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Preface

Welcome to this Special Issue reprint titled “Modeling, Optimization and Control of Robotic

Systems.” As technology continues to advance at an unprecedented pace, the integration of robotics

into various facets of our lives becomes increasingly prevalent. From manufacturing to healthcare,

and from exploration to entertainment, robotics plays a pivotal role in shaping the future.

This compilation represents a comprehensive exploration of the multifaceted domain of robotic

systems, focusing specifically on modeling, optimization, and control aspects. Through a selection of

seminal works, this collection aims to provide readers with a deeper understanding of the theoretical

foundations, practical applications, and cutting-edge developments in this dynamic field.

The articles included in this Special Issue cover a wide spectrum of topics, ranging from

fundamental principles of robotic modeling to advanced optimization techniques and sophisticated

control strategies. Contributors from academia and industry alike have shared their expertise and

insights, offering valuable perspectives on the challenges and opportunities inherent in the design,

analysis, and implementation of robotic systems.

Whether you are a seasoned researcher, a graduate student, or an industry professional, we trust

that this compilation will serve as a valuable resource, sparking new ideas, fostering interdisciplinary

collaborations, and inspiring future innovations in the realm of robotics.

We extend our sincere gratitude to the authors for their contributions, the reviewers for their

rigorous evaluation, and the editorial team for their dedication and support in bringing this Special

Issue reprint to fruition.

We hope that you find this collection both informative and inspiring, and that it ignites your

curiosity to delve deeper into the fascinating world of modeling, optimization, and control of robotic

systems.

Ahmad Taher Azar, Amjad J. Humaidi, and Ammar K. Al Mhdawi

Editors
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Research on Neural Network Terminal Sliding Mode Control of
Robotic Arms Based on Novel Reaching Law and Improved
Salp Swarm Algorithm

Jianguo Duan 1, Hongzhi Zhang 2,*, Qinglei Zhang 1 and Jiyun Qin 1

1 Free Trade Zone Supply Chain Research Institute, Shanghai Maritime University, Shanghai 201306, China
2 Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China
* Correspondence: 202130210086@stu.shmtu.edu.cn

Abstract: Modeling errors and external disturbances have significant impacts on the control accuracy
of robotic arm trajectory tracking. To address this issue, this paper proposes a novel method, the
neural network terminal sliding mode control (ALSSA-RBFTSM), which combines fast nonsingular
terminal sliding mode (FNTSM) control, radial basis function (RBF) neural network, and an improved
salp swarm algorithm (ALSSA). This method effectively enhances the trajectory tracking accuracy
of robotic arms under the influence of uncertain factors. Firstly, the fast nonsingular terminal
sliding surface is utilized to enhance the convergence speed of the system and achieve finite-time
convergence. Building upon this, a novel multi-power reaching law is proposed to reduce system
chattering. Secondly, the RBF neural network is utilized to estimate and compensate for modeling
errors and external disturbances. Then, an improved salp swarm algorithm is proposed to optimize
the parameters of the controller. Finally, the stability of the control system is demonstrated using
the Lyapunov theorem. Simulation and experimental results demonstrate that the proposed ALSSA-
RBFTSM algorithm exhibits superior robustness and trajectory tracking performance compared to the
global fast terminal sliding mode (GFTSM) algorithm and the RBF neural network fast nonsingular
terminal sliding mode (RBF-FNTSM) algorithm.

Keywords: robotic arm; fast nonsingular terminal sliding mode; RBF neural network; improved salp
swarm algorithm; novel multi-power reaching law; Lyapunov theorem

1. Introduction

With the development of automation and intelligent manufacturing, the application
scope of robots and automation equipment is becoming increasingly extensive. As integral
components of robots, robotic arms are widely utilized in various fields, such as production,
manufacturing, healthcare, aviation, logistics, and agriculture [1]. Trajectory tracking of
robotic arms is a crucial technique in robot control, enabling them to accurately follow a
given path in space, thereby achieving high-quality manufacturing and automation opera-
tions. Currently, trajectory tracking control of robotic arms faces challenges such as strong
nonlinearity, high uncertainty, and complexity. Therefore, researching high-performance
trajectory tracking control strategies for robotic arms is of significant importance.

PID control has the advantages of simplicity, ease of tuning, and ease of implementa-
tion, making it a popular strategy in the field of robotic arm control [2–4]. However, PID
control also suffers from the disadvantages of limited adaptability to nonlinear systems,
poor robustness to parameter variations and uncertainties, and difficulty in dealing with
delays and time lags. Therefore, scholars both domestically and internationally have pro-
posed many other methods for trajectory tracking control of robotic arms, such as robust
control [5], adaptive control [6], fuzzy control [7], iterative learning control [8], neural
network control [9], sliding mode control [10], and backstepping control [11]. Sliding mode
control is widely applied in the field of robot control due to its high tracking accuracy,

Actuators 2023, 12, 464. https://doi.org/10.3390/act12120464 https://www.mdpi.com/journal/actuators1



Actuators 2023, 12, 464

strong robustness, and low requirement for system modeling. A terminal sliding mode
control method was proposed by Zhao et al. [12], which can stabilize the system state to
an equilibrium point within finite time without requiring precise robot dynamics models.
This approach offers faster computation speed and a simpler controller structure, but the
speed of convergence still needs to be improved. To address this problem, Doan et al. [13]
proposed a fast terminal sliding mode control method that combines fast terminal sliding
surfaces with the super-twisting control law. This combination results in smoother control
torque, enabling faster and more accurate compensation for external disturbances and
nonlinear elements. It ensures system stability and robustness. The method further im-
proves the convergence speed but suffers from the singularity problem. For the singularity
problem, Jin et al. [14] introduced a nonsingular terminal sliding mode control method that
combines nonsingular terminal sliding surfaces with time delay estimation. It achieves
fast convergence using nonsingular terminal sliding mode and implements model-free
control using time delay estimation. This method solves the singularity problem, is easy
to implement, and has high robustness and accuracy, but the convergence speed is rela-
tively slow. Considering the two main issues of convergence speed and singularity, a fast
nonsingular terminal sliding mode control method was proposed by Liang et al. [15]. It
utilizes a second-order fast nonsingular terminal sliding mode to achieve rapid conver-
gence, avoid singularities, and reduce chattering. Furthermore, an artificial neural network
is introduced to handle model uncertainties and disturbances without the need for any
prior knowledge. The method can achieve finite-time convergence with a fast convergence
rate while avoiding the singularity problem.

However, sliding mode control suffers from chattering, which can degrade control
performance and even lead to system instability. To address this issue, the reaching law
approach is often employed to adjust and control the system states. A new exponential
reaching law was proposed by Wang et al. [16], which incorporates the system state variable
to relate the convergence speed with the variation of the system state. This approach
enhances the dynamic performance and robustness of the system, effectively suppressing
the phenomenon of oscillations. This method speeds up the convergence of the system
and allows the system to approach the sliding mold surface faster, yet it may also lead to
high-frequency oscillations and overshoot phenomena, resulting in degradation of control
performance. To address this problem, Xia et al. [17] combined a double-power reaching
law with an improved terminal sliding mode. The double-power reaching law ensures that
the system can reach the sliding surface within a finite time from any initial state, while the
improved terminal sliding surface ensures that position and velocity errors approximate
zero. This method can balance the convergence speed and stability of the system within
a certain range, ensuring faster convergence speed and effectively attenuating the jitter
vibration phenomenon of the robotic arm. It achieves high tracking accuracy and a strong
anti-interference ability, but it also leads to a relatively complex parameter adjustment.
Additionally, Ba et al. [18] designed a composite reaching law that combines the cotangent
function and the exponential reaching law. This approach shortens the reaching time
to the sliding surface and reduces the velocity near the sliding surface. It makes the
convergence process smoother and avoids the problem of high-frequency jittering caused
by excessive speed when approaching the sliding mold surface. In order to solve the jitter
problem caused by the sign function, Zhang et al. [19] designed an improved multiple-
power reaching law by replacing the sgn functions with the sigmoid functions, utilizing
the smoothing property of the sigmoid functions to reduce the jitter and vibration caused
by the sgn functions. This method enhances the control quality and convergence speed of
sliding mode control, exhibiting strong robustness and versatility.

Neural network control has the advantages of high precision, low latency, and strong
adaptability, making it highly advantageous in nonlinear control, and extensive research
has been conducted in this area [20]. Liu et al. [21] studied a robot neural network control
system based on a genetic algorithm. The genetic algorithm is used to optimize the neural
network, simplifying the network structure and improving tracking effectiveness. However,
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the method has high computational complexity and requires a long optimization time. He
and Dong [22] proposed a fuzzy neural network learning algorithm to identify uncertain
system models. This method does not require prior knowledge or a sufficient amount of
observation data about uncertainties. Impedance learning is introduced to address the in-
teraction between the robot and the environment. This control method ensures the tracking
performance of the system under state constraints and uncertainties, but the design and
parameter tuning of the fuzzy neural network are relatively complex. Tlijani et al. [23]
presented a non-singular fast terminal sliding mode control strategy based on a wavelet
neural network observer. A wavelet observer is designed using the online approximation
capability of neural networks to estimate modeling errors, external disturbances, and uncer-
tainties in joint robots. This control method can overcome the jitter vibration phenomenon
and ensure the accuracy and stability of the position control of articulated robots, but the
design and parameter adjustment of the observer are relatively complex and sensitive
to the modeling and observation errors of the system. Several of the above methods are
relatively complex; thus, Sun et al. [24] designed a neural network control method based on
radial basis functions, which utilizes neural networks to approximate the unknown model
of the robot and deal with the uncertainty of the system with good tracking performance
and small tracking error. Compared with other neural network control methods, this
method has a fast training speed and relatively simple parameter adjustment. On this basis,
Fan et al. [25] developed a sliding mode controller based on RBF neural networks. This
controller utilizes the sliding mode control algorithm to counteract external disturbances
and employs the radial basis function neural network control algorithm to address system
uncertainties. The combination of the two control methods ensures a relatively simple
controller structure while improving tracking accuracy and robustness.

To address the problem of decreased trajectory tracking accuracy in robotic arms
caused by modeling errors and external disturbances, this paper proposes a neural network
terminal sliding mode control algorithm based on a novel reaching law and an improved
salp swarm algorithm. Firstly, a fast nonsingular terminal sliding mode surface is selected
to achieve finite-time convergence and avoid singularity issues. We propose a novel multi-
power reaching law, replacing the sign functions with saturation functions to reduce system
chattering. Secondly, considering the capability of RBF neural networks to approximate
any continuous functions, we utilize RBF neural networks to estimate model uncertainties
and external disturbances. An adaptive law is designed to automatically adjust the neural
network weights. Furthermore, we propose an adaptive leader salp swarm algorithm to
optimize the parameters of the controller, thereby improving the effectiveness of trajectory
tracking control. Finally, we conduct simulations of ABB six-axis robotic arm trajectory
tracking control in the Matlab environment to validate the effectiveness and reliability of
the proposed control method. The main contributions of this paper are as follows:

1. A novel reaching law is proposed, which utilizes the tanh and sigmoid functions
to replace the sign functions in traditional multi-power reaching law. This enables
the system state to slide rapidly and accurately onto the sliding surface, suppressing
oscillations and enhancing system stability and disturbance rejection capabilities.

2. An improved salp swarm algorithm is proposed, incorporating adaptive inertia
weight factors and adaptive adjustment strategies to enhance convergence speed,
overall performance, and solution accuracy.

3. A novel neural network terminal sliding mode controller is proposed and applied to
the trajectory tracking control of an ABB robot. The superior control performance of
the controller is verified through simulation and experimental validation.

The organization of this paper is as follows: Section 2 presents the dynamic model
of the robot and the design of the ALSSA-RBFTSM controller. Section 3 provides the
simulation and experimental results. Section 4 presents the conclusions of this paper.

3
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2. Controller Design

2.1. Robotic Arm Dynamics Model

The dynamic model of the robotic arm can be obtained using the Lagrange method [26],
as follows:

M(q)
..
q + C(q ,

.
q
) .
q + G(q) + F

( .
q
)
+ τd = τ (1)

where q ∈ Rn×1 represents the joint angles,
.
q ∈ Rn×1 represents the joint angular velocities,

..
q ∈ Rn×1 represents the joint angular accelerations, M(q) ∈ Rn×n represents the inertia
matrix, C(q,

.
q) ∈ Rn×n represents the Coriolis and centrifugal force matrix, G(q) ∈ Rn×1

represents the gravity matrix, F(
.
q) ∈ Rn×1 represents the friction matrix, τ ∈ Rn×1 repre-

sents the control input matrix, and τd ∈ Rn×1 represents the external disturbance matrix.
In practice, obtaining an accurate dynamic model of a robotic arm is challenging, and

modeling errors can degrade control performance and reduce trajectory tracking accuracy.
Therefore, considering the modeling errors in the dynamic modeling of the robotic arm, the
dynamic model can be divided into a deterministic part and an uncertain part [27]. Thus,
M(q), C(q,

.
q), and G(q) can be represented as:⎧⎨⎩

M(q) = M0(q) + ΔM(q)
C(q ,

.
q
)
= C0(q ,

.
q
)
+ ΔC(q ,

.
q
)

G(q) = G0(q) + ΔG(q)
(2)

The aggregate uncertainty arising from modeling errors and external disturbances can
be represented as:

f = ΔM(q)
..
q + ΔC(q ,

.
q
) .
q + ΔG(q) + F

( .
q
)
+ τd (3)

In this case, the dynamic equation can be reexpressed as:

M0(q)
..
q + C0(q ,

.
q
) .
q + G0(q) + f = τ (4)

2.2. Design of Fast Nonsingular Terminal Sliding Mode Control

Define the system tracking error as:

e = q − qd (5)

where q is the actual position vector and qd is the desired position vector.
The FNTSM surface [28] is designed as:

s =
.
e + αe + β|e|λsgn(e) (6)

where α, β ∈ R, 1 < λ < 2.
The derivative of the sliding mode surface function can be obtained as:

.
s =

..
e + α

.
e + βλ|e|(λ−1) .

e (7)

Without considering the compound disturbance of the system, and letting
.
s = 0, the

equivalent control law can be obtained as:

ueq = M0(q)
..
qd − M0(q)

[
α

.
e + βλ|e|(λ−1) .

e
]
+ C0(q ,

.
q
)
+ G0(q) (8)

The traditional multi-power reaching law [29] is as follows:

.
s = −k1|s|a1 sgn(s)− k2|s|a2 sgn(s)− k3|s|a3 sgn(s)− k4s (9)

4
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where k1 > 0, k2 > 0, k3 > 0, k4 > 0, a1 > 1, 0 < a2 < 1, and the value of a3 is taken
as follows:

a3 =

{
max{a1, |s|}, |s| ≥ 1
min{a2, |s|}, |s| < 1

(10)

when the system state satisfies the condition |s| < 1, and the reaching law is mainly
influenced by −k2|s|a2 sgn(s)− k3|s|a3 sgn(s). When the system state satisfies the condition
|s| ≥ 1, the reaching law is mainly influenced by −k1|s|a1 sgn(s)− k3|s|a3 sgn(s). The value
of a3 ensures that the system can adaptively change the exponential parameter in the
reaching law, resulting in a faster convergence rate.

Considering the chattering issue caused by the sign functions, this paper proposes
improvements to the multi-power reaching law. The sigmoid function and tanh function
have the advantages of continuity and fast response. As the system state approaches the
sliding surface, the output of the tanh function gradually saturates, resulting in a slower
convergence speed. When the system state is far from the sliding surface, the convergence
speed of the sigmoid function is relatively fast. Therefore, the sigmoid function is used to
replace the first sign function in the multi-power reaching law, the tanh function is used to
replace the second sign function, and a nonlinear function is designed to replace the third
sign function. This helps avoid the control torque chattering caused by the sign functions
in sliding mode control, allowing the system to enter the sliding surface more smoothly
and quickly. The designed nonlinear function is as follows:

f (s) =
{

sigmoid(s), |s| ≥ 1
tanh(s), |s| < 1

(11)

The newly designed reaching law in this paper is as follows:

.
s = −k1|s|a1 sigmoid(s)− k2|s|a2 tanh(s)− k3|s|a3 f (s)− k4s (12)

when the system state satisfies the condition |s| < 1, the reaching law is mainly influenced
by −k2|s|a2 tanh(s)− k3|s|a3 tanh(s), leading to a reduction in the adjustment magnitude
of the system, thereby suppressing the occurrence of oscillations and vibrations. When
the system state satisfies the condition |s| ≥ 1, the reaching law is mainly influenced by
−k1|s|a1 sigmoid(s)− k3|s|a3 sigmoid(s), enabling the system to adjust its state more quickly
and approach the sliding surface rapidly. By leveraging the characteristics of the tanh
and sigmoid functions, the system exhibits a certain degree of adaptability to parameter
variations and disturbances, thus enhancing its stability and reliability.

According to the reaching law, the switching control law can be obtained as follows:

usw = M0(q)
[
k1|s|a1 sigmoid(s) + k2|s|a2 tanh(s) + k3|s|a3 f (s) + k4s

]
(13)

2.3. Design of RBF Neural Network

Let the input vector of the neural network be x = (x1, x2, · · · , xn)
T , the hidden layer

basis function be h =
(
h1, h2, · · · , hj

)T , and the output be y = (y1, y2, · · · , ym)
T . The

functional expression of the RBF neural network can be expressed as:

hj(x) = exp

(
‖x − cj‖2

2b2
j

)
, j = 1, 2, · · · , m (14)

where cj =
(
cj1, cj2, · · · , cjn

)T denotes the center vector of the function, bj =
(
bj1, bj2, · · · , bjn

)T

denotes the bandwidth of the Gaussian basis function, and m denotes the number of
network nodes in the hidden layer.

The expression for the approximation of a nonlinear function by an RBF neural net-
work is:

f (x) = W∗Th(x) + ε (15)

5
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where W∗ represents the ideal network weights, ε is the neural network approximation
error, and it satisfies ε ≤ εN .

The RBF neural network is utilized to approximate f (x), and the output of the neural
network is:

f̂ (x) = ŴTh(x) (16)

where Ŵ represents the actual weights of the neural network.
Define the weight estimation error as:

W̃ = W∗ − Ŵ (17)

Take the derivative of the Equation (17):

.
W̃ = −

.
Ŵ (18)

Define the neural network output estimation error [30] as:

f̃ = f − f̂
= W∗Th(x) + ε − ŴTh(x)
= W̃Th(x) + ε

(19)

In order to enhance the performance of the RBF neural network, a neural network
adaptive law is introduced, allowing for adaptive updates of the neural network weights.
The neural network adaptive update law designed in this study is as follows:

.
Ŵ = γh(x)sT (20)

where γ is the adjustment factor to be designed.
Define the robust term as:

v = εNsgn(s) (21)

The total control law of the system at this point is:

u = ueq − usw + f̂ − v
= M0(q)

..
qd − M0(q)

[
α

.
e + βλ|e|(λ−1) .

e
]
+ C0(q ,

.
q
)
+ G0(q) + ŴTh − εNsgn(s)−

M0(q)
[
k1|s|a1 sigmoid(s) + k2|s|a2 tanh(s) + k3|s|a3 f (s) + k4s

] (22)

2.4. Control System Stability Analysis
2.4.1. Certificate of Necessity

Assuming that the Lyapunov function V(x) is asymptotically stable, to prove that:

1. V(x) > 0 holds for all x �= 0: since V(x) is asymptotically stable, according to the
definition of the Lyapunov function, there exists a positive constant a and a positive
constant b, such that for all x satisfying ‖x‖ > a, there is V(x) > b. That is to say,
for all non-zero vectors x, as long as their paradigm is greater than a, the Lyapunov
function V(x) is greater than b. Therefore, one can conclude that V(x) > 0 holds for
all x �= 0.

2. V(0) = 0: since V(x) > 0 holds for all x �= 0, we can deduce that V(0) must be equal
to 0. Otherwise, if V(0) is greater than 0, then there exists a small neighborhood where
V(x) > 0. This contradicts the condition that V(x) > 0 holds for all x �= 0.

3.
.

V ≤ 0 holds for all x �= 0: the derivative of the Lyapunov function V(x) can represent
the rate of change of the state of the system. Since V(x) is asymptotically stable, by
the definition of the Lyapunov function, for all x satisfying ‖x‖ > a, there is

.
V ≤ 0.

This implies that the Lyapunov function V(x) is decreasing over the range of these x.
The derivative of V(x) holds for all x �= 0: the derivative of V(x) can represent the

6
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rate of change of the state of the system. Also, by the definition of asymptotic stability,
.

V ≤ 0 must tend to 0, i.e.,
.

V(0) = 0.

In summary, if the Lyapunov function is asymptotically stable, we can obtain that
V(x) > 0, V(0) = 0, and

.
V ≤ 0.

2.4.2. Certificate of Sufficiency

Define the Lyapunov function [31] to be:

V =
1
2

sT M0s +
1
2

tr
(

W̃Tγ−1W̃
)

(23)

Take the derivative of the Lyapunov function:

.
V = sT M0

.
s + 1

2 sT M0s + tr
(

W̃Tγ−1
.

W̃
)

= sT M0

(..
e + α

.
e + βλ|e|(λ−1) .

e
)
− tr

(
W̃Tγ−1

.
Ŵ
)

= sT M0

( ..
q − ..

qd + α
.
e + βλ|e|(λ−1) .

e
)
− tr

(
W̃Tγ−1

.
Ŵ
) (24)

Substituting Equations (4), (19) and (22) gives:

.
V = −sT M0

[
k1|s|a1 sigmoid(s) + k2|s|a2 tanh(s) + k3|s|a3 f (s) + k4s

]
+sT [ε − εNsgn(s)]− trW̃T

(
γ−1

.
Ŵ − sTh(x)

)
(25)

From the above equation,
.

V ≤ 0 holds all the time; if and only if s = 0, then
.

V = 0.
According to the Lyapunov stability theorem, if V > 0 and

.
V ≤ 0, it can be obtained that

the system is asymptotically convergent under the Lyapunov condition.

2.5. Improved Salp Swarm Algorithm

The salp swarm algorithm (SSA) is a heuristic optimization algorithm inspired by the
behavioral characteristics of a marine organism called salp. The algorithm simulates the
movement and propagation of a salp swarm, where individuals update their positions
and velocities through information exchange and cooperation to search for the optimal
solution [32]. By mimicking the biological features and collaborative behavior of salp
swarms, the SSA can effectively search for the global optimum in complex optimization
problems. The basic process of the SSA [33] is as follows:

Step 1: Initialize the population. Initialize the positions of the salps based on the upper
and lower limits of each dimension in the search space. The positions of the salps are
initialized as:

Xi
j = rand(N, D)× (

ubj − lbj
)
+ lbj (26)

where Xi
j(i = 1, 2, . . . , N, j = 1, 2, . . . , D) is the position of the i-th salp in the j-th dimension,

N is the population size of the salp, D is the spatial dimension, rand(N, D) is a uniform
random number in the range of [N, D], and ubj and lbj are the upper and lower bounds on
the search space in the j-th dimension.

Step 2: Calculate the fitness value of each salp according to the objective function.
Step 3: Determine the initial location of the food source. Rank the adaptation values of

the salps, and the location of the optimal salp is the location of the food source.
Step 4: Identify leaders and followers. The first half of the salp chain are the leaders,

and the rest are the followers.

7



Actuators 2023, 12, 464

Step 5: Update the position of the salp leader as follows:

X1
j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
, c3 ≥ 0.5

Fj − c1
((

ubj − lbj
)
c2 + lbj

)
, c3 < 0.5

(27)

where X1
j is the position of the first salp leader in the j-th dimension, Fj is the position of the

food source in the j-th dimension, and c2 and c3 are uniformly distributed random numbers
between 0 and 1. c1 is adaptively decreasing with the number of iterations. The value of c1
is taken as follows:

c1 = 2e−(4t/T)2
(28)

where t is the current iteration number, and T is the maximum number of iterations.
Step 6: Update the positions of the salp followers as follows:

Xi
j =

1
2

(
Xi

j + Xi−1
j

)
(29)

where j ≥ 2, Xi
j represents the position of the i-th salp follower in the j-th dimension

search area.
Step 7: Apply boundary processing to each dimension of the updated individual, and

update the location of the food source based on the new globally optimal salp location after
the update.

Step 8: Determine whether the termination condition is satisfied; if so, output the
result. Otherwise, proceed to step 4 and continue iterating.

The SSA is similar to other heuristic algorithms and may encounter the issue of local
optima, along with certain limitations in terms of optimization accuracy and solution
stability. To address these problems, this study improves the SSA and proposes an adaptive
leader salp swarm algorithm (ALSSA).

By introducing an adaptive inertia weight factor, the influence of food sources on the
leader position undergoes adaptive changes during the update process. As the number
of iterations increases, the impact of food sources gradually decreases, thereby limiting
the search range, improving the accuracy and efficiency of the search, and avoiding the
unrestricted search range issue in the leader position update stage of SSA. The formula for
calculating the inertia weight in this paper is as follows:

w = wmax − (wmax − wmin)(t/T)2 (30)

where wmax and wmin are the upper and lower limits of the inertia weight.
By incorporating the previous generation’s salp leader position into the leader posi-

tion update formula, the updated leader position is influenced not only by the previous
generation’s salp leader position but also by the previous generation’s global best solution.
This approach effectively avoids the problem of the basic algorithm getting trapped in
local optima and improves the algorithm optimization accuracy. The improved salp leader
position update formula is as follows:

Xi
j(t) = Xi

j(t − 1) +
(

Fj(t − 1)− Xi
j(t − 1)

)
· rand(0, 1) (31)

where Xi
j(t − 1) represents the position of the i-th salp leader in the j-th dimension of the

previous generation, Fj(t − 1) represents the position of the food source in the previous
generation, and rand(0, 1) denotes a uniform random number between 0 and 1.

Combining Equations (29) and (30), the new salp leader position update equation can
be expressed as follows:

Xi
j(t) = Xi

j(t − 1) +
(

w · Fj(t − 1)− Xi
j(t − 1)

)
· rand(0, 1) (32)

8
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We introduce an adaptive adjustment strategy to dynamically decrease the number of
salp leaders with an increasing iteration count while increasing the number of followers
adaptively. This approach ensures a balance between global and local search throughout the
entire phase, thereby improving the convergence accuracy of the algorithm. It effectively
avoids the issues of early convergence to local optima and low optimization accuracy in
the later stages. The updated formula for calculating the number of leaders and followers
is as follows:

r = b0

(
tan

(
−πt

4T
+

π

4

)
− k0 · rand(0, 1)

)
(33)

where b0 is the coefficient to control the ratio of leaders to followers, k0 is the perturbation
deviation factor, the number of leaders is equal to rN, and the number of followers is equal
to (1 − r)N.

The objective function of ALSSA is used to minimize angular tracking errors, which is
expressed as follows:

J =
1
n ∑n

i=1|ei| (34)

The specific meaning of this expression is as follows: for a given number of sampling
points n, calculate the absolute values of the angular tracking errors |ei| at each sampling
point, and then sum the absolute values of the angular tracking errors at all sampling points
to obtain the value of the objective function.

In the designed controller, parameters that have a minimal impact on control perfor-
mance are considered as priors and do not require adjustment. There are a total of six
adjustable controller parameters, namely α, β, k1, k2, k3, k4. The precise values of these
control parameters will be determined by the ALSSA method.

3. Simulation and Experimental Results

3.1. Simulation Results

To validate the effectiveness and superiority of the proposed neural network terminal
sliding mode control algorithm for the robotic arms, based on a novel reaching law and an
improved salp swarm algorithm, this study conducted simulation experiments using the
ABB IRB120 robotic arm as the research subject in Matlab R2022b software.

The ABB IRB120 robot is a six-axis robotic arm developed by ABB, a leading robotics
company. It is designed for various industrial applications, including assembly, material
handling, and machine tending. The IRB120 robot offers high precision, flexibility, and
compactness, making it suitable for use in small workspaces. It has a payload capacity of
up to 3 kg and a reach of 580 mm, allowing it to perform tasks with precision and agility.
The IRB120 robot is equipped with advanced features such as integrated vision systems and
user-friendly programming interfaces, enabling easy integration and efficient operation in
industrial environments. The ABB IRB120 robot is shown in Figure 1.

Denavit–Hartenberg (DH) parameters and mass parameters play crucial roles in the
modeling of robotic arms, as they are essential for accurately describing the kinematic
and dynamic characteristics of the arm. DH parameters describe the geometric and
kinematic properties of the robotic arm, providing the geometric relationships between
its joints and enabling the precise execution of desired motions. On the other hand,
mass parameters describe the distribution of mass within the robotic arm, influencing its
inertia properties and dynamic response, which are vital for achieving precise motion
control. The DH parameters and quality parameters of the ABB IRB120 robot are shown
in Tables 1 and 2.

9



Actuators 2023, 12, 464

Figure 1. ABB IRB120 robot.

Table 1. The DH parameter list of the ABB IRB120 robot.

Joint Angle θ (◦) Offset d (m) Length a (m) Twist α (◦)

Joint 1 θ1 0.290 0 −90
Joint 2 θ2 0 0.270 0
Joint 3 θ3 0 0.070 −90
Joint 4 θ4 0.302 0 90
Joint 5 θ5 0 0 −90
Joint 6 θ6 0.072 0 0

Table 2. The quality parameter list of the ABB IRB120 robot.

Joint Mass (kg) Position of the Center of Mass (m)

Joint 1 9.28 (−0.02819, 0.00002, 0.13210)
Joint 2 3.91 (−0.00216, 0.00118, 0.39124)
Joint 3 2.94 (0.00178, −0.01867, 0.61730)
Joint 4 1.33 (0.00856, −0.22070, 0.62499)
Joint 5 0.55 (0.01133, −0.29682, 0.62287)
Joint 6 0.01 (0.01367, −0.36273, 0.61955)

Since the inertia matrix M(q), the Coriolis and centrifugal matrice C(q ,
.
q
)
, and the

gravitational matrix G(q) of the ABB IRB120 six-axis robotic arm are too complicated, the
detailed dynamics parameter matrices are not listed here. The model determination sec-
tion is set to M0 = 0.8M, C0 = 0.8C, G0 = 0.8G. The initial angles of the ABB robotic arm
are q1(0) = q2(0) = q3(0) = q4(0) = q5(0) = q6(0) = 0.05. The reference trajectories are
qd1 = qd2 = qd3 = qd4 = qd5 = qd6 = 0.1sint. The parameters of the sliding mode control
are α = 2, β = 0.4, λ = 1.5, k1 = k2 = k3 = k4 = 0.5, a1 = 1.2, a2 = 0.2. The joint friction
is F

( .
q
)
= 0.1

.
q+ 0.1sgn

( .
q
)
. The external disturbance is τd = 0.5sint. The parameter of the

robust term is εN = 0.1. The parameters of the RBF neural network are γ = 0.01, b = 10,
c = [−1 − 0.5 − 0.25 − 0.125 − 0.0625 − 0.03125 0 0.03125 0.0625 0.125 0.25 0.5 1]. The
parameters of the ALSSA are N = 30, T = 500, wmax = 0.9, wmin = 0.4, b0 = 0.75,
k0 = 0.2. The number of iterations to obtain the optimal solution is 29, and the optimized
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sliding mode control parameters are α = 2.7, β = 1.8, k1 = 0.1, k2 = 0.8, k3 = 1.4,
k4 = 1.5.

The ALSSA-RBFTSM algorithm designed in this paper is compared with the global
fast terminal sliding mode (GFTSM) algorithm proposed in the literature [34] and the
RBF neural network fast nonsingular terminal sliding mode (RBF-FNTSM) algorithm
proposed in the literature [35]. From Figure 2, it can be seen that the GFTSM algorithm
has the smallest initial control torques, but it experiences the most serious control
torque jitter. The RBF-FNTSM algorithm effectively suppresses control torque jitter,
but there is still a certain amount of jitter that remains. At the same time, its initial
control torques increase. The ALSSA-RBFTSM algorithm demonstrates smooth control
torques with little jitter, but it has the largest initial control torques. From Figure 3,
it can be observed that all three control algorithms enable the robotic arm to track
the desired trajectory within a certain time period. However, the GFTSM algorithm
deviates from the desired trajectory at certain time intervals, while the RBF-FNTSM
algorithm and the proposed algorithm in this paper remain mostly on the desired
trajectory. Figure 4 demonstrates that when subjected to uncertainties such as friction
and external disturbances, the position tracking errors of the proposed algorithm remain
consistently at zero. In contrast, the GFTSM algorithm and the RBF-FNTSM algorithm
exhibit fluctuating position tracking errors. The GFTSM algorithm is most affected,
exhibiting significant fluctuations in position tracking error and poor position tracking
performance. The RBF-FNTSM algorithm demonstrates a certain level of disturbance
rejection capability, suppressing uncertainties to some extent, but still experiences a
certain degree of position tracking error fluctuations. In comparison to the GFTSM and
RBF-FNTSM algorithms, the ALSSA-RBFTSM algorithm exhibits improved performance,
demonstrating better robustness and position tracking effectiveness when faced with
uncertainties such as friction and external disturbances.

 

Figure 2. Control torques of different controllers. (a) Joint 1; (b) Joint 2; (c) Joint 3; (d) Joint 4; (e) Joint
5; (f) Joint 6.
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Figure 3. Position tracking of different controllers. (a) Joint 1; (b) Joint 2; (c) Joint 3; (d) Joint 4; (e) Joint
5; (f) Joint 6.

 

Figure 4. Position tracking errors of different controllers. (a) Joint 1; (b) Joint 2; (c) Joint 3; (d) Joint 4;
(e) Joint 5; (f) Joint 6.

Figure 5 demonstrates that the velocities of all three control algorithms can effectively
track the desired trajectories. The GFTSM algorithm exhibits the longest convergence
time, while the RBF-FNTSM algorithm shows a slightly accelerated convergence speed.
The ALSSA-RBFTSM control algorithm designed in this study demonstrates the shortest
convergence time. Figure 6 shows that the velocity tracking errors of all three control
algorithms converge to nearly zero, indicating a favorable control performance. The
GFTSM algorithm has relatively significant fluctuations in trajectory tracking errors. The
error fluctuations in the RBF-FNTSM algorithm are less noticeable. In contrast, the ALSSA-
RBFTSM control algorithm designed in this study demonstrates the fastest convergence
speed and the smallest tracking errors, showcasing superior steady-state characteristics.
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Figure 5. Velocity tracking of different controllers. (a) Joint 1; (b) Joint 2; (c) Joint 3; (d) Joint 4; (e) Joint
5; (f) Joint 6.

 

Figure 6. Velocity tracking errors of different controllers. (a) Joint 1; (b) Joint 2; (c) Joint 3; (d) Joint 4;
(e) Joint 5; (f) Joint 6.

According to the results presented in Tables 3 and 4, it can be observed that the
ALSSA-RBFTSM algorithm designed in this study exhibits the best control performance.
It demonstrates the smallest average steady-state error and maximum steady-state error
in position tracking for each joint of the robotic arm. Comparative analysis reveals that,
compared to the GFTSM control algorithm, the ALSSA-RBFTSM control algorithm reduces
the average steady-state error in position tracking for each joint by 97.6%, 96.5%, 99.1%,
90.7%, 95.1%, and 95.3% respectively. Furthermore, it reduces the maximum steady-state
error in position tracking for each joint by 95.5%, 95.0%, 97.0%, 86.5%, 92.7%, and 83.9%,
respectively. In comparison to the RBF-FNTSM control algorithm, the ALSSA-RBFTSM
control algorithm reduces the average steady-state error in position tracking for each joint
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by 68.5%, 84.2%, 85.7%, 82.6%, 82.3%, and 87.3%, respectively. Additionally, it reduces
the maximum steady-state error in position tracking for each joint by 79.4%, 85.3%, 85.5%,
79.2%, 84.8%, and 60.9%, respectively.

Table 3. Position tracking average steady-state error.

Joint GFTSM RBF-FNTSM ALSSA-RBFTSM

Joint 1 1.75 × 10−3 1.31 × 10−4 4.13 × 10−5

Joint 2 1.83 × 10−3 4.10 × 10−4 6.48 × 10−5

Joint 3 2.38 × 10−3 1.53 × 10−4 2.19 × 10−5

Joint 4 1.68 × 10−3 9.02 × 10−4 1.57 × 10−4

Joint 5 2.79 × 10−3 6.03 × 10−4 1.07 × 10−4

Joint 6 2.49 × 10−3 9.10 × 10−4 1.16 × 10−4

Table 4. Position tracking maximum steady-state error.

Joint GFTSM RBF-FNTSM ALSSA-RBFTSM

Joint 1 3.65 × 10−3 8.07 × 10−4 1.66 × 10−4

Joint 2 4.43 × 10−3 1.50 × 10−3 2.21 × 10−4

Joint 3 4.84 × 10−3 9.98 × 10−4 1.45 × 10−4

Joint 4 3.33 × 10−3 2.16 × 10−3 4.49 × 10−4

Joint 5 4.42 × 10−3 2.12 × 10−3 3.22 × 10−4

Joint 6 5.65 × 10−3 2.33 × 10−3 9.12 × 10−4

3.2. Experiment Results

In this section, we implement the proposed control strategy on the packaging unit
of an ABB robot in the intelligent manufacturing production line in our laboratory. The
intelligent manufacturing production line comprises six experimental stations: unordered
screening unit, visual sorting unit, dimension detection unit, laser marking unit, assembly
unit, and packaging unit. These stations utilize automation equipment and robots to carry
out production tasks, reducing the requirement for manual operations and enhancing
production efficiency. The ALSSA-RBFTSM algorithm designed in this paper is applied
to the ABB six-axis robotic arm in the packing unit of the production line to design the
robot grasping and placing test. Figures 7 and 8 illustrates the process of robot grasping
and placing.

 

Figure 7. Trajectory tracking control for robotic arm gripping tests.
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Figure 8. Trajectory tracking control for robotic arm placement tests.

The system conducted 50 grasping and placing experiments on black boxes. The
success rate for grasping was 92%, while the success rate for placing was 86%. The
main reason for the grasping failures is the positional deviation of the black boxes on the
tray, which caused the robotic arm to misalign or have unstable grasping. The primary
reason for the placing failures is the angular deviation of the lid of the yellow paper box,
resulting in interference with the black boxes during the placing process. The experimental
results above demonstrate that, for multiple grasping and placing tasks, the ABB robot can
reliably track the trajectory, successfully completing the grasping and placing operations.
The system operates smoothly during the workflow, without significant occurrences of
excessive vibrations.

4. Conclusions

This paper proposes a neural network terminal sliding mode control algorithm for
robotic arms, based on a reaching law and an improved salp swarm algorithm. A fast
nonsingular terminal sliding surface is utilized to achieve finite-time convergence, and the
traditional multi-power reaching law is improved to reduce system oscillations. An RBF
neural network is employed to estimate the model uncertainties and external disturbances
of the system. The improved salp swarm algorithm is utilized to optimize controller pa-
rameters, further enhancing control performance. A robust term is designed to compensate
for estimation errors in the RBF neural network. The stability of the system is proven,
using the Lyapunov stability theory. Simulation results demonstrate that, compared to
the GFTSM control algorithm, the ALSSA-RBFTSM control algorithm reduces the average
steady-state position tracking error of the robotic arm by up to 99.1% and the maximum
steady-state position tracking error by up to 97.0%. Compared to the RBF-FNTSM control
algorithm, the ALSSA-RBFTSM control algorithm reduces the average steady-state position
tracking error by up to 87.3% and the maximum steady-state position tracking error by up
to 85.5%. The experimental results show that the designed control algorithm enables the
robot to stably track trajectories and complete grasping and placing tasks. The simulation
and experimental results demonstrate the effectiveness and reliability of the proposed
control algorithm, showcasing its excellent disturbance rejection capability and trajectory
tracking performance.
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Abstract: High-precision industrial manipulators are essential components in advanced manufactur-
ing. Model-based feedforward is the key to realizing the high-precision control of industrial robot
manipulators. However, traditional feedforward control approaches are based on rigid models or flex-
ible joint models which neglect the elasticities out of the rotational directions and degrade the setpoint
precision significantly. To eliminate the effects of elasticities in all directions, a high-precision setpoint
feedforward control method is proposed based on the output redefinition of the extended flexible joint
model (EFJM). First, the flexible industrial robots are modeled by the EFJM to describe the elasticities
in joint rotational directions and out of the rotational directions. Second, the nonminimum-phase
EFJM is transformed into a minimum-phase system by using output redefinition. Third, the setpoint
control task is transformed from Cartesian space into joint space by trajectory planning based on
the EFJM. Third, a universal recursive algorithm is designed to compute the feedforward torque
based on the EFJM. Moreover, the computational performance is improved. By compensating the
pose errors caused by elasticities in all directions, the proposed method can effectively improve the
setpoint control precision. The effectiveness of the proposed method is illustrated by simulation and
experimental studies. The experimental results show that the proposed method reduces position
errors by more than 65% and the orientation errors by more than 62%.

Keywords: industrial robot manipulator; setpoint control; feedforward control; nonminimum-phase
system; elasticity compensation; extended flexible joint model

1. Introduction

Industrial robot manipulators have been applied in many manufacturing fields, such as
assembly and welding. However, it is still a great challenge to expand robotics applications
to high-precision machining processes due to the low accuracy [1]. Various feedback control
methods such as PID control, sliding mode control [2], and observer-based control [3] have
been adopted to improve the end effector setpoint control precision of industrial robots.
However, it is difficult to achieve high-precision control with only feedback controllers
owing to the complex nonlinear dynamics of industrial manipulators. Alternatively, model
inversion-based feedforward control [4] is an effective approach that solves the problem
by compensating the nonlinear dynamics. A nonlinear PD controller plus feedforward
compensation was proposed for rigid robots to achieve the finite-time stabilization of
the tracking error [5]. To improve the robustness-to-payload uncertainty, an intelligent
feedforward controller using a neural network and fuzzy logic was designed for a two-link
robot manipulator [6].

Nevertheless, the above feedforward control methods are based on the rigid robot
model, which neglects the flexible deformations of manipulators. Actually, the flexibilities
of some compliant transmission elements such as harmonic drives and cycloidal gears have
significant effects on setpoint control performance [7]. In response to the problem, the flexi-
ble joint model (FJM) was proposed, which models the joint as a linear torsional spring [8].
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Based on the FJM, a feedforward minimum-time position control method was proposed
to avoid oscillation of a flexible robot [9]. Based on comprehensive modeling of the flexi-
ble joint and an extended generalized Maxwell friction model, an adaptive feedforward
controller was designed to compensate the nonlinear dynamics of transmissions [10].

However, only the elasticities in revolute directions are considered in the FJM, which
neglects the elasticities out of the rotational plane. In practice, modern industrial manip-
ulators tend to have a slender design and lightweight materials. As a result, the flexible
deformations out of the rotational plane caused by links and bearings are unneglectable,
especially for high-speed and heavy-load manipulators [11]. Hence, the flexible joint
model can not accurately describe a modern industrial robot. To improve the model ac-
curacy, an extended flexible joint model (EFJM) was proposed [12] which can describe
not only the elasticities in rotational planes but also the elastic deformations out of the
plane. Then, the EFJM was validated on a modern industrial manipulator, and the results
showed that the EFJM can greatly improve the model accuracy [13]. Thus, feedforward
control based on the EFJM is a prospective way to improve the control precisions of flexible
industrial manipulators.

Nevertheless, the EFJM possesses a differential nonflat characteristic, which is a great
challenge for the feedforward controller design [14]. The feedforward control problem of a
minimum-phase EFJM was solved by using differential algebraic equation (DAE) theory;
thus, the tracking performance was improved significantly [12]. However, the EFJM is
minimum phase only in special configuration. In most cases, the EFJM is a nonminimum-
phase system [15]. A nonminimum-phase system possesses unstable internal dynamics;
thus, the traditional feedforward control method cannot give a bounded solution [16].
To obtain a bounded feedforward input, a continuous DAE optimization solver and a
discretized DAE optimization solver were proposed to solve the feedforward control
problem of an EFJM with three degrees of freedom (DOFs) [17].

However, numerical optimization was adopted in the above methods due to the
limitation of being nonminimum phase. Consequently, the existing methods have a heavy
burden of calculation which is unacceptable for industrial robots with high DOFs. Moreover,
the above methods are all based on analytic dynamic equations, which are difficult to
obtain for complex manipulators. Thus, a high-precision feedforward control method with
reasonable computational burden for general complex flexible industrial manipulators
should be further explored.

To improve the setpoint control precision and reduce the computational burden, a new
feedforward control approach based on the output redefinition of the EFJM is proposed
for flexible industrial robots in this paper. Firstly, the output of the EFJM is redefined to
transform the EFJM into a minimum-phase system. Thus, the limitation of the unstable
internal dynamics is eliminated. Secondly, the joint trajectory is planned based on the
kinematics and statics equations of the EFJM. Thus, the pose error caused by elasticity
is compensated, and the setpoint problem is transformed into joint space. Finally, a
universal feedforward torque computation algorithm for the EFJM is designed to reduce
the calculation burden. The simulation and experimental studies demonstrate that the
proposed method improves the control precision and computational efficiency remarkably.

The rest of this paper is organized as follows. In Section 2, the EFJM is introduced, and
the setpoint control problem is formulated. The feedforward control method is proposed in
Section 3. In Section 4, simulations and experiments are implemented. The conclusion is
given in Section 5.

2. Problem Formulation

2.1. Extended Flexible Joint Model

Lightweight design has been widely adopted in modern industrial robot manipulators,
which causes complex mechanical elasticity in all directions. However, the traditional
flexible joint model describes the joint by using a torsional spring, which can only model
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the joint flexibilities in rotational directions. In view of the problem, the EFJM was proposed
to describe the elasticities of modern industrial robots more accurately [12].

The extended flexible joint robot model is a lumped-parameter model consisting of
a serial kinematic chain of rigid bodies. The rigid bodies are connected with extended
flexible joints which consist of actuated joints and nonactuated joints. An example of
an extended flexible joint is shown in Figure 1. The actuated joint consists of a motor,
transmission, and a spring damping system, describing the elasticity in the rotational
direction. The nonactuated joint uses a spring–damper pair to describe the elasticity out
of the rotational plane caused by bearings, tools, and links. Consequently, the EFJM can
describe the elasticities in all directions; thus, the model accuracy is improved significantly.

Figure 1. An example of an extended flexible joint.

Assuming the weight of the load is known, the EFJM of a robot can be obtained by
using the bottom-up approach in [13]. During the modeling process, the number and
location of nonactuated joints should be determined by making a compromise between
model accuracy and complexity. Then, the equations of dynamics can be derived by using
Lagrange equations.

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) =

[
τs − Fa

( .
qa
)

τe

]
(1)

B
..
θ+ τs + Fm

( .
θ
)
= τc (2)

where q =
[
qT

a , qT
e
]T ∈ R

na+ne , qa ∈ R
na , and qe ∈ R

ne are the actuated and nonactuated
joint angular position vectors, respectively; θ = η−1θm ∈ R

na and θm ∈ R
na are the motor

angular position vector; η ∈ R
na×na denotes the gear ratio matrix; Fa

( .
qa
) ∈ R

na and

Fm

( .
θ
)
∈ R

na are the friction torque vectors of the link side and motor side, respectively;

M(q) ∈ R
n×n is the inertia matrix of the robot; C

(
q,

.
q
) .
q ∈ R

n is the Coriolis and centripetal
torque vector; and G(q) ∈ R

n is the gravity torque vector, where n = na + ne. B = η−2J.
J ∈ R

na×na denotes the inertia diagonal matrix of the motor side. τc is the motor torque
vector, i.e., the control input. Since the flexible deflections are small, the flexibilities are
modeled by linear springs and dampers in this paper. Then, the elastic torque vectors τs
and τe are expressed as:

τs = −Ks(θ− qa)− Ds

( .
θ− .

qa

)
(3)

τe = −Keqe − De
.
qe (4)

where Ks, Ds ∈ R
na×na and Ke, De ∈ R

ne×ne denote the stiffness and damping matrices in
actuated and nonactuated directions, respectively. Consequently, the elasticity deformations
of the manipulator are divided into two parts: elasticity deformation in the actuated
direction θ− q and in the nonactuated direction qe.

Partitioning the generalized coordinates into actuated and nonactuated coordinates,
the link-side dynamics (1) can also be separated into two parts:[

Ma Mae
MT

ae Me

][ ..
qa..
qe

]
+

[
Ca Cae
Cea Ce

][ .
qa.
qe

]
+

[
Ga
Ge

]
=

[
τs − Fa

τe

]
(5)
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where the dependency on the generalized coordinate q and its derivate
.
q is dropped

for readability.
Obviously, the submatrices Me, Ce, and Ge satisfy the following properties [7].
Property 1: Inertia matrix Me(q) is symmetric and positive definite, i.e., ∀q ∈ R

n,
ξ ∈ R

ne : ξTMe(q)ξ = ξTMe
T(q)ξ ≥ 0, ξTMe(q)ξ = 0 ⇔ ξ = 0 .

Property 2: Me(q) and Ce
(
q,

.
q
)
=
[
cij
]

satisfy the following equations:[
Ma Mae
MT

ae Me

][ ..
qa..
qe

]
+

[
Ca Cae
Cea Ce

][ .
qa.
qe

]
+

[
Ga
Ge

]
=

[
τs − Fa

τe

]
(6)

Property 3: Both gravity torque and its partial derivative with respect to q are formed
by trigonometric functions of the variable q. Thus, there exist positive constants M and α
such that:

‖Ge(q)‖ � M,
∥∥∥∥∂Ge(q)

∂qe

∥∥∥∥ � α, ∀q ∈ R
n (7)

where ‖·‖ denotes the Euclidean norm of a vector or matrix.
Correspondingly, the reasonable assumptions are made as follows:

Assumption 1. The damping matrix De in the nonactuated direction is not zero.

Assumption 2. The stiffness matrix of the nonactuated joint satisfies:

λmin(Ke) > α (8)

where λmin(Ke) denotes the minimum eigenvalue of Ke.

2.2. Setpoint Control Problem

Using the forward kinematics of the robot, the orientation and position of the end
effector can be expressed as:

Z = Γ(q) (9)

The objective of point-to-point feedforward control is to design a control torque τc such
that the end effector of manipulator systems (1), (2), and (9) moves to a desired constant
pose Z f at specified time t f from initial configuration q0, with all elastic deformations being
compensated and all closed-loop signals remaining bounded.

The EFJM is a differentially nonflat system; thus, the feedforward control input relies
on the stable solution of the internal dynamics. However, from motor torque τc to end
effector pose Z, the system is nonminimum phase in most cases, i.e., the solution of the
internal dynamics may be unbounded [16]. Thus, it is difficult to compute the feedforward
torque directly based on the end effector pose.

In response to the above limitations, the proposed feedforward setpoint control method
consists of two steps, as shown in Figure 2. Firstly, the system output is redefined as qa,
and the reference trajectories of actuated joint positions qad(t) are planned. Secondly, the
nominal feedforward torque is computed by using the EFJM of the robot based on the
reference actuated joint trajectories qad(t). Then, the desired point-to-point motion of the
end effector is accomplished indirectly.

Figure 2. Procedure of proposed feedforward control method.
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3. Controller Design

To achieve high-precision setpoint control of the end effector, an output-redefinition-
based feedforward control method is proposed for the EFJM in this section.

Firstly, it is proven through Lyapunov theorem that the EFJM is transformed into a
minimum-phase system by redefining the system output as qa. Secondly, the reference
trajectory qad(t) is planned in joint space based on the kinematics and static equation of the
EFJM. Thus, the pose error caused by the flexibility deformations is compensated accurately.
Finally, the feedforward control torque for the EFJM is calculated by using the recursive
dynamics algorithms; thus, the computational burden is further reduced.

3.1. Output Redefinition of EFJM

As mentioned above, from motor torque τc to end effector pose Z, the EFJM is non-
minimum phase in most cases. Consequently, an unbounded solution of internal dynamics
may be obtained, leading to unbounded feedforward torques. To stabilize the internal
dynamics and overcome the limitation of being nonminimum phase, the system output is
redefined as y = qa in this section. Then, the stability of internal dynamics is analyzed.

Differentiating the first equation of (5) twice yields:

Maq(4)a + Maeq
(4)
e + fa =

..
τs (10)

where fa = 2
( .

Maq(3)a +
.

Maeq
(3)
e

)
+

..
Ma

..
qa +

..
Mae

..
qe +

..
Na +

..
Fa.

Neglect the damping of actuated joints Ds and consider the motor dynamics (2); then,
the input output relationship of the EFJM is obtained.

y(4) = −M−1
a

(
Ks

..
qa + Maeq

(4)
e + fa

)
+ M−1

a KsB−1(u − τs − Fm) (11)

where u = τc is the system input.
Clearly, the dynamics of the unactuated joints coordinates are the internal dynamics

of the EFJM.
Me

..
qe + Mea

..
qad + Ce

.
qe + Cea

.
qa + Ge = −Keqe − De

.
qe (12)

Let the output qa = qad and
.
qad =

..
qad = 0; then, the zero dynamics of the EFJM are

obtained as:
..
qe = −M−1

e Keqe − M−1
e (Ce + De)

.
qe − M−1

e Ge (13)

We can conclude from Assumption 2 [7] that system (13) has an equilibrium qe0,
.
qe = 0,

which satisfies:
Ge(qe0) + Keqe0 = 0 (14)

The Lyapunov candidate function is chosen as:

V =
1
2

.
qT

e Me
.
qe + P(qe)− P(qe0) (15)

where P(qe) denotes an energy-like function which is defined as:

P(qe) =
1
2
(qe − qe0)

TKe(qe − qe0) + Ue(qe)− qT
e Ge(qe0) (16)

where Ue(qe) means the gravitational potential energy of robot which satisfies:

∂Ue(qe)

∂qe
= Ge(qe) (17)

22



Actuators 2023, 12, 357

Obviously, qe = qe0 is the stationary point of function, as the partial derivative of
P(qe) w.r.t qe is:

∂P(qe)

∂qe
= Ke(qe − qe0) + Ge(qe)− Ge(qe0) = 0 (18)

Taking the partial derivative of (18) with respect to qe again yields:

∂2P
∂qe

2 = Ke +
∂Ge(qe)

∂qe
(19)

According to Property 3 and the assumption λmin(Ke) > α, the right side of (19) is
positive definite. Hence, qe0 is the global minimum point for P(z1). Then, we obtain
∀qe ∈ R

ne ,
.
qe ∈ R

ne , V � 0, and V = 0 ⇔ qe = qe0,
.
qe = 0 .

The time derivative of V is:

.
V =

.
qT

e Ke(qe − qe0) +
.
qT

e (Ge(qe)− Ge(qe0)) +
1
2

.
qT

e
.

Me
.
qe +

.
qT

e Me
..
qe (20)

According to (12) and (14), we obtain:

.
V = − .

qT
e De

.
qe +

1
2

.
qT

e

( .
Me − Ce

) .
qe −

.
qT

e (Keqe0 + Ge(qe0)) (21)

Recalling Property 2 yields:

.
V = −z2

TDez2 � 0 (22)

According to Assumption 1,
.

V is negative semi-definite if and only if z2 = 0. What
is more, the function V is a radially unbounded positive semi-definite function. We can
conclude from the Krasovskii theorem that the equilibrium z1 = z10, z2 = 0 is globally
asymptotically stable. Thus, the original unstable internal dynamics are transformed into
new, stable internal dynamics by choosing actuated joint position vector qa as system out.
The limitation of the nonminimum-phase EFJM can be avoided.

3.2. Trajectory Planning in Joint Space

It is obvious that the flexible deformations of unactuated joints lead to a pose error of
the end effector; thus, the inverse kinematics problem of the extended flexible joint model
should first be studied in trajectory planning. For convenience, assume that the robot is
a six-DOFs serial joint robot manipulator and away from the singularity. Obviously, the
dimension of q is larger than six; thus, the kinematic relation (9) of the EFJM is noninvertible.
In order to obtain a unique solution, additional constraints on unactuated joints should be
considered. In a static condition, the unactuated joint positions are determined by gravity
torque; thus, the following equations should be satisfied:⎧⎨⎩ Z f = Γ

(
q f

)
Ge

(
q f

)
= −Keqe f

(23)

The desired joint positions qa f and qe f can be obtained by solving the above nonlinear
algebraic equations with a numerical solver which requires an initial guess. Considering
the elastic deformations in nonactuated directions are small, the solution of the inverse
kinematics of the rigid model can be chosen as the initial guess.

Based on the initial configuration q0 and desired configuration q f , the joint position

reference trajectories qad and its derivatives
.
qad,

..
qad, q(3)ad , and q(4)ad can be planned in joint

space by adopting a trajectory planning algorithm with continuous jerk profile.[
qad,

.
qad,

..
qad, q(3)ad , q(4)ad

]
= TrajectoryPlanAlgorithm

(
qa0, qa f , t0, t f

)
(24)
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Through the accurate trajectory tracking of qad, the end effector accomplishes the
desired point-to-point motion. Thus, the setpoint control problem is transformed to the
trajectory tracking problem in joint space.

3.3. Calculation of Feedforward Torque

According to (2) and (3), the feedforward torque can be obtained as:

τFF = B
(

Ks
−1 ..

τs +
..
qa

)
+ τs + Fm (25)

The elastic torque vector in actuated direction τs and its derivatives
.
τs and

..
τs can be

expressed as:
τs = Ma

..
qad + Mae

..
qed + Na + Fa (26)

.
τs = Maq(3)ad + Maeq

(3)
ed +

.
Ma

..
qad +

.
Mae

..
qed +

.
Na +

.
Fa (27)

..
τs = Maq(4)ad + Maeq

(4)
ed + 2

.
Maq(3)ad + 2

.
Maeq

(3)
ed +

..
Ma

..
qa +

..
Mae

..
qae +

..
Na +

..
Fa (28)

where Na = Ca
.
qad + Cae

.
qed + Ga. The above equations can be calculated efficiently by

using the recursive Newton–Euler algorithm (RNEA) [18] and elastic joint Newton–Euler
algorithm (EJNEA) [19], respectively.

τs = RNEA
(
qd,

.
qd,

..
qd
)

(29)

.
τs = EJNEA3

(
qd,

.
qd,

..
qd, q(3)d

)
(30)

..
τs = EJNEA

(
qd,

.
qd,

..
qd, q(3)d , q(4)d

)
(31)

where qd =
[
qT

ad, qT
ed
]T,

.
qd =

[ .
qT

ad,
.
qT

ed

]T
,

..
qd =

[ ..
qT

ad,
..
qT

ed

]T
, q(3)d =

[
q(3)Tad

T
, q(3)Ted

]T
, and

qd
(4) =

[
q(4)ad

T
, q(4)ed

T
]T

, and EJNEA3 means the reduced version of the EJNEA, returning
.
τs.

Note that the nonactuated joint angular positions qed, velocities
.
qed, accelerations

..
qed,

jerks q(3)ed , and snaps q(4)ed are required. Since the stability of zero dynamics is ensured, qed
and

.
qed can be obtained by solving the internal dynamics (12) using numerical integration

solvers based on initial condition qe(t0) = qe0,
.
qe(t0) = 0.

Then,
..
qed can be obtained efficiently by solving the following linear equations:

Me
..
qe = −(Mea

..
qad + Ne

)− Keqed − De
.
qed (32)

where Me � Me(qad, qed), Mea � Mea(qad, qed), and Ne = Ne
(
qad, qed,

.
qad,

.
qed

)
. Me and Mea

are obtained using the composite rigid body algorithm (CRBA) [20]. Let
..
qed = 0; then,

Mea
..
qad + Ne can be obtained through adopting the RNEA.

Mea
..
qad + Ne = RNEA

(
qd,

.
qd,

[ ..
qT

ad, 0
]T
)

(33)

Similarly, q(3)ed and q(4)ed can be obtained by solving the following equations:

Me
...q ed = −ne − Ke

.
qed − De

..
qed (34)

Meq
(4)
ed = −

(
.
ne +

.
Me

...q ed

)
− Ke

..
qed − De

...q ed (35)
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where ne =
.

Me
..
qed + Mea

...q ad +
.

Mea
..
qad +

.
Ne. The nonlinear terms ne and

.
ne +

.
Me

...q ed are
calculated by adopting the EJNEA and EJNEA3 as follows:

ne = EJNEA3

(
qd,

.
qd,

..
qd,

[...qT
ad, 0

]T
)

(36)

.
ne +

.
Me

...q ed = EJNEA

(
qd,

.
qd,

..
qd, ...q d,

[
q(4)ad

T
, 0
]T
)

(37)

According to (3), the motor position θd and velocity
.
θd are derived as:

θd = −K−1
s τs + qad (38)

.
θd = −K−1

s
.
τs +

.
qad (39)

By now, all required variables in (25) are known; thus, the feedforward torque calcula-
tion is completed, and the total procedure is summarized as follows:

Step 1. Solve the internal dynamics (12) using an ODE solver to obtain qed and
.
qed;

Step 2. Compute matrices Me and Mea using the CRBA;
Step 3. Compute Mea

..
qad + Ne using the RNEA and solve (32) to obtain

..
qed;

Step 4. Compute ne using the EJNEA3 and solve (34) to obtain q(3)ed ;

Step 5. Compute
.
ne +

.
Me

...q ed using the EJNEA and solve (35) to obtain q(4)ed ;
Step 6. Compute τs,

.
τs, and

..
τs using the RNEA, EJNEA3, and EJNEA, respectively;

Step 7. Compute θd and
.
θd using (38) and (39);

Step 8. Compute feedforward torque τcFW using (25).

Remark 1. The elastic deformations in nonactuated directions are compensated by solving (23),
while the elasticities in actuated directions are compensated in the feedforward torque calculation
algorithm. Thus, the proposed method can further improve the control precision.

Remark 2. It is time consuming to solve the internal dynamics (12) through numerical integration.
However, the traditional stable inversion methods [17] are based on numerical optimization which
needs to solve the internal dynamics repetitively. In contrast, the internal dynamics need to be solved
only once in the proposed calculation algorithm since the EFJM is transformed into a minimum-phase
system. Thus, the computational burden is remarkably reduced.

Remark 3. The proposed calculation algorithm does not require the analytic expression of the robot;
thus, it can be applied to general open-chain robots easily.

4. Simulation and Experimental Results

Considering the disturbance, noise, and the parameter uncertainties of actual manipu-
lators, a PID feedback controller is employed in simulations and experiments to improve the
robustness and to avoid the drift of tracking errors. Since only the motor side is equipped
with position sensors for most industrial manipulators, the motor torque command is
designed as:

τc = τFF + KP(θ− θd) + KD

( .
θ− .

θd

)
+ KI

∫
(θ− θd)dt (40)

where τFF is the feedforward torque, and KP, KD, and KI are constant controller gain
matrices. The reference motor trajectories θd are obtained using (38).
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4.1. Simulation Results

(1) Example 1: A planar robot

To validate the superiority of the proposed output-redefinition-based feedforward con-
trol approach (ORFF), simulations using the ORFF, the traditional FJM-based feedforward
approach (FJMFF) [21], and the continuous DAE optimization solver (CDAEOS) [17] are
carried out on a planar robot in this section. As shown in Figure 3, the EFJM of this planar
robot has three rigid bodies, two actuated joints, and one nonactuated joint. The dynamic
parameters of each link in this planar robot are shown in Table 1 where the link parameters
include length l, inertia I, mass m, center of mass c, and joint parameters including stiffness
k, damping d, and motor inertia b.

 

Figure 3. The EFJM of planar robot.

Table 1. Dynamic parameters of planar robot.

Link m (kg) I (kgm2) l(m) c(m) Joint k(Nm/rad) d (Nm/(rad·s−1)) b (kgm2)

1 and 2 100 0.5 1 0.5 1 and 2 5 × 105 0 100
3 200 0.7 1.4 0.7 3 5 × 105 500 -

To show the efficiency of the proposed computation algorithm clearly, the feedforward
torques are solved using three methods on an Intel i5-10400 PC with 16 G RAM. The step
size is selected as 1 ms in the simulation. The tip of the robot moves from Q0 = [0.5, 2.5] m
to Q f = [0, 3] m in 0.5 s, 1 s, and 2 s. The execution times and setpoint control errors of the
three methods are shown in Table 2.

Table 2. Solving times and control errors of the three methods in simulation, example 1.

Motion Time 0.5 s 1 s 2 s

Method ORFF FJMFF CDAEOS ORFF FJMFF CDAEOS ORFF FJMFF CDAEOS
Solving time (s) 0.6384 0.1680 154.0 1.209 0.2428 170.3 1.922 0.4038 129.8

Error (mm) 0.5062 0.9890 1.855 0.2510 2.644 1.344 0.02861 0.5760 0.07245

As indicated in Table 2, the setpoint control error of the proposed ORFF is significantly
reduced compared with that of the FJMFF and CDAEOS under three conditions. When the
moving time is 1 s, the control error of the ORFF is reduced by over 90% and 80% compared
with that of the CDAEOS and FJMFF, respectively. On the other hand, the execution time of
the ORFF is 4–5 times that of the FJMFF, while the execution time of the CDAEOS is much
longer than that of the other two methods.

The bounded feedforward torques and nonactuated joint positions obtained by using
the proposed ORFF are shown in Figure 4a. As a comparison, the feedforward torques are
solved without output redefinition, and the results are shown in Figure 4b. It is obvious
that the internal dynamics of the original EFJM system are unstable, and the feedforward
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torques are unbounded. Thus, the results in Figure 4 demonstrate that the system is
transformed into a nonminimum-phase system by output redefinition.

Figure 4. Nonactuated joint positions and feedforward torques: (a) with output redefinition; (b) with-
out output redefinition.

(2) Example 2: Six DOFs Manipulator

To prove the proposed method can be applied to complex industrial manipulators,
simulations are carried out on an EFORT ER7 robot with six DOFs. The dynamic parameters
are shown in Table 3.

Table 3. Dynamic parameters of ER7.

Parameters Link1 Link2 Link3

Mass (kg) 9.1366 9.4724 4.9985
Center of mass (m) [0.01847, −0.017, −0.070] [0.1563, 0.0523, 0.0312] [0.0142, 4.8 × 10−3, 0.0248]

Inertia (kgm2)
⎡⎣0.1194 0.0009 0.006

0.0009 0.1093 −0.0036
0.006 −0.0036 0.055

⎤⎦ ⎡⎣ 0.0518 −0.0088 −0.0415
−0.0088 0.44 0.0008
−0.0415 0.0008 0.4063

⎤⎦ ⎡⎣ 0.0211 0.0027 2.02 × 10−4

0.0027 0.0191 2.6 × 10−4

2.0 × 10−4 2.6 × 10−4 0.0176

⎤⎦
Parameters Link4 Link5 Link6

Mass(kg) 5.3476 1.6462 0.01
Center of mass (m) [−0.0132, 0.0251, −0.171] [6.1 × 10−4, −0.0174, 5.3 × 10−4] [1.5 × 10−4, 0, −9.8 × 10−4]

Inertia (kgm2)
⎡⎣0.2390 0.0052 0.0353

0.0052 0.2324 −0.0231
0.0353 −0.0231 0.0205

⎤⎦ ⎡⎣ 4.7 × 10−3 −2.4 × 10−5 −1.2 × 10−5

−2.4 × 10−5 1 × 10−3 −1.2 × 10−6

−1.2 × 10−5 −1.2 × 10−6 4.8 × 10−3

⎤⎦ ⎡⎣1.36 × 10−6 0 0
0 1.33 × 10−6 0
0 0 2.66 × 10−6

⎤⎦

Firstly, simulations are carried out using the rigid model of ER7, where all elasticities
are ignored. The traditional rigid-model-based feedforward method (RMFF) is used to
control the robot, i.e., the feedforward torque τFF in (40) is computed using the rigid robot
model. The parameters of the PID controller are chosen as kPj = 100, kDj = 1, and kIj = 1,
where j = 1, 2, · · · , 6. The target pose of the end effector is selected randomly in the task
space, and 100-run simulations are carried out. The setpoint control root-mean-square
errors (RMSEs) are shown in Table 4.

Table 4. Setpoint control RMSEs of rigid model using RMFF.

Δx(mm) Δy(mm) Δz(mm) Δψ(deg) Δθ(deg) Δϕ(deg)

9.581 × 10−4 8.713 × 10−4 3.015 × 10−4 2.712 × 10−3 7.822 × 10−3 7.285 × 10−3

Secondly, simulations are carried out using the flexible model of ER7 with different
load levels. The EFJM of ER7 with six actuated joints and two nonactuated joints is built as
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shown in Figure 5. The flexible parameters are shown in Table 5, where the two nonactuated
joints are denoted by joints 1Y and 3Y.

Figure 5. Geometric model and extended flexible joint model of EFORT ER7.

Table 5. Parameters of extended flexible joints of ER7.

Joint 1 1Y 2 3 3Y 4 5 6

Stiffness (Nm/rad) 36,407 226,357 17,922 13,410 56,854 146,586 139,076 7446
Damping (Nm/(rad·s−1)) 0 858.99 0 0 37.25 0 0 0

Inertia of motor (kgm2) 2.047 0 2.285 0.4954 0 0.1847 0.0805 0.0288

Similarly, 100-run simulations for ER7 are carried out by selecting the target end
effector pose randomly. In order to demonstrate the improved performance of the proposed
method under the different load conditions, the payload of the robot is set to 0 kg, 3 kg, and
6.5 kg, respectively. Since the model is too complicated for the CDAEOS to obtain a solution
in reasonable time, only the traditional RMFF and FJMFF are adopted for comparison. The
step size of the feedforward torque solver is 1 ms. The average execution times of the ORFF
and FJMFF are 1.3457 s and 0.2554 s, respectively. The setpoint control RMSE of the ORFF
and FJMFF are shown in Table 6, where the orientation error is given in the form of a Euler
angle. The control results of the first group of simulations using the proposed ORFF under
6.5 kg payload are shown in Figures 6–9. The actuated joint and nonactuated positions are
shown in Figures 6 and 7, respectively. The actuated joint velocities are shown in Figure 8.
It can be seen that the nonactuated joint positions are bounded, which indicates that the
internal dynamics are stable. Hence, bounded control torques are obtained by using the
proposed ORFF method, as shown in Figure 9.

Table 6. Setpoint control RMSEs of flexible model in simulation, example 2.

Payload Method Δx(mm) Δy(mm) Δz(mm) Δψ(deg) Δθ(deg) Δϕ(deg)

0 kg
RMFF 9.553 × 10−1 7.806 × 10−1 2.061 × 10−1 1.192 × 101 8.256 × 100 6.531 × 100

FJMFF 8.660 × 10−2 4.815 × 10−2 1.196 × 10−2 3.867 × 10−1 7.419 × 10−1 4.289 × 10−1

ORFF 2.944 × 10−4 4.506 × 10−4 1.586 × 10−4 2.524 × 10−3 2.881 × 10−3 4.379 × 10−3

3 kg
RMFF 2.174 × 100 2.536 × 100 9.789 × 10−1 3.829 × 100 1.640 × 101 1.881 × 101

FJMFF 2.509 × 10−1 2.211 × 10−1 4.948 × 10−2 1.024 × 100 1.930 × 100 1.696 × 100

ORFF 8.139 × 10−4 7.726 × 10−4 3.249 × 10−4 4.230 × 10−3 6.909 × 10−3 6.773 × 10−3

6.5 kg
RMFF 9.553 × 10−1 7.806 × 10−1 2.061 × 10−1 1.192 × 101 8.256 × 100 6.531 × 100

FJMFF 1.677 × 100 1.595 × 100 5.654 × 10−1 2.419 × 100 1.162 × 101 1.137 × 101

ORFF 1.463 × 10−3 1.643 × 10−3 6.991 × 10−4 4.079 × 10−3 1.298 × 10−2 1.260 × 10−2
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Figure 6. Actuated joint positions in first group simulation under ORFF.

 

Figure 7. Nonactuated joint positions in first group simulation under ORFF.

 

Figure 8. Actuated joint velocities in first group simulation under ORFF.
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Figure 9. Control torques in first group simulation under ORFF.

As shown in Table 5, the traditional RMFF can achieve a satisfactory control accuracy
for a rigid robot model. However, the control accuracy of the RMFF is greatly reduced in
a flexible robot model when the effects of elasticities are considered, as shown in Table 6.
Although the FJM method can improve the control accuracy, it fails to achieve satisfactory
results as it can only compensate the effects of elasticities in rotational directions. In contrast,
the proposed ORFF method achieves optimal control precision since it can compensate
the effects of elasticities in all directions. In addition, it can be seen that the control RMSE
of the flexible model using the ORFF is at the same level as the control RMSE of the rigid
model using the RMFF control method. This also indicates that the pose error caused
by flexibilities are compensated accurately by using the ORFF. Moreover, by comparing
the control accuracy under different load conditions, it can be seen that the improvement
achieved by the ORFF is more evident under high-payload conditions.

4.2. Experimental Results

To further evaluate the effectiveness of the proposed feedforward control method,
experiments are carried out using a Franka Emika Panda 7-DOF Manipulator. As shown in
Figure 10, the experimental platform consists of the robot, its control unit, and a workstation
PC. Based on ROS, the PC can send real-time torque commands at 1 kHz to the robot.

 

Figure 10. Experimental platform.

In order to simulate the effect of the unactuated joint, the motor position of the third
joint remains fixed. Then, the dynamics of the Panda can be described by the EFJM, as
shown in Figure 11. The parameters of the extended flexible joints are identified through
experiments, as shown in Table 7, where the unactuated joint is denoted by joint 3Y. The
dynamic parameters of the Panda have already been identified [22].
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Figure 11. Parameters and the EFJM of the Franka Emika Panda.

Table 7. Parameters of extended flexible joints of the Panda.

Joint 1 2 3 3Y 4 5 6

Stiffness (Nm/rad) 14,250 14,250 14,250 14,250 9000 9000 9000
Damping (Nm/(rad·s−1)) 0 0 0 15 0 0 0

In experiment, 25 target points are selected randomly in Cartesian space. Then, the
ORFF and FJMFF are employed to control the robot combined with the PD controller.
The parameters of the PD controller are shown in Table 8. Similarly, the CDAEOS is not
employed in the experiments due to its heavy computational burden. The feedforward
torques are solved offline, and the average execution times of the ORFF and FJMFF are
8.2552 s and 0.9884 s, respectively. The desired trajectories of the actuated joints are
generated by using a smooth planning algorithm [23], and corresponding feedforward
torques are computed. The setpoint control RMSEs of the two control methods are shown
in Table 9. It can be seen that the RMSE of the proposed method is reduced significantly
compared with that of the FJMFF. The position RMSEs of the proposed method decrease by
65%, 81%, and 92% in the x-, y-, and z-directions, respectively, and the orientation RMSEs
decrease by 62%, 64%, and 71% in the three directions, respectively.

Table 8. Parameters of PD controller in experiments.

Joint 1 2 3 4 5 6

kP 5000 5000 4000 2500 2500 1500
kD 30 30 30 15 15 10

Table 9. Setpoint control RMSEs of two methods in experiments.

Δx(mm) Δy(mm) Δz(mm) Δψ(deg) Δθ(deg) Δϕ(deg)

FJMFF 1.761 × 10−1 2.101 × 10−1 4.962 × 10−1 2.867 × 10−2 3.259 × 10−2 4.448 × 10−2

ORFF 6.163 × 10−2 3.831 × 10−2 3.890 × 10−2 1.082 × 10−2 1.114 × 10−2 1.271 × 10−2

Figures 12–14 show the control results of the first group of experiments under the
proposed ORFF method. Figures 12 and 13 show the actuated joint positions and velocities,
respectively. The control torques using the proposed ORFF method are shown in Figure 14.
It can be seen that all signals are bounded, which indicates that the nonminimum-phase
EFJM is transformed into a minimum-phase system.
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Figure 12. Actuated joint positions in first group experiment under ORFF.

 

Figure 13. Actuated joint velocities in first group experiment under ORFF.

 
Figure 14. Control torques in first group experiment under ORFF.

Through the simulation and experimental results, it can be seen that the ORFF achieves
better setpoint control performance compared with the FJMFF and CDAEOS. The excellent
setpoint control performance indicates that the pose error caused by elastic deformations
in all directions is compensated based on the EFJM. Compared with the FJMFF, the exe-
cution time of the ORFF is increased as the cost of significant performance improvement.
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Compared with the CDAEOS, the computational burden of the ORFF is greatly reduced.
In addition, the feedforward torques obtained by the ORFF are bounded in all simulations
and experiments. Thus, it is indicated that the unstable internal dynamics are transformed
into stable ones, which is consistent with the theoretical analysis.

Remark 4. Although the EFJM is more complicated than the classical FJM, the dynamics model
accuracy is improved significantly by using the EFJM. Consequently, the proposed ORFF based on
the EFJM can improve the end effector setpoint control precision remarkably.

5. Conclusions

In this paper, a feedforward control method based on the output redefinition of
the EFJM is proposed for flexible industrial manipulators. Based on the EFJM, the pose
error caused by flexibilities in actuated and nonactuated directions are compensated ac-
curately. By output redefinition, the original nonminimum-phase EFJM is transformed
into a minimum-phase system. A recursive feedforward torque computation algorithm
is designed to reduce the computational burden. Simulation and experimental results
indicate that the proposed method can improve the setpoint control precision significantly
compared with traditional feedforward control methods. Future work will focus on ex-
tending the feedforward control method to the trajectory tracking control problem and the
condition with unknown load.
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Abstract: This study presents a spiral pipeline robot designed for detecting and preventing oil and
gas pipeline leakages. A comprehensive analysis of factors such as spiral angle, normal force, pipe
material, and operating attitude is conducted based on the robot’s mechanical model in a straight
pipe. This in-depth investigation determines the optimal spiral angle, normal force, pipeline material,
and operating attitude to enhance the robot’s motion stability and traction performance. Using virtual
prototype technology, the robot’s traction performance is simulated under various working conditions,
normal forces, and attitude angles within the pipeline. An experimental platform is established to
verify the impact of deflection angle, normal force, and pipeline material on traction performance.
The experimental results and simulation analysis mutually validate each other, providing a reliable
reference for robot design and optimization. The spiral pipeline robot and its motion strategy
proposed in this study possess both theoretical value and practical application prospects in the field
of oil and gas pipeline inspection and maintenance.

Keywords: spiral pipe robot; pipeline inspection; motion characteristic; virtual prototyping technology

1. Introduction

As industrialization accelerates, nations’ demand for oil and gas resources continues
to grow [1]. In this context, oil and gas pipelines, serving as essential means of energy
transportation, hold a pivotal strategic position and economic value in national industrial
development [2]. However, over time, various defects may gradually emerge inside these
pipelines, such as leakage points, pits, and corrosion [3].

Oil and gas pipeline inspections currently rely heavily on manual methods, which
have limitations and are inefficient in promptly detecting pipeline leaks [4]. In recent years,
pipeline robots have emerged as effective tools to improve the accuracy and efficiency of
inspections and prevent pipeline leakage accidents. These specialized devices are designed
for narrow spaces and offer strong adaptability and reliability [5,6]. They can be equipped
with various sensors, such as ultrasonic, infrared, and magnetic flux leakage sensors, to
detect defects such as leakage points, corrosion, and pits in pipelines [7]. Additionally,
pipeline robots possess data analysis and storage capabilities, allowing them to process
and analyze collected information in real time and provide accurate and reliable results to
maintenance personnel [8].

Researchers including Shao et al. have categorized pipeline robots into three structural
types: wheeled, tracked, and non-wheeled [9]. Wheeled robots refer to robots that have
drive wheels installed on their main body, creating a sealed contact with the inner wall of
the pipeline, allowing the robot to move within the pipeline [10,11]. Miao et al. developed a
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wheeled pipeline isolation and plugging robot and investigated its dynamic characteristics
during the traversal of weld seams [12]. Wheeled robots can be further classified based on
their mode of motion, namely direct-wheel drive and spiral drive. Spiral drive robots are
characterized as having the axis of their drive wheels at a certain angle with respect to the
central axis of the pipeline, resulting in a spiral trajectory along the inner wall. A spiral
pipeline robot was designed by Yonsei University in South Korea, capable of operating
within branch pipelines with zero curvature radius and varying diameters [13].

Tracked pipeline robots, unlike wheeled robots, feature tracks that provide a larger
contact area with the pipeline. This design offers increased friction and superior traction,
resulting in more reliable operation compared to wheeled robots. Zhang et al. developed a
tracked pipeline inspection robot that allows for the individual speed adjustment of each
track. This enables the robot to achieve posture adjustments within the pipeline and adapt
to geometric constraints present in the pipeline environment [14].

Non-wheeled pipeline robots, such as snake-like robots, utilize complex motion control
algorithms to navigate and operate within pipelines [15]. Gao and other researchers
proposed a multi-link magnetic wheel pipeline robot that demonstrates good control
performance in linear movement, turning, wall climbing, and obstacle crossing, among
other aspects. This robot can adapt to various terrains effectively [16].

In certain scenarios, robots employ tethered cable connections for their operations. In
other operational environments, robots utilize wireless communication methods [17]. How-
ever, wireless communication and positioning between robots and ground base stations
face technical challenges in the context of buried oil and gas pipelines. The underground
environment, consisting of soil, rock, concrete, and other materials, significantly weakens
communication signals, reducing their transmission distance. Moreover, communication
signals in underground environments may encounter reflection, refraction, and scattering
within pipelines, resulting in delays, distortions, and interference. The complexity of the
pipeline environment further hinders accurate signal localization [18]. To address these
challenges, researchers have proposed several solutions, such as the Kalman filter, an effi-
cient linear optimal estimation algorithm that predicts system states based on incomplete
and noisy measurement data [19–21]. By integrating data from various sensors such as iner-
tial measurement units (IMU), odometers, magnetometers, and optical sensors, the Kalman
filter eliminates noise and provides accurate position and attitude estimation for robots
within the pipeline [22,23]. Another solution is simultaneous localization and mapping
(SLAM), a technology that enables robots to estimate their location within an unknown
environment while constructing a map of that environment. SLAM assists pipeline robots
in creating a map that contains pipeline geometry, running trajectories, and other relevant
information. The SLAM algorithm continuously updates the robot’s position within the
map [24–26]. Wireless communication is also essential, and it is facilitated through radio
frequency (RF) signals between robots and ground workstations. Common approaches
include outdoor positioning based on relay nodes placed along a straight path [27] and
utilizing the radio frequency signal of the robot within a metal pipe, eliminating the need
for ground operators to possess knowledge of the pipeline map. In the latter case, a
radio frequency signal transmitter and receiver capture periodic received signal fading,
which is then used to establish the robot’s positioning system based on the periodic signal
fading [28,29].

Spiral pipeline robots have been widely utilized in specialized operations due to their
simple structure and excellent performance in bending pipelines. However, these robots
still face challenges related to insufficient traction and limited load capacity. To address
these issues, this study presents a spiral pipeline robot designed with environmental
detection and motion control capabilities. By examining multiple factors that affect the
robot’s traction performance, this research aims to enhance the work efficiency and safety
of the spiral pipeline robot.
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2. Pipeline Inspection Robot System Design

Figure 1 shows the main unit of the pipeline inspection robot. The external structure
of the robot is composed of the robot spiral motion unit, the motor drive unit, the support
unit, the battery box, the front detection and control unit, the rear detection and control
unit and the upper unit. The robot specifications are shown in Table 1.

Figure 1. Pipeline inspection robot prototype.

Table 1. Main technical parameters of the pipeline inspection robot.

Technical Parameter Parameter Value

Robot length/mm 580
Robot weight/kg 8.5 kg

Adaptive pipe diameter/mm 180–225
Maximum velocity/(m·min−1) 3

The minimum radius of curvature is available/mm 600

2.1. Structure Design of Pipeline Robot

Figure 2 describes the structure of a spiral motion unit, which is an engineering
component designed to operate in a pipe or similar cylindrical environment. The unit
consists of three drive modules that are equidistantly positioned at 120◦ intervals around
the circumference. Each module has a built-in spring and steering gear that both connect
to a wheel frame. A driving wheel is attached to this frame using specialized bolts. The
steering gear is fastened to a mounting frame with bolts, and four springs are evenly placed
at the base of this frame, allowing the drive module to adapt to varying pipe diameters.
The spiral motion unit has three battery compartments arranged circumferentially, and the
module can be connected to a drive motor module through a coupling. The spiral motion
unit features driving wheels on each module that are positioned at a specific angle, known
as the spiral angle, with respect to the axis of the pipeline. This orientation enables the
generation of a driving force along the pipeline through a mechanism.

Figure 2. Schematic diagram of spiral motion unit structure.

Figure 3 illustrates the central motor module positioned at the center of the robot.
The central motor is connected to the large bevel gears via the output end, while the
three small bevel gears are evenly distributed circumferentially, with a separation of
120 degrees between each gear. The small bevel gears are securely affixed to the lead screw,
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and upon driving the large bevel gears, the three small bevel gears commence rotation.
This rotational motion is transmitted to the synchronous belt and the lead screw, thereby
inducing movement of the lead screw nut. By compressing the spring around the smooth
rod, the screw nut propels the entire drive module along the pipe’s diameter. Consequently,
this motion instigates a variation in the positive pressure between the driving wheel and
the inner wall of the pipe. To monitor the contact pressure between the driving wheels
and the inner wall of the pipeline, pressure sensors are strategically placed between each
driving module and its corresponding spring. By adjusting the spring compression of the
central motor, it is possible to control the positive pressure exerted by the driving wheel,
ensuring optimal performance and adaptability to various pipeline conditions.

Figure 3. Structure diagram of the central motor.

The motor driving unit is a crucial component of the system and primarily consists
of a stepper motor, connecting rod, round nut, and battery box. As illustrated in Figure 4,
the battery housing serves as the primary support for the motor drive unit, with front and
rear baffles connected by connecting rods. These rods are secured with four nuts on each
side. The stepper motor is attached to one side baffle, and it powers the front and side
spiral motion units to move circularly around the pipeline axis, enabling the robot to travel
in a helical pattern within the pipeline. To supply the necessary power, the battery box is
designed with four compartments to accommodate four lithium batteries.

Figure 4. Structure diagram of motor drive unit with battery box.

The support module, an essential component of the system, is composed of a support
wheel, lifting column, support seat, spring, and smooth bolt. Figure 5 illustrates the
structure of the support module. The support seat serves as the main structural support,
with three supporting units connected to the support frame by welding at 120◦ intervals
around the circumference. The support module is designed to adapt to varying pipe
diameters, ensuring that the support wheel maintains vertical contact with the inner wall
of the pipe, providing effective support. Connected to the drive motor module through
the rear support body, the support module can balance reverse torque generated during
rotation. The support wheel is mounted on the wheel frame using child and mother bolts.
The lifting column, equipped with a built-in spring, can move up and down to enable
the support module to adapt to changes in pipe diameter, ensuring its effectiveness in
providing the necessary support under different pipeline conditions.
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Figure 5. Schematic diagram of support unit structure.

2.2. Control System Design

Figure 6 presents the control system of the pipeline inspection robot. The robot’s
CPU is an STM32-F103 chip, while the console utilizes an embedded industrial computer.
The pipeline inspection robot communicates with the industrial computer via wireless
communication, and the robot CPU directs the robot to operate within the pipeline based on
the commands provided by the operator using the industrial computer. Additionally, the
robot performs defect detection and information collection functions within the pipeline.
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Figure 6. Control system diagram.

The robot control system encompasses the robot motion control unit, the pipeline in-
formation acquisition unit, and the wireless communication unit. The pipeline information
acquisition unit collects images and environmental data from within the pipeline. Image
information includes defects such as cracks, leakages, pits, and corrosion. Image acqui-
sition is achieved through two infrared night vision cameras with autofocus capabilities,
positioned at the front and rear of the robot.

The front camera rotates and continuously scans around the pipeline’s axis during the
robot’s spiral advancement, capturing defect information in the dark pipeline environment
and fulfilling the 360◦ detection requirements for the pipeline’s inner wall. The rear camera
supports the robot’s navigation and positioning functions within the pipeline, continuously
outputting and storing images in real time. The collected environmental information
encompasses gas concentrations, pipe diameters, and pipe temperatures.

The robot motion control unit governs the deflection angle of the three steering motors
and the speed of the stepper motor and the central motor, adjusting the robot’s posture,
speed, and bending mode while operating in the pipeline. Pressure sensors measure
the pressure between the driving wheel and the pipeline’s inner wall, and the error value
between the current pressure and the target pressure for the specific application is calculated.
This error signal serves as the output signal for PID control, directing the central motor to
adjust the positive pressure in order to achieve the desired robot traction force and improve
the robot’s working efficiency within the pipeline.

Pipeline robots employ visual positioning methods within pipelines, utilizing images
and point cloud data gathered by front and rear cameras, as well as laser ranging sensors,
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to ascertain the robot’s position and orientation within the pipeline. The process involves
several specific steps: (1) data collection: images and point cloud data are collected by the
robot’s cameras and laser ranging sensors; (2) feature extraction: the scale-invariant feature
transform (SIFT) algorithm is employed to extract relevant features conducive to positioning,
such as pipeline defects; (3) feature matching: the extracted features in the current image or
point cloud data are matched with previously collected data or features in a pre-constructed
map; (4) motion estimation: by matching pairs of feature points, the relative motion of the
robot between two instances can be estimated; and (5) fusion and optimization: the estimated
motion information is integrated into the robot’s positioning system, along with data from
other sensors, such as odometers and inertial navigation systems.

Wireless communication leverages radio frequency (RF) technology to facilitate data
transmission between pipeline robots and ground control centers. Utilizing specific fre-
quency bands and modulation modes, low-frequency RF signals can minimize signal
attenuation in underground environments. Low-frequency signals experience relatively
less loss when penetrating underground structures, thereby enhancing communication
distances. In the communication between pipeline robots and ground control centers,
multiple antennas are installed on both the robots and the control stations to transmit
signals simultaneously across multiple channels. This can counteract, to some extent,
the multipath effect (where communication signals in underground environments may
reflect, refract, and scatter within the pipe) and signal attenuation (as wireless signals
experience attenuation when passing through underground structures). Signal attenuation
is particularly pronounced when traversing metal, water, or other high-density materials,
resulting in limited communication distances. Employing relay nodes for segmental sig-
nal transmission can increase communication distances and signal coverage. In pipeline
robot-to-ground communication, multiple relay nodes are deployed to enable multi-hop
transmission. When direct communication is hindered by signal attenuation and environ-
mental obstacles, signals can be transmitted sequentially through relay nodes, allowing for
longer-distance and more reliable communication.

2.3. Design of PID System for Pressure Regulation

The PID control principle is shown in Figure 7. The PID control system comprises the
following components: a stepper motor, a lead screw nut, a spring, and a pressure sensor.
The stepper motor controls the movement of the lead screw nut by adjusting the number
of steps, thereby altering the compression of the spring and generating the corresponding
elastic force. Simultaneously, the pressure sensor is utilized to measure the actual level of
elastic force exerted by the spring. Assuming that the spring stiffness is k, the damping
coefficient is b, the lead of the screw nut is Ph, and the angle of the stepper motor is ϕ(t),
then the displacement x(t) of the screw nut can be expressed as:

x(t) =
Ph · ϕ(t)

2π
(1)

Figure 7. PID control schematic diagram.

The spring force F(t) can be expressed as:

F(t) = k · x(t) + b · .
x(t) (2)
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The transfer function Gs(s) of the system composed of a screw nut and a spring can
be obtained by means of the Laplace transform:

Gs(s) =
F(s)
θ(s)

==

(
k · Ph
2π

+
b · Ph
2π

· s
)

(3)

The stepper motor transfer function is simplified to a first-order inertial system, Km is
the angle coefficient of the stepper motor, T is the time constant of the stepper motor, and
the transfer function is:

Gm(s) =
ϕ(s)
U(s)

=
Km

Ts + 1
(4)

The whole system transfer function is:

G(s) = Gs(s)Gm(s) (5)

The transfer function of the PID controller is:

D(s) = Kp +
Ki
s
+ Kds (6)

By repeatedly adjusting the parameters Kp, Ki and Kd of the three links, the PID control
system with a fast response and small steady-state error can be obtained.

3. Robot Motion Characteristic Analysis and Mechanical Model Establishment

3.1. Analysis of Robot Traction Characteristics

As shown in Figure 8, in the given context, Fw represents the traction force of the robot,
while FT denotes the driving force acting on the driving wheel during the rotation process
of the driving module. Ff is the lateral force generated by the side-sliding of the driving
wheel as the robot spirals through the pipeline. N denotes the positive pressure of the
driving wheel, and θ signifies the spiral angle. Additionally, γ represents the angle between
the actual and expected running direction of the robot. The deflection stiffness coefficient
of the driving wheel is represented by Ky, and the dynamic friction coefficient is denoted
by μ. Φ is the sideslip rate.

Ff =

{(
1 − 1

4Φ

)
μN Φ > 1/2

ΦμN Φ ≤ 1/2
(7)

Figure 8. Traction analysis model.

The sideslip rate Φ can be expressed as:

Φ =
Ky tan γ

μN
(8)
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The sideslip force Ff can be expressed as:

Ff (γ) =

⎧⎨⎩Nμ
(

1 − Nμ cot γ
4Ky

)
Ky tan γ

Nμ > 1
2

Ky tan γ
Ky tan γ

Nμ ≤ 1
2

(9)

The robot can generate traction under the following conditions:⎧⎨⎩
FT cos θ = Fw sin θ
FT sin θ + Fw cos θ = W(γ)
γ ≤ θ

(10)

Under ideal conditions, where the driving wheel supplies enough friction force and
no slipping takes place, the traction force of the robot can be described as a function of
the variables discussed earlier. Assuming that θ = γ (where θ is the spiral angle and
γ represents the ideal angle for effective traction),

Fw(θ) =

⎧⎨⎩Nμ
(

1 − Nμ cot θ
4Ky

)
cos θ

Ky tan θ
Nμ > 1

2

Ky sin θ
Ky tan θ

Nμ ≤ 1
2

(11)

Based on this analysis, the traction force and spiral angle of the robot operating within
the pipe are related to the positive pressure exerted by the robot, the contact between the
driving wheel and the inner wall of the pipe, and the pipe material. As the spiral angle
increases, the robot’s traction force also increases, reaching a maximum value at an optimal
angle. Beyond this point, the traction force begins to decrease gradually. Thus, it is essential
to find the optimal spiral angle to maximize the traction force and ensure efficient robot
performance within the pipeline.

3.2. Robot Positive Pressure Analysis in Pipeline

When it comes to pipeline operations, robots are required to not only move forward
and backward, but also to rotate around the axis of the pipeline. This necessitates that the
driving wheels of the robot exert appropriate normal forces against the inner wall of the
pipeline while maintaining an optimal operational posture angle, as shown in Figure 9a.
The posture angle, denoted as ω, is defined as the angle between the support module and
the XZ plane. The total enclosed force between the driving wheels and the inner wall of
the pipeline is represented by ∑ N. The slope of the pipeline with respect to the horizontal
plane is defined as τ.

∑ N =

⎧⎪⎨⎪⎩
2mg cos ω cos τ −60

◦ ≤ ω ≤ 60
◦

2mg cos
(
ω − 120

◦)
cos τ 60

◦ ≤ ω ≤ 180
◦

2mg cos
(
ω − 240

◦)
cos τ 180

◦ ≤ ω ≤ 300
◦

(12)

Figure 9. (a) Normal force distribution diagram. (b) Relationship between driving factor and
attitude angle.
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The parameter Ig is defined as the driving factor, which represents the ratio of the
robot’s weight to the enclosed force. It serves as a measure of the contribution of the robot’s
own weight to the traction force.

Ig =
∑ N
mg

=

⎧⎪⎨⎪⎩
2 cos ω cos τ −60

◦ ≤ ω ≤ 60
◦

2 cos
(
ω − 120

◦)
cos τ 60

◦ ≤ ω ≤ 180
◦

2 cos
(
ω − 240

◦)
cos τ 180

◦ ≤ ω ≤ 300
◦

(13)

From the above equation, it can be observed that the robot’s pose angle ω affects the
driving factor. Therefore, in order to maximize the utilization of the driving factor and
enhance the robot’s traction performance, it is beneficial to increase the normal force and
select the optimal pose angle. When operating in a horizontal straight pipe, as shown in
Figure 9b, it is evident that the optimal pose angles for the robot are 0◦, 120◦, and 240◦,
where the robot achieves the maximum driving factor.

3.3. The Trajectory of the Robot’s Spiral Motion in the Pipe

An XYZ coordinate system is established along the running direction of the robot,
as illustrated in Figure 10a. As the pipeline robot moves within the pipeline, smooth
movement can be achieved by ensuring that the spiral angle of the driving wheel is
consistent across all driving modules. The cross-section of the pipeline robot is circular,
and the parametric equation for this circle can be expressed as follows:

Rp =

⎡⎣x
y
z

⎤⎦ =

⎡⎣Rp cos α
Rp sin α

0

⎤⎦ (14)

Figure 10. (a) Theoretical running trajectory of the robot within the pipeline. (b) Actual running
trajectory of the robot as it moves through the pipeline.

Rp represents the radius of the circle (in mm); considering that the radius of the driving
wheel can be ignored, it can be replaced by the length of the pipeline robot’s driving arm.
α denotes the rotation angle (in degrees) of the pipeline robot’s driving arm around its center.

The spiral angle θ is formed between the driving wheel and the pipeline axis, causing
the driving wheel’s path along the inner wall of the pipeline to form a helical trajectory.
Based on the geometric relationship, the linear displacement of the helix along the Z-axis is
Rαtanθ, and the trajectory line Hs(α) of the helical motion can be expressed as follows:

[
Hs(α)

1

]
=

⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ = TZ

[
Rp
1

]
=

⎡⎢⎢⎣
Rp cos α
Rp sin α

Rpα tan θ
1

⎤⎥⎥⎦ (15)
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TZ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 Rpα tan θ
0 0 0 1

⎤⎥⎥⎦ (16)

Mathematica software was employed to validate the Hs(α) trajectory. With Rp set to
200 mm, θ at 30◦, and α ranging from 0◦ to 360◦, the actual running trajectory curve of the
robot was obtained, as depicted in Figure 10b.

4. Influencing Factors and Simulation Analysis of Robot Traction Performance

A prototype model was created using ADAMS simulation software. The robot was
imported into ADAMS, and its structure was simplified by retaining only the components
associated with the transmission. This process led to the final establishment of the virtual
prototype model for the pipeline robot.

4.1. Influence of Different Materials on Traction Performance of Robot in Straight Pipe Operation

The material used for oil pipelines is typically stainless-steel composite steel pipe,
which is generally coated with an anti-corrosive layer on the inside, providing good
corrosion resistance. Gas pipelines, on the other hand, are primarily made from steel,
aluminum, or plastic pipes. Consequently, the traction force exerted by the pipeline robot
varies depending on factors such as the transportation medium, transportation pressure,
and pipe material. As demonstrated earlier, the traction force of the pipeline robot relies on
the friction force between the driving wheel and the inner wall of the pipeline. This study
investigates the difference in traction force for the pipeline robot under various working
conditions and analyzes the magnitude of the traction force by simulating and altering its
contact friction coefficient.

The traction force acting under different working conditions was simulated in ADAMS.
First, the optimal spiral angle was set to 40◦, and the contact force parameters between the
driving wheel and the inner wall of the pipeline were established. The working condition
refers to the operating state of the robot in various environments. Material 1 and Material 2
represent the materials of the driving wheel and the pipeline, respectively, and the stiffness
coefficient K is 2855. The force index e is 1.1; the damping c is 0.57; the penetration depth d
is 0.1; mus denotes the coefficient of static friction, while mud represents the coefficient
of dynamic friction; vs is the static translation velocity; and vd corresponds to the friction
translation velocity. Additional simulation parameters for different working conditions are
presented in Table 2 below. The pipe diameter is set at 200 mm, and the robot’s running
time is 5 s.

Table 2. Contact parameters of robot and pipeline simulation.

Working Condition Material 1 Material 2 Mus Mud vs vd

1 rubber Steel (dry) 0.3 0.25 1 10
2 rubber Steel (wet) 0.08 0.05 1 10
3 rubber Aluminum (dry) 0.25 0.2 1 10
4 rubber Aluminum (wet) 0.05 0.03 1 10

In the ADAMS simulation process, the traction force of the robot in operation can be
simulated by placing a tension spring between the pipeline robot and the pipeline. The
tension and compression spring is positioned on the pipeline axis. One end is connected to
the robot’s center, and the other end is connected to the center of the vertical plane passing
through the pipeline axis. The spring’s stiffness coefficient is set to 800, and the damping
coefficient is set to 0.5. The simulation results of traction force in a straight pipe are shown
in Figure 11 below.
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Figure 11. (a–d) Traction forces of the robot in the straight pipe under working conditions 1, 2, 3, and
4, respectively.

According to the simulation results, the tension of the tension spring in the four
simulated operating conditions in the straight pipe will slip as the robot accelerates to
its maximum speed. The maximum traction of the robot will fluctuate within a small
range, and the traction will increase with the friction coefficient. The difference in the
transportation medium within the pipe made from the same material will also impact the
traction force. The tractive force of the robot running in a pipeline without a transport
medium is significantly greater than that in a pipeline containing a medium.

4.2. Influence of Positive Pressure on Traction Performance of Robot Support Wheel

The pipeline robot is designed with three groups of supporting wheels, distributed
at a 120-degree circumference, and each supporting wheel has a normal pressure with
the inner wall of the pipeline. The appropriate normal pressure is crucial for the robot’s
performance. Excessive normal pressure will result in high power consumption, while
insufficient positive pressure will prevent the robot’s driving wheel from generating enough
friction with the pipeline’s inner wall. In the analysis of normal force, the pipeline was set
with no medium transport, the material was plexiglass, the coefficient of static friction was
0.2, the coefficient of dynamic friction was 0.15, and the simulation time was 10 s.

The normal force of the driving wheel was set at 100 N, 110 N, 120 N, and 130 N,
respectively, and the simulation results met the requirement of traction force greater than
30 N, as shown in Figure 12 below. The tractive forces were 33 N, 36 N, 38 N, and 38 N, re-
spectively. The traction of the driving wheel increases with the increase in positive pressure.
However, when the positive pressure reaches a certain value, the traction will no longer
increase, because the robot’s maximum load capacity has an upper limit, ultimately causing
the robot to become stuck in the pipeline and unable to function normally. Consequently,
the normal force should be controlled between 100 N and 120 N, ensuring that the robot
can run smoothly in the pipeline while consuming less power.
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Figure 12. Tractive forces of the pipeline robot under different positive pressure settings. (a–d) Tractive
forces when the positive pressures are 100 N, 110 N, 120 N, and 130N, respectively.

4.3. Analysis of the Influence of Robot Attitude Angle on the Rotation of the Support Unit

When the spiral pipeline robot travels within a pipeline, its spiral module rotates
around the pipeline axis, while the support module serves to balance the counter torque
generated by the spiral module. Consequently, the robot not only moves forward and
backward inside the pipeline but also rotates around the pipeline axis, resulting in a
change in the robot’s motion posture that deviates from its initial position. The support
module is distributed circumferentially at 120-degree intervals. Although deviations in
the robot’s motion posture do not impact its operation, it must maintain the optimal
posture for entering bends as it navigates them. Furthermore, during the operation of the
robot’s towing cable module, posture deviations can cause the cable to become entangled,
necessitating limits and corrections to the robot’s posture deflection.

Based on the analysis in Section 3.2, different attitude angles affect the robot’s torque.
Therefore, four representative attitude angles of 0◦, 30◦, 60◦, and 90◦ were selected for
further examination. The simulation results are shown in Figure 13. In the 0–90◦ attitude
angle range, the support module’s rotational torque increases gradually with the rising
attitude angle. When the attitude angle reaches 90◦, the torque is at its maximum, and
when the angle is 0◦, the torque approaches zero. By adjusting the robot’s attitude angle to
0 degrees and maximizing the positive pressure between the support unit and the pipeline’s
inner wall, the torque of the robot’s support unit can be reduced, effectively restraining the
support unit’s rotation along the pipeline axis.

Figure 13. Robot torque of different attitude angles.
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5. Traction Experiment Verification and Analysis

An experimental platform was constructed for the pipeline robot. As shown in
Figure 14, one end of the spring is attached to the pipeline robot, while the other end is
connected to a force sensor. The sensor remains fixed in a specific position, and the robot
initiates its operation within the pipeline. This setup enables researchers to systematically
analyze the performance of the robot under various conditions, optimizing its design for
maximum efficiency and functionality.

Figure 14. Robot traction experiment test environment.

In this experiment, steel and plexiglass pipes are utilized as materials. Industrial
lubricating oil is applied to simulate the conditions of a medium under actual operation.
During the robot’s operation, when a slip occurs, the force sensor will cease data collection.
The tractive force of the robot is influenced by factors such as normal force, spiral angle,
pipe contact, and motor driving force. The spiral angle, pipe material, and driving wheel
normal force were chosen as variables, with the peak value collected by the sensor being
considered as valid data. A 42-series motor (the drive motor in the drive module of the
robot) was employed as the driving motor for the robot prototype, and the torque was set
at 10 Nm.

The test results are displayed in Figure 15a, and the trend of traction force variation is
generally consistent with the theoretical analysis. The traction force initially increases and
then decreases with the increase in the spiral angle; however, there is a significant deviation
from the theoretical analysis under conditions with small spiral angles. In sections with small
spiral angles, the pipe wall cannot provide sufficient friction, making it prone to slippage and
unsmooth operation. As the spiral angle increases, the slippage gradually disappears.

Among the four experimental working conditions, the steel pipe (dry) has the largest
friction factor, and the optimal spiral angle is approximately 40◦, followed by the plexiglass
pipe (dry), with its optimal spiral angle at around 50◦. Therefore, the optimal spiral angle
for robot traction tends to increase as the friction factor decreases. Consequently, the
robot’s spiral angle should be set based on different working conditions and varying spiral
angles. The tractive force of running in a steel pipe (dry) is greater than that of running in a
plexiglass (dry) pipe.
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Figure 15. (a) Experiment involving the robot under various working conditions; (b) experiment
with the robot operating under different normal forces.

In the steel pipe (dry) condition, the robot operates with a large traction force due
to its relatively high friction factor. The higher the friction factor, the greater the traction
force. In pipelines made from the same material, the tractive force of the robot’s operation
in a pipeline with a transport medium is significantly lower than in a pipeline without a
transport medium.

In the experiment, the robot’s experimental working condition was set as a plexiglass
pipe, and three different values of 100 N, 110 N, and 120 N were established by adjusting
the normal force of the driving wheel. The normal force was monitored using a drive
wheel pressure sensor, and each peak traction was recorded as a data collection point
during the test. The test results, shown in Figure 15b, exhibit the same variation trend
as the simulation, although they are smaller than the simulation value. Under the same
working conditions, the optimal spiral angle of the robot is approximately 40 degrees, and
the optimal spiral angle does not change as the normal force increases.

6. Conclusions

(1) In this study, a spiral pipeline robot designed for oil and gas pipeline detection is
presented, and a corresponding mechanical model is constructed. The robot’s traction
performance is investigated through dynamic simulations, and the simulation results
are verified by experiments. It is found that the tractive force is closely related to
the normal force, helix angle, contact between the driving wheel and the pipe, and
the pipe material. In the small helix angle range, the robot is prone to skidding. As
the helix angle increases, the skidding phenomenon gradually decreases, and the
tractive force initially increases before decreasing. When the helix angle reaches 90◦,
the tractive force becomes zero.

(2) Under different working conditions, the robot’s traction force displays an increasing
trend with the rise in the friction coefficient, but the optimal helix angle decreases.
Therefore, it is necessary to adjust the appropriate deflection angle based on the actual
working condition. In pipelines of the same material, the presence or absence of
a transport medium affects the tractive force, with the force in dry pipelines being
significantly higher than that in pipelines containing a transport medium. The variable
helix angle bending strategy enables the robot to exhibit good passing performance in
bending pipes and offers better stability than a fixed helix angle bending.

(3) Under the same working conditions, the robot’s traction force can be improved by
adjusting the normal force of the driving wheel. The greater the normal force, the
greater the traction. When the normal force changes, the optimal helix angle for
traction remains at approximately 40◦ without significant change. Moreover, the
motion stability of the robot is a critical issue affected by various factors, such as the
center of gravity’s position and inertial force. To enhance motion stability and traction,
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the robot structure and control algorithm should be optimized, and a balance between
various factors should be achieved.
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Abstract: Digitalization shapes the ways of learning, working, and entertainment. The Internet,
which enables us to connect and socialize is evolving to become the metaverse, a post-reality universe,
enabling virtual life parallel to reality. In addition to gaming and entertainment, industry and
academia have noticed the metaverse’s benefits and possibilities. For industry, the metaverse is the
enabler of the future digital workplace, and for academia, digital learning spaces enable realistic
virtual training environments. A connection bridging the virtual world with physical production
systems is required to enable digital workplaces and digital learning spaces. In this publication,
extended reality–digital twin to real use cases are presented. The presented use cases utilize extended
reality as high-level user interfaces and digital twins to create a bridge between virtual environments
and robotic systems in industry, academia, and underwater exploration.

Keywords: metaverse; digital twin; robotics; extended reality

1. Introduction

Digitalization shapes how we learn, work, and entertain ourselves by providing the
tools for location- and time-independent presence and control of things. Gaining new
knowledge, learning new skills, playing games, socializing with others, and controlling
production systems is possible from anywhere by using everyday mobile devices. Advance-
ments in digitalization and the availability of mobile devices have grown a new generation
of digital natives [1,2]. Socializing, learning, and working in virtual environments are
natural for the digital native generation, who have grown up using mobile devices. The
metaverse is one of the latest implementations of evolving digitalization enabling the
aforementioned activities in a parallel digital version of our reality [3].

In the metaverse, we can exist as avatars and learn or work similarly to in the real
world, enabling a natural virtual environment for the digital native generation. Gaming and
entertainment are the most popular ways to experience the metaverse; multiplayer gaming
can be an immersive social event [4]. In addition to entertainment and gaming, the industry
has recognized the potential of the metaverse as an enabler of the digital workplace, and the
first steps have already been taken to create the industrial metaverse [5,6]. The metaverse
can increase production efficiency by enabling location-independent control of the physical
machinery that is required to manufacture everyday products for the consumer market.

The underwater environment is unnatural for humans, and working in the deep sea
requires diving gear or remotely operated vehicles (ROVs). Due to the cold temperatures
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and human physics, working in the deep sea is only possible for relatively short periods to
avoid hypothermia and divers’ disease [7]. In addition to the harsh physical conditions,
the limited underwater visibility is challenging for divers and the teleoperators of ROVs.
By combining XR interfaces, the metaverse, and DTs, it is possible to remove the user from
harsh underwater conditions. In addition, XR enables the provision of an enhanced and
processed virtual view of the underwater environment instead of a blurry live video stream
that lacks visual cues for the teleoperator.

The benefits of location and time independence enabled by the metaverse are obvious
to academia [8]. In addition to learning not being bound to a specific time and place, the
digital native generation that is being educated today has a different way of processing
information compared to previous generations. Instead of reading books and writing
essays, the digital native generation prefers to use social forums, online videos, and Google
searches to gain knowledge [9]. VEs are a way for academia to attract students’ interest in
engineering topics, such as robotics and automation. The metaverse enables training in
basic robotic skills, such as controlling the movements and creating programs for robots
in a natural way, for the digital native generation. To bridge the reality gap between
fully virtual experiences, DTs enable a bridge between physical robot systems and virtual
training environments.

A bridge enabling bi-directional interaction is required for a metaverse user to control
and monitor physical systems. The bridge is a middleware between a virtual environment
and the controller of a physical system, and it enables the user to control the actuators and
monitor the sensor information of the remote system. In addition, the physical charac-
teristics of virtual and real-world systems must match to bridge the reality gap between
the two [10]. Digital twins (DTs) [11] are suitable middleware, and they enable interac-
tions between and merging of the virtual and physical worlds. DTs enable synchronized
bi-directional communication between a physical system and a virtual user interface. In
addition, a DT entity describes the physical characteristics of a physical system, enabling
identical twins.

Extended reality (XR) is an essential enabler of the metaverse, as it provides a high-
level user interface [12] for experiencing the post-reality universe. XR enables fully virtual
and mixed-reality experiences by blending reality and synthetic virtual elements [13].
While the foundation for XR was laid decades ago by the pioneers in computing [14]
and entertainment [15], everyday applications have been waiting for the evolution of
computing, display technologies [16], and optics [17] to enable affordable and comfortable
user devices to be used to experience virtual worlds.

The research questions of this publication are the following: Can DTs and XR enable the
digital workplaces required by the industrial metaverse? Are virtual learning environments
enabled by utilizing the aforementioned combination of technologies? This publication
presents four use cases that take steps towards the metaverse by utilizing XR and DTs to
control robotic systems:

• An XR interface for future industrial robotics;
• An interface for enhancing the cognitive capabilities of the teleoperator of an under-

water vehicle;
• DTs that are used as robotic training tools;
• Movement toward a maritime metaverse with social communication, hands-on expe-

riences, and DTs.

The rest of this paper is organized as follows: Section 2 provides a review of research
on the topics of the metaverse, XR, DTs, and teleoperation. Section 3 describes the methods
used to implement the use cases that are presented, Section 4 presents the implemented
use cases, and Section 5 discusses the presented results and concludes the paper.
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2. Related Research

2.1. Teleoperation

Teleoperation has been an active research topic for decades, and it has the aim of
removing barriers between operators and machines [18]. For example, a barrier preventing
on-site operation can be a hazardous environment or a large distance between an operator
and a machine. The first teleoperation applications were unmanned torpedoes [19,20]; lives
could be saved by guiding the torpedoes to their targets from a safe location.

Since then, teleoperation has been applied to various robotic applications, such as
surgery, space exploration, and the handling of hazardous materials [21–26]. González
et al. [27] proposed a robot teleoperation system that enabled the operator to perform
industrial finishing processes by using an industrial robot. Duan et al. [28] proposed a
teleoperation system for ultrasound scanning in the healthcare sector, and the proposed
solution was proven safe and effective. Caiza et al. [29] introduced a teleoperated robot
for inspection tasks in oil fields; the proposed system utilized a lightweight MQTT data
transfer protocol that was described in detail [30].

Underwater robotics is an efficient tool for studying, monitoring, and performing
coastal conservation, coral restoration, and oil rig maintenance [31–33]. The teleopera-
tion of underwater vehicles presents various communication difficulties because of the
environment’s harsh and constantly changing conditions. Among these difficulties are
constraints on communication bandwidth and signal quality, packet losses, propagation
delay, environmental variability, and security concerns [34,35]. As described in [36], the
difficulties related to human performance when controlling teleoperated systems can be
divided into two categories. The first is remote perception, which is challenging because natu-
ral perception processing is separated from the physical environment. The second category
is remote manipulation, which suffers from the limitations of the operator’s motor skills and
their capacity to maintain situational awareness. Factors affecting remote perception and
manipulation are commonly listed as a limited field-of-view (FOV) and camera viewpoint,
degraded orientation, depth perception, and time delays [37].

Another key challenge in developing teleoperation applications of virtual and aug-
mented reality is the optimal design of human–robot interfaces. In other words, given a
physical system and a user input device, how should a human–robot interface translate the
configuration and action spaces between the user and the physical system for teleoperation?
It is worth noting that the term “optimal” implies that such an interface complies with
certain constraints related to user comfort, smoothness, efficiency, continuity, consistency,
and the controllability and reachability of physical systems [38].

2.2. Digital Twin Concept

The concept of DT has been an active research topic since it was introduced by
Grieves [11]. DTs are digital models of physical devices or systems featuring bi-directional
communication and algorithms to match physical configurations between the two [10,39].
DTs enable a user to interact with the low-level functions of a physical twin. Single devices,
such as a single industrial robot, or larger entities, such as smart cities or digital factories,
can be twinned [40–42]. Different approaches to categorizing DTs exist: Grieves divided
DTs into DT prototypes (DTPs) and DT instances (DTIs). Kritzinger divided DTs into three
levels according to the level of integration: the digital model (DM), digital shadow (DS),
and digital twin (DT). In this paper, we follow Kritzinger’s method for categorizing DTs.
Misinterpretations and misconceptions of the evolving DT concept have existed since it
was presented by Grieves [43].

The glossary of the digital twin consortium defines a DT as a virtual presentation of
real-world entities and processes synchronized at a specified frequency and fidelity [44].
The DT is a mature concept that was standardized by the International Organization for
Standardization (ISO) in 2021 [45].
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2.3. Extended Reality

XR is a top category for virtual reality (VR) and mixed reality (MR) [13]. MR can
be further divided into the augmented reality (AR) and augmented virtuality (AV) sub-
categories. XR has been researched for decades [14,15,46], and recent advancements in
computing, optics, and electronics [16,17] have enabled immersive and augmented virtual
experiences by using affordable stand-alone head-mounted displays (HMDs) or everyday
mobile devices [47,48]. In addition to HMDs, a user can interact with virtual objects by
using handheld controllers, which enable grabbing, pointing, and touching [49]. The latest
improvements in HMD sensor technology have enabled hand-tracking, thus enabling users
to interact with virtual objects by using simple gestures, such as pinching and pointing [50].

The Unity game engine, which was launched as a game engine for MacOS, has become
one of the most popular game engines for desktop and mobile applications [51]. The
Godot engine was released under an MIT License in 2014 as an open-source alternative for
Unity [52,53]. Unity and Gogot include rendering and physics engines, installable assets,
and a graphical editor. The Visual Studio integrated development environment (IDE) is
used to program functionalities for game objects, and the programming language is C#. In
addition to C#, Godot supports Python like GDScript language programming language. The
Godot engine and Unity enable XR applications to be compiled as WebXR-runtimes, which
combine WebGL, HTML5, and WebAssembly [54–56]. WebXR-runtimes can be distributed
on the Internet, are cybersecure and accessible, and support cross-platform devices.

Epic’s Unreal Engine (UE) is a popular game engine that is utilized widely in game
programming and industrial applications [57]. Functionality programming in UE supports
C++ or Blueprints, and Epic provides a content store for purchasing additional assets. While
Blueprints are an easy-to-use visual tool for programming, C++ enables the programming
of more complex functionalities. UE supports the compilation of WebXR binaries with
version 4.24, which was released on GitHub [58].

2.4. Extended Reality in Programming and Control of Robots

Since the introduction of industrial robots, the teach pendant has been and remains
the most popular programming method; over 90% of industrial robots are programmed by
using a teach pendant [59,60]. Programming by utilizing a teach pendant is not an intuitive
way to program an industrial robot, and researchers have studied XR as an alternative
programming method for industrial robots [12,61–63]. In addition to programming, XR has
been studied as an interface for the teleoperation of robots. Recent cross-scientific research
has utilized XR as a high-level human–machine interface for teleoperation and a DT as
a middleware that enables the teleoperator to control a physical system [64]. In addition
to twinning a robot arm, González et al. and Li et al. twinned the surroundings of an
environment by utilizing point clouds from three-dimensional cameras [27,65].

2.5. Communication Layer

An effective communication protocol is required to synchronize the states of digital
and physical twins. MQTT [30] enables efficient communication over the Internet and local
networks. MQTT is one of the most popular IoT and IIoT communication protocols since
it is a lightweight and efficient publisher–subscriber communication protocol [66]. The
messaging consists of three participants: the publisher, the subscriber, and a broker be-
tween the two. MQTT was originally developed for resource-constrained communications,
and the latest updates enable cybersecure communications; encryption of the data and
authentication of the users are enabled.

2.6. Real-Time Video

Web Real-Time Communication (WebRTC) is a real-time web-based video transfer
technology [67]. WebRTC is an open-source protocol that is implemented on the User
Datagram Protocol (UDP) to enable low-latency video streaming. Since UDP does not
natively support congestion control, a specific congestion control mechanism (GCC) was
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developed for WebRTC by Google. The GCC is intended to control the resolution of a video
stream in proportion to the available bandwidth, thus enabling a low-latency video stream;
the trade-off is the resolution. Video streaming latencies of 80 to 100 milliseconds have
been measured on mobile platforms [68].

2.7. Metaverse

The metaverse, as a post-reality universe, merges physical and virtual worlds [3]. The
metaverse started as a web of virtual worlds that enabled users to teleport from one virtual
world to another. The evolution of virtual multi-user environments has gone through
multi-user role-playing games and gaming platforms [69] to the virtual social platforms
of today [70], and the ability to socialize is one of the metaverse’s key strengths. Based on
the seven rules defined by Parisi [71], the one and only metaverse is a free cross-platform
network that is accessible to anyone. Industry 4.0 and Education 4.0 are ongoing parallel
evolutions that are enabled by digitalization. As a virtual environment (VE), the metaverse
is essential to both movements [2,8]. VEs enable location- and time-independent training
and education for industrial companies and educational institutions. In addition, VEs
are risk-free and do not have the physical limitations of classrooms [72]. Industries are
adopting the metaverse by utilizing DTs as core components to connect physical and
virtual systems [73]. Industries apply the metaverse for training, engineering, working,
and socializing [42].

The Industrial metaverse enables physical interaction in real time, improves the visu-
alization of cyber–physical systems (CPSs), and can be seen as a DT of the workspace [5].
According to Kang et al. [6], the industrial metaverse is still in its infancy; in particular, pri-
vacy protection issues and the design of incentive mechanisms need more attention. Nokia’s
CEO Pekka Lundmark stated, “The future of the metaverse is not for consumers” [74].
Nokia has classified metaverse business into three categories: the consumer, enterprise,
and industrial metaverse. In fact, Nokia is expecting the industrial metaverse to lead
the commercialization of the metaverse [75]. Siemens and Nvidia have expanded their
partnership to enable the industrial metaverse by connecting the Xcelerator and Omniverse
platforms [76]. In addition, technology companies such as Lenovo, Huawei, HTC, Tencent,
and Alibaba, as well as numerous startups, are exploring how to apply the industrial
metaverse in their businesses [77].

2.8. Extended Reality, Metaverse, and Digital Twins to Reality

The combination of the industrial metaverse, DTs, and robotics is still quite a new
research area. The main focus of research is driven more by VR than by the metaverse. The
metaverse received much publicity during and after the pandemic, and as shown above,
it has received much visibility in business forecasts. VR, DTs, and robotics were studied,
for example, in welding as a platform for interactive human–robot welding and welder
behavior analysis [78] and in BCI as a brain-controlled robotic arm system for achieving
tasks in three-dimensional environments [79].

The metaverse has enabled co-design while reducing the communication load in real-
world robotic arms and the context of their digital models [80]. In addition, in metaverse-,
DT-, and robotics-related studies, a basic meta-universe simulation implementation method
for the scene of an industrial robot was introduced in [81], and a multi-agent reinforcement
learning solution was defined to bridge the reality gap in dynamic and uncertain metaverse
systems [82]. Recent advances in artificial intelligence (AI), computing, and sensing tech-
nologies have also enabled the development of some DT applications in the underwater
domain, such as in intelligent path planning and autonomous vehicle prototyping [83–85].

3. Materials and Methods

This section presents the research approach and the methods used. The use cases that
are presented follow a constructive research approach, aiming to solve practical problems by
developing entities [86,87]. Since the research questions presented are practically relevant
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and the aim is to develop prototypes to create a foundation for use cases, the constructive
approach supports the answering of the research questions.

The main phases were conceptualization, development, and preliminary validation.
The research questions and the review of previous research led to the conceptualization of
the following statement: To enable the control of production systems by using the metaverse, DTs
and XR are required. In the development phase, prototypes based on the aforementioned
conceptualization were created, and they are presented in the Section 4. Figure 1 presents
the main phases and methods utilized.

Related 
research

Requirement 
specification

Defining high level 
task

Validation

Development

Conceptualization

Modelling

Digital Twinning

Validation of the 
digital twins

User survey

Re-design

Figure 1. Methods used in the development of the presented use cases.

3.1. Requirement Specifications

The requirement specifications were drafted for the prototypes according to the IEEE
Recommended Practice for Software Requirement Specifications [88] to define their func-
tional and non-functional requirements. The functional requirements were an essential
guideline during the implementation and preliminary validation phases of the prototypes.
The non-functional requirements were divided into the usability, security, and performance
subcategories and are presented in Table 1.

Table 1. Functional and non-functional requirements.

ID Description Category

F1 Digital twins of the physical robotic systems exist and enable
user interaction. Functional

F2 A user can register for the platform by using an email address. Functional

F3 A social forum is available for the users to
request help or advice on the platform’s usage. Functional

F4 Digital education material can be stored on, accessed in, and
downloaded from the system by users. Functional

F5 An extended-reality user interface is supported. Functional

F6 Support for multiple simultaneous users. Functional

N1 The system’s focus is on robotics. Usability

N2 Cross-platform support. Usability

N3 Authentication of users and encryption of data Cybersecurity

N4 Updates or upgrades of the prototype do not require end-user actions. Usability

N5 Exercises are virtual experiences. Usability

N6 The user can control and program physical robots. Usability

N7 Latency of controlling a physical system of less than 250 ms. Performance
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3.2. Modeling of the Virtual Environment

An industrial-grade three-dimensional scanner was used to form three-dimensional
models of larger entities, such as Centria’s Robo3D Lab at Ylivieska and the harbor environ-
ment in Turku, Finland. Point clouds were imported into Blender to create digital copies of
the environments by extruding features such as walls and shaping the terrains by using
the point clouds as templates. Digital versions of robots, forklifts, and other production
machinery were acquired from the ROS [89] and OEM manufacturer libraries. Missing
items, such as custom gripper jaws and pick-and-place objects, were manually modeled by
using Blender. The models contained the kinematic information of the robots’ mechanic
structure, and inverse kinematics were used to create virtual robot assemblies with physical
constraints that were equivalent to those of physical robots. The models were also textured
by utilizing Blender before exporting them to Unity. Furthermore, the final WebXR binaries
were compiled by using Unity.

Regarding the prototype developed in Section 4.2, the BlueSim [90] simulator was
utilized as a virtual environment to control the robot. The software-in-the-loop approach
(SIL) was used to simulate the BlueROV2 hardware. A prototype was created to convert a
commercial diving mask and smartphone into an HMD. The design process of a specially
designed control device involved three-dimensional laser scanning, and the casing was
designed by utilizing Blender.

3.3. Validation of the Prototypes

The prototypes were validated by defining high-level tasks for the robot stations. The
high-level tasks were specific to the robot type in question, and if the task could not be
completed, the task was failed. If the task was failed, the prototype was redesigned and
developed until the task could be completed. Small groups of developers and students
performed preliminary validations of the use cases. The high-level tasks that were defined
are described in Section 4.

After the preliminary validation, piloting and a user survey were conducted to collect
user feedback. The feedback collection was conducted as an online survey since it was easy
to distribute to the students that participated in lectures online. In addition, online surveys
are easy to complete, and it is possible to automatically summarize their results [91].

3.4. Cybersecurity Assessment

In the use cases that are presented, the methods for assessing cybersecurity were
authorization, authentication, encryption, and vulnerability scans [92]. Authentication and
authorization services were implemented on a cloud server. Encryption was implemented
by using CA certificates on data transfers between the robot, the cloud server, and the client
device. The cloud server was periodically scanned to detect vulnerable software on the
server. The methods for solving the detected cybersecurity issues were reconfiguring and
updating vulnerable software components.

4. Implementation and Validation of Use Cases

In this section, the implementations of the use cases are presented. All of the presented
use cases provide additional functionality over traditional virtual representations. First, we
will present Probot’s implementation of DT and XR to teleoperate an arm robot installed
on a mobile platform. The second use case presents FIU’s testbed for controlling and
twinning an ROV. Furthermore, a unique method for translating a teleoperator’s body
movements to control commands for an ROV is presented. Centria’s implementation of a
virtual robotic training platform is presented in the third use case. In addition to enabling
the user to teleoperate connected physical robots, multiuser capability and social aspects of
the metaverse are presented. The fourth use case presents the TUAS social VR platform,
which enables training and education in robotic aspects in the maritime sector. In addition
to twinning the robots, harbor machines, such as forklifts, are included.
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4.1. Probot’s Extended-Reality Interface for Future Industrial Robotics

Over the last decade, the amount of data collected in industrial processes has signifi-
cantly increased. Furthermore, the application of new technologies, such as drones, mobile
robots, and service robots, requires advanced user interfaces for control. Probot developed
advanced user interfaces to provide solutions for presenting data from industrial processes
and to control advanced robots by utilizing XR and DTs.

In the MIMIC project [93], an eight-month project funded by the RIMA [94], a DT of an
arm robot installed on a mobile robot was created. The DT enabled the user to teleoperate
a mobile manipulator by using a VR user interface and a specially developed glove that
tracked the position of the user’s hand and sensed the positions of the user’s fingers. The
aforementioned data were translated into the control commands for the manipulator. VE
was implemented by using the Unreal Engine, and the communication layer was based on
a custom socket-based protocol. Figure 2 presents the prototype’s setup.

Figure 2. The setup of the MIMIC demonstration.

The focus during research and development was on user comfort and the efficiency
of the teleoperation. Probot developed two control methods for teleoperating the robot:
ghost and direct control. In ghost control, the user set the target position for the ghost
robot and enabled movement with the controller button. After the target was validated as
collision-free and within the joint limits, the target was commissioned for the physical robot.
In direct control, the physical robot instantly followed the DT’s movements in near-real
time. Figure 3 shows a view of the VR user interface for teleoperation.
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Figure 3. The DT view of the demonstration of teleoperation in MIMIC.

To validate the system and to compare the two control methods, Probot arranged
testing sessions. During the testing, employees who were familiar with robot teleoperation
and XR utilized the developed prototype to grasp and manipulate objects. During the
preliminary validation, it was noted that the direct control method posed latency issues
related to constantly sending position messages between the DT and the physical robot.
The latency caused delays in the control and had a negative impact on the user experience.
Furthermore, if the user controlled the DT at a high velocity, the positions of the digital and
physical twins did not match.

The ghost control method minimized the data transfers between the DT and the
physical robot. Furthermore, the ghost control mode enabled the DT to validate the trajec-
tories before they were committed to the physical robot. While the direct control method
enabled a natural way to move the robot by using the DT, the aforementioned latency
and in-position control loop issues resulted in a poor user experience. The participants
in the testing demonstration agreed that the ability to accurately set the robot’s position
before committing to physical robots in the ghost control mode enabled more accurate and
comfortable control of the manipulator compared to direct control.

4.2. FIU’s Robotics Testbed for Teleoperation in Environments with Sensing and
Communication Challenges

In our recent work [95], we introduced an optimization-based framework for de-
signing human–robot interfaces that comply with user comfort and efficiency constraints.
Additionally, we proposed a new approach to teleoperating a remotely operated underwa-
ter vehicle, which involved capturing and translating movements of the human body into
control commands for the ROV.

The VE in this use case was the BlueSim [90] simulator, which was compiled by using
the Godot engine [52,53]. The communication layer between the simulator and the real
environment enabled the connection of the virtual and physical ROVs. A software-in-
the-loop (SIL) approach was used to simulate the BlueROV2 hardware for testing and
refinement during our development work. Figure 4 presents the virtual and physical
environments and the communication layer between the DT and the physical ROV. A
customized smartphone case was created to capture and translate body movements into
ROV control commands to turn a commercial diving mask and smartphone into an HMD.
The design process involved a three-dimensional laser scanner that extracted the mask’s
point cloud data, which were then used to design the casing in 3D-CAD SolidWorks.

To access orientation and pressure data from the smartphone’s inertial measurement
unit (IMU), we utilized the Sensorstream IMU+GPS application [96], which streamed the
data to the UDP port of the teleoperator’s workstation. In addition, an application based
on OpenCV was created to process the virtual underwater video stream and send only
black-and-white images for the teleoperator to save bandwidth. Finally, a Python script
was developed to receive this sensor data stream and translate it into directional commands
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for the ROV and up-and-down commands for the ROV camera. Figure 4 presents the
current development of a DT for the BlueROV2 [97], an open-source ROV platform for
underwater navigation and exploration. On the virtual side, we used a high-fidelity model
of a simulated BlueROV2 in a simulated pool. On the physical side, we will use the real
BlueROV2 in FIU’s testbed.

To validate our system’s feasibility, usability, and performance, we created a prototype
as a proof of concept; we conducted a study with human subjects by using the prototype
to send commands to an ROV that was simulated in a virtual environment. Figure 5
presents the experimental procedure, which involved three tasks. Firstly, users were given
a simulated scenario of an empty pool and were allowed 3 min to become accustomed to
the HMD and simulator. Secondly, users were presented with an RGB video stream from
the front camera of the simulated robot, and they needed to locate a cubic shape in the
pool by directing the camera toward it. Because the underwater environment presented
significant limitations in terms of data communication and because humans possess an
innate skill for interpreting and comprehending meaning and shapes, even in low-quality
images, the third task provided users with a black-and-white video stream of the pool and
asked them to locate an oval shape. This time, the oval shape was located in one corner of
the pool, while the cubic shape was located in another.

Figure 4. Virtual and physical underwater environments for enabling digital twinning applications.

Figure 5. Experimental setup: The RGB video stream was first displayed on the user’s HMD for
familiarization with the virtual environment (task 1) and then displayed for task 2, and a modified
video stream was provided for teleoperation task 3 [95].
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User feedback was collected after the experiments. The users reported that it would
be more comfortable to use the custom HMD if the distance between the eyes and the
smartphone was increased. This would allow for a better field of view and reduce eye
strain. Furthermore, our experiments indicated that slow communication, which resulted
in laggy image updates on the smartphone screen, could significantly increase the time it
took to complete tasks. This was because users needed to wait for the images to be updated
before proceeding with their tasks.

4.3. Centria’s Extended Reality as a Robotic Training Tool

Centria created an online platform for education and training in robotics. The platform
enabled students to learn robotics by reading online materials, watching instructional
videos, and conducting practical exercises. Currently, collaborative and industrial robot
types are available on the platform for students to practice their robotic skills. Students
can conduct exercises by reserving a free time slot for a specific robot type and accessing
the provided link at a specific time to access the virtual user interface and the DT of the
robot. XR training scenarios are implemented by using the Unity game engine, and the
digital models of the robots and environments were created by using Blender. To enable
cross-platform compatibility, runtimes are compiled as WebXR binaries that are available
online and accessible using mobile or desktop devices.

The bi-directional communication layer that synchronizes the states of digital and
physical twins is based on the MQTT communication protocol, which runs on Websock-
ets [98]. XR web applications utilize a Websocket to publish and subscribe to MQTT topics
on the cloud server’s MQTT broker. The communication layer enables the monitoring and
control of the robots that are connected to the platform. The joint and cartesian positions of
each articulated robot and the mobile robot’s spatial x, y, and z locations are published on
the message broker on the cloud server. The method for controlling the robots is similar to
the ghost control described earlier in Section 4.1.

WebRTC provides a near-real-time video stream of the physical robots to the user.
The cloud server manages the congestion control to maintain the low latency of the video
stream, while the actual video stream data are cast directly to clients. In the Robo3D Lab, a
local server is set up to host the WebRTC clients that are streaming the video and to connect
the cameras to the platform. Figure 6 presents the architecture of the cloud-based platform.
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Two-way communication
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Computer or control unit
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Figure 6. The architecture of Centria’s online platform [99].
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DTs on the platform enable the user to interact with physical robots by moving a robot’s
TCP. The DTs are based on three-dimensional models of robots, including a kinematic model
created by using Blender. In Unity, inverse and forward kinematic algorithms based on
the Jacobian matrix and the Denavit–Hartenberg convention are used to calculate the joint
positions based on the requested tool-center-point (TCP) position and to calculate the TCP
position based on the joint values [100,101]. The algorithm for validating the trajectories
for articulated arm robots is presented in pseudocode in Algorithm 1. In addition to
kinematic limitations, the DTs utilize the Unity physics engine to calculate and validate
only collision-free trajectories.

A user can join the platform in immersive mode by using a VR headset or in desktop
mode by using a desktop computer or a mobile device. In VR mode, handheld controllers
are used to interact with the VE; in desktop mode, two virtual joysticks are provided to
interact with the environment. Each of the users is presented as an avatar in the virtual
environment. To enable a multi-user system, the spatial locations of the avatars are centrally
synchronized among the players. Synchronization of the avatars’ locations is implemented
by utilizing the communication layer described in the previous section.

The feedback collection was conducted during a “construction robotics” course. The
participating students were a group of ten students studying at the University of Oulu. The
students had no prior experience in controlling or programming robots. The feedback for
pre-defined questions in the form of “yes or no” options was collected after conducting
online lectures and teleoperating the robots on the platform. Sixty percent of the students
considered the platform suitable for learning the basics and programming of robots. Sev-
enty percent considered the platform suitable for monitoring remote robot cells, and all
considered the platform suitable for debugging existing robot programs. Figure 7 presents
the XR robotic training environment.

Algorithm 1 Inverse Kinematics.

Require: requested position, requested pose, lower and higher thresholds for joint values,
τL and τH , respectively.
counter = 0
while counter < 100 do

calculate Jacobian inverse matrix;
calculate joint angles and position deviation;
if joint angles < τL OR joint angles > τH OR position deviation > 1e-3 then

counter++;
else

move physical twin;
break;

end if
end while
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Figure 7. Multi-user XR robotic training session with a video stream of a physical robot.

4.4. TUAS VR Social Platform

Turku University of Applied Sciences developed a metaverse technology called the
TUAS VR Social Platform, which combines several- or multi-user environments into a
unified, seamless platform that enables the visualization of big data and remote control
solutions. This platform consists of features for social communication, hands-on experience,
and DT integration [102]. Social communication and hands-on experience enable collabora-
tive training in the maritime sector, such as in operating forklifts in harbor environments,
as presented in Figure 8.

The multi-user environments that have been developed can also consist of DTs with
specific functionalities that can be integrated into the platform. The customizable appli-
cation programming interface (API) support of the platform enables the coupling of the
DTs with physical machinery and equipment, thus providing access to the functionality of
physical systems. In the design of the TUAS VR Social Platform, the data privacy protection
concerns highlighted by Kang et al. [6] were taken into account. The platform provides
identity, authenticity, and authority services for industrial training, planning, and oper-
ations, such as in the teleoperation of systems. Figure 8 presents the log-in screen and
the VE.

Figure 8. Multi-user environments enabling collaborative training and user validation.
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In the teleoperation prototype, we aimed to create a self-contained system for teleop-
erating robots by using VR as the user interface based on previous work on this type of
system [103]. Creating a DT of a physical robot is essential for providing a realistic user
experience. A low-latency communication layer between the digital and physical twins
was implemented by using the MQTT protocol. WebRTC enabled the streaming of the
video of the physical robot to the VE with low latency.

To create the VE, the Turku University of Applied Sciences robotics laboratory was
scanned by utilizing a laser scanner to enable a matching virtual environment for an
unmanned ground vehicle (UGV). The system’s control was developed to support cross-
platform VR controllers and position updating of the DT by using an accelerometer. The
digital models and texturing of the DT were improved. In addition, object distance detection
was implemented in this phase by utilizing a robot’s camera to pick up an object with
the robot arm during teleoperation. The simplified architecture of the TUAS platform is
presented in Figure 9.

Figure 9. Architecture of the TUAS VR Social Platform.

The implemented teleoperation application comprises a physical robot, a VR user
interface, and a DT connecting the two. The application was designed to be modular, thus
enabling the merging of parts of the solution into already existing projects. The developed
features mentioned above were merged into the industrial metaverse environment by
adding the DTs of the robots and the laboratory into the existing metaverse environment.

This implementation allows any user of this collaborative training environment to take
control of a physical robot and to move the robot around the laboratory by utilizing the
feedback and control of the DT and the live video stream from the physical environment.
At the end of this first pilot case, we validated the system by utilizing high-level gripping
and moving tasks to prove the low latency of teleoperation and video streaming. Figure 10
presents the virtual environment for teleoperation and the VR devices utilized.
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Figure 10. Visualization of the teleoperation of the robot, the video stream of the physical laboratory,
the VR headset, and the smart gloves.

To ascertain our system’s usability, usefulness, and effectiveness, staff members of the
research group piloted the developed system and provided feedback on its usability. A
high-level task was defined for the teleoperated robot to validate the DT. The defined task
required the user to pick up a cardboard cube and place it in a different location by using
the robot arm.

The test was considered successful if the users could complete the task, which would
indicate that the system was accurate, effective, and usable. In addition to the control
efficiency and latency, the video stream’s latency was evaluated. According to the user
feedback, the latencies observed did not significantly affect the user experience. Approxi-
mately seventy percent of users reported that the system was usable and precise enough
for the teleoperation of a UGV and robot arm. The piloting users suggested the addition of
a diagram of each controller’s button function in the VE and the improvement of the DT’s
accuracy for larger movements. The feedback was taken into account to improve the DT in
the future.

5. Discussion

This paper presented the implementations of four DTs that enable the control of
physical systems by using XR technologies. All use cases were extended reality–digital twin
to real implementations where data validation and two-way data transmission between the
twins were implemented as part of the process. Our study showed that remotely connected
systems that enable an industrial metaverse can be built by using currently available tools.

The first use case showed an implementation of robot trajectory programming by
utilizing a combination of VR and a haptic glove. A DT of a mobile robot equipped with a
robot arm was controlled in a VR environment. The second use case was an implementation
of a DT for ROVs controlled in VR. The VR was implemented by using a designed and
manufactured HMD based on a smartphone. The ROV could be controlled by following a
person’s head movements, and an enhanced live stream of the ROV was displayed on the
HMD. Both use cases enabled a realistic and natural way for the teleoperator to control the
devices by using the user’s head movements or finger tracking. By using these high-level
control interfaces, users can interact with the environment by utilizing DTs.

The third and fourth use cases were implementations of a multi-agent VR environment
with multiple DTs connected to mobile, collaborative, and industrial robots. Users could
teleoperate physical robots in a VR environment. In addition, the use cases enabled
social interaction and collaborative training. These use cases enabled location- and time-
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independent training and collaboration, making them more realistic and natural than
single-user virtual environments.

The research questions set for the work are the following: Can DTs and XR enable the
digital workplaces required by the industrial metaverse? Are virtual learning environments
enabled by utilizing the aforementioned combinations of technologies?

With the achieved results, it was proven that digital workplaces, which are required
by the industrial metaverse, can be implemented by using DTs and XR—to some extent.
Depending on the nature of the work and the operator’s experience level, other ways of
working, such as audio control, may be more flexible and faster. However, it must be noted
that different ways of working have pros and cons; e.g., audio control is vulnerable to noise
and raises severe concerns related to safety and cybersecurity. Additional haptic devices
can make the experience more real with the feedback provided by the real world.

At its current stage, the proposed system is suitable for virtual learning and training.
Through the experience that has been gained, it is possible that the proposed systems can
be used in industrial use cases, assuming that users are comfortable and familiar with the
systems and knows their restrictions. The new generation of digital natives might find
these systems to be natural ways of interacting with the physical world.

6. Conclusions

In this publication, four use cases that utilized XR and DTs to control robotic sys-
tems were presented and discussed to answer the research questions. In conclusion, the
usefulness of DTs and XR depends greatly on the nature of the work and the operator’s
experience level. It must be noted that virtual learning by utilizing DTs is a natural learning
method, especially for the digital native generation. In some cases, other methods, such as
voice control, are more feasible for controlling systems.

The proposed approach can be further enhanced for user-assisted autonomous systems.
With additional modules that enable them to learn, such as reinforcement learning, the
proposed systems can learn various skills, such as robotized assembly or machining. Such
systems can offer alternative methods for operators to perform tasks more efficiently.
Although the presented use cases were small-scale demonstrations, the use cases can be
replicated and scaled for more complex and physically larger systems.

In the future, more comprehensive feedback from users is required; in this paper,
only small groups of developers and students participated in the piloting and surveys. By
exposing the systems to larger audiences, they can be improved to meet the demanding re-
quirements of real industrial applications. Studies that differentiate among utility, usability,
and user experience in industrial environments provide feedback on systems’ feasibility.
In addition, an automated online feedback system that is integrated into the platform can
enable comprehensive feedback collection.

Author Contributions: Conceptualization, T.K., P.P., V.B.B., and M.T.; methodology, T.K. and V.B.B.;
software, T.K, P.P., V.B.B., and M.T.; validation T.K., P.P., V.B.B., and M.T.; investigation, T.K.;
data curation, T.K. and T.P.; writing—original draft preparation, T.K., N.L., T.H., V.B.B., and M.T.;
writing—review and editing, T.P. and S.P.; visualization, T.K, V.B.B., N.L., and M.T.; supervision, S.P.,
L.B. and M.L.; project administration, T.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 Research and Innovation Program (grant agreements n° 825196 and n° 824990).
Support was also received through the NSF grants IIS-2034123 and IIS-2024733, the U.S. Department
of Homeland Security grant 2017-ST-062000002, and the Finnish Ministry of Education and Culture
under the research profile for funding for the project “Applied Research Platform for Autonomous
Systems” (diary number OKM/8/524/2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

66



Actuators 2023, 12, 219

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rideout, V.; Foehr, U.; Roberts, D. GENERATION M2 Media in the Lives of 8- to 18-Year-Olds. 2010. Available online:
https://files.eric.ed.gov/fulltext/ED527859.pdf (accessed on 13 April 2023).

2. Lee, H.J.; Gu, H.H. Empirical Research on the Metaverse User Experience of Digital Natives. Sustainability 2022, 14, 14747.
[CrossRef]

3. Mystakidis, S. Metaverse. Encyclopedia 2022, 2, 486–497. [CrossRef]
4. Barnes, A. Metaverse in Gaming: Revolution in Gaming Industry with Next-Generation Experience. 2023. Available online: https:

//www.datasciencecentral.com/metaverse-in-gaming-revolution-in-gaming-industry-with-next-generation-experience/ (ac-
cessed on 13 April 2023).

5. Lee, J.; Kundu, P. Integrated cyber-physical systems and industrial metaverse for remote manufacturing. Manuf. Lett. 2022,
34, 12–15. [CrossRef]

6. Kang, J.; Ye, D.; Nie, J.; Xiao, J.; Deng, X.; Wang, S.; Xiong, Z.; Yu, R.; Niyato, D. Blockchain-based Federated Learning for
Industrial Metaverses: Incentive Scheme with Optimal AoI. In Proceedings of the 2022 IEEE International Conference on
Blockchain (Blockchain), Espoo, Finland, 22–25 August 2022; pp. 71–78. [CrossRef]

7. Francis, T.; Pearson, R.; Robertson, A.; Hodgson, M.; Dutka, A.; Flynn, E. Central nervous system decompression sickness:
Latency of 1070 human cases. Undersea Biomed. Res. 1988, 15, 403–417. [PubMed]

8. Miranda, J.; Navarrete, C.; Noguez, J.; Molina-Espinosa, J.M.; Ramírez-Montoya, M.S.; Navarro-Tuch, S.A.; Bustamante-Bello, M.R.;
Rosas-Fernández, J.B.; Molina, A. The core components of education 4.0 in higher education: Three case studies in engineering
education. Comput. I Electr. Eng. 2021, 93, 107278. [CrossRef]

9. Prensky, M. Digital Natives, Digital Immigrants. 2001. Available online: https://www.marcprensky.com/writing/Prensky%20
-%20Digital%20Natives,%20Digital%20Immigrants%20-%20Part1.pdf (accessed on 15 April 2023).

10. Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and
classification. IFAC-PapersOnLine 2018, 51, 1016–1022. [CrossRef]

11. Grieves, M. Origins of the Digital Twin Concept; Florida Institute of Technology: Melbourne, FL, USA, 2016; Volume 8, [CrossRef]
12. Burdea, G. Invited review: The synergy between virtual reality and robotics. IEEE Trans. Robot. Autom. 1999, 15, 400–410.

[CrossRef]
13. Milgram, P.; Kishino, F. A Taxonomy of Mixed Reality Visual Displays. IEICE Trans. Inf. Syst. 1994, E77-D, 1321–1329.
14. Sutherland, I.E. A Head-Mounted Three Dimensional Display. In Proceedings of the Fall Joint Computer Conference, Part I, New

York, NY, USA, 9–11 December 1968; AFIPS’68 (Fall, part I), pp. 757–764. [CrossRef]
15. Heilig, M.L. Sensorama Simulator. U.S. Patent 3050870A, 10 January 1961.
16. Kawamoto, H. The history of liquid-crystal display and its industry. In Proceedings of the 2012 Third IEEE History of

Electro-Technology Conference (HISTELCON), Pavia, Italy, 5–7 September 2012; pp. 1–6. [CrossRef]
17. Howlett, E.M. Wide Angle Color Photography Method and System. U.S. Patent 4406532A, 27 September 1983.
18. Siciliano, B.; Khatib, O. Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2007.
19. Wilson, E.; Evans, C.J. Method of Controlling Mechanism by Means of Electric or Electromagnetic Waves of High Frequency. U.S.

Patent 663400A, 4 December 1900.
20. Hammond, J.H.; Purington, E.S. A History of Some Foundations of Modern Radio-Electronic Technology. Proc. IRE 1957,

45, 1191–1208. [CrossRef]
21. Ferrell, W.R.; Sheridan, T.B. Supervisory control of remote manipulation. IEEE Spectr. 1967, 4, 81–88. [CrossRef]
22. Sheridan, T. Teleoperation, telerobotics and telepresence: A progress report. Control. Eng. Pract. 1995, 3, 205–214. [CrossRef]
23. Goertz, R.C. Fundamentals of general-purpose remote manipulators. Nucleon. (U.S.) Ceased Publ. 1952, 10, 36–42.
24. Kim, W.; Liu, A.; Matsunaga, K.; Stark, L. A helmet mounted display for telerobotics. In Proceedings of the Digest of Papers.

COMPCON Spring 88 Thirty-Third IEEE Computer Society International Conference, San Francisco, CA, USA, 29 February–3
March 1988; pp. 543–547. [CrossRef]

25. Marescaux, J. Nom de code: « Opération Lindbergh ». Ann. Chir. 2002, 127, 2–4. [CrossRef] [PubMed]
26. Laaki, H.; Miche, Y.; Tammi, K. Prototyping a Digital Twin for Real Time Remote Control Over Mobile Networks: Application of

Remote Surgery. IEEE Access 2019, 7, 20325–20336. [CrossRef]
27. González, C.; Solanes, J.E.; Muñoz, A.; Gracia, L.; Girbés-Juan, V.; Tornero, J. Advanced teleoperation and control system for

industrial robots based on augmented virtuality and haptic feedback. J. Manuf. Syst. 2021, 59, 283–298. [CrossRef]
28. Duan, B.; Xiong, L.; Guan, X.; Fu, Y.; Zhang, Y. Tele-operated robotic ultrasound system for medical diagnosis. Biomed. Signal

Process. Control 2021, 70, 102900. [CrossRef]
29. Caiza, G.; Garcia, C.A.; Naranjo, J.E.; Garcia, M.V. Flexible robotic teleoperation architecture for intelligent oil fields. Heliyon 2020,

6, e03833. [CrossRef] [PubMed]
30. IBM. Transcript of IBM Podcast. 2011. Available online: https://www.ibm.com/podcasts/software/websphere/connectivity/

piper_diaz_nipper_mq_tt_11182011.pdf (accessed on 22 February 2022).

67



Actuators 2023, 12, 219

31. Terracciano, D.S.; Bazzarello, L.; Caiti, A.; Costanzi, R.; Manzari, V. Marine Robots for Underwater Surveillance. Curr. Robot. Rep.
2020, 1, 159–167. [CrossRef]

32. Quattrini Li, A.; Rekleitis, I.; Manjanna, S.; Kakodkar, N.; Hansen, J.; Dudek, G.; Bobadilla, L.; Anderson, J.; Smith, R.N. Data
correlation and comparison from multiple sensors over a coral reef with a team of heterogeneous aquatic robots. In Proceedings
of the International Symposium on Experimental Robotics, Nagasaki, Japan, 3–8 October 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 717–728.

33. Shukla, A.; Karki, H. Application of robotics in offshore oil and gas industry—A review Part II. Robot. Auton. Syst. 2015, 75,
508–524. [CrossRef]
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Abstract: This article proposes a deformable water-mobile robot that can be used for rescue work. The
robot body adopts an open-motion chain structure with two degrees of freedom, including two drive
modules and one main control module. The three modules are connected through deformation
joints, and each drive module is equipped with an underwater thruster. The robot can obtain a
triangle, linear shape, curved shape, and U-shape through deformation and have three types of
motion: linear shape motion, U-shaped motion, and curved shape motion. In the linear shape, a
multi-island genetic algorithm was used to optimize the structural parameters with the minimum
resistance and the maximum volume. Floating state analysis was conducted in the U-shape, and
the structural parameters were reasonably designed. By experimenting with the robot prototype
on water, the robot can achieve oscillating, linear, U-shaped, and horizontal rotary motion, has an
automatic adjustment function, and effective buoyancy meets the required requirements.

Keywords: water-mobile robot; deformable; genetic algorithm

1. Introduction

The number of people killed due to water disasters has increased in recent years. It is
vital to quickly reach the target location and successfully rescue people in the water. At
present, manual rescue not only slows response time, but during the rescue of people in
distress, due to the complexity and danger of the environment, the rescuers may have safety
problems. Many companies and universities at home and abroad have researched water-
mobile robots to meet the various needs of water work. With the comprehensive current
research status, the water-mobile robot can be divided into traditional and non-traditional
hull structures according to the structure. The traditional hull structure is mainly based on
the common hull type modification, such as eVe-1 developed by Kim et al. This unmanned
boat is a catamaran configuration [1]. Le developed a U-shaped unmanned boat based
on the catamaran structure to perform water rescue missions [2]. Zong et al. developed
a special trimaran based on the hull structure. This boat was fitted with T-shaped sails
to improve sailing performance [3]. Goulon et al. developed an unmanned boat on the
water called HARLE, equipped with a fisheries science echosounder for aquatic surveys [4].
Makhsoos et al. developed a water robot called Morvarid by using solar energy as a new
source of energy [5]. Morge et al. developed a compact sailboat to take full advantage
of wind energy, simplifying traditional sailboats’ structure and increasing flexibility [6].
Johnston et al. developed a wave-driven unmanned boat called AutoNaut, which can
propel the body forward with alternating waves on the water [7,8]. For non-traditional
hull structures, researchers from various countries have mainly used bionics to conduct
relevant research [9–13]. Nad et al. developed a water robot consisting of four thrusters.
This robot moves more flexibly [14]. Inoue et al. developed a robot called Quince. This
robot has various detection devices to detect conditions such as body temperature [15].
Huang et al. developed a buoyancy-supported water strider robot based on the locomotor
ability of water striders to achieve water walking capability [16].
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The robots of Kim [1] and Zong [3] use a multi-hull structure for traditional hull
structures. Such robots increase overall flexibility and stability but have a single structure
and large size. The U-shaped unmanned boat developed by Le [2] can achieve rescue
but has a high forward resistance due to its structure. Waterborne devices developed by
Makhsoos [5], Morge [6], and Johnston [7,8] have been better developed in the energy
direction. However, none of these studies proposed a suitable structure in terms of rescue.
For non-hull structures, none of such bionic robots developed by Nad [14], Inoue [15], and
Huang [16] have water rescue as their main application scenario.

For the above problems, a deformable water-mobile robot is designed in this paper [17].
This robot can reduce the resistance by deformation. The linear shape and U-shape of
the robot are used as the main motion form. The robot was optimized by linear shape
simulation and U-shaped floating state analysis to find the optimal size solution. Through
experiments, it is verified that the deformable water-mobile robot can achieve the corre-
sponding functions.

2. Robot Structure

2.1. Functional Requirements of Robots

According to the characteristics of the water rescue task, the robot needs to enter the
working environment quickly and reach the target location quickly, and return safely after
stably carrying the fallen person. As shown in Figure 1a, the robot designed in this article
can be thrown directly into the water and enter the water environment smoothly. The robot
is triangular when thrown, and the triangular structure is stable to resist the impact of
falling water. As shown in Figure 1b, the robot can be unfolded into a linear form, which
can quickly complete the adjustment of the upper and lower positions of the thrusters
and quickly reach the target site. As shown in Figure 1c, the robot can take advantage of
its structural characteristics to turn into a curved shape when turning, which can reduce
the minimum turning radius. As shown in Figure 1d, the robot turns into a U-shape after
reaching the target location and wraps the person up by differential steering to play the
role of buoyancy support and return safely.

Figure 1. Schematic diagram of robot functions. (a) Throwing state diagram; (b) The linear shape
diagram of the robot; (c) The curved shape diagram of the robot; (d) U-shape diagram of the robot.

2.2. Principle of Configuration

In nature, water snakes are flexible and quick when swimming in water. They can
bend their bodies to smoothly pass through various complex water environments, which is
exactly the mobility characteristics needed for water-mobile robots. Based on the character-
istics of biological water snakes, a new water-mobile robot with a three-link, two-drive joint
open kinematic chain configuration was designed. The body includes a front segment (1), a
middle segment (3), and a rear segment (4). The ends of the middle segment are connected
to the front and rear segments by the deformable segment (2), respectively. The front and
rear segments are fixed to the thruster (5). The schematic diagram and structural diagram
of the mechanism are shown in Figures 2 and 3.
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Figure 2. Sketch of robot mechanism.

Figure 3. Robot structure diagram.

Many current water-mobile robots with rescue aspects are U-shaped, as in reference [2],
but the shape of such robots is immutable during movement. The robot in this article has
a linear shape when it reaches the target location and a U-shape when it returns. Under
the same structural parameters, the drag analysis is performed for the linear shape in this
article and the U-shape in reference [2]. Water drag can be calculated as Equation (1) [18]:

Fd =
1
2
ρf vd

2 A CD (1)

where Fd is the water drag, ρf is the density of water, vd is the robot’s speed, A is the
cross-sectional area of the robot, and CD is the drag coefficient of the robot.

When the structural parameters of the two shapes are the same, assuming that the
density of water and the robot’s speed is certain, the two shapes’ cross-sectional area and
drag coefficient are obviously different. The cross-sectional area and drag coefficient of the
linear shape are smaller than those of the U-shape, so the water drag in the linear shape
will be smaller.

2.3. Structural Design of Robots

As shown in Figure 4, the middle segment includes a middle segment shell, with a
middle hatch cover (9) set at the top of the middle segment shell, a middle segment sealed
chamber (14) inside the middle segment shell, and line pipelines (10) set on both sides
of the middle segment sealed chamber. The middle part of the middle segment sealed
chamber is the controller chamber (13).

The deformable segment (2) includes a sealing tube (8), an upper base (17), a flanged
shaft (18), a bearing (19), a coupling (21), a bracket (22), a steering gear (20), and a lower
base (23). The sealing tube provides a sealing connection between the two rotating sub-
joints. The flange shaft (18) is bolted to one end of the upper base (17) through its flange,
and the outer circular surface of the shaft section of the flanged shaft is coaxially set with
the bracket (22) through the bearing (19). The shaft section of the flange protrudes from the
bearing section and is connected to the steering gear output shaft (20) by a coupling (21).
The steering gear is bolted to one end of the lower base (23), the other end of the steering
gear seat is hinged to the middle segment shell of the middle segment (3), and the steering
gear (20) is connected to the controller via a wire.
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Figure 4. Robot sectional view.

The front segment of the body (1) has the same structure as the rear segment, including
the segmented shell (11). A segmented hatch cover (7) is mounted on the segmented shell,
and a segmented sealed chamber (6) is formed inside the segmented shell. The section of
the segmented shell is shaped to resemble a rotary bullet. The segmented sealed chamber is
divided into an electronic component chamber (15) and an embedded battery chamber (16),
and the electronic component chamber is located near the middle segment (3). A battery is
installed in the embedded battery chamber, and an electronic component chamber has a
built-in electronic governor connecting the battery to the chassis thruster (5). The bottom
of the segmented shell (11) has fins (12) and thruster mounts mounted by bolts, and the
thruster mounts have chassis thrusters mounted on them. The two thrusters are propelled
in the same direction.

Firstly, the staff threw the robot in a triangular state into the water. The staff presses the
unfolding button, the front and rear segments of the body rotate in opposite directions, and
both act simultaneously on the middle segment of the body to complete the unfolding action.
After unfolding, it changes from a triangular state to a linear state when the front and rear
segments’ chassis thrusters (5) are in the same line. After throwing in a triangular posture,
the underwater thruster may be exposed to the air. As the robot becomes a linear shape, it is
designed with an offset center of mass. Its special counterweight structure thrusters can be
automatically submerged in the water to enter the movement preparation phase.

Based on the relative position of the robot and the target point, the robot chassis
thruster (5) is controlled to drive rapidly in a linear state in the direction of the target
point. If the robot drifts in the direction midway, the staff presses the adjustment lever
of the controller to control the steering gear (20) at the deformable segment (2) to work.
The steering gear drives the front segment and rear segment (4) to rotate so that the robot
transforms into a curved shape for direction adjustment, thus changing the relative position
of the two chassis thrusters in a non-linear state, and the two chassis thrusters do not share
the same thrust direction to achieve the purpose of motion steering.

After reaching the target point, the staff presses the U-shaped button of the operator,
and the steering gear at the deformable segment works and drives the front and rear
segments to rotate, deforming the robot into a U-shaped state. Currently, the front and rear
segments are in a non-collinear parallel state of the chassis thrusters for the differential
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motion to achieve the robot’s attitude adjustment to avoid directional drift until the stable
return to the safety zone.

3. Shape Optimization Analysis

3.1. Force Analysis

In this article, the force analysis of the robot is performed while in the manned state.
Due to the presence of the human itself discharging the volume of water, the buoyancy force
of the water to the human is F1. The robot discharges the volume of water, the buoyancy
force of the water to the robot is F2, m1g is the weight of the human, and m2g is the weight
of the robot, as shown in Figure 5.

Figure 5. Schematic diagram of the forces on the water-mobile robot.

Buoyancy can be calculated as Equation (2):

Ff = ρf g Vf (2)

where Ff is the robot’s buoyancy, g is gravity’s acceleration, and Vf is the volume of
discharged water.

People on the water can displace about 80–90% of their volume. This article is de-
signed to be able to rescue 75 kg adults as the goal, excluding the buoyancy of the human
displacement volume. The load-bearing weight is reduced by about eight times. The robot
requires a minimum effective load-bearing volume of about 0.0019 m3 and an effective
load-bearing capacity of 1.9 kg.

3.2. Fluid Dynamics Control Equations and Turbulence Models

When a robot moves in the water environment, the fluid as a continuous medium
should follow three major laws: the law of conservation of mass, conservation of momen-
tum, and conservation of energy. This article develops the mathematical model using the
CFD method [19]. People for hydrodynamic analysis are usually assumed to be incom-
pressible, so only consider satisfying the mass and momentum conservation equations.

Menter optimized using the standard k-ω model and proposed the SST k-ω turbulence
model. The SST k-ω turbulence model has higher accuracy and credibility, so the SST
k-ω turbulence model is chosen as the CFD numerical simulation calculation model in
this article. The control equations for the SST k-ω turbulence models are presented in the
literature [19].

3.3. Determination of Objective Function and Constraint Conditions

Because the robot designed in this article is a three-segment robot, to ensure the overall
stability of the robot, the bow and stern adopt a consistent external structure. Huapan et al. [20]
showed that the sailing drag of semi-ellipsoid and semi-ellipse is less, so the bow and stern
both use the semi-ellipsoid structure, and the linear shape control parameters are shown in
Figure 6.
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Figure 6. Linear shape control parameters.

The equation of the curve of the semi-ellipse can be calculated as Equation (3) [20]:

y = ± d
2a

√
a2 − x2 (3)

The volume of the body can be calculated as Equation (4):

V = πd2
(

a
3
+

d
4

)
(4)

where d is the maximum cross-sectional diameter, b is the length of the middle section of
the body, a is the length of the semi-ellipse, and x is the distance from the point on the long
axis to the vertex of the ellipse.

In this article, a rectangular computational domain of 4 m × 2 m × 2 m is established
with the middle of the robot as the origin, a dense grid is used near the surface of the
robot, and the final grid number of the whole basin is about 1 million cells. To make the
robot move at a speed of 0.7 m/s when the size structure is optimal, set the water flow
velocity for this speed for the robot drag simulation calculation. The fluid medium is set
to liquid water and air, the inlet condition of the flow field is set to velocity inflow, the
outlet is pressure outlet, and both the robot surface and the flow field boundary are set to a
stationary wall with zero roughness.

In this article, the robot’s size is optimized to improve the robot’s overall performance.
On the one hand, the optimization makes the robot as large as possible, which generates
more buoyancy and leaves more space to carry various electronic devices. On the other
hand, it makes the drag force as small as possible to achieve an energy-efficient design. In
this article, to meet the robot’s functional requirements to prevent the control parameters
from being too small or too large and leading to an unreasonable design, the relevant
dimensions should be limited to determine the upper and lower limits of each parameter.
The optimization objectives, as well as the constraints, are as follows:

Objective
{

Minimize : Drag
Maximize : Volume

(5)

Constraints

⎧⎨⎩
45 ≤ a ≤ 135

750 ≤ b ≤ 1200
50 ≤ d ≤ 275

(6)

3.4. Simulation Analysis

Under the constraint of the feasible domain, the 3D surface plots of the independent
and dependent variables (drag) are derived using Matlab simulation software. The interre-
lationships between the respective independent and dependent variables are obtained, as
shown in Figure 7. Figure 7a represents the surface plot of the relationship between the
independent variables a and b and the drag when d = 90. Figure 7b represents the surface
plot of the relationship between the independent variables a and d and the drag when
b = 1000. Figure 7c represents the surface plot of the relationship between the independent
variables b and d and the drag when a = 25.
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(a) (b) (c) 

Figure 7. (a) a Surface graph of the relationship between b and drag; (b) a Surface graph of the
relationship between d and drag; (c) b Surface graph of the relationship between d and drag.

The figure above shows the size of the three parameters a, b, and d directly affecting
drag. The change in the value of d has a significantly larger effect on the drag value than
the change in the values of a and b. The range of d variation is the most sensitive to the
effect of drag.

With the objective function equation of volume above, the 3D surface plots of the
independent and dependent variables (volume) are simulated using Matlab simulation
software under the constraint range. Figure 8a represents the surface plot of the relationship
between the independent variables a and b and the volume when d = 90. Figure 8b
represents the surface plot of the independent variables a and d versus volume when
b = 1000. Figure 8c represents the surface plot of the independent variables b and d versus
volume when a = 125.

  
(a) (b) (c) 

Figure 8. (a) a Surface graph of the relationship between b and volume; (b) a Surface graph of the
relationship between d and volume; (c) b Surface graph of the relationship between d and volume.

The figure above shows the size of the three parameters a, b, and d directly affecting
the volume. The changes in the values of b and d have a significantly larger effect on the
volume taken than the value of a. It can be seen in Figure 8c that when the value of d is
small, the change in the value of b does not have a significant effect on the volume. As the
value of d increases, the value of b becomes more influential on the volume. The degree
of effect of d is larger than that of b. The range of variation of d is most sensitive to the
volume effect.

According to the above objective function and constraints, the volume maximum and
drag minimum are simultaneously used as optimization objectives to find the optimal
solution. The optimization design platform is established, and the optimization flow chart
is shown in Figure 9. First, set the initial values of the 3D model control parameters. The
initial values of each parameter are set as follows: a = 90, b = 1000, and d = 100. The
model is then meshed, and the drag and volume values are calculated. The optimization
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component is then used to regenerate the control parameter values based on the obtained
drag and volume and repeat the above steps until the optimal solution is found.

 

Figure 9. Optimization flow chart.

Optimization is performed according to the parameters given above. The values of
the parameters are continuously changed in the optimization, and the drag values obtained
from the iterative calculations are extracted. In this article, a multi-island genetic algorithm
is chosen as the optimization method to find the optimal solution and avoid getting a
locally optimal solution [21–23]. The population size of the genetic algorithm is chosen as
10, the number of evolutionary generations is 10, the crossover probability is 1, the variation
probability is 0.01, and the migration probability is 0.01, which is calculated 1000 times.
The feasible solutions for volume and drag are shown in Figure 10:

Figure 10. Set of feasible solutions for drag and volume.

The above figure shows the calculation results obtained with the minimum drag and
the maximum volume simultaneously as the optimization objectives. For a robot to increase
its volume, it must reduce some of its drag. Similarly, if a robot profile with optimal drag
performance is sought, then the requirement for a volumetric target needs to be reduced.
No matter how the shape of the rotary body changes at a certain volume value, it will
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not be less than a certain drag value. The minimum drag value increases approximately
linearly with the volume increase. Based on the required volume size of the robot, select
the optimized values for the combination of design parameters as shown in Table 1:

Table 1. Parameter optimization results.

Parameter Name Initial Value Optimization Value

a (mm) 90 103
b (mm) 1000 1100
d (mm) 100 96

Volume (mm3) 8,796,459 8,956,103
Drag (N) 0.512 0.455

The above table shows that the volume of the initial design is 8,796,459 mm3, the drag
is 0.512 N, the optimized volume is 8,956,102 mm3, and the drag is 0.455 N. The optimized
water-mobile robot has 11.1% less drag and 1.8% more volume. As shown in Figure 11, the
wave generated by the initial size and the optimized size are shown.

  

(a) (b) 

Figure 11. (a) Initial wave height; (b) Optimized wave height.

As can be seen from the figure, the waves generated around the optimized size are
significantly smaller than the initial size, and the wave height is reduced by 16.7%. The
optimized wave amplitude of the body likewise reflects the effective improvement of the
body drag [24].

4. U-Shaped Floating State Analysis

The robot needs to become U-shaped when it reaches the target location, and this
form structure is less prone to tipping and has a larger lateral moment of inertia [25]. The
U-shaped body size has a great effect on its smoothness. Angular tilt occurs when the
forces on the left and right sides of the lateral and longitudinal surfaces are not balanced.
Reasonable design of the left and right module spacing can balance the lateral and lon-
gitudinal smoothness. Analyze the impact of the movement of small-weight objects on
the small tilt angles on both sides separately. As shown in Figure 12, the shape control
parameters of this shape include lateral spacing k1 and longitudinal spacing k2.

Figure 12. U shape control parameter diagram.
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4.1. Center of Gravity Calculation

In the linear shape, the coordinate system is established with the midpoint at the
bottom of the robot’s midsection as the origin O, the direction pointing to the thruster as
the X-axis, the vertical direction as the Z-axis, and the Y-axis perpendicular to the XOZ
plane as shown in Figure 13.

 

Figure 13. Linear three-dimensional coordinate diagram.

In the U-shape, the coordinate system is established with the midpoint at the bottom
of the robot’s midsection as the origin O, the direction pointing to the thruster as the Y-axis,
the vertical direction as the Z-axis, and the X-axis perpendicular to the YOZ surface as
shown in Figure 14.

 
Figure 14. U-shaped 3D coordinate diagram.

Each part of the robot is in the O-XYZ coordinate system. The mass of the robot is W
and contains n masses. The mass point’s mass is mi, and the position of each mass point is
(xi,yi,zi). The position of the center of gravity can be calculated as Equations (7)–(9):

xG =
∑n

i=1 mi xi

W
(7)

yG =
∑n

i=1 mi yi
W

(8)

zG =
∑n

i=1 mi zi

W
(9)

When the robot is in the linear shape state, the center of gravity coordinates of the
robot is (0, 0, 37.4). In the U-shaped state, the coordinates of the robot’s center of gravity
are (0, K, 37.4), and K is the value associated with k1.

4.2. Buoyancy Center Calculation

The derivation process of the buoyancy center calculation is in Appendix A. When the
robot is in a linear shape, the X and Y directions are symmetrical, so x = 0 and y = 0, and
the buoyancy center coordinates are (0, 0, 21.3). In the U-shaped state, the x-direction is
symmetric with x = 0, and the buoyancy center coordinates are (0, K, 21.3). The center of
gravity position is higher than the buoyancy center position in both linear shape state and
U-shaped state.
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4.3. Floating State Analysis

The tilt angle resulting from the weight movement is influenced by the parameters k1
and k2 in the lateral and longitudinal plane, respectively. Since the total length of the body
remains unchanged, the two parameters are related by the following Equation, and at this
time, the control parameter is only one variable, k1.

k1 + 2k2 = 1412 (10)

When in the lateral plane, move the p-weight object from point A to point A1 along
the lateral horizontal direction. As shown in Figure 15, the robot’s center of gravity moves
from the original point GH0 to point GH1. The body produces a lateral tilt, and the waterline
moves from W0L0 to W1L1.

Figure 15. Schematic diagram of lateral movement.

After the object moves, the robot will have a lateral angle tilt, and the derivation
process is shown in Appendix B.

At the longitudinal plane, the p-weight object is moved from point B to point B1 along
the longitudinal horizontal direction, as shown in Figure 16.

Figure 16. Schematic diagram of longitudinal movement.

After the object is moved, the robot will have a longitudinal angle tilt, and the deriva-
tion process is shown in Appendix C.

When the p-weight object is 0.3 kg, the image of k1 against the lateral tilt angle α and
the longitudinal tilt angle β is obtained, as shown in Figure 17.

The above figure shows that when the moving weight is certain, with the increase of
k1, the overall tendency of the lateral tilt angle decreases, and the overall tendency of the
longitudinal tilt angle increases. When k1 is about 0.5 mm, the two curves cross, and the
lateral and longitudinal inclination angles are equal. When k1 is less than 0.5 mm, the trend
of decreasing the lateral tilt angle is more drastic, and the longitudinal tilt angle also shows
a slow decreasing trend. When k1 is larger than 0.5 mm, the decreasing lateral tilt angle
trend is more moderate, and the increasing longitudinal tilt angle trend is more drastic.
Considering the actual needs, the final choice of k1 is 0.4 mm.
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Figure 17. Diagram of the influence of parameter k1 on inclination angle.

5. Robot Prototype Experiment

5.1. Robot Prototype

In this article, platform test experiments of the robot were conducted on the water
to verify the effectiveness of the robot prototype functions based on whether the robot
can achieve the corresponding motion by experimenting with the effective load-carrying
capacity, the automatic adjustment function, and different motion states. The model number
of the remote control is FOSS FS-i6, the model number of the receiver is FS-iA6, the model
number of the thruster is T60, the model number of the electronic governor is SHARK-
50A, the model number of the servo is S9177SV, and the model number of the gyroscope
angle sensor is WT901WIFI. The technical data of the experimental prototype are shown in
Table 2, and the schematic diagram of each attitude of the solid prototype after assembly is
shown in Figure 18.

Table 2. Robot function prototype parameters.

Parameter Name Optimization Value

Size (mm) 1306 × 96 × 168
Weight (kg) 3.5

Movement speed (m/s) 0.678
Control range (m) 500

Effective bearing capacity (kg) 3–4

Figure 18. Schematic diagram of the pose of the experimental robot prototype.
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5.2. Bearing Capacity Test Experiment

Experiment on the effective load-carrying capacity of the experimental robot prototype.
When the robot is in U-shape, the dumbbell piece is used to simulate the actual weight,
and the weight is bound to the front and rear segments to imitate the human arm, and this
state can enclose the weight and play the role of buoyancy support. When the weight is
3 kg, the horizontal surface reaches the state shown in Figure 19, and the robot is about to
miss the horizontal surface. The robot sinks underwater when the weight is added to 4 kg.
The effective load-carrying capacity is 3–4 kg, which meets the initial performance index
requirements.

 
Figure 19. The effective load-carrying capacity test diagram.

5.3. Robot-Throwing Expansion Experiment

The staff threw the robot in the triangle state into the water and pressed the button
of the handheld operator to convert the triangle into a linear shape. The front and rear
segments of the body rotate in opposite directions, and the middle segment of the body is
relatively fixed to complete the unfolding experiment, as shown in Figure 20.

 

Figure 20. Throwing unfolding experiment. (a) Triangular shape of the robot; (b) U-shape of the
robot; (c) Curved shape of the robot 1; (d) Curved shape of the robot 2; (e) Linear shape of the robot.

5.4. Automatic Attitude Adjustment Experiment

Since the robot can be thrown to the surface at will, it is important to ensure that
the robot can automatically adjust so that the thrusters remain underwater. During the
adjustment process, when the robot is tilted at a certain angle, a recovery torque is generated
to return the robot to a positive floating state. The vertical submerged state of the thruster
is set to 0◦, and the vertical exposure of the thruster to air is set to −180◦. Theoretically, the
recovery torque is 0 for robot tilt angles of 0◦ and −180◦. Experimentation on the functional
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prototype of the robot when the thruster is −180◦. The effect is shown in Figure 21A, and
the real-time data of the robot tilt angle is shown in Figure 21B.

 
 

(A) (B) 

Figure 21. (A) Automatic adjustment experiment effect diagram. (a) Robot tilt angle of −180◦

diagram; (b) Robot tilt angle of −120◦ diagram; (c) Robot tilt angle of −60◦ diagram; (d) Robot tilt
angle of 0◦ diagram; (B) Real-time data diagram of robot tilt angle.

When the tilt angle is −180◦, the recovery moment is 0. However, in the actual
situation, the left and right forces of the robot on the water surface cannot be perfectly
balanced. As shown above, the thrusters can be automatically submerged in real situations.

5.5. Oscillating Motion Experiment

Due to the special structural form of robots, they can rely on their own structural
characteristics for swinging motion. Figure 22 shows the motion of the robot in the swing
state. The remote control controls the steering gear to make the rear segment swing from 0
to 40◦. The robot moves flexibly during the swing state and has low motion noise.

Figure 22. Swing experiment. (a) t = 0 s; (b) t = 1 s; (c) t = 1.5 s.

5.6. Direct Flight Motion Test

Conduct experiments on linear-shaped and U-shaped direct sailing movements on the
water. Only longitudinal thrust is applied to the robot to ensure straight navigation of the
robot, and the ground angle is put in the pool as a position reference. Figure 23 shows the
direct sailing movements state of the robot.

The robot starts from a standstill, and observing the position of the reference object
and the robot shows that the motion trajectory is straight, which indicates that the robot
has a good stability of motion posture on the water surface.
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(A) (B) 

Figure 23. Direct sailing movement. (A) Direct sailing movement in linear shape. (a1) t = 0 s; (b1) t = 1 s;
(c1) t = 2.1 s; (B) Direct sailing movement in U-shape. (a2) t = 0 s; (b2) t = 2 s; (c2) t = 3.2 s.

5.7. Horizontal Rotary Motion Experiment

In the U-shape, the rotation speed of the left and right propellers is adjusted so there
is a certain difference in their output power, and the robot will appear to steer, as shown in
Figure 24A. When the remote control controls the steering gear at the deformable section of
the robot, the front and back segments swing opposite to 55◦ and turn into a curved shape.
Under the action of the thruster, the motion trajectory is also horizontal rotary, as shown in
Figure 24B.

  
(A) (B) 

Figure 24. (A) U-shaped horizontal rotation motion. (a1) Rotate 0◦ horizontally; (b1) Rotate 90◦

horizontally; (c1) Rotate 180◦ horizontally; (d1) Rotate 270◦ horizontally; (B) Curved shape horizontal
rotation motion. (a2) Rotate 0◦ horizontally; (b2) Rotate 90◦ horizontally; (c2) Rotate 180◦ horizontally;
(d2) Rotate 270◦ horizontally.

In the U-shape, the robot can achieve slewing motion under the action of thrust and
bow moment when there is a certain deviation between the left and right propeller speed.
In the U-shape, when the propeller speed is the same, and the output power is equal, the
robot can also achieve rotary motion, which aligns with the general rule of horizontal rotary
motion of water-mobile robots.

6. Conclusions

A deformable water-mobile robot is proposed for the specific needs of water rescue
equipment. The robot has a two-degree-of-freedom chain structure that can be deformed to
respond to different work requirements. The robot has a two-degrees-of-freedom chain
structure that can be deformed to respond to different work requirements. Compared with
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the traditional U-shaped water-mobile robot, this robot can quickly reach the target location
by morphing into a linear shape. An optimization design platform is established in linear
shape to optimize the robot’s shape parameters based on a multi-island genetic algorithm
with the objectives of minimum drag and maximum volume. Additionally, the floating
state analysis was carried out in U-shaped to get the best shape structure. Finally, the
robot prototype was experimented on the water surface. The robot’s effective load-carrying
capacity meets the design requirements and can be deployed smoothly after throwing. The
thruster can automatically sink underwater according to its adjustment function, which
is better for achieving different movement functions. A deformable water-mobile robot
is proposed to solve the current life-saving equipment structure of a single, large water
drag and other shortcomings. Subsequently, it is necessary to introduce dynamics models,
add precise control systems, and cooperate with vision and other systems for autonomous
navigation control.
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Appendix A

This article uses the segmentation method to calculate the position coordinates of the
robot’s buoyancy center. Parallel to the coordinate plane YOZ, a thin slice is taken in part
below the draft line, and its thin microvolume can be calculated as Equation (A1):

dVf = Asdx (A1)

The static moment of the thin film microvolume to the coordinate plane can be calcu-
lated as Equations (A2)–(A4):

dMyoz = xa As dx (A2)

dMxoz = ya As dx (A3)

dMyox = za As dx (A4)

The coordinates of the center of buoyancy can be calculated as Equations (A5)–(A7):

xB =
Myoz

Vf
(A5)

yB =
Mxoz

Vf
(A6)

zB =
Myox

Vf
(A7)
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Appendix B

When the object moves, the robot tilts at a lateral angle. The buoyancy center BH0 will
make a circular motion with the point of steady center MH as the center and the radius
HBM as the steady lateral center. The lateral stability center radius HBM can be calculated
as Equation (A8) [26]:

HBM =
IH

Vf
(A8)

where IH is the lateral moment of inertia.
The high HGM of lateral stability in this state can be calculated as Equation (A9):

HGM = HBM− HBG (A9)

The cross-tilt angle α of the robot after the lateral movement of the weight p can be
calculated as Equation (A10):

α = arctan
(

p k1
ΔHGM

)
(A10)

where Δ is the discharge volume.

Appendix C

When the object moves, the robot tilts at a longitudinal angle. The longitudinal stability
center radius ZBM can be calculated as Equation (A11) [26]:

ZBM =
IZ − AW x2

f
Vf

(A11)

where IZ is the longitudinal moment of inertia, AW is the waterline surface area at Z from
the base plane, and xf is the longitudinal coordinate of the waterline surface area AW shape
center at Z from the base plane.

The high ZGM of longitudinal stability can be calculated as Equation (A12):

ZGM = ZBM− ZBG (A12)

The longitudinal inclination angle β of the robot after the longitudinal movement of
the weight p can be calculated as Equation (A13):

β = arctan
(

p (1412 − k1)

2 Δ ZGM

)
(A13)
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Abstract: Robot dynamics model uncertainty and unpredictable external perturbations are important
factors that influence control accuracy and stability. To accurately compensate for the dynamics
model in sliding mode control (SMC), a new parallel network (PCR) is proposed in this paper. The
network parallelizes the radial basis function and convolutional neural network, which gives it
the advantage of making full use of one-dimensional data fitting results and two-dimensional data
feature information, realizing the deep learning of multidimensional data and improving the model’s
compensation accuracy and anti-interference ability. Meanwhile, based on the integration of adaptive
control techniques and gradient descent, a new weight update algorithm is designed to realize the
online learning of PCR networks under loss-free functions. Then, a new sliding mode controller
(PCR-SMC) is established. The model-free intelligent control of the robot is accomplished without
knowledge of the predetermined upper bounds. Additionally, the stability analysis of the control
system is proved by the Lyapunov theorem. Lastly, robot tracking control simulations are performed
on two trajectories. The results demonstrate the high-precision tracking performance of this controller
in comparison with the RBF-SMC controller.

Keywords: parallel network; PCR-SMC controller; uncertainty compensation; trajectory tracking

1. Introduction

Robotic manipulators are multi-input and -output nonlinear systems with an uncertain
model, due to payload changes, friction, external disturbances [1], etc. Therefore, it is
difficult to acquire accurate knowledge of robotic systems, resulting in the inability to
design a universal and accurate motion controller [2,3], however rapid the development of
robot technology or the complexity of work tasks. The focus of much engineering’ research
is to design a controller that is suitable for uncertain robotic model systems [4]. Mainstream
control methods include proportional integral derivative control [5], adaptive control [6],
neural network control [7], and sliding mode control (SMC) [8].

Among the above methods, the SMC algorithm has a special nonlinear control, known
as a variable structure controller. It is insensitive to the uncertainty of inherent parameters
and has high robustness to external disturbances [9]. If the control system has many
unknown parameters, the SMC design becomes complicated, and its performance degrades.
Meanwhile, the SMC method is prone to the chatter phenomenon in the control process [10].
Therefore, to obtain a high-performance SMC, much intelligent control research has been
conducted, such as combining intelligent control with a neural network [11,12]. The fusion
of computational intelligence methods and robotics can improve the accuracy, reliability,
efficiency, cost-effectiveness, and competitiveness of systems.
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The radial basis function neural network (RBFNN) has the advantages of simple
structure and strong generalization ability [13]. The intelligent RBFNN method and SMC
integration can considerably reduce chattering and improve the control performance by
approximating the system model in real time [14]. Yin et al. [15] proposed an adaptive
terminal SMC strategy using an RBFNN, which achieved model-free and chatter-free high-
precision tracking control for stone-carving robot manipulators. Fang et al. [16] combined
an RBFNN with a brain emotional nesting network and applied it to the robot’s object
grasping task. Chen et al. [17] designed a fixed-time fractional sliding mode controller,
which improved the convergence speed and control accuracy in the trajectory tracking
control field of unmanned aerial vehicles. However, an RBF neural network has a fixed-
structure problem. To improve the control system’s performance, Ye et al. [18] combined
two controllers (the fuzzy neural network and compensation controllers) and verified
their feasibility for robot control. Yen et al. [19] designed robust controllers through
sliding mode control techniques, RBFNN models, and adaptive algorithms. This method
effectively improved the tracking control accuracy by independently compensating for
joint uncertainty. Wang et al. [20] improved the input of an RBFNN using a nearest-
neighbor clustering algorithm, and then applied it to the uncertainty compensation of
robotic systems.

However, RBF neural networks and their variants can only handle one-dimensional
data. To overcome this limitation, using a CNN has allowed for new prospects in the
field of system identification and control [21]. Yao and Chen [22] proposed a deep CNN-
SMC controller. The simulation of the 5DOF system showed that the controller had high
robustness and a high response tracking control effect. Zhou et al. [23] compensated for
the uncertainty of the robot control system by using a CNN. The gradient descent method
was used for weight learning. By combining it with the fractional-order terminal SMC, the
control performance of the rigid robot was effectively improved. The CNN-SMC controller
realized the processing of multidimensional data and real-time compensation of the model;
however, it ignores real-time one-dimensional data feedback. In recent years, scholars
in different fields combined a CNN and an RBFNN, producing excellent research results.
Hemalakshmi et al. [24] used a hybrid serial CNN-RBF model to improve the classification
accuracy of retinal fundus images. Hong et al. [25] connected a CNN and an RBFNN in a
series and used it for 24-h wind power prediction. Sideratos et al. [26] proposed a series
network structure (RBF-CNN model) for power system load forecasting. Compared with
existing load forecasting methods, the proposed model had higher forecasting performance.
The combination of a CNN and an RBF has produced high performance in other fields;
however, it still suffers from the drawback that it can only handle one-dimensional data.
How to realize the parallel processing of one- and two-dimensional data using a neural
network for application to a control system is a new research direction.

In the above methods, an RBF and its improved method are used to approximate the
dynamic model online, and the input is one-dimensional feedback data; a CNN and its
improved scheme can estimate the dynamic model online, and its input is mainly two-
dimensional history data. How to realize the parallel combination of two neural networks,
taking into account the full utilization of the feature information of one-dimensional data
and two-dimensional data, has not yet been reported. Therefore, a new sliding mode
controller (PCR-SCM) using parallel neural networks is proposed, and then applied to the
trajectory tracking control of two-link robots. The PCR network is a combination of a CNN
and an RBF to achieve its parallel computation, and the weight adaptive online learning
algorithm is designed. Briefly, the main contributions of this paper are as follows:

1. In this paper, we study the data mining capability of a CNN and the infinite approxi-
mation characteristics of an RBFNN. Additionally, a new PCR network is proposed.
This network fully integrates information from different dimensional data, realizing
the synchronization of data fitting and time series prediction.
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2. A weight learning method for PCR networks in real-time control systems is designed,
which integrates gradient descent and adaptive techniques, realizing the online learn-
ing of the PCR network’s weight.

3. A new PCR-SMC controller is proposed and applied to the trajectory tracking control
of a two-link robot. Simulations are conducted on two trajectories to verify that the con-
troller has superior control performance in comparison with the RBF-SMC controller.

The organization of this paper is as follows: Section 2 presents the rigid robot dynamics
model; Section 3 shows our design for the PCR-SMC controller, as well as proposes the
adaptive weight online learning algorithm; Section 4 presents the simulation results; lastly,
the conclusion and future research direction are given in Section 5.

2. Preliminaries

2.1. Robot Dynamic Model

The n-link robot is analyzed using the Lagrange method, and the closed dynamic
model is shown in Equation (1) [27,28].

Mr(θ)
..
θ + Cr

(
θ,

.
θ
) .

θ + Gr(θ) + d(t) = τ(t), (1)

where θ ∈ Rn represents the joint angles,
.
θ ∈ Rn represents the angular velocities, and

..
θ ∈ Rn represents the angular acceleration. τ∈ Rn is the driving torque of the joints,
Mr(θ)∈ Rn is the symmetric positive definite inertia matrix, Cr

(
θ,

.
θ
)
∈ Rn is the Coriolis

and centrifugal force matrix, Gr(θ) ∈ Rn represents the gravitational force vector, and
d(t) ∈ Rn is the external disturbances vector. θ, τ, d(t), and Gr(θ) are the n × 1 vectors,
and Mr(θ) and Cr

(
θ,

.
θ
)

are the n × n matrices [29]. The n-link mechanism model of the
robot is shown in Figure 1.

Figure 1. The model of n-link robotic manipulator.

Property 1 [30,31]. Mr(θ)− 2Cr

(
θ,

.
θ
)

is a skew symmetric matrix, and if the variable is
ξ ∈ Rn, it satisfies Equation (2).

ξT
(

Mr(θ)− 2Cr

(
θ,

.
θ
))

ξ = 0. (2)

Property 2 [32]. Mr(θ) is a symmetric positive definite matrix of n × n and bounded; if ψ1
and ψ2 are positive numbers, it satisfies Equation (3).

ψ1‖x‖2 ≤ x
T

Mr(θ)x ≥ ψ2‖x‖2 ∀x ∈ Rn. (3)
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Compared with the actual model, the established dynamic system model based on the
theoretical structure of the robotic manipulator will have errors in the calculation process.
Therefore, the actual dynamic model is established in Equation (4).

Mr0(θ)
..
θ + Cr0

(
θ,

.
θ
) .

θ + Gr0(θ) = τ + fr

(
θ,

.
θ, t

)
, (4)

where Mr0(θ), Cr0

(
θ,

.
θ
)

, and Gr0(θ) are the nominal values of Mr(θ), Cr

(
θ,

.
θ
)

, and Gr(θ),

respectively. fr

(
θ,

.
θ, t

)
= −ΔMr(θ) − ΔCr

(
θ,

.
θ
)
− ΔGr(θ) − d(t) is the uncertain part

of the model, where ΔMr(θ) = Mr(θ)− Mr0(θ), ΔCr

(
θ,

.
θ
)
= Cr

(
θ,

.
θ
)
− Cr0

(
θ,

.
θ
)

, and
ΔGr(θ) = Gr(θ)− Gr0(θ), are assumed to have upper bounds. However, in some practical
engineering problems, it is easy to choose a larger estimated value for the upper bound.
As a result, the control gain is large, which affects the control accuracy and performance.
Therefore, it may be a better solution to study model-free control methods that do not
require prior knowledge of the upper bound.

2.2. Sliding Mode Control

Under the feedback of the discontinuous state control law function, the control output
of an SMC can be continuously switched between two smooth states, which has the
characteristics of not requiring an accurate model and being insensitive to parameter
changes [33,34]. In this paper, according to the control model’s state feedback error, the
function of the sliding surface is used, as shown in Equation (5) [33,35]. The robot’s ideal
target trajectory vectors are θd and

.
θd. The robot’s actual output trajectory vectors are θ and

.
θ. The angular tracking error is e = [e1, e2, · · · , en]

T , and the angular velocity tracking error
is

.
e =

[ .
e1,

.
e2, · · · ,

.
en
]T .

Sr =
.
e + Λe, (5)

where Λ = ΛT > 0.
According to Equations (1) and (5), the dynamic model error expression is shown in

Equation (6).
Mr(θ)

.
Sr = f (θ)− Cr

(
θ,

.
θ
)

Sr + d(t)− τ, (6)

where f (θ) = Mr(θ)
( ..

θd + Λ
.
e
)
+ Cr

(
θ,

.
θ
)( .

θd + Λe
)
+ Gr(θ) is the model’s basic informa-

tion, which is a nonlinear function about θ,
.
θ, θd,

.
θd, and

..
θd.

The design control rate is shown in Equation (7).

τ = f (θ) + KeSr, (7)

where f (θ) is the theoretical nominal value of f (θ) for nominal model control. Equation (8)
is obtained by substituting Equation (7) into Equation (6).

Mr(θ)
.

Sr = −(Ke + Cr)Sr +
∼
f (θ) + d(t), (8)

where
∼
f (θ) = f (θ)− f (θ). The Lyapunov function [36] is defined as V = 1

2 SrT Mr(θ)Sr,
and its derivative is shown in Equation (9).

.
V = SrT Mr

.
Sr +

1
2

SrT
.

MrSr. (9)

Equation (10) is obtained by substituting Equation (8) into Equation (9).

.
V = −SrTKeSr +

1
2

SrT
( .

Mr − 2Cr

)
Sr + SrTη, (10)
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where η =
∼
f (θ) + d(t).

According to the dynamic model’s oblique symmetry properties, SrT
( .

Mr − 2Cr

)
Sr = 0

and
.

V = SrTη − SrTKeSr are obtained. The estimation error and disturbance of model
information affect the control accuracy and stability. Therefore, in the absence of an accurate
dynamic model and accurate judgment of disturbance, researching model approximation
and disturbance compensation algorithms is an effective way to achieve high-performance
model-free control.

3. Design of PCR-SMC Controller

3.1. Overall Design

A new PCR-SMC controller is proposed in this paper, and its principle is shown in
Figure 2. This controller uses a CNN and an RBFNN to parallel trajectory information of
different dimensions, so that it can compensate for the robot uncertainty model online and
improve the control performance of robot trajectory tracking.

 

Figure 2. Schematic of the PCR-SMC controller.

In Figure 2, the errors e and
.
e are the inputs, and the control torque τ of each joint is

the output of the PCR-SMC controller. The input of an RBFNN is composed of five kinds
of trajectory information, which are the expected angle θd, expected angular velocity

.
θd,

expected angular acceleration
..
θd, actual angle θ, and actual angular velocity

.
θ. The input of

the CNN is the information of the trajectory being retraced. f̂ (θ) is the calculation result of
the dynamic model identified online by the PCR network, and it participates in trajectory
tracking sliding mode control.

3.2. Design of PCR Network

A CNN has the advantages of convolution calculation, local perception, and weight
sharing, and it can quickly extract features during data processing. Therefore, its applica-
tion scenarios gradually penetrate into the field of intelligent industry, which requires a
rapid response [37,38]. An RBFNN has the advantages of fast convergence speed, strong
robustness, simple structure, and good approximation ability, and it is often used in the
field of real-time control [39].

The PCR network structure is designed as shown in Figure 3. In the PCR network, the
parallel calculation of an RBFNN and a CNN is performed, and then the calculation results
are recomposed into a new network hidden layer; finally, the results are calculated through
the output layer. The establishment of the network model and the design of the weight
learning algorithm are described in detail below.
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Figure 3. Structure of PCR network.

3.2.1. Convolutional Neural Network

Trajectory information constantly generates changes during the joint motion. Including
θd,

.
θd,

..
θd, θ, and

.
θ, this information affects the system approach and control stability.

Therefore, the two-dimensional data of four backtracking moments are selected as the CNN
input matrix, with a size of 5 × 5, as shown in Equation (11).

UC =

⎡⎢⎢⎢⎢⎢⎣
θt

θt−1

...
θt−4

.
θ

t

.
θ

t−1

...
.
θ

t−4

θt
d

θt−1
d

...
θt−4

d

.
θ

t
d

.
θ

t−1
d

..
θ

t
d

..
θ

t−1
d

...
...

.
θ

t−4
d

..
θ

t−4
d

⎤⎥⎥⎥⎥⎥⎦. (11)

The calculation model of the convolutional layer is shown in Equation (12).

Ct
i = fσ

(
σt

C
)
= f

(
Ut

C(x)*MC,i + BC
)
, i = 1, 2, · · · , MC,num, (12)

where MC represents the convolution kernel, and MC,num represents the number of MC. BC
is the bias, fσ is the ReLU function, and its partial derivatives are shown in Equations (13)
and (14).

fσ(σC) = max(0, σC). (13)

.
fσ(σc) =

{
0 σC ≤ 0
1 σC > 0

. (14)

The output HC of the fully connected layer is shown in Equation (15).

HC,i = fσ(σF) = fσ(MF,iCi + BF), (15)

where MF represents the weight of the full connection layer, BF represents the bias, and fσ

selects the sigmoid function.

3.2.2. RBF Neural Network

In the PCR network, the dynamic variables UR =

[
θt−1,

.
θ

t−1
, θt−1

d ,
.
θ

t−1
d ,

..
θ

t−1
d

]
of the

dynamic model are selected as the input vector of the RBFNN. The nonlinear approximation
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of the model is realized through a Gaussian hidden layer and output layer [40,41]. The
output result HR of the Gaussian hidden layer is shown in Equation (16).

HR,i = exp

(
−‖UR − Oi‖2

2D2
i

)
, (16)

where Oi is the center point vector, and Di is the width of the Gaussian.
The hidden layer vector H of the PCR network consists of two kinds of information,

which are the result HC of the CNN and the result HR of the RBFNN. The output of the
PCR network is shown in Equation (17).

Y(x) = WT × H, (17)

where H = [HC; HR], and W = [W1, W2, . . . , Wm]
T is the weight of the PCR network

output layer.

3.2.3. Weight Update of PCR Network

Gradient descent is a commonly used weight update algorithm in a neural network.
The mean square error E = 1/2(Yd − Y)2 is used as the loss function. The weight gradient
is defined as the partial derivative of the loss function, as shown in Equation (18).

ΔWt = ∂E(W, Y, H)/∂W = (Yd − Y)Ht. (18)

The weight update is shown in Equation (19).

Wt = Wt−1 − μΔWt, (19)

where μ is the learning rate.
The PCR network output is used to compensate for an important parameter of the

controller, and the loss function cannot be obtained during the system operation. As a result,
conventional methods cannot be used for the weight update. To realize the online learning
of weight, the adaptive algorithm and the gradient descent are combined. According to
Equation (5) and the Lyapunov stability principle [36], the adaptive learning rate of the
output layer of the PCR network is designed as shown in Equation (20).

.
Ŵ = ΓHSrT , (20)

where Γ = ΓT > 0 is the fixed coefficient, and Sr is the sliding mode surface output.
According to the combined features of the PCR network’s hidden layer and the

adaptive learning rate, the initial weight update gradient of the CNN can be obtained as

ΔWC =
.

ŴC − WC. Then, the gradient values of each layer in the CNN are calculated by
gradient backpropagation. The gradient calculation model of the fully connected layer is
shown in Equation (21).

ΔMF = HC(1 − HC)(WC)
TΔWC. (21)

According to the weight gradient calculated using the above formula, the fully con-
nected layer weight can be updated as shown in Equation (22).

MF = MF − μ × ΔMF. (22)
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In the PCR network structure, the input vector of the fully connected layer is obtained
by reducing the dimension of the last convolutional layer. Therefore, the learning gradient
ΔMC,2 model of the convolution kernel is shown in Equation (23).

ΔMC,2 =
.
fσ(σF)(MF)

TΔMF, (23)

where
.
fσ(σF) = C2(1 − C2) is the partial derivative of the sigmoid function, and C2 is

the input data of the second convolution layer; the vector form of ΔMF needs to be
converted to matrix form. According to the convolution kernel weight gradient ΔMC,2, a
new convolution kernel can be calculated as shown in Equation (24).

MC,2 = C2 × ΔMC,2. (24)

The weight gradient ΔMC,1 of the previous convolution kernel can be calculated
through the gradient backpropagation algorithm, as shown in Equation (25).

ΔMC,1 = ΔMC,2 × rot180(MC,2)×
.
fσ(σC), (25)

where rot180(MC,2) means that the matrix MC,2 is flipped 180◦.
.
fσ(σC) is the derivative of

the ReLU function in the convolutional layer. Given the convolution kernel weight gradient
ΔMC,1, the convolution kernel MC,1 can be updated, as shown in Equation (26).

MC,1 = UC(x)× ΔMC,1 (26)

The weight of the PCR network is combined with the adaptive technology and the
gradient descent algorithm to realize the online update of the network weight.

3.3. Controller Design

In practical engineering applications, accurate robot dynamic models do not exist, and
nominal models are often used for robot trajectory tracking control. However, different nom-
inal models may affect the transformation laws of system errors and degrade control per-
formance. Therefore, the PCR network is used for the online approximation of the dynamic
model and compensation for external disturbances, thus achieving model-free control.

The control rate of the PCR-SMC controller is designed as shown in Equation (27).

τ = f̂ (θ) + KeSr, (27)

where f (θ) is composed of the robot dynamics model (Mr
..
qr + Cr

.
qr + Gr + fr) and external

disturbance d(t); f̂ (θ) is the online approximation of f (θ) by the PCR network.
Submitting the control rate (Equation (27)) of the controller and the adaptive rate

(Equation (20)) of the neural network into Equation (8) yields

Mr
.

Sr = −(Cr + Ke)Sr +
∼
W

T
H, (28)

and we have
Mr

.
Sr = −(Cr + Ke)Sr + ζ1, (29)

where ζ1 =
∼
W

T
H,

∼
W = W − Ŵ.

Proof. The Lyapunov function is shown in Equation (30) [36].

L =
1
2

SrT MrSr +
1
2

tr
( ∼

W
T

F−1
∼
W
)

, (30)

where F = FT > 0 is the fixed coefficient. �
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Deriving Equation (30), we can obtain Equation (31).

.
L = SrT Mr

.
Sr +

1
2

SrT
.

MrSr + tr

(
∼
W

T
F−1

.∼
W

)
. (31)

Submitting the control rate (Equation (27)) and the neural network’s adaptive rate
(Equation (20)) into Equation (31) yields

.
L = −SrTKeSr +

1
2

SrT
( .

Mr − 2Cr

)
Sr + tr

∼
W

T
(

F−1
.∼

W + HSrT

)
. (32)

According to the oblique symmetry characteristic (Equation (2)) of the robot dynamics
model, Equation (32) becomes

.
L = −SrTKeSr + tr

∼
W

T
(

F−1
.∼

W + HSrT

)
, (33)

where
∼
W = W − Ŵ; the ideal weight W is a constant, an

.∼
W = 0−

.
Ŵ = −ΓHSrT . According

to the operational property of the trace of the matrix SrT
∼
W

T
H = tr

( ∼
W

T
HSrT

)
, which

transforms Equation (33), we can obtain

.
L = −SrTKeSr. (34)

According to Equation (34), the Lyapunov function is L ≥ 0, and its derivative is
.
L ≤ 0.

According to the LaSalle invariance principle, when t → 0 , r → 0 , e → 0 and
.
e → 0 . This

shows that the control system is asymptotically stable.

4. Numerical Simulation

4.1. Simulation Model and Parameter Setting

This paper organizes numerical simulations for the PCR-SMC controller in the tra-
jectory tracking task of a two-link robot, and the robot is widely used to verify the con-
trol algorithm’s performance [42]. The theoretical model of robot dynamics is shown in
Equation (35).

Mr(θ)
..
θ + Cr

(
θ,

.
θ
) .

θ + Gr(θ) + d(t) = τ(t), (35)

where θ =
[
θ1 θ2

]T , τ =
[
τ1 τ2

]T , and the inertia matrix is Mr; the centrifugal force,

Coriolis force matrix Cr

(
θ,

.
θ
)

, and gravity matrix Gr(θ) are shown in Equations (36)–(38),
respectively, where mi is the mass of link i (m1 = 0.5kg, and m2 = 1.5kg), and li is the
length of link i (l1 = 1m and l2 = 0.8m) [43,44]. θi and

.
θi represent the angle and angular

velocity of link i, respectively; g = 9.81 m/s2.

Mr(θ) =

[
Z1 + Z2 + 2Z3cos θ2 Z2 + Z3cos θ2
m2l2

2 + m2l1l2cos θ2 m2l2
2

]
, (36)

Cr

(
θ,

.
θ
)
=

[
−Z3

.
θ2sinθ2 −Z3

( .
θ1 +

.
θ2

)
sinθ2

Z3
.
θ1sinθ2 0

]
, (37)

Gr(θ) =

[
Z4cos(θ1 + θ2)+Z5cosθ1

Z4cos(θ1 + θ2)

]
, (38)

where Z1 = (m1 + m2)l2
1, Z2 = m2l2

2, Z3 = m2l1l2, Z4 = m2l2g, and Z5 = (m1 + m2)l1g.
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The parameters of SMC are set as follows: Ke = [24, 0; 0, 24], Λ = [13, 0; 0, 13], and
Γ = [20, 0; 0, 20]. Table 1 gives the parameters of the PCR network structure. The input of

RBFNN is UR =

[
θt−1,

.
θ

t−1
, θt−1

d ,
.
θ

t−1
d ,

..
θ

t−1
d

]
. The input data of CNN are composed of the

two-dimensional information of joint trajectories in the past five iterations, as shown in
Equation (11). In addition, the RBF-SMC controller is a contrast control algorithm, and
its network structure is 5–7–1. The parameters of the RBFNN part of the PCR-SMC and
RBF-SMC controllers are set identically.

Table 1. Parameters of PCR network.

Parameters Value

Number of convolution kernels (MC,num) 2
Size (M C,1

)
2 × 2

Size (MC,2) 3 × 3
Learning rate (μ) 0.005

Number of hidden layers (H) 7

4.2. Simulation Results and Analysis

Case 1. The control performance of the PCR-SMC controller is verified in a normal
trajectory and compared with the RBF-SMC controller. The desired trajectory is shown in
Equation (39) [45].

θd(t) =
[

1.25 − (7/5)e−t + (7/20)e−4t

1.25 + e−t − (1/4)e−4t

]
. (39)

The initial values of the joint angle are θ1(0) = 0.3 and θ2(0) = 1.9, and the angular
velocity is 0. During the 20 s simulation, random disturbance is added, and the amplitude is
set to 0.1, which is used to simulate the external disturbance in the actual working condition.
In addition, to effectively judge the response speed, convergence ability, and stability of the
control algorithm, the externally changing load disturbance is added during the simulation
for 5–10 s, as shown in Equation (40) [46]. After 15 s, the fixed load disturbance is added as
[−15; −10] [47]. [−2.14cos(10t) + 2

4.15sin(20t − π/4)

]
. (40)

Figures 4–7 show the trajectory tracking simulation results and absolute errors. The
estimated performance of the PCR network is shown in Figure 8, and the output control
torque is shown in Figure 9. Both the PCR-SMC and RBF-SMC controllers have obvious
convergence trends before applying the load. However, the tracking error of the RBF-SMC
controller is larger than that of the PCR-SMC controller. After 5 s, a continuously varying
load is applied. The tracking error of the RBF-SMC controller has a large oscillation, while
the PCR-SMC controller has strong anti-interference ability, and the control error is in a
small interval. After 15 s, the fixed load is applied, and the control torque and network
output gradually converge to a new value. The control output and trajectory tracking
process of the PCR-SMC controller are more stable. This shows that the PCR-SMC controller
has strong control stability and superior control performance to the RBF-SMC controller.
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(a) Position tracking for link 1 (b) Position tracking for link 2 

Figure 4. Desired and actual tracked trajectories of links on a normal trajectory.

  

(a) Position error for link 1 (b) Position error for link 2 

Figure 5. Trajectory tracking absolute error on a normal trajectory.

  

(a) Speeds tracking for link 1 (b) Speeds tracking for link 2 

Figure 6. Desired and actual tracking speeds of links on a normal trajectory.

  
(a) Speeds error for link 1 (b) Speeds error for link 2 

Figure 7. Speed tracking absolute error on a normal trajectory.
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(a) Network estimate for link 1 (b) Network estimate for link 2 

Figure 8. Network estimation output on a normal trajectory.

  

(a) Control torque for link 1 (b) Control torque for link 2 

Figure 9. Control torque on a normal trajectory.

Tables 2–4 show the mean absolute error (MAE) and standard deviation (SD) of
the tracking results, including the overall control process (0–20 s), the control of variable
disturbances (5–10 s), and the control of fixed disturbances (15–20 s). The MAE evaluates the
tracking accuracy, and the SD evaluates the tracking stability of the trajectory. By analyzing
the simulation results in the tables, we determined that the PCR-SMC controller reduces
the trajectory tracking error and improves stability compared with the RBF-SMC method.

Table 2. Overall tracking error (0–20 s).

Error
PCR-SMC RBF-SMC

Link 1 Link 2 Link 1 Link 2

Position error
MAE 0.0039 0.0031 0.0066 0.0041
SD 0.0135 0.0130 0.0153 0.0134

Speed error MAE 0.0215 0.0241 0.0501 0.0366
SD 0.0366 0.0941 0.1014 0.1050

Table 3. Tracking error with variable disturbance (5–10 s).

Error
PCR-SMC RBF-SMC

Link 1 Link 2 Link 1 Link 2

Position error
MAE 0.0054 0.0037 0.0117 0.0064
SD 0.0061 0.0043 0.0135 0.0078

Speed error MAE 0.0517 0.0663 0.1131 0.0969
SD 0.0661 0.1361 0.0761 0.1157
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Table 4. Tracking error with fixed interference (15–20 s).

Error
PCR-SMC RBF-SMC

Link 1 Link 2 Link 1 Link 2

Position error
MAE 0.0018 0.0012 0.0050 0.0023
SD 0.0064 0.0038 0.0094 0.0046

Speed error MAE 0.0109 0.0065 0.0420 0.0184
SD 0.0369 0.0741 0.0202 0.0337

Case 2. The starfish-shaped trajectory is a more complex robot trajectory, which can
further verify the effectiveness and stability of the PCR-SMC controller. The starfish-shaped
trajectory model is shown in Equation (41).[

(0.8 + 0.2 × sin(5t))× cos(t + 4π/3)
(0.8 + 0.2 × sin(5t))× sin(t + 4π/3)

]
. (41)

The initial values of θ and
.
θ are set to 0, and the others are the same as those in

Case 1. The tracking results of the starfish trajectory at the robot’s end-effector are shown
in Figure 10. Figures 11 and 12 show the trajectory tracking results of the links. The model
uncertainty approximation results based on the neural network are shown in Figure 13.
The PCR-SMC controller has high tracking accuracy, and the output of the PCR network is
more stable, showing better control performance. The effectiveness and versatility of the
PCR-SMC controller are fully verified.

  

(a) Trajectory tracking for PCR-SMC controller (b) Trajectory tracking for RBF-SMC controller 

Figure 10. Robot end-effector trajectory tracking results.

  
(a) Position tracking for link 1 (b) Position tracking for link 2 

Figure 11. Desired and actual tracked trajectories of links on a starfish-shaped trajectory.
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(a) Speed tracking for link 1 (b) Speed tracking for link 2 

Figure 12. Desired and actual tracking speeds of links on a starfish-shaped trajectory.

  

(a) Network estimate for link 1 (b) Network estimate for link 2 

Figure 13. Network estimation output on a starfish-shaped trajectory.

From the simulation results of the above two trajectory tracking control methods (see
Figures 8 and 13), we determined that, in the online approximation process of system
model uncertainty, the output of the PCR network can converge rapidly, and the process
is more stable, compared with the RBFNN. This shows that the feature value extracted
by the CNN in the historical trajectory data is an important parameter for system model
identification. Historical feature information is reasonably used, and it can effectively
improve the identification accuracy and control stability of the dynamic model, improving
the system’s control performance.

The simulation results of the PCR-SMC controller proposed in this study were com-
pared with other controllers, and the comparison results are shown in Table 5. In the case
of varying load and fixed load interference, the proposed PCR-SMC controller achieved
excellent control results and demonstrated excellent competitiveness.

Table 5. Controller comparison results.

Controller Robot Type Maximum Error MAE External Interference

PCR-SMC controller 2DOF 0.1 rad 0.0039 rad Varying and fixed load
Adaptive controller [28] 2DOF Near 0.2 rad - No

RFISMSC [35] 2DOF 0.1 rad - No
AISMC-TDE [45] 2DOF Near 0.43 rad 0.0149 rad Varying load

Adaptive controller [47] 2DOF Near 0.4 rad - Fixed load
Robust control system [48] 2DOF 0.28 rad - No

HOSMC [49] 2DOF Near 0.7 rad - Lower load
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5. Conclusions

This paper proposed a new PCR-SMC controller and applied it to the trajectory
tracking control problem of a two-link robot. We considered factors affecting trajectory
tracking accuracy, including mechanical model uncertainties and external disturbances.
The effective approximation and compensation of the model was realized by constructing a
PCR network. Meanwhile, a new online learning algorithm was designed, by integrating
adaptive control and the gradient descent method. The online learning mechanism can
effectively adjust the connection weight of PCR network in real time, and the stability
of the control system was proven by Lyapunov’s theory. The simulation was performed
with normal and starfish-shaped trajectories. The results showed that the PCR-SMC
controller effectively reduced the trajectory tracking errors on both trajectories, compared
with the RBF-SMC controller. This shows that the PCR-SMC controller has higher tracking
accuracy, strong stability to model uncertainty and external disturbance, and excellent
control performance.

In future work, we will further improve the control performance of the sliding mode
controller based on the PCR network by compensating for the uncertainty of the dynamic
model, and enriching the controller’s application field.
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Abstract: Eliminating pathogen exposure is an important approach to control outbreaks of epidemics
such as COVID-19 (coronavirus disease 2019). To deal with pathogenic environments, using dis-
infection robots is a practicable choice. This research formulates a 3D (three-dimensional) spatial
disinfection strategy for a disinfection robot. First, a disinfection robot is designed with an extensible
control framework for the integration of additional functions. The robot has eight degrees of freedom
that can handle disinfection tasks in complex 3D environments where normal disinfection robots lack
the capability to ensure complete disinfection. An ingenious clamping mechanism is designed to
increase flexibility and adaptability. Secondly, a new coverage path planning algorithm targeted at
the spraying area is used. This algorithm aims to achieve an optimal path via the rotating calipers
algorithm after transformation between a 2D (two-dimensional) array and 3D space. Finally, the
performance of the designed robot is tested through a series of simulations and experiments in
various spaces that humans usually live in. The results demonstrate that the robot can effectively
perform disinfection tasks both in computer simulation and in reality.

Keywords: COVID-19; disinfection robot; coverage path planing; extensible control framework

1. Introduction

The outbreak of COVID-19 has caused an unprecedented global threat to public
health and the economy. Although the spread of some new variants has led to a situation
of low death rates worldwide, improving the configuration of healthcare facilities to
better respond to the status quo is still urgent. Moreover, when facing the challenges of
unknown contagious diseases, reducing or eliminating exposure is always one of the crucial
ways to maintain health. Traditional methods of exposure elimination, such as manual
disinfectant spraying, are restricted by the availability of operators in terms of work time
and concentration. Disinfection robotic systems available for remote control represent a
practical and reasonable tool to fulfill various anti-epidemic purposes. Disinfection or
sterilization robots can remain unhindered by peak hours or terrible operating conditions
and carry out their duties all day long to prevent pathogenic attacks [1].

Many researchers in automation and engineering have also actively responded to this
conception. Since the onset of the pandemic, MIT and Boston Dynamics have begun to
cooperate in the design of patient interaction robots in order to reduce the frontline virus
exposure of healthcare personnel [2]. The use of ultraviolet (UV) light is especially noticed
because its energy is sufficient to destroy the DNA or RNA of any microorganism, and
UV lights have been installed on many experimental mobile robots in an environment to
be sanitized [3]. These robots utilize annotated points of interest on the map to scan the
area and automatically reach the location to perform specific disinfection tasks. However,
limited by the characteristics of UV light and their operating distance, these robots can only
execute on-ground tasks. In a previous study [4], an intelligent disinfection robotic system
was developed to enable robots to spray disinfectants in operating theaters or patients’
rooms, based on the results of controlled experiments and the requirements for hospital
disinfection. A key feature of this research is the application of a novel CLO2 disinfection
technology to sterilize bacteria and viruses in the air and on surfaces. Another noteworthy
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feature is that this robot is also based on a mobile platform, by which the disinfection
abilities are severely curtailed in 3D space, such as on table tops, door handles, elevator
buttons, and other regular locations that humans usually touch [5,6]. There are additional
applications for disinfection robots. For example, SOMATIC is a commercial cleaning robot
that can perform approximately eight hours of cleaning work each time it runs. It can even
open doors and ride elevators to move around the building. The service range of this robot
includes airports, casinos, office spaces, and other places such as large restrooms [7]. The
designed robot is compared with two typical disinfection robots as listed in Table 1.

Table 1. Robots used for disinfection.

Related Works Paper [2] Paper [3] Our robot

Disinfection method ultraviolet light spraying spraying

Disinfection range open-sided 3D space open-sided 2D space 3D space

Degrees of freedom 5 3 8

Robot

In order to better accomplish disinfection tasks, reasonable planning of the spraying
path is a key element of the designed robot. We can convert this problem into a coverage path
problem in 3D space. The coverage path planning (CPP) algorithm is a popular topic and has
been substantially studied. It is applied for underwater or land inspection, unmanned aerial
vehicles, milling, floor cleaning, painting, and medical tasks [8]. Both offline and online
CPP algorithms have been previously proposed. For example, Han [9] proposed a complete
CPP obstacle avoidance algorithm for underwater gliders in the sea, with shorter path
planning and economized energy supply. Only three years have passed since the outbreak
of COVID-19, so few researchers have performed in-depth studies on the disinfection path
problem. Among them, Hong [10] designed a path planning model to acquire an optimal
path based on the map and the robot’s current location; however, the setting is restricted to
conference rooms. Another study [11] investigated how the robotic path can be optimized
to achieve the maximum UV-irradiation performance based on environmental geometry.
Bähnemann et al. presented a path planner for low-altitude terrain coverage in known
environments with unmanned rotary-wing micro aerial vehicles [12]. In this research, the
algorithm was applied in conference rooms and was tested to verify the accuracy, cost, and
efficiency of the robotic execution of disinfection tasks.

In line with the above studies, the objective of the present research is to design a
disinfection robot that can provide effective zero-contact disinfection services for common
environments in 3D space. The main characteristics of this research that differ from the
existing studies are as follows.

(1) This research provides a unique design of robotic architecture from software to hard-
ware. A key feature of our robot is that it is endowed with eight DoFs (degrees of
freedom) to conduct disinfection tasks in common 3D environments based on the inte-
gration of a mobile platform, a manipulator, and the designed disinfection instrument.

(2) According to the characteristics of the designed robot, a CPP algorithm is used for
disinfection in 3D space. In contrast to [9,11], the particularities are taken as the factors
in the disinfection strategy.

(3) Mechanical design, multisensor data fusion, control systems, path planning, spraying
disinfection, and other technologies are adopted to conduct a series of simulations
and experiments to verify the performance of the robot and the proposed algorithm.
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The remainder of this research is structured as follows. The second section explains
the design of the disinfection robot in detail; the third section describes the proposed
CPP algorithm; the fourth section verifies the performance of the robot and the proposed
algorithm with two numerical examples and an experiment; and the fifth section, i.e., the
conclusion, summarizes the results and outlines future work. The patents obtained based
on this research are listed in the sixth section.

2. Robot Design

2.1. Function Analysis and Design

According to the requirements of COVID-19 prevention, the disinfection robot should
have flexibility in 3D space that traditional robots lack. Namely, the robot should be able
to correct its end-effector pose based on the specific disinfection demands and be able
to smoothly adapt to various application scenarios. Remote control is also a prerequisite
for dealing with unique working conditions. Therefore, power supply, communication,
storage performance, and other corresponding modules of the robot should be taken into
consideration. The specific requirements are listed as follows:

1. The width of the robot should be less than 1.2 m to move through elevators, bedroom
doors, and other similar scenarios;

2. The spraying height should be around 1.6 m to cover most common environments;
3. The manipulator should have ample DoFs (operability and flexibility in 3D space) to

access any corner that humans can touch;
4. One charge should enable a working duration of 6 h for the robot, and the robot should

be able to work at different voltage values to fit different disinfection instruments;
5. The gripper should be a general part to fit different disinfection instruments;
6. The hardware and software of the robot should be extensible to achieve multifunc-

tional integration.

2.2. Gripper Design

As one of the key components of the robot, a flexible gripper is designed to grip the
spraying disinfection instruments. The gripper consists of two modules, namely the fixed
and the motion modules. The fixed module comprises a fixed base body, a guide seat, and
a fixed seat. The motion module comprises clamping jaws, a guide seat, and a drive plate.
More definitions of the corresponding structures are shown in Figure 1.

Figure 1. Structure of the gripper.

Clamping jaws are installed on the guide seat along its circumference in the radial
direction in a guiding way, while the guide seat and the drive plate are fixed to the base
body so that each clamping jaw can extend to clamp or retract to release an object in the
radial direction when the guide seat and the drive plate can rotate relatively. The design
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of the clamping mechanism is simple in structure, enabling convenient adjustment of the
clamping range; the clamping jaws can also be replaced to accommodate different shapes,
as shown in the subgraph of Figure 1 (bottom right). The mechanical principle of the gripper
can be seen in the accompanying video.

2.3. The Robotic System

To achieve the above-mentioned functions, a mobile manipulator needs to be installed
to operate the spraying disinfection instruments. The mobile manipulator consists of a
UR5, a serial-chain manipulator that is mounted on a nonholonomic mobile platform with
two DoFs, as shown in the Figure 2. The robot should support the weights of all modules
up to 50 kg and be able to move freely across a flat surface. The left and the right motors
of the mobile platform are driven by 12-volt batteries. The function of the manipulator
is to conduct disinfection operations in 3D space via the disinfection instrument, which
is composed of a compressed air device, a thin pipe, a nozzle, a gripper, etc. The nozzle
can be controlled by an electric valve with an IO interface. In order to fix the disinfection
instruments to the end of the manipulator tightly and suitably for different applications,
the gripper is installed on the flange of the UR5. With USB hubs, functional extension can
be achieved by linking to different external sensors.

Figure 2. The designed disinfection robot system.
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The software design of the disinfection robot is based on the robot operating system
(ROS 1) [13]. The communication network uses a TCP/IP protocol to facilitate telecommuni-
cation with the upper computer or other intelligent robots [14]. An Intel NUC (i7-8559, 16GB
RAM) works as a local computer, while the motion and control functions are encapsulated
as ROS packages and executed in the NUC. The super potential of the robot is achieved
by reserving ample computing power and interfaces for function extensions, such as
for image processing and machine learning. Compared to various other disinfection
robotic systems, this robotic system incorporates its operational parameters and various
functionalities into its hardware and software structures (see more details in Figure 2).

2.4. Kinematic Analysis

The robot has eight DoFs (two in the mobile platform and six in the manipulator)
to conquer difficulties and realize the desired disinfection motions. Before the kinematic
analysis, one can use Pg =

[
xg, yg, zg, αg, βg, γg

]T to describe the motions of the robot
in the world frame (Σg), where the first three elements in Pg represent the position, and
αg, βg, and γg are used to specify the orientations in the triplet of roll, pitch, and yaw
(RPY) angles, respectively [15]. In order to achieve better spraying, the motions along the
xg and yg directions are achieved by a mobile platform. The UR5 manipulator aims to
realize the rest of the absolute motion in the world frame or absolute motion in the frame of
the mobile platform. The desired joint-space trajectories can be obtained based on inverse
kinematics [16].

One more thing should be noted: we deployed an underactuated system for the mobile
platform. The DoFs of the mobile platform can be denoted as qp = [ql qr]

T. The velocities

constrainted between pp =
[gxp

gyp
gγp

]T and the intermediate variables hp = [v ω]T are
expressed as in [17],

ṗ = A(p) · hp =

[
cos

(
θp
)

sin
(
θp
)

0
0 0 1

]T

· hp, (1)

where hp represents the linear and angular velocities of the mobile platform, A is a 3 × 2
transformation matrix, and θp is the joint angle of mobile platform.

In order to obtain a solution in joint space, the inverse kinematics of the mobile platform
can be written as,

q̇p = Jp · hp =

[
1/r W/r
1/r −W/r

]
· hp, (2)

where Jp is a Jacobian matrix, and r and W are the wheel radius and rear tracks of the mobile
platform, respectively.

The motions
[
αg, βg, mγp

]T need to be realized by the manipulator, where mγp is the
relative motion in the mobile platform frame (Σp). Hence, inverse kinematics are used for

the manipulator to solve the joint variables according to pm =
[pαm, pβm, zg, αg, βg, pγm

]T.
The kinematic models of UR5 and their solutions have been sufficiently explored in an
abundance of studies [18]. In this research, iterative methods are applied for the detailed
computation of UR5 [19,20]. Moreover, the proposed kinematics model of the manipulator
is based on but not limited to UR5.

Furthermore, knowledge of spray distribution is required to generate a motion tra-
jectory. The nozzle starts from the origin of the 3D surface, which is a protruding point if
the surface is unfolded. It can be assumed that the spray particles form a cone and that the
distribution pattern is roughly circular when the nozzle is perpendicular to the starting
point (Σs), as shown in Figure 3. The kinematic parameters of the nozzle include the spray
angle (θs) and the spray radius (Rs). The rate of spray impacts the element division of the
disinfection area. In order to make the function of disinfection applicable, a reasonable
margin of safety is defined, which can also be used to determine the effect of spraying.
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Figure 3. Kinematic analysis of the disinfection robot.

3. Coverage Path Planning

CPP is an important part of the robotic disinfection project. All common environmental
areas should be marked and traversed, and the planned path can be obtained by connecting
the nodes. Then, the robot follows this path to conduct the disinfection task, ensuring that
all possible blind spots are covered with the minimal consumption of disinfectant. The
scheme of the proposed CPP algorithm is shown in Figure 4.

Figure 4. Scheme of coverage path planning.

3.1. Space Transfer

In contrast to traditional path planning methods, each of the areas in the selected envi-
ronment should be disinfected. Here, space transfer is considered, converting square pixels
in 3D space into 2D arrays so that all areas are covered adequately. Each pixel (si) is regarded
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as an element for set S in 2D space, as shown in Figure 3. Set n = {n | �ns1, �ns2, . . . ,�nsn}
is defined as the normal vectors of each unfolded plane, and set p = {p | p1, p2, . . . , pn}
represents the vertices of each array in the unfolded plane. Based on set S, the set of angles
between two planes is θ = {θ12, θ13, . . . , θnn}. In practice, the initial and terminal points of
the nozzle should be considered and noted as pi and pt.

Let iTn be a 4× 4 homogeneous transformation matrix between the coordinate systems
from point pi to pn. Therefore,

iTn =i T1 ·1 T2 . . .n−1 Tn, (3)

The geometric parameters can be obtained with defined sets.
After the above process, the CPP algorithm can be viewed as a sequence of robot

configurations by which each array is visited at least once. Each array should be evaluated
to determine whether or not it is basically reachable by the robot based on its kinematic
capability. If the spray does not fully cover the meshed grid, one can tag the corresponding
arrays as unreachable, based on which the relative pose and the path are optimized. In
summary, after this step, every array will be assigned a corresponding robot configuration.
Collision detection and ‘reachable’-oriented redundant configuration control are explicitly
considered in the CPP algorithm. Thus, the actual coverage path may be lower than
estimated in this preprocessing step.

Once the entire surface is covered, the final spray trajectory is obtained and rendered
as an input to the end effector to request motion execution on the desired surface.

3.2. Coverage Path Planning

Figure 4 explains how to support the robot with the end effector to get close to the
most reachable pixels in its current pose. The optimization problem of the end-effector
path can be formulated as a path planning problem, the goal of which is to obtain the
minimum path with the corresponding constraints and the robot configurations. After
preprocessing, a path sequence (P) can be found to cover the unfolded plane (the initial
and terminal points are included) within the minimum time. Based on the CPP algorithm
with the rotating caliper algorithm, an unfolding plan can be introduced as Q = {V, E},
where V = {1, 2, . . . , n} is the set of vertices, and E = {(1, 2), . . . , (n, 1)} is the set of edges.
Then, the nozzle, as defined by the search pattern, follows a path to cover the area (Q),
where each point in the path will be reached by the nozzle moving in straight lines. All
points in the path can be denoted as P = {p | pi, p1, p2, . . . , pn, pt}.

Using rotating calipers, antipodal pairs i and j (i, j ∈ V) are two points on the surface
of a polygon that are exactly opposite each other. The idea of the method is to compute
all the antipodal pairs, find the best path for each antipodal pair, and then select the path
with the lowest cost in combination with the takeoff and landing points [8]. The caliper
is roated clockwise until it touches the edge then, it is rotated counter-clockwise until it
touches a second edge. An angle() function is then defined to compute the angle swept
out by a line as it rotates from its position parallels. Next, both options are measured to
determine the minimum width of the formed polygon. In application, one can define
vertex i close to the initiation point. Then, the algorithm performs a sequence of decisions
and procedures that do not depend on the number of vertices. Based on the antipodal
pair and optimized angle, a path can be computed by the 2Dpath() function using a
back-and-forth pattern. Finally, the plan (S) should be folded in 3D space based on an
inverse kinematic solution using Equation (3). More details about its implementation are
shown in Algorithm 1.
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Algorithm 1 Coverage path planning algorithm
Input:
normal vectors of unfolded plane
n = {n | �ns1, �ns2, . . . ,�nsn};
the sizes of each unfolded plane S = {s | s1, s2, . . . , sn};
plane angle θ = {θ12, θ13, . . . , θnn};
vertices of unfold plan p = {p | p1, p2, . . . , pn};
safety margin h and spray radius Rs;
antipodal pair (i, j);
Output:
waypoints p in 3D space;
1: space transfer with n, S, θ using Equation (3);
2: define the rotation angle function angle() in clockwise direction;
3: define the distance function dist() between two points by using Euclidean distance

formula;
4: define the back and forth path function 2Dpath() based on antipodal pair (i, j) and

optimized angle;
5: if angle(i, j) < angle(j, i) then
6: k ← j; l ← i;
7: else
8: k ← i; l ← j;
9: φ ← angle(k, l)− π;

10: ϕk ← angle(k − 1, k)− π; ϕl ← angle(l − 1, l)− φ;
11: if ϕk < ϕl then
12: m ← k − 1; n ← l;
13: else
14: m ← l − 1; n ← k;
15: if dist(k, l) < dist(m, n) then
16: p = 2Dpath(k, k + 1);
17: else
18: p = 2Dpath(m + 1, m);
19: calculate the waypoints in 3D space based on inverse solution of Equation (3);
20: calculate the joint angle of mobile platform using Equation (1);
21: calculate the joint angle of manipulator in numerical iteration method with motions[pαm, pβm, zg, αg, βg, pγm

]T.

4. Simulation and Experiment

The application of the designed disinfection robot and the proposed CPP algorithm
is verified in this section. For the disinfection test in 3D space, we assume that the spray
is uniformly distributed, and the sanitizing agents are sprayed into the appointed area
every second. Since pathogens can easily be found in common environments (especially
on tables and door handles that are frequently touched by humans), the estimated best
spraying effect can be achieved by aiming the geometric center point of the spray nozzle
at least once. Two simulations and one experiment are carried out to verify the feasibility
of the robot and the proposed algorithm. The first simulation focuses on the rationality
and capability of path planning for key points in diverse scenarios. The second simulation
aims to verify the feasibility of the robot via a disinfection task in a simulation environment.
Here, the robot is aimed to disinfect a workbench in a simulation, as shown in Figure 5. For
the experiment, the scenario is identical to that in the second simulation. The experimental
objective is to test the practical and theoretical performance of the robot. Corresponding
videos are provided as supplementary material for this research.
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Figure 5. Scheme of the simulation and experiment.

4.1. Simulation and Experimental Settings

Vrep and MATLAB are used as tools for the simulations due to their close-to-physical
environments and data processing abilities. The simulation process is conducted as follows.
The proposed algorithm runs in MATLAB, and the implementation, and the feedback of the
data are performed in Vrep with dynamic properties. First, the data and the algorithm are
processed in MATLAB. Secondly, the communication for ROS nodes is established through
the programming interface of the application. Then, defined outputs are continuously
implemented, while the data results of the proposed algorithm are updated. Within the
cosimulation with MATLAB and Vrep, the physical engine and the simulation steps are
selected as Bullet (a physical engine) 2.73 and 50 ms, respectively.

For the experiment, the whole control system architecture is realized based on ROS1.
A distributed multicomputer communication network for the multirobot system is adopted
using the TCP/IP protocol [14]. The ROS master runs on a remote computer (i7-8700
CPU and 8GB RAM), with which the operator can control the robot in a noninfectious
environment. For the robot, an Intel NUC (i7-8559 CPU and 16GB RAM) is used as a local
workstation. The control function based on the proposed CPP algorithm is integrated and
executed in the local workstation. The communication between the mobile platform and
the manipulator (UR5) is based on a feature package named ROS MoveIt. They can be
connected using twisted pairs. The specific operations of the simulation and the experiment
are shown in Figure 5.

To better illustrate the disinfection of the robot and the proposed algorithm, the
experimental area is divided into two categories: horizontal groups and vertical groups.
We should also point out that a future version of the motion planner will include other
parameters such as irregular regions and moving objects. The kinematic and dynamic
parameters of the disinfection robot are listed in Table 2.

Table 2. Physical parameters of the designed disinfection robot.

Mobile platform
Size (L∗ W∗ H) Weight Load

0.88m ∗ 0.68m ∗ 0.45 m 60 kg 100 kg

Manipulator

Weight : [2.58 1.55 1.20 0.52 0.41 0.09] (kg)

aDH : [0 0.61 0.57 0 0 0] (m)

dDH : [0.12 0 0 0.16 0.12 0.09] (m)

αDH : [π/2 0 0 π/2 − π/2 0] (rad)

θDH : [0 − π/2 0 − π/2 0 0] (rad)

Gripper
Weight Clamping range Clamping shape

0.45 kg 0 ∼ 60 mm Arbitrary

The experimental process can be summarized in three steps. First, all the features of
motion and path planning are packed as ROS packages. Secondly, communication tests
and ROS nodes are initialized. Finally, the ROS packages of motion and path planning are
executed with other necessary ROS nodes on either the local or master computers.
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4.2. Validation of the CPP Algorithm

For this simulation, the scenarios are diversified, including standard, arbitrary, and
concave polygons, while the antipodal pair (i, j) is randomly selected. The size of scenarios
varies from 4 m to 20 m and is used to describe the unfolded shapes of the disinfection
areas as much as possible. Since the nozzle is assumed to spray uniformly, the scanning
radius is defined as 0.5 m in the simulation.

Figure 6 shows the results of the CPP algorithm, in which the black solid line represents
the disinfection area, and the solid circles are the initial and terminal points. Some of the
points are determined by calculation, while the rest are randomly selected. The lines are
the end coverage paths, which are the final results after planning. Based on the proposed
algorithm, the path covers every corner to ensure the full disinfection of the surfaces; key
points in this path are important for the robot’s motion. It can be observed that the proposed
algorithm achieves the minimum redundant paths in all environments when they complete
the same amount of coverage tasks. This observation is consistent with the results of the
theoretical analyses in the third section.

quadrangle triangle
start point

pentagon

heptagon

start point

ending point

m m m

m mm

mmm
m m m

Figure 6. Coverage path planning in different environments.

4.3. Validation for Robot Disinfection in Simulation

To demonstrate the applicability of the robot and the proposed algorithm for epidemic
prevention, a coverage path task is performed on a workbench. The overall size of the
workbench is 3 m × 0.8 m × 1.5 m (length, width, and height, respectively). These parame-
ters are input into the algorithm as scene setting. The initial generalized coordinates of the
robot and the workbench are given in the left subfigure of Figure 5. All the initial values of
joints (q̇) are defined as zeros.

Figure 7 shows snapshots of the simulated disinfection. The snapshot at t = 5 s (top
left) shows the nozzle as it begins to spray the workbench. The snapshot at t = 20 s (top
right) depicts the robot as it is nearly finished spraying the first workbench. The snapshot
at t = 50 s (bottom left) shows the robot as it begins to disinfect the second workbench. The
snapshot at t = 80 s (bottom right) represents the accomplished disinfection. More details
of the simulation can be found in the attached video. First, the robot and the proposed
algorithm achieve path coverage in 3D space, and the nozzle follows a trajectory planned
by the proposed algorithm. Secondly, it is feasible and in accordance with the motion
plan mentioned in the third section. The end effector can easily track the trajectory of the
relatively complex and mobile platform. On one hand, if we remove the data of the path
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of the end effector as the key point, the CPP algorithm is more practical and more easily
implemented. On the other hand, the higher the altitude of the mobile platform, the larger
the path losses and the more robot hovering energy required. Thirdly, the nozzle is flexible
to operate due to real-time communication, execution, and feedback between MATLAB
and Vrep with minimal time delay.

Figure 7. Disinfection in the simulation environment.

In order to express the performance of the end effector, the posture along the xe
p, ye

p,
and ze

p directionsis presented in Figure 8; the trajectories are smooth during the whole
simulation. At the beginning, the robot adjusts its height and direction to stay in a reason-
able range within the workbench. Hence, the trajectory on the ze

p axis changes regularly.
During the disinfection process, the trajectory is regular and smooth. The joint trajectories
of UR5 are shown in Figure 9, with a similar regularity in joint space. The disinfection robot
has fewer constraints on its movement compared to the situation in the first simulation.
Therefore, the algorithm can choose among a wide variety of trajectories, enabling separate
evaluation of its capability. The goal of this simulation is to evaluate the disinfection perfor-
mance of the optimized trajectory planning method described in the previous sections.

t/s
Figure 8. Posture of the nozzle along the xe

p, ye
p, and ze

p directions.
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t/s
Figure 9. Joints of the manipulator in the simulation.

4.4. Experimental Validation of Robot Disinfection

In order to reproduce the properties of the disinfection robot in a physical environment,
the configuration and parameters of the experiment are identical to those in the simulation.
Figure 10 shows snapshots of the experimental disinfection. The snapshot at t = 5 s (the
top left) shows the nozzle as it begins to spray on the workbench. The snapshot at t = 20 s
(the top right) shows the robot as it is nearly finished spraying on the first workbench.
The snapshot at t = 50 s (the bottom left) shows the robot as it begins to disinfect the
second workbench. The snapshot at t = 70 s (the bottom right) represents the accomplished
disinfection. More details of the experiment can be found in the attached video.

Figure 10. Disinfection in the experimental environment.

In this experiment, the robot and the proposed algorithm can achieve path coverage
in real-world 3D space. Validation is conducted by seeking optimal trajectories on the
horizontal and vertical surfaces, as shown in Figure 10. In order to express the performance
of the end effector, the posture along the xg, yg, and zg directionsis recorded in Figure 11;
the trajectories are similar to those in the simulation. At the beginning, the robot adjusts
its height and direction to stay in a reasonable range within the workbench. Hence,
the trajectory on the zg axis changes less smoothly. During the disinfection process, the
trajectories are regular and smooth. The joint trajectories of UR5 are shown in Figure 12
with a similar regularity in joint space. The characteristics of the spray nozzle in the
experiment have more influence on the performance parameters, such as actual wireless
communication, spray homogenization, and thickness. We should also point out that this
algorithm can handle a variety of surfaces in 3D space that humans usually touch. The
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results prove that the proposed disinfection robot is more suitable for spraying tasks in 3D
space than regular (move-based) disinfection robots.

Figure 11. Posture of the end effector in the xg, yg, and zg directions.

t/s
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Figure 12. Joints of the manipulator in the experiment.

5. Conclusions

This research proposes an intelligent disinfection robotic system for the disinfection
of common environments that humans often access. The robotic system utilizes multiple
technologies, including a structural design, communication system, disinfection instrument
framework, ROS1 and CPP, etc. The mobile manipulator can grant the disinfection robot
more flexibility than common disinfection robots based on a mobile platform, enabling the
determination of optimized trajectories that, although slightly complex, result in a better
disinfection effect. Planning a feasible path is an important component of this study, for
which the CPP algorithm is used to generate a rational coverage path in 3D environments.
Simulations and an experiment were conducted to verify the feasibility and effectiveness of
the robotic system. The proposed disinfection strategy enables the robot to automatically
complete disinfection tasks throughout any target environment, thereby ensuring human
safety and reducing labor required for manual disinfection. For future research, the robot
can be made more intelligent and multifunctional, and more common environmental
scenarios should be verified.

6. Patents

Qirong Tang, Xinyi Chen, Pengjie Xu. clamping mechanism and clamping device.
Invention patent CN202111405539.1, 2022.12.27.

118



Actuators 2023, 12, 182

Qirong Tang, Xinyi Chen, Pengjie Xu. A clamping mechanism and a clamping device.
Practical patent CN202122900939.1, 2022.4.9.
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Abstract: The robotic grinding system for a thin-walled workpiece is a multi-dimensional coupling
system composed of a robot, a grinding spindle and the thin-walled workpiece. In the grinding
process, a dynamic coupling effect is generated, while the thin-walled workpiece stimulates elastic
vibration; the grinding spindle, as an electromechanical coupling actuator, is sensitive to the elastic
vibration in the form of load fluctuations. It is necessary to investigate the electromechanical coupling
dynamic characteristics under the vibration coupling of the thin-walled workpiece as well as the
vibration control of the robotic grinding system. Firstly, considering the dynamic coupling effect be-
tween the grinding spindle and thin-walled workpiece, a dynamic model of the grinding spindle and
thin-walled workpiece coupling system is established. Secondly, based on this established coupling
dynamic model, the vibration characteristics of the thin-walled workpiece and the electromechanical
coupling dynamic characteristics of the grinding spindle are investigated. Finally, a speed adaptive
control system for the grinding spindle is designed based on a fuzzy PI controller, which can achieve
a stable speed for the grinding spindle under vibration coupling and has a certain suppression effect
on the elastic vibration of the thin-walled workpiece at the same time.

Keywords: robotic grinding system; thin-walled workpiece; dynamic model; electromechanical
coupling dynamic; vibration control

1. Introduction

High surface finishes are usually required for manufactured components with func-
tional surfaces [1]. Due to the surface quality of the workpieces produced by rough
processing, casting and printing are not sufficient for functional applications, so some
post-processing by grinding or a similar process is usually needed to improve the surface
quality and mechanical properties [2,3]. There are different surface-finishing processes for
different workpiece requirements, such as burnishing, which is also known as roller bur-
nishing, and ball burnishing, grinding, shot peening and traditional hand polishing [1,4,5],
as well as some non-conventional manufacturing technologies, such as laser polishing,
electrochemical machining, linear friction welding and electro-discharge machining [6–9].

For a certain period of time, many finishing processes operational in the industrial
field mainly relied on traditional handmade or conventional machine tool processing; it can
be seen that the existing polishing modes, whether the traditional manual mode or uncon-
ventional mode, display a working efficiency and working space that are not conducive to
the flexibility necessary for machining production, especially for large-scale and complex
structures. In recent years, the automation and intelligence of the manufacturing process
have been an irresistible trend to adapt to the requirements of the processing environment,
working space and related flexibility [10,11]. Compared with the machining equipment
within these existing polishing modes, a robot conveys the advantages of higher flexibility,
a larger workspace and a lower cost, which is, obviously, especially appropriate for the
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machining of large structures with complex shapes, such as aerospace structures, high-
speed rail bodies and wind blades. In recent years, robotic grinding has attracted increasing
attention from industry [11–14]. However, the lower stiffness of the robotic grinding system
in the machining process, which is mainly caused by the articulated links and flexible joints,
easily stimulates the coupling vibration, which has remained an essential issue affecting
the stability of robotic machining, especially for the thin-walled workpiece [12,13].

To improve the machining stability and surface quality, some scholars studied the
influence of the process parameters on the surface quality of polishing [5–7,15,16] as well as
the working stiffness optimization and machining accuracy compensation through posture
optimization [17–20]. Moreover, research indicated that support fixtures are essential
to ensure the stability of the milling process, affecting the surface and deflection of the
workpiece [21–24]. However, this is a challenge for the support fixtures of a complex
workpiece, particularly regarding flexible structures, for which the local stiffness of the
part is affected and may even result in an additional deformation that amplifies the cutting
instability. On the other hand, it is known that the machining chatter also has an important
influence on the machining surface quality, so some optimization approaches and control
strategies of robotic machining chatter were also proposed [25–28]. These optimization
methods mainly focus on the machining spindle unit.

As shown in Figure 1, the robotic grinding system is a multi-dimensional coupling
system composed of the robot, the grinding spindle and the workpiece, and there is a
complex dynamic coupling effect between the subsystems. It should be pointed out that
the robotic machining process is a dynamic process, and the dynamics of the system have a
decisive influence on the polishing quality and stability. Some researchers have investigated
the dynamic characteristics and control strategies of the robotic machining system [29–32];
however, these studies mainly focus on the robot body separately, while the dynamic
coupling effect in the system is not fully considered. In the grinding process, the force
interaction between the grinding spindle and the workpiece is generated by the grinding
wheel, and the thin-walled workpiece, which has a lower stiffness, stimulates the time-
varying elastic vibration under the moving grinding force [33–36]. On the other hand, the
grinding spindle is a typical electromechanical coupling unit, in which the electromagnetic
parameters are coupled with the mechanical parameters [37]. According to the schematic
diagram shown in Figure 1, the stator converts the input electric energy into a rotating
magnetic field, and the interaction between the stator magnetic field and the rotating
magnetic field produces a driving torque that can drive the rotor. In this case, the dynamic
interaction force and elastic vibration of the thin-walled workpiece significantly affect the
dynamic characteristics of the grinding spindle [26,38,39]. There is a dynamic coupling
effect between the spindle and the thin-walled workpiece.

Considering the influence of the machining parameters and structural parameters,
some research has been conducted on the dynamic characteristics’ analysis and the opti-
mization design of the motorized spindle unit [40–43]. However, this research is mainly
carried out for the motorized spindle separately, while the dynamic coupling effect of
the workpiece is not fully considered, especially the elastic vibration of the thin-walled
workpiece, which will significantly affect the grinding force. In fact, according to the
electromechanical coupling principle of the robotic grinding system, the elastic vibration
stimulated by the thin-walled workpiece has an important influence on the dynamic re-
sponse characteristics of the grinding spindle. Reciprocally, the dynamic responses and
grinding force of the grinding spindle further affect the elastic vibration of the thin-walled
workpiece, which leads to a complex dynamic coupling effect between the grinding spindle
and the thin-walled workpiece. It is necessary to reveal the electromechanical coupling
dynamic characteristics of the grinding spindle and thin-walled workpiece coupling system,
which is the basis of the vibration suppression of the robotic grinding system.
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Figure 1. Composition diagram and coupling relationship of robotic grinding system for thin-
walled workpiece.

On the other hand, elastic thin-walled workpieces are typical flexible structures, and
their vibration control has always been the focus of attention. There has been a lot of
research on the vibration control of flexible structures, the most representative of which is
the active control strategy based on intelligent materials, such as piezoelectric intelligent
actuators [44–46], magnetorheological intelligent actuators [47,48], etc. In this case, the
flexible structure becomes an intelligent structural system. However, this method is based
on intelligent actuators that inevitably change the structure form, which is difficult to
implement for robotic grinding processing conditions. Some studies were also conducted
to suppress the chatter of the robotic machining system through machining posture opti-
mization [49,50], auxiliary support [22,23,51], etc. Based on the dynamic coupling effect
between the grinding spindle and the thin-walled workpiece, this paper attempts to realize
the vibration suppression of the thin-walled workpiece through adaptive control of the
grinding spindle in the machining process.

In this paper, the core goal is to reveal the electromechanical coupling dynamic char-
acteristics of the robotic grinding system, by considering the vibration coupling effect of
the thin-walled workpiece, and, according to the dynamic coupling mechanism, the speed
adaptive control of the grinding spindle as well as the vibration suppression of the thin-
walled workpiece are carried out. The manuscript is organized as follows. In Section 2, the
dynamic model of the coupling system is established. In Section 3, the electromechanical
coupling dynamic characteristics of the robotic grinding system are analyzed based on the
established coupling dynamic model. In Section 4, a speed adaptive control system for
the grinding spindle is designed based on a fuzzy PI controller. In Section 5, the paper is
concluded with a brief summary.
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2. Dynamic Model of the Coupling System

According to the coupling relationship of the robotic grinding system, as shown in
Figure 1, and considering the vibration coupling effect of the thin-walled workpiece, the
dynamic model of the coupling system is established, as shown in Figure 2.

Figure 2. Dynamic model of the coupling system.

As shown in Figure 2, the grinding force can be quadratically decomposed into grind-
ing components in the x, y and z directions along the grinding wheel, namely, tangential
grinding force Ft, axial grinding force Fa and normal grinding force Fn. Among these
grinding components, the normal component Fn is the main parameter in the constant force
grinding. As shown in Figure 1 and according to the coupling relationship between the
grinding spindle and the thin-walled workpiece, which has been indicated in the previous
analysis, the elastic vibration of the thin-walled workpiece directly causes fluctuation of
the grinding depth ap as well as the grinding force, influencing the dynamic characteristics
and stability of the robotic grinding system in an important way. Therefore, this paper
focuses on the effect of normal component Fn and investigates the dynamic coupling rela-
tionship between the grinding spindle and the thin-walled workpiece, which can provide a
theoretical basis for the subsequent control of the grinding system.

In order to analyze the coupling behavior between the grinding spindle and the
thin-walled workpiece, an Euler–Bernoulli beam is used to characterize the thin-walled
workpiece, and the transverse vibration z(x,t) of the thin-walled workpiece is mainly
considered. To establish the vibration equation of the thin-walled workpiece, the moving
grinding force can be expressed as the δ function of Fn.

f (x, t) = Fnδ(x − vωt) (1)

where vω is the grinding feed speed, and Fn is the normal component of grinding force. In
general, Fn is 1.5~3 times of Ft, which is specifically related to the abrasive particles and the
workpiece materials [52,53]. Referring to the material properties, hardened steel is selected,
Fn/Ft is 1/0.49 = 2.04, which can be rounded to 2; thus, it can be defined that Fn is 2 times
of Ft in this paper.

In general, the grinding force is related to the workpiece material, tool material, ma-
chining parameter, machining temperature and other factors, and, of these factors, the
machining parameter is the most important factor affecting machining force. Meanwhile,
according to the cutting theory, there is an exponential relationship between the grinding
force, which can be determined by the machining parameters and characterized with empir-
ical formulas, and the different grinding materials and grinding conditions; the correlation
coefficient is different [54,55]. To study the electromechanical coupling dynamic charac-
teristics of the robotic grinding system, the grinding parameters and grinding conditions

124



Actuators 2023, 12, 37

in this paper refer to the surface grinding conditions in the literature [53]; in this case, the
grinding force can be defined as

Fn = 28282 × (
ap0

)0.86
(nsr)

−1.06(vω)
0.44 (2)

According to the empirical formula, the grinding force is a constant mean value when
the machining parameters are given. Considering the dynamic coupling effect of the
thin-walled workpiece, the transverse vibration z(x,t) of the thin-walled workpiece directly
causes the fluctuation of grinding depth ap, and, in this case, the grinding force can be
further expressed as

Fn = 28282 × (
ap0 − z(x, t)

)0.86
(nsr)

−1.06(vω)
0.44 (3)

where ap0 denotes the ideal grinding depth, ns denotes the output speed of the grinding
spindle, and r is the radius of the grinding wheel. Equation (3) directly represents the
coupling effect between the transverse vibration of the thin-walled workpiece and the
grinding force.

The generalized force Fi in the modal coordinates can be described as

Fi(t) =
∫ l

0
f (x, t)φi(x)dx = Fn

∫ l

0
δ(x − vωt)φi(x)dx = Fnφi(vωt) (4)

where φi(x) is the ith mode shape function of the thin-walled workpiece.
Considering the fixed constraints at both ends of the thin-walled workpiece, the modal

function can be described as [45]

φi(x) = cosh βix − cos βix − cosh λi − cos λi
sinhλi − sin λi

(sinhβix − sin βix) (5)

where λi = βi l, and βi satisfies.

ωi = β2
i

√
EI
ρA

=

[(
i +

1
2

)
π

l

]2
√

EI
ρA

(i = 3, 4, 5, · · · ) (6)

where l is the length, E is the elastic modulus, I is the moment of inertia of the section, ρ is
the density, and A is the cross-sectional area of the workpiece.

The vibration equation of the thin-walled workpiece in the form of the generalized
coordinates under the grinding condition can be obtained as

..
qi + ω2

i qi =
Fi
Mi

=
φi(vωt)

Mi
Fn (i = 1, 2, 3, · · · ) (7)

where Mi is the mass of the ith mode and can be expressed as

Mi =
∫ l

0
ρAφ2

i (x)dx (8)

According to the Duhame integral [45], the solution can be obtained as

qi(t) =
Fn

Miωi

∫ t

0
φi(vωτ) sin ωi(t − τ)dτ + qi0 cos ωit +

.
qi0
ωi

sin ωit (9)

where qi0 and
.
qi0 represent the initial displacement and initial velocity in generalized

coordinate form, respectively.
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According to the principle of mode superposition [56], the vibration equation of the
thin-walled workpiece can be expressed as

z(x, t) =
∞
∑

i=1
φi(x)qi(t)

=
∞
∑

i=1

Fn
Miωi

φi(x)
[∫ t

0 φi(vωτ) sin ωi(t − τ)dτ + qi0 cos ωit +
.
qi0
ωi

sin ωit
] (10)

It can be seen from Equation (10) that there is an intuitive coupling relationship
between the elastic vibration of the thin-walled workpiece and grinding force. On this
basis, the dynamic characteristics of the grinding spindle under vibration coupling can be
further analyzed. In the subsequent solving process, the mode superposition term takes
the first three orders.

According to the electromechanical dynamics method, the electromechanical coupling
dynamic model of the grinding spindle can be established. Based on the electromechanical
coupling relationship shown in Figure 1, there are seven generalized coordinates in the
system, namely, the electromagnetic system contains six generalized coordinates, including
stator current iA, iB, iC and rotor current ia, ib, ic, while the mechanical system contains a
generalized coordinate, namely, the angular velocity of the grinding spindle ωs, as shown
in Table 1.

Table 1. Generalized coordinates of the grinding spindle.

Generalized
Coordinates

Electromagnetic Subsystem Mechanical
SubsystemStator Rotor

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7

ξj - - - - - - θ
.
ξ j iA iB iC ia ib ic ωs

Qj uA uB uC ua ub uc TL

In this paper, the electromechanical coupling dynamic equation of grinding spindle is
established by the Lagrange method [57]. The Lagrangian–Maxwell equation of the system
can be described as

d
dt

⎛⎝ ∂L

∂
.
ξ j

⎞⎠− ∂L
∂ξ j

+
∂FR

∂
.
ξ j

= Qj (11)

where ξj and Qj are the generalized coordinates and generalized force of the grinding
spindle, respectively, as shown in Table 1; FR is the system dissipation; and L denotes the
Lagrangian function of the system and can be described as

L = T − V (12)

where T and V denote the kinetic energy and elastic potential energy of the spindle system
of the spindle system, respectively.

The kinetic energy of the spindle system includes the magnetic energy of the electro-
magnetic system and the kinetic energy of the mechanical system and can be described as

T = W + Ek =
1
2∑

m
∑
n

Lmnimin +
1
2

Jωs
2 (13)

where m, n = A, B, C, a, b, c; W is the kinetic energy of the electromagnetic system; Ek is the
kinetic energy of the mechanical system; Lmn is the mutual inductance between winding m
and winding n (when m = n, it is self-inductance); and the rest are mutual inductance. J is
the moment of inertia of the system, and ωs is the angular velocity of the grinding spindle.
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To simplify the analysis, the elastic potential energy of the spindle system can be
ignored, as it defines V = 0.

For the grinding spindle unit, the system dissipation includes the electromagnetic
system dissipation Fe and the mechanical system dissipation Fm, which can be expressed as

FR = Fe + Fm =
1
2

Rs

(
iA2 + iB2 + iC2

)
+

1
2

Rr

(
ia2 + ib2 + ic2

)
+

1
2

Rωωs
2 (14)

where Rs is the stator resistance, Rr is the rotor resistance, and Rω is the viscous damping
coefficient of spindle.

The motion equation of the mechanical system is

J
dωs

dt
+ Rωωs = TL − Lms

[
(iAia + iBib + iCic) sin θ + (iAib + iBic + iCia) sin(θ + 2

3 π)
+(iAic + iBia + iCib) sin(θ − 2

3 π)

]
(15)

where ωs is the angular velocity of the rotor winding and conveys the relationship with
the spindle speed as ωs = 2πns

60 ; TL is the load torque, which is related to the grinding
force TL = 1

2 Fnr; Lms is the mutual inductance of the stator winding; and θ is the angle
between the stator winding and the rotor winding, namely, the Angular displacement of
the spindle rotor.

It can be seen from Equations (10) and (15) that there is a direct coupling relationship
between the transverse vibration z(x,t) of the thin-walled workpiece, the grinding force
Fn and the spindle speed ns. Based on this, the electromechanical coupling dynamic
characteristics of the grinding spindle under vibration coupling can be analyzed.

3. Dynamic Characteristics of the Coupling System

It can be seen that Equation (15) is a typical electromechanical coupling dynamic
equation, and its analytical solution is difficult to obtain. In order to analyze the vibration
characteristics of the thin-walled workpiece and the dynamic response characteristics of
the mechanical and electrical coupling of the grinding spindle under vibration coupling,
MATLAB Simulink software is used to build the dynamic simulation model of the coupling
system of the grinding spindle and thin-walled workpiece (Figure 3). As shown in Figure 3,
the dynamics simulation model consists of three modules, namely, the grinding spindle unit
dynamics solving module, grinding force solving module and thin-walled parts dynamics
solving module. The spindle speed obtained from the spindle unit module is input to
the grinding force solving module, the grinding excitation is calculated and applied to
the thin-walled parts dynamics solving module, the vibration displacement of the elastic
thin-walled parts is obtained and input to the grinding force solving module, and the
grinding force is input to the grinding spindle dynamics solving module. Thus, in this case,
the coupling characteristics of the system dynamics can be analyzed. The grinding spindle
is driven by an Ac asynchronous motor, and in order to simplify the solution process and
focus on analyzing the coupling relationship of the system, the relatively small influence of
the viscous damping of the spindle drive system is ignored during the simulation analysis.
The related parameters of the dynamic simulation model are shown in Table 2. During the
simulation, the initial displacement qi0 and initial velocity

.
qi0 in generalized coordinate

form are assigned as 0.001 and 0, respectively.
Figure 4 shows the vibration response of the thin-walled workpiece under the grinding

condition. It can be seen that the thin-walled workpiece shows obvious vibration in the
grinding process and exhibits dynamic time-varying characteristics for moving grinding
loads that vary with their grinding point, and the amplitude near the midpoint is the
largest, which is obviously different from the ideal situation ignoring the elastic vibration
of the thin-walled workpiece.
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Figure 3. Dynamic simulation model of the coupling system.

Table 2. Parameters of dynamic simulation model.

Parameter Value

Diameter of grinding wheel d 0.35 m
Speed of grinding wheel n 1500 r/min

Grinding depth ap0 0.05 mm
Feed speed vw 0.05 m/s

Length of beam l 0.5 m
Width of beam b 0.02 m
Height of beam h 0.002 m
Density of beam ρ 7850 kg/m2

Elastic modulus of beam E 2.1 × 1011 Pa
Rated power PN 3000 W
Rated voltage U 380 V

Power Frequency f 50 Hz
Resistance of stator winding Rs 1.7980 Ω
Resistance of rotor winding Rr 1.5880 Ω

Mutual inductance of the stator winding Lms 0.2580 H
Moment of inertia J 0.0067 Nm2

Number of magnetic poles np 2

According to the above analysis, the elastic vibration of the thin-walled workpiece has
an important influence on the fluctuations of the grinding depth and grinding force, which
will affect the dynamic response characteristics of the grinding spindle directly. In order to
analyze the electromechanical coupling dynamic characteristics of the grinding spindle with
the vibration coupling of the thin-walled workpiece, the output speed, electromagnetic
torque and rotor current waveforms of the grinding spindle are shown in Figures 5–7,
respectively. In the simulation process, the load begins to be applied at 1 s. Under the
grinding load starting from 1 s, the spindle speed decreases while the electromagnetic
torque and rotor current increase correspondingly, and this trend keeps a balance with
the load torque. At the same time, the electromechanical coupling dynamic response
characteristics of the grinding spindle are obviously different from the ideal constant load
situation, when ignoring the vibration coupling, specifically the vibration coupling that
enhances the fluctuations of the output speed, electromagnetic torque and rotor current. The
results demonstrate the electromechanical coupling dynamic response characteristics of the
grinding spindle under the vibration coupling of the thin-walled workpiece, which causes
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certain errors for the dynamic analysis and subsequent control, ignoring the vibration
coupling effect of the thin-walled workpiece.

Figure 4. Vibration response of thin-walled workpiece in the grinding process.

Figure 5. Speed characteristic curves of the grinding spindle with vibration coupling of thin-
walled workpiece.

Figure 6. Electromagnetic torque curves of the grinding spindle with vibration coupling of thin-
walled workpiece.
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Figure 7. Rotor current curves of the grinding spindle with vibration coupling of thin-
walled workpiece.

4. Speed Adaptive Control of Grinding Spindle

According to the above analysis, in the grinding process, the thin-walled workpiece
exhibits elastic vibration, while the grinding spindle conveys speed fluctuations. In other
words, there is a certain coupling relationship between the elastic vibration and the speed
fluctuations. In this section, according to the coupling relationship, a speed adaptive
control system of the grinding spindle is designed based on the fuzzy PI controller to
realize disturbance suppression of the speed fluctuations of the grinding spindle and the
elastic vibration of the thin-walled workpiece.

The designed speed adaptive control system is shown in Figure 8. The design of the
proposed fuzzy adaptive PI control strategy is composed of the combination of a fuzzy
controller and a PI controller, which is more flexible and stable compared with a traditional
PI control. The fuzzy adaptive PI controller takes error e and error change rate ec as input
variables and Δkp and Δki as output variables. The fuzzy domains of e and ec are [−3,3],
and the membership function is shown in Figure 9. The membership function is shown
in Figure 10. The fuzzy subsets of the input and output language variables Δkp and Δki
are negative large, negative medium, negative small, zero, positive small, middle and
above board, which are denoted by NB, NM, NS, Z, PS, PM and PB, respectively. The
fuzzy rules of Δkp and Δki are shown in Tables 3 and 4, respectively, which are obtained
from previous engineering experience and experiments. The output surfaces of Δkp and
Δki obtained from this rule are shown in Figures 11 and 12, respectively. As can be seen
from Figures 11 and 12, Δkp and Δki are obtained by the joint action of e and ec, and the
surface is close to continuous and changes smoothly, which indicates that the designed
fuzzy adaptive PI controller has good dynamic performance.

Figure 13 shows the adaptive control effect of the grinding spindle speed under the
coupling vibration of the thin-walled workpiece; it can be seen that the designed fuzzy
adaptive PI controller can realize the stability of the grinding spindle speed under vibration
coupling, which can quickly adjust the speed to an ideal constant speed and improve
the robustness of the grinding system. At the same time, it can be seen from Figure 14
that the vibration of the thin-walled workpiece under speed adaptive control is relatively
attenuated, which indicates that the designed fuzzy adaptive PI controller also has a certain
suppression effect on the elastic vibration of the thin-walled workpiece with a reduction in
vibration amplitude of about 38.5%.
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Figure 8. Speed adaptive control system of grinding spindle under vibration coupling.

Figure 9. Membership functions of input variables e and ec.

Figure 10. Membership functions of output variables Δkp and Δki.
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Table 3. Fuzzy control rules of ΔKp.

e
ec

NB NM NS Z PS PM PB

NB PB PB PM PM PS Z Z
NM PB PB PM PS PS Z NS
NS PM PM PM PS Z NS NS
Z PM PM PS Z NS NM NM
PS PS PS Z NS NS NM NM
PM PS Z NS NM NM NM NB
PB Z Z NM NM NM NB NB

Table 4. Fuzzy control rules of ΔKi.

e
ec

NB NM NS Z PS PM PB

NB NB NB NM NM NS Z Z
NM NB NB NM NS NS Z Z
NS NB NM NS NS Z PS PS
Z NM NM NS Z PS PM PM
PS NM NS Z PS PS PM PB
PM Z Z PS PS PM PB PB
PB Z Z PS PM PM PB PB

 

K
p

ec e

Figure 11. Input–output relation diagram of ΔKp.

 
ec e

Figure 12. Input–output relation diagram of ΔKi.
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Figure 13. Adaptive control of grinding spindle speed under vibration coupling with thin-
walled workpiece.

 
Figure 14. Vibration suppression effect of thin-walled workpiece under speed adaptive control of
grinding spindle.

In order to further verify the results obtained in this paper, a virtual prototype for
experimental verification is conducted. We combined the control strategy and the virtual
prototype model of the elastic thin-walled workpiece in ADAMS to build a co-simulation
experimental system, in which the output grinding force of the control system is applied
to the elastic thin-walled workpiece. At the same time, the vibration displacement of
the elastic thin-walled workpiece is feedback to the control system, to verify the control
effect. The virtual prototype model of the elastic thin-walled workpiece and the constructed
co-simulation experimental system are shown in Figures 15 and 16, respectively, and the
co-simulation experimental results of the speed control of the grinding spindle and the
vibration control of the elastic thin-walled workpiece are shown in Figures 17 and 18, respec-
tively. The co-simulation results of the virtual prototype can also verify the effectiveness of
the control strategy proposed in this paper.
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Figure 15. The schematic diagram of co-simulation experiment based on virtual prototype.

Figure 16. The co-simulation experimental model of the adaptive control strategy.

Figure 17. Speed control results of grinding spindle in the co-simulation experiment.
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Figure 18. Vibration control results of elastic thin-walled workpiece in the co-simulation experi-
ment: (left) global; (right) locally enlarged.

5. Conclusions

This paper established the dynamic model of the grinding spindle and thin-walled
workpiece coupling system, and the electromechanical coupling dynamic characteristics of
the coupling system are revealed, which have guiding significance for the vibration control
of the robotic grinding system. The conclusions can be obtained as follows:

(1) the thin-walled workpiece has obvious vibration in the grinding process and exhibits
dynamic time-varying characteristics for moving grinding loads that vary with the
grinding point, which directly cause fluctuations of the grinding depth and grinding
force and affect the dynamic response characteristics of the grinding spindle;

(2) the electromechanical coupling dynamic response characteristics of the grinding
spindle with the vibration coupling of thin-walled workpiece are obviously different
from the ideal constant load condition, ignoring the vibration coupling of thin-walled
workpiece, specifically the vibration coupling that obviously enhances the response
fluctuations of the output speed, electromagnetic torque and rotor current; thus,
ignoring the vibration coupling effect of the thin-walled workpiece causes certain
errors for the dynamic analysis and subsequent control;

(3) the proposed speed adaptive control of the grinding spindle based on the fuzzy
PI controller can realize the stability of the grinding spindle speed under vibration
coupling and has a certain suppression effect on the elastic vibration of the thin-walled
workpiece, with a reduction in vibration amplitude of about 38.5%.
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Abstract: Recently, the fourth industrial revolution has accelerated the application of multiple
degrees-of-freedom (DOF) robot arms in various applications. However, it is difficult to utilize
robot arms for precision motion control because of their low stiffness. External loads applied to
robot arms induce deflections in the joints and links, which deteriorates the positioning accuracy. To
solve this problem, control methods using a disturbance observer (DOB) with an external sensory
system have been developed. However, external sensors are expensive and have low reliability
because of noise and reliance on the surrounding environment. A disturbance-observer-based dual-
position feedback (DOB-DPF) controller is proposed herein to improve the positioning accuracy by
compensating for the deflections in real time using only an internal sensor. The DOB was designed
to derive the unpredictable disturbance torque applied to each joint using the command voltage
generated by the position controller. The angular deflection of each joint was calculated based on
the disturbance torque and joint stiffness, which were identified experimentally. The DPF controller
was designed to control the joint motor while simultaneously compensating for angular deflection.
A five-DOF robot arm testbed with a position controller was constructed to verify the proposed
controller. The contouring performance of the DOB-DPF controller was compared with that of a
conventional position controller with an external load applied to the end effector. The increases in the
root mean square values of the contour errors were 1.71 and 0.12 mm with a conventional position
controller and the proposed DOB-DPF controller, respectively, after a 2.2 kg weight was applied to
the end effector. The results show that the contour error caused by the external load is effectively
compensated for by the DOB-DPF controller without an external sensor.

Keywords: robot machining system; contour error compensation; five-DOF robot arm

1. Introduction

Industrial robot arms are used in various industrial applications for transfer and as-
sembly tasks. Recently, multiple-degree-of-freedom (DOF) robot arms have been employed
for precision machining, offering various advantages compared with conventional machine
tools comprising linear feed drives. Robot arms can machine multisized workpieces be-
cause they can cover a large workspace relative to their size. Moreover, a serial robot arm
has a high DOF, which enables the machining of complex shapes. In addition, robot arms
can perform various tasks, such as machining processes, inspection, and manipulation,
owing to their high flexibility. In addition, robot arms cost 30% less than conventional
machine tools with similar performance [1]; however, they cannot replace all such tools,
owing to their low stiffness [2]. Generally, the stiffness of a robot arm is less than 1 N/μm,
and that of a conventional machine tool is 50 N/μm or more [3]. Various predictable
disturbances, such as self-weight, inertia, and friction, can cause angular deflections at
the joints. Such disturbances can be estimated based on the stiffness of each joint and
compensated for by the position controller [4]. Deflections caused by disturbances applied
to the end effector, such as external weight and cutting force, are unpredictable and difficult
to compensate for using a feedback controller because they are not recognized by feedback
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sensors [2]. These angular deflections overlap and cause a large end-effector position error,
owing to the series connection. This position error deteriorates the machining accuracy and
machining quality [5].

Recently, various studies have been conducted to improve the positioning accuracy of
robots arm by compensating for the position error. Position error compensation techniques
can be classified as either offline or online. In offline compensation methods, the position
error is estimated by the physical model of the robot arm and predictable disturbances;
subsequently, it is compensated for by applying an additional position command during
control. Belchior et al. proposed an offline compensation method to correct tool path
deviations induced by the compliance of industrial robots [6]. An elastic model of a robot
arm was derived by finite element simulations and utilized to estimate the pose errors of the
tool center position induced by elastic deformations. Munasinghe et al. proposed an offline
trajectory compensation method to improve the contouring performance of industrial robot
arms [7]. According to the proposed method, a realizable trajectory was generated from
the objective trajectory, and its delay dynamics were compensated for using a forward
compensator. Olabi et al. proposed an offline trajectory correction method to improve the
positioning accuracy of an industrial robot [8]. Position errors of the end effector caused
by the flexibility of the robot joints and kinematic errors in the transmission systems were
predicted and compensated for by modifying the trajectory.

Offline compensation methods improve the positional accuracy of the robot arm
without hardware changes. However, position errors caused by unpredictable external
disturbances, such as the cutting force generated during the machining process, are difficult
to compensate for. In online compensation methods, external disturbances applied to the
end effector are measured with force or torque sensors in real time. Otherwise, the position
error of the end effector is measured directly through external position sensors, such as
a laser trackers or an image-based motion-capturing device, and applied to the control
algorithm [9]. Xu et al. proposed a study on the dynamic modeling and compensation of a
robot arm based on six-axis force/torque sensors [10]. Dynamic compensating devices were
designed using a functional link artificial neural network, and a digital-signal-processor-
based real-time dynamic compensation system was developed and evaluated. Park. et al.
suggested a dual observer that estimates disturbance and states of the motors of industrial
robots simultaneously [11]. Moeller et al. proposed an online position-error compensation
method to improve the accuracy of a robot arm using a laser tracker [12]. The position
error of the end effector was measured in real time and compensated for by modifying
a programmed trajectory. Furuta et al. proposed a method for controlling the trajectory
tracking of an articulated robot arm using sensory feedback [13]. Park et al. suggested
a tuning method for PID according to several criteria, such as stability and tunability.
This method was used to develop a robust, high-quality, linear PID tracking motion
controller [14]. The dynamics of the robot arm were described in the task coordinate system,
and a robust feedback controller was designed for feedback control based on a sensory
feedback system. Other studies have been conducted on the optimization of the controllers
of several actuators. Zhang et al. proposed a robust adaptive neural control algorithm for
robust control a vehicle according to structural and gain-related uncertainties. They also
developed a novel robust fuzzy control algorithm to deal with the path-following control
problem of an unmanned sailboat robot [15,16]. Li et al. presented a novel cooperative
design strategy for the path following of a mixed-order underactuated surface vehicle and
unmanned aerial vehicle systems under the influence of external disturbances [17].

The aforementioned online compensation methods measure position errors directly
and compensate for them in real time. However, external position sensors, which are
generally expensive, are essential intended to configure real-time compensation. Moreover,
it is difficult to guarantee the reliability of the compensation methods because obstacles
in the working environment can block the external sensory system and render it unstable.
Applying a state observer is an effective method to avoid the control performance deteri-
oration caused by unstable sensor feedback signals. Liu et al. suggested sensorless force
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estimation by a disturbance observer and neural learning of friction approximation. The
observer was modified to develop a disturbance Kalman-filter-based approach, and the
uncertainty and measurement noise were analyzed by a neural network [18]. Tong et al.
proposed observer-based adaptive control methods for the tracking control of uncertain
nonlinear systems [19]. Cheng et al. suggested active disturbance rejection control based
on dynamic feedforward to improve the control robustness and promote strong antidistur-
bance ability [20]. Yin et al. proposed an enhancing trajectory tracking accuracy method
by formulating an adaptive control and robust control for robust adaptive control under
the influence of both parametric uncertainties and external disturbances [21]. Mohammadi
et al. proposed a general systematic approach to solve the design problem of a disturbance
observer without restrictions on the number of degrees of freedom, the types of joints, or
the manipulator configuration [22]. Hence, a disturbance-observer-based dual-position
feedback (DOB-DPF) controller is proposed herein to improve the position accuracy of
a five-DOF robot arm without external position sensors. The torques applied to the five
joints were derived in real time based on the command voltage generated from the motion
controller and the disturbance observer (DOB). The angular deflections of the five joints
were calculated from the applied torque based on the physical and dynamic models of the
robot arm. A DPF algorithm was applied to compensate for the position error of the end
effector caused by the angular deflections. A five-DOF robot arm testbed with a position
control system was constructed to evaluate the DOB-DPF controller. The contour errors
of the conventional control algorithm and the DOB-DPF controller were compared in a
circular interpolation to verify the performance of the proposed method. The root mean
square (RMS) value of the contour errors increased by 1.71 and 0.12 mm for the conven-
tional position controller and the proposed DOB-DPF controller, respectively, after a 2.2 kg
weight was applied to the end effector.

Section 2 describes the design process of the DOB-DPF controller. Section 3 introduces
the experimental setup of a five-DOF robot arm with a position controller, and he detailed
design process of the robot arm hardware and the position controller, which comprises a
numeric control kernel and motion control unit, are presented. Section 4 describes the tests
performed to verify the performance of the DOB-DPF controller, as well as the verification
test procedures and results. Finally, Section 5 concludes the paper.

2. Design of the DOB-DPF Controller

2.1. DOB Design

The driving torque of a robot arm joint comprises four components: inertial torque,
internal disturbance, gravity, and external disturbance. The internal disturbance includes
centrifugal and Coriolis force generation during operation. The external disturbance
includes the load torque caused by the weight of the parts attached to the end effector and
the force applied to the end effector during operation. The inertial torque and internal
disturbance can be calculated based on dynamic and kinematic analyses of the robot.
Therefore, the external disturbance (Td) can be predicted by subtracting the inertial torque,
internal disturbance, and gravity from the torque command as follows:

Td = Tcom − J(q)
..
q − C

(
q,

.
q
) .
q − G(q), (1)

where q is the angular position of the joints, which is measured by the encoder signal
of each joint motor; matrices J(q), C

(
q,

.
q
)
, and G(q) are the properties of inertia, inertial

disturbance, and gravity, respectively, which are derived from the robot dynamics [23]; and
Tcom denotes the driving torque of the joint, which is calculated from the command voltage
of the controller.

2.2. DPF Controller

The distribution profiles of the applied torque at each joint can be derived in real time
using the DOB. The angular deflection of the joint can be calculated by dividing the applied
torque by the stiffness of the joint. The actual position of the end effector is calculated
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based on the angular deflection of each joint and the kinematic analysis of the robot arm
without an external position sensor. The position error can be compensated for online by
controlling the actual angular position to follow the target angular position of each joint.

Figure 1a–c show block diagrams of a conventional a semi-closed loop, fully closed-
loop, and the DPF control algorithm, respectively. A feedback controller comprises a
proportional position loop and a proportional integral velocity loop, which is generally
used for precision position control of the machine tool feed drives. The position loop
generates the velocity command from the gap between the reference and actual positions
measured by the position sensor. The velocity loop generates the current command from
the gap between the velocity command and the actual velocity measured by the velocity
sensor. A semi-closed loop is a typically used feedback control algorithm that refers to the
position measured by an internal sensor and the velocity calculated from the measured
position. A semi-closed loop cannot recognize and compensate for the position error
caused by low stiffness. A fully closed loop is used to improve the positioning accuracy of
a mechanical system containing both internal and external sensors. The aforementioned
online compensation methods utilize also use a fully closed loop [10–12].

Figure 1. Block diagrams of (a) a conventional semi-closed loop, (b) fully closed loop, and (c) the
DPF control algorithm.

In the DPF controller, the input value of the position loop (xin) is calculated as follows:

xin = xre f − xint +
1

τs + 1
(xint − xext), (2)

where xre f , xint, and xext represent the reference position, the position measured by the
internal sensor, and the position measured by the external sensor, respectively. A first-order
transfer function with a time constant (τ) is multiplied by the gap between the position
measured by the internal and external sensors and added to the following error calculated
by the position measured by the internal sensor. The transfer function reduces the noise
and time skew caused by the external sensor and improves the stability. The DPF controller
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acts as a semi-closed loop when the time constant of the transfer function is set to a large
value. Meanwhile, the DPF controller acts as a fully closed loop with a small time constant.

2.3. DOB-DPF Controller

The position error of the robot arm is compensated for by replacing the feedback
position with an actual position measured by an external sensor. In this case, the control
system becomes unstable when the external sensor includes noise. Although the feedback
controller is configured based on an external sensor, an internal sensor is also required for
velocity control. Therefore, time skew causes instability in the control performance when
the sampling rates of the internal and external sensors differ [24]. In this regard, a DPF
controller used for ultraprecision position control of the machine tool feed drive is utilized
for online compensation of the position error.

Generally, position errors with various frequencies are generated during operation.
We aimed to design a position controller to compensate for the low-frequency position error
caused by the weight or low-frequency component of the cutting force. High-frequency
vibrations caused by the high-frequency components of the cutting force, such as the force
variation between cutters in the milling process, are not considered in this study. Although
the transfer function reduces the bandwidth of the DPF controller compared to a fully
closed loop, the DPF controller can stably compensate for the low-frequency position error.
In this study, a new DPF system was suggested. Conventional DPF systems have to be
constructed with an external sensory system and an internal sensory system. However, the
suggested control methods that use DOB do require the use of external sensors. Therefore,
the reliability does not decrease as a result of the noise of sensors, with an effective decrease
in construction costs. Figure 2 shows a block diagram of the DOB-DPF controller. The DOB-
DPF controller comprises a feedback controller, feedforward controller, and the DOB-DPF
algorithm. The feedback controller controls each joint to follow the target angle based on
a proportional position loop and a proportional integral velocity loop. The feedforward
controller compensates for the additional torque caused by the self-weight, as well as the
Coriolis and centrifugal forces. The DOB-DPF algorithm integrates the DOB to calculate
the actual position and the DPF controller to compensate for the angular deflection.

 

Figure 2. Block diagram of the DOB-DPF controller.

3. Design of a Five-DOF Robot Arm

3.1. Hardware Design

Figure 3a shows the experimental setup of the five-DOF robot arm. The payload of
the robot arm was set to 50 N. The rated torque of the joint motors with reducers was
designed based on the load torque applied to each joint. Joints 1 and 2 comprised a motor
with a rated torque of 2.39 Nm (SGMAV-08A, Yaskawa) and a reducer with a gear ratio
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of 1/100 (PGX90-H100, ATG). Joint 3 comprised a motor with a rated torque of 1.27 Nm
(SGMAV-04A, Yaskawa) and a reducer with a gear ratio of 1/100 (PGX62-H100, ATG).
Joints 4 and 5, with relatively low loads, both had a rated torque of 0.159 Nm (SGMAV-04A,
Yaskawa) and reduction gears (PGX44-H100, ATG) with a gear ratio of 1/100. Links 2
and 3 were each constructed with aluminum profiles measuring 40 mm × 80 mm and
40 mm × 40 mm, respectively. Figure 3b shows the Denavit–Hartenberg (DH) parameters,
which represent the joint dimensions and relative angle of the robot processing system.
Joints 1, 2, and 3 determine the position of the robot, whereas joints 4 and 5 determine the
orientation of the robot. The designed five-DOF robot arm was installed on the surface of a
plate table.

Figure 3. Experimental setup of the five-DOF robot arm: (a) photo and (b) Denavit–Hartenberg (DH)
parameters, which represent the joint dimensions and relative angle.

3.2. Controller Design

A numerical control kernel and a motion control unit were designed for the position
control of the five-DOF robot arm. The numeric control kernel comprises an interpolator
and a velocity profiler that generate the target profiles of the angular position of each joint
from the user input, which contains the target position and orientation of the end effector.
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The interpolator calculates the target angular positions of the five joints to achieve the user
input as follows.

Figure 4 shows the postures of links 1 to 3 corresponding to the angles of joints 1
to 3 of the robot arm. (xJ5, yJ5, zJ5)J1 indicates the position of joint 5 in the J1 coordinate
system, [XJ1, YJ1, ZJ1], which is rotated by θ1 in accordance with the global coordinate
system [XG, YG, ZG]. The angular position of joint 1, (θ1) can be calculated from the target
position of the end effector in the global coordinate, (xTP, yTP, zTP)G, as follows:

θ1 = tan−1
(

yTP
xTP

)
− sin−1

(
D2√

xTP2 + yTP2

)
, (3)

Figure 4. Postures of links 1 to 3 according to the angles of joints 1 to 3 of the robot arm.

(xJ5, yJ5, zJ5)J1 is derived from θ1 and the unit vector of the target orientation in
the global coordinate (VTO = (xTO, yTO, zTO)G) using a rotational transformation matrix
as follows: ⎡⎣xJ5

yJ5
zJ5

⎤⎦ =

⎡⎣ cosθ1 sinθ1 0
−sinθ1 cosθ1 0

0 0 1

⎤⎦⎡⎣xTP − D6 × xTO
yTP − D6 × yTO
zTP − D6 × zTO

⎤⎦. (4)

The angular position of joint 2 (θ2) can be calculated as the sum of the angle between d
and A2 and the angle between d and xJ1 as follows:

θ2 = cos−1
(

A2
2 + d2 − L3

2

2·d·L3

)
+ tan−1

(
zJ5 − D1

xJ5

)
, (5)

where d and L3 are derived by (xJ5, 0, zJ5)J1 and the DH parameters, respectively. The
angular position of joint 3 (θ3) is the sum of the angle between D4 and L3, and θ3′ , which
denotes the angle between A2 and L3.

θ3 = cos−1
(

d2 − A2
2 − L3

2

2·A2·L3

)
+ tan−1

(
A3

D4

)
, (6)

The angular position of joint 4 (θ4) is the angle between the y-axis unit vector of the
coordinate system of joint 1 (Y1) and the z-axis unit vector of the coordinate system of joint
5 (Z5), which can be calculated as follows:

θ4 = cos−1
(
(−sinθ1, cosθ1, 0)· X3 × VTO

||X3 × VTO||
)

, (7)
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where X3 is the x-axis unit vector of the coordinate system of joint 3, which is derived from
θ1 to θ3 as follows:

X3 = (cos(θ2 − θ3)cosθ1, cos(θ2 − θ3)sinθ1, sin(θ2 − θ3))
G. (8)

The angular position of joint 5 (θ5) is the angle between VTO and X3, which is calculated
as follows:

θ5 = cos−1(VTO·X3). (9)

The target profiles of the angular position can be derived by connecting the angular
joints in the time domain. However, the acceleration and deceleration of the target profiles
should be considered because large accelerations/decelerations increase the tracking error
and instability of the robot arm. In this regard, a velocity profiler was designed to generate
the target profiles of each joint, including the acceleration/deceleration section, as follows:

ωO[k] = ωO[k − 1] +
1
m
{ωi[k]− ωi[k − m]}. (10)

where ωi[k] and ωO[k] are the target angular velocities at the kth sampling before and
after velocity profiling, respectively, and m is the number of samples corresponding to the
linear acceleration/deceleration section. Figure 5a shows the target angles of joints 1 to
5 generated in the numerical control kernel with respect to the initial position of (300 mm,
0 mm, 100 mm) to the target position of (500 mm, 200 mm, 300 mm), maintaining the target
orientation as (0, 0, −1). Figure 5b shows the posture of the robot arm at every second
calculated by forward kinematics based on the DH parameters and the target profiles of
joints 1 to 5. The motion control unit is the DOB-DPF controller mentioned in the previous
section, which controls the joint corresponding to the target angular profiles generated by
the numeric control kernel.

Figure 5. Simulation result with respect to the initial position of (300 mm, 0 mm, 100 mm) to the target
position of (500 mm, 200 mm, 300 mm), maintaining the target orientation as (0, 0, −1): (a) target
angles of joints 1 to 5 generated in the numerical control kernel and (b) posture of the robot arm.
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3.3. Measurement of Stiffness

The angular deflection of each joint can be calculated by dividing the disturbance
torque by the stiffness. The stiffness of the links was disregarded in this study because
the stiffness of the joint is much lower than that of the links. The joint was controlled to
keep the link parallel to the ground, and a capacitance sensor (CPL190, Lion precision)
was installed above the end of the link. Subsequently, the increment in the gap between
the capacitance sensor and the link was measured when a constant load was applied to
the link. The increment of the stall torque of the joint in steady state was acquired by
measuring the torque command of the joint motor. Finally, the stiffness of the joint was
calculated by dividing the increment of the stall torque by that of the gap. The experiment
was performed five times for each joint individually by increasing the applied load from 1
to 5 kg at intervals of 1 kg.

4. Evaluation of DOB-DPF Controller

4.1. Implementation of DOB-DPF Controller

The DOB-DPF controller was programmed using MATLAB and implemented on a
robot arm using a real-time computer (Micro Lab Box, dSPACE). The sampling time was
set to 0.001 s. The controller generated torque commands in the five joint motors as analog
voltages in the range of −10 to 10 V. Each drive of the joint motor transferred the analog
voltage to the target torque in a linear range of the rated torque and generated three phase-
driving currents corresponding to the target torque. The encoder signal of each joint motor
was transmitted to the digital input–output port of a real-time computer and decoded to
the angular position. The angular position of the joint was derived by multiplying the gear
ratio by the angular position of the joint motor and transmitted to the DOB-DPF controller.

The performance of the DPF controller is determined by the time constant of the first-
order transfer function. In this study, the optimal value of the time constant was derived
based on simulations. The simulation model of the five-DOF robot arm was constructed
based on the position control algorithm and kinematic model of the robot arm. Using the
simulation model, periodic disturbances with an amplitude 20 N were applied to the end
effector while the robot arm was controlled to maintain the current position. Figure 6b
shows the position of the end effector recognized by internal and external position sensors
when the sinusoidal disturbance shown in Figure 6a was applied to the end effector. The
black line indicates the compensation motion of the robot arm, and the red line is the
position error of the end effector. Figure 6c shows the peak values of the position errors
with respect to the time constant of the DPF controller. The result shows that a lower
time constant leads to better control performance because the position error increases
proportionally to the time constant. Figure 7b shows the position of the end effector when
the square wave disturbance shown in Figure 7a is applied. Figure 7c shows the peak values
of the acceleration of the end effector with respect to the time constants. The result shows
that a small time constant causes large acceleration, which reduces the position accuracy
and stability. The acceleration reduced rapidly at low time constants and saturated at a
time constant of 0.05 s. Consequently, the time constant of the DPF controller was set to
0.05 s to improve position accuracy and robustness to external disturbance.
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Figure 6. Simulation result of the dual-position feedback controller with sinusoidal wave disturbance:
(a) disturbance; (b) position of the end effector measured by internal and external position sensors;
(c) peak position errors of the end effector with respect to the time constants of the dual-position
feedback controller.

 
Figure 7. Simulation result of the dual-position feedback controller with square wave disturbance:
(a) disturbance; (b) position of the end effector measured by internal and external position sensors;
(c) peak acceleration of the end effector with respect to the time constants of the dual-position
feedback controller.
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4.2. External Position Sensing

An external position sensor (Vive, HTC) was installed to measure the actual contour
error of the end effector. Figure 8 shows the three Cartesian coordinates (Cb, Cw, and
CG) used to calculate the actual position and contour error of the end effector. Cb is the
coordinate of the Vive base station. The Vive acquires the three-dimensional position of the
trackers with respect to the coordinates of the base station. The accuracy of the position
measurement was 0.1 mm in our experimental setup. Cw and CG denote the coordinates
of the worktable and robot arm, respectively. The actual position of the robot arm was
measured by attaching a tracker (T1) to the end effector; subsequently, it was converted to
the worktable coordinate using a homogeneous transformation matrix (HTM). The HTMs
of the worktable and base station coordinates were derived from the unit direction vectors
of the worktable coordinates measured by three trackers (T2, T3, and T4) installed on the
worktable. The target position of the robot arm was generated in the worktable coordinate
and converted to the robot arm coordinate for position control. The contour error was
calculated based on the target and actual positions of the end effector in the worktable
coordinate. The HTMs of the robot arm and worktable coordinates were derived from the
unit direction vectors of the robot arm coordinates calculated by measuring the position of
tracker T1 when the robot was linearly moving along the x, y, and z axes.

 

Figure 8. Three Cartesian coordinates (Cb, Cw, and CG) and four trackers used to calculate the actual
position and contour error of the end effector.

4.3. Evaluation Result

To evaluate the performance of the DOB-DPF controller, its contour errors were
compared with those of a conventional controller comprising a feedback and feedforward
module during circular interpolation. The trajectory of the robot arm was set to a circle
with a radius of 100 mm in the xy plane of the worktable coordinate. Figure 9 compares the
contouring performances of the two controllers before and after a constant weight of 2.2 kg
was applied to the end effector. Figure 9a,b show that the position drop of the end effector
caused by a significant weight reduction when the DOB-DPF controller is applied. The
peak, root mean square (RMS), and standard deviation (STD) of the contour errors are listed
in Table 1. The RMS value of the contour error of both the conventional and DOB-DPF
controller was 0.59 mm when the external disturbance was zero. When a weight of 2.2 kg
was applied to the end effector, the contour error of the conventional controller increased
to 2.30 mm, whereas the contour error of the DOB-DPF controller increased to 0.71 mm.
This result indicates that the contour error caused by the disturbance was compensated for
by the DOB-DPF algorithm.
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Figure 9. Contouring performances of the conventional controller and the DOB-DPF controller before
and after a constant weight of 2.2 kg was applied to the end effector: position of the end effector in
(a) three-dimensional and (b) two-dimensional (XZ plane) graph and (c) contour errors.

Table 1. Peak, RMS, and STD of the contour errors.

Control Method
Contour Error (mm)

Peak RMS STD

Conventional controller w/o disturbance 1.80 0.59 0.31
Conventional controller w/ disturbance 3.60 2.30 0.55

DOB-DPF controller w/ disturbance 1.08 0.71 0.32

5. Conclusions

A DOB-DPF controller was proposed in this paper to compensate for the position
error of a five-DOF robot caused by low stiffness. Angular deflections caused by external
disturbances were calculated by the DOB without using external position sensors and
compensated by the DPF control algorithm. A five-DOF robot arm and its position con-
troller were constructed to verify the proposed DOF-DPF controller. Contour errors of the
conventional position and proposed DOB-DPF controllers were compared during circular
interpolation using an external position sensor. In the conventional position controller,
the RMS value of the contour error increased from 0.59 to 2.30 mm after a 2.2 kg weight
was applied to the end effector, whereas it increased from 0.59 to 0.71 mm in the proposed
DOB-DPF controller.
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Abstract: This paper presents a fault tolerant scheme employing adaptive non-singular fixed-time
terminal sliding mode control (AFxNTSM) for the application of robotic manipulators under uncer-
tainties, external disturbances, and actuator faults. To begin, non-singular fixed-time terminal sliding
mode control (FxNTSM) is put forth. This control method uses non-singular terminal sliding mode
control to quickly reach fixed-time convergence, accomplish satisfactory performance in tracking,
and produce non-singular and non-chatter control inputs. Then, without knowing the upper bounds
beforehand, AFxNTSM is used as a reliable fault tolerant control (FTC) to estimate actuator faults and
unknown dynamics. The fixed-time stability of the closed-loop system is established by the theory of
Lyapunov analysis. The computer simulation results of the position tracking, control inputs, and
adaptive parameters are presented to verify and illustrate the performance of the proposed strategy.

Keywords: robotic manipulators; fixed-time sliding mode control; fault tolerant control; actuator faults

1. Introduction

Recent developments in the field of control systems are having a profound impact on
the fields of mechatronics and robotic systems. The problem of the robotic manipulator is
one that is explored in the area of control theory. It is a highly unstable mechanical system
that is nonlinear to a high degree. As a consequence of this, such a system must have
a robust control law and must be capable of maintaining strong stability and trajectory
tracking capabilities in the face of external disturbance and uncertainty [1]. In spite of
the fact that a range of robust solutions have been offered for uncertain robotic systems,
an additional problem arises when joint actuators fail to function properly. In this scenario,
FTC is utilized to compensate for controller failures in order to ensure that the system
continues to function correctly. Under real-world conditions, it is impossible to prevent
the control failure from occurring. Therefore, an accurately functioning controlled system
is impossible if the controller cannot tolerate faults in the system being regulated. As a
consequence of this, there is a growing interest in the development of FTC methodologies,
which have been subjected to extensive research and are being utilized in a variety of
industries. The fundamental theory of FTC is that the designed controller needs to be
robust in order to guarantee the achievement of the optimal level of stability and robustness
in the event that the actuators fail to do their jobs [2].

The family of nonlinear controllers includes the sliding mode control (SMC). It is
able to manage nonlinear systems with uncertainties, bounded disturbances, and low
sensitivity to parameter variations in an effective manner. Terminal sliding mode control
(TSM), which provides robust tracking and better precision, was created in [3] with the
purpose of achieving finite-time stability. However, it suffers from slow convergence and
singularity concerns. Then, SMC techniques were proposed as solutions to these challenges
in order to meet the aims of attaining rapid convergence through the use of fast terminal
SMC (FTSM), and getting rid of singularities through the use of fast non-singular terminal
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SMC (FNTSM) [4,5]. In addition, the amount of time required for the finite-time system to
converge is highly dependent on the initial values of the nonlinear system, and this amount
of time would unquestionably increase as the initial values of the nonlinear system were
raised. Therefore, fixed-time stability is an alternative, which may be utilized to precisely
calculate the time of convergence regardless of the initial conditions [6,7]. Concerning finite-
time convergence, several FTC algorithms have been proposed for robotic applications
using adaptive control scheme to estimate the actuator faults [8].

Adaptive control is a well-known nonlinear control method that is gaining popularity
in control engineering applications. It exhibits extraordinary adaptability to system uncer-
tainty, external disturbances, and actuator failures, and improve the closed-loop system’s
tracking performance [9]. Various adaptive finite time SMC schemes have been proposed
for the robotic manipulator with uncertainties and actuator failures. In [10], FTC using
adaptive finite-time FTSM was designed for the robotic system under faults, in which faults
were estimated using adaptive gains. A finite-time SMC based active FTC was proposed to
estimate the unknown dynamics of the nonlinear robot with joint faults [11]. Another FTC
scheme based on a class of third-order SMC was developed for the second-order nonlinear
system in the presence of actuator faults [12]. Furthermore, a robust adaptive control
approach with a quasi-continuous high-order SMC and neural network has been proposed
for the unknown dynamics of the nonlinear system under joint actuator faults [13].

Interestingly, all of the aforementioned publications focused primarily on the adaptive
scheme for the estimation of the upper bounds of uncertain dynamics and actuator faults
utilizing finite-time FNTSM control [11–13]. According to our understanding, few works
offer adaptive FxNTSM control [14,15], but none of them examined the FTC based on
adaptive FxNTSM method under actuator failures. It is recognized that the primary
advantage of FxNTSM control is singularity avoidance, strong robustness under system
uncertainty and external disturbances; and convergence time does not depend on the initial
values. In this study, we examine the fixed-time convergence and FTC for the nonlinear
system in the presence of unknown dynamics. Therefore, we are proposing the adaptive
fixed-time non-singular terminal SMC (AFxNTSM) for the application of uncertain and
disturb robotic manipulators under actuator failures. The following is a summary of
the key contributions of this work: (1) A sliding surface derived from the characteristics
of non-singular fixed-time terminal SMC is devised. This sliding surface is designed to
provide exceptional tracking performance, fixed-time convergence, and reduced chatter
in the control torque. (2) Adaptive FTC approach is proposed with FxNTSM; bounded
unknown dynamics and actuator failure are estimated to obtain the robust and sustainable
performance for the robotic system. (3) The fixed-time stability analysis of the system is
studied using the Lyapunov synthesis.

The other sections of this work are structured as follows: Section 2 presents the related
works. Section 3 provides the system modelling and problem formulations. In Sections 4 and 5,
respectively, the control design and stability analysis based on the Lyapunov theorem are
described in detail. Section 6 then provides the numerical simulations to validate and
demonstrate the performance of proposed scheme, and Section 7 addressed the discussion
on the simulation results. The conclusions of the paper are presented in Section 8.

2. Related Work

In recent years, a significant number of researchers have focused their attention on the
issue of the SMC schemes for nonlinear systems, which are distinguished by a fixed-time
convergence. In [16], the authors proposed a singularity-free fixed-time SMC scheme for
an uncertain robotic system with disturbances. The research that was published in [17]
involved the creation of a new fixed-time sliding surface using constant and variable
exponent coefficients for the second-order system. For the autonomous underwater vehicle,
an event-triggered scheme using an integral fixed-time SMC technique has been presented
in [18], and the formation control was constructed with the help of a fixed-time SMC,
and disturbance was dealt with the assistance of a disturbance observer in [19]. Moreover,
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the author in [20] presented fast exponential fixed-time super-twisting SMC for the robotic
manipulator and the finite-time high-order sliding mode observer to estimate the angular
velocity and lumped disturbances. A fixed-time super-twisting sliding mode method
subject to control input limitations was developed for a symmetric chaotic supply chain
system [21]. A third-order fixed-time super-twisting-like SMC scheme was designed for
the piezoelectric nanopositioning stage [22]. Another fixed-time control strategy based on
robust observer was presented for n-DOF robot manipulators with uncertainty [23].

Faulty actuators can be compensated for by employing a variety of different adaptive
techniques, which were presented in order to build FTC for a wide range of nonlinear
systems. An adaptive non-singular TSM (AFTSMC) has been used in [10] to achieve fast
response and lessen chattering and singularity problems, and adaptive control based FTC
has been used to estimate uncertainties and actuator faults. Actuator failure compensation
for an underactuated nonlinear system utilising an adaptive fuzzy SMC approach to adjust
the uncertainties caused by actuator faults has been addressed in [24]. In [25], another
adaptive technique has been developed for wind turbine under constant and variable
actuator faults. In [26], FNTSM was designed and paired with adaptive control for attitude
tracking of spacecraft in the presence of actuator faults, actuator saturations, external
disturbances, and inertia uncertainty. Robust fault tolerant tracking control using fixed-
time SMC and observer has been presented for an uncertain robotic manipulator [27].

3. Robot Dynamics and Problem Statement

The robotic manipulator’s dynamic equation can be described as follows [28]:

M0(q)q̈ + M̄(q)q̈ + C0(q, q̇)q̇ + C̄(q, q̇)q̇ + G0(q) + Ḡ(q) = u(t) + Td + f (t − t f )F (q, q̇, τ) (1)

=⇒ M0(q)q̈ + C0(q, q̇)q̇ + G0(q) = u(t) + Ξ(q, q̇, q̈, Td,F ) (2)

where Ξ(q, q̇, q̈, Td,F ) = Td + f (t − t f )F (q, q̇, τ)− M̄(q)q̈ − C̄(q, q̇)q̇ − Ḡ(q). The (2) can
be rewritten as

q̈ = M−1
0 (q)[u(t)− C0(q, q̇)q̇ − G0(q) + Ξ(q, q̇, q̈, Td,F )] (3)

where q ∈ R
n is joints position, q̇ ∈ R

n is joint velocity and q̈ ∈ R
n is joint acceleration.

M(q) ∈ R
n×n represents the inertia matrix and satisfies that 0 < λ1(M(q)) ≤ ‖M(q)‖ ≤

λ2(M(q)) with λ1 and λ2 illustrate the min and the max eigenvalues of matrix M(q).
C(q, q̇) ∈ R

n×n denotes the coriolis, centripetal, and friction forces matrix; G(q) ∈ R
n is

the gravitational vector. M0(q), C0(q, q̇), G0(q) are nominal and M̄(q), C̄(q, q̇), Ḡ(q) are
uncertain parameters. Td ∈ R

n is a representation of the external disturbance, u(t) ∈ R
n is

the input torque at the joints, the fault vector for a constant and/or time-varying actuator
is defined by F (q, q̇, τ) ∈ R

n, and the fault time profile is indicated by f (t − T f ), where t f
is the time at which the fault first occurs. The following notations throughout the paper
will be used.

In addition, the following is the time profile of the faults that were discussed earlier,
f (·), is defined:

f (t − t f ) = diag
{

f1(t − t f ), f2(t − t f ), · · · , fn(t − t f )
}

(4)

The time profile fault model is as follows, where fi is the ith state equation affected by
the fault:

fi(t − t f ) =

{
0 i f t < t f

1 − e−ςi(t−t f ) i f t ≥ t f
(5)

where ςi > 0 is the time constant that characterizes the unknown actuator fault’s devel-
opment. When ςi is minor, the fault is referred to as an incipient fault. When ςi → ∞,
the fi function begins to grow as a step, and the fault that was in the process of developing
becomes an abrupt fault.
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Using (3), we can express the trajectory tracking error as

ë = M−1
0 (q)[u(t)− C0(q, q̇)q̇ − G0(q) + Ξ(q, q̇, q̈, Td,F )]− q̈d (6)

⇒ ë = M−1
0 (q)u(t) + Ω(q, q̇) + Ξ̃(q, q̇, q̈, Td,F ) (7)

where Ω(q, q̇) = −M−1
0 (q)[C0(q, q̇)q̇ + G0(q)] − q̈d denotes the known nominal system

dynamics and Ξ̃(q, q̇, q̈, Td,F ) = M−1
0 (q)Ξ(q, q̇, q̈, Td,F ). The tracking error e = q − qd,

where q is the actual and qd is the desired position vector.

4. Control Design

This section begins with a discussion of the features of nonsingular fixed-time slid-
ing surface and control design named FxNTSM. Moreover, the important Lemma and
Assumption are given in this section.

4.1. Fixed-Time Non-Singular Terminal Sliding Manifold

In literature, sliding surfaces have been constructed to obtain the benefits of TSM
while avoiding the singularity problem. Motivated by the aforementioned methodologies
discussed in Section 1, the proposed FxNTSM surface can be designed as providing robust
and precise trajectory tracking of the n-DOF robotic manipulators in fixed-time:

s(t) = ė(t) + θ1sigη1(e(t)) + θ2sigη2(e(t)) (8)

where s(t) ∈ R
n is the sliding surface, sigy(·) = |·|ysign(·), θ1 ∈ R

+ and θ2 ∈ R
+ are

positive constants, and the η1 and η2 are constants satisfying the relation 0 < η1 < 1 and
1 < η2.

The development of the sliding manifold is completed; now, the robustness against
uncertainty and actuator faults will be achieved through the FxNTSM design for n-DOF
robotic manipulators.

Assumption 1. Conditional bounds on the uncertainty, external disturbance and fault vector are
expressed by (9) that are shown below:∥∥Ξ̃(q, q̇, q̈, Td,F )

∥∥ ≤ Ξ1 + Ξ2‖q‖+ Ξ3‖q̇‖2 (9)

where Ξ1, Ξ2 and Ξ3 are unknown constants of uncertainties, disturbances and actuator faults’
upper bounds.

Lemma 1 ([29,30]). Consider the following nonlinear system:

ẋ(t) = f (t, x), x(0) = x0 (10)

where f (t, x) is a continuous nonlinear function. For fixed-time stability with fast time convergence,
Lyapunov function V(x) that satisfies
a. V(x) = 0 ⇔ x = 0
b. V̇(x) ≤ −β1Vα1(x)− β2V(x)α2

where β1, β2 > 0, 0 < α1 < 1 and α2 > 1. Then, the system is fixed-time stable and the
convergence time can be computed as

T ≤ 1
β1(1 − α1)

+
1

β2(α2 − 1)
(11)

During the sliding motion, we have s(t) = 0. Thus, the following dynamics can be
obtained according to (8) as

ė(t) = −θ1sigη1(e(t))− θ2sigη2(e(t)) (12)
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The Lyapunov function is considered as follows:

Ve(t) =
1
2

e(t)Te(t) (13)

The derivative of Ve(t) can be obtained with (12) as

V̇e(t) = e(t)Tė(t) = e(t)T [−θ1sigη1(e(t))− θ2sigη2(e(t))] (14)

V̇e(t) ≤ −θ1‖e(t)‖η1+1 − θ2‖e(t)‖η2+1

≤ −2
η1+1

2 θ1Ve
η1+1

2 − 2
η2+1

2 θ2Ve
η2+1

2
(15)

According to Lemma 1, the sliding surface (8) will reach zero in a fixed-time, and the
time it takes to converge is bounded by

T1 = 1

2
η1+1

2 θ1

(
1− η1+1

2

) + 1

2
η2+1

2 θ2

(
η2+1

2 −1
)

=
√

2
2η1/2θ1(1−η1)

+
√

2
2η2/2θ2(η2−1)

(16)

4.2. Fxntsm Control Design

To control a robotic manipulator in the presence of known bounded uncertainties,
external disturbances, and actuator failures, the FxNTSM control law can be defined
as follows:

u(t) = u1(t) + u2(t) (17)

where u1(t) is the control input that is utilized in the control of the nominal dynamics,
and u2(t) is used to mitigate the uncertainties and actuator fault:

u1(t) = −M0(q)
(

Ω(q, q̇) + θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)
)

(18)

where Π(e(t)) =
{

η1|e(t)|η1−1 i f e(t) �= 0
0 i f e(t) = 0

satisfies the non-singularity in the control input:

u2(t) = −M0(q)
(
(Ξ1 + Ξ2‖q‖+ Ξ3‖q̇‖2)sign(s) + γ1sigγ10(s(t)) + γ2sigγ20(s(t))

)
(19)

where γ1 ∈ R
+ and γ2 ∈ R

+ are positive constants, and γ10 and γ20 are constants satisfying
the relation 0 < γ10 < 1 and 1 < γ20, respectively.

5. Stability Analysis

In this section, the stability of the overall system using FxNTSM scheme is established
through the application of the Lyapunov theorem. Afterward, the fault tolerant control
structure with adaptive laws is subsequently designed to provide AFxNTSM for uncertain
robotic manipulators under varying actuator faults at joint(s). Then, stability analysis using
AFxNTSM method is investigated by the Lyapunov theorem.

Theorem 1. Taking into account the defined robotic manipulator (3), the proposed sliding man-
ifold (8) and the proposed FxNTSM controller (17) allow for the desired augular position of the
uncertain robotic manipulator to converge in a fixed-time along with (9).

Proof. The following is the Lyapunov function selected as

Vs(t) =
1
2

s(t)Ts(t) (20)
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The calculation for the derivative of Vs(t) can be written as

V̇s(t) = s(t)Tṡ(t) (21)

The derivative of (8) when substituted into Equation (21) yields

V̇s(t) = s(t)T
[
ë(t) + θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)

]
(22)

By substituting error Equation (7) in (22), one has

V̇(t) = s(t)T

{
M−1

0 (q)u + Ω(q, q̇) + Ξ̃(q, q̇, q̈, Td,F )

+θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)

}
(23)

By substituting control input (17) in (23), one obtains

V̇s(t) = s(t)T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−Ξ1 − Ξ2‖q‖ − Ξ3‖q̇‖2)sign(s(t))− Ω(q, q̇)
−γ1sigγ10(s(t))− γ2sigγ20(s(t))
−θ1Π(q)ė(t)− θ2η2|e(t)|η2−1 ė(t) + Ω(q, q̇)
+Ξ̃(q, q̇, q̈, Td, F) + θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (24)

V̇s(t) = s(t)T
{

(−Ξ1 − Ξ2‖q‖ − Ξ3‖q̇‖2)sign(s(t)) + Ξ̃(q, q̇, q̈, Td,F )
−γ1sigγ10(s(t))− γ2sigγ20(s(t))

}
≤ (−Ξ1 − Ξ2‖q‖ − Ξ3‖q̇‖2)‖s(t)‖+ ‖Ξ̃(q, q̇, q̈, Td,F )‖‖s(t)‖
−γ1‖s(t)‖γ10+1 − γ2‖s(t)‖γ20+1

(25)

According to Assumption 1, one can obtain

V̇s(t) ≤ −γ1‖s(t)‖γ10+1 − γ2‖s(t)‖γ20+1 (26)

V̇s(t) ≤ −2
γ10+1

2 γ1{Vs(t)}
γ10+1

2 − 2
γ20+1

2 γ2{Vs(t)}
γ20+1

2 (27)

Thus, the system trajectory approaches to s(t) in a fixed-time. According to Lemma 1,
the convergence time can be formulated as

T2 =
1

2
γ10+1

2 γ1

(
1 − γ10+1

2

) +
1

2
γ20+1

2 γ2

(
γ20+1

2 − 1
) (28)

By the combination of T1 and T2, the total fixed settling time can be calculated as

T10 = T1 + T2 =
√

2
2γ10/2γ1(1−γ10)

+
√

2
2γ20/2γ2(γ20−1)

+
√

2
2η1/2θ1(1−η1)

+
√

2
2η2/2θ2(η2−1)

(29)

Hence, this shows that the proposed scheme is fixed-time SMC.

AFxNTSM Based FTC Control Design

For the unknown dynamics and actuator faults, the control input using adaptive
scheme is designed as follows:

u(t) = u3(t) (30)

where

u3(t) = −M0(q)

⎛⎜⎝ (Ξ̂1 + Ξ̂2‖q‖+ Ξ̂3‖q̇‖2)sign(s(t)) + Ω(q, q̇)
+γ1sigγ10(s(t)) + γ2sigγ20(s(t))
+θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)

⎞⎟⎠ (31)

where Ξ̂1, Ξ̂2 and Ξ̂3 represent the estimates of Ξ1, Ξ2 and Ξ3, respectively.
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For the compensation of uncertainties, external disturbances and actuator faults,
adaptive laws are designed as follows:⎧⎪⎪⎨⎪⎪⎩

˙̂Ξ1 = 1
λ1
‖s‖

˙̂Ξ2 = 1
λ2
‖q‖‖s‖

˙̂Ξ3 = 1
λ3
‖q̇‖2‖s‖

(32)

where λ1, λ2 and λ3 are positive constants, and the proposed model is given in Figure 1.

Figure 1. Structure of the proposed scheme.

The upper bounds of the uncertainties, external disturbances and actuator faults
can be compensated using (32). Hence, the AFxNTSM scheme formulates the tracking
performance of the uncertain robotic manipulators under actuator faults.

Theorem 2. Taking into account the defined robotic manipulator (3), which is subject to a number
of problems such as uncertainties, external disturbances and joint actuator failures. Therefore,
the proposed sliding surface (8), AFxNTSM control input (30) and adaptive laws (32) make it
possible for the desired angular position of the robotic manipulator to converge in a fixed-time with
the condition of Assumption 1.

Proof. The Lyapunov functional candidate is chosen as follows:

Va(t) =
1
2

s(t)Ts(t) +
1
2

λ1ΔΞ2
1 +

1
2

λ2ΔΞ2
2 +

1
2

λ3ΔΞ2
3 (33)

where ΔΞ1 = Ξ̂1 − Ξ1, ΔΞ2 = Ξ̂2 − Ξ2, ΔΞ3 = Ξ̂3 − Ξ3 are adaptation errors.
The derivative of Va(t) can be obtained as

V̇a(t) = s(t)Tṡ(t) + λ1ΔΞ1
˙̂Ξ1 + λ2ΔΞ2

˙̂Ξ2 + λ2ΔΞ3
˙̂Ξ3 (34)

The substitution of derivative of (8) into (34), one obtains

V̇a(t) = s(t)T

{
M−1

0 (q)u(t) + Ω(q, q̇) + Ξ̃(q, q̇, q̈, Td,F )

+θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)

}
+λ1ΔΞ1

˙̂Ξ1 + λ2ΔΞ2
˙̂Ξ2 + λ3ΔΞ3

˙̂Ξ3

(35)
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The substitution of control input (30) into (35), one obtains

V̇a(t) = s(t)T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−Ξ̂1 − Ξ̂2‖q‖ − Ξ̂3‖q̇‖2)sign(s(t))− Ω(q, q̇)
−γ1sigγ10(s(t))− γ2sigγ20(s(t))
−θ1Π(q)ė(t)− θ2η2|e(t)|η2−1 ė(t) + Ω(q, q̇)
+Ξ̃(q, q̇, q̈, Td,F ) + θ1Π(q)ė(t) + θ2η2|e(t)|η2−1 ė(t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+λ1ΔΞ1

˙̂Ξ1 + λ2ΔΞ2
˙̂Ξ2 + λ3ΔΞ3

˙̂Ξ3

(36)

V̇a(t) = s(t)T
{

(−Ξ̂1 − Ξ̂2‖q‖ − Ξ̂3‖q̇‖2)sign(s(t))
−γ1sigγ10(s(t))− γ2sigγ20(s(t)) + Ξ̃(q, q̇, q̈, Td,F )

}
+λ1ΔΞ1

˙̂Ξ1 + λ2ΔΞ2
˙̂Ξ2 + λ3ΔΞ3

˙̂Ξ3

(37)

V̇a(t) ≤ −γ1‖s(t)‖γ10+1 − γ2‖s(t)‖γ20+1

−Ξ̂1‖(s(t))‖ − Ξ̂2‖q‖‖(s(t))‖ − Ξ̂3‖q̇‖2‖(s(t))‖
+‖Ξ̃(q, q̇, q̈, Td,F )‖‖s(t)‖+ λ1ΔΞ1

˙̂Ξ1 + λ2ΔΞ2
˙̂Ξ2 + λ3ΔΞ3

˙̂Ξ3

(38)

Using (32), (38) can be simplified as follows:

V̇a(t) ≤ −γ1‖s(t)‖γ10+1 − γ2‖s(t)‖γ20+1 (39)

Hence, the robotic manipulator that is used for the precise trajectory tracking is fixed-
time stable if and only if certain conditions are met. As a result, the proof of stability is
thoroughly examined.

Now, we will determine the fixed settling time, and the preceding equation can be
represented as [26]

V̇a(t) ≤ −γ1{2(Va(t)− Φ)}
γ10+1

2 − γ2{2(Va(t)− Φ)}
γ20+1

2 (40)

where Φ = 1
2 λ1ΔΞ2

1 +
1
2 λ2ΔΞ2

2 +
1
2 λ3ΔΞ2

3.

V̇a(t) ≤ −2
γ10+1

2 γ1

{
1 − Φ

Va(t)

} γ10+1
2 Va(t)

γ10+1
2 − 2

γ20+1
2 γ2

{
1 − Φ

Va(t)

} γ20+1
2 Va(t)

γ20+1
2 (41)

Using Lemma 1, the fixed-time can be computed as

T3 =
1

σ1

(
1 − γ10+1

2

) +
1

σ2

(
γ20+1

2 − 1
) =

2
σ1(1 − γ10)

+
2

σ2(γ20 − 1)
(42)

where σ1 = 2
γ10+1

2 γ1

{
1 − Φ

Va(t)

} γ10+1
2 , σ2 = 2

γ20+1
2 γ2

{
1 − Φ

Va(t)

} γ20+1
2 .

By the combination of of T1 and T3, the fixed time convergence can be computed as

T20 =
2

σ1(1 − γ10)
+

2
σ2(γ20 − 1)

+

√
2

2η1/2θ1(1 − η1)
+

√
2

2η2/2θ2(η2 − 1)
(43)

As a result, the state trajectory will approach to zero in fixed-time.

Remark 1. Applying the proposed method to the uncertain dynamics of robotic system (1), which
includes the sliding surface (8), the proposed control input (30) and the adaptive laws (32), implies
the tracking error tends to zero. In the following part, the numerical simulation will be provided.
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6. Simulation Results and Comparative Analyses

In order to validate the proposed FxNTSM and AFxNTSM methods, a 2DOF manip-
ulator is used to show the simulation performance. A 2DOF robotic manipulator under
actuator faults with external disturbances and uncertainty will be used. Therefore, there
are two cases that are presented with and without actuator faults to demonstrate the high
performance of FxNTSM and AFxNTSM, and simulations using MATLAB/Simulink are
illustrated. Their model parameters, intended trajectories and uncertainties are given, and
the dynamic of 2DOF robotic manipulators is described as:

M(q) =
[

M11 M12
M21 M22

]
, C(q, q̇) =

[
C1
C2

]
, G(q) =

[
G1
G2

]
,

u(t) =
[

u1
u2

]
, qd =

[
1.45 − 1.4e−t + 0.6e−4t

1.25 + e−t − 0.5e−4t

]
, Td =

[
1 − e−t

1 − e−t

]
.

where M11 = m1r2
1 +m1(r2

1 + l2
1)+ 2 cos(q2)m2l1r2 + J2 + J1, M12 = m2r2

2 + cos(q2)m2r2l1 +
J2, M21 = M12, M22 = m2r2

2 + J2, C1 = − sin(q2)m2r2l1q̇1q̇2 − sin(q2)m2r2l1(q̇1 + q̇2)q̇2,
C2 = sin(q2)m2r2l1q̇1q̇1, G1 = cos(q1)(m1r1 + m2l1)g + cos(q1 + q2)m2r2g, G2 = cos(q1 +
q2)m2r2g.

The length of the links l1 = 1 m, l2 = 1 m, centroid length of joints r1 = 0.5 m, r2 = 0.85 m,
mass of the links m̄1 = 0.5 kg, m̄2 = 1.5 kg, nominal mass of links m10 = 0.4 kg, m20 = 1.2 kg,
moment of inertia J1 = J2 = 5 kg·m2 and gravitational constant g = 9.8 m/s2. In addition,
the physical model of 2-DOF robotic manipulator is given in Figure 2.

Figure 2. 2-DOF robotic manipulator.

6.1. Case-1: Proposed Scheme without Actuator Faults

In this subsection, the proposed FxNTSM method is applied on the 2-DOF robotic
manipulator with known uncertainties and external disturbances and the joint actuator
faults are not considered. The parameters of FxNTSM are selected as follows: for (8),
parameters are chosen as θ1 = 6, θ2 = 1, η1 = 0.8, η2 = 1.5. The parameters of (17) are
selected as γ1 = 50, γ2 = 50, γ10 = 0.65, γ20 = 1.5. The initial conditions of joint positions
are chosen as q1(0) = 1 and q2(0) = 1.5.

Figures 3–10 exhibit, accordingly, the position tracking performance, tracking errors,
control inputs, and sliding mode surfaces, which correspond to the simulation findings of
the proposed method on 2-DOF robotic manipulators.

159



Actuators 2022, 11, 353

0 1 2 3 4 5 6 7 8 9 10

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
 

Figure 3. Position tracking—Joint 1.
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Figure 4. Position tracking—Joint 2.
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Figure 5. Tracking error—Joint 1.
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Figure 6. Tracking error—Joint 2.
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Figure 7. Control input—Joint 1.
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Figure 8. Control input—Joint 2.
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Figure 9. Sliding surface—Joint 1.
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Figure 10. Sliding surface—Joint 2.
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Taking into consideration the high tracking and robustness against the known bounded
system’s uncertainties, the proposed FxNTSM has superior performance and obtains
angular position fast tracking performance in Figures 3 and 4, smaller tracking errors in
Figures 5 and 6, and chatter-free control inputs in Figures 7 and 8.

6.2. Case-2: Comparative Analysis under Unknown Dynamics and Actuator Faults

In this subsection, the proposed adaptive approach with FxNTSM method is employed
to compensate the unknown dynamics of the uncertain 2-DOF robotic manipulator in the
existence of unknown bounded external disturbances and actuator faults. Moreover, it
is compared with adaptive fractional-order non-singular terminal sliding mode control
(AFONTSM) [10] to show the effectiveness of the proposed method. The fault occurs at 2 s
for joint-2 such as F = [0, 0.7u2(2s)]T , the parameters of (30) are selected the same as (17),
and the parameters of (32) are selected as λ1 = 20, λ2 = 20 and λ3 = 20. The performances
under unknown dynamics and actuator faults, the compared benchmark simulations of
trajectories, control inputs and sliding surfaces of the proposed AFxNTSM scheme with
AFONTSM are given in Figures 11–16. In addition, the adaptive parameter estimations of
unknown dynamics are illustrated in Figure 17.

The compared obtained results show that the AFxNTSM has enhanced tracking per-
formance, chatter-free control inputs and precise adaptive values in the presence of uncer-
tainties, external disturbances and actuator failures. In Figures 11–14, it is clearly seen that
the proposed method under external disturbances and at the occurrence of actuator faults
provides the better convergence and trajectory tracking performance while the AFONTSM
method shows the large angular position error and the less robust to unknown dynam-
ics. Moreover, the root mean square (RMS) error of the proposed AFxNTSM method and
AFONTSM technique are computed as e1RMS = 0.0294, e2RMS = 0.0208 and e1RMS = 0.0320,
e2RMS = 0.0237, respectively.

Figure 11. Position tracking method under fault and disturbances—Joint 1.
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Figure 12. Position tracking method under fault and disturbances—Joint 2.
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Figure 13. Control input under fault and disturbances—Joint 1.
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Figure 14. Control input under fault and disturbances—Joint 2.
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Figure 15. Sliding surface under fault and disturbances—Joint 1.
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Figure 16. Sliding surface under fault and disturbances—Joint 2.
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Figure 17. Cont.
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Figure 17. Adaptive parameters.
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7. Discussion

In this section, the discussion related to the simulated results of the proposed FxNTSM
and AFxNTSM are presented. In addition, the limitations of the suggested controller are
briefly discussed in terms parameters and stability analyses. Moreover, the future aspects
of the proposed method with the nonlinear system are also discussed.

A comparison is made between the suggested control approach and the AFONTSM and
the parameters of both schemes are fairly selected. Thus, it is evident from Figures 11 and 12
that the suggested controller has the minimum tracking error and the shortest time to
converge. In addition, the control inputs of the two joints can be seen in Figures 13 and 14,
and it can be observed that the suggested solution provides the smoothest and efficient
control input. Moreover, the adaptive estimation is given in Figure 17, which estimates the
unknown parameters and compensates the effects of uncertainties, external disturbance
and actuator faults, and shows that there is no drifting problem in adaptive control laws.

The parameters of the suggested control strategy are selected according to the range
that was stated, such as θ1 > 0, θ2 > 0, 0 < η1 < 1, η2 > 1, γ1 > 0, γ2 > 0, 0 < γ10 < 1 and
γ20 > 1. If these are not taken care of, the closed-loop system will not remain fixed-time
stable. It is easy to see, based on the results of (29) and (43) that T10 and T20 are inversely
proportional to θi and γi, whereas θi and γi are directly proportional to u(t) in (17) and (30).
Therefore, the appropriate values of θi and γi need to be chosen in order to obtain fixed-
time convergence as well as closed-loop system stability at the same time. Furthermore,
the ranges of the other parameters are known, which enables one to choose the suitable
value in a manner that is appropriate. In addition, this work can further be extended to
consider the non-smooth nonlinearities for the nonlinear robotic systems such as a robotic
manipulator, inverted pendulum, mobile robots etc.

8. Conclusions

For robotic manipulator trajectory tracking with uncertainties, external disturbances
and actuator faults, an AFxNTSM based FTC is developed. In order to estimate the
unknown bounds of actuator faults, uncertainties and disturbances, fixed-time sliding
surface is developed and then the FxNTSM control is designed utilising an adaptive
approach, allowing for fixed-time convergence and tracking performance. FxNTSM and
AFxNTSM are applied on the 2-DOF manipulator with and without actuator faults to
show and justify the efficacy of the proposed approach. Simulation results show that
the proposed FxNTSM and AFxNTSM outperform in terms of response time, trajectory
tracking error, faults control, and better uncertainties and disturbances rejection capability.
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Abstract: Two-wheeled inverted pendulum (TWIP) vehicles are prone to lose their mobility and
postural stability owing to their inherently unstable and underactuated dynamic characteristics,
specifically when they encounter abruptly changed slopes or ground friction. Overcoming such
environmental disturbances is essential to realize an agile TWIP-based mobile platform. In this paper,
we suggest a disturbance compensation method that is compatible with unmanned TWIP systems in
terms of the nonlinear-model-based disturbance observer, where the underactuated dynamic model is
transformed to a fully actuated form by regarding the gravitational moment of the inverted pendulum
as a supplementary pseudo-actuator to counteract the pitch-directional disturbances. Consequently,
it enables us to intuitively determine the disturbance compensation input of the two wheels and
the pitch reference input accommodating to uncertain terrains in real time. Through simulation and
experimental results, the effectiveness of the proposed method is validated.

Keywords: two-wheeled inverted pendulum; underactuated system; disturbance rejection control;
nonlinear disturbance observer (NDOB)

1. Introduction

Due to its maneuverability and high payload-to-weight ratio, the two-wheeled in-
verted pendulum (TWIP), typically with two parallel wheels, is still receiving much atten-
tion as a mobile platform for personal transporters [1], autonomous vehicles [2,3], robotic
wheelchairs [4], wheeled humanoids [5,6], and wheeled bipedal robots [7]. It belongs to
inherently unstable and underactuated systems with fewer actuators than the degrees of
freedom needed for their control, which can be justified only when the instability of the
pendulum is actively utilized to accomplish agile motions committed to diverse manipula-
tion tasks. Inevitably, it is highly sensitive to external disturbances caused by uncertain
environments, and the risk of turnover becomes higher while autonomously driving on
unknown surfaces with varying slope and ground friction.

As a matter of fact, the posture control performance of unmanned TWIPs can be
greatly improved by modifying the structural design. For example, a movable center of
gravity enables more swift movements at the start and stop of the run [8]. The reaction
wheel is also effective in compensating for the internal disturbances caused by embedded
manipulators [9]. However, the TWIP employing the additional actuators is not an un-
deractuated system anymore and requires paying the price of a much heavier weight and
complicated mechanism.

Error-based linear feedback controls such as PID controls and LQRs [10] are certainly
limited in covering the wide range of pitch motions that the TWIP robot can experience
as the terrain slope and wheel friction are unexpectedly changed. In other words, a set of
control gains well-adjusted for a plain does not guarantee postural stability and driving
performance on a different slope because the strong nonlinear effect is closely concerned
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with the pitch motion. The nonlinear control schemes including the adaptive control [11],
the Lyapunov-based control [12], the SDRE optimal control [13], etc., can be applied to
extend the range of possible pitch angles until the turnover happens. Nonetheless, to make
the inverted pendulum motion quickly converge to the equilibrium point, it is desired to
adopt an anticipative compensation input to directly cope with the lumped uncertainty,
including modeling errors and the external disturbances not considered in the error-based
nominal feedback control design.

The preceding results on the robust compensator design of TWIP can be classified
into the extended state observer [14], the nonlinear disturbance observer [15], sliding mode
control methods [16,17], as well as the combined synthesis of a disturbance observer and a
sliding control [18]. These works prove that it is a challenging problem to determine the
disturbance compensation input for underactuated systems because they do not have a
one-to-one correspondence between the actuators and the degrees of freedom. Despite
the rigorous outcomes mostly in terms of Lyapunov-based designs, they are taking rather
highly complicated forms of many tuning parameters and switching functions to ensure
the asymptotic stability for lumped disturbances. Thus, aside from the mathematical
completeness, this could inevitably raise an implementation issue for real systems because
the driving performance highly depends on a sophisticated gain-tuning process.

Focusing more on the slope-climbing problem for unmanned TWIP systems, the dy-
namic equations on an inclined surface were described with respect to the 2D longitudinal
motion [19] and the 3D motion [20]. The slope angle of the terrain was estimated by using
a disturbance observer in [21]. The effects of the terrain inclination on the stability of TWIP
were accounted for in [22]. The reaction torque observer against the ramp disturbances
was suggested to determine the equilibrium pitch angle in [23]. A so-called second sliding
controller was designed to improve the velocity tracking performance on inclined surfaces
in [16]. These examples demonstrate that the terrain uncertainty with an unknown slope is a
dominant factor that determines the tracking performance and postural stability of TWIPs.

In this paper, we propose a new solution to tackle the stabilization problem of un-
manned TWIP-balancing vehicles in uncertain terrains in terms of the nonlinear-model-
based disturbance observer (NDOB). The highlight of this study lies in regarding the gravi-
tational moment acting on the inverted pendulum as a pseudo-actuator and transforming
the dynamic model of the underactuated TWIP into a fully actuated one by modulating
the input matrix. As relevant performances were carried out through the whole-body
coordination control in [5–7], how to aggressively utilize the gravity of the pendulum is
essential to accomplish the balanced agile motions of a TWIP system. In the previous robust
control frameworks [14–18] for underactuated TWIPs, it cannot be clearly described how
the disturbance estimates along the forward, pitch, and yaw motions are resolved into the
compensation input channels. In contrast, the proposed scheme clarifies that the forward
and yaw directional disturbances can be compensated through two input channels, and
the body disturbances hindering the pitch motion can be indirectly attenuated in terms of
a real-time pitch reference input dealing with the pitch directional disturbance estimates.
Thus, the proposed method has the merit of explicitly reflecting the dynamic correlations of
the underactuated TWIP by using a compensation input design and making the feedback
gain tuning easier.

The rest of this paper is organized as follows: In Section 2, a description is provided
in terms of how the unmanned TWIP robot behaves on a ramp while it performs both
velocity and posture control at the same time. In Section 3, the related issues in applying
the NDOB to the TWIP as an underactuated system are discussed, and finally, an effective
compensation strategy for suppressing lumped disturbances is proposed with real-time
pitch reference generation. Section 4 is devoted to the driving simulations and experiments
on slopes to verify the effectiveness of the proposed method. Finally, conclusions are drawn
in Section 5.
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2. Dynamic Characteristics of TWIP on Inclined Surfaces

2.1. Dynamic Model

The schematic of the TWIP robot is represented in Figure 1, and the parameters and
variables are defined in Table 1, where it has two inputs (TL, TR) corresponding to the left
and right wheel torques and three outputs (x, θ, ψ) to describe the three degrees of freedom.
As has been described in [24], seven holonomic and three nonholonomic constraints for the
wheeled mobile robot can be considered in formulating the dynamic model of the TWIP.
However, it finally leaves the following set of differential equations with respect to the
three controlled states of forward velocity, pitch, and yaw rate as

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) = Bτ

M(q) =

⎡⎣m11 m12 0
m21 m22 0

0 0 m33

⎤⎦, C
(
q,

.
q
)
=

⎡⎣ 0 c12 c13
0 0 c23

c31 c32 0

⎤⎦
G(q) =

⎡⎣g1
g2
g3

⎤⎦, B =

⎡⎣ 1/r 1/r
−1 −1

d/2r −d/2r

⎤⎦, τ =

[
TR
TL

] (1)

where q = [x, θ, ψ]T is the generalized coordinates, M(q) is the inertia matrix, C
(
q,

.
q
)

is the
Coriolis and centrifugal matrix, G(q) is the gravity vector, B is the input matrix, and τ is
the input vector. The elements of the matrices and vectors are specified in Appendix A.

Figure 1. Prototype and schematic of TWIP with two parallel wheels.

Table 1. Variables and parameters of TWIP robot.

x Displacement along the forward direction

θ Pitch angle of inverted pendulum
.
ψ Yaw rate of the entire TWIP robot

TL, TR Torque of left and right wheels

d Distance between the parallel wheels

l Distance from the wheel axis to the center of
gravity (length of inverted pendulum)

mB, mw Mass of inverted pendulum and each wheel

I1, I2, I3 MOI of inverted pendulum body

K, J MOI of each wheel body

r Radius of wheel

174



Actuators 2022, 11, 339

Considering the dynamic characteristics of TWIP systems, pitch and forward motions
are strongly coupled, as the off-diagonal elements in the first and second row of the
inertia matrix indicate, whereas the yaw motion is rarely affected by the other motions,
although the Coriolis and centrifugal terms define the correlation among them. Hence, the
performances of the pitch and velocity control are highly interdependent since the two
states (

.
x, θ) must be simultaneously controlled by sharing the single input of τ = TR + TL

from the two wheels in the longitudinal direction, whereas the yaw rate for steering can
be independently controlled through the difference between the two wheel torques. If
a linear system analysis is conducted for the TWIP around an equilibrium point, the
closed-loop transfer function regarding the pitch and velocity control will have the same
characteristic equation.

The TWIP robot belongs to the acrobot [25] where the two wheels and the inverted
pendulum share the wheel axis as the common rotational hinge, and the wheel actuators are
mounted on the chassis as a part of the pendulum body, which results in input couplings
between the wheel and the pendulum body due to the reaction torque. When a driving
torque is exerted to rotate the wheels, the same amount of reverse torque is delivered to
the inverted pendulum, and it brings about a pitch motion. The opposite direction of the
first and second row in the input matrix B in Equation (1) indicates the input coupling
between the forward and pitch motions. The TWIP mechanism distinctly differs from
the pendubot [25] systems, such as a cart–pendulum system, where the wheel torques do
not directly work on the pendulum. However, a few studies adopted the cart–pendulum
system as the nominal model of the TWIP [26].

2.2. Finding Static Equilibrium Point on Inclined Surfaces

For a quick understanding of the effect of uncertain terrains with an arbitrary slope
angle and surface friction, the longitudinal motion of the TWIP is represented in Figure 2. If
the TWIP robot keeps its static equilibrium state on a slope at a constant speed or standstill,
the sum of the gravitational moments with respect to the contact point by the weights of
the wheels and the inverted pendulum body is equal to zero. That is,

∑ MA = Mw − MB
= 2mwgr sin α − mBg(l sin θ − r sin α)
= (mB + 2mw)gr sin α − mBgl sin θ = 0

(2)
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Figure 2. Static equilibrium state of TWIP.

Then, we have the equilibrium pitch angle against the slope as

θeq = sin−1
[
(mB + 2mw)r

mBl
sin α

]
(3)
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The above relationship holds by assuming a point contact between the wheels and
the ground surface. As denoted in the left of Figure 2, even when the TWIP is moving
with a constant speed on a plane, it has a nonzero equilibrium pitch angle because of
the tire flatness and ground friction. Hence, the time-varying slope angle on the right of
Figure 2 can be regarded as an effective ramp disturbance including the frictional effect in
the longitudinal direction.

When the TWIP mobile robot meets an unexpected slope, it slows down in uphill
climbing and accelerates downhill. To surmount the ramp disturbances, the pitch angle of
the inverted pendulum must be swiftly transferred near the equilibrium point. In the case
of human-riding TWIP transporters, a skillful rider can readily travel on a ramp by leaning
the pitch angle of the body to find the equilibrium point. In other words, the human rider
is involved in the control loop as an additional actuator to supplement the underactuated
inverted pendulum. However, the safety, and the driving performance of the unmanned
TWIP mobile robot on uncertain terrains, highly depend on how quickly the equilibrium
pitch angle can be found by the control system against the ramp disturbances.

2.3. Limit of Error-Based Feedback Control

As a typical error-based feedback controller, the PID control law has the robustness
property for a certain range of biased disturbances and are widely applied in practical
systems. However, a TWIP robot on a slope is a good example where the error-based con-
trols with a fixed gain setting, including linear and nonlinear schemes, show performance
limitations. Since the pitch and forward motions of the TWIP are dynamically coupled,
and their control performances are in a trade-off relationship, it is time-consuming to attain
the final gains satisfying both performances even in numerical simulations. Moreover, the
optimal values of the gain setting are varied depending on the inclination of the terrain,
because the equilibrium point of the pitch angle is accordingly moved.

The simulation result in Figure 3 compares the uphill driving performance of the
prototype in Figure 1 when the velocity reference is 1 m/s, and the PID control is applied
with the same gain setting adjusted for the flat surface, where the TWIP robot meets
the slopes with different angles at 4 s. When the integral control action is activated, the
pitch angle finally converges to the equilibrium point according to the relationship in
Equation (3), and although the zero-pitch reference is assigned for the unknown terrain, the
velocity tracking performance is greatly degraded as the slope angle increases. This means
that the PID controller is vulnerable to ramp disturbances, mainly because it takes some
time to reach the pitch equilibrium point, and usually puts more weight on the conservative
pitch control gains for the safety of the TWIP from turnovers.

 
Figure 3. Uphill driving simulation on an inclined surface.
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As another example, Figure 4 shows the experimental results for the prototype, where
the two cases concerned with the gain tuning issue are compared, while the robot is
accelerated and decelerated on a flat surface. Case 1 employs the control gains that give
more weight to the pitch control than the velocity tracking performance, whereas Case 2 is
the opposite. Naturally, Case 2 with a velocity-weighted controller shows a better tracking
performance, but it accompanies a large pitch motion to make the robot rapidly accelerate
and decelerate by utilizing the gravity of the inverted pendulum. The pitch-weighted
control of Case 1 is advantageous in keeping the upright posture of the robot, but it
sacrifices swift velocity tracking. In summary, when an error-based feedback controller is
applied, the velocity tracking performance and the posture stabilization of the inverted
pendulum are irreconcilable on uncertain terrains unless the pitch equilibrium point is
given in real time.

Figure 4. Velocity tracking control experiment on a flat surface.

3. NDOB-Based Disturbance Compensation

3.1. NDOB Application to Underactuated TWIPs

A great merit of applying the disturbance observer technique is that it can deal with
the lumped disturbance, including the model’s parametric uncertainties and external
disturbances, and it allows for the freedom to maintain the current nominal feedback
controller, whether it is a linear scheme or a nonlinear one [27]. Considering the strong
nonlinear dynamic characteristics of the inverted pendulum, which could happen due
to the wide pitch variations against the ramp disturbances, it is reasonable to adopt a
nonlinear disturbance observer (NDOB) directly based on differential equations rather than
a transfer-function-based linear observer.

Although there exist a few different versions in the NDOB formulations depending on
the incorporated state equations and filtering structure [27–29], the fundamental notion is
that the lumped disturbance at the current time can be equivalently estimated using the
nominal model as

D̂(t) = Q·[M
..
q(t) + C

.
q(t) + G(t)− Bτ(t − λ)

]
(4)

under the assumption that the input variation between the control intervals λ is very small,
i.e., τ(t) ≈ τ(t − λ), and all the states are available. The linear operator Q represents a
low-pass filter to suppress the high-frequency noises in sensor signals and data. One of the
main issues in implementing Equation (4) is how to construct the acceleration terms since
the acceleration data are not available in most robotic systems. To eliminate the requirement
of any acceleration measurement, an auxiliary variable vector was used in the modified
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NDOB [29], and the setup of the relevant parameters of the TWIP was developed in [15].
In reality, the acceleration data can be obtained by applying filtered derivatives to the joint
measurements, and it works well, as the mobile robot is traveling near a constant speed
without high maneuvers.

Prior to establishing a disturbance rejection scheme based on the NDOB, we need to
ascertain the drawback of the conventional NDOB in applying it to the underactuated TWIP
systems. The dynamic model for the underactuated TWIP in Equation (1) can be rewrit-
ten by considering the lumped disturbance reflecting all the internal and environmental
uncertainties other than the nominal parameters as

Mn×n(q)
..
q + Cn×n(q,

.
q)

.
q + Gn×1(q) = Bn×rτr×1 + Dn×1

Dn×1 = dn×1
m + dn×1

u = Bn×rτr×1
d + dn×1

u
(5)

where r = 2 is the number of inputs, n = 3 is the number of outputs, and D = [d1 d2 d3]
T is

the lumped disturbance with three elements, which can be defined as the wheel disturbance
for the forward motion of the two wheels, the body disturbance for the pitch motion of the
inverted pendulum, and the yaw disturbance for the steering motion, respectively. Again,
the lumped disturbance vector can be divided into the matched disturbance dm, satisfying
the matching condition, and the unmatched disturbance du, which does not exist in the
column space of the input matrix in Equation (1). In Equation (5), τd can be thought of as
the transformation of the matched disturbance into the input channels.

To determine the compensation torques for the disturbance estimates through the
input channels, the compensation input τc must satisfy the relationship of Bτc = −D̂
= [−d̂1 − d̂2 − d̂3]

T
. However, the nonsquare input matrix has only the left inverse

B+ = (BT B)−1BT since the number of rows is larger than the columns. Then, if the
conventional NDOB compensation input τc = −B+D̂ is applied, the compensation error is
equivalent to

∼
D � D − D̂ = D + Bτc = D − BB+D̂

= (Bτd + du)− BB+(Bτ̂d + d̂u)

= (Bτd − B(B+B)τ̂d)︸ ︷︷ ︸
≈0

+ (du − BB+d̂u)
(6)

where the first part corresponding to the matched disturbance can be almost rejected since
B+B = I, but the residual compensation error caused by the unmatched disturbance still
perturbs the system response since BB+ �= I.

On the other hand, by taking the left pseudo-inverse of the input matrix in Equation (1),
we have

∼
D = D − BB+D̂ =

⎡⎢⎣d1 − 1
(1+r2)

d̂1 +
r

(1+r2)
d̂2

d2 − r2

(1+r2)
d̂2 +

r
(1+r2)

d̂1

d3 − d̂3

⎤⎥⎦ (7)

As the first and second elements represent, the wheel disturbance and the body
disturbance cannot be clearly attenuated, because when both estimates are transferred to
the underactuated input channels, they are directly correlated by the input coupling of
the acrobot. The last yaw disturbance compensation error is not affected by the other two
compensation elements since the yaw motion is free of the input coupling. However, if
the lumped disturbance of the TWIP satisfies the matching condition, the relationship of
d̂2 = −rd̂1 holds, as depicted in Figure 5. A simple example of the matched disturbance is
the viscous and Coulomb friction exerted on the wheel axis. In this case, the compensation
error Equation (7) is reduced to

∼
D =

[
d1 − d̂1 d2 − d̂2 d3 − d̂3

]T
(8)
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which indicates that the matched disturbances are completely rejected through the input
channels if all the states in Equation (4) can be exactly reconstructed in real time.

θ
d

d

rd

rd

r
α

Wm g
Bm g

( )B wd m m g α= +
V rω=

ω

Figure 5. Examples of matched and unmatched disturbances.

A great part of the lumped disturbance acting on the TWIP robot can be classified as
unmatched disturbances, e.g., model parametric errors, rolling resistance due to the tire flat-
ness, wheel–slip phenomena, the eccentric center of the gravity of the pendulum from the
wheel axis, and most importantly, the environmental disturbance by the inclined terrains.
If the effective slope angle in Figure 2 is considered in the nominal model Equation (1),
the pitch angle θ in the elements of matrices of M and C is changed to θ + α, as shown in
Appendix A, and the first element of the gravity vector has g1 = (mB + 2mW)g sin α [16,20].
As the static equilibrium condition in Equation (2) implies, this additional gravity term
arising from the unknown terrain, as denoted in Figure 5, dominantly affects the veloc-
ity tracking performance and the upright posture stabilization of the TWIP as a wheel
disturbance. Assuming only a ramp disturbance due to terrain uncertainty, the lumped
disturbance of the TWIP at a steady state can be represented by

Dramp =

⎡⎣−(mB + 2mW)g sin α
0
0

⎤⎦ (9)

The above disturbance certainly does not satisfy the matching condition because
it does not exist in the column space of the input matrix. In other words, it cannot be
expressed as a linear combination of the column vectors of B in Equation (1).

3.2. Disturbance Rejection by Input Matrix Modulation

As we have seen, the conventional NDOB techniques generating equivalent compen-
sation torques to the lumped disturbances through the input channels are fundamentally
limited in attenuating the unmatched disturbances of underactuated systems. Related to
this issue, the NDOB-combined sliding mode controls employed the so-called dynamic
surface in [15], and a novel sliding surface in [18], to achieve an asymptotically stable slid-
ing mode for unmatched disturbances. Additionally, the second sliding controller in [16],
the integral-type sliding surface suggested in [17] for TWIP systems, and the second-order
sliding control suggested for underactuated systems in [30] belong to this class. However,
the chattering problem due to the switching control action is unavoidable when the be-
havior of the TWIP deviates far from the nominal sliding dynamics, and the complicated
parameters and gain structures, which were inevitable to guarantee the Lyapunov stability,
would be a great barrier to find an appropriate gain setting for the stable convergence of
the inverted pendulum to the equilibrium point.
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Compared with nominal error-based feedback controls, the above-mentioned robust
control schemes can significantly contribute to the stabilization of underactuated TWIPs as
the system’s uncertainty increases. However, it will reach a certain limit of velocity tracking
performance if the zero-pitch reference is kept for unknown ramp disturbances because it
intrinsically violates the static equilibrium condition in Figure 2. Although the center of
gravity (COG) movement of the inverted pendulum, along with the pitch motion, bothers
the upright posture of the TWIP, it must be actively utilized to implement high-maneuver
manipulations in terms of the balanced mobile platform and keep the static equilibrium
state on inclined surfaces.

The inverted pendulum body of TWIP systems can be regarded as a gravitational
actuator if the pitch motion is fairly stabilized all the time. The whole-body controls in [5–7]
are good examples utilizing the gravity of the inverted pendulum. However, they can be
enabled only when appropriate pitch references are given for the center of gravity through
an extra planning process. In this regard, a dynamic-model-based trajectory in [31] has been
proposed for swift velocity transition on flat surfaces. In this paper, we suggest how the real-
time pitch reference of the TWIP accommodating to uncertain terrains can be generated in
terms of the NDOB. First, the gravity term of the nominal model in Equation (1) is merged
into the input vector by regarding it as a pseudo-actuator. Then, we have

M(q)
..
q + C

(
q,

.
q
) .
q =

∼
Bu + D

∼
B =

⎡⎣ 1/r 1/r 0
−1 −1 1

d/2r −d/2r 0

⎤⎦, u =

⎡⎣ TR
TL

mBgl sin θ

⎤⎦, D =

⎡⎣d1
d2
d3

⎤⎦ (10)

where the modulation of the input matrix into a full-rank and square one temporarily
makes the TWIP system a fully actuated system. Then, the compensation input satisfying

the relationship of
∼
Bτc = −D̂ for the disturbance estimates in terms of a specific NDOB

formulation can be determined by

τc =

⎡⎣ τR
τL

mBgl sin θre f

⎤⎦ = −∼
B
−1

D̂ =

⎡⎢⎢⎢⎣
−
(

r
2 d̂1 +

r
d d̂3

)
−
(

r
2 d̂1 − r

d d̂3

)
−
(

rd̂1 + d̂2

)
⎤⎥⎥⎥⎦ (11)

Hence, the compensation input consists of two direct torque inputs (τR, τL) for the
right and left wheels and an indirect gravitational moment, which can be generated in real
time by assigning the pitch reference input as follows:

θre f = − sin−1

(
rd̂1 + d̂2

mBgl

)
(12)

which satisfies a dynamic equilibrium between the disturbance input and the gravitational
moment. Then, as far as the pitch control loop successfully follows the pitch reference, we

have the disturbance compensation error,
∼
D = D − ∼

B
∼
B
−1

D̂ = D − D̂ in the same form as
Equation (8) instead of Equation (7). As shown, the wheel disturbance as well as the body
disturbance, as defined in Equation (5), are involved in the equilibrium condition according
to the input coupling effect. If only the uncertain slope is considered as a dominant
disturbance denoted in Equation (9), and the TWIP is moving at a constant speed, the pitch
reference is supposed to be coincident with the equilibrium pitch angle in Equation (3).
On the other hand, it goes to zero when it meets d̂2 = −rd̂1 for the matched disturbances
depicted in Figure 5. However, this happens only if the wheels make a point of contact
when traveling on flat surfaces, which cannot occur in reality.

Some researchers investigated how to generate a pitch reference for the smooth climb-
ing of the TWIP on inclined surfaces. For example, state estimators including the slope
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angle [21] and a pitch angle disturbance observer [23] were synthesized based on the linear
models around the equilibrium point. However, they are inadequate to cover a wide range
of pitch motions, which can arise via abrupt slope changes and other heavy disturbances.
Above all, the current formulation has the merit of consistently generating the torque
compensation input and the real-time pitch reference input simultaneously, without an
extra trajectory planner and irrespective of the disturbance estimation algorithm.

The overall schematic of the proposed dynamic compensation scheme is represented in
Figure 6, where the disturbances associated with the forward and yaw motions are attenuated
by the torque compensation inputs of the two wheels according to Equations (4) and (11),
and the body disturbance is suppressed as the pitch control loop is activated with the
pitch reference assignment according to Equation (12). Separately from the disturbance
compensation input, the nominal feedback control loop for the three-degree-of-freedom
motion is fundamentally based on the error-based PID control logic. The velocity and
steering commands (

.
xre f ,

.
ψre f ) can be given arbitrarily, but the pitch reference command

θre f is highly dependent upon the terrain’s condition. When the controllers for the velocity,
pitch, and yaw motion are generated as (ux, uθ , uψ), respectively, the nominal control inputs
of the right and left wheels can be determined by

uR =
ux + uθ + uψ

2
, uL =

ux + uθ − uψ

2
(13)

Figure 6. NDOB-based dynamic compensator with real-time pitch reference generation.

As indicated, if the pseudo-fully actuated system model in Equation (10) is incor-
porated in the NDOB-based compensator design, it does not discriminate the matched
and unmatched disturbances, and the relationship between the disturbance estimates and
compensation inputs becomes clarified. Applying it to TWIP systems, the complicated
design issues in [15–18] concerning multiple sliding surfaces and switching control gains
to ensure the robust stability of underactuated systems can be much reduced.

4. Numerical Simulations

To demonstrate the robustness of the proposed technique with respect to uncertain
terrains with arbitrary slopes, comparative simulations were carried out using the Simscape
Multibody Toolbox [32]. This software provides a dynamic simulation environment for
multibody systems and useful tools for modeling the spatial contact force between the
wheels and driving surfaces based on the stick–slip friction model. The parameters of
the prototype TWIP mobile robot are given in Table 2. The PID controller was applied
as a nominal controller for the forward velocity, the pitch angle, and the yaw rate for
steering. The gain setting of the nominal controller was adjusted for smooth traveling on
plains with more weighting on keeping the upright posture, as previously mentioned in
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Section 2.3. The video clips related to the simulation results in Figures 7–10 can be found at
https://youtu.be/YqzDefO85s8 (accessed on 25 May 2022).

Table 2. Dimensions of TWIP robot.

mB, mw 17.6, 2.2 (kg)

l, d, r 0.15, 0.47, 0.127 (m)

I1, I2, I3 0.4032, 0.3297, 0.1907 (kg m2)

K, J 0.010, 0.018 (kg m2)

 
Figure 7. Climbing a ramp with an unknown slope of 10 degrees.

 
Figure 8. Climbing a ramp with an unknown slope of 10 degrees. The pitch references for PID and
conventional NDOB were zero.
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Figure 9. Holding a standstill position on a ramp with an unknown slope of 10 degrees.

 
Figure 10. Holding a standstill position on a ramp with an unknown slope of 10 degrees. The pitch
references for PID and conventional NDOB were zero.

Firstly, as shown in Figures 7 and 8, the TWIP had a reference velocity of 1.5 m/s, and
it entered the ramp with an unknown slope at around 4 s. (1) In the case of only the PID
controller with no pitch reference, the velocity tracking performance deteriorated as soon
as the robot encountered the ramp disturbance. For smoothly climbing an inclined surface,
the pitch angle of the inverted pendulum had to be transferred to a new equilibrium point
as the feedback control was activated. Although the robot managed to climb the ramp
again owing to the integral control action, it took quite a long time until the final velocity
reached the reference value; (2) when a conventional NDOB compensation input was
added to the nominal controller, the tracking performance was more degraded. This is
mainly because the reaction torque delivered to the pendulum body in response to the
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compensation input occurred at the pitch-up moment, and it hindered the pitch motion
from reaching the equilibrium point; (3) finally, when the proposed compensation method
was applied, it generated the pitch references for the inverted pendulum in real time to
keep the equilibrium state compatible to the inclined surface, and it caused the robot to
steadily ascend the uncertain slope following the reference velocity.

Secondly, as shown in Figures 9 and 10, as the TWIP robot steadily climbed the ramp,
the velocity reference changed from 1.5 m/s to 0 m/s at 10 s to hold a stationary state for
3 s. (1) When applying only the PID controller with a zero-pitch reference, it had great
difficulty in making the robot stand still on a ramp. As indicated in Figure 10a, when
the zero-velocity command was assigned, it tended to recover the upright posture, which
resulted in a severe retreat of the TWIP owing to the gravitational moment acting on the
wheels; (2) the compensation input by the conventional NDOB was not helpful at all to
keep the standstill position, because the residual disturbance in Equation (7) due to the
input couplings continually perturbed the forward and pitch motion at the same time;
(3) the proposed NDOB with the real-time pitch reference generation enabled us to have a
smooth stop and restart during the uphill movement.

As indicated in Section 2.3, even if a PID controller is applied, a steady traveling of
the TWIP on a specific slope can be realized by sophisticated gain tuning for the uphill or
downhill driving with more emphasis on the tracking performance rather than keeping the
upright posture. However, it does not guarantee an identical transient performance on a
different slope and accompanies poor postural stability for unexpected body disturbances,
because the static equilibrium point of the inverted pendulum moves according to the
varying slope.

For uphill traveling with ramp disturbances, another practical issue that must be
considered about the PID controller, as a representative error-based nominal controller, is
the actuator saturation problem induced by a long-time accumulation of tracking errors.
Although the integral control function is indispensable for overcoming the gravitational
effect, it could invoke a large overshoot and rapid increase in velocity as soon as the ramp
disturbance vanishes. An anti-windup scheme, such as the clamping technique in [33],
can be applied to solve this problem. In contrast, the NDOB-based robust compensation
method proposed in this paper greatly relaxes the burden of the nominal feedback gains to
achieve a consistent tracking performance regardless of the terrain condition. Additionally,
it makes the nominal PID controller free of the anti-windup issue since the additional dis-
turbance compensation input fundamentally has an integral control property to counteract
gravitational disturbances. Thus, it enables us to apply moderate velocity gains, and even
the integral function can be excluded from the nominal controller.

5. Experimental Results

The prototype in Figure 11 had the same nominal parameters as those listed in Table 2.
The experiments were classified into three cases: (1) standing still on a flat surface for an
arbitrary longitudinal eccentricity as a dominant body disturbance; (2) straight traveling on
a flat surface for a lateral eccentricity as a dominant yaw disturbance; (3) velocity tracking on
a ramp as a dominant wheel disturbance. The video clips related to the experimental results
in Figures 12–17 can be found at https://youtu.be/fvrYeNSiiH4 (accessed on 25 May 2022).

As shown in Figure 12, while the robot was holding its upright posture on the plane, a
dummy weight was placed on the body to make a longitudinal eccentricity of the COG
with respect to the wheel axis. When the PID control was the only function to stabilize the
pitch motion, the robot drifted away quite a long distance from the initial position until the
feedback system made the pitch angle converge to the new equilibrium point. However,
when the proposed NDOB compensation scheme was activated, the moving distance was
minimal owing to the prompt generation of the pitch references shown in Figure 12a. The
symmetrical shape of the disturbance estimates in Figure 12c for the longitudinal motion of
the wheel and body indicated the input coupling of the acrobot.

184



Actuators 2022, 11, 339

 
Figure 11. System architecture of the TWIP prototype.

Figure 12. Effect of the longitudinal eccentricity.

Figure 13. Effect of the lateral eccentricity.

185



Actuators 2022, 11, 339

 
Figure 14. Effect of the terrain uncertainty during uphill driving.

Figure 15. Effect of the terrain uncertainty during uphill driving.

 
Figure 16. Holding a standstill position on the slope.
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Figure 17. Holding a standstill position on the slope.

As shown in Figure 13, the COG of the pendulum was intentionally biased in the
lateral direction. As a result, it predominantly worked as a yaw disturbance. Without the
yaw attitude control, the lateral eccentric effect made the robot deviate far from the straight
line in a short period of time when it was only under the PID yaw-rate control. In contrast,
the proposed dynamic compensator prevented the robot from drifting by producing the
appropriate torque compensation input for the yaw disturbance. On the other hand, the
estimates in Figure 13c corresponding to the wheel and the body disturbances were mainly
derived from the parametric errors due to the extra dummy weight.

An uphill driving experiment was then conducted to validate the robustness of the
proposed scheme for uncertain terrains. As shown in Figures 14 and 15, the TWIP robot
met the inclined surface while driving on a flat plain with a reference velocity of 0.5 m/s
and climbed the ramp with an unknown slope of 10 degrees. The results were almost the
same as anticipated in the simulation studies. With only the nominal PID controller, the
TWIP robot could hardly travel on a ramp since it took quite some time to reach the static
equilibrium corresponding to the slope. Although a little slowdown of the speed occurred
at the uphill entry, the proposed method enabled the TWIP to steadily climb the ramp by
combining the quick generation of the pitch equilibrium angle and the torque compensation
input in Equation (11). In the downhill phase, the situation was reversed. Under only the
PID control, the robot greatly accelerated, due to the gravitational effect, until the pitch
angle converged to the equilibrium point, but the real-time pitch reference in terms of the
NDOB prevented a rapid increase in speed and achieved steady downhill movement.

Finally, as shown in Figures 16 and 17, a zero-velocity command was given to the
robot for 10 s in the middle of climbing. As shown, using the PID controller without
an appropriate pitch reference generation, holding a standstill position on an unknown
slope was almost impossible for the underactuated TWIP robot. However, in the NDOB-
based robust control approach, the ramp disturbance could be promptly detected, and
the posture control performance could be greatly improved by assigning the time-varying
pitch reference according to the real-time disturbance estimates.
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6. Conclusions

Compared with the previous results on the robust control of the TWIP as an under-
actuated system, a great merit of the proposed method lies in its physical intuitiveness in
drawing the compensation input to tackle uncertain terrains. A sound understanding of
the static equilibrium on the slope, the input coupling of the acrobot, and the performance
limit of conventional NDOBs for unmatched disturbances led to the establishment of a
clear relationship between the disturbance estimates and the compensation input. In addi-
tion to unmanned, two-wheeled balancing vehicles, the dynamic compensation scheme
developed in this paper can be effectively applied to enhance the control capabilities of
wheeled humanoids and mobile manipulators, which are fundamentally based on the
TWIP technology, specifically when they are performing on uncertain terrains.
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Appendix A

Elements of the Matrices and Vectors in Equation (A1)

m11 = mB + 2mw + 2J/r2

m12 = m21 = mBl cos θ
m22 = mBl2 + I2
m33 = I3 + 2K + (d2/2)(mw + J/r)− (

I3 − I1 − mBl2) sin2 θ

c12 = −(mBl sin θ)
.
θ

2
, c13 = −(mBl sin θ)

.
ψ

2

c23 =
(

I3 − I1 − mBl2)(sin θ cos θ)
.
ψ

2

c31 = (mBl sin θ)
.
ψ

.
x

c32 = −2
(

I3 − I1 − mBl2) .
θ

.
ψ

g1 = g3 = 0
g2 = −mBgl sin θ

(A1)
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Abstract: Currently, the teaching programming or offline programming used by an industrial ma-
nipulator can manually set the running speed of the manipulator. In this paper, to consider the
running speed and stability of the manipulator, the time-optimal trajectory planning (TOTP) of the
manipulator is transformed into a nonlinear optimal value search problem under multiple constraints,
and a time-search algorithm based on fuzzy control is proposed, so that the end of the manipulator
can run along the given path in Cartesian space for the shortest time, and the angular velocity and
angular acceleration of each joint is within a limited range. In addition, a simulation model of a
6-DOF manipulator is established in MATLAB, taking a straight-line trajectory of the end of the
manipulator in Cartesian space as an example, and the effectiveness and efficiency of the algorithm
proposed in this paper are proved by comparing the execution time with the bisection algorithm and
the traditional gradient descent method.

Keywords: manipulator; trajectory planning; fuzzy control; time optimization; minimum–maximum rule

1. Introduction

In current industrial production, both the teaching and offline programming can set
the running speed of industrial manipulators, but the running speed of the manipulator is
still relatively slow in many industrial applications. This is because reducing the running
speed of the manipulator can reduce the angular velocity and angular acceleration of the
joints of the manipulator, thereby reducing the vibration and jitter during the operation
of the manipulator, improving its operation stability, and prolonging its service life [1].
However, reducing the running speed of the manipulator also reduces its production
benefits [2,3].

Research into manipulators is divided into several aspects, such as manipulator control
algorithms, trajectory planning and servo drive. Trajectory planning is an important part
of the design process of manipulator control systems. At present, the mainstream research
direction of trajectory planning is to optimize the trajectory of manipulators, including
time optimization, jerk optimization [4], energy optimization [5], and multi-objective
optimization considering time, jerk and energy [6]. In addition, manipulator obstacle
avoidance [7] has become an increasing focus of trajectory planning.

The main goal of this paper is to perform TOTP in Cartesian space, making the planned
trajectory time-optimal and smooth. Below, the research background and research methods
of the TOTP of the manipulator will be elaborated from joint space and Cartesian space.

For TOTP in joint space, so far, there are some study methods, including limiting
the joint torque rate [8], expressing joint torque and joint velocity constraints as functions
of path coordinates to generate velocity limit curves [9], and the CPG method based on
kinematic constraints [10]. Moreover, some algorithms are used to solve for TOTP, such as
the bisection algorithm [11], input-shaping algorithm [12], hybrid-improved whale opti-
mization and particle-swarm optimization (IWOA-PSO) algorithm [13], adaptive cuckoo
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search (ACS) algorithm [14], genetic algorithm (GA) [3,15], firefly algorithm [16], and
simulated annealing (SA) algorithm [17]. Deep learning is also used to plan the trajectory
of the grasping movement of the manipulator [18], which greatly shortens the calculation
time of trajectory planning.

The above methods can plan a time-optimal and smooth trajectory; however, the
TOTP in joint space only allows the manipulator to perform point-to-point (PTP) tasks,
such as handling, pick-and-place, and palletizing. If the end of the manipulator moves
along straight lines, arcs, or free curves, it is necessary to plan a Cartesian space trajectory.

For the TOTP of Cartesian space, there are two study methods. The first considers
the distance and velocity of the end effector along a specified path as the state vector
and converts the nonlinear dynamic constraints of the manipulator into state-related con-
straints of acceleration along the path [2]. The second transforms the time-optimal path
tracking problem into a convex optimal control problem of a single state [19]. On the
basis of these two study methods, there is a method based on the reachability analysis
theory to transform the TOTP problem and achieve efficient solutions through multiple
linear programming [20], and the other method that transforms the TOTP problem into a
finite-dimensional second-order cone programming problem [21]. The sequential quadratic
programming method (SQP) [22] is also used to solve the TOTP of the end of the manipula-
tor along the spline curve, taking into account the continuity of joint acceleration and jerk.
However, none of the references [2,19–21] consider acceleration continuity at the end of the
manipulator, therefore, during the moving process, the joint torque of the manipulator will
change abruptly, resulting in vibration and shaking, which affect the stability and accuracy
of the manipulator.

In view of the above research background, to solve the problem of joint space trajectory
planning that can only perform PTP tasks, and to solve the problem of manipulator instabil-
ity caused by the sudden change in joint torque in the TOTP in Cartesian space, this paper
proposes a new offline algorithm for TOTP of manipulators based on fuzzy control, which
makes the end of the manipulator run with the shortest time along a given path in Cartesian
space and avoids sudden changes in the angular velocity and angular acceleration of each
joint, thus compensating for the shortcomings of the above research. First, the kinematic
and dynamic model of a universal 6-joint industrial robot is established. Subsequently, the
TOTP problem of the manipulator is transformed into a nonlinear optimal value search
problem under multiple constraints, and an adaptive time search algorithm based on fuzzy
control (ATSA-FC) is proposed to calculate the shortest time of Cartesian space trajectory
under the constraints of the angular velocity and angular acceleration of each joint of the
manipulator. Furthermore, a simulation model of the above-mentioned manipulator is
established in MATLAB. Taking a straight-line trajectory of the end of the manipulator in
Cartesian space as an example, the method proposed in this paper is used to calculate the
shortest time of this trajectory. At the same time, two common nonlinear search algorithms
are also selected: the bisection algorithm (BA) [11,23] and the gradient descent method
with constant proportional coefficient (GDM-CPC) [24]. The trajectory times and execution
times of these two algorithms are compared with ATSA-FC proposed in this paper to verify
the efficiency of ATSA-FC.

The remainder of this paper is organized as follows. Section 2 introduces kinematic
and dynamic models of the manipulator. Section 3 introduces the trajectory planning
method for the end of the manipulator. Section 4 introduces the transformation of TOTP to
a nonlinear optimal value search problem and three TOTP algorithms used in this paper,
which are BA, GDM-CPC, and ATSA-FC. Section 5 introduces the simulation of TOTP of
the manipulator based on MATLAB. Section 6 presents the conclusions of this paper.

2. Manipulator Kinematics and Dynamics Model

The manipulator used in this paper is a 6-DOF wrist-separated manipulator which
satisfies the Piper criterion and has a closed solution [25]. The position-level kinematic
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model of this type of manipulator is established using the standard D-H method, and the
D-H parameters table of the manipulator is shown in Table 1.

Table 1. D-H Parameter of the 6-DOF Manipulator.

Link i θi (◦) di (m) ai (m) αi (◦)

1 0 1 0 90
2 90 0 2 0
3 0 0 0 90
4 0 2 0 90
5 90 0 0 −90
6 0 1 0 0

Using the above D-H parameters, the schematic diagram of the manipulator in this
paper is shown in Figure 1.

−

−
−

Figure 1. Schematic of the manipulator.

Forward position-level kinematic of the manipulator solves the position and attitude
of the end of the manipulator relative to the base by the given joint angles. Let i−1

i T be the
homogeneous transformation matrix of the connecting rod coordinate system Σi−1 to Σi.
According to the D-H rule, i−1

i T is shown in Equation (1).

i−1
i T =

⎡⎢⎢⎣
cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

⎤⎥⎥⎦ (1)

where cθi= cos θi, cαi= cos αi, sθi= sin θi, sαi= sin αi.
Therefore, the homogeneous matrix of the manipulator end coordinate system Σn

relative to the base coordinate system Σ0 is shown in Equation (2).

0
nT = 0

1T(θ1)
1
2T(θ2)···n−1

n T(θn) = fkine(θ) (2)

This paper uses the axis/angle notation to represent the attitude at the end of the
manipulator. For any rotation matrix R, it can be considered as a single rotation around an
appropriate axis in space through an appropriate angle, and the axis/angle representation
is shown in Equation (3).

R = R(k,φ) (3)

where k is the unit vector defining the axis of rotation, φ is the angle rotated around axis k,
and the pair (k,φ) is called the axis/angle representation of R [26].
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Given any rotation matrix R, whose element is aij, the corresponding rotation angle φ
and axis k are shown in Equations (4) and (5), respectively.

φ= acos(
tr(R)− 1

2
) (4)

k =
1

2sinφ

[
a32−a23 a13 − a31 a21 − a12

]T
= [kx ky kz

]T
(5)

The axis/angle notation for the rotation matrix R is not unique because the rotation
angle φ about axis k and the rotation angle −φ about axis −k are equivalent, as shown in
Equation (6).

R(k,φ)= R(−k,−φ) (6)

If φ = 0, then R is the identity matrix and axis k is not defined at this time. Because
k is a unit vector, the equivalent axis/angle representation can be represented by a single
vector r, and the vector r is shown in Equation (7).

r =φk = [α β γ
]T (7)

where α =φkx, β =φky, γ =φkz. The length of vector r is the angle φ, and the direction of
vector r is the equivalent axis of rotation k.

Therefore, in addition to using a homogeneous transformation matrix to represent
the position and attitude of the end of the manipulator, it can also be represented by a
6-dimensional vector Xe, where Xe is shown in Equation (8).

Xe= [xe ye ze αe βe γe
]T (8)

where ye, ze represent the positions of the end of the manipulator, and αe, βe, γe represent
the attitudes of the end of the manipulator.

The linear velocity υe and linear acceleration ae at the end of the manipulator are
shown in Equations (9) and (10), respectively.

υe= [
.
xe

.
ye

.
ze
]T (9)

ae= [
..
xe

..
ye

..
ze
]T (10)

The attitude angular velocity ωe and the attitude angular acceleration
.
ωe are shown

in Equations (11) and (12), respectively.

ωe= [
.
αe

.
βe

.
γe

]T
(11)

.
ωe= [

..
αe

..
βe

..
γe

]T
(12)

According to Equations (9)–(12), the velocity at the end of manipulator
.

Xe and the
acceleration at the end of manipulator

..
Xe are shown in Equations (13) and (14).

.
Xe= [

.
xe

.
ye

.
ze

.
αe

.
βe

.
γe

]T
(13)

..
Xe= [

..
xe

..
ye

..
ze

..
αe

..
βe

..
γe

]T
(14)

The transfer matrix between the joint angular velocity and the end velocity of the
manipulator is called the Jacobian matrix J. The Jacobian matrix is a function of joint angle
θ, as shown in Equation (15).

J = J(θ) (15)
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The forward velocity-level kinematic equation of the manipulator is shown in Equation (16).

.
Xe = J

.
θ (16)

where
.
θ represents the joint velocity.

When J is a reversible square matrix, the inverse velocity-level kinematic equation of
the manipulator can be obtained from Equation (16), as shown in Equation (17).

.
θ = J−1 .

Xe (17)

Taking the derivation of both sides of Equation (16), the forward acceleration-level
kinematic equation of the manipulator can be obtained, as shown in Equation (18).

..
Xe= J

..
θ+

.
J

.
θ (18)

When J is a reversible square matrix, the inverse acceleration-level kinematic equation
of the manipulator can be obtained from Equation (18), as shown in Equation (19).

..
θ= J −1(

..
Xe−

.
J

.
θ) (19)

.
J is the derivative of the Jacobian matrix with respect to time, as shown in Equation (20).

.
J =lim

t→0

J(θ+
.
θ)− J(θ)

t
(20)

The dynamic equation of the manipulator [8] is shown in Equation (21).

τ = M(θ)
..
θ+C(θ,

.
θ)

.
θ+ G(θ) (21)

where M(θ) is the inertia force matrix, C(θ,
.
θ) is the cordial force and centrifugal force

matrix, G(θ) is the gravity term matrix, and τ is the joint torque vector.

3. Trajectory Planning

There are two main types of trajectory planning for manipulators; one is trajectory
planning in joint space and the other is trajectory planning in Cartesian space [27]. Given
that trajectory planning in joint space is not capable of high-precision work, this paper
performs trajectory planning of Cartesian space for the manipulator, and then uses the
kinematic model in Section 2 to obtain the corresponding joint-space trajectory.

The traditional trapezoidal velocity curve at the end of the manipulator is shown in
Figure 2, and the acceleration curve of the trapezoidal velocity is shown in Figure 3. As
shown in Figure 3, the acceleration curve of the trapezoidal velocity changes abruptly. It
can be seen from Equation (19) that when the acceleration of the end of the manipulator
changes abruptly, the angular acceleration of the joint also changes abruptly.

Figure 2. Trapezoidal velocity curve.
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Figure 3. Acceleration curve of trapezoidal velocity.

According to Equation (21), it can be shown that an abrupt change in the angular
acceleration of the joint indicates an abrupt change in the torque of the joint motor, which
causes mechanical vibration, impacting and affecting the accuracy and service life of the
manipulator [28]. Conversely, a continuous change in joint angular velocity and angular
acceleration causes a continuous change in joint torque. Therefore, in this paper, the
S-shaped velocity curve [13] is used to replace the trapezoidal velocity curve shown in
Figure 2. The S-shaped velocity curve is shown in Figure 4, and the acceleration curve of
the S-shaped velocity is shown in Figure 5. The acceleration and deceleration segments of
the S-shaped velocity curve are 5th order polynomials. It can be seen from Figures 4 and 5
that the S-shaped velocity curve and acceleration curve of the S-shaped velocity change
continuously. Equations (17) and (19) show that the joint angular velocity and angular
acceleration of the manipulator change continuously, so the torque of the manipulator also
changes continuously.

Figure 4. S-shaped velocity curve.

Figure 5. Acceleration curve of the S-shaped velocity.

In this paper, trajectory planner P was designed to plan a trajectory with continuously
changing acceleration in Cartesian space. P is represented by Equation (22).

Xe,
.

Xe,
..

Xe= P(t, kt, p, r, n) (22)

where t is the trajectory running time, kt is the trajectory type, p is the constraint points set of
the trajectory, which is represented by homogeneous matrices, r is the ratio of acceleration
and deceleration time, and n is the number of trajectory points.
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To plan a straight-line trajectory in Cartesian space, two constraint points are required
and the distance between the two constraint points is used as the planning distance. To
plan an arc trajectory, three constraint points are required, and the central angle of the arc
where these three points are located is used as the planning distance.

Assuming that a straight-line trajectory is planned, the known spatial distance of the
two constraint points is l, total running time is t, and ratio of acceleration to deceleration
time is r.

The velocity v(x) of this trajectory is shown in Equation (23).

v(x) =

⎧⎨⎩
va(x), x ∈ [0, rt)
vb(x), x ∈ [rt, (1 − r)t)
vc(x), x ∈ [(1 − r)t, t]

(23)

where va(x) denotes the 5th order polynomial velocity curve of the acceleration segment,
vb(x) denotes the velocity of the uniform velocity segment, and vc(x) denotes the 5th order
polynomial velocity curve of the deceleration segment.

l =
∫ t

0
v(x)dx (24)

la =
∫ rt

0
va(x)dx (25)

lc =
∫ t

(1−r)t
vc(x)dx (26)

Let vb(x) = vm, then vm can be written as Equation (27).

vm =
l − la − lc

(1 − 2r)t
(27)

Because the first and second derivatives of va(x) and vc(x) at 0, rt, (1 − r)t and t are
both 0, la and lc can be written as Equation (28).

la = lc =
vmrt

2
(28)

Thus, vm can be written as Equation (29).

νm =
l

(1 − r)t
(29)

When a uniform velocity vm is obtained, the 5th order polynomial velocity planning
can be performed.

Suppose the time period starting from ts to te, the velocity of the end of the manipulator
is ν(t), and ν(t) is shown in Equation (30).

ν(t) = at5+bt4+ct3+dt2+et + f (30)

There are the following six boundary conditions,

ν(ts) = νs, ν′(ts) = as, ν′′ (ts) = js
ν(te) = νe, ν′(te) = ae, ν′′ (te) = je

The first-order derivative ν′(t) and the second-order derivative ν′′ (t) of ν(t) are shown
in Equations (31) and (32), respectively.

ν′(t) = 5at4+4bt3+3ct2+2dt + e (31)
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ν′′ (t) = 20at3+12bt2+6ct + 2d (32)

Substituting the above six boundary conditions into Equations (30)–(32), the following
six equations can be obtained, as shown in Equations (33)–(38).

ats
5+bts

4+cts
3+dts

2+ets+ f = νs (33)

ate
5+bte

4+cte
3+dte

2+ete+ f = νe (34)

5ats
4+4bts

3+3cts
2+2dts+e = as (35)

5ate
4+4bte

3+3cte
2+2dte+e = ae (36)

20ats
3+12bts

2+6cts+2d = js (37)

20ate
3+12bte

2+6cte+2d = je (38)

Equations (33)–(38) can be written in the form of matrix multiplication, as shown in
Equation (39).

Ax = y (39)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣

ts
5 ts

4 ts
3 ts

2 ts 1
te

5 te
4 te

3 te
2 te 1

5ts
4 4ts

3 3ts
2 2ts 1 0

5te
4 4te

3 3te
2 2te 1 0

20ts
3 12ts

2 6ts 2 0 0
20te

3 12te
2 6te 2 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
x = [ a b c d e f ]T

y = [ νs νe as ae js je ]T

Because A is invertible, Equation (39) can be rewritten as Equation (40).

x = A−1y (40)

By substituting the boundary conditions of the acceleration, uniform velocity, and
deceleration into Equation (40), the velocity change curve can be obtained, and the ac-
celeration and displacement change curves can be obtained through differentiation and
integration, respectively.

Similarly, the angular velocity and angular acceleration of the attitude at the end of
the manipulator only need to be planned by changing the spatial distance l to the attitude
angle φ.

Through the trajectory constraint points of the trajectory planner P, the attitude ma-
trices Rs and Re at the initial and final moments of the end of the manipulator can be
determined, and Re is shown in Equation (41).

Re= RtRs (41)

where Rt is the rotation matrix that changes from Rs to Re, and Rt is shown in Equation (42).

Rt= ReR−1
s (42)

Substituting Rt into Equations (4) and (5), attitude rotation angle φ and rotation axis
k can be obtained. The rotation matrix Ri corresponding to the attitude of each trajectory
point, is shown in Equation (43).

Ri= cφi E3+(1 − cφi
)kkT+sφi k

× (43)
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where φi represents the rotation angle corresponding to the i-th trajectory point, E3 is the
unit matrix of 3 × 3, k× is the antisymmetric matrix of vector k, and k× is shown in
Equation (44).

k× =

⎡⎣ 0 −kz ky
kz 0 −kx
−ky kx 0

⎤⎦ (44)

4. Time-Optimal Trajectory Planning Algorithm

In this paper, the trajectory running time t is used as the control variable, the joint
angular velocity and joint angular acceleration of the manipulator are used as the state
variables, and the TOTP problem of the manipulator in Cartesian space is regarded as an
optimal-value search problem under multiple constraints. In this paper, the minimum–
maximum rule is used to solve the problem of multiple constraints, and avoids the situ-
ation of local optimal solution when using time-search algorithms to find the trajectory
shortest time.

4.1. Problem Description of Time-Optimal Trajectory Planning

In the process of trajectory planning, if only the constraint condition of the angular
acceleration of joint i is considered, then a time t can be found such that when the manipu-
lator is running along the trajectory, the maximum angular acceleration of joint i reaches
the angular acceleration constraint condition of joint i; t at this time is the shortest time
that only considers the constraint condition of the angular acceleration of joint i. A block
diagram of TOTP is shown in Figure 6. The joint parameters (θ,

.
θ ,

..
θ) after each trajectory

planning and inverse kinematic were compared with the joint constraints, and a time search
was performed.

−

−

Figure 6. The block diagram of time-optimal trajectory planning.

The joint constraints of the manipulator are listed in Table 2;
.
θilim represents the joint

angular velocity constraint,
..
θilim represents the joint angular acceleration constraint. There

were 12 constraints corresponding to the 12 shortest times. Using the minimum–maximum
rule, the maximum value of the 12 shortest times is the shortest time of the trajectory.
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Table 2. Joint Constraints of The Manipulator.

Joint i Angular Velocity
.
θilim (◦/s) Angular Acceleration

..
θilim (◦/s2)

1
.
θ1lim

..
θ1lim

2
.
θ2lim

..
θ2lim

3
.
θ3lim

..
θ3lim

4
.
θ4lim

..
θ4lim

5
.
θ5lim

..
θ5lim

6
.
θ6lim

..
θ6lim

If
.
θimax or

..
θimax satisfies Equations (45) and (46), joint i is considered to have reached

the angular velocity or angular acceleration constraint.

.
θimax ∈

.
Θilim (45)

..
θimax ∈

..
Θilim (46)

Among them,

.
Θilim=

.
θilim × 99.8% ± 0.2% = [0.996 ×

.
θilim

.
θilim]

..
Θilim =

..
θilim × 99.8% ± 0.2% = [0.996 ×

..
θilim,

..
θilim]

i = 1, 2, . . . , 6,
.
θimax and

..
θimax are the maximum angular velocity and maximum angular

acceleration generated by the i-th joint during operation, respectively.
Let min t1i be the shortest time that only considers the angular velocity constraint of

joint i, min t2i is the shortest time that only considers the angular acceleration constraint of
joint i, and minT is the shortest time that the manipulator runs along the Cartesian space
trajectory. The problem of TOTP can be described by Equations (47)–(49).

minT = max{t 1i, t2i} (47)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min t1i
s.t.
t1i > 0
Xe,

.
Xe,

..
Xe= P(t1i, k, p, r, n)

θ = ikine(Xe)
.
θ = J

−1
(θ)

.
Xe.

θimax ∈
.

Θilim

(48)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min t2i
s.t.
t2i > 0
Xe,

.
Xe,

..
Xe= P(t2i, k, p, r, n)

θ = ikine(Xe)
.
θ = J

−1
(θ)

.
Xe..

θ= J −1(θ)(
..
Xe −

.
J (θ)

.
θ )

..
θimax ∈

..
Θilim

(49)

where i = 1, 2, . . . , 6. Xe,
.

Xe,
..
Xe are the position, velocity, and acceleration of the trajectory

planner to plan the trajectory of the end of the manipulator in Cartesian space, respectively,
and ikine represents the inverse position-level kinematic.

It can be seen from Equations (47)–(49) that, to solve the shortest time, Equation (48) or
Equation (49) needs to be calculated at least once. To solve min T, Equations (48) and (49)
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must be calculated at least 12 times. Therefore, to reduce the amount of calculation, let
minT1 be the shortest time of the trajectory satisfying the angular velocity constraints of the
six joints of the manipulator, and let minT2 be the shortest time of the trajectory satisfying
the angular acceleration constraints of the six joints of the manipulator. The shortest time
min T of the Cartesian space trajectory can be expressed as Equations (50)–(52).

minT = max(T1, T2) (50)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minT1
s.t.
T1 > 0
Xe,

.
Xe,

..
Xe= P(T1, k, p, r, n)

θ = ikine(Xe)
.
θ = J

−1
(θ)

.
Xe

∀
.
θi ≤

.
θilim

∃
.
θimax ∈

.
Θilim

(51)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minT2
s.t.
T2 > 0
Xe,

.
Xe,

..
Xe= P(T2, k, p, r, n)

θ = ikine(Xe)
.
θ = J

−1
(θ)

.
Xe..

θ= J −1(θ)(
..
Xe −

.
J (θ)

.
θ )

∀
..
θi ≤

..
θilim

∃
..
θimax ∈

..
Θilim

(52)

Solving min T requires calculating Equations (51) and (52) at least once, which reduces
the amount of computation to 1/6 compared with using Equations (48) and (49). Consider-
ing the 12 constraints of the manipulator joints, the shortest time min T of the Cartesian
space trajectory can be further expressed by Equation (53).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minT
s.t.
T > 0
Xe,

.
Xe,

..
Xe= P(T, k, p, r, n)

θ = ikine(Xe)
.
θ = J

−1
(θ)

.
Xe..

θ= J −1(θ)(
..
Xe − (θ)

.
θ )

∀
.
θi ≤

.
θilim ∩ ∀

..
θi ≤

..
θilim

∃
.
θimax ∈

.
Θilim ∪ ∃

..
θimax ∈

..
Θilim

(53)

The min T can be obtained by computing Equation (53) at least once. The condition
for determining whether the trajectory is time-optimal is shown in Equation (54).

∀
.
θi ≤

.
θilim ∩ ∀

..
θi ≤

..
θilim

∃
.
θimax ∈

.
Θilim ∪ ∃

..
θimax ∈

..
Θilim

(54)

Equation (53) describes the TOTP problem for the Cartesian spatial. Next, it is neces-
sary to use a nonlinear search algorithm to determine the shortest time t of the trajectory,
such that the trajectory of the joint space of the manipulator satisfies Equation (54).
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4.2. Time-Search Algorithm

This section introduces three kinds of time-search algorithms, which are BA, GDM-
CPC, and ATSA-FC. By judging whether the joint trajectory corresponding to the shortest
time satisfies Equation (54), the validity of the trajectory is verified. By comparing the
execution times of the three algorithms, the efficiency of the ATSA-FC algorithm is verified.

The BA is a widely used search method. Its computational complexity is O(log(n)).
Therefore, despite the large amount of data, this search method ensures high computational
efficiency [23]. The premise of using BA is that the data must be an ordered sequence, and
the time series is exactly an ordered sequence, which makes it suitable for using BA. In this
paper, the BA method was used to search for the shortest time of the trajectory in the time
interval [t l , tr]. The input time for the initial trajectory planner is tr. The flowchart of BA
is shown in Figure 7.

Figure 7. The flow chart of BA.

The algorithm first uses tr as the running time to plan the trajectory. If the planning
result does not satisfy the conditions of the time-optimal trajectory, it is necessary to
determine whether the maximum angular velocity and maximum angular acceleration of
all joints are within the constraints of the angular velocity and angular acceleration of the
joints. The judgment condition is shown in Equation (55).

∀
.
θimax <

.
θilim ∩ ∀

..
θimax <

..
θilim (55)

If the joint trajectory satisfies Equation (55), then let tr= t, otherwise, let tl= t. Then, let
t = tl+(tr − tl) / 2, input it into the trajectory planner as the running time of the trajectory,
iterate continuously, and finally determine the shortest time t.

However, these algorithms have limitations. When the shortest time of the trajectory
is not in the given time interval, the algorithm will fail and enter an infinite loop, and the
time of each planning will be infinitely close to the boundary of the given time interval.

Therefore, this paper uses GDM-CPC to solve this problem. GDM-CPC is a first-order
optimization algorithm that can search for a local minimum of the function. Because this
paper uses Equation (54) as the judgment condition of time-optimal trajectory, there is only
one joint to reach its maximum constraint, and the angular velocity and angular acceleration
of the other joints are less than their maximum constraint. Therefore, the use of GDM-CPC
here will not fall into the local optimal situation, and must be able to obtain a shortest time
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of trajectory that satisfies all joint constraints. GDM-CPC first provides an initial trajectory
running time tinit, and then determines whether the joint trajectory satisfies Equation (54)
after obtaining the joint trajectory of the manipulator through trajectory planning and
inverse kinematics. If Equation (54) is not satisfied, then searching for a new trajectory
running time, and the shortest running time of the trajectory, will finally be obtained. The
advantage of this algorithm is that it only needs to provide a time value greater than 0 to
converge to the shortest time of the trajectory, thereby avoiding the limitations of BA.

The flowchart of GDM-CPC is shown in Figure 8.

Figure 8. The flow chart of GDM-CPC.

Among them, Δ
.
θi is shown in Equation (56) and Δ

..
θi is shown in Equation (57).

Δ
.
θi =

.
θimax −

.
θilim × 0.998

.
θilim × 0.998

(56)

Δ
..
θi =

..
θimax −

..
θilim × 0.998

..
θilim × 0.998

(57)

where t1i is the time at which joint i is optimized with kptΔ
.
θi each time and t2i is the time

at which joint i is optimized with kptΔ
..
θi each time.

If Δ
.
θi > 0, the current input time is small, and the maximum angular velocity of joint

i exceeds its angular velocity constraint during the trajectory planning process. The time
change is kptΔ

.
θi > 0, which increases the input time to reduce the maximum angular

velocity of joint i. If Δ
.
θi < 0, the current input time is large, and the maximum angular

velocity of joint i is less than its angular velocity constraint during the trajectory planning
process. The time change is kptΔ

.
θi < 0, reducing the input time to increase the maximum

angular velocity of joint i. The joint angular acceleration has the same adjustment process.
Take the maximum value of t1i and t2i and assign it to t as the input of the trajectory planner.
In the continuous iterative process, the shortest time t of the trajectory will be obtained.

Because kp must be adjusted many times, the algorithm will have fewer convergence
steps. Therefore, this paper proposes an ATSA-FC. This method adaptively adjusts kp

according to Δ
.
θi and Δ

..
θi by using fuzzy control.
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Fuzzy control is a control method that combines an expert system, fuzzy set theory,
and control theory, and is very different from traditional control theory based on the
mathematical model of the controlled process [29]. The behavior and experience of human
experts can be added to fuzzy control. Fuzzy control is practical when establishing a
mathematical model for a controlled process is difficult.

This paper considers a design for a first-order fuzzy controller to adjust the value
of kp. First, the input linguistic variable is fuzzified. Let the input linguistic variable be

Δϑ, where Δϑ is the smallest absolute value between Δ
.
θi and Δ

..
θi. Let the domain of Δϑ

be U1, U1 ∈ [−a, a], and divide it into five fuzzy sets, which are NB, N, ZE, P, and PB,
respectively. NB stands for negative big, N for negative, ZE for zero, P for positive, PB
for positive big. The membership function corresponding to each fuzzy set is a Gaussian
distribution function, as shown in Figure 9.

Figure 9. The membership function corresponding to the input fuzzy set.

The expression of the membership function for each fuzzy set is shown in Equation (58).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NB(x) = e−
(x+a)2

2σ2

N(x) = e−
(x+ a

2 )
2

2σ2

ZE(x) = e−
x2

2σ2

P(x) = e−
(x − a

2 )
2

2σ2

PB(x) = e−
(x − a)2

2σ2

(58)

where −a < x < a.
Second, the output linguistic variable is fuzzified. Let the output linguistic variable be

kp, and let the domain of kp be U2, U2 ∈ [b, c], and divided into three fuzzy sets, which
are S, M, L. S represents small kp values, M represents medium kp values, and L represents
large kp values. The membership function corresponding to each fuzzy set is a Gaussian
distribution curve, as shown in Figure 10.

Figure 10. The membership function corresponding to the output fuzzy set.
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The expression of the function corresponding to each fuzzy set is shown in Equation (59).⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S(y) = e−

(y − b)2

2σ2

M(y) = e−
(y− b+c

2 )
2

2σ2

L(y) = e−
(y − c)2

2σ2

(59)

where b < y < c.
Fuzzy control rules are then established and fuzzy reasoning is performed. After

determining the fuzzy sets of the input and output linguistic variables, fuzzy conditional
statements in the form of an IF–THEN are used to establish fuzzy control rules. The fuzzy
rules are as follows:

IF Δϑ is NB THEN kp is L
IF Δϑ is B THEN kp is M
IF Δϑ is ZE THEN kp is S
IF Δϑ is P THEN kp is M
IF Δϑ is PB THEN kp is L

When Δϑ is NB or PB, it indicates that the difference between the maximum joint
angular velocity or maximum angular acceleration and the constraints is large. At this time,
a larger kp value should be output and the convergence step should be increased. When
Δϑ is N or P, it indicates that the difference is medium, and a medium kp value should be
output at this time. When Δϑ is Z, it indicates that the difference is small. A small kp value
should be output to reduce the convergence step and avoid repeated oscillations.

The flowchart of ATSA-FC is shown in Figure 11.

Figure 11. The flow chart of ATSA-FC.

The FC is the fuzzy control function, and the FR is the fuzzy control rule, and Δϑ is
shown in Equation (60).

Δϑ = min {min {|Δ
.
θi |}, min{|Δ

..
θi|}} (60)

Take the maximum value of t1i and t2i and assign it to t as the input of the trajectory
planner. In the continuous iterative process, the shortest time t of the trajectory will
be obtained.
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5. Simulation

The simulation section first sets the parameters of the simulation, and then analyses
the simulation results.

5.1. Parameter Setting of the Simulation

This paper simulates TOTP based on the MATLAB environment. The Robotics Toolbox
is used to establish the manipulator.

The constraints of each joint angular velocity
.
θilim and angular acceleration

..
θilim set in

the simulation environment are listed in Table 3.

Table 3. Joint Constraints of the Simulation Environment.

Joint i Angular Velocity
.
θilim(◦/s) Angular Acceleration

..
θilim(◦/s2)

1 150 300
2 160 320
3 170 340
4 320 640
5 400 800
6 460 920

The position and attitude of the end of the manipulator is set at the initial and end
moments of the straight-line path, which are represented by homogeneous matrices Tst and
Tend, respectively. Tst is shown in Equation (61) and Tend is shown in Equation (62).

Tst =

⎡⎢⎢⎣
1 0 0 3
0 0.5000 −0.8660 −2
0 0.8660 0.5000 2
0 0 0 1

⎤⎥⎥⎦ (61)

Tend =

⎡⎢⎢⎣
0.6124 −0.3536 0.7071 2
−0.5000 −0.8660 0 2
0.6124 −0.3536 −0.7071 0.5000

0 0 0 1

⎤⎥⎥⎦ (62)

Set the initial time of the trajectory planner P to t = 10 s, n = 1000, the ratio of accel-
eration and deceleration time to r = 0.3, the trajectory type to be a straight-line, and the
constraint points to be Tst and Tend.

The linear trajectory of the end of the manipulator in Cartesian space is shown in Figure 12.
The red triangle represents the starting point and the red circle represents the end point.

−

− − −

Figure 12. Straight-line trajectory in Cartesian space.
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Using Equation (42), the rotation transformation matrix Rt of the attitude at the initial
and end moments is calculated, and Rt is shown in Equation (63).

Rt =

⎡⎣ 0.6124 −0.7891 0.0474
−0.5000 −0.4330 −0.7500
0.6124 0.4356 −0.6597

⎤⎦ (63)

From Equations (4) and (5), the rotation axis/angle representation of Rt can be ob-
tained, and the rotation angle φ is shown in Equation (64), the axis of rotation k is shown in
Equation (65).

φ = 137.7448◦ (64)

k = [0.8816 −0.4201 0.2150
]T (65)

For fuzzy control, the Fuzzy Logic Toolbox in MATLAB is used in this paper to build
a fuzzy inference system.

The membership function of each fuzzy set of input linguistic variables is shown in
Equation (58), where x∈[−1, 1], σ = 0.2142. The membership function of each fuzzy set
of output linguistic variables is shown in Equation (59), where y∈[0.35, 1], σ = 0.1. The
membership function corresponding to the input linguistic variables and output linguistic
variables are shown in Figure 13. For input linguistic variable, x∈[−1, 1], which is due
to the normalization of Equations (56) and (57). In order to ensure the completeness
of the membership function [30], the membership degree at the intersection of the two
membership functions is 0.5, combined with the experience summarized in the simulation
debugging process of this study, the σ can be set to be 0.2142. For output language variable,
it has three fuzzy sets. In order to make the membership of S and L at 0.675 tend to 0, so
that the output has better clarity, the σ can be set to be 0.1.

p y

 

(a) (b) 

− −

Figure 13. The membership function corresponding linguistic variable: (a) input linguistic variable;
(b) output linguistic variable.

Using the fuzzy rules established in Section 4, the mapping curve of the input and
output of the fuzzy control is obtained, as shown in Figure 14.
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− −

Figure 14. The input and output mapping curve.

5.2. Results of the Simulation

The convergence curves of the controlled time of the three algorithms using BA,
GDM-CPC with kp= 0.5, and ATSA-FC are shown in Figure 15.

Figure 15. Convergence curve of controlled time of three algorithms.

As shown in Figure 16, under the same initial conditions, to get the trajectory shortest
time, BA required 12 times, GDM-CPC required seven times, and ATSA-FC required five
times. It can also be seen that the convergence curves of the controlled time of these three
algorithms have oscillation phenomena, in which the convergence step of BA at each
iteration is taken as half of the updated time interval at each iteration, since BA simply
adjusts the time and does not take into account the difference with the constraint. It has the
largest number of convergence steps. GDM-CPC has the smallest convergence step size at
the first convergence and produces the smallest oscillation amplitude. The ATSA-FC has
the largest convergence step size at the first convergence, but there is only one oscillation
phenomenon, and the shortest time to the trajectory is obtained by using the least number
of convergence steps, which reflects the superiority of ATSA-FC.
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Figure 16. kp changes with input at each iteration.

The variation in kp with the number of convergences is shown in Figure 16. The kp
value obtained from the current iteration is used to update the input time for the next
trajectory planning. Because the input time of the 5th trajectory planning meets the shortest
time requirement of the trajectory, kp has only four iterations.

The trajectory shortest times obtained by three algorithms are listed in Table 4.

Table 4. The trajectory shortest time solved by the three algorithms.

Algorithm The Trajectory Shortest Time (s)

BA 1.6260
GDM-CPC 1.6248
ATSA-FC 1.6237

It can be seen from Table 4 that the trajectory shortest time planned by BA is the
largest, which is 1.6260 s. The trajectory shortest time planned by GDM-CPC is 1.6248 s,
which is 1.2 ms less than that of BA. The trajectory shortest time planned by ATSA-FC is
1.6237 s, which is 2.3 ms less than that of BA. Since the judgment condition for reaching
the maximum joint parameter specified in Equations (45) and (46) is 99.6–100% of the joint
constraints, the trajectory shortest time difference obtained by these three algorithms is
very small.

The execution times of the three algorithms are measured using the timing function in
MATLAB, as listed in Table 5.

Table 5. Execution time of three algorithms.

Algorithm The Algorithm Execution Time (s)

BA 8.38
GDM-CPC 5.26
ATSA-FC 4.24

As shown in Table 5, the execution time of BA is 8.38 s, and the execution time of
GDM-CPC is 5.26 s, which is 37.23% less than that of BA. The execution time of ATSA-FC is
4.24 s, which is 19.39% less than that of GDM-CPC and 49.40% less than that of BA, which
proves the efficiency of the ATSA-FC proposed in this paper.

Using the trajectory shortest time obtained by the ATSA-FC, S-shaped velocity plan-
ning of the end of the manipulator along the trajectory in Figure 12 is performed. The
change curves of the joint angle, angular velocity, and angular acceleration are shown in
Figure 17.
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Figure 17. The change curves of each joint: (a) angle; (b) angular velocity; (c) angular acceleration.

As shown in Figure 17, the angular velocity and angular acceleration of each joint
obtained by using the S-shaped velocity curve change continuously, and it can be inferred
that the operation of the manipulator is stable. It can be seen from Figure 17b,c that in the
process of TOTP in Cartesian space, the maximum angular acceleration of joint 3 plays a
major limiting role, satisfying the maximum angular acceleration judgment condition of
the joint. The angular velocity and angular acceleration of other joints do not reach their
constraints. This also shows that it is feasible to use the minimum–maximum rule to solve
the multi-constraint problem in TOTP.

Because the shortest times of the trajectories obtained by these three algorithms are
very close, the difference between the overall angular velocity and angular acceleration
cannot be seen in the comparison chart, so only the local enlarged pictures at the maximum
angular velocity and maximum angular acceleration of the joint are given here, as shown
in Figure 18.

It can be seen from Figure 18a,b that the angular velocity and angular acceleration
of the joint are negatively correlated with the trajectory time of the manipulator. Since
the ATSA-FC calculates the minimum trajectory shortest time, the corresponding joint
trajectory also has the largest peak.

To determine the trajectory planning effect of these three algorithms, beyond com-
paring the shortest time of the trajectory, it can also be measured by using the degree of
TOTP. The degree of TOTP can be described by the ratio of the maximum joint parameters
that plays the major limitation role in the joint constraints, and in this simulation, joint 3′s
acceleration plays the major role, so the degree of TOTP can be calculated by Equation (66).

ρ =

..
θ3max
..
θ3lim

(66)

When using BA, GDM-CPC and ATSA-FC, the
.
θimax, Δ

.
θi,

..
θimax and Δ

..
θi of each joint at

trajectory shortest time are shown in Tables 6–8, respectively.

Table 6. The joint information table of BA.

Joint
.
θimax (◦/s) Δ

..
θimax (◦/s2) Δ

..
θi

1 74.2030 −0.5053 280.2118 −0.0660
2 47.9242 −0.7005 218.7880 −0.3163
3 67.7642 −0.6014 338.8432 −0.0034
4 117.3646 −0.6332 491.0460 −0.2327
5 83.9523 −0.7901 364.3361 −0.5446
6 162.0533 −0.6477 792.0519 −0.1391
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Figure 18. Comparison of joint maximum angular information planned by three algorithms: (a) an-
gular velocity; (b) angular acceleration.

Table 7. Joint information table of GDM-CPC.

Joint
.
θimax (◦/s) Δ

.
θi

..
θimax (◦/s2) Δ

..
θi

1 74.2548 −0.5050 280.6037 −0.0647
2 47.9577 −0.7003 219.0941 −0.3153
3 67.8166 −0.6011 339.3172 −0.0020
4 117.4466 −0.6330 491.7329 −0.2317
5 84.0110 −0.7900 364.8458 −0.5439
6 162.1666 −0.6475 792.1599 −0.1379
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Table 8. Joint information table of ATSA-FC.

Joint
.
θimax (◦/s) Δ

.
θi

..
θimax (◦/s2) Δ

..
θi

1 74.3078 −0.5046 281.0043 −0.0633
2 47.9919 −0.7001 219.4069 −0.3144
3 67.8600 −0.6008 339.8017 −5.8336 × 10−4

4 117.5304 −0.6327 492.4349 −0.2306
5 84.0710 −0.7898 365.3667 −0.5433
6 162.2823 −0.6472 794.2922 −0.1366

As shown in Tables 6–8, the maximum angular velocity and angular acceleration of
the six joints are within the joint constraints, and the maximum angular accelerations of
joint 3 planned by these three algorithms are 338.8432◦/s2, 339.3172◦/s2, and 339.8017◦/s2,
and their degrees of TOTP are 99.66%, 99.80%, and 99.94%, respectively. The maximum
angular acceleration constraints of joint 3 are

..
Θ3lim,

..
Θ3lim= [338 .64, 340], and the maxi-

mum angular acceleration of joint 3 planned by these three algorithms are all within
..
Θ3lim.

Therefore, the joint trajectories planned by these three algorithms satisfy Equation (54),
which proves that the shortest time of the trajectory obtained by the above three algorithms
is effective, and ATSA-FC has the highest degree of TOTP.

In fact, the degree of TOTP is not only related to the algorithm itself, but also to the
judgment condition’s range set in Equations (45) and (46), which determines the upper and
lower limits of the degree of TOTP. In the simulation, the judgment condition’s range is
99.6%–100% of the maximum joint parameters, so according to Equation (54), no matter
how the algorithm is run, the degree of TOTP will always be between 99.6% and 100%.

Adjust Equations (45) and (46) and simulate a different range of judgment conditions.
The trajectory shortest times and algorithm execution times planned by each algorithm are
listed in Table 9. Let

.
Θilim =

[
Er ×

.
θilim,

.
θilim

]
and

..
Θilim= [Er×

..
θilim,

..
θilim

]
, where Er is the

lower limit of degree of TOTP.

Table 9. The table of each algorithm’s execution time and the trajectory shortest time.

Er
The Algorithm Execution Time (s) The Trajectory Shortest Time (s)

BA GDM-CPC ATSA-FC BA GDM-CPC ATSA-FC

96% 6.8173 4.8556 4.4596 1.6406 1.6447 1.6386
96.5% 6.1426 6.0968 4.3226 1.6406 1.6426 1.6364
97% 5.9353 4.6736 4.2043 1.6406 1.6405 1.6342

97.5% 5.9040 4.6402 4.2660 1.6406 1.6383 1.6321
98% 7.8637 4.6664 4.2799 1.6309 1.6362 1.6299

98.5% 7.8450 4.6422 4.2874 1.6309 1.6341 1.6279
99% 7.8179 5.3306 4.2909 1.6309 1.6273 1.6260

99.5% 8.4473 5.2891 4.2913 1.6260 1.6252 1.6241

As shown in Table 9, under all Er conditions, the ATSA-FC had the shortest execution
time. In addition, among the three algorithms, the trajectory shortest time planned by
ATSA-FC is also the smallest. Thus, the superiority and effectiveness of the ATSA-FC
are verified.

6. Conclusions

In this paper, the problem of TOTP of the manipulator in Cartesian space is studied,
and ATSA-FC is proposed, so that the end of the manipulator can run along the given
trajectory of Cartesian space with the shortest running time, while avoiding the sudden
change in torque of each joint.

In the simulation, taking a straight-line path of the manipulator in Cartesian space as
an example, BA, GDM-CPC, and ATSA-FC are used to calculate the shortest time of this
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trajectory. By comparing the trajectory shortest time and the execution time of these three
algorithms, the superiority and efficiency of the proposed algorithm is proved. The main
contributions of this article are as follows:

1. An adaptive time-search algorithm based on fuzzy control is proposed, which can
adaptively adjust the time-search step by using fuzzy control based on the results of
the previous feedback. The algorithm execution time and the degree of TOTP is better
than BA and GDM-CPC.

2. The TOTP problem is transformed into a nonlinear optimization problem under
multi-constraints, and the minimum–maximum rule is used to consider the multi-
constraints, as shown in Equations (53) and (54), to avoid falling into the situation of
local optimal solution when using the time-search algorithm.

3. The range of maximum judgment conditions is 99.6–100% of the maximum joint
parameters, as shown in Equations (45) and (46), which can reduce the number of
iterations and have little impact on the maximum running speed of the trajectory.
At the same time, this range also specifies the upper and lower limits of the optimal
trajectory planning degree of time.

In conclusion, the TOTP algorithm based on fuzzy control proposed in this study is
not only efficient, but also calculates the shortest trajectory time under the same trajec-
tory constraints.

In the follow-up, based on the research in this paper, the dynamic constraints of the
manipulator and the quality of the links and joints will be considered, and the TOTP will
be carried out under the dynamic constraints.
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