermenter’s performance and therefore
the direct economic effect when choosing the bioreactors types, the (kLa) coefficient must
be measured by methods that do not involve shutting down the fermentation process at
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the plant and, moreover, do not require any sort of chemical interventions in the circuit of
the plant (as, e.g., i is assumed in the case of a number of classical approaches such as the
sulfite method). Thus, the requirements of maximum non-interference in the fermentation
process, the need to carry out measurements in parallel with the main (complicated micro-
biological) processes, and reasonable considerations regarding the final cost of resources
for such regular measurements lead researchers to the need to find new methods that meet
the above claims. The present study is devoted to solving the aforementioned problem
based on a sample stand of a mass transfer apparatus designed for the process of growing
microorganisms on various types of substrates [9,26,33], namely a jet bioreactor with the
recirculation of liquid and gas phases of an air–water and air–model liquid of a given
rheology system. Studied experimentally on various scales of plantsand evaluated critically
from the point of view of compliance with the results of other measurement methods, the
presented thermometric method was proven indeed to be a promising tool for measuring
the efficiency in mass transfer apparatuses, including large-scale (in our experiment, up to
1000 cubic meters) fermentation plants. An experimental study of the life-cycle analysis of
bubbles, its evolution, and mass transfer characteristics in jet bioreactors (when mixing is
carried out due to a falling jet of liquid initiated by pump operation) was provided when
the bubbles passed through a closed circuit of the fermenter. The experimental module
was designed in order to include a set up wide enough to evaluate hydrodynamics and
calculate the mass-transfer parameters of the fermenter depending on the performance of
the circulation pump, the amount of air supplied, and the degree of filling of the apparatus
circuit etc. The thermometry method for volumetric mass transfer coefficient (kLa) evalua-
tion based on the transition of the mechanical form of energy into heat due to the operation
of the pump [34] was investigated and verified in particular with sulfite method and kLa
calculations performed on the basis of input mechanical energy. We have also focused on
investigating the limits of applicability of these methods for various operating modes and
scales of experimental setup, investigating the influence of concrete numerical values and
corridors of input parameters on the behavior of gas–liquid flows.

2. Materials and Methods

2.1. Theory of the Thermometry Method

The cornerstone of the fermentation process, namely the aforementioned calculation
of the volumetric mass transfer rate, depends directly on the type of installation (fermenter)
that provides the gas–liquid fluid flow transition. One knows a number of various empirical
formulas for determining the dissolution of gas (oxygen) for bubbling, bubbling-airlift,
gas-lift, nozzle gas distribution [35], and finally jet units, which are considered in the
current manuscript. At least two main, physically natural, parameters in these formulas are
worth mentioning, namely (1) specific input energy (power) spent on mixing and aeration
Nv, kW/m3, since diffusion processes in a liquid are intensified with an increase in the
Reynolds number in terms of the relative velocity of the liquid and gas phases [36], and
thus the energy dissipation of the gas flow was carried out as a result of the work of the gas
flow against friction velocity, and (2) and true volumetric gas fraction (void fraction) ϕ. The
volumetric gas fraction in the apparatus could thus be defined as the ratio of the volume
of the gas phase to the volume of the gas–liquid mixture. As ϕ increases, the specific
interfacial surface also increases. In a particular idealized case, e.g., in a monodisperse
bubble medium, the interfacial area per unit volume is equal to 6 ϕ/ D, where D is the
gas-bubble diameter. This fact can be explained by an example. Let us denote Vb = πD3/6
as bubble volume. The number of bubbles per unit volume N = ϕ/Vb = 6 ϕ/πD3, and
the total area of the interfacial surface per unit volume NπD2 = 6 ϕ/D. When designing a
jet fermenter of an overflow type, the ratio of the volume of the gas phase to the volume
of the gas–liquid mixture is taken to be equal to ϕ = 1. We also take into account [34] the
following formula outflow for the kLa definition:

kLa = A · Nn
v · ϕm, (1)
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where A, n, and m are coefficients assigned specifically for the type of apparatus under
consideration. In jet fermenters, when mixing is provided through the falling jet of liquid
caused by the operation of the pump, with natural ejection of the gas by a liquid jet, the
mass transfer coefficient in the liquid phase is thus proposed to be calculated using the
following formula [37]:

kLa = 350 · N0.85
v , (2)

The specific input power spent on mixing and aeration Nv represents itself as the
mechanical (useful) power of the rotary pump. It should be noted that in real experiments,
the calculated power consumption of the pump might differ significantly from Nv since
asynchronous motors are widely in use for pump operation and thus the efficiency depends
on the load lying in practice from 75% to 96%. In other words, considering that Nv equal to
the measured power consumption appears to be incorrect, and taking into account [38], Nv
is rather spent on the following:

1. Averaged and turbulent (pulsation) kinetic energy of the flow,
2. Change in the potential energy of the fluid in the gravitational field,
3. Enthalpy change (heating of liquid due to thermal dissipation),
4. Heat of gas dissolution (negative),
5. External heat losses of the circuit,
6. Interfacial “liquid–gas” energy.

In stationary (quasi-stationary) modes of operation of the closed circuit of the bioreac-
tor, the kinetic and potential energies of the flow (1 and 2) do not change. If one neglects
the heat of condensation and heat losses (4 and 5), the specific input power for mixing the
medium in the apparatus might be calculated as follows:

Nheat
v = CpΔT/Δt, (3)

where Cp is the specific heat of the liquid (the heat capacity of the apparatus walls is
considered negligible). Expression ΔT denotes liquid temperature difference during the
determination time, ◦C; and Δt is the relative measurement period.

It is worth mentioning that when thermometry method is applied, it is crucial to make
the first measurement of the temperatures when achieving the steady flow regime. In turn,
this is determined by the time of establishment of the stationary turbulent spectrum in
the flow. For regular contour sizes (internal diameters of pipes are centimeters or tens of
centimeters) and Reynolds number (tens or hundreds of thousands, which corresponds to
developed turbulent regime), this time is on the order of a few seconds. During this time
period, the “gas–liquid” interfacial surface most likely formed.

In general, this formula can be modified in cases when significant external heat
losses or significant heat of dissolution takes place. If the circuit is not closed and during
the circulation of the liquid a complete or partial renewal of the liquid takes place, it
is obligatory to take into account the change in the kinetic and potential energy of the
flow, as well as the change in the interfacial surface since the intake and removal of fluid
can be carried out at various speeds and on various heights, a new interfacial surface
is additionally formed. Finally, with a constant gas supply, it is necessary to take into
account its excess enthalpy, which is meanwhile partially expended on the gas dissolution.
According to the assessment, the external heat losses of the circuit make a significant
contribution to determining the specific input power since the surface of the apparatus is
extensive and not thermally isolated:

Qloss = αtot Δt Asurf (Tsurf − Tout ), (4)

where αtot = (9.3± 0.06) [W/m2 ◦C] represents total coefficient of heat transfer by radiation
and convection; Asurf is responsible for heat exchange surface area of the apparatus, and
Tsurf for its surface temperature. Accordingly, Tout corresponds to ambient temperature.
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2.2. Design and Procedure of the Experiment

Verification of the thermometric method was carried out on the developed experimen-
tal setup (Figure 1), designed especially to recreate the complete operation of a jet ejection
bioreactor with a working volume of 0.1 m3 in terms of hydrodynamic flows. The setup is
represented as a closed hydrodynamic circuit with free input for the gas phase injections.
For additional verification and comparative analysis of the range of applicability of various
methods for kLa measurement, the archive data were used for the analogous setup of a
similar design type, but eight times bigger by working volume than the main experimental
setup (see also Section 3).

Figure 1. Experimental setup for measuring the mass transfer of the air–liquid flow. The design of the
experimental setup corresponds to the real field jet bioreactor for manufacturing the microbiological
single-cell protein and corresponding high-added-value products.

The principle of operation of the designed experimental setup is shown on Figure 1.
The motor rotates the circulation pump, which ensures the rise of liquid through the
circulation circuit into the overflow ejector. Once in the ejector, the liquid, subjected to
gravitational force, falls into the tank, entraining the air through the inlet valve, as well
as from the recirculation tube connecting the tank and the ejector. The device absorbs
the air up to a state of saturation. Meanwhile, in the ejection column, a bubbly medium
is formed, which provides the most intensive mass transfer and saturation of the liquid
with dissolved gas. During the operation, the experimental setup is controlled by a single
parameter: the pressure-flow characteristic of the pump, determined by the consumed
energy of the engine. The tactical task of the planned experiments was to determine the
rate of oxygen dissolution, as well as to calculate the volumetric mass transfer coefficient.
The experiments were carried out for the media characteristics represented in Table 1.

The above-mentioned special model liquid was determined as a mixture of water and
glycerin at a ratio of 11.5:1. Such a fluid satisfactorily models the rheology of a biological
fluid used in industrial bioreactors [9]. On the initial phase, the experimental setup was
filled with liquid up to a working volume of 0.125 m3 and preheated up to the ambient (air)
temperature. Then, the pump was started, and the experimental setup was saturated with
air (air absorption in the ejector then stops), and the procedure of temperature measurement
of the liquid in front of the pump was initialized (see Figure 1). The measurement series
were made accurately every 300 s using a GMH 3230 digital high-precision, low-inertia
thermometer. The results of thermometric measurements, namely the dependence of water
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temperature on time for various pump operation modes, are shown in Figure 2. The
corresponding specific volumetric power values on the pump impeller for these modes
are given in the figure’s legend. The graph shows that a greater specific input power
corresponds to a greater slope of the graph. Accordingly, larger angles of inclination
correspond to larger thermal outputs.

Table 1. Experimental media and hydrodynamic regimes parameters.

Specific Input Power Nv

(Experimental Setup Regime), kW/m3 Liquid Type
Heat Capacity,

W h/kg ◦C
Density, kg/m3 Air Temperature, ◦C

Thermometry method

0.940 Water 1.17 1000 20.4
1.042 Water 1.17 1000 28.4
1.605 Water 1.17 1000 26.2
1.915 Water 1.17 1000 30.1
2.243 Water 1.17 1000 30
1.062 Model liquid 0.56 1020 27.9
1.636 Model liquid 0.56 1020 28
2.286 Model liquid 0.56 1020 28

Sulfite method

1.052 Water 1.17 1000 29
1.620 Water 1.17 1000 29
2.264 Water 1.17 1000 29

Figure 2. Relative temperature of the liquid changes with time, thermometry method applied on
water (left) and model liquid (right).

In order to determine the reasonably applicable intervals of the thermometric method,
as well as to confirm the relevance of the obtained absolute values measured and calcu-
lated, the sulfite method of measurement of the the intensity of oxygen dissolution in
water [39–42] was used as a reference. The choice of the sulfite method for studying mass
transfer in the liquid phase was determined due to the fact that the oxidation reaction of
sodium sulfite occurs in the bulk of the liquid, and the process of chemisorption of air
oxygen by an aqueous solution of sodium sulfite is determined by the diffusion of oxygen
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in the liquid boundary film. Since the resistance in the gas phase is negligible, the entire
process of sodium sulfite oxidation is limited by mass transfer in the liquid phase. An
aqueous solution of copper sulfate with a concentration of more than 10 kmol/m3 at a
concentration in a solution lies within the range of 4–50 g/L depending on the quality of
mass transfer (the higher the rate of dissolution of oxygen, the more we take the concen-
tration for the accuracy of determination due to the measurement technique). According
to a number of researchers [37], the rate of a chemical reaction in the presence of copper
ions does not depend on the concentration of sodium sulfite. The latter makes it possible
to neglect the degree of mixing of the liquid when calculating the driving force of the
process. In the presence of a catalyst, the reaction proceeds in the diffusion region, where
the rate of sulfite oxidation is limited by the resistance in the liquid phase, so the core of
the sulfite method is based on the oxidation reaction of sodium sulfite in the presence of a
catalyst—copper or cobalt ions: 2Na2SO3 + O2 − Co2+Cu2+ → 2Na2SO4. The excess sulfite
remaining is determined by iodometric back-titration [39,41]. Sulfite concentrations applied
range from 0.2 n up to 1 n. Note that the rate of the chemical reaction of sulfite oxidation is
much higher than the rate of absorption, so the overall rate of the process is determined by
the rate of absorption. The sulfite coefficient (sulfite number) M determined by this method
characterizes the rate of oxygen absorption in the experimental setup (normal range is from
0.5 to 5 and rarely reaches 10 mmol/L min for O2. Parameter M might be determined
by the physical–chemical properties of the sulfite solution and the hydrodynamic param-
eters of the system. Since the reaction between dissolved oxygen and sulfite is close to
instantaneous and the concentration of dissolved oxygen is zero, we have:

M = kLa CO2 . (5)

It is worth mentioning that normally the kLa value, determined by the sulfite method,
is higher than what might be determined by the direct method [37,40,42]. The experimental
setup was filled with liquid up to a working volume of 0.125 m3, heated preliminarily up to
the ambient (air) temperature; the pump was started, and the process of sampling from the
line in the position in front of the pump was begun (see Figure 1). Sampling was carried
out every 180 s, and each iteration demanded sample volume as of 50 mL of liquid. The
results of the measurements of sulfite spent for the titration are represented on Figure 3.

Note that for both of Figures 2 and 3, dots of the same color correspond to the same
pump’s RPM, but the specific power on the impeller is different due to the properties of the
liquids (water and model liquid).

The sulfite M number can be determined according to the formula [37,40,42]
M = 24/Δt (af−ai), where: Δt is experience exposure and af and ai are final and initial
amount of 0.1 N solution of sodium hyposulfite spent for the titration. Typically, the time
intervals with the highest sulfite consumption are used [40,42]. Finally, the mass transfer
coefficient in the liquid phase was determined by the ratio kLa = M/(C∗

O2
− CO2)£, where

C∗
O2

is equilibrium oxygen concentration in relation to the gas phase (7.15 mg/L, 0.0076
kg/m3 is taken for calculations) for the experimental conditions; CO2 is the concentration of
oxygen dissolved in the liquid, equal to zero in our case; £ is the coefficient of acceleration of
the process of oxygen chemisorption in relation to biosorption (£ = 1.5), and this coefficient
is taken based on the design of the fermenter.
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Figure 3. Amount of thiosulfite used for titration, mL per minute.

3. Results

Figure 4 shows the dependence of kLa on Nv for various liquids (water and special
model liquid) and methods for kLa measurements on the experimental setup designed
in strict accordance with real jet-fermentation apparatuses. Note that the measurements
were carried out in the steady state mode of heat exchange between the reactor and the
environment according to the measurement protocols. In Figure 4, the black curve corre-
sponds to calculated dependence, and blue dots correspond to the data obtained using the
thermometric method for the water

(
ρ = 1000 kg/m3, C = 4200 J/kg ◦C at different setup

regimes (see Table 1); green dots correspond to the data obtained using the thermometric
method for the model liquid ( ρ = 1019 kg/m3, C = 2000 J/kg ◦C) at different setup
regimes (see Table 1). Finally, red dots represent the data obtained according to the sulfite
methodology

(
ρ = 1008 kg/m3, C = 4200 J/kg ◦C

)
, with the same regime range.

It should be noted that an increase in engine speed leads to an increase in the specific
input power (in the operating frequency range): the location of the data points on the
graph (Figure 4) allows one to observe the tendency for kLa to increase with an increase
in Nv (in the operating frequency range). The shift in Nv values for the same pump
motor speed is explained by the fact that at the same head and volume flow, a liquid
with a higher density will provide a greater specific input power. Thus, with rounding
taken into account, water, Nv = (1.61 ± 0.09) kW/m3; ρ = 1000 kg/m3; sulfite solution,
Nv = (1.62 ± 0.09) kW/m3; ρ = 1008 kg/m3; model fluid, Nv = (1.64 ± 0.09) kW/m3;
ρ = 1019 kg/m3. One can see that within the operating power range (sub-critical modes),
there is a coincidence of kLa values within the calculation errors range for all methods used,
with the understanding that the acceptable difference between the kLa values for water
and the model liquid is caused by the properties of the liquid such as change in viscosity,
heat capacity, etc.
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Figure 4. Dependence of kLa on Nv for various liquids and methods of measuring kLa on an
experimental apparatus. The measurements were carried out in the steady state mode of heat
exchange between the reactor and the environment according to the measurement protocol.

The characteristic increase in kLa in experiments with water at specific input powers
above 1.6 kW/m3 and, accordingly, the drop of kLa for the sulfite method, can be explained
by the peculiarities of the fermenter operation, namely reaching critical values of the
ejector’s normal operation due to the overfilling of the mixing chamber, which led to a
decrease in relative velocities in the gas-phase pickup zone and, as a result, to a decrease
in the volume of ejected air. The calculation errors were estimated using the formulas for
indirect measurements, taking into account the random and instrumental components for
the corresponding values.

Additional series of calculations were performed for the archived data measurements
provided for the similar apparatus of greater volume (bigger by one order in volume than
the experimental setup considered above). The corresponding calculations are represented
on Figure 5, showing, similarly to Figure 4, the plot of kLa for various methods of measuring
volumetric mass transfer coefficients. Again, the black curve corresponds to calculated
dependence, blue dots correspond to thermometry method applied for the gas–water
system, and the red dots correspond to sulfite method measurements.
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Figure 5. Dependence of kLa on Nv for various liquids and methods of measuring kLa based on
archive data (with working volume of the next order than the experimental setup considered above.

4. Discussion

The experimental and theoretical analyses of one of the key characteristics of fermen-
tation apparatuses, namely the volumetric mass transfer coefficient, provided with various
methods, are believed to be the first of their kind conducted for various input parameters
of the system (frequency, various types of liquid, including the model one, corresponding
in rheology to real cultural liquid of biotechnological productions) for various scales of
experimental setups of jet bioreactors. At the same time, the authors would like to draw the
readers’ attention to a number of requirements for both the experiments and the conclusions
following from the analysis of the data. Thus, special requirements should be imposed
on minimizing the spread of ambient temperature (which corresponds to the temperature
difference during the analysis according to the thermometric method): the temperature
measurement calculation error has the same order of magnitude with the temperature
difference during thermometry at low powers or at short measurement times. Among
the conclusions obtained, we should especially note that all the studied methods for kLa
measurements have their limitations in terms of ranges of applicability. For example, for
the thermometric method on the one hand, at low pump powers, the thermal power of
heating the liquid is comparable to the error in thermal power due to specific of instruments,
which allows evaluate the lower limit of applicability. On the other hand, at high powers,
the excessive heating of the liquid will overestimate the specific input power, since only
a part of the thermal power corresponds to the power used to dissolve oxygen. In this
vein, it would be reasonable to introduce a correction factor that depends on the thermal
power as a function that decreases outside the primary range of applicability of the method,
which in the future will allow it to be expanded. For thermometric measurements, the
heat capacity of the final solution is also important: this must be taken into account when
choosing a model liquid. We also note that there are other options for obtaining empirical
dependencies of kLa on the specific input power, since even when using the dependence
given in the article, variation in multipliers and power exponents is allowed. We especially
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note that it requires the fitting of the methodological parameters for each specific apparatus.
The mechanism of energy distribution in the jet bioreactors requires further research and is
one of the prospects for this project’s team.

5. Conclusions

The key characteristic of fermentation apparatuses considered in this manuscript,
namely the volumetric mass transfer coefficient, indeed draws researchers’ attention both
in terms of their fundamental interest in fluid flow research and measurement techniques
in closed mass transfer apparatuses circuits and in terms of industry demands. It should
be especially highlighted that the kLa measurement technique is particularly challenging
and requires adjustments for various bioreactor designs, while classical approaches do
not provide the corresponding measurements by, e.g., the sulfite method due to the large
scale of installations in industrial solutions. Thus, a verified method for obtaining data on
the volumetric mass transfer coefficient with the determination of the objective horizons
of application is required, and exactly this approach was demonstrated for the first time
in this work. In the presented study, the experimental hydrodynamic and mass transfer
characteristics of the jet fermenter were obtained, and the verification of the thermometric
approach for estimating the volumetric mass transfer coefficient based on experimental
data and the reference sulfite method was carried out. The intervals of applicability of these
methods were analyzed, and the critical values for the operating modes of the experimental
installations under consideration, designed in full accordance with jet bioreactors in terms
of hydrodynamic characteristics, were determined. This study demonstrates the need for a
comprehensive analysis of the system using various methods to determine the values of the
volumetric mass transfer coefficient. The presented thermometric method for determining
the rate of dissolution of atmospheric oxygen can be used in the microbiological and food
industries in the development of new types of fermentation equipment in order to deter-
mine the best indicators for mass transfer, as well as to compare various types of apparatus
that differ in design and energy input for mixing and aeration, and also to determine
the mass-transfer parameters of industrial mass-exchange/fermentation apparatuses of
large unit power. The development of the various novel engineering solutions, techniques,
and methodology in fermentation are aimed to improve process efficiency, safety, and
other process parameters, which are crucial to shaping a wide spectrum of biotechnology
products’ quality.
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Nomenclature

ρ density of the liquid, (kg/m3)

CO2 dissolved oxygen concentration in the liquid, (kg/L)
C∗

O2
equilibrium dissolved oxygen concentration in the liquid, (kg/L)

Qloss heat loss, (J)
αtot total coefficient of heat transfer by radiation and convection, (W/(m2 ◦C)

Asurf heat exchange surface area, (m2)
Tsurf surface temperature of the apparatus, (◦C)
Tout ambient temperature, (◦C)
Δt measurement period, (s)
T temperature of the liquid, (◦C)
ΔT liquid temperature difference during the measurement, (◦C)
Cp specific heat capacity of the liquid, (kJ/(kg ◦C))

Nheat
v specific input power (thermal),

(
kW/m3)

Nv
specific input power (at the pump impeller),

(
kW/m3), calculated taking into account

pump and liquid specific characteristics
kLa volumetric mass transfer coefficient,

(
h−1

)
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Abstract: Bubble formation and dissolution have a wide range of industrial applications, from the
production of beverages to foam manufacturing processes. The rate at which the bubble expands or
contracts has a significant effect on these processes. In the current work, the hydrodynamics of an
isolated bubble expanding due to mass transfer in a pool of supersaturated gas–liquid solution is
investigated. The complete scalar transportation equation (advection–diffusion) is solved numerically.
It is observed that the present model accurately predicted bubble growth when compared with
existing approximated models and experiments. The effect of gas–liquid solution parameters such as
inertia, viscosity, surface tension, diffusion coefficient, system pressure, and solubility of the gas has
been investigated. It is found that the surface tension and inertia have a very minimal effect during
the bubble expansion. However, it is observed that the viscosity, system pressure, diffusion, and
solubility have a considerable effect on bubble growth.

Keywords: bubble growth; hydrodynamics; supersaturated liquids; 1-d moving interface; advection–
diffusion process

1. Introduction

A gas bubble is formed when an atomically or molecularly dissolved gas becomes
supersaturated in a liquid solvent as a result of the reduction in imposed gas pressure,
change in liquid temperature, or change in solute or solvent character Rosner et al., 1972, [1].
The study of gas bubbles is of major interest due to their appearance in many real-world
problems. One of the important applications of bubble hydrodynamics is in chemical
process industries, for example in the production of foamed plastics Elshereef et al., 2010, [2].
When a gas-generating substance such as a blowing agent is mixed with a high-pressure
molten polymer, the resulting product turns out to be thermoplastic Arefmanesh et al.,
1992, [3]. In this process, gas bubbles emerge and have a considerable effect on product
quality. Therefore, it is necessary to understand the behavior of bubbles under different
process parameter conditions. High-density foamed thermoplastics, otherwise called
cellular plastics, are used in household furniture, transportation, and building products; on
the other hand, low-density thermoplastics are frequently used in rigid packing Lee et al.,
1996, [4]. The formation and growth of bubbles due to de-gassing or reduction in pressure
in a supersaturated gas–liquid solution is observed in a broader spectrum of industrial and
natural processes. For example, a very well-known process in which de-gassing is observed
are carbonated beverages, such as beer, soda, and champagne (Bisperink et al., 1994, [5];
Jones et al., 1999, [6]; Barker et al., 2002, [7]; Liger-Belair 2005, [8]; Lee et al., 2011, [9];
Enríquez et al., 2013, [10] Enríquez et al., 2014, [11]). The study of bubble dynamics is vital
in production industries, where molten polymers, metals, and glasses are of major interest
Amon and Denson, 1984, [12] and a bubble prediction theory is important in the exsolution
of gases during oil extraction Pooladi-Darvish et al., 1999, [13].

Several mathematical models have been developed to predict the bubble size evolu-
tion in various industrial processes. For instance, Epstein and Plesset, 1950, [14] derived
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an approximate analytical solution, by neglecting inertia, to an unbounded single bub-
ble growth/dissolution in a gas–liquid solution due to pure mass transfer (diffusion) for
supersaturated and undersaturated conditions. Epstein’s formulation suggests that the
bubble grows as the square root of time, i.e., R ∝

√
t, where R is the radius of the bubble.

However, their formulation lacks in explaining the hydrodynamic effects on bubble growth,
including inertia, surface tension, etc. Barlow and Langlois, 1962, [15] were the first to com-
bine diffusion with hydrodynamics, wherein they introduced a very complicated integro-
differential equation based on a thin shell assumption. The formulation of Barlow et al.
is complicated and computationally time-consuming to solve for larger bubble growth
rates. Rosner and Epstein, 1972, [1] assumed a parabolic concentration profile in a thin
boundary layer to generate an approximate solution of the diffusion equation. This work
has been adopted by many researchers including Elshereef et al., 2010, [2], Patel, 1980, [16]
and Han and Yoo, 1981, [17] formulation does not account for the change in gas pressure
inside the bubble with time. Patel, 1980, [16] developed two coupled ordinary differential
equations (ODEs) for predicting the unbounded growth of a single bubble in a Newtonian
liquid; however, he neglected the effect of inertia in his formulation. Later, Amon and
Denson, 1984, [12] introduced a cell-based model that incorporates the effect of available
gas from the surrounding bubbles. Amon and Denson’s formulation is developed based on
a cell model assumption, where they have considered the foam as a summation of an equal
microscopic unit of spherical cells with a constant mass in it and every cell has a spherical
gas bubble that grows by diffusion of gas from the microscopic unit.

As discussed earlier, Barlow et al., 1962, [15] and Patel, 1980, [16] developed models for
pure Newtonian fluid cases, hence neglected the effect of the elastic nature of the polymer.
To fill this gap, Han and Yoo, 1981, [17] and Ramesh et al., 1991, [18] introduced a model
that includes the effect of the elasticity of the fluid (polymer). Elshereef et al., 2010, [2]
compared two popular bubble growth models. The first model is known as the Patel model
or single bubble growth model, which is developed on assumption that a single bubble
grows in a pool of liquid with infinite availability of gas, and the second model is called a
cell model or Amon and Denson model, which is developed by incorporating the finiteness
of gas availability and considering the proximity of gas bubbles. The main motivation of
the Elshereef et al., 2010, [2] investigation was to compare these two models in terms of
numerical implementations and accuracy in bubble growth prediction. In this regard, they
compared the models with Han and Yoo’s experimental findings. In recent years, Soto et al.,
2019, 2020, [19,20] investigated experimentally carbon dioxide (CO2) and nitrogen (N2)
bubble growth in water solutions with and without confinements. Their finding suggests
that after the initial period of diffusion-driven bubble growth, the mass transfer is further
accelerated due to density-driven convective flow.

Although researchers have performed ample work in understanding the hydrodynam-
ics of the bubbles in different processes, clear insight into the diffusion process coupling
with hydrodynamics and an explanation of process flow parameters’ effects on hydrody-
namics are lacking. The current work emphasizes solving the diffusion process numerically
and closely studying how different liquid parameters such as liquid viscosity, surface ten-
sion, diffusion coefficient, system pressure, and solubility of gas affect the hydrodynamics
of bubble growth. Though the current numerical framework developed in this work is
for Newtonian liquids, the authors aim to explore how the current model compares with
the different Newtonian liquid models of Elshereef et al., 2010, [2] and the viscoelastic
experimental data of Han and Yoo, 1981, [17].

2. Physical Domain and Problem Formulation

2.1. The Physical Domain

The hydrodynamics of an isolated, spherically symmetrical gas bubble of radius R(t),
where t is the time, in an incompressible gas–liquid solution is examined in spherical coor-
dinates (r, θ, φ). Barred variables denote dimensional quantities. We assume a stationary
single bubble of initial radius R0 and a gas pressure pg0 nucleating in a saturated solution
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of gas and liquid with the partial pressure of the gas in the liquid p0 and concentration c0,
as shown in Figure 1. Denoting the interfacial tension by σ, then pg0 = σ

R0
+ p0. At t = 0+,

the gas–liquid solution is suddenly exposed to a drop in pressure when the atmospheric
pressure pa is applied in the bulk liquid region far from the gas bubble, and where it is
assumed maintained for all time t > 0. We denote by pR(t) the pressure at the gas–liquid
interface and by pg(t), the gas pressure inside the bubble. The concentration of the gas
in the liquid at a given time and position is denoted by c(r, t), whereas the concentration
at the interface of the bubble is cR(t) ≡ c(r = R, t). Due to the spherical symmetry as-
sumption the velocity components v and w in the direction θ and φ vanishes. Therefore,
the only non-vanishing liquid velocity component is in radial direction and denoted by
u(r, t) and the bubble interface velocity is given by dR

dt = u(r = R, t) Maloth, 2020, [21].
Henry’s law is assumed to apply initially so that c0 = kH p0 and at the interface so that
cR(t) = kH pR(t), where kH is Henry’s constant. Finally, as it is customarily done in the
literature, we assume that the concentration far from the bubble retains its initial level as
it is not affected by the sudden drop in pressure during the transient process of bubble
growth. Thus, c( r → ∞, t ) ∼ c0.

 

Figure 1. Schematic diagram of a single bubble in a liquid–gas solution.

2.2. Conservation of Mass and Linear Momentum

The flow of the Newtonian liquid of density ρL and viscosity μL is assumed to be
spherically symmetric, thus reducing to a transient one-dimensional problem in the radial
direction, r. The conservation of mass and momentum in the liquid region reduces to

∂u
∂r

+ 2
u
r
= 0 (1)

ρL(
∂u
∂t

+ u
∂u
∂r

) = −∂p
∂r

+ 2μL(
∂2u
∂r2 +

1
r

∂u
∂r

− 1
r2 u). (2)

These equations are subject to the following initial and boundary conditions. Initially,
the bubble is assumed to be of radius R0 and at rest, so that

R(t = 0) = R0, u(r, t = 0) = 0. (3)

The kinematic and dynamic boundary conditions at the interface take the form:

u(r = R, t) =
dR
dt

(4)

pg(t) = 2
σ

R(t)
+ p(r = R, t) + 4

μL

R(t)
u(r = R, t), (5)
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where σ is the interfacial tension. In stating condition (5), the gas inside the bubble is
assumed to be motionless. Integrating Equation (1) and using condition (4) leads to

u(r, t) =
R2

r2
dR
dt

. (6)

Substituting this expression for the radial velocity and integrating Equation (2) over
the interval r ∈ (R, ∞), and eliminating the pressure at the interface from conditions (5)
yields the Rayleigh–Plesset equation:

ρL

[
R

d2R

dt2 +
3
2

(
dR
dt

)2]
= pg(t)− 2

σ

R
− 4

μL

R
dR
dt

− pa. (7)

Here, the growth of the bubble is dictated by the pressure difference pg − pa, where
pg > pa. We note that the pressure at infinity is the surrounding or ambient pressure of
the liquid and is equal to pa. Equation (7) can be solved once and pg(t) is determined.
The evolution of the gas pressure inside the bubble is directly related to the evolution and
distribution of the gas concentration in the liquid, which is formulated next.

2.3. Concentration and Mass Transfer

In a supersaturated liquid, bubbles grow due to the diffusion of mass across the
interface. Therefore, the diffusive mass flux across the interface is equal to the rate of
change in mass inside the gas bubble. According to Fick’s first law, the time rate of change
in mass flux

.
mR at the interface of the spherical bubble is then given by

dmR

dt
= 4πR2D

(
∂c
∂r

)
R

. (8)

Here,
(

∂c
∂r

)
R
= ∂c

∂r (r = R, t) is the concentration gradient of the gas at the interface

and D (m2/s) is the diffusion coefficient of the gas–liquid solution. Now, let the mass of
the gas inside the bubble be mg(t) = 4

3 πρg0(t)R3
(t), where ρg(t) is the gas density. Then,

the rate of change in mass inside the spherical bubble is

dmg

dt
= 4πR2

(
ρg

.
R +

R
3

ρg

)
. (9)

Assuming that the gas inside the bubble follows the ideal gas law, the density of the gas

can be eliminated in terms of the pressure as ρg(t) =
pg(t)M

RgTg
, where Rg is the universal gas

constant; Tg is the temperature of the gas, which is assumed to remain constant throughout
the transient process; and M is the molar gas weight. We also assume that, after nucleation,
the pressure inside the bubble is in equilibrium with the initial saturation pressure pg0 and

density ρg0. In this case, we can write ρg(t) =
ρg0
pg0

pg(t), and Equation (9) becomes

dmg

dt
= 4π

ρg0

pg0
R2

(
pg

dR
dt

+
R
3

dpg

dt

)
(10)

Upon introducing (10) into Equation (8), we obtain the desired equation for the
pressure inside the gas bubble:

dpg

dt
= 3

pg0

ρg0
D

1
R

(
∂c
∂r

)
R
− 3

pg

R
dR
dt

. (11)
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This is the pressure equation resulting from the thermodynamic equilibrium at the
interface. This first-order equation requires one initial condition on the pressure inside the
bubble, which is formally written as

pg(t = 0) = pg0. (12)

Equations (7) and (11) reflect the coupling between the bubble growth and pressure
evolution inside the bubble. The presence of the concentration gradient at the interface
in (11) also signals an additional coupling with the gas concentration across the saturated
liquid, which is governed by an advection–diffusion equation, as shown next.

The concentration of gas in the liquid c(r, t) can be described by the scalar transport
advection–diffusion equation which, when the velocity is substituted from (6) in the
convective term, becomes

∂c
∂t

+
R2

r2
dR
dt

∂c
∂r

= D
(

2
r

∂c
∂r

+
∂2c
∂r2

)
. (13)

The initial condition for Equation (13) comes from the assumption that, after the
nucleation of the bubble, the concentration is uniformly distributed in the liquid, and it is
equal to the dissolved concentration c0. Therefore, it is written as

c(r, t = 0) = c0. (14)

The remaining two boundary conditions for Equation (13) are the equilibrium condi-
tion of the concentration at the interface, which is described by Henry’s law,

c(r = R, t) = cR(t) = kH pg(t), (15)

where kH is Henry’s constant. The concentration far from the bubble is assumed to be equal
to the saturation concentration:

c( r → ∞, t ) ∼ c0 = kH p0 = kH

(
pg0 − 2

σ

R0

)
. (16)

This completes the formulation of the problem, which illustrates the non-linear cou-
pling among the bubble growth, gas pressure, and concentration in the liquid region.

Equation (11) is similar to the pressure formulation of Elshereef et al., 2010, [2]. How-
ever, they assumed an approximate analytical solution to calculate the concentration
gradient that appears in Equation (11). In the present work, one of the main goals is to solve
the fully coupled problem numerically using a finite difference approach and compare it
with the approximated analytical results.

3. Non-Dimensionalization and Solution Procedure

3.1. The Dimensionless Problem

The equations and their initial and boundary conditions are non-dimensionalized as

follows. The velocity scale is taken as V =

√
(pg0−pa)

ρL
, which is related to the initial driving

pressure difference, the length scale is the initial bubble radius R0, the pressure scale is the
initial gas pressure pg0, and the concentration scale is the equilibrium concentration c0. In

this case, the time scale is naturally R0
V

. The dimensionless variables become

r =
r

R0
, c =

c
c0

, t =
V
R0

t, R =
R
R0

, p =
p

pg0
. (17)
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There are five non-dimensional groups appearing in the problem, three familiar
groups: the Reynolds number Re, the capillary number Ca and the Péclet number Pe.
More explicitly:

Re =
ρLV R0

μL
, (18a)

Ca =
ρLV2R0

σ
=

(pg0 − pa)R0

σ
, (18b)

Pe =
V R0

D
. (18c)

Here, the Reynolds number (Re) compares the inertial force due to bubble growth
in the liquid region with the liquid viscosity. The capillary number (Ca) weighs between
viscous forces from the liquid to the surface tension forces at the interface of the bubble and
the liquid and the Péclet number describes the ratio between the convection mass transfer
to the diffusive mass transfer of gas from the liquid into the bubble.

The additional two new non-dimensional parameters are denoted by P and C, the
former being the ratio of the initial pressure to the pressure difference, and the latter reflects
the initial level of gas solubility:

P =
pg0

pg0 − pa
=

1
1 − pa

, (19a)

C =
c0

ρg0
. (19b)

Finally, a sixth additional parameter in the problem is the dimensionless atmospheric-
to-gas pressure ratio pa =

pa
pg0

.

3.2. Domain Mapping

The interface of the bubble changes with time, which makes the numerical proce-
dure for solving the concentration distribution in the liquid more complicated and time-
consuming. We implement an implicit finite difference in space and integrate the resulting
equations with respect to time. One obvious but costly approach is to track the interface of
the bubble with time and re-mesh the computational domain at each time step.

Alternatively, we recast the concentration Equation (13) in terms of Lagrangian coor-
dinates x(r, t) = r − R(t), such that at all time intervals the interface is fixed. Therefore,
after non-dimensionalization and coordinate transformation the Equations (7), (11) and (13)
takes the form:

R
d2R
dt2 +

3
2

(
dR
dt

)2
= P(pg − pa)− 2

CaR
− 4

ReR
dR
dt

. (20)

dpg

dt
= 3

C
RPe

(
∂c
∂x

)
x=0

− 3
pg

R
dR
dt

(21)

∂c
∂t

+
∂c
∂x

( .
RR2

(x + R)2 − .
R

)
=

1
Pe

(
2

x + R
∂c
∂x

+
∂2c
∂x2 ) (22)

The rescaled initial and boundary conditions are deduced from (3), (12), and (14) to:

R(t = 0) = 1, (23a)
.
R(t = 0) = 0, (23b)

pg(t = 0) = 1, (23c)

306



Fluids 2022, 7, 365

c(x, t = 0) = 1. (23d)

c(x = 0, t) = pg(t), (24a)

c( x → ∞, t ) = 1. (24b)

3.3. Numerical Implementation

Equation (20) is a non-linear, second-order ODE that describes the bubble growth. If
the pressure in the bubble is constant, Equation (20) can be solved for the bubble growth
R(t) and its interface velocity

.
R(t) with the use of any readily available numerical time

integration solver, such as ode45 in MathWorks MATLAB version R2019b. However, the
difficulty arises when the pressure inside the bubble varies with time, and it then needs
to be coupled with the scalar diffusion equation to solve for the concentration gradient at
the interface. Additionally, the scalar diffusion Equation (22) contains a highly non-linear
convective term in terms of bubble radius and interface velocity. This combination makes
the equations stiffer and involves solving Equations (20)–(22) simultaneously. Therefore,
solving the highly stiff equations with ode45 takes a tremendous amount of time. Instead
of ode45, a variable order of accuracy solver, ode15s, is used to integrate the equations.
Here, ode15s uses first to fifth orders, changing the order as required. This solver takes
much less time compared to the ode45 solver without compromising accuracy.

To solve these two equations simultaneously, the second-order non-linear hydrody-
namic Equation (20) primarily needs to be converted into the system of first-order ODEs by
letting R = y1. Therefore, the system of first-order ODEs is given as

dR
dt

= y2 (25)

dy2

dt
=

1
y1

(
P(pg − pa)− 2

y1Ca
− 4y2

y1Re
− 3

2
y2

2

)
(26)

This way, when Equation (25) is integrated, one can obtain y2, which is bubble interface
velocity, and similarly Equation (26) is integrated to obtain y1, which is the bubble radius.
Since Equation (26) includes partial derivates in time and space, one can approximate
either time or space using the finite difference methods. For convenience, the space partial
derivative is approximated with a finite difference, up to second-order accuracy.

Let i be the node position and N be the total number of nodes (see Figure 2) in the
gas–liquid solution, starting from the interface x = 0 to infinity. The central difference
scheme is adopted for the derivates. Therefore, the finite difference approximation for the
first- and second-order derivatives with central difference schemes are written as

∂c
∂x

=
ci+1 − ci−1

2dx
(27)

∂2c
∂x2 =

ci+1 − 2ci + ci−1

dx2 (28)

The discretized form of the scalar diffusion equation using Equations (27) and (28)
takes the form

dci
dt

=
1

Pe

(
2

(xi + R)
(

ci+1 − ci−1

2dx
) + (

ci+1 − 2ci + ci−1

dx2 )

)
− (

ci+1 − ci−1

2dx
)

( .
RR2

(xi + R)2 − .
R

)
(29)

The discretized form of diffusion Equation (29) needs to be solved at N −2 (1 < i < N)
nodes, starting from i = 2 to i = N − 1. Whereas at the interface, i.e., at i = 1, the boundary
condition (24a) can be written in terms of ODE as

dc1

dt
=

(
kh pg0

c0

)
dpg

dt
(30)
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The final node serves as a boundary and the value of concentration is known from the
boundary condition (24b), therefore at i = N,

cN = 1 (31)

Figure 2. Numerical domain.

Similarly, the concentration gradient at the interface in Equation (21) is discretized
using a forward finite difference scheme and is given as

∂c
∂x

=
ci+1 − ci

dx
, (32)

and substituting Equation (32) in (21) results in

dpg

dt
=

3I
RPe

(
ci+1 − ci

dx

)
− 3pg

( .
R
R

)
(33)

To be consistent with the notation used for the hydrodynamic ODEs (25) to (26),
Equations (29) to (33) are rewritten in terms of y as follows:

For the nodes between 1 and N (1 < i < N) is written as

dy3+i
dt = 1

Pe

(
2

(xi+y1)

( y3+(i+1)−y3+(i−1)
2dx

)
+
( y3+(i+1)−2y3+i+y3+(i−1)

dx2

))
−
( y3+(i+1)−y3+(i−1)

2dx

)(
y2y1

2

(xi+y1)
2 − y2

) (34)

at the interface node (i = 1),
dcy3+i

dt
=

dy3

dt
(35)

and at the final boundary node i = N,

yN+3 = 1. (36)

Finally, the pressure equation takes the form:

dy3

dt
=

3I
y1Pe

(
y5 − y4

dx

)
− 3y3

(
y2

y1

)
(37)

Therefore, the total (N +3) equations starting from (25) to (37) are the final system of
ODEs that has to be solved simultaneously subjected to the initial and boundary conditions
(23) to (24).

3.4. Grid Independence Test

For the numerical simulations, the infinite spatial domain is assumed to be 10 times the
maximum radius of the bubble. Furthermore, the maximum radius of the bubble is anticipated
to be 250 μm. This suggests that the physical infinity of the domain is 250 × 10 = 2500 μm
and in terms of x∞ it is 2250. (Note that x = r − R(t)). The grid independence test seeks to
minimize discretization error by making the numerical solution independent of the grid
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spacing. Figure 3 shows that the solution converges with increasing number of nodes.
When the domain is discretized from 100 to 1000 nodes a 15% of maximum error is observed
in the bubble radius and the error reduced to 2% as the number of nodes increased from
1000 to 3000; Therefore, to achieve accurate results in the numerical simulations, the domain
is equally discretized with 3000 nodes.

Figure 3. Grid independence test of the diffusion equation.

4. Results and Discussion

4.1. Comparison with Existing Experiments and Theory

A comparison has been made between the present model and experiment data of Han
and Yoo, 1981, [17] along with the Patel, 1980, [16] and Amon and Denson, 1984, [12] models
in Figure 4. The comparison is carried out based on Han and Yoo, 1981, [17] viscoelastic
bubble growth experimental data for Re = 4.5 × 10−6, Ca = 13.17, P = 1.27, C = 0.3, and
Pe = 3.7 × 104. It is evident from the plot that the present numerical model was able to
capture the experimental data more accurately than the other two models. In the initial
stages, it is observed that there is a discrepancy between all the bubble growth models when
compared to the experimental data of Han and Yoo, 1981, [17]. This type of divergence at
the initial stage is expected, since the polymer used by Han and Yoo for the experiment
exhibits the viscoelastic effect, whereas other numerical models stated in the work including
the present numerical model were developed based on pure Newtonian fluid assumptions.
This indicates that the viscoelastic nature of the liquid is of importance only at the initial
stages and has minimum to no effects on the later stages of bubble growth.

Similarly, Figure 4 shows that the trend of the models proposed by Patel and Amon
and Denson were similar at their initial and later stages. Amon and Denson’s model
deviates from the Patel model and moves toward the present numerical model. It is worth
mentioning that the slight deviation of the aforementioned models from the present model
is because of the cell model assumptions carried out by the authors in their work, whereas
the present model is solved completely with the numerical approach. Overall, the present
model shows more promising and accurate predictions than previous models.
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Figure 4. Present model comparison with experiment data of Han and Yoo, 1981, [17] and theory
of Elshereef et al., 2010, [2], Amon and Denson, 1984, [12] and Patel, 1980, [16] (Re = 4.5 × 10−6,
Ca = 13.17, P = 1.27, C = 0.3, and Pe = 3.7 × 104).

4.2. Concentration in the Liquid

In the literature, the variation in concentration of gas in the liquid medium has not been
reported or investigated thoroughly. For instance, Elshereef et al., 2010, [2] reported that
his second comparison model, which is developed by Amon and Denson, 1984, [12], has
solved the advection–diffusion equation using finite difference approximation. However,
the concentration profiles in the liquid side were not reported. In this section, we present
the concentration profile of the gas in the liquid explicitly.

Figures 5 and 6, represent the transient concentration profiles at different locations
and time instances. The positional concentration profiles (Figure 5) are shown from the
bubble interface, i.e., x = 0, to the location where the concentration gradient disappears,
i.e., x = 400. Additionally, the time instances (Figure 6) are shown from 0.01 to 20 s. It is
expected that as we move farther from the interface, the concentration gradient decreases,
and this trend can be observed in Figure 5. Similarly, Figure 6 shows that at the initial time
steps the concentration profile at the interface starts developing and eventually reaches a
steady state with larger gradients at a larger time period.

Figure 5. Concentration profiles reported at different positions with dimensionless time (Re = 4.5× 10−6,
Ca = 13.17, P = 1.27, C = 0.3, Pe = 3.7 × 104, t = 4.5 × 108).
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Figure 6. Concentration profiles reported in the liquid at different dimensionless time values
(Re = 4.5 × 10−6, Ca = 13.17, P = 1.27, C = 0.3, and Pe = 3.7 × 104).

4.3. Parametric Study of Bubble Growth

Equations (20) to (22), which constitute the full bubble growth model, emphasize that
Equations (18a–c) and (19a,b), i.e., Re, Ca, Pe, P, and C, are the numbers that control bubble
growth. A small change in these field parameters may affect bubble growth. In this section,
an extensive study is carried out to determine the effect of these parameters on bubble
growth. To do so, we only change a single parameter in non-dimensional numbers that
is independent of other non-dimensional numbers. This is because if we closely observe
the non-dimensional groups, they are coupled to one another by the liquid density (ρL),
velocity (V), and initial bubble radius (R0). For example, to study the effect of viscosity of
the liquid, we can only change the μL parameter in the Reynolds number Equation (18a),
and to study the effect of surface tension, we only change the σ in the capillary number
Equation (18b), and so on. To observe the effects of these parameters, we need a primary
or base case result to perform a relative comparison. Therefore, we consider the present
numerical model results shown in Figure 4 as the primary case.

4.3.1. Effect of Viscosity on the Bubble Growth

To observe the effect of viscosity, only Reynolds number is varied, keeping other
non-dimensional numbers constant. In the base case, Reynolds number is 4.5 × 10−6, and
this number is varied between 4.5 × 10−7 and 4.5 × 10−5. In Figure 7a, at higher Reynolds
numbers (Re = 4.5 × 10−5), the bubble growth is faster, and at lower Reynolds numbers
(Re = 4.5 × 10−7), the bubble growth is slower. This type of behavior is expected because,
at lower viscosity, the normal stress in the liquid is lower, which results in a more rapid
bubble growth rate. Although the figure depicts a change in the qualitative trend with time
when Re is increased, this change is only in appearance, at least initially. In fact, the slope
at t = 0 is always zero, but the radius grows too rapidly for this to be visible; this becomes
clear when we next examine the interfacial velocity.

Figure 7b shows that, if the viscosity is high, the normal stress is high, which retards
bubble growth. This behavior can be well understood from Figure 7b, where the initial
interface bubble velocity is high at a higher Reynolds number, suggesting rapid bubble
growth. Additionally, at a lower Reynolds number, retardation of bubble interface velocity
is observed, expressing that the bubble growth rate is slower. At a relatively low Re,
the interfacial velocity grows slowly, reflecting a weak acceleration of the bubble, which
continues to weaken with time until it vanishes, at which time the velocity reaches a
maximum, reflected in the change in concavity in Figure 7a. The bubble continues to grow,
but at a slower pace. This trend is similar at higher Re, but the initial growth is much faster,
and the maximum is reached earlier, leading to a stronger deceleration. The change in
concavity for the radius happens for any Re, but is most visible for the lowest Re shown in
Figure 7a,b.
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(c)  

Figure 7. Effect of Reynolds number on (a) bubble radius, (b) interface velocity, and (c) pressure
inside the gas (Ca = 13.17, P = 1.27, C = 0.3, and Pe = 3.7 × 104).

The response in the pressure of the gas is dictated by (21), and is influenced by an
intricate coupling between the evolution of the interfacial concentration gradient and the
velocity. The evolution of the pressure is depicted in Figure 7c between the high and low
Reynolds numbers. Typically, the pressure drops initially at a rate dominated primarily
by the concentration gradient since the interface velocity is close to zero. The drop rate
decreases gradually as the interface velocity increases with time. At lower Reynolds
number, the pressure inside the bubble decreases slowly, reflecting a lower pressure drop,
thus remaining closer to atmospheric pressure, causing slower bubble growth. On the other
hand, at a high Reynolds number, the pressure inside the bubble decreases rapidly, which
in turn enhances bubble growth. Finally, the maximum in the interface velocity occurs
when the acceleration vanishes, and the maximum is then given by

.
Rmax = − 4

3ReR
+

√
16

9Re2R2
+

2P
3

Δp − 4
3CaR

(38)

Clearly, the maximum vanishes if the driving pressure balances with the surface
tension force. If surface tension is dominant, the maximum does not occur (see next section)

4.3.2. Effect of Surface Tension of the Liquid on the Bubble Growth

The effect of surface tension on the bubble growth is carried out with a similar approach
that was demonstrated in the previous section. The capillary number is varied from the
reference number while keeping other non-dimensional numbers constant. The reference
capillary number is 13.17, and is varied in the range of low magnitudes Ca = 1.9 and Ca = 3.
It is expected that the interfacial tension tends to retard the bubble growth by opposing
the motion of the bubble boundary, and similar behavior is observed from the numerical
simulations. Equation (20) clearly illustrates the competition among gas pressure, surface
tension, and viscous forces on the right-hand side, as they simultaneously influence the
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bubble growth. If surface tension effects are weak, then the bubble growth is dictated mainly
by the gas pressure. If surface tension is increased, then the growth can be neutralized,
or even reversed, as illustrated in Figure 8. The growth or collapse hinges on the initial
stage, and is reflected by the initial concavity in R. If the surface tension effect is weak, then
..
R(t = 0) ≈ P(1 − pa) > 0, leading to the ensuing bubble growth. On the other hand, for
small Ca,

..
R(t = 0) ≈ − 2

Ca < 0, and the bubble collapses from its initial size R(t = 0) = 1.
Finally, when Ca = 2

P(1−pa)
, no growth or collapse occurs.

 

(a) (b) 

 

 

(c)  

Figure 8. Effect of surface tension on (a) bubble growth, (b) interface velocity, and (c) pressure inside
the bubble (Re = 4.5 × 10−6, P = 1.27, C = 0.3, and Pe = 3.7 × 104).

We see that at approximately Ca = 2, the slope of the bubble growth shifts toward
the positive trend, highlighting that the critical capillary number is ~2. At Ca > 2, the
surface tension effect results in positive bubble growth. On the other hand, for Ca < 2
surface tension becomes dominant, and the bubble collapses. These effects can also be
understood by examining the bubble interface velocity (Figure 8b) and evolution of gas
pressure inside the bubble (Figure 8c). During bubble growth, the increase in interface
velocity and decrease in bubble pressure is noticed; during bubble shrinkage, the decrease
in interface velocity and increase in gas pressure is noticed. Finally, and as reflected in
(38), we note that no maximum occurs in the interface velocity as a result of the relative
dominance of surface tension.

4.3.3. Effect of Ambient Pressure on the Bubble Growth

In this section, the effect of ambient pressure (pa) is studied. The system pressure is the
ambient pressure where the growth of the bubble takes place. For instance, in the case of
foaming, the system pressure is considered as the mold pressure, where the bubble growth
occurs upon injecting polymer melts Han and Yoo, 1981, [17]. Similarly, in carbonated
beverages, the system pressure becomes the ambient pressure.

313



Fluids 2022, 7, 365

It is important to see how the system pressure affects the overall growth of the bubble.
Therefore, three cases are considered: the reference case pa = 0.21 of Han and Yoo, 1981, [17],
and the cases of high pressure pa = 0.31 and low pressure pa = 0.10. Note that the initial gas
pressure (Pg0) in the bubble is kept constant for all the cases. One can see from Equation (20)
the initial magnitude of (pg − pa) defines the rate of bubble growth. Since the initial
pressure pg = 1 is the same for all the cases, and 1 > pa, then a higher pa leads to a lower
pressure difference and slower bubble growth, as reflected in Figure 9a–c. As the system
pressure increases, bubble growth decreases, and vice versa. On decreasing the system
pressure, we observe a large deviation between the base case and lower system pressure
case. On the other hand, while increasing the system pressure, we observe a comparatively
smaller deviation between the base case and lower system pressure case. Figure 9c indicates
that the pressure drops sharply initially, at a rate that is slightly lower for higher system
pressure. After the initial drop, the pressure rapidly reaches the system pressure, and
bubble growth slows mainly as a result of surface tension and viscous effects.

  
(a) (b) 

 

 

(c)  

Figure 9. Effect of system pressure on (a) bubble growth, (b) interface velocity, and (c) pressure inside
the bubble (Re = 4.5 × 10−6, Ca = 13.17, P = 1.27, C = 0.3, and Pe = 3.7 × 104).

4.3.3.1. Effect of Solubility and Diffusion Parameters on Bubble Growth

The solubility and diffusivity of the gas in the liquid solution plays a major role in the
bubble growth process. The present part focuses on studying the effect of both parameters.
From the definition of Péclet number (see equation (18c)), only the diffusion coefficient is
varied to maintain the other parameters as unchanged.

Therefore, a lower Pe = 3.7× 103 (high diffusion coefficient) and higher Péclet number
Pe = 3.7 × 105 (low diffusion coefficient) are considered. The magnitudes are compared
with the base case, Pe = 3.7 × 104. Figure 10a shows that at a lower Péclet number, the
growth rate of the bubble is higher; at a higher Péclet number, the growth rate is slower.
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This type of trend is predicted since, at a higher diffusion coefficient, the rate of gas flow
through the interface is high, and vice versa.

  
(a) (b) 

Figure 10. (a) Effect of diffusion coefficient on bubble growth; (b) effect of Henry’s constant on bubble
growth (Re = 4.5 × 10−6, Ca = 13.17, P = 1.27, and C = 0.3).

Similarly, to see the effect of solubility on bubble growth, the non-dimensional number
C (see Equation (19b)), which relates to Henry’s constant kh, is varied. Here, the non-
dimensional number C increases with increasing kh and decreases by decreasing the kh.
The magnitude of the non-dimensional number C for the base case is 0.33, and this is varied
between the lower number C = 0.1 to a higher number C = 1.

Figure 10b suggests that, on increasing the solubility of a gas in the liquid, the bubble
growth rate is faster, and the lower the solubility of the gas in the liquid, the growth rate
is lower. This result is close to physical observations; i.e., at higher solubility, the amount
of gas available in the liquid is high, because the mass transfer from the liquid side to the
bubble is high, resulting in a higher bubble growth rate.

5. Concluding Remarks

The hydrodynamics of a single bubble in the pool of Newtonian liquid that expands
due to mass transfer was investigated in the current work. This study directly relates to
foaming processes, carbonated beverages, and any other problem in which the bubble
grows due to mass transfer.

Rigorous non-dimensional formulations were derived to incorporate interfacial, vis-
cosity, diffusivity, and solubility effect on bubble growth. Especially the inertia of the
liquid was included in the formulation, along with full scalar advection–diffusion pro-
cesses. A strong numerical approach to the highly non-linear stiff coupled equations was
discussed. The moving interface of the bubble was tackled by mapping the domain to the
new coordinate (x).

The results obtained with the present formulation and numerical solution to the
advection–diffusion equation was compared with the Elshereef et al., 2010, [2] models. The
present numerical model predicts accurate bubble growth in comparison to Elshereef et al.,
2010, [2] models. These results were validated by comparing with the Han and Yoo,
1981, [17] experimental data set.

To our knowledge, the influence and behavior of the concentration of the gas in the
liquid has not been reported in the literature. In this work, a clear insight is provided
on the concentration profiles of gas in the liquid and a boundary layer variation around
the bubble. A simple numerical investigation was conducted to compare the variation
in the approximated diffusion equation results against the present numerical results. We
showed that that the gas concentration profile in the liquid deviates from the traditional
concentration profile.
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With the validated numerical model, a comprehensive parametric study was per-
formed on the bubble growth. The results show that the rate of bubble growth depends
primarily on the viscosity of the liquid, initial pressure difference, diffusion, and solubility.
The effect of surface tension on the overall bubble growth process is limited.

We showed that the higher viscosity of the liquid lowers the bubble growth rate,
and vice versa. The initial pressure difference between the bubble and the system has a
significant effect on the overall bubble growth process. The higher the initial pressure
difference, the greater is the bubble growth. With a lower initial pressure difference, the
bubble growth is limited.

The investigation shows that the effect of diffusion and solubility of the gas in the
liquid play an important role in the overall bubble growth process. Higher magnitude of
these parameters leads to a higher bubble growth rate, and vice versa. It is concluded that
these parameters have a similar effect on bubble growth.
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Abstract: The oscillation and collective behavior of convective flows is studied by a computational
fluid dynamics approach. More specifically, the rising dynamics of heated fluid columns is simulated
in gravitational field using a simplified 2D geometry. The numerical method uses the FEniCS package
for solving the coupled Navier–Stokes and heat-diffusion equations. For the flow of a single heated
fluid column, the effect of the inflow yield and the nozzle diameter is studied. In agreement with the
experiments, for a constant nozzle diameter the oscillation frequency increases approximately linearly
as a function of the the flow rate, while for a constant flow rate the frequency decreases as a power
law with the increased nozzle diameter. For the collective behavior of two nearby flows, we find a
counter-phase synchronization and a decreasing trend of the common oscillation frequency with the
distance between the jets. These results are in agreement with the experiments, and our computational
study also suggests that the phenomenon is present on largely different length-scales.

Keywords: computational fluid dynamics; convective flows; oscillations; instabilities; synchronization

1. Introduction

Our recent experimental results reported that rising gas columns can perform oscil-
lations and their interaction leads to fascinating collective behavior [1]. The oscillations
and their related instabilities have been previously known (see for example [2–6]), and this
problem is still actively in the focus of the scientific community [7,8]. Besides many refined
experiments, theoretical studies based on simple hydrodynamics [1,5], theory of dynamical
systems [5], impulse response [2], scaling theory [8], linear stability analyses [2,9], and
numerical fluid dynamics [6,7] were considered. Although the emerging oscillations are
well-studied, to the best of our knowledge there are no theoretical studies on the interaction
and collective behavior of nearby jets.

The collective behavior of convective flows can be discussed in analogy with the very
similar phenomena known for diffusive flames [10–18]. For interactive jets, the toy-model
presented in Ref. [1] is inadequate to explain the fine details of the observed phenomena,
therefore a more sophisticated theoretical approach is needed. On the other hand, we
also believe that this intriguing phenomena is present on larger length-scales as well,
being relevant to industrial processes also. The present study contributes in this sense, by
considering a numerical hydrodynamics approach to this puzzling phenomenon.

For experimental results, we consider as a reference our previous study realized with a
controlled flow of Helium into air [1]. In these experiments, the Schlieren technique [19,20]
was used to visualize the flow, also allowing a digital processing of the oscillations. From the
images processed by the Otsu method [21,22], the characteristic frequency and the relevant
synchronization order parameter was derived. For a better understanding of the phenom-
ena, some sample movies with original recordings and the ones processed with the Otsu
method are provided on our YouTube channel [23] and are uploaded also as Supplemen-
tary Materials for this article. For a single flow column, the experiments investigated the
effect of the nozzle diameter and flow rate on the observed oscillation frequency. For the
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collective behavior of two nearby flows, our experiments investigated as a function of the
separation distance between the flows (i) the phase difference between the oscillations,
(ii) their common oscillation frequency, and (iii) a proper synchronization order parameter.

At constant Helium flow, the oscillation frequency of the rising gas column decreases
in form of a power law as a function of the nozzle diameter. This finding is similar with the
observed oscillation frequency of the flames of candle bundles as a function of the number
of candles in the bundle [18]. For a constant nozzle diameter it was found that the oscillation
frequency of the flow increases linearly with the flow yield. For the collective behavior of
two nearby and clearly separated flow columns with similar flow parameters, only counter-
phase synchronization was observed. This is somehow different from the phenomena
observed for candle bundle flames, where both in-phase and counter phase synchronization
is present depending on the distance between the flames [18]. The experiments concluded
that for short distances, the oscillation frequency of the flow column becomes significantly
higher than the frequency observed for non-interacting Helium columns with the same
parameters (flow rate and nozzle diameter). All the above summarized results should be a
test for any model and numerical approach on this intriguing phenomenon.

Due to the complexity of the problems related to flows in different spatial config-
urations and environments, the computation approaches are often the only theoretical
possibilities to realistically model such phenomena (see for example Refs. [24,25]). Even
with such a modeling methodology, imposing the right boundary conditions and offering a
proper discretization of space and time raises many technical challenges [26]. The incredible
revolution we experience nowadays in computational resources and methods have helped
us overcome much of these difficulties, and computational fluid dynamics have become
the primary tool to investigate theoretical problems related to fluid dynamics. However,
even with the presently available computational power, we are often forced to investigate a
simpler flow topology and reduce the dimensionality of the problem [27]. This is nowadays
a standard procedure for cases where the problem becomes computationally difficult in 3D.
A two-dimensional simplification is usually considered when the periodicity and symmetry
of the considered flow allows for it. Assuming in the following a cylindrical symmetry
for the flow, we consider a two-dimensional numerical fluid dynamics approach for the
above mentioned phenomenon. First, we discuss the theoretical background on which
our approach is built and the details of the applied numerical method. Using simple and
straightforward examples, we thoroughly test the simulation environment to gain confi-
dence in the method. After this methodological part, we approach the proposed problem
and compare the results of the simulations with the experimental data from Ref. [1]. Finally,
the conclusions are drawn and the universality features of this intriguing phenomenon
are discussed.

Before presenting our simulation methodology, we have to mention that we use
equations and system parameters in a dimensional form, rather than following the accepted
methodology with dimensionless variables. The reason for this is that in our approach
we need to take into account the spatial and temporal variation of the density that is
connected with the temperature field. In such cases we cannot use a constant Reynolds
number, and the numerical advantage of the dimensionless formalism is not obvious.
On the other hand, by using dimensional variables and parameters, the connections with
the experimental conditions, time, and length-scales are more straightforward.

2. The Numerical Approach

We present here a 2D numerical approach, which is suitable for modeling the oscil-
lations and collective behavior observed in the rising gas columns. In order to further
simplify the problem, instead of a Helium column injected from the bottom we consider
the flow of the same incompressible fluid as the surrounding, heated in a restricted region
at the bottom of the simulated area. In such a manner we get a rising gas column that is
also realizable in experiments.
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Using the same Schlieren technique as previously, in Figure 1 and in the movies
presented in Ref. [28], we show that very similar instabilities and oscillations occur. In these
experiments the heating is realized by a simple heating coil in which one controls the
dissipated electric power. Unfortunately, in such experiments there is no good control
over the flow debit, therefore one cannot conduct such carefully monitored experiments as
the ones done for Helium. The numerical results are therefore compared with our earlier
experiments [1].

The advantage of the proposed setup is that we do not have to apply the numerical
fluid dynamics method for two component gases. We do pay however for this simplification
by the non-homogeneous temperature field, therefore extra transports and gradients have
to be taken into account.

Figure 1. Visualization of a rising hot-air column using the Schlieren technique. Similar instabilities
and oscillations appear in rising Helium gas columns.

In our approach, the fluid is considered to be ideal, as described by the Navier–Stokes
equation. For an incompressible fluid in a gravitational field, the Navier–Stokes equation is
written in the following form:

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p + g ρ + μ Δu (1)

∇ · u = 0 (2)

Here ρ denotes the density, p is the pressure, g the gravitational acceleration, u is the
velocity of the fluid, and μ denotes the fluid’s viscosity. The quantities u, ρ and p can be
time- and position-dependent in the flow-space.

For the considered problem, the convective flow due to the temperature difference
plays a key role, therefore in the Navier–Stokes equation, we will take into account the
temperature dependence of the density and also describe the time evolution of the tem-
perature inside the fluid. As previously emphasized, this is the main reason as to why
the dimensionless form of the equation does not reduce the numerical complexity of
the problem.

The evolution of the temperature and the temperature dependence of the density are
approximated by the following equations:

ρ =
ρ0

1 + (T − T0) · α

∂T
∂t

= D · ΔT − (u · ∇) · T
(3)

In the above equations, ρ0 is the density at T0, T is the temperature of the fluid at
a given spatial position and in a given time-moment, D is the diffusion constant, and
T0 is the ambient temperature. The numerical solution of the coupled systems of partial
differential Equations (2) and (3) was done by using the "FEniCS" software package [29].
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FEniCS is an open-source platform developed for solving Partial Differential Equation
(PDE) systems. We chose this platform because it has high-level programming interfaces
(C ++, Python), the shape of the equations in the program code is similar to their symbolic
form, and the program is optimized for a wide range of hardware from laptops to high-
performance clusters.

2.1. The Simulation Code

FEniCS uses finite element methods to solve PDEs. As an example in Appendix A.1,
we illustrate how to solve the simple 2D Poison equation with FEniCS. For our specific
problem we first deal with the term describing the evolution of the temperature:

∂T
∂t

= D · ΔT − (u · ∇) · T (4)

This equation contains a time derivative, so in addition to the coordinates we also
have to discretize time. This is done by the Euler method, as follows:

T(t + dt)− T(t)
dt

= D · ΔT(t)− (u · ∇) · T(t), (5)

We then bring each term to the left hand side of the equation, we multiply the equation
by a τ test function, and integrate the equation over the entire simulated domain:∫

Ω
[T(t + dt)− T(t)− D · ΔT(t) · dt + (u · ∇) · T(t) · dt] · τ dΩ = 0 (6)

The equations above contain a second-order derivative for the coordinates, which is
eliminated by partial integration:∫

Ω
(∇2 · T(t)) · τ dΩ =

∫
∂Ω

(
∂T(t)

∂n

)
· τ ds −

∫
Ω
∇T(t) · ∇τ dΩ (7)

Here we denoted by n the unit normal vector to the ∂Ω surface. The derivative with
respect to n is defined as:

∂T
∂n

= (∇T) · n (8)

Rewriting Equation (6) using the above result and the fact that under the Dirichlet and
free boundary conditions the surface integral disappears, we obtain the final form:∫

Ω
([T(t + dt)− T(t) + (u · ∇) · T(t) · dt] · τ + D · ∇T(t) · ∇τ · dt ) dΩ = 0 (9)

The incompressible Navier–Stokes equation (2) was solved using the IPCS (Incremental
Pressure Correction Scheme) scheme [30]. The IPCS method consists of three steps, but
before specifying the steps we introduce the following functions and notation:

[ε(u)] =
1
2
· ([∇⊗ u] + [∇⊗ u]T)

[σ(u, p)] = 2 · μ · ε(u)− p · I

〈f, g〉Ω =
∫

Ω
f · g dΩ

〈[A], [B]〉Ω =
∫

Ω
[A] : [B] dΩ

(10)

The ⊗ product defines a matrix with the following elements:

∇⊗ u =

[
∂uj

∂xi

]
(11)

321



Fluids 2022, 7, 339

We denoted by [...] a square matrix, by [...]T the transpose of a matrix, and by : the
inner product of matrices:

[A] : [B] ≡ ∑
i,j

Aij Bij (12)

Using the ε and σ functions and the specified notation, the steps of the method will be
described in the following. First we reconsider the Navier–Stokes equation using a set of
test functions:

ρ ·
〈

u∗−u(t)
dt , v

〉
Ω
+ ρ · 〈u(t) · ∇u(t), v〉Ω +

〈[
σ
(

u(t)+u∗
2 , p(t)

)]
, [ε(v)]

〉
Ω
+ (13)

+〈p(t) · n, v〉∂Ω −
〈

n · [∇⊗
(

u(t)+u∗
2

)
]T , v

〉
∂Ω

= ρ · 〈g, v〉Ω

Here v is the test function. For more information on making this choice, one should
consult [29] The first step of the method is the calculation of an intermediate velocity u∗
from which the pressure will be determined. Then, the pressure is determined in the t + dt
step in equation:

〈∇p(t + dt),∇q〉Ω = 〈∇p(t),∇q〉Ω − 〈∇u∗, q〉Ω
dt

· ρ (14)

In the equation above, q is a test function for the pressure. In the last step, the velocity in
the t + dt time step is determined based on the pressure and the intermediate velocity:

〈u(t + dt), v〉Ω = 〈u∗, v〉Ω − dt · 〈∇(p(t + dt)− p(t)), v〉Ω
ρ

(15)

The method described above for solving the incompressible Navier–Stokes equation
is implemented in 2D. FEniCS uses a triangular adaptive grid to solve the 2D partial
differential equation. We carefully verified the grid independence of the results, aspects
which will be discussed in the next section. Here, in Figure 2, we illustrate the topology of
the grid we used in the simulation space.

Figure 2. The topology of the used grid. On the left panel, due to the finite scale of the lines, it is not
possible to visualize the grid of the whole simulation area. A magnified image of the marked region
is illustrated in the panel on the right.

In order to solve the equations numerically, we need boundary conditions in addition
to discretization. We used Dirichlet and free boundary conditions. The Dirichlet boundary
condition means that the value of the quantity at a given point is fixed. In the case of the
free boundary condition, the derivative as a function of the coordinates of the quantity at
the given point is 0.

We visually tested our 2D simulation environment on two simple problems. First
we intended to reproduce the Karman vortices in the flow of a fluid around an obstacle

322



Fluids 2022, 7, 339

(Appendix A.2). Second, we simulated the expansion and rising of a heated sphere,
verifying the code for non-homogeneous temperature conditions as well (Appendix A.3).
The test simulations reproduced the expected realistic behavior for these known problems,
giving confidence for the correct implementation of the relevant equations discussed above.

2.2. Simulating the Rising Hot Air Column

In the followings we provide the details for implementing the simulations, aiming to
reproduce the characteristic oscillations observed in a rising gas column. The boundary
conditions introduced for velocity and temperature will be justified, and we explain how
the time series of the characteristic oscillations were obtained and how the oscillation
frequency was calculated.

We consider the inflow geometry presented in Figure 3, leading to the flow illustrated
in Figure 4a. On the sidewalls, the value of the velocity is fixed to 0, on the lower boundary,
the x-direction component of the velocity is considered as 0, and the y-direction component
is given by the following parabolic-like kernel (see Figure 3)

vy(x, 0) = c1 f
(

x, d
2

)(
d
2 − x

)(
x + d

2

)
+ c2 f

(
x, H

2 (1 − 1
30 )

)
, (16)

with:

f (a, b) = 1
e−c3 ·(b+a)+1

− 1
ec3 ·(b−a)+1

. (17)
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Figure 3. An example of the y-component of velocity, vy(x, 0), and temperature profile, T(x, 0), of the
heated fluid column at the bottom boundary of the simulated space. The following parameters were
used: c1 = 1600 m−1·s−1, c2 = 0.1 m·s−1, c3 = 2000 m−1, d = 0.08 m, T0 = 300 K, H = 0.3 m.

In the equation from above, d denotes the nozzle diameter, H denotes the width of the
simulated space, the parameters c1, c2 determine the incoming flow rate of the fluid, and c3
is a tuning parameter governing the cut in each profile.

At the upper boundary (height L), free boundary conditions are applied for the y
component of the velocity, and for the x component the Dirichlet condition is applied,
i.e., vx(x, L) = 0. For pressure, Dirichlet boundary conditions were used in the upper part
of the simulated volume, p(x, L) = g · ρ0 · l, and for the free boundary condition for the
other boundaries. The temperature on the walls is fixed to T0. On the upper boundary
we consider T0 if the y-direction component of the velocity is negative, otherwise free
boundary conditions are used. The temperature at the lower boundary is determined by
using the following equation:

T(x, 0) = T0 + Theating f
(

x, d
2

)
(18)
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Figure 4. Oscillation of a heated air column in snapshots. The images show the temperature space at the
specified t time moments for two different length scales (a,b). The gravity acts in the negative direction
of the y-axis and the parameters of the simulation were chosen as follows: (a) α = 0.33 · 10−2 K−1, ρ0 =

1.2 kg·m−2, T0 = 300 K, D = 10−4 m2·s−1·K−1, gy = −9.81 m·s−2, μ = 1.96 · 10−5 kg·s−1, c2 =

0.1 m·s−1, c3 = 2000 m−1, d = 0.08 m, c1 = 1600 m−1·s−1, (b) α = 10−3 K−1, ρ0 = 1 kg·m−2, T0 =

300 K, D = 5 · 10−2 m2·s−1·K−1, gy = −9.81 m·s−2, μ = 5 · 10−2 kg·s−1, c2 = 0.4 m·s−1, c3 =

5 m−1, d = 8 m, c1 = 0.375 m−1·s−1.

Here, the Theating temperature governs the form of the temperature profile at y = 0
height. For simplicity reasons we have used in all the presented results Theating = T0. In
the first attempts at the upper part of the simulated box, the free boundary condition
was considered for the velocity. However in such cases, unexpected instabilities occurred
and after a certain time the heated fluid column was pushed to one of the sidewalls. We
have carefully examined this phenomenon and concluded that a self-amplifying effect is
responsible for its development. Due to the convective flow, the amount of fluid leaving the
simulation box is larger than the volume of fluid flowing into the simulation box through
the lower boundary. Since the fluid is incompressible, the fluid must flow back into the
simulation box through the upper boundary. Since there is always an asymmetry in the
profile of the fluid inflow, this will slightly deflect the outflowing column. In the direction
of the deflection, the inflow area decreases, so the asymmetry in the fluid inflow increases.
An increase in asymmetry over time will result in the fluid flowing along one of the walls.
This is the simple explanation of the observed instabilty.

Two methods were used to eliminate these instabilities. The first method is to flow a
fluid of ambient temperature T0 at a constant rate on both sides of the heated air column.
Since the flow is two-dimensional, the fluid flowing on a given side can only leave on the
same side and this will always provide a minimum distance from the wall for the rising jet.
The second method is to allow only the y-direction component of the velocity at the upper
boundary. Combining these two methods will eliminate the tendency of the jet to approach
one of the sidewalls.

For the upper boundary, a proper boundary condition has to be applied for the inflow-
ing fluid temperature as well. At the upper boundary, an inflow is also necessary in order
to respect the incompressibility of the fluid. Since the temperature of the outflowing fluid
varies over a wide range we cannot apply the Dirichlet boundary condition to the whole
upper boundary because this would cause unmanageable gradients. Avoiding large gradi-
ents due to large temperature differences was solved by applying the boundary condition
only to those points where the y-direction component of the velocity became negative.

Before performing our large-scale computations we have checked that the used space-
discretization (grid) and chosen time-step does not influence the observed trends. Grid
independence was proved by reducing and increasing space and/or time discretization
consecutively, and comparing the trends and values for the relevant numerical parameters.
In Figure 5, we illustrate the grid independence by plotting the time series of the observed
oscillations for different grid sizes. More precisely we plot the number of pixels with an
intensity above a given threshold detected at bottom of the simulated area (up to height:
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L/3). The observed oscillation frequency is practically independent of the grid size in case
of the refined grids considered in the simulations.

The time series for the relevant hydrodynamical parameters were generated by follow-
ing the temperature distribution in the simulated space. The characteristic frequency was
determined by a Fourier transform and from the Power Spectral Density (PSD) the charac-
teristic frequency was calculated. The used signal is the average of the pixel intensities in
the lower part of the simulated area (height smaller than L/3). A characteristic signal and
the corresponding PSD is sketched in Figure 6.
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Figure 5. Oscillations observed in the flow when using different grid-sizes.

Figure 6. (a) Characteristic oscillation of the average temperature in the lower simulation area (height
< L/3) and (b) the corresponding Power Spectral Density (PSD) with the characteristic peak.
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For realistically chosen parameters, it was shown that the model is capable of produc-
ing an oscillation similar to the one observed in the case of the Helium column. Interestingly,
it was found that such oscillations are possible even on largely different length-scales. The
observed oscillation is shown in Figure 4a,b. where we illustrate the temperature space
at subsequent time moments. For the simulations presented in Figure 4, we used the
parameters specified in the figure caption.

For a quantitative evaluation of the simulated dynamics, the Otsu method was applied
for the 2D temperature field. To obtain the time series, in uniform time intervals the Otsu
processed pixels were summed up to a certain height, after this the obtained time series
was divided by its average value. The oscillation frequency was calculated in a similar
manner with the experiments, based on the above generated time series. In the first step,
a Fourier transform was applied to the time series and then the value of the frequency
belonging to the largest peak was determined as the relevant oscillation frequency.

With the implemented simulation code we examined how the inflow rate (yield) of
the heated fluid column and the nozzle diameter affects its oscillation frequency. We
also investigated the collective behavior for the oscillation of two columns placed nearby
each other.

2.3. Numerical Results for the Oscillation Frequency

The effect of flow yield and nozzle diameter was examined on two different length-
scales. To study the flow yield we used the parameter sets (a) and (b) introduced above,
and the nozzle diameters were d = 0.08 m and d = 8 m, respectively. For constant c3, c2,
and d parameters, the yield (flow debit) of the heated fluid only depends on c1:

Φ =
∫ d

2
− d

2
vy(x, 0) dx = (19)

=
∫ d

2
− d

2
[c1 f

(
x, d

2

)(
d
2 − x

)(
x + d

2

)
+ c2 f

(
x, H

2 (1 − 1
30 )

)
]dx

The computed oscillation frequency of the heated fluid column as a function of the Φ
parameter is plotted in Figures 7a and 8a. One can observe that the oscillation frequency
increases as the flow rate Φ increases, and this increasing trend can be well approximated
by a linear fit in good agreement with the experimental results plotted in Figure 9.

The effect of nozzle diameter on the oscillation frequency was investigated at a constant
inflow yield. Since the yield Φ depends on d according to Equation (19), for different nozzle
diameters we must rescale the parameters c1 so that the flow rate remains constant. For the
smaller length-scale simulations, we used Φ1 = 0.076 m2/s flow yield and for the larger
scale simulations, we used Φ2 = 29 m2/s flow yield. To keep the flow yield for different
nozzle diameters constant, we varied the value of the c1 parameter. The c1 values for the
different nozzle diameters are shown in Tables 1 and 2.
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Figure 7. Simulation results for the smaller length-scale. (a) shows the oscillation frequency of the
heated fluid column as a function of the flow yield Φ fixed by Equation (19) for d = 0.08 m inflow
diameter. (b) shows the oscillation frequency of the heated fluid column as a function of the d nozzle
diameter. The other parameters used are the same as the ones specified in the caption of Figure 4,
the value of c1 for the different nozzle diameters are given in Table 1.
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Figure 8. Simulation results for the larger length-scale. (a) shows the oscillation frequency of the
heated fluid column as a function of the flow yield Φ fixed by Equation (19) for d = 8 m inflow
diameter. (b) shows the oscillation frequency of the heated fluid column as a function of the d nozzle
diameter. The other parameters are the same as the ones specified in the caption of Figure 4. The value
of c1 for the different nozzle diameters are given in Table 2.
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Figure 9. Experimentally observed oscillation frequency of a Helium column as a function of the
yield (flow debit) obtained for a setup with a nozzle diameter of 2 cm. With the increasing flow yield,
the frequency of the oscillation increases in an almost linear manner. The plot is done by using our
experimental results detailed in Ref. [1].

Table 1. Value of the c1 parameter for different nozzle diameters d, in order to keep the flow rate
Φ1 = 0.076 m2/s.

d [m] 0.04 0.06 0.08 0.1 0.12 0.14

c1 [m−1·s−1] 6781 1952 800 398 223 136

Table 2. Value of the c1 parameter for different nozzle diameters d, in order to keep the flow rate
Φ = 29 m2/s.

d [m] 7 8 9 10 11 12

c1 [m−1·s−1] 0.45 0.3 0.21 0.153 0.11 0.088

For both length scales, a decreasing trend of the oscillation frequency as a function of
the nozzle diameter was observed. The results in such sense are plotted in Figures 7b and 8b,
the trend is in good agreement with the experimental results shown in Figure 10.
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Figure 10. Experimentally observed oscillation frequency of a Helium column as a function of the
nozzle diameter for a yield of Φ =46 ± 2.3 L/min. The plot is done by using our experimental results
detailed in Ref. [1].

2.4. Numerical Results for the Collective Behavior

We now turn our attention to reproducing the experimentally observed collective
behavior in form of anti-phase synchronization.

The dimensions of the simulation boxes used to study the collective behavior are as
follows: 46 m wide (H = 46 m) and 30 m high (L = 30 m) for the large length-scale and 0.3 m
wide (H = 0.3 m) and 0.15 m high (L = 0.15 m) at the smaller length-scale. At the lower
boundary, the x component of the inflow fluid velocity is 0, and the y component is given
by the following kernel function:

vy(x, 0) = c1 f
(

x − d0, d
2

)(
d0 − x + d

2

)(
x − d0 +

d
2

)
+

+c1 f
(

x + d0, d
2

)(
d
2 − d0 − x

)(
x + d0 +

d
2

)
+ c2 f

(
x, H

2 − c4

)
(20)

Here the value of c4 is 0.5 m for the large scale system and 0.005 m for the small
scale system.

This leads to an inflow profile with two peaks, where the centers are separated at a
distance of 2d0, as illustrated in Figure 11. The temperature profile is adjusted accordingly:

T(x, 0) = T0 + Theating f
(

x − d0, d
2

)
+ Theating f

(
x + d0, d

2

)
(21)
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Figure 11. An example for the y-component velocity vy(x, 0) and temperature, T(x, 0) profiles of the
heated fluid columns at the bottom boundary of the simulated space. The following parameters were
used: c1 = 0.45 m−1 · s−1, c2 = 0.4 m· s−1, c3 = 5 m−1, d = 7 m, d0 = 6 m, T0 = 300 K, H = 46 m.
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We used the same simulation parameters as before and fixed d = 7 m, c1 = 0.45 m−1 · s−1

values for the large length-scale and d = 0.04 m, c1 = 6400 m−1 · s−1 values for the small
length-scale system. Again, for the presented results we considered Theating = T0. The
experimental results from Ref. [1] show that at a small separation distance, collective
behavior in form of counter-phase synchronization appears. A snapshot for a simulated
stable collective behavior is visible in Figure 12, successfully reproducing this counter phase
synchronization on the smaller length-scale. Similar behavior is observable for the larger
length-scales as well.

Figure 12. Counter-phase synchronization of two nearby heated columns. Computer simu-
lation results with the following parameters: α = 0.33 · 10−2 K−1, ρ0 = 1.2 kg·m−2, T0 =

300 K, D = 10−4 m2·s−1·K−1, gy = −9.81 m·s−2, μ = 1.96 · 10−5 kg·s−1, c2 = 0.1 m·s−1, c3 =

2000 m−1, d=0.04 m, c1 = 6400 m−1·s−1, H = 0.3 m, 2 · d0 = 0.03 m.

For the pictures processed with the Otsu method, the collective oscillation of nearby
heated fluid columns are shown in Figure 13a,b, for the small and large length-scales,
respectively.
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Figure 13. Simulated time series for the oscillations of nearby heated fluid columns. The motion of the
interface is detected by the Otsu method at the same height from the nozzle. For smaller separation
distances and for the two different nozzle diameters considered in the simulations ((a) 2 · d0 =

0.03 m, (b) 2 · d0 = 5 m) a clear counter-phase synchronization is observable. The parameters of the
simulations are (a): α = 0.33 · 10−2 K−1, ρ0 = 1.2 kg·m−2, T0 = 300 K, D = 10−4 m2·s−1·K−1, gy =

−9.81 m·s−2, μ = 1.96 · 10−5 kg·s−1, c2 = 0.1 m·s−1, c3 = 2000 m−1, d = 0.04 m, c1 = 6400 m−1·s−1,
2 · d0 = 0.03 m. (b): α = 10−3 K−1, ρ0 = 1 kg·m−2, T0 = 300 K, D = 5 · 10−2 m2·s−1·K−1,
gy = −9.81 m·s−2, μ = 5 · 10−2 kg·s−1, c2 = 0.4 m·s−1, c3 = 5 m−1, d = 8 m, c1 = 0.375 m−1·s−1,
2 · d0 = 0.03 m and we have fixed d = 7 m and c1 = 0.45 m−1·s−1.

For the indicated separation distances, an almost perfect counter-phase synchroniza-
tion develops. For larger separation distances, the phases of the oscillations will begin to
shift relative to each other and no clear phase-difference blocking is observable.

For the simulations performed on the smaller length-scale, corresponding to the exper-
imental conditions in Ref. [1], we computed the synchronization order parameter, which is
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meant to characterize the collective oscillation. We used the same z synchronization order
parameter as the one used in Refs. [1,18]. The computationally derived synchronization
parameter is plotted in Figure 14a. Its values in the neighborhood of −1 indicates that we
have counter-phase synchronization for the studied distances. In Figure 14b we also show
the oscillation frequency of the two synchronized heated fluid columns as a function of
their separation distance. This frequency decreases as we increase the separation distance
between the columns, similarly to what has been reported in our experiments for the
Helium columns [1].
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Figure 14. Simulation results for the collective behavior of two heated columns. (a) The synchroniza-
tion order parameter of two interacting heated fluid columns and (b) shows the collective oscillation
frequency, both as a function of the separation distance between the columns. The following sim-
ulation parameters were considered: α = 0.33 · 10−2 K−1, ρ0 = 1.2 kg·m−2, T0 = 300 K, D =

10−4 m2·s−1·K−1, gy = −9.81 m·s−2, μ = 1.96 · 10−5 kg·s−1, c2 = 0.1 m·s−1, c3 = 2000 m−1, d =

0.04 m, c1 = 6400 m−1·s−1.

Similarly with the case of the oscillations for a single flow, we have tested the grid
independence of the results for synchronization. On Figure 15, we illustrate the observed
collective behavior for two different grid sizes, using the same values for all the other
simulation parameters.

Figure 15. Grid independence of the observed anti-phase synchronization. Figures (a,b) shows that
apart from some minor differences in the amplitudes, the grid size at the used high resolution does
not influence the observed frequencies and the synchronization order parameter.

3. Discussion and Conclusions

In our previous study [1], we used both experimental and theoretical approaches to
investigate whether the hydrodynamic instabilities that occur in rising gas columns are also
responsible for the oscillations observed for the diffusion flames [18]. It was shown that this
is indeed the case: Helium columns ascending in air from a circular nozzle produce similar
oscillations with the ones observed in diffusion flames. In addition, the similar collective
behavior of these oscillations (counter-phase synchronization) for Helium columns and
flickering candle flames suggest that the hydrodynamic processes by their own are enough
to explain these phenomenon. For modeling the observed oscillations, a simplified but
analytically treatable hydrodynamic approach was used. The model predicted the right
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trends for the oscillation frequencies as a function of the relevant parameters, but was
unsuitable to approach the collective behavior.

In this study, we offered improved modeling by considering a 2D numerical hydrody-
namics computer simulation where, for computational simplicity, heated fluid columns
were considered instead of ascending Helium columns. This approach proved to be success-
ful for reproducing the experimentally observed features. For a constant nozzle diameter,
the numerics led to an oscillation frequency that increased roughly linearly with the flow
yield, which is in agreement with the experimental results. For constant flow yield, the
numerical results suggested a decreasing trend of the oscillation frequency as a function of
the nozzle diameter, confirming the experimental results. The exact shape of the simulated
trend was however slightly different from the one observed in the experiments. The main
reason for this discrepancy is most likely the reduction of the real 3D problem to a 2D topol-
ogy. Finally, the presented computer simulations were successful also in reproducing the
counter-phase synchronization of the two heated fluid columns placed nearby each other.
The computed trends for the synchronization order-parameter and the collective frequency
were also in agreement with the experimental results obtained for Helium columns rising
in air.

From a more general physical point of view it is important to notice once again
the generality of the spontaneous synchronization phenomena in interacting oscillatory
systems. Similarly with the analogous candle flame synchronization, the investigated fluid-
dynamical system offers yet another fascinating example in this sense. The Navier–Stokes
equation for incompressible fluids coupled with the classical heat-diffusion equation, and
by considering a temperature dependent density in a 2D approach, is seemingly enough for
reproducing the experimentally observed trends. The use of a 2D topology is based on the
assumption of the jet’s cylindrical symmetry. Future experiments will decide whether this is
a reasonable approximation. However, performing a realistic 3D fluid dynamical simulation
with the FEniCS method was not viable with our available computational resources.

It worth mentioning here that the computer simulations were performed both in
the laboratory and for a much larger length-scale than the experiments. The qualitative
agreement between the results (trends and collective behavior) on these different length-
scales suggests that the investigated phenomenon is more general than it was thought to
be, and might have further, yet unexplored, connections.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fluids7110339/s1, Video S1: Experimental and Otsu processed
movies for the oscillation and collective behavior of Helium jets.
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Appendix A

Appendix A.1. Solving the 2D Poisson Equation in FEniCS

Here we illustrate how to solve a PDE in FEniCS using the 2D Poisson equation. The
Poisson equation can be given in the following form:

− Δϕ = f (A1)

If we have a simple rectangular space, then the above equation can be easily given in
the finite element form

− ϕi−1,j − 2ϕi,j + ϕi+1,j

h2 − ϕi,j−1 − 2ϕi,j + ϕi,j+1

h2 = fi,j, (A2)

however, with this simple and intuitive approach, we soon run into problems, because
even for a circle it is impossible to map the boundary with an acceptably small number of
squares. The FEniCS program [29] uses a triangular grid instead of a square grid to cover
the simulated space, in which case we can always select the grid so that the grid points are
on the boundary surfaces.

Discretization alone does not solve the equation, the next question is how to determine
the solution at each lattice point. As the first step, we write the ϕ(x1, x2) function in the
following form:

ϕ(x1, x2) =
N

∑
i=0

ciφi(x1, x2) (A3)

In the above equation, φi(x1, x2) is a given k-th order polynomial, ci are the coefficients
that determine ϕ(x1, x2), and N + 1 is the number of the grid points. The ci coefficients
are determined by multiplying the Poisson equation by N + 1 different v(x1, x2) so-called
test functions and integrating the product over the whole domain to obtain N + 1 linearly
independent equations from which the ci coefficients can be calculated. All this can be
formally given in the following form:∫

Ω
−v Δϕ dΩ =

∫
Ω

f v dΩ (A4)

We used the notation dΩ = dx1dx2. The above form of PDE is called the weak formula-
tion of the equation and this is what is calculated by the FEniCS program. The second-order
derivative after the coordinates in the above equation means that the polynomials used
need to be twice differentiable. Because the use of polynomials with large degrees requires
more memory and computation, we always strive to keep the degree of polynomials to a
minimum. In the above equation, the reduction of the order of derivatives can be done by
Gauss–Green integration as follows:∫

Ω
−v Δϕ dΩ =

∫
Ω
∇v∇ϕ dΩ −

∫
∂Ω

∂ϕ

∂n
v ds (A5)

Since we use Dirichlet boundary conditions for the Poisson problem, the value of v at
the boundary is 0, so the Equation (A4) can be written in the following form:∫

Ω
∇v∇ϕ dΩ =

∫
Ω

f v dΩ (A6)

We have seen above how to rewrite the 2D Poisson problem in a form that can be
solved with the FEniCS program, and now we show the implementation of the solution
in Python.

from f e n i c s import * #
import numpy as np #Numpy i s r e q u i r e d f o r e r r o r c a l c u l a t i o n
import m a t p l o t l i b . pyplot as p l t #We p l o t t h e r e s u l t wi th t h e m a t p l o t l i b
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Nx=10#The number o f g r i d p o i n t s in t h e x d i r e c t i o n s
Ny=10#The number o f g r i d p o i n t s in t h e y d i r e c t i o n s
mesh=UnitSquareMesh (Nx,Ny)
V=FunctionSpace ( mesh , ’P ’ , 1 ) # s p a c e c o n t a i n i n g f i r s t d e g r e e p o l y n o m i a l s
f i_D=Expression ( ’ 1+x [ 0 ] * x [ 0 ] + 2 * x [ 1 ] * x [ 1 ] ’ , degree =2)
# boundary c o n d i t i o n s e q u a t i o n ( on boundarys f i ( x , y )= x^2+2y ^2+1)
def boundery ( x , on_boundary ) :
return on_boundary
bc=Dir ichle tBC (V, fi_D , boundery ) # boundary c o n d i t i o n s
f i = T r i a l F u n c t i o n (V)
v=TestFunct ion (V)
f =Constant ( −6)
a=dot ( grad ( f i ) , grad ( v ) ) * dx# r i g h t s i d e o f e q u a t i o n
L= f *v* dx# l e f t s i d e o f e q u a t i o n
f i =Function (V)
solve ( a==L , u , bc ) # s o l v e t h e ~ e q u a t i o n

c = p l o t ( i n t e r p o l a t e ( f i , V) , mode= ’ c o l o r ’ )
p l t . c o l o r b a r ( c )
p l o t ( f i )
p l t . s a v e f i g ( ’ r e s u l t 1 . png ’ )
p l t . show ( )
vertex_v_ud=fi_D . compute_vertex_values ( mesh )
vertex_v_u= f i . compute_vertex_values ( mesh )
err_max=np . max ( np . abs ( vertex_v_ud −vertex_v_u ) )
print ( "maximum e r r o r : " , err_max )

The above program solves Equation (A1) on the unit square of {(0, 0), (1, 1)}. The largest
difference between the theoretically expected and the numerically obtained value was
of the order of the precision of the numerical representation of the numbers, giving us
confidence for the use of the numerical solution.

Appendix A.2. Test for the 2D Fluid Dynamics Simulations—Karman Vortices

The first phenomenon we aimed to reproduce using our fluid dynamics simulation is
the formation of Karman vortices in the flow of fluids around an obstacle. With this test we
aimed to check visually whether the Navier–Stokes equation has been correctly implanted,
since the temperature of the fluid at all points is considered fixed: T0. Therefore, for this
test, the density in the simulated volume is constant.

In these simulations, the length of the simulated volume was considered as 2.2 m,
the width of the simulated volume as 0.41 m and in the middle of the simulated coordinate
space a circular obstacle with a radius of 0.05 m is placed. The coordinates of the center
of this obstacle was taken at (0.2 m, 0.2 m). The density of the fluid was taken as unity
(1 kg/m2), the viscosity is 0.001 kg/s, and no gravitational field is considered. For input
(the left region of the space in Figure A1) we considered that the velocity in the y direction
is 0, and the velocity in the x direction has a parabolic profile with a maximum value of
1.5 m/s. On the horizontal walls and on the boundary of the obstacle we consider no-slip
conditions, thus the velocity is fixed to 0. For the output (right-sight region) we have also
imposed for the y direction velocity to be zero, and the pressure at the output is also fixed
to 0. Otherwise, there are free boundary conditions for the pressure. The temperature is
fixed at T0 = 300 K at input and on the horizontal walls.

The velocity vector spaces obtained from the simulations are shown in Figure A1 for
four time moments, as indicated on the left side of the images. One can observe that the
simulation successfully reproduces the expected Karman vortices.

Appendix A.3. Test for the 2D Fluid Dynamics Simulations—Heat Induced Mushroom Cloud

In this second test we aimed to implement the density and temperature evolution of a
heated gas sphere in a gravitational field. It is expected that the shape of the heated gas
will follow the known dynamics of a mushroom cloud in a nuclear explosion.

In the performed simulations, the density at T0 was chosen as unity (1 kg/m2), the am-
bient temperature T0 is 300 K, the α parameter in Equation (3) is α = 0.001 K−1, the thermal
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diffusion constant D is 0.3 m2/s, the initially heated sphere temperature is 600 K, the fluid
viscosity is taken as μ = 0.05 kg/s, the gravitational acceleration is gy = −9.81 m/s2, and
the size of the simulated volume is 30 m2 in both the x and y directions.

At the bottom and walls of the simulated space, the velocity is fixed to 0. At the upper
boundary we fix the x component of the velocity to vx = 0. For the pressure, the value of
g · ρ0 · l is fixed for the upper boundary, and free boundary conditions are applied to all
the other boundaries. For temperature, free boundary condition is applied at the upper
boundary if the y direction component of the velocity is positive, otherwise the temperature
is fixed to T0 = 300 K units on the upper boundary and on the side-walls. The temperature
is fixed to a higher value of 450 K units at the bottom-wall of the simulated area. This is
necessary in order to make the resulting flow visible in the temperature space. Initially,
the velocity in the whole simulated volume is 0 and the volume contains a sphere (disk)
with a radius of 5 m, in which the temperature is 600 K. The center of the sphere is at
the coordinates (0 m, 7 m), the temperature around the sphere is fixed to 300 K, and the
temperature between the center, and the surface of the disk is given by an interpolation
with a sigmoid function.

The time-evolution of the temperature map derived from the simulation is shown
in Figure A2. The effect of thermal diffusion can be observed in the first two frames.
As a result of this diffusion, the initially sharp boundary line between the high and low
temperature regions becomes blurred. The subsequent frames show the displacement
due to convective flow and as a result of this the characteristic mushroom cloud shape
is formed.

Figure A1. Velocity fields obtained from the simulation of the Karman vortices at four consecutive
time moments.

Figure A2. Snapshots of the time evolution of a heated gas sphere. The parameters and details of the
simulation can be found in the text.
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Abstract: The passage of a bubble and the required energy for its motion through a confining pore can
potentially be affected by the surface roughness and geometry of the pore. The motion of an isolated
bubble passing through four different pore geometries (three circular pores, a smooth pore and 2 with
different roughness, and a sharp triangular pore) is investigated. The shape of the deformed bubble
passing these geometries was evaluated to determine the pressure drop across the bubble and hence
the driving force to cause motion. The results of investigating the motion of the bubbles and the
change in the pressure and velocity of the bubbles showed that the pore shape and surface roughness
have a significant effect on the passage of the isolated phase. The motion of the bubble entering the
entrance of the circular pores was similar for all circular cases. On exiting, however, a clear difference
between the cases due to the presence of the peaks of the roughness was observed. These results
indicate that, in addition to the critical pressure at the entrance of the pore, extra resistance will be
introduced due to bubble phase pinning at the exit caused by roughness of the pore.

Keywords: PIV; laplace pressure; critical pressure; phase trapping; phase pinning; confined geometry;
bubble; multi-phase flow; surface roughness; transit time

1. Introduction

Multi-phase flow motion in a porous media is broadly observed in different applica-
tions such as oil recovery [1], food processing [2], and macromolecular delivery [3]. The
motion of an immiscible phase having different motility in the pore space will lead to the
trapping of the dispersed phase caused by the snap-off or the bypass of the phases within
the pore structures [4,5]. The mobilization of the trapped phase is important for many
applications such as trap oxygen gas bubbles in contaminated groundwater or residual oil
in the recovery of oil reserves [5–9]. Having a better understanding of the motion of the
phases and their interaction with the surrounding fluid and solid geometry is beneficial to
predict the required energy needed to mobilize the isolated phase.

Over the past two decades, the motion of multi-phase flows in porous media has
been studied by groups of researchers at a macro and micro scale [10–19]. The comparison
between the motion of single-phase and multi-phase flow indicates that higher resistance to
the flow is observed for multi-phase flows [20–25]. The resistance is introduced due to the
deformation of the dispersed phase which arises from the interfacial interaction between
the phases and the flow passage [26–28]. Phase trapping in the pore geometry occurs due
to the critical pressure introduced by the interaction of the dispersed phase and the solid
interface at the entrance of the confined geometry [29]. To mobilize the trapped phase in
the pore geometry, a critical driving force is needed to overcome the entrance pressure [8].

Various factors have an impact on the motion of the isolated dispersed phase in a pore
structure such as the velocity [30–34] and rheology of the carrying fluid [35–37] the pressure
of the system [38], the relative size of the dispersed phase compared to the pore [39–41] and
the capillary number [39–43]. Studies on the interaction of the solid surface and the trapped
isolated phase has shown that pore structure [44], grain morphology, and wettability of
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the surface play important roles in the motion of isolated dispersed phases in the pore
structure [44–47]. Other studies [22,41] on the effect of the pore structure on the motion of
multi-phase flow have mainly focused on the overall phase trapping in the pore space and
phase residual. Overall, these studies did not focus on the fundamentals of the interaction
of an isolated dispersed phase and solid geometry and the effect of the grain morphology
on the motion of the dispersed phase through a pore geometry.

Research work focusing on the pore-scale interaction of an isolated dispersed phase
and pore geometry [38,39] showed that in addition to the entrance critical pressure, the
strong interaction of the solid interface and the pore geometry can lead to an extra critical
pressure at the exit of the pore geometry [48]. The introduced flow restrictions will lead
to different flow motions within the geometry and the calculation of the critical entrance
pressure is not sufficient to predict the required driving force for the mobilization of
the trapped phase in the solid geometry [49,50]. The surface properties of the confined
geometry are an important component for emulsion flows in porous media [14–23].

The main objective of this study is to investigate the pore-scale effects of shape and
surface roughness of a confined geometry on pressure distribution within the multi-phase
flow and the required transit time for the phase to pass the confined geometry. To achieve
this goal, an isolated bubble is considered as a dispersed phase to pass through a pore
space and its deformation and velocity will be monitored using a shadowgraph imaging
method. The interaction of the bubble and the interface is visualized by the deformation
of the phase at different stages and velocity and pressure distribution were selected as
representative parameters for the flow properties. The pressure in this study is calculated
using an indirect method proposed in our previous studies [33,51]. The results of this
study will aim to provide a better understanding of the effect of pore surface properties on
pore-scale capillary pressure and fluid motion within a porous media.

2. Pressure Calculation from Shape Analysis

The pressure changes across a dispersed phase passing through a confined geometry
or its driving pressure, can be determined using the theory introduced by Jamin (1860) [52]
which was derived from the Young–Laplace equation. According to this theory, the pressure
changes within the deformed dispersed phase (ΔP∗) is inversely proportional to the change
in the radii of curvature of the trailing (RT) and leading-edge (RL) as defined in Figure 1a
and proportional to the interfacial tension (γcd) as:

ΔP∗ = γcd

(
1

RL
− 1

RT

)
, (1)

The change in the pressure within the phase (ΔP∗) showed that a different local
pressure change along the phase can be expected depending on the location of the dispersed
phase within the pore geometry. A sample of the different stages of bubble deformation
and their corresponding change in the pressure of the phase is shown in Figure 1b. The
deformation of bubble can be monitored by the relative location of the centroid of the
projected area of the bubble (yc) with respect to the pore throat (yp). Where the bubble will
have similar RL = RT at yc − yp = 0 leading to ΔP∗ = 0.

The pressure gradient generated within the dispersed phase is positive as the droplet
enters the pore in the stage seen in Figure 1b (RL < RT) leading to an extra resistance to
the droplet passage [21,35]. Negative ΔP∗ occurs when the dispersed phase exists the pore
which results in the acceleration of the dispersed phase (Figure 1b (RL > RT). Zero ΔP∗
occurs when the pressure distribution is uniform between the leading and trailing edge
of the bubble RL = RT. To monitor the instantaneous change in the motion of isolated
bubbles passing through a pore geometry, an image processing technique developed in
our previous studies [41,53] can be utilized. As reported in our previous study [49], the
maximum uncertainty for detection will result to a 5.5% error in calculation of the change
in the radius of curvature. The proposed methodology to evaluate the motion of the phase
can detect the critical pressure required for mobilization of the phase in the pore geometry
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(ΔPc). The critical pressure can be determined from the first peak detected in the motion of
the dispersed phase on entrance into the confined geometry.

 
(a) (b) 

Figure 1. (a) Schematic of bubble deformation and (b) an example of the determined pressure
difference across an isolated bubble passing through a pore and its corresponding locations.

3. Experimental Setup and Image Processing

An optical setup was used to measure and track the motion and deformation of a
bubble passing through a pore geometry is shown in Figure 2. The setup consists of two
main sections of an imaging system containing a camera (4M180, IO Industries Inc., London,
UK), a light source (BX0404-520 nm; Advanced Illumination Inc., Rochester, VT, USA), and
data acquisition (DVR Express Core 2, IO Industries Inc., London, UK) [54–56]. The second
section, the flow loop, consisted of two syringe pumps for each phase (PHD 2000, Harvard
Apparatus, Holliston, MA, USA) and a flow channel, as highlighted in the figure.

Figure 2. A picture of the experimental setup showing the main components.

The designs of the flow channels used to study different pore geometries are shown in
Figure 3. The flow channels consisted of two assembled layers of an optical access window
and the main flow channel. The window access is made of acrylic sheet and manufactured
using a laser cutter (VersaLaser VLS Version 3.50; Universal Laser Systems, Scottsdale, AZ,
USA). The design main flow channels with the desired features were manufactured from a
photo-reactive resin using the stereolithography (SLA) additive manufacturing technique
(Form 2, Formlabs Inc., Somerville, MA, USA). The flow channels are manufactured with
resolution of 25 μm for each layer.
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Figure 3. Design of flow channels containing different shapes of pore space (a) circular pore (b) cir-
cular pore with 0.2 mm surface roughness, (c) circular pore with 0.4 mm surface roughness, and
(d) pore with a sharp corner. In the current study, w = 1 mm and Rp = 2 mm.

Two separate inlets for the continuous and the dispersed phase were designed at the
bottom of the flow channel as highlighted in Figure 3. Glycerol (100% Pure Glycerol (Molec-
ular Biology), Fisher BioReagents™, Pittsburgh, PA, USA) was used as the continuous
flow and air was used as the dispersed phase. The glycerol had a viscosity of 1.412 Pa.s,
density of 1.26 g/cm and surface tension of 64 mN/m [57,58]. The continuous phase in
each experiment was injected with different flow rates of 0.1, 0.2, and 0.3 mL/min. Air,
as a dispersed phase, was injected at time intervals to generate an isolated bubble. The
content angle measurement between the phases was obtained using a SLA sample piece
manufactured with the same setting as the flow channel. The contact angle between a
glycerol droplet and the solid interface is 130◦.

The motion of the multi-phase flow in the pore space was studied by modeling the
pore space of two adjacent particles in the flow channels. Four different pore geometries
were designed as shown in the detailed views of Figure 3. These pore geometries are a
smooth circular pore, circular pore with two different roughness (0.2 and 0.4 mm), and a
sharp pore. In these channels, two cylindrical pillars were used to mimic the geometry of
two adjacent particles in the pore space with smooth surfaces. The diameter pillars (Rp)
were 2 mm and they were separated by w = 1 mm at the pore throat. The detail view (a)
of Figure 3 represents the design of the smooth circular pore. Two different roughness of
0.2 and 0.4 mm, shown in the detail view (b) and (c), were used to compare the effect of
roughness. A sharp pore geometry with the same aperture was also considered to account
for the effect of the change of the convergence of the pore on the pressure distribution. In
this case, two adjacent rectangles were considered as shown in the detail view (d). For
all cases, the depth of the channel was 3 mm. Figure 4 shows the pictures of the pore
geometries after manufacturing on the left for each pore geometry and their corresponding
original designs are shown on the right.
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Figure 4. Picture of the manufactured pore and designed geometry (a) smooth circular pore, (b) sharp
pore, (c) circular pore with 0.2 mm roughness, and (d) circular pore with 0.4 mm roughness (all
dimensions are in mm).

A sample of a raw image of a bubble and the surrounding fluid passing through a
circular pore is shown in Figure 5a. The images are collected in the mid-plane of channel to
evaluate the deformation of the bubble in the symmetry plane. The bubble is reflected as a
black hollow region as shown in the picture due to the difference between the refractive
indexes of glycerol and air. To have better detection of the deformation of the bubble
and remove noise of the background, the images need to be pre-processed. The details of
these procedures can be seen in [33,41,53]. The deformation of the dispersed phase in the
pore geometry will be then detected by the radius of the leading and trailing edge at each
location as shown in Figure 5c. Having the curvature of the leading and trailing edges, the
pressure change across the bubble can be evaluated using Equation (1).

Figure 5. An example of (a) a raw image, (b) the isolated dispersed phase, and (c) processed image
defining the leading and trailing geometry.
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4. Results

4.1. Flow Visualization of Bubbles Deformation Passing Different Pore Geometries

A series of images showing the passage of the bubble and its deformation for bubbles
having a similar equivalent radius (radius of bubble, Rb ∼3 mm) passing through the
different pore geometries are shown in Figure 6. The images were selected based on the
location of the centroid of the projected area of the bubble from the pore throat to highlight
the bubble shape at these locations for the different surface conditions. As shown in location
(a) for all pore geometries, the bubbles are symmetric and have a similar radius of the
curvature of leading and trailing edges. They are slightly oval at this position due to
the presence of a confining wall effect on the bubble’s interface as was reported in [59].
The results of the pressure calculation for the bubble passage are unique for the current
experiment due to the presence of the confining wall. As the size of the bubble considered
in this study is same, the results of the trend of the change in the pressure and the radius of
curvature is general and can be applied for any confining geometry condition.

As the bubbles approach the pore geometry, their leading-edge deforms slightly as
shown in location (b) in Figure 6. The deformation in this location leads to the decrease
in the radius of curvature of the leading edge compared to the trailing edge of the bubble.
The decrease in the leading edge continues until it passes the pore throat as shown in
Figure 6c. After this location, the leading-edge radius of curvature increases and reaches an
equilibrium condition after the bubble has passed through the pore geometry.

As shown in Figure 6, there is a significant difference between the motion of bubbles
exiting the pore geometries with different roughness. The effect of the surface condition
of the pore geometry on the motion of the bubble can be observed by the deformation of
the trailing edge at different locations along the pore. In the case of a smooth circular pore,
shown in Figure 6I, the bubbles trailing edge decreases as it enters the pore geometry. The
trailing edge maintains its convex curvature during its passage in the pore. As it reaches the
exit of the pore, in location (h) of case (I), the interaction between the pore solid interface
and the bubble leads to the development of phase pinning. Change in the detachment
of the bubble exiting a circular pore geometry is highly affected by the relative size of
the bubble with the pore and the continuous phase flow rate. A sample of the effect of
the continuous phase flow rate is shown in Figure 7. The bubble’s trailing edge interface
becomes flat for lower flow rates and as the flow rate increases, the bubbles trailing interface
becomes concave.

The motion of a bubble passing through a circular pore with roughness is shown in
Figure 6II,III. Having a closer look at the interaction of the bubble and pore geometry shows
that the bubble deforms to fill the pore roughness. It does not block the valleys of the pore
roughness and the phases are mostly in contact at the peak of the roughness of the pore.
The higher contact area between the bubble and the solid surface in this condition results
in more interaction between the surface and the trailing region of the bubble. Therefore,
phase pinning occurs at each peak of the roughness of the pore interface shown in locations
(g) and (h) for cases (II), and (III).

For rough pores, the interface of the trailing edge of the bubble goes through different
steps due to pinning at each peak of the pore. The details of the change in the curvature of
the bubble passing a 0.4 mm roughness are shown in Figure 8. As shown in the detailed
view of Figure 8a, the bubble has a convex curvature before its trailing edge reaches the
peak of the roughness. As the bubble moves further into the pore, the bubble’s trailing
edge and reaches the same elevation of the pore the roughness in Figure 8b, the bubble
has a flat trailing edge due to the pinning of the phase. On breaking of the pinning, in
Figure 8c the trailing edge curvature has become concave. As the bubble is not in contact
with the valleys of the pore, the trailing edge becomes unstable, and the bubbles’ trailing
edge moves to the next pore peak as shown in Figure 8d. The same deformation steps for
the trailing edge were observed at each peak of the roughness. Similar interaction of the
phase was observed in the case of a bubble moving through a pore with a roughness of
0.2 mm.
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(I) 

 

(II) 

(III) 

 

(IV) 

 

Figure 6. Bubble passing through (I) circular pore (II) circular pore with 0.2 mm surface roughness,
(III) circular pore with 0.4 mm surface roughness, and (IV) pore with a sharp corner.
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(a) (b) 

Figure 7. Pinning of a bubble existing a smooth pore interface at (a) 0.1 mL/min and (b) 0.3 mL/min.

For the case of the flow in the sharp pore geometry shown in Figure 6IV, the bubble
has a smooth transition in the pore geometry. Due to the lower gradient of the change in
the available cross-sectional area of the pore geometry, the curvature of the leading and
trailing edges has more variation. The bubble has the same trend of change in the leading
and trailing edge. Pinning of the phase was observed after the bubble passes the pore
throat as shown in location (g) of Figure 6IV.

Figure 8. Phase pinning of a bubble. (Rb~1.95 mm) at different stages passing through a rough pore
space having (a) convex, (b) flat, (c) concave, and (d) flat trailing edge.

4.2. Change in the Bubble’s Pressure and Velocity While Passing through Smooth Circular Pore

The instantaneous change of the absolute value of the radius of curvature of the
leading and trailing edges of a bubble passing through a circular pore (geometry shown
in Figure 4a) is represented in Figure 9a. The location of the bubble, symbolized by y∗, is
the normalized location of the centroid of the projected area (yc) along the pore geometry
by the width of the channel (w). The location was also offset by the pore throat (yp) so
the location y∗ = 0 represents the condition when the bubbles centroid is aligned with the
pore throat.

As indicated in Figure 9a the bubble has the same radius of curvature of the leading
and trailing edge before it enters the pore geometry (y∗ < −4). This condition is also
shown in location (a) of Figure 6I. As the bubble enters the pore, indicated in location
(b) in Figure 6I, the bubbles leading edge decreases due to the decrease in the available
cross-sectional area. The minimum radius occurs at y∗ ∼ −3 where the leading edge is
aligned with the pore throat. The deformation of the leading edge continues until location
(g) of Figure 6I when the bubbles leading edge passes through the pore geometry, and it
regains its original radius of curvature for y∗ > 4.
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Figure 9. Plots of (a) change in the radii of curvature of leading and trailing edge of a bubble, (b) pres-
sure along the bubble, and (c) velocity of the centroid of the projected area of a bubble ( Rb ∼1.95
mm) passing through a smooth circular pore surface. (Sample images of different conditions are
shown in Figure 6I).
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It can be seen that the deformation of the bubble’s trailing face occurs further into
the pore ( y∗ ∼ −3) compared to the leading edge. The bubbles trailing edge reaches
its minimum value as it aligns with the pore throat ( y∗ ∼ 2.5). At y∗ ∼ 3.5 the radius
increases to infinity and decreases to a constant value. The increase in the radius is caused
by the pinning of the bubbles trailing edge before it exits the pore. In this condition, the
bubbles trailing edge becomes flat and again regains its convex shape. After y∗ > 5, the
bubble detaches from the surface, and its radius of curvature of leading and trailing edge
becomes equivalent.

The change in the pressure of the bubble at different locations along the pore was
determined by the change in the radius of curvature shown in Figure 9a and Equation (1).
The pressure is plotted as the ratio of the pressure and the interfacial tension that shows the
pressure drop is only function of radii of the change in the trailing and the leading edge.
In this study the ΔP∗

γcd
has the unit of mm−1. As shown in Figure 9b, the pressure across

the bubble was similar at the entrance and exit when the bubble is well away from the
pore. As it enters the pore, the pressure across the bubble increases to a maximum value at
( y∗ ∼ −3). This positive pressure is known as the critical pressure required for the bubble
to enter the pore. This pressure is highly affected by the relative size of the dispersed phase
and pore geometry, flow rate, and interfacial tension of the phases. In the current study, the
bubble can pass this region in the pore as the driving force of the carrying fluid overcomes
the introduced pressure and the phase can deform further to pass the pore geometry.

As the bubble passes the stages corresponding to the critical pressure, the pressure
drop across the bubble decreases and it reaches a minimum value. This negative value
of the pressure represents the direction of the pressure gradient across the bubble and
corresponds to the high velocity observed when the bubble passes through the pore throat.
The pinning of the phase at the exit of the pore results in another positive pressure. The
introduced pressure due to the pinning of the bubble, in this case, is lower than the critical
pressure at the entrance. The driving force also can again overcome this pressure and the
bubble can exit the pore geometry.

The change in the pressure across the bubble results in a variation in the velocity of
the of the projected area of the bubble (U) as depicted in Figure 9c. The bubble reaches
the pore geometry with a constant velocity corresponding to its terminal velocity (UT). A
slight decrease in the velocity is detected as the bubble gets closer to the pore geometry.
The deceleration is caused by the development of the critical pressure needed to deform
the bubble, allowing it to enter the pore. As the bubble passes this location it accelerates as
it enters the pore throat. The introduced pinning pressure will result in a decrease of the
velocity at the exit of the pore. The bubble accelerates as it detaches from the surface of the
pore, returning to its terminal velocity.

4.3. Change in the Bubble’s Pressure and Velocity while Passing through Circular Pore with
0.2 mm Roughness

The variation in the radius of curvature, pressure, and velocity of a bubble passing
through a circular pore with 0.2 mm roughness are shown in Figure 10. The leading edge
experiences the same deformation as discussed for the smooth circular pore. The trailing
edge, however, has a different set of deformation characteristics as the bubble’s centroid
passes through the pore throat (y* > 0). The interaction of the moving interface of the bubble
and the peak of the solid interface leads to pinning of the phase at different locations after
the pore throat. The bubble interface shape changes at each peak of the pore roughness
which results in an increase in the radius of curvature. These conditions are represented by
the peaks detected in Figure 10a.
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Figure 10. Plots of (a) change in the radii of curvature of leading and trailing edge of a bubble,
(b) pressure along the bubble, and (c) velocity of the centroid of a bubble ( Rb ∼1.95 mm) passing
through a circular pore with 0.2 mm roughness on the surface (Sample images of different conditions
are shown in Figure 6II).
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The effect of pinning of the phase in this pore geometry on the instantaneous change
in the pressure of the bubble at different locations is shown in Figure 10b. The overall trend
of the change in the pressure is similar to the circular pore discussed in the previous section.
A similar critical pressure is detected in this case as shown for the smooth surface pore.
The phase pinning of the bubble trailing edge at different locations along the pore results
in multiple positive pressure peaks as the bubble passes the pore throat.

The velocity of the of the projected area of the bubble passing through the rough pore
is shown in Figure 10c. The velocity of the bubble is constant before it reaches the pore
and as it enters the pore, the bubble accelerates due to the decrease in the available area.
The bubble decelerates as its centroid passes the pore throat as the area available for the
flow increases. At each pinning location, there is an acceleration and deceleration of the
bubble. In these locations, the bubble decelerates as the pinning occurs and it accelerates
as it detaches from the surface. The acceleration occurs due to the instability between the
roughness peaks which results in a rapid motion of the trailing edge toward the next peak
of the surface roughness. These phenomena can be seen for all cases of pinning and motion
of the bubble as it exits the pore.

4.4. Change in the Bubble’s Pressure and Velocity While Passing through Circular Pore with
0.4 mm Roughness

The effect of the pore roughness identified by the change in the radius of curvature of
a bubble passing through a circular pore with 0.4 mm roughness is shown in Figure 11a.
A similar trend of the change in the radius of curvature detected for the case of 0.2 mm
roughness. The number of the detected peaks of the change in curvature is lower due to the
lower number of the pore roughness objects. The variation of the radius is higher due to the
stronger interaction of the bubble and solid interface. The bubble interface shape changes
from convex to concave which results in discontinuities in the instantaneous change of the
radius of curvature.

For clarity of the discussion, the details of the stages of the change in the curvature
highlighted by the blue box in Figure 11a, are represented in Figure 12a. The bubble passes
through the different stages of deformation and these stages are numbered and displayed
in Figure 12b. The bubble has a convex trailing interface before the pinning of the phase.
There is a slight increase in curvature of the trailing edge at location (1). This is due to the
pinning of the bubble that occurs at this condition leading to a higher curvature for the
bubble’s interface. As the bubble moves further into the pore, the bubble moves to the
next peak of the pore roughness. The smaller cross-sectional area available for the bubble’s
trailing edge in location (2) leads to a decrease in curvature of the bubble which can be seen
by the local minimum at y∗ ∼ 1.9. The bubbles interface becomes a flat surface at location
(3) which leads to RT → ∞ at location y∗ ∼2.25 in Figures 11a and 12a. The driving force
of the continuous phase moves the bubble forward leading to the change in curvature of
the bubble to be concave as shown in location (4). This phenomenon can be also observed
at different locations along the pore geometry as shown in locations (6), (8), (10) and (12).

The effect of pinning of the phase in this pore geometry on the instantaneous change
in the pressure of the bubble at different locations is shown in Figure 11b. The overall trend
of the change in the pressure is similar to the circular pore discussed in the previous section.
A similar critical pressure is detected in this case as shown for the smooth surface as the
bubble enters the pore. The phase pinning pressure, however, is different in this condition
due to the multiple locations of pinning in the flow passage. The pressure of the pinning
occurs at different locations as the bubble passes the pore throat resulting in a region with
a variation in the pressure drop. At the location where the pinning occurs, a series of peaks
are detected. The lowest pressure difference across the bubble occurs when the bubble has
the smallest value of curvature of the trailing edge at location (6) and the largest pressure is
detected for the location of phase pinning at the pore throat having the smallest negative
curvature of the bubble at location (8) as shown in Figure 12a.
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Figure 11. Plots of (a) change in the radii of curvature of leading and trailing edge of a bubble,
(b) pressure along the bubble, and (c) velocity of the of the projected area of a bubble ( Rb ∼1.95 mm)
passing through a circular pore with 0.4 mm roughness on the surface (Sample images of different
conditions are shown in Figure 6III).
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The effect of the phase pinning on the velocity the projected area of a bubble passing
through the rough pore can be seen in Figure 11c. As shown in the case of 0.2 mm of
roughness, at each pinning location, there is an acceleration and deceleration of the bubble.
In these locations, the bubble decelerates as the pinning occurs and it accelerates as it
detaches from the surface. The number of the peaks in this case (0.4 mm) is less than the
smaller roughness (0.2 mm) due to a lower number of peaks along the pore interface. The
velocity of the bubble increases to 1.5 of its terminal velocity for both cases of the pore
roughness (0.2 and 0.4 mm). The increase in the velocity of the bubble at each peak of
the surface roughness is higher for the case of 0.4 mm. This is due to the stronger phase
pinning phenomena at these locations. These phenomena can be seen for all cases of the
pinning and the motion of the bubble as it passes through the pore.

 
(a) (b) 

Figure 12. (a) zoomed-in condition represented in Figure 10a and (b) stages of bubble pinning in
a pore.

4.5. Change in the Bubble’s Pressure and Velocity While Passing through a Sharp Pore

The variation in the radius of curvature of the leading and trailing edge of a bubble
passing through a sharp pore is shown in Figure 13. The bubbles leading, and trailing
edge have a similar trend as observed for the bubble flow in a circular pore. Only one
phase pinning location can be observed as the bubble passes through the sharp geometry.
Comparing the location of the pinning of the bubble in this case and the smooth round
pore, shown in Figures 12a and 13a, the pinning in the case of the sharp pore occurs further
into the pore (y* ~ 4 for circular pore and y* ~ 3 for the sharp pore). This is due to the
difference in the structure of the pore throat. In a sharp pore, the bubble detaches from
the solid geometry right after it passes through the pore throat. For the case of the circular
pore, however, the bubble is in contact with the pore further in the axial direction due to
the gradual change in the pore geometry.

The critical pressure and the pinning pressure of the sharp pore can also be seen in the
peaks shown in Figure 13b. The phase pinning pressure in this condition is slightly larger
than the one detected for a circular pore. This is because the pinning in the sharp pore
occurs closer to the pore throat where the available cross-sectional area is smaller compared
to the phase pinning locations of other pore structures. The smaller gap between the pore
results in more deformation and a higher-pressure gradient. The effect of the change in the
pressure on the velocity is shown in Figure 13c. A lower acceleration is observed in this
case due to the difference in the available cross-sectional area at different locations along
the pore.
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Figure 13. Plots of (a) change in the radii of curvature of leading and trailing edge of a bubble,
(b) pressure along the bubble, and (c) velocity of the projected area of a bubble ( Rb ∼1.95 mm)
passing through a sharp pore (Sample images of different conditions are shown in Figure 6IV).
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4.6. Bubble’s Transit Time in Different Pore Geometries

The variation of the transit time required for bubbles of different sizes passing through
different pore geometries is represented in Figure 14. The transit time in this study is the
measured time required for the bubble leading edge to enter the pore structure and the
trailing edge to exit the pore structure determined from image analysis obtained using the
optical setup. The overall trend of the change in the transit time at the same flow rate in the
confined geometry is represented by the fitted line for each collected data set.

Figure 14. Plots of change in the transit time of bubble at different flow rates, size, and pore
geometry.The flowrates are color-coded where black, red and blue corresponds to 0.1, 0.2 and
0.3 mm/min, respectively.

For all conditions, the bubble’s transit time increases linearly as the size of the bubble
increases. This is due to the higher Volume of the larger bubbles which results in lower
mobility of the bubble in the pore geometry. From the figure, the highest transit time
corresponds to the motion of a bubble carried with a lower flow rate of the continuous
phase. The lower flow rate provides a lower driving force for the bubble passage which
leads to a slower bubble motion in the pore geometry.

Figure 14 also shows that there is a significant difference between the transit times of
bubbles moving through different geometries. The transit time for the bubble flow in the
sharp pore is mostly the highest among the tested pore geometries. The higher required
time for the bubble passage through pore space in this condition is due to the difference
between the decreases in the available cross-sectional area to the flow. In the sharp pore,
the available cross-sectional area decreases at a smaller rate compared to the round pore.
The higher available cross-sectional area for the flow for each stage along the pore results
in lower acceleration of the bubble and slower motion of the phase in this geometry. The
lower acceleration of the bubble’s velocity in the sharp pore can be observed by comparing
the velocities reported in Figures 9 and 13.

At the same flow rate, the lowest transit time occurs in the case of a bubble flow in the
smooth circular surface. This condition occurs since the only resistance, in this case, arises
due to the critical pressure at the entrance and the phase pinning at the exit of the pore

351



Fluids 2022, 7, 333

geometry. The transit time increases as the roughness on the wall of the pore geometry
increases. The increase in the transit time is due to the multiple phase pinning events that
occur for the bubble passage after the pore throat. For the case of a bubble flow in the
smooth circular pore, as shown in Figure 9, the bubble only pins on the exit of the channel
and the reduction in the velocity occurs only in this location. For the bubble passing
through the 0.4 mm roughness pore the pinning is a more severe result in the change in the
direction of the curvature (concave to convex and vice versa). The change in the trailing
interface results in more delay in the motion of the bubble.

5. Conclusions

The main goal of the current study was to determine the effect of pore geometry on
the motion and mobilization of an isolated bubble passing through a pore. The effect of the
pore structure was studied by the tracking of bubble deformation, pressure, the velocity of
the of the projected area, and the required transit time for the phase passage. Four different
pore geometries of a circular with a smooth surface, circular with 0.2 mm and 0.4 mm
roughness, and a sharp pore were considered for this study. The evidence from this study
suggests that the motion of the bubble passing through a pore space is highly affected by
the geometry of the pore solid interface.

Investigation of the deformation of the bubble has shown that the different pore
structures considered in this study all have a similar effect on the leading edge. However,
significant differences were observed for the deformation of the bubble’s trailing edge.
For the smooth circular pore structure and sharp pore, only one phase pinning event was
observed before the bubble detached from the pore surface. For a bubble passing through a
rough pore, the bubble has many pinning events for each peak of the roughness after the
pore throat. The number of pinning events increases by the number of roughness structures
on the pore surface. The strength of the interaction also increases by the height of each peak
of the pore roughness.

The results of the pressure change across the bubble showed that in addition to the
critical pressure introduced by the entrance of the pore, a phase pinning pressure is also
introduced during the phase passage in the pore. For all cases, a similar critical pressure
at the entrance was observed. The pinning pressure was highly affected by the properties
of the pore structure. The change in the pressure due to phase pinning was observed
with a higher number of peaks and a wider range of pressure effects for pores having a
rough surface structure. The applied pinning pressure at each pore roughness resulted
in the positive pressure difference along the bubble and ultimately, deceleration of the
phase motion.

This study has found that generally, the transit time of the bubble through the pore
structure increases with an increase in the pore surface roughness and the size of the
dispersed phase. A shorter transit time was observed for the case of the smooth pore due
to the minor effect of the phase pinning at the exit of the pore. Phase pinning in the rough
structures leads to the delayed passage of the bubble in these pore geometries.

This research extends our knowledge of the pore-scale interactions of pore structure
and multi-phase flow on the mobilization of the pore. The values obtained for the pressure
in this study is unique due to the presence of the confined walls of the flow channel. The
results of the trend of the change in the pressure in this research support the bulk flow
studies that a higher driving force is required for the mobilization of a trapped phase in
a rough and unstructured pore geometries. The findings from this study suggest that
the critical pressure for mobilization of trapped isolated phase in a pore geometry can be
predicted by the study of the motion of an individual isolated phase. The current study
was also able to detect the phase pinning introduced pressure which results in the delayed
passage of multi-phase flows in the pore structure.
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Abstract: In the simulation of dilute gas-solid flows such as those seen in many industrial appli-
cations, the Lagrangian Particle Tracking method is used to track packets of individual particles
through a converged fluid field. In the tracking of these particles, the most dominant forces acting
upon the particles are those of gravity and drag. In order to accurately predict particle motion, the de-
termination of the aforementioned forces become of the upmost importance, and hence an improved
drag force formula was developed to incorporate the effects of particle concentration and particle
Reynolds number. The present CFD study examines the individual effects of particles located both
perpendicular and parallel to the flow direction, as well as the effect of a particle entrain within an
infinite matrix of evenly distributed particles. Results show that neighbouring particles perpendicular
to the flow (Model 2) have an effect of increasing the drag force at close separation distances, but this
becomes negligible between 5–10 particle diameters depending on particle Reynolds number (Rep).
When entrained in an infinite line of particles co-aligned with the flow (Model 1), the drag force is
remarkably reduced at close separation distances and increases as the distance increases. The results
of the infinite matrix of particles (Model 3) show that, although not apparent in the individual model,
the effect of side particles is experienced many particle diameters downstream.

Keywords: CFD modelling; drag force; solid concentration; particle Reynolds number; gas-solid flow

1. Introduction

Dilute gas-solid flows are of considerable importance in many technical and industrial
processes to efficiently transport solid particles that have a wide range of sizes (few μm
to few mm) and density [1,2]. The application includes, but not limited to pneumatic
conveying, fluidised beds, vertical risers, classifiers, cyclones, and flow mixing devices [3,4].
Pneumatic conveying, due to its many advantages such as simplicity and flexibility in
operation, environmental compliance, and inherent safety, is widely used in the chemical,
food processing, and cement industries and also in order to transport pulverised coal in
thermal power plants [5]. This wide application has led to extensive research on pneumatic
conveying of solids through the different pipe elements [6,7]. Despite its wide application,
the design of the pipe network for pneumatic conveying is still a challenge because osten-
sibly small changes in the system or product frequently cause significant changes in the
system performance or design [8]. Furthermore, during the flowing, these fine particles
have not only the interactions with gas phase but also the collisions with each other and
the wall of the pipes [9,10]. Therefore, the flow phenomena of gas–solid two-phase flows
are very complex. Computational Fluid Dynamics (CFD) is usually used for modelling the
flow in these systems for a number reasons ranging from the design stage to monitoring
flows where experimental measurements are unavailable.

The CFD modelling relies heavily on a strong knowledge base of the fluid flow under
consideration, and as such, the behaviour of particle motion is of the utmost importance
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when trying to simulate gas particle flows [11]. Over the years, many researchers have
looked into the CFD modelling of gas-particle flows and the degree of accuracy has greatly
improved with advances in turbulence modelling and computing power [12–14]. In many
applications, the importance of the drag force in accurately predicting particle motion can-
not be understated [15,16]. When looking at gas driven flows, the drag force is responsible
for the acceleration of the particles. In CFD simulations, especially using the Lagrangian
framework [17], the most common approach to determine the drag force on a particle is
using the standard drag coefficient curve, which is based on experimental studies of a
sphere in unbounded fluid flow. The most commonly accepted approximation of this curve
is given by the following equation [18]:

CD =
24
Re

(
1 + 0.15Re0.687

)
Re < 1000 (1)

As it can be seen, the above equation is solely a function of the local particle Reynolds
number, and as such, discounts other effects that may affect the drag on a particle. In a
situation whereby particles are relatively spread out, this assumption can be correctly em-
ployed to accurately predict particle motion, but in many industrial flows, it is impossible
to assume that the distribution will be such that particles will not interact and in turn will
affect each other’s motion.

A number of researchers have tried to measure the influence on the drag force of a
particle in the presence of other particles. Liang, Hong and Fan [19] proved that altering
the position of surrounding particles experienced drastic changes in drag coefficient. A
configuration of three-coaligned particles led to a reduction of drag experienced by the
centre particle compared with that of the leading particle at a separation distance of 2–3 dp.
Cheng and Papanicolaou [20] calculated the analytical force on an array of particles at low
Reynolds numbers and volume fraction. The analytical results showed good comparison
with the phenomenological results available at the time of this work. Kim, Elghobashi and
Sirignano [21] solved the full Navier–Stokes equations for spherical particle motion at a
range of Reynolds numbers and particle-to-fluid density ratios. The full Navier–Stokes
solution showed considerable differences to some of the more commonly used particle
motion formulas and resulted in the authors proposing their own new particle motion
formula. Zhang and Fan [16] proposed a new semi analytical expression for the drag force
of an interactive particle due to wake effect. This work was based on the experimental
findings of Liang, Hong and Fan [19] looking at separation distances up to 7 particle
diameters and particle Reynolds number ranging from 54–154. Zhang and Fan [22] used
the above work as a basis to predict the rise of interactive bubbles in liquids. The work
showed that the new drag model and the inclusion of both the added mass and basset force
provided the best agreement with the available experimental data [23].

The work of Liang, Hong and Fan [19] looked at three particles co-aligned and at
separation distances up to 7 particle diameters, which corresponds to a particle volume
fraction of approximately 10−3. In order to extend this work to investigate the effects at
lower concentration values, 10−4, which is common in many dilute phase industrial flows,
a full CFD study of this work was undertaken. The aim of this study was to produce a
new drag force relation that considered the influence of particle concentration as well as
particle Reynolds number. The new relation needed to be a generic equation which relied
on the particle concentration or particle volume fraction, α, because the Lagrangian particle
tracking method tracks individual representative isolated particles without considering
the position of surrounding particles. An assumption was made that because no particle
position is actually known, the particles in any given cell are evenly distributed in a cubic
formation, see Figure 1. Utilising this assumption, the volume fraction can be transformed
into particles separated by a uniform distance in all directions.

ε =
Volume o f particles

Volume o f cell
=

1
6 πd3

L3 =
πd3

6L3 =
πd3

6(l/d)3 =
π

6l3 (2)
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where L is the distance between particle centres and l is the distance between particle
centres as a ratio of particle diameter.

Figure 1. Uniform particle distribution.

2. Mathematical Models

This section covers the numerical methods used to solve the motion of both the
continuous fluid and the dispersed particle motion. The continuous fluid phase is calculated
by solving the governing equations. The dispersed phase is solved in the Lagrangian
framework using Newton’s law to describe individual representative particle motion. In
present work, CFD technique is used as a tool to develop a new particle drag force equation
that considered the influence of particle concentration (α) as well as particle Reynolds
number. This paper used the CFX-5 package to replicate experimental work of Liang, Hong
and Fan [19].

2.1. Governing Equations

A general form of the transport equation used in CFD model is shown in Equation (3).
This equation describes the instantaneous transport of any variable quantity φ, which may
be mass, momentum, heat, or a scalar quantity such as turbulent kinetic energy.

ρ
∂

∂t
(φ) + ρui

∂

∂xi
(φ) =

∂

∂xi

(
Γ

∂φ

∂xi

)
+ S (3)

where ρ is the fluid density, x is the distance in the ith, u is the velocity in the ith, Γ is
the diffusion coefficient of the variable φ and S is a source or sink term for the variable
φ. For a fluid with constant density, the Navier–Stokes system of equations consist of the
continuity Equation (4), derived from the principle of conservation of mass, and three
equations derived from the principle of the conservation of momentum (5).

∂ρ

∂t
+

∂

∂xj
(ρui) = 0 (4)

ρ
∂ui
∂t

+ ρuj
∂

∂xj
(ui) = − ∂p

∂xi
+

∂

∂xj

(
2μsij

)
(5)

where Sij is the strain tensor, defined as:

sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(6)
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2.2. Turbulence Model

In the present study, the Reynolds Averaged Navier–Stokes (RANS) equation was
used to describe turbulent flows. The RANS can be used with approximations based on
knowledge of the properties of flow turbulence to give approximate time-averaged solu-
tions to the Navier-Stokes equations. The RANS equation can be written in the following
form:

ρ
∂Ui
∂t

+ ρ
∂

∂xj

(
UiUj

)
= − ∂p

∂xi
+

∂

∂xj

(
2μsij − ρu′

iu
′
j

)
(7)

which only differs from the laminar form by the term ρu′
iu

′
j. The quantity is known as the

Reynolds stress tensor and has six independent components. As the Reynolds stress tensor
contains six unknown quantities combined with the unknown velocity and pressure terms,
we now have 10 unknowns and only 4 equations (3 momentum and the continuity) to
solve. In order to analytically solve these equations, a form of turbulence closure method is
required. The turbulence model used to simulate the experimental results was the standard
k-ε model [13]. A Reynolds stress turbulence model was also used in the simulation and
compared for accuracy purposes only.

2.3. Particle Phase Model

The calculation of the particle motion comes directly from Newton’s second law,
which states:

m
du
dt

= F (8)

where F is the force on the particle, and m is the mass of the particle. Although this F is
made up of a few different forces, the major contributing factor during dilute phase flow is
the drag force between the continuum and the dispersed phases.

2.3.1. Drag Force Model

The drag force generally takes the form:

FD =
1
2

ACSρCD|VRel |VRel (9)

where ACS is the cross-sectional area perpendicular to the velocity direction, ρ is the
density of the continuum medium, VRel is the relative velocity between the particle and
the continuum phase and CD is the coefficient of drag of the particle. The standard model
by [24] employed by CFX-5 is given by:

CD =
24
Re

(
1 + 0.15Re0.687

)
(10)

were

Re =
ρ|VRel |d

μ
(11)

here d is the diameter of the particle, ρ is the fluid density and μ is the viscosity. This
relation for the drag coefficient only relates the amount of drag to the relative velocity. For
extremely dilute flows whereby the particles are well dispersed, this relation is adequate,
but when the volume fraction of particles increases, the effects of neighbouring particles
cannot be excluded. The following section covers the development of a new particle
drag coefficient formula considering the effect of neighbouring particles on the drag force
particles entrained in particle streams.

2.3.2. Turbulent Dispersion

The effect of the fluid turbulence on the particle motion is considered via the turbulent
dispersion method. As the fluid flow is calculated as a time averaged steady-state flow,
the velocity at any point can be quantified as a mean and fluctuating component of veloc-
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ities. The fluctuating components of velocity are calculated using Gaussian probability
distribution of zero mean and standard deviation of:

sd =

√
2
3

k (12)

where k is the kinetic energy of the fluid in a particular cell. This calculated fluctuating
component combined with the time-averaged mean value at that point are used to predict
particle motion in that immediate area.

2.3.3. Particle-Wall Collision Model

The standard particle-wall collision based of the work of Shuen, Solomon, Zhang
and Faeth [25] included in CFX-5 consists of particle being reflected off the wall surface
based on the coefficient of restitution. This coefficient is a direct measure of the amount of
energy lost during the collision process and effectively reduces the normal velocity of the
rebounding particle. The figure shows the relationship between the pre and post collision
velocities, both parallel and normal to wall. To model particle wall collision a rough-wall
collision model similar to that of Sommerfeld [26] was implemented. This model considers
the effects of slight undulations in the wall surface. These slight undulations result in
slightly modified impact angles by introducing a virtual wall as seen in Figure 2.

Figure 2. The effect of the virtual wall inclination on the post collision properties.

The calculation for post collision velocities is approached the same as normal wall,
but the incoming velocities are adjusted to incorporate the slight impact angle change. The
formulas to calculate the post-collision velocities for both sliding and non-sliding collisions
are as follows:

Non-sliding collision

u2 =
5
7
(u1) (13)

v2 = −ev1 (14)

Sliding collision
u2 = u1 + μd(1 + e)v1 (15)

v2 = −ev1 (16)

where u1 and u2 represents the corresponding velocities pre and post collision in the
tangential direction with respect to the collision, v are the velocities normal to the wall, e
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is the coefficient of restitution and μ is the coefficient of friction. A non-sliding collision
occurs when the following condition is valid:

|u1| ≤ 7
2

μo(1 + e)v1 (17)

The equations for the standard model and improved are identical, but the incoming
velocities for the improved model have been modified according the roughness angle based
on the work of [26].

2.3.4. Particle-Particle Collision Model

The standard CFX-5 software [27] package does not account for particle-particle
collision as part of the Lagrangian framework. As a consequence, the software needed to
be modified to consider the effect of particle collisions through different flow systems. The
modelling method implemented into the program is based on the model developed and
refined by Sommerfeld [28]. The basis of this method is the creation of a fictitious particle
that is used for the calculation of collision probability and if required the collision process.

As the Lagrangian particles are tracked individually through the flow domain, sam-
pling the average particle velocities through a particular computational cell creates a
fictitious particle. With the fictitious particle created, the collision probability of collisions
occurring between the tracked and fictitious particles is calculated using a similar method
for that of the kinetic theory of gases. The formula for the collision probability is as follows:

Pcoll =
π

4

(
Dp,real + Dp, f ict

)2∣∣∣→u p,real −→
u p, f ict

∣∣∣npΔt, (18)

where D is the diameter of the relevant particle, u the velocity of the relevant particle,
np is the number of particles per unit volume and Δt is the time step. After the collision
probability is calculated, this probability is compared with a random number (RN) that is
generated. A collision is to be simulated if the generated RN is less than the Pcoll. When a
collision is to be simulated, the location of collision point on the real particle is determined
randomly and the resulting post collision velocities calculated using the follows formulas:

u′
1 = u1

(
1 − 1 + e

1 + m1/m2

)
(19)

where u1 and u′
1 are the pre and post collision velocities, respectively, in the tangential

direction relative to the collision vector between particle center at the time of impact, e is
the coefficient of restitution between the two particles, and m1 and m2 are the respective
masses. In the normal direction, during the collision process, a particle may slide against
the wall surface or depending on the friction between the faces, the particle may rotate in a
non-sliding collision. The effects of the two sliding conditions are accounted for by:
non-sliding collision

v′1 = v1

(
1 − 2/7

1 + m1/m2

)
(20)

sliding collision

v′1 = v1

(
1 − μ(1 + e)

u1

v1

1
1 + m1/m2

)
(21)

where e is the coefficient of restitution, μ is the coefficient of friction and m1 and m2 are the
respective masses of the considered particles.

3. Numerical Simulation Overview

3.1. Description of the Simulated Cases

The experimental work of Liang, Hong and Fan [19] was used in the present work
for numerical method. In their work, four different orientations were investigated. The
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first considered the effect of varying angle with respect to the flow direction at given
separation distance. The second configuration looked a three co-aligned particle in the flow
direction. The third test case considered a central test particle surrounded by 6 equally
spaced particles in hexagonal configuration. The final case looked at a central test particle
surround by 8 particles in cubic orientation. As previously mentioned the three co-aligned
particles work forms the basis of the following study whereby separation distances from
0.25 to 7 x/d were investigated where the results for 0–3 x/d were compared with the
experimental data of [19]. The published results considered the flow conditions where the
particle Reynolds number equalled 54. The set up consists for the CFD model replicates
those dimensions seen in the experimental work, with a pipe diameter of 15.24 cm and a
particle diameter of 1.58 cm. The particles are co-aligned along the centreline of the pipe.
The present CFD geometry based on the [19] experiments and inlet velocity profile is given
in Figure 3. Figure 4 shows a section through the mid-plane of the pipe highlighting the
mesh densities used. The mesh for these simulations was unstructured for the bulk of the
domain, but regions close to the pipe wall and particle surfaces were structured in nature.
These are the areas of greater gradients of flow variables. Beyond the structured region,
heavy unstructured refinement was enforced around the particle surfaces and along the
centreline of the pipe as this are the regions of most interest and the areas where the greater
velocity gradients occur. To obtain an acceptable accuracy with acceptable computational
time, various grid independency tests were conducted with different mesh resolutions. The
predicted results were verified to have been no significant impact of the grid resolution on
the results. A time step of 0.01 s was used in the present model.

Figure 3. Present CFD geometry based on the work of Liang (1996) and inlet velocity.

Figure 4. Mesh configuration for the present CFD geometry.
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3.2. Boundary Conditions

To accurately replicate the experimental conditions of Liang, Hong and Fan [19], a
fully developed laminar pipe flow condition is used at the inlet boundary:

u = u0

(
1 − r2

R2

)
(22)

Both the pipe wall and particle surfaces were set as no-slip boundary conditions with
the velocity equal to zero. Outlet of the pipe was set to an opening type with a static
pressure value equal to atmospheric pressure since it gives better convergence results.
In present work the convergence criteria for all numerical simulations of all the residual
were taken as 10−4 for each scaled residual component. A glycerine/water solution of
approximately 82 wt% glycerine was used in this study. Fluid properties were set according
to the values given in Table 1.

Table 1. Fluid properties for Liang (1996) experimental replication work.

ρ (kg/m3) μ (kg/m.s) dp (m) Dpipe (m) u0 (m/s) at Re = 54

1206 0.057 0.015875 0.154 0.16

4. Results and Discussion

Figure 5 shows the good agreement between the experimental study of Liang, Hong
and Fan [19] co aligned particle work and the present CFD validation work, where cd is the
drag force coefficient on the test particle and cd0 is the drag force coefficient on an isolated
particle. The CFD model was able to predict the drag force accurately on all three particles.

Figure 5. Validation of the Liang experiment for three co-aligned particles at Re = 54.

The results also accurately predicted the transition of drag force whereby the drag
on the middle particle surpasses that of the trailing particle. Figure 6 shows the velocity
contour plot of the present CFD study at a separation distance of 5 particle diameters and
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a Reynolds number of 54. The leading particle is subjected to higher velocities than the
trailing particles which in turn leads to the higher drag force.

Figure 6. Velocity and pressure contours plot of Liang experiment at a separation distance of
5 particle diameters and Re = 54.

Figure 7 shows a close-up view of the recirculation area behind the three particles. The
leading particle, due to the higher incoming velocity, has a larger recirculation area and
results in higher drag forces. Due to the close agreement of the predicting ability of the
CFD model, it is valid to assume an accurate extension of this work could be undertaken.

To fully help understand the phenomenon at work in the particle drag of clusters of
particles, it is necessary to consider various cases. In the present work, three different cases
were investigated:

• Model 1 investigates the drag force of an average particle within an infinite line of
particles co aligned with the flow direction. This model will highlight the effects of
inline wake characteristics.

• Model 2 considers a particle surrounded by an infinite plane of particles aligned
perpendicular to the flow to investigate the influence of neighbouring particles.

• Model 3 investigates an infinite matrix of particles, which is a combination and exten-
sion of the previous two models.

The results of cases 1 and two are for comparative purposes only and necessary to
fully understand the effect of position and location of particles on surrounding particles.

4.1. Particles Aligned with Flow (Model 1)

Model 1 looks at the case of infinite number particles co-aligned with the direction
of flow (see, Figure 8a). This Model highlights the influence of particle wake on the drag
force when aligned with the flow direction. The ranges of the simulations completed for
this Model 1 include particle separation distances of 1 to 20 particle diameters and particle
Reynolds numbers varying from 1 to 50.

In order to accurately model an infinite number of particles in flow direction, the inlet
and outlet regions (see, Figure 8b), require a periodic boundary condition. The periodic
boundary condition forces the quantities leaving the domain to be reintroduced into the
domain through the inlet patch. The drag force created by the fluid moving passed the
particles results in an energy loss due to friction between the shearing layers of fluid
adjacent to the particle surface. The periodic boundary condition forms an endless loop
of fluid that unless corrected will eventually stall. To overcome this phenomenon an equal
amount of momentum is introduce evenly throughout the domain to ensure continuous flow.

364



Fluids 2022, 7, 331

Figure 7. Velocity vector plot of (a). leading particle, (b). middle particle, (c). trailing particle at
x/d = 5d and Re = 54.
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Figure 8. (a). Configuration for Model 1, (b). Model 1 boundary conditions.

To test the introduction of firstly the momentum introduction method and the periodic
boundary condition, a pseudo-isolated particle was simulated (separation distance of 80 pd)
at various Reynolds numbers and compared with commonly accepted relation for drag
force of isolated particles (FD = 1

2 CDρAV2 where CD = 24
Re

(
1 + 0.15 Re0.687

)
). Figure 9

shows the close agreement between the theoretical value based on an isolated particle
and the CFD simulations. In the cross-stream direction, the effects of the wall on the flow
characteristics needed to be removed so a series of geometries were tested at varying
distances to determine the minimum distance from the wall for the simulation. It was
found the use of 20 d wall distance removed all wall effects from the flow. At a distance of
20 d, a symmetry boundary or free slip (shear stress = 0) was used. This kind of boundary
condition removed the drag due to wall friction as is seen in pipe flows.

Figure 9. Validation of periodic boundary conditions.
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Figure 10 shows the normalised drag force plot for Model 1, where f is the predicted
drag force on the test particle and f0 is the corresponding drag force for an isolated particle.
It can be noted that at very small separation distances, which represents high particle
volume fractions, the reduction of drag is large for all Reynolds numbers. The larger
the Reynolds numbers the greater the reduction in drag force. At a separation distance
of 1 particle diameter and a Reynolds number of 50, the average particle drag force is
approximately 18% of that of an isolated particle at the same Reynolds number. This
is the phenomenon that is used by birds to fly great distance by sharing the drag force
between the birds. The experimental work of Katz and Meneveau [29] experimentally
studied the rise velocity of interactive bubbles and considered the relative between two
identical bubble and several separation distances. The results suggest the relative velocity
between the particles increased at smaller separation distances. This is consistent with
the CFD predictions shown whereby a reduction in drag force would correspond to an
increase velocity of the trailing bubble leading to greater relative velocity between to the
two bubbles.

 
Figure 10. Normalised drag force of Model 1.

The velocity contours for some limited cases of Model 1 are shown in Figure 11. These
plots highlight the reason the drag force at smaller separation distances. At 1 particle
diameter separation distance, the wake from the previous particle engulfs the trailing
particle leading to lower oncoming fluid flow velocity and consequentially lower drag
force.

4.2. Particles Perpendicular to Flow (Model 2)

Model 2 investigates the effects of particles located perpendicular to the flow (see,
Figure 12a). The range of separation distance for this case includes 1 to 20 particle diameters.
Model 2 focussed on the influence of neighbouring particle perpendicular to the flow
direction and as such the cross-sectional dimensions were important. The length of the
geometry was set to double the separation distance of the particle to the side boundaries.
The geometrical design yields little effect on the drag force with the outlet set at this ratio
to the side boundaries. This case required an infinite plane of particles perpendicular
to the flow to be simulated. This plane is the product of using symmetry boundaries
again on the wall regions parallel with the flow, but with this case, the distance to the
symmetry boundary will varying accordingly to the separation distance being modelled.
(See Figure 12b).
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Figure 11. Velocity contour plots for separation distances x/d = 10, 5, 2 and 1 at Re= 50.

Figure 12. (a). Configuration for Model 2, (b). Model 2 boundary conditions.
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Looking at the drag force results for Model 2 (see, Figure 13), the drag force on the test
particle sharply increased compared to that of an isolated particle at the smallest separation
distance whereas all the results showed a normalised drag force greater than unity with
the greater separation distances showing very little difference from unity. The main reason
the increase in drag force is due to the higher velocity experienced by the particle due
to the fact that the cross section for the flow to move through decreases past the particle
causing the velocity to increase to conserve continuity. This would explain why the results
for the smallest geometry are so extreme because this is the case where the flow reduces
the most. For example, the case of a separation distance of 1 particle diameter reduces the
cross-sectional area past the particle by approximately 20%. Following along the same lines
of thinking the smaller Reynolds number results provide greater force increases because the
rate of change of drag coefficient and hence drag force with respect to Reynolds number is
greater at lower numbers thereby leading to higher experienced drag force as the increase
in seen velocity results in higher Reynolds numbers.

Figure 13. Normalised drag force of Model 2.

The increased drag force attributed to the squeezing of the flow or the ‘nozzle’ effect
was also noted by Chen and Lu [30]. In their experimental work, the drag force on 2 and
3 particles positioned side-by-side in the oncoming flow were measured. Their results
suggest that at smaller separation distances, the drag force increases, which they primary
conclude is based on the nozzle effect, which causes a rise in local Reynolds numbers.
Although there is some difference in the magnitude of force increase between the predicted
CFD results and those of the experimental work (see, Figure 14), it is noticeable from their
work, that the case of three particle yielded slightly higher drag force increase compared
with those of the two-particle case. With this in mind, the infinite array of particles
perpendicular to flow in these CFD predictions would naturally expect to produce higher
drag forces due to introduction of additional particles.

The velocity contour plots of Figure 15 show how the smaller separation distance
greatly increases the maximum normalized velocity. The case of separation distance of
10 x/d shows almost a constant normalized velocity of close to unity resulting in a drag
force ratio of approximately the same magnitude. This highlights the importance of the
“nozzle” effect on the drag force for the smaller geometries caused by close neighbouring
particles.
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Figure 14. Comparison of CFD simulation results for Model 2 and available experimental data.

Figure 15. Velocity contour plots of Model 2 for separation distances x/d = 10, 5, 2 and 1 at Re = 50.

4.3. Infinite Matrix of Particles (Model 3)

The final model consisted of a combination of Models 1 and 2 to form an infinite matrix
of particles from which a new drag force was developed (see, Figure 16a). The geometry
for Model 3 consisted of a cubic shape of dimensions based on separation distance. As
would be expected being a combination of Models 1 and 2, the combination of boundary
conditions were also applied to this model. As in Model 1, the periodic boundary condition
and introduced momentum were used in Model 3. From Model 2, the symmetry boundary
conditions were used (see, Figure 16).
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Figure 16. (a). Configuration for Model 3, (b). Model 3 boundary conditions.

Results for the drag force of Model 3 are seen in Figure 17. For all the cases, there was
a sharp increase in drag force at the smaller separation distances similar to that noted for
Model 2. This increase again is caused due the increase of perceived velocity seen at the
particle due to the constriction in the flow due to the physical presence of the particle. This
would also explain why the effect is less noticeable at the greater separation distances. Also
of interest is that as the Reynolds number increases the constriction effect is dramatically
reduced mainly in part to fact that as rate of change of drag coefficient with respect to
Reynolds decreases dramatically at higher Re.

Figure 17. Normalised drag force of Model 3.
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Figure 18 shows the velocity contour plots at various separation distances ranging
from 10 to 1 x/d. At the smallest separation distance, it can be easily seen that the wake
of the previous particle continues to the next, generally, this result in a reduction of drag
force but due to the constriction effect previously discussed, the drag is higher. The
constriction effect is highlighted in the contour’s plots, as the normalised velocity of the
smaller separation cases is higher than those of the 10 x/d case.

Figure 18. Velocity contour plots for Model 3 at Re = 50 and separation distances x/d = 10, 5, 2 and 1.

A series of comparison graphs of the three models are shown in Figure 19. The first
graph shows that at low Reynolds numbers, the results for Model 3 and Model 2 are almost
identical. This is due mainly to the constriction effect discussed early in the chapter. At a
Reynolds number of 5 and above it is clear to see distinction between the models. Again,
all the results show the sudden increase of drag at smaller separation distances due to the
change of flow area, something that is not seen in Model 1 because the wall boundaries
were set far enough away to minimise any area change to negligible proportions. For the
higher Reynolds number cases it can be seen that apart from the sudden increase at smaller
separation distance, as the particles spread, the results replicate the trends seen in Model 1
with the magnitudes of the drag force reduction slightly smaller as it approaches unity.

Figure 20 shows the differences between Model 1 and 3 under the same flow conditions.
It can be seen that the wake length produce in Model 1 is greater than that produced
by Model 3. The difference in the models is the effect produced by the introduction of
neighbouring particles upstream. It is interesting to note that effect of Model 2 beyond
5 particle diameters of separation distance was seen to be negligible, further downstream
these particles impact on the wake length shortening and consequential drag force increase.
The normalised drag coefficients shown in Figure 21 reinforce the influence of neighbouring
particles from Model 2 as there is a clear differential between Model 1 and 3.
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Figure 19. Comparison of the normalised drag force of different models at different Reynolds number.

 
Figure 20. Comparison of Models 1 and 3 at separation distance x/d = 16 and Re = 50.
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Figure 21. Comparison of normalised drag coefficients for the three different models at a Re = 5.

The fitment of an equation to predict the drag coefficient of a spherical considering both
Reynolds number and particle concentration (α) is based on the results seen in Figure 22.
The equation development is based on Reynolds number between 1 and 50 and separation
distance of 5 to 20 x/d. The separation distance corresponds particle volume fractions of
10−2 and 5 × 10−5. To generate an equation for the data obtained from the present CFD
prediction in the previous sub sections, a least squares method was utilised. A generic
form of the equation was generated as seen in Equation (9). The least squares regression
program solved for the constant A, B, C and D.

CD =
24
Re

(
1 + 0.15Re0.687 + A Log

[
3

√
π

6α

]B

+ C[Log(Re)]D
)

(23)

Figure 22. Drag coefficients for various Reynolds number of Model 3.

Substituting in the values from Table 2, the generic equation takes the form of
Equation (9).

CD =
24
Re

(
1 + 0.15 Re0.687 +0.000353

[
Log

(
3

√
π

6α

)]15.93

− 0.16[Log(Re)]3.62

)
(24)
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Table 2. Calculated constants for generic equation.

A B C D RMS Error

15.94 0.000353 −0.16 3.62 0.0439

The results were more accurately predicted for those particles whose sizes were closest
to the average diameter. Of the three different particle size ranges, the medium particle with
an average of 226 μm produced the best CFD predictions with almost perfect predictions.
The cases of the larger and smaller particle sizes (342 μm and 136 μm respectively) while
still showing improved predictions; they were not as prominent as the medium case.
Several limitations to this newly developed drag model need to be acknowledged. Firstly,
the particle concentration (α) range for this formula is considered to be adequate for the
purpose of modelling dilute flows using the Lagrangian framework. In simulated flows
where regions exceed the 0.01 volume fraction, limitations on the newly developed drag
force, require the particle drag to be calculated using the standard drag model. This
is not considered to be such a problem because at high particle concentrations (α) the
particle motion is governed predominately by inter-particle collisions and less by drag
force. Secondly, the limitation set on the particle Reynolds number is also considered to be
adequate for the use in industrial type flows where the transport of small particles (less
than 1 mm) is to be considered whereby generally the local particle Reynolds number
would rarely exceed 50. In the case of larger particles producing the particle Reynolds
numbers greater than 50 the new drag force will not be used, and the standard drag model
would then be used. Finally, the present developed drag force formula has been calculated
on a study of the relationship between the drag forces of mono-sized particles. Particles
of differing diameter will obviously affect the resulting wake size and consequently the
amount of drag reduction seen by trailing particles. A smaller particle (i.e., dp ≥ 136 μm)
will not reduce the drag force as significantly on a larger particle (i.e., dp ≤ 342 μm) as
would be expected if the situation were reversed. With this in mind, narrow particle
size distributions are best suited for use with this formula, as the particles would be
considered almost mono-sized. Any particles outside of this narrow band would be subject
to incorrect reductions in drag force, particularly smaller particles, which may lead to
variations from any validating experimental data. Although this limitation would exclude
many applications if the new formula were to be used although the reductions in drag
force may not be entirely accurate, it would still yield improvement over the standard drag
force model.

5. Summary and Conclusions

The present work accurately reproduced the drag force results seen in the Liang, Hong
and Fan [19] experimental study of three co-aligned particle at various separation distances.
An extension of this work resulted in the CFD study of three models of varying particle
configurations. Model 1 highlighted the important influence that particle wake has on the
drag force of trailing particles. From this study, it was found that a trailing particle at small
separation distances and a Reynolds number of 50 experience a reduction of up to 80%
of drag force. Although not as prominent as this case all scenarios resulted in reduction
of the seen drag force with this model. Model 2 considered the effect of neighbouring
particle perpendicular to the flow. In all cases, the drag force increased due to a squeezing
of the flow at the constriction, as expected this was much more prominent at the smaller
separation distance. Most notably at a separation distance of 1 and a Reynolds number
also 1 the drag force increased by over 250%. Beyond about 5 particle diameters this
effect was almost negligible with drag approximating those of isolated particles at the same
Reynolds numbers. For Model 3 for which the new drag equation was developed, at smaller
separation distances its behaviour mimics that of Model 2 again because of the squeezing
of flow. As the separation distance increased, the results followed more of the results seen
for Model1. For both extremes, the increase or reduction of drag force were never as high
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as the results seen the models whose behaviour it was following. As the application of a
new drag force model is to be used primarily for Lagrangian particle tracking where dilute
flows are of most interest the range of separation distance was reduced to 5 to 20 particle
diameters. This firstly made the fitment of a curve to the data easier and more accurate and
secondly the importance of the drag force in dense phase flow becomes secondary to those
of particle-particle collisions above and beyond a volume fraction of 0.01, which represents
5 particle diameters of separation distance.
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Nomenclature

A surface area of the particle
ACS cross-sectional area perpendicular to the velocity direction
CD coefficient of drag of the particle
Dp particle diameter
e Restitution coefficient
F force on the particle
FD drag force
k kinetic energy of the fluid in a particular cell
L distance between particle centres
mp particle mass
np number of particles per unit volume
Pcoll collision probability
Rep Particle Reynolds number
Sφ, SPφ source terms
Sij strain tensor
u velocity in the ith

Up,g velocity of particle and gas respectively
VRel relative velocity
x distance in the ith

Greek letters

ρ density of the continuum medium
ε volume fraction
φ variable quantity
Γφ diffusion quantity
μ Viscosity
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Abstract: The study of valve asymmetry represents an important avenue for modern cardiac surgery.
The correct choice of leaflet reconstruction may indicate a new path in the quality and long-term sur-
vival of patients. A systematic investigation was performed with a total of 25 numerical simulations
using a healthy ventricle and an ideal valve with varying degrees of valve asymmetry. An overall
assessment is made in terms of vorticity, kinetic energy, dissipated energy, and hemodynamic forces.
The results indicate that the optimal asymmetry to consider for a valve repair or prosthetic design is
between 0.2 and 0.4 with an optimal point of about 0.3. Out of this range, the heart is subjected to an
excessive workload, which can only worsen the patient’s state of health.

Keywords: CFD; mitral valve; valvular asymmetry; cardiovascular flow

1. Introduction

The function of the mitral valve (MV) is to allow and regulate the correct access of
blood into the left ventricle (LV). The MV has a characteristic elliptical shape and is com-
posed of an annulus and two leaflets, posterior and anterior, respectively. Its function is
crucial for correct ventricular functioning as it directs the flow within it, ensuring correct
mixing and redirection of blood towards the aorta in healthy conditions. On the other hand,
in pathological conditions, the leaflets of the MV have prolapsed and a quantity of the
blood is regurgitated into the atrium during the systole. Depending on the different types
of mitral regurgitation (MR) [1], there are different therapeutic solutions; in particular, in
the cases of severe MR, the therapy is usually a cardiac surgery for valve repair or, less fre-
quently, valve replacement with a prosthesis. Over the years, different methods have been
developed to treat this pathology. The first option was the substitution with a mechanical or
biological prosthetic valve; this, however, brings along several complications [2,3]. To date,
the recommended treatment for degenerative mitral valve disease is mitral valve repair
(MVR), as opposed to valve replacement with a biological or mechanical valve, because
surgical valve reconstruction is associated with improved event-free survival [4,5]. Surgical
MVR is the gold-standard therapeutic procedure for patients with degenerative mitral
valve regurgitation [4,6] and follows two fundamental principles: restoring a good surface
of leaflet coaptation and correcting for annular dilatation [4,7]. Transcatheter solutions
represent additional options that are currently recommended only in patients at risk [5,8,9].
Although the reparation is the gold standard, endovascular replacement is expected to
increase with the improvement in and availability of endovascular prostheses. One im-
portant point to consider during the planning of valve repair or for the good design of a
valve prosthesis is the identification of the appropriate range of valve asymmetry [10]. The
present study uses the approach of direct numerical simulation (DNS) to provide indication
of this range. Several techniques have been introduced in the literature to overcome the
numerical difficulties due to the movement of the numerical domain, including the formu-
lations of space-time finite elements, immersed boundary methods, the method of level sets,
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the fictitious domain method, unfit finite elements and the arbitrary Lagrangian–Eulerian
formulation (ALE) [11–14]. The numerical method, used in this work, was extensively
employed in previous studies, and technical details are described in a dedicated method-
ological validation study [15], where the valvular dynamics were compared with that
obtained with complete fluid–structure interaction [16]. In a previous study [10], the proper
range of valve asymmetry is investigated in terms of false and effective regurgitation, as
well as a thorough distribution of washout in healthy, pathological, and repaired cases
with different levels of valve asymmetry. Therein, the physiological degree of asymmetry
was found to be associated with small regurgitation and a proper ventricular wash-out for
normal ventricles. This work follows up to provide a more comprehensive assessment and
indication of the proper range of valve asymmetry to be used for a repair or prostheses
design, and we extend the previous study and analyze the results from an energetic and
mechanical point of view by investigating how valve asymmetry affects hemodynamic
forces and the amount of kinetics energy produced and dissipated.

2. Materials and Methods

2.1. Geometries

A total of 25 numerical simulations were performed and analyzed using the same
healthy LV for 25 MVs, each with a different degree of valve asymmetry. The time-varying
geometry of a healthy LV has been extracted from 3D echocardiography; the moving borders
were obtained by a semi-automatic procedure within a dedicated software (4D LV analysis,
Tomtec Imaging Systems GmbH, Unterschleissheim, Germany). At every instant, the entire
LV endocardial surface is described by its 3D coordinates, which are then interpolated on a
structured mesh made of 768 points along the circumference and 384 points from the base to
the apex. LV geometry during all phases of the heartbeat is described by the position vector
X(ϑ, s, t) of its endocardial surface, where the structured parametric coordinates (ϑ, s) run
along the circumference and from base to apex, respectively, and t is time. The position
vector marks the material points of the LV, and their velocity is obtained from temporal
differentiation. The LV clinical parameters are: End Diastolic Volume (EDV) = 139 mL, End
Systolic Volume (ESV) = 53 mL, Stroke Volume = 86 mL, Ejection Fraction (EF) = 62%, and
E/A = 1.5.

A controllable geometry of the MV is obtained from an ideal model through a mathe-
matical description introduced in a previous study [17]. The radius of the valve, R = 1.5 cm,
is kept constant (to adapt to the LV geometry) and with the normal elliptical shape (a pa-
rameter that describes the ratio between the length of the flaps in the two perpendicular
directions set at a value of 1/3). The asymmetry of this valve is described by a dimen-
sionless parameter ε that mimics the difference in length between the anterior and the
posterior leaflets, normalized to their sum [17]. The asymmetry is modified starting from
an extreme value ε = 0.6 to the opposite extreme ε = −0.6, where the lengths of the anterior
and posterior leaflet are (1 + ε)R and (1 − ε)R, respectively. The analysis varies with
continuity, with 25 positions selected with increments Δε = 0.05 between the two extreme
values. In Figure 1, we show the complete geometry (a) with the semi-open valve at an
instant indicated in the volume rate curve (b) and two MVs with asymmetry configurations,
which are ε = 0.6 and ε = −0.6 (c,d). The MV geometries are reorganized for convenience
in terms of another pair of parametric coordinates (ϑ, s), where s ranges from zero at the
annulus to 1 and the trailing edge ϑ is the azimuthal angle.
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Figure 1. LV geometry (a) and its dV/dt curve (b). Ideal MV in semi-open configuration for ε = 0.6
(c) and ε = −0.6 (d), respectively.

The intermediate geometric configurations are reconstructed considering the two
leaflets as moving independently of each other and each one associated with a degree of
opening, say ϕ1(t) and ϕ2(t), for the anterior and posterior leaflets, respectively, that range
from zero (closed leaflet) to π

2 (fully open). Therefore, the valve is mathematically described
by its coordinates Xv(ϑ, s, ϕ1, ϕ2). This parametric expression represents a two-dimensional
set of all the possible valve configurations that are preliminarily calculated depending on
two degrees of freedom (the opening degree of the two leaflets) between a fully closed
configuration, Xv(ϑ, s, 0, 0), when both angles are 0 and a fully open Xv(ϑ, s, π

2 , π
2 ) when

both angles are π
2 . The dynamic equation of the leaflet-opening angles was obtained by

the constraint that the motion of the leaflet surface must match the velocity of the fluid
at the position of the same surface; a brief description is given below. A comprehensive
description and verification of the computational method, including a comparison with
a fluid–structure interaction model with a given set of tissue parameters, are reported
elsewhere [15]. In synthesis, the valvular leaflets are assumed to move with the flow with
no elastic resistance other than the constraint of remaining in the set of configurations
described by the two degrees of freedom. Under this assumption, the leaflet dynamics
are obtained by least-squares minimization of the difference, integrated over the valvular
surface Av, between the fluid and the valve velocity component normal to the valvular
surface. The result is a system of linear equations whose ith term reads[∫

Av

(
∂Xv

∂ϕi
· n
)(

∂Xv

∂ϕj
· n

)
dA

]
dϕj

dt

=
∫

Av
(v · n)

(
∂Xv

∂ϕi
· n
)

dA (1)

where v is the fluid velocity and n the local normal to valvular surface. i = 1, 2, for the
2 degrees of freedom MV, and summation over j = 1, 2 is implicitly assumed. The dynamic
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model described by system (1) represents an asymptotic limit of the loosest MV within the
prescribed two-dimensional set of geometric configurations; as the model reproduces an
asymptotic behavior, it does not require the introduction of mechanical parameters of the
tissues that would otherwise be necessary for solving the momentum equation for the solid.
On one hand, this is an advantage for applications where such properties are not available
or cannot be measured; on the other, this model represents an approximation with respect
to a complete calculation with fluid–structure interaction. This simplifies the solution that
is aimed to reproduce the main properties of the LV fluid dynamics in the presence of
a moving MV, assumed to have loose moving elements when the general properties of
the valvular structure are not available. The absence of papillary muscles and chordae
tendineae represent a limitation of the model. Here, the unidirectional valvular flow,
avoiding the valve from opening towards the atrium, is ensured internally by the constraint
on the degree of freedom that plays a surrogate function for the chordae tendinae. On the
other hand, the presence of these anatomical structures inside the ventricle may influence
the flow; however, the direct influence of these thin elements is expected to be marginal,
and it was not evidenced in detailed analyses of blood flow recorded “in vivo” [18,19].
In this regard, this study has been extensively validated with an FSI model [15,16] and
subsequently with a previous study [10] showing the homogeneity of the ideal MV with
the real one and its movement. In the study by [20], it is shown how the presence of the
chordae tendineae is not influential in the numerical simulation; the models with and
without the cords showed similar results, and the essential thing is that the movement
is faithfully reproduced, which was amply demonstrated for our cases [10,15,21–26]. A
systematic analysis of the properties and limitations of such valvular modeling for flow
simulation is reported in a dedicated methodological study [15]. The aortic valve, which is
downstream of the LV flow fields, is modeled as a simple orifice with a surface that is either
open or closed. This simple orifice model is represented by a surface that opens when two
conditions apply: the MV is closed and the average normal velocity at the valve position
is directed toward the aorta, and it is closed otherwise. In this way, it is not necessary
to prescribe the open or closed state of the valve from global considerations because the
exact start-to-end times of systole and diastole can be difficult to precisely define under
pathological conditions. This AV model includes an explicit influence of the MV on the AV
dynamics; on the other hand, the MV dynamics depends directly on the flow and by the
fact that the AV is open or closed.

2.2. Fluid Dynamics

The numerical method is extensively described and validated in a dedicated method-
ological study [15], where the valvular dynamics are compared with those obtained by
complete fluid–structure interaction [16]. In this section, we briefly recall the main points of
the method used. The intraventricular fluid dynamics is evaluated by numerical solution
of the Navier–Stokes and continuity equations

∂v
∂t

+ v · ∇v = −∇p + ν∇2v, (2)

∇ · v = 0; (3)

where v(t, x) is the velocity vector field, p(t, x) is the kinematic pressure field and ν is
the kinematic viscosity (assumed 0.04 cm2/s). The solution is achieved by the immersed
boundary method in a bi-periodic Cartesian domain as described in previous studies,
e.g., [10,15,21,24,27]. Time advancement is achieved using a fractional step method as
follows. Velocity is preliminarily advanced in time by the Navier–Stokes Equation (2)
using a low-storage, third-order Runge–Kutta explicit scheme. Boundary conditions are
set on the moving immersed boundaries that comprise the ventricle geometry and valve
surface inside a bi-periodic domain with a grid made 128 × 128 × 160 points and 8192 time
steps per heartbeat. Then, the velocity is corrected by an irrotational field that projects the
preliminary solution on a divergence-free vector field space.
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2.3. Kinetic Energy and Dissipation Rate

The kinetic energy (KE) of the blood reflects a fundamental component of the work
performed by the LV [28,29], and it is computed as follows

KE(t) =
ρ

2

∫
V

v2 dV, (4)

where V(t) is the ventricular volume, v the modulus of the velocity, and ρ the blood density.
The KE dissipation rate

D(t) = ρν
∫

V
Sij

∂νi
∂xj

dV, (5)

where S is the rate of deformation tensor and ν is the kinematic viscosity, provides a
measure of the efficiency of blood flow and it is an indicator of ventricular function [25,30].

2.4. Vorticity and Vortex Formation Time

The formation of the vortex and its orientation inside the ventricle influence the correct
course of the flow throughout the cardiac cycle until its expulsion [27,31]. The computation
of the average vorticity inside the ventricle is

ω =
1
V

∫
V
|ω| dV, (6)

where ω(t) = ∇ × v is the vorticity vector field. The vortex formation time (VFT) is
an important parameter used for the evaluation of LV function [32]; this dimensionless
parameter is computed as

VFT =
∫

TE

D−1 vMVO dt, (7)

where vMVO is the mean velocity across the MV orifice [10,21], D the average diameter,
and TE is the diastolic E-wave period. This parameter measures the quality of the vortex
formation process and optimal LV filling. Recent studies [33] have shown that the optimal
range is 3 ≤ VFT ≤ 4, although a value up to 5 is also considered acceptable [34]. High
values are associated with the breakdown of the forming vortex and turbulence, while
lower values correspond to suboptimal propulsion [35].

2.5. Hemodynamic Forces

The forces exchanged between blood and the surrounding tissues have special rele-
vance in ventricular function as they are found to have a role in modulating the response
to morphogenesis in embryonic hearts [36], as well as to pathologies in adult hearts [37].
In particular, the hemodynamic force (HDF) is the global force exchanged that is made by
the integral of the intraventricular pressure gradient and to a minor extent, of the viscous
forces. HDF depends on the intraventricular flow and may help reveal a sub-optimal
cardiac function when contraction or relaxation does not develop in association with a
proper intraventricular pressure gradient. The HDF vector is obtained by the integral over
the volume of the force density that is on the right side of (2) and can be computed by

F(t) = ρ
∫

V(t)

[
∂v
∂t

+ v · ∇v
]

dV. (8)

The volume integral in Equation (8) can also be rewritten, with the aid of the Gauss
theorem, as a surface integral and evaluated from the dynamics of the endocardial boundary
and the exchange of momentum across the mitral and aortic orifices [38]. This gives a
formula equivalent to (8) that reads

F(t) = ρ
∫

S(t)

[
x
(

∂v
∂t

· n
)
+ v(v · n)

]
dS, (9)
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where S(t) is the closed surface bounding the volume, comprising both the tissue and the
valvular orifices, and n is the outward unit normal vector. The second expression (8) is
often simpler to compute numerically and is used here.

3. Results

Fluid Dynamics, Vortex Formation, and Energetic Analysis

Before discussing the results, in Figure 2, we show the dV/dt curve obtained from
the LV geometry superimposed to the diastolic flow rate measured across the MV in the
two limit cases: LV with MV (ε = 0.6 and ε = −0.6, respectively). The three curves are not
distinguishable as they overlap almost exactly; this preliminary validation test is aimed to
confirm the consistency of the numerical results and the equality of the amount of blood
entering for all cases to verify that any variation is imputable to the MV asymmetry only.

Figure 2. Velocity field of MV with (a) ε = 0.6, (b) ε = −0.6; flow field of MV with (c) ε = 0.6,
(d) ε = −0.6 as indicated in the box of the dV/dt curve (e); the normal vorticity is shown in red to
blue color from −200 units to 200 units (cm/s) equal to the inverse of the heartbeat period and the
velocity vector (every 4 grid points) on a longitudinal plane crossing the center of MV of the aorta
and the LV apex; the three-dimensional gray surfaces represent one isosurface of the λ2 parameter.

In Figure 2a,b, we show the directionality of the diastolic flow inside the ventricle in
the two limit cases (ε = 0.6 and ε = −0.6), and a more complete view of the intermediate
points is shown in a previous study [10]. As seen in the previously mentioned study, a valve
with positive asymmetry directs the flow to a physiological rotation with its extreme shape
shown in Figure 2a; in the case of negative asymmetry, the direction of the flow is reversed
and increases its velocity, which maintains the reversed flow direction during the entire
filling phase. A very positive asymmetry highlights the predominance of the posterior
leaflet with a very deviating flow toward the posterior wall; as we approach a more balanced
direction between the two leaflets, the flow takes a more regular and physiological direction,
while negative asymmetry reverses the flow direction and makes the valve behave as if
it were reversed. This demonstrates qualitatively how the leaflet’s asymmetry affects the
direction of the flow. In Figure 2c we show the formation and direction of the vortex
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ring in case with ε = 0.6. Compared with an ideal healthy case [10,15], the vortex is
inclined and directed towards the left wall of the LV similarly to various pathological valve
cases [10,21,23]. Instead, in Figure 2d, the flow is inverted (ε = −0.6), the vortex breaks very
early, and the vorticity increases due to the generation of turbulence inside the LV.

This point is supported by the result shown in Figure 3a reporting the ωEpeak values
that are higher for ε− and decrease as the curve transits towards ε+. This is also confirmed
by the VFT values in Figure 3b. These results indicate how effectively an MV with ε−
actually affects the ability of the LV to redirect flow to the systolic outlet. In fact, the VFT
reaches more physical values when it approaches the direction of positive asymmetry,
showing how good ventricular functionality corresponds to the correct distribution of the
flow. Taking into account the values published in a previous work [22] and the existing
literature [32–35], we identify an optimal range between ε = 0.15 and 0.6, considering that
after ε = 0.4, fairly stationary values are found.

Figure 3. Graphical representation of (a) diastolic peak values of mean vorticity and (b) VFT values
for different valve asymmetry.

The same behavior is found in terms of KEEpeak , as shown in Figure 4a. The KEEpeak is
higher for ε = −0.6 and the distribution of these values for each level of valve asymmetry
follows the same trend as in Figure 3. This production of KE is due to the higher mitral
jet velocity in line with the orientation of the flow and the vorticity produced. When the
valve asymmetry is reduced, the quantity of KEEpeak decreases until it returns to a more
physiological value. Furthermore, in this case, there is an evident transition between
positive and negative asymmetry. From the literature, it is easy to identify a normal range
from the experimental observation performed with 4D Flow MR; this value is between
6 ± 0.6 for control cases [28] and 8.9 ± 1.1 for athletes [39]. The energy dissipation rate,
DEpeak , also follows the same trend and is in line with the existing values [22,40]; eventually
from these results, the optimal values for valve asymmetry appear above ε = 0.2.
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Figure 4. Graphical representation of (a) diastolic peak values of KE and (b) D for different valve
asymmetry.

Figure 5a–c report the three components of the hemodynamic force during the E-
wave curve. In panel (a), it can be seen how the sign of the x-component, Fx, where the
x-axis is the lateral direction along the ideal line connecting the two valves, is largely
affected by the asymmetry level until changing its sign. This is due to the different lengths
and positions that the leaflets assume in different asymmetrical conditions. To confirm
this, there is literature that describes the E-wave of the HDFs in the direction of x as
positive [37,38,41–43], thus again marking the choice of ε− in a valve repair or design as
non-physiologic. In the transverse direction, Fy values are similar and do not vary much;
this is desirable since this direction is not directly affected by the valve movement. In the
longitudinal direction, on the other hand, an increase in Fz can be noted in the ε− cases.
This increase is not very high from the point of view of normality [44], but it may become
relevant when it is a result of a valve repair or replacement. The ε+ values are in line
with the literature for healthy cases, while the ε− values are in line with the literature for
healthy athletes and therefore require a trained heart [41,43]. A patient who undergoes
cardiac surgery usually has a heart with very variable EF and dysfunctions dictated by
valvular pathology. Repairing or replacing an MV with a non-physiological degree of
valve asymmetry could induce higher stress to the ventricular tissues. This is important
because the presence of the physiological components HDF support the correct redirection
of blood from the MV towards the LV outflow tract, which does not occur in ε− cases.
These results are summarized in Figure 5d–f, where the absolute values at peak systole
are reported for different valve asymmetry. values This figure is useful for identifying the
range and the optimal asymmetry value. In |FxEpeak |, there is a minimum point at ε = 0.3,
which corresponds to the asymmetry level that produces no lateral thrust, therefore, where
the intraventricular pressure gradient is directed—on average—from the base to the apex.
The transversal force |FyEpeak | presents a variation in values that is minimal, irrelevant,
and fairly constant for all ε+ cases, while the longitudinal force, |FzEpeak |, displays a rapid
decrease up to ε = 0.3 and then moves into a stationary phase.
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Figure 5. Graphical representation of HDF E-wave curve for different valve asymmetry of (a) Fx,
(b) Fy and (c) Fz projections. Green color represent the SD of ε+, blue line ε = 0, red color the SD of
ε− and black line the mean value for ε+ and ε−, respectively. Graphical representation of the HDF
peak for different valve asymmetries of (d) |Fx|, (e) |Fx| and (f) |Fx| projections. Green represents
ε+, blue represents ε = 0, and red represents ε−.

4. Conclusions

The evaluation and determination of the proper valve asymmetry are crucial in car-
diac surgery because a correct repair or a correct valve implant substantially increases
the possibility of a long and better quality of life [45,46]. In a previous study on valve
asymmetry [10], it was shown that an MV with negative asymmetry behaves like a turned
MV. Those results show how the different asymmetrical positions of the leaflets and their
length influence the flow direction inside the LV, affecting the amount of blood regurgitated
in the atrium during systole in healthy, pathological, and repaired MV conditions. The
ideal range is identified therein between ε = 0.2 and ε = 0.4 based on a global assessment
of the ventricular washout. With this study, we extend the analysis including energetic
and dynamic assessments using a different healthy LV. After verifying and confirming
that the ventricular flow trend is equal to the previous study, we also verified the vortex
formation and the vorticity generated in different situations of valve asymmetry. The
results show how an ε− produces inverted flow and a vortex breaking early, generating
high vorticity, which, associated with VFT, indicates the ventricular difficulty of directing
the flow towards the systole, such that the ventricle is more stressed and fatigued. Con-
sequently, high and non-physiological values of KE and D also confirm this and decrease
with the reduction in ε until more natural values of ε+ are obtained. The HDFs further
highlighted this gap between ε− and ε+ in an evident way in the Fx component, where
the length and position of the two leaflets influence the orientation of the diastolic curve,
making it non-physiological for ε− and positive for ε+. In a more detailed way, the Fz
component shows that the negative asymmetry values produce values similar to each
other and comparable to an athlete’s heart that does not find comfort, as occurs in patients
who undergo these surgical practices in non-optimal conditions even with a preserved EF.
The diastolic function of the LV plays an important role in cardiac physiology. Lusitropia,
the ability of cardiac myocytes to relax, is affected by both biochemical events within the
myocyte and biomechanical events in the LV [47]. An abnormal diastolic function has
been recognized in many cardiovascular diseases and is associated with worse outcomes,
including total mortality and hospitalizations for heart failure [48]. These results show
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how ε− negatively influences diastolic function, indicating that MV repair or replacement
in this direction has to be avoided. The optimal range of ε is between 0.2 and 0.4 with
an optimum point of about 0.3. Despite the modeling limitations of the analysis, optimal
values of asymmetry agree well with physiological values of asymmetry, as visible from the
length of MV leaflets in healthy subjects [49]. The computational model used here should
not be confused with an FSI model, primarily because it does include the elastic proper-
ties of the tissues that would be required to solve the momentum equation for the solid
elements. Therefore, it describes an asymptotic behavior only and was designed to provide
a relatively straightforward application of LV flow simulations in clinical conditions when
the mechanical properties of tissue are not available or cannot be extrapolated. To reach
this objective, the model includes a number of simplifications that correspond to a series
of limitations that are described in a previous methodological article [15]. However, this
model is already used and validated in the clinical setting for the evaluation of various
physiological and pathological conditions [10,15,21–23,50]. Our results provide an indica-
tion before surgery, which can make it clearer to surgeons which type of valve asymmetry
to use for a correct valve repair/replacement and above all what to expect in the case of a
different solution. This could be a great help in preventing disastrous consequences and
in directing the patient towards an optimal clinical condition. A limitation of this study
is the lack of extension to cases with pathological LV; this is a deliberate choice to make a
first complete valvular analysis. This evaluation will be extended to several LV cases in a
subsequent study.
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Abstract: Fluid/fluid interfaces are ubiquitous in science and technology, and hence, the under-
standing of their properties presents a paramount importance for developing a broad range of soft
interface dominated materials, but also for the elucidation of different problems with biological
and medical relevance. However, the highly dynamic character of fluid/fluid interfaces makes
shedding light on fundamental features guiding the performance of the interfaces very complicated.
Therefore, the study of fluid/fluid interfaces cannot be limited to an equilibrium perspective, as
there exists an undeniable necessity to face the study of the deformation and flow of these systems
under the application of mechanical stresses, i.e., their interfacial rheology. This is a multidisciplinary
challenge that has been evolving fast in recent years, and there is currently available a broad range
of experimental and theoretical methodologies providing accurate information of the response of
fluid/fluid interfaces under the application of mechanical stresses, mainly dilational and shear. This
review focused on providing an updated perspective on the study of the response of fluid/fluid
interfaces to dilational stresses; to open up new avenues that enable the exploitation of interfacial
dilational rheology and to shed light on different problems in the interest of science and technology.

Keywords: area; compression; dilation; expansion; interfaces; rheology; surface excess

1. Introduction

Complex fluid/fluid interfaces are ubiquitous, be it in nature, industry, or academia.
For instance, they can be exploited to provide structure to different products, including
foam and emulsion-based items. Moreover, they are present in a broad range of chemical
processes, including liquid-liquid extraction, froth flotation, wastewater treatment, or ter-
tiary oil recovery. On the other hand, fluid/fluid interfaces can be exploited as platforms
for nanostructured material fabrication, or as models to elucidate problems with biological
and medical relevance [1–5]. Therefore, it may be expected that most of the fluid/fluid
interfaces with technological or scientific relevance involve systems operating under dy-
namic conditions, and hence, the understanding of the dynamic and mechanical properties
of interfacial layers laden at fluid/fluid interfaces is of paramount importance for living
systems, foods, personal care products, and the environment [6].

The rheological performance of fluid/fluid interfaces can be modulated almost at will,
to design soft interface-dominated materials for specific applications [7,8]. This makes
understanding the deformation and flow of fluid/fluid interfaces under the application of
mechanical stresses, i.e., the rheological properties of the interface, a matter of key impor-
tance for science and technology [9,10]. For instance, the understanding and control of the
rheological response of fluid/fluid interfaces plays a very important role in the control of
emulsion stability [11,12], foamability and foam stability (resistance against drainage) [13],
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lung surfactant performance [4,14], aerosol formation [15], tear film stability [16,17], en-
capsulation process [18], coffee ring formation [19], tertiary oil recovery [20], or remote
sensing [21,22].

The description of the rheological response of 2D systems (or more correctly, quasi-2D
systems), i.e., layers of surface-active compounds confined at fluid/fluid interfaces, is not
always trivial. In fact, interfacial rheology relies on the confinement of the applied deforma-
tion within the xy plane, which requires to introduce specific modification to the classical
rheological formalism used for the study of the mechanical response of bulk systems. This is
of a paramount importance because, in most of the cases, the small thickness of fluid/fluid
interfaces makes it difficult to decouple the pure interfacial rheological response from the
contribution associated with the response of the adjacent bulk phases to the applied stress.
Therefore, it is necessary to develop suitable experimental and theoretical methodologies
enabling such decoupling [23,24]. This is significant because the combination of experimen-
tal and theoretical tools may significantly contribute to the impact of the stress boundary
conditions on the behavior and breakup of thin films [25].

Despite the importance of the mechanical properties of fluid/fluid interfaces for many
technological and scientific purposes, there is a broad range of features that yet remains
unclear, and deserving of additional research effort. Therefore, this review is focused on
providing an updated perspective of the current understanding of the performance of
fluid/fluid interfaces under the application of dilational stresses. This is important because
dilational rheology plays an essential role in a broad range of scientific and technological
features, ranging from the formation and stability of foams to the respiratory cycle, and
from tertiary oil recovery to demulsification processes [20,26–28]. However, the study of
the performance of interfaces under dilational stresses is particularly challenging because
it requires one to deconvolute the changes in thermodynamic properties associated with
the changes in the interfacial concentration and the intrinsic compressional viscoelasticity,
which is not always easy [29]. To effectively conduct a study of the dilational rheology of
fluid/fluid interfaces, the first part of the review is focused on the description of the physi-
cal bases governing the response of fluid/fluid interfaces upon the application of different
mechanical stresses. Then, the most fundamental aspects of the interfacial behavior under
the application of a dilational stress are discussed. Afterward, a discussion of the available
experimental and theoretical tools for studying the dilational rheology of fluid/fluid inter-
faces is included. Finally, the effect of the non-linear character of the dilational deformation
on the rheological response of fluid/fluid interfaces is briefly discussed.

2. Interfacial Rheology: Foundations

The adsorption of soluble species to the interface of a bulk solution, or the direct
deposition of insoluble surface-active species at the interface, leads to the formation of the
so-called Gibb and Langmuir monolayers, respectively. The formation of an interfacial
layer at the fluid/fluid interface leads to the decrease of the interfacial tension, γ, in
relation to that corresponding to the bare interface, γ0. However, the use of the interfacial
tension only provides an equilibrium description of the true picture of the interface and,
as previously mentioned, this is not enough in most practical applications of fluid/fluid
interfaces. In fact, fluid/fluid interfaces with technological and scientific relevance are
commonly subject to external mechanical perturbations that result in a modification of
their size or shape [30]. The understanding of the response of fluid/fluid interfaces to
mechanical processes is essential, because even the simplest deformation processes can
yield to very complex responses, including multiple dynamic processes or deformation
mixing different interfacial modes [31].

The interfacial response against perturbations that modify the size of the interface,
without affecting its shape, can be defined in terms of the dilational elasticity and viscosity;
whereas, the modification of the interfacial shape without varying the dimensions of the in-
terface, i.e., at constant size, is described in terms of the shear elasticity and viscosity [30,32].
Moreover, under specific stress conditions, fluid/fluid interface can undergo out-of-plane
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deformations. These out-of-plane deformation modes lead to a displacement of the whole
monolayer, or parts of the monolayer, in relation to the equilibrium position of the interfa-
cial plane (splaying or bending), resulting in the emergence of different phenomena, e.g.,
buckling of the monolayer, expulsion of material into the bulk, or the formation of multi-
layers [33]. These transverse out-of-plane deformations are restored under the action of
interfacial-tension-driven forces, whereas in-plane modes (shear and dilation) are directly
restored by interfacial tension gradients associated with the interfacial concentration [24,34].
The interfacial tension gradients can emerge due to different factors, including the interfa-
cial convection of adsorbed species or the heterogeneity of the adsorbed layers. However,
the origin of the interfacial tension gradients occurring during interfacial rheology ex-
periments is found in the externally triggered modification of properties, e.g., interfacial
concentration, directly affecting the interfacial tension. This drives the Marangoni flows
trying to restore interfacial equilibrium [31]. Figure 1 shows a sketch representing the
in-plane and out-of-plane deformation modes that can occur in fluid/fluid interfaces under
the action of mechanical stresses.

Figure 1. Sketch of different surface relaxation modes: (a) in-plane-modes (dilation and shear) and
(b) out-of-plane modes (bending and splaying). Reprinted from Maestro and Guzmán [34], with
permission under Open access CC BY 4.0 license, https://creativecommons.org/licenses/by/4.0/
(accessed 22 August 2022).

It should be noted that, in most of cases, the out-of-plane deformations can be rigor-
ously modeled, whereas the in-plane modes have been commonly analyzed for long time
using very simplified models that may be considered generalizations of the bulk behavior
to the interface, which neglects some subtle aspects of the interfacial rheology, e.g., the
existence of a finite dilational modulus, which is not considered in bulk models, designed
for incompressible fluids or the role of the curvature modes [10,35]. Moreover, in most
cases, the different rheological modes are coupled, and hence, the determination of the
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real (storage modulus) and imaginary (loss modulus) components of the corresponding
viscoelastic moduli is not always trivial. This can be understood considering that the
origin on the interfacial property gradient can arise from different processes; e.g., interfacial
tension gradients can be originated by a gradient of the interfacial concentration, or by the
convective transport that generates a concentration gradient. This makes it difficult, in
some cases, to independently obtain the different modes of the rheological response from
a single experiment [31]. However, this coupling is of interest in specific cases, e.g., for
obtaining dilational moduli from experiments involving capillary waves [36]. Moreover,
the coupling between the interfacial response and the mechanical properties of the adjacent
fluids or their structure may introduce additional problems for a proper evaluation of the
viscoelastic moduli [23].

The rheological analysis of interfaces requires the use of a continuum mechanical
approach. This assumes that bulk flows can be described in terms of the conservation
equations for mass, momentum, and energy, and specific coupling conditions. This leads to
the definition of the interface as a 2D dividing surface located between two adjacent fluid
phases (“sharp interface” framework) [10]. Considering the above picture, it is possible
to define the Cauchy interfacial stress tensor σs as a combination of two contributions: (i)
the interfacial energy, which accounts for the energetic cost associated with the presence
of a fluid interface of a fixed area, and provides information of any process changing the
interfacial concentration and affecting the interfacial tension, and (ii) the Marangoni stresses
emerging as a result of spatial interfacial tension gradients [9,10]. Thus, it is possible to
define the interfacial stress tensor according to the following expression.

σs = γ(Γ, T)δs + Tij, (1)

where δs is the surface unit tensor, and γ is the interfacial tension, which is a state variable
depending on the interfacial concentration and temperature. The second contribution to
the interfacial stress tensor is the anisotropic tensor or interfacial extra stress (Tij), and
accounts for the energy required to deform the interface [1,37]. The surface stress tensor
can be considered as a 2D second-order symmetric and tangential tensor embedded in 3D
space [9].

Considering a purely viscous fluid/fluid interface, it is possible to provide a definition
of the anisotropic tensor in terms of the Boussinesq–Scriven model [9]:

Tv = [(κs − ηs)∇s·v]δs + 2ηsDs, (2)

where κs and ηs are the interfacial dilational and shear viscosities, respectively. ∇s is the
interfacial gradient operator, v is the velocity vector on the interface, and Ds is the interfacial
rate-of-deformation tension [38]. In general, the Boussinesq–Scriven model is used for
defining the rheological properties of fluid/fluid interfaces due to the viscoelastic character
of most fluid/fluid interfaces [39].

In the case of a purely elastic fluid/fluid interface, it is possible to define the anisotropic
tensor by a linear elastic model, according to the following expression (only valid for
infinitely small deformations) [10]:

Te = [(Es − Gs)∇s·u]δs + 2GsUs, (3)

with Es and Gs being the interfacial dilational and shear elasticity, respectively; u the dis-
placement vector on the interface; and Us the interfacial infinitesimal strain tensor. It should
be noted that bending stresses can also play a very important role under specific conditions,
e.g., densely packed particle-laden fluid/fluid interfaces. However, for simplicity they are
commonly not included [9].
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The description of elastic interfaces against larger stresses requires the introduction of
a finite strain tensor. This is possible by separating the dilational and shear contributions in
an interfacial elastic stress described by the following expression [40]:

Te =
Es

Y
ln(Y)δs +

Gs

Y

(
Bs

Y
− 1

2
tr
(

Bs

Y

)
δs

)
, (4)

where the deformations are defined by the left-Cauchy-Green interfacial strain tensor Bs,
and Y is the relative area deformation, i.e., the ratio between the instantaneous interfacial
area and the interfacial area in a reference state. The combination of the two limit cases, i.e.,
the Newtonian and the quasi-linear neo-Hookean, is essential for a realistic description of
real fluid/fluid interfaces, where viscoelasticity is of a paramount importance [9].

3. Interfacial Dilational Rheology: General Aspects

The determination of the response of interfaces against dilation offers different ex-
perimental and theoretical challenges that are not present when the properties against
shear stresses are evaluated. In fact, the application of isotropic dilational stresses to the
interface, without any shear influence, is very difficult [9,41]. Moreover, the change in
the interfacial area is associated with the change in the interfacial concentration of the
surface-active molecules existing at the interface, which yields a change in the state vari-
able, i.e., the interfacial tension. On the other hand, when soluble surface active molecules
are concerned, the modification of the interfacial concentration may be accompanied by
exchange processes involving the transference of molecules between the interface and the
bulk, which introduces, in many cases, additional relaxation processes to the problem [9].
In fact, the ability of surface molecules and active soluble molecules to diffuse (diffusivity)
from the adjacent fluid phases to the interface, and from the interface into the adjacent fluid
phases as result of the modification of the interfacial area, can originate surface tension
changes which are counteracted by the Marangoni flows, aimed toward re-establishing the
interfacial equilibrium.

The application of an infinitesimal uniaxial mechanical perturbation to a fluid/fluid
interface leads to a small change of the surface area, δA, which induces a time dependence
modification of the interfacial pressure by a δΠ quantity (with Π being the interfacial
pressure defined as Π = γ − γ12, and γ12 the interfacial tension of a fluid/fluid interface
loaded with surface active molecules). This change strongly emerges dependent on the
timescale probed during the specific experiment, and can be approximated according to
the following expression:

δΠ(t) = Π(t)− Π0 =
∂Π
∂t

δA = −E(t)u(t), (5)

where u(t) and E(t) account for the temporal dependence of the compressional strain and
dilational viscoelastic modulus, respectively, and Π(t) and Π0 account for the temporal
evolution of the interfacial pressure and the initial interfacial pressure, respectively. Thus,
it possible to define the time evolution of the viscoelastic dilational modulus in terms of
the following expression:

E(t) = −A0

(
∂Π
∂A

)
T

, (6)

and that corresponding to the compressional strain as:

u(t) =
δA
A0

. (7)

From an experimental perspective, the dilational rheology measurements rely on the
application of a time-dependent stress to the interface, and the evaluation of the time-
dependent change of the interfacial tension. These type of measurements allow for the
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evaluation of the ratio between the temporal evolution of the interfacial tension and the
time-dependent stress, which is defined as the complex dilational viscoelastic modulus [42]:

E(ω) =
F{Δγ(t)}

F{Δ ln(A(t))} , (8)

where F is the Fourier transform function, Δγ(t) is the time evolution of the interfacial
tension, A(t) is the time evolution surface area, and ω is the angular frequency. The complex
modulus can be split into its real (Es) and imaginary components (Ev), which correspond
to the storage and loss moduli, respectively [43,44]. Assuming an oscillatory deformation
of small amplitude and a fixed frequency ω, it is possible to define the complex dilational
viscoelastic modulus as complex magnitude according to the following expression:

E(ω) = Es(ω) + iEv(ω) = Es(ω) + iωκs, (9)

with the loss moduli allowing one to calculate the dilational viscosity κs = Ev/ω, and
the storage modulus Es defining the dilational elasticity. It should be stressed that the
constitutive viscoelastic parameters Es(ω) and ωκs are functions of ω. Therefore, they
provide information about the time-dependent response of the system subject to small per-
turbations of the interfacial area, playing a central role in probing the interfacial dynamics
of adsorbed films.

The definition of the viscoelastic interfacial dilational modulus accounts for a change
in the applied stress as a result of the adsorption/desorption state of the molecules and
the interfacial structure. Thus, interfacial area changes can promote different relaxation
processes, with different characteristic timescales, that are associated with the different
mechanisms involved in reestablishing the equilibrium state of the interface after the
dilational deformation [45–47].

For fluid layers under equilibrium condition, or when the layers are disturbed follow-
ing a quasi-static path ( ω → 0), the interfacial dilation forces an instantaneous modification
of the interfacial concentration (δA/A = −δΓ/Γ), and it is possible to define a limit value
for the dynamic modulus at zero frequency. This is the so-called static modulus, which is
given by the Gibbs elasticity ε0, defined as:

Es(ω → 0) → ε0 = Γ
(

∂Π
∂Γ

)
eq

, (10)

Hence, this apparent elasticity can be considered a result of the deformation-induced
change in the interfacial concentration (Γ = 1/A), which in turn modifies the interfa-
cial tension. This magnitude can be obtained from the relative slope of the equilibrium
isotherm [30]. According to the above discussion, it is possible to define a dilational
viscosity at zero frequency in terms of the frequency independent Newtonian limit:

κs(ω → 0) = κ0, (11)

Figure 2 summarizes the typical material response expected for a viscoelastic layer
undergoing a single relaxation process as a result of the dilational deformation.
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Figure 2. Sketch of the typical material response for a viscoelastic layer undergoing a single relaxation
process upon the application of a dilational stress. Adapted from Mendoza et al. [30], with permission
from Elsevier, Copyright (2014).

4. Rheological Tools for Evaluating the Response of Planar Fluid/Fluid Interfaces
against Dilation

The last few years have been very fruitful in terms of the development of suitable
tools to measure the response of planar fluid/fluid interfaces against dilational deforma-
tion [48,49]. Unfortunately, many of such tools provide information of the response against
deformations within the linear response regime, which does not provide, in most cases, a
suitable representation of some of the phenomena occurring in complex fluid/fluid inter-
faces, which are of technological and scientific interest [6,9]. However, these tools provide
important information regarding the relaxation mechanism driving the re-equilibration of
the interface upon dilational deformations. In fact, the experimental and theoretical tools
of the interfacial dilational rheology provide information about the exchange mechanisms
of material between the interface and the adjacent fluid phases, as well as the different
reorientation and exchange process occurring between molecules confined within the
interface [50–52]. This section focuses on the description of the most fundamental method-
ological features of the determination of the dilational response of planar fluid/fluid
interfaces. However, it should be stressed that even the description of the mechanical
response of curved interfaces is not discussed in this work. The understanding of the
rheological response of curved interfaces has gained importance due to their recognized
role in terms of its technological importance, including the stability of emulsions and
foams, or coffee-ring formations upon the evaporation of liquid droplets deposited on solid
substrates [19,53,54].

4.1. Experimental Tools

The characterization of the dilational response of interfacial layers requires careful
selection of the most suitable technique, as well as appropriate experimental conditions.
Several experimental techniques can be applied for evaluating the response of fluid/fluid
interfaces to dilational stresses, offering different sensitivities and measurement ranges [50].
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This section provides a brief overview of the types of experiments and experimental
techniques that are currently available for studying fluid/fluid interfaces subjected to
dilational deformations.

4.1.1. Experimental Techniques

This section includes a brief overview of the most common methodologies used for
evaluating the dilational properties of fluid/fluid interfaces. A more detailed discussion
about the experimental techniques used for this purpose may be found in references [9,50].

Drop/Bubble Shape Tensiometers

The use of drop/bubble shape tensiometers on the evaluation of the dilational vis-
coelasticity of fluid/fluid interfaces relies on the determination of the time evolution of
the interfacial tension during harmonic changes of the area at a fixed frequency. This
information can be extracted from an analysis of the changes occurring in the drop/bubble
shape profile during the process, and is achieved by applying the Young–Laplace equation.
This approach provides a framework to calculate the interfacial tension, by assuming
that the contributions associated with shear are negligible. Therefore, the analysis of
the drop/bubble shape profile can be only exploited for rheological simple interfaces
characterized by an isotropic and constant stress along the whole interface.

(κ1 + κ2)γ = p − ρgz, (12)

where κ1 and κ2 are the curvature radius of the drop/bubble, p is the pressure difference
across the interface, g is the gravitational acceleration, ρ the fluid density, and z the vertical
coordinate. It is worth noting that the deformation of drops/bubbles cannot be always
assumed as purely radial. Moreover, the drop/bubble requires an instantaneous mechanical
equilibrium for a correct evaluation of the interfacial tension, which limits the applicability
of drop/bubble shape tensiometers for the evaluation of the interfacial dilational modulus
for deformation frequencies in the range 10−3–0.2 Hz [55].

It is worth mentioning that the evaluation of the interfacial tension by applying
Equation (12) is not always straightforward, especially because it is often difficult to
obtain accurate values of the curvature radius. This can be commonly solved, considering
that drops/bubbles undergo an axisymmetric deformation under the application of an
external force. This condition is not fulfilled when densely coated drops and bubbles are
considered [56,57].

In general, the use of drop/bubble shape tensiometers for evaluating the dilational
properties assumes the existence of a single isotropic and constant tension for the entire
interface. This allows for the application of the generalized Young–Laplace equation [58]:

κφσφ + κsσs = p − ρgz, (13)

with κφ and σφ defining the principal curvature and stress in circumferential direction,
respectively, whereas κs and σs account for the principal curvature and stress in merid-
ional direction, respectively. The interfacial stresses are magnitudes that depend on the
interfacial deformation; hence, its evaluation should be locally performed because the
deformation may not be constant within the whole drop/bubble. On the other hand, when
the deformations are non-isotropic, the principal interfacial stresses become equal [9].

Capillary Pressure Tensiometers

An alternative approach for evaluating the dilational rheological properties of fluid/fluid
interfaces relies on the determination of the capillary pressure inside droplets or bubbles,
together with their dimensions. In this case, the determination of the interfacial tension
does not require a strong gravitational deformation of the drops/bubbles, which was
necessary with conventional shape tensiometers [59]. This allows a reduction in the size
of the drops/bubbles used (in the range 20–200 μm). Thus, it is possible to reduce cap-
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illary and inertial relaxation times, enabling an extension of the probed frequencies up
to 100 Hz [45]. Moreover, this approach reduces the role of the shear contributions on
the deformation, making acceptable the isotropic assumption for the resolution of the
Young–Laplace equation to determine the interfacial tension [9,10,60].

In recent years, methods using oscillating drops/bubbles have been further developed
to extend the frequency range that can be probed. One of the most popular alternatives for
this purpose is to design a device consisting of a closed cell, a pressure sensor, and a piezo
translator, which monitors the time evolution of the capillary pressure during the experi-
ments. Thus, it is possible to determine the rheological properties of fluid/fluid interfaces
in the 0.5–450 Hz range. Moreover, this type of device allows for the measurement of the
rheological properties of interfaces formed for two fluids with very similar densities [56,61].

Langmuir Troughs

The Langmuir trough is a common experimental setup used for studies dealing with
the dilational properties of fluid/fluid interfaces [62,63]. It consists of two barriers, arranged
parallel at opposite extremes of the trough, that can be used to compress or expand the area
available for the interface under controlled conditions. During the compression/expansion
of the interface, the interfacial tension is monitored by using a surface balance fitted with a
contact probe; generally, a Wilhelmy plate. This reduces the interfacial stress for specific
deformation conditions [4].

It is worth mentioning that the interfacial stress measured in the Langmuir trough,
as a result of a uniaxial deformation, in many cases, includes both dilational and shear
components [64]. Moreover, special care is required for interpreting the rheological prop-
erties of solid-like layers obtained using Langmuir troughs, because in many cases the
deformation field cannot be defined as homogeneous, and hence, it depends on the specific
geometric constraints of the used trough [40,65]. The inability to apply a purely isotropic
stress, which leads to rheological responses containing dilational and shear contributions,
is a very important problem when interfaces with a complex microstructure are analyzed.
The application of anisotropic stresses to such complex systems results in a rheological
response characterized by the change of the area and the shape under compression [10,40].
This can be solved by introducing several modifications to the Langmuir trough to ensure
a purely dilational deformation of fluid/fluid interfaces [40].

The most useful design of Langmuir trough to ensure a pure dilational deformation of
planar fluid/fluid interfaces is the proposed by Pepicelli et al. [40]. This relies on a radial
trough which is isotropically deformed by an elastic band held by twelve “fingers”. The
interfacial pressure is determined by using a Wilhelmy rod, ensuring radial symmetry. This
type of device allows for the application of isotropic deformation, avoiding any shear effect
on the interfacial deformation [66].

Wave Damping

A traditional approach exploited for the evaluation of the mechanical response of
fluid/fluid interfaces against high frequency dilational deformations relies on the study of
the damping of capillary waves. These can be generated upon the application of mechani-
cally, thermally, or electrically driven perturbations of the interface, when their propagation
happens along the fluid/fluid interface. During their propagation, the waves are dampened
by the action of surface forces that try to restore the flatness of the interface [22,67–71].

The study of the rheological properties by the evaluation of the dampening of surface
waves allows the study of information of the dilational properties of fluid/fluid inter-
faces up to frequencies of about 100 kHz [72]. Information about dilation properties of
fluid/fluid interfaces can be also obtained from the longitudinal wave dampening. These
are propagated mainly by interfacial tension gradients, allowing one to probe the dilational
rheology of fluid/fluid interfaces at lower values of deformation frequencies than when
capillary waves are used [50,73–75].
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Despite the broad range of frequencies (0.1–105 Hz) that can be probed by the eval-
uation of the damping of waves generated at fluid/fluid interfaces, and the contactless
character of this type of technique, the interpretation of the data is not straightforward,
which limits their applicability [72,76]. Recently, Slavchov et al. [68] reviewed the most
fundamental aspects of capillary wave damping as a tool for evaluating the mechanical
response of fluid/fluid interfaces and other of its potential applications. Moreover, they an-
alyzed some recent theoretical developments on the use of capillary waves. Rajan [77] has
recently solved the problems associated with the use of the damping of interfacial waves
for the determination of the rheological properties of liquid/liquid interfaces, providing
results of the interfacial elasticity and viscosity of water/oil interfaces.

The use of Faraday waves can be an alternative for studying the properties of fluid/fluid
interfaces for systems with very low values of this property [78,79]. Henderson [80] used
the analysis of Faraday waves to evaluate the mechanical response of interfaces with mono-
layers of different insoluble molecules, and found that the effectiveness of wave damping
was enhanced as the interfacial packing of the interfacial film increased. Similar results
were found for monolayers of wheat storage proteins [81].

4.1.2. Experimental Methods

The experimental methods used for studying the dilational rheological response of
fluid/fluid interfaces rely on the mechanical perturbation of the interfacial area, and the
measurement of the response.

Stress Relaxation Experiments

Relaxation experiments of fluid/fluid interfaces can be performed by applying a sud-
den perturbation of a controllable parameter defining the equilibrium state of a monolayer
at a fluid/fluid interface, e.g., interfacial area, or interfacial concentration, among others.
This type of perturbation takes the system to an out-equilibrium situation, and hence,
the system undergoes a relaxation process to reestablish the equilibrium state [82]. Stress
relaxation experiments can be performed using Langmuir troughs or drop/bubble shape
tensiometers [83].

In a stress relaxation experiment, the time evolution of the interfacial tension γ(t) or
the interfacial pressure Π(t) are recorded, after a sudden change (compression or expansion)
of the interfacial area. This change of the interfacial area takes the interfacial pressure far
from its equilibrium value, inducing a change of the interfacial pressure ΔΠ that defines
the interfacial stress. This acts as a restoring force which tries to recover the equilibrium
state of the interface once the strain ceases [84].

Creep Experiments

Creep experiments are commonly performed by using Langmuir troughs. In this
type of experiment, an equilibrated interface characterized by its equilibrium interfacial
pressure Π0 is suddenly compressed, i.e., as fast as possible, until it reaches a desired
interfacial pressure value; then, the surface pressure is constantly maintained by changing
the interfacial area. Thus, the excess of interfacial pressure is adjusted by considering the
area relaxation process, allowing one to define the creep compliance as [85]:

J(t) =
u(t)

σ
=

δA
A0

Π − Π0
. (14)

The creep compliance J(t) is a phenomenological function, providing information on
how the structure of the film resists the application of a controlled stress [85,86].

Oscillatory Area Experiments

Oscillatory area experiments rely on the application of a sinusoidal perturbation to
the interface, at a constant frequency ω, which is a profile described as u(t) = δA/A0 =
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(u0/2) exp(iωt). The deformation of drops or bubbles at low frequencies almost guaran-
tees a pure dilational deformation of the interface. However, for planar films studied in
Langmuir troughs, the in-plane shear components can appear coupled to the dilational
ones in both the applied strain and the response stress, which makes it difficult to extract
true information of the dilational viscoelastic moduli. This may also occur in relaxation
and creep experiments. It should be noted that the shear contributions present for films
at fluid/fluid interface values are smaller values than those obtained for the dilational
contributions, and hence, it can be neglected in oscillatory area experiments [30,87].

If the deformation allows the monolayer response within the linear regime to be
maintained, this will follow a sinusoidal function with the same frequency of the strain.

Π(t) = Π0 − σ(t), (15)

with σ(t) = σ0
2 exp(iω + φσ). φσ introduces a phase factor that includes the contribution

associated with any delay in the response, due to viscous contributions in the rheological
response of the interface. From oscillatory area experiments, within the linear regime, it is
possible to obtain the elastic modulus Es and the dilational viscosity κs

Es = Ecosφσ, (16)

and
ωκs = Esinφσ, (17)

with E = σ0
u0

.

Surface Waves Experiments

Interfacial rheology experiments using surface waves are possible following two
different strategies. The first takes advantage of the waves originated as a result of the
“natural” thermal fluctuations of the surface position, which can be explained in terms
of the second law of thermodynamics. The second strategy is based on the production
of “artificial” surface waves upon the application of external stimuli, e.g., electrical or
mechanical perturbations. Independently of the nature of the used waves, the features
of the fluctuations (amplitude, frequency, damping, etc.) can be related to the interfacial
rheological properties of the probed systems [88–90]. In fact, any displacement of the
fluid/fluid interface in relation to their flat level shape can be interpreted as an interfacial
motion guided by an external force, and restored as result of the viscoelastic properties of
the fluid phases and the interface itself [36,91].

One of the most common techniques based on the study of surface waves is the surface
quasi-elastic light scattering (SQELS) technique, which relies on the light scattered by
transverse surface waves. These provide a measurement of the dynamics associated with
the thermal induced roughness of the interface [36,91,92]. Thus, it is possible to evaluate the
interfacial dynamics under equilibrium conditions by observing the dynamics of thermal
fluctuations around the equilibrium state. These fluctuations present a very small length
scale (a few Angstrom), allowing one to probe the interfacial rheology in the linear regime.
SQELS experiments can be based on the determination of the heterodyne autocorrelation
function or the power spectrum of the scattered light P(ω).

P(q, ω ) =
kBT
πω

[
iωη(m + q) + Eq2

D(q, ω)

]
, (18)

where kB is the Boltzmann constant and η the subphase viscosity. q and m define the
wave-vector and the diffraction order, respectively. E is the complex dilational modu-
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lus (compression+shear), and D(ω) the surface wave dispersion relation defined by the
following expression [36]:

D(q, ω) =
[

Eq2 + iω(m + q)
][

γq2 + iω(m + q)− ρω2

q

]
− [iωη(q − m)]2, (19)

with m =
√

q2 + iω
η . The dilational elasticity and viscosity can be determined by measur-

ing P(ω) and the interfacial tension. SQELS allows probing of the dilational viscoelastic
properties of interfaces in the frequency range 103–106 Hz [93].

A second example of experiments based on surface waves relies on the excitation
of surface waves with higher amplitudes than those obtained in SQELS experiments
(~1μm). This is possible under the application of an external physical stimulus, commonly
mechanical or electrical, as an excitation force. In general, electrical stimuli are preferred
to mechanical ones because they present a non-invasive character, allowing for an easier
experimental design [30].

Electrically excited surface waves are so-called electrocapillary waves (ECW), and
they can be evaluated by measuring the spatial profile of the generated waves by using
spatially resolved laser reflectometry. Thus, it is possible to obtain a spatial profile that
follows a damped wave function, defined as:

A = cos
(

2πx
λ

+ φ

)
exp(−βx), (20)

where λ accounts for the capillary wavelength and β for the spatial damping constant
of the capillary wave oscillations. φ defines a phase term obtained as a function of the
excitation frequency. ECW experiments are required to perform measurements at different
frequencies to obtain the group velocity, and to transform the results obtained from the
space domain to the time domain. Then, by combining the frequency of the independently
measured interfacial tension and the values of λ and β obtained in the fitting of the spatial
profile of the damped wave, it is possible to calculate the interfacial dilational elasticity and
viscosity by solving numerically the dispersion equation for each measured frequency (in
the range 20–103 Hz) [30].

It should be noted that the above wave damping considers a sharp fluid/fluid in-
terface, which is coated by a thin monomolecular film. However, the situation becomes
more complicated when thick films are adsorbed at the fluid/fluid interface. A detailed
discussion of the role of the interface thickness on the ability of fluid/fluid interfaces for
dampening waves can be found in the literature [94–96].

4.2. Theoretical Models

The use of suitable theoretical models for analyzing the frequency dependence of the
dilational viscoelastic properties of fluid/fluid interfaces can shed light on the relaxation
mechanism involved in the reestablishment of the interfacial equilibrium after a dilational
deformation [45,97]. The Lucassen-Van den Tempel model assumes that the adsorption-
desorption equilibrium occurs freely, and no adsorption barriers are present; thus, the
material exchange between the bulk and the interface is governed by diffusion [45,98,99].
This is only possible assuming that the formation of an interfacial layer of the interface
requires the equilibrium between the interface and the species existing in the bulk, i.e.,
the formation of a soluble or Gibbs monolayers. Thus, it is possible to define the complex
viscoelastic modulus according to the following relationship:

E =
1 + ξ + iξ

1 + 2ξ + 2ξ2 ε0, (21)
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where ξ =
√

ωD
ω , with ωD = D

(
dc
dΓ

)2

eq
being the characteristic frequency of the exchange

process, D the diffusion coefficient, and c the bulk concentration. From the above definition,
it is possible to assume two limits. In the first limit, ω → ∞ and ωD → 0 , which results in
Es → ε0 and Ev → ωκs → 0 , and the monolayer behaves as an insoluble one (Langmuir
monolayer), i.e., there are no possibilities for material exchange between the interface and
the adjacent fluid phases. The opposite situation occurs when ω → 0 and ωD → ∞ , which
results in Es, ωκs → 0 , leading to a situation where the resistance to the compression is
negligible, and the equilibrium between the bulk and the interface can occur during the
compression process. For those cases in which the frequency assumes intermediate values,
the condition 0 < Es < ε0 and ωκs �= 0 is fulfilled.

The above model assumes that the interfacial concentration only changes as a re-
sult of the exchange of molecules between the fluid/fluid interface and the adjacent
bulk phases (Gibb monolayers). However, this is not possible when insoluble layers
are considered. In these cases, it can be only expected relaxation processes that are circum-
scribed to the fluid/fluid interface. This type of relaxation mechanism can also appear
in soluble monolayers. There are several possible interfacial tension relaxation processes
that can directly affect the interface upon a dilational deformation [100]. These corre-
spond to the internal reorganization of the adsorption layer, which can occur according
to different mechanisms, e.g., phase transitions, molecular reorientation, and molecular
folding/unfolding [17,45,101–103].

The existence of a relaxation mechanism involving only the interface requires intro-
ducing a generic thermodynamic variable X, which gives a description of the advancement
of the relaxation process. This new variable, combined with the interfacial tension and
the interfacial concentration, permits a description of the state of the interface. Thus, it is
possible to define a state equation for the interface according to the following expression:

γ = γ(Γ, X). (22)

Assuming a relaxation process following a first order kinetics, it is possible to define
the kinetic equation as:

dX
dt

= −k
(
X − Xeq

)
, (23)

where k is the characteristic constant of the process and Xeq is the value of the thermo-
dynamic variable under equilibrium conditions [45,104]. The above framework allows a
description of the dependence of the viscoelastic modulus in terms of the frequency as:

E = ε0 +
N

∑
j=1

(
ε j − ε j−1

)1 + iλj

1 + λ2
j

, (24)

where λj = ωj/ω and ωj provide information about the characteristic frequency of the j-th
relaxation processes, and ε j and ε j−1 are thermodynamic parameters related to the limit
elasticities. For insoluble systems, ε0 stands for the limit elasticity when the deformation
tends to zero.

The frequency dependence of the imaginary part of the dilational viscoelastic mod-
ulus is characterized by peaks, with their maximum corresponding to the characteristic
frequency of the involved relaxation processes. The maxima of the peaks in the imaginary
part correspond to the inflection points in the real part curves. Figure 3 represents the
frequency dependence of the real or imaginary parts of the dilational viscoelastic modulus
for fluid/fluid interfaces presenting different relaxation processes.
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Figure 3. Sketch of the typical dependences of the (a) real and (b) imaginary parts of the viscoelastic
modulus for fluid/fluid interfaces presenting different relaxation processes. The dashed lines corre-
spond to a system presenting a relaxation process characterized by a relaxation process defined in
terms of the Lucassen-van der Tempel model, and the continuous lines represent the typical behavior
of a fluid/fluid interfaces where a relaxation process affecting only the interface is coupled to a
Lucassen-van der Tempel-like relaxation. Reprinted from Liggieri et al. [104], with permission from
Royal Society of Chemistry, Copyright (2011).

For systems presenting several relaxation processes, it is possible to superimpose
them following a linear combination scheme to fabricate an expression for the frequency
dependence of the dilational viscoelastic modulus containing an arbitrary number of
processes [45,46,103,105].

5. Evaluation of the Mechanical Relaxation Spectrum from Dilational Rheology
Experiments

One of the main challenges when dilational rheology experiments are performed is
related to the evaluation of the mechanical response of fluid/fluid interfaces in a broad
range of frequencies. Unfortunately, this requires a combination of techniques, which
introduces two main issues: (i) the accessibility to the different techniques is not always
easy; and (ii) some devices cannot be used for studying both soluble and insoluble interfacial
layers. Figure 4 presents a summary of some of the experimental techniques accessible for
evaluating the dilational response of fluid/fluid interfaces, as well as the frequency range
in which they can be used.
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Figure 4. Summary of some of the most extended methodologies for evaluating the dilational
response of fluid/fluid interface, together with the accessible frequency ranges for such techniques.

Presently, there has been only one study concerning the whole relaxation spectrum
in the frequency range 10−3–103 Hz [104]. This required combining an oscillatory drop
tensiometer, a capillary pressure tensiometer, and an electrocapillary wave instrument to ac-
cess the whole frequency range. Moreover, there are several studies where the combination
of different techniques has provided information about the mechanical relaxation spectrum,
and information regarding the real and imaginary part of the viscoelastic modulus values
from the whole frequency range is not available [106–108].

Assuming the difficulties associated with performing dilational rheology experiments
in a broad frequency range, it is necessary to adapt classical approaches of conventional
rheology to the study of fluid/fluid interfaces. One example of these approaches is to
adapt the widely used time-temperature superposition principle for extending the range
of frequencies accessible for the analysis of data [109]. The applicability of this type of
superposition is limited to the thermo-rheologically simple, which are characterized by the
presence of a single relaxation mechanism over the whole temperature and frequency range
explored. Despite the proved effectiveness of the superposition principle for describing
the bulk rheology of different systems, its application to the study of fluid/fluid interfaces
is recent [52]. Bae et al. [52] proposed to describe dilational interfacial rheology by using
a concentration-frequency superposition methodology. Thus, it was possible to expand
the explored frequency range, even though the accessible data were acquired in a limited
region. The concentration-frequency superposition can be defined in terms of the following
set of expressions:

Es

(
ω, cre f

)
= βεEs[α(c)ω, c], (25)

and
Ev(ω,) = βεEv[α(c)ω, c], (26)

where Es

(
ω, cre f

)
and Ev

(
ω, cre f

)
represent the dilational elastic and viscous moduli, re-

spectively, as were obtained at the experimental frequency for a fixed value of the bulk
concentration cre f which is fixed at reference, and Es[α(c)ω, c] and Ev[α(c)ω, c] correspond
to the elastic and viscous moduli, respectively, at a certain bulk concentration c, in which
the deformation frequency has been re-scaled by a shift factor α enabling the superposition
of the real and imaginary parts of the viscoelastic dilational modulus. βε is a shifting
factor for ensuring the perfect overlapping between the data. When βε → 0 , the frequency-
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concentration superposition method provides information related to the concentration
dependence of the rheological response, which provides the basis for enlarging the fre-
quency window accessible for the experiments. Figure 5 shows, for the sake of example, the
superposition of the curves corresponding to the dilational elasticity modulus and the loss
tangent (tanδ = Ev/Es) for mixtures of chitosan and an anionic surfactant with increasing
surfactant concentrations. The introduction of the shift factors to the rheological results
allows for the establishment of master curves for the elastic modulus and the loss tangent.

Figure 5. Re-scaled frequency dependences of the elastic modulus and loss tangent for chitosan-
anionic surfactant mixtures with different surfactant concentrations (symbols of different color
represents the set of data for solutions with different concentrations) and a fixed chitosan concentra-
tion of 2 g/L (pH 4.5 and ionic strength 120 mM NaCl). The symbols are the experimental results, and
the solid lines represent the best fit of the experimental curves to a model, including a Lucassen-Van
der Tempel-like relaxation process and a relaxation process affecting the interface. Adapted from
Akanno et al. [51], with permission from Royal Society of Chemistry, Copyright (2020).

6. Non-Linear Dilational Interfacial Rheology

The above discussion has so far dealt with the dilational response of fluid/fluid
interfaces to small amplitude deformations. However, the situation significantly changes
when the amplitude of the deformation is large enough to push the response of interfacial
films far from the linear regime. It should be noted that, in some systems, the onset
in the region of a non-linear response is reached even with deformations of very small
amplitude [110–112].

The analysis of the non-linear response in dilational rheology is not straightforward,
mainly due to the difficulties associated with providing a suitable definition of the applied
deformation [113]. This may be understood by considering axisymmetric drop shape
analysis as an example. In many cases, this type of experiment relies on inhomogeneous
deformation, which depends on the position [114]. This is a very critical issue because the
stretching can be very different depending on the interface area, even though this is not
considered in most cases for data analysis. Moreover, the interference of time-dependent
and deformation-dependent rheological properties also complicates the analysis of non-
linear behavior of fluid/fluid interfaces.
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The study of the Lissajous curves is very useful for evaluating the properties of
fluid/fluid interfaces under non-linear conditions. The asymmetry of the Lissajous plots
results in four different contributions: two defining the extension part of the cycle (the
dilational moduli at minimum EEM

s and large EEL
s extension), and two providing infor-

mation of the compression part of the cycle (the dilational moduli at minimum ECM
s and

large ECL
s compression) [113,115]. Figure 6 shows a schematic representation of the stress

decomposition to obtain the four contributions.

Figure 6. Definition of minimum and large-strain moduli. (a) Minimum and large deformation
dilational moduli in extension. (b) Minimum and large deformation dilational moduli in compression.
Adapted from Sagis and Fischer [113], with permission from Elsevier, Copyright (2014).

Using the abovementioned four contributions, it is possible to define two parameters
defining the non-linearity; the first defining the compression part of the cycle:

Sc =
ECL

s − ECM
s

ECL
s

, (27)

and the second accounting for the extension part of the cycle:

SE =
EEL

s − EEM
s

EEL
s

. (28)

The evaluation of the S factors as a function of the applied strain provides quantitative
information on the non-linearity of the interface [113].

As an alternative to the graphical analysis in terms of a stress decomposition, the
non-linear rheological response of interfaces can also be analyzed by representing the stress
by using Fourier series, making use of the Fourier-transform rheology [111]. This relies on
defining the stress response in terms of a Fourier expansion:

σ(t) = σ0 exp(iωt) + σ1 exp(2iωt) + σ2 exp(3iωt) + . . . , (29)

where σ0 defines the amplitude of the stress response defined with respect to the initial
interfacial pressure, and σ1, σ2, etc., correspond to the amplitudes of the harmonic terms of
the non-linear response. The use of Fourier transform rheology for modelling the non-linear
dilational response of fluid/fluid interfaces presents an important limitation associated
with the definition of the stress as an expansion around a zero-interface deformation rate,
which can provide information only for systems with small deviations from the linearity. A
very useful methodology for quantifying the non-linearity of the rheological response of
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fluid/fluid interfaces is by introducing the concept of the Total Harmonic Distortion (THD),
defined as [116]:

THD =

√
∑k>0 σk

σ0
, (30)

where σk corresponds to the amplitudes of the harmonic terms of the non-linear response.
The above definition of the THD indicates that when this parameter assumes a null value,
the systems present a linear rheological response, while larger values of this parameter show
the emergence of a non-linear response of the fluid/fluid interface. Another alternative to
decomposing the stress response in non-linear systems is the Volterra series [117].

7. Concluding Remarks

The study of the dilational properties of fluid/fluid interfaces has been extensively
developed in recent years due to their recognized importance in different features of science
and technology. In this review, an updated overview of the currently available theoreti-
cal and experimental strategies for evaluation of the dilational properties of fluid/fluid
interfaces has been presented.

The more recently available knowledge on the interpretation of rheological data is
based on constitutive models. However, a more detailed understanding of the rheological
properties of fluid/fluid interfaces is required to introduce information about structural
features, allowing the establishment of a link between the mechanical response of the
interface and its structure. Therefore, it is necessary to advance the development of more
suitable models, enabling a better description of the dilational rheology of fluid/fluid
interfaces. Unfortunately, there are several challenges to overcome with regard to the
evaluation of the mechanical performance of fluid/fluid interfaces, with the separation of
the bulk effects and the response of the interface being one of the most important issues
identified in the experimental and theoretical development of the study of the dilational
rheology of fluid/fluid interfaces.

Author Contributions: The manuscript was written with the input at all authors. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded in part by MICINN under Grant PID2019-106557GB-C21 and by
E.U. on the framework of the European Innovative Training Network—Marie Sklodowska-Curie
Action Nano Paint (Grant Agreement 955612).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: This manuscript has not contributed to the generation of any new data.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Forth, J.; Kim, P.Y.; Xie, G.; Liu, X.; Helms, B.A.; Russell, T.P. Building Reconfigurable Devices Using Complex Liquid–Fluid
Interfaces. Adv. Mater. 2019, 31, 1806370. [CrossRef] [PubMed]

2. Guzmán, E. Current Perspective on the Study of Liquid–Fluid Interfaces: From Fundamentals to Innovative Applications.
Coatings 2022, 12, 841. [CrossRef]

3. Guzmán, E.; Martínez-Pedrero, F.; Calero, C.; Maestro, A.; Ortega, F.; Rubio, R.G. A broad perspective to particle-laden fluid
interfaces systems: From chemically homogeneous particles to active colloids. Adv. Colloids Interface Sci. 2022, 302, 102620.
[CrossRef] [PubMed]

4. Guzmán, E. Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. Coatings 2022,
12, 277. [CrossRef]

5. Guzmán, E.; Santini, E. Lung surfactant-particles at fluid interfaces for toxicity assessments. Curr. Opin. Colloid Interface Sci. 2019,
39, 24–39. [CrossRef]

407



Fluids 2022, 7, 335

6. Klein, C.O.; Theodoratou, A.; Rühs, P.A.; Jonas, U.; Loppinet, B.; Wilhelm, M.; Fischer, P.; Vermant, J.; Vlassopoulos, D. Interfacial
Fourier transform shear rheometry of complex fluid interfaces. Rheol. Acta 2019, 58, 29–45. [CrossRef]

7. Masuda, T.; Takai, M. Design of biointerfaces composed of soft materials using controlled radical polymerizations. J. Mater. Chem.
B 2022, 10, 1473–1485. [CrossRef]

8. Sagis, L.M.C.; Liu, B.; Li, Y.; Essers, J.; Yang, J.; Moghimikheirabadi, A.; Hinderink, E.; Berton-Carabin, C.; Schroen, K. Dynamic
heterogeneity in complex interfaces of soft interface-dominated materials. Sci. Rep. 2019, 9, 2938. [CrossRef]

9. Jaensson, N.; Vermant, J. Tensiometry and rheology of complex interfaces. Curr. Opin. Colloid Interface Sci. 2018, 37, 136–150.
[CrossRef]

10. Jaensson, N.O.; Anderson, P.D.; Vermant, J. Computational interfacial rheology. J. Non-Newton. Fluid Mech. 2021, 290, 104507.
[CrossRef]

11. Wei, Y.; Xie, Y.; Cai, Z.; Guo, Y.; Zhang, H. Interfacial rheology, emulsifying property and emulsion stability of glyceryl
monooleate-modified corn fiber gum. Food Chem. 2021, 343, 128416. [CrossRef]

12. Botti, T.C.; Hutin, A.; Quintella, E.; Carvalho, M.S. Effect of interfacial rheology on drop coalescence in water–oil emulsion. Soft
Matter 2022, 18, 1423–1434. [CrossRef]

13. Wang, H.; Wei, X.; Du, Y.; Wang, D. Experimental investigation on the dilatational interfacial rheology of dust-suppressing foam
and its effect on foam performance. Process. Saf. Environ. Prot. 2019, 123, 351–357. [CrossRef]

14. Thai, L.P.A.; Mousseau, F.; Oikonomou, E.K.; Berret, J.F. On the rheology of pulmonary surfactant: Effects of concentration and
consequences for the surfactant replacement therapy. Colloids Surf. B 2019, 178, 337–345. [CrossRef]

15. Haslbeck, K.; Schwarz, K.; Hohlfeld, J.M.; Seume, J.R.; Koch, W. Submicron droplet formation in the human lung. J. Aerosol Sci.
2010, 41, 429–438. [CrossRef]

16. Svitova, T.F.; Lin, M.C. Tear lipids interfacial rheology: Effect of lysozyme and lens care solutions. Optom. Vis. Sci. 2010, 87, 10–20.
[CrossRef]

17. Rubio, R.G.; Guzmán, E.; Ortega, F.; Liggieri, L. Monolayers of Cholesterol and Cholesteryl Stearate at the Water/Vapor Interface:
A Physico-Chemical Study of Components of the Meibum Layer. Colloids Interfaces 2021, 5, 30. [CrossRef]

18. Zhang, H.; Lamnawar, K.; Maazouz, A. Fundamental studies of interfacial rheology at multilayered model polymers for
coextrusion process. AIP Conf. Proc. 2015, 1664, 100008. [CrossRef]

19. Perrin, L.; Akanno, A.; Guzman, E.; Ortega, F.; Rubio, R.G. Pattern Formation upon Evaporation of Sessile Droplets of Polyelec-
trolyte/Surfactant Mixtures on Silicon Wafers. Int. J. Mol. Sci. 2021, 22, 7953. [CrossRef]

20. Sun, H.-Q.; Zhang, L.; Li, Z.-Q.; Zhang, L.; Luo, L.; Zhao, S. Interfacial dilational rheology related to enhance oil recovery. Soft
Matter 2011, 7, 7601–7611. [CrossRef]

21. Gade, M.; Byfield, V.; Ermakov, S.; Lavrova, O.; Mitnik, L. Slicks as Indicators for Marine Processes. Oceanography 2013, 26,
138–149. [CrossRef]

22. Ermakov, S.A.; Khazanov, G.E. Resonance damping of gravity–capillary waves on water covered with a visco-elastic film of finite
thickness: A reappraisal. Phys. Fluids 2022, 34, 092107. [CrossRef]

23. Sánchez-Puga, P.; Tajuelo, J.; Pastor, J.M.; Rubio, M.A. Flow field-based data analysis in interfacial shear rheometry. Adv. Colloids
Interface Sci. 2021, 288, 102332. [CrossRef]

24. Guzmán, E.; Tajuelo, J.; Pastor, J.M.; Rubio, M.Á.; Ortega, F.; Rubio, R.G. Shear rheology of fluid interfaces: Closing the gap
between macro- and micro-rheology. Curr. Opin. Colloid Interface Sci. 2018, 37, 33–48. [CrossRef]

25. Wong, W.-H.B.; Hulsen, M.A.; Anderson, P.D. A numerical model for the development of the morphology of disperse blends in
complex flow. Rheol. Acta 2019, 58, 79–95. [CrossRef]

26. Nilsson, M.A.; Kulkarni, R.; Gerberich, L.; Hammond, R.; Singh, R.; Baumhoff, E.; Rothstein, J.P. Effect of fluid rheology on
enhanced oil recovery in a microfluidic sandstone device. J. Non-Newton. Fluid Mech. 2013, 202, 112–119. [CrossRef]

27. Perez, P.L.; Zaragoza, J.N.; Patel, N.K.; Dion, M.A. Impact of Asphaltene Stabilizers on the Elasticity of a Crude Oil–Water
Interface and Its Correlation to Demulsification under Desalting Conditions. Energy Fuels 2022, 36, 275–289. [CrossRef]

28. Guzmán, E.; Santini, E.; Ferrari, M.; Liggieri, L.; Ravera, F. Evaluating the Impact of Hydrophobic Silicon Dioxide in the Interfacial
Properties of Lung Surfactant Films. ACS Environ. Sci. Technol. 2022, 56, 7308–7318. [CrossRef] [PubMed]

29. Nagel, M.; Tervoort, T.A.; Vermant, J. From drop-shape analysis to stress-fitting elastometry. Adv. Colloids Interface Sci. 2017, 247,
33–51. [CrossRef] [PubMed]

30. Mendoza, A.J.; Guzmán, E.; Martínez-Pedrero, F.; Ritacco, H.; Rubio, R.G.; Ortega, F.; Starov, V.M.; Miller, R. Particle laden fluid
interfaces: Dynamics and interfacial rheology. Adv. Colloids Interface Sci. 2014, 206, 303–319. [CrossRef] [PubMed]

31. Manikantan, H.; Squires, T.M. Surfactant dynamics: Hidden variables controlling fluid flows. J. Fluid Mech. 2020, 892, P1.
[CrossRef]

32. Krotov, V.V. Basics of Interfacial rheology. In Interfacial Rheology; Miller, R., Liggieri, L., Eds.; Brill: Leiden, The Netherlands, 2009;
pp. 1–37.

33. Garbin, V. Collapse mechanisms and extreme deformation of particle-laden interfaces. Curr. Opin. Colloid Interface Sci. 2019, 39,
202–211. [CrossRef]

34. Maestro, A.; Guzmán, E. Colloids at Fluid Interfaces. Processes 2019, 7, 942. [CrossRef]
35. Nitschke, I.; Voigt, A. Observer-invariant time derivatives on moving surfaces. J. Geom. Phys. 2022, 173, 104428. [CrossRef]
36. Langevin, D. Light scattering by liquid surfaces, new developments. Adv. Colloids Interface Sci. 2021, 289, 102368. [CrossRef]

408



Fluids 2022, 7, 335

37. Fuller, G.G.; Vermant, J. Complex Fluid-Fluid Interfaces: Rheology and Structure. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 519–543.
[CrossRef]

38. Stone, H.A.; Leal, L.G. The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 1990, 220, 161–186. [CrossRef]
39. De Kinkelder, E.; Sagis, L.; Aland, S. A numerical method for the simulation of viscoelastic fluid surfaces. J. Comput. Phys. 2021,

440, 110413. [CrossRef]
40. Pepicelli, M.; Verwijlen, T.; Tervoort, T.; Vermant, J. Characterization and modelling of Langmuir interfaces with finite elasticity.

Soft Matter 2017, 13, 5977–5990. [CrossRef]
41. Sagis, L. Dynamic surface tension of complex fluid-fluid interfaces: A useful concept, or not? Eur. Phys. J. Spec. Top. 2013, 222,

39–46. [CrossRef]
42. Reichert, M.D.; Alvarez, N.J.; Brooks, C.F.; Grillet, A.M.; Mondy, L.A.; Anna, S.L.; Walker, L.M. The importance of experimental

design on measurement of dynamic interfacial tension and interfacial rheology in diffusion-limited surfactant systems. Colloids
Surf. A 2015, 467, 135–142. [CrossRef]

43. Miller, R.; Ferri, J.; Javadi, A.; Krägel, J.; Mucic, N.; Wüstneck, R. Rheology of interfacial layers. Colloid Polym. Sci. 2010, 288,
937–950. [CrossRef]

44. Karbaschi, M.; Lotfi, M.; Krägel, J.; Javadi, A.; Bastani, D.; Miller, R. Rheology of interfacial layers. Curr. Opin. Colloid Interface Sci.
2014, 19, 514–519. [CrossRef]

45. Ravera, F.; Ferrari, M.; Santini, E.; Liggieri, L. Influence of surface processes on the dilational visco-elasticity of surfactant solutions.
Adv. Colloids Interface Sci. 2005, 117, 75–100. [CrossRef]

46. Guzmán, E.; Liggieri, L.; Santini, E.; Ferrari, M.; Ravera, F. Influence of silicananoparticles on dilational rheology of DPPC–palmitic
acid Langmuir monolayers. Soft Matter 2012, 8, 3938–3948. [CrossRef]

47. Guzmán, E.; Liggieri, L.; Santini, E.; Ferrari, M.; Ravera, F. Mixed DPPC–cholesterol Langmuir monolayers in presence of
hydrophilic silica nanoparticles. Colloids Surf. B 2015, 105, 284–293. [CrossRef]

48. Omari, Y.E.; Yousfi, M.; Duchet-Rumeau, J.; Maazouz, A. Recent Advances in the Interfacial Shear and Dilational Rheology of
Polymer Systems: From Fundamentals to Applications. Polymers 2022, 14, 2844. [CrossRef]

49. Ravera, F.; Miller, R.; Zuo, Y.Y.; Noskov, B.A.; Bykov, A.G.; Kovalchuk, V.I.; Loglio, G.; Javadi, A.; Liggieri, L. Methods and
models to investigate the physicochemical functionality of pulmonary surfactant. Curr. Opin. Colloid Interface Sci. 2021, 55, 101467.
[CrossRef]

50. Firouzi, M.; Kovalchuk, V.I.; Loglio, G.; Miller, R. Salt effects on the dilational viscoelasticity of surfactant adsorption layers. Curr.
Opin. Colloid Interface Sci. 2022, 57, 101538. [CrossRef]

51. Akanno, A.; Guzmán, E.; Ortega, F.; Rubio, R.G. Behavior of the water/vapor interface of chitosan solutions with an anionic
surfactant: Effect of polymer–surfactant interactions. Phys. Chem. Chem. Phys. 2020, 22, 23360–23373. [CrossRef]

52. Bae, J.-E.; Jung, J.B.; Kim, K.; Lee, S.-M.; Kang, N.-G. A study on time-concentration superposition of dilatational modulus and
foaming behavior of sodium alkyl sulfate. J. Colloid Interface Sci. 2019, 55, 704–716. [CrossRef]

53. Suja, V.C.; Rodríguez-Hakim, M.; Tajuelo, J.; Fuller, G.G. Single bubble and drop techniques for characterizing foams and
emulsions. Adv. Colloids Interface Sci. 2020, 286, 102295. [CrossRef]

54. Akanno, A.; Perrin, L.; Guzmán, E.; Llamas, S.; Starov, V.M.; Ortega, F.; Rubio, R.G.; Velarde, M.G. Evaporation of Sessile Droplets
of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. Colloids Interfaces 2021, 5, 12. [CrossRef]

55. Noskov, B.A. Dilational surface rheology of polymer and polymer/surfactant solutions. Curr. Opin. Colloid Interface Sci. 2010, 15,
229–236. [CrossRef]

56. Javadi, A.; Krägel, J.; Makievski, A.V.; Kovalchuk, V.I.; Kovalchuk, N.M.; Mucic, N.; Loglio, G.; Pandolfini, P.; Karbaschi, M.;
Miller, R. Fast dynamic interfacial tension measurements and dilational rheology of interfacial layers by using the capillary
pressure technique. Colloids Surf. A 2012, 407, 159–168. [CrossRef]

57. Saad, S.; Neumann, A. Axisymmetric drop shape analysis (ADSA): An outline. Adv. Colloids Interface Sci. 2016, 238, 62–87.
[CrossRef]

58. Danov, K.; Stanimirova, R.; Kralchevsky, P.; Marinova, K.; Alexandrov, N.; Stoyanov, S.; Blijdenstein, T.; Pelan, E. Capillary
meniscus dynamometry—method for determining the surface tension of drops and bubbles with isotropic and anisotropic surface
stress distributions. J. Colloid Interface Sci. 2015, 440, 168–178. [CrossRef]

59. Ravera, F.; Loglio, G.; Kovalchuk, V.I. Interfacial dilational rheology by oscillating bubble/drop methods. Curr. Opin. Colloid
Interface Sci. 2010, 15, 217–228. [CrossRef]

60. Kotula, A.P.; Anna, S.L. Regular perturbation analysis of small amplitude oscillatory dilatation of an interface in a capillary
pressure tensiometer. J. Rheol. 2014, 59, 85–117. [CrossRef]

61. Kovalchuk, V.I.; Krägel, J.; Makievski, A.V.; Loglio, G.; Ravera, F.; Liggieri, L.; Miller, R. Frequency characteristics of amplitude
and phase of oscillating bubble systems in a closed measuring cell. J. Colloid Interface Sci. 2002, 252, 433–442. [CrossRef]

62. Guzmán, E.; Santini, E.; Ferrari, M.; Liggieri, L.; Ravera, F. Evaluation of the impact of carbonaceous particles in the mechanical
performance of lipid Langmuir monolayers. Colloids Surf. A 2022, 634, 127974. [CrossRef]

63. Guzmán, E.; Santini, E.; Ferrari, M.; Liggieri, L.; Ravera, F. Interaction of Particles with Langmuir Monolayers of 1,2-Dipalmitoyl-
Sn-Glycero-3-Phosphocholine: A Matter of Chemistry? Coatings 2020, 10, 469. [CrossRef]

64. Petkov, J.; Gurkov, T.; Campbell, B.; Borwankar, R. Dilatational and shear elasticity of gel-like protein layers on air/water interface.
Langmuir 2000, 16, 3703–3711. [CrossRef]

409



Fluids 2022, 7, 335

65. Vora, S.; Bognet, B.; Patanwala, H.; Young, C.; Chang, S.; Daux, V.; Ma, A. Global strain field mapping of a particle-laden interface
using digital image correlation. J. Colloid Interface Sci. 2018, 509, 94–101. [CrossRef]

66. Alicke, A.; Simon, S.; Sjöblom, J.; Vermant, J. Assessing the interfacial activity of insoluble asphaltene layers: Interfacial rheology
versus interfacial tension. Langmuir 2020, 36, 14942–14959. [CrossRef]

67. Duncan, J.H.; Waxman, A.M.; Tulin, M.P. The dynamics of waves at the interface between a viscoelastic coating and a fluid flow. J.
Fluid Mech. 1985, 158, 177–197. [CrossRef]

68. Slavchov, R.I.; Peychev, B.; Ismail, A.S. Characterization of capillary waves: A review and a new optical method. Phys. Fluids
2021, 33, 101303. [CrossRef]

69. Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Guo, J. Damping of surface waves due to crude oil/oil emulsion films on water. Mar.
Pollut. Bull. 2019, 146, 206–214. [CrossRef]

70. Ermakov, S.A. Damping of gravity-capillary waves on water surface covered with a visco-elastic film of finite thickness. Izv.
Atmos. Ocean. Phys. 2003, 39, 624–628.

71. Ermakov, S.A.; Kijashko, S.V. Laboratory study of the damping of parametric ripples due to surfactant films. In Marine Surface
Films. Chemical Characteristics, Influence on Air-Sea Interactions and Remote Sensing; Gade, M., Hühnerfuss, H., Korenowski, G.M.,
Eds.; Springer: Berlin, Germany, 2006; pp. 113–128.

72. Langevin, D. Rheology of adsorbed surfactant monolayers at fluid surfaces. Annu. Rev. Fluid Mech. 2014, 46, 47–65. [CrossRef]
73. Liu, X.; Duncan, J.H.; Korenowski, G.M.; Kelly, J.S. A laboratory study of longitudinal waves in surfactant films in a water wave

tank. J. Geophys. Res. Oceans 2007, 122, C06005. [CrossRef]
74. Rajan, G.K. Dissipation of interfacial Marangoni waves and their resonance with capillary-gravity waves. Int. J. Eng. Sci. 2020,

154, 103340. [CrossRef]
75. Rajan, G.K. Solutions of a comprehensive dispersion relation for waves at the elastic interface of two viscous fluids. Eur. J. Mech.

B Fluids 2021, 89, 241–258. [CrossRef]
76. Derkach, S.R.; Krägel, J.; Miller, R. Methods of measuring rheological properties of interfacial layers (Experimental methods of 2D

rheology). Colloid J. 2009, 71, 1–17. [CrossRef]
77. Rajan, G.K. Damping rate measurements and predictions for gravity waves in an air–oil–water system. Phys. Fluids 2022, 34,

022113. [CrossRef]
78. Lau, Y.M.; Westerweel, J.; Van De Water, W. Using Faraday Waves to Measure Interfacial Tension. Langmuir 2020, 36, 5872–5879.

[CrossRef]
79. Kharbedia, M.; Caselli, N.; Herráez-Aguilar, D.; López-Menéndez, H.; Enciso, E.; Santiago, J.A.; Monroy, F. Moulding hydro-

dynamic 2D-crystals upon parametric Faraday waves in shear-functionalized water surfaces. Nat. Commun. 2021, 12, 1130.
[CrossRef]

80. Henderson, D.M. Effects of surfactants on Faraday-wave dynamics. J. Fluid Mech. 1998, 365, 89–107. [CrossRef]
81. Henderson, D.M.; Larsson, K.; Rao, Y.K. A study of wheat storage protein monolayers by Faraday wave damping. Langmuir 1991,

7, 2731–2736. [CrossRef]
82. Monroy, F.; Ortega, F.; Rubio, R.G. Dilatational rheology of insoluble polymer monolayers: Poly(vinylacetate). Phys. Rev. E 1998,

58, 7629. [CrossRef]
83. Guzmán, E.; Ritacco, H.; Ortega, F.; Svitova, T.; Radke, C.J.; Rubio, R.G. Adsorption Kinetics and Mechanical Properties of

Ultrathin Polyelectrolyte Multilayers: Liquid-Supported versus Solid-Supported Films. J. Phys. Chem. B 2009, 113, 7128–7137.
[CrossRef]

84. Alexandrov, N.A.; Marinova, K.G.; Gurkov, T.D.; Danov, K.D.; Kralchevsky, P.A.; Stoyanov, S.D.; Blijdenstein, T.B.J.; Arnaudov,
L.N.; Pelan, E.G. Interfacial layers from the protein HFBII hydrophobin: Dynamic surface tension, dilatational elasticity and
relaxation times. J. Colloid Interface Sci. 2012, 376, 296–306. [CrossRef]

85. Hilles, H.; Monroy, F. Dilational creep compliance in Langmuir polymer films. Soft Matter 2011, 7, 7790–7796. [CrossRef]
86. Findley, W.N.; Lai, J.S.; Onaran, K. Creep and Relaxation of Nonlinear Viscoelastic Materials; Dover Publications, Inc.: New York, NY,

USA, 1976.
87. Ravera, F.; Liggieri, L.; Loglio, G. Dilational rheology of adsorbed layers by oscillating drops and bubbles. In Interfacial Rheology;

Miller, R., Liggieri, L., Eds.; Brill: Leiden, The Netherlands, 2009; pp. 138–173.
88. Lombardini, P.P.; Piazzese, F.; Cini, R. The Marangoni wave in ripples on an air-water interface covered by a spreading film. Il

Nuovo Cimento C 1982, 5, 256–263. [CrossRef]
89. Ghia, P.L.; Trivero, P. On the vibration modes of the air-water interface in the presence of surface films. Il Nuovo Cimento C 1988,

11, 305–315. [CrossRef]
90. Fiscella, B.; Lombardini, P.P.; Trivero, P.; Cini, R. Ripple damping on water surface covered by a spreading film: Theory and

experiment. Il Nuovo Cimento C 1985, 8, 491–500. [CrossRef]
91. Monroy, F.; Ortega, F.; Rubio, R.G.; Velarde, M.G. Surface rheology, equilibrium and dynamic features at interfaces, with emphasis

on efficient tools for probing polymer dynamics at interfaces. Adv. Colloids Interface Sci. 2007, 134–135, 175–189. [CrossRef]
92. Cicuta, P.; Hopkinson, I. Recent developments of surface light scattering as a tool for optical-rheology of polymer monolayers.

Colloids Surf. A 2004, 233, 97–107. [CrossRef]
93. Sutherland, G.; Halsne, T.; Rabault, J.; Jensen, A. The attenuation of monochromatic surface waves due to the presence of an

inextensible cover. Wave Motion 2017, 68, 88–96. [CrossRef]

410



Fluids 2022, 7, 335

94. Jenkins, A.D.; Jacobs, S.J. Wave damping by a thin layer of viscous fluid. J. Fluid Mech. 1997, 9, 1256. [CrossRef]
95. Monroy, F. Surface hydrodynamics of viscoelastic fluids and soft solids: Surfing bulk rheology on capillary and Rayleigh waves.

Adv. Colloid Interface Sci. 2017, 247, 4–22. [CrossRef]
96. Muñoz, M.G.; Monroy, F.; Hernández, P.; Ortega, F.; Rubio, R.G.; Langevin, D. Anomalous Damping of the Capillary Waves at the

Air−Water Interface of a Soluble Triblock Copolymer. Langmuir 2003, 19, 2147–2154. [CrossRef]
97. Baidakov, V.G.; Protsenko, S.P.; Bryukhanov, V.M. Relaxation processes at liquid-gas interfaces in one- and two-component

Lennard-Jones systems: Molecular dynamics simulation. Fluid Ph. Equilibria 2019, 481, 1–14. [CrossRef]
98. Lucassen, J.; Van Den Tempel, M. Dynamic measurements of dilational properties of a liquid interface. Chem. Eng. Sci. 1972, 27,

1283–1291. [CrossRef]
99. Van den Tempel, M.; Lucassen-Reynders, E. Relaxation processes at fluid interfaces. Adv. Colloid Interface Sci. 1983, 18, 281–301.

[CrossRef]
100. Liggieri, L.; Miller, R. Interfacial rheology—The response of two-dimensional layers on external perturbations. Curr. Opin. Colloid

Interface Sci. 2010, 15, 256–263. [CrossRef]
101. Muñoz-López, R.; Guzmán, E.; Velázquez, M.M.; Fernández-Peña, L.; Merchán, M.D.; Maestro, A.; Ortega, F.; Rubio, R.G. Influence

of Carbon Nanosheets on the Behavior of 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine Langmuir Monolayers. Processes 2020, 8,
94. [CrossRef]

102. Guzmán, E.; Fernández-Peña, L.; Akanno, A.; Llamas, S.; Ortega, F.; Rubio, R.G. Two Different Scenarios for the Equilibration of
Polycation—Anionic Solutions at Water–Vapor Interfaces. Coatings 2019, 9, 438. [CrossRef]

103. Llamas, S.; Guzmán, E.; Akanno, A.; Fernández-Peña, L.; Ortega, F.; Campbell, R.A.; Miller, R.; Rubio, R.G. Study of the
Liquid/Vapor Interfacial Properties of Concentrated Polyelectrolyte–Surfactant Mixtures Using Surface Tensiometry and Neutron
Reflectometry: Equilibrium, Adsorption Kinetics, and Dilational Rheology. J. Phys. Chem. C 2018, 122, 4419–4427. [CrossRef]

104. Liggieri, L.; Santini, E.; Guzmán, E.; Maestro, A.; Ravera, F. Wide-frequency dilational rheology investigation of mixed silica
nanoparticle–CTAB interfacial layers. Soft Matter 2011, 7, 7699–7709. [CrossRef]

105. Akanno, A.; Guzmán, E.; Fernández-Peña, L.; Llamas, S.; Ortega, F.; Rubio, R.G. Equilibration of a Polycation–Anionic Surfactant
Mixture at the Water/Vapor Interface. Langmuir 2018, 34, 7455–7464. [CrossRef] [PubMed]

106. Llamas, S.; Mendoza, A.J.; Guzmán, E.; Ortega, F.; Rubio, R.G. Salt effects on the air/solution interfacial properties of PEO-
containing copolymers: Equilibrium, adsorption kinetics and surface rheological behavior. J. Colloid Interface Sci. 2013, 400, 49–58.
[CrossRef] [PubMed]

107. Maestro, A.; Kotsmar, C.; Javadi, A.; Miller, R.; Ortega, F.; Rubio, R.G. Adsorption of β-Casein–Surfactant Mixed Layers at the
Air–Water Interface Evaluated by Interfacial Rheology. J. Phys. Chem. B 2012, 116, 4898–4907. [CrossRef] [PubMed]

108. Maestro, A.; Ortega, F.; Rubio, R.G.; Rubio, M.A.; Krägel, J.; Miller, R. Rheology of poly(methyl methacrylate) Langmuir
monolayers: Percolation transition to a soft glasslike system. J. Chem. Phys. 2011, 134, 104704. [CrossRef]

109. Riande, E.; Diaz-Calleja, R.; Prolongo, M.G.; Masegosa, R.; Salom, C. Polymer Viscoelasticity: Stress and Strain in Practice; CRC Press:
Boca Raton, FL, USA, 2000.

110. Hilles, H.; Maestro, A.; Monroy, F.; Ortega, F.; Rubio, R.G. Polymer monolayers with a small viscoelastic linear regime: Equilibrium
and rheology of poly(octadecyl acrylate) and poly(vinyl stearate). J. Chem. Phys. 2007, 126, 124904. [CrossRef]

111. Hilles, H.; Monroy, F.; Bonales, L.J.; Ortega, F.; Rubio, R.G. Fourier-transform rheology of polymer Langmuir monolayers:
Analysis of the non-linear and plastic behaviors. Adv. Colloid Interface Sci. 2006, 122, 67–77. [CrossRef]

112. Guzmán, E.; Santini, E.; Ferrari, M.; Liggieri, L.; Ravera, F. Effect of the Incorporation of Nanosized Titanium Dioxide on the
Interfacial Properties of 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine Langmuir Monolayers. Langmuir 2017, 33, 10715–10725.
[CrossRef]

113. Sagis, L.M.C.; Fischer, P. Nonlinear rheology of complex fluid–fluid interfaces. Curr. Opin. Colloid Interface Sci. 2014, 19, 520–529.
[CrossRef]

114. Ferri, J.K.; Fernandes, P.A.L.; McRuiza, J.T.; Gambinossi, F. Elastic nanomembrane metrology at fluid–fluid interfaces using
axisymmetric drop shape analysis with anisotropic surface tensions: Deviations from Young–Laplace equation. Soft Matter 2012,
8, 10352–10359. [CrossRef]

115. Bykov, A.G.; Guzmán, E.; Rubio, R.G.; Krycki, M.M.; Milyaeva, O.Y.; Noskov, B.A. Influence of temperature on dynamic surface
properties of spread DPPC monolayers in a broad range of surface pressures. Chem. Phys. Lipids 2019, 225, 104812. [CrossRef]

116. Loglio, G.; Pandolfini, P.; Miller, R.; Makievski, A.V.; Krägel, J.; Ravera, F.; Noskov, B.A. Perturbation–response relationship in
liquid interfacial systems: Non-linearity assessment by frequency–domain analysis. Colloids Surf. A 2005, 261, 57–63. [CrossRef]

117. Bykov, A.G.; Liggieri, L.; Noskov, B.A.; Pandolfinib, P.; Ravera, F.; Loglio, G. Surface dilational rheological properties in the
nonlinear domain. Adv. Colloid Interface Sci. 2015, 222, 110–118. [CrossRef]

411





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Fluids Editorial Office
E-mail: fluids@mdpi.com

www.mdpi.com/journal/fluids

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-1292-9


