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Preface

In recent decades, considerable progress has been made in the theory and methodology of

array signal processing for airborne, ground, marine, and underwater target detection and imaging.

However, further development faces increasing challenges regarding improving target illumination

performance due to the influences of clutter, interference, and noise. It will be valuable to attain a

comprehensive understanding of current array signal processing theory and approaches for detecting

various targets in the air, on the land, in the sea, and underwater, and thus to solve future problems

that will become relevant from the new application requirements.

This Reprint Book selected 22 papers within the research field of radar/sonar array signal

processing and analysis, which would interest readers working on waveform design, detection, and

imaging, as well as target recognition, etc. We hope these current works can provide positive reference

to the students and staff who read this book.

Jiahua Zhu, Xiaotao Huang, Jianguo Liu, Xinbo Li, Gerardo Di Martino, Shengchun Piao,

Junyuan Guo, and Wei Guo
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Radar and Jammer Intelligent Game under Jamming Power
Dynamic Allocation

Jie Geng 1, Bo Jiu 1,*, Kang Li 1, Yu Zhao 1, Hongwei Liu 1 and Hailin Li 2
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2 Beijing Institute of Tracking and Telecommunication Technology, Beijing 100094, China
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Abstract: In modern electronic warfare, the intelligence of the jammer greatly worsens the anti-
jamming performance of traditional passive suppression methods. How to actively design anti-
jamming strategies to deal with intelligent jammers is crucial to the radar system. In the existing
research on radar anti-jamming strategies’ design, the assumption of jammers is too ideal. To establish
a model that is closer to real electronic warfare, this paper explores the intelligent game between
a subpulse-level frequency-agile (FA) radar and a transmit/receive time-sharing jammer under
jamming power dynamic allocation. Firstly, the discrete allocation model of jamming power is
established, and the multiple-round sequential interaction between the radar and the jammer is
described based on an extensive-form game. A detection probability calculation method based on
the signal-to-interference-pulse-noise ratio (SINR) accumulation gain criterion (SAGC) is proposed
to evaluate the game results. Secondly, considering that the competition between the radar and
the jammer has the feature of imperfect information, we utilized neural fictitious self-play (NFSP),
an end-to-end deep reinforcement learning (DRL) algorithm, to find the Nash equilibrium (NE) of
the game. Finally, the simulation results showed that the game between the radar and the jammer
can converge to an approximate NE under the established model. The approximate NE strategies
are better than the elementary strategies from the perspective of detection probability. In addition,
comparing NFSP and the deep Q-network (DQN) illustrates the effectiveness of NFSP in solving the
NE of imperfect information games.

Keywords: electronic warfare; intelligent game; jamming power dynamic allocation; neural fictitious
self-play; deep reinforcement learning; Nash equilibrium

1. Introduction

In modern electronic warfare, the radar faces great challenges from different advanced
jamming types [1]. Among different jamming types, main lobe jamming is especially
difficult to deal with because the jammer and the target are close enough and both in the
main lobe of the radar antenna [2].

Radar anti-main lobe jamming technologies mainly include passive suppression and
active antagonism. The passive suppression methods mean that, after the radar is jammed,
it can filter out the jamming signal by finding the separable domain between the target
echo and the jamming signal [3–6]. In contrast to the passive suppression methods, active
antagonism requires the radar to take measures in advance to avoid being jammed [7].
Common active countermeasures include frequency agility, waveform agility, pulse repeti-
tion frequency (PRF) agility, and joint agility [8]. Since the frequency-agile (FA) radar can
randomly change the carrier frequency in each transmit pulse, it is difficult for the jammer
to intercept and jam the radar, which is considered to be an effective means of anti-main
lobe jamming [9,10]. In [11], frequency agility combined with the PRF jittering method
for the radar transmit waveform was proposed to resist deception jamming. In [12], the

Remote Sens. 2023, 15, 581. https://doi.org/10.3390/rs15030581 https://www.mdpi.com/journal/remotesensing1
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authors proposed a moving target detection algorithm under the background of deception
jamming based on FA radar.

The key to FA radar anti-jamming is the frequency-hopping strategy. For the purposes
of the electronic counter-countermeasures (ECCM) considered in this paper, the radar needs
to take different frequency-agile strategies to deal with different jamming strategies. How
to design frequency-agile strategies according to the jammer’s actions is of vital importance.
For an effective anti-jamming system, the information about the environment and the
jammer must be known; otherwise, the judgment of the radar is not credible [13]. Therefore,
some researchers have introduced reinforcement learning (RL) algorithms to design anti-
jamming strategies for FA radar. In [14], the authors designed a novel frequency-hopping
strategy for cognitive radar against the jammer, and the radar does not need to know
the operating mode of the jammer. The signal-to-interference-pulse-noise ratio (SINR)
as a reward function was used in [14], and the interaction between the radar and the
jammer was achieved by two methods, Q-learning and the deep Q-network (DQN), to
learn the attack strategy of the jammer to avoid the radar being jammed. In [15], the
authors designed an anti-jamming strategy for FA radar against spot jamming based on
the DQN approach. Unlike the SINR reward function adopted in [14], Reference [15]
used the detection probability as a reward for the radar to learn the optimal anti-jamming
strategy. In [16], a radar anti-jamming scheme with the joint agility of the carrier frequency
and pulse width was proposed. Different from the anti-jamming strategy design for the
pulse-level FA radar in [14,15], Reference [17] studied the anti-jamming strategy for the
subpulse-level FA radar, where the carrier frequency of the transmit signal can be changed
both within and between pulses. In addition, a policy-gradient-based RL algorithm known
as proximal policy optimization (PPO) was adopted in [17] to further improve the anti-
jamming performance of the radar.

Currently, most of the research assumes that the jamming strategy is static, which
means that the jammer is a dumb jammer who adopts a fixed jamming strategy. How-
ever, the jammer can also adaptively learn jamming strategies according to the radar’s
actions [18,19]. How to model and study intelligent games between the radar and the
jammer is of great significance to modern electronic warfare.

The game analysis framework can generally be used to model and deal with multi-
agent RL problems [20]. It is feasible to apply game theory to model the relationship
between the radar and the jammer. In [21], the competition between the radar with constant
false alarm processing and the self-protection jammer was considered based on the static
game, and the Nash equilibrium (NE) was studied for different jamming types. In [22], the
competition was also modeled by the static game, and the NE strategies could be obtained.
In [23,24], a co-located multiple-input multiple-output (MIMO) radar and a smart jammer
were considered, and the competition was modeled based on the dynamic game. From the
perspective of mutual information, the NE of the radar and the jammer were solved.

Although the jammer is considered as a player, which has the same intelligence
level as the radar, the established model is too ideal in the above-mentioned work. For
example, the work based on static games cannot characterize the sequence decision-making
between the radar and the jammer, and the work based on dynamic games only considers a
single-round interaction. In real electronic warfare, the competition between the radar and
the jammer is a multiple-round interaction with imperfect information [25]. In addition,
with the advancement of jamming technology, the jammer can transmit spot jamming,
which aims at multiple frequencies simultaneously [26]. How to establish a more realistic
electronic warfare model becomes a preliminary step for designing anti-jamming strategies
for the radar.

Therefore, this paper considered a signal model of the jammer as transmitting spot
jamming with its central frequency aiming at different frequencies simultaneously, and the
jamming power of each frequency can be arbitrarily allocated under the constraint condition.
Extensive-form games [27] are proposed to model the relationship of the multiple-round
sequence decision-making between the radar and the jammer. Imperfect information was
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also considered through the characteristics of the partial observation of two-player games.
Under this model, the NE strategies of the competition between the radar and the jammer
with jamming power dynamic allocation can be investigated. The main contributions of
this work are summarized as follows:

• A mathematical model of jamming power discrete allocation is established. Different
action spaces of the jammer can be obtained for different quantization steps of power.
The smaller the quantization step, the larger the action space of the jammer. When
the number of available actions is more, the jammer could find the optimal jamming
strategy, and the conclusion is proven by simulation.

• A detection probability calculation method based on the SINR accumulation gain
criterion (SAGC) is proposed. After the radar receives a target echo, it judges whether
each subpulse is retained or discarded through the SAGC. The specific calculation
procedure is that the radar uses the subpulse and the subpulse with the same carrier
frequency retained in the past to calculate the coherent integration. If the SINR is
improved, the subpulse is retained; otherwise, the subpulse is discarded. At the end
of one coherent processing interval (CPI), the coherent integration results obtained
from the retained subpulses are used to calculate the detection probability based on
the SINR-weighting-based detection (SWD) [17,28] algorithm.

• Extensive simulations were carried out to demonstrate the competition results. Specif-
ically, the training curves of the detection probability of the radar and whether the
game between the radar and the jammer can converge to an NE under different
quantization steps of power were investigated. The simulation results showed that:
(1) the proposed SAGC outperformed another criterion; (2) the game can achieve an
approximate NE; if the jammer action space is larger, the game can achieve an NE
because the jammer can explore the best action; (3) the approximate NE strategies are
better than elementary strategies from the perspective of detection performance.

The remainder of this paper is organized as follows. In Section 2, the signal model
of the radar and the jammer is introduced and the jamming power allocation model is
proposed. In Section 3, the game elements for the radar and the jammer are designed
in detail. In Section 4, the deep reinforcement learning (DRL) and NFSP algorithms are
described and the overall confrontation process between the radar and the jammer is given.
Section 5 shows the results of the competition between the radar and the jammer under the
system model, and Section 6 summarizes the work of this paper.

2. System Model

Consider a game between a subpulse-level FA radar [29] and a jammer. Compared
with the pulse-level FA radar, the subpulse-level FA radar can further improve the anti-
jamming performance of the radar [17].

2.1. The Signal Model of the Radar

Assume that the radar transmits N pulses in one CPI, which contains K subpulses.
The mathematical expression of the nth pulse is

sTX(t, n) =
K−1

∑
k=0

u(t− nTr − kTc) exp[j2π( f0 + an,kΔ f )t]

=
K−1

∑
k=0

rect(t− nTr − kTc) exp
[

jπγ(t− nTr − kTc)
2
]

exp[j2π( f0 + an,kΔ f )t],

(1)

where u(t) = rect(t) exp
[
jπγt2] is the complex envelope of the signal, Tr and Tc are

the pulse repetition interval (PRI) and the subpulse width, respectively, f0 denotes the
initial carrier frequency, and Δ f is the step size between two subcarriers. As for an,k, it
represents the frequency hopping code; assume that the number of available frequencies

3
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for the radar is M, then an,k ∈ {0, 1, · · · , M− 1}. Here, rect(t) is a rectangular function and
is described by

rect(t) =
{

1, 0 < t < Tc
0, otherwise

. (2)

Take K = 4 and M = 5 as an example. The time–frequency diagram of the radar
transmit waveform is illustrated in Figure 1.

Figure 1. Time–frequency diagram of the subpulse FA radar waveform.

Assume that there is only one target. The nth target echo can be expressed as follows:

sRX(t, n) =
K−1

∑
k=0

σku(t− nTr − kTc − τ0) exp[j2π( f0 + an,kΔ f )(t− τ0)], (3)

where σk is the subpulse echo amplitude corresponding to the carrier frequency of that
subpulse and τ0 = 2R/c denotes the time delay of the target echo.

2.2. The Signal Model of the Jammer

The jammer considered in this paper is a self-protection jammer that works in a
transmit/receive time-sharing mode. Therefore, the jammer cannot receive and transmit
signals at the same time. The jamming type is spot jamming. To accurately implement spot
jamming, the jammer needs to intercept a portion of the radar waveform and measure its
carrier frequency, which is called look-through [30]. After that, the jammer transmits a
jamming signal based on the carrier frequency of the intercepted radar waveform. Therefore,
the signal model of the jammer consists of two parts: interception and transmission.

For the convenience of analysis, it is assumed that the interception duration Tl of the
jammer is an integer multiple of the radar subpulse duration Tc:

Tl = ZTc (0 ≤ Z ≤ K). (4)

Suppose that the delay of the nth pulse transmitted by the radar reaching the jammer
is τ′; the interception action of the jammer with respect to this pulse can be expressed as

JRX(t, n) = rect
[

Tc(t− nTr − τ′)
Tl

]
sTX
(
t− τ′, n

)
. (5)
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If the jammer transmits spot jamming that aims at G frequencies simultaneously, the
expression of the jamming signal is

JTX(t) =
G−1

∑
j=0

ξ jrect
(

t− nTr − τ′ − Tl
KTc − Tl

Tc

)
exp
(

j2π f jt
)
, (6)

where f j is the jth central frequency of the spot jamming and ξ j is the Gaussian process
with variable variance representing the jamming power allocated to the jth frequency.

The time–frequency diagram of the signal transmitted by the jammer is shown in
Figure 2. The dashed box indicates that the period is an interception. Different colors mean
that the jammer transmits the spot jamming with its central frequency aiming at different
frequencies simultaneously in the remaining subpulses.

Figure 2. Time–frequency diagram of jammer’s transmitted signal.

2.3. The Discrete Allocation Model of Jamming Power

As described in Section 2.2, the jammer transmits the jamming signal, which aims
at multiple frequencies simultaneously and allocates the total power reasonably to these
frequencies. To simplify the analysis, it was assumed that the total power of the jammer
is normalized to 1. Besides, assume that the jammer cannot allocate its power to each
frequency arbitrarily, which is restricted by Pmin(0 < Pmin ≤ 1). In other words, Pmin is
the smallest unit of power allocation. Therefore, the power allocated by the jammer for
each frequency is an integer multiple of Pmin. The smallest unit Pmin is defined as the
“quantization step”. According to the total power and “quantization step”, the number of
samples of jamming power is

N =
1

Pmin
. (7)

The number of frequencies available for the radar is M; denote the number of power
samples distributed by the jammer to these frequencies as N0, N1, · · · , NM−1, then the
percentage of power allocated to each frequency is

Pi = Ni × Pmin, i ∈ {0, 1, · · · , M− 1}. (8)

The allocation model should satisfy the following constraints:

s.t.

⎧⎨⎩
0 ≤ Ni ≤ N
M−1
∑

i=0
Ni = N

. (9)
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The competition between the radar and the jammer is dynamic, which means they
both optimize their strategies to maximize their performance. As for the jammer, its central
frequency selection and power allocation strategy is not fixed and can be optimized by
interacting with the radar.

3. Game Elements Design for Radar and Jammer

In a complex electronic warfare environment, the confrontation between the radar
and the jammer is often multi-round and can be regarded as a sequential decision-making
process. The interaction process between the radar and the jammer can be described
as follows. The radar transmits the signal, and the jammer makes a decision based on
the intercepted partial information of the radar. The radar analyses the behavior of the
jammer or the possible jamming strategy based on the interfered echoes and improves the
transmitting waveform in the next pulse to achieve the anti-jamming objective.

Each pulse transmitted by the radar corresponds to one competition between the
radar and the jammer. At the end of one CPI, the radar will evaluate the anti-jamming
performance of the entire process based on the information of all previous pulses. Extensive-
form games are a model involving the sequential interaction of multiple agents [31], which
can conveniently describe the relationship between the radar and the jammer. The essential
elements of the game include actions, information states, and payoff functions.

Generally, the interaction process between the radar and the jammer can be modeled
by game theory, in which the radar and the jammer are players in a game.

3.1. Radar Actions

The target of the subpulse-level FA radar is to adopt an appropriate frequency-hopping
strategy to deal with interference, and each transmitted pulse is one competition, so the
action of the radar is defined as the carrier frequency combination of subpulses. Given the
number of subpulses K in one pulse and the number of available carrier frequencies M,
the action of the radar can be expressed as ar

t =
[

ar
t,1, · · · , ar

t,K

]
, which is a vector with size

1× K. Each element ar
t,i ∈ {0, · · · , M− 1} represents the subcarrier of the ith subpulse of

the tth pulse. For example, ar
t,i = 2 indicates that the subcarrier is f2. Based on the number

of subpulses and the available frequencies, it can be known that the total number of actions
of the radar is AR = MK.

3.2. Jammer Actions

The action of the jammer consists of two parts: interception and transmission. To
simplify the analysis, assume that the total duration of these two actions is equal to the
duration of the radar pulse. According to the number of subpulses, the interception action of
the jammer takes any value in set {0, 1, · · · , K}, which denotes the number of look-through
subpulses. If the value of the interception action is K, then the jammer does not transmit any
jamming signal and only executes the look-through operation. The jammer transmits the
jamming signal referring to the number of power samples allocated to different frequencies.
Based on the number of available frequencies for the radar, [N0, · · · , NM−1] can represent
this part of the action. The value of Ni is related to the quantization step of the jamming
power Pmin and should satisfy the allocation model in Section 2.3. Combining the two
actions of interception and transmission, the complete action of the jammer is a vector with
size 1× (M + 1). It is worth noting that when the quantization step remains unchanged,
unless the jammer intercepts all subpulses, the number of the jammer action in the second
part is the same. Take K = 2, M = 2, Pmin = 0.5 as an example. According to the jamming
power allocation model, it can be known that there are three allocation schemes, which is
the number of the jammer actions in the second part, as shown in Table 1.

6
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Table 1. Jamming power allocation schemes.

index 1 2 3
scheme [0, 2] [2, 0] [1, 1]

The interception action can be 0, 1, and 2. Only when the interception code is 2,
the second part of the jammer action is all 0. Under other codes, the transmission action
can be any of the cases in Table 1. Therefore, the total number of jammer actions is
AJ = 2× 3 + 1 = 7. The complete actions of the jammer are shown in Table 2.

Table 2. The action set of the jammer.

action number 1 2 3 4 5 6 7
action vector [1, 0, 2] [1, 2, 0] [1, 1, 1] [2, 0, 0] [0, 0, 2] [0, 2, 0] [0, 1, 1]

3.3. Information States

In the competition between the radar and the jammer, the radar decides the action at
the next moment according to the behavior of the jammer, and so does the jammer. The
information state is defined as the player’s actions and partial observations of adversary
actions at all historical times. Partial observation makes the player unable to fully obtain the
opponent’s actions, which reflects the imperfect information of the game. When calculating
the information state of the jammer at time t, the radar has executed action ar

t . Since the
action of the jammer always lags behind the radar in timing, the current radar action ar

t is
not available to the jammer. This also reflects the existence of imperfect information. The
information states of the radar and the jammer are given as follows:

sr
t =
[
ar

0, o
j
0, · · · , ar

t−1, o
j
t−1

]
, (10)

s
j
t =
[
or

0, a
j
0, · · · , or

t−1, a
j
t−1

]
, (11)

where o
j
t−1 denotes the partial observation of the jammer action by the radar at time t− 1.

or
t−1 represents the partial observation of the radar action by the jammer at time t− 1.

3.4. Payoff Functions

The payoff function is used to evaluate the value of the agent’s policy. After the agent
makes an action according to the information state, it will obtain a feedback signal from
the environment. The agent judges the value of that action according to the feedback
information to guide subsequent learning. Therefore, the agent will formulate a payoff
function as the feedback. Through the payoff function, it can achieve the expected objective.
Detection probability is an important performance indicator of the radar, which can be
used as the feedback for the anti-jamming strategies’ design. However, in practical signal
processing, the radar calculates the detection probability based on the information of all
pulses after one CPI ends. The game between the radar and the jammer is based on a single
pulse, so taking the detection probability as a payoff function will bring the problem of a
sparse reward. For each echo received by the radar, the SINR of the echo can be calculated.
The existence of jamming signals will reduce the SINR. Thus, it is feasible to use the SINR
as a reward to guide anti-jamming strategies’ learning for the radar and can avoid the
sparse reward. The calculation formulas [32] for the signal power and jamming power of
the kth subpulse echo are

Prk =
PTG2

Rλ2
kσk

(4π)3R4
, (12)

Pjk =
PJGRGJλ

2
k

(4π)2R2
, (13)

7
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where PT and GR are the radar transmission power and antenna gain, respectively, R
represents the distance between the radar and the target, λk and σk are the wavelength
and radar cross section (RCS) corresponding to the kth subpulse carrier frequency, and PJ
and GJ are the jammer transmission power and antenna gain. Therefore, the mathematical
expression for calculating the SINR of the kth subpulse is

SINRk =
Prk

PN + Pjk · 1
(

fk = f j
) , (14)

where Prk and Pjk are the signal power and jamming power of the kth subpulse echo,
respectively; PN is the system noise power of the radar receiver, and it can be estimated by

PN = kT0Bn, (15)

where k = 1.38× 10−23 J/K is the Boltzmann constant, T0 = 290 K is the effective noise
temperature, and Bn is the bandwidth of a subpulse.

In (14), Pjk is the jamming power entering the radar receiver, but it exists only when
the central frequency f j of the jamming signal is equal to the subpulse carrier frequency fk.
Otherwise, it is 0. Therefore, 1(x) can be expressed by

1(x) =
{

1, if x is true
0, elsewhere

. (16)

Therefore, the payoff function of the radar can be expressed as follows:

Rr
t =

K−1

∑
k=0

SINRk. (17)

Due to the hostile relationship between the radar and the jammer, they can be regarded
as a two-player zero-sum (TPZS) game, so the payoff function of the jammer is given
as follows:

Rj
t = −

K−1

∑
k=0

SINRk. (18)

3.5. Detection Probability Calculation Method Based on SINR Accumulation Gain Criterion

In Section 3.4, the target echo power, jamming power, and noise power can be esti-
mated. Based on this information, the coherent integration of each carrier frequency is
obtained according to the SINR accumulation gain criterion (SAGC). Then, the detection
probability is calculated by the SWD algorithm [17,28]. The calculation step of the SAGC is
given below:

(1) Let SINRn
k denote the coherent integration of fk from n pulses. Here, we take two

carrier frequencies f1, f2, two subpulses, and one CPI containing four pulses as an example.
Therefore, the value of k is 1 and 2, and the value of n is 1 to 4. Let the initial thresholds of
the SINR of these two frequencies be T1 and T2, respectively.

(2) After the radar receives the first pulse echo, if the carrier frequencies of the two
subpulses are [ f2, f1], the signal power is [Pr2 , Pr1 ], and the noise power is [PN , PN ], the
jamming power of each subpulse is determined as

[
Pj2 , Pj1

]
based on the central frequency

and power allocation schemes of the jamming signal. According to the above information
of the first pulse echo, the coherent integration of each frequency can be calculated (since
there is only one pulse and the carrier frequency is different, the SINR is calculated directly).

SINR1
1 =

Pr1

PN + Pj1
, (19)

SINR1
2 =

Pr2

PN + Pj2
. (20)

8
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Judgment: if SINR1
1 > T1, retain the subpulse whose carrier frequency is f1 and update

the value of T1 with SINR1
1. Otherwise, discard the subpulse whose carrier frequency is

f1, and still use the initial T1 as the threshold. In the same way, it is determined whether
the subpulse whose carrier frequency is f2 is reserved or discarded. Assume that both
subpulses are retained here, then T1 = SINR1

1, T2 = SINR1
2.

(3) After the radar receives the second echo, if the frequency is [ f1, f2], the signal
power is [Pr1 , Pr2 ], and the noise power is [PN , PN ], the jamming power of each subpulse
is determined as

[
Pj1 , Pj2

]
according to the jamming signal. Each subpulse is coherently

integrated with the same carrier frequency as the subpulse reserved in the first pulse.
Firstly, add the first subpulse to calculate the coherent integration of f1:

SINR2
1 =

(√
Pr1 +

√
Pr1

)2
PN + Pj1 + PN + Pj1

, (21)

and if SINR2
1 > T1, reserve the subpulse with carrier frequency f1 in the second echo and

update the value of T1 with SINR2
1. Otherwise, discard the subpulse, and do not update

the value of T1.
Next, append the second subpulse to compute the coherent integration of f2:

SINR2
2 =

(√
Pr2 +

√
Pr2

)2
PN + Pj2 + PN + Pj2

, (22)

and if SINR2
2 > T2, retain the subpulse with carrier frequency f2 in the second echo and

update the value of T2 with SINR2
2. Otherwise, discard the subpulse, and the value of T2 is

not updated.
(4) After receiving the third echo, the radar takes the same operation: adding sub-

pulses in turn to calculate the coherent integration of each frequency and comparing with
the thresholds to determine whether to retain the subpulses and update the thresholds.
Until the end of one CPI, the obtained SINR is used as the final coherent integration of
each frequency.

It is important to note that, although the symbols of the jamming powers of different
echoes are the same, their values are different and depend on the specific jamming situation.

SAGC focuses on the impact of a single subpulse on the overall effect, rather than
just the subpulse itself. Another advantage of SAGC is that the coherent integration of all
frequencies is immediately available as the last pulse is judged.

4. Approximate Nash Equilibrium Solution Based on Neural Fictitious Self-Play

4.1. Deep Reinforcement Learning

RL problems can be described by a Markov decision process (MDP) [33]. At time t,
the agent observes the environment state st and selects action at according to the strategy
π(at|st ). After acting, the agent will obtain a reward signal rt+1 indicating the quality of
the action and make the environment enter a new state st+1. The objective of the agent is to
maximize the cumulative reward through continuous interaction with the environment,
which is given in (23):

π∗ = argmax
π

E[Rt|π], (23)

where Rt =
∞
∑

k=0
γkrt+1+k is a discounted long-term reward with γ ∈ [0, 1) denoting the

discount factor.
Value-based and policy-gradient-based methods are two commonly used methods

for solving RL problems. The value-based methods need to estimate the state–action
value function and then obtain the optimal strategy through the value function. The
policy-gradient-based methods calculate the gradient of the objective function on the policy
parameters to solve the optimal strategy. The policy-gradient-based methods are usually

9
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used to deal with high-dimensional and continuous action space problems. Since the action
space of the radar and jammer considered in this paper is discrete and not so large, the
value-based method was used to solve the optimal strategy.

The long-term expected reward when starting in a specific state s following the policy
π is called the state value function, which is defined as

Vπ(s) = Eπ

[
∞

∑
k=0

γkrt+1+k|st = s

]
. (24)

The state–action value function denotes the long-term expected return after executing
action a in state s according to policy π, which is defined as

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkrt+1+k|st = s, at = a

]
. (25)

The relationship between the state value function and the state–action value function is

Vπ(s) = Ea∼π(a|s )[Qπ(s, a)]. (26)

Qπ(s, a) can guide the agent’s decision. If the agent adopts the greedy strategy, it
chooses the action that maximizes Q(s, a) at each moment. If the agent executes the
ε− greedy(Q) strategy, it selects the action that maximizes Q(s, a) with probability 1− ε
and randomly chooses an action from the action space with probability ε. The agent follows
the ε− greedy(Q) policy to balance exploration and exploitation when it acts [33].

ε− greedy(Q)←
{

arg max
a′

Q(s, a′), with probability 1− ε

random(A), with probability ε
(27)

Estimates for the optimal action values can be learned using Q-learning [34]. In
standard Q-learning, the estimation accuracy is increased by visiting states during the
exploration phase and replacing the value of each state–action pair using the Bellman
optimality equation:

Q(s, a)← Q(s, a) + α

[
r + γ max

a′
Q
(
s′, a′
)
−Q(s, a)

]
, (28)

where α ∈ [0, 1) is the learning rate.
Deep reinforcement learning (DRL) combines deep neural networks and RL, intro-

duces an approximate representation of the value function, and solves the problem of
instability in the learning process based on two key technologies of experience replay and
target network [20]. DQN [35] is a typical value-based DRL algorithm, which means it
needs to estimate the state–action value function from the samples. The loss function to
update the parameters of the neural network of the DQN is given in (29):

L
(

θQ
)
= E{s,a,r,s′}∈DRL

{[
r + max

a′
Q
(

s′, a′
∣∣∣θQ′
)
−Q
(

s, a
∣∣∣θQ
)]2
}

. (29)

4.2. Neural Fictitious Self-Play

The confrontation between the radar and the jammer has the characteristics of multiple-
round sequential decision-making, which allows us to model their interactions with
extensive-form games. Moreover, due to the transmit/receive time-sharing working mode
of the jammer, the game has imperfect information. NFSP is an end-to-end DRL algorithm
for solving the approximate NE of extensive-form games with imperfect information and
does not need any prior knowledge [36]. NFSP includes DRL and supervised learning
(SL) when solving strategies, and both of them can only be applied to problems with a

10
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discrete action space. Combined with the model established in this paper, NFSP is feasible
to solve NE.

NFSP agents learn directly from the experience of interacting with other agents in
the game based on DRL. Each NFSP agent contains a memory buffer DRL that stores
the transition experience {st, at, rt+1, st+1} and a memory buffer DSL that stores the best
response {st, at}. NFSP treats these buffers as two separate datasets suitable for deep
reinforcement learning and supervised classification, respectively. The agent trains the
value network parameters θQ from the data in DRL using an off-policy RL algorithm
based on experience replay. The value network defines the agent’s best response policy
ε− greedy(Q). The agent trains a separate neural network to imitate its own past best
response behavior using supervised classification data in DSL. This network achieves the
mapping of states to action probabilities. Define the action probability distribution of
the network output as the agent’s historical average policy Π. Based on the above two
strategies, the NFSP agent chooses action at in state st from a mixture of its two policies,
and it can be expressed as follows:

σ ←
{

ε− greedy(Q), with probability η
Π, with probability 1− η

, (30)

where η is anticipatory parameter. Store {st, at} in DSL if and only if the agent chooses an
action based on ε− greedy(Q).

NFSP also utilizes two innovations to ensure that the resulting algorithm is stable
and can be simultaneously self-play learning [36]. First, it uses reservoir sampling [37] to
avoid the window effect caused by sampling in a finite memory buffer. Second, it uses
anticipatory dynamics [38] to enable each agent to sample its own best response behavior
and more effectively track changes in the opponent’s behavior.

NFSP uses the value-based DQN algorithm to solve the best response strategy. The
double-DQN method solves the overestimation problem by separating the selection of the
target action and the calculation of the target Q value, and it can find better strategies [39].
The DRL algorithm combined with the dueling network architecture has a dramatic per-
formance improvement [40]. Therefore, this paper adopted the double-DQN method
combined with the dueling architecture to solve the best response. The loss functions for
updating the parameters of the value network and the supervised network are given in (31)
and (32), respectively [36,39].

L
(

θQ
)
= E{s,a,r,s′}∈DRL

⎧⎨⎩
[

r + Q

(
s′, arg max

a′
Q
(

s′, a′
∣∣∣θQ
)∣∣∣θQ′

)
−Q
(

s, a
∣∣∣θQ
)]2
⎫⎬⎭ (31)

L
(

θΠ
)
= E{s,a}∈DSL

[
− log Π

(
s, a
∣∣∣θΠ
)]

(32)

4.3. The Complete Game Process between the Radar and Jammer

In the previous section, the confrontation relationship between the radar and the
jammer was modeled through extensive-form games, and the NFSP method was given to
solve the NE of the game. This subsection presents the complete competition process of the
multiple-round interaction between the radar and the jammer, as shown in Algorithm 1.

11
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Algorithm 1 The complete game process between the radar and jammer.

1: Determine the radar action space according to the number of carrier frequencies and
the number of subpulses

2: Determine the jammer action space based on the quantization step of jamming power
3: for each CPI do
4: Set the policy represented by (30) according to η
5: The radar observes the initial information state
6: for each pulse do
7: The radar chooses the transmission waveform as an NFSP agent
8: The jammer determines the number of look-through subpulses and the power

allocation scheme as an NFSP agent
9: The radar receives an echo containing jamming signals

10: Calculate the SINR payoff according to (14)
11: The radar and jammer update their respective information states based on

observed adversary behavior
12: Store transition experience {st, at, rt+1, st+1} in their respective DRL
13: if radar or jammer action at is obtained by ε− greedy(Q) then
14: Store {st, at} in their respective DSL
15: end if
16: for each subpulse do
17: Judge whether to retain subpulses and update thresholds based on SAGC
18: end for
19: end for
20: Calculate detection probability based on SWD
21: Update network parameters θQ by (31)
22: Update network parameters θΠ by (32)
23: Update target network parameters θQ′ after a fixed number of iterations θQ′ ← θQ

24: end for

5. Experiments

This section shows the competition results between the radar and the jammer under
the jamming power dynamic allocation. The simulation experiments included detection
probability training curves, a performance comparison between different quantization steps
of jamming power, the verification of the approximate NE, the visualization of approximate
NE strategies, etc. The basic simulation parameters are shown in Table 3.

Table 3. Basic simulation parameters.

Parameters Value

radar transmission power: PT 30 kW
radar antenna gain: GR 32 dB

radar initial carrier frequency: f0 3 GHz
the number of pulses in one CPI: N 8

the number of subpulses in one pulse: K 3
the number of frequencies for the radar: M 3

bandwidth of each subpulse: Bn 5 MHz
time width of each subpulse: Tc 10 μs

range between the radar and the jammer: R 100 km
false alarm rate 10−4

jammer transmission power: PJ 1 W
jammer antenna gain: GJ 0 dB

quantization step of jamming power: Pmin 0.2
initial thresholds of SAGC 0.5

According to Table 3, M = 3, K = 3, so the total number of actions of the radar
is AR = 27. To decorrelate the subpulse echoes of different carrier frequencies, let the
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frequency step size Δ f = 100 MHz [17]. It was assumed that the RCS of the target does not
fluctuate at the same frequency, but the RCS may be different at different frequencies [26].
Without loss of generality, the RCS corresponding to the three carrier frequencies was set to
[15, 3, 1] m2. The number of samples of jamming power is five when Pmin = 0.2. Based on
Pmin and M, it can be known that there are 21 allocation schemes. Combining with K, then
the total number of jammer actions is AJ = 64. The radar actions and jammer actions are
given in Figure 3.

Figure 3. The relationship between action number and action vector for the radar and the jammer.

As described in Section 4.2, this paper used the NFSP algorithm to train the radar
and jammer. The NFSP algorithm contains a value network and a supervised network.
Multilayer perceptron (MLP) [41] was used to parameterize these two networks in the
experiments. The network information for DRL with the dueling architecture and SL is
shown in Table 4 and Table 5, respectively.

Table 4. DRL network architecture.

Layer Input Output Activation Function

MLP1 state size 256 LeakyReLU
MLP2 256 256 LeakyReLU

MLP3 of Branch 1 256 128 LeakyReLU
MLP4 of Branch 1 128 1 /
MLP3 of Branch 2 256 128 LeakyReLU
MLP4 of Branch 2 128 action number /

Table 5. SL network architecture.

Layer Input Output Activation Function

MLP1 state size 256 LeakyReLU
MLP2 256 256 LeakyReLU
MLP3 256 128 LeakyReLU
MLP4 128 action number Softmax

The learning rates for DRL and SL were set to be 0.001 and 0.0001, respectively. The
capacity for DRL memory DRL and SL memory DSL was 150,000 and 500,000. The update
frequency of the target network parameters in the double-DQN was 4000. The anticipatory
parameter η of the mixed strategy was 0.1. The exploration rate of ε− greedy(Q) was 0.06
at the beginning and gradually decayed to 0 with the increase of the number of episodes.
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5.1. The Training Curve of Detection Probability

Let the game between the radar and the jammer go on for 400,000 episodes. Perform
1000 Monte Carlo adversarial experiments on the resulting policy every 2000 episodes to
estimate the detection probability of the radar. The training curve is shown in Figure 4.

Figure 4. The detection probability curve.

It can be seen from Figure 4 that, as the number of training episodes increases, the
detection probability gradually becomes stable and converges to 0.57.

In target detection theory, the detection probability is determined by the threshold and
test statistic. If the statistical properties of the noise are known, the value of the threshold
can be derived from the false alarm rate in constant false alarm rate (CFAR) detection.
Then, the detection probability is determined by the test statistic. It can be known from
the SWD algorithm that the SINR after coherent integration of each channel will affect the
expression of the test statistic. Therefore, the results of the coherent integration directly
affect the detection performance of the radar. Section 3.5 proposes to calculate the coherent
integration of each frequency based on SAGC. It is clear from the calculation procedure
of SAGC that the key to this criterion is the setting of the initial thresholds of the SINR.
To illustrate the influence of the initial thresholds on the detection probability, five initial
thresholds were set, as shown in Table 6. The radar and jammer strategies trained when
Pmin = 0.2 were used to perform 1000 Monte Carlo experiments under different thresholds
to obtain the variation of the detection probability with the thresholds. Figure 5 presents
the result of this experiment.

Figure 5. Detection probability of SAGC at different initial thresholds.
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Table 6. Different initial thresholds.

Thresholds T0 T1 T2

Case 1 0 0 0
Case 2 0.5 0.5 0.5
Case 3 1 1 1
Case 4 1 0.5 0
Case 5 0 0.5 1

A coherent integration calculation method based on a fixed threshold criterion (FTC)
was also adopted as a comparison. This method also needs to set thresholds. The calculation
procedure is to retain the subpulse as long as the SINR is greater than the threshold. At
the end of one CPI, the coherent integration for each frequency is calculated using the
retained subpulses. Different from SAGC, the thresholds of FTC are unchanged in the
whole training process, and the judgment of the current subpulse is only related to its
SINR, not to the past retained subpulses. In contrast, the thresholds of SAGC are dynamic,
and the judgment of the current subpulse needs to be combined with the past retained
subpulses. Figure 6 shows the effect of different fixed thresholds (same as Table 6) on the
detection probability under FTC. The experimental approach is to perform 1000 Monte
Carlo with the radar and jammer strategies trained when Pmin = 0.2.

Figure 6. Detection probability of FTC in different fixed thresholds.

Conclusion: According to Figures 5 and 6, SAGC outperformed FTC. The reason for
this result is whether to eliminate each subpulse depends not only on its SINR, but also
on its contribution to coherent integration in SAGC. However, FTC only considers the
subpulses themselves and does not care about the results of the coherent integration of
all pulses.

5.2. Performance Comparison between Different Quantization Steps of Jamming Power

This subsection studies the performance comparison between different quantization
steps of jamming power. Four quantization steps were set in the experiment: Pmin = 1,
Pmin = 0.5, Pmin = 0.2, and Pmin = 0.1. The number of power samples in these four cases
was 1, 2, 5, and 10, respectively. Therefore, the number of jammer action spaces correspond-
ing to these situations was A1

J = 10, A0.5
J = 19, A0.2

J = 64, and A0.1
J = 199. Figure 7 shows

the jammer actions under different quantization steps.
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Figure 7. The relationship between action number and action vector for the jammer under different
quantization steps.

The detection probability curves under different quantization steps are shown in
Figure 8. From Figure 8, if the quantization step of jamming power is smaller, the detection
performance of the radar is worse. However, the total number of jammer actions will
increase accordingly, and the convergence speed will become slower. It can also be seen
from Figure 8 that, when the quantization step is 0.1 and 0.2, the convergence results of the
detection probability are consistent. This shows that the jamming effect of the jammer has
performance boundaries.

Figure 8. Detection probability curves of different quantization steps.

To verify whether the competition between the radar and the jammer can converge
to an NE at the end of the training, the exploitability of the strategy profile needs to be
evaluated. Exploitability is a metric that describes how close a strategy profile is to an
NE [42–44]. A perfect NE is a strategy profile (σ1, σ2) that satisfies the following conditions:{

u1(σ1, σ2) ≥ max u1(σ1
′, σ2)

u2(σ1, σ2) ≥ max u2(σ1, σ2
′)

. (33)

An approximate NE or ε-NE is a strategy profile that satisfies the following conditions:{
u1(σ1, σ2) + ε ≥ max u1(σ1

′, σ2)
u2(σ1, σ2) + ε ≥ max u2(σ1, σ2

′)
. (34)

16



Remote Sens. 2023, 15, 581

For a perfect NE, its exploitability is 0. The exploitability of ε-NE is ε. The closer the
exploitability is to 0, the closer the strategy profile is to the NE. The exploitability curves
under different quantization steps are shown in Figure 9.

Figure 9. Exploitability curves of different quantization steps.

It can be seen from Figure 9 that, under different quantization steps, the exploitability
curves gradually decrease and are close to 0. The exploitability when the quantization step
is 0.1 and 0.2 can converge to 0. When the quantization step is 0.5 and 1, the exploitability
converges to 0.05 and 0.07, respectively. This shows that the strategy profile of the radar
and jammer can achieve an approximate NE under different quantization steps.

Conclusion: If the quantization step of jamming power is smaller, the total number of
jammer actions will increase accordingly. Therefore, the jammer could explore the optimal
jamming strategy so that the game between the radar and the jammer can achieve a real NE.

5.3. Visualization of Approximate Nash Equilibrium Strategies

Section 5.2 shows that the game between the radar and the jammer can converge
to an approximate NE under different quantization steps of jamming power. Therefore,
this subsection visualizes the approximate NE strategies. Through Figures 3 and 7, the
corresponding relationship between the action number and action vector can be understood.
The radar action vector is transformed into frequency, and the jammer action vector is
transformed into power percentage for strategy research.

The strategies of the radar and jammer can be expressed in a three-dimensional
coordinate system, in which the x-axis represents the action index, the y-axis represents
the pulse index, and the z-axis represents the probability. Therefore, the meaning of the
coordinates (x, y, z) of any point is that the probability of choosing action x at the yth pulse
is z.

In Figures 10–13, (a) and (b) are the X-Y views of their strategies. The X-Y view shows
the probability distribution of the radar or jammer’s selection action on each pulse. (c) and
(d) are the Y-Z views of their strategies. From the Y-Z view, it can be seen that the radar or
jammer selects the action with the highest probability on each pulse.

In Figure 10, the radar prefers to select Actions 1 and 14, indicating that the carrier
frequency combination of the transmitted signal is [ f0, f0, f0] and [ f1, f1, f1], respectively.
The jammer tends to choose actions 165 and 192, representing that the power ratio allocated
to f0, f1, and f2 is [0.3, 0.6, 0.1] and [0.7, 0.2, 0.1]. RCS( f0) > RCS( f1) > RCS( f2). The larger
the RCS, the stronger the target echo power, so the jammer will allocate more power to
reduce the SINR of the radar receiver. Jammer Action 192 allocates the most jamming
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power to f0, while there is little difference in jamming power between f1 and f2. Thus,
the radar should choose f1 with a larger RCS, corresponding to Radar Action 14. Jammer
Action 165 allocates the most jamming power to f1, so the radar selects f0 with the largest
RCS, corresponding to Radar Action 1.

(a) X-Y view of radar strategy (b) X-Y view of jammer strategy

(c) Y-Z view of radar strategy (d) Y-Z view of jammer strategy

Figure 10. Approximate NE strategies with a quantization step of 0.1.

In Figure 11, the radar selects Action 1 with the highest probability. The jammer
tends to select Action 57, indicating that the power allocated to the three frequencies is
[0.4, 0.4, 0.2]. Although the power allocated by Jammer Action 57 to f2 is the smallest, the
RCS corresponding to f2 is also the smallest, and the echo power is correspondingly the
smallest. The jamming power of f0 and f1 is the same, but the RCS of f0 is the largest.
Therefore, the radar selects [ f0, f0, f0], that is Action 1, which can ensure the maximum
output SINR.
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(a) X-Y view of radar strategy (b) X-Y view of jammer strategy

(c) Y-Z view of radar strategy (d) Y-Z view of jammer strategy

Figure 11. Approximate NE strategies with a quantization step of 0.2.

In Figure 12, the radar selects Action 27, meaning that the combination of the carrier
frequency of the transmitted signal is [ f2, f2, f2]. The jammer selects Action 18, representing
the power allocation scheme as [0.5, 0.5, 0]. The strategy of the jammer is to evenly distribute
the power to the two frequencies with the first- and second-largest RCS. At this time, the
radar selection Action 27 can ensure that all subpulses will not be jammed and the radar
can obtain a larger SNR.

In Figure 13, the radar selects Action 14, which means the carrier frequency combi-
nation of the transmitted signal is [ f1, f1, f1]. The jammer selects Action 10, representing
that the power allocation scheme is [1, 0, 0], that is all the power is allocated to f0 with the
largest RCS. In this case, the quantization step of power is 1, so the jammer can only use all
the jamming power to jam one frequency. At this time, the subcarrier of the subpulse of the
radar is all f1, which is the frequency of the second-largest RCS. In this way, it can not only
avoid being jammed, but also ensure a large output SNR.
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(a) X-Y view of radar strategy (b) X-Y view of jammer strategy

(c) Y-Z view of radar strategy (d) Y-Z view of jammer strategy

Figure 12. Approximate NE strategies with a quantization step of 0.5.

In these four different scenarios, when the game converges to the NE, the strategy
of the jammer is that it does not perform the look-through operation. This shows that,
when the jammer is regarded as an agent, it can learn the carrier frequency information of
the radar through the interaction with the radar, so it only needs to optimize the power
allocation strategy. In real electronic warfare, due to the limited confrontation time, the
jammer cannot fully know the available frequencies of the radar, that is the jammer needs
to intercept the subpulse of the radar most of the time, which indicates that the strategy of
the jammer must deviate from the NE. Therefore, the radar can achieve better performance.

It can also be seen from Figures 10–13 that, no matter what the quantization step of
jamming power is, the NE strategies of the radar and the jammer are mixed strategies. The
radar and the jammer select actions from their respective action sets with a probability. This
is the characteristic of imperfect information games.

Conclusion: Imperfect information games require stochastic strategies to achieve
optimal performance [36].
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(a) X-Y view of radar strategy (b) X-Y view of jammer strategy

(c) Y-Z view of radar strategy (d) Y-Z view of jammer strategy

Figure 13. Approximate NE strategies with a quantization step of 1.

5.4. Comparison to Elementary Strategies

This subsection verifies the performance of the approximate NE strategies (ANESs) by
comparing them with the elementary strategies.

Assume that the radar can choose two elementary strategies, which are the constant
strategy (CS) and the stepped frequency strategy (SFS). The CS means that the carrier
frequency of the radar is unchanged. Since the radar has three available frequencies, the
CS includes three cases, denoted as CS0, CS1, and CS2. The SFS means that the carrier
frequency of the radar increases or decreases step by step between pulses, and these two
situations are recorded as SFS-up and SFS-down.

Two elementary strategies for the jammer were considered, which are the constant
strategy (CS) and the swept strategy (SS). The CS means that the central frequency of the
jamming signal remains unchanged. Similar to the CS of the radar, the CS of the jammer is
also denoted as CS0, CS1, and CS2. The SS is similar to the SFS of the radar, and these two
situations are recorded as SS-up and SS-down.
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We made one side of the radar and jammer adopt the ANES, and the other side adopts
the elementary strategies. In addition to the elementary strategies, the radar and the jammer
also adopt the ANES as a comparison. The results of 1000 Monte Carlo experiments are
shown in Figures 14–17.
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Figure 14. The quantization step of jamming power is 0.1.
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Figure 15. The quantization step of jamming power is 0.2.
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Figure 16. The quantization step of jamming power is 0.5.

In Figure 15, the detection probability of the radar adopting CS0 and the ANES is the
same because these two strategies are similar in this jamming situation.
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Figure 17. The quantization step of jamming power is 1.

Similarly, in Figure 16, since the CS2 and ANES of the radar are the same, there is little
difference in their detection performance.

In Figure 17, the ANES of the radar is the same as CS1, and the ANES of the jammer is
the same as CS0. Therefore, the performance of one side adopting the ANES and the other
taking the elementary strategy is basically the same as that of both adopting the ANES.

From Figures 14–17, the practical implication of the NE can be known, that is, as
long as one side deviates from the NE, its performance will decrease. For the jammer,
performance degradation refers to an increase in the detection probability of the radar.

Conclusion: The approximate NE strategies obtained in this paper are better than the
elementary strategies from the perspective of detection probability.

5.5. Comparison to DQN

This subsection discusses the performance of the DQN in multi-agent imperfect
information games. Two forms of the DQN were considered: DQN greedy and DQN
average. DQN greedy chooses the action that maximizes the Q value in each state, so it
learns a deterministic policy. DQN average draws on the idea of NFSP and also trains
the historical average strategy through the supervised learning model, but the average
strategy does not affect the agent’s decision. Therefore, the agent chooses an action only
based on ε− greedy(Q) at each moment, not based on a mixed policy. DQN average can
be achieved by setting the anticipatory parameter η = 1 in the NFSP algorithm. Because
the NFSP agent in this paper solves the best response by the dueling double-DQN, DQN
greedy and DQN average also adopt this method.

In Figure 18, the detection probability and exploitability curves of DQN greedy fluctu-
ate markedly. Its exploitability cannot converge to 0, indicating that DQN greedy cannot
achieve NE. Although the training curve of the detection probability of DQN average can
be stable, its policy is highly exploitable. DQN average cannot reach an NE either.

Conclusion: DQN greedy learns a deterministic policy. Such strategies are insufficient
to behave optimally in multi-agent domains with imperfect information. DQN average
learns the best responses to the historical experience generated by other agents, but the
experiences are generated only based on ε− greedy. These experiences are both highly
correlated over time and highly focused on a narrow distribution of states [36]. Thus, the
DQN average performs worse than NFSP.
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(a) The detection probability curves (b) The exploitability curves

Figure 18. Comparison of three methods.

5.6. Performance Comparison with Existing Methods

To verify the effectiveness of the strategy obtained in this paper, a comparison between
the proposed method and existing resource allocation methods was designed. The work
in [17] is the strategy design problem based on RL, so the radar and the jammer interact
with one of them as the agent and the other as the environment when applying this
method to the established model of this paper. The strategy for the radar and jammer
is solved independently rather than based on game theory. The work in [24] was based
on the Stackelberg game and concluded that the jamming strategy is related to the target
characteristic when the signal power is fixed. The method proposed in [25] was applied to
the non-resource allocation scene, and the radar echo was processed by directly eliminating
the jammed pulse. In addition to the above-mentioned methods, there is a common and
without loss of generality method of allocating all power to the frequency with the second-
largest RCS. This allocation strategy was proven by [25] to be feasible. This allocation
method is denoted as a constant allocation strategy (CAS). The comparison result is given
in Table 7.

Table 7. The comparison between the proposed method and other existing methods.

This Paper Method in [17] Method in [24] Method in [25] CAS

detection probability 0.57 0.61 0.65 0.61 0.79
exploitability 0 0.2 0.08 0.07 0.22

In Table 7, in addition to the proposed method in this paper, the exploitability of the
other existing allocation methods cannot reach 0. Therefore, only the strategy obtained in
this paper is an NE.

6. Conclusions

In this paper, the intelligent game between the subpulse-level FA radar and the
self-protection jammer under the jamming power dynamic allocation was investigated.
Specifically, the discrete allocation model of jamming power was established and the
corresponding relationship between the quantization step of power and the available
actions of the jammer was obtained. Furthermore, an extensive-form game model was used
to describe the multiple-round sequence decision-making characteristics between the radar
and jammer. A detection probability calculation method based on SAGC was proposed
to evaluate the competition results. Then, due to the feature of the imperfect information
game between the radar and jammer, we utilized NFSP, an end-to-end DRL method, to
solve the NE of the game. Finally, simulations verified that the game between the radar
and the jammer can converge to the approximate NE under the established model, and the
approximate NE strategies are better than the elementary strategies from the perspective of
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detection probability. The comparison of NFSP and the DQN demonstrated the advantages
of NFSP in finding the NE of imperfect information games.

In the future, we should investigate the radar anti-jamming game with the continuous
allocation of jamming power, in which the jammer has a continuous action space, and an
algorithm to design the strategy for the radar and jammer should also be proposed.
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Abstract: Due to the substantial electromagnetic interference, radar interruptions, and other factors,
the SAR system may fail to receive valid data in some azimuth areas. This phenomenon is known
as Azimuth Missing Data (AMD). If classical SAR imaging algorithms are performed directly using
AMD echo, the imaging results may be defocused or even display false targets, which seriously affects
the accuracy of the image. Thus, we proposed a Sub-echo Segmentation and Reconstruction Azimuth
Missing Data SAR Imaging Algorithm (SSR-AMDIA) to solve the problem of incomplete echo SAR
imaging in this article. Instead of using the motion compensation step of the Polar Format algorithm
(PFA) to recover the full echo from the AMD echo, the proposed SSR-AMDIA eliminates the effect of
the planar approximation in PFA and expands the maximum depth of focus (DOF). The raw AMD
echo was first subjected to range compression and Range Cell Migration Correction (RCMC), after
which the AMD-RCMC echo was divided along the range direction. Then, we constructed a series
of phase compensation functions based on the sub-segment AMD-RCMC echoes to guarantee the
perfect recovery of the full RCMC echoes corresponding to the sub-scenes. Finally, we combined them
to obtain the complete RCMC echo, and an excellent focused imaging result was then obtained via
azimuth compression. Simulation and experimental data verified the effectiveness of the proposed
algorithm. Furthermore, we derived the mathematical expressions for the two-dimensional maximum
DOFs of the proposed algorithm. In contrast to the State-Of-the-Art (SOA) AMDIA, the SSR-AMDIA
can obtain a superior imaging performance in a larger imaging scope under the conditions of most
AMD cases.

Keywords: azimuth missing data; maximum depth of focus; SAR imaging scene size; segmentation
SAR imaging

1. Introduction

Unavoidable interference between SAR systems and imaging scenes, interruptions
in SAR systems for different purposes, or new SAR mission requirements will result in
the azimuth missing data (AMD) [1,2]. If the conventional SAR imaging algorithm is used
directly in the AMD echo case, false targets or severe defocus will be produced in the final
imaging results [3].

In order to overcome the AMD-SAR imaging challenge, an auto-regressive linear
prediction approach used initially in the discontinuous aperture SAR imaging [4]. However,
it only improves image quality if the Azimuth Missing Ratio (AMR) is below 30%. The
equal-gap AMD-SAR imaging problem was solved by P. Stoica and J. Li. They proposed
the Gapped-data APES (GAPES) algorithm based on the Amplitude and Phase EStimation
(APES) algorithm [5–7]. In order to enhance AMD-SAR imaging performance in random
AMD conditions, they took advantage of the Expectation-Maximization algorithm and then
further presented the Missing-data APES (MAPES) algorithm [8]. However, its reliability
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decreases rapidly when the AMR increases, and the computational complexity is relatively
expensive. To address this problem under the high AMR conditions, a random Missing-data
Iterative Adaptive algorithm (MIAA) was proposed in [9]. The maximum AMR threshold
can achieve nearly 80%. Compared with the MAPES, the MIAA’s recovery performance
is greatly improved when the AMR is higher than 60%. However, due to the fact that
the MIAA involves numerous matrix inversions and iterations, its computing cost will be
insurmountable for large-scene AMD-SAR imaging.

The partial data SAR imaging problem has been addressed from a new perspective
since the Compressed Sensing (CS) technology was proposed [10,11]. Various CS-based
sparse SAR imaging algorithms and methods have been proposed and improved in recent
years [12–14]. A segmented reconstruction algorithm for the large-scene sparse SAR imag-
ing was proposed in [15]. The whole scene is split into a set of small sub-scenes. With the
appropriate increase in the segment number, the reconstruction time and running memory
can be greatly reduced. Additionally, ref. [16] proposed an improved method to speed up
the sparse SAR imaging and reduce the memory requirement using the Non-Uniform Fast
Fourier Transform (NUFFT).It applies interpolation coefficients instead of multiplication
of observation matrices and vectors, leading to a smaller computational complexity and
memory usage. Furthermore, since the strong scattering points are rebuilt directly, the
imaging accuracy will be severely degraded under low echo signal-to-noise ratio (SNR).

For this problem, an Azimuth Missing Data Imaging Algorithm (AMDIA) was pro-
posed in 2018 [17]. It estimates and recovers the full echo of sparse targets from the AMD
echo. The CS methods cannot reconstruct the complete SAR echo in the time domain
because it is not sparse. Hence, influenced by PFA’s motion compensation approach [18,19],
Literature [17] discovered that multiplying the dense SAR echo with a Phase Compen-
sation Function (PCF) in the range-frequency domain can yield a sparser signal in the
Doppler domain. Next, a phase-compensated complete echo can be recovered from the
phase-compensated AMD echo using the CS method. Then, by multiplying the phase-
compensated complete echo with the conjugate of the previous PCF, the complete echo
can be estimated. Lastly, using the traditional SAR imaging algorithms, the final image
can be focused via the estimated full echo. Compared with the sparse SAR imaging al-
gorithms, the AMDIA can obtain an excellent-focused image even at low SNR due to the
two-dimensional Matched Filtering process [3]. Its improved algorithms have developed
rapidly in these years. K. Liu improved the imaging capabilities of the AMDIA by extend-
ing it into the spaceborne FMCW SAR system [20,21]. J. Wu suggested a sparsity adaptive
StOMP algorithm for AMD-SAR imaging [22]. It exhibits excellent recovery performance
when the prior sparsity is unknown. In 2022, we proposed a Moving Target AMD-SAR
Imaging (MTIm-AMD) method based on the AMDIA [23]. Since the motion parameters are
considered, the PCF is modified to be more efficient, and hence the moving target can be
well-focused in the AMD case. Moreover, we proposed an Enhancement AMDIA (EnAM-
DIA) to improve the AMD-SAR imaging performance in [24]. The EnAMDIA recovers the
RCMC echo instead of the time domain echo. Therefore, it demonstrates a more accurate
recovery and a more moderate computational burden.

However, the PCFs of all the above-mentioned AMD-SAR imaging algorithms are
designed based on one reference point, which is generally regarded as the scene centroid.
Therefore, the phase compensation error for the non-centered targets will increase signif-
icantly with the expansion of the imaging scene. Once the imaging scene is larger than
the limit of the focusable region, the PCF of the State-Of-the-Art (SOA) AMDIA will result
in unsatisfactory sparsity of the phase-compensated signal. Therefore, the estimation ac-
curacy of the complete echo will decrease. It indicates that the imaging performance of
SOA-AMDIA is unsatisfactory when the imaging scene is relatively large.

Therefore, to enlarge the maximum focusable region under the AMD conditions, an
improved Sub-echo Segmentation and Reconstruction AMDIA (SSR-AMDIA) is proposed
in this paper. We consider enhancing the phase-compensated signal’s sparsity and then
enlarging the imaging scene limits in azimuth and range direction, respectively. First, we
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apply RCMC processing on the raw AMD echo and then design a new PCF for AMD-
RCMC echo. Since the range migration is removed, a sparser signal can be obtained along
the azimuth direction. Subsequently, the AMD-RCMC echo is split into a series of AMD-
RCMC sub-echoes along the range direction. Each sub-scene’s centroid is regarded as the
reference point for phase compensation. Instead of designing a PCF for the whole scene,
many PCFs are redesigned for each sub-scene. Therefore, each phase-compensated RCMC
(PC-RCMC) sub-echo is sparser, which implies that the complete RCMC sub-echoes can
be estimated more precisely. Finally, by combining the reconstructed RCMC sub-echoes, a
reliable complete RCMC echo is obtained. A superior imaging result of the edge targets
can be obtained via azimuth compression.

The main innovations of the article consist in:

1. We first rebuilt the full RCMC echo rather than the full raw echo. The SOA-AMDIA
only focuses on reconstructing the full raw echo before range compression and RCMC
processing, resulting in an inaccurate reconstruction of azimuth far-field targets. Thus,
the proposed algorithm first eliminates the negative effect of range migration on
echo recovery. It significantly reduces the azimuth far-field target’s residual phase
error, and expands the azimuth maximum Depth of Focus (DOF) of the sparse domain
signal. Additionally, the computational cost can also be reduced if the range direction’s
targets are adequately sparse.

2. We first exploited range segmentation to improve the SOA-AMDIA. Instead of us-
ing one PCF for the whole imaging scene, we redesigned a series of PCFs for each
sub-scene. It ensures the significant reduction of the range far-field target’s resid-
ual phase error, and the imaging range limits can be eliminated with a reasonable
segmentation strategy.

3. We also carried out the mathematical derivation for the two-dimensional maximum
DOFs of the proposed algorithm. The advantage of the proposed SSR-AMDIA over
SOA-AMDIA for the imaging scene scope is theoretically verified.

The rest of this article is organized as follows. In Section 2, the SAR echo models are
introduced. In Section 3, the proposed SSR-AMDIA is derived in detail. In Section 4, the
azimuth maximum DOF, range segmentation strategy and the computational complexity
of the proposed algorithm are analyzed and mathematically derived. The findings of
the simulation and measured experiment are shown and discussed in Section 5. Finally,
Section 6 serves as our conclusion.

2. SAR Signal Models

Typically, the linear frequency modulation signal is used as the transmitted signal st(t)
in SAR systems to obtain a uniform signal bandwidth [25]. Due to the linear modulation of
frequency, its phase is a quadratic function with respect to fast time t. The complex form of
st(t) can be expressed as

st(t) = βtwr(t) exp(j2π fct) exp
(

jπKrt2
)

(1)

Kr is chirp rate, and fc is the center frequency. βt is the chirp signal’s amplitude, while
wr(t) is the range windowing function.

2.1. Complete SAR Echo Model

The de-carried echo of a stationary point scatterer P(x, y, 0) is presented in

sr(t, η) = βrwr

(
t− 2RP(η)

c

)
wa(η) exp

{−j4π fcRP(η)

c

}
× exp

{
jπKr

(
t− 2RP(η)

c

)2
}
+ n

(2)
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where η, βr, c, n, and wa(η) are the slow time dimension during the imaging interval,
back-scattered coefficient, light speed, random noise, and azimuth windowing function,
respectively. RP(η) is the instantaneous distance between the stationary target P(x, y, 0)
and the platform position (xi, yi, h), which can be demonstrated as

RP(η) =

√
(xi − x)2 + (yi − y)2 + h2 (3)

Assuming that the SAR system moves at a constant velocity va, thus the azimuth
position yi = ya + vaη, where ya denotes radar initial azimuth position.

2.2. SAR Echo Model with Azimuth Missing Data

The AMD echo types include periodic and random AMD echo. The FMCW SAR
system or the anti-jamming SAR system is the primary cause of the periodic AMD echo.
In contrast, the occlusion or inevitable interference are the primary causes of the ran-
dom AMD echo [17,21]. Figure 1 compares the complete, periodic missing, and random
missing signals.

Figure 1. The comparison between the complete, periodical missing, and random missing signal.

White squares represent missing samples, while black squares represent valid samples.
Suppose that the azimuth and range sample numbers are denoted by NA and NR,

respectively, and that the total echo size is NA × NR. Then, assume that NM (NM < NA)
is the total number of missing azimuth samples, and Gm is their corresponding location
set. In order to determine the AMD echo model, we define an azimuth missing matrix Λm,
that is

Λm = diag
[
λN1 , · · · , λNi , · · · , λNA

]
(4)

where {
λNi = 0, when Ni ∈ Gm
λNi = 1, else

(5)

Hence, the time domain AMD echo sm is obtained by

sm = Λmsr (6)

If all zero row vectors of sm are removed, a small size echo sy is acquired as

sy = Ĩysm (7)

where Ĩy represents the deformed identity matrix, and it can be denoted as

Ĩy ⇐⇒ I(Ni, :)|Ni∈Gm
= ∅ (8)
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where I and ∅ represent the identity matrix and empty set, respectively.

3. Sub-Echo Segmentation and Reconstruction Azimuth Missing Data SAR
Imaging Algorithm

The detailed steps of the proposed SSR-AMDIA are demonstrated in Figure 2. First
of all, the raw AMD echo is range compressed, and the range cells migration is corrected.
Then, the entire AMD-RCMC echo is split into a series of AMD-RCMC sub-echoes along the
range direction. Next, as the critical step, a set of PCFs are redesigned based on the RCMC
sub-echoes. By multiplying each RCMC sub-echo with its corresponding PCF in the range-
frequency domain, each complete PC-RCMC sub-echo can obtain a sparse representation in
the Doppler domain. Subsequently, the accurate estimations of the complete PC-RCMC sub-
echoes are recovered from the AMD-PC-RCMC sub-echoes using the CS method. In this
article, we employ the Generalized Orthogonal Matching Pursuit (GOMP) algorithm [26] to
reconstruct the full PC-RCMC sub-echoes in order to remove any potential error impacts of
various CS techniques, as in the SOA-AMDIA [3,17,20,27]. Then, the accuracy estimations
of the complete RCMC sub-echoes can be obtained by multiplying the complete PC-RCMC
sub-echoes with the conjugation of the previously mentioned PCFs. Finally, by combining
each reconstructed RCMC sub-echo, the reconstructed RCMC echo of the entire imaging
scene can be acquired, and then after azimuth compression, a satisfied imaging result can
be obtained.

Figure 2. Flowchart of the proposed SSR-AMDIA.

Next, we describe the specific derivation steps of the proposed SSR-AMDIA in detail.

3.1. Range Compression and Range Cell Migration Correction

First, sm(t, η) should accomplish the range Fourier transform to obtain the range-
frequency domain signal Sm( fr, η), which can be expressed as

Sm( fr, η) = wr( fr)wa(η) exp
(−jπ f 2

r
Kr

)
exp
{−j4π( fc + fr)RP(η)

c

}
(9)

where fr denotes the range frequency.
Then, the range compressed signal smrc(t, η) can be obtained after range compression,

and the range Doppler domain signal Smrc(t, fη) can be presented as

Smrc
(
t, fη

)
= pr

(
t− 2Rrd

(
fη

)
c

)
wa
(

fη

)
exp

(
−j4π fcRrd

(
fη

)
c

)
(10)

31



Remote Sens. 2023, 15, 2428

where pr stands for the sinc function and fη is the azimuth frequency. The Doppler
instantaneous distance Rrd

(
fη

)
can be written as

Rrd
(

fη

)
≈ R0 +

v2
a

2R0

(
fη

Ka

)2
(11)

where R0 is shortest distance between the platform and the target. Ka is Doppler chirp rate.
The second term of (11) is the range cells migration term.

After RCMC and the azimuth Inverse Fourier Transform (AIFT), the AMD-RCMC
signal smrcmc(t, η) is demonstrated as

smrcmc(t, η) = pr

(
t− 2R0

c

)
wa(η) exp

(−j4π fcRP(η)

c

)
(12)

3.2. Reconstructing the Sub-Echoes

To reduce the residual phase error of the range far-field targets, the AMD-RCMC
echo is split into K sub-patches along the range direction. Since target range locations are
determined after RCMC, the range segmentation will not distort the adjacent sub-scenes.
To redesign the more effective PCFs, k-th AMD-RCMC sub-echo skth

mrcmc(t, η) transforms to
range-frequency domain, which is described as

Skth
mrcmc( fr, η) = wr( fr)wa(η) exp

(−j4π frR0

c

)
exp
(−j4π fcRP(η)

c

)
(13)

Thus, k-th redesigned PCF θ
kth
ref ( fr, η) is defined as

θ
kth
ref ( fr, η) = exp

(
j4π frRkth

ref0
c

)
exp

(
j4π fcRkth

ref(η)

c

)
(14)

where Rkth
ref0 is the shortest slant range of k-th reference point Pkth

ref (xkth
ref , ykth

ref , 0). The Rkth
ref

represents the slant range between Pkth
ref (xkth

ref , ykth
ref , 0) and the moving platform (xi, yi, h). It

can be expressed as

Rkth
ref(η) =

√
(xi − xkth

ref)
2 +
(

yi − ykth
ref

)2
+ h2 (15)

Next, the azimuth missing redesigned PCF θ
kth
mref is acquired based on (6), that is

θ
kth
mref = Λmθ

kth
ref (16)

The PCF designation is the key step of the proposed SSR-AMDIA. A sparse PC-RCMC
sub-echo Skth

pc (t, fη) that is likewise the waiting-recovering signal may be generated in the

Doppler domain by multiplying Skth
rcmc( fr, η) by θ

kth
ref ( fr, η), which is represented by

Skth
pc (t, fη) = FFTa

[
IFFTr

[
Skth

rcmc( fr, η)θ
kth
ref ( fr, η)

]]
(17)

where FFTa[·] and IFFTr[·] are azimuth Fast Fourier Transform and range Inverse Fast
Fourier Transform, respectively.

Since the main purpose of the proposed SSR-AMDIA is to reconstruct Spc(t, fη), its
sparsity is vital for the signal reconstruction.

To evaluate the focusing performance of the redesigned PCFs, Spc(t, fη) results ob-
tained by different methods are shown in Figure 3. There are nine targets in the imaging
scene, and the SOA-AMDIA’s Spc(t, fη) is shown in Figure 3a. Obviously, only the center
point is well-focused. The significant defocus can be easily found on the edge targets.
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Therefore, the effectiveness of SOA-AMDIA’s PCF for larger scenarios is limited. Moreover,
Figure 3b is imaged using the proposed SSR-AMDIA before the sub-echo segmentation.
Compared with the Figure 3a, the azimuth far-field targets at the center range are well-
focused. However, it still cannot remove the residual phase error caused by the range
differences. The range edge targets are still defocused. When a series of segmented
θ

kth
ref ( fr, η) are used, the most sparse Spc(t, fη) can be obtained by observing Figure 3c. The

two-dimensional residual phase errors of the borderline targets are significantly reduced.
The focusing performance of the redesigned PCFs is validated.

Figure 3. Spc(t, fη) results obtained by (a) the SOA-AMDIA; (b) the proposed SSR-AMDIA without
range segmentation; (c) the proposed SSR-AMDIA.

Next, the detailed reconstruction steps of the proposed SSR-AMDIA are introduced as
follows. Firstly, the small size phase-compensated signal skth

ypc can be demonstrated as the
same as (7)

skth
ypc = Ĩyskth

mpc (18)

skth
ypc(t, η) must be segmented into several one-dimensional range signals in order to

accommodate the one-dimensional signal recovery processing. The q-th (1 ≤ q ≤ NR)
range signal can be expressed as skth

ypc(tq, η), where NR denotes the number of entire range

gates. In the proposed SSR-AMDIA, the q-th estimated range signal Skth
pc (tq, fη) is regarded

as the signal x in CS method, while Skth
ypc(tq, η) is considered as the compressed signal vector

y. Accordingly, since Skth
pc (tq, fη) is direct sparse, ΦyAIFT is understood as being the sensing

matrix A.First, the complete AIFT matrix ΦAIFT is illustrated as

ΦAIFT =
1

NA

⎡⎢⎢⎢⎣
exp
(

j 2πη1η1
ηNA

)
· · · exp

(
j

2πη1ηNA
ηNA

)
...

. . .
...

exp
(

j
2πηNA η1

ηNA

)
· · · exp

(
j

2πηNA ηNA
ηNA

)
⎤⎥⎥⎥⎦ (19)
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Similar to the Equations (6) and (16), the partial missing AIFT matrix ΦmAIFT is
obtained by

ΦmAIFT = ΛmΦAIFT (20)

Similar to (7), the small size AIFT matrix ΦyAIFT is gained by

ΦyAIFT = ĨyΦmAIFT (21)

Its size is equal to (NA − NM)× NA. Consequently, the sub-echoes reconstructing process
can be formulated as

min
S

kth
pc (tq , fη)

||Skth
pc (tq, fη)||1,

s.t. ||ΦyAIFTSkth
pc (tq, fη)− skth

ypc(tq, η)||2 ≤ ε

(22)

where ε denotes the threshold value.
To eliminate the possible error effects of different recovery methods, the estimated

Ŝkth
pc (tq, fη) is reconstructed using the GOMP algorithm in this article. Table 1 or [26] contains

the specific steps for the GOMP algorithm.

Table 1. The specific steps for the GOMP algorithm based on skth
ypc(tq, η).

Step 1 Input the indices number of each selection P, the maximum number of itera-
tions Imax, the threshold parameter ε and ΦyAIFT;

Step 2 Initialize the iteration parameter It=1, let the residue signal r0 = skth
ypc(tq, η),

and set a new sensing matrix B0 = ∅;
Step 3 Let It = It + 1;
Step 4 Calculate the largest P values in

∣∣〈r It−1, ΦyAIFT
〉∣∣ from the largest to smallest

and then the corresponding φmaxp
are selected;

Step 5 Update matrix BIt = BIt−1 ∪
[
φmax1

, · · · , φmaxP

]
and calculate the estimated

value of complete signal vector by α̂ =
((

BIt)H
BIt
)−1(

BIt)H
skth

ypc(tq, η),
where H represents the conjugate transpose operation;

Step 6 Update residue signal r It = skth
ypc(tq, η)− BItα̂;

Step 7 If It = Imax or ||r It||2 ≤ ε, let Ŝ
kth
pc (tq, fa) = α̂. Else go to Step 3.

Once the reconstructed one-dimensional signals Ŝkth
pc (tq, fη) are combined, the k-th

segment sub-echo Ŝkth
pc (t, fη) can be acquired. It follows that the conjugation of θ

kth
ref ( fr, η)

must be compensated in order to obtain the k-th segment ŝkth
rcmc(t, η), which is represented by

Ŝkth
rcmc( fr, η) = Ŝkth

pc ( fr, η)conj
(

θ
kth
ref ( fr, η)

)
(23)

3.3. Combining the Sub-Echoes and Entire Scene Imaging

To obtain the reconstructed complete RCMC echo ŝrcmc of entire imaging scene, a
series of ŝkth

rcmc are combined in sequence, that is

ŝrcmc =
⌊

ŝ1st
rcmc, · · · , ŝkth

rcmc, · · · , ŝKth
rcmc

⌋
(24)

where ·� denotes the combination operation.
The normalized recovery error results between srcmc(t, η) and ŝrcmc(t, η) are illustrated

in Figure 4. Figure 4a is obtained using the SOA-AMDIA and Figure 4b is obtained using the
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proposed SSR-AMDIA. In order to quantitatively evaluate the reconstruction performance,
the average normalized recovery error Ea is defined as

Ea = mean

(
t∈QR

∑
NA−1

∑
η=0

(∣∣∣∣ srcmc(t, η)

max(srcmc(t, η))

∣∣∣∣− ∣∣∣∣ ŝrcmc(t, η)

max(ŝrcmc(t, η))

∣∣∣∣)
)

(25)

where QR represents the range cells set corresponding to the presence of targets after
RCMC, and mean(·) denotes the average function. According to Figure 4, Ea of Figure 4a is
equal to 0.087, which is almost half to that of Figure 4b, which is equal to 0.179. Therefore,
the proposed SSR-AMDIA obviously has a better reconstruction performance.

Finally, since a satisfied complete RCMC echo of the entire scene is estimated, an
excellent-focused image can be obtained via azimuth compression.

Figure 4. The normalized recovery error between srcmc(t, η) and ŝrcmc(t, η) by using (a) the SOA-
AMDIA; (b) the proposed SSR-AMDIA.

4. Parameter Analysis

As mentioned before, we consider extending the maximum DOFs of SOA-AMDIA in
azimuth and range directions, respectively. Thus, the range segmentation is applied in the
proposed SSR-AMDIA. However, the identical segmentation idea cannot be exploited to
enlarge the azimuth imaging scope. Azimuth segmentation may result in too few azimuth
samples available in some sub-apertures, especially in the case of random missing. Sub-
apertures with a high AMR will be detrimental to complete sub-aperture reconstruction [3].
Hence, although the proposed SSR-AMDIA extends the azimuth maximum DOF, it has a
limitation. Moreover, there is no limit to the maximum range imaging scope of the proposed
SSR-AMDIA under a proper segmentation. We next analyze the azimuth maximum DOF
and range segmentation strategy of the proposed algorithm. The computational complexity
advantage is also investigated.

4.1. Azimuth Maximum Depth of Focus

In 2005, B. Rigling analyzed the imaging scene size limits for the PFA in the monostatic
SAR system situation [28]. When the absolution value of residual Quadratic Phase Error
after the PFA (PFA-QPE) |ΦQPE| < π/4 , the PFA’s maximum well-focused radius rmax can
be expressed as

rmax < ρa

√
2Rref0

λ
(26)

where ρa and λ denote the azimuth resolution and wavelength, respectively. The prerequi-
site for applying (26) is that there are no unknown motion measurement errors during the
flight. Otherwise, the phase errors will lead to an irreparable defocus to the image long
before the far-field approximation (26) breaks down.
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In 2016, L. Gorham and B. Riging further derived the imaging scene size limits for the
PFA in the linear flight case [18]. The residual PFA-QPE ΦQPE can be written as

ΦQPE = − L2
aπ

2λ

(
1

RP0
− 2

Rref0
− y2

R3
P0

+
RP0

R2
ref0

)
(27)

where La is the length of synthetic aperture and RP0 can be calculated as

RP0 = RP|yi=0 =

√
(xi − x)2 + (0− y)2 + h2 (28)

The value of ΦQPE is related to the position of targets. Assume fc = 1 GHz,
Rref0 = 3300 m, ΦQPE result in different positions is shown in Figure 5a. The maximum
focus area is limited to a circle of which radius equals 148.3 m after the PFA imaging.
However, since the SOA-AMDIA only utilizes the phase compensation process of PFA, the
maximum DOF of Spc(t, fη) decreases rapidly [29,30].

Figure 5. (a) Residual Quadratic Phase Error ΦQPE after PFA. The inner white contour line represents
an error of π/4, while the outer white contour line represents an error of π/2. The black contour
circle denotes the maximum well-focused radius rmax deduced in [28], where the rmax = 148.3 m.
(b) Simulated image of Spc(t, fη) obtained by the SOA-AMDIA. The meaning of the red contour circle
is the same as the black contour circle in (a).

To illustrate this phenomenon more clearly, we form Spc(t, fη) using the SOA-AMDIA
with a regular grid in actual coordinates in Figure 5b. Due to the impact of the range cells
migration and the residual phase error, the azimuth edge targets of Figure 5b are distorted
and defocused severely while only the centroid is excellent-focused. Although it is clearly
sparser than the dense time domain signal, the maximum DOF of Spc(t, fη) is only 25 m,
much less than 148.3 m. The aforementioned conclusion has been verified in simulation.
The low-quality Spc(t, fη) will impair full echo reconstruction. The applicable imaging
scope of the SOA-AMDIA will be significantly reduced.

In response to this problem, the range cells migration effect of the raw echo is removed
by the proposed SSR-AMDIA. Then, a new PCF is redesigned to enhance the sparsity of
Spc(t, fη) and to extend the maximum azimuth DOF.

First, the residual phase error ΦE between the scattering point and the reference point
can be represented as

ΦE = −4πΔR(η)
λ

(29)

where ΔR = RP − Rref is the differential slant range, and the expressions of RP and Rref
can be found in (3) and (15), respectively. The second-order Taylor series approximation of
ΔR is performed as
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(30)

Let the monostatic SAR system moves at a constant speed in the azimuth direction
(+y direction), the first and second derivatives of RP and Rref can be calculated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂RP
∂η

= − (y− yi)

RP

∂yi
∂η

∂Rref
∂η

=
yi

Rref

∂yi
∂η

∂2RP

∂η2 = − 1
RP

(
(y− yi)

∂2yi
∂η2 −

(
∂yi
∂η

)2
+

(
∂RP
∂η

)2
)

∂2Rref

∂η2 =
1

Rref

(
yi

∂2yi
∂η2 +

(
∂yi
∂η

)2
−
(

∂Rref
∂η

)2
)

(31)

where ∂yi/∂η = La/2 and ∂2yi/∂η2 = 0.
The residual QPE after RCMC and phase compensation (PC-RCMC-QPE) Φ̃QPE is

thus computed as

Φ̃QPE = −2π

λ

(
∂2RP

∂η2

∣∣∣∣
η=0

− ∂2Rref

∂η2

∣∣∣∣
η=0

)

=
L2

aπ
(
y2Rref0 + R3

P0 − R2
P0Rref0

)
2λR3

P0Rref0

. (32)

Suppose fc = 1 GHz, Rref0 = 3300 m, PC-RCMC-QPE Φ̃QPE result in different posi-
tions is shown in Figure 6a and we form the calculated Spc(t, fη) by (17) when K = 1 with
a regular grid in actual coordinates in Figure 6b.

Figure 6. (a) Residual Quadratic Phase Error Φ̃QPE after the RCMC and phase compensation. The
inner white contour line represents an error of π/4, while the outer white contour line represents an
error of π/2. (b) Simulated image of Spc(t, fη) obtained by (17) when K = 1. The meaning of the red
contour lines is the same as the white contour lines in sub-figure (a).
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Figure 6b is significantly sparser than Figure 5b. The azimuth maximum DOF is
substantially enlarged. Let

∣∣∣Φ̃QPE

∣∣∣ = π/2 and x = 0, the azimuth coordinate yQPE can be
calculated as

yQPE = ±

√√√√( L2
aR3

ref0
L2

a + λRref0

)2/3

− Rref0 (33)

Substitute the above-mentioned simulation parameters into (33), then two farthest points,
Py1(0,−194.05, 0) and Py2(0, 194.05, 0), that can achieve an excellent focus are obtained.
Thus, the azimuth maximum DOF ΔyQPE = 194.05− (−194.05) = 388.10 m, which is much
larger than that in Figure 5b.

A strong sparsity of Spc(t, fη) will facilitate the signal reconstruction. Hence, the
azimuth maximum DOF of Spc(t, fη) given by (33) is conservative compared to that of
the final image. We found that Py(0,±400, 0) in the final image can still be accurately
focused using the proposed algorithm with the above-mentioned simulation parameters.
Conversely, the azimuth maximum DOF using SOA-AMDIA only reaches about ±70 m
under identical simulation conditions.

4.2. Range Segmentation Strategy

Figure 6b exhibits the limited range maximum DOF of Spc(t, fη) as well. Motivated
by [15,19], the range segmentation is applied to expand the imaging scene scope in range
direction. By observing Equation (32), the contour shape of Φ̃QPE = 0 is a circle in the plane
of y = 0, of which radius equals Rref0. Since the imaging scene is limited in the plane of
z = 0, Φ̃QPE = 0 can only be obtained at two points (0, 0, 0) and (2Rref0, 0, 0). Similarly, the
contour shapes of Φ̃QPE = −π/2 and Φ̃QPE = π/2 are two circles in the plane of y = 0

with different radius. It indicates that only four targets can ensure
∣∣∣Φ̃QPE

∣∣∣ = π/2 in the
y = z = 0 case.

Let
∣∣∣Φ̃QPE

∣∣∣ = π/2 and y = 0, the range coordinate xQPE can be calculated as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xQPE = xi ±

√(
L2

aRref0

L2
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)2

− h2, Φ̃QPE = −π

2

xQPE = xi ±
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L2
aRref0

L2
a + λRref0

)2

− h2, Φ̃QPE =
π

2

(34)

Hence, Px1(−17.3, 0, 0), Px2(17.1, 0, 0), Px3(6582.9, 0, 0) and Px4(6617.3, 0, 0) are obtained by
substituting the above-applied simulation parameters into (34). Obviously, only Px1(−17.3, 0, 0)
and Px2(17.1, 0, 0) are located in the imaging scene. The range maximum DOF is
ΔxQPE = 17.1− (−17.3) = 34.4 m.

Obviously, when there is no target existing in the q-th range profile, the value of
Smpc(tq, fη) is equal to zero. The zero row vectors do not need to be reconstructed. We
assume that the number of the range profiles that exist targets equals NE. Therefore, the
NE range profiles of AMD-RCMC echo should be split into K sub-patches. The size of
each sub-echo equals (NA − NM)× NE/K, where NE/K ≤ ΔxQPE/Δx and Δx denotes the
interval of adjacent range cells.

Figure 7 demonstrates the simulated images of Skth
pc (t, fη) based on the aforementioned

range segmentation strategy. By adequately segmenting the imaging scene within the
azimuth maximum DOF, all targets corresponding to Skth

pc (t, fη) can be well-focused. The
proposed SSR-AMDIA can guarantee the estimation accuracy of the complete echo in a
larger imaging scene.
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Figure 7. Simulated images of Skth
pc (t, fη) obtained by (17) when K = 12.

Moreover, since the proposed algorithm performs RCMC on the raw data before the
range segmentation, the range position information of the sparse target is determined.
Thus, it will not deteriorate the reconstruction error.

4.3. Computational Complexity

Assume that the number of entire range gates equals NR and NE sparse targets spread
out along the range direction (NE ≤ NR). Since the range position information of the
target is hidden in all range profiles before range compression and RCMC, no matter how
many sparse targets exist, NR times reconstructions are required using the SOA-AMDIA.
Contrarily, the proposed SSR-AMDIA only needs NE times reconstructions to complete
echo reconstruction. Suppose the computational complexity of one-dimensional GOMP
algorithm equals O, then the computational complexity of the SOA-AMDIA is NRO, while
that of the proposed SSR-AMDIA is equal to NEO. It implies that the computational com-
plexity of the proposed SSR-AMDIA is NE/NR times to that of SOA-AMDIA. Obviously,
when fewer range profiles exist sparse targets, the computational complexity advantage of
the proposed SSR-AMDIA is prominent.

5. Simulation and Real-Measured Experiment Validation

5.1. Simulation Verification of the Proposed SSR-AMDIA

An AMD-SAR imaging simulation is performed to evaluate the validation of the
proposed SSR-AMDIA. Simulation parameters are shown in Table 2.

After allowing for 64 azimuth missing samples, we estimate that there are 64 available
samples, making the AMR equals 50%. 600 range cells are segmented and reconstructed.
Let the segment number K = 12. Thus the range cell number of each sub-patch equals 50.

Figure 8a depicts a grid of point targets spaced at 20 m intervals extending from
−200 m to +200 m in both range and azimuth directions. The scenario geometry is chosen
to accentuate the defocus effects. The imaging result obtained using the SOA-AMDIA
is demonstrated in Figure 8b. In Figure 8b, only the targets near the center point can be
excellent-focused, while the peripheral targets are defocused. Contrarily, all targets can be
clearly imaged by using the proposed SSR-AMDIA in the AMD echo situation, as shown in
Figure 8c.
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To exhibit the imaging performance of the proposed SSR-AMDIA in more detail, two
far-field targets PA(200, 200, 0) and PB(−200,−200, 0) are selected and marked with yellow
squares in Figure 8b,c. These squares are zoomed for clearer exhibit in Figure 8d–g. In
comparison to the Figure 8d,f, the false targets are eliminated using the proposed SSR-
AMDIA, as shown in Figure 8e,g. While the azimuth resolution is maintained around
1 m, the azimuth Peak Side-lobe Ratio (PSLR) of P′A and P′B can reach −10 dB, which are
much superior to that of PA and PB. It can be observed that the PSLR results of P′A and
P′B are not as good as the ideal PSLR result. This is because the proposed SSR-AMDIA is
an aperture estimation algorithm. Therefore, there are inevitably estimation errors in the
estimated aperture signal, resulting in imperfect focus in the final imaging result. However,
compared to SOA-AMDIA, its focusing performance has been significantly improved.
Thus, the effectiveness of the proposed SSR-AMDIA is verified. The limits of the imaging
scene size have been significantly expanded. The imaging quality of far-field targets has
been improved. Moreover, the running times of the SOA-AMDIA and proposed SSR-
AMDIA are calculated by the average of 50 times Monte Carlo simulations. The simulations
are manipulated with the laptop that was configured with the Intel Core i5-1135G7 CPU,
eight cores, and 16-GB RAM. The running time of the SOA-AMDIA equals 459.52 s while
that of the proposed SSR-AMDIA equals 238.33 s, almost half of the former result. Therefore,
the computational complexity advantage of the proposed SSR-AMDIA has been verified.

Table 2. Key parameters for simulation.

Parameters Value

Central frequency/ fc 1 GHz
Shortest central slant range / Rref0 3300 m
Signal frequency bandwidth / B 100 MHz
Range sampling rate / fs 200 MHz
Pulse repetition frequency / PRF 197 Hz
Range samples / NR 1002
Azimuth samples / NA 2048
Azimuth missing ratio / AMR 50%

Figure 8. (a) Synthetic point targets grid. (b) Simulated image obtained by the SOA-AMDIA. (c) Sim-
ulated image obtained by the proposed SSR-AMDIA. (d) Zoomed PA. (e) Zoomed P′A. (f) Zoomed
PB. (g) Zoomed P′B.
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5.2. Measured Data Verification of the Proposed SSR-AMDIA

In order to further explore the theoretical analyses offered in this study, a real measured
SAR experiment is designed and implemented based on a 77GHz millimeter-wave radar.
As shown in Figure 9a, the radar is placed on an electric track 1.40 m above the ground
and moved in the azimuth direction at a speed of 2.13 cm/s, forming a linear aperture
with a length of 1.57 m. When the millimeter-wave radar stops, the SAR system collects a
two-dimensional SAR echo with a size of 1024× 1960.

First, to determine the azimuth and range maximum DOF, Φ̃QPE is analyzed based
on the measured SAR parameters. Substitute the related experiment parameters into
(33) and (34), the two-dimensional maximum DOF can achieve 2.04 m and 0.32 m, respec-
tively. We place five triangle reflectors in the scene based on the theoretical analysis. Target1
(11.10, −1.10), Target2 (11.10, 1.12), Target4 (9.24, −1.10), and Target5 (9.28, 1.02) are placed
on the a square’s four vertices. Additionally, Target3 (10.12, 0.00) is placed in the center, as
shown in Figure 9b. Figure 9c displays the image result obtained using the Range Doppler
algorithm with the real measured complete echo.

The AMD echo in the first experiment is produced by a periodic gap that occurs every
40 pulses. Hence, the AMR is equal to 50%. Figure 10a,b illustrate the final images focused
by using SOA-AMDIA and the proposed SSR-AMDIA, respectively. Obviously, the SOA-
AMDIA cannot effectively reconstruct a satisfied image. On the other hand, all five point
targets are accurately focused through the proposed SSR-AMDIA, as shown in Figure 10b.
It implies that SSR-AMDIA can significantly improve the imaging performance in a larger
imaging scope. Therefore, the effectiveness of the proposed algorithm is successfully
verified in the real SAR data. Image Entropy (IE) is also presented to assess the imaging
performance of the above-mentioned two imaging algorithms. The lower the IE, the
superior the focus of the imaging algorithm. The IE values corresponding to Figure 10a,b
are 1.533 and 1.352, respectively. Compared with Figure 9c, the imaging result obtained
using the proposed SSR-AMDIA is almost identical. Additionally, the IE result of Figure 10b
reaches the equivalent level of Figure 9c. Thus, the proposed algorithm obviously obtains a
superior focusing performance.

Figure 9. (a) The 77 GHz millimeter-wave SAR system for the real measured experiment. The electric
track length equals 1.57 m and the radar height equals 1.40 m. (b) The large imaging scene consists
of five triangle reflectors. They are Target1 (11.10, −1.10), Target2 (11.10, 1.12), Target3 (10.12, 0.00),
Target4 (9.24, −1.10), and Target5 (9.28, 1.02). (c) The image result obtained by using the Range
Doppler algorithm with the real measured complete echo.
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Additionally, to comprehensively investigate the applicability of the proposed algo-
rithm, a random AMD echo is set in the second experiment. Suppose that the SAR system
is randomly subjected to 10 strong interferences during the data acquisition, and each
interference causes 5% aperture data loss. In this case, AMR still equals 50% and the data
size of random AMD echo is still 1024× 980. Figure 11 demonstrates the imaging results
comparison, which leads to the identical conclusion to that of Figure 10. The proposed algo-
rithm can still accurately focus all targets while all targets obtained using the SOA-AMDIA
are defocused. Compared with the IE = 1.525 obtained in Figure 11a, the IE can achieve
1.379 using the proposed SSR-AMDIA. Therefore, its effectiveness is fully verified on the
measured SAR data once more.

Moreover, the running times of the SOA-AMDIA and proposed SSR-AMDIA are
calculated by the average of 50 times Monte Carlo simulations. Table 3 shows the running
time results. It can be found that the running time of the proposed SSR-AMDIA is much
smaller than that of the SOA-AMDIA under both 50% periodic missing and 50% random
missing conditions. Specifically, the proposed SSR-AMDIA needs 7.92 s to reconstruct the
complete echo under periodic conditions, which is only about 1/7 of the existing method.
Furthermore, in the random case, the running time of the proposed algorithm can be about
4 times faster than the SOA-AMDIA. A superior imaging result may be acquired more
efficiently with the proposed SSR-AMDIA.

Figure 10. (a) Real measure data image targets obtained by the SOA-AMDIA with 50% periodic AMD
echo. (Note that since the scene center point in this experiment is located at half of the maximum
slant range, which is the (15, 0), all targets cannot be well-focused using the SOA-AMDIA.) (b) Real
measure data image obtained by the proposed SSR-AMDIA with 50% periodic AMD echo.

Figure 11. (a) Real measure data image obtained by the SOA-AMDIA with 50% random AMD echo.
(Note that since the scene center point in this experiment is located at half of the maximum slant range,
which is the (15, 0), all targets cannot be well-focused using the SOA-AMDIA.) (b) Real measure data
image obtained by the proposed SSR-AMDIA with 50% random AMD echo.
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Table 3. Running times of two AMD-SAR imaging algorithms under the real measured SAR
data condition.

SOA-AMDIA SSR-AMDIA

50% Periodic Missing 53.25 7.92
50% Random Missing 29.39 7.04

5.3. Imaging Performance Effects on Different Azimuth Missing Ratios

Moreover, in order to evaluate the imaging performance effects of the proposed SSR-
AMDIA on different AMRs, a series of simulations based on real measured SAR data
are designed and implemented. We assume that the radar system will be subjected to
11–17 strong interferences during the motion, and each substantial interference will result
in 5% azimuth data loss. Therefore, the AMR will gradually increase from 55% to 85%. The
imaging results obtained by the proposed SSR-AMDIA are shown in Figure 12.

Figure 12. Image result obtained by the proposed SSR-AMDIA with the real measured SAR data when
(a) AMR = 55%; (b) AMR = 60%; (c) AMR = 65%; (d) AMR = 70%; (e) AMR = 75%; (f) AMR = 80%;
(g) AMR = 85%.

Obviously, when AMR ≤ 70%, the proposed SSR-AMDIA can obtain satisfactory
imaging results. Targets in the imaging scene are well-focused. When AMR > 70%, the
imaging quality of SSR-AMDIA gradually decreases, and the imaging results have obvious
side-lobes along the azimuth direction. This situation will further deteriorate as AMR rises.
In order to measure the imaging quality of the proposed method in different AMR cases,
we also introduce IE to quantitatively analyze the imaging results, as Figure 13a shows.
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Figure 13. (a) Image Entropy results obtained by the SOA-AMDIA and the proposed SSR-AMDIA
in different AMR cases. (b) Running times of the SOA-AMDIA and the proposed SSR-AMDIA in
different AMR cases.

In all AMR cases, the image focusing performance of the proposed SSR-AMDIA is
superior to that of the SOA-AMDIA. It can be found that the IE has a significant increase,
reaching 1.424, when AMR = 75%. It is identical to the conclusion in Figure 12, indi-
cating that when AMR > 70%, the imaging performance of the proposed SSR-AMDIA
decreases obviously.

Additionally, we calculated and analyzed the running time of the two algorithms
under different AMR conditions through 50 Monte Carlo experiments. The results are
shown in Figure 13b. Same as the previous simulation and experimental results, the running
time of SSR-AMDIA is much smaller than SOA-AMDIA. Concretely, the SSR-AMDIA takes
only a few seconds to reconstruct the complete signal, which is an order of magnitude
less than the SOA-AMDIA. So far, the imaging performance effects on different AMRs
have been comprehensively analyzed. The proposed AMD-SAR imaging algorithm has
obvious advantages.

6. Conclusions

In this paper, we propose SSR-AMDIA to solve the AMD-SAR imaging problem. The
effectiveness of the proposed algorithm has been verified in both simulations and the
measured SAR experiments. Additionally, we derive the two-dimensional maximum DOFs
of the proposed algorithm and perform a rigorous theoretical analysis of the SSR-AMDIA’s
imaging scope. Compared with SOA-AMDIA, the proposed method can eliminate the
limitation of the range maximum focusable scope, while the azimuth maximum focusable
scope can be expanded by about 6 times. Our work found that the SOA-AMDIA has
unacceptable focusable imaging size in the case of small shortest instantaneous distance or
synthetic aperture length. The algorithm proposed in this paper can cope with this problem
well and improve the applicability of AMD-SAR imaging. Furthermore, the imaging
performance effects on different AMRs have been investigated. When AMR ≤ 70%,
the proposed SSR-AMDIA can obtain satisfactory imaging results. It indicates that the
proposed algorithm can handle most AMR cases. Furthermore, with the multi-dimensional
development of radar signals, our next logical step is to deal with the AMD-SAR imaging
problems under various robust waveforms [31,32].

Author Contributions: Conceptualization, N.J.; Software, J.W.; Formal analysis, Z.X.; Writing—review
& editing, J.Z. and D.F.; Supervision, X.H. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant
number 62101562.

Data Availability Statement: Not applicable.

44



Remote Sens. 2023, 15, 2428

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pinheiro, M.; Rodriguez-Cassola, M.; Prats-Iraola, P.; Reigber, A.; Krieger, G.; Moreira, A. Reconstruction of coherent pairs of
synthetic aperture radar data acquired in interrupted mode. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1876–1893. [CrossRef]

2. Qian, Y.; Zhu, D. SAR Image Formation From Azimuth Periodically Gapped Raw Data Via Complex ISTA. In Proceedings of the
2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 26–29 November 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 1–5.

3. Jiang, N.; Feng, D.; Wang, J.; Huang, X. Missing data SAR imaging algorithm based on two dimensional frequency domain
recovery. In Proceedings of the 2022 IEEE International Geoscience and Remote Sening Symposium, Kuala Lumpur, Malaysia,
17–22 July 2022; IEEE: Piscataway, NJ, USA, 2022.

4. Salzman, J.; Akamine, D.; Lefevre, R.; Kirk, J.C. Interrupted synthetic aperture radar (SAR). IEEE Aerosp. Electron. Syst. Mag.
2002, 17, 33–39. [CrossRef]

5. Li, J.; Stoica, P. An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Trans. Signal Process. 1996,
44, 1469–1484. [CrossRef]

6. Stoica, P.; Larsson, E.G.; Li, J. Adaptive filter-bank approach to restoration and spectral analysis of gapped data. Astron. J. 2000,
120, 2163. [CrossRef]

7. Larsson, E.G.; Stoica, P.; Li, J. Amplitude spectrum estimation for two-dimensional gapped data. IEEE Trans. Signal Process. 2002,
50, 1343–1354. [CrossRef]

8. Wang, Y.; Stoica, P.; Li, J.; Marzetta, T.L. Nonparametric spectral analysis with missing data via the EM algorithm. Digit. Signal
Process. 2005, 15, 191–206. [CrossRef]

9. Stoica, P.; Li, J.; Ling, J.; Cheng, Y. Missing data recovery via a nonparametric iterative adaptive approach. In Proceedings of
the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, Taiwan, 19–24 April 2009; IEEE:
Piscataway, NJ, USA, 2009; pp. 3369–3372.

10. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
11. Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency

information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [CrossRef]
12. Yang, J.; Thompson, J.; Huang, X.; Jin, T.; Zhou, Z. Random-frequency SAR imaging based on compressed sensing. IEEE Trans.

Geosci. Remote Sens. 2012, 51, 983–994. [CrossRef]
13. Bi, H.; Zhu, D.; Bi, G.; Zhang, B.; Hong, W.; Wu, Y. FMCW SAR sparse imaging based on approximated observation: An overview

on current technologies. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4825–4835. [CrossRef]
14. Zhou, K.; Li, D.; He, F.; Quan, S.; Su, Y. A Sparse Imaging Method for Frequency Agile SAR. IEEE Trans. Geosci. Remote Sens. 2022,

60, 1–16. [CrossRef]
15. Yang, J.; Thompson, J.; Huang, X.; Jin, T.; Zhou, Z. Segmented reconstruction for compressed sensing SAR imaging. IEEE Trans.

Geosci. Remote Sens. 2013, 51, 4214–4225. [CrossRef]
16. Sun, S.; Zhu, G.; Jin, T. Novel methods to accelerate CS radar imaging by NUFFT. IEEE Trans. Geosci. Remote Sens. 2014,

53, 557–566.
17. Qian, Y.; Zhu, D. High-resolution SAR imaging from azimuth periodically gapped raw data via generalised orthogonal matching

pursuit. Electron. Lett. 2018, 54, 1235–1237. [CrossRef]
18. Gorham, L.A.; Rigling, B.D. Scene size limits for polar format algorithm. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 73–84.

[CrossRef]
19. Chen, J.; An, D.; Wang, W.; Luo, Y.; Chen, L.; Zhou, Z. Extended Polar Format Algorithm for Large-Scene High-Resolution

WAS-SAR Imaging. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5326–5338. [CrossRef]
20. Liu, K.; Yu, W.; Lv, J. Azimuth interrupted FMCW SAR for high-resolution imaging. IEEE Geosci. Remote Sens. Lett. 2020,

19, 4001105. [CrossRef]
21. Liu, K.; Yu, W.; Lv, J.; Tang, Z. Parameter Design and Imaging Method of Spaceborne Azimuth Interrupted FMCW SAR. IEEE

Geosci. Remote Sens. Lett. 2021, 19, 4015505. [CrossRef]
22. Wu, J.; Feng, D.; Wang, J.; Huang, X. SAR Imaging from Azimuth Missing Raw Data via Sparsity Adaptive StOMP. IEEE Geosci.

Remote Sens. Lett. 2021, 19, 4501605. [CrossRef]
23. Jiang, N.; Wang, J.; Feng, D.; Kang, N.; Huang, X. SAR Imaging Method for Moving Target With Azimuth Missing Data. IEEE J.

Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7100–7113. [CrossRef]
24. Jiang, N.; Xin, Q.; Zhu, J.; Feng, D.; Wang, J.; Huang, X. Enhancement synthetic aperture imaging algorithm with azimuth missing

data. Electron. Lett. 2023, 59, e12729. [CrossRef]
25. Cumming, I.G.; Wong, F.H. Digital processing of synthetic aperture radar data. Artech House 2005, 1, 108–110.
26. Wang, J.; Kwon, S.; Shim, B. Generalized orthogonal matching pursuit. IEEE Trans. Signal Process. 2012, 60, 6202–6216. [CrossRef]
27. Liu, K.; Yu, W. Interrupted FMCW SAR imaging via sparse reconstruction. In Proceedings of the IGARSS 2020—2020 IEEE

International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; IEEE: Piscataway,
NJ, USA, 2020; pp. 1564–1567.

45



Remote Sens. 2023, 15, 2428

28. Rigling, B.D.; Moses, R.L. Taylor expansion of the differential range for monostatic SAR. IEEE Trans. Aerosp. Electron. Syst. 2005,
41, 60–64. [CrossRef]

29. Walker, J.L. Range-Doppler imaging of rotating objects. IEEE Trans. Aerosp. Electron. Syst. 1980, AES-16, 23–52. [CrossRef]
30. Quegan, S. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. J. Atmos. Sol.-Terr. Phys. 1997, 59, 597–598.

[CrossRef]
31. Xie, Z.; Fan, C.; Xu, Z.; Zhu, J.; Huang, X.; Senior Member, I. Robust joint code-filter design under uncertain target interpulse

fluctuation. Signal Process. 2022, 201, 108687. [CrossRef]
32. Xie, Z.; Xu, Z.; Fan, C.; Han, S.; Huang, X. Robust Radar Waveform Optimization Under Target Interpulse Fluctuation and

Practical Constraints Via Sequential Lagrange Dual Approximation. IEEE Trans. Aerosp. Electron. Syst. 2023, early access.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

46



Citation: Zhu, J.; Song, Y.; Jiang, N.;

Xie, Z.; Fan, C.; Huang, X. Enhanced

Doppler Resolution and Sidelobe

Suppression Performance for Golay

Complementary Waveforms. Remote

Sens. 2023, 15, 2452. https://doi.org/

10.3390/rs15092452

Academic Editor: Andrzej

Stateczny

Received: 22 March 2023

Revised: 22 April 2023

Accepted: 28 April 2023

Published: 6 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Communication

Enhanced Doppler Resolution and Sidelobe Suppression
Performance for Golay Complementary Waveforms

Jiahua Zhu 1,2, Yongping Song 3,*, Nan Jiang 3, Zhuang Xie 3, Chongyi Fan 3 and Xiaotao Huang 3

1 College of Meteorology and Oceanography, National University of Defense Technology,
Changsha 410073, China; zhujiahua1019@hotmail.com

2 Hunan Key Laboratory for Marine Detection Technology, Changsha 410073, China
3 College of Electronic Science and Technology, National University of Defense Technology,

Changsha 410073, China; jiangnan@nudt.edu.cn (N.J.); xiezhuang18@nudt.edu.cn (Z.X.);
chongyifan@nudt.edu.cn (C.F.); xthuang@nudt.edu.cn (X.H.)

* Correspondence: songyongping08@nudt.edu.cn

Abstract: An enhanced Doppler resolution and sidelobe suppression have long been practical
issues for moving target detection using Golay complementary waveforms. In this paper, Golay
complementary waveform radar returns are combined with a proposed processor, the pointwise
thresholding processor (PTP). Compared to the pointwise minimization processor (PMP) illustrated
in a previous work, which could only achieve a Doppler resolution comparable to existing methods,
this approach essentially increases the Doppler resolution to a very high level in theory. This study
also introduced a further filtering process for the delay-Doppler map of the PTP, and simulations
verified that the method results in a delay-Doppler map virtually free of range sidelobes.

Keywords: complementary waveforms; pointwise thresholding processor; Doppler resolution;
sidelobe suppression

1. Introduction

Due to complementarity, Golay complementary waveforms are effective at producing
a satisfactory resolution range in a delay-Doppler map, as well as theoretical free-range
side lobes at zero Doppler. Nevertheless, obvious range sidelobes are induced in nonzero
Doppler intervals by their sensitivity to Doppler mismatch during matched filtering, and
it is hard for conventional sidelobe suppression methods such as windowing to elimi-
nate them.

A decade ago, Calderbank and Pezeshki et al. addressed the above problem by
carefully designing Golay complementary waveforms in a specific transmitted order, named
the Prouhet–Thue–Morse (PTM) design, which caused a satisfactory reduction in the range
sidelobes in a narrow band around zero Doppler in the delay-Doppler map [1,2]. In a similar
way, Suvorova et al. extended the idea of transmitted order design from the PTM sequence
to the Reed–Müller codes, achieving a minimum range sidelobe level at a given Doppler
bin in the delay-Doppler map [3]. This was further studied by Dang et al., who presented a
binomial design (BD) algorithm that assigns weights to the matched filtering sequence of
Golay complementary waveforms and significantly expands the sidelobe blanking area
at the cost of an obvious decrease in the Doppler resolution [4]. Based on these works,
Wu et al. employed semidefinite programming as a novel method to design complementary
waveforms for improved sidelobe suppression as well as Doppler resolution [5,6].

However, the aforementioned methods only either preserve the Doppler resolution
(none of them exceed the resolution of the conventional Golay pair) or enlarge the side-
lobe blanking area, but they cannot achieve both at the same time. From another view,
pointwise processing [7] (or cell-by-cell processing in some publications [8,9]) has been
extensively researched in the processing of radar images to integrate the advantages of
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two figures and produce a further improvement in the signal-to-noise ratio (SNR). In our
early work [10], a pointwise minimization processor (PMP) was proposed to combine the
delay-Doppler maps of the BD algorithm with a weighted average Doppler (WD) algorithm
under Golay waveforms, which maintained the Doppler resolution as well as a large side-
lobe suppression area. However, as described before, the results of the PMP cannot exceed
the original Doppler resolution of the waveform. Therefore, another designed pointwise
thresholding processor (PTP) is proposed in this research to replace the PMP, which can
further increase the Doppler resolution. A further filtering process is then applied based on
the delay-Doppler map of the PTP, which almost eliminates the range sidelobes.

In the remainder of the manuscript, a brief introduction to Golay pairs and PMP is first
given in Section 2, then the PTP is introduced. Section 3 presents the simulation results of
the PMP and the PTP and compares the performance under fixed and randomized scenarios.
The delay-Doppler map of a further filtering process after the PTP is also simulated to
illustrate the improved sidelobe suppression performance. The conclusion and future
directions are discussed in Section 4.

2. Golay Complementary Waveforms and Pointwise Processors

2.1. Golay Pairs

A Golay pair (complementary waveforms) consists of two length L sequences, x(l)
and y(l), with several unimodular (±1) values/chips in each sequence [11]. The time
width of each pair is LTc (Tc for each chip). This waveform scheme is well known for its
complementarity, i.e., the autocorrelation of the sequence pair is

Cx(k) + Cy(k) = 2Lδ(k), k = −(L− 1), ..., (L− 1) (1)

where Cx(k) and Cy(k) are the autocorrelation outputs of x(l) and y(l) at lag k, respectively,
and δ(k) is the Kronecker delta function.

The sequence pair cannot be transmitted in the time domain before modulating a
baseband pulse Ω(t) with unit energy on each chip, which means the transmitted sequences
are given as ⎧⎪⎪⎨⎪⎪⎩

x(t) =
L−1
∑

l=0
x(l)Ω(t− lTc)

y(t) =
L−1
∑

l=0
y(l)Ω(t− lTc)

(2)

where ∫ Tc/2

−Tc/2
|Ω(t)|2dt = 1. (3)

Next, the transmission of either x(t) or y(t) is determined by a (P, Q) pulse train.
Here, P = {p(n)}N−1

n=0 is a binary sequence and the transmitted pulses are presented as

zP(t) =
N−1

∑
n=0

p(n)x(t− nT) + [1− p(n)]y(t− nT) (4)

where P = {0, 1, 0, 1 . . .} denotes the standard transmission order and T represents the
pulse repetition interval (PRI). On the other hand, Q = {q(n)}N−1

n=0 stands for the positive
real number weights on the radar returns, where an all 1 sequence is the standard weighting.
Next, the signal for matched filtering is written as

zQ(t) =
N−1

∑
n=0

q(n){p(n)x(t− nT) + [1− p(n)]y(t− nT)} (5)

Specifically, the BD algorithm [4] designs Q as a binomial sequence, i.e., Q = {Cn
N−1}N−1

n=0 .
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According to [12], we then calculate the delay-Doppler map of Golay complementary
waveforms as follows:

χ(t, FD) =
∫ +∞

−∞
zP(s) exp(j2πFDs)z∗Q(t− s)ds (6)

where “*” denotes the complex conjugation.
Based on the Equations (4) and (5), the delay-Doppler map of the Golay pair is further

expanded as

χ(t, FD) =
1
2

L−1

∑
k=−L+1

[Cx(k) + Cy(k)]
N−1

∑
n=0

q(n) exp(j2πFDnT)CΩ(t− kTc − nT)

− 1
2

L−1

∑
k=−L+1

[Cx(k)− Cy(k)]
N−1

∑
n=0

{
(−1)p(n)q(n) exp(j2πFDnT)

CΩ(t− kTc − nT)

} (7)

The first item contains [Cx(k) + Cy(k)], which is an impulse function due to the
complementarity; thus, the sidelobe in the delay-Doppler map is only influenced by the
second item.

For transmission order design methods such as standard order and PTM design, q(n)
is always 1; thus, the sub-item

Θ =
N−1

∑
n=0

(−1)p(n) exp(j2πFDnT) (8)

reaches 0 at θ = 2πnFDT = 2nπ
N , which means it is free of a sidelobe along the θ-Doppler

axes and the Doppler resolution of the target is 2π
N . However, a significant sidelobe can be

observed at other Doppler axes other than θ. Moreover, for the PTM, it is easy to calculate
that Θ is negligible if 2πFDT is small.

For receiving weight design methods, i.e., the BD algorithm, p(n) alternates between
1 and 0, while q(n) is the coefficient of the binomial. Then, the sub-item Θ is further
expressed as

Θ =
N−1

∑
n=0

(−1)nCn
N−1 exp(j2πFDnT) = [1− exp(j2πFDT)]N−1 (9)

Obviously, the expression does not have zero points (which means the Doppler resolu-
tion is poor), while the value is an exponential function and its absolute value exponen-
tially increases as 2πFDT increases. This is the reason why a large sidelobe blanking area
is generated.

The delay-Doppler maps of previous works are plotted in Figure 1 for a better un-
derstanding. As is demonstrated, the delay-Doppler maps of standard order and PTM
design are divided into “grids” by the zero points, while the BD algorithm obtains a large
blanking area with an exponential-like sidelobe on the side. The delay resolutions of the
aforementioned approaches are all 2Tc, which is the width of the impulse function.
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(a) (b) (c)

Figure 1. Delay-Doppler maps: (a) standard order; (b) PTM design; (c) BD algorithm (the unit of the
colorbar is dB, N = 32).

2.2. Pointwise Minimization Procedure

Figure 2 describes the procedure presented in our early work [10], where χBD(t, FD),
χWD(t, FD) and χ(t, FD), respectively, stand for the delay-Doppler maps of the BD al-
gorithm, the WD algorithm and this procedure. Specifically the “Pointwise Processor”
in [10], represents the pointwise minimization processor (PMP), whose result is denoted as
χPMP(t, FD).

Figure 2. Demonstration of the procedure: pointwise processor PMP or PTP.

The WD algorithm is demonstrated based on [3] to select the the optimal transmission
order of Golay complementary waveforms (a standard weighted Q is set for this algorithm),
which minimizes the sidelobes near a known Doppler value. Here, we employ the mean
target Doppler f̄d associated with their amplitudes to bring the sidelobe blanking area
closer to the weak targets [13]:

f̄d =

⎧⎪⎨⎪⎩
∑H

h=1 f̂dh
H same Âh,

∑H
h=1 (1−Âh) f̂dh
∑H

h=1 (1−Âh)
otherwise.

(10)

where Âh and f̂dh
are the normalized amplitude and Doppler of the hth target, respectively,

and H is the number of targets in the delay-Doppler map. A tracker is usually used to
estimate the target magnitude and Doppler from the past detections [14].

Already existing methods, such as [1–4], etc., are able to suppress the range sidelobes
and improve the signal-to-noise ratio (SNR) near the targets to different extents. However,
they cannot reduce the overall sidelobe magnitude in the underlying surveillance window.
Therefore, a PMP was proposed in our previous paper as a nonlinear pointwise processor,
which achieves sidelobe suppression involving sidelobe power reduction and does not
cause target loss, as verified by technical simulations.

χPMP(t, FD) = min{χBD(t, FD), χWD(t, FD)} (11)

The advantage of the PMP is that it maintains the ideal large range sidelobe blanking
region (in which the range sidelobes are less than −90 dB) provided by the BD algorithm
and the acceptable Doppler resolution of the WD algorithm, based on the assumption
that the targets are stable during the whole radar illumination. As described before, a
drawback of the PMP is that it can only retain the improved Doppler resolution and the
lower sidelobes of the two approaches. It still needs further enhancement when the Doppler
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resolution and sidelobe suppression performance fail to meet the requirements; thus, we
propose the PTP in the following.

2.3. Pointwise Thresholding Procedure

The “Pointwise Processor” in Figure 2 is defined as the pointwise thresholding processor
(PTP) and χPTP(t, FD) is defined as the output of the PTP. Then, the processor is expressed
as

χPTP(t, FD) =

{
χWD(t, FD) + χBD(t, FD), |χWD(t, FD)− χBD(t, FD)| < thr(dB)
0, otherwise

(12)

where the threshold thr is artificially delimited considering the magnitude difference
of targets and sidelobes. As the most important parameter in the processor, it directly
influences the sidelobe level and the resolution (and also the performance of further
filtering that will be discussed later). A small value will have no effect on the enhancement
in Doppler resolution and sidelobe blanking performance, while a too large threshold may
also blank the targets. Obviously thr ≥ 0 dB, and we commonly consider it nonsensical if
thr > 10 dB, since the radar return fluctuation of two illuminations caused by target micro-
motion and other interferences normally cannot reach such a high level. In this paper, we
choose thr = 2 dB as an example [15], but further research needs to be performed for better
determination of the practical threshold. Under the same assumption, the PTP is expected
to bring a further increase in the Doppler resolution and suppress the sidelobe magnitude
compared to the PMP, which will be illustrated by the simulations in the next section.

3. Simulation and Further Discussion

The PTP is verified in simulations with the following global parameters when no other
demonstration is presented. The targets in the simulations are set as Swerling II targets
with 10% fluctuation in the radar cross-section (RCS).

fc, carrier frequency: 1 GHz;
B, bandwidth: 50 MHz;
fts, time sampling rate: 2 B;
fds, Doppler sampling rate: 0.01 rad;
T, PRI: 50 μs;
N, pulse number: 32;
L, chip number of Golay pair: 64;
Tc, chip interval: 0.1 μs;
E∼CN (0, 1), complex Gaussian zero-mean white noise: −10 dB (i.e., SNR = 10 dB).

3.1. Fixed Scenario

We first consider a fixed scenario with three targets (one weak and two strong targets),
whose ground truth locations and magnitudes are listed in Table 1 and shown in Figure 3.
Note that two strong targets can only be separated from the Doppler.

Table 1. Simulated target locations in the fixed scenario.

Target Delay Doppler Magnitude

Target No. 1 τ1 = 16.6 μs fd1 = −0.4 rad 0 dB
Target No. 2 τ2 = 16.6 μs fd2 = −0.9 rad 0 dB
Target No. 3 τ3 = 22 μs fd3 = 2.4 rad −20 dB
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×

Figure 3. The ground truth locations and magnitudes of targets.

The delay-Doppler maps of the BD and WD algorithms and the outputs of the PMP
and PTP with thr = 2 dB are given in Figure 4, and the comparison results of PMP and PTP
in terms of the delay cross-section and Doppler cross-section, respectively, at all the targets
location are then illustrated in Figures 5 and 6. Obviously, though PMP maintains the
Doppler resolution of the WD algorithm, it performs much worse than the PTP. In addition,
the overall SNR of the PTP in theory is also remarkably higher than the PMP (which may
result in a higher performance during target detection). However, the processing times of
the PMP and PTP will be twice those of separately using the BD or WD algorithm.

× ×

(a) (b)
× ×

(c) (d)

Figure 4. The results (in dB) of (a) the BD algorithm; (b) the WD algorithm; (c) the PMP; (d) the PTP.

The PTP results at different thresholds are also compared in Figure 7. When thr = 1 dB,
the weak target is nearly blanked by the PTP, while two false targets near the strong targets
may be detected if thr is increased to 8 dB. This further verified the previous illustration of
the thresholding.

52



Remote Sens. 2023, 15, 2452

×

(a)
×

(b)
×

(c)

Figure 5. The delay cross-section of (a) target 1; (b) target 2; (c) target 3 using the PMP and PTP.

(a) (b)

Figure 6. The Doppler cross-section of (a) target 1 and target 2 and (b) target 3 using the PMP
and PTP.

×

×

(a) (b)
× ×

(c) (d)

Figure 7. Delay-Doppler maps of the PTP when (a) thr = 1 dB; (b) thr = 2 dB; (c) thr = 4 dB;
(d) thr = 8 dB (the unit of the colorbar is dB).
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3.2. Further Filtering for the PTP

Even though we have discussed the better target detection ability of the PTP than
PMP, the targets are still not easily visually detected. Therefore, a further filtering for PTP
is proposed in this subsection, which picks the targets through its displayed characters in
the map and almost eliminates the range sidelobes after filtering.

According to the delay-Doppler maps we obtain, it is found that the targets are
displayed typically (approximate to a rectangle, whose size is related to the threshold thr
as well as the pulse number N) in the results of the PTP, whereas the range sidelobes are
usually irregular and cannot be described by the common shape. This character gives us a
chance to further filter the targets and suppress the sidelobes in the images. A particular
rectangle with a similar size to the target can be employed to search the delay-Doppler map
after the PTP, and the target is considered to be found when all the values in the rectangle
are higher than −90 dB (since the original effect of the PTP suppresses some of the range
sidelobes lower than −90 dB). Note that the size of the target should be evaluated first
before the above operation.

Based on the previous illustration in [13] and our subsequent analysis, we learned
that the delay resolution of the target after PTP mainly depends on the threshold thr, while
the Doppler resolution is primarily influenced by the pulse number N. On the other hand,
the original delay and Doppler resolution of target can be analytically calculated as 2Tc
and 2π

N , as described in Section 2.1, which means they occupy 20 and 19 pixels in the delay
and Doppler axes, respectively. Though it is still hard to analytically calculate the size
of this particular rectangle, which is expressed as the number of pixels occupied in the
row (delay axis, Rr) and column (Doppler axis, Rc) of the delay-Doppler map, a numerical
fitting could be adopted to obtain an experimental Equation (13) with a certain calculable
basis to illustrate the Rr and Rc of the rectangle. By observing Figures 4 and 7, we find that
the delay and Doppler pixels of the target both shrink by about a half after the PTP, while
the number of delay pixels needs to be further increased, which is nearly equal to the value
of thr. Therefore, the experimental Equation (13) is written as follows, where the operator
“round” means calculating to the nearest integer.{

Rr = round(thr + Tc fts)

Rc = round
(

π
N fds

) (13)

This experimental equation is only used for an explanation of the filtering process that
is handled in this work. A more careful deduction of the calculation of this rectangle in
practical studies will be the next step of our research.

The outputs of further filtering of the PTP at different thresholds and pulse numbers
are demonstrated in Figure 8, which exhibit that further filtering makes the delay-Doppler
map almost free of range sidelobes and the targets can be clearly visually recognized.
Nevertheless, the lower threshold may lead to a higher probability of miss detection (Target
3 is lost under thr = 1 dB), and the increase in pulse number may generate more false
targets (some false targets arise when N = 64).

(a) (b) (c) (d)

Figure 8. Cont.
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(e) (f) (g) (h)

Figure 8. The outputs of further filtering of the PTP when (a) thr = 1 dB, N = 32; (b) thr = 2 dB,
N = 32; (c) thr = 4 dB, N = 32; (d) thr = 8 dB, N = 32; (e) thr = 1 dB, N = 64; (f) thr = 2 dB,
N = 64; (g) thr = 4 dB, N = 64; (h) thr = 8 dB, N = 64 (the unit of the colorbar is dB).

3.3. Randomized Scenario

In this scenario, several cases of Swerling II targets with different numbers are uni-
formly distributed in the delay-Doppler map. Based on the previous global parameters, we
consider the following four cases:

(1) Target number: 2 (one strong and one weak);
(2) Target number: 3 (one strong and two weak);
(3) Target number: 4 (two strong and two weak);
(4) Target number: 5 (three strong and two weak).

thr and N are fixed as 2 dB and 32, respectively, in all cases.
For the sake of a clearer explanation, the target detection thresholds in these cases are

set to the magnitude of the weakest target, which means that all the targets can be detected
but false targets may also exist in the range sidelobes. Again, the proper setting of realistic
detection thresholds requires further consideration.

A Monte Carlo simulation was operated for 1000 iterations for each case above, and
the number of correct detections was calculated. A correct detection is counted when
targets are all detected without any false targets. The correct detection occurrences of the
PMP, the PTP and the PTP after further filtering are shown in Figure 9.

Figure 9. Correct detection occurrences of the PMP, the PTP and the PTP after further filtering.

As is observed, the PTP provided in this paper outperforms the previous proposed
PMP due to a higher overall SNR, as discussed before. The output of the PTP after further
filtering has even more correct detection occurrences than the others since the improved
range sidelobe effect is achieved.

4. Conclusions

In this paper, a signal processing method involving a PTP is proposed for Golay com-
plementary waveforms to achieve an essentially enhanced Doppler resolution compared to
the previously proposed PMP, which can only maintain the original Doppler resolution
of this waveform scheme. To solve the visual recognition problem of targets in a delay-
Doppler map, further filtering of the PTP by extracting the targets more precisely through
a particular rectangle is also employed for a significant improvement in range sidelobe
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suppression. The performance of the above methods are verified by simulation results. Our
future research avenues may concern practical experiments of adaptive thresholding (such
as constant false alarm rate, CFAR) and target detection under this waveform scheme, as
well as some robust waveform optimization methods for complex target detection [16,17].
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Abstract: Microwave radar has advantages in detection accuracy and robustness, and it is an area of
active research in unmanned ground vehicles. However, the existing conventional automotive corner
radar, which employs real-aperture antenna arrays, has limitations in terms of observable angle and
azimuthal resolution. This paper proposes a novel 3D ArcSAR method to address this issue, which
combines rotational synthetic aperture radar (SAR) and direction estimation algorithms. The method
aims to reconstruct 3D images of 360◦ scenes and offers distinctive advantages in both azimuthal and
altitudinal sensing. Nevertheless, due to the unique structural characteristics of vehicle SAR, it is
limited to receiving only a single snapshot signal for 3D sensing. We propose a resolution algorithm
based on ArcSAR and the iterative adaptive approach (IAA) to resolve the limitation. Furthermore,
the errors in altitude angle estimation of the proposed algorithm and conventional algorithms are
analyzed under various conditions, including different target spacing and signal-to-noise ratio (SNR).
Finally, we design and implement a prototype of the 3D ArcSAR sensing system, which utilizes a
millimeter-wave MIMO radar system and a rotating scanning mechanical system. The experimental
results obtained from this prototype effectively validate the effectiveness of the proposed method.

Keywords: ArcSAR; direction estimation; unmanned ground vehicle; IAA; back projection algorithm
(BPA); millimeter-wave radar; 3D sensing system

1. Introduction

Unmanned ground vehicles, as a new type of transportation, represent the future
trend in vehicle development. In recent years, many countries worldwide have recognized
the significance of unmanned ground vehicles and implemented them as a national strategy
supported by relevant policies. Related technologies have found initial applications in
various fields, such as intelligent transportation, logistics, mines, and ports [1].

Among the key technologies in unmanned ground vehicles, real-time environmen-
tal sensing and understanding are prerequisites for platforms to accomplish their tasks
autonomously [2,3]. Various environmental sensing technologies are advancing rapidly,
each with its own advantages and disadvantages. Optical sensing technology excels at
structured road and target recognition but falls short in detection accuracy. Multi-line
LiDAR is too expensive for widespread implementation in ordinary vehicles. Infrared
and ultrasonic sensing technologies have a short detection range [4–6]. In addition, the
performance of these technologies degrades in challenging weather conditions such as
darkness, rain, snow, and smoke, as well as in unstructured environments like vegetation
cover [7].

As a novel means of environmental sensing for unmanned ground vehicles, microwave
radar has inherent advantages in detection accuracy, cost, and environmental adaptabil-
ity [8–10]. Consequently, it has garnered considerable attention in this research domain.
Conventional automotive radar solutions, such as Continental’s corner radar ARS408,
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employ real-aperture antenna arrays, which exhibit limitations in terms of observable angle
and azimuthal resolution [11]. ARS408 radar has azimuthal resolutions of 12.3◦ and 3.2◦

within observable angles of ±60◦ and ±30◦, respectively [12]. Moreover, the azimuthal
resolution decreases as the target deviates from the array’s normal direction.

While the forward-looking direction is important for vehicle environmental sensing,
the sense of rear and side information is equally vital for urban driving and detecting sur-
rounding obstacles. Particularly in field environments, the mobility of unmanned ground
vehicles relies on obtaining complete 360◦ environmental information. Unfortunately,
the observable angle of conventional automotive corner radar is insufficient to meet the
requirements of panoramic information. Consequently, existing solutions employ at least
four or more corner radars to obtain panoramic information around the vehicle, thereby
increasing sensor costs.

In response to the above situation, rotational SAR uses the rotating arm to detect
outside the arc. By constructing an arc-shaped synthetic aperture, the effective observable
angle can cover a 360◦ range. As a result, this novel SAR structure has been the subject of
extensive research in recent years. In the field of ground deformation monitoring, this new
all-time rotational SAR system is named ArcSAR [13,14]. Among them, the 2D ArcSAR
has been verified using experiments [15,16]. In rotorcraft helicopters, ROSAR generates an
arc-shaped synthetic aperture to observe the ground by rotating the helicopter rotors [17,18].
Here, we refer to the above SAR systems collectively as ArcSAR. While ArcSAR exhibits
advantages in terms of azimuthal resolution and consistency, the current research efforts
have mainly focused on 2D imaging, and the realization of 3D panoramic sensing based on
microwave radar remains unaccomplished within the field of vehicle applications [19]. The
absence of height information can result in distortions in the projected targets within 2D
imaging results, leading to errors in target identification and distance estimation.

To address the problem of absent height information, this paper proposes a novel 3D
ArcSAR method, which combines rotational SAR and direction estimation algorithms to
reconstruct 3D images of 360◦ scenes. The 3D ArcSAR sensing system employs a millimeter-
wave radar with multiple receivers installed at the end of the rotating arm to estimate
the altitude angle, enabling 3D panoramic imaging during rotation. This ability enhances
the accuracy of environmental understanding in road scenarios. Moreover, this system
achieves panoramic 3D imaging with just one rotational scan by one radar.

As the 3D ArcSAR platform rotates during the scanning process, the location of the
rotating arm is in constant change. Altitude angle estimation poses a challenge as only
a single snapshot signal can be received per angle. Common resolution algorithms such
as Music and APES require multiple snapshot signals to construct the sample covariance
matrix, and the matrix would lose rank when only a snapshot signal is received [20–22].
Attempting to attain a full-rank sample covariance matrix by reducing the dimension of
the matrix results in estimates with reduced resolution and robustness. The FFT algorithm
does not require multiple snapshot signals, but its angle resolution is poor with a limited
number of array antennas. Orthogonal Matching Pursuit (OMP) is a signal reconstruction
algorithm that requires the number of targets to be known in advance [23,24]. IAA is a
spectral estimation algorithm based on weighted least squares (WLS) estimation proposed
by Li Jian at the University of Florida in 2010 [25–27], which has demonstrated good results
in linear aperture experiments. In order to overcome the single snapshot limitation, we
designed an IAA resolution algorithm based on circular apertures, which exhibits improved
adaptability for unmanned ground vehicles.

In this paper, we propose the 3D ArcSAR method as a solution to the deficiencies in the
sensing performance of conventional automotive radar in both azimuthal and altitudinal
directions. To overcome the limitation that the vehicle SAR can only receive a single
snapshot signal in 3D sensing, we designed a dedicated IAA resolution algorithm for this
specific case. The main contributions of this paper are summarized as follows.

• The 3D ArcSAR method is proposed for reconstructing panoramic 3D images with
rotational SAR and direction estimation techniques. This method effectively addresses
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the limitations of existing automotive corner radar systems, including shortcomings
in altitude direction sensing, azimuthal resolution, and consistency. The 3D ArcSAR
sensing system achieves panoramic 3D imaging with only one radar and one rotation
scan. Therefore, it reduces the number and complexity of devices required and can
better meet the sensing needs of unmanned ground vehicles.

• A resolution algorithm based on IAA was designed specifically for 3D ArcSAR. This
algorithm overcomes the limitation of receiving only a single snapshot signal per
angle. We analyze the errors in altitude angle estimation for both the proposed
algorithm and conventional algorithms under varying conditions, such as target
spacing and SNR. The proposed algorithm has superior resolution in the case of single
snap, small antenna arrays, and an unknown number of targets compared to other
existing methods.

• The 3D ArcSAR prototype is designed based on a millimeter-wave radar system and a
rotating mechanical system. The radar system employs a low-cost, readily available
commercial off-the-shelf (COTS) radar, facilitating easy deployment. The rotating
mechanical system is designed to adapt to different scenes, with adjustable rotation
speed and arm length. Additionally, it can be remotely controlled by a computer to
facilitate experiments. The 3D ArcSAR prototype validates the superior resolution
accuracy performance of the proposed algorithm and can be further utilized for
experiments in various scenes in the future.

The remaining sections of this paper are organized as follows. Section 2 provides a
detailed description of the model structure and the fundamental principles underlying
rotational SAR imaging and direction estimation in 3D ArcSAR. In Section 3, simulations
of 3D ArcSAR are conducted and the errors in altitude angle estimation for both the
proposed algorithm and conventional algorithms under varying conditions are analysed.
Section 4 presents the designed prototype of the 3D ArcSAR sensing system and provides
the experimental results obtained with this prototype. Finally, conclusions are drawn in
Section 5.

2. Three-Dimensional ArcSAR and Signal Processing

2.1. Signal Model and Geometry Model
2.1.1. 2D Structure of ArcSAR

Figure 1 shows a schematic diagram of ArcSAR’s 2D structure. It consists of a rotating
arm r extending from the central location of the rotating platform and a SAR radar system
P for transmit and receive signals. The x and y axes indicate two mutually perpendicular
directions parallel to the ground.

Figure 1. Schematic diagram of ArcSAR’s 2D structure.

The rotating plane of the SAR radar system is chosen as the imaging plane. Q is
the target (assume Q is on the imaging plane). θ is the rotating angle of the rotating arm.
ϕ is the azimuth angle of the target. θbw is the antenna beam width. R0 is the distance
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between Q and the center of the platform. RP is the distance between Q and P, which can
be expressed as

RP =
√

R02 + r2 − 2R0r cos(θ − ϕ) (1)

The time difference τi between the transmit signal and the receive signal can be
expressed as

τi = 2RP/c (2)

Take the linear frequency modulation continuous wave (LFMCW) as an example, and
the transmit and receive signal models of LFMCW can be expressed as

STx(t) = rect(t/Tc) · exp[j2π( f0t +
1
2

Kt2)] (3)

SRx(t) = rect[(t− τi)/Tc] · δP · exp{j2π[ f0(t− τi) +
1
2

K(t− τi)
2]} (4)

where t and Tc represent the time variation in the fast time dimension and the sweep
time of each chirp signal. f0 and K represent the carrier frequency and LFMCW slope. δP
represents the scattering coefficient.

In addition, the beamwidth of the antenna is considered. After dechirp processing,
the echo signal Si f (t, θ) can be expressed as

Si f (t, θ) = rect[(t− τi)/Tc] · rect((θ − ϕ)/θbw) · δP·
exp[j2π( f0τi + Kτit− 1

2 Kτi
2)]

(5)

2.1.2. Direction Estimation with Multiple Receivers

Figure 2 shows the geometric structure of the 3D ArcSAR sensing system, which
acquires altitude information in the altitude direction by an antenna array. Combined with
the antenna array and the azimuthal synthetic aperture produced by the antenna sweep,
the system is able to generate panoramic 3D images. Here, the antenna array is configured
as a uniform array. The z-axis indicates the direction perpendicular to the ground.

Figure 2. Geometric structure of the 3D ArcSAR sensing system.

Figure 3 shows the distance difference in receive signals between the different antennas.
According to the fundamental principle in the direction estimation with multiple receivers,
the signal travels d sin(θ) further in the second antenna than the first.

The speed of electromagnetic waves is equal to the speed of light c. Then, the above
distance difference is calculated to the time difference, assuming that the array configuration
consists of M antennas, with the first antenna serving as the reference point. Therefore, the
time difference of each antenna is

Δt = [0,
d sin(θ)

c
,

2d sin(θ)
c

, · · · ,
(M− 1) sin(θ)

c
] (6)
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Figure 3. Schematic diagram of the distance difference in receive signals between the different antennas.

Relative to the first antenna, the phase difference of the signal arriving at each an-
tenna is

Δφ = [0, 2π f0
d sin(θ)

c
, 2π f0

2d sin(θ)
c

, · · · , 2π f0
(M− 1)d sin(θ)

c
] (7)

The receive signal is defined as s(N), where N is expressed as the number of snapshots
of the receive signal. Then, the signal received by the multiple antenna array is

XM×N = a(θ)s(N) = [1, e−j2π f0
d sin(θ)

c , e−j2π f0
2d sin(θ)

c , · · · , e−j2π f0
(M−1)d sin(θ)

c ]
T

s(N) (8)

where a(θ)M×1 represents the steering vector, and it contains the angle information.
For a uniform linear array, the signal containing information about l directions can be

expressed as
XM×N = a(θ1)s1(N) + a(θ2)s2(N) + · · ·+ a(θl)sl(N) (9)

For a given antenna array, the mathematical form of the steering vector is known. As
a result, FFT can be applied for altitude angle estimation according to Equation (8).

L directions are chosen equally within the angle range, and the steering matrix can be
expressed as

AM×L = [a(θ1), a(θ2), · · · , a(θL)] (10)

The inner product of this steering matrix A and the receive signal with the target angle
θ0 can be expressed as

y = AHX = AHa(θ0)s0(N) (11)

where the inner product result y is a scalar array. It goes through all the angles to find
the maximum value, and the angle corresponding to the maximum value represents the
estimated target angle.

In addition, for a uniform linear array with a known antenna spacing and number of
antennas, the Rayleigh limit resolution of the altitude angle estimation is

ρs =
λ

M× d
× 0.886 (12)

where M represents the number of antennas. d represents the antenna spacing, and λ/2 is
generally chosen.

2.2. Panoramic Image Formation by the Back Projection Algorithm

The Back Projection Algorithm (BPA) is a widely used SAR imaging algorithm. Unlike
the existing ArcSAR frequency domain algorithms, which require a certain imaging angle,
BPA utilizes azimuth accumulation imaging, enabling imaging at any azimuth position
without restrictions on the size of the imaging angle. This feature makes BPA particularly
advantageous for vehicle-mounted ArcSAR real-time perception, as it allows imaging
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results to be obtained at any desired azimuth position during platform rotation. Further-
more, BPA exhibits excellent parallelism, enabling real-time processing through multi-core
parallel computing [28].

BPA can be described in four key steps:

1. Distance compression.

Distance compression is the matched filtering process. In the dechirp system, the
received echo signal from each antenna can be directly sampled and FFT-processed to obtain
the distance compression results. Without considering the beamwidth of the antennas, the
result of the FFT of the signal (5) can be expressed as

S( f ) = Dsin c[Tc( f − Kτi)] exp(−j2π f τi) (13)

D = Tc exp(j2π f0τi) exp(jπKτi
2) (14)

where D represents the parameter unrelated to f , and τi represents the time difference
between the transmit and receive signal at the target Q position. Equation (13) can ob-
serve that the target Q is compressed to the frequency f = Kτi, which gives preliminary
distance information.

2. Data interpolation resampling.

In step 1, only the signal time difference between the radar system P and the target Q
is considered for a particular moment. However, in order to cover the entire sensing range,
it is essential to calculate the signal time differences for the complete range.

Interpolation resampling is employed subsequent to the distance compression process.
The detection range is partitioned into a grid, with n distance gates set in each direction.
The time difference between the transmit and receive signal at each distance gate position
is represented by τ(n). Additionally, the frequency is represented by Kτ(n). The signal
after interpolation resampling can be expressed as

S(n) = Dsin c[TcK(τ(n)− τi)] exp(−j2πτi · Kτ(n)) (15)

It is evident that the magnitude of S(n) reaches its maximum when τ(n) is taken to τi.

3. Compensating for delayed phase.

The delayed phase is the additional phase of the echo signal relative to the transmit
signal. In order to achieve phase-coherent accumulation of the echo signal from the same
target at different moments, it is necessary to compensate for the delayed phase at each
moment. The delayed phase compensation factor can be expressed as

Grcmc( f0) = exp[j4π f0τi(n)] (16)

The delayed phase compensation factor (16) and the data in step 2 are multiplied to
obtain the echo signal amplitude Y(n), which can be expressed as

Y(n) = S(n) · Grcmc(n) (17)

4. Phase-coherent accumulation.

The position of the signal transmitted by the SAR system is constantly changing. In
ArcSAR, the radar system P can receive the echo signal of the target Q on a segment of the
circular trajectory. The angle size of this circular trajectory is equal to the beamwidth of
the antenna.
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Following that, a section of azimuthal data with an angle range equal to the antenna
beamwidth are selected, and a window function with the same angle range is used to
weight this section of data. The data values Yw(n) under this scene can be obtained as

Yw(n) = Y(n) · window(n) (18)

where window(n) represents the weighted window function.
The above four steps are systematically repeated for every position within the entire

360◦ scene. Finally, the resulting output is a 2D panoramic image.
It is known that the radial resolution is related to the signal bandwidth, and the

azimuth resolution is related to the synthetic aperture length. However, in ArcSAR, the
synthetic aperture length is determined by combining the arm length and the antenna
beamwidth. As a result, the theoretical resolution in the radial and azimuth directions can
be expressed as

Δr =
0.886× c

2Br
× kr (19)

Δθ =
0.886× λ

4r sin(θbw/2)
× kθ (20)

where Br and λ represents the bandwidth and central wavelength of the signal. The
weighted window process widens the main lobe. Moreover, k represents the compensation
for the weighted window function. For example, the compensation of the Hanning window
is about 1.6269.

2.3. IAA-Based Angle Estimation in Altitude Direction

Due to the structure of the 3D ArcSAR sensing system, the antenna array obtains
only one snapshot signal for each azimuth direction. As a result, common algorithms such
as APES and Music are unsuitable for this scenario. These algorithms require multiple
snapshots of the signal when constructing the sample covariance matrix since a full-rank
matrix cannot be achieved from a single snapshot signal alone. Attempting to attain a
full-rank sample covariance matrix by reducing the dimension of the matrix results in
estimates with reduced resolution and robustness. The FFT algorithm, which employs
the inner product of the echo signal and the steering vector for angle estimation, can be
applied with a single snapshot. However, it is affected by sidelobe interference, resulting in
a reduction in estimation resolution.

In contrast, IAA is an iterative algorithm that utilizes the relationship between the
sample covariance matrix and the complex scattering coefficients. It initializes the iter-
ations with the FFT results and constructs the signal covariance matrix with the results
of the previous iteration. This algorithm can reduce the effect of sidelobes while main-
taining the same number of receivers, resulting in enhanced resolution and improved 3D
imaging capabilities.

Similar to the FFT, the signal model can be mathematically expressed as

X = AS + w (21)

where XM×1 represents the echo signal received by M antennas on the 3D ArcSAR at a
particular moment, commonly called the measurement signal. AM×L is the steering matrix
and SL×1 is the estimated signal. w is additive white Gaussian noise (AWGN).

The idea of the least square estimation is to find a linear unbiased estimate Ŝ, such that∥∥X−AŜ
∥∥2 is minimized. Also, by introducing the weighting matrix W, the optimization

problem of WLS can be expressed as

min
α

(X−AŜ)H
W(X−AŜ) (22)
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The solution of the above equation is as follows:

Ŝ= (AHWA)−1AHWX (23)

where (·)H represents the conjugate transpose. IAA is equivalent to the WLS problem
when W is the interference-plus-noise covariance matrix of the signal X.

P is a diagonal matrix of L× L, and the elements on the diagonal of P are the scattering
coefficients in the L directions.

P = E[SSH ] (24)

where E[·] represents the mathematical expectation.
Assuming that A and P are known, the signal covariance matrix R can be expressed as

RM×M = APAH (25)

In practice, only A is known about the echo signal, while P is unknown. A can be
expressed as

AM×L = [a(θ1), a(θ2), · · · , a(θL)] (26)

Assuming that the scattering coefficient of each direction in P is expressed by Pl , the
interference-plus-noise covariance matrix U is defined as

U = R− Pla(θl)a(θl)
H (27)

The scattering coefficient is replaced by the unbiased estimate of it, which is obtained
by substituting Equation (23) into (24)

Pl =

∣∣∣∣∣ a(θl)
HU−1X

a(θl)
HU−1a(θl)

∣∣∣∣∣
2

(28)

According to the principle of matrix inversion, Equation (28) can also be written as

Pl =

∣∣∣∣∣ a(θl)
HR−1X

a(θl)
HR−1a(θl)

∣∣∣∣∣
2

(29)

From the above equations, Pl can be calculated from R. R should be initialized as the
unit matrix first. Since P is unknown, the initialized Pl can be expressed as

Pl =

∣∣∣a(θl)
HX
∣∣∣2

(a(θl)
Ha(θl))

2 (30)

When R is a unit matrix, the result of IAA is equivalent to FFT. IAA takes the re-
sult of FFT as the initial value of P and then iteratively updates R and P based on their
interrelationships until the convergence condition is reached. In general, the estimation
performance does not improve significantly after more than eight iterations. At this time, it
is reasonable to consider the algorithm to have reached convergence.

In practice, when the condition number of R is large, the calculation of matrix inversion
may be inaccurate or even non-invertible. To solve this problem, a diagonal loading
approach can be taken to regularize R. Thus, R can be expressed as

R = APAH + Δ (31)

64



Remote Sens. 2023, 15, 4089

where Δ is the diagonal matrix. The elements on the diagonal represent the estimates of the
noise, and these can be expressed as

Δm =

∣∣∣∣∣ em
HR−1X

em HR−1em

∣∣∣∣∣
2

, m = 1, 2, · · · , M (32)

where em is column m of the unit matrix.
The specific steps of the IAA based on 3D ArcSAR include the following:

1. Determine the spatial coordinates of the targets and extract the signals from multiple
receivers corresponding to these specific locations.

2. Employ IAA to estimate the altitude angle at the designated target locations.
3. Generate M sets of SAR images of the 2D scenes through the application of BPA to

process the received signal from each antenna. Obtain a complete 3D panoramic
image combined with the height dimension information obtained by IAA.

First, initialize the scattering coefficient estimate Pl(0) and the noise estimation matrix Δ(0).

Pl(0) =

∣∣∣a(θl)
HX
∣∣∣2

(a(θl)
Ha(θl))

2 , l = 1, 2, · · · , L (33)

Δ(0) = 0M×M (34)

Perform iterations according to the interrelationship of Equations (35)–(39) until convergence.

R(n) = AP(n−1)A
H + Δ(n−1) (35)

Δm(n) =

∣∣∣∣∣∣
em(n)

HR
−1

(n)X

em(n)
HR

−1

(n)em(n)

∣∣∣∣∣∣
2

, m = 1, 2, · · · , M (36)

Δ(n) = diag(Δ1(n), Δ2(n), · · · , ΔM(n)) (37)

Pl(n) =

∣∣∣∣∣∣
a(θl)

HR
−1

(n)X

a(θl)
HR

−1

(n)(θl)

∣∣∣∣∣∣
2

, l = 1, 2, · · · , L (38)

P(n) = diag(P1(n), P2(n), · · · , PL(n)) (39)

Finally, the obtained scattering coefficient of the echoes can be expressed as

σn =
∣∣∣√Pl

∣∣∣ (40)

where the altitude angle estimation of the corresponding location is combined with the 2D
SAR panoramic imaging results to obtain a 3D image of the scene.

3. Parametric Analysis in Simulations

The 3D ArcSAR method proposed in this paper was evaluated using simulation
experiments. This section presents an analysis of the performance of ArcSAR 2D imaging
and 3D imaging. Additionally, the errors in altitude angle estimation between the proposed
algorithm and the common algorithms are analyzed, considering different target spacing
and SNR.
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3.1. Imaging Simulation
3.1.1. Imaging of 2D ArcSAR

In order to verify the performance of 2D ArcSAR imaging, we set up the simulation
experiments. The main parameters are shown in Table 1.

Table 1. Experimental parameters of 2D ArcSAR imaging.

SNR
Initial

Frequency
Signal

Bandwidth
FM Slope AD Frequency

Turntable Arm
Length

Beamwidth

20dB 77.12 GHz 1.365 GHz 30 MHz/us 25.5 MHz 0.41 m 70◦

According to Equations (19) and (20), the theoretical resolution can be obtained under
these experimental parameters. In particular, Hanning windows are added to the distance
processing, and cos windows are added to the azimuthal processing. The radial resolution
is 0.158m, and the azimuthal resolution is 0.34◦.

In this experiment, we set six point targets surrounding the system. These targets were
placed at 12 m, 15 m, and 18 m, with azimuth angles of 90◦ and 150◦. The imaging results
of the target array are shown in Figure 4. The horizontal axis of the coordinate system
indicates the azimuthal direction, and the vertical axis indicates the radial direction.

Figure 4. Simulation of imaging results for the point targets.

Subsequently, we selected Q1 and Q2 for analysis, marked in Figure 4. The imaging
results of these two targets were sliced, and the corresponding impulse response results are
presented in Figures 5 and 6. Their quality parameters are shown in Table 2.

 
(a) (b) 

Figure 5. Radial impulse responses: (a) Q1; (b) Q2.
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(a) (b) 

Figure 6. Azimuthal impulse responses: (a) Q1; (b) Q2.

Table 2. Simulation results quality parameters.

Quality Parameters Point Target Q1 Point Target Q2

Radial resolution (m) 0.1588 0.1576
Radial PSLR (dB) −31.6067 −31.5194
Radial ISLR (dB) −30.7331 −30.6482

Azimuth resolution (◦) 0.3433 0.3467
Azimuth PSLR (dB) −31.4269 −28.2715
Azimuth ISLR (dB) −21.5856 −18.3847

The inclusion of different window functions in the radial and azimuthal directions
resulted in different main lobe spreading and sidelobe attenuation. Specifically, Han-
ning windows were applied for distance processing, while cos windows were applied for
azimuthal processing. According to Table 2, we observed that the radial and azimuthal res-
olutions were in general agreement with the theoretical values. The results of Peak Sidelobe
Ratio (PSLR) and Integrated Sidelobe Ratio (ISLR) were within the reasonable range.

3.1.2. Imaging of 3D ArcSAR

The proposed 3D ArcSAR method was analyzed via a simulation, with an SNR of
10 dB and an AD frequency of 45.5 MHz. The rest of the main parameters are shown in
Table 1. The number of antenna array elements was set to 16, and the antenna array had a
length of 14.4mm and a spacing of 0.96mm. Referring to Equation (12), the Rayleigh limit
resolution of this antenna array was 6.35◦.

The parameters of the set coordinate system are expressed as the distance between the
target and the turntable center, the azimuthal angle, and the altitudinal angle, respectively.
In this experiment, we placed seven targets in the 3D scene, which were located at (10 m,
90◦, 0◦), (15 m, 80◦, 0◦), (15 m, 100◦, 0◦), (15 m, 90◦, 0◦), (15 m, 90◦, 6◦), (20 m, 90◦, 0◦)
and (20 m, 90◦, 12◦), and these target location relationships in the 3D scene are shown in
Figure 7. Among them, the turntable center of the 3D ArcSAR sensing system was located
at (0 m, 90◦, 0◦).

Following the rotational scan, the received signals from each antenna undergo 2D Arc-
SAR imaging processing. Figure 8 displays the eighth antenna’s 2D imaging results. It is im-
portant to highlight that the 2D imaging results exhibited a stacked masking phenomenon
at (15 m, 90◦) and (20 m, 90◦), where two targets with differing heights were located.

The above results were directly employed for 3D image processing, as shown in
Figure 9.
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Figure 7. Target location relationships in 3D scenes.

Figure 8. Two-dimensional imaging results of the eighth antenna.

 
(a) (b) 

Figure 9. Imaging results of 3D ArcSAR: (a) FFT; (b) IAA.

The target spacing at (15 m, 90◦) and (20 m, 90◦) were 6◦ and 12◦. The phase informa-
tion of the echo signals at these two locations was extracted, and the angle estimation was
performed by FFT, OMP, and IAA, respectively. The achieved angle estimation results are
depicted in Figure 10. Due to the target spacing at (15 m, 90◦) exceeding the Riley limit reso-
lution, FFT could not distinguish the two targets. Conversely, both OMP and IAA exhibited
resolutions that surpassed the Rayleigh limit resolution. Figure 10a shows that the angle
estimation results of OMP were inaccurate. Consequently, the next subsection thoroughly
analyzes the errors in altitude angle estimation of different algorithms, considering the
influence of different target spacing and SNR.
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(a) (b) 

Figure 10. The altitude angle estimation results: (a) target spacing is 6◦; (b) target spacing is 12◦.

3.2. Performance Analysis of Different Algorithms Influenced by Different Factors
3.2.1. Target Spacing

Music can attain the full-rank sample covariance matrix by reducing the dimensionality
of the matrix, enabling angle estimation under a single snap signal. Therefore, we added a
contrastive analysis of Music in this section, where we processed a single snap signal of
16 antenna array elements into a 9-snap signal of 8 elements.

We analyzed the accuracy of angle estimation under different target spacing. Target
2 was set at a fixed altitude angle of 0◦, while the altitude angle of Target 1 was variable.
The angle spacing between them was linearly varied from 15◦ to 3.8◦ with steps of 0.05◦.
Assuming that the SNR was 35dB and there were 16 antenna array elements, the altitude
direction of the targets was estimated by different resolution algorithms. The errors in alti-
tude angle estimation were then determined through a comparison between the estimated
and true values. The relative error analysis for Target 1 is shown in Figure 11.

Figure 11. The relative error in the angle estimation for Target 1 under different target spacing.

The results indicate that the IAA algorithm outperformed the FFT, OMP, and Music
algorithms in terms of angle resolution. The error in altitude angle estimation increased
gradually from approximately 12◦ and 9◦ for FFT and OMP, respectively, while the values
were about 5.5◦ for Music and IAA. However, Music exhibited a slightly higher angle
estimation error compared to IAA for narrow spacing conditions.

3.2.2. SNR

We analyzed the angle estimation performance under different SNRs. In this simula-
tion, the number of antenna elements was still fixed at 16. To ensure the optimal resolution
for all algorithms at different SNRs, the target spacing was set to 12◦. We analyzed where
the SNR ranged from −15 dB to 35 dB in steps of 0.25 dB, repeated 10,000 times. The
analysis of the relative error for Target 1 is shown in Figure 12.
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Figure 12. The relative error in the angle estimation for Target 1 under different SNRs.

The findings demonstrate that as the SNR decreased, the angle resolution also de-
creased. All these algorithms exhibited robustness to changes in the SNR. Specifically,
FFT exhibited superior resolution performance under low-SNR conditions, while IAA
excelled under high SNR conditions. Music with a reduced matrix dimension had no
performance advantage.

However, similar to OMP, Music requires the target signal to be sparse in spatial
location and necessitates prior knowledge of the number of targets. These requirements
can present challenges for accurate angle estimation in practical, real-world scenarios. As a
result, Music and OMP may not be suitable for applications when an unknown number of
scattering targets are stacked in similar locations.

4. Imaging Analysis in Experiments

4.1. The Experimental System

There is little domestic and international research on the 3D SAR imaging of rotational
structures. In order to validate the feasibility of the 3D ArcSAR sensing system and its
associated imaging processing techniques, it was necessary to construct a 3D ArcSAR
imaging platform.

We designed the 3D ArcSAR sensing system prototype to facilitate the acquisition of
3D panoramic imaging data. The prototype consisted of a millimeter-wave MIMO radar
system and a rotating scanning mechanical system, as shown in Figure 13. The radar was
mounted at the end of the rotating arm, while the MIMO antenna was set up in the altitude
direction. By rotating the arm, the system can generate an azimuthal synthetic aperture and
uses the MIMO antenna for altitude angle estimation. With the capability to be mounted on
the roof of an unmanned ground vehicle, this system enables the acquisition of high-quality
3D imaging results in a 360◦ range surrounding the vehicle.

  
(a) (b) 

Figure 13. (a) The 3D ArcSAR sensing system. (b) The millimeter-wave MIMO radar system.
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The millimeter-wave MIMO radar system consists of the TI AWR2243BOOST radar
and the TI DCA1000EVM real-time data capture adapter. TI AWR2243BOOST is equipped
with three transmit antennas and four receive antennas, where the separation between ad-
jacent receive antennas is set as λ/2. However, these transmit antennas are not arranged in
parallel. Therefore, only the first and third transmit antennas can be used to achieve the de-
sired MIMO radar. The angle resolution of the millimeter-wave MIMO radar is about 12.69◦.
The rotating scanning mechanical system consists of a rotary base, a rotating arm, and a
rotating motor. The rotating motor is electrically assisted and can be remotely controlled for
speed and steering by a computer. The modular design of the mechanical system allows the
flexible adjustment of the arm length to accommodate diverse experimental requirements.

4.2. Two-Dimensional Experimental Results of ArcSAR

In this experiment, metal corner reflectors are used to simulate point targets. The main
parameters of the ArcSAR system based on millimeter-wave MIMO radar are shown in Table 3.

Table 3. Experimental parameters.

Initial
Frequency

FM Slope
AD

Frequency
Pulse Width

Turntable Arm
Length

Beamwidth
Rotational

Speed

77 GHz 30 MHz/us 22.5 MHz 45.5 us 0.41 m 70◦ 12◦/s

We placed two metal corner reflectors, Q1 and Q2, spaced 90◦ apart. Both Q1 and Q2
were situated at a radial distance of about 8.4 m from the rotation center. Figure 14 shows
the relationship diagram between the targets and the ArcSAR system’s location.

 

Figure 14. The relationship diagram between the targets and the ArcSAR system’s location.

To show the ArcSAR 2D imaging results visually, we converted the polar coordinate
system of the imaging results into the rectangular coordinate system. The imaging results
of the two metal corner reflectors Q1 and Q2 in the polar coordinate system and rectangular
coordinate system are shown in Figure 15a,b.

 

 

(a) (b) 

Figure 15. Two-dimensional imaging results of the targets: (a) polar coordinate system; (b) rectangular
coordinate system.
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Subsequently, the imaging results for Q1 and Q2 were analyzed. The imaging results
were sliced, and the corresponding impulse response results in the azimuthal direction are
shown in Figure 16. Their quality parameters are shown in Table 4.

Figure 16. Azimuthal impulse responses of Q1 and Q2.

Table 4. Quality parameters of experimental results.

Quality Parameters Point Target Q1 Point Target Q2

Azimuth resolution (◦) 0.3833 0.3690
Azimuth PSLR (dB) −25.7565 −26.0115
Azimuth ISLR (dB) −11.3737 −11.1613

Based on the above results, it can be observed that the measured azimuthal resolution
deviated by approximately 10% from the theoretical value. This discrepancy can be at-
tributed to the comparatively lower SNR encountered in the real measurement environment.
The results of PSLR and ISLR were within the reasonable range.

4.3. Three-Dimensional ArcSAR Experiments

In this experimental phase, the primary focus was on verifying the altitudinal resolu-
tion performance of the 3D ArcSAR system. The FM slope and turntable arm length were
adjusted to 50 MHz/us and 0.395 m, respectively. The rest of the main parameters were the
same as in Table 3, with the antenna array comprising eight elements.

Two reflectors were positioned at different altitudinal locations, and the altitudinal dis-
tance between them was 0.64 m. The millimeter-wave radar system’s plane was situated at
a height of 0.43 m, while the horizontal distance between the rotating scanning mechanical
system’s center and the targets measured 1.53 m. The true values of the targets’ altitudinal
angles were determined to be about −7.81◦ and 15.69◦, respectively. Figure 17 displays the
spatial relationship between the targets and the 3D ArcSAR system.

 

Figure 17. The spatial relationship between the targets and the 3D ArcSAR system.
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Considering the proximity of these two targets in the 2D imaging, it was necessary
to perform angle estimation in the altitudinal direction. The 2D and 3D imaging results
acquired through the utilization of the proposed algorithm for stacked masking targets are
shown in Figure 18. Observing Figure 18a suggests that the two targets do not seem to be
entirely stacked. However, it is known after processing that these two targets still have
stacked parts of each other.

 

(a) (b) 

Figure 18. Imaging results under stacked masking targets: (a) 2D; (b) 3D.

The echo data from the stacked location of the two targets were analyzed, and the
altitude angle estimation results after processing are shown in Figure 19. Both OMP and
IAA could distinguish the two targets well, and IAA was able to determine that the angles
of the two targets in the altitudinal direction were about −6.6◦ and 13.3◦. This angle
spacing was larger than the Rayleigh limit resolution of the AWR2243BOOST radar with
two-transmitter and four-receiver antennas. Consequently, FFT could also distinguish the
two targets. However, the angle estimation results of FFT were not too satisfactory due to
factors such as a low SNR and sidelobe interference within the real measurement.

Figure 19. The altitude angle estimation results under stacked masking targets.

Furthermore, we conducted experiments involving a near-circular step structure, as
shown in Figure 20, to evaluate the performance of the 3D ArcSAR imaging method in
real-world scenarios. Due to the particular structure of the steps, each step can occupy a
different location in the 2D plane and altitudinal direction. Therefore, this scene was well
suited to verifying the real effect of the 3D ArcSAR imaging method, and this step structure
comprised five levels. The 3D ArcSAR system was located at an approximate distance
of 8 m from the steps, with the radar antenna elevated to a height of about 0.55 m over
the ground.

In order to expand the detection distance and enhance the azimuth resolution of the
3D ArcSAR system, the pulse width was adjusted to 68.3 us, and the turntable arm length
was increased to 0.5085 m here.
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Figure 20. The relationship diagram between the steps and the 3D ArcSAR system’s location.

The proposed algorithm was used to image the targets, and the 2D and 3D imaging
results are shown in Figure 21.

 

(a) (b) 

Figure 21. Imaging results of the steps: (a) 2D; (b) 3D.

Figure 21 demonstrates that the various levels of steps exhibited distinguishable
differences in radial distance and altitudinal direction. The proposed method successfully
facilitated the imaging and distinction of the steps. It should be noted that Figure 21b
portrays altitude angles below 0◦ in the imaging results, which was due to the radar
antenna’s location above some of the steps. These experimental results can verify the
rationality and accuracy of the designed 3D ArcSAR system.

5. Conclusions

The proposed 3D ArcSAR method enables the reconstruction of 3D panoramic images
through panoramic rotational SAR and direction estimation. To address the limitations
encountered in vehicle 3D sensing, particularly the reliance on a single snapshot signal,
we designed an IAA-based resolution algorithm specifically for the 3D ArcSAR sensing
system. At the same time, the errors in altitude angle estimation for both the proposed
algorithm and the conventional algorithms were analyzed, considering various factors such
as target spacing and SNR. It was demonstrated that the proposed algorithm has superior
resolution in the case of single snap, small antenna arrays, and an unknown number of
targets compared to other existing methods.

Additionally, we designed a prototype of 3D ArcSAR based on a 77GHz COTS radar
and a rotating scanning mechanical system. This prototype serves the purpose of validating
the proposed algorithms presented in this paper, and can be further utilized for experiments
in various scenes in the future.

While our primary focus was on addressing the specific challenges of unmanned
ground vehicle applications, we recognize that the proposed 3D ArcSAR sensing system
holds significant potential for remote sensing applications. We propose the following
potential “remote sensing” applications:
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1. Environmental Monitoring: The 3D ArcSAR system’s panoramic imaging capability
can be leveraged for monitoring large-scale environmental areas, such as forests,
coastal regions, and agricultural landscapes. It can provide valuable insights into
vegetation growth, land use changes, and environmental dynamics.

2. Disaster Management: During natural disasters such as floods, earthquakes, and
landslides, the 3D ArcSAR system can efficiently gather information on the affected
areas and aid in disaster response and management efforts. The system’s ability to
acquire 3D images in real-time can be crucial for assessing the extent of damage and
planning relief operations.

3. Climate Change Studies: The system’s capacity to monitor vast areas with high
accuracy enables data collection for climate change studies. It can be used to monitor
ice caps, glaciers, and polar regions, providing critical data for understanding climate
change patterns.

However, the current work is still at a preliminary stage. In the next stage, we
plan to conduct further in-depth research on various aspects, including the experimental
verification of complex targets, more efficient ArcSAR imaging algorithms, and the impact
on the ArcSAR imaging results under the motion of unmanned ground vehicles.
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Abstract: The Multiple Input Multiple Output (MIMO) radar, as a new type of radar, emits orthogonal
waveforms, which provide it with waveform diversity characteristics, leading to increased degrees of
freedom and improved target detection performance. However, it also poses challenges such as diffi-
culty in meeting higher data demand, separating waveforms, and suppressing the multidimensional
sidelobes (range sidelobes, Doppler sidelobes, and angle sidelobes) of targets. Phase-coded signals
are frequently employed as orthogonal transmission signals in the MIMO radar. However, these
signals exhibit poor Doppler sensitivity, and the intra-pulse Doppler frequency shift can have an
impact on the effectiveness of the matching filtering process. To address the aforementioned concerns,
this paper presents a novel approach called the Space–Time–Range Joint Adaptive Focusing and
Detection (STRJAFD) method. The proposed method utilizes the Mean Square Error (MSE) criterion
and integrates spatial, temporal, and waveform dimensions to achieve efficient adaptive focusing and
detection of targets. The experimental results demonstrate that the proposed method outperforms
conventional cascaded adaptive methods in effectively addressing the matching mismatch issue
caused by Doppler frequency shift, achieving super-resolution focusing, possessing better suppres-
sion effects on three-dimensional sidelobes and clutter, and exhibiting better detection performance
in low signal-to-clutter ratio and low signal-to-noise ratio environments. Furthermore, STRJAFD is
unaffected by coherent sources and demands less data.

Keywords: MIMO radar; Space–Time–Range; Joint Adaptive Focusing and Detection; Doppler
frequency shift; MSE; three-dimensional sidelobe; clutter and noise suppression

1. Introduction

Amidst the continuously evolving electromagnetic environment, where the cluttered
background and target characteristics are becoming increasingly complex and diverse,
radar systems face numerous challenges, and the difficulty of detecting targets is also on
the rise [1]. The fixed transmission waveforms and operating modes utilized by conven-
tional radar systems exhibit limited adaptability to the changing detection requirements in
complex operational environments. Hence, it is crucial to investigate and advance novel
radar systems and approaches to target detection [2,3].

The Multiple Input Multiple Output (MIMO) radar, as a new type of radar [4,5],
employs orthogonal waveforms for achieving waveform diversity. Its versatile operational
capability enables omnidirectional coverage of the airspace [6]. This not only enhances the
degree of freedom and spatial resolution and expands the dimension of signal processing,
but also benefits the performance of object detection [7].

The initial step in signal processing for the MIMO radar involves the separation of
waveforms, which is facilitated by their orthogonality. This is followed by spatial and
temporal processing, and ultimately leads to the detection of targets. The successful imple-
mentation of waveform separation in MIMO radar systems primarily depends on good
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orthogonal waveforms and the application of efficient filtering techniques. As the most fre-
quently employed form of MIMO radar orthogonal waveform, the phase-coded waveform
exhibits a distinct ambiguity function graph resembling a pushpin and does not suffer from
range–Doppler coupling issues [8,9]. However, it is sensitive to Doppler frequency shifts,
and the higher the Doppler frequency, the worse the matching filtering effect. Regarding
the Doppler sensitivity issue of phase-coded signals, references [10,11] have proposed
corresponding Doppler compensation methods, but both require target Doppler estimation,
and the compensation effect in practical applications is not ideal. Currently, the commonly
used waveform separation filtering methods include matched filtering and adaptive pulse
compression, where the performance of matched filtering mainly depends on the perfor-
mance of orthogonal waveforms [12]. Adaptive pulse compression, as an improved method
of matched filtering, can adaptively estimate the filter weights of each distance unit and
waveform, improving the separation level of waveforms [13]. However, its performance
depends on the appropriate number of iterations, which requires consideration of the
degree of contrast between strong and weak scatterers, thereby posing a challenge in the
selection process.

Traditional spatial and temporal processing methods include beamforming, pulse
accumulation, and Space–Time Adaptive Processing (STAP) [14,15], as well as the Iterative
Adaptive Approach (IAA) [16,17]. STAP is an adaptive clutter suppression method that
combines the spatial and temporal domains. This approach has been proven to yield
significant improvements in clutter suppression and target separation capabilities. The
STAP technique in the MIMO radar increases the degree of freedom, which is beneficial
for improving the processing performance [18]. However, the estimation of the covariance
matrix needs to meet the Reed I S, Mallett J D, Brennan L E (RMB) criterion [19], requir-
ing a large number of independent and identically distributed samples, which can lead
to problems such as large amount of computation and long operation time. Although
methods such as those in [20,21] for dimensionality reduction and rank reduction have
been continuously proposed, the fundamental resolution of this problem has not yet been
achieved. For IAA, it can achieve effective angle Doppler imaging after matched filtering,
thereby achieving Space–Time joint processing [22].

For MIMO radar systems, two commonly employed pre-detection methods are Matched
Filtering–Beam Forming–Discrete Fourier Transform (MF-BF-DFT) [23] and Adaptive Pulse
Compression–Beam Forming–Discrete Fourier Transform (APC-BF-DFT) [24]. The MF-BF-
DFT method is the simplest and most convenient method for engineering applications,
while the APC-BF-DFT method improves the effect of suppression on range sidelobes
compared to the former method but increases computation complexity. However, the
above two methods have poor suppression effects on three-dimensional (3D) sidelobes,
and do not have clutter and noise suppression capabilities, so that the effect after cas-
caded processing does not meet good expectations. Adaptive Pulse Compression–Iterative
Adaptive Approach–Space–Time Adaptive Processing (APC-IAA-STAP) [22,25] is a new
adaptive iterative processing method that has been proposed in recent years. Compared
with the previous two methods, it has better clutter and noise suppression capabilities
and can achieve good suppression of 3D sidelobes. However, this method is a cascaded
two-step iterative processing method, which makes it challenging to choose the appropriate
number of iterations for each stage. Additionally, as it is still a cascaded method, it may
not provide adequate performance for the overall suppression of 3D sidelobes. Therefore,
further improvements are necessary to enhance its processing performance.

In light of the aforementioned scenario, this study presents a novel approach called the
Space–Time–Range Joint Adaptive Focusing and Detection (STRJAFD) method. The pro-
posed method utilizes the Mean Squared Error (MSE) criterion and integrates spatial, tem-
poral, and waveform dimensions. The aforementioned approach has several advantages:

(1) The technique effectively improves the matching mismatch problem caused by Doppler
frequency shift;

(2) The technique has good clutter- and noise-suppression effects;
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(3) The technique has good sidelobe-suppression effects (range sidelobes, Doppler side-
lobes, and angle sidelobes);

(4) The technique is capable of efficiently segregating waveforms;
(5) The technique is not affected by coherent source cancellation;
(6) The technique necessitates a minimal amount of data.

In this paper, a Space–Time–Range Joint Adaptive Focusing and Detection method is
proposed to suppress 3D sidelobes and clutter, and improve detection performance with
cluttered and noisy backgrounds. The content of this paper is organized as follows. In
Section 2, the construction of the MIMO radar Space–Time–Range echo signal model is
discussed; meanwhile, the principle and process of the Space–Time– Range Joint Adaptive
Focusing and Detection method are introduced. In Section 3, we discuss the experimental
simulations in different scenarios that were conducted to demonstrate STRJAFD’s feasibility
and effectiveness. Section 4 analyzes the reasons why the proposed method is superior to
traditional cascaded adaptive methods. Section 5 summarizes the conclusions drawn from
this study and outlines future prospects.

The main contribution of this study includes four aspects. Firstly, a Space–Time–Range
Joint Adaptive Focusing and Detection algorithm is proposed, which is a three-dimensional
joint adaptive processing method and can achieve high-resolution focusing. Secondly, the
proposed method indirectly improves the matching mismatch issue caused by Doppler
frequency shift through the design of expected signals, solving the problem that matching
filtering and adaptive pulse compression are difficult to solve in the distance dimension,
compared to conventional cascaded adaptive methods (MF-BF-DFT, APC-BF-DFT, and
APC-IAA-STAP). Thirdly, through the effective design of the covariance matrix and the iter-
ative filtering processing based on the MSE criterion, the proposed method can effectively
suppress three-dimensional sidelobes in the distance, space, and Doppler dimensions, and
its sidelobe suppression effect is far superior to the cascaded single dimension adaptive
processing method (MF, APC, BF, and DFT). And, it can simultaneously suppress clutter
and noise, which cannot be achieved by beamforming and Doppler processing, and the
suppression effect of three-dimensional joint processing is also better than that of two-
dimensional joint processing (STAP). Fourthly, a relatively complete Space–Time–Range
three-dimensional echo signal model of the MIMO radar was established, taking into
account the influence of Doppler frequency shift on phase-encoded signals.

2. Space–Time–Range Joint Adaptive Focusing and Detection Method

2.1. Space–Time–Range Model of MIMO Radar Echo Signal

Assuming that the MIMO radar is an equidistant linear array consisting of M trans-
mitting elements and N receiving elements, with a carrier frequency of f0, a wavelength
of λ, a distance between receiving elements of dr = λ/2, a distance between transmitting
elements of dt = Ndr, a pulse repetition period of T, and a carrier speed of v0, and as-
suming that the orthogonal encoded signals transmitted are all narrowband signals, then
the transmitted signals of each transmitting element are s1(t), s2(t), · · · , sM(t), denoted
as S(t) = [s1(t), s2(t), · · · ,sM(t)]T, and P is the encoding length of the signal within one
pulse period.

Assuming that the target is non fluctuating and located in the r-th distance unit, with
a direction of θ and a speed of vt, then the echo signal model of the single pulse is as
described in Equation (1).

X(t) = ξ(r, θ, fd)b(θ)a
T(θ)S(t)e−j2π fdt , (1)

where ξ(r, θ, fd) is the true complex amplitude of the target with direction θ and Doppler
frequency fd in the distance unit r, and a(θ), b(θ), and fd are the emission guidance vector,
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reception guidance vector, and Doppler frequency information of the target; their specific
formulae are shown in Equations (2)–(4), respectively.

fd =
2(v0 sin θ + vt)

λ
, (2)

a(θ) = [1, e−j 2π
λ dt sin θ , e−j 2π

λ 2dt sin θ , · · · ,e−j 2π
λ (M−1)dt sin θ ]

T
, (3)

b(θ) = [1, e−j 2π
λ dr sin θ , e−j 2π

λ 2dr sin θ , · · · ,e−j 2π
λ (N−1)dr sin θ ]

T
, (4)

After analog-to-digital conversion, a discrete target echo signal model is obtained, as
seen in Equation (5).

X(l) = ξ(r, θ, fd)b(θ)a
T(θ)Se−j2π(l−1) fdT l = 1, 2, · · · , L, (5)

where S = [s1 · s f , s2 · s f , · · · , sM · s f ]
T ∈ CM×P, s f =

[
e−j2π 1

P fdT, e−j2π 2
P fdT, · · · , e−j2π fdT

]T
, and

[s1, s2, · · · , sM] is the orthogonal phase-encoding waveform used in the paper.
The echo signals of the L pulses of the target located in the distance unit r are described

in (6).
X (r) = ξ(r, θ, fd)

[
b(θ)⊗

(
aT(θ)S

)]
◦ g( fd)

= ξ(r, θ, fd)b(θ) ◦
(

STa(θ)
)
◦ g( fd)

, (6)

where g( fd) = [1, e−j2π fdT , e−j2π2 fdT , · · · ,e−j2π(L−1) fdT ]
T

, ⊗ is the Kronecker product, and
◦ is the outer product of a tensor.

If there are K targets with different directions and Doppler frequencies in the distance
unit r, then the above Equation (6) becomes Equation (7).

X (r) =
K

∑
j=1

ξ(r, θj, fd j)b
(
θj
)
◦
(

STa
(
θj
))
◦ g
(

fd j
)
, (7)

where ξ(r, θj, fd j) is the true complex amplitude of the target with direction θj and Doppler
frequency fd j in the distance unit r, and a

(
θj
)
, b
(
θj
)
, and fd j are the emission guidance

vector, reception guidance vector, and Doppler frequency information of the j-th target,
j = 1, 2, · · · , K.

Assuming that each distance unit is affected by the clutter scattering points of different
surrounding azimuth units, based on this, the spatial angle (−π/2, π/2) is evenly divided
into Nc parts, and the true complex amplitude of the clutter scattering bodies in each
distance azimuth unit is recorded as ξ(r, θi). At the same time, it is assumed that it follows
a complex Gaussian distribution with a mean of 0 and a variance of σ2

c , and that they
are statistically independent of each other [14]. At last, the clutter model is described in
Equation (8).

C(r) =
Nc

∑
i=1

ξ(r, θi)b(θi) ◦
(

STa(θi)
)
◦ g( fdi), (8)

where fdi =
2(v0 sin θi+vi)

λ , and vi represents the velocity of the scatterer with an azimuth of
θi relative to the carrier, which is set to 0 in this paper. At this point, the clutter Doppler is a
function of azimuth θi. As a result, the clutter Doppler is proportional to the normalized
angle of dr sin θi

λ and has a constant proportional coefficient.
When there is a target in the r-th distance unit, the Space–Time–Waveform echo tensor

Y(r) ∈ CP×N×L is as described in Equation (9).

Y(r) = X (r) + C(r) +N (r), (9)
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When there is no target in the r-th distance unit, the Space–Time–Waveform echo
tensor Y(r) ∈ CP×N×L is as described in Equation (10).

Y(r) = C(r) +N (r), (10)

where C(r) is the clutter in the r-th distance unit andN (r) is the noise in the r-th distance unit.
In fact, the echo data of each distance unit come from the superposition of P waveform

echo data, and the specific superposition mode is shown in Figure 1.

 
Figure 1. Superimposing waveform echo to obtain the final echo data.

Assuming that there are a total of Q + 2P− 1 Space–Time–Waveform echo tensors, the
MIMO radar Space–Time–Range signal model Y(r) ∈ CP×N×L before matched filtering
can be described by Equation (11).

Y(r) =
P−1

∑
p=−(P−1)

Y(r + p) P ≤ r ≤ Q + P, (11)

where Y(r + p) represents the (r + p)-th Space–Time–Waveform echo tensor. When there
is a target in the (r + p)-th distance unit, the Y(r + p) is as described in Equation (12);
when there is no target in the (r + p)-th distance unit, the Y(r + p) is as described in
Equation (13).

Y(r + p) = X (r + p) + C(r + p) +N (r + p), (12)

Y(r + p) = C(r + p) +N (r + p), (13)

where X (r + p) is as described in Equation (14) and C(r + p) is as described in Equation (15).

X (r + p) =
K

∑
j=1

ξ(r, θj, fd j)b
(
θj
)
◦
(

JT(p)STa
(
θj
))
◦ g
(

fd j
)
, (14)

C(r + p) =
Nc

∑
i=1

(r, θi)b(θi) ◦
(

JT(p)STa(θi)
)
◦ g( fdi), (15)

where J(p) is a Stochastic matrix to realize waveform superposition, which is described in
Equation (16).

Ji,j(p) =
{

1, ifi− j + p = 0
0, ifi− j + p �= 0

, (16)

Based on Y(r) ∈ CP×N×L, the Space–Time–Range echo data model Y ∈ CQ×N×L

received by the MIMO radar can be constructed, as shown in Figure 2.
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Figure 2. Space–Time–Range echo of MIMO radar.

2.2. The Principle of Space–Time–Range Joint Adaptive Focusing and Detection Algorithm

Among the existing array signal processing methods, single-dimensional adaptive
processing methods, including beamforming in the spatial domain, coherent integration in
the time domain, and matched filtering in the waveform dimension, essentially focus on
accumulating energy in each dimension. However, for three-dimensional echo data of the
MIMO radar in cluttered and noisy environments, cascaded single-dimensional adaptive
processing is prone to forming sidelobes in each dimension. Moreover, there is no clutter
and noise suppression function, resulting in the inadequate utilization of the structural
information of the three-dimensional echo data, which can easily lead to a poor detection
performance under a low signal-to-clutter ratio (SCR) and low signal-to-noise ratio (SNR).

To address this issue, this paper proposes a Space–Time–Range Joint Adaptive Focus-
ing and Detection method based on the Mean Squared Error (MSE) criterion that combines
spatial, temporal, and waveform dimensions. Firstly, the Space–Time–Range Joint Adaptive
Focusing (STRJAF) is applied to the three-dimensional echo data to improve the matching
mismatch caused by Doppler frequency shift and effectively suppress sidelobes. At the
same time, it also helps to suppress clutter and noise, thereby enhancing the SCR and
SNR. Finally, the test statistics are constructed based on the STRJAF results to achieve
target detection.

The target energy in the radar echo data can be analyzed from the perspective of
waveform dimension before matched filtering. In the MIMO radar echo, the echo energy of
a target is distributed within P (encoding length of waveform) distance units that include
its location. Therefore, when processing the received Space–Time–Range 3D echo data
tensor Y ∈ CQ×N×L, this paper divides it into Q − P + 1 Space–Time–Waveform scale
(P × N × L) 3D subtensors Y(r) ∈ CP×N×L r = 1, 2, · · · , Q − P + 1, using P (encoding
length of waveform) as a scale in the distance dimension. These subtensors can be regarded
as Q − P + 1 new “three-dimensional distance units” to ensure that the target energy can
be fully contained in a certain “three-dimensional distance unit”. Due to the inability to
directly process 3D data, this paper converts the “3D distance unit” Y(r) ∈ CP×N×L into a
one-dimensional vector x(r) ∈ CPNL×1 r = 1, 2, · · · , Q− P + 1.

The Mean Squared Error (MSE) criterion is a classical adaptive filter optimization
criterion. Its core idea is to minimize the Mean Squared Error between the filtered output
and the expected output, so as to achieve the purpose of filter optimization.

In actual situations, the target direction and Doppler frequency are unknown. There-
fore, this paper uniformly divides the spatial angle (−π/2, π/2) into Ns parts, and uni-
formly divides the normalized Doppler frequency (−0.5, 0.5) into Nf parts, so that the
target function based on the MSE criterion is as described in Equation (17).

J(r, θ, fd) = E
[
|y(r)− d(r, θ, fd)|2

]
= E
[
|w(r, θ, fd)x(r)− d(r, θ, fd)|2

]
= w(r, θ, fd)

HR(r)w(r, θ, fd) + E
[
|d(r, θ, fd)|2

]
−w(r, θ, fd)

Hrxd − rxd
Hw(r, θ, fd)

, (17)
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Among them, x(r) is the echo signal of the r-th distance unit, y(r) is the output after
adaptive filtering, d(r, θ, fd) is the expected output of the r-th distance unit when the
direction is θ, the normalized Doppler frequency is fd, w(r, θ, fd) is the Space–Time–Range
joint adaptive filter of the r-th distance unit when the direction is θ, the normalized Doppler
frequency is fd, rxd is the correlation vector between the echo signal x(r) and the expected
output d(r, θ, fd), and R(r) is the covariance matrix.

The formula obtained by solving the objective function is described in Equation (18).

w(r, θ, fd) = R(r)−1rxd, (18)

where rxd = x(r)d(r, θ, fd)
∗.

The obtained solution reveals that the utilization of the MSE criterion necessitates the
availability of a covariance matrix and a predetermined expected output. Consequently,
the meticulous design of both the covariance matrix and initial expected output assumes
paramount significance.

In this paper, first and foremost, we propose a method to design the initial ex-
pected output using the Space–Time–Waveform joint adaptive filter, which is described in
Equation (19).

d(r, θ, fd) =
h(r, θ, fd)

Hx(r)

h(r, θ, fd)
Hh(r, θ, fd)

, (19)

where h(r, θ, fd) is the Space–Time–Waveform joint adaptive filter, which is capable
of achieving a satisfactory initial result by applying joint adaptive matched filtering
in three dimensions (Space, Doppler frequency, and waveform) to the input data,
h(r, θ, fd) = b(θ)⊗ g( fd)⊗

(
aT(θ)S

)
.

To address the matching mismatch caused by intra-pulse Doppler frequency shift, this
paper proposes a solution. Instead of directly compensating for it, we will set h(r, θ, fd) as
the product of the transmit steering vector and the intra-pulse waveform after the intra-
pulse Doppler frequency shift, followed by the Kronecker product of the receive steering
vector and the Doppler steering vector. This approach effectively eliminates the matching
mismatch without direct compensation for the intra-pulse Doppler frequency shift. By
designing the initial expected output in this way, we could achieve an indirect improvement
in the matching mismatch.

Then, we designed the covariance matrix. The covariance matrix of each distance unit
was designed to the sum of the covariance matrices of 2P − 1 distance units (including
this distance unit) in all Doppler frequency and spatial directions, which is described in
Equation (20).

R(r) =
P−1

∑
p=−(P−1)

π/2

∑
θ=−π/2

PRF/2

∑
fd=−PRF/2

x(r + p, θ, fd)x(r + p, θ, fd)
H, (20)

The energy output after filtering is described in Equation (21).

z(r, θ, fd) = y(r)Hy(r)

=
(

w(r, θ, fd)
Hx(r)

)H(
w(r, θ, fd)

Hx(r)
) , (21)

Finally, iterative processing is performed on the filtered output. We used the filtered
output z(r, θ, fd) as the expected output d(r, θ, fd) for the next iteration input, iterating until
the desired filtered output had been obtained. And, the output at this point was the final
Space–Time–Range Joint Adaptive Focusing output.

In this paper, the Space–Time–Range data used were Array Element–Pulse–Range data,
which can be considered equivalent to Beam–Pulse–Range data, Array Element–Doppler–
Range data, and Beam–Doppler–Range data. The difference lies in whether beamforming
or Doppler transformation is performed. Therefore, the Space–Time–Range Joint Adap-
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tive Focusing method proposed in this paper actually includes four sub methods: Array
Element–Pulse–Range Joint Adaptive Focusing, Beam–Doppler–Range Joint Adaptive
Focusing, Array Element–Doppler–Range Joint Adaptive Focusing, and Beam–Doppler–
Range Joint Adaptive Focusing. These four sub methods are essentially equivalent, and so
the remaining three sub methods will not be elaborated upon in the paper.

After achieving Space–Time–Range Joint Adaptive Focusing, the problem of MIMO
radar target detection can be expressed as in Equation (22).

H0 : z(r) = zclutter(r) + znoise(r)
H1 : z(r) = ztarget(r, θ, fd) + zclutter(r) + znoise(r)

, (22)

Based on this, the test statistics are constructed in Equation (23).

TSTRJAFD = z(r)
H1
≷
H0

Λ0, (23)

where Λ0 is the detection threshold.
Figure 3 is the flow chart of the STRJAFD method. Based on the flow chart, we

summarize and sort out the steps of the STRJAFD method.

dd r fr

dr fw

( )r

rx

( )dz r f

T

T ≥ Λ

Λ

 

Figure 3. Flow chart of STRJAFD.
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Step 1: MIMO radar echo data processing. 1© Receive MIMO radar Space–Time–
Range three-dimensional echo data Y ∈ CQ×N×L; 2© divide it into multiple Space–Time–
Waveform “three-dimensional distance units” Y(r) ∈ CP×N×L r = 1, 2, · · · , Q − P + 1;

3© convert the “three-dimensional distance units” into one-dimensional vector data
x(r) ∈ CPNL×1.

Step 2: The Space–Time–Range Joint Adaptive Focusing based on the MSE criterion.
1© Calculation of initial expected output d(r, θ, fd) and covariance matrix R(r); 2© calcu-

lation of Space–Time–Range joint adaptive filter w(r, θ, fd) = R(r)−1rxd; 3© Space–Time–
Range Joint Adaptive Focusing for echo data x(r) ∈ CPNL×1; 4© judgment on whether the
output of the focus is satisfactory. If the focusing result is excellent, output it directly as
the final result. If the focusing result is not particularly excellent, use this focusing result
as the expected output for the next iteration and continue the iterative operation until
an excellent focusing effect is achieved. (In fact, this step is an iterative process. After
setting the number of iterations, it is assumed that the results before reaching the number
of iterations are not satisfactory).

Step 3: Target detection. 1© Build detection statistics based on focused output; 2© judge
whether to exceed the threshold; 3© output of detection results.

3. Results

In this section, we firstly investigate the focusing performance of STRJAF on multi-
ple targets in a cluttered background (background for ground detection) and pure noise
background (background for airspace detection), respectively. The purpose is to assess the
method’s ability to suppress sidelobe, clutter, and noise in both environments. Additionally,
it compares the proposed method with the existing cascaded methods. Subsequently, the
impact of intra-pulse Doppler frequency shift on the STRJAF method is examined. Finally,
the detection effect under a cluttered background is experimentally verified and compared
with existing cascaded methods.

3.1. Focusing Results with Cluttered and Noisy Backgrounds

Assuming that the number of transmitting Array Elements is 4, the number of receiving
Array Elements is 8, and the number of pulses is 16, the orthogonal polyphase-encoding
sequence is used as the intra-pulse encoding waveform, and the waveform encoding length
is 8. The angle–Doppler–distance information of the simulation target was set as is shown
in Table 1.

Table 1. Description of objectives.

Target Number Angle–Doppler–Distance

1 (0◦, 0.3, 80)
2 (0◦, −0.1, 80)
3 (0◦, 0.1, 80)

4 (40◦, 0.1, 80)
5 (−40◦, 0.1, 80)

6 (0◦, 0.1, 70)
7 (0◦, 0.1, 90)

In this paper, we compare the proposed method with three other approaches: MF-BF-
DFT, APC-BF-DFT, and APC-IAA-STAP. The target’s signal-to-noise ratio was set to 20 dB,
and the clutter-to-noise ratio (CNR) was set to 0 dB. The number of iterations for APC and
IAA were both set to 4. Furthermore, the number of angle units was set to 37, the number
of Doppler units was set to 41, and the number of distance units was set to 140.
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3.1.1. Focusing Results with Noisy Background

Firstly, under the background for airspace detection (noisy background), this paper
selected Targets 1–7 to study the focusing imaging effects of various methods in the angle–
normalized Doppler dimension and the angle–distance dimension. The experimental
results are shown in Figures 4 and 5, respectively.

  
(a) (b) 

  
(c) (d) 

Figure 4. Angle–normalized Doppler frequency focusing results of four methods with noisy back-
ground. (a) MF-BF-DFT; (b) APC-BF-DFT; (c) APC-IAA-STAP; and (d) STRJAF.

The experimental results demonstrate that the proposed 3D joint focusing method
STRJAF performs with excellent suppression capabilities for three-dimensional sidelobes
(range sidelobe, Doppler sidelobe, and angle sidelobe) under a noisy background. Further-
more, it can achieve super-resolution and boasts exceptional noise reduction abilities. The
focusing effect of the proposed method is slightly superior to that of the semi-cascaded
and semi-joint method “APC-IAA-STAP”, and significantly surpasses traditional cascading
methods such as “MF-BF-DFT” and “APC-BF-DFT”.

3.1.2. Focusing Results with Cluttered Background

Under the background for ground detection (cluttered background), this paper se-
lected Targets 1–5 to study the focusing imaging effects of various methods in the angle–
normalized Doppler dimension and the normalized Doppler–range dimension. The experi-
mental results are shown in Figures 6 and 7, respectively.

86



Remote Sens. 2023, 15, 4509

.  
(a) (b) 

  
(c) (d) 

Figure 5. Angle–Range focusing results of four methods. (a) MF-BF-DFT; (b) APC-BF-DFT;
(c) APC-IAA-STAP; and (d) STRJAF.

From the experimental results, it can be seen that under the cluttered background,
there are clutter ridges in the diagonal position of the two-dimensional image in the Space–
Time dimension. It is obvious that the broadening of the clutter ridges in the cascaded
methods (“MF-BF-DFT” and “APC-BF-DFT”) is more severe than that in the semi-cascaded
and semi-combined method (“APC-IAA-STAP”). As the SCR decreases, this situation
will become more apparent. Meanwhile, the proposed 3D joint focusing method STRJAF
still has good clutter suppression and focusing effects in cluttered environments, being
significantly superior to traditional cascaded methods.

In summary, the proposed STRJAF method can effectively suppress clutter and noise
and effectively suppress three-dimensional sidelobes for focusing, and has super-resolution
ability that is significantly superior to traditional cascading methods, regardless of whether
it is a cluttered or noisy background.

3.2. The Influence of Intra-Pulse Doppler Frequency Shift

In order to study the impact of intra-pulse Doppler frequency shift on the proposed
method, this paper selects two targets with an angle, normalized Doppler, and distance
units of (0◦, 0, 100) and (0◦, 1, 140), representing two cases of no intra-pulse Doppler
frequency shift and a maximum intra-pulse Doppler frequency shift. We set the number of
transmitting Array Elements to 4, the number of receiving Array Elements to 4, the number
of pulses to 8, and the SNR to 0 dB. The experimental results after processing with STRJAF
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and cascading methods under different code length conditions in a noisy background are
shown in Figures 8 and 9, respectively.

  
(a) (b) 

  
(c) (d) 

Figure 6. Angle–normalized Doppler frequency focusing results of four methods with cluttered
background. (a) MF-BF-DFT; (b) APC-BF-DFT; (c) APC-IAA-STAP; and (d) STRJAF.

From the experimental results, it can be verified that when there is intra-pulse Doppler
frequency shift, matched filtering and adaptive pulse compression methods are prone to
being mismatched in the distance dimension, resulting in a decrease in the effectiveness of
matched filtering and pulse compression, which is not conducive to the accumulation of
target energy. Moreover, the larger the Doppler frequency shift and the longer the code
length of the encoded signal, the more significant the mismatch. The proposed method
STRJAF is not affected by the intra-pulse Doppler frequency shift, ensuring the effective
accumulation of target energy, which proves the effectiveness of the proposed method in
improving the intra-pulse Doppler frequency shift problem.

3.3. Detection Results with Noisy and Cluttered Backgrounds

In this section, this paper investigates the detection performance of the proposed
method with noisy and cluttered backgrounds and compares it with traditional cascaded
processing methods. Assuming that the number of transmitting Array Elements is 4,
the number of receiving Array Elements is 4, and the number of pulses is 8, an orthogo-
nal polyphase-encoding sequence is used as the intra-pulse encoding waveform, with a
waveform encoding length of 8, and the false alarm rate is set to 10−2. With a cluttered
background, the detection probability at each signal-to-clutter ratio was obtained through
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1000 simulations. The signal-to-clutter ratio here is defined as the signal-to-clutter ratio
before pulse compression and coherent accumulation.

  
(a) (b) 

  
(c) (d) 

Figure 7. Range-normalized Doppler frequency focusing results of four methods. (a) MF-BF-DFT;
(b) APC-BF-DFT; (c) APC-IAA-STAP; and (d) STRJAF.

3.3.1. The Effect of Intra-Pulse Doppler Frequency Shift on Detection Performance

Firstly, the impact of intra-pulse Doppler frequency shift on target detection perfor-
mance was studied under two conditions of Doppler frequency shift and no Doppler
frequency shift in the echo signal. At the same time, comparisons were made between three
methods, “MF-BF-DFT”, “APC-BF-DFT”, and “APC-IAA-STAP”, using the Constant False
Alarm Rate (CFAR) method.

At first, the target detection performance without intra-pulse Doppler frequency shift
was studied, and targets with an angle, normalized Doppler, and distance units of (10◦,
0, 50) were selected for detection experiments and used as the reference standards. The
experimental results are shown in Figures 10 and 11.
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(a) (b) 

 
(c) 

Figure 8. The influence of intra-pulse Doppler frequency shift on three methods when the code length
is 8. (a) MF-BF-DFT; (b) APC-BF-DFT; and (c) STRJAF.

  
(a) (b) 

 
(c) 

Figure 9. The influence of intra-pulse Doppler frequency shift on three methods when the code length
is 16. (a) MF-BF-DFT; (b) APC-BF-DFT; and (c) STRJAF.
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Figure 10. Comparison of test results with a noisy background.

 

Figure 11. Comparison of test results with a cluttered background.

Then, the impact of intra-pulse Doppler frequency shift on detection performance
with a cluttered background was studied, and targets with an angle, normalized Doppler,
and distance units of (10◦, 0.5, 50) were selected as experimental targets. The experimental
results are shown in Figure 12.

 

Figure 12. Detection results under large intra-pulse Doppler frequency shift.

The experimental results show that the detection results of various methods do not
differ significantly under the condition of no intra-pulse Doppler frequency shift with
a noisy background. However, with a cluttered background, the proposed detection
method has good performance and robustness, with smaller fluctuations in the detection
performance curve, regardless of whether there is intra-pulse Doppler frequency shift or
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not. In contrast, the traditional cascaded method shows a significant decline in detection
performance when intra-pulse Doppler frequency shift is present. Therefore, compared to
the traditional method, the proposed method demonstrates obvious superiority.

3.3.2. The impact of Interference Targets on Detection Performance

Then, the impact of interference targets on target detection performance was studied
under the presence of interference targets and compared with three methods, “MF-BF-
DFT”, “APC-BF-DFT”, and “APC-IAA-STAP”, using the Small Of-Constant False Alarm
Rate (SO-CFAR).

The target with an angle, normalized Doppler, and range units of (10◦, 0, 50) was
still selected as the detection target, while the target with (20◦, 0, 46) was selected as the
interference target, and we set the energy of the interference target to 0 dB. The target
detection results with noisy and cluttered backgrounds are shown in Figures 13 and 14,
respectively.

 

Figure 13. Comparison of detection results with a noisy background.

 

Figure 14. Comparison of detection results with a cluttered background.

The experimental results show that the interference target has little impact on the target
detection performance of the proposed method, indicating that the proposed method can
effectively suppress sidelobes, while the detection performance of the cascade method has
a certain degree of decline, indicating that it can be significantly affected by the interference
target sidelobes.

4. Discussion

Traditional processing and detection methods aim to enhance SCR and SNR by accu-
mulating target energy from each dimension, thereby improving the detection performance.
Beamforming, coherent integration, and matched filtering (pulse compression) essentially
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accumulate energy in spatial, temporal, and distance dimensions. However, with the ad-
vancement of radar systems, echo data dimensions have expanded from one-dimensional
and two-dimensional to three-dimensional or even higher dimensions. The cascaded
single-dimensional energy accumulation method cannot effectively handle multidimen-
sional sidelobes in multidimensional data. To further enhance signal processing and target
detection performance, joint processing and detection methods are necessary. Based on
this idea, this paper has proposed a Space–Time–Range 3D Joint Adaptive Focusing and
Detection method, which achieves the joint suppression of 3D sidelobes and accumulates
target energy. At the same time, by suppressing clutter and noise, the SCR/SNR is further
improved, and the performance of target detection is improved.

5. Conclusions

In this paper, we have proposed a novel Space–Time–Range Joint Adaptive Focusing
and Detection method to address the challenges associated with the multidimensional
sidelobes (range sidelobes, Doppler sidelobes, and angle sidelobes) of targets, clutter,
and noise in the echo background, and Doppler frequency shift-induced mismatch in
matched filtering within existing MIMO radar target detection processes. The experimental
results show that the proposed method effectively suppresses sidelobe interference and
exhibits good focusing capabilities, achieving superior clutter and noise suppression while
improving SCR and SNR. Moreover, it demonstrates excellent detection performance in
low-SCR and -SNR environments, significantly enhancing the target detection performance.

In this study, we utilized the phase-coded signal as the MIMO radar transmission
signal for research. In fact, different transmission signals possess distinct characteristics and
are suitable for different scenarios. In the future, we will conduct research on other types
of waveforms and use them as signals for MIMO radar transmission to verify whether
the proposed method still performs well under different waveform signals and different
scenarios, and whether it still has significant advantages compared to other methods.

In addition, the computational cost of the proposed method is relatively high, and
research on its fast implementation version will also be a part of future research.
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Abstract: Multiband antenna arrays have the capability of effectively working in multiple frequency
bands and thus significantly simplify the antenna system. To further reduce the system overhead,
this paper discusses the joint design of antenna selection and adaptive beamforming for multiband
antenna arrays, where the sidelobe level is also controlled so as to alleviate the effect of unknown
sporadic interference. Based on the maximum signal-to-interference-plus-noise ratio (SINR) criterion
and sidelobe level constraints, the proposed multiband sparse array design is formulated into a
nonconvex constrained nonlinear optimization problem with an l0,2-mixed norm regularization. This
problem ensures that the same antenna positions are selected at all operating frequencies while the
beamformer weights of each frequency are optimized independently. By exploiting the semi-definite
relaxation and the reweighted l1,∞-norm approximation, the problem is converted into a series of
convex subproblems and is then effectively solved by the proposed iterative reweighted method.
Numerical results show that the proposed multiband sparse array significantly reduces the sidelobe
levels in all operating frequencies while maintaining the maximum SINR, so it provides superior
performance of interference suppression.

Keywords: multiband antenna; sparse array; adaptive beamforming; sidelobe level control

1. Introduction

A multiband antenna is a specialized type of antenna that is designed to effectively
operate across multiple preset frequency bands simultaneously. This versatile technology
substantially reduces the volume, cost, weight, and complexity associated with antenna
systems. As a result, multiband antennas are increasingly being used in advanced commu-
nication and radar systems [1–3]. With the increasing requirement on the spatial resolution
and capacity, several kinds of multiband arrays have been developed for the application of
next-generation wireless communication [4]. However, in the utilization of medium- or
large-scale multiband arrays, the cost, hardware complexity, and power consumption are
high. Sparse arrays offer significant advantages in terms of reducing the system complexity
and hardware overhead. Compared to conventional uniform linear arrays, sparse arrays
use fewer antenna elements and radio-frequency channels while they have the same array
aperture and suffer from only a little performance loss. Therefore, one promising direction
in developing multiband antenna arrays is to design optimal sparse array configurations.
Different from conventional sparse arrays working at a single frequency, the configuration
of a multiband sparse array should possess the capability to deliver excellent performance
across all operating frequencies, tailored to specific functions such as transmit beampattern
synthesis or adaptive receive beamforming.

The design of narrowband sparse arrays, specifically focusing on single-frequency
operation, has been widely explored in various tasks and performance metrics [5–22].
Depending on the application and the performance metrics, sparse array design can be
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divided into two categories: environment-independent or environment-dependent. In
the environment-independent case, various structured sparse arrays, including minimum
redundancy arrays [5], nested arrays [6], and co-prime arrays [7], have been developed to
improve the direction-of-arrival (DOA) estimation performance, and then to provide good
beamforming performance [8,9]. Furthermore, to obtain a sparse array with the smallest
element number, sparsity-promoting algorithms for unstructured sparse arrays are used
to synthesize the desired beampattern [10] or to improve the parameter estimation perfor-
mance [11]. The representative algorithms include reweighted l1-norm [10,12,13], mixed
norm or norm combination [14], nonconvex lp-norm (0 < p < 1) [15], soft-thresholding
shrinkage [16], and Bayesian inference [17]. In the environment-dependent case, joint
optimization of antenna position and receive beamformer has been utilized to maximize
output signal-to-interference-plus-noise ratio (SINR) by exploiting environmental data.
These methods have been implemented by using reweighted l1-norm and semi-definite
relaxation (SDR) [18], sequential convex approximation (SCA) [19], and the alternating
direction method of multipliers (ADMM) [20], to name a few. Additional constraints have
also been introduced to achieve sidelobe level (SLL) control [21]. To further minimize
the number of required antennas, an l0-norm concave approximation approach has been
proposed in [22]. Since the unstructured sparse array designs are commonly coined as
nonconvex constrained optimization problems, the main challenge is how to resolve these
problems efficiently. Due to the powerful capability of deep neural networks (DNNs) in
solving nonlinear problems and performing fast computations, a fully connected DNN has
recently been applied to select antenna positions for adaptive beamforming [23,24].

Along with the continuous development of narrowband sparse arrays, wideband
sparse array design has also been studied extensively in the past two decades [25–32]. Due
to the significantly degraded performance of narrowband sparse arrays when the signal
bandwidth increases and the narrowband hypothesis no longer holds, which results in a
poor ability of interference suppression, it is necessary to consider wideband sparse array
design. By utilizing a limited number of available antennas, the wideband sparse array
design offers more degrees-of-freedom (DoFs) to control the beampattern over the frequen-
cies of interest. In wideband beamforming, there are two commonly used implementation
schemes: tapped delay line (TDL) filtering and discrete Fourier transform (DFT)-based
sub-band processing. Concretely, TDL implements temporal filtering by using a TDL to
capture the signal at different time instants, while DFT processes the signal in several
narrow sub-bands via DFT [33].

Based on the TDL and DFT schemes, several different goals involving frequency-
invariant (FI) beampattern synthesis, SLL control, and robust beampattern design [25–27]
have been achieved by many wideband sparse array design methods. To be specific, FI
beampattern synthesis is dedicated to generating a specific pattern regardless of the opera-
tion frequency, the SLL control aims to reduce the power of sidelobes around the mainlobe,
and the robust beampattern design focuses on maintaining desired beampatterns that are
not influenced by the array uncertainties or the changes of operating environment. Early
methods such as simulated annealing [28,29] and genetic algorithms [30], which rely on
heuristic methods, have been abandoned due to their high computational cost. Recently,
the sparsity-promoting algorithm has emerged as a prevalent solution to optimizing the
array design. For TDL implementation, FI beampatterns with a small number of antennas
are synthesized by several effective algorithms, including reweighted l1-norm [27], second-
order cone programming (SOCP) [26], and the generalized matrix pencil method [34].
Although these algorithms demonstrate outstanding performance, they are still compu-
tationally expensive and thus not suitable for large-scale arrays. In contrast, DFT-based
sub-band processing has become increasingly popular due to its remarkable computational
efficiency [31,32]. In this approach, the wideband signal is divided into several narrow
sub-bands via DFT. The beams in each sub-band are optimized by imposing group spar-
sity constraints through convex optimization techniques. This method has demonstrated
commendable performance while demanding lower computational requirements than
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TDL-based approaches. However, it requires storing blocked received signals and updating
the weights block by block.

In this paper, we consider the multiband sparse array design for adaptive beamform-
ing, which is partially distinct from existing narrowband and wideband sparse array design.
Since the multiband array works simultaneously at multiple frequencies, it can be consid-
ered as a narrowband array at each frequency. That is to say, the design of a multiband
sparse array is equivalent to the joint design of multiple narrowband sparse arrays with the
same antenna positions. From another perspective, the multiband sparse array design can
be considered as a special case of the DFT-based wideband sparse array design, in which
only partial DFT bins exist. However, the number of DFT bins depends on the bandwidth
of the multiband antenna. Hence, the DFT-based wideband schemes will be inefficient
when the frequency spacing between adjacent operation frequency bands is large enough.
For multiband sparse arrays, ref. [35] utilized the linear Cantor fractal array to construct
a structured sparse multiband array and then offered a Kalman filtering-based adaptive
beamformer. Ref. [31] considered the joint design of antenna selection and adaptive beam-
former by using group sparse regularization. The array has the same antenna position in
all frequencies, while the beamforming weights of each frequency are separately optimized.
However, the SLL control of receive beampattern is not taken into account. Uncontrol-
lable high sidelobes generated at some operating frequencies will reduce the interference
suppression performance, especially when unknown sporadic interference appears.

Based on the above observations, this paper discusses the problem of multiband sparse
array design for adaptive beamforming with SLL control. Concretely, we jointly design
an antenna selection and adaptive beamformer under the maximum SINR criterion and
the SLL constraints. Since it is essential for the antenna positions to be identical in all oper-
ating frequencies, we coin the proposed sparse array design as a nonconvex constrained
nonlinear optimization problem with an l0,2-mixed norm regularization. The proposed
problem is intractable since the objective function and all constraints are nonconvex, and the
beamforming weights of different frequencies are coupled in the objective function. By
employing the reweighted norm transformation and SDR techniques, we construct an itera-
tive reweighted method to solve this problem effectively. With the aid of the reweighted
norm approximation technique, we first equivalently express the original problem as a
series of l1,∞-norm regularized nonconvex constrained optimization subproblems. By using
SDR and linear fractional SDR schemes, we then relax the l1,∞-norm regularized noncon-
vex subproblem to the corresponding convex subproblem, which is tractably resolved by
off-the-shelf toolboxes. Numerical results demonstrate that the proposed method can effec-
tively reduce the SLL across all operating frequencies, thereby enhancing its interference
suppression performance.

The remainder of this paper is organized as follows. Section 2 introduces the sig-
nal model of adaptive beamforming for multiband arrays. Section 3 states the problem
formulation of multiband sparse array design for maximizing the output SINR under
SLL constraints and then provides an SDR-based iterative reweighted solution algorithm.
Section 4 analyzes the computational complexity of the proposed algorithm. Numerical
experiments are conducted in Section 5 to validate the superiority of the optimized multi-
band sparse array. Section 6 provides some discussions regarding the multiband sparse
array design. Concluding remarks follow at the end.

Notations: Throughout this paper, lower-case bold characters and upper-case bold
characters represent vectors and matrices, respectively. (·)T indicates the transpose and (·)H

denotes the conjugate transpose. | · | is the modulus operator. E{·} denotes the statistical
expectation. Tr(·) and Rank(·) stand for the trace and the rank operations, respectively. IN
stands for an N × N identity matrix. W � 0 means that W is positive semi-definite. R{·}
and I{·} represent the real and imaginary parts of the complex variables, respectively.
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2. Signal Model

Assume that the multiband array, consisting of N uniformly spaced multiband antenna
elements, has the capability of receiving narrowband signals belonging to M frequency
bands centered at the frequency ωi (i = 1, · · · , M), respectively. Consider a desired source
operating in the i-th band with the center frequency ωi, while there exist Pi sources of
interference. Both the desired source and interference signals impinge on the N-element
multiband array. The baseband signal received by the multiband array at the frequency ωi
is given by

xωi = αia(θsi , ωi) +
Pi

∑
pi=1

βpi a
(
θpi , ωi

)
+ vi, (1)

where vi ∈ CN is the additive, while Gaussian noises with variance σ2
vi

, αi, βpi ∈ C are
the complex amplitudes of the incident baseband source and the pi-th interference source,
respectively; a(θsi , ωi) and a

(
θpi , ωi

)
are the steering vectors at the frequency ωi with

respect to the desired source with the direction θsi and the interference source with the
direction θpi , which are defined by

a(θsi , ωi) = [1, e
j 2π

λωi
d cos θsi , . . . , e

j 2π
λωi

d(N−1) cos θsi ]T (2)

where d is the element spacing and λωi is the wavelength at the frequency ωi. To prevent
spatial aliasing, we set d = λωm

2 , where ωm is the highest frequency of {ωi}M
i=1. Then the

steering vector a(θsi , ωi) can be simplified as

a(θsi , ωi) = [1, ejπ ωi
ωm cos θsi , . . . , ejπ ωi

ωm (N−1) cos θsi ]T (3)

The received signal xωi is linearly combined by a beamformer at the receiver to
maximize the output SINR. Denote wi = [w1, . . . , wN ]

T ∈ CN as the beamformer weight
vector. Then the output of the beamformer is

ywi = wH
i xwi , i = 1, . . . , M. (4)

Let the adaptive beamformers be used at all frequencies {ωi}M
i=1. Based on the maximum

SINR (maxSINR) criterion, the optimal beamformers of all frequencies are determined by
the following optimization problem:

min
{wi}M

i=1

M

∑
i=1

wH
i Rini wi

s.t. wH
i Rsi wi = 1, ∀i ∈ 1, . . . , M

(5)

where Rsi = σ2
i a(θsi , ωi)a

H(θsi , ωi) is the covariance matrix of the desired signal, and
σ2

i = E
{

αiα
H
i
}

is the average power of the source at the i-th frequency. Similarly, Rini =

∑Pi
pi=1

(
σ2

pi
a
(
θpi , ωi

)
aH(θpi , ωi

))
+ σ2

vi
IN is the interference-plus-noise covariance matrix

(INCM), where σ2
pi
= E
{

βpi β
H
pi

}
is the average power of the pi-th interference source at

the i-th frequency.
As for multiband uniform linear arrays, problem (5) can be decomposed into M

independent subproblems. The optimal beamformer at the frequency ωi is obtained
by wopti = P

{
R−1

ini
Rsi

}
according to the principle of minimum variance distortionless

response (MVDR), where the operator P{·} extracts the principal eigenvector of the input
matrix. We then obtain the optimal output SINR operating at the frequency ωi as [36]

SINRopti =
wH

opti
Rsi wopti

wH
opti

Rini wopti

= λmax

{
R−1

ini
Rsi

}
, i = 1, . . . , M, (6)
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where λmax{·} represents the principal eigenvalue of the matrix.

3. Proposed Multiband Sparse Array Design

To reduce the cost and system complexity of multiband arrays, this section addresses
the issue of multiband sparse array design. In the narrowband case, sparse array design
is equivalent to finding the beamforming weight wi, having only K non-zero entries at
the frequency ωi. As for the multiband sparse array design, the non-zero entries of wi
at all frequencies, {ωi}M

i=1, should occupy the same antenna positions. In other word,
the design of sparse beamforming weights, {wi}M

i=1, are mutually coupled and thus cannot
be resolved separately, which is different from that of the multiband uniform array in (6).
On the other hand, the multiband sparse array often results in uncontrollable high sidelobe
levels in some frequencies since all wi have to locate at the same antenna positions, leading
to the DoFs of antenna selection being considerably reduced. The designed beamformer
will be sensitive to unknown sporadic interference in the high SLL region, which degrades
the performance of interference suppression. Therefore, it is necessary to incorporate the
SLL constraints into the multiband sparse array design. Based on these considerations,
this section formulates the problem of multiband sparse array design under the MaxSINR
criterion and SLL constraints and then provides an effective solution algorithm.

3.1. Problem Formulation

To proceed, we define the normalized array power response at the direction θ and the
frequency ωi as

B(θ, θi,0, ωi) �
∣∣wHa(θ, ωi)

∣∣2
|wHa(θi,0, ωi)|2

, (7)

where θi,0 is the desired source direction at the frequency ωi; that is, the angle pointing to
the mainlobe. Denote the corresponding sidelobe region as Ωi and discretize Ωi to obtain a
set of angles as {θi,l}, l = 1, · · · , Li. The sidelobe steering vector is then a(θi,l , ωi), and the
normalized array power response at the direction θi,l is [21]

B(θi,l , θi,0, ωi) �
wHa(θi,l , ωi)a

H(θi,l , ωi)w

wHa(θi,0, ωi)aH(θi,0, ωi)w
. (8)

Therefore, SLL constraints at all frequencies, {ωi}M
i=1, can be expressed as

B(θi,l , θi,0, ωi) ≤ δi, ∀i, ∀l, (9)

where δi is the desired SLL at the frequency ωi.
Note that the received multiband signal consists of M sub-bands. The multiband

array correspondingly yields M beamformer weight vectors: w1, w2, . . . , wM. Define the
vector wn = [w1(n), · · · , wi(n), · · · , wM(n)]T ∈ CM, where wi(n) is the n-th component
of wi. That is to say, wn represents the beamforming weights of all M frequencies at the
n-th antenna position. If we avoid the n-th antenna receiving the signal, the vector wn
must be set to 0M. This means that for all M sub-bands, the n-th entry of each wi must
be set to 0 at the same time. To effectively express the selection of K elements from N
multiband antennas, we generate the concatenated vector ŵ � [wT

1 , wT
2 , . . . , wT

M]T ∈ CNM

and define its l0,2-mixed norm as ‖ŵ‖0,2 � |{n : ‖wn‖2 �= 0}| [37]. The requirement on
antenna selection is then expressed as

‖ŵ‖0,2 ≤ K. (10)

Based on the MaxSINR criterion, the proposed multiband sparse array design under
SLL constraints is then formulated into
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min
{wi}M

i=1

M

∑
i=1

wH
i Rini wi

s.t. wH
i Rsi wi ≥ 1, ∀i,

B(θi,l , θi,0, ωi) ≤ δi, ∀i, ∀l,

‖ŵ‖0,2 ≤ K

(11)

In lieu of the sparsity constraint, the mixed l0,2-norm can be used as a penalty term in
the objective function to promote sparsity. Therefore, problem (11) is translated into the
following optimization problem:

min
{wi}M

i=1

M

∑
i=1

wH
i Rini wi + μ‖ŵ‖0,2

s.t. wH
i Rsi wi ≥ 1, ∀i,

wH
i A(θi,l , ωi)wi

wH
i A(θi,0, ωi)wi

≤ δi, ∀i, ∀l,

(12)

where μ is a regularized factor that controls the sparsity of the solution [37] and A(θi,l , ωi) �
a(θi,l , ωi)a

H(θi,l , ωi) for l = 0, 1, · · · , Li.
Unfortunately, solving problem (12) requires exhaustively searching all possible sparse

combinations of ŵ due to the mixed l0,2-norm. Therefore, (12) is a combinational optimiza-
tion problem and cannot be solved in polynomial time [38]. Moreover, the two kinds of
constraints are both nonconvex and thus increase the difficulty of problem solving. To this
end, the following section will provide an SDR-based iterative reweighted method to solve
problem (12) effectively.

3.2. Proposed SDR-Based Iterative Reweighted Algorithm

For the convenience of solving the group-sparse regularized problem, it is usual to
replace the nonconvex l0,2-norm by a convex l1,∞-norm as the group sparsity-inducing
regularization [37], where the l1,∞-norm is defined as ‖ŵ‖1,∞ � ∑N

n=1‖wn‖∞. Furthermore,
we introduce the reweighted vector u = [u(1), u(2), . . . , u(N)]T to enhance the group
sparsity [39], where u(1), u(2), . . . , u(N) are all positive numbers. Moreover, the square
of l1,∞-norm does not change its original sparsity. Given all that, we adopt the squared
reweighted l1,∞-norm (∑N

n=1 u(n)‖wn‖∞)2 in place of ‖ŵ‖0,2, and therefore relax problem
(12) to

min
{wi}M

i=1

M

∑
i=1

wH
i Rini wi + μ(

N

∑
n=1

u(n)‖wn‖∞)2

s.t. wH
i Rsi wi ≥ 1, ∀i,

wH
i A(θl , ωi)wi

wH
i A(θ0, ωi)wi

≤ δi, ∀i, ∀l.

(13)

It can be noticed that the introduction of reweighted vector u to enhance the group
sparsity stems from the original iterative reweighting scheme. As we known, l0-norm is
the natural representation of sparse antenna selection, but the minimization of l0-norm
is NP-hard and it is often relaxed as a l1-norm. According to the iterative reweighting
principle [39], the reweighted l1-norm can well approximate to the l0-norm, and thus has
better sparsity than l1-norm. With the help of reweighting, the contribution of nonzero
entries with large amplitudes is gradually weakened, and the nonzero entries with small
amplitudes therefore can be successfully found. As for problem (13), the reweighted vector
u has the similar ability to improve the group sparsity of l1,∞-norm.
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Denote w̃i �
[
R{wT

i }, I{wT
i }
]T and define the matrices Ã(θi,l , ωi) and R̃ini (R̃si ) as

Ã(θi,l , ωi) �
[

R
{

A(θi,l , ωi)
}
−I
{

A(θi,l , ωi)
}

I
{

A(θi,l , ωi)
}

R
{

A(θi,l , ωi)
} ] (14)

and

R̃ini �
[

R
{

Rini

}
−I
{

Rini

}
I
{

Rini

}
R
{

Rini

} ]. (15)

Problem (13) can then be rewritten as the following real number form:

min
{w̃i}M

i=1

M

∑
i=1

w̃H
i R̃ini w̃i + μ(

N

∑
n=1

u(n)‖wn‖∞)2

s.t. w̃H
i R̃si w̃i ≥ 1, ∀i,

w̃H
i Ã(θi,l , ωi)w̃i

w̃H
i Ã(θi,0, ωi)w̃i

≤ δi, ∀i, ∀l.

(16)

Due to the existence of non-continuous objective function and nonconvex quadratic or
fractional constraints, it is still difficult to solve problem (16) directly. Therefore, we further
relax (16) by using SDR and linear fractional SDR [21], simultaneously. To this end, we
rewrite the quadratic objective function in (16) as

w̃H
i R̃ini w̃i = Tr(w̃H

i R̃ini w̃i) = Tr(R̃ini W̃i), (17)

where W̃i = w̃iw̃
H
i ∈ R2N×2N . Similarly, we relax the linear fractional constraint in (16) to

Tr((Ã(θi,l , ωi)− δiÃ(θi,0, ωi))W̃i) ≤ 0. (18)

Furthermore, we relax the squared reweighted l1,∞-norm by using convex SDP. Denote
U � uuT ∈ RN×N , Wi = wiw

H
i ∈ CN×N , and Ŵ � max

i=1,...,M
|Wi| ∈ RN×N . By invoking the

properties of rank relaxation, we can rewrite the squared reweighted l1,∞-norm as [37]

(
N

∑
n=1

u(n)‖wn‖∞)2 =
N

∑
n1=1

N

∑
n2=1

((max
k

u(n1)|wk(n1)|)(max
k

u(n2)|wk(n2)|))

=
N

∑
n1=1

N

∑
n2=1

u(n1)u(n2) max
i∈{1,...,M}

|Wi(n1, n2)|

=
N

∑
n1=1

N

∑
n2=1

U(n1, n2)Ŵ(n1, n2)

=Tr(UŴ).

(19)

Since Ŵ is a real matrix, we can deduce that matrices Ŵ and Wi satisfy the element-
wise inequality as

|Wi| ≤ Ŵ, i = 1, . . . , M, (20)

which is specifically expressed as

‖
√
−1(−W̃i(p, N + q) + W̃i(N + p, q)) + W̃i(p, q) + W̃i(N + p, N + q)‖2 ≤ Ŵ(p, q) (21)

After the above relaxation process, problem (16) is converted into
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min
{W̃i}M

i=1,Ŵ

M

∑
i=1

Tr(R̃ini W̃i) + μ Tr(UrŴ)

s.t. Tr(R̃si W̃i) ≥ 1, ∀i,

Tr((Ã(θi,l , wi)− δiÃ(θi,0, wi))W̃i) ≤ 0, ∀i, ∀l,

W̃i � 0, ∀i,

‖
√
−1(−W̃i(p, N + q) + W̃i(N + p, q))+

W̃i(p, q) + W̃i(N + p, N + q)‖2 ≤ Ŵ(p, q),

∀p, q ∈ 1, . . . , N, ∀i,

(22)

where the nonconvex constraints Rank(W̃i) = 1 are discarded in the process of convex
relaxation [40]. The superscript r of U represents the r-th reweighted iteration, and the
iterative update formula of U is [39]

Ur(p, q) =
1

|Ŵr−1(p, q)|+ ε
(23)

where ε is a small positive number.
By iteratively solving problem (22), we finally obtain the desired weight matrices

W̃i ∈ R2N×2N , i ∈ 1, . . . , M. The principal eigenvector w̃i is then extracted from W̃i,
i.e., w̃i = P{W̃i}. Ultimately, we restore the multiband beamforming vectors by

wi = [IN jIN ]w̃i, i = 1, . . . , M. (24)

For clarity, we summarize the proposed multiband sparse array design method in Algorithm 1.

Algorithm 1 Multiband Sparse Array Design with Sidelobe Level Control

Input: N,K,δi, ε, μmin, μmax.
Initialization: Set r = 0, U0 is an N × N all-one matrix.

1: while ‖ŵ‖0,2 �= K do

2: Obtain W̃r+1
1 · · · W̃r+1

i · · · W̃r+1
M , Ŵr+1 using (22);

3: Obtain wr+1
1 · · ·wr+1

i · · ·wr+1
M using (24);

4: Obtain Ur+1 using (23);
5: Update the value of μ by the binary search approach;
6: r = r + 1;
7: end while

Output: Multiband beamforming weights w1, w2, · · · , wM.

4. Analysis of Computational Complexity

This section analyses the computational complexity of the proposed algorithm. It is
obvious that the computational complexity is primarily determined by solving the problem
(22). For the problem (22), we use the off-the-shelf toolboxes, such as CVX, to effectively find
the optimal solution, where the interior point method is invoked. Following [37], the worst-
case complexity order of the problem (22) remains the same as the problem without antenna
selection, which is only solving the variables {W̃i}M

i=1. Therefore, the problem without the
antenna selection has M matrix variables of size 2N× 2N, and (M + ML) linear constraints.
The interior point method will take O(

√
MN log(1/ε)) iterations, where ε stands for the

accuracy of the solution at the algorithm’s termination, and each iteration requiring at most
O(M3N6 + LM2N2 + M2N2) arithmetic operations [41]. Therefore, the overall worst-case
complexity of the proposed algorithm is O(M3.5N6.5 + LM2.5N2.5 + M2.5N2.5) log(1/ε).
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5. Numerical Results

In this section, we evaluate the effectiveness of the proposed method for multiband
sparse array design by several numerical experiments. We compare it with other typical
algorithms in [21,31]. Specifically, Zheng considered the design of narrowband sparse
arrays working at a single frequency under SLL constraint in [21], while Hamza designed a
multiband sparse array without SLL control in [31]. It is worth pointing out that Zheng’s
and Hamza’s methods cannot tackle the proposed problem (12) since Zheng’s method is
only applicable to the single frequency sparse array design while Hamza’s method has
no capability of controlling SLL. We only design several different single frequency sparse
arrays by using Zheng’s method and a multiband sparse array without SLL control by
using Hamza’s method as a benchmark. In fact, the proposed problem has less DoFs than
Zheng’s and Hamza’s problems since it is limited by more constraints. In comparison
with the proposed problem, Zheng’s problem does not impose restrictions on the sparse
weights of all single frequency arrays locating at the same antenna location, while Hamza’s
problem has no constraint on the SLLs. Therefore, from the perspective of system DoFs,
the performance of the proposed problem would naturally not exceed those of Zheng’s
and Hamza’s problems. However, thanks to the adopted solving scheme, the performance
of the proposed method may be close to or even better than that of Zheng’s method or
Hamza’s method, which is displayed in the following experiments.

In the experiments, the multiband array has the capability of effectively working
at M = 4 frequencies, ω1 = ωM, ω2 = 0.972ωM, ω3 = 0.944ωM, and ω4 = 0.931ωM,
respectively, where the maximum frequency is ωM = 3.6 GHz, which is commonly used in
5G communications and emerging integrated sensing and communication systems. We
select K = 20 antennas from a uniform linear array with N = 26 locations. For the proposed
algorithm, we set μ = 0.01, ε = 5× 10−4, and δi = −20 dB for all four frequencies. We
assume the desired source is located at the direction 80◦ and three interference sources are
located at the directions 10◦, 120◦, and 140◦, respectively. The SNR of the desired source is
0dB and the INR of each interference source is 40dB.

5.1. Beamforming with Multiple Interferences at the Same Desired DOA

Since Zheng’s method can only design a narrowband sparse array working at a single
frequency, four optimal narrowband sparse arrays are independently designed at different
frequencies, which are provided in Figure 1a–d. On the contrary, Hamza’s method provides
a multiband sparse array directly, and its optimal sparse array is shown in Figure 1e. The
multiband sparse array obtained by the proposed method is illustrated in Figure 1f. As
seen in Figure 2, all three methods form deep nulls at the directions of three interference
sources, and thus effectively suppress the interference. Due to the lack of consideration
for the sidelobe suppression in Hamza’s method, its SLL is significantly higher than that
in Zheng’s method and the proposed one. The proposed method has almost the same
SLLs as Zheng’s method. That is to say, compared with Hamza’s method, the proposed
method and Zheng’s method will be less sensitive to unknown sporadic interference and
thus have superior capability of interference suppression. The null depths of all three
methods at each frequency are shown in Table 1. In general, we find that the proposed
method has a weakly shallower null than Zheng’s and Hamza’s methods, but it is still
deep enough to effectively suppress the interferences. From Table 2, we observe that
the proposed method has better output SINRs performance than Hamza’s method and
is slightly inferior to Zheng’s method. It is worth pointing out that Zheng’s method is
actually the performance upper bound of the multiband sparse array design because it is
not constrained by the consistency of antenna locations at each frequency and thus owns
more DoFs of antenna selection.
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Figure 1. Sparse array configurations for the experiment 5.1, N = 26, K = 20. (a) Zheng’s method for
ω1. (b) Zheng’s method for ω2. (c) Zheng’s method for ω3. (d) Zheng’s method for ω4. (e) Hamza’s
method. (f) Proposed method. (Dots mean selected antennas while crosses mean discarded antennas).

Table 1. Null depths (dB) of the three methods at each frequency for the experiment 5.1.

Hamza’s method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −83.60 −83.60 −83.22 −77.56
120◦ −74.35 −74.35 −75.84 −74.58
140◦ −87.38 −87.38 −88.64 −82.39

Zheng’s method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −80.88 −75.81 −74.66 −78.79
120◦ −79.05 −78.02 −81.36 −84.77
140◦ −82.02 −82.50 −77.95 −82.41

Proposed method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −79.33 −62.62 −84.10 −72.68
120◦ −76.67 −61.02 −79.84 −68.79
140◦ −75.59 −59.63 −78.29 −66.52

Table 2. Output SINR (dB) of the three methods at each frequency for the experiment 5.1.

Frequency ω1 ω2 ω3 ω4

Hamza’s method 11.22 11.74 11.55 11.20
Zheng’s method 11.93 13.07 12.59 12.17

Proposed 11.78 10.34 12.07 11.77
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Figure 2. Normalized receive beampatterns of sparse arrays in Figure 1a–f at four different frequencies.
(a) ω1. (b) ω2. (c) ω3. (d) ω4.
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5.2. Beamforming with Multiple Interferences at the Distinct Desired DOAs

In multi-functional communication or radar systems, we also need to receive the
desired signals in each frequency band with different DOAs, such as multi-user com-
munications and multiband radars. In this experiment, we therefore set the mainlobe
of each frequency with distinct DOAs. From ω1 to ω4, the desired directions are set
sequentially as 70◦, 75◦, 80◦, and 85◦, while the sidelobes are correspondingly set as
ΘSL,1 = [0◦, 62◦] ∪ [78◦, 180◦], ΘSL,2 = [0◦, 67◦] ∪ [83◦, 180◦], ΘSL,3 = [0◦, 72◦] ∪ [88◦, 180◦],
and ΘSL,4 = [0◦, 77◦] ∪ [93◦, 180◦]. The other parameters are set to be the same as in
Section 5.1. The antenna selection results are shown in Figure 3, the normalized receive
beampatterns of sparse arrays are displayed in Figure 4, and the null depths at each fre-
quency are shown in Table 3. It can be observed from Figure 4 that the mainlobe always
points to the desired directions for all three methods, and all three methods form deep
null in the preset directions of interference sources. From Table 3, we observe that the
proposed method yields almost the same null depths as Zheng’s and Hamza’s methods at
each frequency. From Table 4, we can see that the proposed method achieves higher SINRs
than Hamza’s method, even though Hamza’s method did not consider the SLL control.
The output SINRs of the proposed method are still close to that offered by Zheng’s method.
These results reveal that the proposed method is an efficient method for multiband sparse
array design.

Table 3. Null depths (dB) of the three methods at each frequency for the experiment 5.2.

Hamza’s method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −74.14 −84.16 −77.44 −77.22
120◦ −79.17 −90.14 −87.49 −89.83
140◦ −77.55 −77.62 −79.92 −80.79

Zheng’s method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −76.50 −80.15 −83.78 −85.28
120◦ −74.86 −87.93 −82.38 −77.31
140◦ −77.27 −76.28 −76.92 −90.73

Proposed method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −81.45 −71.98 −77.27 −75.81
120◦ −86.18 −74.81 −78.34 −93.93
140◦ −82.68 −80.69 −79.41 −78.29

Table 4. Output SINR (dB) of the three methods at each frequency for the experiment 5.2.

Frequency ω1 ω2 ω3 ω4

Hamza’s method 11.21 11.28 11.01 11.15
Zheng’s method 12.54 12.33 12.53 11.97

Proposed 12.09 12.11 12.22 11.59
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Figure 3. Sparse array configurations for the experiment 5.2, N = 26, K = 20. (a) Zheng’s method for
ω1. (b) Zheng’s method for ω2. (c) Zheng’s method for ω3. (d) Zheng’s method for ω4. (e) Hamza’s
method. (f) Proposed method. (Dots mean selected antennas while crosses mean discarded antennas).
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Figure 4. Cont.
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Figure 4. Normalized receive beampatterns of sparse arrays in Figure 3a–f at four different frequencies.
(a) ω1. (b) ω2. (c) ω3. (d) ω4.

5.3. Nulling Forming at the Same Desired DOA

In real applications, it is often required to generate a deep null region to enhance
anti-interference performance at preset directions. In this experiment, we replace the
interference source at 120◦ by the null region in [120◦, 126◦] with a null depth of −40 dB.
As Hamza’s method cannot work in this case, we only demonstrate the results of Zheng’s
method and the proposed method. The optimum sparse array configurations are presented
in Figure 5. Based on these arrays, Figure 6a–d shows the beampatterns of null forming
at the frequencies ω1, ω2, ω3, and ω4, separately. Table 5 provides the null depths of
Zheng’s and the proposed method at each frequency. It can be seen that both the proposed
and Zheng’s methods can form a deep null within the preset region [120◦, 126◦] and the
interference directions 10◦ and 140◦. Surprisingly, the proposed method generally has
lower SLLs than Zheng’s method in the whole sidelobe region. As seen from Table 6,
the output SINRs of the proposed method are also close to that of Zheng’s method at all
frequencies, even though the constraints become stringent, which further validates the
efficiency of the proposed method.

5.4. Nulling Anti-Interference Performance

In order to verify the interference suppression performance of the deep null in the
proposed method and Zheng’s method, we add an interference source at the angle direction
122◦ or 124◦ in the null region, respectively. With the same parameters as in Section 5.3,
the INR of this interference source varies from 0 dB to 40 dB, and the variation of the output
SINRs are respectively shown in Figure 7a,b. It can be observed from Figure 7 that after
adding an interference source into the null region, the SINR does not change greatly as
a whole compared with the null region without an interference source. We can conclude
that the increasing INR of the interference source has a weak effect on the output SINR,
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which means that both the proposed method and Zheng’s method have the capability of
suppressing interference effectively in the null region.

Figure 5. Sparse array configurations for the experiment 5.3, N = 26, K = 20. (a) Zheng’s method for
ω1. (b) Zheng’s method for ω2. (c) Zheng’s method for ω3. (d) Zheng’s method for ω4. (e) Proposed
method. (Dots mean selected antennas while crosses mean discarded antennas).
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Figure 6. Cont.
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Figure 6. Normalized receive beampatterns of sparse arrays in Figure 5a–e at four different frequencies.
(a) ω1. (b) ω2. (c) ω3. (d) ω4.

Table 5. Null depths (dB) of Zheng’s and proposed methods at each frequency for the experiment 5.3.

Zheng’s method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −78.00 −70.18 −79.79 −83.28
140◦ −85.39 −80.60 −70.88 −76.77

Proposed method

Interference
Frequency

ω1 ω2 ω3 ω4

10◦ −89.98 −77.42 −78.29 −77.00
140◦ −85.42 −75.73 −78.98 −75.90

Table 6. Output SINR (dB) of Zheng’s and proposed methods at each frequency for the experiment 5.3.

Frequency ω1 ω2 ω3 ω4

Zheng’s method 12.43 12.35 11.97 12.11
Proposed 12.31 11.78 11.71 12.07
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Figure 7. The output SINR with a varied interference in the nulling. (a) an interference source at 122◦.
(b) an interference source at 124◦.

6. Discussion

Traditional sparse array designs for adaptive beamforming are usually discussed
in the narrowband case or the wideband case. The multiband sparse array design is an
emerging topic due to the rapid development of multi-functional communication and radar
systems. Different from narrowband and wideband sparse arrays, the multiband sparse
array has some unique characteristics, such as a large frequency gap between two adjacent
operating frequencies and different desired source and/or interference directions at each
operating frequency. Due to the group sparse regularization of beamforming weights at
all operating frequencies, there exists a strong mutual coupling among all beamforming
weights, and the objective function or constraints are necessarily nonconvex. On the other
hand, the maximum SINR criterion often yields nonconvex quadratic equality constraints
to fix the gain of desired directions at each operating frequency. Moreover, if we consider
the SLL control, the SLL constraints are also nonconvex because they are the fractional
quadratic functions of the beamforming weights. Therefore, the multiband sparse array
design is commonly formulated into a complicated nonconvex constrained optimization
problem, and its essence is how to effectively solving this problem.

This paper mainly employs several different kinds of convex relaxation techniques
to tackle the problem (12), even though it uses the iterative reweighting scheme to pro-
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mote the group sparse performance. From the perspective of optimization, the relaxation
of constraints means that the constraints become more strict and thus the feasible set
correspondingly becomes smaller. Therefore, the optimized sparse array of (22) is not
necessarily the optimal sparse array of problem (12). Actually, SDR is a somewhat overly
strict relaxation technique. To improve the performance of multiband sparse array design,
we should utilize other loose relaxation techniques, such as SCA, the convex–concave
procedure, and majorization–minimization, or we should handle problem (12) directly
by using prevalent nonconvex optimization approaches, involving ADMM, quadratically
constrained quadratic programming, and proximal operator algorithms.

7. Conclusions

This paper provided a multiband spare array design method for adaptive receive
beamforming with SLL control. With the maximum SINR criterion and SLL constraints,
we formulated the proposed joint design of antenna selection and adaptive beamformer
as a group sparsity-regularized nonconvex constrained optimization problem. To deal
with this intractable problem, we first translated the l0,2-mixed norm regularization into
a series of reweighted l1,∞-norm regularizations by employing the iterative reweighting
technique. We then converted the l1,∞-norm regularized nonconvex optimization problem
into the corresponding convex problem by using SDR and linear fractional SDR schemes.
With the assistance of the iterative reweighting and SDR, we established the proposed
SDR-based iterative reweighted algorithm. We also analyzed the computational complexity
of the proposed algorithm. The numerical results verified that the proposed sparse array
substantially reduces the SLL in all operating frequencies while maintaining the maximum
output SINR performance at the same time, and its performance is approximate to the
optimal sparse array designed separately at each frequency.
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Abbreviations

The following abbreviations are used in this manuscript:

SINR Signal-to-interference-and-noise ratio
DOA Direction-of-arrival
DoF Degree-of-freedom
SDR Semi-definite relaxation
SCA Sequential convex approximation
ADMM Alternating direction method of multipliers
DNN Deep neural network
TDL Tapped delay line
DFT Discrete Fourier transform
FI Frequency-invariant
SOCP Second-order cone programming
SLL Sidelobe level
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Abstract: Antenna arrays are used for signal processing in sonar and radar direction of arrival (DOA)
estimation. The well-known array geometries used in DOA estimation are uniform linear array
(ULA), uniform circular array (UCA), and rectangular grid array (RGA). In these geometries, the
neighboring elements are separated by a fixed distance λ/2 (λ is the wavelength), which does not
perform well for d greater than λ/2. Uniform rectangular arrays introduce grating lobes, which cause
poor DOA estimation performance, especially for wideband sources. Random sampling arrays are
sometimes practically not realizable. Periodic geometries require numerous sensors. Based on the
minimization of the number of sensors, this paper developed a novel pentagram array to address
the problem of DOA estimation of wideband sources. The array has a fixed number of elements
with variable element spacing and is abbreviated as (FNEVES), which offers a new idea for array
design. In this study, the geometric structure is designed and mathematically analyzed. Also, a DOA
signal model is designed based on a spherical radar coordinate system to derive its steering manifold
matrix. The DOA estimation performance comparison with ULA and UCA geometries under the
multiple signal classification (MUSIC) algorithm using different wideband scenarios is presented.
For further investigation, more simulations are realized using the minimum variance distortionless
(MVDR) technique (CAPON) and the subtracting signal subspace (SSS) algorithm. Simulation results
demonstrate the effectiveness of the proposed geometry compared to its counterparts. In addition,
the SSS, through the simulations, provided better results than the MUSIC and CAPON methods.

Keywords: direction of arrival estimation (DOA); pentagram geometry; steering manifold matrix;
wideband signals; spherical radar coordinate system

1. Introduction

Antenna arrays have been commonly applied to address the problem of direction of
arrival (DOA) estimation in many applications, such as wireless communication, sonar,
and radar. The DOA estimation of sources is considered a critical problem for target
determination in military radar applications. Spatial variety in communications system is
achieved using DOA information [1].

Antenna array configurations are utilized to estimate the DOA of every signal in the
case of multisource signals. By processing the signals received from the sensors in parallel,
a higher signal-to-noise ratio (SNR) can be achieved by increasing the number of sensors in
the array, and the implementation cost can be reduced [2]. DOA estimation of narrowband
sources has been well studied theoretically in the literature [3]. The array model of narrow-
band sources is extremely simplified based on their properties [4]. However, to the best of
the authors’ knowledge, DOA estimation of wideband sources has not been sufficiently
presented in the literature.

The first DOA estimation method for wideband sources is the incoherent signalsub-
space method (ISM), which uses the discrete Fourier transform (DFT) along the temporal
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domain to decompose the incoherent wideband signal into many narrowband signals. It is
assumed that in every frequency bin the frequency is time-invariant, ignoring the whole
wideband information. Therefore, it is applied to2D problems using only a uniform linear
array, has a large computational complexity related to the time domain representation of
wideband signals, and is null for coherent signals [5,6]. The second method is the coherent
signalsubspace (CSM) method, in which the wideband signal is transformed into a certain
reference frequency using focusing matrices, and then the average of the covariance matrix
is taken for de-correlation. It was implemented using a linear array and provided high accu-
racy for wideband DOA estimation with relatively low computational complexity; however,
the focusing matrices require a priori knowledge [7], which is almost not available.

The least mean square (LMS) and sample matrix inversion algorithms are DOA esti-
mation model-based techniques with higher computational complexity [8]. Eigen-analysis-
based techniques exploit the phase differences of signals impinging on array sensors. The
well-known MUSIC (multiple signal classification) algorithm uses the noise subspace after
its separation, depending on eigen-analysis techniques [9].

The subtracting signal subspace (SSS) method estimates the DOAs using the signal
subspace (SS) and array manifold vector (AMV) by exploiting the complementarity of the
signal subspace (SS) and noise subspace (NS) after applying the eigen-analysis approach.
Using signal subspace (SS) leads to much less computational burden compared with noise
subspace (NS) [10]. CAPON [11] is a classical DOA technique that uses the minimum
variance distortionless (MVDR) technique to estimate the power spectrum of the signal
and find the peaks in the spatial power spectrum of the steering beams that correspond to
the angles of the DOA.

To the best of our knowledge, researchers have been studying the problem of array
geometry related to DOA estimation algorithms and wideband signals.

Many constraints in DOA estimation, such as angle (azimuth/elevation) estimation,
angle resolution, and angle accuracy, are imposed by array geometries. The general 1D
array geometry used in DOA estimation is uniform linear array (ULA), and 2D array
geometries are rectangular grid array (RGA) [12] and uniform circular array (UCA) [13].
ULA has perfect directivity in a certain direction, forming a narrower main lobe, but its
performance is affected by the variation of the azimuth direction. Its drawback is that it can
only estimate the azimuth or elevation angle in one application. RGAs are uniform arrays
that suffer from grating lobes because an extra main lobe with the same density appears on
its opposite side. This represents their main disadvantage and makes them inappropriate
for the application of wideband DOA algorithms.

UCAs are symmetrical arrays and are used to replace the ULA in the estimation of
both azimuth and elevation angles [8], although they are high-side lobe-levels geometries
and occupy large spaces for implementation. Reducing side lobe levels can be achieved by
reducing the element spacing, but this increases the effect of the mutual coupling. Multi-
rings are used as another choice to reduce these high side lobes, which has more advantages.

Smart antenna systems [14,15] were developed based on UCA geometries using
optimization algorithms to study the mutual coupling between the array elements and
their influence. To improve the performance, they utilize multi-ring arrays and a larger
number of elements, which is more expensive. Sensor configurations in the aforementioned
array geometries are determined by the fixed spacing distance d = λ/2 (λ is the wavelength
of the carrier signal), which separates the neighboring elements on each axis. They suffer
from performance limitations when the spacing distance d exceeds the value of λ/2 as the
grating lobes start their appearances.

Random sampling of antenna apertures is used in [16], which is suitable for minimizing
(compressing) the number of array sensors with main practical limitations. In [17], a
geometry was obtained via random sampling of the antenna aperture and used by Ender to
address the radar signal problems. This geometry has a measurement matrix with reduced
mutual coherence between vectors and was applied only in some cases to compressive
sensing algorithms such as pulse compression, radar DOA estimation, and imaging. Its
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implementation requires pre-processing techniques such as suppressing filters. In some
ways, such geometries are practically impossible because some of the neighboring elements
are located near each other.

Virtual sensors were innovated and used for DOA estimation for a larger number
of signals than sensors by the authors in [18] via improving a subspace augmentation
technique depending on the Khatri–Rao product. It was applied only to quasi-stationary
signals based on some assumption, such as that element arrays are ULAs. To increase the
number of virtual elements, researchers in [19] employed the nested arrays and estimated
a greater number of signals than elements. However, it was obtained using ULAs, and
its degrees of freedom depend on the total number of elements. Also, it suffers from the
inherent drawbacks of the Khatri–Rao product technique.

A spatial smoothing technique based on removing the repeated rows from the signal
vector was applied to the nested arrays to estimate more incoherent wideband sources than
sensors [20]. It is unlike the augmentation technique and was presented as an alternative
method for underdetermined DOA estimation by applying subspace-based methods di-
rectly without requiring any assumptions. It worked only for ULAs and was applied to
wideband cases.

Co-arrays are used to increase the degrees of freedom for generating the covariance
matrix from multi-time-domain snapshots of data measurements when applying the MU-
SIC algorithm as an advanced technique. Researchers in [21] used two linear sub-arrays to
create an array geometry based on co-arrays to enhance the DOA estimation. Co-prime
arrays are studied on two bases: the first is based on reducing the spacing of the inter-
sensors of the array by compressing one of the arrays, which is known as a co-prime array
by compressed inter-element spacing (CACIS). The second is known as a co-prime array
with displaced sub-arrays (CADiS), which effectively improves the degrees of freedom in
the formation of the covariance matrix unless restricted to the linear arrays. They depend
on uniform linear sub-arrays with more elements.

The aperiodic array in [22] was designed based on fractal geometries and used to
effectively solve the practical implementation obstacle of random aperture sampling. Two
frameworks of classical array processing, including Sierpinski carpet planar arrays and
Cantor linear arrays, were used, but the results were not applied to the wideband sources.

A genetic algorithm (GA) based on an optimization scheme and a little perturbation
in the inflation method was utilized by the authors in [23] to create antenna array styles
with aperiodic tiling, avoiding grating lobes and low side-lobe levels through wide band-
widths. This method uses a larger number of sensors and is appropriate for conventional
algorithms of array signal processing; however, it is not applied to the DOA estimation of
wideband sources.

Another optimization scheme that is inspired by quasicrystals in materials physics
was developed in [24] to generate an antenna-array mode over a disturbance of initial
conditions for aperiodic geometry that can be applicable for both narrowband and wide-
band signals. The structure of the array output for wideband signals was used in [6],
and wideband signals were modeled as a rational transfer function driven by white noise;
then delays on every mode were estimated using modal decomposition. This technique is
suitable and can be applied to the DOA estimation of wideband sources using compressive
sensing algorithms.

Scholars in [25] showed that, for a flat power spectral density of the signal, an array
manifold vector for wideband signals can be used as an alternative to the conventional
array manifold for narrowband signals. It depends on the covariance matrix, which is
generated by the array geometries and employs only their spatial information.

For the MUSIC algorithm [9], the spatial spectrum is computed depending on the
orthogonality between the noise subspace (NS) and the array manifold vector (AMV); for the
SSS algorithm [10], it is calculated utilizing the signal subspace (SS) and the array manifold
vector (AMV); and for the CAPON algorithm [11], it is computed using the inversion of
the covariance matrix (CM) and the array manifold vector (AMV). These DOA estimation
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techniques exploit the fact that the DOAs define the signal subspace. The reason for choosing
these algorithms is that their performance essentially depends on the covariance matrix that
is generated by our proposed geometry according to its selected element spacing.

In the eigenvalue decomposition of the covariance matrix for wideband sources, the
mixing of different frequency components increases the number of significant eigenvalues
to be greater than the number of sources. In other words, the separation of signal subspaces
and noise subspaces from the covariance matrix will become more difficult with increasing
bandwidth [26]. This means that reinvention and designing array geometries to generate
covariance matrices so that their subspaces can be easily separated are promising field studies.

The main goal of this work is to derive an array manifold (vector) matrix related
to the new array geometry to generate a developed covariance matrix that allows the
aforementioned DOA estimation techniques to be applied directly to wideband signals,
taking the whole wideband information with good accuracy. This can be achieved with
a perfect array configuration based on the number of elements and their spacing settings.
The proposed array geometry exploits its fixed number of elements with variable spacing
to offer many configurations that can be suitable for wideband signals. This paper offers
an important contribution to the field of array signal processing, whereas the proposed
geometry presents a worthy way to remove the challenge of solving the DOA estimation
problems of wideband sources and simplify their computation complexity. In a specific
manner, the contributions and innovative points of this paper are listed as follows:

• Developing a new paradigm of pentagram arrays based on triangular geometry.
• Explanation of the theoretical principle of the superposition techniques.
• Clarification of the advantages of limiting the number of sensors in the array.
• The significance of designing an array with variable element spacing.
• Ability to maximize and minimize the array apertures.
• Addressing the issue of the DOA manifold matrix ambiguity problem.
• Application for DOA estimation algorithms of both azimuth and elevation angles.
• Conducting a large number of simulation experiments and analyses to validate the

effectiveness of the geometry under different algorithms.

In this work, a novel pentagram antenna array geometry is proposed. This new geom-
etry integrates the characteristics of linear and circular geometries. It tacitly includes five
symmetrical ULAs and two concentric UCAs. Its diagram is designed, and its mathemat-
ical demonstration is proved. The steering manifold matrix of the new antenna array is
derived based on the DOA signal model using a spherical polar radar coordinate system.
The performance analysis is investigated for incoherent wideband DOA estimation using
different scenarios of wideband signals. Also, for computation simplicity for wideband
signals, we exploited the complementary nature of the time-domain and frequency-domain
of the signal by using the array output signal in frequency-domain X(f) instead of its
representation in time-domain X(t) for computation of the array covariance matrix and
eigenvalue decomposition.

Since the objective of this paper is the study of the 1-DOA estimation of incoherent
wideband sources, different cases will be considered in this study depending on the frequency,
bandwidth, and number of sources of wideband signals. The scenarios are the following:

- A single wideband signal (pulse signal) comes from a single azimuth DOA.
- Two wideband signals with different frequencies and zero bandwidths (pulse signals)

come from two closely related azimuth DOAs.
- Two wideband signals with different frequencies and zero bandwidth (pulse signals)

come from two far azimuth DOAs.
- Two wideband signals with different frequencies and zero bandwidths (pulse signals)

come from two far azimuth DOAs using different SNR values.
- Two wideband signals with different frequencies and different bandwidths (without

overlapping) come from two far azimuth DOAs.
- Two wideband signals with the same frequencies and different bandwidths (with

overlap) come from two far azimuth DOAs.
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- Four wideband signals with different frequencies and zero bandwidth (pulse signals)
come from four far azimuth DOAs.

- Four wideband signals with the same frequencies and different bandwidths (with
overlap) come from four far azimuth DOAs.

The rest of the paper is organized as follows: In Section 2, we study the structure and
mathematical computation of the proposed geometry. In Section 3, as a main contribution
in the area, we discuss the DOA signal model for our proposed geometry and derive
its steering manifold matrix. The simulation setup and the performance results of the
proposed array geometry are included in Section 4. Section 5 contains some discussions.
Finally, in Section 6, we present conclusions and future work.

Notations: The scalar quantities are represented by lowercase letters; vectors are
denoted by boldface lowercase; and matrixes are denoted by boldface uppercase letters;
⊀ denotes the angle; the factor (a) is a unit vector.

Superscripts: (·)T means transpose; (·)H denotes conjugate transpose; and E[·] refers
to the expected value. The IM is the M × M identity matrix and the ‖·‖ represents the
matrix norm.

2. The Proposed Array Geometry

2.1. Pentagram and Triangular Geometry

Our proposed antenna array geometry is inspired by the five-pointed star (pentagram)
and based on triangular geometry. It is implemented using the specific superposition
method of three triangles. The three triangles are copies of one type of triangle (the
isosceles triangle) [27]. The isosceles triangle is depicted in Figure 1.

Figure 1. Isosceles triangle (base of the proposed array geometry).

All three angles of the triangle have known values. The two of them that face the two
equal sides of the isosceles are equals (⊀ ABC = ACB = 36◦), and the third one that faces
the longest side is bigger than them (⊀ BAC = 108◦). These three triangles are arranged in
a superposed manner to form five-star (pentagram) geometry, as shown in Figure 2.

Figure 2. Three-superposed triangles (five-star pentagram) formation.
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2.2. Pentagram Geometry Analysis Based on Triangular Geometry

According to the geometry of the isosceles triangle [27], we can make a geometry
analysis for our proposed pentagram array geometry in Figure 2 as follows:

• The five outer vertices of the superposed triangles (pentagram) are named A, B, C, D,
and E, and the five inner vertices are named F, G, H, I, and J.

• All five angles of the five outer vertices (⊀ FAG =⊀ GBH =⊀ HCI =⊀ IDJ =⊀

JEA = 36◦) have equal values of 36◦.
• All five inner angles of the five inner vertices (⊀ JFG =⊀ FGH =⊀ GHI =⊀ HI J =⊀

I JF = 108◦) have equal values of 108◦.
• The lengths of the triangle sides between any two points (AB, BC, CD, DE, and EA) of

the five outer vertices are equal; we named them L, and we have five Ls in total.
• The lengths of the triangle sides between the five outer vertices and any point of the

five inner vertices (AF, AG, BG, BH, CH, CI, DI, DJ, EJ, and EF) are equal; we named
them X, and we have ten Xs in total.

• The lengths of the triangle sides between two points of the five inner vertices (FG, GH,
HI, IG, and JF) are equal (interconnection distances not included); we named them Y,
and we have five Ys in total.

• The two straight lengths (interconnection) of triangle sides between any one point and
the two points (opposite sides) of five interspersions (IF, IG, HJ, HF, and GJ) are equal;
we named it P, and we have five Ps in total.

• The five lengths of triangle sides between the five headsails and the opposite (one)
point of the five inner vertices (AI, BJ, CF, DG, and EH) are equal; we named them Z,
and we have five Zs in total.

All these lengths of triangle sides in this geometry can be calculated by applying the
trigonometry laws depending on the above-mentioned values of angles. Here, we use the
law of sine [27] in Equation (1) below to calculate the lengths of the sides of a plane triangle
when the angels are known, as shown in Figure 3.

a
sinα

=
b

sinβ
=

c
sinγ

(1)

Figure 3. Law sine of a plane triangle.

After applying the law of sine to our proposed array geometry, we obtained the
relations between the mentioned lengths of the triangle sides using these equations:

Y
sin 36◦

=
X

sin 72◦
(2)

So
Y =

sin 36◦

sin 72◦
X = 0.618X (3)

Or
X = 1.6182Y (4)
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Also
L

sin 36◦
=

2X + Y
sin 72◦

(5)

So

L =
sin 36◦

sin 72◦
(2X + Y) = 0.618(2X + Y) = 1.236X + 0.618Y = 1.618X (6)

Also
P

sin 36◦
=

X + Y
sin 72◦

(7)

So
P =

sin 36◦

sin 72◦
(X + Y) = 0.618(X + Y) = 0.618X + 0.618Y (8)

Also
Z

sin 108◦
=

X + Y
sin 54◦

=
Y

sin 18◦
(9)

So

Z =
sin 108◦

sin 54◦
(X + Y) =

sin 108◦

sin 18◦
(Y) = 1.17557(X + Y) = 3.07768Y = 1.902X (10)

Referring to Figure 2, it is assumed that the point O is located at the center of the
pentagram geometry. We can see that the pentagram geometry appears as two circles. The
small inner circle has a small radius that indicates the distance OH, where the five inner
vertices of the pentagram lie on its circumference, and the outer circle has a large radius,
which indicates the distance OC, where the five outer vertices of the pentagram lie on its
circumference. These two radiuses are given by the related equations below:

The outer radius of the pentagram geometry (OC)

OC =
sin 126◦

sin 36◦
(X) = 1.376X = 2.616(OH) (11)

The inner radius of the pentagram geometry (OH)

OH =
sin 18◦

sin 36◦
(X) = 0.526X = 0.382(OC) (12)

It is worth noting from the above equations that if we specify any value for the lengths
of the triangle sides X or Y, we can know the other lengths of the triangle sides (L, P, and Z).
Also, we can note that these sides have different length values from each other.

2.3. Pentagram Geometry Structure

From the previous Sections 2.1 and 2.2, we obtained the first inspired idea of our
proposed novel antenna array geometry, exploiting the different lengths of the pentagram.
So, we propose to study this (pentagram) geometry as a new antenna array geometry by
considering the lengths of the triangle sides as actual distances between the array (sensor)
elements. In this way, we can locate ten antenna elements (sensors) at the outer and inner
vertices (ten) of the triangles. So, the form of the aperture we now have and the number
of sensors are usually fixed. The size of the aperture can be maximized or minimized
depending on the distances between the array elements.

According to this property, we can define a new type of antenna array geometry that
has a fixed number of elements with variable element spacing (FENVES). The second
inspired idea that we obtained was the sparse array configuration of our proposed antenna
array according to the inherent sparse property of the pentagram geometry as based on
triangular geometry using a fewer number of elements. Also, the proposed new geometry
can be described as non-uniform, non-random array geometry due to the differences in
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the spacing elements (differences in lengths of the triangle sides) and known values of the
element spacing.

Now, the goal is to choose the appropriate array configuration for our new antenna
array geometry, which makes it applicable for DOA estimation for wideband signals
(sources). As we mentioned before, the number of elements (sensors) of our new antenna
array (as a factor affecting DOA estimation) is fixed at ten elements (M = 10 sensors).
The only variable parameter in our array configuration is the distance between the array
elements (usually named d in the literature), which determines the sensor configuration.
According to the inherently sparse geometry of the pentagram, the distances between the
array elements are related to their positions. Every element has a differentiated property of
distance from its adjacent neighbors.

For every sensor from the five sensors that are located at the outer vertices of the
pentagram (A, B, C, D, and E), its differentiated distances with its adjacent element neigh-
bors are (X, X, L, L, and Z), and for every sensor from the five sensors that are located at
the inner vertices of the pentagram (F, G, H, I, and J), its differentiated distances with its
(adjacent elements) neighbors are (X, X, Y, Y, P, P, and Z). This differentiated property in
the distances of the pentagram geometry, of course, has an effect on the sparsity degree of
the antenna array. One of our goals is to exploit this property to achieve the desired sensor
configuration for our new array geometry. It is clear that, from Equations (2)–(12), these
distances depend on each other. If we set the distances X or Y for our sensor configuration
of array geometry to some value related to the (λ) wavelength of wideband signals (X = λ/2
or Y = 2λ), then all these distances will automatically relate to the λ. The distances X or Y
can be set to the suitable value related to the λ in the case of wideband signals, as below:

X = λ
2 or X = λmin

2 or X = λmax
2 , where λ = c

f◦ , λmin = c
fmax

, λmax = c
fmin

, fmin = f◦ − BW
2 and fmax

= f◦ + BW
2

(13)

Or
Y = λ

2 or Y = λmax
2 or Y = λmin

2 where λ = c
f◦ , λmin = c

fmax
, λmax = c

fmin
, fmin = f◦ − BW

2 and fmax

= f◦ + BW
2

(14)

where f◦ is the center frequency and BW is the bandwidth of the signal.
So, we can arrive at the suitable array configuration for our new array geometry by

setting the separation between adjacent elements.
To evaluate the performance of our new (novel) array geometry with the desired

sensor configuration, we need other array geometries for comparison. Here we use uniform
linear array (ULA) and uniform circular array (UCA) geometries, two of the well-known
array geometries found in the literature.

3. DOA Array Signal Model

The direction of arrival (DOA) is the angle between the array normal and the direction
vector of the plane wave. Consider the direction of arrival estimation system, which
contains Q wideband signals (sources) arriving from different directions impinging on our
proposed new antenna array, which is inspired by pentagram geometry with 10sensors
(M = 10 array elements) named as A, B, C, D, E, F, G, H, I, and J, as depicted in Figure 4.
The depicted diagram describes the radar coordinate system (spherical polar) of the DOA
signal model using our new antenna array. The elevation angle (measured clockwise from
the Z-axis) and azimuth angle (measured counterclockwise from the X-axis) of the default
signal source (target) K are θK and φK, respectively.
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Figure 4. The coordinate system of pentagram antenna array receiving Q wideband signals from
different directions.

For convenience, we chose sensor A, which is located at the origin of the coordinate
system (the earth’s surface lies in the X-Y plane), as the reference node. Assume the Q
targets in the far-field sensing field emit wideband signals consisting of N time-domain
snapshots (number of samples). At ith sensor (any sensor except A) of this array, there is a
time delay τq,i for target q to arrive at that sensor. The time delay depends on the straight
distance and the projection angle αAi between the A reference element and the ith element.
The output of the ith sensor in the time-domain can be described as

xi(t) =
Q

∑
q=1

sq
(
t− τq,i

)
+ n(t) (15)

where sq(t) = ej2π f t denotes the qth wideband signal, τq,i is the time delay of qth signal at
ith sensor, f is the signal frequency, t is the time interval, i indicates the sensors of A, B, C, D,
E, F, G, H, I, and J, and q = 1,2,. . .,Q. Then, the total received signal in the frequency-domain,
X(f), that includes directions both of elevation angle θK and azimuth angle φK corrupted
by noise is given by the relation described below:

X(f) = [x1(f), x2(f), . . . , xM(f)]T =
Q

∑
q=1

a
(
θq,φq, fq

)
s(f) + n(f) = A(θ,φ, f)S(f) + N(f) (16)

where
S(f) = [s1(f1), s2(f2), . . . , sQ(fQ)]

T (17)

is the (Q× N) incident signals in the frequency-domain; N is the number of snapshots.

N(f) = [n1(f1), n2(f2), . . . , nM(fM)] (18)

is the (M× N) array that contains noise vectors with complex normal distribution (zero
mean and variance σ) CN

(
0, σ2I

)
and A(θ, φ, f ) is the steering matrix for Q vectors (Q

columns); it is an (M×Q) array matrix and is defined as follows:

A(θ, φ, f ) =
[
a(θ1, φ1, f1), a(θ2, φ2, f2), . . . .., a

(
θQ, φQ, fQ

)]
(19)
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Referring to Figure 4, the sensors A, G, H, and C are located on the X-axis (sensor A
is the reference), and the phase angles ϕ between the reference element A and the other
elements can be calculated as follows:

ϕG = ϕH = ϕC = 0◦ (20)

ϕI =
36◦

2
= 18◦ (21)

ϕF = ϕJ = ϕD = 36◦ (22)

ϕE = 72◦ (23)

ϕB = 360◦ − 72◦ = 288◦ (24)

The projection angle αEK between the reference element vector ūK of the incident
signal SK(t) and the element E as shown in the above model due to the incident plane waves
can be calculated by finding the dot product between unit vectors ūK and Ē (Ē is the vector
length between the reference element A and the element E) as follows:

αEK = cos−1

[
ūK·Ē

‖ūK‖·
∥∥Ē
∥∥
]

(25)

Then, the unit vector Ē can be expressed as:

Ē = EcosϕEāx + EsinϕEāy (26)

where E and ϕE are the distance and phase angles between the reference element A and
element E, respectively. Also, the unit vector ūK, which contains the directions of θK and
φK for any arrival signal source, can be given by:

ūK = cosφKsin θKax + sinφKsin θKay + cos θKaz (27)

where ax ay, and az are unit vectors for Cartesian coordinates. Then, by substituting these
two Equations (26) and (27) in the Equation (25), we obtain:

αEK = cos−1

[
(cosφKsin θKax + sinφKsin θKay + cosθKaz)·

(
Ecos ϕEax + Esin ϕEay

)∥∥(cosφKsin θKax + sinφKsin θKay + cosθKaz)
∥∥·∥∥(Ecos ϕEax + Esin ϕEay

) ∥∥
]

(28)

So now, after algebraic manipulation, we obtain:

αEK = cos−1[sinθKcos(φK − ϕE)] (29)

By obtaining this projection angle, it can be used to achieve the additional distance
named αEK in Figure 4 that needs to be traveled by the Kth signal to arrive at element E
as follows:

dEK = EcosαEK = Ecos
[
cos−1[sinθKcos(φK − ϕE)]

]
= E sinθKcos(φK − ϕE) (30)

where E and ϕE are the distance and phase angles between the reference element A and
element E, respectively, and θK and φK are the elevation angle and azimuth angle, respec-
tively. From Section 2.2, we assumed that the distance between the reference element A
and element E is equal to L and we found that ϕE = 72◦. Then,

dEK = L sinθKcos(φK − 72◦) (31)
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For wideband signals, we can define c as the speed of light and f as the signal
frequency. According to Equation (31), the corresponding phase difference ψEK for the time
delay τEK depending on the distance dEK can be expressed by this equation:

ψEK = 2π fK
dEK

c
=

2π fK
c

LsinθKcos(φK − 72◦) (32)

Now we conduct the same procedures for the residual elements of our pentagram
array for the same incident signal SK(t) as below:

For sensor B, we find that:

dBK = BcosαBK = Bcos[cos−1[sinθKcos(φK − ϕB)]] = BsinθKcos(φK − ϕB) (33)

where the distance between the reference element A and element B is equal to L, and we
found that ϕB = 288◦. So,

dBK = L sinθKcos(φK − 288◦) (34)

So, the corresponding phase difference ψBK for τBK and dBK can be expressed by this
equation:

ψBK = 2π fK
dBK

c
=

2π fK
c

LsinθKcos(φK − 288◦) (35)

For sensor I, we can write:

dIK = IcosαIK = Icos[cos−1[sinθKcos(φK − ϕI)]] = IsinθKcos(φK − ϕI) (36)

where the distance between the reference element A and element I is known as Z, and we
found that ϕI = 18◦. So,

dIK = Z sinθKcos(φK − 18◦) (37)

Then, the corresponding phase difference ψIK for τIK and dIK can be given by:

ψIK = 2π fK
dIK

c
=

2π fK
c

ZsinθKcos(φK − 18◦) (38)

For sensor F, we can state:

dFK = FcosαFK = Fcos[cos−1[sinθKcos(φK − ϕF)]] = FsinθKcos(φK − ϕF) (39)

where the distance between the reference element A and element F is known as X, and we
found that ϕF = 36◦. So,

dFK = XsinθKcos(φK − 36◦) (40)

and the corresponding phase difference ψFK for τFK and dFK can be given by:

ψFK = 2π fK
dFK

c
=

2π fK
c

XsinθKcos(φK − 36◦) (41)

For the sensors J and D, which have the same phase angle with the sensor F, we can
obtain their time difference of arrival and corresponding phase difference by tacking only
the distances between them and the reference A, so:

For sensor J:

dJK = JcosαJK = Jcos[cos−1[sinθKcos
(
φK − ϕJ

)]
] = JsinθKcos

(
φK − ϕJ

)
(42)

where the distance between the reference element A and element J is known as (X + Y),
and we found that ϕJ = 36◦. So,

dJK = (X + Y) sinθKcos(φK − 36◦) (43)
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and the corresponding phase difference ψJK for τJK and dJK can be given by:

ψJK = 2π fK
dJK

c
=

2π fK
c

(X + Y)sinθKcos(φK − 36◦) (44)

For sensor D:

dDK = DcosαDK = Dcos[cos−1[sinθKcos(φK − ϕD)]] = DsinθKcos(φK − ϕD) (45)

where the distance between the reference element A and element D is known as (2X + Y),
and we found that ϕD = 36◦. So,

dDK = (2X + Y) sinθKcos(φK − 36◦) (46)

and the corresponding phase difference ψDK for τDK and dDK can be given by:

ψDK = 2π fK
dDK

c
=

2π fK
c

(2X + Y)sinθKcos(φK − 36◦) (47)

For the sensors G, H, and C, which are located at the same axis as the reference element
A, their phase angle will be equal to 0◦, as mentioned before. Then, we can obtain their
time difference of arrival and corresponding phase difference as follows:

For sensor G:

dGK = GcosαGK = Gcos[cos−1[sinθKcos(φK − ϕG)]] = GsinθKcos(φK − ϕG) (48)

where the distance between the reference element A and element G is known as X, and we
found that ϕG = 0◦. So,

dGK = X sinθKcosφK (49)

and the corresponding phase difference ψGK for τGK and dGK can be given by:

ψGK = 2π fK
dGK

c
=

2π fK
c

XsinθKcosφK (50)

For sensor H:

dHK = HcosαHK = Hcos[cos−1[sinθKcos(φK − ϕH)]] = HsinθKcos(φK − ϕH) (51)

where the distance between the reference element A and element H is known as (X + Y),
and we found that ϕH = 0◦. So,

dHK = (X + Y) sinθKcosφK (52)

and the corresponding phase difference ψHK for τHK and dHK can be given by:

ψHK = 2π fK
dHK

c
=

2π fK
c

(X + Y)sinθKcos(φK) (53)

For sensor C:

dCK = CcosαCK = Ccos[cos−1[sinθKcos(φK − ϕC)]] = CsinθKcos(φK − ϕC) (54)

where the distance between the reference element A and element C is known as (2X + Y),
and we found that ϕC = 0◦. So,

dCK = (2X + Y)sinθKcosφK (55)
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and the corresponding phase difference ψCK for τCK and dCK can be given by:

ψCK = 2π fK
dCK

c
=

2π fK
c

(2X + Y)sinθKcos(φK) (56)

Finally, we can obtain the steering vector (column) of any Kth signal for our novel
array geometry (pentagram) by using the formula below:

a(θK , φK , fK) =
[
e−jψAK , e−jψBK , e−jψCK , e−jψDK , e−jψEK , e−jψFK , e−jψGK , e−jψHK , e−jψIK , e

−jψJK
]T

(57)

The array manifold matrix, or steering matrix A(θ, φ, f ), is an (M×Q) frequency-
dependent array matrix. For our novel array geometry (pentagram), M = 10 elements (A, B,
C, D, E, F, G, H, I, and J sensors), and the array manifold matrix that describes the response
of our proposed antenna array for Q signals arriving from different directions is formed
by stacking Q steering vectors or Q columns (which are functions of directions θ, φ, and
frequency f) a(θK, φK, fK). Referring to Equation (19), it can be described as:

A(θ, φ, f ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e−jψA1 e−jψB1 e−jψC1 e−jψD1 e−jψE1 e−jψF1 e−jψG1 e−jψH1 e−jψI1 e−jψJ1

...
...

...
...

...
...

...
...

...
...

e−jψAK e−jψBK e−jψCK e−jψDK e−jψEK e−jψFK e−jψGK e−jψHK e−jψIK e−jψJK

...
...

...
...

...
...

...
...

...
...

e−jψAQ e−jψBQ e−jψCQ e−jψDQ e−jψEQ e−jψFQ e−jψGQ e−jψHQ e−jψIQ e−jψJQ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

(58)

where A, B, C, D, E, F, G, H, I, and J are the array sensors (elements), and 1, K, and Q are
the signal sources (targets). According to the Q numbers of incident signals with a single
snapshot and referring to Equation (17), the signal S( f ) is the (Q× 1) vector, which can be
described as follows:

S( f ) =
[
s1( f1), . . . , sK( fK), . . . , sQ

(
fQ
)]T (59)

where 1, K, and Q are the incident signals. In the case of a multiple number of snapshots,
N, then the signal S( f ) is the (Q× N) matrix and can be as follows:

S( f ) =

⎡⎢⎢⎢⎢⎢⎢⎣

s11( f1) s21( f2) · · · sQ1
(

fQ
)

...
...

...
...

s1K( f1) s2K( f2) · · · sQK
(

fQ
)

...
...

...
...

s1N( f1) s2N( f2) · · · sQN
(

fQ
)

⎤⎥⎥⎥⎥⎥⎥⎦

T

(60)

where 1, K, and Q are the signals and 1, 2. . .N are the snapshots in the signal.
In order to obtain the DOAs of the incident signals, the above array manifold matrix

A(θ, φ, f ) of Equation (58) must satisfy the restricted isometry propriety (RIP) condition
according to the locations of the array sensors (elements) of the selected sensor array
configuration. In Ref. [28], the RIP condition is described as: any two columns selected
from array manifold matrix A(θ, φ, f ) must be linearly independent of each other. In
other words, the correlation coefficient between each two columns in the array manifold
matrix A(θ, φ, f ) affects the performance of the DOAs. The number of columns of the array
manifold matrix A(θ, φ, f ) is determined by the number of incident signals (sources). We
can define the correlation coefficient μij by this equation:

μij =

∣∣aH
iaj
∣∣

‖ai‖2
∥∥aj
∥∥

2

(61)

where ai and aj are the ith and jth columns of A(θ, φ, f ), respectively. The correlation
coefficient μij depends on the array configuration as it relates to the number of elements
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(sensors) and element spacing (d). In our new array geometry, the number of elements
(M = 10) is fixed, and element spacing (d) is a variable depending on the selected setting.
The positions of the array elements are already known (the outer and inner vertices of the
triangles) and are determined according to the underlying formation of the array geometry.
This means the array elements can be practically arranged and designed using suitable
element spacing (d).

By making this important note, we avoid the practically realizable problem that
happens when some of the elements lie closer to each other, as in the case of random
geometry. As we mentioned before in Section 2.3, the spacing (d) can be set to some values
related to the λ, λ being the wavelength of the carrier signal. Many values of the correlation
coefficient μij with a fixed number of elements and different element spacings can be
obtained. In other words, this offers some benefits related to the degrees of freedom for
creating our proposed array covariance matrix. Although the fixed number of elements
binds these values, they nevertheless offer some advantages related to simplifying the
computations of the correlation coefficient μij.

Experiments in the literature [29] showed that the correlation coefficient μij reduces
with the increasing number of elements at fixed element spacing (d = λ/2) and increases
(μij = 1) when increasing the element spacing (d = 2λ), indicating that the array manifold
matrix A(θ, φ, f ) violates the RIP condition and its steering vectors become ambiguous
(this is known as the manifold ambiguity problem), leading to DOA estimation failure. The
fixed small number of elements (M = 10) as in our new array geometry leads to a degree of
free distribution depending only on the element spacing (d) setting, so the elements can be
close to or far away from each other. In other words, we can set the element spacing that
leads to minimizing or maximizing the antenna aperture, which has some bearing on the
output of the DOA estimation algorithms.

Here, our study becomes related to aperture sampling and the antenna aperture itself.
We will take the minimization ability of the antenna aperture in this proposed antenna
array as a new compressive idea for compressing the size of the antenna aperture. The
only design parameter for our array geometry is the element spacing (d). The motivation
behind setting the spacing elements is to minimize the mutual coherence (small value of
correlation coefficient μij) of the columns of the array manifold matrix in order to make it
well suited for DOA estimation algorithms for wideband sources.

Referring to Equation (18), the complex normal distribution noise matrix N( f ) for
incident signals with a single snapshot is the (M× 1) vector and can be expressed as:

N( f ) =
[
nA( fA), nB( fB), nC( fC), nD( fD), nE( fE), nF( fF), nG( fG), nH( fH) , nI( f I), nJ

(
f J
)]T (62)

where A, B, C, D, E, F, G, H, I, and J are the array elements.
In the case of a multiple number of snapshots N, then the noise N( f ) is the (M× N)

matrix and can be as follows:

N( f )

=

⎡⎢⎢⎢⎢⎣
nA1( fA) nB1( fB) nC1( fC) nD1( fD) nE1( fE) nF1( fF) nG1( fG) nH1( fH) nI1( f I) nJ1

(
f J
)

nA2( fA) nB2( fB) nC2( fC) nD2( fD) nE2( fE) nF2( fF) nG2( fG) nH2( fH) nI2( f I) nJ2
(

f J
)

...
...

...
...

...
...

...
...

...
...

nAN( fA) nBN( fB) nCN( fC) nDN( fD) nEN( fE) nFN( fF) nGN( fG) nHN( fH) nIN( f I) nJN
(

f J
)

⎤⎥⎥⎥⎥⎦
T

(63)

where A, B, C, D, E, F, G, H, I, and J are the array elements, and 1,2. . .N are the snapshots of
the signal.

4. Results

4.1. Simulation Setup

As the objective of this paper focuses on the DOA estimation of wideband sources,
many scenarios of wideband signals and DOA azimuth, as mentioned in Section 1, have
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been studied using computer software simulations. Each scenario was performed under a
specific simulation parameter setting.

To evaluate the performance of our geometry configuration, we need other array
geometries for comparison. When we look at the formation appearance of the proposed
geometry, we can see that it contains five groups of linear arrays with four elements in each
group. Also, it looks like two concentric circular arrays; each array has five elements. The
five elements that are located on the inner vertices of the pentagram form a uniform circular
array with a small radius far from the center of the pentagram, and those five elements that
are located on the outer vertices shape a large uniform circular array with a large radius
far from the same center. The relationship between these two radiuses was explained in
Section 2.2. So according to these descriptions, we use the well-known ULA (uniform linear
array) geometry and UCA (uniform circular array) for DOA estimation and performance
comparison. We assume a UCA with ten (M = 10) elements and a 36-degree fixed center
angular separation between them. The radius (R) of the circle in every simulation scenario
will be set to a value that is larger than the inner and smaller than the outer radiuses of
the pentagram geometry. Also, we consider a ULA with ten horizontally stacked elements
and element spacing (d = 0.5λ, λ is the wavelength that is used for the simulation) for all
simulations. The reason for choosing such ULA and UCA geometries is that our proposed
geometry formation only depends on the element spacing and aperture size due to its fixed
element number. ULA and UCA have fixed element spacing (d) and a variable numbers
of elements.

The experimental simulations were performed using MATLAB/R2018a computer
software. It is a technical computing environment for matrix computation, signal processing,
and graphics visualization.

4.1.1. Simulation Setup for Proposed Geometry Configuration

In this section, we select suitable parameters to form the sensor configuration of
our new array geometry. The parameters that were used for geometry formation and
performance comparison are listed in Table 1. For simplicity, in this DOA estimation
performance comparison, we use one source that emits a wideband signal with zero
bandwidth (a pulse signal). The element spacing (d) of the three geometries is set to some
value related to the wavelength (λ) of the incident signal. For UCA geometry, its radius is
set to a value that is greater than the inner and less than the outer radius of the pentagram
geometry mentioned above. The inner radius of the pentagram array in this case is equal
to 1.622.λ and the outer radius is equal to 4.244.λ. Because the antenna aperture does have
some bearing on the output of the DOA algorithm, in this section we will investigate the
DOA estimation performance of the three geometries under the MUSIC algorithm.

Table 1. Simulation parameters for DOA estimation based on proposed, ULA, and UCA geometries.

Parameter Symbol ULA/UCA/Proposed Notes

Number of sensors M 10 Fixed number in the proposed
geometry

Sampling frequency(GHz) fs 16 For simulation
Center frequency (GHz) f0 7.1 One signal is considered

Bandwidth (GHz) BW 0 Pulse signal
Wavelength of the incident signal (m) λ 0.042 λ = c/f0

Source elevation DOA (degrees) θK 90 Elevation kept as fixed
Source azimuth DOA (degrees) φK 0 One source is considered

Snapshots N 100 Number of samples
Speed of propagation (light) m/s c 3× 108 -

Signal-to-noise ratio (in dB) SNR 10 -

Element spacing (in wavelength) d d = 0.5λ/R = 2.5λ/dX = 3.084λ
Element spacing for ULA/radius of

UCA/base element spacing for
proposed geometry

Element angle position (rad) Phi -/(2π/M)/- Element distribution of the geometry
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4.1.2. Simulation Setup for DOA Angular Accuracy and Resolution Performance of the
Proposed Geometry

In this area, we adjust the simulation parameters to provide the angular accuracy
and resolution of DOA estimation for the proposed geometry compared with ULA and
UCA geometries. We select two wideband sources that lie close to each other and emit
two wideband signals with different frequencies and zero bandwidths (pulse signals). The
two sources are separated by six azimuth degrees from each other. As the frequencies and
wavelengths of the signal sources are changed from the previous Section 4.1.1, the element
spacing of the geometries will change. This change in the array aperture will affect the
performance of the DOA estimation algorithm. Since we use two different wideband signals
in this scenario, we have two values of wavelengths (λ), which are λ1 for the first signal
and λ2 for the second signal. For setting the element spacing (d) of the three geometries
to some value related to the wavelength (λ), we set the wavelength (λ) for simulation to a
value that lies in the range between the two wavelength values λ1 and λ2 as λ greater than
λ2 and less than λ1. The inner radius of the pentagram array in this case is equal to 1.324λ,
and the outer radius is equal to 3.468λ. The parameters that are used for DOA angular
resolution and accuracy performance comparison are fixed as the same values as those
listed in Table 1 for the three geometries, except some parameters, which will take the new
values as listed in Table 2.

Table 2. Simulation parameters for DOA estimation angular accuracy and resolution under MUSIC
algorithm based on proposed, ULA, and UCA geometries.

Parameter Symbol ULA/UCA/Proposed Notes

Center frequency (GHz) f0 7.1 and 13.7 Two signals (different frequencies) are
considered

Bandwidth (GHz) BW 0 and 0 Pulse signals
Wavelength of the simulation (m) λ 0.0375 λ2 < λ < λ1

Wavelength for signal 7.1 (m) λ1 0.0423 λ1 = c/f0
Wavelength for signal 13.4 (m) λ2 0.0224 λ2 = c/f0
Source azimuth DOA (degrees) φK 15 and 21 Two sources are considered

Element spacing (in wavelength) d d = 0.5λ/R = 2.0λ/dX = 2.520λ
Element spacing for ULA/radius of

UCA/base element spacing for
proposed geometry

4.1.3. Simulation Setup for DOA Estimation Comparison of the Proposed Geometry with
UCA and ULA Geometries

In this part, we will set the parameters of the DOA estimation simulation comparison
between the proposed geometry and UCA and ULA geometries under the MUSIC algo-
rithm. Here, we use the same two incident wideband signals that were used in the previous
Section 4.1.2 for the two sources, only changing their azimuth DOAs. As the actual azimuth
DOAs of the incident signal sources are changed, the proposed geometry needs to adjust its
element spacing. In this case, the outer radius of the pentagram is equal to 3.472λ and the
inner radius is equal to 1.327λ. The radius of the UCA geometry is set to a value that lies
between these two values. The parameters that are used for DOA estimation comparison
are fixed at the same values as those listed in Tables 1 and 2 for the three geometries, except
for the parameters that are revalued as listed in Table 3.
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Table 3. Simulation parameters for DOA estimation comparison of the proposed geometry with UCA
and ULA geometries under MUSIC algorithm.

Parameter Symbol ULA/UCA/Proposed Notes

Source azimuth DOA (degrees) φK 18 and 54 Two sources are considered

Element spacing (in wavelength) d d = 0.5λ/R = 2.0λ/dX = 2.523λ
Element spacing for ULA/radius of

UCA/base element spacing for
proposed geometry

4.1.4. Simulation Setup for Proposed Geometry Performance Analysis

In this part, the performance of the proposed geometry is analyzed using different
SNR values and the MUSIC DOA algorithm. The selected three values range from low to
high SNR, which are −25 dB, 0 dB, and 25 dB, respectively. The parameters that are used
for performance analysis that are only related to the proposed geometry are fixed at the
same values as those listed in Tables 1–3, except for the parameters that shall take the new
values listed in Table 4. The outer radius and the inner radius of the pentagram have the
same values as in the previous Section 4.1.3.

Table 4. Simulation parameters for DOA estimation performance analysis with different SNRs.

Parameter Symbol Proposed Notes

Signal-to-noise ratio (in dB) SNR −25, 0, and 25 The values range from low to high

4.1.5. Simulation Setup for DOA Estimation Comparison Based on Different Frequencies
with Different Bandwidths without Overlapping

The bandwidth of the wideband signal affects the performance of the DOA estimation
algorithm based on the array geometry. Here, we change the bandwidths (different center
frequencies and different bandwidths without overlapping) of the incident wideband
signals for the same two sources that were used in Sections 4.1.2 and 4.1.3. The outer
radius of the pentagram here is equal to 3.095λ and the inner radius is equal to 1.182λ.
So, the radius of the UCA geometry is again set to a value that lies between these two
values. The parameters that are used for DOA estimation comparison are fixed at the same
values as those listed in Table 1, Table 2, and Table 3 for the three geometries, except for the
parameters that are revalued as listed in Table 5.

Table 5. Simulation parameters for DOA estimation performance comparison based on different
bandwidths without overlapping.

Parameter Symbol ULA/UCA/Proposed Notes

Bandwidth (GHz) BW 1.5 and 2.3 1.5 bandwidth of the signal 7.1
2.3 bandwidth of the signal 13.4

Element spacing (in wavelength) d d = 0.5λ/R = 2.0λ/dX = 2.520λ
Element spacing for ULA/radius of

UCA/base element spacing for
proposed geometry

4.1.6. Simulation Setup for DOA Estimation Comparison Based on Same Frequencies with
Different Bandwidths with Overlapping

In this section, we set the two wideband signals with the same center frequencies
and different bandwidths with frequency overlapping. The same two bandwidth values
in Section 4.1.5 remain unchanged. This simulation studies the influence of frequency
overlapping on the performance of the DOA estimation algorithm based on the array
geometry. Now, we change the center frequencies (same center frequencies and different
bandwidths with overlapping) of the incident wideband signals for the same two sources
that were used in Sections 4.1.1, 4.1.3, and 4.1.5. The outer radius of the pentagram
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here is equal to 3.451λ and the inner radius is equal to 1.318λ. Then, the radius of the
UCA geometry is set to a value that lies between these two values. The parameters that
are used for DOA estimation comparison are fixed as the same values as those listed in
Tables 1, 3 and 5 for three geometries, except for the parameters that are revalued as listed
in Table 6.

Table 6. Simulation parameters for DOA estimation performance comparison based on bandwidths
with overlapping.

Parameter Symbol ULA/UCA/Proposed Notes

Center frequency (GHz) f0 8.0 and 8.0 Two signals (same frequencies)
Wavelength of the simulation (m) λ 0.0375 λ =λ1 = λ2 = c/f0

Element spacing (in wavelength) d d = 0.5λ/R = 2.0λ/dX = 2.508λ
Element spacing for ULA/radius of

UCA/base element spacing for
proposed geometry

4.1.7. Simulation Setup for DOA Estimation Comparison Based on a Larger Number of
Sources with Different Frequencies and Zero Bandwidths without Overlapping

Here, we used four sources which emit four wideband signals with different center
frequencies and zero bandwidths (pulse signals scenario). In this case, we assume that
the first two different signals are coming from the opposite directions of the incoming
directions of the other two signals. Regarding these different frequencies in this scenario,
we have four different values of wavelengths (λ), which are λ1, λ2, λ3, and λ4 for every
signal such that λ1> λ2> λ3> λ4. For setting the element spacing (d) of the three geometries
to some value related to the wavelength (λ), we set the wavelength (λ) for simulation to a
value that lies in the range betweenλ2 andλ3 as λ greater than λ3 and less than λ2,which is
the same value as in Sections 4.1.2, 4.1.3, 4.1.4, 4.1.5, and 4.1.6, respectively. The outer and
inner radius of the pentagram and the radius of the UCA geometry remain the same as in
Section 4.1.3. The simulation parameters selected here are the same as in Table 1, except for
the parameter named element spacing (in wavelength), which takes the same values as in
Table 3 for the three geometries. The other revalued parameters are listed in Table 7.

Table 7. Simulation parameters for DOA estimation performance comparison based on greater
number of sources with different frequencies and zero bandwidths.

Parameter Symbol ULA/UCA/Proposed Notes

Center frequency (GHz) f0 3.6, 7.1, 9.2, and 13.4 Four signals (different frequencies) are considered
Wavelength of the simulation (m) λ 0.0375 λ4 < λ3 < λ < λ2 < λ1

Wavelength for signal 1 (m) λ1 0.0833 λ1 = c/f0
Wavelength for signal 2 (m) λ2 0.0423 λ2 = c/f0
Wavelength for signal 3 (m) λ3 0.0326 λ3 = c/f0
Wavelength for signal 4 (m) λ4 0.0224 λ4 = c/f0

Source azimuth DOA (◦) φK −54, −18, 18, and 54 Four sources are considered

4.1.8. Simulation Setup for DOA Estimation Comparison Based on Greater Number of
Sources with Same Frequencies and Different Bandwidths with Overlapping

This section is the same as the previous Section 4.1.7, as we used the same four sources,
all coming from their same actual azimuth DOAs. In this case, we only changed their
center frequencies to be one for all of them and their bandwidths to be different from each
other. The simulation examines the impact of bandwidth and frequency overlapping on the
DOA algorithm performance of wideband sources. In this case, we have the same center
frequency for all four signals, so we have the same four values of wavelengths (λ), which
are λ1 = λ2 = λ3 = λ4. For setting the element spacing (d) of the three geometries to some
value related to the wavelength (λ), we set the wavelength (λ) for simulation to any value
of these values. The outer radius of the pentagram here is equal to 1.512λ and the inner
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radius is equal to 0.578λ. So, the radius of the UCA geometry is again set to a value that lies
between these two values. The simulation parameters that are used here are the same as in
Tables 1 and 7 for three geometries, except for some parameters that take the new values in
Table 8.

Table 8. Simulation parameters for DOA estimation performance comparison based on a larger
number of sources with same frequencies and different bandwidths.

Parameter Symbol ULA/UCA/Proposed Notes

Center frequency (GHz) f0 8.0, 8.0, 8.0, and 8.0 Four signals (same frequency)
Wavelength of the simulation (m) λ 0.0375 λ =λ1 = λ2 = λ3 = λ4 = c/f0

Bandwidth (GHz) BW 1.5, 2.3, 3.5, and 4.3

1.5 bandwidth of the signal 1
2.3 bandwidth of the signal 2
3.5 bandwidth of the signal 3
4.3 bandwidth of the signal 4

Element spacing (in wavelength) d d = 0.5λ/R = 1.0λ/dX = 1.099λ Element spacing for ULA/radius of UCA/base
element spacing for proposed geometry

4.1.9. Simulation Setup for Different DOA Algorithm Performances Comparison Based on
Proposed Geometry

Here, we selected another two different DOA algorithms to investigate the effect
of the array geometry configuration and the antenna aperture on the DOA algorithms’
performance. The DOA estimation performance of the two algorithms will be compared
with that of the MUSIC algorithm. These two DOA algorithms are CAPON and SSS.

The settings of the simulation parameters used here for the proposed geometry are
the same as those related to the proposed geometry in Sections 4.1.6, 4.1.7, and 4.1.8,
respectively. Then the three algorithms (MUSIC, CAPON, and SSS) are applied for DOA
estimation based on the proposed geometry under these settings. The SSS algorithm has an
additional parameter named scalar value, which will take its value as listed in Table 9.

Table 9. Simulation parameters for different DOA algorithms performance comparison.

Parameter Symbol MUSIC/CAPON/SSS Notes

Scalar value (in wavelength) ε -/-/λ Small scalar value added to avoid possible
singularities (only for SSS)

4.2. Simulation Results

Various software simulations were performed under different wideband signals and
DOA azimuth scenarios to investigate the theoretical assumptions of the proposed geometry.
Each simulation was implemented according to its related settings, which were specified in
Section 4.1.

4.2.1. The 1-DOA Estimation of Proposed Geometry vs. ULA and UCA Geometries under
the MUSIC Algorithm

The performance of the MUSIC algorithm for the proposed, UCA and ULA geometries
was evaluated using the simulation parameters given in Table 1. The DOA estimation
performance results are shown in Figure 5. The red circle represents the true DOA from 0◦

azimuth DOA. The blue line, purple line, and green line represent the DOAs estimated by
the MUSIC algorithm based on ULA geometry, UCA geometry, and proposed geometry,
respectively.
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Figure 5. The DOA estimation performance of the proposed geometry vs. ULA and UCA under the
MUSIC algorithm.

For one wideband signal source with zero bandwidth (pulse signal) given in Table 1,
i.e., 0◦ DOA azimuth, with elevation kept at 90◦, the DOAs estimated by the MUSIC
algorithm based on the proposed geometry and the other two geometries (ULA and UCA)
were located at the correct DOAs appearing at 0◦ DOA azimuth, as shown in Figure 5. In
other words, the MUSIC algorithm based on the proposed geometry detected the wideband
source effectively, the same as it did based on the ULA and UCA geometries. On the
other hand, the proposed geometry obeys the DOA MUSIC algorithm and is valid for
achieving accurate DOA estimation for wideband sources. The reason for this accurate
DOA estimation with the proposed geometry is the perfect setting of the element spacing
that is used to form the pentagram array to generate a manifold matrix that has signal and
noise subspaces that can be easily separated.

The DOA performance of the MUSIC algorithm for the proposed geometry is much
more convincing compared to the ULA and UCA geometries for the simulation parameters
given in Table 1, provided that our new proposed geometry with the same number of
sensors has a significantly better configuration based on the chosen element spacing, which
benefits the conformability of the RIP condition as a separation of signal and noise subspaces.
Also, the simulation shows that the MUSIC algorithm achieved a higher and narrower peak-
to-floor ratio (PFR) of the normalized spatial power for the UCA geometry than the ULA
and proposed geometries, although the ULA has a flatter normalized spatial power at the
floor than the other two geometries. In this scenario, the smallest interelement spacing (Y)
between the five sensors at the inner vertices (F, G, H, I, and J) of the pentagram array as
defined in Section 2.3 equals to 0.080 m (Y = 0.618X = 0.618 × 3.084 × 0.042 = 0.080 m),
and the largest one is the spacing between the sensor C and the reference sensor A, which
equals to 0.339 m (dC = 2X + Y = 2 × 3.084 × 0.042 + 0.080 = 0.339 m). This largest spacing
determines the size of the aperture of the proposed geometry array, which can be acceptable
in logical and practical considerations.

4.2.2. The 1-DOA Angular Accuracy and Resolution Performance of the Proposed
Geometry under the MUSIC Algorithm

The 1-DOA estimation angular accuracy and resolution performance of the proposed,
ULA and UCA geometries under the MUSIC algorithm were investigated using the simula-
tion parameters given in Tables 1 and 2. The results of the 1-DOA estimation comparison
are shown in Figure 6. The red circles again represent the true DOAs from 15◦ and 21◦

azimuth DOA, respectively. The blue line, purple line, and green line represent the DOAs
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estimated by the MUSIC algorithm based on the ULA, UCA, and proposed geometry,
respectively.

Figure 6. The 1-DOA angular accuracy and resolution performance for the proposed geometry, ULA,
and UCA under the MUSIC algorithm.

For the simulation parameters given in Tables 1 and 2, and the two wideband signal
sources with zero bandwidths (pulse signals), i.e., 15◦ and 21◦ DOA azimuth, with elevation
kept at 90◦, the DOAs estimated by the MUSIC algorithm based on the proposed geometry
are located at the correct DOAs appearing at 15◦ and 21◦ DOA azimuth, respectively. At
the same time, only one DOA peak is estimated by the MUSIC algorithm based on the ULA
and UCA geometries, which is located at the correct DOA of the second source and appears
at 21◦ DOA azimuth, and it failed to estimate the DOA peak of the first source, which
should be located at 15◦ DOA azimuth, as shown in Figure 6. For ULA geometry, another
two DOA peaks are estimated by the MUSIC algorithm, approximately appearing at −58◦

and 8◦ DOAs azimuth, respectively. This makes us think that even the first DOA peak
that is located at the correct DOA azimuth of the second source and appears at 21◦ DOA
azimuth is most likely a coincidence due to these two false DOA peaks. In contrast, for the
UCA geometry, only one DOA peak is estimated by the MUSIC algorithm that is located
at the correct DOA azimuth of the second source and appears at 21◦ DOA azimuth. Thus,
again, it failed to estimate the DOA peak for the first source that lies at 15◦ DOA azimuth.

It is worth noting from Figure 6 that the MUSIC algorithm, based on the proposed
geometry, estimated the two wideband sources effectively even though they are close to
each other. Also, the simulation shows that the MUSIC algorithm estimated the DOAs of
the two sources with a high peak-to-floor ratio (PFR) of the normalized spatial power with
notable decreasing double-side peaks using the proposed geometry.

In this scenario, the smallest interelement spacing (Y) equals 0.058 m (Y = 0.618X =
0.618 × 2.520 × 0.0375 = 0.058 m) and the largest spacing equals 0.247 m (dC = 2X + Y = 2
× 2.520 × 0.0375 + 0.058 = 0.247 m), which are still reasonable for design considerations.
This simulation scenario shows that the proposed geometry has better angular accuracy
and resolution performance under the MUSIC algorithm for wideband sources compared
to the ULA and UCA geometries.

4.2.3. The 1-DOA Estimation Performance Comparison of the Proposed Geometry with
UCA and ULA Geometries

This simulation scenario is the same as that in Section 4.2.2, as we only changed the
actual azimuth DOA of the two wideband sources to be separated by some degrees from
each other while leaving their signal characteristics unchanged to see how the proposed
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geometry deals with the variation in the actual DOA to keep its DOA estimation accu-
racy. This DOA estimation performance comparison is performed using the simulation
parameters given in Tables 1–3. The simulation results of the DOA estimation performance
comparison are shown in Figure 7. Again, the red circles represent the true DOAs from 18◦

and 54◦ azimuth DOA, respectively. The blue line, purple line, and green line represent
the DOAs estimated by the MUSIC algorithm based on the ULA, UCA, and proposed
geometry, respectively. For the simulation parameters given in Tables 1–3, and the two
wideband signal sources, i.e., 18◦ and 54◦ DOA azimuth, with elevation kept at 90◦, the
DOAs estimated by the MUSIC algorithm based on the proposed geometry are located at
the correct DOAs appearing at 18◦ and 54◦ DOA azimuth, respectively. As in the previous
Section 4.2.2, only one DOA is estimated by the MUSIC algorithm based on the ULA and
UCA geometries, which is located at the correct DOA of the second source and appears
at 54◦ DOA azimuth, and it failed to estimate the first source, which should be located at
18◦ DOA azimuth, as shown in Figure 7. The MUSIC algorithm based on ULA geometry
estimated another two DOA peaks, which approximately appear at −25◦ and 9◦ DOAs,
respectively. This again supports the probability of the first DOA peak being coincidentally
located at the correct DOA azimuth of the second source and appearing at 54◦ DOA az-
imuth. In comparison, the MUSIC algorithm based on UCA geometry estimated only one
DOA peak that was located at the correct DOA azimuth of the second source, appearing at
54◦ DOA azimuth, and failed to estimate the DOA peak for the first source, which lies at
18◦ DOA azimuth.

Figure 7. The DOA estimation performance comparison of the proposed geometry with UCA and
ULA geometries under the MUSIC algorithm.

According to the simulation results in Figure 7, the MUSIC algorithm, based on the
proposed geometry, detected and estimated the two wideband sources effectively even
though they are separated by some degrees from each other. Also, the simulation shows
that the MUSIC algorithm estimated the DOAs of the two sources with a low peak-to-floor
ratio (PFR) of the normalized spatial power using the proposed geometry compared to the
UCA and ULA geometries.

In this simulation, we found that the proposed geometry provided high DOA accuracy
with high resolution by insignificantly maximizing its aperture by increasing the element
spacing to a larger value than those in Section 4.2.2 to adapt the variation in the DOA of
the sources. The element spacing between the five elements (A, B, C, D, and E) at the outer
vertices of the pentagram array is increased to 2.523λ instead of 2.520λ in Section 4.2.2. The
smallest interelement spacing (Y) and the largest spacing can be the same as their values in
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Section 4.2.2 due to these little increases in design considerations and measurement errors.
In this scenario, we show that the proposed geometry can adapt to the variation in the DOA
of the wideband sources to provide high-accuracy DOA estimation with high resolution
performance by resetting its element spacing as its number of elements remains fixed.

4.2.4. The 1-DOA Estimation Performance Analysis of the Proposed Geometry under the
MUSIC Algorithm

The 1-DOA estimation performance analysis of the proposed geometry under the MUSIC
algorithm was investigated using the same simulation parameters given in Tables 1–3, except
those parameters which take their values as specified in Table 4. The results of the DOA
estimation performance analysis are shown in Figure 8. The red circles again represent the true
DOAs from 18◦ and 54◦ azimuth DOA. The green line, purple line, and blue line represent the
DOAs estimated by the MUSIC algorithm based on the proposed geometry with SNR equal
to −25 dB, 0 dB, and 25 dB, respectively.

Figure 8. The proposed geometry DOA estimation performance analysis under the MUSIC algorithm.

For the simulation parameters given in Tables 1–4 and two wideband signal sources
with zero bandwidths (pulse signals), i.e., 18◦ and 54◦ DOA azimuth, with elevation kept
at 90◦, the DOAs estimated by the MUSIC algorithm based on the proposed geometry are
located at the correct DOAs appearing at 18◦ and 54◦ DOA azimuth, respectively, for three
different SNR values, as shown in Figure 8. It is worth noting from Figure 8 that the MUSIC
algorithm, based on the proposed geometry, estimated the two wideband sources effectively
even at low SNR levels. Also, the simulation shows that the MUSIC algorithm estimated
DOAs with a high peak-to-floor ratio (PFR) of the normalized spatial power at high SNR
levels using the proposed geometry. This means that the increase in SNR improved the
DOA estimation performance. The explanation is that for the proposed geometry, there is no
ability for two or more sensors to be located very near each other at one or many locations.
For this reason, the rows of the array manifold matrix would be differentiated, generating
a sufficient rank covariance matrix. Again, these results stated that our new proposed
geometry with a perfect sensor configuration has significantly accurate DOA estimation
performance regardless of the variation in SNR. In this simulation, the smallest interelement
spacing (Y) and the largest spacing (dC) have the same values as in Section 4.2.3.

4.2.5. The 1-DOA Estimation Performance Comparison of the Proposed Geometry with
UCA and ULA Geometries Based on Different Frequencies with Different Bandwidths
without Overlapping

For simplicity purposes, in the wideband DOA estimation comparison in previous
Sections 4.2.2–4.2.4, two wideband signals with zero bandwidth (pulse signals) were
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considered. Here, we assumed that the same two wideband signals are not pulse signals,
and they have different bandwidths without overlapping between them. Thus, the two
different frequencies of the two signals remain unchanged.

This scenario studies the effect of the bandwidth of the incident wideband signals
on the array geometry configuration, the antenna aperture, and the DOA algorithm’s
performance, as the signal frequency components are spreading along these bandwidths.
The DOA estimation performance comparison is provided using the simulation parameters
given in Tables 1–3 and 5. The simulation results of the DOA estimation performance
comparison in this case are shown in Figure 9.

Figure 9. The DOA estimation performance comparison based on the proposed geometry, UCA, and
ULA geometries under the MUSIC algorithm using different frequencies with different bandwidths
without overlapping.

As usual, the red circles represent the true DOAs from 18◦ and 54◦ azimuth DOA,
respectively. The blue line, purple line, and green line represent the DOAs estimated by the
MUSIC algorithm based on the ULA, UCA, and proposed geometry, respectively.

For the simulation parameters given in Tables 1–3 and 5 and the two wideband signal
sources with different bandwidths without overlapping, i.e., 18◦ and 54◦ DOA azimuth,
with elevation kept at 90◦, the DOAs estimated by the MUSIC algorithm based on the
proposed geometry are located at the correct DOAs appearing at 18◦ and 54◦ DOA azimuth,
respectively, as shown in Figure 9. This means that the MUSIC algorithm, based on the
proposed geometry, estimated the DOAs of the two wideband sources accurately. From
Figure 9, it is clear that the MUSIC algorithm based on UCA geometry failed to estimate the
correct DOA of the two wideband sources by providing messy results for DOA estimation,
as many low and wide peaks appear in the normalized power spectrum. Based on ULA
geometry, the MUSIC algorithm also failed to estimate the correct DOA of the two wideband
sources and estimated three DOA peaks appearing at −48◦, 0◦, and 48◦ DOAs, respectively.
As we can see in this case and due to the bandwidths of the two signals, the MUSIC
algorithm based on the ULA and UCA geometries failed to estimate the DOAs of the two
or even one wideband source.

In this case, the proposed geometry provided good DOA results by minimizing
its aperture by decreasing the element spacing to a smaller value than those values in
Sections 4.2.2 and 4.2.3 to adapt the variation in the bandwidths of the wideband signals.
The element spacing between the five elements (A, B, C, D, and E) at the outer vertices of
the pentagram array is decreased to 2.249λ instead of 2.520λ in Section 4.2.2 and 2.523λ
in Section 4.2.3. The smallest interelement spacing (Y) in this case is equal to 0.052 m
(Y = 0.618X = 0.618 × 2.249 × 0.0375 = 0.052 m) and the largest spacing equals 0.221 m
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(dC = 2X + Y = 2 × 2.249 × 0.0375 + 0.052 = 0.221 m), which are acceptable in practical
implementations. Again, in this scenario, we show that the proposed geometry can be
used for the DOA of the wideband sources to provide good results of DOA estimation by
adjusting its element spacing in case of changing the bandwidths of the incoming signals.

This simulation result in Figure 9 demonstrates the outgeneralization of the proposed
geometry over its counterparts (ULA and UCA), as it can be used for DOA estimation of
wideband sources even at different signal bandwidths.

4.2.6. The 1-DOA Estimation Performance Comparison of the Proposed Geometry with
UCA and ULA Geometries Based on the Same Frequencies with Different Bandwidths
with Overlapping

In the previous Section 4.2.5, we assumed that the two wideband signals have different
frequencies and different bandwidths without frequency overlapping. In this part, we
considered the frequency overlapping between these signals and assumed that they had
the same frequencies and different bandwidths. This scenario discusses the influence of the
frequency overlapping of the wideband signals due to their bandwidth on the performance
of the DOA estimation as the signals share some frequency components that are already
present in these bandwidths. In the literature, frequency overlapping represents the main
reason that most of the DOA algorithms are not applicable to DOA estimation of wideband
sources, especially since they use subspace methods, as the separation of these subspaces
of the covariance matrix becomes difficult. The DOA estimation performance comparison
is provided using the simulation parameters given in Tables 1, 3, 5, and 6. The simulation
results of the DOA estimation performance comparison for this scenario are shown in
Figure 10. In Figure 10, the red circles represent the true DOAs from 18◦ and 54◦ azimuth
DOA, respectively. The blue line, purple line, and green line represent the DOAs estimated
by the MUSIC algorithm based on the ULA, UCA, and proposed geometry, respectively.
For the simulation parameters given in Tables 1, 3, 5, and 6, and the two wideband signal
sources with the same frequencies and different bandwidths with overlapping, i.e., 18◦

and 54◦ DOA azimuth, with elevation kept at 90◦, the DOAs estimated by the MUSIC
algorithm based on the proposed geometry are located at the correct DOAs appearing at
18◦ and 54◦ DOA azimuth, respectively, as shown in Figure 10. The result is that the MUSIC
algorithm, based on the proposed geometry, estimated the DOAs of the two wideband
sources effectively. From Figure 10, it can be seen that the MUSIC algorithm based on UCA
geometry failed to estimate the correct DOAs of the two wideband sources, providing only
one DOA peak at the left end of the normalized spectrum. Also, it is clear that in the same
figure, the MUSIC algorithm based on ULA geometry failed to estimate the correct DOAs
of the two wideband sources and estimated three DOA peaks appearing at −45◦, 0◦, and
65◦ DOAs, respectively. It is clear from Figure 10 that, because of the frequency overlapping
of the two wideband signals, the MUSIC algorithm based on the ULA and UCA geometries
failed to estimate the DOAs of the two wideband sources. In this case, the element spacing
between the five elements (A, B, C, D, and E) at the outer vertices of the pentagram array
is increased to 2.508λ instead of 2.249λ in Section 4.2.5, 2.520λ in Section 4.2.2, and 2.523λ
in Section 4.2.3. The smallest interelement spacing (Y) in this case is equal to 0.058 m (Y =
0.618X = 0.618 × 2.508 × 0.0375 = 0.058 m) and the largest spacing is equal to 0.246 m (dC
= 2X + Y = 2 × 2.508 × 0.0375 + 0.058 = 0.246 m), which are also convincing for practical
considerations.

Again, this scenario shows that the proposed geometry proved its validity for a
DOA of the wideband sources, providing good results of DOA estimation depending
on changing its element spacing to generate a covariance matrix from which its signal
and noise subspaces can be easily separated in the case of frequency overlapping of the
incoming wideband signals. The simulation results in Figure 10 show the outperformance
of the proposed geometry over its counterparts (ULA and UCA). The simulation shows that
the MUSIC algorithm, based on the proposed geometry, estimated the DOAs of the two
sources with one redundant peak with less spectrum amplitude, which can be minimized
using other DOA estimation algorithms, as will be demonstrated later in Section 4.2.9.

139



Remote Sens. 2024, 16, 535

Figure 10. The DOA estimation performance comparison based on the proposed geometry, UCA, and
ULA geometries under the MUSIC algorithm using the same frequencies with different bandwidths
with overlapping.

4.2.7. The 1-DOA Estimation Performance Comparison of the Proposed Geometry with
UCA and ULA Geometries Based on a Larger Number of Wideband Sources

In the previous Sections 4.2.1–4.2.6, we used one and two wideband sources with
different frequencies and bandwidth scenarios. In the literature, using a larger number
of array elements provides high DOA estimation accuracy. According to the proposed
geometry, we only have ten array elements. Also, the MUSIC algorithm can only estimate a
smaller number of sources than the number of array elements. Due to these notes, we used
four wideband sources with different frequencies and zero bandwidths (pulse signals) in
this simulation.

The DOA estimation performance comparison for four wideband sources is presented
using the simulation parameters given in Tables 1, 3, and 7. The DOA estimation perfor-
mance comparison simulation results of this scenario are shown in Figure 11. Constantly,
the red circles represent the true DOAs from −54◦, −18◦, 18◦, and 54◦ azimuth DOA,
respectively. The blue line, purple line, and green line represent the DOAs estimated
by the MUSIC algorithm based on the ULA, UCA, and proposed geometry, respectively.
Using the simulation parameters given in Tables 1, 3, and 7, and the four wideband signal
sources with different frequencies and zero bandwidths (pulse signals), i.e., −54◦, −18◦,
18◦, and 54◦ DOA azimuth, with elevation kept at 90◦, the DOAs estimated by the MUSIC
algorithm based on the proposed geometry are located at the correct DOAs appearing at
−54◦, −18◦, 18◦, and 54◦ DOA azimuth, respectively, as shown in Figure 11. This indicates
that the MUSIC algorithm, based on the proposed geometry, estimated the DOAs of the
four wideband sources effectively.

From the same Figure 11, we see that the MUSIC algorithm based on UCA geometry
estimated only one DOA peak for the four wideband sources at the correct DOA azimuth of
the fourth source, appearing at 54◦ DOA azimuth, and failed to estimate the correct DOAs
of the other three wideband sources. Also, based on ULA geometry, the MUSIC algorithm
failed to estimate the correct DOAs of the four wideband sources by estimating seven DOA
peaks, and only one of these peaks is estimated at the correct DOA azimuth of the fourth
source, appearing at 54◦ DOA azimuth. The other six DOA peaks for the three wideband
sources were estimated at random DOA azimuth, approximately appearing at −75◦, −20◦,
−15◦, −11◦, 15◦, and 75◦ DOA azimuth, respectively.

Referring to Figure 11, we can note that the simulation results explain the power
of the MUSIC algorithm based on the proposed geometry to estimate the DOAs of four
wideband signals, with each of them coming from opposite directions, whereas this is
unobtainable when using ULA and UCA geometries. In this part, the element spacing, the
smallest interelement, and the largest spacing have the same values as in Section 4.2.3. This
simulation shows the strength of the proposed geometry.
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Figure 11. The DOA estimation performance comparison based on the proposed geometry, UCA,
and ULA geometries under the MUSIC algorithm using four wideband sources without frequency
overlapping.

4.2.8. The 1-DOA Estimation Performance Comparison of the Proposed Geometry with
UCA and ULA Geometries Based on a Larger Number of Wideband Sources with
Frequency Overlapping

In this section, we use the same four wideband sources with their actual azimuth DOAs
that were used in Section 4.2.7. Here, we only changed their corresponding wideband
signals, such that we used frequency overlapping between them with the same center
frequency and different bandwidths. The DOA estimation performance comparison is
examined using the simulation parameters given in Tables 1, 7, and 8. The DOA estimation
performance comparison simulation results of this part are shown in Figure 12.

Figure 12. The DOA estimation performance comparison based on the proposed geometry, UCA,
and ULA geometries under the MUSIC algorithm using four wideband sources with frequency
overlapping.

Indelibly, the red circles represent the true DOAs from −54◦, −18◦, 18◦, and 54◦

azimuth DOA, respectively. The blue line, purple line, and green line represent the DOAs
estimated by the MUSIC algorithm based on the ULA, UCA, and proposed geometry,
respectively. According to the simulation parameters given in Tables 1, 7, and 8, and the
four frequency overlapping wideband sources with the same frequencies and different
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bandwidths, i.e., −54◦, −18◦, 18◦, and 54◦ DOA azimuth, with elevation kept at 90◦, the
MUSIC algorithm based on the proposed geometry estimated the DOAs that are located
at the correct DOAs of the four wideband sources appearing at −54◦, −18◦, 18◦, and 54◦

DOA azimuth, respectively, as shown in Figure 12. This implies that the MUSIC algorithm,
based on the proposed geometry, estimated the DOAs of the four wideband sources.

From the same Figure 12, we see that the MUSIC algorithm based on UCA geometry
failed to estimate the correct DOAs of the four wideband sources by estimating four false
wide and short DOA azimuth peaks approximately appearing at −85◦, −60◦, 23◦, and 50◦

DOA azimuth, respectively. Likewise, the MUSIC algorithm based on ULA geometry failed
to estimate the correct DOAs of the four wideband sources by estimating false five DOA
azimuth peaks approximately appearing at −56◦, −24◦, 0◦, 25◦, and 60◦ DOA azimuth,
respectively.

As we can see from Figure 12, the MUSIC algorithm, based on the proposed geom-
etry, fully estimated the correct DOAs of the four wideband sources under frequency
overlapping and contrary direction conditions of the wideband signals using a suitable
sensor configuration. In this case, the element spacing between the five elements (A, B,
C, D, and E) at the outer vertices of the pentagram array is decreased to 1.099λ instead
of 2.508λ in Section 4.2.6, 2.249λ in Section 4.2.5, 2.520λ in Section 4.2.2, and 2.523λ in
Sections 4.2.3 and 4.2.7. The smallest interelement spacing (Y) in this case equals 0.025 m
(Y = 0.618X = 0.618 × 1.099 × 0.0375 = 0.025 m) and the largest spacing equals 0.107 m
(dC = 2X + Y = 2 × 1.099 × 0.0375 + 0.025 = 0.107 m), which can be realizable in design
considerations.

The simulation shows that the MUSIC algorithm, based on the proposed geometry,
estimated the DOAs of the four wideband sources with two redundant peaks with less
amplitude at the two ends of the normalized spectrum, which can be minimized using
other DOA estimation algorithms as discussed in Section 4.2.9.

This simulation also reflects the validity and outstanding nature of the proposed
geometry of a larger number of wideband sources with frequency-overlapping signals.

4.2.9. The 1-DOA Estimation Performance Comparison of Different DOA Algorithms
Based on the Proposed Geometry

In this section, the performance of the proposed geometry under different DOA algo-
rithms is introduced. The performance is analyzed by applying the two DOA algorithms
(CAPON and SSS) to Sections 4.2.6, 4.2.7, and 4.2.8, respectively. Then their performance is
compared with that of the MUSIC algorithm in these same sections.

The simulation parameters are the same as those used in these three sections for the
three DOA algorithms. The SSS algorithm has another parameter named scalar value,
whose value is listed in Table 9.

The results of the 1-DOA estimation performance comparison of the CAPON and SSS
algorithms with the MUSIC algorithm as in Section 4.2.6 are shown in Figure 13a–c. The
red circles represent the true DOAs from 18◦ and 54◦ azimuth DOA, with elevation kept at
90◦. The black line, green line, and blue line represent the DOAs estimated by the MUSIC,
CAPON, and SSS algorithms, respectively, based on the proposed geometry.

In this DOA performance comparison, for the two wideband sources with frequency
overlapping and other setting considerations in Section 4.2.6, i.e., 18◦ and 54◦ DOA azimuth,
with elevation kept at 90◦, the DOAs estimated by all three different DOA algorithms based
on the proposed geometry are located at the correct DOAs appearing at 18◦ and 54◦ DOA
azimuth, respectively, as shown in Figure 13a–c.

Also, the results of the 1-DOA estimation performance comparison of the CAPON and
SSS algorithms with the MUSIC algorithm as in Section 4.2.7 are shown in Figure 14a–c.
Usually, the red circles represent the true DOAs from −54◦, −18◦, 18◦, and 54◦ azimuth
DOA, with elevation kept at 90◦. Again, the black line, green line, and blue line represent
the DOAs estimated by the MUSIC, CAPON, and SSS algorithms, respectively, based on
the proposed geometry.
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Figure 13. (a–c) The performance comparison of different DOA algorithms based on the proposed
geometry using two wideband sources with different bandwidths and frequency overlapping.

Figure 14. (a–c) The performance comparison of different DOA algorithms based on the proposed
geometry using four wideband sources with different frequencies without overlapping.

143



Remote Sens. 2024, 16, 535

In this DOA performance comparison, for the four wideband sources with different
frequencies without overlapping and other setting considerations applied in Section 4.2.7,
i.e.,−54◦,−18◦, 18◦, and 54◦ DOA azimuth, with elevation kept at 90◦, the DOAs estimated
by all three different DOA algorithms based on the proposed geometry are located at the
correct DOAs appearing at −54◦, −18◦, 18◦, and 54◦ DOA azimuth, respectively, as shown
in Figure 14a–c.

Finally, the outcomes of the 1-DOA estimation performance comparison of the CAPON
and SSS algorithms with the MUSIC algorithm as in Section 4.2.8 are shown in Figure 15a–c.
Generally, the red circles represent the true DOAs from −54◦, −18◦, 18◦, and 54◦ azimuth
DOA, with elevation kept at 90◦. Commonly, the black line, green line, and blue line
represent the DOAs estimated by the MUSIC, CAPON, and SSS algorithms, respectively,
based on the proposed geometry.

Figure 15. (a–c) The performance comparison of different DOA algorithms based on the proposed
geometry using four wideband sources with same frequency with overlapping.

In this DOA performance comparison scenario, for the four wideband sources with the
same frequencies with overlapping and other setting considerations used in Section 4.2.8,
i.e.,−54◦,−18◦, 18◦, and 54◦ DOA azimuth, with elevation kept at 90◦, the DOAs estimated
by all three different DOA algorithms based on the proposed geometry are located at the
correct DOAs appearing at −54◦, −18◦, 18◦, and 54◦ DOA azimuth, respectively, as shown
in Figure 15a–c.

As we can see from Figures 13a–c–15a–c, all three DOA algorithms fairly estimated
the correct DOAs under different sensor configurations of the proposed geometry. Thus,
we state that these sensor configurations, which were created by different perfect element
spacing for the proposed geometry, generated manifold matrices in which their signal and
noise subspaces have easy separation.
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As we mentioned before, the motivation behind choosing appropriate element spacing
for the proposed geometry is to achieve an array configuration that works well for DOA es-
timation algorithms for wideband sources. These simulation results show that the proposed
geometry generates a developed covariance matrix, which allows the aforementioned DOA
estimation techniques to be applied directly to wideband signals.

Also, it is clear from Figures 13c and 15c that the DOA estimation performance of the
proposed geometry under the SSS algorithm is better than that of the other two algorithms
by minimizing the redundant peaks in cases of increasing the bandwidth or frequency
overlapping of the incident wideband signals. This is because SSS uses signal subspace to
construct its spatial spectrum instead of noise subspace and minimizes the side-lobe levels
by subtracting its normal pseudo-spectrum from unity and using a small scalar value to
avoid possible singularities.

The proposed geometry exploits its differentiated property for sensor configurations
to formulate an array manifold matrix that has sufficient rank covariance to obey the RIP
condition and make the separation of signal and noise subspaces easy even for different
wideband signal scenarios. In other words, the proposed geometry solved the problems of
manifold matrix ambiguity and avoiding grating lobes when the element spacing exceeds
0.5λ using gathering or superposition techniques on triangular geometries.

It is worth noting from these simulation results that the proposed geometry is valid
for achieving accurate results of DOA estimation using different DOA algorithms and
wideband signals, avoiding additional or preprocessing requirements for taking the whole
wideband frequency information.

All previous investigated simulation scenarios showed that our proposed pentagram
geometry has perfect performance with a small number of sensors and various sensor
configurations.

5. Discussion

After we carried out and completed the study of the investigated simulations in
Section 4.2, and for practical considerations, we had many findings that are summarized in
the below discussion:

From Section 4.2.1, the proposed geometry used a large interelement spacing (dX = 3.084λ)
to form element configuration and maximized antenna aperture for dealing with a single
wideband pulse signal coming from a single direction.

Referring to Sections 4.2.2, 4.2.3, and 4.2.7, when the number of wideband sources
increased without changing their frequencies, the proposed geometry decreased its interele-
ment spacing (dX = 2.520λ and dX = 2.523λ) to form element configuration and minimized
antenna aperture for dealing with a large number of wideband sources regardless of their
incoming directions or separations.

According to Sections 4.2.5 and 4.2.6, when the bandwidths of wideband signals
increased regardless of their overlapping frequencies, the proposed geometry decreased
its interelement spacing (dX = 2.249λ and dX = 2.503λ) to form element configuration and
minimized antenna aperture for dealing with the increasing bandwidths of the wideband
signals.

From Sections 4.2.7 and 4.2.8, when the bandwidths of wideband signals increased
with overlapping frequencies, the proposed geometry decreased its interelement spacing
(dX = 1.099λ) to form element configuration and minimized antenna aperture for dealing
with the increasing bandwidths of the wideband signals and overlapping frequencies
existing in these bandwidths.

According to these results, we make some comments and guidelines on the DOA
performance of the proposed geometry as follow:

• The proposed geometry used a fixed number of elements and variable element spacing
to form various element configurations.
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• These element configurations are selected and determined in accordance with the
characteristics of the incident wideband signals and sources (from previous results,
when bandwidth increases, element spacing decreases).

• Every element configuration is related to a specific antenna aperture and generates a
particular manifold matrix.

• This particular manifold matrix has independent columns and satisfies the RIP condition.
• The covariance matrix for the incident wideband sources is obtained using this mani-

fold matrix.
• Finally, the subspaces of this covariance matrix or its inversion are used to obtain

unambiguous DOAs of the incident wideband sources by directly applying different
DOA algorithms.

6. Conclusions and Future Works

In this study, a novel pentagram antenna array geometry was proposed based on
triangular geometry as its main contribution. The geometry was constructed using the
gathering and superposition of three isosceles triangles. Its geometry and mathematical
model were analyzed. It has a fixed number of elements (10 sensors) with variable element
spacing and could be classified as a FNEVES array geometry. The aperture was designed
and can be minimized or maximized according to the setting of the element spacing, which
offers a creative approach to array design using a fixed number of sensors to build an
array with many various apertures. The main motivation of this geometry is the setting
of element spacing to obtain an array manifold matrix that satisfies the RIP condition to
avoid the manifold matrix ambiguity problem. This motivation offers benefits related
to the degrees of freedom for creating a perfect array covariance matrix, which allows
DOA estimation algorithms to be applied directly to wideband signals without needing
additional signal preprocessing or separation techniques. The array geometry can be
applied to both narrowband and wideband sources, as well as to both elevation and
azimuth DOA estimation.

In this paper, we only investigated the performance of the proposed geometry for the
DOA of wideband signals to estimate the azimuth angle (φK) using the MUSIC algorithm.
A large number of simulation experiments and analyses were conducted under different
wideband signal scenarios based on frequencies and bandwidths. Its performance showed
better results when compared with those of the UCA and ULA geometries. For further
verification, its performance was also examined using the SSS and CAPON algorithms,
which provided considerable results. In addition, the SSS method had better results
compared to the MUSIC and CAPON methods.

The simulation presented DOA results with good accuracy and showed that the novel
geometry is wellsuited for wideband sources and DOA algorithms (the classic scenario).
As a consequence, the geometry effectively solved the DOA manifold ambiguity problem
for wideband sources by avoiding the grating lobes using gathering and superposition
techniques for triangular geometries. It is important to mention here that the duality
between the time-domain and frequency-domain was exploited by using the array output
signal in the frequency-domain X(f) instead of its representation in the time-domain X(t) in
the computation of the array covariance matrix and eigenvalue decomposition.

From a cost perspective, our geometry exploits the properties of a fixed (few) number
of elements and variable element spacing to outperform its counterparts (UCA and ULA).

Our future work will be extended to study the performance of the array geometry in
the following cases: DOA estimation of both azimuth angle (φK) and elevation angle (θK),
DOA estimation of narrowband signals (sources), DOA estimation of wideband coherent
signals (sources), DOA estimation of (narrowband and wideband) compressive sensing
scenarios, real demonstration and experimental setup, and application of the other DOA
estimation state-of-the-art algorithms.
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Abstract: With the growing scarcity of spectrum resources, wideband spectrum sensing is necessary
to process a large volume of data at a high sampling rate. For some applications, only second-order
statistics are required for spectrum estimation. In this case, a fast power spectrum sensing solution is
proposed based on the generalized coprime sampling. The solution involves the inherent structure of
the sensing vector to reconstruct the autocorrelation sequence of inputs from sub-Nyquist samples,
which requires only parallel Fourier transform and simple multiplication operations. Thus, it takes
less time than the state-of-the-art methods while maintaining the same performance, and it achieves
higher performance than the existing methods within the same execution time without the need to
pre-estimate the number of inputs. Furthermore, the influence of the model mismatch has only a
minor impact on the estimation performance, allowing for more efficient use of the spectrum resource
in a distributed swarm scenario. Simulation results demonstrate the low complexity in sampling
and computation, thus making it a more practical solution for real-time and distributed wideband
spectrum sensing applications.

Keywords: genralized coprime sampling; power spectrum sensing; non-sparsity; blind sensing;
cyclostationary

1. Introduction

The demand for spectrum resources is increasing due to the rapid development of
low-orbit satellite constellation systems (e.g., SpaceX, OneWeb), 5G/6G networks, and the
Internet of Things (IoT) [1,2]. These applications are driving an unprecedented increase
in demand for wideband spectrum sensing. Correspondingly, direct sampling requires a
high-speed analog-to-digital converter (ADC) [3] based on the Shannon–Nyquist sampling
theorem, increasing data volume and energy consumption.

Currently, the most widely used methods are sweep-tune sampling and filter band
sampling. Both of these methods fall under the category of low-speed sampling. However,
the scanning scheme has a detection latency and may miss short-lived signals [4]. In
addition, the filter band scheme has a complicated structure and is prone to serious channel
crosstalk [5]. Consequently, there has been a trend towards using wideband spectrum
sensing as a guide.

The recent compressive sensing (CS) theory provides a sub-sampling scheme that of-
fers low-speed and large instantaneous bandwidth by utilizing the sparsity in the frequency
domain [6,7]. The typical CS schemes include the analog-to-information converter (AIC),
multi-coset sampling (MCS), and multi-rate sampling (MRS). The typical AIC architecture
is the modulated wideband converter (MWC), which presents significant challenges for the
implementation of the Nyquist-rate pre-randomizing [8]. The MCS architecture is currently
a preferred scheme for the ADC with high-speed and high-precision, which cannot obtain
a high significant bit because of the mismatching between multiple channels [9]. The MRS
architecture is currently a preferred scheme for the sparse array signal acquisition, whose
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performance is limited by time synchronization accuracy [10]. Obviously, the engineering
implementation of these schemes presents major difficulty, which restricts their applica-
tions. Furthermore, the CS-based methods [3,11] for sparse signal recovery have high
computational complexity and are extremely sensitive to model matching and noise, which
mainly include greedy methods, convex methods, and others. Therefore, reducing the
dependence of signal processing algorithms on model mismatches between the digital and
the analog world is an interesting research idea.

To overcome these difficulties, the approach to spectrum estimation has shifted from
processing the original signal to analyzing its second-order statistics. In this context, the
compressive covariance sensing (CCS) theory provides a wideband spectrum sensing
scheme that operates at a low-speed and has a large instantaneous bandwidth. It is reliable
even in environments with a low signal-to-noise ratio (SNR) and in non-sparse conditions.
Generally, according to the methods of computation, the CCS-based wideband power
spectrum sensing can be divided into the time-domain approach [12] and the frequency-
domain approach [13]. The time-domain approach establishes a relationship between
the original inputs and the output samples through the selection matrix with zero and
one elements under the equivalent Nyquist-rate sampling. As well as this, the frequency-
domain approach builds the relationship between both frequency representations of them.
However, these studies mainly focus on the MWC and MCS schemes.

For the MRS scheme, the existing CCS-based methods include entropy function mini-
mization [14], matrix norm minimization [15], and Toeplitz matrix completion [16], among
others. However, all these methods are based on the reconstruction of the covariance matrix
and the use of multiple signal classification (MUSIC) algorithm, which have high computa-
tional complexity and require pre-estimation of the number of signals. Additionally, they
are also sensitive to model matching.

Furthermore, a computationally efficient method is developed, which is based on
the relationship between the autocorrelation sequence and sub-sampling samples of the
MCS scheme [17]. Building on this, a fast solution for generalized coprime sampling is
introduced, which utilizes only parallel FFT and multiplication operations. As a result, it
achieves a reduced time and low estimation error, presenting a trade-off between system
performance and the number of degrees of freedom (DOFs). Moreover, model mismatch
has minimal effect on performance, making a more practical solution for real-time and
distributed wideband spectrum sensing applications.

The rest of this paper is organized as follows: Section 2 describes the signal model
and the proposed fast power spectrum sensing solution. Section 3 conducts an analysis
and validation of the proposed solution through simulation. The discussion is presented in
Section 4.

Notations: The bold characters denote vectors. The notations R, N, and N+ represent
the set of real numbers, nonnegative integers, and positive integers, respectively. The
superscripts (·)T and (·)H indicate the transpose and conjugate transpose of a vector or
a matrix, respectively. The operator ◦ signifies the Hadamard product, | · |2 signifies the
element-wise square modulus of a vector, and ceil(·) signifies round up to an integer. The
symbols Fa and F−1

a mean the a-point fast Fourier transofrm (FFT) and the inverse fast
Fourier transofrm (IFFT), respectively.

2. Materials and Methods

2.1. Signal Model

The generalized coprime sampling architecture comprises two uniform sub-Nyquist
sampling channels, whose sampling periods are coprime multiples of the Nyquist sampling
period. The introduction of two additional operations, the multiple coprime unit factor
p ∈ N+ and the non-overlapping factor q ∈ N+, enhances the number of DOFs and
improves the estimation accuracy. Consequently, the coprime sampling scheme is presented
with sampling intervals r0Ts and r1Ts, as depicted in Figure 1. Without loss of generality, it
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is assumed that r0 < r1 with r0, r1 ∈ N+, where r0 and r1 are coprime. Additionally, the
sampling interval Ts corresponds to the Nyquist sampling rate fs.

Figure 1. Coprime sampling scheme.

For a wide-sense stationary or cyclostationary process X(t), t ∈ R, it consists of a
number of frequencies that are confined within the bandwidth Bs ≤ fs/2. The outputs of
two uniform sub-Nyquist sampling channels can be expressed as

y0[n0] = x[r0n0] = X(r0n0Ts), n0 ∈ N

y1[n1] = x[r1n1] = X(r1n1Ts), n1 ∈ N
(1)

where x[n], n ∈ N denotes the Nyquist sampling samples, and the highest sampling rate of
the coprime sampling system is given by 1/(r0Ts) = fs/r0.

Accordingly, the elements of the sensing vector corresponding to the two coprime
samplers can be denoted as

a0[i] =
{

1, i = r0l0 + kr0r1
0, elsewhere

(2)

and

a1[i] =
{

1, i = r1l1 + (k + q)r0r1
0, elsewhere

(3)

where l0 = 0, 1, . . . , r1 − 1, l1 = 0, 1, . . . , r0 − 1, and k = 0, 1, . . . , p− 1.
From a data acquisition perspective, the output samples obtained from the generalized

coprime sampling scheme are a subset of the Nyquist samples, positioned at

P = {r0l0 + kr0r1} ∪ {r1l1 + (k + q)r0r1} (4)

Based on the sensing vectors, the relationship between the elements of the generalized
coprime sampling vector and the Nyquist sampling vector can be expressed as

y[n] =
{

x[n], n ∈ P

0, elsewhere
(5)

and the elements of the associated sensing vector are defined as

a[n] =
{

1, n ∈ P

0, elsewhere
(6)

As a result, there is
y[n] = a[n] ◦ x[n] (7)

where x[n] =
[
x[0], x[1], . . . , x[N − 1]

]T , a[n] =
[
a[0], a[1], . . . , a[N − 1]

]T , and y[n] =[
y[0], y[1], . . . , y[N − 1]

]T are all vectors of size N × 1.
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2.2. Proposed Fast Solution

Considering the widely-used unbiased estimation of the autocorrelation sequence for
the output of generalized coprime sampling, the elements ry[m] can be expressed as

ry[m] =
1
N
· y[n]yH [n−m] (8)

Substituting Equation (7) into Equation (8) results in

ry[m] =
1
N
· (a[n] ◦ x[n])(aH [n−m] ◦ xH [n−m])

=
1
N
·
(
(a[n]aH [n−m]) ◦ (x[n]xH [n−m])

)
= ra[m] ◦ rx[m]

(9)

where |m| ≤ N − 1. Thus, the power spectrum can be obtained by performing FFT on
the autocorrelation sequence {rx[m]}, which is derived from the autocorrelation sequence
{ry[m]} and {ra[m]}. Therefore, a computationally efficient practical solution is employed
to obtain the estimation of the autocorrelation sequences. The steps are as follows:

Step 1: Pad vectors a[n] and y[n] with an additional N zeros.

a2N [n] =
{

aN [n], 0 ≤ n ≤ N − 1
0, N ≤ n ≤ 2N − 1

(10)

and

y2N [n] =
{

yN [n], 0 ≤ n ≤ N − 1
0, N ≤ n ≤ 2N − 1

(11)

Step 2: Calculate the autocorrelation sequence based on the power spectrum estimation
of vector a2N [n] =

[
a[0], a[1], . . . , a[2N − 1]

]T and y2N [n] =
[
y[0], y[1], . . . , y[2N − 1]

]T by
involving FFT and IFFT.

r̂′a[k] = F−1
2N |F2Na2N |2/N (12)

and
r̂′y[k] = F−1

2N |F2Ny2N |2/N (13)

where k = 0, 1, . . . , 2N − 1.
Step 3: Truncate the autocorrelation sequence of interest according to the frequency

resolution of the system Δ f .

r̂y[m] =

{
r̂′y[m], 0 ≤ m ≤ M− 1
r̂′y[m + 2N], −M + 1 ≤ m ≤ −1

(14)

and

r̂a[m] =

{
r̂′a[m], 0 ≤ m ≤ M− 1
r̂′a[m + 2N], −M + 1 ≤ m ≤ −1

(15)

where M = ceil( f s/2/Δ f ) + 1.
Step 4: Compute the autocorrelation sequence of the inputs using the obtained se-

quences {r̂y[m]} and {r̂a[m]}.
r̂x[m] = r̂y[m]/r̂a[m] (16)

where m = −M + 1, . . . ,−1, 0, 1, . . . , M− 1.

Step 5: Obtain the power spectrum estimation by taking the FFT of the vector
r̂x[m] =

[
r̂x[−M + 1], . . . , r̂x[1], r̂x[0], r̂x[1], . . . , r̂x[M− 1]

]T .

Ŝx(ω) = |F2M−1 r̂x[m]| (17)
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The block diagram that illustrates the fast power spectrum sensing solution for gener-
alized coprime sampling is depicted in Figure 2. The proposed solution is efficient because
it only involves FFT/IFFT operations and some basic multiplication operations. Moreover,
as shown in the red section of Figure 2, the autocorrelation sequence {r̂a[m]} of the sensing
vector can be pre-calculated offline. This calculation solely depends on the generalized
coprime sampling scheme.

Consequently, the computational complexity of the proposed solution involves per-
forming the FFT on a (2N)-point sequence twice, resulting in (2N)log(2N) floating-point
operations according to (13). In addition, the FFT is performed on a (2M− 1)-point se-
quence once, leading to (2M− 1)log(2M− 1) floating-point operations according to (17).
After incorporating 2M− 1 multiplication calculations, the total computational complexity
requires (4N)log(2N) + (2M− 1)log(2M− 1) + (2M− 1) floating-point operations. This
leads to a lower computational complexity compared to the state-of-the-art methods. Mean-
while, it is feasible to effectively compute the FFT operations in parallel, making it a more
suitable practical solution for real-time wideband power spectrum sensing applications.

As researched in the state-of-art, there is an example of wideband spectrum sensing
based on the MWC architecture with a 1 GHz bandwidth, which requires a spectrum reso-
lution of 10 kHz. The time-domain approach involves at least 1014 floating-point operations
in total, assuming that the number of sampling branches is set to 8, the downsampling
factor sets to 25, then the number of output samples need to be 4000, and the number of
samples used to calculate the correlation matrix is set to 100. Moreover, the more efficient
time-domain approach has the same computational complexity as the frequency-domain
approach, which involves more than 107 floating-point operations in total under the same
assumption. Additionally, regarding the MCS schemes, 1.08× 107 floating-point opera-
tions are needed. In comparison, the proposed method involves 8.805× 106 floating-point
operations in total.

Figure 2. Block diagram of the proposed fast power spectrum sensing solution.
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3. Results

In the experiments, it is assumed that there are I inputs with identical powers, which
are distributed in the frequency band [2, 18] GHz. Subsequently, the coprime integers
r0 = 3, r1 = 4 and the Nyquist sampling rate fs = 32 GHz are set. Furthermore, the relative
root mean square error (RMSE) is adopted to evaluate the performance of the proposed
fast power spectrum sensing method, which is defined as follows:

Relative RMSE( fi) =
1
fs

√√√√ 1
500I

500

∑
j=1

I

∑
i=1

( f̂i(j)− fi)2 (18)

where f̂i(j) is the estimation of fi from the jth Monte Carlo trial, and five hundred Monte
Carlo trials are conducted.

3.1. Estimated Power Spectrum Performance

Herein, the estimated power spectrum results are initially displayed, with p = 3000
and an input SNR of 15 dB. As shown in Figure 3, there are I = 50 mono-frequency
pulse (MP) signals, which are randomly distributed. Figure 4 depicts I = 20 binary phase
shift keying (BPSK) signals for 1 M symbols per second with random frequency and code.
Figure 5 presents I = 2 linear frequency modulation (LFM) signals with 10 GHz bandwidth
under ±6 GHz initial frequencies. Figure 6 shows I = 21 mixture signals of three types. As
can be observed, all frequencies are estimated accurately with the proposed method.

Furthermore, there are multiple LFM signals that share the same carrier frequency but
have different quadratic modulation coefficients. The frequency and bandwidth of these
signals are randomly selected. Compared with Figure 7, the power spectrum estimation
shows an increase in the number of pseudo-spectra as more signals are aliased, and as the
number of aliased signals increases, as shown in Figure 8 and Figure 9, respectively.

Figure 3. Estimated power spectrum of MP signals (I = 50, SNR = 15 dB).
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Figure 4. Estimated power spectrum of BPSK signals (I = 20, SNR = 15 dB).

Figure 5. Estimated power spectrum of LFM signals (I = 2, SNR = 15 dB).

Figure 6. Estimated power spectrum of mixed signals (I = 21, SNR = 15 dB).
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Figure 7. Estimated power spectrum of LFM signals with the same carrier frequency (I = 2,
SNR = 15 dB).

Figure 8. Estimated power spectrum of LFM signals with the same carrier frequency (I = 2,
SNR = 15 dB).

Figure 9. Estimated power spectrum of LFM signals with the same carrier frequency (I = 3,
SNR = 15 dB).
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3.2. Relative RMSE Performance

As depicted in Figure 10, the RMSE results are compared as a function of the input
SNR, where I = 18 MP signals are utilized and the frequency is randomly selected. It is
observed that the RMSE tends to stabilize when SNR is greater than −2 dB for p = 300.
Under the same conditions, the original method exhibits better performance at a low
SNR by utilizing the Toeplitz matrix completion. Meanwhile, the estimation performance
improves as p increases, due to the fact that the DOF increases with p, leading to improved
resolution. Clearly, the performance of the MCS scheme is the worst with the same number
of samples as p = 3000, which is due to the probability of signal loss during the process
of power spectrum estimation. As expected, Figure 11 presents the same result. However,
the selection of coprime sampling rate makes less of a difference to performance when p is
greater than 1000. This is because the system redundancy under simulation is sufficient.

Figure 10. Relative RMSE versus SNR (I = 18).

Figure 11. Relative RMSE versus p (I = 18, SNR = 0 dB).

3.3. Execution Time Performance

Furthermore, the multiple coprime unit factor p not only affects the resolution, but
also determines the execution time of algorithms. Consequently, the execution time results,
as a function of p, are compared as illustrated in Figure 12, where I = 10 MP signals are
utilized and the frequency is randomly selected at 0dB SNR. The computing environment
is based on Windows 11, equipped with an AMD Ryzen 5 3500U processor, Radeon
Vega Mobile Gfx at 2.10 GHz, and 20.0 GB of RAM from Lenovo in Beijing, China. It is
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evident that the execution time of the proposed method has significant advantages over
the matrix completion method. Analogous to Figure 13, the proposed method surpasses
the matrix completion method under identical execution time. Additionally, the proposed
method requires less time than the matrix completion method under the same performance.
However, both methods depend on a larger number of samples. Therefore, a tradeoff exists
between execution time and system performance.

Figure 12. Execution time versus p (I = 10, SNR = 0 dB).

Figure 13. Execution time versus relative RMSE under the same number of samples (I = 18,
SNR = 5 dB).

3.4. Model Mismatching Performance

Finally, the influence of the model matching degree between the sensing vector and
measurements on the performance is discussed in Figure 14 with the 5 dB SNR. Here,
I = 18 frequencies are randomly selected for MP signals, and different time delays are used,
which are unknown to the sensing vector. As a result, the influence of the model mismatch
causes minimal fluctuation in RMSE within 200 μs. This is interesting, as it suggests that the
fact potentially enables more efficient utilization of the spectrum resource in a distributed
swarm scenario.
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Figure 14. Relative RMSE versus model matching (I = 18, SNR = 5 dB).

4. Discussion

A fast power spectrum sensing solution for generalized coprime sampling is proposed
that only uses the parallel FFT and simple multiplication operations. It has obvious advan-
tages over existing methods in terms of spectrum estimation performance and execution
time. Moreover, there is no need to pre-estimate the number of inputs. Furthermore,
the influence of the model mismatch has minimal impact on the spectrum estimation
performance. That makes it more suitable for further discussion on its application in the
distributed swarm scenario.
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Abstract: In this paper, a lightweight deep neural network (DNN) for direction of arrival (DOA)
estimation is proposed, of which the input vector is designed to remove data redundancy as well as
remaining DOA information. By exploring the Vandermonde property of the steering vector of a uni-
form linear array (ULA), the size of the newly designed input vector is greatly reduced. Furthermore,
the DOA estimation is designed as a regression problem instead of a classification problem; that is,
the lightweight DNN designs the output vector as the estimated DOAs of sources, of which the size
is much shorter than that of the spatial spectrum used as the output vector in the conventional DNN.
The reductions in the sizes of input and output vectors lead to a reduction in the sizes of hidden layers,
achieving lightweightness of the neural network. The analysis illustrates that when the number of
sensors is 22, the number of parameters in the lightweight DNN is three orders of magnitude less
than that in the conventional DNN. The simulation results demonstrate the lightweight DNN can
provide high DOA estimation accuracy with the shortest testing time. It performs better than the
conventional DNN. Furthermore, it is superior to traditional solutions such as the multiple signal
classification (MUSIC) method and conventional beamforming (CBF) method in harsh conditions
like low signal-to-noise ratios (SNRs), closely spaced sources, and few snapshots.

Keywords: DOA estimation; lightweight deep neural network; data redundancy; deep learning;
regression

1. Introduction

Direction of arrival (DOA) estimation is a widely studied topic in the signal processing
area, which performs a key role in wireless communications, astronomical observation,
and radar applications [1–5]. The conventional beamforming (CBF) method is a classical
solution for DOA estimation. However, it suffers from Rayleigh limit. Subsequently, many
traditional methods were proposed to meet the accuracy requirement and high resolution
of DOA estimation, such as the minimum variance distortionless response (MVDR) beam-
former (also referred to as the Capon beamformer) [6], multiple signal classification method
(MUSIC) algorithm [7], estimation of signal parameters using rotational invariance tech-
niques (ESPRIT) algorithm [8] and their variants [9–13]. However, the above-mentioned
traditional methods require operations such as singular value decomposition and/or the
inversion on the array covariance matrix of the received signal and/or spatial spectrum
searching. As a result, their computational complexity is high, which makes it difficult
for them to meet real-time requirements. Moreover, most of them have large estimation
errors under harsh scenarios such as when the DOAs of source signals have small angular
intervals or the signal-noise ratio (SNR) is low. To overcome the drawbacks of the tradi-
tional solutions, many studies use machine learning methods to solve the problem of DOA
estimation, these methods first establish a training dataset with DOA labels, and then utilize
existing machine learning techniques such as radial basis function (RBF) [14] and support
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vector regression (SVR) [15] to apply the derived mapping to the test data for DOA esti-
mation. These methods require significant effort to learn the mapping during the training
stage. However, once the mapping is learned and fixed after the training stage, they directly
apply the mapping to process the testing data without labels to obtain DOA estimates. It is
noted that the mapping only involves calculations of additions and multiplications, which
avoids matrix inverse, decomposition, and spectrum searching. Thus, in the testing stage,
they acquire higher computational efficiency compared to traditional methods [16], but
they heavily rely on the generalization characteristics of machine learning technology. That
is, only when the training data and test data have almost the same distribution, satisfactory
test results can be obtained.

In recent years, DOA estimation based on deep learning methods has gained great
attention due to its high accuracy and high computational efficiency during the testing
phase. In 2015, a single-layer neural network model based on classification was designed
to implement DOA estimation [17]. Since then, more and more improved neural networks
aiming at solving DOA estimation have been proposed. In 2018, a deep neural network
(DNN) was proposed, which contains a multitask auto-encoder and a set of parallel multi-
layer classifiers, with the covariance vector of the array output as an input to the DNN, the
auto-encoder decomposes the input vectors into sub-regions of space, then the classifiers
output the spatial spectrum for DOA estimation [18]. In 2019, a deep convolutional neural
network (CNN) was developed for DOA estimation by mapping the initial sparse spatial
spectrum obtained from the covariance matrix to the true sparse spatial spectrum [19].
In 2020, a DeepMUSIC method was proposed for DOA estimation, by using multiple
CNNs each of which is dedicated to learning the MUltiple SIgnal Classification (MUSIC)
spectra of an angular sub-region [20]. In 2021, a CNN with 2D filters was developed for
DOA prediction in the low SNR [21], by mapping the 2-D covariance matrix to the spatial
spectrum labeled according to the true DOAs of source signals. In 2023, a DNN framework
for DOA estimation in a uniform circular array was proposed, using transfer learning
and multi-task techniques [22]. The existing results show that deep learning frameworks
provide better performance than traditional methods in harsh conditions such as low SNRs
and small angle intervals between the DOAs of two source signals.

It is noted that all of the above-mentioned DNN-based DOA estimation methods
choose to use the whole array covariance matrix of the received signal or its upper trian-
gular elements or their transformation as the input of the network, which contains lots of
redundant information when the array is uniformly linear. In addition, most of them try to
match DOA estimation with the classification problem and thus use the spatial spectrum
(labeled by the true DOAs of source signals or given by the existing traditional MUSIC
method) as their output vector. Therefore, in the existing DNN-based DOA estimation
approaches, the data redundancy in the input vector and the large size of the output vector
lead to large sizes of hidden layers and make the DNN models complex overall, resulting
in low computational efficiency.

There are a few works [23–25] that use neural networks with regression for DOA
estimation. In [23], the neural network and a particle swarm optimization (PSO) were
combined for DOA estimation, which might be trapped into a minimum solution. In [24], a
DNN with regression was developed to estimate the DOA of a single source signal, without
considering the situation of multiple source signals. In [25], a DNN with regression was
designed for DOA estimation of multiple source signals. However, it does not consider the
data redundancy in a uniform linear array (ULA).

In this paper, we consider a ULA, which is the most generally adopted array geometry
for DOA estimation due to its regular structure and well-developed techniques according
to the Nyquist sampling theorem [26]. By exploring the property of the ULA, a lightweight
DNN is proposed by designing an input vector with data redundancy removal and using
the regression fashion for DOA estimation. The lightweight DNN significantly reduces the
sizes of the input vector, hidden layers, and output vector, which leads to a reduction in the
number of trainable parameters of the neural network and computational load. Meanwhile,
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the proposed lightweight DNN can preserve DOA estimation accuracy and performs better
than the method in [25]. It is noted that by considering that the array signal is different
from the image signal and DOA information is hidden in each element of the input vector
obtained from the covariance matrix of the array signal, we utilize a fully connected deep
neuron network to obtain the mapping from the input vector to the DOAs of source signals.

Throughout this paper, *, T, H, and E represent the conjugate, transpose, conjugate
transpose, and expectation operations, respectively.

2. Background

Assume that K-independent far-field source signals {sk(t)}K
k=1 with a wavelength

λ and DOAs of {θk}K
k=1 impinge on an M-element uniform linear array (ULA) with an

inter-element spacing d. Moreover, it is assumed that the source signals and the array
sensors are on the same plane. The received data of the array can be expressed as

r(t) = As(t) + n(t), (1)

where n(t) is an additive and zero-mean white Gaussian noise vector, A = [a(θ1), ..., a(θK)],
s(t) = [s1(t), ..., sK(t)]T; In particular, a(θk) is an M-dimensional steering vector, which is
defined as

a(θk) = [1, e−j2π
dsinθk

λ , ..., e−j2π
dsinθk

λ (M−1)]T. (2)

The array covariance matrix R can be expressed as

R = E[r(t)rH(t)] = ARsA
H + σ2

nIM, (3)

where Rs = E[s(t)sH(t)], σ2
n is the noise power, and IM is an identity matrix with a size of

M×M. In practice, due to the finite snapshots, the covariance matrix R can be estimated
as

R̂ =
1
N

N

∑
t=1

r(t)rH(t), (4)

where N is the number of snapshots, and •̂ means the approximation of the quantity above
which it appears.

Equation (4) illustrates that R̂ is a conjugate symmetric matrix. Utilizing this feature,
many real-valued deep learning methods use the upper triangular elements as their input
vectors [18,20]. Define the vector composed of the off-diagonal upper triangular elements
of R̂ by z, that is

z = [R̂(1, 2), · · · , R̂(1, M), R̂(2, 3), · · · , R̂(2, M), · · · , R̂(M− 1, M)]T. (5)

It is noted that for a real-valued DNN network, the input vector needs to be real-
valued. Therefore, by concatenating the real and imaginary parts of z, we obtain z̃ below.

z̃ = [Real(zT), Imag(zT)]T/‖z‖2, (6)

where ‖ · · · ‖2 defines L2 norm. Real{•} and Imag{•} represent the real and imaginary
parts of a complex value, respectively.

In [18], a fully connected DNN method with classification was developed for DOA
estimation, and it utilizes the vector z̃ as its input, named as the conventional DNN in this
paper. Note that the input vector z̃ contains data redundancy and costs the computational
load without performance improvement. Moreover, since the conventional DNN is based
on classification fashion, its output is equal to � θmax−θmin

η �, where [θmin, θmax) is the angle-
searching range of the sources, and η is the grid; with �x� is equal to the smallest integer
not smaller than x. Therefore, the size of its output vector is much larger than the number
of DOAs of sources, which further increases the computational load.
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In the following, we analyze the data redundancy in the ULA and design a new input
vector that removes data redundancy and retains DOA information. In a sequence, the
lightweight DNN is proposed by using the newly designed input vector and employing
the regression fashion for DOA estimation.

3. Data Redundancy Removal

3.1. Development of Data Redundancy Removal

In this section, we first prove that the conventional input vector z̃ in Equation (6)
contains data redundancy. Afterwards, we propose a new input vector that removes data
redundancy and retains DOA information.

According to Equations (2) and (3), the array covariance matrix R can be expanded as

R =
K

∑
k=1

a(θk)a
H(θk)σ

2
sk
+ σ2

nIM, (7)

where σ2
sk

is the power of the k−th source signal.
Define the matrix Bk = a(θk)a

H(θk) and its element at m-th row and l-th column as
Bk(m, l). According to Equation (2), we obtain that

Bk(m, l) = eϕk(m−l)σ2
sk

, (8)

where ϕk = −j2π d sin θk
λ . Therefore, by substituting Equation (8) into Equation (7), we have

R(m, l) =
K

∑
k=1

Bk(m, l) + sgn(m, l)σ2
n =

K

∑
k=1

eϕk(m−l)σ2
sk
+ sgn(m, l)σ2

n . (9)

where sgn(m, l) =

{
1 i f m = l

0 i f m �= l
. As a result, from Equation (9), we observe Lemma 1 below.

Lemma 1. When the array is ULA, all the elements along the sub-diagonal, super-diagonal and
diagonal lines of the covariance matrix R are equal.

Lemma 1 can be illustrated in Equation (10) below.

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ρ β v · · · ε

β∗ ρ β
. . .

...

v∗ β∗
. . . . . . v

...
. . . . . . ρ β

ε∗ · · · v∗ β∗ ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(10)

where ρ, β, v, and ε are elements of the covariance matrix R.
As shown in Equation (5), the conventional input vector uses all the upper triangular

elements of the covariance matrix R, which contains duplicate information and leads to
data redundancy according to Lemma 1.

On the other hand, from Equation (9), it is observed that the elements along the
diagonal lines are affected by noise power and source signal power. However, they do not
contain information about DOAs of sources. Thus, they shall not be involved in the input
vector of the DNN model. In addition, by observing Equation (9), we define

z1 = [R̂(1, 2), R̂(1, 3), R̂(1, 4), · · · , R̂(1, M)]T. (11)

By considering the above-mentioned observation, Lemma 1, and the conjugate sym-
metric feature of the covariance matrix R, we obtain that indeed for a real-valued DNN
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model and the expected covariance matrix R, z1 contains all the useful elements relevant to
the DOAs of sources and discards duplicate data in the vector z in Equation (5), leading to
the removal of data redundancy.

It is worth noticing that in practice, due to the limit of the number of snapshots, the
elements along any off-diagonal line of the estimated covariance matrix R̂ are not exactly
equal. On the other hand, as shown in Equation (9), the elements along each super-diagonal
line contain the same information about DOAs. Thus, we propose to take the average of all
the elements along each super-diagonal line of the estimated covariance matrix R̂ to obtain
a new vector without data redundancy, denoted as zsum. Define the i-th element of zsum as
zsum(i), we have

zsum(i) =
1

M− i

M−i

∑
m=1

R̂(m, m + i), i = 1, 2, ..., M− 1. (12)

Therefore, according to Equations (11) and (12), we can construct two vectors (that is,
z̃1 and z̃sum) as shown in Equations (13) and (14).

z̃1 = [Real(zT1), Imag(zT1)]
T/‖z1‖2, (13)

z̃sum = [Real(zTsum), Imag(zTsum)]
T/‖zsum‖2. (14)

It is noted that both z̃1 and z̃sum remove data redundancy and can be used as the
input vector of the DNN network theoretically. However, due to the limit of the number
of snapshots in practice, the lightweight deep neural network (DNN) proposed in the
following does not converge when the vector z̃1 is used as the input vector of the DNN.
Therefore, we choose the vector z̃sum as the input of the proposed DNN in the following,
which ensures convergence. On the other hand, it is noted that the conventional input
vector z̃ using upper triangular elements as shown in Equation (5) has a dimension of
M(M− 1). In contrast, the new input vector z̃sum has a dimension of 2(M− 1). Therefore,
the new input vector reduces the dimension to M/2 times that of the conventional input
vector. This implies that the nodes in the following hidden layers can be correspondingly
reduced, which contributes to forming a lightweight DNN.

As a sequence, the data redundancy removal developed for the ULA above can be
applied to the matrix R̂ to obtain the input vector without data redundancy (i.e., z̃sum).

3.2. Analysis of Data Redundancy Removal

According to Equations (3) and (4), R̂ is the maximum-likelihood estimate of the
expected R, and thus the estimation error ΔR always exists [27]; that is,

ΔR = R̂− R. (15)

In addition, the proposed lightweight DNN is based on the z̃sum in Equation (14). In
contrast, the method in [25] uses the vector composed of the off-diagonal upper triangular
elements; that is, z̃ in Equation (6). Both z̃sum and z̃ are based on the estimated covariance
matrix R̂. Consequently, these elements are also subject to estimation inaccuracies, which
subsequently precipitate errors in DOA estimation. It is expected that a larger estimation
error of z̃sum or z̃ leads to a higher DOA estimation error. We define the estimation error of
z̃sum by Δz̃sum, which is given as

Δz̃sum = z̃sum − z̃
exp
sum, (16)

where the elements of z̃
exp
sum are obtained by replacing the estimated covariance matrix R̂

with the expected one R in Equation (12).
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Similarly, we define the estimation error of z̃ by Δz̃, which is written as

Δz̃ = z̃− z̃exp, (17)

where the elements of z̃exp are obtained by replacing the estimated covariance matrix R̂

with the expected one R in Equation (5). Define the 2-norm of the vectors Δz̃sum and Δz̃ as
‖Δz̃sum‖2 and ‖Δz̃‖2, respectively.

In the following, a comparative analysis of the numerical outcomes for ‖Δz̃sum‖2 and
‖Δz̃‖2 is presented. Assuming that the ULA consists of 22 elements with an inter-element
spacing equal to λ

2 . Supposing that there are two source signals with the same SNR impinge
onto the array with DOAs of θ1 = −40.55◦ and θ2 = −36.3◦, respectively. The number of
snapshots equals 400. The number of trials is 200.

When SNR = −10 dB, we obtain ‖Δz̃sum‖2 = 0.19, and ‖Δz̃‖2 = 0.37. When
SNR = 5 dB, we obtain ‖Δz̃sum‖2 = 0.06, and ‖Δz̃‖2 = 0.09. Overall, ‖Δz̃sum‖2 < ‖Δz̃‖2.
This fact leads to better performance of the proposed lightweight DNN with its input as
z̃sum, as comparisons of the method in [25] with its input as z̃. This fact matches with
numerical results in Section 5.

Furthermore, from the analysis above, we obtain that ‖Δz̃sum‖2 decreases as the SNR
increases, which implies that the performance of the lightweight DNN with z̃sum gets better
as the SNR increases.

4. Lightweight DNN for DOA Estimation

In this section, we propose a lightweight DNN for DOA estimation, which is illustrated
in Figure 1. As shown in Figure 1, the proposed lightweight DNN model utilizes the
newly developed input vector z̃sum as its input vector. Furthermore, different from the
conventional DNN model with classification [18–21], the new DNN model is a regression
model and has an output vector with a dimension equal to the number of sources, which
approaches to the vector of true DOAs of sources in a regression fashion. It is noted
that by considering the DOAs of sources are continuous values, the DNN model with
regression can match the task of DOA estimation naturally. It is noted that in practice,
prior to DOA estimation, the estimation of the number of sources can be accomplished by
the classical methods such as the Minimum Description Length (MDL) and the Akaike
Information Criterion (AIC) methods [28]. In addition, by considering that the array signal
is different from the image signal and DOA information is hidden in each element of the
input vector which is obtained from the covariance matrix of the array signal, we select a
fully connected deep neuron network to extract the mapping from the input vector to the
DOAs of source signals.

Figure 1. Proposed lightweight DNN for DOA estimation in a ULA array.

As shown in Figure 1, the proposed lightweight DNN is a fully connected network
with regression and contains an input layer, several hidden layers with activation functions,
and an output layer. Furthermore, each node of each layer in the network is connected
to each node of the adjacent forward layer. The input data flows into the input layer,
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passes through the hidden layers, and turns into the output of the network, which gives
DOA estimates. The detailed structure of the proposed lightweight DNN model and its
construction of the training data set are given as follows. It is noted that both the proposed
lightweight DNN method and the method in [25] use regression for DOA estimation. The
difference between the proposed lightweight DNN method and the one in [25] is that
the proposed lightweight DNN method removes the data redundancy and significantly
reduces the trainable parameters, by analyzing the property of the covariance matrix of a
ULA and the parameters of the network.

4.1. Detailed Structure of Lightweight DNN

The computations of hidden layers are feedforward as

hl = gl(Wl,l−1hl−1 + bl), l = 1, 2, ..., L− 1, (18)

where L is the total number of the layers except for the input layer; hl represent the output
vector of the l-th layer; Wl,l−1 is the weight matrix between the (l-1)-th layer and l-th layer;
bl is the bias vector of the l-th layer; gl is the activation function of the l-th layer. The
activation function is set as gl(•) = tanh(•), which is expressed as

tanh(α) =
eα − e−α

eα + e−α
, (19)

where α is a real value. The output vector of the output layer is given as

hL = WL,L−1hL−1 + bL. (20)

In the training phase, the proposed DNN is performed in a supervised manner with
the training data-label set, and the parameters of the DNN are adjusted to make the output
vector hL approach to the label, which is composed of the DOAs of source signals. We
define the number of input vectors by I. Then, the training data set can be expressed as
Γ = {x(1), ..., x(I)} with its label set Ψ = {θ̄(1), ..., θ̄(I)} , x(i) and θ̄(i) are the i-th input vector
and its label, respectively. x(i) is equal to z̃sum generated in the i-th numerical experiment.
θ̄(i) is a K-dimensional vector composed of the true DOAs of sources in the i-th numerical
experiment.

The set of all the trainable parameters in the lightweight DNN model can be collectively
referred to as Ω. The update of Ω follows back-propagation towards minimizing the Mean
Square Error(MSE) loss function as follows.

Ω̂ = argminΩ
1

IK

I

∑
i=1
‖hL,(i) − θ̄(i)‖2

2, (21)

where ‖•‖2 represents 2-norm, which measures the distance between the output vector of
the network and the corresponding label, hL,(i) represents the output vector of the network
corresponding to the i-th input vector. In the testing phase, the output vector of the output
layer gives the estimated values of the DOAs of source signals explicitly.

For the lightweight DNN model, we define the size of the input vector by J̃ = 2(M− 1).
Note that with more layers and larger sizes of layers, the expressivity power of the network
is increased during the training stage. However, the network tends to overfit the training
data. As a result, in the testing stage, the performance is obviously degraded due to the lack
of generalization. Furthermore, referring to [18], for the balance between the expressivity
power with deeper network and aggravation with more network parameters, we set the
number of hidden layers to be 2 and their sizes are equal to  2

3 J̃� and  4
9 J̃�, respectively,

where x� is equal to the largest integer not larger than x.
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4.2. Construction of Training Data Set

Assuming that the searching angle range of the source signals is from θmin to θmax,
the angular interval between two source signals in this range is defined as �, which is
sampled from a set of [�min,�min +�d,�min + 2�d, ...,�max], where �min, �max, and
�d are the minimum angle interval between the DOAs of two source signals, the maximum
angle interval, and an angle increment, respectively. In this way, any two source signals
in this range that are spatially close to each other and those with large spacing can all be
included in the training data set. Since the elements used as the input vector from the
covariance matrix are not affected by the order of DOAs of source signals, with the DOA of
the first source signal is sampled with a grid η from θmin to θmax − (K− 1)�, and the DOA
of the k-th source signal is θ1 + (k− 1)�, k = 2, ..., K. Furthermore, in order to adapt to the
performance fluctuations in low SNRs, input vectors with multiple SNRs lower than 0dB
are trained at the same time, making the lightweight DNN better adapted to unknown low
and high SNRs during the testing phase.

4.3. Analysis of Number of Trainable Parameters

In this section, we present a comparative analysis of the proposed lightweight DNN,
against the method in [25], the conventional DNN in [18], deep convolution network (DCN)
in [19], and DeepMUSIC in [20], focusing on the number of trainable parameters. For the
conventional DNN model in [18], we follow the setting in [18]. That is, for the autoencoder,
we denote the size of each of the input and output layers as J = M(M − 1), define the
number of each encoder and decoder has one hidden layer with a size of  J

2�, and define the
number of spatial subregion as p. As a sequence, we obtain that for each of the multilayer
classifiers after the autoencoder, the sizes of two hidden layers are equal to  2

3 J� and  4
9 J�,

respectively. In addition, the size of output layer (denoted as γ) for each multilayer classifier
is equal to

γ = � θmax − θmin
ηp

�. (22)

Correspondingly, according to the analysis in Section 3.1 for the proposed lightweight
DNN, we have J̃ = 2

M J. By following the above-mentioned definitions and the structure of
the lightweight DNN, conventional DNN, and method in [25], we can obtain the number
of parameters in the three fully connected DNN models, as shown in Table 1.

Table 1. Analysis of number of trainable parameters in fully-connected DNN methods.

Number of Parameters Autoencoder Hidden Layer 1 Hidden Layer 2 Output Layer

Lightweight DNN N.A. ( J̃ + 1)×  2
3 J̃� ( 2

3 J̃�+ 1)×  4
9 J̃� ( 4

9 J̃�+ 1)× K

Method in [25] N.A. (J + 1)×  2
3 J� ( 2

3 J�+ 1)×  4
9 J� ( 4

9 J�+ 1)× K

Conventional DNN
(J + 1)×  J

2 �+ ( J
2 �+

1)× J × p (J + 1)×  2
3 J� × p ( 2

3 J�+ 1)×  4
9 J� × p ( 4

9 J�+ 1)× γ× p

Table 2 shows the number of trainable parameters in DeepMUSIC and DCN by
following the parameter settings in [19,20], which are mainly from the convolution layers
and dense layers. For DeepMUSIC, Cin1 represents the number of input channels, Ks1 is the
kernel size of the first two convolution layers, and Ks2 is the kernel size of convolution layer
3 and convolution layer 4. Nf is the number of filters. Cout1 and Cout2 represent the sizes of
the first and second dense layers, respectively. For DCN, Ks3, Ks4, Ks5 and Ks6 represent the
kernel size of the first till fourth convolution layers, of which the number of filters are Nf 1,
Nf 2, Nf 3, and Nf 4, respectively. There is no dense layer.
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Table 2. Analysis of number of trainable parameters in CNN-based methods.

Number of
Parameters

Convolution
Layer 1

Convolution
Layer 2

Convolution
Layer 3

Convolution
Layer 4

Dense Layer 1 Dense Layer 2

DeepMUSIC K2
s1 × Cin1 × Nf K2

s1 × Nf × Nf K2
s2 × Nf × Nf K2

s2 × Nf × Nf
M2 × Nf ×

Cout1
Cout1 × Cout2

DCN
Ks3 × Cin2 ×

Nf 1

Ks4 × Nf 1 ×
Nf 2

Ks5 × Nf 2 ×
Nf 3

Ks6 × Nf 3 ×
Nf 4

N.A. N.A.

When θmin = −60◦, θmax = 60◦, p = 6, η = 1◦, K = 2, Cin1 = 3, Cin2 = 2, Ks1 = 5,
Ks2 = 3, Ks3 = 25, Ks4 = 15, Ks5 = 5, Ks6 = 3, Nf = 256, Nf 1 = 12, Nf 2=6, Nf 3 = 3,
Nf 4 = 1, Cout1 = 1024, Cout2 = 120, the total parameters of the above-mentioned five deep
learning methods versus the number of sensors are shown in Figure 2. From Figure 2, we
can see that the number of trainable parameters in the lightweight DNN is significantly
reduced compared to those of the conventional DNN, method in [25], and DeepMUSIC. In
particular, when the number of sensors is 22, the number of parameters in the lightweight
DNN is three orders, two orders, and five orders of magnitude less than that in the
conventional DNN, the method in [25], and DeepMUSIC, respectively. This fact contributes
to fitting the DNN-based DOA estimation into the embedded system. In addition, the
lightweight DNN method has fewer parameters than the DCN method when the number
of sensors is less than 22. The DCN method remains constant regardless of the number of
sensors. This is because the input of the DCN method is the spatial spectrum proxy, which
has a fixed length equal to � θmax−θmin

η �. On the other hand, the inputs of other methods
are all explicitly relevant to the dimension of the array covariance matrix. Thus, their
parameters are related to the number of sensors.

Figure 2. Trainable parameters in the DNN models versus number of sensors.

4.4. Analysis of Computational Complexity

Analogous to the approach detailed in [11], we quantify the primary computational
complexity through the calculation of real-valued multiplications, as given in Table 3. In
this table, L pertaining to the DCN denotes the length of the input vector, which is set as
120. In addition, we define

γ̃ = � θmax − θmin
η

�. (23)

Note that when η = 0.1 and M = 22, we have γ̃ � J > J̃ > M > K [11] and
(M − 1)(M − K) ≈ (M + 1)M ≈ J. According to the settings in Section 4.3, it is found
from Table 3 that the computational complexity of the CBF, MUSIC, DeepMUSIC, and
DCN methods is significantly higher than that of the fully-connected DNN-based methods,
which corresponds to the testing time in Table 4 below.
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Table 3. Analysis of primary computational complexity.

Algorithms Primary Computational Complexity

Lightweight DNN O[ J̃ ×  2
3 J̃�+  2

3 J̃� ×  4
9 J̃�+  4

9 J̃� × K]

Method in [25] O[J ×  2
3 J�+  2

3 J� ×  4
9 J�+  4

9 J� × K]

Conventional DNN O[J ×  J
2 �+ 

J
2 � × J × p + J ×  2

3 J� × p +  2
3 J� ×  4

9 J� × p +  4
9 J� × γ× p]

MUSIC 4×O[(M + 1)(M− K)γ̃ + M2K]

CBF 4×O[(M + 1)Mγ̃]

DeepMUSIC
O[K2

s1 × Cin1 × Nf ×M2 + K2
s1 × Nf × Nf ×M2 + K2

s2 × Nf × Nf ×M2 × 2 +
M2 × Nf × Cout1 + Cout1 × Cout2]

DCN O[Ks3 × Cin2 × Nf 1 × L + Ks4 × Nf 1 × Nf 2 × L + Ks5 × Nf 2 × Nf 3 × L + Ks6 × Nf 3 × Nf 4 × L]

Table 4. Averaged testing time for one trial.

Method
Light

Weight
DNN

Method
in [25]

Conventional DNN
MUSIC

with
Gird 1◦

CBF
with

Grid 1◦

MUSIC
with
Gird
0.1◦

CBF
with
Grid
0.1◦

Deep
MUSIC

DCN

Testing
time/ms

0.9 1.1 3.3 3.7 2.3 22.9 17.9 26.3 20.4

5. Results

In this section, by conducting simulation experiments, the proposed lightweight DNN
is compared with the conventional DNN [18], the method in [25], DeepMUSIC in [20]
and DCN in [19] in terms of testing time and the root-mean-square-error (RMSE) of DOA
estimation. In addition, the traditional spectrum-based methods such as MUSIC and
CBF are also included for comparisons. Furthermore, the Cramér–Rao Bound (CRB) of
DOA estimation [2] is given as a lower bound. The DNN models are implemented using
TensorFlow as the backend. In the testing stage, for a fair comparison of testing time, all
the above-mentioned methods are executed on the Intel(R) Core(TM) i7-8750H CPU at
2.20 GH.

5.1. Simulation Settings

Assuming that the ULA consists of 22 elements with an inter-element spacing equal to
λ
2 . Supposing that there are two source signals impinging onto the array, of which the DOA
range is from θmin = −60◦ to θmax = 60◦. The angular interval between the DOAs of two
source signals is from�min = 2◦ to�max = 40◦, with�d = 2◦ and η = 1◦. The SNRs for
different source signals are equal and SNRk is defined as the power ratio of the k-th source
signal to noise in dB, which is given below.

SNRk = 10log10

σ2
sk

σ2
n . (24)

For the DNN models, in the training phase, the snapshots are set as 400. In addition,
using input vectors from multiple SNRs of {−13 dB, −10 dB, −5 dB, 0 dB} to train the
network simultaneously. Moreover, 10 groups of covariance vectors are collected for each
direction setting with random noise. Therefore, (118 + 116 + ... + 80)× 4× 10 = 79, 200
input vectors are collected in the training dataset in total. The learning rate is μ = 0.001
and the mini-batch size is 32, the order of training data is shuffled in each epoch.

5.2. MSE Loss during Training and Validation

In this section, as given in Figure 3, we provide the training and validation MSE loss
of the proposed lightweight DNN versus the number of epochs by randomly dividing
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the training data into 80% for training and 20% for validation. From Figure 3, we observe
that the training loss and validation loss gradually reduce when the number of epochs
increases and converges at about 400 epochs. Furthermore, they are close to each other.
Therefore, we conclude that the proposed lightweight DNN with the input vector after the
removal of data redundancy can accomplish the task of DOA estimation well. The detailed
performance of DOA estimation in the testing stage is given as follows.

Figure 3. MSE loss versus epoch given by the proposed lightweight DNN.

5.3. RMSE versus SNRs and Testing Time

In the testing phase, in order to verify the generalization of the DNN models, the
noises and source signals are different from those that appeared in the training phase. In
addition, the DOAs of sources are set to be non-integer (that is, off-grid), which does not
appear in the training stage. The DOAs of source signals are (θ1, θ2) = (−40.55◦,−36.3◦).
The RMSE is used to measure the testing performance of different methods, defined as

RMSE =

√√√√ 1
GK

G

∑
g=1

K

∑
k=1
|θ̂k,g − θk|2, (25)

where G is the number of Monte Carlo simulation experiments, which is set as 200. K = 2.
θ̂k,g represents the DOA estimation value of the k-th source signal in the g-th experiment.
In this part, SNR is taken from −16 dB to 10 dB with an interval of 2 dB and the number
of snapshots is 400. The RMSE of DOAs estimated by the above-mentioned methods
under different SNRs is given in Figure 4. Table 4 shows the averaged testing time for
one trial. Figure 4 illustrates that the proposed lightweight DNN performs better than the
method in [25], conventional DNN and the MUSIC and CBF methods with a grid of 1◦. Its
superiority is obvious when the SNR is lower than −8 dB. Moreover, the time spent by the
lightweight DNN is about four times less than that spent by the MUSIC method with a grid
of 1◦. On the other hand, the proposed lightweight DNN has estimation accuracy lower
than the MUSIC method with a grid of 0.1◦. This is because the DNN-based approach yields
biased estimators [20]. In contrast, the MUSIC method provides unbiased estimation when
the source signals are uncorrelated and the number of arrays and snapshots is large [29,30].
It is noted that in Figure 4, the CBF method always fails because it suffers from the Rayleigh
limit. In addition, the MUSIC method with a grid of 0.1◦ performs closely to the CRB when
the SNR is larger than −8 dB. On the other hand, its performance deviates from the CRB
when the SNR is larger than 5 dB. This phenomenon is caused by the limit of the searching
grid in the MUSIC Method. Furthermore, as illustrated in Figure 4, the performance of
the DeepMUSIC method is similar to that of the MUSIC method with a grid of 1◦. This is
because the label of the DeepMUSIC is the spatial spectrum of the MUSIC method and the
grid in the DeepMUSIC method is equal to 1◦ to be consistent with the grid for other DNN
methods. In addition, the DCN method performs better than the other methods except the
lightweight DNN method, in most cases. In terms of testing time as given in Table 4, both
DeepMUSIC and DCN methods cost much more than the lightweight DNN method.
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It is noted that the higher estimation accuracy of the MUSIC method with a grid of
0.1◦ costs more spectrum searching load and the time it takes is about 25 times more than
that by the lightweight DNN, as shown in Table 4. In addition, it is observed the time spent
by the lightweight DNN is about 3 times less than that by the conventional DNN.

Figure 4. RMSE versus SNR when (θ1, θ2) = (−40.55◦,−36.3◦).

5.4. RMSE versus DOA Separations

In this part, the RMSE of different methods is shown with the variation of intervals
between the DOAs of two source signals. The DOA of the first source signal is set to be
−40.55◦ and the DOA of the second source signal is equal to −40.55◦ + Δ̃, where Δ̃ is
taken from the set of {2.25◦, 4.25◦, 8.25◦, · · · , 32.25◦, 36.25◦} in sequence. The number of
snapshots is 400. When SNR is−2 dB, the RMSE of DOA estimated by the above-mentioned
methods under different DOA separations is shown in Figure 5. From Figure 5, it can be
seen that the lightweight DNN performs better than the MUSIC method and CBF method
when their searching grid is set to be 1◦. Furthermore, it is always superior to the method
in [25], conventional DNN method, DeepMUSIC method, and DCN method. Similar to
the Figure 4, the MUSIC method with a grid of 0.1◦ approaches the CRB in most cases.
However, it is noted that in a very small DOA separation such as 2.25◦, even the MUSIC
method with a grid of 0.1◦ fails. In contrast, the lightweight DNN performs well. In
addition, it is shown that the CBF method with a grid of 0.1◦ gradually approaches the
CRB when the DOA separation increases.

Figure 5. RMSE versus DOA separation when SNR = −2 dB.
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5.5. RMSE versus Number of Snapshots

In this part, the number of snapshots is selected from the set of {30, 50, 100, 200, 300,
400, 500, 600, 700, 900, 1200, 1500, 1800, 2000}, the DOAs of the two source signals are
(θ1, θ2) = (−40.55◦,−36.3◦). Figure 6 shows the RMSE of all methods against the number
of snapshots when the SNR is equal to −2 dB. From Figure 6, it is found that except for the
CBF method, the other methods perform better when the number of snapshots increases.
In addition, it is observed that the DNN models trained in the scenario of 400 snapshots
are applicable to the scenarios of more snapshots and fewer snapshots. Furthermore, the
lightweight DNN behaves significantly better than the conventional DNN when the number
of snapshots is less than 900. As the number of snapshots increases, the estimation accuracy
of lightweight DNN is still slightly higher than that of the conventional DNN, method
in [25], DeepMUSIC method, and DCN method. It is worth noting that the lightweight
DNN is always superior to the MUSIC method with a grid of 1◦ and it performs better than
the MUSIC method with 0.1◦ when the number of snapshots is less than 100.

Figure 6. RMSE versus number of snapshots when SNR = −2 dB.

5.6. RMSE versus Power Ratio of Two Source Signals

The DOAs of the two closely spaced source signals are (θ1, θ2) = (−40.55◦,−38.3◦).
The number of snapshots for both source signals is 400. The SNR for the first source signal
is fixed as −2 dB. Figure 7 demonstrates the RMSE versus the power ratio of the second
source signal to the first source signal. From Figure 7, we observe that the RMSE of the
lightweight DNN method increases from 0.2◦ to about 1.5◦ when the power ratio of the
second source signal to the first one increases from 1 to 14. Similarly, the RMSE of the
conventional DNN, the method in [25], DeepMUSIC, and DCN methods increase slightly
with the increment of the power ratio. As shown in Figure 7, the MUSIC and CBF methods
always fail because the DOAs of source signals are very close. It is noted that the CRB
reduces a bit when the power ratio increases. This is because the power of the second
source signal is increased with the increment of the power ratio. However, the CRB is
limited by the closely spaced source signals.
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Figure 7. RMSE versus power ratio of second source signal to the first one when (θ1, θ2) =

(−40.55◦,−38.3◦).

6. Discussion

From the analysis above, it can be seen that the number of total parameters in the
lightweight DNN model is significantly reduced compared to those DNN models that use
the upper triangular elements of the covariance matrix as input. In particular, when the
number of sensors is 22, it is 2 and 3 orders of magnitude less than that in the conventional
DNN model and the method in [25], respectively. This fact makes the proposed lightweight
DNN suitable for real-time embedded applications. Furthermore, it is noted that the
lightweight DNN can preserve high accuracy of DOA estimation and perform better than
the conventional DNN and method in [25]. In addition, it provides higher estimation
accuracy and costs less trainable parameters and computational load than CNN-based
methods such as DeepMUSIC and DCN. Also, it is illustrated that the lightweight DNN
performs better than the spatial spectrum-based methods such as MUSIC and CBF method
under harsh conditions such as low SNRs and/or closely spaced source signals and/or
few snapshots. Moreover, its testing time is obviously shorter than that of the MUSIC and
CBF method, due to the avoidance of spectrum searching and matrix decomposition. On
the other hand, under good conditions such as high SNRs, the estimation accuracy of the
lightweight DNN is lower than the MUSIC method with a grid of 0.1◦. This is because the
DNN-based methods are biased estimators while the MUSIC method can provide unbiased
DOA estimation. It is noted that the MUSIC method with a grid of 0.1◦ provides higher
estimation accuracy with a cost of a testing time of about 25 times more than that of the
lightweight DNN. On the other hand, as shown in simulation results, the lightweight DNN
can achieve high estimation accuracy such as 0.2◦ when the SNR is not extremely low (not
lower than −6 dB) and the number of snapshots is not very small (not smaller than 100).

7. Conclusions

In order to make the DNN-based DOA estimation approaches real-time and less costly,
we proposed a lightweight DNN model for a ULA. Compared to the conventional DNN
model, the proposed lightweight DNN model has two improvements. Firstly, its input
vector is designed by using the knowledge of ULA (that is, the steering vector of the
ULA has the property of Vandermonde) to implement the removal of data redundancy
as well as retain the DOA information. Therefore, the input vector is M

2 times less than
the conventional DNN model, which contributes to reducing the sizes of the following
hidden layers. Secondly, the output vector of the lightweight DNN model is designed in a
regression fashion instead of classification, which has a size equal to the number of sources.
Overall, the number of total parameters in the lightweight DNN model is significantly
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reduced compared to that in the existing DNN models. Furthermore, the lightweight DNN
model performs better than the existing DNN models because the lightweight DNN model
explores the characteristics of the signal received by the ULA for designing its input.
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Abstract: The circular synthetic aperture radar (CSAR) has the ability of all-round continuous
observation and high-resolution imaging detection, and can obtain all-round scattering information
and higher-resolution images of the observation scene, so as to realize the target information extraction
and three-dimensional (3D) contour reconstruction of the observation targets. However, the existing
methods are not accurate enough to extract the information of vehicle targets. Through the analysis
of the vehicle target scattering model and CSAR image characteristics, this paper proposes a vehicle
target information extraction and 3D contour reconstruction method based on multiple different pitch-
angle observation CSAR data. The proposed method creatively utilizes the projection relationship
of the vehicle in 2D CSAR imaging to reconstruct the 3D contour of the vehicle, without prior
information. Firstly, the CSAR data obtained from multiple different pitch-angle observations are
fully utilized, and the scattering points of odd-bounce reflection and even-bounce reflection echoes
are extracted from the two-dimensional (2D) coherent CSAR images of the vehicle target. Secondly,
the basic contour of the vehicle body is extracted from the scattering points of the even-bounce
reflected echoes. Then, the geometric projection relationship of the “top–bottom shifting” effect of
odd-bounce reflection is used to calculate the height and position information of the scattering points
of odd-bounce reflection, so as to extract the multi-layer 3D contour of the vehicle target. Finally, the
basic contour and the multi-layer 3D contour of the vehicle are fused to realize high-precision 3D
contour reconstruction of the vehicle target. The correctness and effectiveness of the proposed method
are verified by using the CVDomes simulation dataset of the American Air Force Research Laboratory
(AFRL), and the experimental results show that the proposed method can achieve high-precision
information extraction and realize distinct 3D contour reconstruction of the vehicle target.

Keywords: circular synthetic aperture radar; odd-bounce reflection; even-bounce reflection; vehicle
target; information extraction; 3D contour reconstruction; “top–bottom shifting” effect

1. Introduction

Synthetic aperture radars (SAR) obtain high resolution in the range direction by
transmitting large-bandwidth signals, at the same time, the platform moves to observe
the target at a large angle to obtain high resolution in the azimuth direction [1]. As one
of the most productive sensors in the field of microwave remote sensing and advanced
array signal processing, SAR has received rapid development and widespread attention.
SAR imaging can obtain more electromagnetic scattering information of the observed
target through the reconstruction of the target scattering function, which is helpful for
the analysis, classification and identification of target characteristics [2]. SAR imaging
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offers significant advantages in remote sensing observation, due to its ability to operate
regardless of external environmental conditions such as weather and light. It can provide
all-weather and all-day reconnaissance capabilities, making it highly versatile [3]. As a
result, SAR imaging has found wide-ranging applications in various fields. For instance, in
the agricultural sector, SAR imaging enables the monitoring of crop growth, soil moisture
levels, and the occurrence of pests and diseases. This accurate and timely data supports
crop assessment and agricultural management [4]. In the domain of disaster forecasting,
SAR imaging plays a vital role. Its capability to detect surface deformations allows for
early warning of natural disasters such as earthquakes, volcanic eruptions, and floods, this
information is crucial for rescue efforts and emergency response coordination [5].

In addition, SAR imaging has proven to be of great value in civilian applications
such as marine surveying and mapping [6]. It provides detailed and precise data that
aids in understanding oceanographic features, coastal erosion, and bathymetry, this infor-
mation is essential for maritime industries, environmental monitoring, and coastal zone
management [7]. Additionally, in military operations, SAR imaging facilitates battlefield
reconnaissance. Its high-resolution imagery and ability to track enemy targets accurately
contribute to situational awareness and support strategic decision-making. Furthermore,
SAR technology aids in strategic early warning systems, enhancing national security and
defense preparedness [8,9].

Circular SAR (CSAR) refers to a 360-degree circular movement of the radar platform
around the target scene, and its antenna emission beam is always directed at the target
scene [10]. Compared to traditional SAR with a straight flight trajectory, CSAR offers 360-
degree observation, resulting in targets with more complete contours and better suppression
of background [11]. The omnidirectional scattering characteristics of the target obtained
by CSAR can effectively improve target detection performance. The biggest advantage of
CSAR imaging is its ability to observe targets in all directions, allowing the resulting image
to reflect the backscattering information of the target in all azimuths. This leads to higher
image resolution and enables certain three-dimensional (3D) imaging capabilities [12].
The comprehensive coverage of CSAR imaging enables a more detailed and accurate
representation of the target’s backscattering characteristics, resulting in improved image
resolution and the potential for 3D imaging [13].

In recent years, the reconstruction of 3D images of CSAR data has become a research
hotspot [14–16]. At present, the main method for 3D image reconstruction of observa-
tion scene targets using CSAR is to use multi-baseline CSAR imaging technology [17,18].
However, it requires the acceptance and processing of multi-baseline CSAR data, which
can be time-consuming and expensive in terms of hardware requirements. Additionally,
this technology is associated with complex imaging algorithms and often exhibits low
processing efficiency.

E. Dungan, from the American Air Force Research Laboratory (AFRL), has proposed a
3D image reconstruction method of vehicle contour based on single-baseline fully polari-
metric CSAR data [19]. Compared to HoloSAR imaging [20], this method has the advantage
of requiring only single-baseline fully polarimetric CSAR data. This significantly reduces
the cost of acquiring 3D images and simplifies the imaging algorithm, leading to improved
processing efficiency. The use of single-baseline fully polarimetric CSAR data allows for
the acquisition of meaningful information with fewer data points, reducing the hardware
and computational costs associated with data collection and processing. Additionally, the
simplified imaging algorithm used in this method reduces the complexity of the reconstruc-
tion process, resulting in faster processing times and decreased computational resources
required. However, this method rectangles the vehicle contour to form a multi-dimensional
variable search process, which greatly increases the amount of calculation, reduces the
efficiency of the algorithm. Also, this method weakens the contour features of the target
vehicle, and it is not conducive to the subsequent vehicle classification and recognition.
Although this method does not require multi-baseline CSAR data, it requires a variety of
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polarized CSAR data, which leads to an increase in the amount of computation and a high
cost of 3D image reconstruction.

L. Chen, from the National University of Defense Technology, has proposed a 3D image
reconstruction method of vehicle contours based on single baseline single polarization
CSAR data [21]. This method starts from the incoherent imaging processing, the basic
contour information is extracted based on the two-dimensional (2D) image of the vehicle,
and then the height information of the scattered points of the attribute is deduced by using
the “top–bottom shifting” effect, and then the 3D contour image of the target vehicle is
reconstructed. Also, this method obtains high-precision vehicle size estimation results
and has the unique advantages of high efficiency and low cost. However, the method
introduces the ratio of the underbody profile to the roof profile as a priori information, and
does not extract the multi-layer profiles of the vehicle.

In order to solve the above problems, this paper proposes a new method to extract
information and 3D contour reconstruction of vehicle target, based on multiple different
pitch-angle observation CSAR data. The research content of this paper is as follows:
Section 2 researches the distribution characteristics of the electromagnetic reflection model
of the vehicle target, and the 2D CSAR imaging characteristics of the vehicle target at
different pitch-angle observations. Section 3 provides a detailed description of the proposed
method for 3D reconstruction of vehicle target contours. In Section 4, the civilian vehicle
dome (CVDomes) simulation dataset is used to verify the correctness of the theoretical
analysis and the effectiveness of the proposed method. Finally, the research work of this
paper is summarized, and the next research work is prospected in Section 5.

2. Vehicle Scattering Model

This section begins by analyzing the scattering characteristic models of radar electro-
magnetic wave odd-bounce reflection and even-bounce reflection of the vehicle targets
under far-field conditions. Then, an analysis of the 2D CSAR imaging features of vehicle
targets at multiple different pitch-angle observations is presented.

According to the electromagnetic theory, the high-frequency echo response of a com-
plex target can be regarded as the sum of the attribute scattering centers of multiple
standard scatterers [22]. The attribute scattering center contains relevant information such
as the position, amplitude, and polarization of the target, which can better describe the
scattering characteristics of the target on the SAR data.

2.1. Odd-Bounce Reflection

Figure 1 shows the “top–bottom shifting” model of the vehicle target and the backscat-
tering of electromagnetic waves, and the electromagnetic echoes reflected by the vehicle
target are mainly divided into odd-bounce reflection (blue lines in Figure 1) and even-
bounce reflection (orange lines in Figure 1). Among them, odd-bounce reflection refers
to the electromagnetic echo that returns to the antenna after an odd number of bounce
reflection, mainly provided by the edges and corners of the vehicle target (such as the
roof ridge, etc.). The edges and corners of the vehicle target are the height dimensional
information with the vehicle target, which can form the 3D contour of the vehicle.

As shown in Figure 1a, when the ground plane x− y is used as the imaging plane,
the distance from the point A to the radar platform is R, the height from the point A to
the imaging plane is h, and the pitch angle θe represents the observation angle from the
radar to the point A. During imaging, the point A is projected onto the imaging plane AP.
This shift in the position of the projection, which is caused by the height of focus, is called
the “layover effect” [23]. The “top–bottom shifting” distance is l, the slope distance from
the antenna phase center to the target is R, if l is much smaller than R, that is l � R, this
corresponds to the far-field condition. Then, the height of the point A to the ground plane
x− y is:

h = lcot(θe) (1)
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Therefore, starting from the CSAR 2D image of the vehicle, the edge position of the
image of the vehicle ridge is obtained, which is the position of the odd-bounce reflected
bright line. The shifting distance of the top and bottom of the ridge can be obtained, and
then the height of the ridge h and its position coordinates are calculated.

 

 

(a) (b) 

Figure 1. The “top–bottom shifting” model of a vehicle target and the backscattering of electromag-
netic waves: (a) Schematic diagram of the calculation of the “top–bottom shifting” of odd-bounce
reflection; (b) schematic diagram of odd-bounce reflection (orange lines) and even-bounce reflection
(blue lines) backscattering.

2.2. Even-Bounce Reflection

Figure 2 shows the even-bounce reflection geometry path. Even-bounce reflection
refers to the secondary bounce reflection of electromagnetic waves emitted by radar anten-
nas and finally return to the receiving antenna [24]. The even-bounce reflection path can be
assumed to consist of three parts, including the outbound R1, the first bounce reflection
R2, and the second bounce reflection R3. θe is the pitch angle from the radar to the point A.
When the incident wave passes through the outbound journey R1 and reaches a certain
scattering center with a height h of the vehicle, there is a scattering angle Δθ between the
first bounce reflection R2 and the specular reflection angle θe. R2 generates a second bounce
reflection R3 through specular reflection with the ground, and R3 subsequently returns to
the receiving antenna. It is worth noting that R2 and R3 are not the only path, vary within
the orange shaded area, as shown in Figure 2.

Figure 2. Geometry of the even-bounce reflection.

For a vehicle target parked on the flat ground, the side of the vehicle forms a dihedral
reflection with the ground, the dihedral reflection is directional, and its reflected energy is
concentrated in the vertical direction. The projection of the even-bounce reflected energy
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can be thought of as a distribution along the junction between the ground and the side
of the vehicle, i.e., the distribution of the basic contour of the underside of the vehicle.
Although the even-bounce reflection has undergone the secondary bounce reflection of
different medium planes, the energy of the reflected echo is relatively large, due to the
large reflection surface of the vehicle target. And the even-bounce reflection appears as a
relatively bright and thick closed rectangular frame on the 2D CSAR image [25].

Figure 3 shows the vehicle CSAR imaging results at different pitch-angle observations.
As shown in Figure 3d,e, there are scattered centers of discrete properties formed by even-
bounce reflection in the vicinity of the vehicle contour. Due to the “top–bottom shifting”
effect, the odd-bounce reflection forms an outer contour outside the vehicle’s baseline, and
as the pitch angle of the radar increases, the image of vehicle edge expands outward more.

 
(a) 

 
(b) (c) 

 
(d) (e) 

Figure 3. Simulated vehicle model and 2D CSAR images of the vehicle at different pitch-angle
observations: (a) Photographs of simulated vehicle Jeep93; (b) 2D CSAR images of vehicles with the
pitch angle of 60 degree; (c) 2D CSAR images of vehicles with the pitch angle of 50 degree; (d) 2D
CSAR images of vehicles with the pitch angle of 40 degree; (e) 2D CSAR image of a vehicle with the
pitch angle of 30 degree (the unit of the colorbar is dB).
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2.3. CSAR Image Characteristics of the Vehicle Target at Different Pitch-Angle Observations

In the CSAR data of HH polarization, the reflected energy of the dihedral angle is
larger and the contour is clearer, so the HH polarization is used in this method [26–29].
Due to the lower side lobes of coherent imaging, which is more conducive to extracting
the edge of the vehicle, the proposed method chooses to process the coherent imaging.
This method extracts the inner even-bounce reflection contour and the outer odd-bounce
reflection contour of the vehicle from the CSAR image at the same time. Subsequently, the
basic contour of the vehicle bottom is obtained from the even-bounce reflection, and the 3D
contour of the vehicle with height information is obtained from the odd-bounce reflection.
The proposed method makes full use of the data at 30◦, 40◦, 50◦ and 60◦ observation
pitch angles, and the angle of view is more comprehensive, the extracted vehicle target
information is richer, and the error of information extraction is smaller.

As can be seen from Figure 3, the body and the edge of the vehicle will form four
relatively distinct curves. From the inside to the outside, the first curve C1 is the top contour
curve of the vehicle, which is composed of a circle of roof covers, and it is the highest, at
about 1.63 m. The second curve, C2, is the second layer of the vehicle formed by the door
handle and the front cover, and its ridge curve is the second highest, at about 1.01–1.16 m.
The third curve, C3, is the curve formed at the top of the wheel, the defect position is the
position of the wheel, and its height is the third highest, at about 0.64–0.68 m. The fourth
closed curve C4 is the imaging result of the dihedral angle formed between the body and
the ground, which is the imaging result of the even-bounce reflection of electromagnetic
waves. As a result, curve C4 closely approximates a rectangular frame, capturing the basic
contours of the vehicle body. The imaging position of curve C4 is almost unchanged under
different pitch-angle observations.

When the ridge is higher, the observed pitch-angle is larger, which will lead to a
greater distance of the top-bottom shifting. Therefore, the image of the target vehicle in
pitch-angle of 60 expends more than in pitch angle of 50, as shown in Figure 3b,c. When
the pitch angle of observation is 30 degrees, the top–bottom shifting distance of the ridge is
relatively small, so the first curve, C1, and the second curve, C2, coincide multiple times.

3. Information Extraction and 3D Contour Reconstruction

Based on the “top–bottom shifting” effect, a novel approach that exploits the pro-
jection imaging relationship between different pitch-angle observations under the same
polarization is proposed to extract the 3D contour of the vehicle target.

3.1. Overall Framework

Firstly, coherent processing is used to generate CSAR vehicle images. The complete
360◦ total aperture data is divided into every 1◦ sub-aperture aperture without overlap. To
achieve high-resolution and low side lobes in CSAR vehicle 2D images, the back projection
algorithm (BPA) is employed, which is capable of adapting to the CSAR geometry [30,31].
Additionally, GPU acceleration is utilized for improved efficiency. Due to its lower sidelobes
and ability to provide more detailed target imaging, coherent accumulation is performed
to obtain a CSAR coherent image of the vehicle under consideration.

Secondly, the CSAR 2D image is converted to the polar coordinates. Since the CSAR
image is a 360-degree surround image, the image of the vehicle’s body and edges will be
closed curves. In order to facilitate the extraction of contour curves, four sets of 2D CSAR
images with multiple different pitch angles are transformed to polar coordinates, with the
center of the image as the pole. The vehicle contour is changed from planar curves to a
one-dimensional curve, so that the contour extraction and subsequent curve processing
are easier.

Finally, the scattering points are obtained. Using the peak detection method, the odd-
bounce reflection and even-bounce reflection scattering points of the four profile curves are
extracted. As shown in Figure 4, the CSAR 2D image at the 60-degree pitch observation
is transformed to polar coordinates, and the results (red dots in Figure 4) are extracted
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from odd-bounce and even-bounce reflection scattering points using the peak detection
method. In Figure 4a, the leftmost red dots are the even-bounce reflection scattering points,
and the other red dots are the odd-bounce reflection scattering points. And in Figure 4b,
the scattering points that approximately make up the rectangular box inside are the even-
bounce reflection scattering points; the three curves on the outside are the odd-bounce
reflection scattering points.

(a) 

(b) 

Figure 4. Extraction results of scattering points at the 60-degree pitch-angle observation (vehicle
Jeep93): (a) The extraction result of the scattering points in polar coordinates; (b) the extraction result
of the scattering points in Cartesian coordinates (the unit of the colorbar is dB).

3.2. Contour Extraction of Even-Bounce Reflection

After converting the CSAR 2D image to the polar coordinates, the basic contour of
the vehicle consisting of the even-bounce reflection scattering points is extracted in the
following two steps.
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Step 1: Smooth filtering of even-bounce scatter points. The side of the vehicle forms a
vertical dihedral angle with the ground. The reflected echo of this vertical dihedral angle
remains relatively unchanged as the pitch observation angles vary. As a result, the imaging
position of the even-bounce scattered bright line shows minimal variation at top view
observation angles of 30◦, 40◦, 50◦, and 60◦. As shown in Figure 3b–e, the position of
the rectangle in the center of the four images, i.e., the even-bounce scattering light line, is
basically unchanged.

In our method, the even-bounce scattering points obtained from four pitch-angle
observations are used for mean filtering and smoothing. In Figure 5a, the extracted results
are obtained by applying mean filtering and smoothing to the even-bounce reflection
scattering points. These results form the 2D projection of the even-bounce reflection
contour, specifically representing the 2D projection of the basic contour of the vehicle body,
from which the geometric feature parameters such as orientation, length, and width of the
vehicle can be extracted.

(a) 

 
(b) 

Figure 5. The results of the processing of the vehicle even-bounce reflection contour and the calcula-
tion of the length and width of the vehicle body (vehicle Jeep93): (a) The results of the even-bounce
reflection scattering points extraction after the mean filtering smoothing process; (b) the results of
extracting geometric feature parameters of the vehicle.

Step 2: Extract and calculate the geometric parameters of the vehicle body. According
to the projection of the basic contour of the vehicle body obtained in step 1 on the 2D
CSAR imaging plane, the principal axis direction is estimated by calculating the covariance
matrix of the projection matrix. The principal axis direction represents the direction of the
closed surface, and refers to the major axis direction of the basic outline of the vehicle body
projection. By determining the intersection angle between the major axis and the X-axis of
the ellipse with the same standard second-order central moment as the basic outline of the
vehicle body projection, the orientation angle α is obtained. α represents the angle between
the orientation of the vehicle and the horizontal line.
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Then, a straight line l1 is calculated, which passes through the projection of the basic
outline of the vehicle body and has an inclination angle α. Next, the intersection points P1
and P2 of the straight line l1 with the contour of the vehicle are obtained. Subsequently, the
perpendicular bisector l2 connecting P1 and P2 is found. Later, the intersection points P3
and P4 of l2, and the projection of the basic contour of the vehicle body, are obtained.

The distance between P1 and P2 is the length of the vehicle body, and the distance
between P3 and P4 is the width of the vehicle body. As shown in Figure 5b, the results are
extracted for the geometric feature parameters such as orientation, length, and width of
the vehicle. As shown in Figure 5b, the orientation of the vehicle is −0.079 degree with the
horizontal line; the width and the length of the Jeep93 are 4.462 m and 1.796 m, respectively.

3.3. Contour Extraction of Odd-Bounce Reflection

Under different pitch-angle observations, the projection position shift will be different
for imaging vehicle targets at a certain height, due to the “top–bottom shifting” effect.
According to the odd-bounce reflection model in Section 2.1, there are:

htan(θ1) = l1 = L1 − L0 (2)

htan(θ2) = l2 = L2 − L0 (3)

htan(θ3) = l3 = L3 − L0 (4)

htan(θ4) = l4 = L4 − L0 (5)

where, h is the height of the vehicle ridge, which can be the different parts of the vehicle,
including the front, rear, and sides. θ1, θ2, θ3 and θ4 correspond to θe values of 30, 40, 50,
and 60 degrees, meaning the pitch-angle of radar observation are 30, 40, 50, and 60 degrees,
respectively. l1 ∼ l4 is the propagation distance of the “top–bottom shifting” in the 2D
CSAR image at the 30~60 degree pitch-angle observations. L1 ∼ L4 are the coordinate
position of the vehicle ridge contour in the 2D CSAR image at the 30~60 degree pitch
observation angles. And L0 is the actual coordinate position of the simulated vehicle model.

By simultaneously solving Equations (2)–(5), we obtain

h =
lm − ln

tan(θm)− tan(θn)
(6)

The value range of m is [2, 4] and the value range of n is [1, 3]. There are six com-
binations of the above equation and the average of the results of these six calculations
can be used to obtain the height h of the vehicle edge. Returning to Equations (2)–(5), the
coordinate position of the vehicle’s rib contour can be obtained.

Therefore, after converting the CSAR 2D image to the polar coordinates, the curves
composed of three odd-bounce reflection scattering points need to be extracted, namely
C1, C2 and C3 in Figure 3. Then, according to the different vehicle contour extensions
in the two-dimensional CSAR image of the radar at the 30–60 degree pitch angle, the
corresponding vehicle ridge height and its position coordinates of each contour curve are
calculated by the joint relationship Equations (2)–(6).

The proposed method makes full use of different pitch-angle observations and uses
multiple formulas to jointly calculate several times. It takes the average value to reduce the
error and improves the accuracy of information extraction.

3.4. 3D Reconstruction of Vehicle Contour

From the above analysis, it can be seen that the roof contour containing height in-
formation can be extracted from the odd-bounce reflection. The position coordinates of
the basic vehicle body contour consisting of the even-bounce reflection is obtained by the
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method shown in Section 3.2. Using the method in Section 3.3, the height of the vehicle
ridge and its position coordinates composed of odd-bounce reflection can be obtained.

In the processing of fusing the basic vehicle body contour, the height of the vehicle
ridge and its position coordinates, the base is the basic vehicle body contour, whose Z
coordinate is zero in the xyz coordinate system. And the position coordinates of the vehicle
ridge is in the same xyz coordinate system, whose Z coordinate is its height. Therefore, the
whole contour of the vehicle can be reconstructed.

Based on the above analysis, the flow chart of the 3D contour reconstruction method
of the vehicle target is shown in Figure 6. Firstly, the GPU-accelerated BPA is used to
process the echo data for imaging, and the 2D CSAR images of the vehicle target to be
reconstructed under four sets of different pitch-angle observations are obtained. Then, the
polar coordinate transformation of the CSAR 2D image of the vehicle target is performed
to extract the odd-bounce reflection and even-bounce reflection scattering points of the
vehicle target. On the one hand, the scattering points formed by the even-bounce reflection
are used to extract the basic contour of the vehicle body, and the geometric parameters such
as the length and width of the vehicle. On the other hand, according to the “top–bottom
shifting” model, the scattering points formed by the odd-bounce reflection are used to
extract the height and position of the ridge. Finally, the basic contour of the vehicle body,
as well as the height and position of the ridge, are fused to realize the reconstruction of the
3D contour of the vehicle.
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Figure 6. Flow diagram of the 3D contour reconstruction of the vehicle target.
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4. Experiment and Analysis

Civilian vehicle domes (CVDomes)—a dataset of simulated X-band signatures of
civilian vehicles is generated for 360◦ in azimuth direction [32]. The CVDomes dataset
consists of simulation data with different pitch angles ranging from 30◦~60◦. The main
parameters of the CVDomes dataset are shown in Table 1.

Table 1. The main parameters of CVDomes dataset.

Parameter Parameter Value

Carrier frequency 9.6 GHz

Signal bandwidth 5.35 GHz

Maximum no-blur distance 15 m

Pitch angle 30◦, 40◦, 50◦, 60◦

In order to prove the effectiveness of the proposed 3D contour reconstruction and
information extraction method based on CSAR data for the vehicle target, the echo data
processing of vehicles in CVDomes dataset is used to verify it. The vehicles Jeep93 and
Jeep99 are processed using the proposed method; the results are shown in Figures 7 and 8,
and Tables 2 and 3.

As shown in Figures 7a and 8a, h11 is the height of the side edge of the first vehicle
prism curve (contours of the vehicle roof). h12 is the height of the rear edge of the first
vehicle prism curve. h21 is the height of the front cover of the second vehicle prism curve.
h22 is the height of the rear part of the second vehicle prism curve. h31 is the height of the
front of the vehicle for the third prism curve (i.e., the curve at the top of the wheel). h32 is
the height of the rear end of the third rim.

The method we propose can extract the multi-layered contours of the vehicle.
Figures 7b and 8b display points in four different colors. Points of the same color are
the result of contour reconstruction of the same layer. The purple points represent the layer
where h11 and h12 are located, which is the highest layer. The green points represent the
layer where h21 and h22 are located. The blue points represent the layer where h31 and
h32 are located. The red points represent the basic contours of the vehicle, which includes
information such as the length and width of the vehicle.

As shown in Figures 7 and 8, the proposed method effectively reconstructs the 3D
contour of vehicles. The electromagnetic simulation dataset CVDomes used in this study
had minimal external interference, and the signal bandwidth was extremely wide with
high resolution. As a result, the reconstructed contours were found to be clear, smooth,
and highly similar to the original model. The contour of the front of the vehicle is more
rounded, closer to the real contour of the simulated vehicle model.

Tables 2 and 3 show a comparison of the geometric dimensions of the vehicle models
Jeep93 and Jeep99, with the estimation results of the proposed method, as well as the
comparison with paper [21]. Where, l and w are the length and width of the vehicle body,
respectively. u|·| is the sum of the error between the true value and the estimated value.

From Tables 2 and 3, comparing the length, width, and height of the extracted vehicle
between the simulation model and the proposed method, it can be observed that the
parameters are remarkably close, indicating the accuracy of the proposed method. Overall,
compared with the results in paper [21], the proposed method extracts the clearer multi-
layer contour of the vehicle target, and exhibits higher accuracy.
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(a) 

(b) 

 
(c) 

Figure 7. 3D contour reconstruction results of vehicle target Jeep93: (a) Photographs of simulated
vehicle Jeep93; (b) 3D contour reconstruction results in 3D vision, the scattering points of the same
color are the curves extracted from the same layer; (c) top view of the result of the 3D contour
reconstruction of the vehicle.
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(a) 

 
(b) 

 
(c) 

Figure 8. 3D contour reconstruction results of vehicle target Jeep99: (a) Photographs of simulated
vehicle Jeep99; (b) 3D contour reconstruction results in 3D vision. The scattering points of the same
color are the curves extracted from the same layer; (c) top view of the result of the 3D contour
reconstruction of the vehicle.
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Table 2. Comparison of the geometric dimensions of the vehicle model Jeep93 with the estimation
results of the proposed method, and comparison with paper [21] (unit: mm).

Parameters l w h11 h12 h21 h22 h31 h32

True value 4409 1755 1636 1634 1014 1158 653 675

Paper [21] 4351 1800 1722 1724 1046 1178 672 686

Our
method 4462 1796 1648 1618 1032 1173 642 689

u|Δl| = 53 u∗|Δl| = 58 u|Δw| = 41 u∗|Δw| = 45 u|Δh| = 86 u∗|Δh| = 258

“*” indicates the estimation results from paper [21].

Table 3. Comparison of the geometric dimensions of the vehicle model Jeep99 with the estimation
results of the proposed method, and comparison with paper [21] (unit: mm).

Parameters l w h11 h12 h21 h22 h31 h32

True value 4610 1826 1763 1616 1030 1131 655 1020

Paper [21] 4474 1825 1730 1594 990 1101 675 1046

Our
method 4509 1813 1713 1628 1011 1116 645 1007

u|Δl| = 101 u∗|Δl| = 136 u|Δw| = 13 u∗|Δw| = 1 u|Δh| = 119 u∗|Δh| = 171

“*” indicates the estimation results from paper [21].

5. Conclusions

This paper focuses on the problem of vehicle target information extraction and 3D
contour reconstruction under CSAR 2D imaging, and then proposes a method by analyzing
the CSAR image characteristics of the target vehicle under multiple different radar pitch-
angle observations. The proposed method creatively utilizes the projection relationship
of a vehicle in 2D CSAR imaging to reconstruct the 3D contour of the vehicle, without
prior information. The basic contour of the vehicle body is extracted from the even-bounce
reflection scattering points, and the height and position information of the vehicle ridge
is extracted from the odd-bounce reflection points. Finally, the 3D contour of the vehicle
can be reconstructed by fusing the vehicle body and the height and position of the vehicle
ridge. The proposed method is applied to the reconstruction of CSAR simulation dataset,
the high-quality 3D contour of the vehicle and high-precision vehicle size estimation results
are obtained, which proves the correctness and effectiveness of this method.

The research results in this paper lay a foundation for future research on the target
classification and recognition technology based on CSAR images, which have important
practical value. By utilizing the reconstructed 3D contour, more accurate vehicle dimension
information can be obtained, which is useful in areas such as vehicle industrial design,
traffic planning and road safety. Additionally, the reconstructed 3D contour can be used
for vehicle target detection and tracking, which is beneficial for fields like autonomous
driving, traffic safety monitoring and smart transportation. The follow-up research is the
high-precision imaging of bistatic CSAR, and the targets’ classification and recognition
after the 3D reconstruction of targets.
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Abstract: Based on the Wentze–Kramers–Brillouin approximation, we derive formulae to calculate
the position of convergence zones in a range-dependent environment with sound speed profiles
varying in linear and ellipsoidal Gaussian eddy cases. Simulation results are provided for the linear
and ellipsoidal Gaussian eddy cases. Experiment data are used for calculations considering linearly
varying sound speed, and the findings suitably agree with the simulation results. According to the
evaluated environment, the influence of the range-dependent sound speed profile on the position of
the upper and lower convergence zones for different source depths is analyzed through simulations.
The corresponding results show that the influence of the sound speed profile on the position of the
upper convergence zone is greater for a shallower source. In contrast, the position of the lower
convergence zone for large-depth reception is less affected.

Keywords: convergence zone; transmission loss; Wentze–Kramers–Brillouin approximation; coupled
normal mode

1. Introduction

The marine hydrological environment, with its local sound speed profile structure,
considerably influences long-range sound propagation and alters time and space correla-
tions of underwater pressure fields. The sound speed profile in the deep sea causes rays
to refract or reflect and gather in a certain area to form a spatial periodic high-intensity
sound area called the convergence zone [1]. This zone is important for characterizing long-
range sound propagation, and research on its characteristics in the deep sea has become
a research hotspot.

Since the 1940s, several theoretical studies have been conducted on the sound propaga-
tion characteristics of the convergence zone, mainly focusing on the sound transmission loss
and impact of environmental factors on the position of the convergence zone. Woezel [2]
and Brekhovskikh [3] discovered sound fixing and ranging channels in the deep sea.
Urick [4] found that, with increasing sound source depth, the convergence zone splits,
with the inner zone moving inward and the outer zone moving outward. Schulkin [5]
analyzed the influence of bubbles and surface waves on sound propagation in the con-
vergence zone based on experimental data. Bongiovanni et al. [6] proposed a method to
locate the convergence zone based on deep-sea surface temperature data and evaluated
the prediction accuracy of this method using the parabolic equation method. Zhang [7]
used the normal mode theory to approximate the pressure field for ideal shallow water
mixed-layer conditions. Wang and Wang [8] analyzed the impact of strength, thickness,
and depth of the main thermocline on the convergence zone through numerical simulations
and found that the strength of the main thermocline has the greatest impact on the position
of the convergence zone. Chen et al. [9] found that the Subtropical Mode Water in the
Northwestern Pacific Ocean will help form a sonic duct which makes the convergence
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zone gain greater. Yang et al. [10] divided the sound speed profile in the North Atlantic
into six types and analyzed the influence of different types on the position and gain of
the convergence zone. Bi and Peng [11] found that, because of the earth’s curvature, the
location of the convergence zone moves toward the sound source, and its movement can
reach 10 km at 1000 km in distance.

With increasing knowledge of the deep sea, research on the convergence zone is
no longer limited to a range-independent environment but instead more focused on the
impact of mesoscale spatial variability on sound propagation in the convergence zone.
Henrick [12] analyzed the sound propagation characteristics of the convergence zone in
a range-dependent environment with an eddy by establishing an ideal eddy parameter
model. According to ray theory simulations, when the sound source is located at the center
of a cold eddy, the convergence zone moves closer to the sound source, and when the sound
source is far from the eddy center, the convergence zone movement reduces. Rudnick
and Munk [13] found that the influence of internal waves on the sound speed gradient
of a mixed layer causes the convergence zone to move towards the sound source. Colosi
and Rudnick [14] analyzed experimental data and found that a change in the thickness of
the mixed layer with range leads to energy leakage in the mixed layer, thus making the
convergence zone close to the sound source and increasing the width. Li et al. [15] found
that the convergence zone moves backwards and the width increases with an anticyclone
eddy, whereas the cyclone eddy has the opposite effect. Colosi and Zincola-Lapin [16]
analyzed the influence of mesoscale phenomena on mode coupling in the lower surface
sound channel and found that the convergence zone moves toward the sound source,
while the width increases under strong high-order coupling. White et al. [17] studied
the impact of internal waves and tides on sound propagation and found that the second
convergence zone moves farther from the sound source than from the first convergence
zone for a 250 Hz sound source. Zhang et al. [18] analyzed the impact of mesoscale
vortices on the convergence zone through the parabolic equation method, determining
that warm vortices increase the distance of the convergence zone, while cold vortices make
it smaller. Piao et al. [19] found that there is a convergence zone in the deep sea at large
receiving depths and analyzed the position of the convergence zone using ray mode theory.
Wu et al. [20] found that, under the influence of the Indian Ocean Dipole, the thermocline
fluctuation at the location of the second convergence zone has an important influence on
the formation and location of the third convergence zone. It is found that the location
of the third convergence zone shifts 2–3 km toward the sound source in the experiment.
Chandrayadula et al. [21] analyzed the influence of internal tides on the modes intensity
and compared with a new hybrid broadband transport theory.

In long-range sound propagation, the influence of the range-dependent sound speed
profile on the position of the convergence zone should be considered. Research on sound
propagation in the deep sea mainly focuses on the characteristics of long-range sound
propagation in a range-independent environment and the characteristics of the conver-
gence zone near the sea surface, while scarce studies are available on the influence of
range-dependent sound speed on the position of the convergence zone, especially the
convergence zone at large receiving depths. Ocean acoustic tomography is very impor-
tant. Studying the sensitivity of the convergence zone to the sound speed variation can
provide theoretical support for ocean acoustic tomography. In this paper, the formulae
to calculate the position of the convergence zone in a range dependent environment are
derived based on the Wentze–Kramers–Brillouin (WKB) approximation for the position of
the convergence zone in a range-independent environment. Two cases are considered. One
is linearly varying sound speed, and the other is ellipsoidal Gaussian eddy. The formulae
derived from the two cases are simulated and analyzed. Through the simulations, the
correctness of the formulae is verified. The formula for the linear case is further verified
with experimental data.

The remainder of this paper is organized as follows. In Section 2, the position of the
convergence zone in a range-dependent environment is derived for sound speed profiles
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with linear variation and ellipsoidal Gaussian eddy case. In Section 3, we report simulation
results using the derived formulae. In Section 4, the experimental setup is introduced, and
experimental data are processed and analyzed. In Section 5, we discuss the experimental
results. In Section 6, the conclusions are made.

2. Methods

2.1. Position of Convergence Zones

According to the normal mode theory, the pressure field of a single-frequency point
source for range r and depth z can be expressed as (suppressing the harmonic time depen-
dence, e−iωt)

p(r, z) = A∑
n

φn(zs)φn(z)H(1)
0 (knr), (1)

where z is the receiver depth, zs is the source depth, r is the horizontal range between the
source and receiver, A is a normalization constant, φn(z) is the normal mode depth function,
H(1)

0 (knr) is the Hankel function of the first kind that satisfies the radiation condition over
a large range, and kn is the horizontal wavenumber.

The normal mode depth functions satisfy the following differential equation:

d2φn(z)
dz2 +

[
k2

0q2(z)− k2
n

]
φn(z) = 0. (2)

In addition, they satisfy orthonormality:∫ H

0
φn(z)φm(z)dz = δnm, (3)

where k0 = ω0/c0, ω0 is the angular frequency, c0 is the reference sound speed, q(z) is the
depth-dependent refraction index, c0/c(z), and H is the sea depth. δnm is a Dirac function
whose value is equal to 1 only when n is equal to m.

When the refraction index is a slowly varying function of depth, or when the frequency
is high, the following WKB approximation is obtained:

λn(z)
2π

(∣∣∣∣dκn(z)
dz

∣∣∣∣/κn(z)
)
� 1, (4)

where κ2
n(z) = k2

0q2(z)− k2
n. λn(z) is the wavelength. Using the WKB approximation and

asymptotic approximation of the Hankel function in Equation (2), the phase function of the
pressure field can be obtained as follows:

θ = knr±
∫ z

zs
κn
(
z′
)
dz′. (5)

Tindle and Guthrie [22] and Beilis [23] unveiled constructive interference between
neighboring modes, resulting in a change of phase Δθ over a group of modes Δn being a
multiple of 2π, that is, Δθ/Δn = 2πm and

Δθ

Δn
= 2πm =

(
Δkn

Δn

)
r∓
∫ z

zs

kn(Δkn/Δn)
κn(z′)

dz′. (6)

From Equation (6), the position of the convergence zone in a range-independent
environment can be obtained as follows:

r = ±
∫ z

zs

kn

κn(z′)
dz′ + mDn, (7)

where Dn = 2π/(Δkn/Δn) is the modal skip distance.
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When the sound speed varies with range, the peak positions of the convergence zone
shift compared with those described by Equation (7). We consider an adiabatic approxi-
mation that discards any transfer of energy to other modes. Simultaneously, the refraction
index is a slowly varying function of depth satisfying the condition of Equation (4). Hence,
the variation in sound speed, δc(z, r), is introduced to derive the formula for the position
of the convergence zone in a range-dependent environment. The sound speed is defined as

c(z, r) = c(z) + δc(z, r), (8)

where c(z) is the sound speed at range 0 km. The corresponding phase function of the
pressure field is given by

θ =
∫ r

0
kn
(
r′
)
dr′ ±

∫ z

zs
κn
(
z′, r
)
dz′, (9)

where κn(z, r) =
[
k2

0q2(z, r)− k2
n(r)
]1/2 and q(z, r) = c0/c(z, r). Calculating Δθ/Δn = 2πm

yields

2πm =
∫ r

0

Δkn(r′)
Δn

dr′ ∓ kn(r)
Δkn(r)

Δn

∫ z

zs

1
κn(z′, r)

dz′. (10)

All the other quantities of interest are defined in terms of δc(z, r). The approximate
wavenumber is given by

kn(r) = kn + δkn(r), (11)

where

δkn(r) =
−k2

0
kn

∫ H

0
φ2

n
(
z′
)
q3(z′)( δc(z, r)

c0

)
dz′

Hence,
Δδkn(r)

Δn
=
−Δkn

Δn
δkn(r)

kn
, (12)

and

kn(r)
Δkn(r)

Δn
= kn

Δkn

Δn
+ O
{
[δkn(r)]

2
}

. (13)

Further,
κn(z, r) = κn(z) + δκn(z, r), (14)

where

δκn(z, r) = −
[
k2

0q3(z)δc(z, r)/c0 + knδkn(r)
]

κn(z)
.

Consider the second integral part in Equation (10):

In(z, r) = 1
κn(z,r) =

1
κn(z)+δκn(z,r)

= κn(z)−δκn(z,r)
κ2

n(z)
= In(z)− δκn(z,r)

κ2
n(z)

(15)

Equation (15) shows that the integral term in the sound speed under varying range
environment is composed of an integral term in a range-independent environment and a
change term caused by variations in sound speed. We derive specific formulae for sound
speed profiles with linear variation and ellipsoidal Gaussian eddy case.

2.2. Case of Linearly Varying Sound Speed

Consider the following specific form for the range variation of sound speed:

δc(z, r) = σrc(z)w(z), (16)
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where σ is the intensity parameter of the range variation, which is small, |σ|/k0 � 1, and
w(z) is a dimensionless function used to limit the range variation in a limited region of the
environment, 0 < w(z) ≤ 1. In this form of δc(z, r), Equation (15) can be rewritten as

In(z, r) = In(z) + σrp̂n(z), (17)

where

p̂n(z) =
k2

0q2(z)w(z)− k2
nan

κ3
n(z)

,

and modal constant an is given by

an =
k2

0
k2

n

∫ H

0
φ2

n
(
z′
)
q2(z′)w(z′)dz′. (18)

Substituting the above partial expressions into Equation (10), we obtain

r(1∓ σLn) +
σan

2
r2 = Rz + mDn, (19)

where Ln = Ln(z) = kn
∫ z

zs
p̂n(z′)dz′ and Rz = ±kn

∫ z
zs

dz′ In(z′), being only related to the
depth of the sound source and receiver.

When σ = 0, Equation (19) reduces to Equation (7). Compared with Equation (7), the
change in the first term on the left-hand side of Equation (19) adds a linear range variation
of sound speed, and the second term is a quadratic term related to range r in the phase
integral term owing to the linear variation in sound speed. Solving the quadratic problem

in r provides two roots. One root is −(1∓σLn)−
√

(1∓σLn)
2+2σan(Rz+mDn)

σan
< 0, which should

be neglected. The other root is

r =
−(1∓ σLn) +

√
(1∓ σLn)

2 + 2σan(Rz + mDn)

σan
, (20)

which indicates the position of the convergence zone in a range-dependent environment
with a linear variation in sound speed.

2.3. Case of Ellipsoidal Gaussian Eddy

The sound speed variation for the ellipsoidal Gaussian eddy can be expressed as

δc(z, r) = A0 exp

(
−
(

r− r0

dr

)2
−
(

z− z0

dz

)2
)

, (21)

where A0 is the amplitude of sound speed variation caused by the eddy, r0 and z0 determine
the center position of the eddy, and dr and dz are characteristic parameters of the semi-major
and semi-minor axes, respectively.

Equation (15) is thus rewritten as

In(z, r) = In(z) + ζ(r) p̂n(z), (22)

where

ζ(r) =
A0

c0
exp

(
−
(

r− r0

dr

)2
)

,

p̂n(z) =
k2

0q3(z) exp
(
−
(

z−z0
dz

)2
)
− k2

nan

κ3
n(z)

,
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an =
k2

0
k2

n

∫ H

0
φ2

n
(
z′
)
q3(z′) exp

(
−
(

z′ − z0

dz

)2
)

dz′.

By substituting the above partial expressions into Equation (10), we obtain

r +
A0an

c0

√
πdr
2

er f
(

r− r0

dr

)
∓ ζ(r)Ln(z) = Rz − Rr0 + mDn, (23)

where er f (x) is a Gaussian error function, Ln = Ln(z) = kn
∫ z

zs
p̂n(z′)dz′ and

Rz = ±kn
∫ z

zs
dz′ In(z′) are only related to the depth of the sound source and receiver, and

Rr0 = A0an
c0

√
πdr
2 er f

( r0
dr
)

is related only to the eddy center position and characteristic width.
Compared with Equation (7), the left-hand side of Equation (23) adds two terms. Term

A0an
c0

√
πdr
2 er f

(
r−r0

dr

)
is the result obtained by integrating the integral term with respect

to r in the phase function, owing to the Gaussian eddy environment. Term ζ(r)Ln(z) is
the product of the horizontal parameters and integral terms of vertical eddy parameters.
Simultaneously, the right-hand side of Equation (23) adds Rr0 compared with the range-
independent environment. Rr0 appears by the existence of eddy and is only related to the
eddy center position and characteristic width. The position of the convergence zone in the
ellipsoidal Gaussian eddy environment can be obtained by numerically calculating the root
of Equation (23).

3. Simulations

We verified the derived formulae through simulations considering sound speed pro-
files with linear variation and ellipsoidal Gaussian eddy case.

3.1. Case of Linearly Varying Sound Speed

For the simulation, we considered a sea depth of 4500 m. The sound speed profile at a
range of 0 km satisfied the Munk sound speed profile:

c(z) = c0
{

1 + ε
[
e−η − (1− η)

]}
, (24)

where η = 2(z− z0)/B, B = 1000 m, z0 = 1000 m, c0 = 1500 m/s, and ε = 5.7 × 10−3. The
sedimentary layer was considered to be a fluid with a constant sound speed of 1650 m/s
and density of 1.6 g/cm3. The acoustic absorption coefficient of the sedimentary layer was
0.5 dB/λ.

Figures 1 and 2 show the sound speed profile and depth variation function w(z) for
the first 400 m. In this range-dependent environment with linearly varying sound speed,
σ was set to −1.74 × 10−8, such that the maximum sound speed variation in the range of
450 km was −12 m/s. The source depth was 200 m, and the receiver depth was 3500 m.
Thus, the receiver depth was below the conjugate depth of the sound source.

 

Figure 1. Sound speed profile with linear variation.
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Figure 2. Depth variable function in linear variation case.

The transmission loss in the range-independent and range-dependent environments
was calculated using the normal and coupled normal modes, respectively. For the range-
dependent environment, adiabatic approximation, which assumes that no other energy
transfers to other modes, was used. We focused on the position of the convergence zone.
Thus, the modes with phase speeds less than the seabed sound speed, namely, the refracted
and surface-reflected modes, were selected for the simulations to calculate the transmission
loss. A comparison of the obtained transmission losses is shown in Figure 3.

Figure 3. Transmission losses in range-independent and range-dependent environments for linearly
varying sound speed.

To calculate the position of the convergence zone in a range-dependent environment
with linear variation in sound speed according to Equation (20), the modal strength of the
normal modes of each order must be calculated. The corresponding results are shown in
Figure 4. The modal strength of the lower mode is 0, and only the part with the larger
amplitude is shown in the figure.

Figure 4. Mode amplitudes for refracted and surface-reflected modes considering linearly varying
sound speed.

199



Remote Sens. 2022, 14, 6314

Figure 4 shows that mode 170 yields the strongest modal intensity at the receiver
depth. Computationally, the spread in mode Δn is defined by two successive minima in the
figure (i.e., Δn = 10). Table 1 lists the positions of the convergence zones calculated using
Equation (20) and the coupled normal mode.

Table 1. Positions of convergence zones obtained using proposed formulation and coupled normal
mode.

Number of Convergence Zones, m rri/km rrd/km req/km

1 76.6 76.6 76.6
2 134.5 134.4 134.4
3 192.0 191.1 190.0
4 248.5 246.6 245.6
5 305.0 301.9 301.3
6 361.5 356.3 356.8
7 417.9 411.1 412.4

In Table 1, column rri lists the position of the convergence zone in the range-independent
environment based on the normal mode. Column rrd lists the position of the convergence
zone in the range-dependent environment based on the coupled normal mode. Column req
lists the position of the convergence zone in the range-dependent environment obtained
from our derived Equation (20).

For the first two convergence zones, Equation (20) better agrees with the coupled
normal mode theory. With more convergence zones, there is an error between our formula-
tion and the coupled normal mode, but the error at the seventh convergence zone is only
1.3 km. The error may be explained as follows. First, by calculating the modal strength at
different ranges in sections, the maximum order of modal strength in the entire range is
the 170th order of the normal mode, but two successive minima appear near the highest
intensity mode change with increasing range. When calculating for 400 km, Δn should
be 14. With this change, the position of the seventh convergence zone is 411.7 km, and
the error with respect to the coupled normal mode result is smaller. Hence, the previous
error is partially due to the error of Dn in Equation (20) because of the selection of Δn after
increasing the range. Part of the error may also be caused by the fact that, although Δn
orders of normal modes yield the strongest modal intensity in the convergence zone, other
higher-order modes also have a certain impact. Therefore, the position of the convergence
zone, according to Equation (20), shows some error with respect to the results of all the
refracted and sea surface-reflected modes selected in the coupled normal mode. However,
the error is negligible, indicating that Equation (20) can be used to accurately calculate the
position of the convergence zone in a range-dependent environment with linearly varying
sound speed.

3.2. Case of Ellipsoidal Gaussian Eddy

For the simulation, we considered a sea depth of 4500 m. The sound speed profile at a
range of 0 km satisfied the Munk sound speed profile given by Equation (24). The Gaussian
eddy parameters were set as follows: intensity of cyclonic eddy of −30 m/s, semi-major
axis of 40 km, semi-minor axis of 400 m, eddy center r0 = 110 km, and z0 = 0 m. The
sedimentary layer was considered as a fluid with a constant sound speed of 1650 m/s and
density of 1.6 g/cm3. The acoustic absorption coefficient of the sedimentary layer was
0.5 dB/λ.

Figure 5 shows the sound speed profile for the first 400 m. The source depth was 200 m,
and the receiver depth was 3500 m. Thus, the receiver depth was below the conjugate
depth of the sound source.
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Figure 5. Sound speed profile of Gaussian eddy.

As for the linear variation in sound speed, the transmission loss in the range-independent
and range-dependent environments was calculated using the normal and coupled normal
modes, respectively. For the range-dependent environment, adiabatic approximation was
used. The refracted and surface-reflected modes were selected in the simulation to calculate
the transmission loss. The obtained transmission losses are shown in Figure 6.

Figure 6. Transmission losses in range-independent and range-dependent environments for ellip-
soidal Gaussian eddy case.

To calculate the position of the convergence zone in a range-dependent environment with
a Gaussian eddy using Equation (23), the modal strength of the normal modes of each order
must be calculated. The corresponding results are shown in Figure 7. The modal strength of
the lower mode is 0, and only the part with the larger amplitude is shown in the figure.

Figure 7. Mode amplitudes for refracted and surface-reflected modes considering ellipsoidal Gaussian
eddy case.
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Figure 7 shows that the strongest modal intensity at receiver depth is achieved at
mode 168. Computationally, the spread in mode Δn is defined by two successive minima
in the figure (i.e., Δn = 10). Table 2 lists the positions of the convergence zones calculated
according to Equation (23) and the coupled normal mode.

Table 2. Positions of convergence zones obtained using proposed formulation and coupled normal mode.

m rri/km rrd/km req/km

1 76.6 76.4 76.4
2 134.5 131.4 131.1
3 192.0 187.2 186.7
4 248.5 243.4 242.5
5 305.0 299.7 298.3
6 361.5 355.9 354.1
7 417.9 412.0 409.9

The columns of Table 2 have the same meanings as those of Table 1 but considering
Equation (23) for column req.

For the first convergence zone, Equation (23) agrees with the coupled normal mode
theory. For other zones, there is an error between the two results, mainly because the skip
distance is smaller than the numerical calculation. When considering the range of 400 km,
an appropriate Δn value is 14 for the position of the convergence zone to be 410.5 km.
However, the error is only about 0.5% between the result of Equation (23) and the coupled
normal mode in the seventh convergence zone, indicating that Equation (23) can be used to
accurately calculate the position of the convergence zone in a range-dependent environment
with a Gaussian eddy.

4. Experiments

4.1. Experimental Setup and Data Processing

In the summer of 2014, a deep-sea long-range sound propagation experiment was
conducted in the South China Sea. An experimental diagram is shown in Figure 8. A
hydrophone was placed at a depth of 3146 m, and the explosions at a depth of 200 m was
selected as the sound source.

Figure 8. Diagram of experimental setup for data collection. The sound source is represented as a
star mark.

Figure 9 shows the sea depth measured in the experiment, which was approximately
4300 m, within 450 km of the entire experimental range. Figure 10 shows the sound speed
profile at the hydrophone position measured by a conductivity, temperature, depth (CTD)
sensor. The CTD is placed at the bottom of the submersible buoy. With the deployment
and recovery of the submersible buoy, the sound speed profile of the whole depth can be
obtained. The axis of the sound channel was approximately 1000 m. Figure 9 shows that
the seabed in the first 300 km is flat, and there are three seamounts in 300–450 km. To ignore
the impact of sea depth changes on the convergence zone, the experimental data for the
first 300 km were selected for analysis.
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Figure 9. Bathymetry along experimental path.

 
Figure 10. Sound speed profile at hydrophone position.

To study the influence of sound speed variation, data represented by the hybrid
coordinate ocean model (HYCOM) were used to obtain the sound speed profile in different
ranges. The HYCOM data included temperature, salinity, density, and other parameters.
Shaji et al. [24] showed that HYCOM data can be used to simulate a real environment.
The precision of the HYCOM data selected for this study was 1/12◦. By obtaining the
temperature and salinity data from the experimental area and using Wood’s empirical
formula for sound speed, we obtain the following variation in sound speed:

c = 1450 + 4.206× T − 0.036× T2 + 1.137× (S− 35) + 0.0175× D, (25)

where c is the sound speed, T is the temperature, S is the salinity, and D is the depth.
The sound speed profile over the first 400 m of depth obtained from the HYCOM data

is shown in Figure 11, where the solid black line represents the depth of the maximum
sound speed in the mixed layer. The variation in sound speed is mainly concentrated at a
depth above 200 m, and the depth of the maximum sound speed in the mixed layer changes
slightly with range. To further analyze the characteristics of the surface sound speed in
the experimental area, the corresponding parameters were calculated for the environment
within 200 m.
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Figure 11. Sound speed profile obtained from HYCOM data.

Figure 12 shows the average sound speed, salinity, temperature, refractive index of
sound speed, sound speed gradient, and root-mean-square error (RMSE) of the sound
speed for depths above 200 m. In each graph, the circle indicates the depth of the maximum
sound speed in the mixed layer, and the asterisk represents the depth of the maximum
sound speed gradient. The salinity, temperature, sound speed gradient, and RMSE of
the sound speed show negligible changes above the depth of the maximum sound speed,
and all the parameters have obvious changes from the depth of the maximum sound
speed. Through Figure 12a–c, it is found that temperature is the main influencing factor
of sound speed. At the depth of maximum sound speed gradient, the RMSE of the sound
speed also reaches its maximum. Below this depth, the RMSE of sound speed decreases
again. Figure 12 shows that the depth variation function can be described by the RMSE of
sound speed, namely, w(z) = crmse/max(crmse) in Equation (16), where crmse is the RMSE
of sound speed.

Figure 12. Parameters obtained for depths above 200 m. (a) Average sound speed, (b) salinity,
(c) temperature, (d) refractive index of sound speed, (e) sound speed gradient, and (f) RMSE of sound
speed. The circle indicates the depth of the maximum sound speed in the mixed layer, and the asterisk
represents the depth of the maximum sound speed gradient.

4.2. Experimental Results and Analysis

The sound source used in the experiment was an explosion located at a depth of 200 m.
When calculating the transmission loss curve of the sound pressure field, the broadband
explosion source is usually filtered in a one-third octave with a certain center frequency,
and then the filtered signal is processed. We filtered the received signal with a one-third
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octave of the central frequency of 200 Hz, and the experimental transmission loss was
calculated as

TL( f0|(r, z)) = SL( f0)− (10lg[E( f0)]−Mv − βm), (26)

where SL( f0) is the source level of the explosion sound (199.8 dB in this experiment), E( f0)
is the average energy within the signal bandwidth, Mv is the sensitivity of the hydrophone
(−185 dB), and βm is the amplification factor of the receiver (30 dB).

Figure 13 shows the transmission loss calculated from the experimental data and using
normal mode theory. The asterisks indicate the results from experimental data, while the
blue curve indicates the results of the range-independent environment, that is, the result
calculated from the sound speed profile in Figure 10, and the red curve indicates the results
of the range-dependent environment, that is, the result calculated from the sound speed
profile in Figure 11. The change in sound speed profile is small within the first 150 km, and
the position offset of the convergence zone caused by the sound speed variation is also
small. After 150 km, the change in sound speed increases, and the position offset of the
convergence zone also increases. Figure 13b–f show the transmission loss curves of the
five convergence zones. The simulated transmission loss curve is more consistent with the
experimental data when considering the sound speed variation.

 

Figure 13. Transmission loss obtained from experiment and simulation. Results from (a) complete
path and from (b–f) first to fifth convergence zones. In each graph, red line is the result of range
dependent case. Blue line is the result of range independent case. The asterisk is the result of
experimental data.
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We used Equation (20) to calculate the position of the convergence zone under sound
speed variations. The sound source was located at 200 m, and the receiver depth was
3146 m, being below the reciprocal depth of the sound source. The modal strength of the
normal modes, for which the phase speed is smaller than the bottom sound speed, is shown
in Figure 14. The modal strength of the lower mode is 0, and only the part with larger
amplitude is shown in the figure.

Figure 14. Mode amplitudes for refracted and surface-reflected modes obtained from experimental data.

Figure 14 shows that mode 170 yields the strongest modal intensity at the receiver
depth. Computationally, the spread in mode Δn is defined by two successive minima in the
figure (i.e., Δn = 17), and the WKB approximation (Equation (4)) is considered. From the
coupled normal mode, the horizontal wavenumber of mode 170 is 0.9297. Substituting this
value into expression κn(z) and using Equation (4), we obtain 7.8 × 10−4, being much less
than 1 as required. Therefore, the refraction index is a slowly varying function of depth at
this frequency. Equation (20) can be used to calculate the position of the convergence zone.
The sound speed variation is calculated in segments with varying intensity parameter σ,
such that δc(z, r) is closer to the real sound speed profile. By substituting all the parameters
into Equation (20), the position of the convergence zone is obtained. Table 3 lists the
results obtained from our derived formula and coupled normal mode. The position of the
convergence zone obtained in the experiment is listed in the fourth column.

Table 3. Positions of convergence zones obtained using proposed formulation and coupled normal
mode on experimental data.

m rri/km rrd/km rex/km req/km

1 72.7 72.6 73.6 72.6
2 124.9 124.4 122.1 124.3
3 175.2 174.3 173.7 173.8
4 226.4 224.9 225.2 224.3
5 277.6 275.8 275.6 274.9

Equation (20) suitably provides the position of the convergence zone for a range-
dependent sound speed profile. After the five convergence zones, there is a small difference
of 0.9 km between the coupled normal mode and proposed formulation. The positions
of the convergence zones obtained from the range-dependent and range-independent
environments listed in Table 3 show that more convergence zones cause an increasing
position offset owing to the sound speed variation. Because the variation in sound speed
after 150 km accelerates, the absolute value of σ increases. Thus, according to Equation (20),
the position offset of the convergence zone increases.

Figure 15 shows the transmission losses in range-dependent and range-independent
environments for sound source and receiver depths of 200 m. The transmission loss curve
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is basically the same in both cases, and the position and gain of the convergence zone are
equal because the sound speed variation does not change considerably before 150 km. After
150 km, owing to the increasing sound speed variation, the transmission loss curve begins
to exhibit differences, and the position and gain of the convergence zone change between
the environments. In Figure 15, the fifth convergence zone is enlarged locally. Through
the transmission loss curve, a position offset of 2.4 km occurs at the fifth convergence
zone owing to the sound speed variation. Compared with the transmission loss curve in
Figure 13 and enlarged view, the convergence zone is shifted by approximately 1.8 km
owing to the sound speed variation at a receiver depth of 3146 m. For the sound source
below the mixed layer, the influences of the sound speed variation with range on the
convergence zone near the sea surface and the convergence zone for large-depth reception
are similar, and the influence on the convergence zone for large-depth reception is smaller.

Figure 15. Transmission loss obtained from range-independent and range-dependent sound speed
profiles with source and receiver depths of 200 m.

Figure 16 shows the results for a source depth of 100 m in the mixed layer. The receiver
depths are 100 m and 3800 m, which is the reciprocal of 100 m. Before 150 km, given the
small sound speed variation, the position and gain of the two types of convergence zones
show negligible changes. When the sound speed variation changes notably after 150 km, it
influences the position of the convergence zone. As the sound speed gradually decreases
with range, the convergence zone shifts to the sound source, and the convergence zone
near the sea surface is more affected than the convergence zone for large-depth reception.
In this environment, the sound speed variation causes the convergence zone near the sea
surface at the fifth convergence zone to shift by approximately 5 km, while the convergence
zone for large depth reception only shifts by approximately 1 km.

 
Figure 16. Transmission loss obtained from range-independent and range-dependent sound speed
profiles at source depth of 100 m and receiver depths of (a) 100 and (b) 3800 m.
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Comparing Figures 13, 15 and 16, the variation in sound speed has a greater influence
on the convergence zone when the source is at the mixed layer than when the source is
below it. According to Equation (20), the upper and lower limits of the integral of Ln in the
molecule are related to the depth of the sound source, and the integral term contains depth
function w(z). When the sound source is located at the mixed layer, w(z) is large, and the
offset of the convergence zone distance increases. Comparing Figures 13 and 16b, as the
receiver depth increases, the influence of the sound speed variation on the position of the
convergence zone for large-depth reception decreases.

5. Discussion

The results of the experimental data show that the formula derived in this paper can
accurately predict the position of the convergence zone when the sound speed varys linearly.
As for the ellipsoidal Gaussian eddy case, the simulation results verify the correctness of the
formula. The position of the convergence zone in other mesoscale phenomena cases may
also be derived as long as the specific δc(z, r) can be expressed. However, further research
is still needed for other cases of stochastic sound speed variation. In addition, for real world
problems, the roughness of the sea surface needs to be incorporated into the stochastic part
of the problem. Simulation and experimental data reveal that the convergence zone for
large-depth reception has a good convergence gain, and it is less affected by the sound
speed variation. Accurate prediction of the position of the convergence zone will play a
key role in ocean acoustic tomography.

6. Conclusions

Based on the WKB approximation, we derived the position formulae of the conver-
gence zone in a range-dependent environment with sound speed profiles varying in linear
and ellipsoidal Gaussian eddy cases. The formulae obtained under the two profiles were
simulated. By comparing the calculation results obtained from the coupled normal mode
and derived formula, we verified the accuracy of the formula of the convergence zone
position under a range-dependent sound speed profile. In addition, the derived formula
under linear variation was verified using experimental data. The experimental data and
convergence zone position simulated by the coupled normal mode were compared to
further verify the correctness of the derived formula.

A simulation was carried out based on experimental data, and the influence of the
sound speed variation on the position of the convergence zone was analyzed when the
sound source was located at and below the mixed layer. We can draw the following
conclusions: (1) When the sound source is located below the mixed layer, the sound speed
variation reduces the offset in the position of the convergence zone, but the offset near the
sea surface is larger than that of the convergence zone for large-depth reception. In the
fifth convergence zone, the offset for the zone near the sea surface is approximately 2.4 km,
and the position offset for large-depth reception is approximately 1.8 km. (2) When the
sound source is located at the mixed layer, the influence of sound speed variation on the
position of the convergence zone near the sea surface is substantially increased. However,
the influence on the position of the convergence zone for large-depth reception decreases.
In the fifth convergence zone, the position offset near the sea surface is approximately
5 km, and the offset for large-depth reception is approximately 1 km. Through simulation
and experimental data, the convergence zone for large-depth reception also has a good
convergence gain, increasing the applicability of this type of convergence zone. When
considering long-range target detection, the convergence zone for large-depth reception
is more appropriate than that near the sea surface because the former is less affected by
sound speed variations.
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Abstract: Pulse noise (such as glacier fracturing and offshore pile driving), commonly seen in the
marine environment, seriously affects the performance of Direction-of-Arrival (DOA) estimation
methods in sonar systems. To address this issue, this paper proposes a high robustness underwater
target estimation method based on variational sparse Bayesian inference by studying and analyzing
the sparse prior assumption characteristics of signals. This method models pulse noise to build an
observation signal, completes the derivation of the conditional distribution of the observed variables
and the prior distribution of the sparse signals, and combines Variational Bayes (VB) theory to
approximate the posterior distribution, thereby obtaining the recovered signal of the sparse signals
and reducing the impact of pulse noise on the estimation system. Our simulation results showed that
the proposed method achieved higher estimation accuracy than traditional methods in both single
and multiple snapshot scenarios and has practical potential.

Keywords: array signal processing; sparse Bayesian learning; direction estimation; pulse noise

1. Introduction

As an underwater sensor, a hydrophone can realize the real-time monitoring of various
opportunistic sound sources and environmental noise in the ocean. However, estimating the
distance and direction of the sound source solely based on a single hydrophone is difficult,
and a single hydrophone has a low signal-to-noise ratio (SNR) and limited detection range.
On the contrary, an array of hydrophones exhibits strong capabilities in estimating the
direction and distance of the sound source and has a significantly higher SNR than a
single hydrophone. Research on underwater acoustic arrays in terms of SNR improvement,
distance, and direction estimation has become a significant topic.

Array signal processing is a technology that uses a group of sensor arrays to spatially
sample signals and then uses corresponding signal processing algorithms to enhance and
estimate the parameters of the received data. Compared to methods that use a single sensor
to collect and process signals, array signal processing technology can achieve spatial gains
by utilizing the spatial characteristics of the signal, thereby improving the accuracy of
parameter estimation [1].

DOA estimation of underwater wave propagation is a significant research subject
in array signal processing and has substantial theoretical and practical implications for
underwater target detection and tracking. In the field of underwater acoustic signal
processing, commonly used DOA estimation methods include conventional beamforming
and the Multiple Signal Classification (MUSIC) algorithm. However, these methods have
limited ability to estimate the direction of adjacent signal sources and may even fail in
the case of impulsive noise [2]. Therefore, conducting research on the DOA estimation of
underwater targets has significant theoretical and practical implications.
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Beamforming technology, based on array technology, is the main approach for high-
precision target detection. In their research, Kawachi et al. demonstrated the design
and testing of an echo-PIV system that efficiently mapped the interior and fluid flow of
a submerged vessel using a single divergent signal wave and delay-and-sum process-
ing. However, the DW-DAS echo-PIV method is not useful for sensing leakage points
and underwater debris at relatively short distances and over a narrow field of view [3].
Meanwhile, Shostak et al. proposed a new method for estimating the distance to any
underwater object or physical phenomenon by analyzing the curvature of the wavefront
and its impact on the measuring sonar system of correlated noise. They also provided
results that substantiated this method [4]. Li et al. demonstrated a method for estimat-
ing seabed parameters that used the spatial characteristics of the ocean’s ambient noise
without relying on matched-field processing [5]. Zhou et al. reported improvements over
conventional PGC methods, and the hydroacoustic sensor system has great potential in
large-scale multiplexing [6]. Li et al. investigated the effectiveness of array processing
for the passive monitoring of gas seeps and proposed using beamforming methods to
enhance the SNR and improve the productivity of passive acoustic systems [7]. Verdon
et al. presented a case study showcasing the use of an “L”-shaped downhole fiber-optic
array for monitoring microseismic activity [8]. Other influential work includes Schinault
et al., 2019. The array, in its current state of development, is a low-cost alternative to obtain
quality acoustic data from a towed array system. Their study demonstrated that this array
could be used for observing whales and ship tonals at ranges up to 5 km, receiving acoustic
signals from targets of interest with enhanced SNR and directional sensing capabilities.
Marine mammal vocalizations have been captured by this prototype array, and whale
species have been identified through visual observation [9]. Xie et al. proposed a robust
wideband beamforming algorithm based on subspace spectrum separation for addressing
the issue of manifold deviations that may occur in sensor arrays. In this algorithm, a
sensor array manifold calibration method based on subspace partitioning was proposed,
and an improved interference–noise covariance matrix reconstruction method based on
spectral separation was derived. Firstly, the space was divided into several subspaces
using the Capon spatial spectrum, and the array manifold deviation was calibrated. Then,
noise and interference information was accurately extracted through spectral separation,
and finally, the optimal beamformer was designed based on the extracted information.
Simulation results showed that this algorithm had good performance for different types
and ranges of array manifold deviations. Furthermore, the wideband interference will be
further considered in future work [10]. Zou et al. developed a hybrid analytical–numerical
method that combines the analytical technique with the acoustic superposition approach
to predict the sound radiation of a spherical double-shell within the ocean’s acoustic envi-
ronment. Green’s function was utilized to simultaneously analyze the coupled vibration
of fluid–structure, near-field, and far-field sound radiation. To reduce the computational
complexity, the near-field was simulated using the image source method, while the far-field
was simulated using the normal mode method. This method was used to calculate the
sound radiation field of a spherical double-shell with positive and negative gradient sound
velocity profiles in a shallow ocean acoustic environment. However, there was no obvi-
ous interfering phenomenon in the contour of the sound pressure distribution when the
spherical shell was at a certain submerging depth. This requires further study of the related
mechanism [11]. The numerical results were compared with finite element calculation
results, and the efficiency was improved without compromising the calculation accuracy. A
deconvolution method for conventional beamforming (CBF) was proposed in reference [12],
which showed theoretically higher array gain (AG) than CBF and provided the possibility
of detecting weak signals using the SNR [12]. However, simulation data processing showed
that effective AG decreased with a decreasing SNR. The method of output signal subspace
deconvolution for CBF was used to recover most of the AG loss and track the azimuth and
time of weak signals. Frequency difference beamforming (FDB) provided a robust estimate
of the wave propagation direction by shifting the signal processing to lower frequencies.
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Xie et al. proposed a deconvolution frequency difference beamforming (Dv-FDB) method
to improve array performance, which produced narrower beams and lower sidelobes while
maintaining robustness. Based on this, the R-L algorithm was used for deconvolution to
make Dv-FDB’s spatial spectrum clearer. Simulation and experimental results showed
that Dv-FDB was superior to FDB in higher resolution and lower sidelobes while main-
taining robustness. Existing R-L methods are limited to arrays with offset-invariant beam
patterns [13]. Byun et al. (2020) proposed a multi-constraint method for matching field
processing (MFP) to address the uncertainty of the array tilt, and the experimental results
verified the robustness of MFP. In summary, beamforming-based target direction estimation
algorithms for underwater acoustic arrays can improve the performance of weak signal
detection and underwater noise suppression, but the computational complexity of these
algorithms needs to be considered. An additional important source of mismatch is the array
tilt, which has not received much attention, in spite of its significant impact, especially for a
large array tilt observed in shallow environments [14]. Other influential works in this field
included Zhu et al. and Zhang et al. [15,16].

Another representative class of estimation algorithms is the MUSIC algorithm. MUSIC
is a high-resolution DOA estimation algorithm that was first introduced by Schmidt in
1986. It is a non-parametric algorithm that does not require any prior knowledge of
signal statistics, and it is widely used in many fields, including radar, sonar, and wireless
communications. The main idea behind the MUSIC algorithm is to transform the received
signal into the frequency-domain and estimate the DOAs of the incoming signals based on
the eigenvalues and eigenvectors of the covariance matrix of the received signal. Specifically,
the MUSIC algorithm first divides the entire space into two subspaces: the signal subspace
and the noise subspace. The signal subspace contains the eigenvectors corresponding
to the signal, while the noise subspace contains the eigenvectors corresponding to the
noise. The DOAs of the incoming signals are then estimated by calculating the peaks of the
spectrum of the noise subspace. Compared to other DOA estimation algorithms, such as
beamforming and the Estimation Signal Parameter via Rotational Invariance Techniques
(ESPRIT), MUSIC has several advantages, including a high-resolution, robustness to noise,
and the ability to handle both coherent and incoherent signals. However, it also has some
limitations, such as sensitivity to array geometry, the need for an accurate estimation of
the noise subspace, and computational complexity. Overall, MUSIC is a powerful and
widely used DOA estimation algorithm that has applications in many fields, including
signal processing, wireless communications, radar, and sonar.

Yi et al. utilized passive array sonar systems to track a changing number of underwater
targets, also known as acoustic emitters [17]. However, the authors did not consider
information fusion among multiple passive sonar’s systems. Huang et al. addressed
the problem of DOA estimation with one-bit quantized array measurements. Otherwise,
the approximation error becomes relatively large at a high SNR, which deserves further
Investigation [18]. Cheng et al. proposed a marine environment noise suppression method
for multiple-input multiple-output (MIMO) applied to the DOA estimation of multiple
targets. In future work, it is worth exploring further optimization of the noise suppression
algorithm model to reduce the impact of pre-estimation results on the DOA estimation
accuracy [19]. As the underwater detection platform has a limited size, the traditional
bulky linear array is not feasible. To address this issue, Li et al. investigated the joint
processing–MUSIC (JMUSIC) algorithm for estimating the DOA in shallow sea multi-path
environments using a non-uniform line array of acoustic vector sensors. It is a pity that
the authors only conducted research in an ideal situation and did not take into account
complex situations [20]. Zhu et al. proposed a method for obtaining the optimal waveform
estimation of source signals in a spatial scanning orientation through the estimation of
the maximum posterior probability criterion and the iterative convergence process of
the constraint equation. The experiment yielded excellent results in the case of single
snapshots, but it is also worth paying attention to how fast the shots were [21]. Ahmed
et al. conducted a comparative study of deterministic and heuristic algorithms for viable
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DOA estimation for different dynamic objects in underwater environments. To achieve the
precise positioning of underwater targets at a close range [22], Ahmed et al. utilized the
Cuckoo Search Algorithm (CSA) and swarm intelligence to optimize DOA estimation with
a Uniform Linear Array (ULA) in various underwater scenarios [23]. An et al. proposed a
combination of a linear array composed of multiple mutually perpendicular sub-arrays,
overcoming the ambiguity of a single linear array’s port and starboard orientation [24].
Under normal circumstances, both Ahmed and An had achieved research results, but in
unconventional situations, such as pulse environments, it is worth exploring the advanced
nature of the algorithms.

In recent years, there has been significant development in DOA estimation algorithms
based on SBL. SBL is a statistical inference technique that is used to estimate sparse signals
from noisy and incomplete data. It is a type of Bayesian regularization method that aims to
find the most probable solution to an inverse problem by incorporating prior knowledge
and assumptions about the underlying signal. In the context of DOA estimation, SBL is
used to estimate the sparse signal of the DOA parameters from the array measurements.
The key idea of SBL is to formulate the DOA estimation problem as a Bayesian inference
problem, where the unknown DOA parameters are modeled as random variables, and the
prior distribution of the DOA parameters is assumed to be sparse. By incorporating the
prior information about the sparsity of the DOA parameters, SBL can effectively suppress
the noise and interference in the array measurements and accurately estimate the DOA
parameters, even in the presence of a limited number of snapshots. SBL algorithms typi-
cally involve iterative optimization procedures that update the estimates of the unknown
parameters based on the observed data and the prior distribution. These algorithms can
be computationally intensive, but they have been shown to be effective in a wide range of
DOA estimation applications, including radar, sonar, and wireless communications.

Wang et al. aimed at the problem of interactions among the hydrophone array elements
of the actual sonar array, which causes estimation performance dropping of the array’s
DOA, and a DOA estimation method under uncertain interactions of the array elements
was proposed. However, the author did not note the relevant signals [25]. In order
to achieve the high-precision Direction-of-Arrival (DOA) estimation of array signals in
complex underwater acoustic environments, the root off-grid sparse Bayesian learning
(ROGSBL) algorithm was applied to an underwater acoustics field [26]. In 2022, Haodong
Bai studied the efficient DOA processing algorithm under multi-snapshots by aiming at
the problem that the DOA estimation method, based on sparse Bayesian learning under
single snapshots, has a low estimation accuracy and a large number of operations for
increasing the number of snapshots [27]. He et al. proposed the SS-OGSBI algorithm
to solve the problem of off-grid DOA estimation under coherent sources [28]. Guo et al.
applied sparse Bayesian learning to the DOA estimation of underdetermined broadband
signals with mutual arrays in unknown noise fields [29], while Shen et al. proposed an
off-grid DOA estimation method based on subspace fitting and block-SBL to address the
poor performance of traditional SBL-based DOA estimation algorithms under low SNR
conditions [30]. Other influential works in this field included Yu et al., Ma et al., Zhu et al.,
Jimenez-Martinez M and Zhang et al. [31–35].

Although researchers have provided answers to the questions raised and made signifi-
cant contributions to the field of Direction-of-Arrival (DOA) estimation using beamforming
in underwater acoustics, the algorithms themselves have limitations. The researchers
conducted their studies under the background of Gaussian noise, and further investiga-
tion is necessary to determine the robustness of the algorithms in highly impulsive noise
environments.

In this article, a high robustness underwater target estimation technique based on
variational sparse Bayesian is put forward by studying and analyzing the sparse prior as-
sumption characteristics of the signal. The method models the observed signal by modeling
the pulse noise, completes the derivation of the conditional distribution of the observed
variables and the prior distribution of the sparse signal, and then combines the approx-
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imate posterior distribution obtained by the VB method to obtain the recovered sparse
signal, thereby reducing the impact of pulse noise on the estimation system. Finally, the
performance of the aforementioned method was validated through simulation experiments.

2. Materials and Methods

2.1. Uniform Linear Array Signal Model

The linear array model is a fundamental mathematical framework for addressing the
problem of sound source direction estimation. The model posits the existence of a linear
array composed of multiple small sound sources, each of which continuously emits the
same sound wave signal. These sound waves propagate through distinct paths to reach
the receiving array, where the signal measured by each receiving element is expressed as a
weighted sum of the signals stemming from each emitting source. More specifically, the
linear array model comprises a transmit array and a receive array. Each sound-emitting
source within the transmit array emits identical sound wave signals, which subsequently
arrive at different receiving elements in the receive array via various propagation paths.
The signal measured by each receiving element in the receive array is then computed
as a weighted sum of the signals originating from the sound-emitting sources. These
weighting coefficients reflect the path delay and attenuation factors experienced by the
sound wave signal as it travels from the emitting source to the receiving element. Through
the processing of signals within the linear array model, the direction of the sound source
can be estimated. This involves calculating key parameters, such as the time delay and
phase difference between individual receiving elements within the receiving array. Hence,
the linear array model finds extensive applications in fields such as sound source direction
estimation, sound beamforming, and signal source separation.

Consider an M-element ULA, the observation vector of the array can be defined as:

y(t) = A(θ)S(t) + n(t), t = 1, 2, . . . , T (1)

Here, n(t) represents independent identically distributed Gaussian white noise. The array
manifold matrix is denoted by A(θ) and denoted as A(θ) = [a(θ1), a(θ2), · · · , a(θn)]. The
matrix A of size M × N represents the phase information of the array, where N is the
number of signal sources, and M is the number of sensors.

The covariance matrix for the array output is defined as follows:

R = Ã(θ)AH(θ) + δ2I =
N

∑
n=1

Pna(θn)a
H(θn) + δ2I (2)

In this equation, Pn = E =

[∣∣∣S̃n(t)
∣∣∣2].

In practical applications, the correlation matrix is commonly used to estimate the
output covariance matrix of the array. The correlation matrix is represented as follows:

R̃ =
1
T

T

∑
t=1

x(t)xH(t) (3)

In order to explain the principle of ULA more clearly, it can be explained in more
detail in Figure 1.

2.2. Pulse Noise Distribution Model—Student-t Distribution

In this section, we will present an exposition on the Student-t distribution from three
perspectives: origin, definition, and frequency spectrum. Regarding the parameter settings
of the noise model in the frequency spectrum section, we will adopt the parameters used in
the experiment described in this article as the standard. The primary objective is to provide
a more intuitive illustration of the advantages of replacing pulse noise with the Student-t
distribution model.
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θ

Figure 1. Uniform Linear Array signal model.

The main objective of array signal processing is to effectively remove noise from noisy
observation data, thereby enabling the accurate recovery of the original signal and extrac-
tion of desired information. In many areas of array signal processing, narrowband signal
models are commonly assumed, and noise is modeled as following a Gaussian distribution
due to the fact that the Gaussian distribution satisfies the central limit theorem and has
finite second-order and higher-order statistics. Additionally, signal characteristics can be
represented by the mean and variance at any time. However, in real-world experimental
environments, many types of noise do not adhere to a Gaussian distribution model. Such
noises typically exhibit instantaneous pulse characteristics and more frequent abnormal
data compared to Gaussian noise. Therefore, using a Gaussian distribution model to replace
the noise model is not a realistic approach. For instance, if pulse noise is present in the DOA
estimation environment, the noise distribution would have a heavy tail and a distribution
with a heavier tail would be required to replace the Gaussian distribution.

Pulse noise models can be classified into two categories based on their generation
mechanism: real physical statistical models and theoretical analytical models. Compared to
physical statistical models, theoretical analytical models have relatively fixed mathematical
expressions, which makes them more convenient for theoretical analysis. In the field of
DOA estimation in the pulse environment, three models have been widely used, including
the mixed Gaussian distribution model, the Alpha stable distribution model, and the
Student-t distribution model. This paper primarily models pulse noise using the Student-t
distribution, and the fundamental concepts of the Student-t distribution will be elaborated
in detail below.

Gosset was a quality control officer at a brewery in 1908 when he discovered and
proposed the Student-t distribution. At that time, he needed to study the variability of
beer brewing in small sample sizes. However, since the data samples that he studied were
very small, he could not use a traditional normal distribution for statistical analysis. To
remedy this issue, Gosset examined the distribution of the population mean given the
sample mean and sample standard deviation. He discovered that if the sample came from
a normal distribution, the difference between the sample mean and the population mean
could be described by a new distribution, which was later named the Student-t distribution.
Gosset initially dubbed this distribution the “distribution of errors” because it was used to
describe the error between the sample mean and the population mean. Later, the Student-t
distribution became widely used in statistics, and it was named after Gosset’s pen name,
“Student”. The Student-t distribution is a probability distribution that is commonly utilized
to model data with heavy tails, i.e., tail probabilities that are significantly higher than those
of a normal distribution.
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The model of the Student-t distribution can be defined as follows:

n(t) ∼ S(v|u, Λ, ς) (4)

where u is the average of the M-dimensional vector, v, Λ = diag(Λ1, Λ2, · · · , ΛM) denotes
the precision matrix, and ς denotes the degree of freedom (DOF) parameter. The decay
becomes slower as the DOF decreases. When the degrees of freedom decrease, the shape
of the Student-t distribution changes, with the peak of the probability density function
becoming lower and the tails becoming thicker. This makes it better suited for describing
pulse noise. In order to explain the student’s t-distribution more clearly, we did a simple
simulation experiment and obtained the results shown in Figure 2.

Figure 2. Student-t distribution in the time-domain spectrum.

This experiment was mainly used to plot the time-domain and frequency-domain
graphs of the Gaussian distribution and Student-t distribution. We first set three parameters:
mean = 1, standard deviation = 6, and degrees of freedom = 30. Then, it generated an
x-axis vector containing 1000 points using the “linspace” function, used to represent the
continuous variable, x, in the time-domain. Next, the probability density functions of
the Gaussian distribution and Student-t distribution were calculated to generate the time-
domain graphs of the two distributions. The program used the “plot” function to plot the
time-domain graphs of the two distributions.

The next part of the experiment was used to plot the frequency-domain graphs of
the Gaussian distribution and Student-t distribution. The experiment first used the “fft”
function to calculate the Fourier transform of the time-domain graph and used the “fft-
shift” function to center the result. Then, we used the “linspace” function to generate the
continuous variable “freq” in the frequency domain and used the “plot” function to plot
the frequency-domain graphs of the two distributions and added axis labels, legends, and
titles.

When plotting the graphs, the program used the “hold on” function to make both
graphs of the distributions plotted on the same figure. This is performed to better compare
the differences between the two distributions.
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In the present illustration, it can be observed that the time-domain spectrum of the
Student-t distribution exhibits a shape similar to that of the Gaussian distribution. However,
compared to the Gaussian distribution, under the parameters set in this experiment, the
Student-t distribution is better able to model noise with local outliers, such as impulse noise.
Additionally, in the frequency-domain spectrum, the frequency response of the Student-t
distribution is smoother than that of the Gaussian distribution. That is, its amplitude
changes more slowly with frequency, which also helps to reduce the impact of impulse
noise in the high-frequency range. Therefore, in this paper, the Student-t distribution is
adopted as the model for impulse noise.

2.3. Graphical Models

The interaction between entities involved in a probabilistic system is represented by a
graphical model, where nodes represent random variables, and arrows depict dependencies
between variables [36]. A directed arrow from node A to node B indicates that the value of
random variable B depends on the value of random variable A. Graphical models can be
categorized into directed graph models and undirected graph models [15,36]. This paper
focuses on directed graph models, also known as Bayesian network graphical models [37].

The definition of a directed graph model is as follows:
Given the conditional probability distribution of each node in the graphical model,

the formula for calculating the joint distribution over all variable sets is p(x) [38].

p(x) = Π
s

p
(

xs

∣∣∣xπ(s)

)
(5)

Figure 3 shows an example of a directed graph model. In this model, a, b, and d
represent random variables, and each node in the graphical model represents a conditional
probability density. If the probability density of the node is unknown, it can be param-
eterized by a set of parameters. The joint distribution of the probability density is then
expressed as follows:

p(a, b, d) = p(a; θ1)p(b; θ2)p(d|a, b; θ3) (6)

 
Figure 3. Example of a directed graph model.
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The above expression can be simplified by considering the independence implied by
the structure of the graphical model. Generally speaking, in the graphical model, each
node is independent of its higher-level nodes. Therefore, expression (6) can be simplified
as follows:

p(a, b, d) = p(a; θ1)p(b; θ2)p(d|a; θ3) (7)

Another function of the graphical model is to arbitrarily distinguish random variables
into those with directly observed results and those with hidden random variables without
directly observed results [39]. In addition, the graphical model can be divided into parame-
terized graphical models and non-parameterized graphical models. If it is a parameterized
graphical model, the parameters will appear in the conditional probability distribution
of some nodes; that is, the probability models of these distributions are parameterized
probability models.

3. Theoretical Model

In this paper, a high robustness underwater target estimation method based on varia-
tional sparse Bayesian inference is proposed by studying and analyzing the sparse prior
assumption characteristics of the signal. The method models the observed signal by model-
ing the pulse noise, completes the derivation of the conditional distribution of the observed
variables and the prior distribution of the sparse signal, and then combines the VB method
to obtain the approximate posterior distribution, thereby obtaining the recovered signal of
the sparse signal.

Firstly, it is assumed that there exist N narrowband signals impinging upon an
M-element linear array.

Y = ΦX + N (8)

In the equation, the observation matrix is represented by Y ∈ CM×L, X ∈ CN×L

represents the original signal, N ∈ CM×L represents the noise matrix, and Φ ∈ CM×N

represents the measurement matrix.
In the above Bayesian model, the joint distribution of all the observed variables and

unknown variables is required, which usually includes the conditional distribution of
the observed variables and the prior distribution of the sparse signal. The conditional
distribution of the observed variables and the prior distribution of the sparse signal are
derived, and the approximate posterior distribution is obtained through the VB method,
thereby obtaining the recovered signal of the sparse signal.

3.1. Derivation of Conditional Distribution of Observation Variables

Modeling the pulse noise using the Student-t distribution, the probability density
function is given as follows:

S(v|u, Λ, ς) =
Γ
(

M+ς
2

)
Γ
( ς

2
)
(ςπ)

M
2
|Λ| 1

2

[
1 +

(v− u)TΛ(v− u)
ς

]−M+ς
2

(9)

where Γ(·) denotes the Gamma function, assuming that all the columns of the noise matrix
are independent and follow a zero-mean Student-t distribution [40].

By introducing the latent variable, λ, the Student-t distribution is an infinite mixture
of Gaussian distributions with variances extended by gamma distributions [41].

S(v|u, Λ, ζ ) =
∫ ∞

0
N
(

v
∣∣∣u, (λΛ)−1

)
G(λ|ζ/2, ζ/2)dλ (10)

Here, N(·) And G (·) are the Gaussian distribution and Gamma distribution, respectively.
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Therefore, the conditional distribution of the observed variables can be written as
follows: ⎧⎨⎩ p(Y|X, Λ, ζ ) =

L
Π

l=1
N
(

yl

∣∣∣Φl(λΛ)−1
)

p(λ|ζ) �= G(λ|ζ/2, ζ/2)
(11)

By placing the Gamma distributions on each diagonal element of ζ and Λ, these equations
can be obtained:

p(ζ) = G(ζ|c, d) (12)

p(Λ) =
L
Π

l=1
G(Λm|am, bm) (13)

In the equation, am, bm, c, and d are hyperparameters of the Gamma distribution.

3.2. Derivation of Sparse Signal Prior Distribution

Assuming that all rows of the matrix, X, are independent and follow a Gaussian
distribution, the prior distribution of the sparse signal, s, can be obtained [41].

p(X|γ) =
N
Π

n=1
N
(

xn, .
∣∣∣0, γ−1

n IL×L

)
(14)

Here, γ = [γ1, · · · , γn] represents the precision vector of the sparse signal, X, and a Gamma
distribution with hyperparameters ∂n and βn are used for each precision vector, γn, as
follows [41,42]:

p(γ) =
N
Π

n=1
G(γn|∂n, β) (15)

According to Equations (12)–(15), the joint distribution of all the observed variables
and unknown variables can be decomposed as follows:

p(Y, X, γ, Λ, ζ, λ) = p(Y|X, , Λ, λ )p(X|γ )p(Λ)p(λ|ζ)p(ζ)

=

(
L
Π

l=1
p(yl |xl , Λ, λ)

)(
N
Π

n=1
p(xn|γn)p(γn)

)
×(

M
Π

m=1
p(Λm)

)
p(λ|ζ)p(ζ)

(16)

In Figure 4, more detailed dependencies can be obtained about variables and unknown
variables.

3.3. Variational Bayes

Bayesian inference is based on the posterior distribution, p(Ω|Y) = p(Y, Ω)/p(Y),
where Ω represents the set of all unknown variables. However, because the marginal distri-
bution, p(Y), can be difficult to handle, Bayesian inference often requires approximation.
In the VB method, an approximation of p(Ω|Y), is made using a coefficient distribution,
q(Ω) = q(X)q(γ)q(Λ)q(ζ)q(λ), where Ω = {X, Λ, γ, λ, ζ}, and each approximate distribu-
tion in q(Ω) is obtained by computing the logarithmic expectation of (16) with respect to
other distributions.

ln q(X) ∝
L

∑
l=1

{
− 1

2 xT
l
(
E[λ]E[Λ] + ΦTdiagE[γ]Φ

)
xl+

1
2
(
ΦTdiagE[γ]yl

)T
+ 1

2 xT
l
(
ΦTdiagE[γ]yl

) } (17)

Here, E[·] denotes the expectation operator. By Equation (17), q(X) can be calculated as
follows:

q(X) =
L
Π

l=1
N(μl , Σ) (18)

where μl represents the expectation and Σ is the variance [43].
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Figure 4. Graphical model.

{
Σ =

(
A + ΦTBΦ

)−1

μl = ΣΦTByl , l = 1, 2, · · · , L
(19)

Similarly, q(γ), q(Λ), q(ζ), and q(λ) is obtained one by one and expressed in the
following form:

q(ζ) = G(ζ|c∗, d∗)
q(λ) = G(λ

∣∣ζ∗1 , ζ∗2)

q(γ) =
N
Π

n=1
G(γn|α∗n, β∗n)

q(Λ) =
M
Π

m=1
G(Λm|a∗m, b∗m)

(20)

The approximated hyperparameters are defined as follows [44,45]:{
c∗ = c + 1

2
d∗ = d + 1

2 (E[λ]− E[ln λ]− 1)
(21)

⎧⎨⎩
ζ∗1 = 1

2 (E[ζ] + M)

ζ∗2 = 1
2

M
∑

m=1

{
E[Λm]

L
∑

l=1
E
[
(yl − φmxl)

2
]}

+ 1
2 E[ζ]

(22)

⎧⎨⎩
a∗m = am + 1

2

b∗m = bm + 1
2 E[λ]

L
∑

l=1
E
[
(yl − φmxl)

2
] (23)

{
α∗n = αn +

1
2

β∗n = βn +
1
2 E
[
xnxT

n
] (24)
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Based on the approximate distribution, (17), and Equation (20), the expectations of the
approximated hyperparameters are expressed as follows [45]:

E[xl ] = μl

E
[
xnxT

n
]
=

(
L
∑

l=1

(
μlμ

T
l + Σ

))
nn

(25)

E[λ] = ζ∗1 /ζ∗2
E[ln λ] = ϕ

(
ζ∗1
)
− ln ζ∗2

(26)

E[Λm] = a∗m/b∗m
E[γn] = α∗n/β∗n
E[ζ] = c∗/d∗

(27)

E
[
(yl − φmxl)

2
]
= y2

l − 2ylφmE[xl ] + φm

(
μlμ

T
l + Σ

)
φT

m (28)

Here, ϕ(·) represents the digamma function, and μl represents the nth element on the main
diagonal of the matrix.

Moreover, from Equation (25), the mean μl gives an estimate of xl , and thus the
recovery result of the sparse signal can be obtained by the following equation:

X̂ = [μ1, · · · ,μl ] (29)

where the expectation can be obtained by coupling the hyperparameters in (21)–(24).
Therefore, the solution can be obtained by iteratively computing (19) and (21)–(24)

until convergence, leading to the optimal recovery result.
To summarize, the proposed algorithm is listed in Table 1.

Table 1. Flow of target azimuth estimation algorithm based on variational sparse Bayes.

Input Observed Variables, s, and Measurement Matrix, X

1
Initialize hyperparameters {αn, βn}M

m=1, {αn, βn}N
n=1,

c, and d, set stopping threshold, ε, and maximum
iteration number, Imax.

2 Calculate the mean and variance using Equation (19).

3 Update hyperparameters {am, bm}M
m=1, {α∗n, β∗n}N

n=1,
c, and d separately using Equations (21)–(24).

4

If the maximum change of hyperparameters is less
than the stopping threshold, stop iterating and go to

step 5. Otherwise, go back to step 2 to continue
iterating.

5 Output the recovery result.

4. Simulation Results

Consider a ULA with M = 30 elements spaced at half-wavelength. Three incoherent
signal sources are assumed to be located in the far-field of the receiving array, an incident
from the directions of 45◦, 60◦, and 90◦, with an SNR of 5 dB. The iteration number is set to
500, and the number of grid points is set to N = 181. The measurement noise is generated
using f = (1− p)N(0, δ2) + pN(0, kδ2) [46], where N(0, δ2) represents the background
noise, N(0, kδ2) represents the pulse noise, p represents the percentage of pulse noise, k
represents the intensity of the pulse noise, and δ2 represents the variance of the background
noise. The parameters are set to p = 0.3, k = 30, and δ2 = 1. The initial parameters are set
to 10−6 [47,48].

This section may be divided by subheadings. It should provide a concise and pre-
cise description of the experimental results, their interpretation, and the experimental
conclusions that can be drawn.
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4.1. Example 1: Single Snapshot Case

Figures 5 and 6 show the underwater DOA estimation results based on the improved
SBL algorithm in both non-impulsive and impulsive noise environments. As can be
seen from the figures, under the single snapshot condition, SBL can recover the signal
well, regardless of whether it is in a non-impulsive or impulsive noise environment. The
recovery result in the non-impulsive environment is better than that in the impulsive noise
environment. From Figures 5d and 6d, it can be observed that the error between the two
is not very large. Therefore, under the single snapshot condition, the algorithm has good
estimation performance in the impulsive noise environment.

Figure 5. DOA estimation results of single snapshot in a non-pulsed environment. (a) Comparison of
azimuth between the original signal and recovered signal; (b) bearing information of the original
signal; (c) restoring the orientation information of the signal; (d) difference between estimated DOA
and true DOA.

4.2. Example 2: Multiple Snapshot Case

In this section, the DOA estimation problem based on the SBL algorithm in the pulse
noise environment under the multiple snapshot case is considered. The estimation results
under Gaussian white noise are used as a reference to explore the estimation performance
of the algorithm. The number of snapshots is set to 500, the frequency is f = 1000, and the
sampling frequency is fs = 10× f .
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Figure 6. DOA estimation results of single snapshot under pulse environment. (a) Comparison of
azimuth between the original signal and recovered signal; (b) bearing information of the original
signal; (c) restoring the orientation information of the signal; (d) difference between estimated DOA
and true DOA.

Figures 7 and 8 show the underwater DOA estimation results based on the improved
variational Bayesian algorithm in both non-impulsive and impulsive noise environments
under the multi-snapshot condition. As can be seen from the figures, the recovery results in
the non-impulsive environment are better than those in the impulsive noise environment,
but the errors between the recovered signal and the original signal are not large in either
environment, which is consistent with theoretical expectations. On the other hand, from
Figures 7d and 8d, as well as Figures 6d and 7d, it can be observed that the error between
the recovered signal and the original signal under the single snapshot condition is larger
than that under the multi-snapshot condition.

4.3. Example 3: The Comparison of Algorithm Performance

In this section, the root mean square error (RMSE) of the performance evaluation metric
is introduced, and we analyzed the classic algorithms, CBF, MUSIC, and the proposed
method. The basic experimental conditions were consistent with the first two experiments,
with a snapshot number of 600, Monte Carlo iterations of 500, and an SNR ranging from
−10 to 20. The results are shown in Figure 9.
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Figure 7. DOA estimation results of multi-snapshot in a non-pulsed environment. (a) Comparison of
azimuth between the original signal and recovered signal; (b) bearing information of the original
signal; (c) restoring the orientation information of the signal; (d) difference between estimated DOA
and true DOA.

Figure 8. DOA estimation results of multi-fast in pulsed environment. (a) Comparison of azimuth
between the original signal and recovered signal; (b) bearing information of the original signal;
(c) restoring the orientation information of the signal; (d) difference between estimated DOA and
true DOA.
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Figure 9. The comparison of algorithm performance.

The RMSE is a metric used to measure the difference between predicted and actual
values of a variable. It is computed by taking the square root of the average of the squared
differences between the predicted and actual values. The RMSE is commonly employed to
evaluate the accuracy of predictive models or estimation methods, where a lower value
indicates better performance. The formula for calculating RMSE is as follows:

RMSE =

√√√√ 1
PK

P

∑
p=1

K

∑
k=1

(
θ̂p,n − θk

)2
(30)

where K represents the number of signal sources, P represents the number of Monte Carlo
experiments, and θk represents the estimated value of the Kth target angle in the Pth Monte
Carlo experiment.

Figure 9 illustrates how the RMSE varies for different algorithms at different SNRs.
As depicted in the figure, the RMSE curves for CBF, MUSIC, and the proposed method all
decrease as the SNR increases. Furthermore, when the SNR is very high, the RMSE for all
three algorithms is significantly small. Notably, the RMSE curve for the proposed method
remains consistently lower than those of the other algorithms, implying that it has superior
estimation performance.

5. Discussion

Despite notable advances in array signal processing, the increasing complexity and
diversity of signal environments pose challenges to the conventional narrowband signal-
based DOA estimation algorithm. The method focuses on recovering underwater DOA
estimation signals under pulse interference and presents a novel underwater target az-
imuth estimation algorithm based on SBL, which overcomes the limitations of traditional
narrowband signal-based DOA estimation algorithms in complex signal environments.
The simulation results demonstrate that the algorithm accurately recovers the source signal
in both single and multi-snapshot scenarios. The algorithm’s performance was evaluated
using the RMSE, which demonstrated that the algorithm outperforms other algorithms
in signal recovery, effectively addressing the problem of low estimation accuracy in pulse
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environments. The algorithm can be applied in underwater target tracking and localization.
Future work will explore azimuth estimation and signal recovery under wideband signals.
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Abstract: Non-Gaussian impulsive noise in marine environments strongly influences the detection
of weak spectral lines. However, existing detection algorithms based on the Gaussian noise model
are futile under non-Gaussian impulsive noise. Therefore, a deep-learning method called AINP+LR-
DRNet is proposed for joint detection and the reconstruction of weak spectral lines. First, non-
Gaussian impulsive noise suppression was performed by an impulsive noise preprocessor (AINP).
Second, a special detection and reconstruction network (DRNet) was proposed. An end-to-end
training application learns to detect and reconstruct weak spectral lines by adding into an adaptive
weighted loss function based on dual classification. Finally, a spectral line-detection algorithm based
on DRNet (LR-DRNet) was proposed to improve the detection performance. The simulation indicated
that the proposed AINP+LR-DRNet can detect and reconstruct weak spectral line features under non-
Gaussian impulsive noise, even for a mixed signal-to-noise ratio as low as −26 dB. The performance
of the proposed method was validated using experimental data. The proposed AINP+LR-DRNet
detects and reconstructs spectral lines under strong background noise and interference with better
reliability than other algorithms.

Keywords: non-Gaussian impulsive noises; detection and reconstruction of weak spectral lines;
deep learning

1. Introduction

The single-frequency detection of underwater radiation noise with abundant single-
frequency components is crucial for detecting quiet targets [1]. The time-frequency analysis
is projected on the time and frequency planes to form a three-dimensional stereogram
(lofargram). It presents the abundant features of underwater radiation noise [2]. Therefore,
the lofargram is regularly employed to analyze its features for passive sonar signals.
However, for low signal-to-noise ratios (SNRs), frequency fluctuations caused by a moving
target [3] and a high amount of background noise may weaken spectral-line detection.

The detection of weak spectral lines using a lofargram has long been an attractive
research topic. Image-processing methods, neural networks, and statistical models are
applied to detect weak spectral lines in a lofargram. Image-processing and neural-network
methods obtain spectral-line traces from complex image semantic features; however, their
performance is usually unsatisfactory for low SNRs [4–7]. Some deep-learning meth-
ods [8–11] achieve good line-spectrum estimation, but the SNR requirement is relatively
high. To overcome this limitation, deepLofargram was proposed to recover invisible and
irregularly fluctuating frequency lines at low SNRs [12]. Furthermore, in lofargrams, when
the weak spectral lines are far beyond the perceptual range of human vision, this is referred
to as low SNR. A statistical model such as the hidden Markov model (HMM) can track the
optimal spectral-line trajectory from multi-frame power-spectrum data [13,14]. Most of
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the aforementioned studies were applied to marine ambient noise following a Gaussian
distribution. In particular, marine ambient noise presents strong impulsive characteristics
owing to the superposition of seawater thermal noise, hydrodynamic noise, under-ice noise,
biological noise, and other noises [15]. Existing underwater-acoustic-signal-processing
methods may be invalidated under such non-Gaussian impulsive noise. To overcome
this problem, several studies [16–18] have performed statistical analyses and models of
non-Gaussian marine ambient noise. It was found that the generation and propagation
of underwater impulsive noise are in accordance with the “heavy tail” statistical charac-
teristics of the symmetric α-stable (SαS) distribution [19]. Furthermore, SNR and mixed
signal-to-noise ratio (MSNR) have been used to characterize the energies of Gaussian noise
and non-Gaussian impulsive noise [19]. Various preprocessors have been proposed to
suppress non-Gaussian impulsive noise, which can be described by the SαS distribution,
including the standard median filter (SMF) [20–22] and the memoryless analog nonlinear
preprocessor (MANP) [23]. Nevertheless, weak spectral-line detection is unreliable at
low MSNRs.

In recent years, with the introduction and development of deep convolutional struc-
tures such as UNet [24], SegNet [25], and LinkNet [26], image-semantic-segmentation
technology based on deep learning has developed rapidly. In deep-learning semantic seg-
mentation, the semantic features in an image are captured by finding semantic correlations
between pixel points from global or local contextual information. In passive sonar-signal
processing, weak spectral lines have time-frequency correlations, making them relatively
continuous in a lofargram, even though they cannot be observed. Therefore, we argue
that when combined with a preprocessor and a deep convolution structure, a lofargram
would be able to handle the detection and reconstruction of weak spectral lines under
non-Gaussian impulsive noise. Moreover, by “reconstruction,” we mean that potential
spectral-line features are recovered to output a lofargram with significant spectral lines.

In this study, we propose a novel method, called AINP+LR-DRNet, which is suitable
for the detection and reconstruction of weak spectral lines under non-Gaussian impulsive
noise. The spectral-line detection-and-reconstruction problem is redefined as a binary
classification problem. First, an impulsive noise preprocessor (AINP) was applied to
suppress the non-Gaussian impulsive noise. Second, a specially constructed DRNet was
built to detect and reconstruct weak spectral lines. Third, a dual classification adaptive
weighted loss was applied to obtain the optimal DRNet during training iterations. Fourth,
the detection performance was further improved by the proposed LR-DRNet algorithm.
Finally, we validated the ability of the proposed method to detect and reconstruct weak
spectral lines under non-Gaussian-impulse noise using simulated and measured data sets.

2. Proposed Framework and Training

Considering deep learning (DL) techniques, we formulate the spectral-line detection-
and-reconstruction problem in a lofargram as a binary classification problem. Thus, binary
hypothesis testing can be performed, which is defined as follows:

H1 :
i=T,j=F

∑
i,j

[s(ti, f j) + u(ti, f j)]

H0 :
i=T,j=F

∑
i,j

u(ti, f j)

, (1)

where H1 and H0 indicate the presence of spectral-line pixels and noise pixels in a lofargram,

respectively.
i=T,j=F

∑
i,j

s(ti, f j) describes the set of spectral-line pixels, and
i=T,j=F

∑
i,j

u(ti, f j)

describes the set of noise pixels.
Thus, the spectral-line detection-and-reconstruction framework are proposed to solve

Equation (1). As shown in Figure 1, the proposed framework, with the sampling, detection,
and reconstruction algorithm, is illustrated. In the sampling stage, the passive SONAR
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system collects the acoustic signals and noises. The received data are preprocessed by
AINP to construct the dataset. Subsequently, a specially designed LR-DRNet is pre-trained
to obtain the optimal model parameters in offline training by adding into an adaptive
weighted loss function based on dual classification. The well-trained LR-DRNet is utilized
to fine-tune the parameters to detect and reconstruct the measured unlabeled samples in
online detection and reconstruction. More details are described below:

Figure 1. Proposed spectral-line detection-and-reconstruction framework.

2.1. Detection-and-Reconstruction Algorithm
2.1.1. Data Preprocessing

The heavy impulsive noise causes broadband interference in a lofargram. Therefore,
appropriate preprocessing is required. In this study, the AINP method [24] is used to
nonlinearly suppress the abnormal amplitude in the input signal s(t), which is more
prominent than the amplitude threshold θ(t). The influence function for the AINP is
as follows:

e(t) = s(t)

⎧⎨⎩1 , |s(t)| ≤ θ(t)

( θ(t)
|s(t)| )

2
, |s(t)| > θ(t)

, (2)

where θ(t) can be obtained from Equation (3)

θ(t) = (1 + 2θ0)Q2(t). (3)

In Equation (3), Q2(t) represents the second quartile of the absolute value of the input
signal |g(t)|, and θ0 is a coefficient, which is set to 1.5, as in [23].

2.1.2. DRNet Structure

The proposed DRNet is derived from LinkNet [26], including the shared encoder, de-
tection decoder, and reconstruction decoder. One part of the shared encoder, illustrated in
Figure 2a, is stacked with a series of residual convolution structures to extract spectral-line
features. For spectral-line detection, the detection decoder is added to output result of
spectral-line detection (for H1 and H0, respectively). As illustrated in Figure 2b, plugging
into the squeeze-and-excitation (SE) blocks, the reconstruction decoder can perform channel
enhancement by obtaining the importance of each channel through “squeeze” and “exci-
tation“ operations [27]. The reconstruction decoder outputs spectral line-reconstruction
results through FinalConv, as shown in Figure 2c. Moreover, a reconstruction decoder is
enabled when the detection decoder announces that H1 holds during the online detection-
and-reconstruction stage. The complete network structure is depicted in Figure 3. As shown
in Figure 3, the proposed DRNet involves multi-task learning (MTL). For MTL, the model
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relies on the relative weighting between each task’s loss, and manually adjusting these
weights is difficult and time-consuming. Hence, inspired by [28], the adaptive weighted
dual loss function is considered by modeling reconstruction-and-detection-task uncertainty.
The details are described in Section 2.1.3.

Figure 2. Structural diagram of each part in DRNet. (a) Structure of convolutional modules in
Encoder (n). (b) Structure of the decoding layer. (c) Structure of the FinalConv layer.

Figure 3. Architecture of DRNet.

2.1.3. Adaptive Weighted Loss Function Based on Dual Classification

For MTL, the loss function is weighted for each task loss. Thereafter, the MTL loss can
be expressed as:

L =
I

∑
i=1

wiLi, (4)

where wi and Li denote the weight and loss of the i-th task, respectively. The I indicates the
number of tasks. In this study, there are spectral-line detection and reconstruction tasks
with different loss scales. A basic approach to overcoming the large loss difference between
the detection and reconstruction tasks involves the model adaptively adjusting the weights
wi according to uncertainty of each task.

As the spectral-line detection-and-reconstruction problem is treated as a binary classi-
fication task, an adaptive weighted loss function based on a dual classification is used to
train the model. Following the derivation in [28], when f W(x) is a sufficient statistic, the
following multi-mask likelihood is expressed as

p(yd, yr| f W(x)) = p(yd| f W(x))p(yr| f W(x)), (5)
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where f W(x) represents the detection-and-reconstruction-prediction results of model with
parameters W on input x. yd and yr are the ground-truth labels for detection and recon-
struction tasks.

Under random noise, the log-likelihood of the detection and reconstruction task is
output through a Softmax function, which can be expressed as

log p(yd| f W(x)) = log(Softmax(
1
σ2

d
f W
d (x))) =

1
σ2

d
f W
d (x)− log ∑

c1

exp(
1
σ2

d
f W
c1
(x)), (6)

log p(yr| f W(x)) = log(Softmax(
1
σ2

r
f W
r (x))) =

1
σ2

r
f W
r (x)− log ∑

c2

exp(
1
σ2

r
f W
c2
(x)), (7)

where c1 and c2 denote the categories of the detection and reconstruction tasks, respectively.
The σ2

d and σ2
r denote the observation-noise parameters of the model for the detection and

reconstruction tasks, respectively.
When the Softmax likelihood is modeled for the detection and reconstruction, the joint

loss L(W, σd, σr) is

L(W, σd, σr) = − log p(yd, yr
∣∣ f W(x))

= − log[Softmax( 1
σ2

d
f W
d (x)) · Softmax( 1

σ2
r

f W
r (x))]

= 1
σ2

d
f W
d (x)− log ∑

c1

exp( 1
σ2

d
f W
c1
(x)) + 1

σ2
r

f W
r (x)− log ∑

c2

exp( 1
σ2

r
f W
c2
(x))

= 1
σ2

d
[ f W

d (x)− log ∑
c1

exp( 1
σ2

d
f W
c1
(x))] + 1

σ2
r
[ f W

r (x)− log ∑
c2

exp( 1
σ2

r
f W
c2
(x))]

+ log ∑
c1

exp( 1
σ2

d
f W
c1
(x))/(∑

c1

exp( f W
c1
(x)))

1
σ2

d + log ∑
c2

exp( 1
σ2

r
f W
c2
(x))/(∑

c2

exp( f W
c2
(x)))

1
σ2

r

≈ 1
σ2

d
[− log(Softmax(yd, f W

d (x)))] + 1
σ2

r
[− log(Softmax(yr, f W

r (x)))] + log σdσr

= 1
σ2

d
Ld(W) + 1

σ2
r

Lr(W) + log σdσr

, (8)

where f W
d (x) and f W

r (x) represent the outputs of detection and reconstruction in f W
c1
(x)

and f W
c2
(x), respectively. Equation (8) can be applied for approximation, as follows:

∑
c1

exp(
1
σ2

d
f W
c1
(x))/∑

c1

exp( f W
c1
(x))

1
σ2

d ≈ σd, ∑
c2

exp(
1
σ2

r
f W
c2
(x))/∑

c2

exp( f W
c2
(x))

1
σ2

r ≈ σr, (9)

where Equation (9) becomes equal when σd, σr → 1 .
Referring to the suggestion in [28], we set sd = log σ2

d , se = log σ2
e . Accordingly,

L(W, σd, σr) can be rewritten as

L(W, σd, σr) = 2 exp(−sd)Ld(W) + 2 exp(−sr)Lr(W) + sd + se. (10)

For the detection and reconstruction loss functions Ld(W) and Lr(W), we adopt
the two-class cross-entropy and the class-balanced cross-entropy loss functions in [12],
as follows:

Ld(W) = −
N1

∑
i=1

h log p + (1− h) log(1− p), (11)

where N1 indicates the number of samples in the batch size. Moreover, h ∈ {0, 1} represents
the H0 and H1 hypotheses, and p indicates the probability of the output sample class when
using a Softmax function.

Lr(W) =
N2

∑
i=1

λ[ ∑
f ,t∈G+

log p f ,t + (1− λ) ∑
f ,t∈G−

log(1− p f ,t)], (12)
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where λ = |G−|/|G| and 1− λ = |G+|/|G|. The |G+| and |G−| represent the spectral-line
and noise ground-truth label sets, respectively. The p f ,t indicates the predicted value of the
H1 samples at the ( f , t) position by a sigmoid function.

According to Equations (10)–(12), the joint-loss form of the multi-task can be obtained.
Simultaneously, two weight parameters, σd and σr, are adaptively adjusted during the
training process. Thus, the purpose of adaptive loss weighting is achieved.

2.1.4. DRNet-Based Spectral-Line-Detection Algorithm

Inspired by the application of the CNN-based spectrum sensing algorithm [29] in
narrowband spectrum sensing, which provides a path for detecting spectral lines in a lofar-
gram, a LR-DRNet algorithm is proposed by considering only a single receiver hydrophone.
In the proposed algorithm, we use DRNet for offline training and adopt a threshold-based
mechanism for online detection.

Offline Training

In offline training, the dataset of the lofargram is constructed under H0 and H1 after
applying AINP and labeled as follows:

(Ol , Z) =
{
(l(1), z(1)), (l(2), z(2)), ..., (l(M), z(M))

}
, (13)

where Ol denotes the set of lofargrams l, and Z is its label. The (l(m), z(m)) represents the
m-th sample in the training set.

For the test statistic, the proposed LR-DRNet can extract weak spectral-line features in
a lofargram. The output node of the detection decoder was set to 2 by converting spectral
line detection into an image binary classification. After a series of convolutional layers,
pooling layers, and activation functions, the probability that the lofargram belongs to H0 or
H1 can be obtained. For the detection task, Equation (1) can be rewritten as follows:

H1 : P(z(m) = 1
∣∣∣l(m); ϑ) = hϑ|H1

(l(m))

H0 : P(z(m) = 0
∣∣∣l(m); ϑ) = hϑ|H0

(l(m))
, (14)

where hϑ(·) represents a nonlinear expression of the model with parameters ϑ. After a
Softmax function, the network’s output layer has:

hϑ|H1
(l(m)) + hϑ|H0

(l(m)) = 1. (15)

Next, Equation (11), as a training-error loss function, can be rewritten as:

JLR−DRNet(ϑ) = −
1
K

K

∑
k=1

{
z(m) log hϑ|H1

(l(m)) + (1− z(m)) log hϑ|H0
(l(m))

}
. (16)

Training LR-DRNet minimizes the error loss in Equation (16) and maximizes the

posterior probability of the parameter set ϑ. The optimal parameter set
�
ϑ can be obtained

as follows:
�
ϑ = argmaxP(Z|L; ϑ). (17)

Based on the loss function in Equation (10), the backpropagation algorithm is em-
ployed to gradually update the parameters of LR-DRNet. Hence, the well-trained LR-
DRNet can be illustrated as follows:

h�
ϑ |Hi

(l(m)) =

⎧⎨⎩h�
ϑ |H1

(l(m))

h�
ϑ |H0

(l(m))
. (18)
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Considering the Bayesian and Neyman–Pearson (NP) criterion, and assuming that
P(H0) = P(H1), the test statistics under the proposed LR-DRNet can be acquired as:

ΛLR−DRNet =
h�

ϑ |H1
(l(m))

h�
ϑ |H0

(l(m))
≷ η, (19)

where η denotes the detection threshold. The presence or absence of spectral lines in the
lofargram can be adjudicated by comparing the test statistic and detection threshold.

Next, the detection threshold should be determined. First, M, noise-sample data sets
composed of H0 lofargrams after applying AINP, are constructed. M lofargrams under H0
after applying AINP are costructed.

On =
{

n(1), n(2), ..., n(M)
}

. (20)

where On denotes the set of lofargrams n under H0.
The probability of detection (PD) and the false-alarm probability (Pf ) are defined as

follows:
PD = P[ΛLR−DRNet|H1 > η], (21)

Pf = P[ΛLR−DRNet|H0 > η]. (22)

Subsequently, the data set On is fed as samples into the pre-trained DRNet and the
test statistics of all lofargrams under the H0 hypothesis are obtained.

ΛLR−DRNet|H0 =
h�

ϑ |H1
(n(m))

h�
ϑ |H0

(n(m))
. (23)

By arranging these values in descending order to form a sequence T(m), the detection
threshold of the artificially set false-alarm-probability value Pf can be acquired [29].

ΛLR−DRNet|Hi(z̃) =
hγ̂|H1

(l(m))

hγ̂|H0
(l(m))

H1
≷
H0

η. (24)

where ·� is the nearest smaller integer. The ΛLR−DRNet|H0(m�) denotes the m-th sample
value of T(m) in descending order.

Online Detection

According to Equation (24), a detection threshold η is set. The unlabeled lofargrams,
denoted as z̃, are input into the well-trained LR-DRNet. Subsequently, online detection,
based on LR-DRNet, is performed, that is,

ΛLR−DRNet|Hi(z̃) =
hγ̂|H1

(l(m))

hγ̂|H0
(l(m))

H1
≷
H0

η. (25)

When the test statistic is obtained, we can rapidly decide whether there are spectral
lines in a lofargram by comparing it to the preset threshold.

2.2. Training Process

Training was optimized for the loss function in Equation (10) using the mini-batch
gradient of the Adam optimizer [30], and by setting sd and se to log2. The batch size was
128. Xavier weight initialization was performed [31]. As expressed in [12], the network’s
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loss function is ineffective at converging at low SNRs. Hence, we first pre-trained the
model with a learning rate of 10−4 for lofargrams with MSNR ranging from −19 dB to
−22 dB. The model was then retrained with a learning rate of 10−5 for lofargrams with
MSNR ranging from −23 dB to −26 dB. The learning rate was not fixed and was adjusted
according to the cosine annealing warm restart [32] and gradual warmup [33]. Here, the
gradual warmup was up to the 10th epoch, the initial restart epoch was set to 15, and the
restart factor was set to 2. To prevent network overfitting and the problem of insufficient
data, data augmentation was performed during training using methods such as horizontal
and vertical flipping of images, random cropping, and grayscale maps. Both the above
training procedures were terminated after approximately 300 epochs.

3. Simulation Analysis

This section first introduces the synthesis of the datasets and the network performance
evaluation metrics. Subsequently, we illustrate the effectiveness of the proposed method
by analyzing the effect of the network structure on performance. Finally, the performances
of some existing methods are compared and analyzed through simulations.

3.1. Datasets

Non-Gaussian impulsive noise can be described by an α-stable distribution, whose
characteristic function can be expressed as in [34].

ϕ(t) = exp
{

jbt− |γt|α[1 + jβsgn(t)ω(t, α)]
}

, (26)

ω(t, α) =

{− tan(πα
2 ), α �= 1

( 2
π ) log|t|, α = 1

, (27)

where 0 < α ≤ 2, −1 ≤ β ≤ 1, γ > 0, and −∞ < b < ∞. The characteristic exponent α
determines the impulse intensity of the distribution; the higher the value of α, the lower the
intensity. The position parameter b determines the center of the distribution. The dispersion
coefficient γ measures the sample’s degree of deviation by taking values relative to the
mean, which is similar to the variance in a Gaussian distribution. The symmetry parameter
β is used to describe the skewness of the distribution. When β = 0, the distribution is
named the SαS distribution.

In this case of 0 < α ≤ 2, only the first order is presented in α-stable distributed noise.
Therefore, the SNR defined under traditional Gaussian noise is inapplicable. The mixed
signal-to-noise ratio (MSNR) is defined as follows:

MSNR = 10 log10(
v2

s
γ
), (28)

where v2
s denotes the signal variance.

The α-stable distribution degenerates into a Gaussian distribution when α = 2. A con-
ventional SNR measure of the relationship between the signal and noise power can be
obtained as follows:

SNR = 10 log10(
a2

v2
n
), (29)

where α and v2
n denote the signal amplitude and the noise variance, respectively.

A low-frequency spectral line, radiated by underwater and surface vehicles, under
Gaussian/non-Gaussian impulsive noise, is discussed in this study. Owing to the motion
of vehicles (variable speed or steering), the spectral lines fluctuate even at low frequencies.
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The fluctuating spectral lines can be simulated using a series of sinusoidal signals. The
fluctuating spectral lines observed during the k-th time interval are described as:

s(tk) =
I

∑
i=1

ai(tk) sin(2π fi(tk) + ϕk) + n(tk), k = 0, 1, ..., T − 1, (30)

where I represents the number of spectral lines. The fi(tk) represents the frequency that
subsequently varies tk, meaning that the spectral line has unpredictable fluctuations. The
ϕk ∈ [0 , 2π] is the initial phase, and n(tk) represents the sampling point of α-stable
distribution noise in tk-th.

The underwater acoustic channel contains Gaussian and non-Gaussian impulse noises.
Before establishing the dataset, the modeling and statistical analysis of the measured ma-
rine environmental noise were performed. We first modeled three typical marine ambient
noises with normal and α-stable distributions. Figure 4 shows that the α-stable distribu-
tion is approximate to the marine ambient noise, particularly at high pulse intensities,
which conforms with the results reported in [14]. Subsequently, the characteristic function
method [35] was applied to estimate the α-stable distribution parameters and statistically
acquire the parameter-distribution regularities. Figure 5 presents the statistical conclusions
for the four parameters estimated by the α-stable distribution. The α is distributed between
1.7 and 2.0, indicating that the analyzed marine-ambient-noise data contain weak pulse
characteristics. The β is distributed at approximately 0, indicating that the SαS distribution
can model the noise. The γ values are relatively low, ranging from 0 to 0.01. The data
amplitudes are relatively concentrated, which is consistent with the weak pulse characteris-
tics. The δ is distributed at approximately 0, indicating that the measured noise data are
concentrated around the zero value. Therefore, the simulation dataset was synthesized
according to the distribution regularities of the parameters above and Equation (30).

Figure 4. Comparison of the modeling of the normal distribution and α-stable distribution under
various disturbances. (a) In a quiet environment; (b) in a ship-interference environment; (c) under
airgun interference.

In the simulation of the SαS distribution noise, α was randomly selected in the range of
[1.3, 2], β is set to 0, and γ, δ were set to 1 and 0, respectively. The fluctuating spectral lines
within 100 Hz and MSNR in the range of [−26, −19] dB were considered. The sampling
rate fs was 1000 Hz. Our synthetic dataset contained one to five fluctuating spectral lines,
and multiple spectral lines had harmonic relations. The SαS distribution noise was added
to the time-domain amplitude of sinusoids in the form of Equations (28) and (29) with
the MSNR and SNR. Figure 6 presents the H1 lofargrams of multiple sinusoidal signals
of different MSNRs and H0 lofargrams. The presence of spectral lines in lofargrams is
not perceived through the visual senses below −22 dB. For MSNR in the range of −22 dB
to −26 dB, we repeated the Monte Carlo simulation 1200 times to simulate the scenario
under various parameters, splitting the dataset into 85% for training and 15% for testing.
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Therefore, our training datasets comprised 9600 H1 lofargrams and 6800 H0 lofargrams,
while the test set had 1440 H1 lofargrams and 1200 H0 lofargrams.

Figure 5. Estimation results of α-stable distribution parameters. (a) α-value distribution statistics;
(b) β-value distribution statistics; (c) γ-value distribution statistics; (d) δ-value distribution statistics.

Figure 6. Lofargrams: (a) only the SαS distributed noise lofargram under H0; (b) lofargram of the
signal at MSNR = −5 dB under H1; (c) lofargram of the same signal at MSNR = −15 dB under H1;
(d) lofargram of the same signal at MSNR = −22 dB under H1.

3.2. Evaluation Metrics

The following assessment metrics were utilized to analyze the detection and recon-
struction performance.

First, the receiver operating characteristic (ROC) curve was used to evaluate the
detection performance. Using Equations (22)–(24), we set various Pf to obtain thresholds
in the offline training stage. A serial set of Pf and PD representing the points of the curve
could be obtained, and these points together formed the ROCs.

Second, to evaluate the quality of the reconstruction lofargrams, the mIoU [36] and
line-location accuracy (LLA) [37] were employed.

mIOU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

. (31)

where TP, FN, FP, and TN denote the true positives, false negatives, false positives, and
true negatives, respectively.

LLA =
1

max(|B1|, |B2|) ∑
(m,n)∈G1

1

1 + λmin(i,j)∈G2
(‖[m, n]− [i, j]‖2)

. (32)
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where |B1| and |B2| denote the accumulation of non-zero elements in the predicted lofar-
gram map G1 and actual lofargram map G2, respectively. The ‖[m, n]− [i, j]‖2 indicates the
Euclidean distance between the detected spectral lines and the actual spectral lines. We set
λ = 1, as in [37].

3.3. Performance Analysis and Discussion
3.3.1. Necessity of AINP

Figures 7 and 8 compare the performances of the AINP under different intensity levels
of impulse noise. As shown in Figure 7, heavy SαS noise creates broadband interference in
lofargrams. At MSNR =−22 dB, the interference gradually increased as the value decreased.
After the preprocessing with the AINP method, the broadband interference in the lofar-
grams was largely suppressed. However, the spectral-line pixels of the lofargram were still
mixed with the low-amplitude impulse-noise pixels and were not visually distinguishable.
The following LR-DRNet further processed lofargrams containing a significant amount
of low-amplitude impulse-noise pixels. To further indicate the necessity of the AINP in
the proposed method, Figure 8 presents a comparison of the performances of LR-DRNet
and AINP+LR-DRNet. As shown in Figure 8, when α = 1.9, for the cases of −22 and
−23 dB, LR-DRNet and AINP+LR-DRNet exhibited comparable performances. As the
MSNRs were further reduced to −25 and −26 dB, the performance of AINP+LR-DRNet
was better than that of the LR-DRNet. This implies that LR-DRNet has the ability to adapt
to weak impulse noise. However, when α decreased to 1.6, the performance of LR-DRNet
degraded dynamically. Thus, it can be concluded that the AINP can effectively suppress the
broadband interference caused by heavy SαS noise in lofargrams and is necessary for our
method to detect and reconstruct weak spectral lines under non-Gaussian impulsive noise.

Figure 7. Comparison of original and AINP outcomes with different values of α at MSNR = −22 dB.
(a) α = 1.6; (b) α = 1.9.

Figure 8. Performances of the LR-DRNet and the AINP+LR-DRNet under α = 1.6 and α = 1.9.
(a) ROC; (b) mIOU; (c) LLA.

3.3.2. Network-Structure Analysis

Specific tasks may require suitable network structures. The simulation analyzed the
appropriate network structure for spectral-line detection and reconstruction. The two
network structures chosen for this analysis were LR-DRNet18 and LR-DRNet34. As shown
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in Figure 9, the impact of LR-DRNet depth on performance varies across all MSNRs.
Compared with LR-DRNet18, the deeper LR-DRNet exhibited comparable performances
in the cases of −22 and −23 dB, and exhibited better performances with −24, −25, and
−26 dB, respectively. This shows that increasing the network depth improves network
performance. Therefore, the coding layer of the LR-DRNet was set to 34 layers.

Figure 9. Performances of the AINP+LR-DRNet with 18 and 34 depths in different MSNRs. (a) ROC;
(b) mIOU; (c) LLA.

Theoretically, the relevance of each feature channel can be automatically determined
by the SE structure through learning. This learning of the SE structure determines the
significance of each feature channel, which consequently strengthens the desirable features.
Therefore, the SE structure needed to be analyzed to determine the performance of the
proposed LR-DRNet. As shown in Figure 10, compared with LR-DRNet without SE,
LR-DRNet with SE had a significant improvement in detection performance, especially
at −25 and −26 dB, along with a slight improvement in reconstruction performance.
The parameters of the SE structure participated in the end-to-end network parameter
optimization process and optimized the encoder and decoder. Thus, we conclude that the
SE structure can significantly enhance detection and reconstruction.

Figure 10. Performances of the AINP+LR-DRNet with and without SE in different MSNRs. (a) ROC;
(b) mIOU; (c) LLA.

3.3.3. Detection and Reconstruction Performance Evaluation

With AINP used as a preprocessor, the outcomes of the proposed AINP+LR-DRNet
were compared under various α values and MSNRs. As shown in Figure 11, the perfor-
mance gradually decreased with decreases in alpha and MSNR, especially at α = 1.3 and
1.5. The performances were comparable at high MSNR and αvalues, presenting more
advantages at lower MSNR and α values. At an MSNR of −24 dB and an α of 1.7, the
proposed AINP+LR-DRNet still had a PD of approximately 78%, a mIOU of 0.59, and a
LLA of 0.42. In particular, the stronger impulsive noise intensity and lower MSNR affected
the feature-extraction ability of the network, encumbering the detection and reconstruc-
tion. Nevertheless, the proposed AINP+LR-DRNet is adaptable to low MSNR and strong
impulse-noise intensity.
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Figure 11. Detection and reconstruction with the SαS distribution noise, with α values of 1.3, 1.5, 1.7,
and 1.9. (a) ROC; (b) mIOU; (c) LLA.

To verify the feasibility of the proposed LR-DRNet under Gaussian noise, its per-
formance under Gaussian noise was compared with those of other methods. The LR-
DRNet34 under a single detection task (LR-DNet34), HMM [14], UNet [24], SegNet [25],
ResNet18 [38], ResNet34 [38], and LR-DRNet34 under a single reconstruction task (RNet34)
were introduced for performance comparison. To ensure that this comparison was fair,
ResNet used the same spectral-line-detection algorithm as LR-DRNet.

Figure 12 compares the detection performances of the proposed LR-DRNet with
that of several deep learning methods under Gaussian noise. The proposed LR-DRNet
achieved a higher detection rate, particularly at SNR values of −24 dB to −26 dB. Figure 13
presents the differences in the reconstruction performances of the five methods. The
reconstruction performance of the proposed LR-DRNet was slightly better than that of
RNet34, and better than that of the HMM and other deep-learning methods. In terms
of reconstruction, as shown in Figure 14, the proposed LR-DRNet reconstructed weak
spectral lines more accurately than the other methods at -25 and −26 dB, while exhibiting
comparable performances at −22 and −23 dB. This was consistent with the analysis shown
in Figure 13. The excellent detection and reconstruction performance of the proposed
LR-DRNet and the superiority of MTL over single-task learning (STL) are illustrated. Thus,
the feasibility of the proposed LR-DRNet method under Gaussian noise is illustrated.

Figure 12. Comparison of ROCs of different methods under Gaussian noise in different SNRs.
(a) SNR = −22 dB; (b) SNR = −23 dB; (c) SNR = −24 dB; (d) SNR = −25 dB; (e) SNR = −26 dB.
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Figure 13. Comparison of the reconstruction performance of LR-DRNet, RNet34, SegNet, UNet, and
HMM under different SNRs. (a) mIOU; (b) LLA.

 

Figure 14. Reconstruction of five methods in different SNRs. The original lofargrams with SNR in
the range of [−26, −22] dB are shown in (a). The same samples were reconstructed by HMM, SegNet,
UNet, RNet34, and LR-DRNet34 in different SNRs, as shown in (b–f).

242



Remote Sens. 2023, 15, 3268

3.3.4. Comparison with Existing Methods

The detection and reconstruction performances of the proposed AINP+LR-DRNet
were compared with those of other methods. Deep classification networks, such as
ResNet34 [38] and DNet34, and a detector based on a Gaussian function (GF) [39] were
introduced for the detection. Semantic segmentation structures, such as UNet [24], Seg-
Net [25], RNet34, and HMM [14] were introduced for the reconstruction. In GF, the scale
parameter c was set to 2.0, and the impulse intensity α and the dispersion coefficient γ were
considered in plotting the ROC curve. The number of search times of the spectral line was
set to four in the HMM. For a fair comparison, AINP and the algorithm in Section 2.1.4
were used for all the comparison algorithms, except GF.

First, we compared the detection performances of various methods with that of the
proposed AINP+LR-DRNet. Figure 15 presents the ROCs of the four methods for MSNR
from −22 dB to −26 dB. The AINP+LR-ResNet34, AINP+LR-DNet34, and the proposed
AINP+LR-DRNet exhibited discrepancies, particularly at low MSNR values. Furthermore,
the GF and the proposed AINP+LR-DRNet at the same Pf were compared. The GF detector
filtered out impulse noise with large amplitudes via a nonlinear transformation, which
suggests it had the worst performance. The superiority of the proposed AINP+LR-DRNet
in detection is attributable to its specially designed network, which matches the spectral-
line-detection algorithm, which is highly capable of feature extraction. The structures of
other advanced networks and the disadvantages of the features of the traditional detection
algorithm at a low MSNR may hinder detection.

Figure 15. Comparison of ROCs of four methods under the SαS distribution noise for different
MSNRs. (a) MSNR = −22 dB, (b) MSNR = −23 dB, (c) MSNR = −24 dB, (d) MSNR = −25 dB, and
(e) MSNR = −26 dB.

Subsequently, we compared the different reconstruction methods. The SegNet, UNet,
LinkNet34, and the proposed AINP+LR-DRNet are encoding and decoding networks,
which segment features with different scales and complex boundaries by extracting the
features of the encoding layer and reconstructing the decoding layer. As indicated in
Tables 1 and 2, the proposed AINP+LR-DRNet outperformed the other methods by a
considerable margin. Specifically, the mIOU and LLA of the AINP+HMM among the five
MSNRs ranged from 0.4841 to 0.5566 and 0.2336 to 0.3985, respectively. The mIOU and
LLA of AINP+SegNet and AINP+UNet in the five MSNRs were approximately 0.4917 to
0.6719 and 0.0246 to 0.5757, respectively. Accordingly, AINP+RNet34 was superior to the
previous three methods, ranging from 0.5305 to 0.6881 and 0.2118 to 0.5859, respectively;
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however, the proposed AINP+LR-DRNet achieved impressive performances, ranging from
0.5387 to 0.6932 and from 0.2777 to 0.5950, respectively. Figure 16 presents the lofargram
reconstruction of the five methods. The lofargrams reconstructed by the AINP+HMM
appeared as false spectral-line pixels after −23 dB, and the line profile became cluttered.
The AINP+UNet and AINP+SegNet still worked at −22 dB, but the spectral line broke at
varying degrees after −23 dB, and their integrity was reduced. The proposed AINP+LR-
DRNet had a prominent spectral-line profile and a higher integrity at−22,−23, and−24 dB,
respectively. At −25 and −26 dB, the spectral line could not be reconstructed in some
positions because of the excessive background noise. The unique design of the network
structure is more suited to reconstruction than those of other segmentation structures.

Table 1. mIOU values of different methods for different MSNRs.

Methods
MSNR/dB

−22 −23 −24 −25 −26

AINP+HMM 0.5566 0.5383 0.5236 0.5047 0.4841
AINP+SegNet 0.6584 0.5909 0.5301 0.5027 0.4917
AINP+UNet 0.6719 0.6205 0.5660 0.5205 0.4991
AINP+RNet34 0.6881 0.6655 0.6300 0.5833 0.5305

AINP+LR-
DRNet34 0.6932 0.6688 0.6316 0.5905 0.5387

Table 2. LLA values of different methods for different MSNRs.

Methods
MSNR/dB

−22 −23 −24 −25 −26

AINP+HMM 0.3985 0.3599 0.3277 0.2840 0.2336
AINP+SegNet 0.5527 0.4182 0.1916 0.0734 0.0246
AINP+UNet 0.5757 0.5169 0.3406 0.1416 0.0499
AINP+RNet34 0.5859 0.5774 0.5221 0.4328 0.2118

AINP+LR-
DRNet34 0.5950 0.5783 0.5373 0.4424 0.2777

Finally, we trained AINP+DNet34, AINP+RNet34, and the proposed AINP+LR-DRNet
model separately to examine the validity of the MSL. As displayed in Figures 15 and 16,
the proposed AINP+LR-DRNet improved the detection and reconstruction performances
after utilizing an adaptive weighted loss function based on dual classification. Owing to
the multi-task loss function, detection and reconstruction tasks complement each other by
sharing valuable information.
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Figure 16. Reconstruction results of different methods in different MSNRs. The original lofargrams
as shown in (a). Reconstructed by AINP+HMM, AINP+SegNet, AINP+UNet, AINP+RNet34, and
the proposed AINP+LR-DRNet with MSNR in the range of [−26, −22] dB, as shown in (b–f).
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4. Experimental Data Analysis

The detection and reconstruction of the proposed AINP+LR-DRNet in Gaussian/non-
Gaussian impulsive noise were verified by the aforementioned simulation analysis. At this
point, the weights of the pre-trained model in the simulation were fine-tuned using experi-
mental data. The ability of the proposed AINP+LR-DRNet to detect and reconstruct single
and multiple weak spectral lines was analyzed by employing two different experimental
datasets, and the performances were compared with those of other methods.

4.1. Reconstruction of Weak Single Spectral Line from Strong Background Noise

The data for single-spectral-line detection and reconstruction were received from an
experiment conducted in the South China Sea in July 2021. A vertical line array (VLA)
composed of 32 hydrophones with an interval of 2 m was employed at a depth of 275–337 m.
The sampling rate of the acoustic collector was 10 kHz. During the experiment, the sound
source transmitted a single-frequency signal of 71 Hz and was towed 1.5 to 11 km away from
the receiving array at a depth of approximately 20 m. Figure 17 displays the hydrophone
arrays used in our experiment. We intercepted 2k signal and noise samples from VLA-1 to
VLA-32, which formed the measured sample set.

 

Figure 17. Schematic of ship movement and VLA deployment.

In Figure 18a, two unreconstructed lofargrams are displayed in the experimental data,
with a relatively weak spectral line. The AINP+HMM, AINP+RNet34, and the proposed
AINP+LR-DRNet effectively reconstructed the regions with obvious spectral lines, as
shown to the left of Figure 18b–d. As the MSNR was low, the HMM reconstructed some
false spectral-line pixels, and AINP+RNet34 reconstructed a few spectral-line pixels. The
weak spectral line was reconstructed using the proposed AINP+LR-DRNet, despite the
strong background noise in the two cases. Meanwhile, the experimental data show that
MTL outperformed STL. Consequently, the proposed AINP+LR-DRNet is suitable for
extracting weak single spectral lines from noise-dominated lofargrams.

246



Remote Sens. 2023, 15, 3268

Figure 18. Lofargram reconstruction results of experimental data-1 by AINP+HMM, AINP+RNet34,
and the proposed AINP+LR-DRNet, shown in (b–d), respectively. (a) Original lofargrams, which
were not reconstructed.

4.2. Weak Multiple-Spectral-Line Reconstruction against Strong Interference Background

Another experiment conducted in the South China Sea in September 2021 was used
to detect and reconstruct multiple spectral lines. An ocean-bottom seismometer (OBS)
was deployed every 5 km, with a line length of more than 100 km. The entire seabed was
initially relatively flat, and it gradually became inclined near the destination. The sampling
rate of the OBS was 100 Hz. As shown in Figure 19, the ship sailed along a straight line at a
certain speed for the deployment and recovery of the OBS. Therefore, the OBS can collect
ship-noise samples at low SNRs, as well as marine-ambient-noise samples. The test data
set was formed with 5000 more signal and noise samples from OBS-1 to OBS-25.

Figure 19. Schematic of OBS deployment and recovery in the experiment.

As shown in Figure 20a, the spectral lines of the ship were affected by the strong
interference. In one of the cases on the left, the spectral lines at 25 Hz and 33 Hz were
blurred on the original lofargram. Furthermore, in another case, the original lofargram
did not present a spectral line at 16, 25, or 33 Hz. Figure 20b indicates that AINP+HMM
can only reconstruct spectral lines with higher SNR, but becomes ineffective under strong
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interference. In addition, more spectral-line pixels were reconstructed using AINP+RNet34,
as shown in Figure 20c. The proposed AINP+LR-DRNet is more appropriate for spectral
line reconstruction than HMM and RNet34, thereby highlighting the spectral lines and
suppressing noise. Hence, the proposed AINP+LR-DRNet is applicable for multiple weak
ship spectral line reconstruction under intense interference.

Figure 20. Lofargram reconstruction results of experimental data-2 by AINP+HMM, AINP+RNet34,
and the proposed AINP+LR-DRNet in (b–d), respectively. (a) Two different original lofargrams.

4.3. Detection Performances with Two Real-World Data

Finally, the detection performances of the GF, AINP+ResNet18, and AINP+DNet34
were compared to evaluate the proposed AINP+LR-DRNet. The Pf was certain for a fixed
test set. For a fair comparison, the GF was compared with the detection rate under the false
alarm rate obtained by the proposed AINP+LR-DRNet.

As summarized in Table 3, GF displayed the lowest values at low SNR. Compared
with GF, the PD and Pf of AINP+LR-DNet34 were higher. The proposed AINP+LR-DRNet
exhibited the highest PD for the two measured datasets, reaching 94.73% and 94.49%,
respectively. Values of Pf of 2.21% and 5.93% were also obtained, which was the best
performance of all the methods. This analysis indicates that the proposed AINP+LR-DRNet
has the advantage of detection at low SNR under MTL.

Table 3. Detection performances on practical data.

Methods
An Experiment in July 2021 An Experiment in September 2021

Pf PD Pf PD

GF 2.21% 62.03% 5.93% 22.79%
AINP+LR-

DNet34 11.0% 89.47% 14.83% 76.47%

AINP+LR-
DRNet34 2.21% 94.73% 5.93% 94.79%

5. Conclusions

In this study, the joint detection and reconstruction of weak spectral lines under
non-Gaussian impulsive noise using DL was investigated. First, with DL, the detection
and reconstruction of spectral lines were formulated as a binary classification problem.
Subsequently, a framework for weak-line-spectrum detection and reconstruction based on
AINP and DRNet was developed. Under the developed framework, a LR-DRNet detection
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algorithm was designed, and the lofargrams after the AINP were used as the input of
the LR-DRNet. In particular, LR-DRNet was trained by the dual classification adaptive
loss to output high detection results and lofargrams with significant spectral lines. Finally,
simulated data and real data from the South China Sea were used to verify the performance
of AINP+LR-DRNet. The results show that the proposed AINP+LR-DRNet can effectively
detect and reconstruct weak spectral lines under non-Gaussian impulsive noise.

In the future, various underwater acoustic signals and marine ambient noises following
other distributions will be examined. Furthermore, weak-spectral-line detection based on
unsupervised learning will be considered to alleviate the lack of underwater acoustic data
and labeling requirements.
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Abstract: The performance of the underwater acoustic (UWA) orthogonal frequency division multi-
plexing (OFDM) system is often restrained by time-varying channels with large delays. The existing
frequency domain equalizers do not work well because of the high complexity and difficulty of
finding the real-time signal-to-noise ratio. To solve these problems, we propose a low-complexity
neural network (NN)-based scheme for joint equalization and detection. A simple NN structure
is built to yield the detected symbols with the joint input of the segmented channel response and
received symbol. The coherence bandwidth is investigated to find the optimal hyperparameters. By
being completely trained offline with real channels, the proposed detector is applied independently
in both simulations and sea trials. The results show that the proposed detector outperforms the ZF
and MMSE equalizers and extreme learning machine (ELM)-based detectors in both the strongly
reflected channels of the pool and time-variant channels of the shallow sea. The complexity of the
proposed network is lower than the MMSE and ELM-based receiver.

Keywords: underwater acoustic communication; subcarrier multiplexing; neural networks;
coherence bandwidth; equalizers; detectors

1. Introduction

With the increasing requirements for an Internet of Things in the oceans, efficient data
processing and transmission become critical for ensuring the instantaneity for the underwa-
ter environment monitoring [1,2] and emergency rescue [3]. Orthogonal frequency division
multiplexing (OFDM) has been a viable method in bandwidth-constrained underwater
acoustic communications [4,5], as a result of its high spectral efficiency and ability to resist
frequency selective fading. Nonetheless, the selective channels decided by variant param-
eters, such as distribution of sound speed [6], bottom reflection coefficient and surface
waves [7], limit the performance improvement of the underwater acoustic (UWA) OFDM
system [8,9].

To better detect the OFDM signals from UWA channels, variable equalizers have been
applied, e.g., linear equalizers including zero-forcing (ZF) and minimum mean square
error (MMSE) equalizers [10], and decision feedback equalizer (DFE) such as the Turbo
equalizer [11,12]. The linear equalizers with simple structures are widely used in terrestrial
communication links [13,14], whose performances rely on accurate channel estimations.
Altough the DFEs show satisfactory performance without a channel estimator, it is at
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the expense of the requirement for higher computational complexity and extra channel
coding [15,16]. In practice, real-time underwater acoustic communications (UAC) do not
allow for a large number of online iterations [17–19], which still require linear equalizers.
However, the noise amplification problem occurs when applying the ZF equalizer. Al-
though MMSE equalizer overcomes this problem by considering the signal-to-noise ratio
(SNR), it is hard to estimate the statistical values of the noise in real underwater environ-
ments including non-Gaussian and colored noise [20,21]. To further optimize the equalizer,
deep learning (DL) and neural network (NN) have been developed [22–26]. With enough
samples, a DL-based receiver can statistically learn to detect the symbols from the channel
and other interference.

H. Ye et al. proposed a DL-based OFDM receiver [22], which used three fully connected
layers to deal with a 64-subcarrier OFDM symbol with a block-type pilot. The bit error
rate (BER) of the NN-based receiver was lower than the least square (LS) and MMSE
estimation and detector in the simulation. To further obtain higher detecting accuracy,
researchers have tried to substitute the whole communication system for the end-to-end
networks [22,24,25,27]. The traditional digital modulation and subcarrier mapping has
been replaced by the autoencoder (AE) [24]. A blind receiver without the pilot has been
built with a convolutional neural network (CNN), which showed better performance
compared with the traditional baselines. Similarly, an AE has been designed [25] to
provide a modulation scheme for the multicarrier system. This work fed the decoder with
both the channel state information (CSI) and received symbol, constructing a data-driven
model for symbol detection. The simulations showed significant BER performance in
additive white Gaussian noise (AWGN) channels. In B. Lin’s work [28], a super-resolution
channel reconstruction network was combined with AE for the marine communication
system, proving its effectiveness in slow fading channels. H. Zhao et al. [29], J. Liu et
al. [30], and Y. Zhang et al. [31] proposed different network structures for the UWA OFDM
receiver, and trained them with the WATERMARK dataset. These studies focused on
designing specific network structures to improve the performance of the OFDM receiever.
Nevertheless, the theoretical explanation of the networks remains limited. There is no
quantitative analysis for the hyperparameters.

Although the above NN-based communication systems show good performances
in simulations, it is difficult to practically implement them, particularly in underwater
acoustic channels because of the heavy computations and complex structures. For in-
stance, Refs. [29–31] did not conduct sea trials. Another option is to build simple networks
for the module optimization. M. Turhan et al. proposed an NN-based generalized frequency
division multiplex with index modulation (GFDM-IM) detector to detect the symbols after
a coarse detector [32]. With perfect CSI in the receiver, the simulation results showed
lower BERs of this network than the ZF detector. T. Wang et al. have built a CNN for
index modulated OFDM (IM-OFDM) detection, whose performance approximates the
maximum likelihood (ML) detector [33]. A further option for NN is the extreme learning
machine (ELM)-based receiver. This kind of receiver integrates the channel estimator and
equalizer with a single layer NN, which is trained online for each time [34,35]. In L. Yang’s
work, with enough block pilots for training, a long frame with a large quantity of OFDM
symbols was simulated [35], showing better performance than MMSE equalizer and NN-
based detector proposed by H. Ye et al. [22]. Since the UWA channels were time-variant,
the ELM detector was unable to show good performance, because the transmitted frames
had to be kept short to reduce the influence of the time-variant channel. H. Zhao et al. [36]
proposed a transfer strategy for the DNN-based OFDM receiver and tested it with the
WATERMARK dataset and real experimental data. This study focused on the network
retraining, and did not discuss the design of the applied NN structure. Y. Zhang et al. [37]
focused on solving the channel sample augmentation problem for the NN-based channel
estimator. Both [36,37] proposed an innovative strategy to solve the application problem of
DNN-based receievers.
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Despite the good simulation results produced by the above structures, problems still
exist when the system is implemented in UWA channels.

• Firstly, the real dataset is difficult to obtain because the UAC links are usually one-way
with no feedback. Hence, the uncertain time-variant channel states do not allow the
system to obtain the samples in a short period.

• Secondly, it is not realistic for the NNs to be retrained in a high rate link because the
computation loading is still heavy for real-time applications. Consequently, the data-
driven works mentioned above barely discuss the performance of the system with real
experiments.

In this paper, an attempt at the design and derivation of an NN-based receiver is made
for the UWA OFDM system. A simple NN is proposed to integrate the equalization and
symbol detection, containing only one fully-connected layer. Firstly, taking both channel
frequency response and received symbol as input, the network learns a robust structure to
output the symbol directly. To minimize the complexity of the network, the channel and
received symbol are divided into blocks of the same size, matched with small-size networks.
For attribution to the simple structure, the hyperparameters (mainly the hidden layer size
and input dimension) are inferred according to the delay and coherence bandwidth of the
channel. Thus, the channel-driven networks are constructed. After being trained with
mixed channels and noise samples, the networks show robustness in both simulations and
sea trials, performing better than the ZF and MMSE equalizers as well as the ELM-based
detector in [35]. The contributions of this paper are listed as follows.

• We propose a low-complexity NN-based symbol detector for the UWA OFDM system.
The network takes the segmented channel response and symbol block as input and
integrates the equalization and detection processes. The small input dimension also
reduces the requirement for the hidden neurons. The proposed detector shows lower
computational complexity than the MMSE and ELM-based detectors.

• The NN-based detector is trained offline with a channel dataset containing simulated
and real channels. Then the detector can be applied completely independently online
with fixed hyperparameters, improving the efficiency of the online receiver. Under the
same LS channel estimator, the trained network outperforms the ZF and MMSE
equalizers, and the whole receiver is more reliable than the online ELM-based detector
in both frequency selective channels in the pool and time-variant shallow sea channels.

• To obtain the optimal network structure, the block size of an OFDM symbol is associ-
ated with the coherence bandwidth. By testing each network with the input sizes in
the range of less than the coherence bandwidth, the optimal hyperparameters can be
found. The simulations verify the above configurations.

The remainder of this paper is organized as follows. Section 2 describes the UWA
OFDM system. Section 3 discusses the UWA channels and the traditional detectors for
symbols suffering from them. The network structure and training strategy are described
in Section 4, while the result discussions of simulations and sea trials are included in
Sections 5 and 6. Section 7 concludes our work.

2. Preliminary

An UWA OFDM system with frequency domain equalization is shown in Figure 1.
The bit stream b to be transmitted is modulated to symbols with digital modulation.
After the inverse fast Fourier transform (IFFT) is performed, the signal is up-converted to
the carrier frequency. Then it is transmitted through the channel and suffers from noise.
In the receiver, the signal is represented as

r(t) = h(t, τ)⊗ s(t) + z(t), (1)

where s(t), h(t, τ) and z(t) are the transmitted signal, channel impulsive response and
additive noise. τ is the channel delay. ⊗ denotes convolution. After being down-converted
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to the baseband and performing the fast Fourier transform (FFT), the received symbol in
the frequency domain can be written as

R = HS + Z, (2)

where S, H, and Z are the transmitted symbol, channel transfer function, and additive
noise in frequency domain. Usually, the UWA channels and noise are different from those
in terrestrial communications. With more powerful recognizable paths and impulsive
noise, the OFDM system does not show good performance in shallow water. To reduce the
influence of channels on symbols, before detection, the channel should be estimated and
used to equalize the symbol with specific algorithms such as ZF and MMSE.

Figure 1. A classic UWA OFDM system. The performance of the channel estimator and equalizer are
challenged by the UWA channels with large delays and impulsive noise.

3. UWA Receiver Structure

3.1. Signals Suffering from UWA Channel with Large Delays

The UWA channel differs from the terrestrial electromagnetic channel [38]. The ray
theory reveals that the delay of an underwater channel is decided by the path length and
sound speed [7], and in addition, according to [39], the motion of the transmitter/receiver
pair, the scattering of the moving sea surface and the refraction due to sound speed
variations. For a received symbol, the time-varying UWA channel impulse response (CIR)
can be written as

h(t, τ) =
Np−1

∑
i=0

ci(t)δ(τ − τi(t)), (3)

where Np is the number of paths, and τi(t) ≈ τi − ait is the time-varying delay of the i-th
path, and ai is the Doppler factor. ci(t) is the channel coefficient of each path varying with
time. In the receiver, after resampling, FFT, and low-pass filtering [4], the channel function
in frequency domain is written as

H(t, f ) =
Np−1

∑
i=0

ci(t)ej2π f τi(t). (4)

As a result of the slow sound speed and low reflection loss, τi(t) is large in long
distances. These recognizable paths result in a small coherence bandwidth for the OFDM
symbol. Figure 2 shows a CIR and corresponding transfer function caught in the water
tank of Xiamen University. It can be seen from Figure 2b that the frequency selectivity is
severe because of the long delay of the recognizable paths in Figure 2a.
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Figure 2. Time and frequency response of a typical UWA channel: (a) is the CIR of the channel,
which contains many strongly reflected paths with large delays. Its frequency response in (b) shows
non-negligible frequency selectivity.

3.2. Signal Detection in UWA Environments

For the received signal described in Equation (1), using the minimum squared Euclid-
ian distance is considered to detect the above symbol, the optimization problem can be
expressed as

Ŝ(n) = arg min
Sm(n),m∈[1,M]

‖R(n)− H(n)Sm(n)‖2, (5)

where ‖·‖ represents 2-norm. H(n) is the channel frequency response in any one OFDM
symbol. M is the modulation order, and Sm(n) is the m-th referred symbol. Further,
the squared Euclidian distance can be written as

E2
Sk =

⎧⎨⎩ ‖(H(n)− 1)Sm(n) + Z(n)‖2 k = m∥∥∥H(n)Sk(n)− Sm(n) + Z(n)
∥∥∥2

k �= m
. (6)

Considering a system utilizing frequency domain equalization (FDE) for better perfor-
mance, for the signal in Equation (6), a multiplier G(n) is included in the detector, yielding

E2
Sk =

⎧⎨⎩ ‖(H(n)G(n)− 1)Sm(n) + Z(n)G(n)‖2 k = m∥∥∥H(n)G(n)Sk(n)− Sm(n) + Z(n)G(n)
∥∥∥2

k �= m
. (7)

Considering G(n) as the entry of multiplier matrix G, for ZF equalizer,

G =
(

ĤHĤ
)−1

ĤH, (8)

where Ĥ is the estimated channel matrix. Multiplying R in Equation (2) with G, and ex-
pending the equation, the equalized symbol can be expressed as⎡⎢⎢⎢⎣

ŝ1
ŝ2
...

ŝN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

s1
s2
...

sN

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

g11 g12 · · · g1N
g21 g22 · · · g2N

...
...

. . .
...

gN1 gN2 · · · gNN

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

z1
z2
...

zN

⎤⎥⎥⎥⎦, (9)

where gnn is the element of G. It can be seen in Equation (10) that the equalized symbol
includes amplified noise which will influence the detection. In the noiseless channel,
the second term is zero.
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For the MMSE equalizer, there is

G = ĤH
(

ĤĤH +
σ2

P
I

)−1

, (10)

where σ2 and P are powers of noise and signal, respectively, and I is the identity matrix.
With Equation (11), the MMSE-equalized symbol can be expressed as

⎡⎢⎢⎢⎣
ŝ1
ŝ2
...

ŝN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

|H11|+ σ2
n

σ2
s

0 · · · 0

0 1

|H22|+ σ2
n

σ2
s

· · · 0

...
...

. . .
...

0 0 · · · 1

|HNN |+ σ2
n

σ2
s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
s1
s2
...

sN

⎤⎥⎥⎥⎦+
⎡⎢⎢⎢⎣

g11 g12 · · · g1N
g21 g22 · · · g2N

...
...

. . .
...

gN1 gN2 · · · gNN

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

n1
n2
...

nN

⎤⎥⎥⎥⎦. (11)

The first term of Equation (11) includes a factor matrix that only contains positive
coefficients. As Figure 3 shows, for a single received point in the decision regions, the ele-
ments of this factor matrix linearly scale the received point to draw it closer to the reference
point, which does not change its quadrant. Consequently, for the low-level constellations
that can decide the symbols according to the quadrants they lie, such as BPSK and QPSK,
the MMSE does not perform better than the ZF equalizer. In addition, the MMSE equalizer
requires a priori SNR, which is difficult to obtain in time-varying UWA channels.

Figure 3. A decision region of the QPSK constellation.

When the frequency selectivity becomes strong, with imperfectly estimated channels,
both ZF and MMSE equalizers cannot recover the symbols effectively [40]. However, it
is still necessary to develop a more effective frequency domain equalizer in underwater
acoustic channels because of the attractive low complexity. Variable NN structures provide
new solutions to such interference elimination problems. The NN now has been proved to
learn one or more nonlinear processes well with a proper structure [33]. With an intelligent
interference simulating model [41], it is possible to train an equalization network offline,
which can be applied independently online without extra a priori environment information.
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4. NN-Based Joint Equalization and Detection

Unlike the frequency domain equalizers mentioned above, this paper combines equal-
ization and symbol detection and implements a joint detector with the NN. The detected
symbol can be written as

Sd(n) = arg min
D[Ĥ(n),R(n)]

L
{

D
[
Ĥ(n), R(n)

]
, S(n)

}
, (12)

where L{·} is the loss function and D[·] represents the process of the proposed network.
It has been proved that a simple network structure is enough to well solve the receiver

problems [33,42]. Inspired by this, the proposed joint detector utilizes a single-layered
network. As shown in Figure 4, after channel estimation, R(n) and H(n) are sent to the
network for detection. Moreover, a block-input strategy is proposed to further decrease
the complexity of the network. Nb is the number of blocks and NL denotes the number of
neurons. The structure configurations of the network are described as follows.

Figure 4. Block diagram of the proposed scheme on joint equalization and detection based on the
NN. The detection process integrates the equalization and symbol demapping, which is completed
by a low-complexity network, taking the segmented subcarriers as input.

Input: Before input to the network, the received OFDM symbol R(n) with N subcarri-
ers is firstly divided into Nb blocks. Each block contains Nc subcarriers. The same process is
conducted with the corresponding estimated channel function Ĥ(n). Thus, a small reusable
network can be designed for each combination of the data and channel block. To further
determine the optimal hyperparameters, a proper Nc should be defined to balance the
computation and accuracy of the network, i.e., two rules are proposed:

(1) Nc should optimize the performance of the joint detector with estimated channel.
(2) The required number of neurons is positively correlated to the input dimension, and

Nc should be as small as possible to minimize the computation of the network.

Based on the analysis above, the narrow coherence bandwidth Wc of the channel
is considered, which always limits the performance of the underwater OFDM system.
Because the subcarriers in each coherence frequency band suffer from relatively flat fading,
an opportunity is found to find the optimal Nc [43]. By setting Nc in the range of coherence
bandwidth, the joint detection network is able to deal with the symbol blocks separately
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in a flat fading channel. Figure 5a shows the frequency response of a simple channel with
one path. A1 to D3 are values of the frequency points. According to [43], for a channel that
follows the homogeneous assumption, the coherence bandwidth is inversely proportional
to the maximum channel delay Td, which can be approximately represented as

Wc ≈
1

Td
. (13)

For the channel in Figure 5a, Wc is easily observed as the frequency range between B2
and D3, written as

Wc = fD3 − fB2 . (14)

In practice, the UWA channel contains more paths as shown in Figure 5b, whose
frequency response is the sum of more than one paths with time-varying coefficients
distributions [39]. With the same estimated Wc as Figure 5a, different situations are listed
in Table 1 by taking different sections as blocks. It should be noted that the starting point of
the first block should always be A1, which is also the first subcarrier of an OFDM symbol.
When the width of the block Wb = Wc, block [A1, C2] suffers from selective fading because
the section includes inflection points of the frequency response. The same result occurs
when Wb = Wc/2 because [B1, B3] includes an inflection point. When Wb = Wc/3, no
sections include an inflection point or experience flat fading. This consistency of flat fading
is more conducive to the symbol detection [44].

According to the discussion above, there is a Wb in the range (0, Wc], which decides
the optimal Nc, yielding

Wb = NcΔ f , (15)

where Δ f is the frequency interval of two contiguous subcarriers. The NN with input
length Nc deals with blocks that all suffer from flat fading. Therefore, although the accurate
Wc is difficult to find, its estimate can be an upper bound for finding the optimal input
dimension for the network.

(a) (b)

Figure 5. Time and frequency response of a simple and a complex channel: (a) is the response of
the channel, which contains the main path and one reflected path. (b) is the response of a complex
channel, which includes many other paths besides the paths in (a).

Consequently, the input block size Nc can be quickly found by going through the
coherence bandwidth of the estimated channel. Algorithm 1 shows the steps to find Nc.
Nwc represents the number of subcarriers contained in the range of the empirical coherence
bandwidth. The threshold CTh is used to filter the paths with low power which does not
affect the performance of the system. ITh contains the indexes of the recognizable paths.
BER( · ) represents the process to calculate the BER. Because there is only one optimal Nc
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for each Wc that varies slowly in a short duration in fixed locations, steps 7 to 13 can be
conducted independently with offline training.

Table 1. Fading situations of different sections.

Block Type of Fading Width of a Block

[A1, C2] Selective fading Wc
[A1, B1], [B2, C2], [C3, D3] Flat fading 2Wc/3
[A1, A3], [C1, C3], [D1, D3] Flat fading Wc/2

[B1, B3] Selective fading Wc/2
[A1, A2], [A3, B1] Flat fading Wc/3
[B2, B3], [C1, C2] Flat fading Wc/3
[C3, D1], [D2, D3] Flat fading Wc/3

Algorithm 1 Finding the optimal input block length according to the estimated channel

Require: The estimated channel response H(n);
Ensure: Power threshold CTh, Bandwidth of an OFDM symbol W, Training symbol matrix

{St, Channel matrix [Ht], bt}, N, Pb = 0.5;
1: h(n) = IFFT[H(n)];
2: hTh, ITh = find(h(n) > CTh);
3: Td = max(ITh);
4: Wc = 1/Td;
5: Nwc = NWc/W;
6: Nc = Nwc;
7: While Nc ≥ 1
8: btn = D[St] with Nc as block length;
9: Pbn = BER(btn, bn);

10: if Pbn < Pb
11: Pb = Pbn;
12: end if
13: Nc = Nc − 1;
14: return Nc;

After Nc is decided, the input matrix is the combination of the symbol block and
channel block. To input these complex symbols and channels to the real-value NN, the real
and imaginary parts of the symbol and channel blocks are extracted and rearranged, which
can be written as

X =

⎡⎢⎣ Re{R1
b(1)} Im{R1

b(1)}...
...

Re{RB
b (1)} Im{RB

b (1)}...

Re{R1
b(Nc)} Im{R1

b(Nc)}
...

Re{RB
b (Nc)} Im{RB

b (Nc)}
Re{H1

b(1)} Im{H1
b(1)} ...

...
Re{HB

b (1)} Im{HB
b (1)} ...

Re{H1
b(Nc)} Im{H1

b(Nc)}
...

Re{HB
b (Nc)} Im{HB

b (Nc)}

⎤⎥⎦
=
[

Rri
b (i) Ĥri

b (i)
]

, (16)

where Rk
b(n) and Hk

b(n) are the n-th received symbol block and estimated channel block
of k-th training batch. B is the batch size. Since H(n) is input directly, the network does
not need to learn the changing channel characteristics [25]. Instead, a generative analytical
process can be learned to be adaptive to any kind of channel.

Network configurations: As Figure 4 shows, the single-layered network proposed
in this paper contains a fully connected layer with NL neurons. To detect a symbol block,
the input firstly multiples a weight vector WL, then adds bias vectors BL, yielding

Ym = g(XHWL + BL), (17)
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where g(·) is the activation function. To transform Ym to the output with required length,
another linear map is built:

Y = Ym
HWout + Bout, (18)

where Wout and Bout are weights and bias of the output layer. Y contains Nc symbols,
which are further input with the one-hot format reference symbols to calculate the cross
entropy as the loss function, yielding

LD = −
B

∑
i

M

∑
j

Sonehot
ij (n) log

{
softmax

[
Ys

ij(n)
]}

, (19)

where Sonehot
ij (n) and Ys

ij(n) are the one-hot reference symbol and the corresponding output
data. M is the modulation order; softmax[·] is a function to map Ys

ij(n) to the range
(0, 1) [28]. The use of cross entropy can make the network converge quickly.

Training strategy: For each Nc, there are two tasks for the network. One is to find
the optimal NL and another is to train the parameter matrix D. Both tasks can be finished
offline with one training. Figure 6 shows the training strategy of the network. The samples
are constructed with three parts: random data symbols, different types of channels and
noise. The channel samples contains Rayleigh distributed ones and underwater acoustic
channels collected in the pool, artificial lake, and Wuyuanwan Bay, Xiamen, while the noise
includes Gaussian distributed noise and impulsive noise generated by the GAN in [41].

The network for the given input dimension is trained with the range [Nbottom, Nup]
processed with a step to find the optimal number of neurons NLopt. Nbottom and Nup are
lower and upper bound of the possible NLopt, respectively. Meanwhile, the optimal weight
matrix Dopt trained with NLopt is memorized. Then both Dopt and NL are delivered to the
online network to detect the real received symbols.

⊕⊗

∈

Figure 6. Block diagram of training strategy. All networks are only trained once offline and tested
with fixed hyperparameters online in the simulations and sea trials.

Online applications: Unlike the NN-based detector, which takes the only the received
symbol as the input, the estimated channel is included in the input in the proposed detector.
This configuration offers more information for the network to detect symbols, determining
a low-complexity semi-analytical detection network, which is generalized to different
channels. Therefore, the final goal of this study was to train the networks which could be
independently applied online without retraining. The simulations and experiments are
described and discussed below to demonstrate the performance of the proposed structure.

5. Complexity Analysis

To analyze the time-complexity of the proposed NN-based detector, it should be firstly
noted that in the following simulations and sea trials, the networks were all trained once in
advance and were not retrained online. All parameters of the networks was fixed when
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conducting simulations and experiments. Thus the large batch size of the dataset was not
included in the computation. Hence, only NL and N were considered. The computations of
both the LS estimator and minimum distance detector were included for the calculation of
complexity of other equalizers. Consider the following LS channel estimator

ĥ(t) =
r(t)
s(t)

. (20)

The number of multiply-accumulate operations (MACC) of the above process is the number
of subcarriers N. For the minimum distance detector, each symbol experiences M times of
complex operations, which contains 3MN + 5N MACC.

As a similar implementation of the NN-based equalizer, the ELM-based detector in [34]
was considered for performance comparisons. According to [34], the number of MACC
of the ELM-based detector was derived and listed in Table 2. Ignoring the addition with
constant terms, the time complexities of different detectors are compared in Table 2. It can be
seen that the computation of the proposed NN-based detectors is less than that of MMSE for
1 order of magnitude. The complexity of the ELM-based detector is the highest, which is
2 orders of magnitude larger than the proposed NN-based detector. Although the ZF
equalizer shows the lowest complexity, it has been proved to be a suboptimal algorithm in
noisy channels, which could be substituted by more advanced methods.

Table 2. Time complexity of different detectors.

Detector Number of MACC Time Complexity

ELM N(
N3

L
3 + 2NL

2 + NL
2

2 + 8NL + 5NL
6 + 6 + 3M) O(N4)

ZF 7N + 3MN O(N)
MMSE 3(N3 + 3N2 + 2N + MN) O(N3)

Proposed NN (2 + M)NNL + 3N O(N3)O(NNL)

6. Numerical Simulations

The configurations of the simulated system are listed in Table 3. An OFDM system with
the bandwidth 5000 Hz was built. BPSK and QPSK were chosen as the digital modulations.
The number of subcarriers, which was 384, should be divisible by Nc, whereas several
possible Ncs were chosen to build the networks.

Table 3. Parameters of the simulated OFDM system.

Item Value

Bandwidth B 5000 Hz
Modulation − QPSK/BPSK

Number of subcarriers N 384
Block size Nc 1/2/3/4/6/8/12/16

Proportion of training/testing set − 3/1

Before comparing the performance, the network was firstly trained with mixed sam-
ples. As mentioned in Section 4, besides Rayleigh channels generated with MATLAB,
the real channels collected in the pool, artificial lake, and Wuyuanwan Bay, Xiamen, were
taken as samples. All channel samples were mixed randomly in the proportion 1:1:1:1.
For Rayleigh channel samples, the maximum CFO was set to 100 Hz. Moreover, Figure 7a–c
shows the real scenarios to collect channels. The average depths of the pool, artificial lake,
and testing sea area were 1 m, 5 m, and 8 m, while the depths of the transmitter and the
receiver in the three areas were 0.5 m, 0.8 m, and 1.5 m. The only factor which affected the
pool channel was the hard wall and bottom made of tiles. In addition, the average wind
power in the artificial lake and testing sea area was <level 3. The outdoor tests were all
performed in sunny days.
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Different distances were covered to obtain different maximum delays shown in Fig-
ure 7d–f. Furthermore, the power threshold CTh was set to 0.01 to filter the paths with
low power.

Figure 7. Scenes and their channel impulsive response: (a,b) are the scenes of pool and artificial lake
in Xiamen University, while (c) is the testing area in Wuyuanwan Bay. (d–f) are three of the CIRs
caught in these spots, which show large delays.

Taking mixture of the AWGN and impulsive noise generated with the GAN in [41] as
noise samples, the dataset was finally constructed. Table 4 shows the training parameters for
the network. The networks were trained with dynamic SNR and mean square errors (MSE)
of the estimated channels. To accelerate convergence, ReLU was taken as the activation
function, along with the Adam optimizer. The whole training process was conducted in
Python with TensorFlow.

Table 4. Parameters for network training.

Item Value
Input size 2Nc

Number of neurons NL
output size MNc

Activation function ReLU
Optimizer Adam

SNR for training (dB) [20, 30]
Predetermined channel estimation MSE [0, 0.03]

Epoch 300
learning rate 0.001

Platform Python with TensorFlow

Figure 8 shows the BERs of the given Nc changing with NL. The SNR was 25 dB and
the assumed MSE of the channel estimated was 0.004. The step size for NL was 4. It can be
seen that large input dimensions, such as Nc = 12 and Nc = 16, required more neurons to
reach the best performance. In addition, Nc for QPSK was larger than that of BPSK. To be
clear, the estimated NLopts from Figure 8 are listed in Table 5. For each Nc, QPSK needed at
least 20 more neurons than BPSK.
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Figure 8. BER of different Nc varying with NL.

Table 5. NLopt for different Ncs.

Nc 1 2 3 4 6 8 12 16

NLopt for BPSK 28 64 120 181 220 280 400 488
NLopt for QPSK 52 80 148 200 240 300 420 516

It should be noted that the optimal Nc of both modulations in Figure 8 is 1. This is be-
cause the training set contained multiple CIRs, including Rayleigh channels, with different
delays. In this situation, the coherence bandwidth of the channel samples was limited to a
small value. To further demonstrate the influence of the coherence bandwidth, the trained
networks were further used to detect the symbol from the channels with specific maximum
delays. The pool channels in Figure 7a were cut off with lengths of 48, 64, and 77 points,
the corresponding Nwc s of which were 8, 6, and 5. Figure 9a–f show the BERs with different
Nc in BPSK-OFDM and QPSK-OFDM systems. The BER curves of SNR = [15, 25] dB are
enlarged in Figure 9b,d,f. The MSE of the channels estimated was set to 0.01. It can be
seen from the figures that the optimal Nc varies with modulation and Nwc. According to
Algorithm 1 , the optimal Ncs are listed in Table 6. It can be found that in all situations,
the networks with Nc > Nwc showed poor performance. These results prove the analysis
in Section 4, and further demonstrate the feasibility of Algorithm 1.

Table 6. The optimal Nc for different systems.

BPSK QPSK

Nwc = 8 2 2
Nwc = 6 1 3
Nwc = 5 4 3

In addition, the networks with optimal Ncs were compared with the ZF and MMSE
equalizers. The pool channel with Nwc = 8 was used. Figure 10 shows the BERs of different
equalizers. The proposed network showed lower BERs than the ZF and MMSE equalizers
both under perfect channel estimation (MSE = 0) and MSE = 0.01 of the estimated channel.
In particular, when SNR = 20 dB and MSE = 0, the BER of QPSK detection network was
18.66% lower than that of the ZF and MMSE equalizers, while the BER of BPSK detection
network was 14.23% lower than that of the ZF and MMSE equalizers. When SNR = 20 dB
and MSE = 0.01, the BER of QPSK detection network was 29.26% lower than that of the ZF
and MMSE equalizers and the BER of BPSK detection network was 22.16% lower than that
of the ZF and MMSE equalizers. In addition, it can be seen from Figure 10 that the BER
curve of MMSE equalizer for each estimation error is almost the same as the ZF equalizer,
which confirms the discussion in Section 2.
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Figure 9. BER of different Nc in channels with specific maximum delays. (a,c,e) are complete BER
curves of different Nwc s. The BER in the range of [15, 20] dB are enlarged in (b,d,f), respectively.

Further, the above equalizers were tested with the LS estimation. The ELM-based
detector in [35] was also compared. All receivers apply the minimum Euclidean distance
method to detect symbols. Figure 11 shows the BER for these detectors. It can be seen that
the ELM-based detector showed the worst performance in pool channels. The NN-based
receiver still showed low BERs. When SNR = 20 dB, the BERs of NN were lower than ZF
and MMSE equalizers for 25.92% and 30.99% under BPSK and QPSK modulations.
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Figure 10. BER of different detectors with given MSE of channel estimations.
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Figure 11. BERs of different detectors with the LS channel estimator. The BER curves of the ZF
equalizer are almost overlapped by that of the MMSE equalizers, while the NN shows the lowest
BER both with BPSK and QPSK. The ELM-based equalizer shows highest BER.

The above results have proved the efficiency of the proposed NN-based detector.
Furthermore, the underwater trials introduced in Section 6 show the practicability of the
proposed detector.

7. Underwater Trials

The above systems were first tested in the pool in Figure 7. The signals were transmit-
ted with the carrier frequency Fc = 12 kHz and the sampling frequency Fs was 100 kHz.
The parameters shown in Table 3 were taken to generate baseband signals. The block-type
pilots were used for estimation of the time-invariant channels, and the length of cyclic
prefixes was 1/3 of the symbol length. Table 7 lists the BERs of different receivers. It should
be noted that not all the NN-based detectors were retrained, which was the same as the
trained networks in the last section. The optimal Ncs for the NN was found to be 2. This
was because the hard wall of the pool caused strong reflections that resulted in a small co-
herence bandwidth. By adjusting the transmitting power, two groups of signals were tested
with SNR = 30 dB and 5 dB. The ELM-based receiver still showed the worst performance.
It could also be found that the proposed NN showed low BERs in all conditions, while the
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ZF and MMSE equalizers showed relatively high BERs. Compared with the simulations,
the gap of the performance between the proposed NN and other equalizers became smaller.
This was because the delays of the real channels were much longer than the simulated ones,
which caused intersymbol interference (ISI) besides intra-symbol interference. Because
the NN and traditional equalizers are only designed to eliminate the interference in each
symbol, the influence of ISI could not be well equalized.

Table 7. BER of systems tested in the pool.

SNR = 30 dB SNR = 5 dB

BPSK QPSK BPSK QPSK

Proposed NN 0.00206 0.0073 0.0193 0.0276
ZF 0.00209 0.0074 0.0205 0.0295

MMSE 0.00208 0.0074 0.0206 0.0293
ELM 0.1385 0.4023 0.1431 0.4051

Further, the receivers were tested in real sea. The spot chosen was Xiamen Bay near
the location in Figure 7c and the communication distance was 1 km. In addition to the
block-type pilots, the comb-type pilots were applied to make more accurate estimations,
for the channels were time-variant in the shallow sea. In addition, the LS estimator was
used for both pilot types. The SNR was controlled intentionally to 4.5 dB for comparison
of the performances in hostile environments, leading to the received signals in Figure 12b.
The impulse interference can be observed, which severely affects the performance of
the receiver.
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Figure 12. The original and received signals in time domain. Compared with (a), the signal in
(b) suffers from impulses as well as fading.

Table 8 lists the BERs for block-type pilots, Nc = 16, and for comb-type pilots, Nc = 4.
It can be seen that the received symbols with block-type pilots can hardly be detected with
all detectors, although the proposed NN performs best. With comb-type pilots, the results
are better. Since the ELM-based detector can only use the block-type pilots, the BERs with
comb-type ones are ignored. Nevertheless, the BERs of the NN-based detector are the
lowest among all equalizers. These results show the generation of the proposed NN-based
detector in different UWA environments.
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Table 8. BER of systems tested in the shallow sea.

Block-Type Pilot Comb-Type Pilot

BPSK QPSK BPSK QPSK

Proposed NN 0.1602 0.2902 0.0970 0.1196
ZF 0.1867 0.3009 0.0988 0.1250

MMSE 0.1865 0.3010 0.0988 0.1249
ELM 0.4465 0.4905 - -

It can be seen from Table 8 that compared with the ZF and MMSE equalizers, the pro-
posed NN-based detector shows less difference than Figure 11. This is because the signals
transmitted in sea trials experience more complex interferences caused by the time-variant
sound speed field and noise distributions. In this situation, the signals suffer from more dis-
tortions than simulations, such as inter-carrier interference (ICI), which should be reduced
by other algorithms.

To show the generation of the NN-based detector, the networks were tested with
the data transmitted in Xiamen Bay in June 2018. The signals were transmitted at 500 m
with level 3 sea conditions. A pair of NI-6341 data acquisition cards were connected with
30 kHz transducers as the transmitter and the receiver, shown in Figure 12b. The data
were modulated by QPSK and the numbers of subcarriers were set as 128 and 512. A
comb-type pilot was applied for the LS channel estimation. The NN-based detector was
applied to replace the original MMSE equalizer and Euclidean distance detector. The SNR
at the receiver was estimated as 32 dB. Table 9 shows the BERs of different detectors. Both
detectors could detect the symbols well and the NN-based detector outperformed the
original detector with both 128 and 512 subcarriers.

Table 9. BERs of different detectors with data in June 2018.

Number of Subcarriers Proposed NN MMSE

128 0.006185 0.006673
512 0.007568 0.007894

8. Conclusions

In this paper, a low-complexity NN-based detector has been proposed to be imple-
mented in an OFDM system. The segmented channel responses and received symbols are
input to the single-layered network, which directly outputs the detected symbols. By as-
sociating the network with the assist of coherence bandwidth of the estimated channel,
an algorithm is built to find optimal hyperparameters. The networks are all trained offline,
which are applied for both simulations and sea trials with fixed parameters. The quantita-
tive simulations have compared the ZF, MMSE equalizers, and the ELM-based detector with
the proposed NN-based detector, and the results show that the proposed detector reaches
the lowest BER in the tested UWA channels. The same results can be found in the sea trials.
With the best performance among the tested equalizers and detectors, the proposed detector
has lower computational complexity than MMSE and ELM-based detectors. The proposed
NN-based detector needs accurate estimated channels for better performance, which leads
future research to focus on the construction of the optimization of the channel estimator.
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Abstract: Side-scan sonar (SSS) is an important underwater imaging method that has high resolu-
tions and is convenient to use. However, due to the restriction of conventional pulse compression
technology, the side-scan sonar beam sidelobe in the range direction is relatively high, which affects
the definition and contrast of images. When working in a shallow-water environment, image quality
is especially influenced by strong bottom reverberation or other targets on the seabed. To solve this
problem, a method for image-quality improvement based on deconvolution is proposed herein. In
this method, to increase the range resolution and lower the sidelobe, a deconvolution algorithm
is employed to improve the conventional pulse compression. In our simulation, the tolerance of
the algorithm to different signal-to-noise ratios (SNRs) and the resolution ability of multi-target
conditions were analyzed. Furthermore, the proposed method was applied to actual underwater
data. The experimental results showed that the quality of underwater acoustic imaging could be
effectively improved. The ratios of improvement for the SNR and contrast ratio (CR) were 32 and
12.5%, respectively. The target segmentation results based on this method are also shown. The
accuracy of segmentation was effectively improved.

Keywords: side-scan sonar; deconvolution; image quality; contrast ratio; object segmentation

1. Introduction

Side-scan sonar (SSS) is a method using a device that scans and generates sonar images
of the seabed, which emits an acoustic pulse signal toward the seabed perpendicular to
the path of the sensor and records the intensity of the acoustic pulses reflected from the
seabed [1–3]. These pings, recorded by the SSS, are constantly updated in real time and
stitched together into sonar waterfall images to provide a clear view of the seabed landform
and objects such as small targets, pipelines, and shipwrecks. When the SSS works, acoustic
pulse signals of different pulse widths and frequencies are transmitted by the transducers
on both sides of the tow body in the form of a fan-beam, and the acoustic signals propagate
in the form of spherical waves [4]. The transmitted signals are usually a Continuous Wave
(CW) signal and a Linear Frequency Modulated (LFM) signal. The time that passes, from
the moment of pulse emission to the moment the intensity sample is obtained, is translated
into a measure of distance (half the time that passes multiplied by the speed of sound in
water) that can be used to approximate the actual distance of the waterfall images in the
lateral direction [5].

A typical SSS system consists of a data display and recording unit, data transmission
and towing cable, and underwater towfish, including an electronics compartment, trans-
ducers, and a well-sealed shell. Due to its convenient operation, wide coverage, and clear
imaging, SSS is widely used in underwater search and rescue, underwater hazard removal,
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and so on. In practical applications, the higher imaging resolutions and clearer sonar
images of SSS are conducive to achieving ideal results. At the same time, horizontal beam
resolution and range resolution are important factors affecting imaging resolution [6–8].
The horizontal beam resolution (the angular resolution) is mainly affected by the array
form of the horizontal beam open angle. The horizontal beam resolution will increase as
the horizontal beam opening angle decreases, which is generally less than 0.5◦. In addition,
to obtain a high resolution in the horizontal direction, synthetic aperture sonar [9] has been
developed. At the same time, direction of arrival (DOA) estimation algorithms such as
Minimum Variance Distortionless Response (MVDR) [10,11] and Multiple Signal Classifica-
tion (MUSIC) [12,13] have also been developed. However, for common SSS, the increase in
horizontal beam resolution is limited by the operating frequency and array length.

Range resolution is mainly affected by the bandwidth of the sonar transmission
signal. In general, the range resolution of SSS is consistent with the variation trend of the
transmitted signal bandwidth, and the range resolution of the SSS will increase with the
increase in the transmitted signal bandwidth. But, in previous studies, range resolution
has not received much attention because it is generally thought to have little impact on
imaging performance. However, with the wide use of SSS, especially in the development of
autonomous detection algorithms in side-scan sonar image processing, the image quality
of side-scan sonar has become a vital foundational factor that affects the performance of
artificial intelligence algorithms in detecting and recognizing targets in SSS images [14–17].
This improvement in image quality has a positive effect on improving the performance of
autonomous detection. In the practical application of SSS, the sidelobe plays an important
role in the image quality of SSS. Namely, the contour boundary of the targets and seafloor
background are blurred in high sidelobe conditions. Normally, the bandwidth of the signal
transmitted by SSS is fixed, so the range resolution can be improved by decreasing the
sidelobe intensity and further increasing the main-to-side lobe ratio (MSLR). Especially
when there is strong interference in the seabed, the sidelobe of interference will suppress
the weak target signals nearby, which is worse in the case of very shallow water. This is
because in very shallow water, the seabed is complex, and there are more targets in the
seabed caused by human activities.

Methods that improve range resolution by suppressing sidelobe interference in the
range direction include weighted processing [18–20], signal coding [21], etc. Weighted
processing includes the weighted transmitted signal and weighted received signal, but
at the expense of the width of the main lobe. Signal coding is mainly used to transmit
pseudorandom code signals, which can improve range resolution while suppressing the
sidelobe, but at the cost of increasing system complexity. When using SSS or other sonar
imaging systems for underwater exploration, the receiving waveform and transmitting
template will greatly differ due to the uneven frequency response of the transducer and
insufficient power when transmitting long pulses. To obtain a higher range resolution, a
common signal processing method is to match the data collected by SSS, namely pulse
compression technology [22–24]. However, conventional pulse compression techniques
have limited range resolution and an increased sidelobe; in the case of strong interference,
the influence of the sidelobe is more obvious and even affects the accuracy of autonomous
detection. In recent years, deconvolution has been mainly used to improve angular resolu-
tion, being widely used in medical imaging, disturbance suppression, and other areas to
improve image quality [25–27]. In addition, it has been applied in the field of underwa-
ter acoustic signal processing, such as in three-dimensional imaging of synthetic aperture
sonar [28–30], location or separation of mixed sources of linear array [31–33], power spectral
estimation [34], linear array beamforming [35,36], imaging of forward-look sonar, or MIMO
sonar [37,38]. However, there is limited research on the application of the deconvolution
algorithm to improve the image quality of SSS.

To solve the abovementioned problems, we propose an improved pulse compression
technology based on deconvolution. The main contributions are as follows:
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(1) A high-quality imaging method suitable for a sonar system is proposed. To overcome
the limitations of conventional pulse compression techniques, in which the distance
resolution and “main lobe to side lobe ratio” are hard to improve, a deconvolution-
based method is adopted to improve the imaging quality of side-scan sonar. There
are two main benefits. Firstly, this method improves distance resolution under certain
bandwidth and array length conditions. Secondly, it improves the “main lobe to side
lobe ratio”, thereby improving imaging clarity.

(2) An improved deconvolution method is proposed based on the frequency response
function of the sonar system. Based on the characteristics of the operating frequency
response curve of actual sonar systems, an optimal reception response function suit-
able for sonar systems is proposed, which improves the practical adaptability of
the method.

(3) In order to verify the effectiveness of the proposed method, we used simulation and
sea trial datasets. Firstly, the performance of this method under different signal-
to-noise ratios and strong interference conditions was analyzed through numerical
simulation. Then, by processing the sea trial data, the impact of this method on the
imaging quality of large-scale imaging and small underwater targets, as well as on the
imaging and autonomous segmentation of small underwater targets, was analyzed.
Autonomous segmentation is an important component of autonomous detection.
Good image quality helps to achieve high-precision object segmentation, which has
positive significance for autonomous detection in downstream applications.

The remainder of this paper is organized as follows: Section 2 introduces the proposed
imaging method, including the introduction of the range resolution of the SSS, proposed
pulse compression technology based on deconvolution, and calculation of deconvolution.
Section 3 presents the numerical simulation and sea trial datasets, where the analysis and
demonstration of this method are provided. Section 4 presents our final conclusions.

2. Methods

2.1. Range Resolution in Side-Scan Sonar Imaging

The image quality of SSS is mainly determined by the angular and range resolution.
In the case of a certain angular resolution, the range resolution is the main parameter that
determines the imaging resolution of the SSS system.

In consideration of the process of signal transition, as shown in Figure 1, the transmit-
ted signal is a frequency modulation signal, which can be expressed as

s(t) = u(t) exp(j(θ(t))) = rect(
t
T
)[exp(j2π( f0t +

1
2

kt2))], (1)

where f 0 is the center frequency, k is the frequency modulation coefficient, and T is
the period.

rect(
t
T
) =

⎧⎨⎩ 1,
∣∣∣∣t∣∣∣∣≤ T

2
0, others

, (2)

In the target detection model shown in Figure 1, the received signal can be denoted as

x(t) = s(t) ∗Q(t), (3)

where Q(t) is the objective function, which demonstrates the reflection characteristics of
the targets.

As the pulse length of the frequency modulation signal is long, the distance resolution
is not good for imaging. In a traditional sonar system, the distance resolution of the received
signal can be reached by pulse compression, which is expressed as follows:

y(t) = x(t) ∗ h(t), (4)
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where h(t) is the response of the best receiver and can be calculated by

h(t) = rect(
t
T
)[exp(j2π( f0t +

1
2

kt2))]. (5)

Then, the pulse compression output can be obtained as

y(t) =
√

kT2
sin

2π(ξ + kt)T
2

2π(ξ + kt)T
2

exp(−jπkt2) exp(
jπ
4
), (6)

The above equation clearly shows that the envelope shape of the time domain signal
y(t) after pulse compression is a sine function.

The width of the main lobe is about 1/B, and the width of the main lobe is the main
factor affecting the imaging resolution; that is, the range resolution d is

d =
1
2
·c· 1

B
. (7)

At the same time, the value of the main side ratio is about −14 dB. In the case of
strong interference, the sidelobe of a strong target will seriously affect the image quality
and influence target detection properties.

When the sonar works, the transmitter for the sonar needs to go through the drive
circuit and transducer electroacoustic conversion, and the receiving signal also needs to
go through electroacoustic conversion and filtering processes. Due to the frequency band
response of the transducer and the influence of the transmitter and receiver circuits, the
received signal waveform will be distorted, which leads to a risk of the main lobe widening
and the sidelobe increasing. Thus, in the actual world, the image quality may be worse.

 

Figure 1. The geometry of target detection by sonar.

2.2. High-Resolution Pulse Compression Technology Based on Deconvolution

As previously mentioned, the pulse compression process can be written as

y(t) = x(t) ∗ h(t) = x(t) ∗ s(τ − t) =
∫ ∞

−∞
x(u) ∗ s(τ − t + u)du = Rxs(t− τ), (8)

where Rxs(t−τ) is the correlation function.
When the signal and noise are not correlated, and assuming that the echo of interest is

a simple delay model, the output of the matching filter can be written as an auto-correlation
function of the transmitted signal s(t).

y(t) = aRs(t− τ) = Rs(t) ∗ aδ(t− τ). (9)

When M targets are present, the output of pulse compression is

y(t) = ∑M
k=1 aRs(t− τk) = Rs(t) ∗∑M

k=1 aδ(t− τk), (10)
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where τk is the echo delay of the kth target.
Let the objective function be

Q(t) = ∑M
k=1 aδ(t− τk), (11)

Thus, the received signal of the imaging sonar can be rewritten as

y(t) = Rs(t) ∗Q(t), (12)

where Q(t) is an ideal pulse-compressed output with the characteristics of a unitary impulse
response function. It can reflect the acoustic reflection structure of the target well. For
the imaging sonar, Q(t) can reflect the shape of the target well. So, the method aims to
solve Q(t).

2.3. Calculation of Deconvolution

A deconvolution method is introduced to solve Q(t). The Richardson–Lucy (R–L)
algorithm [39–41], which is an optimal iterative algorithm based on Bayesian theory, is
applied to solve the deconvolution problem. It is widely used in image restoration and has
stable performance under low SNRs.

Firstly, denote L(·) as the convergence distance between the true value and the estimated

L(p(x), q(x)) =
∫ ∞

−∞
p(x) log

p(x)
q(x)

dx, (13)

where p(x),q(x) is a non-negative probability density function, L(i) is a monotonically
decreasing and non-negative function, and L(p(x),q(x)) = 0 if and only if p(x) = q(x).

Then, we can obtain the following solution formula:

lim
n→∞

Qn(t) = argminL(y(t), Rs(t) ∗Q(t)), (14)

Qn+1(t) = Qn(t)[Rs(t)·
y(t)

Rs(t)·QK(t)
], (15)

where n represents the number of iterations.
As the iteration number increases, Qn(t) can converge to a unique solution by mini-

mizing the Csiszar discrimination.
Figure 2 represents the workflow of the proposed method. Firstly, the pulse compres-

sion is adapted for the receiving signal. Secondly, we need to estimate the Point Spread
Function (PSF), which is necessary for the R–L algorithm. To estimate the PSF, the model
is made to follow the transmit signal, and then modified by the response of the system.
Thirdly, the calculation of deconvolution is performed by the R–L algorithm. Finally, the
high-resolution data and image from the side-scan sonar are acquired.
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Figure 2. The workflow diagram of the proposed method.

3. Results

3.1. Numerical Simulation

The performance under different SNRs was calculated by simulation. The simulation
conditions of this section were set as follows: the transmitted signal was a LFM signal, the
center frequency and signal bandwidth were 500 and 50 kHz, respectively, and the pulse
width length of the signal was 3.2 ms.

3.1.1. The Influence of Different SNRs

Firstly, we discuss the performance of pulse compressions with the deconvolution
technique under different noise conditions, and the results of the traditional pulse com-
pression technique are compared with the proposed method, as shown in Figure 3. The
statistical results of the main flap width and main side ratio for both methods at different
signal-to-noise ratios are shown in Table 1.

 
(a) (b) 

Figure 3. Cont.
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(c) (d) 

 
(e) (f) 

 
(g)  

Figure 3. The simulation results of pulse compression and deconvolutional pulse compression under
different SNRs: (a) simulation results under 10 dB; (b) simulation results under 5 dB; (c) simulation
results under 3 dB; (d) simulation results under 0 dB; (e) simulation results under−3 dB; (f) simulation
results under −5 dB; and (g) simulation results under −10 dB.
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Table 1. Comparison of the main lobe width and MSLR between the two methods.

SNR Method Main Lobe Width MSLR

10 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.4 mm −40 dB

5 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.4 mm −40 dB

3 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.4 mm −40 dB

0 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.4 mm −36 dB

−3 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.5 mm −30 dB

−5 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.5 mm −28 dB

−10 dB
Traditional pulse pressure 3 mm −14 dB

Deconvolutional pulse pressure 0.5 mm −24 dB

Compared with the processing results in Figure 3 and Table 1, the main lobe width of
the deconvolution method is similar to the impact function, and it shows better range reso-
lution and can truly reflect the objective function. The MSLR of the deconvolution method
is lower and can reach more than 40 dB, which can effectively reduce the interference of
strong targets on the SSS sonogram. Moreover, the algorithm has a good tolerance-to-noise
ratio and maintains good performance at a SNR of −10 dB.

3.1.2. Considering the Influence of Sonar Parameters

In the actual sonar system, the signal transmission and reception process includes
transmission drive, transmission electroacoustic conversion, receiving electroacoustic con-
version, receiving circuit reception, etc., as shown in Figure 4.

 

Figure 4. The signal generation process of the SSS system.

Among these, the frequency band response of the transducer is generally not very
flat. The transmission drive also leads to a distortion in the transmitted signal due to the
influence of charge and discharge, and the comprehensive sonar system response leads
to a mismatch in the conventional pulse compression signal model, increasing the main
lobe width of pulse compression and decreasing the MSLR. This decrease in the MSLR has
an adverse impact on image quality. To calculate and analyze the effect of the algorithm
on practical engineering applications through simulations, the band response of the sonar
system to the signal was comprehensively considered in the simulation experiment, and the
simulation values are shown in Figure 5. The output results of the deconvolution method
and comparison method under these conditions are also shown in Figure 5.

Through comparative analysis, we see that under the simulation conditions, due to
the frequency band response caused by the sonar system, the sidelobe of conventional
pulse compression technology is irregular, and the performance is significantly reduced
compared with the ideal pulse compression results; however, the deconvolution technology
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overcomes the influence of model mismatch due to its multiple iterations of optimization
and maintains a good main lobe width and MSLR.

 
(a) 

 
(b) (c) 

 
(d) (e) 

Figure 5. Cont.
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(f) (g) 

 

 

(h)  

Figure 5. Comparison of deconvolution results and conventional pulse pressure under the influ-
ence of sonar parameters: (a) frequency response of the sonar; (b) simulation results under 10 dB;
(c) simulation results under 5 dB; (d) simulation results under 3 dB; (e) simulation results under 0 dB;
(f) simulation results under −3 dB; (g) simulation results under −5 dB; and (h) simulation results
under −10 dB.

3.1.3. The Impact on Strong Interference

In practice, strong interference may lead to poor target resolution. To analyze the
impact of strong interference, a simulation was performed. In the simulation, there was a
target and an interference with the same intensity. The results are depicted in Figure 6.

Due to the good range resolution ability of the deconvolutional pulse compression algo-
rithm, the distinction between the targets and interference was clearer than that of conven-
tional pulse compression technology, and this method worked well under different SNRs.

3.1.4. The Impact on Imaging

To analyze the effect of the proposed algorithm on actual imaging results, side-scan
sonar imaging results were simulated, and a comparison graph of the imaging results of
the two methods is shown in Figure 7. Three targets are included in the simulation graph,
two of which are on the same time slice (Ping).
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Cont.
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(g)  

Figure 6. Comparison of deconvolution results with conventional pulse compression under the
influence of strong interference: (a) simulation results under 10 dB; (b) simulation results under 5 dB;
(c) simulation results under 3 dB; (d) simulation results under 0 dB; (e) simulation results under
−3 dB; (f) simulation results under −5 dB; and (g) simulation results under −10 dB.

  
(a) (b) 

Figure 7. The simulated images with targets were obtained by (a) the traditional method and (b) the
proposed method.

In comparison to Figure 7a, Figure 7b has a clearer target contour because of the
improved high-resolution algorithm, and the targets at different distances at the same
time can be clearly resolved. Figure 7a, with its conventional processing method, cannot
realize multi-target resolution due to the lower distance resolution and stronger sidelobe
interference.

3.2. Sea Experiment

For the image of SSS, there are two main types of applications. One is the large-scale
imaging of the seabed, which completes the exploration of seabed topography, including
the imaging detection of shipwrecks, seamounts, and trenches; the second is to search
and explore small underwater targets, such as pipelines and mines. To demonstrate the
performance of the algorithm, seabed and small target imaging were performed separately.

These data were obtained through the sea trials. The water depth in the trial was
below 20 m.
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3.2.1. The Influence of the Algorithm on Seabed Imaging
Evaluation Indicators

The imaging quality of our method was analyzed in the following via the imaging
effect of seabed wrecks. There are several commonly used image metrics to evaluate the
clarity and prominence of objects in the image background in the field of image processing,
including the SNR, contrast ratio (CR) [42], and contrast–shadow ratio (CSR) [43]. CSR is
a method used to evaluate the contrast between the target and shadow. The evaluation
results given are similar to those of visual evaluations, and are often used for quantitative
evaluation of image quality control, performance comparison, and defect detection. The
higher the value of CSR, the better the image quality. Moreover, the sharpness of the image
is improved with an increase in CR. This results in a clearer outline of the target in the
image and more details displayed.

The specific calculation is as follows:

SNR = (IM − IB)/IB, (16)

CR = (IH − IB)/IB, (17)

CSR = (IH − IS)/IS, (18)

where IM is the maximum intensity value of the highlighted areas; IH IB, and IS are the
average intensity of the highlighted areas, seabed background areas, and seabed shadow
areas, respectively.

To analyze the ability of the algorithm to maintain image sharpness, the algorithm’s
mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM)
performance were analyzed.

For two m × n images I and K, the mean square error (MSE) was defined as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]
2

, (19)

To locate the peak signal-to-noise ratio (PSNR), we used

PSNR = 10· log10(
MAX2

I
MSE

) = 20· log10(
MAXI√

MSE
), (20)

where MAXI is the maximum value that represents the color of the image; if each sample
point is represented by 8 bits, then this value is 255. Thus, the smaller the MSE, the larger
the PSNR; the larger the PSNR, the better the quality of the image is represented.

The structural similarity (SSIM) was calculated by

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ, (21)

where α > 0, β > 0, and γ > 0.

l(x, y) =
2μxμy + c1

μ2
x + μ2

y + c1
, (22)

c(x, y) =
2σxy + c2

σ2
x + σ2

y + c2
, (23)

s(x, y) =
σxy + c3

σxσy + c3
(24)
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where I(x,y) is the luminance comparison, c(x,y) is the contrast comparison, and s(x,y) is
the structure comparison. μx and μy represent the mean of x and y, respectively, and σx and
σy represent the standard deviation of x and y, respectively. σxy represents the covariance
between x and y. The denominator is constant to avoid the systematic error caused by
zero. c1, c2, and c3 are constants to avoid the systematic error caused by the denominator
being zero.

Comparative Analysis of Imaging Quality

As shown in Figure 8, the SSS image processed by pulse compression technology had
a fuzzy boundary between the target and seabed background, and the target was almost
integrated with the background. However, in the SSS image processed by the algorithm
proposed in this paper, the sidelobe had less interference in the image, due to a reduction in
sidelobe intensity; the range resolution in the lateral direction of the image was improved so
that the boundary between the contour edge of the target and seabed background was more
obvious; and the shape of the target in SSS image was closer to that of the actual target.

  

(a) (b) 

Figure 8. SSS image processing results: (a) SSS images processed by conventional pulse compression,
where the red oval represents the target area, the purple circle represents the shadow area, and the blue
rectangle represents the botttom area, respectively; (b) SSS images processed by the proposed method.

The area in the red oval in Figure 8 was taken as the area inside the target, the area
in the blue box was taken as the seabed area around the target, and the area in the purple
circle beside the red box was taken as the shadow of the target. The three indicators of the
image obtained by the two methods were calculated, and the results are shown in Table 2.

Table 2. Performance metrics of the images of SNR, CR and CSR.

Method SNR CR CSR

Conventional Pulse Compression 18.7 1.6 4.8
Proposed Method 24.7 1.88 25.8

Ratio of Improvement 32% 12.5% 437%

Table 2 shows that the SNR, CR, and CSR of the proposed algorithm were 24.7, 1.88,
and 25.8, respectively, which were improved compared with the results of the conventional
pulse compression method. The ratios of improvement for SNR, CR, and CSR were 32, 12.5,
and 437%, respectively.

The proposed method was compared with the conventional image mean square
sharpening method, and a comparison graph is shown in Figure 9, where Figure 9a shows
the results of conventional image sharpening and Figure 9b shows the results of the
proposed method.
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(a) (b) 

Figure 9. The SSS image processing results: (a) SSS images processed by the sharpening method and
(b) SSS images processed by the proposed method.

The calculated values were analyzed and are shown in Table 3.

Table 3. Performance metrics of the images of MSE, PSNR and SSIM.

Method MSE PSNR SSIM

Common Sharpening Method 3.34 12.83 0.59
Proposed Method 1.52 16.30 0.79

This comparison shows that the improved method proposed in this paper has a larger
PSNR and SSIM and smaller MSE for the image compared with the conventional method,
indicating that our proposed method is superior. This is because the deconvolution method
improves the resolution in the original echo domain during processing. Therefore, it
achieves a better signal-to-noise ratio and improved structural features than the original
image and introduces smaller errors.

3.2.2. The Influence of the Algorithm on Target Imaging

In recent years, with the continuous progress of unmanned technology, autonomous
detection technology based on SSS has developed higher requirements. Detection technol-
ogy usually includes segmentation, detection, identification, and other steps. The image
quality of SSS is the foundation of autonomous detection and identification algorithms.

In this section, real small targets on the seabed were imaged using the deconvolutional
pulse compression method and traditional pulse compression method. The difference in
image quality was assessed by independent segmentation of each acoustic image. The
segmentation algorithm adopted the region growth method [44–46], which is characterized
by ensuring the continuity of the target.

Figures 10 and 11 are the processing results of the two sets of data (Data I and Data
II), including the processing acoustic image of conventional pulse compression technology,
the processing acoustic image of deconvolutional pulse compression algorithm, and the
corresponding autonomous segmentation results. Figure 10 shows the results of Data I with
a single target and image segmentation, and Figure 11 shows the imaging and segmenting
results of Data II with a small target with strong interference nearby.
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(a) (b) 

  
(c) (d) 

Figure 10. A comparison of processing results between the conventional pulse compression technique
and proposed method: (a) imaging results of conventional pulse compression technology; (b) imaging
results of the proposed method; (c) image segmentation results after imaging by conventional pulse
compression technology; and (d) image segmentation results after imaging by the proposed method.
The red ovals represent the small target area.

By comparing the processing results shown in Figure 10, we see that deconvolutional
pulse compression has better resolution, and the shape of the target can be clearly described
using this method. The shape of the target after autonomous segmentation is more accu-
rate and closer to the real target, which is beneficial to the extraction of accurate target
information. The follow-up detection process can effectively avoid missing judgment and
misjudgment in the process of autonomous detection and processing.

Through the comparison in Figure 11, we see that in the original pulse compression
processing results, due to the influence of strong interference, the target shape is difficult
to clearly identify and the outline of the target is not obvious. The jamming target next
to it is more similar to the target to be detected in the SSS image than the real target.
Furthermore, the scale of the target after autonomous segmentation was severely distorted
and was unable to maintain the target’s true form, which interferes with subsequent
detection. Contrary to the results of pulse compression processing, the image obtained by
deconvolutional pulse compression had smaller sidelobe interference of the target and was
more clearly visible. Meanwhile, the contour was more distinct than what was obtained by
conventional pulse compression processing, which is a better representation of the original
shape of the target and is more conducive to subsequent segmenting. Compared with the
segmentation results of pulse-compressed images, images using our proposed method
were closer to the real target after segmentation.
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(a) (b) 

  
(c) (d) 

Figure 11. A comparison of processing results under strong interference conditions between the
conventional pulse compression technique and proposed method: (a) imaging results of conventional
pulse compression technology; (b) imaging results of the proposed method; (c) image segmentation
results after imaging by conventional pulse compression technology; and (d) image segmentation
results after imaging by the proposed method. The red ovals represent the small target area.

4. Conclusions

The performance of the range resolution in high-frequency image sonar systems
greatly affects image quality. As one of the important indicators for evaluating image
quality, range resolution is limited by sonar system parameters. The pulse compression
technology commonly used in conventional sonar signal processing is limited by the system
bandwidth in terms of range resolution, and the main-to-side lobe ratio is generally high.
When there is strong interference or a large quantity of debris on the seabed, it can affect
the quality of the observation image. In this paper, a pulse compression technique based
on deconvolution was proposed to achieve ideal objective functions. This method could be
used to overcome the limitations of inherent sonar system parameters and improve range
resolution without affecting system complexity.

In our simulation results, the proposed algorithm improved the main lobe width of
pulse compression, and the main-to-side lobe ratio also significantly increased. In the
processing results of data from actual sea trials, the proposed method effectively improved
image quality. In the results of the data processing, the ratios of improvement for SNR,
CR, and CSR were 32, 12.5, and 437%, respectively. Combined with object segmentation
methods, the object segmentation accuracy was effectively improved, and the segmented
target largely retained the morphological information of the actual target. This shows that
our proposed method has great potential in autonomous detection. In addition, some
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high-precision ocean surveys, exploration, and seabed sedimentological surveys may also
be potential applications of this method.
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Abstract: To overcome the problems of the high sidelobe levels and low computational efficiency
of traditional Capon-based beamformers in optimizing the two-dimensional (elevation–azimuth)
beampatterns of conformal arrays, in this paper, we propose a robust Capon beamforming method
with sparse group constraints that is solved using the alternating-direction method of multipliers
(ADMM). A robustness constraint based on worst-case performance optimization (WCPO) is imposed
on the standard Capon beamformer (SCB) and then the sparse group constraints are applied to
reduce the sidelobe level. The constraints are two sparsity constraints: the group one and the
individual one. The former was developed to exploit the sparsity between groups based on the
fact that the sidelobe can be divided into several different groups according to spatial regions in
two-dimensional beampatterns, rather than different individual points in one-dimensional (azimuth-
only) beampatterns. The latter is considered to emphasize the sparsity within groups. To solve
the optimization problem, we introduce the ADMM to obtain the closed-form solution iteratively,
which requires less computational complexity than the existing methods, such as second-order cone
programming (SOCP). Numerical examples show that the proposed method can achieve flexible
sidelobe-level control, and it is still effective in the case of steering vector mismatch.

Keywords: robust Capon beamforming (RCB); sparse group constraints; alternating-direction method
of multipliers (ADMM); two-dimensional beampatterns

1. Introduction

In the past decades, conformal arrays have been widely used in sonars [1–3] and
radars [4,5] because they improve the dynamic characters of vehicles and offer three-
dimensional observation. The core function of conformal arrays is beamforming, which
performs weighted summation on the received data of arrays to suppress noise and inter-
ference [6], improving the postprocessing performance in applications such as detection [7].
The beampattern can evaluate the performance of the spatial filtering of the beamforming,
which is worthy of proper design. Unlike the azimuth-only beampatterns of linear and
circular arrays, the beamformers of conformal arrays can be steered at an arbitrary spatial
angle without the direction ambiguity found in elevation–azimuth beampatterns, which
has attracted much attention in relevant fields.However, the implementation of the beam-
forming of conformal arrays is more difficult than for other arrays due to the complexity of
their array geometry and computation. Up to now, beamforming algorithms have been
mainly applied to linear and circular arrays, so the study of the beamforming of conformal
arrays is urgently needed.

Among the many beamfomers, theoretically, the Capon beamformer [8] can adap-
tively suppress interference and minimize the output noise power while maintaining the
distortionless response of the desired signal. However, a Capon beamformer often suffers
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from severe performance degradation in practical applications, which is mainly caused by
various types of steering vector (SV) mismatch. This SV mismatch not only causes signal
self-cancellation in the mainlobe, but it also leads to an intolerable increase in the sidelobe
level (SLL). Several approaches have been developed to improve robustness against SV
mismatch. The diagonal loading technique (DL) [9] is adopted to alleviate the imperfect
information in the covariance matrix of training data. To determine the diagonal loading
factor reasonably, a series of algorithms based on uncertainty sets of SVs have been pro-
posed, such as worst-case performance optimization (WCPO) [10,11] and robust Capon
beamforming (RCB) [12]. On this basis, several approaches to synthesizing beampatterns
with robust sidelobe control [13,14] have been developed.

Even if the problem of SV mismatch has been resolved, the inherent SLL of the beam-
patterns of conformal arrays is still too high to meet practical requirements, being restricted
by geometry [15], aperture [16], and other factors [17]. It is necessary to artificially impose
constraints to further optimize the SLL of the beampattern. Sidelobe control algorithms
based on adaptive array theory [18,19] can be applied to arbitrary geometry arrays by
adding virtual interference in the sidelobe region to reduce the SLL of the beampattern.
The drawbacks of these algorithms are that the convergence is highly reliant on the iter-
ation gain and that there is no clear criterion to determine the mainlobe region in each
iteration.To reduce the computational complexity and improve flexibility, accurate array re-
sponse control algorithms [20–22] have been developed; these are able to control multipoint
responses simultaneously using closed-form solutions. For the design of two-dimensional
(2D) beampatterns of conformal arrays, increased constraints in the sidelobe region reduce
the degree of freedom of the beamformer, and a higher amount of computation is con-
sumed. Consequently, finding a principle to reduce the SLL with as few constraints as
possible has become an important issue. One method is to use the concept of the sparsity
constraint [23], which refers to the requirement that the vector being sought or optimized
must have as few non-zero entries as possible. Recently, this has been used for sidelobe
suppression [24–26], and it was shown to be flexible and effective for the adjustment of
the SLL and increased robustness. The sidelobes in azimuth-only beampatterns can be
discretized into different single directions, and l1 regularization [27] is usually employed to
achieve individual sparsity. The sidelobes in 2D beampatterns can be further divided into
block-regions composed of local directions, which suggests that group sparsity [28] with
l2,1 regularization is more appropriate for describing the features of the sidelobes in 2D
beampatterns than individual sparsity. Up until now, group sparsity has not been utilized
in beampattern optimization.

Besides the above problems, computational complexity is another important issue in
the study of 2D beampattern optimization with conformal arrays. The number of spatial
angles scanned using the elevation–azimuth beampattern of conformal arrays increases
exponentially compared with that scanned using the azimuth-only beampattern of linear
or circular arrays; hence, the design of 2D beampatterns entails a high computational cost.
The algorithms in Refs. [10,12,13,24–26] can be easily transformed into the form of either
second-order cone programming (SOCP) or semidefinite programming (SDP), followed
by the use of software packages such as CVX [29]. The interior-point method used in CVX
suffers from a high computational burden, so it is not applicable in the scenario of 2D
beampattern optimization. To alleviate the complexity arising from additional computation,
recently, the alternating-direction method of multipliers (ADMM) [30] has attracted much
attention and has been applied to RCB [31] and beampattern synthesis [32–36], as well
as other areas of signal processing [37,38]. The ADMM decouples the global problem
into several more local subproblems that are easier to solve, and it obtains the solution
of the global problem by coordinating the solutions to the subproblems. Benefiting from
fast processing and good convergence, it is suitable for solving large-scale beamforming
optimization problems. However, ADMM has not been exploited to solve the optimization
problem of a 2D beampattern with sparsity constraints.
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This paper is dedicated to the 2D beampattern optimization problem of a Capon
beamformer with conformal arrays. We developed a robust Capon beamformer utilizing
sparse group constraints that can reduce the SLL flexibly and achieve a robustness of
interference suppression in the case of the SV mismatch. We first explore the properties of
the 2D beampattern, introducing the group sparsity constraints [39] into the optimization
problem, which forms the sparse group constraints together with the individual sparsity
constraint. Based on the RCB, the sparse group-constrained robust Capon beamformer (SG-
RCB) is then proposed. In order to reduce the computational complexity of the SG-RCB, the
ADMM is employed to determine its weight vector. The optimization problem of the SG-
RCB is divided into two independent subproblems with the help of a generalized sidelobe
canceler (GSC) [40]; one is the WCPO, used to obtain the SV of the desired signal, and the
other is the sparse group least absolute shrinkage and selection operator (SGLASSO) [41],
used to solve adaptive weight in the GSC. Combining the solutions of the two subproblems,
the weight vector is derived in closed form. We show that the proposed beamformer can
dramatically reduce the SLL of the 2D beampattern without requiring heavy computational
cost, which is significant in practical applications.

The rest of the paper is organized as follows. In Section 2, we review the signal model
and concepts on the Capon beamforming and beampatterns. In Section 3, the RCB with
sparse group constraints is proposed. In Section 4, the ADMM is introduced to solve the
optimization problem of the SG-RCB. In Section 5, we demonstrate the improvement of the
proposed method on the 2D beampattern of a conformal array. In Section 6, conclusions
are drawn.

Notation 1. Let us denote matrices and vectors as bold upper-case and lower-case letters, respec-

tively. In particular, 1 denotes an array of all ones and I stands for the identity matrix. j
�
=
√
−1.

R and C denote the sets of real and complex numbers, respectively. �(·) and �(·) are the real
part and imaginary part of the argument, respectively. The superscripts (·)T and (·)H denote the
transpose operator and the conjugate-transpose operator, respectively. ‖·‖p denotes the lp norm of
the input vector (p = 0, 1, 2). P(·) is the principle component of the input matrix.

2. Problem Formulation

2.1. Signal Model

Consider an array with an arbitrary configuration composed of identical M omnidi-
rectional hydrophones. The m hydrophone’s position in the three-dimensional Cartesian
coordinate system is represented as

pm = (px, py, pz)
T = [rm sin θm cos φm, rm sin θm sin φm, rm cos θm]

T (1)

where
rm: the length of the mth hydrophone’s radius vector.
(θm, φm): the elevation and azimuth angles of the m hydrophone, respectively.
Suppose that a source in the farfield is in the direction of (θ, φ) where θ ∈ [0, π] and

φ ∈ [0, π]. The SV of the plane wave of this source is defined as

a(k, θ, φ) =
[
e−jkTp1 , e−jkTp2 , · · · , e−jkTpM

]T
(2)

where k =
2π f

c
· [sin θ cos φ, sin θ sin φ, cos θ]T represents the wave number of the plane

wave, where f is the frequency and c is the speed of sound.
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As shown in Figure 1, suppose there are D far-field narrowband uncorrelated signals
(plane waves) impinging on the array, one of which is the desired signal while the other
D− 1 are interferences. The signals received by the array can be written as [6]

y(t) = a0s0(t) +
D−1

∑
d=1

adsd(t) + n(t) (3)

where
t: the arbitrary sampling time.
y(t) ∈ CM×1: the received data sampled by the array.
a0: the actual SV of the desired signal.
ad: the SV of the dth interference.
s0(t): the wavefront of the desired signal.
sd(t): the wavefront of the dth interference.
n(t): the zero-mean Gaussian white noise, representing additive noise in the environ-

ment received by the array.

Figure 1. Illustration of the array with arbitrary geometry, in which (θ0, φ0) is the incidence angle of
the desired signal and (θd, φd) is the incidence angle of the dth interference.

Assuming that the desired signal, interferences, and noise are uncorrelated with each
other, the noise on each hydrophone is also uncorrelated. The covariance matrix of y(t) is
given as

Ry = E
[
y(t)yH(t)

]
= Rs + Rint+n

= σ2
s a0aH

0 +

(
D−1

∑
d=1

σ2
d adaH

d + σ2
n I

) (4)

where
E[·]: the statistical expectation.
Rs = σ2

s a0aH
0 : the covariance matrix of the desired signal.

Rint+n = ∑D−1
d=1 σ2

d adaH
d + σ2

n I: the covariance interference-plus-noise matrix.
σ2

n I: the covariance matrix of the Gaussian white noise.
σ2

s : the power of the desired signal.
σ2

d : the power of the dth interference.
σ2

n: the power of noise.
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The signal-to-noise ratio (SNR) and interference-to-noise ratio (INR) of the dth interfer-
ence are defined as [6], respectively, σ2

s /σ2
n and σ2

d /σ2
n. In practice, the covariance matrix of

y(t) is estimated with a finite number of samples. The sample covariance matrix of y(t) is
written as

R̂ =
1
L

L

∑
t=1

y(t)yH(t) (5)

where L denotes the sample size.

2.2. The Two-Dimensional Beampattern

Beamforming is a technique of weighted summation of the received signals to obtain
the beam output of the array [6]. The output of the beamformer is

p = wHy(t) (6)

where w ∈ CM×1 denotes the weight vector of the beamformer.
The beampattern is an important measurement to evaluate the performance of the

beamformer, which describes the response of the beamformer to a signal impinging on the
array in the direction of (θ, φ). The response is defined as

b(θ, φ) = wHa(θ, φ) (7)

For symmetric configuration arrays such as uniform linear arrays (ULA), the beam-
former can be only steered in the azimuth. The resulting beampattern is mathematically
represented as a one-dimensional vector b

(
θ, φ1:Nφ

)
=
[
b(θ, φ1), b(θ, φ2), · · · , b

(
θ, φNφ

)]
,

where Nφ is the number of scanning points in the azimuth (as shown in Figure 2a).

(a)

(b)

Figure 2. Implementation of (a) one-dimensional (azimuth-only) beampatterns; (b) 2D beampat-
terns. The arrows in blue represent the reshaping operation and the arrows in black represent the
beamforming operation.
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As a result, it can not be employed in applications where full beam steering in
three-dimensional space is needed. Arrays similar to that shown in Figure 1 offer three-
dimensional steering of the beamformer, which is defined as the elevation–azimuth steering
in the coordinate system. The resulting beampattern is mathematically represented as a
two-dimensional matrix (as shown in Figure 2b).

B(θ, φ) =
[
bT
(

θ1, φ1:Nφ

)
, bT
(

θ2, φ1:Nφ

)
, · · · , bT

(
θNθ

, φ1:Nφ

)]T
(8)

where Nθ is the number of scanning points in the elevation. It can be seen from Figure 2
that a beampattern is derived by solving a weight vector w.

2.3. Capon-Based Beamforming

The standard Capon beamformer (SCB) minimizes the output power of the interference-
plus-noise under the distortionless constraint of the desired signal. Then, the w of the SCB
is obtained by solving the following optimization problem:

min
w

wH Rint+nw, s.t. wHa0 = 1 (9)

In practice, the Rint+n is often unavailable and replaced with the sample covariance
matrix R̂. Substituting R̂ into (9), the solution to (9) is given by

wSCB =
R̂−1a0

aH
0 R̂−1a0

(10)

The SCB should achieve the optimal performance if the covariance matrix and steering
vector are accurately known. In practical scenarios, the estimated matrix R̂ carries imprecise
knowledge of the real one, leading to an increase in the SLL of the beampattern and affecting
its suppression ability. There exists a mismatch between the presumed steering vector and
the actual one; the beampattern of the SCB rejects the desired signal as interference and
suffers robustness degradation.

When there is a mismatch between the presumed SV and the actual one (denoted as
ã), an improved Capon beamformer against the SV mismatch can be designed by

min
w

wH R̂w

s.t. aH
0 w− 1 ≥ ε0‖w‖2

(11)

where ε0 specifies the uncertainty level of the norm of difference between the actual SV
and the presumed one. The optimization problem (11) is well known as WCPO [10], which
has been proven to be a diagonal loading method [9]. The weight vector of the WCPO
improves the robustness of the SCB to a certain extent, but the 2D beampattern’s SLL of the
WCPO is still high.

It can be seen from Figure 2 that the implementation of the 2D beampattern is more
complex and computationally intensive than that of the one-dimensional beampattern in
the past. Based on (11), the objective of beamforming in this paper is to find a weight vector
w through a computational efficient algorithm, such that it can reduce the SLL of the 2D
beampattern on the basis of maintaining robustness.

3. The Proposed Robust Capon Beamformer with Sparse Group Constraints

3.1. Individual Sparsity Constraint

The sidelobe control is an important task of beampattern optimization. For the desired
beampattern, we hope that the SLL is as low as possible to suppress noise and interference.
Now, we consider the fact that the mainlobe region is much smaller than the sidelobe region
in the spatial domain, and the average beam response of the mainlobe is much higher than
that of the sidelobe. Therefore, the beam response of the 2D beampattern has the property
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of sparsity distribution, that is, the values of the responses in the mainlobe are far greater
than zero, and the rest is equal or approximate to zero. The sparsity constraint is introduced
to reduce the SLL based on (11), and the optimization problem (11) is rewritten as

min
w

wH R̂w + λ1

∥∥∥AH
SLw
∥∥∥

1

s.t. aH
0 w− 1 ≥ ε0‖w‖2

(12)

where
λ1: the individual sparse parameter that is usually determined empirically.
ASL: the array manifold matrix of the sidelobe region.
Mathematically, l1 norm regularization is adopted to describe the sparsity constraint.

The smaller the l1 norm of the beam response in the sidelobe region, the lower the SLL
of the 2D beampattern. The objective function in (12) is a remarkable model called the
least absolute shrinkage and selection operator (LASSO) [42] , and (12) is called the robust
Capon beamforming with a sparse constraint (S-RCB). The constraint in (12) assumes that
the elements in the constrained vector are independent of each other. Such constraint
emphasizes controlling each beam response individually in sidelobe region, which meets
the condition of the design of the one-dimensional (or azimuth-only) beampattern. This
sparsity can be further subdivided into individual sparsity.

3.2. Group Sparsity Constraint

Compared with one-dimensional beampatterns, the property of the sidelobe region of
2D beampatterns is changed. Figure 3 shows the sketch of a 2D beampattern, and we will
interpret this property in combination with it.

Figure 3. Sketch of the top view of a 2D beampattern.

In Figure 3, we assume that the ordinate is the elevation and the abscissa is the azimuth,
both of which are discretized into several scanning points (the number of scanning points is
Nθ and Nφ, respectively). Any set of coordinates on the two-dimensional grid determines
one direction of the spatial angles. A complete 2D beampattern is composed of the beam
responses in all scanned directions.

Interference can be properly suppressed without errors according to the nature of
Capon beamforming. If the errors are considered, the directions of the interference esti-
mated from the sample covariance matrix are disturbed, which are too “small” to identify
on the whole grid plane. In order to improve the tolerance of interference suppression, the
interference directions are expanded into small areas centered on the presumed interference
directions (black regions in Figure 3). The sidelobe region can be further divided into
normal sidelobe regions (green regions in Figure 3) and regions adjacent to the interferences
(blue regions in Figure 3) due to the presence of interference.

The sidelobe regions of a 2D beampattern can be briefly divided into the three types
mentioned above. The beam responses within each region have approximately the same
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design requirements, while regions are independent due to their different locations. We
hope that the beam responses in the interference regions are lowest in the beampattern. At
the same time, the beam responses of the regions adjacent to the interferences should be
lower than the normal regions to improve the robustness of interference suppression and
the display effect of the beampattern.

Combining the above with the introduction of Figure 3, it can be concluded that
the sidelobe of the 2D beampattern is expected to have “regional sparsity” in addition
to individual sparsity, and the object subject to sparsity constraints is expanded from
a single azimuth to a region composed of multiple spatial angles. Mathematically, this
“regional sparsity” is defined as group sparsity [28], which acts like the individual sparsity
at the group level. Replacing the individual sparsity in (12) with the group sparsity, the
optimization problem (12) is rewritten as

min
w

wH R̂w + λ2

Q

∑
q=1

√
nq ·
∥∥∥AH

q w
∥∥∥

2

s.t. aHw− 1 ≥ ε0‖w‖2

(13)

where
λ2: the parameter of group sparsity that is usually determined empirically.
Aq: the qth array manifold matrix of ASL, i.e., ASL =

[
A1, A2, · · · , Aq, · · · , AQ

]T ,
where Q is the number of sidelobe regions.

nq: the regional sparsity parameter of the qth sidelobe region, and we define nQ =[
n1, n2, · · · , nq, · · · , nQ

]T .
The l2,1 norm is introduced in (13), which is a rotational invariant of the l1 norm [43]

and defined as

‖x‖2,1 =
Q

∑
q=1

∥∥xq
∥∥

2 (14)

where x =
[
x1, x2, · · · , xq, · · · , xQ

]T . The l2,1 norm in (13) represents the l1 norm of beam
responses of the Q sidelobe regions. Therefore, the sparse constraint in (13) is applied to
sidelobe regions rather than directions of spatial angles. The objective function in (13) is
called the group LASSO (G-LASSO) model [44], based on the LASSO. When nq = 1 and
Q = NSL = Nθ · Nφ, (13) is equivalent to (12). Equation (13) is called the robust Capon
beamforming with a sparse group constraint (G-RCB).

3.3. Robust Capon Beamforming with Sparse Group Constraints (SG-RCB)

Combining (12) and (13), the optimization problem of the 2D beampattern with both
sparsity constraints in this paper is finally given by

min
w

wH R̂w + λ1

∥∥∥AH
SLw
∥∥∥

1
+ λ2

Q

∑
q=1

√
nq ·
∥∥∥AH

q w
∥∥∥

2

s.t. aHw− 1 ≥ ε0‖w‖2

(15)

The objective function in (15) is called the sparse group LASSO (SG-LASSO) model [41],
which takes advantage of the sparsity at both the group and individual level within groups
in the 2D beampattern. Now, we finally refer to the method of 2D beampattern optimization
as the robust Capon beamforming with the sparse group constraints (SG-RCB), which can
be seen as a generalization of the S-RCB(λ2 = 0) and G-RCB(λ1 = 0). Optimization
problems like (12), (13), and (15) are usually solved by convex optimization toolboxes
utilizing the interior-point method (IPM). In this paper, the ADMM framework is adopted
to obtain iterative solutions with lower computational complexity that are suitable for
large-element array processing.
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4. The Solution of the SG-RCB via ADMM

4.1. The Generalized Sidelobe Canceler

To simplify the process of solving the optimization problem (15), first we introduce
the GSC. The weight vector to be solved in (15) is written as

w = ã/M−Ug (16)

where ã represents the actual steering vector and is also the unadaptive weight in the GSC;
g is called the adaptive weight of the GSC; U ∈ CM×(M−1) represents the block matrix,
which is a semi-unitary matrix orthogonal to ã, i.e., UHU = I and UH ã = 0. Here, U is
selected as the principal component of P⊥ã : U = P

(
P⊥ã
)

, where P⊥ã = I − ã
(
ãH ã
)−1ãH .

The structure of the GSC is shown in Figure 4.

Figure 4. Structure of the SG-RCB based on GSC.

Substituting (16) into (15), (15) is rewritten as

min
ã,g

1
2

∥∥∥√2R̂1/2ã/M−
√

2R̂1/2Ug
∥∥∥2

2

+ λ1

∥∥∥AH
SLã/M− AH

SLUg
∥∥∥

1
+ λ2

Q

∑
q=1

√
nq ·
∥∥∥AH

q ã/M− AH
q Ug

∥∥∥
2

s.t. aH ã/M− aHUg − 1 ≥ ε0‖ã/M−Ug‖2

(17)

Combining (16) and (17) with Figure 4, the following corollaries can be drawn:

Corollary 1. The value of ã essentially depends on the source, propagation environment, and
physical feature of the array. Assuming that they remain unchanged in the problem, once ã is
determined, it remains unchanged in the whole optimization problem, and so does U. Therefore, the
solving process of ã is independent to that of g and the sparsity constraints, and ã can be solved by
transforming WCPO into RCB [12].

Corollary 2. The GSC appropriately adjusts g according to the received data and constraints to
meet the design requirements. Combined with Figure 4 and Corollary 1, it can be seen that the
sparsity constraint can only affect the value of g.

Corollary 3. The bottom branch of the GSC is to suppress noise and interference in the received
data according to the nature of the Capon beamformer. Combining Corollary 1, Corollary 2, and
Figure 4, it can be seen that the influence of the robustness constraint on the value of g is fixed once
the values of ã and U are known; that is to say, the robustness constraint only affects the value of g
through the quadratic term of the objective function in (15) or (17).
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Corollary 4. Based on Corollaries 1–3, the unadaptive weight and the adaptive weight are orthogo-
nal and can be solved independently because ãHUg = 0.

Although ã and g are coupled in (17), due to the separable structure of the GSC,
the optimization problem (17) can be divided into two independent subproblems, one
for solving ã and the other for solving g, which can be efficiently executed through the
ADMM framework.

4.2. Subproblem One: Solve ã Using the ADMM-RCB

Ignoring the sparse constraints, (17) is simplified to the WCPO of (11). The WCPO is
equivalently written as

min
ã

ãH R̂−1ã

s.t. ‖ã− a‖2
2 ≤ ε2

0

(18)

Let us define the steering vector and the sample covariance matrix in real domain:

a =
[
�
(

aT
)

,�
(

aT
)]T

(19)

ã =
[
�
(

ãT
)

,�
(

ãT
)]T

(20)

R̂−1
=

⎡⎣ �(R̂−1
)

−�
(

R̂−1
)

�
(

R̂−1
)

�
(

R̂−1
) ⎤⎦ (21)

where a, ã ∈ R2M×1 and R̂−1 ∈ R2M×2M.
Let δ = ã− a. Constructing the auxiliary variable z and substituting (19)–(21) into

(18), (18) is rewritten as

min
δ

δH R̂−1
δ + δH R̂−1a + aH R̂−1

δ + aH R̂−1a

s.t. δ = z

‖z‖2
2 ≤ ε2

0

(22)

The augmented Lagrangian function (ALM) corresponding to (22) is

Lρ(δ, z, u) = δH R̂−1
δ + δH R̂−1a + aH R̂−1

δ + uH(δ− z) +
ρ

2
‖δ− z‖2

2 (23)

where
u: Lagrangian multiplier.
ρ: penalty factor.
The ADMM fixes the remaining variables to remain unchanged when updating a vari-

able in one iteration, iterating the unknown variables in the objective function alternately
until all variables converge. One iteration is as follows:

Step 1: Updating δ.

δ(k+1) = argmin
δ

Lρ

(
δ, z(k), u(k)

)
(24)
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Step 2: Updating z.

z(k+1) = argmin
z

Lρ

(
δ(k+1), z, u(k)

)
s.t. ‖z‖2

2 ≤ ε2
0

(25)

Step 3: Updating u.

u(k+1) = argmin
u

Lρ

(
δ(k+1), z(k+1), u

)
(26)

where k denotes iterations. The specific process of each step is described below.
Step 1: Updating δ.
In iteration k + 1, let the partial derivative of Lρ(δ, z(k), u(k)) with respect to δ equal to

zero. Then, δ in iteration k + 1 is obtained:

δ(k+1) =

(
R̂−1

+
ρ

2
I
)−1(ρ

2
z(k) − u(k) − R̂−1a

)
(27)

Step 2: Updating z.
In the (k + 1)th iteration, we ignore the terms unrelated to z and write the ALM

corresponding to (25):

Lz =
(

u(k)
)H(

δ(k+1) − z(k)
)
+

ρ

2

∥∥∥δ(k+1) − z(k)
∥∥∥2

2
+ λ

[(
z(k)
)H

z(k) − ε2
0

]
(28)

Let
∂Lz

∂z
= 0 The updated z in iteration k + 1 is then derived by

z(k+1)
i =

u(k)
i + ρ/2
λ + ρ/2

(29)

where zi is the ith element of z(k+1).

If
∥∥∥z(k+1)

∥∥∥2

2
< ε2

0, the inequality constraint in (25) is not activated, and the obtained

z(k+1) is a solution that satisfies (25). On the contrary, the value of
∥∥∥z(k+1)

∥∥∥2

2
is obtained on

the boundary of the inequality constraint, i.e.,
∥∥∥z(k+1)

∥∥∥2

2
= ε2

0, and substituting it into (28)

to obtain λ, the updated zi in z in the (k + 1)th iteration can be represented by

z(k+1)
i = ε0 ·

(
u(k)

i +
ρ

2
δ
(k+1)
i

)/∥∥∥u(k)
i +

ρ

2
δ
(k+1)
i

∥∥∥
2

(30)

Step 3: Updating u.

Let
∂Lρ

(
δ(k+1), z(k+1), u

)
∂u

= 0. The updated u in the (k+ 1)th iteration is then derived
as

u(k+1) = u(k) + ρ(δ(k+1) − z(k+1)) (31)

In the ADMM of subproblem one, steps 1–3 are alternately cycled until the following
two termination conditions are met simultaneously:

eprimal =
∥∥∥δ(k+1) − z(k+1)

∥∥∥
2
≤ ζ primal

edual =
∥∥∥z(k+1) − z(k)

∥∥∥
2
≤ ζdual

(32)
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where ζ primal > 0 and ζdual > 0 are the tolerances of the feasibility conditions, respectively,
and ”primary” and ”dual” refer to the primal feasibility and the dual feasibility, respectively.
Their values are determined jointly by the absolute tolerance and the relative tolerance [30].
The complex solution of subproblem one is finally obtained according to the relationship
shown in (19) and (20):

ã = a + δ(1 : M) + j · δ(M + 1 : 2M) (33)

U is also determined with ã derived. The algorithm of solving subproblem one is called
the robust Capon beamforming based on the alternating-direction method of multipliers,
abbreviated as the ADMM-RCB and summarized in Algorithm 1.

Algorithm 1 : ADMM-RCB

Input: the sample covariance matrix R̂, the presumed SV of the desired signal a, and the
uncertainty level ε0;

Output: the actual SV of the desired signal ã;

1: Perform the eigenvalue-decomposition of R̂ and obtain R̂−1, a, and ã defined by
(19)–(21);

2: Let δ = ã− a and initialize δ, z and u;
3: while eprimal > ζ primal or edual > ζdual do

4: Update δ(k+1) by (27);
5: Update z(k+1)

i in z(k+1) by (30);
6: Update u(k+1) by (31);
7: k ← k + 1;
8: end while

4.3. Subproblem Two: Solve g Using the ADMM-SGLASSO

When ã and U have been solved, (17) can be simplified as the standard SGLASSO:

min
g

1
2

∥∥∥√2R̂1/2ã/M−
√

2R̂1/2Ug
∥∥∥2

2

+ λ1

∥∥∥AH
SLã/M− AH

SLUg
∥∥∥

1
+ λ2

Q

∑
q=1

√
nq ·
∥∥∥AH

q ã/M− AH
q Ug

∥∥∥
2

(34)

We now define the following real variables:

g =
[
�
(

gT
)

,�
(

gT
)]T

(35)

U =

[ �(U) −�(U)
�(U) �(U)

]
(36)

ASL =

[ �(ASL) −�(ASL)
�(ASL) �(ASL)

]
(37)

where g ∈ R(2M−2)×1, U ∈ R2M×(2M−2), and ASL ∈ R2M×2NSL . By substituting (20), (21),
and (35)–(37) into (34), it can be rewritten as

min
g,r

1
2

∥∥∥∥√2R̂1/2ã/M−
√

2R̂1/2Ug
∥∥∥∥2

2
+ λ1

∥∥∥ASL
H ã/M− ASL

HUg
∥∥∥

1
+ λ2

Q

∑
q=1

√
nq ·
∥∥rq
∥∥

2

s.t. ASL
H ã/M− ASL

HUg = r

(38)
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where R̂1/2 is derived by substituting R̂1/2 into (21), r =
[
rT

1 , rT
2 , · · · , rT

q , · · · , rT
Q

]T
repre-

sents the auxiliary variable, and rq is the qth group of auxiliary variables, which corresponds
to the beam responses of each spatial angle in the qth sidelobe region. The ALM corre-
sponding to (38) is written as follows:

Lρ(g, r, u0) =
1
2

∥∥∥∥√2R̂1/2ã/M−
√

2R̂1/2Ug
∥∥∥∥2

2
+ λ1

∥∥∥ASL
H ã/M− ASL

HUg
∥∥∥

1
+ λ2

Q

∑
q=1

√
nq ·
∥∥rq
∥∥

2

+ uH
0

(
ASL

H ã/M− ASL
HUg − r

)
+

ρ

2

∥∥∥ASL
H ã/M− ASL

HUg − r
∥∥∥2

2

(39)

where u0 is the Lagrange multiplier. One iteration of the subproblem two is as follows:
Step 1: Updating g.

g(k+1) = argmin
g

Lρ

(
g, r(k), u(k)

0

)
(40)

Step 2: Updating r.

r(k+1) = argmin
r

Lρ

(
g(k+1), r, u(k)

0

)
(41)

Step 3: Updating u0.

u(k+1)
0 = argmin

u0

Lρ

(
g(k+1), r(k+1), u0

)
(42)

The specific process of each step is described below:
Step 1: Updating g.
Constructing the auxiliary variable z, in the (k + 1)th iteration, (40) can be equivalently

expressed as

g(k+1) = argmin
g

Lρ

(
g, r(k), u(k)

0

)
, s.t. ASL

H ã/M− ASL
HUg = z (43)

which can also be iteratively solved by the ADMM. The ALM corresponding to (43) is

Lρ

(
g, r(k), u(k)

0 , z, u1

)
=

1
2

∥∥∥∥√2R̂1/2ã/M−
√

2R̂1/2Ug
∥∥∥∥2

2
+ λ1‖z‖1

+
[
u(k)

0 + u1

]H(
ASL

H ã/M− ASL
HUg

)
−
[
u(k)

0

]H
r(k) − uH

1 z

+
ρ

2

[∥∥∥ASL
H ã/M− ASL

HUg − r(k)
∥∥∥2

2
+
∥∥∥ASL

H ã/M− ASL
HUg − z

∥∥∥2

2

] (44)

where u1 is the Lagrange multiplier. For step 1, r(k) and u(k)
0 are regarded as constants, and

g, z, and u1 are the variables that need to be iteratively solved. This is similar to subproblem
two; step 1 in subproblem two can be solved by the ADMM as follows:

Substep 1.1: Updating g.

g
(

k
′
+1
)
= argmin

g
Lρ

(
g, r(k), u(k)

0 , z
(

k
′)

, u

(
k
′)

1

)
(45)

Substep 1.2: Updating z.

z
(

k
′
+1
)
= argmin

z
Lρ

(
g
(

k
′
+1
)

, r(k), u(k)
0 , z, u

(
k
′)

1

)
(46)
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Substep 1.3: Updating u1.

u

(
k
′
+1
)

1 = argmin
u1

Lρ

(
g
(

k
′
+1
)

, r(k), u(k)
0 , z

(
k
′
+1
)

, u1

)
(47)

where k
′

denotes the iterations in step 1. The following describes the specific process:
Substep 1.1: Updating g.
In the (k

′
+ 1)th iteration, by taking the partial derivative of the ALM in (45) with

respect to g and then making it zero, the expression of g
(

k
′
+1
)

is derived as

g
(

k
′
+1
)
= Q−1b

(
k
′)

(48)

where
Q =

[
2UH

(
R̂ + ρASL ASL

H
)

U
]

(49)

b
(

k
′)

= 2UH R̂ã/M + ρUH ASL

[
2ASL

H ã/M +

(
u(k)

0 + u

(
k
′)

1

)/
ρ− r(k) − z

(
k
′)]

(50)

where R̂ is in the real form of R̂.
Substep 1.2: Updating z.
In the (k

′
+ 1)th iteration, ignoring terms unrelated to z, (46) is written as

z
(

k
′
+1
)
= argmin

z
Lρ

(
g
(

k
′
+1
)

, r(k), u(k)
0 , z, u

(
k
′)

1

)

= argmin
z

⎡⎣2λ1

ρ
‖z‖1 +

∥∥∥∥∥z−
(

u

(
k
′)

1 /ρ + ASL
H ã/M− ASL

HUg
(

k
′
+1
))∥∥∥∥∥

2

2

⎤⎦ (51)

Let t
(

k
′)

= u

(
k
′)

1 /ρ + ASL
H ã/M − ASL

HUg
(

k
′
+1
)

. The last row of (51) is the proximal

mapping of t
(

k
′)

. For a given t
(

k
′)

, the elements in z
(

k
′
+1
)

can be expressed by soft
thresholding as

z

(
k
′
+1
)

i = Sλ1/ρ

[
t

(
k
′)

i

]
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
t

(
k
′)

i − λ1/ρ t

(
k
′)

i > λ1/ρ

0

∣∣∣∣∣t
(

k
′)

i

∣∣∣∣∣ ≤ λ1/ρ

t

(
k
′)

i + λ1/ρ t

(
k
′)

i < −λ1/ρ

(52)

where Sλ1/ρ

[
t

(
k
′)

i

]
represents the soft thresholding operator, the diagram of which is

shown in Figure 5a. It can be seen from Figure 5a that the operator performs a “zero” on
some elements of the argument, thereby satisfying the sparsity constraint.

Substep 1.3: Updating u1.
Let the partial derivative of the ALM regarding u1 in (47) be zero. Then, u1 in the

(k + 1)th iteration is derived as

u

(
k
′
+1
)

1 = u

(
k
′)

1 + ρ

(
ASL

H ã/M− ASL
HUg

(
k
′
+1
)
− z

(
k
′
+1
))

(53)

302



Remote Sens. 2024, 16, 421

Substeps 1.1 to 1.3 are alternately cycled until both of the following iteration termina-
tion conditions are met:

eprimal =

∥∥∥∥ASL
H ã/M− ASL

HUg
(

k
′
+1
)
− z

(
k
′
+1
)∥∥∥∥

2
≤ ηprimal

edual =

∥∥∥∥z
(

k
′
+1
)
− z

(
k
′)∥∥∥∥

2
≤ ηdual

(54)

where ηprimal > 0 and ηdual > 0 are the tolerances of the feasibility conditions, respectively.
g is yielded as the output of the (k + 1)th iteration in subproblem two.

(a) (b)

Figure 5. Diagrams of two soft thresholding operators: (a) the soft thresholding operator Sλ1/ρ

[
t

(
k′
)

i

]
;

(b) the block soft thresholding operator S√nqλ2/ρ

[
v(k)

q

]
].

Step 2: Updating r.
According to (38), the auxiliary variable r is divided into Q groups for the group

sparsity, and each rq has its own regional sparsity parameter, so it needs to be calculated
separately. Ignoring the terms unrelated to r, in the (k + 1)th iteration, the optimization
problem on rq in (41) can be expressed as

r(k+1)
q = argmin

rq

Lρ

(
g(k+1), rq, u(k)

0,q

)
= argmin

rq

[2√nqλ2

ρ

∥∥rq
∥∥

2 +
∥∥∥rq −

(
u(k)

0,q /ρ + ASL,q
H ã/M− ASL,q

HUg(k+1)
)∥∥∥2

2

] (55)

where u(k)
0,q represents the part of u(k)

0 corresponding to r(k+1)
q . Similar to (51), let v(k)

q =

u(k)
0,q /ρ + ASL,q

H ã/M− ASL,q
HUg(k+1). Then, the elements in r(k+1)

q can be expressed by
block soft thresholding as

r(k+1)
q =S√nqλ2/ρ

[
v(k)

q

]
=

⎧⎨⎩ 0
∥∥∥v(k)

q

∥∥∥
2
= 0

max
(

0, 1−
(√nqλ2/ρ

)/∥∥∥v(k)
q

∥∥∥
2

)
· v(k)

q otherwise

(56)

where S√nqλ2/ρ

[
v(k)

q

]
is the block soft thresholding operator. max(0, ·) is the function that

indicates the maximum value after the input and zero are compared. The diagram of
S√nqλ2/ρ

(
v(k)

q

)
is shown in Figure 5b. Here, it can be seen that the value less than√nqλ2/ρ
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in the augment is set to zero, and the remaining value is reduced. r(k+1) is obtained
by performing the operator in (56) on each r(k+1)

q corresponding to the qth region and
combining them together.

Step 3: Updating u0.
Let the partial derivative of the ALM with respect to u0 in (42) be zero. Then, u(k+1)

0 is
expressed as

u(k+1)
0 = u(k)

0 + ρ
(

ASL
H ã/M− ASL

HUg(k+1) − r(k+1)
)

(57)

In subproblem two, steps 1–3 are performed alternately until the following two itera-
tion termination conditions are met simultaneously:

eprimal =
∥∥∥ASL

H ã/M− ASL
HUg(k+1) − r(k+1)

∥∥∥
2
≤ εprimal

edual =
∥∥∥r(k+1) − r(k)

∥∥∥
2
≤ εdual

(58)

where εprimal > 0 and εdual > 0 are the tolerances of feasibility conditions, respectively.
The solution of subproblem two is finally obtained according to the vector relationship
shown in (35):

g = g(1 : M− 1) + j · g(M : 2M− 2) (59)

The complete method for solving subproblem two is called the sparse group LASSO based
on the alternating-direction method of multipliers, abbreviated as the ADMM-SGLASSO
and summarized in Algorithm 2. Substituting (33) and (59) into (16) yields the weight
vector of the SG-RCB beamformer. The flowchart of the SG-RCB is shown in Figure 6.

Algorithm 2 : ADMM-SGLASSO

Input: the sample covariance matrix R̂, the actual SV of the desired signal ã, the block
matrix U, the array manifold matrix of the sidelebe region ASL and λ1, λ2, nq

Output: the adaptive weight g;

1: Obtain ã, R̂1/2, g, U and ASL defined by (20), (21), and (35)–(37);

2: Initialize g, r =
[
rT

1 , rT
2 , · · · , rT

q , · · · , rT
Q

]T
, u0 and Q;

3: while eprimal > εprimal or edual > εdual do
4: Update g(k+1) by ADMM for g:
5: Initialize z and u1;
6: while eprimal > ηprimal or edual > ηdual do

7: Calculate b
(

k
′)

by (50);

8: Update g
(

k
′
+1
)

by (48);

9: Update z

(
k
′
+1
)

i in z
(

k
′
+1
)

by (52);

10: Update u

(
k
′
+1
)

1 by (53);
11: k

′ ← k
′
+ 1;

12: end while
13: Update r(k+1)

q in r(k+1) by (56);
14: Update uk+1

0 by (57);
15: k ← k + 1;
16: end while

4.4. Computational Complexity Analysis

We describe the computational complexity of the proposed SG-RCB as measured by
the number of multiplication operations. The SG-RCB consists of two algorithms, the
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ADMM-RCB and the ADMM-SGLASSO. As Algorithms 1 and 2 show, each algorithm is
divided into two stages: preprocessing and iteration. For simplicity, the complexity of
one iteration is discussed.

In the preprocessing stage of the ADMM-RCB, R̂−1 and R̂−1a are calculated in advance,
resulting in costs of O

(
M3) and O

(
M2), respectively. In one complete iteration, the computa-

tional costs of steps 4–6 in the ADMM-RCB are O
(

M2), O(M), and O(1), respectively.

In the preprocessing stage of the ADMM-SGLASSO, Q−1, UH R̂ã, ASL
HU, and ASL

H ã
are calculated and fixed in irritations, which cost O

(
M3 + M2NSL

)
+ O
(

M2 + MNSL
)

mul-
tiplications in total. At the iteration stage, the computational costs of steps 7–10 in the
ADMM-SGLASSO are O(MNSL), O

(
M2), O(MNSL), and O(1), respectively.

Start

Input: R̂, ASL, a, λ1, λ2, ε0

ADMM-RCB

The solution
of subprob-

lem one: ã, U
ADMM-SGLASSO

ADMM for g

The solution
of subprob-
lem two: g

Output: the weight
vector of SG-RCB:
w = ã/M − Ug

End

Figure 6. Flowchart of the SG-RCB.

The computational costs of steps 13 and 14 in the ADMM-SGLASSO are O(MNSL) +
O(NSL) and O(1), respectively. Therefore, the dominant order of the per-iteration com-
putational complexity of the proposed SG-RCB is O

(
M2 + MNSL

)
. The computation in

the preprocessing only needs to be calculated once, which has little impact on the overall
complexity of the SG-RCB, although its complexity increases rapidly with the increase in
the dimension of variables.

Now, let us compare the SG-RCB with other ADMM-based beamforming methods, for
instance, the methods proposed in Refs. [35,36]. In the preprocessing stage, the dominant
order of the computational costs of the method in Ref. [35] is O

(
M3 + MN2

SL
)
, while the
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computational complexity in this stage is not discussed in [36]. In practice, the number of
hydrophones is lower than the number of scanning directions in the sidelobes; thus, the
computational complexity of the SG-RCB in the preprocessing stage is lower than that of
the method in Ref. [35]. In the iteration stage, both methods proposed in Refs. [35,36] have
same dominant cost of O

(
M2 + MNSL

)
in per iteration, which is also equal to that of the

SG-RCB.
Next, we discuss the complexity of the SOCP for comparison. In the preprocessing

stage, the computational cost of the SOCP is of the same order as that of the SG-RCB, i.e.,
O
(

M3 + M2NSL
)
+ O
(

M2). In the iteration stage, however, the SOCP adopts the IPM,
which costs O

(
M2NSL

)
at each iteration. The overall computational complexity of the

SG-RCB is lower than that of the SOCP solved by the IPM with the variable dimension
becoming larger; thus, the proposed SG-RCB has a significant advantage in computational
complexity in the case of large-element conformal arrays.

5. Simulation Results

5.1. Parameter Setting

A half-cylindrical conformal array consisting of 40 hydrophones is analyzed in this
section. The geometry and parameters of the conformal array are shown in Figure 7. Table
1 presents the relevant parameters shown in Figure 7d.

We consider the simulation being implemented in an underwater free field where
the sound velocity is constant at 1500 m/s. The point sources are single-frequency with a
frequency of 10 kHz. The receiving array is located in the far field relative to the source,
and the transmission loss is not considered.

(a)
(b)

(c)

(d)

Figure 7. Diagram of the half-cylindrical conformal array (HCCA) configuration: (a) three-dimensional
diagram (solid black dots represent hydrophones); (b) front view (the top left circle represents
hydrophone number 1, the bottom right circle represents hydrophone number 40, and the labels of
hydrophones increase from top left corner to bottom right corner); (c) side view; (d) the real object.
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Table 1. The physical parameters of the HCCA in Figure 7.

Length of the Bus Bar Radius Number of Hydrophones
Spacing between

Hydrophones
Operating Frequency

h = 0.775 m r = 0.25 m 40 d = 0.075 m 6–10 kHz

Assuming that the look direction is (45◦, 45◦), the signal-to-noise ratio (SNR) of the
desired signal is 10 dB. There are two interferences in the direction of (−30◦, 60◦) and
(−10◦, 30◦), and their interference-to-noise ratios (INRs) are 35 dB. The grouping of the
sidelobe is shown in Figure 8, in which the number of regions of sidelobes and interfer-
ences are indicated, respectively. The scanning intervals of elevation and azimuth are 1◦,
respectively, and the interval of the interference regions in the elevation and azimuth are
both 10◦. Our codes were written in MATLAB R2023a. All our numerical experiments were
conducted on a laptop computer with an AMD CPU (3.20 GHz) and 32 GB RAM running
Windows 11.

Figure 8. Grouping of sidelobe regions. The numbers indicate the sequence numbers of the different
sidelobe regions.

5.2. Cpu Times

Some existing methods were selected to compare the ADMM to in order to show its
advantage in terms of computational efficiency. Here, the ADMM-RCB in subproblem
one is compared with the RCB with the SOCP solved by CVX [29], which is abbreviated
as the SOCP-RCB, and the ε0 in (18) is set to 1. For the SG-RCB, the SOCP is selected for
comparison, which is abbreviated as the SOCP-SG-RCB. The λ1 and λ2 in (12), (13), and
(15) are set to 0.01 and 0.1 [41,45], respectively. In the ADMM-based methods, the values
of the absolute tolerance and the relative tolerance are unified and set to 10−4 and 10−2,
respectively [30].

Figure 9 shows the computing time (CPU time) of the different studied methods. We
compare the ADMM-RCB with the SOCP-RCB in Figure 9a. It is easily observed that the
CPU time of the ADMM is much shorter than that of the SOCP. The average time of the
SOCP-RCB is 0.3293 s, while that of the ADMM-RCB is 0.009 s.
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(a) (b) (c)

Figure 9. Boxcharts of the computing times of different methods: (a) ADMM–RCB and SOCP–RCB;
(b) SOCP–SG–RCB; (c) ADMM–SG–RCB.

Next, we compare the computing time of different methods to solve the SG-RCB.
Figure 9b,c show the CPU time of the SOCP, as well as of the ADMM for solving the SG-
RCB. The SOCP-SG-RCB involves a long running time, and its average time is 105.6675 s.
The SOCP belongs to interior-point method; it is not applicable to the 2D beampatterns
because of its high computational complexity. Comparing Figure 9c with Figure 9b, it can be
found that the CPU time of the ADMM-SG-RCB is much less than that of the SOCP-SG-RCB
(15.8016 s).

5.3. Beampatterns of Different Methods

In this subsection, we further explore the 2D beampatterns of different beamformers.
All used parameters are the same as those in Section 5.2. First, we present the beampatterns
of some fundamental beamformers in Figure 10, in which the beam responses of two
interferences are labeled. It is observed that the CBF beampattern can not suppress two
interferences, while the SCB beampatterns distort and their SLL is even higher than the
response in the actual signal direction. In accordance with Figure 9a, the ADMM-RCB
beampattern is superior to that of the SOCP-RCB, even though their beampatterns are close.
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(a) (b)

(c) (d)

Figure 10. Beampatterns of some fundamental beamformers: (a) CBF; (b) SCB; (c) SOCP–RCB;
(d) ADMM–RCB.

Then, the beampattern of the SG-RCB is analyzed, while the S-RCB and G-RCB are
run for comparison. Figure 11 shows the beampatterns of the three beamformers, in which
the first row is the three-dimensional view and the second is the top view. It can be seen
from Figure 11d that the S-RCB makes the beam responses of sidelobe regions as low as
possible at the cost of increasing the mainlobe width. In Figure 11e, the mainlobe width
of the G-RCB is narrower than that of the S-RCB, but its SLL is higher. The constraint
of the G-RCB is imposed on regions of the sidelobe and interferences separately, and the
beam responses of the interferences of the G-RCB are lower than those of the sidelobes.
The SG-RCB’s beampattern in Figure 11c,f can be seen as a combination of the above two
beamformers, which ensures a low SLL and a narrow mainlobe width while keeping the
beamformer from losing its interference suppression capability.

309



Remote Sens. 2024, 16, 421

(a) (b) (c)

(d) (e) (f)

Figure 11. Beampatterns among the S–RCB, G–RCB and SG–RCB: (a) 2D beampattern of the S–RCB
(λ1 = 0.01 and λ2 = 0); (b) 2D beampattern of the G–RCB (λ1 = 0 and λ2 = 0.1); (c) 2D beampattern
of the SG–RCB (λ1 = 0.01 and λ2 = 0.1); (d) top view of the S–RCB result; (e) top view of the G–RCB
result; (f) top view of the SG–RCB result.

In Table 2, we compare the specific performance of the beampattern obtained by
different beamformers in terms of the width of the mainlobe (taking a −3 dB beam width
as an example (BW−3dB)), the SLL, and the beam responses of the interferences. It is
shown that the beampattern optimized by the G-RCB has the narrowest mainlobe width
instead of that of the CBF among the beamformers in Table 2 with respect to the conformal
array. The similarity of the three sparsity-constrained beamformers is that the SLL is
significantly reduced, in which the SLL of the S-RCB is more than 4 dB lower than that of
the conventional beamforming (CBF). The SG-RCB combines the advantages of the S-RCB
and G-RCB, which can achieve the optimal interference suppression while maintaining the
mainlobe width almost unchanged. It is also implied that the SG-RCB can make a flexible
tradeoff between the mainlobe width and the SLL by adjusting the values of λ1 and λ2
according to the actual situation.

5.4. SINRout versus SNR and the Sample Size

Now, we compare SINRout of the SG-RCB with other methods, which is calculated by

SINRout =
wH Rsw

wH Rint+nw
=

σ2
s
∣∣wHa0

∣∣2
wH Rint+nw

(60)

Particularly, the optimal SINRout is calculated by the SCB with the theoretical covariance
matrix Ry for performance evaluation. It is observed from Figure 12a that the SCB suffers
a poor performance. The SINRout of other methods is similar, with a low SNR(≤10 dB).
With the increase in the SNR, an inaccurate estimation of the sample covariance matrix
is amplified so that the SINRout of these methods slightly decreases. The SINRout of the
S-RCB, G-RCB, and SG-RCB is higher than that of the RCB; furthermore, the SINRout of
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the SG-RCB increases by approximately 3 dB compared to the RCB. Figure 12b shows that
three sparsity-class methods do not only quickly converge to their corresponding optimal
values, but their SINRout is also higher than that of the RCB in the case of a low number of
samples. Figure 12 indicates that the RCB with sparsity constraints is basically effective in
optimizing 2D beampatterns, although a certain SINRout is lost when SNR is high.

Table 2. Performance comparison of beampatterns of different beamformers. The red indicates the
optimal value in this column.

Beamformers
BW−3dB/◦

(Elevation, Azimuth)
SLL/dB

Beam Response of
Interference One/dB

Beam Response of
Interference Two/dB

CBF (22.17, 35.45) −11.7779 −15.2244 −34.8355

SOCP-RCB (22.49, 34.11) −11.1561 −52.7997 −48.0525

ADMM-RCB (22.44, 34.22) −11.7801 −57.8118 −49.714

S-RCB
(λ1 = 0.01, λ2 = 0)

(23.48, 31.55) −15.9865 −56.199 −56.4141

G-RCB
(λ1 = 0, λ2 = 0.1)

(20.76, 28.63) −13.7339 −48.4772 −51.3741

SG-RCB
(λ1 = 0.01, λ2 = 0.1)

(21.92, 29.93) −14.171 −58.5509 −64.5806

(a) (b)

Figure 12. Performance comparison of different methods: (a) SINRout versus SNR, L = 800; (b) SINRout

versus the sample size. SNR = 10 dB.

5.5. Beampatterns with Different Regional Sparsity Parameters

In Sections 5.2–5.4, we uniformly set the regional sparsity parameters nQ to 110×1, i.e.,
nQ = [n1, n2, · · · , n10]

T = [1, 1, · · · , 1︸ ︷︷ ︸
10×1

]T . In this subsection, the influence of the regional

sparsity parameters on the beampattern is verified.
According to the grouping in Figure 8, one value of nQ in this subsection is set

as follows:
nQ,1 = [1, 1, 1, 1, 1, 1, 1, 1, 10, 10]T (61)

where the two number 10s represent the parameters of the interference regions (black
regions) in Figure 8. Substituting (61) into (15), the beampattern of the SG-RCB based on
(61) is shown in Figure 13, in which the regions of the sidelobes adjacent to interferences and
the interferences are marked out by the red dashed line and the red solid line, respectively.
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It can been seen from Figure 13b that the nulls in the interference regions are widened so
that the interferences can be correctly suppressed.

(a) (b)

Figure 13. Influence of nQ,1 on the beampattern of the SG–RCB: (a) two–dimensional view; (b) top view.

The other value of nQ is set blow.

nQ,2 = [1, 1, 1, 1, 5, 1, 5, 1, 10, 10]T (62)

where the two number 5s represent the parameters of the sidelobes adjacent to the in-
terferences (blue regions in Figure 8). The beampatterns of the SG-RCB using nQ,2 are
shown in Figure 14. It is observed that the beam responses in the fifth and seventh sidelobe
regions marked by the red dashed line decrease further, but the cost is that the mainlobe
is obviously widened. As a summary, the beam responses in the sidelobe regions can be
adjusted by the regional sparsity parameters. The greater the parameters, the lower the
responses, but their values need to balance the relationship between the mainlobe width
and the SLL.

(a) (b)

Figure 14. Influence of nQ,2 on the beampattern of the SG–RCB: (a) two–dimensional view; (b) top view.
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5.6. Interference Suppression in the Presence of the SV Mismatch

The array manifold of the conformal array is susceptible to distortion caused by various
factors, especially the scattering of baffles. The robustness of the SG-RCB is tested in this
subsection. The SVs of the desired signal and interferences in this subsection are obtained
by the finite-element software COMSOL [46] to guarantee the model in practice [47], which
converts the physical model into the finite-element mesh model and then carries out the
numerical calculation.

First, we consider nQ = 110×1. Substituting such SVs into the optimization problem
of the SG-RCB, the resulting beampatterns are shown in Figure 15. The mainlobes of the
beampatterns are not distorted under the robustness constraint, but each beamformer has
poor performance in interference suppression due to the SV mismatch.

(a) (b)

(c) (d)

Figure 15. Beampatterns in the case of the SV mismatch: (a) ADMM–RCB; (b) S–RCB; (c) G–RCB;
(d) SG–RCB.

Then, we investigate the effect of nQ,1 and nQ,2 on interference suppression. The
beampattern using nQ,1 is shown in Figure 16. It is observed that the beam responses of the
two interferences are reduced by about 10 dB compared with the results of Figure 15d.

Furthermore, by replacing nQ,1 with nQ,2 in the SG-RCB, the resulting beampattern is
obtained, as shown in Figure 17. It can be seen that the beam responses of the interferences
and the sidelobes decrease further at the cost of the mainlobe widening. It can be seen from
Figures 16 and 17 that setting the regional sparsity parameters properly can improve the
interference suppression without changing the overall performance of the 2D beampattern
when the SV mismatch exists.
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(a) (b)

Figure 16. Performance of interference suppression of the SG–RCB using nQ,1: (a) two–dimensional
view; (b) top view.

(a) (b)

Figure 17. Performance of interference suppression of the SG–RCB using nQ,2: (a) two–dimensional
view; (b) top view.

6. Conclusions

In this paper, we developed the SG-RCB, which utilizes sparse group constraints based
on the RCB to reduce the SLL of the 2D beampattern for conformal arrays. By introducing
the GSC framework, the original optimization problem was divided into two subproblems.
The first is the RCB problem and the second is the SGLASSO problem. To handle these
problems, the ADMM was employed to solve them in closed form.

The main advantages of the proposed method for 2D beampattern optimization are as
follows: The SLL of the 2D beampattern is greatly reduced by the sparse group constraints.
The ADMM is applied to solve the optimization problem, which greatly improves the com-
putational efficiency compared with other existing methods. The interference suppression
of the proposed method in the presence of the SV mismatch can be recovered by adjusting
the regional sparsity parameters.

The SG-RCB has broad application prospects in various underwater scenarios. For
example, the SG-RCB can be applied to the arrays of autonomous underwater vehicles
(AUV) or unmanned underwater vehicles (UUV) to realize the detection and direction of
arrival (D.O.A) estimation of the target. In addition, the SG-RCB has potential applications
in the real-time processing of received signals due to its significant computational efficiency.

Author Contributions: Conceptualization, Y.D.; methodology, Y.D. and C.S.; validation, Y.D.; formal
analysis, Y.D.; investigation, Y.D.; resources, C.S.; data curation, Y.D.; writing—original draft prepara-
tion, Y.D.; writing—review and editing, C.S. and X.L.; supervision, C.S.; project administration, C.S.;
funding acquisition, X.L. All authors have read and agreed to the published version of the manuscript.

314



Remote Sens. 2024, 16, 421

Funding: This work was supported by the National Natural Science Foundation of China (U2341203,
12274346).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Frank, T.H.; Kesner, J.W.; Gruen, H.M. Conformal array beam patterns and directivity indices. J. Acoust. Soc. Am. Mar. 1978,
63, 841–847. [CrossRef]

2. Traweek, C.M. Optimal Spatial Filtering for Design of a Conformal Velocity Sonar Array. Ph.D. Thesis, Pennsylvania State
University, University Park, PA, USA, 2003.

3. Yang, Y.; Wang, Y.; Ma, Y.; Sun, C. Experimental Study on Robust Supergain Beamforming for Conformal Vector Arrays; OCEANS: San
Diego, CA, USA, 2013; pp. 1–5.

4. Josefsson, L.; Persson, P. Conformal Array Antenna Theory and Design; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2006.
5. Zhang, H.; Guo, D.; Cao, X. An Airborne Conformal Array Beampattern Optimization Algorithm Based on Convex Optimization.

In Proceedings of the 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control
Conference (IMCEC), Chongqing, China, 16–18 December 2022.

6. Van Trees, H.L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory; John Wiley & Sons Ltd.: New
York, NY, USA, 2002.

7. Zhu, J.; Song, Y.; Jiang, N.; Xie, Z.; Fan, C.; Huang, X. Enhanced Doppler Resolution and Sidelobe Suppression Performance for
Golay Complementary Waveforms. Remote Sens. 2023, 15, 2452. [CrossRef]

8. Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [CrossRef]
9. Carlson, B.D. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst.

1988, 24, 397–401. [CrossRef]
10. Vorobyov, S.A.; Gershman, A.B.; Luo, Z.-Q. Robust adaptive beamforming using worst-case performance optimization: A solution

to the signal mismatch problem. IEEE Trans. Signal Process. 2003, 51, 313–324. [CrossRef]
11. Huang, Y.; Fu, H.; Vorobyov, S.A.; Luo, Z.Q. Robust Adaptive Beamforming via Worst-Case SINR Maximization With Nonconvex

Uncertainty Sets. IEEE Trans. Signal Process. 2023, 71, 218–232. [CrossRef]
12. Li, J.; Stoica, P.; Wang, Z. On robust Capon beamforming and diagonal loading. IEEE Trans. Signal Process. 2003, 51, 1702–1715.
13. Zhang, X.; He, Z.; Zhang, X.; Xie, J. Robust Sidelobe Control via Complex-Coefficient Weight Vector Orthogonal Decomposition.

IEEE Trans. Antennas Propag. 2019, 67, 5411–5425. [CrossRef]
14. Li, H.; Ran, L.; He, C.; Ding, Z.; Chen, S. Adaptive Beamforming with Sidelobe Level Control for Multiband Sparse Linear Array.

Remote Sens. 2023, 15, 4929. [CrossRef]
15. Wu, R.; Bao, Z.; Ma, Y. Control of peak sidelobe level in adaptive arrays. IEEE Trans. Antennas Propag. 1996, 44, 1341–1347.
16. Yan, S.F. Optimal Array Signal Processing: Beamforming Design Theory and Methods; Science Press: Beijing, China, 2018.
17. Liu, L.; Liang, X.; Li, Y.; Liu, Y.; Bu, X.; Wang, M. A Spatial-Temporal Joint Radar-Communication Waveform Design Method with

Low Sidelobe Level of Beampattern. Remote Sens. 2023, 15, 1167. [CrossRef]
18. Olen, C.A.; Compton, R.T. A numerical pattern synthesis algorithm for arrays. IEEE Trans. Antennas Propag. 1990, 38, 1666–1676.

[CrossRef]
19. Liu, Y.; Wang, C.; Gong, J.; Tan, M.; Chen, G. Robust Suppression of Deceptive Jamming with VHF-FDA-MIMO Radar under

Multipath Effects. Remote Sens. 2022, 14, 942. [CrossRef]
20. Zhang, X.; He, Z.; Liao, B.; Zhang, X.; Peng, W. Pattern Synthesis With Multipoint Accurate Array Response Control. IEEE Trans.

Antennas Propag. 2017, 65, 4075–4088. [CrossRef]
21. Zhang, X.; He, Z.; Xia, X.-G.; Liao, B.; Zhang, X.; Yang, Y. OPARC: Optimal and Precise Array Response Control Algorithm—Part

II: Multi-Points and Applications. IEEE Trans. Signal Process. 2019, 67, 668–683. [CrossRef]
22. Peng, W.; Zhang, X.; He, Z.; Xie, J.; Han, C. Beampattern synthesis for large-scale antenna array via accurate array response

control. Digit. Signal Process. 2021, 117, 103152. [CrossRef]
23. Rao, B.D. Signal processing with the sparseness constraint. In Proceedings of the 1998 IEEE International Conference on Acoustics,

Speech and Signal Processing, ICASSP’98, Seattle, WA, USA, 12–15 May 1998; Volume 3, pp. 1861–1864.
24. Zhang, Y.; Zhao, H.; Ng, B.P.; Lie, J.P.; Wan, Q. Robust Beamforming Technique with Sidelobe Suppression Using Sparse Constraint

on Beampattern. ACES J. 2010, 25, 947–955.
25. Liu, Y.; Wan, Q. A Robust Beamformer Based on Weighted Sparse Constraint. Prog. Electromagn. Res. Lett. 2010, 16, 53–60.

[CrossRef]
26. Wang, Y.; Zhu, S.; Lan, L.; Li, X.; Liu, Z.; Wu, Z. Range-Ambiguous Clutter Suppression via FDA MIMO Planar Array Radar with

Compressed Sensing. Remote Sens. 2022, 14, 1926. [CrossRef]

315



Remote Sens. 2024, 16, 421

27. C.; ès, E.J.; Wakin, M.B.; Boyd, S.P. Enhancing Sparsity by Reweighted l1 Minimization. J. Fourier Anal Appl. 2008, 14, 877–905.
[CrossRef]

28. Bakin, S. Adaptive Regression and Model Selection in Data Mining Problems. Ph.D. Thesis, School of Mathematical Sciences,
Australian National University, Canberra, Australia, 1999.

29. Grant, M.C.; Boyd, S.P. The CVX Users’ Guide, Release 2.2; CVX Research, Inc.: Austin, TX, USA, 2020. Available online: http:
//cvxr.com/cvx (accessed on 14 January 2024).

30. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers. Now Found. Trends Mach. Learn. 2011, 3, 1122.

31. Fan, W.; Liang, J.; Yu, G.; So, H.C.; Li, J. Robust Capon Beamforming via ADMM. In Proceedings of the ICASSP 2019—2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4345–4349.

32. Liang, J.; Fan, X.; Fan, W.; Zhou, D.; Li, J. Phase-Only Pattern Synthesis for Linear Antenna Arrays. IEEE Antennas Wirel. Propag. Lett.
2017, 16, 3232–3235. [CrossRef]

33. Yang, J.; Lin, J.; Shi, Q.; Li, Q. An ADMM-Based Approach to Robust Array Pattern Synthesis. IEEE Signal Process. Lett. 2019,
26, 898–902. [CrossRef]

34. Tian, X.; Chen, H.; He, M.M.; Wang, W.Q. Fast Beampattern Synthesis Algorithm for Flexible Conformal Array. IEEE Signal
Process. Lett. 2022, 29, 2417–2421. [CrossRef]

35. Wang, W.; Yan, S.; Mao, L.; Guo, X. Robust Minimum Variance Beamforming With Sidelobe-Level Control Using the Alternating
Direction Method of Multipliers. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3506–3519. [CrossRef]

36. Zhang, W.; Lin, J.; Wu, X.; Pan, Y. A distributed approach to robust minimum variance distortionless response beamforming in
large-scale arrays. IET Commun. 2023, 17, 950–959. [CrossRef]

37. Chen, C.; Liu, T.; Liu, Y.; Yang, B.; Su, Y. Learning-Based Clutter Mitigation with Subspace Projection and Sparse Representation
in Holographic Subsurface Radar Imaging. Remote Sens. 2022, 14, 682. [CrossRef]

38. Zhao, Y.; Liu, Q.; Tian, H.; Ling, B.W.-K.; Zhang, Z. DeepRED Based Sparse SAR Imaging. Remote Sens. 2024, 16, 212. [CrossRef]
39. Wu, T.T.; Lange, K.L. Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Stat. 2008, 2, 224244. [CrossRef]
40. Griffiths, L.; Jim, C. An alternative approach to linearly constrained adaptive beamforming. IEEE Trans. Antennas Propag. 1982, 30, 27–34.

[CrossRef]
41. Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. A Sparse-Group Lasso. J. Comput. Graph. Stat. 2013, 22, 231–245. [CrossRef]
42. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. (Methodol.) 1996, 58, 267–288. [CrossRef]
43. Ding, C.; Zhou, D.; He, X.; Zha, H. R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace

factorization. In Proceedings of the 23rd international conference on Machine learning (ICML’06), Pittsburgh, PA, USA, 21–26
June 2006; Association for Computing Machinery: New York, NY, USA, 2006; pp. 281–288.

44. Yuan, M.; Lin, Y. Model Selection and Estimation in Regression with Grouped Variables. J. R. Stat. Soc. Ser. Stat. Methodol. 2006,
68, 49–67. [CrossRef]

45. Liu, J.; Ji, S.; Ye, J. SLEP: Sparse Learning with Efficient Projections. Arizona State University. 2009. Available online: http://yelabs.net/
software/SLEP (accessed on 14 January 2024).

46. COMSOL Multiphysics® v.5.2. Acoustics Module Users’ Guide. COMSOL AB, Stockholm, Sweden. 2021. Available online:
https://cn.comsol.com/models/acoustics-module (accessed on 14 January 2024).

47. Yang, B.; Sun, C.; Chen, Y.L. Conformal Array Beampattern Optimization Method and Experimental Research Based on Sound
Field Forecast. Torpedo Technol. 2006, 14, 18–20.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

316



Citation: Yang, C.; Ling, Q.; Sheng,

X.; Mu, M.; Jakobsson, A. Detecting

Weak Underwater Targets Using

Block Updating of Sparse and

Structured Channel Impulse

Responses. Remote Sens. 2024, 16, 476.

https://doi.org/

10.3390/rs16030476

Academic Editor: Andrzej Stateczny

Received: 14 December 2023

Revised: 16 January 2024

Accepted: 18 January 2024

Published: 26 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Detecting Weak Underwater Targets Using Block Updating of
Sparse and Structured Channel Impulse Responses

Chaoran Yang 1,2,3, Qing Ling 1,2,3, Xueli Sheng 1,2,3,*, Mengfei Mu 1,2,3 and Andreas Jakobsson 4

1 National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University,
Harbin 150001, China

2 Key Laboratory for Polar Acoustics and Application of Ministry of Education, Harbin Engineering University,
Ministry of Education, Harbin 150001, China

3 College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China;
yangchaoran_heu@163.com (C.Y.); 18846130480@hrbeu.edu.cn (M.M.)

4 Center for Mathematical Statistics, Lund University, 22100 Lund, Sweden; andreas.jakobsson@matstat.lu.se
* Correspondence: shengxueli@hrbeu.edu.cn

Abstract: In this paper, we considered the real-time modeling of an underwater channel impulse
response (CIR), exploiting the inherent structure and sparsity of such channels. Building on the
recent development in the modeling of acoustic channels using a Kronecker structure, we approxi-
mated the CIR using a structured and sparse model, allowing for a computationally efficient sparse
block-updating algorithm, which can track the time-varying CIR even in low signal-to-noise ratio
(SNR) scenarios. The algorithm employs a conjugate gradient formulation, which enables a gradual
refinement if the SNR is sufficiently high to allow for this. This was performed by gradually relaxing
the assumed Kronecker structure, as well as the sparsity assumptions, if possible. The estimated CIR
was further used to form a residual signal containing (primarily) information of the time-varying
signal responses, thereby allowing for the detection of weak target signals. The proposed method
was evaluated using both simulated and measured underwater signals, clearly illustrating the better
performance of the proposed method.

Keywords: time-varying impulse response; drift compensation; structured channel estimate; underwater
sonar; weak target detection

1. Introduction

Numerous underwater applications, ranging from monitoring the marine environ-
ment, for instance to detect pollution, to underwater communication, depend on accurate
and reliable estimates of the underwater channel impulse response (CIR), detailing the time-
and location-dependent multipath wave propagation typical of such an environment [1–6].
The channel is notably affected by numerous factors, ranging from the depth and salinity of
the water to sea structures, thermoclines, sea mammals, and ships, as well as experiences
strong noise and interference signals and often also varies due to ship or sonar motions.
An accurate estimation of the CIR is critical to allow for the detection of the energy of weak
echo signals, such as the backscattered signal of underwater targets, which will appear as a
corresponding variation in the resulting CIR estimate [7,8]. Due to the importance of the
CIR estimate, notable efforts have been made to construct reliable estimation technologies
for underwater CIRs, with recent efforts mainly focusing on exploiting the typical sparse
structure of the CIRs, such as in the compressed sensing formulation in [9], where an
extended orthogonal matching pursuit method was proposed. Other common alternatives
include adaptive estimation methods, such as the one proposed by Tian et al. in [10], which
combined a least-mean-squares (LMS) formulation with the use of an adaptive complex-
valued penalty term. In [11–13], the authors imposed sparsity by making use of a step-size
selection, which varied with the magnitude of the CIR coefficients.
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As an alternative, recursive least-squares (RLS) formulations may be used, typically
having a notably faster convergence, although at the price of increased computational
complexity. Given the time-varying nature of underwater CIRs, several sparse RLS for-
mulations have been developed, striving to retain the fast convergence while imposing
the sparse structure of the CIRs [14–16]. An interesting alternative formulation is that
of the sparse conjugate gradient (SCG) algorithm proposed in [17], which employs an
affine scaling transform (AST) to enforce sparsity and combines the advantages of the low
complexity of the LMS-based methods and the fast convergence of the RLS-based methods.
The resulting estimator has been found to offer better performance compared to several
sparse RLS formulations, such as l0-RLS and l1-RLS [18,19], as well as l1-RRLS [19]. Notably,
most of the derived methods strive to update the estimated CIR on a sample-to-sample
basis, i.e., as each new sample becomes available, imposing the gradual forgetting of the
previously observed measurements. This is typically not the case for active sonar mea-
surement, where a batch of data is collected, resulting from each of the transmitted sonar
pulses, necessitating a block (pulse) updating scheme, wherein earlier block measurements
are gradually forgotten instead. Similar situations occur also in other fields, and several
block-updating versions of CIR estimators have been investigated in the literature (see,
e.g., [20–22]).

It is worth noting that drift causes a slight Doppler shift in the resulting signal, but also
a time-varying time delay between the transmitter and receiver due to the varying distance
of the propagation path. In the studied measurements, the latter (typically dominant) form
of time delay shifting was our primary concern, as it affects the CIR’s sparsity over multiple
transmissions. The Doppler effect of the drift here causes a slight mismatch between
the transmitted and matched signals, somewhat increasing the resulting line widths. In
order to exploit the sparsity of the CIR, the time delay drift has to be taken into account
and compensated.

In this work, we examined this form of block-based updating scheme, while also
incorporating recent developments in acoustic channel estimation, wherein structural infor-
mation is imposed on the impulse response. In [23], the authors showed that an acoustic
impulse response can be well modeled using a summed Kronecker structure, thereby
significantly reducing the number of parameters required for the detail ofthe channel.
These efforts have since been extended to incorporating such a structure in a variety of
estimators [24,25], including both an RLS-based [26] and an LMS-based estimator [27]. To
further this development, this work presents a joint estimation framework for time-varying
channels, which is robust against the low SNR scenarios typically encountered in underwa-
ter measurements, as well as a detection algorithm for weak underwater targets, for active
sonar systems. Figure 1 illustrates the flow diagram of the proposed combined methods.

Kronecker Product 
Estimate

Block-by-block updating

Output Channel Tracking 
Results

= , ,
, , = ,2

Residual Alignement

Matched Subspace
Detector

=

Detection Decision

( )
( )

Figure 1. Block diagram of the processing chain for the proposed joint estimation and detection
framework.
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The main contributions are summarized as follows:
(1) Drift compensation: At the initial stage, we compensated the measured signal for the

typically present drift. This was achieved by estimating the pulse-to-pulse time delay of
the measured signal using a Fourier-based technique [28]; this allows the measured signal
to be shifted accordingly before inverse transformation, thereby compensating for the drift.

(2) Block updating the CIR estimate: Using the drift-compensated signals, we proceeded
to formulate the proposed sparse and structural CIR estimator. The resulting Kronecker-
based block SCG (KBSCG) estimator is able to model the CIR even for low signal-to-noise
ratios (SNRs) well, here defined as SNR = 10 log Ps

Pe
, where Ps and Pe denote the power of the

signal and the noise, respectively. Although, given the inevitable model mismatch with the
true CIR, which generally does not exhibit an exact sparse Kronecker structure, the method
will be unable to continue to improve with the increasing SNR. Furthermore, in cases where
the channel is changing rapidly, we found that the block-based improved proportionate
NLMS (IPNLMS) [29] will react faster to these changes than the KBSCG estimator, although
not being able to achieve the same level of performance after convergence. Therefore, in
order to ascertainthe better performance of the method, first, we compared the model fit
with that of the IPNLMS, to see if the latter approach managed to adapt faster. If it did, we
proceeded to also compare it to the proposed block-based SCG (BSCG), which does not
impose a Kronecker structure on the CIR. In the high SNR case, the BSCG estimate will be
able to offer improved modeling, and the proposed estimator, therefore, proceeds to use
the BSCG update instead. For an even higher SNR, the assumption of sparsity may also be
relaxed without suffering from numerous spurious estimates in the CIR; in such a case, the
updating may instead employ the block-based RLS (BRLS) to allow further refinement. We
term the resulting combined estimator the block combined estimator (BCE). As we were
mainly interested in the low SNR case, the later steps were less often applicable, but are
included here to also allow for such cases.

(3) Detecting weak targets’ echo: We illustrate the effectiveness of the CIR estimate by
using it to form the residual between the observed data and the reconstructed data using
the CIR estimate from the preceding pulse. The use of the preceding CIR estimates ensures
that any channel variations, such as those resulting from a moving target, will remain in
the resulting residual. We illustrate this by implementing a matched subspace detector to
determine the presence of the target when using different forms of CIR estimates, using
both simulated and measured underwater data, showing that the proposed CIR estimator
offers a better performance.

The remainder of this paper is organized as follows: In the following section, we detail
the problem formulation and derive the proposed block-updating CIR estimate. Then, in
Section 2.2, we proceed to introduce the matched subspace detector. Sections 3 and 3.4
illustrate the performance of the proposed CIR estimator and the resulting detector using
both simulated and measured underwater data. Finally, Section 4 gives our conclusions.

2. Materials and Methods

2.1. Estimating the Time-Varying CIR

In practice, underwater sensor equipment is always impacted by water flow, resulting
in variations in the signal propagation. The effect is illustrated in Figure 2, showing the
CIR estimated using the least squares (LS), for each pulse, in a real sea experiment. As can
be seen, the CIR exhibits a sparse structure, but one that varies slowly in between pulses
due to the drift.

This time delay effect also differs from the Doppler effect that occurs, as the latter
primarily involves the effect of the relative velocity between the source and the observer,
causing a corresponding signal distortion. As recursive algorithms rely on the assumption
of a constant or slowly varying system, one has to compensate for such time delay pertur-
bations since these otherwise introduce abrupt changes in the system dynamics, which can
lead to inaccurate estimates and even unstable behavior in the recursive estimation process.
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In order to model the time-varying drift, we considered the mth tap of the CIR for the kth
pulse, hk(m),modeled as

hk(m) = hk−1(m−  fsτk�) + Δk (1)

where τk ∈ R denotes the time delay of the CIR for pulse k, with ·� denoting the rounding
down (floor) operation, and fs the sampling frequency, where Δk ∈ N(0, σ2) denotes the
channel perturbation as compared to the previous CIR (taking the drift and amplitude
variation into account). As a result, the L-dimensional measured signal resulting from the
kth pulse, ỹk, may be modeled as

ỹk = sk � hk + nk (2)

where sk is the N-dimensional transmitted waveform, hk the M-dimensional CIR, and
nk an additive noise component, for the kth pulse, with � denoting the convolution. In
order to determine the time delay drift, we employed the classical Fourier-based time
delay estimator presented in [28], which allows for a computationally efficient and reliable
estimate of the (possibly non-integer) shift between ỹk and ỹk−1. By shifting the Fourier-
transformed representation of the measured signal with the estimated shift, τ̂k, the drift-
compensated measured signal, yk, may then be formed using an inverse Fourier transform.
We then proceeded to form a block-by-block time updating of the CIR using yk, thereby
allowing us to exploit the sparse structure of the drift-compensated CIR, which is illustrated
in Figure 3 for the CIR shown in Figure 2.
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Figure 2. Pulse-to-pulse LS estimate of the CIR from high SNR sea data. The figure shows both
the underlying sparse nature of the underwater CIR and the channel drift in between pulses. The
numerous spurious components visible in the CIR estimates are due to the non-sparse nature of the
LS estimate.
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Figure 3. Pulse-to-pulse LS estimate of the drift-compensated CIR from high SNR sea data.

320



Remote Sens. 2024, 16, 476

Next, we extended the SCG algorithm presented in [17] to a block-by-block formulation
incorporating a summed Kronecker structure on the CIR. The SCG is formulated similarly
to the RLS, but instead uses a conjugate gradient formulation to minimize the resulting
weighted quadratic cost function [17,30]. Extending this formulation to a block-by-block
update, the block-SCG (BSCG) is formed as

ĥk = arg min
hk

Jk(Wkhk)

= arg min
hk

1
2

hT
k WkRkWkhk − hT

k Wkrk (3)

where

Rk = λRk−1 + SkST
k (4)

rk = λrk−1 + Skyk (5)

with 0 < λ ≤ 1 denoting the blockwise forgetting factor, and

Sk =

⎡⎢⎣ sk(1) · · · sk(N) 0 0
...

. . . . . . . . .
...

0 · · · sk(1) · · · sk(N)

⎤⎥⎦ (6)

where sk(�) denotes the �th index in the kth transmitted pulse. The weighting matrix, Wk,
in (3) is formed as the M×M diagonal matrix with the vector wk along the diagonal, where

wk(�) =
1
ξ

(∣∣∣ĥk−1(�)
∣∣∣+ c

)1−ξ
(7)

for � = 1, . . . , M, with c > 0 denoting a small regularization constant introduced for
stability purposes and 0 < ξ ≤ 1 a factor used to control the sparsity of the solution (with a
smaller ξ promoting stronger sparsity). Forming the gradient of Jk(Wkhk) with respect to
hk as

gk = ∇h Jk(Wkh) = Wk(Rkhk−1 − rk) (8)

the blockwise update ĥk may be formed as

ĥk = ĥk−1 + αkWkpk (9)

where

αk =
pT

k gk

pT
k WkRkWkpk + δ

(10)

pk = βkpk−1 − gk (11)

βk =
pT

k−1WkRkWkgk

pT
k−1WkRkWkpk−1 + δ

(12)

where δ > 0 is a small regularization constant preventing division by zero. Further details
on the step size αk and the scaling factor βk to sustain the Markov conjugacy can be
found in [30]. The method was further extended to incorporate the additionally assumed
summed Kronecker product structure, reminiscent of the development in [23], such that
we proceeded to model

hk =
P

∑
p=1

hk,2,p ⊗ hk,1,p (13)
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where ⊗ denotes the Kronecker product, with hk,2,p and hk,1,p, for p = 1, 2, . . . , P, denoting
two shorter impulse responses of lengths M2 and M1, respectively. Relaxing the formulation
in [23], we here assumed that M1M2 ≤ M, with M1 ≥ M2 ≥ P. Following [31], (13) is,
thus, rewritten as

hk =
P

∑
p=1

Hk,2,phk,1,p =
P

∑
p=1

Hk,1,phk,2,p (14)

where Hk,2,p = hk,2,p ⊗ IM1 and Hk,1,p = IM2 ⊗ hk,1,p are matrices of sizes M1M2 ×M1 and
M2 × M1M2, respectively. This reformulation allowed us to separate the contributions
from the two sets of CIRs in (3), such that

Jk(Wkhk) = Jk,1 + Jk,2 (15)

We proceeded to perform the update by keeping one of the sets of CIRs fixed at a time,
minimizing the other, such that, when keeping hk,2,p fixed, we only needed to minimize

Jk,1 =
1
2

hT
k,1Wk,1Rk,1Wk,1hk,1 − hT

k,1Wk,1rk,1 (16)

where

hk,1 =
[

hT
k,1,1 . . . hT

k,1,P

]T
(17)

Rk,1 = λRk−1,1 + Sk,2ST
k,2 (18)

rk,1 = λrk−1,1 + Sk,2yk (19)

Sk,2 =
[

ST
k,2,1 . . . ST

k,2,P

]T
(20)

Sk,2,p = ST
k Hk,2,p (21)

Here, the weighting matrix for the first set of CIRs, Wk,1 = diag(wk,1), is formed using only
this set, such that

wk,1(�) =
1
ξ1

(∣∣∣ĥk−1,1(�)
∣∣∣+ c1

)1−ξ1
(22)

This led to the updating of the first set of CIR estimates:

hk,1 = hk−1,1 + Wk,1pk,1αk,1 (23)

where

αk,1 =
pT

k,1gk,1

pT
k,1Wk,1Rk,1Wk,1pk,1 + δ

(24)

pk,1 = βk,1pk−1,1 − gk,1 (25)

βk,1 =
pT

k−1,1Wk,1Rk,1Wk,1gk,1

pT
k−1,1Wk,1Rk,1Wk,1pk−1,1 + δ

(26)

gk,1 = Wk,1(Rk,1hk−1,1 − rk,1) (27)

Similarly, fixing the first set of CIRs, the second set may be updated as

hk,2 = hk−1,2 + Wk,2pk,2αk,2 (28)

with similar definitions as for the first set. The Kronecker-based BSCG (KBSCG) estimator
was, thus, formed by updating both sets of CIR estimates separately. As both (23) and (28)
depend on the other set of CIRs, the estimates of (24)–(27) and the corresponding equations
for the second set were alternatively computed using a bilinear optimization strategy [32],
until practical convergence, prior to forming the updating in (23) and (28).
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As shown in the following, the proposed KBSCG allowed for an accurate representa-
tion of the CIR, especially in low SNR cases, but did not converge as fast as the IPNLMS
method [29], which has been found to allow for the tracking of rapid CIR changes, although
then with only limited accuracy. To also allow for rapid changes in the CIR, the proposed
combined estimator, therefore, compares the fitting of the KBSCG estimate with that of the
IPNLMS estimate, using the reconstruction error

η =

∥∥∥ST
k ĥk − yk

∥∥∥2

‖yk‖2 (29)

If the IPNLMS is deemed to offer an improved fit, which will be the case if the CIR has
changed rapidly, this estimate will then be used instead. Furthermore, it is worth noting
that the BSCG strives to exploit the sparse structure of the CIR, whereas the KBSCG will also
impose a structured form of the CIR, which will further reduce the number of parameters
that need to be estimated. One may, therefore, expect that these estimators will achieve good
performance in low SNR conditions, as is also shown to be the case in the following, but
will have performance limitations at higher SNRs, as the assumptions will not necessarily
match the true CIR, thereby imposing constraints on the performance. This is illustrated in
the numerical section, where it is shown that the sparse and structured KBSCG and the
BSCG estimates will offer better performance in the low SNR cases, but will not be able to
achieve such high-quality estimates as alternative formulations as the SNR increases. In this
work, we were primarily interested in these low SNR cases, as these are the ones typically
occurring in underwater measurements. However, in the interest of generality, one may in
the higher SNR cases also improve on the found estimates. This may be accomplished by
examining if the BSCG estimate, initiated using the KBSCG estimate, offers an improved
fit of the observed data, which will be the case if the SNR is sufficiently high. If so, the
combined estimator then uses the BSCG estimate instead.

Next, the BSCG estimate was used as an initialization of the BRLS update; if this
estimate offers a lower reconstruction error, the resulting block combined estimator (BCE)
instead uses this update as the current estimate. This gradual performance improvement
for the discussed estimators is illustrated in Figure 4, where it may be seen that the BCE
will havethe best estimate, for each SNR.
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Figure 4. Performance of the discussed CIR estimators for the simulated data, as a function of
the SNR.

The proposed method is summarized in Algorithm 1. As discussed above, the algo-
rithm depends on a number of user-defined parameters. In Section 3.2, we discuss how
these parameters may be suitably selected.
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Algorithm 1 The BCE algorithm (our Matlab implementation will be provided on the
authors’ web pages upon publication).

1: Input: λ, δ, c1, c2, ξ1, ξ2, s(k), ỹ(k), M1, M2, P
2: Output: ĥk.
3: Estimate τk, and form yk.
4: Form Sk,1, Sk,2, Wk,1, Wk,2, etc.
5: while Still converging do
6: Update (23) and (28), keeping hk,2,p fixed.
7: Keep hk,1,p fixed, and update the corresponding equations.
8: end while
9: Update hk,1 and hk,2 using (23) and (28).

10: Compute ηKBSCG using (29).
11: Form the IPN update using [29], and compute the η IPN

12: if η IPN < ηKBSCG then
13: Form the BSCG update using (9), and compute ηBSCG.
14: if ηBSCG < η IPN then
15: Form the BRLS update, and compute ηBRLS.
16: if ηBRLS < ηBSCG then
17: ĥk = ĥBRLS

k .
18: else
19: ĥk = ĥBSCG

k .
20: end if
21: else
22: ĥk = ĥIPN

k .
23: end if
24: else
25: ĥk = ĥKBSCG

k .
26: end if

2.2. Detecting Weak Underwater Targets

In order to illustrate the better performance of the introduced CIR estimator, we
proceeded to examine how the found estimates may be used to detect a weak moving
target. Traditionally, such a detection may be formed by applying a matched filter (MF)
to the measured signal. However, as this signal will be severely corrupted and have a
blurring effect due to the reverberation, such a detector will perform poorly if one does
not compensate for the effect of the CIR. In order to do so, we proceeded to remove the
influence of the channel, forming the residual:

ẑk = yk − ŷk|k−1 = yk − sk � ĥk−1 (30)

where ĥk−1 denotes the BCE estimate of the CIR at time k− 1. The reason for using the CIR
estimate from pulse k− 1 when forming the kth residual is to allow the detector to determine
the relative change in the CIR between pulses k− 1 and k, thereby enabling the detection of
weak moving targets. During much of the time, the resulting residual will not contain any
of the sought targets; although, the resulting residual will still contain a notable structure
due to noise and weak reflectors not captured by the CIR estimate. Using a low-order
autoregressive (AR) model structure to detail the resulting residual, one may, reminiscent
of the procedure in [33], form a pre-whitened version of the residual as A(z)ẑk(�) = n̂k(�),
where ẑk(�) denotes the �th sample of ẑk, n̂k(�) is assumed to be well modeled as a circularly
symmetric complex white Gaussian noise with variance σ2

n , and the pre-whitening filter,
A(z), may be formed as (Using the measured sea data, we determined that a reasonable
model for A(z), for this measurement, is A(z) = 1 + 0.061z−2 + 0.034z−4. This polynomial
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will depend on the assumed underwater conditions and should be determined for each
setup using a small amount of secondary data, wherein no target is deemed present).

A(z) = 1 +
d

∑
�=1

a�z−� (31)

As any target will cause a response that is a scaled and delayed version of the transmitted
pulse, sk, the target signal is known to lie in a (one-dimensional) subspace, H, spanned by
this signal. This allows the resulting detection problem to be formulated as

H0 : n̂k = wk

H1 : n̂k = Hθ + wk

where wk ∈ N (0, Rn) and θ denotes the corresponding scaling of H , with Rn denoting the
(true) residual covariance matrix, here modeled as a white process, Rn = σ2

nI. Let n̂k(τt)
denote the part of the residual signal n̂k corresponding to a delay of τt, i.e.,

n̂k(τt) =
[
n̂k

]
�
, � = ξt, . . . , ξt + N (32)

where ξt =  fsτt�, [·]� is the �th index in the vector, and N is the length of the transmitted
signal, sk.

This allows an (approximative) generalized likelihood ratio test (GLRT), assuming a
target reflection at delay τt, to be formed as (see, e.g., [34])

ψ(n̂k(τt)) = (N − 1)
n̂k(τt)TΠHn̂k(τt)

n̂k(τt)TΠ⊥
Hn̂k(τt)

(33)

where ΠH denotes the projection onto H, formed as

ΠH = H
(

HTH
)−1

HT (34)

with Π⊥
H = I−ΠH denoting the projection onto the space orthogonal to H. Using (33), the

target is, therefore, deemed present if and only if ψ(n̂k(τt)) > γψ, otherwise not, where γψ

is a predetermined threshold value reflecting the acceptable probability of a false alarm
(p f ), where, under the assumptions made, p f = QF1,N−1(γψ), with QFr,�(γψ) denoting the
complementary cumulative distribution function for an F-distribution with r numerator
degrees of freedom and � denominator degrees of freedom [34].

As the delay of the target reflection, τt, is unknown, we proceeded to evaluate n̂k(τt)
over the shifted version of the received measurement, yk. An illustration of the resulting
detection variable with a target present at τt = 0.02 s is shown in Figure 5, where a target
with a signal-to-reverberation ratio (SRR) of 3 dB was added, with the SRR being defined
as

SRR = 10 log
Ps

Pr
(35)

where Ps and Pr denote the power of the target signal and the reverberation, respectively.
As can be seen in Figure 5, the resulting detection variable is quite noisy due to the
imperfections in canceling the minor components in the CIR; to reduce the influence of
such unmodeled reflections, we formed a P-step sliding median measure of the formed
detection variable, notably reducing the influence of these reflections.

The resulting detection variable, Tk, for the kth pulse is then formed as this measure,
i.e.,

Tk = medianP

[
ψ(n̂k(τ))

]
(36)

where medianP[·] denotes the P-step sliding median filter. In this work, we used P = 100.
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Figure 5. Illustration of the detection variable, ψ(n̂k(τ)), as compared to the median filtered detection
variable, Tk, and the threshold γψ for p f = 5%. The target is present here at τt = 0.02 s, for
SNR = −10 dB and SRR = 3 dB.

3. Results and Discussion

In this section, we examine the performance of both the proposed CIR estimator and
the corresponding detection algorithm using simulated sea data.

3.1. Drift Compensation

We initially examined the drift compensation, which is illustrated in Figures 2 and 3
for the real sea data (see below for more details on these measurements). Here, the CIR was
estimated for each pulse using the LS; as can be seen in Figure 2, the CIR experienced a no-
table drift due to the motion of the transmitter and the receiver. By using the proposed drift
compensation of the measured data, this drift can be substantially reduced, as illustrated in
Figure 3. In order to evaluate this performance gain using simulated data, we proceeded to
simulate a channel mimicking the observed sea data channel, where the transmitted signal
is a wideband chirp signal, such that

s(t) = exp
[

j
(

2π f0t + πkt2
)]

, 0 ≤ t ≤ Tp (37)

where f0 = 3 kHz and k = 20 kHz/s represent the starting frequency and the chirp rate,
respectively, using a pulse width of Tp = 200 ms, as was also used in the real experiment.
We simulated a channel with M = 800 taps, based on the dominant components in Figure 2
(only showing the initial 200 taps), with uniformly distributed amplitudes with the variance
equal to the envelope of the LS estimated CIR channel, each CIR shifted using a sequentially
increasing delay to mimic the motion of the underwater acoustic channel resulting from
the movements of the transmitting and receiving platforms, and using a maximum drift of
no more than 5 ms. Each shift also included a random component to model the fluctuating
nature of the amplitude, simulated using a zero-mean unit variance uniformly distributed
random variable. Table 1 summarizes the reconstruction error, η, for the resulting CIR
estimate, ĥk, as compared to the CIR used to generate the simulations, hk, for SNR = 0 dB.
The values given are the average η for all simulations. Here, the additive noise was
simulated as a white additive Gaussian noise. As is clear from the table, the resulting
CIR estimates suffered a notable loss of performance if the drift was not compensated
for, as such errors then accumulated over time, degrading the performance further and
further for each consecutive pulse. As shown in the table, the drift compensation was able
to adequately compensate for the time-varying propagation delay, thereby allowing for
more-accurate CIR estimates.
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Table 1. The η of the CIR estimate for different algorithms, with or without drift compensation, for
SNR = 0 dB.

Algorithm η (dB)

SNR = 0 dB

Without With

LS 3.74 −4.47

BRLS [20] 0.91 −9.49

�1−BRLS [19] 0.89 −9.63

IPNLMS [29] 2.39 −6.69

mNLMS [30] 0.58 −10.84

BSCG 0.39 −11.17

KBSCG 0.81 −9.59

BCE 2.38 −11.59

Next, we examined how fast the CIR estimates were able to adapt to a change in
the true CIR. Figure 6 shows the η for the estimated CIR when the channel was abruptly
changed at pulse 40, with the amplitudes of the channels redrawn. As can be seen in
the figure, the sparse and the structured estimates were able to both adapt faster to the
changing CIR and to yield a more-accurate estimate than the BRLS. Here, the SNR = 0 dB.
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Figure 6. Performance comparison for the discussed algorithms when the CIR changes abruptly at
pulse 40, for SNR = 0 dB.

3.2. Selecting Suitable Parameters

As has been noted, the proposed BCE algorithm, as well as the BSCG and KBSCG
variant, will depend on several user-specified parameters, which will all affect the resulting
performance of the estimator. For all estimators, the choice of λ in (4) and (5) will affect
the overall speed and variability of the algorithm, similar to all forms of exponentially
forgetting algorithms. Figure 7 examines how the performance is affected by the forgetting
factor for the simulated sea measurements. Here, as the channel was varying fairly slowly
(after compensating for the drift), it can be seen that a blockwise forgetting factor around
0.7 ≤ λ ≤ 0.9 is preferable. Thus, we selected λ = 0.7 to be able to track the real sonar
data well.
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Figure 7. Effect of forgetting factor on proposed algorithms in time-varying CIR case, for SNR = 0 dB.

Next, we initially examined the BSCG estimator, where the resulting update depends
on the sparsity parameter ξ and constant c, as shown in (7). The constants c and δ were only
included for stability purposes and will only mildly affect the resulting estimates. Here, we
selected these as c = δ = 10−4. The ξ parameter promotes a sparser solution and should,
in our experience, be selected in the range 0.6 < ξ ≤ 0.8. In this work, we used ξ = 0.7.
Figure 8 illustrates how η evolves for an increasing number of pulses for different values
of ξ, for SNR = 0 dB, supporting this recommendation. As may be seen in the figure, the
BSCG fit was, for this SNR, preferable with respect to the BRLS, for all settings of ξ (see
also Figure 8). The KBSCG estimator will be affected similarly by the choice of ξ1 and ξ2,
but also requires the selection of the model orders M1, M2, and P in (13).
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Figure 8. Effect of ξ on the BSCG algorithm, for SNR = 0 dB.

These parameters will affect the total number of unknown parameters to be estimated,
Ψ, where Ψ = (M1 + M2)P. Clearly, it is preferable to reduce the overall number of
parameters in order to simplify the estimation procedure and, therefore, also speed up the
adaptation to changes in the CIR. In order to determine a suitable model order, we formed
the Bayesian Information Criteria (BIC) selection rule [35]:

BIC(Ψ) = Ψln(L) + L log(η(Ψ)) (38)

where η(Ψ) denotes the error for the model using the Ψ parameters (which is uniquely
defined given the constraint that M1 ≥ M2 ≥ P) and L is the number of measured samples
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per pulse, in our case L = 4000. Figure 9 illustrates the resulting model order selection rule,
suggesting that Ψ = 280, which implies that M1 = 30, M2 = 26, and P = 5 are suitable
model ordersto minimize the fitting error while keeping the model order low. It may be
noted from the figure that, due to the various parameter combinations possible to form Ψ,
the resulting BIC curve will be non-smooth; although, this may, as can be seen, still be used
to determine suitable model orders.
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Figure 9. The BIC curve for SNR = 0 dB, illustrating the preferable choice of the model orders.

3.3. Matched-Filter-Based Detection

Next, we examined how the proposed CIR estimates can be used to detect weak mov-
ing targets. In doing so, we added a simulated target signal to the measured signal, where
the target signal is modeled as the reflection of a moving target between the transmitter
and receiver, gradually moving away from the receiver such that the relative reflection
is shifted 3 ms per consecutive pulse. In order to mimic the local scattering of the target,
the primary target response was modeled here as a delay of 33 ms with unit amplitude.
The local scattering of the target was modeled using (normally distributed) randomly
generated weak reflections following the main reflection. Figure 10 illustrates a typical
example of the (noise-free) target impulse response; the measured target response signal
was modeled as the convolution of this response by the transmitted signal, being scaled to
yield the examined SRR. The target response was added here at the eight pulse to allow
the algorithm to converge prior to forming the detection variable at this time. In these
simulations, we used an SNR of −15 dB and an SRR of −3 dB.
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Figure 10. An example of the simulated noise-free target impulse response.

Figure 11 shows the resulting receiver operating characteristic (ROC) curve formed us-
ing MC = 1000 Monte Carlo simulations for the detection variable Tk, defined in (36), when
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employing the matched subspace detector to the residual n̂k(τt) in (32), formed using the
discussed CIR estimators. As a comparison, the figure also shows the performance of this
detector when applied instead directly to the measured signal, yk, without any CIR com-
pensation. This detector is denoted here as the uncompensated matched filter (UMF). From
the figure, it is clear that the CIR compensation notably improved the detector performance,
with the more-accurate CIR estimates gradually improving the detection performance.
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Figure 11. Estimated ROC for the resulting detectors, using a simulated CIR, when observing a single
pulse containing the target moving with velocity 1.5 m/s, for SNR = −15 dB and SRR = −3 dB.

The poor performance of the UMF was a result of the reverberation, causing the mea-
sured signal to be formed and overlapped by multiple shifted versions of the transmitted
signal; when forming the detection variable, one cannot, as a result, distinguish the reflec-
tions from the target from those of the reverberation, which caused the poor performance.
The proposed method instead uses the residual signal after the CIR compensation, reducing
the influence of the reverberation, to form the detection variable, thereby allowing for the
more-robust decision. Given that the reverberation is relatively stationary as compared
to the reflections of the moving reflector, one may, in this way, exploit the changes in the
sound field to detect the moving target.

3.4. Experimental Results

We finally examined a real sea measurement in a shallow sea in May 2022, in Laoshan,
Qingdao, China, having a depth of 10 m, where a single transmitter placed at a depth of
4 m was transmitting a linear frequency-modulated pulse sequence covering 3 to 7 kHz,
using a sampling rate of fs = 16 kHz. The pulse repeat time (PRT) used was 3.3 s, with a
pulse width of 0.2 s. The transmitted signal was measured using the same sampling rate by
a receiver positioned 5 km away from the transmitter, at a depth of 2 m. The main system
parameters are listed in Table 2.

Table 2. Underwater experiment parameters.

Parameter Value

Starting frequency 3 kHz
Bandwidth 4 kHz
Sampling frequency 16 kHz
Pulse width 200 ms
PRT 3.3 s
Tx depth 4 m
Rx depth 2 m
Sea depth 10 m
Horizontal range of Tx and Rx 5 km
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Both the transmitter and the receiver were almost static, being fixed to an underwater
chain experiencing only a mild drift; although, as shown in Figure 2, the resulting channel
was still drifting notably. As can be seen in Figure 2, as well as in the drift-compensated
CIR estimate shown in Figure 3, the CIR had a few dominant reflections, corresponding
to the direct path, the bottom reflection, as well as the surface reflection. Figure 12 shows
the resulting BCE estimate, using the noted settings, for the measurement data. As can be
seen in the figure, the estimator was able to estimate the sparse structure of the CIR well,
without suffering from the notable spurious estimates present in the LS estimate.
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Figure 12. Pulse-to-pulse BCE estimate of the drift-compensated CIR from high SNR sea data.

Figure 13 illustrates how well the discussed methods were able to fit the observed
data as the SNR was reduced; here, we normalized the power of the measured signal and
added an additive white Gaussian noise corresponding to the noted SNR, computing the
reconstruction error using the difference between the sea data (without additive noise) and
the reconstructed signal. As can be seen in Figure 13, paralleling the simulation results in
Figure 4, the proposed estimator, as expected, offered superior performance in the low SNR
case, where the use of the structured sparsity was beneficial.
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Figure 13. Performance comparison of the CIR estimates for the measured sea data, for varying
noise levels.

Next, we used the measured sea data illustrated in Figure 2, but now included the
reflection of a target (modeled as above), moving away from the transmitter with a velocity
1.5 m/s, with an SRR of −2.5 dB. It is worth noting that, as the residual in (30) was formed
using the CIR estimate from pulse k− 1, the residual will contain a contribution both from
the new location of the target, as well as the lack of a contribution at its earlier location,
thereby increasing the power of the target signal in (33). Figure 14 shows the resulting
detection variable Tk, defined in (36), for the 8th, 9th, and 10th pulses, when using the BCE
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estimator. As can be seen in the figure, although the CIR estimate was able to describe parts
of the sea channel, the residual n̂k still retained some reflections, partly due to the varying
SNR of the sea measurements between pulses, but also due to the unexplained parts of
the sea channel, causing large values of Tk for the initial part of n̂k for all three pulses.
The reflecting target can be seen in Figure 14 at a delay of about 0.033 s, corresponding to
sample 528, for the eight pulse, and then moving 48 samples (3 ms) in each of the following
pulses due to the target’s velocity (it should be noted that the approach will also work for
the detection of reflectors moving with non-constant velocity, although at some loss, as the
shifted reflection will align less ideally in such a case).

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time(s)

1

2

3

4

5

6

Figure 14. The detection variable Tk, defined in (36), for three consecutive pulses for a simulated
target moving with velocity 1.5 m/s, with SNR = −12.3 dB, and SRR = −2.5 dB.

As the unexplained part of the channel caused significant reflections, the detector may
well fail to detect the presence of weaker targets. In order to improve the detection, we
proceeded to exploit the motion of the target, assuming that it will exhibit a reasonably
constant velocity during a short interval. We, therefore, formed the cross-correlation
between consecutive pulses, ρTk ,Tk−1 , and then, determined the common shift between
pulses, reflecting the target’s constant velocity, as

kτK = max
K

∑
k=1

ρTk ,Tk−1 (39)

for K pulses. By then circularly shifting the kth detection variable, Tk, with kτK , forming T̃k,
all the shifted detection variables T̃k may be summed coherently, creating a new detection
variable T̆K, which is then used to determine the presence or the absence of a target in
the K measurements. The shifted T̃k for the 8th, 9th, and 10th pulses, together with the
resulting T̆K are shown in Figure 15, illustrating how the resulting detection variable can
efficiently exploit the response of the target in the pulses, reducing the influence of the still
unexplained sea channel.

Figure 16 shows the resulting detection performance of the detection variable T̆K,
using K = 4 pulses with a simulated target with SRR = −2.5 dB. In each of the MC = 1000
Monte Carlo simulations used to form the ROC, an additive Gaussian noise was added to
the real measurement, yielding an SNR of −12.3 dB. For this low SRR and SNR, the UMF
failed to allow for a viable detection and was, therefore, in the interest of clarity, omitted
from the figure. As can be seen in Figure 16, the combined detection variable, T̆K, was able
to accurately detect the weak target using the structured CIR estimates, again showing the
excellent performance of the proposed detector.
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Figure 15. The shifted detection variables T̃k for the three pulses shown in Figure 14, together with
the combined detection variable T̆K .

Consistent with the simulation results shown in Figure 11, one may note that the
structured CIR estimators were also able to track the channel fluctuations for the measured
sea data sufficiently fast to allow for an improved detection, as compared to the non-
structured estimators.
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Figure 16. Estimated ROC for the resulting detectors, using the discussed CIR estimates with the
real sea data, when observing K = 4 pulses containing a target moving with velocity 1.5 m/s, with
SNR = −12.3 dB and SRR = −2.5 dB.

4. Conclusions

In this paper, we introduced a sparse and structured block-updating channel impulse
response (CIR) estimator. By exploiting a sparse and structured approximation of the
CIR, we formulated a block-updated conjugate gradient formulation that allowed the
CIR estimator to provide accurate performance even in noisy environments, whereas the
estimator also allowed for a gradual relaxation of these constraints for higher SNR cases,
enabling the estimator to retain the better performance of the estimators without posing
such restrictions. We also included a discussion of how the required user parameters should
be selected and how these affect the performance of the method, as well as introduced a
matched subspace detector formed on the resulting channel residual. The proposed CIR
estimate was evaluated by comparing it to several recent CIR estimators, for both simulated
and measured sea data, illustrating both the better performance of the CIR estimate and
the resulting improved detection performance. In the future, we will aim to incorporate an
adaptive selection of the hyperparameters used, as well as examine how the target motion
affects the detectability of a target.
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Abstract: A source depth discrimination method based on intensity striations in the frequency–depth
plane with a vertical linear array in a shallow water environment is proposed and studied theoretically
and experimentally. To quantify the orientation of the interference patterns, a generalized waveguide
variant (GWV) η is introduced. Due to the different dominance of the mode groups, the GWV
distribution in the surface source is sharply peaked, indicating the presence of striations in the
interferogram and the slope associated with the source–array range, while the distribution of the
submerged source is more diffuse, and its interferogram is chaotic. The existence or lack of a distinct
peak is used to separate the surface and submerged source classes. The method does not demand
prior knowledge of the sound speed profile or the relative movement between the source and the
array. In addition, it is the presence of the striations, not the value of η, that is exploited to separate
the surface and submerged source classes, which means the source–array range can be unknown.
The proposed method is validated using experimental data on the towing ship in SWellEx–96 and
numerical modeling. The method’s performance under noise situations and for different source–array
ranges is also investigated.

Keywords: source depth discrimination; modal interference in frequency–depth plane; generalized
waveguide variant; shallow water with a thermocline

1. Introduction

Source depth discrimination in shallow water has significant research value, aiming to
distinguish surface sources from submerged ones rather than calculating depth. The dis-
tinction between these two classes of sources is based on their respective mode spectrum
excitation patterns. It exploits the difference in energies of low-order normal modes (also
known as trapped modes [1], TMs) and high-order normal modes (non–trapped modes,
NTMs), since the surface source cannot excite TMs due to their evanescent mode amplitudes
near the surface [2]. In contrast, a submerged source can excite both TMs and NTMs.

Publications have explicitly used the numerical representation of the energy difference
for source depth discrimination. A horizontal line array (HLA) at the endfire was utilized
to build the mode subspace projections and estimate the energy ratio between these two
groups of modes for discrimination [1], requiring the inputs of an approximate sound
speed profile, water depth, and bottom type. Mode filtering was also used to build the
trapped energy ratio with an HLA close to the endfire [3]. This demands prior knowledge
of the mode characteristics, which cannot be precisely obtained, due to the uncertainty in
the acoustic model or the environmental mismatch.

The application of the waveguide invariant β [4] in depth discrimination implicitly
exploits the aforementioned difference, which suggests whether the source is near the
surface or submerged, depending on its value. The invariance quantifies the orientation
of the intensity striations caused by modal interferences in the frequency–range ( f − r)
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plane. It is found that, for a surface source, the distribution of the β peaks are at different
values when the receiver is above or below the thermocline [5]. According to the reciprocity
principle, the distribution will peak, depending on the depth of the source for a fixed near-
surface receiver. β can also be extracted by using the warping transform in the frequency
domain from the interference pattern without knowing the source range [6]. However,
β requires relative movement between the source and receiver, since the modal interferences
occur in the range domain.

Note that there are modal interferences in the frequency–depth ( f − z) plane that
behave comparably to those in the f − r plane, determined by the dominant modes associ-
ated with the source depth. This paper discusses the discrimination between surface and
submerged sourcesin shallow water, which are above or below the thermocline, respec-
tively. The group of NTMs, which dominate the surface source, produces an observable
striation pattern in the acoustic intensity, while the interferogram of the submerged source
is chaotic. The proposed method utilizes a vertical line array (VLA) to “capture” these
interference patterns, which are described by a generalized waveguide variant (GWV)
distribution. The existence or lack of a distinct peak in the distribution represents the
presence or absence of the striation, which is further used to discriminate surface and
submerged sources. The method is valid for a higher frequency source, as its NTMs have
similar characteristics compared to those from low-frequency sources. The accumulation
in the depth domain allows for some robustness against noise. In addition, the value of
the GWV is related to the source range; however, the discrimination does not require this
value, which means that the source range can be unknown.

The paper is organized as follows. In Section 2, the GWV η is derived in the f − z
plane with interferometric signal processing. The method based on η for source depth
discrimination and the requirements of method based on the source frequency are pre-
sented. In Section 3, the proposed method is performed on the data from the towing ship
in the SWellEx–96 experiment. The striation pattern and η of the intensity distribution in
the f − z plane generated by the surface source are verified. In Section 4, the numerical
modeling results for the same experimental situation are presented. Complementing the
simulations of the submerged source, which does not meet the implementation require-
ment in the experiment, the proposed discrimination method is validated. Furthermore,
the performance under noise conditions and for different source ranges is investigated.
A summary is presented in Section 5.

2. Discrimination Using Intensity Striations in the f − z Plane

2.1. Generalized Waveguide Variant Describing the Intensity Striations

For a point source at depth zs, the acoustic intensity at depth z and range r can be
expressed as [7]:

I(r, z, f , zs) =
M

∑
m=1

M

∑
n=1

Bm(r, zs)φm(z)B∗n(r, zs)φ
∗
n(z)e

i(krm−krn)r, (1)

where
Bm(r, zs) =

√
2π
/

krmrφm(zs), (2)

M is the total number of normal modes excited by the source, and φm(z) and krm are the
depth function and the horizontal wavenumber of the mth mode, respectively. (·)∗ is the
conjugate operator.

The intensity maximum in the frequency–depth ( f − z) plane is determined by the
following condition

dI =
∂I
∂z

dz +
∂I
∂ f

d f = 0. (3)
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The slope of the striations κ is

κ =
d f
dz

= − ∂I
/

∂z
∂I
/

∂ f

= −
2

M
∑

m=1

M
∑

n=1
BmB∗nφ∗n(z)ei(krm−krn)r∂φm/∂z

r
M
∑

m=1

M
∑

n=1
BmφmB∗nφ∗nei(krm−krn)r

(
Sg,m − Sg,n

) , (4)

where Sg,m is the group slowness of the mth mode.
A generalized waveguide variant (GWV) η of the f − z plane is defined as

η(z, f |zs) = κ ∗ r
2
= −

M
∑

m=1

M
∑

n=1
BmB∗nφ∗nei(krm−krn)r∂φm/∂z

M
∑

m=1

M
∑

n=1
BmφmB∗nφ∗nei(krm−krn)r

(
Sg,m − Sg,n

) . (5)

Equation (5) can be rewritten as a sum of weighted components ηmn with coefficients
αmn representing their contributions to the variant (similar to the derivation of β in [8]),
given by

η(z, f |zs) =
M

∑
m=1

M

∑
n=1

αmnηmn, (6)

where

αmn =
BmφmB∗nφ∗nei(krm−krn)r

(
Sg,m − Sg,n

)
M
∑

m=1

M
∑

n=1
BmφmB∗nφ∗nei(krm−krn)r

(
Sg,m − Sg,n

) , (7)

ηmn( f , z) =
−∂φm/∂z

φm
(
Sg,m − Sg,n

) . (8)

Under the WKB [7] approximation, the mode function φm(z) can be expressed as

φm( f , z) = sin[kzm(z)z], (9)

where kzm( f , z) =
√
[2π f /c(z)]2 − k2

rm is the vertical wavenumber of the mth mode. Con-
sider the situation when the VLA is deployed below the thermocline, which means the
receivers are below all the turning points of trapped modes, making c(z) and kzm both
constants. Therefore,

ηmn( f , z) = − kzm cot(kzmz)
Sg,m − Sg,n

. (10)

Since many ηmn values, as pairs of modes (m, n), contribute to the GWV, a distribution
of η denoted by Eη better quantifies this complex striation pattern, similar to Eβ proposed
in [9–11].

As mentioned above, the GWV is converted from the slope of the interference striations,
which can be calculated by using two-dimensional Fast Fourier Transform [12] (2D–FFT)
on the intensity distribution I( f , z). The corresponding algorithm follows [9,10] and will
be briefly reviewed below.

The 2D–FFT of I( f , z) with depth aperture D and bandwidth B is defined by

I(x, y) =
∣∣∣∣∫ fm+B/ 2

fm−B/ 2

∫ zm+D/ 2

zm−D/ 2
I( f , z)e−i2π(xz+y f )dzd f

∣∣∣∣, (11)
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where fm and zm are the mean values of axis f and z, and x (in m−1) and y (in s) are the
FFT variables conjugate to the depth and frequency, respectively. We replace the slope in
Equation (5) with its expression in the Fourier domain and obtain

η = − r
2

x
y

, (12)

and the GWV can be represented in another set of variables related to the polar coordinate
system by choosing

K =
√

x2 + y2. (13)

The GWV distribution Eη is given by summing up K in the (η, K) plane, which is the
result of the polar coordinate transform. The presence of a clear peak indicates the existence
of striations and the corresponding slope at η.

2.2. Discrimination Based on the GWV

In shallow water with a thermocline, when the source is located above the thermocline,
only the first several NTMs exist, since the TMs are poorly excited, and the higher order
modes attenuate rapidly during the propagation. These NTMs can be regarded as a group
of modes due to their similar kzs, which will further behave similarly in cot(kzz) and
ηmn. As long as the sample locations are not at the depths where the ηmn approaches 0,
the enhancement of these ηmn provides a proper value of η (a peak of the GWV distribution)
and corresponding striations in the f − z plane.

However, for the submerged source, which excites both TMs and NTMs, the kzs of
the modes vary by an order of magnitude, resulting in the change in the function period.
Therefore, the sum of ηmn containing cot(kzz) with different periods cannot make η a certain
value, which means that the interferogram will be chaotic, and no striations will exist.

As a crucial parameter, shown in Equation (10), for the proposed method, kzm deter-
mines ηmn and η for the fixed receiver depths. In general, kz increases with the source
frequency, but its rate decreases. For a higher-frequency surface source, the kzs of NTMs
vary slowly during the frequency band, resulting in similar periods of cot(kzz), which
further ensure the enhancement of those ηmn. In the case of discriminating the lower-
frequency surface source, the fact that the kzs of NTMs in the processing band vary greatly,
and the periods of cot(kzz) change rapidly, means the summation of ηmn is like that of the
submerged source, and it fails to distinguish between these two source classes.

As shown in Equations (5) and (12), η is related to the source–array range r, which
implies that the slope of the striation is scaled up/down by the ratio of the range (if the
range is estimated before or later, which is outside the scope of this paper). However,
the scale change does not affect the striation’s existence. It is the fact that the distinct peak
of ηmn exists and not the value itself that is an important clue to whether the target is on
the surface or submerged. These above observations are verified using experimental and
simulated data in the following sections.

3. Experimental Data Analysis

The SWellEx–96 experiment [13] was conducted near San Diego, CA, in May of 1996.
The SSP can be approximately regarded as a typical downward refracting profile with a
thermocline. The VLA was deployed from a depth of 94.125 m to a depth of 212.25 m and
contained 21 elements that were evenly spaced (ignoring the small vertical tilt). The range
in the depth was nearly the same as in the situation discussed in Section 2, since it was
below the thermocline. The SSP and the array configuration are presented in Figure 1.

One second of data were analyzed, which was 73 min after the start of event S5, where
the towing ship (R/V Sproul) was 2.323 km from the VLA. The analyzed data involved
one signal with the band Δ f = 150 Hz (600–750 Hz) radiated by the towing ship (at a
depth of 2.9 m [14]), which was regarded as a surface source. The reasons for not choosing
the two experiment sources were as follows: (i) a broadband source was required, since
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it had the premise of an interference structure, while the shallow source transmitted nine
frequencies between 109 Hz and 385 Hz; (ii) although the deep source stopped projecting
CW tones and started projecting FM chirps (200–400 Hz) at the beginning, midway point,
and end of the track, its frequency was not applicable (too low) in this scenario.

Figure 1. The SSP of SWellEx–96 and the arrangement of VLA.

The results of the experimental data processing are shown in Figure 2. The intensity
distribution I( f , z) Equation (1), 2D–FFT of I( f , z) Equation (12), 2D–FFT in the polar
coordinates, and the GWV distribution Eη are shown for the assessing procedure.

One can observe the intensity striations in Figure 2a (to show the striations more
clearly, we show the image with a larger bandwidth (550–900 Hz), which is symmetrical at
about f = 750 Hz, since the sample frequency of the data is 1500 Hz). It is worth mentioning
that the striations were not caused by frequency shifting, although there were several tones
(such as 605 Hz and 677 Hz) projected by the towing ship, since the speed of the ship was
2.5 m/s (5 knots), and the length of the data was 1s.

Figure 2b shows the result of the 2D–FFT of the region enclosed by the white dashed
lines in Figure 2a and exhibits a vertical line resulting from the background noise.

We removed this vertical line and performed the polar coordinate transform (the
transformations later were all conducted after vertical line removal) in Figure 2c. Figure 2d
shows the GWV distribution Eη of the data we analyzed, and the peak ηex = 68.4.
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Figure 2. The results of the experimental data: (a) I( f , z); (b) 2D−FFT of I( f , z); (c) 2D−FFT in the
polar coordinate; (d) the GWV distribution Eη and zoom of peak.

4. Numerical Modeling Results

For numerical simulations, we used the acoustic environment in SWellEx–96, con-
sidering the same VLA as that deployed during the experiment. The source frequency
band was the same as noted above, Δ f = 150 Hz (600–750 Hz). The horizontal distance
between the source and the VLA was 2.323 km. The KRAKEN [15] was used to calculate
the pressure field.

4.1. The Mode Functions, Normalized Amplitudes of Modes, and ηmn

Figure 3a displays the mode depth functions for the central frequency fc = 675 Hz,
with black lines marking the depths of 3 m and 54 m.

Figure 3b,c show the normalized amplitudes of the normal modes excited by a surface
source and a submerged source, respectively, with marked TMs and NTMs. As can be seen,
the two source classes differ in the dominance of excited modes, providing the basis for
depth discrimination.

Figure 3d,e show η43,44 (typical dominant interference modes of the surface source)
as a function of the frequency and the water depth, and η43,44 versus depth for fc = 675 Hz,
with red circles representing the VLA receivers, respectively. One can note that the ηmn
of 600–750 Hz show periodicity and share a similar period, since there is cot(kzmz) in ηmn,
and kzm varies slowly during the processing bandwidth, which shows the potential to make
their combination Eη have a sharp peak. The VLA receivers are mostly not located near the
zero point of η43,44 versus depth for fc = 675 Hz, letting η avoid being 0. The high η43,44
(the dazzling line in f = 746 Hz) in Figure 3d is due to the tiny difference (0.0274 m/s) in
group speeds of the 43rd and 44th modes, which happen to be the first two NTMs.

Figure 3f,g show η9,10 with a larger period, which exhibited an abnormal situation at
depths of 115–130m, caused by c(z), leading to unusual kzm and cot(kzmz), and η9,10 versus
depth for fc = 675 Hz with red circles representing the VLA receivers, respectively. More
importantly, for the submerged source that excited both TMs and NTMs, the period of
cot(kz9z) (seen in the Figure 3g) was nearly four times that of cot(kz43z) or several times
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that of the other cot(kzmz), which means that each type of interference mode contributes its
own peak, resulting in multiple sidelobes in the distribution Eη .
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Figure 3. Mode depth functions for fc=675Hz (a); normalized amplitude of the normal modes excited
by the surface/submerged source (b,c); η43,44 and η9,10 as a function of the frequency and the water
depth (d,f); η43,44 and η9,10 versus depth for fc=675Hz with red dots representing the values of ηm,n

at the depths of the VLA receivers, respectively (e,g).

Table 1 presents the total number of modes, the dominant interference modes, and the
corresponding period of cot(kzmz) for different surface source frequencies. In underwater
acoustics, in a general sense, a frequency above 500 Hz can be referred to as a high
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frequency (mid-high frequency). In the scenario discussed here, it needs to be discussed in
combination with the specific SSP, such as shown in Table 1. Under the same bandwidth,
the period of the dominant interference at different frequencies changes with a smaller
period (600–750 Hz, 5.26/4.42 ∗ 100% ≈ 119%) is called higher-frequency, and the opposite
is called lower-frequency (150-300 Hz, and 300-450 Hz). There is no absolutely clear
boundary between higher and lower frequencies here. For the surface source with lower
frequencies (for example, 150–450 Hz), the period of cot(kzmz) in the dominant interference
modes decreases quickly (15.47/9.52 ∗ 100% ≈ 163%, 9.52/6.69 ∗ 100% ≈ 142%). This
difference between these periods makes the superposition of the NTMs of the surface
source behave like those of the TMs and NTMs of the submerged source, and the proposed
method fails.

Table 1. Total number of modes, the dominant interference modes, and the corresponding period of
cot(kzmz) for different surface source frequencies.

Surface Source Frequency 150 Hz 300 Hz 450 Hz 600 Hz 750 Hz

Total number of modes 18 32 46 61 73
Dominant interference modes (m, n) (14,15) (22,23) (31,32) (38,39) (46,47)
Corresponding period of cot(kzmz) 15.47 m 9.52 m 6.69 m 5.26 m 4.42 m

4.2. Performance Study under the SSP from the Experiment

Two cases are considered here: (I) one case of a surface source at a depth of 3 m
corresponding to the towing ship; (II) the other of a submerged source at a depth of 54 m.

The interferogram in Figure 4a, 2D–FFT of I( f , z) in Figure 4b, 2D–FFT in the polar
coordinates in Figure 4c, and the GWV distribution Eη in Figure 4d correspond to case I.
Compared to the intensity striations in Figure 2a, those interference structures are more
obvious, due to the stationary spectra used in the simulation. Being free from background
noise, the vertical line (as in Figure 2b, caused by the noise) disappears. The highest energy
of Eη denotes the presence of striation, and the number of ηsimu = 68.4 , which is the same
as the experimental data result (ηex = 68.4). The agreement between the simulation of the
surface source and the experimental data analysis proves that there are intensity striations
in the f − z plane and verifies the effectiveness of the simulation.
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Figure 4. The results of the numerical modeling of the surface source (3 m): (a) I( f , z) ; (b) 2D−FFT
of I( f , z); (c) 2D−FFT in the polar coordinate; (d) the GWV distribution Eη and zoom of peak.
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The intensity distribution I( f , z), 2D–FFT of it, 2D–FFT in the polar coordinates,
and the GWV distribution Eη are shown in Figure 5a–d for case II. The interferogram
is chaotic. The intensity striation can hardly be found in the picture, let alone its slope.
The distribution Eη in Figure 5d has many peaks with similar values (differences in the
second decimal point), which implies that there are not striations associated with the GWV.
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Figure 5. The results of the numerical modeling of the submerged source (54 m): (a) I( f , z);
(b) 2D−FFT of I( f , z); (c) 2D−FFT in the polar coordinate; (d) the GWV distribution Eη and zoom
of peak.

4.3. The Effect of the Noise and Source Range on the Performance

The performance of the proposed method under noise conditions and for different
source ranges is described in this section.

We define the signal–noise ratio (SNR) as

SNR = 10 log

(
∑L

1 s2
l

L

/
σ2

)
, (14)

where l and L represent the array element index and total number of elements, respectively,
s2

l is the signal power on the lth element, and σ2 is the noise power.
The results of the processing for two SNRs (SNR1 = –3 dB and SNR2 = –10 dB) are

shown in Figures 6 and 7, respectively. The results of each polar transform are omitted here.
For the case of SNR1=–3dB, there are still observable striations in the intensity distribu-

tion of the surface source (Figure 6a), and the peak η1 = 68.5 is similar to the ηex = 68.4 in
the absence of noise. The interferogram of the submerged source (Figure 6d) is still chaotic,
and the peak in Eη (Figure 6f) cannot be identified.

For the case of SNR2 = –10 dB, under such noise conditions, the interferograms
(Figure 7a,d) are chaotic, and no peak can be identified in either Figure 7c nor Figure 7f.
The method works poorly at a low SNR, since its sample aperture is restricted below
the thermocline and limited by the water depth, unlike β sampling in the r domain for
an extendable distance, which enhances the SNR. In addition, it is neither practical nor
economical to densely deploy receivers in the z domain.
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Figure 6. The results of the numerical modeling of sources (3 m and 54 m) for SNR1 = −3 dB: I( f , z)
(a,d); 2D−FFT of I( f , z) (b,e); Eη and zoom of peak (c,f).
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Figure 7. The results of the numerical modeling of sources (3 m and 54 m) for SNR2 = −10 dB: I( f , z)
(a,d); 2D−FFT of I( f , z) (b,e); Eη and zoom of peak (c,f).

The performance for a different source range r1 = 3 km is studied here. Figure 8
shows the results and also omits the polar transform. The interference patterns still exist
(Figure 8a), and the peak η3km = 87.9 is proportional to ηsimu, with the ratio between two
source ranges (η3km

/
ηsimu = 87.9/ 68.4 ≈ 1.29 ≈ r3km

/
r = 3/ 2.323). The interferogram

of the submerged source (Figure 8d) is chaotic, and the peak in Eη (Figure 8f) can not
be identified.
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Figure 8. The results of the numerical modeling of sources (3 m and 54 m) for r3km: I( f , z) (a,d);
2D−FFT of I( f , z) (b,e); Eη and zoom of peak (c,f).

5. Conclusions

A method for source depth discrimination is presented for VLA based on the presence
of intensity striations extracted from the frequency–depth plane. The orientation of this
intensity interference pattern is characterized as a generalized waveguide variant called η,
which was derived in this paper, dominated by different types of normal modes excited by
a surface/submerged source. Analytical expressions illustrate that for the higher-frequency
surface source, the source interferogram shows the intensity striation patterns clearly and
the distribution of η peaks associated with the source range. However, for the submerged
source, the interferogram is chaotic, and the distribution of η does not show the peak (there
are many high sidelobes).

This method was verified with experimental data and simulated data with reasonable
success. For the surface source, there is a good agreement between the experimental
intensity striation patterns and those predicted by the theory, as well as the peaks of η in
each situation. The successful discrimination with a low noise background and different
source ranges further indicates the potential of the method on real data. It should be
pointed out that, although η is related to the source–array range r, it is the presence of the
striations, not the value of its slope, that we use to determine the depth class of the source.
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Abstract: Ship-radiated noise is the main basis for ship detection in underwater acoustic environments.
Due to the increasing human activity in the ocean, the captured ship noise is usually mixed with
or covered by other signals or noise. On the other hand, due to the softening effect of bubbles in
the water generated by ships, ship noise undergoes non-negligible nonlinear distortion. To mitigate
the nonlinear distortion and separate the target ship noise, blind source separation (BSS) becomes a
promising solution. However, underwater acoustic nonlinear models are seldom used in research
for nonlinear BSS. This paper is based on the hypothesis that the recovery and separation accuracy
can be improved by considering this nonlinear effect in the underwater environment. The purpose
of this research is to explore and discover a method with the above advantages. In this paper, a
model is used in underwater BSS to describe the nonlinear impact of the softening effect of bubbles
on ship noise. To separate the target ship-radiated noise from the nonlinear mixtures, an end-to-end
network combining an attention mechanism and bidirectional long short-term memory (Bi-LSTM)
recurrent neural network is proposed. Ship noise from the database ShipsEar and line spectrum
signals are used in the simulation. The simulation results show that, compared with several recent
neural networks used for linear and nonlinear BSS, the proposed scheme has an advantage in terms
of the mean square error, correlation coefficient and signal-to-distortion ratio.

Keywords: nonlinear blind source separation; ship-radiated noise; underwater acoustic nonlinear
propagation; attention mechanism; recurrent neural networks

1. Introduction

Acoustic signals are the main carriers of information and the best means of communication
in underwater environments. Acoustic signal processing is the most popular means for the
detection of human underwater activities. However, in an underwater acoustic environment,
the target signal undergoes non-negligible distortion and is usually mixed with heavy noise
or interference, which makes it difficult to detect [1–4]. As a result, signal recovery is crucial
in many underwater applications, such as communication, detection and localization [5–10].
For active target detection, the design of a detection waveform is crucial and, to a great extent,
determines the detection accuracy [11–13]. Similarly, waveform recovery plays a crucial role
in passive scenes, and reliable detection cannot be achieved without the precise separation of
the target signal from the received mixture. The application of multiple receivers can greatly
improve the quality of the receiving signals and can even be used in imaging and array signal
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processing in synthetic aperture sonar (SAS) [14,15]. In this situation, blind source separation
(BSS) based on multiple receivers becomes one of the candidates to solve this problem. BSS is
effective in recovering the original signals from the mixture, and it was first introduced to solve
the Cocktail Party Problem [16]. Nowadays, BSS is widely used and performs well with the
assumption of a linear mixing procedure [17–21], in which nonlinear components are neglected.
However, in fact, the nonlinear effect is non-negligible in underwater acoustic channels, such as
nonlinear distortion caused by hydrodynamics and the adiabatic relation between pressure and
density [22], nonlinearity in devices like power amplifiers [23–26], the nonlinear interaction of
collimated plane waves [27], the thermal current and nonlinear fluids such as relaxing fluids,
bubbly liquids and fluids in saturated porous solids [28–31]. Linear methods cannot separate
the signals with nonlinear components to a high degree of accuracy.

Many scholars have published methods and validations in the field of underwater
acoustic BSS. For conventional algorithms, such as in [32], the researchers build an im-
proved non-negative matrix factorization (NMF)-based BSS algorithm on a fast independent
component analysis (FastICA) machine learning backbone to obtain a better signal-to-noise
reduction and separation accuracy. Furthermore, a low-complexity method based on
Probabilistic Stone’s Blind Source Separation (PS-BSS) is proposed in [33] to be used in
multi-input multi-output (MIMO) orthogonal frequency division modulation (OFDM) in
the Internet of Underwater Things (IoUT). Artificial neural networks are also frequently
used in similar situations. The method of time–frequency domain source separation is
utilized in [34], by using deep bidirectional long short-term memory (Bi-LSTM) recurrent
neural networks (RNN) to estimate the ideal amplitude mask target. In addition, [35] uses
a Bi-LSTM approach to explore the features of a time–frequency (T-F) mask and applies
it for signal separation. The detection and recognition of underwater creatures can also
adopt a BSS approach. The researchers in [36] apply ICA to separate the snapping shrimp
sound from mixed underwater sound for passive acoustic monitoring (PAM). Moreover,
the ICA based method is also utilized in [37] to separate spiny lobster noise from mixed
underwater acoustic sound in a PAM application. However, the studies above fail to take
the nonlinear characteristics of underwater acoustic channels into consideration.

To better recover the nonlinear component in blind mixtures, many nonlinear BSS
methods have been invented. The authors in [38] extend the standard NMF and propose
a BSS/BMI approach so as to jointly handle LQ mixtures and arbitrary source intraclass
variability. Moreover, the work in [39] theoretically validates that a cascade of linear princi-
pal component analysis (PCA) and ICA can solve a nonlinear BSS problem when mixtures
are generated via nonlinear mappings with sufficient dimensions. By using information
theoretic learning methods, scholars have explored the use of the Epanechnikov kernel
in kernel density estimators (KDE) applied to equalization and nonlinear blind source
separation problems [40]. Furthermore, the useful signals from the complex nonlinear
mixtures are separated by applying a three-layer deep recurrent neural network to achieve
single-channel BSS in [41]. Additionally, nonlinearity can be fairly approximated using a
Taylor series and an end-to-end RNN that learns a nonlinear BSS system [42]. Even so, the
performance can still be further improved for nonlinear BSS.

As a powerful candidate in artificial neural network methods, the Transformer is
utilized in many fields [43]. In particular, the Transformer is widely used in BSS for mixing
signals. For example, [44] proposes a three-way architecture that incorporates a pre-trained
dual-path recurrent neural network and Transformer. A Transformer network-based plane-
wave domain masking approach is utilized to retrieve the reverberant ambisonic signals
from a multichannel recording in [45]. The researchers in [46] propose a deep stripe
feature learning method for music source separation with a Transformer-based architecture.
Similarly, the work in [47] designs a reasonable densely connected U-Net combining multi-
head attention and a dual-path Transformer to capture the long-term characteristics in
music signal mixtures and separate sources. A slot-centric generative model for blind
source separation in the audio domain is built by using a Transformer architecture-based
encoder network in [48]. Ref. [49] extends the Transformer module and exploits the
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use of several efficient self-attention mechanisms to reduce the memory requirements
significantly in speech separation. However, most of these Transformer-based BSS studies
do not explicitly explore the nonlinearity widely existing in real situations like underwater
acoustic channels, which is discussed in this paper.

Ship recognition is vital in underwater acoustic signal processing and it is based on its
radiated noise, which is mainly caused by propeller blades. When the propellers generate
noise, the blades generate bubbles due to cavitation, which also causes erosion [50,51].
The softening effect by bubbles has a nonlinear impact on acoustic signals. This type of
nonlinearity is investigated in this paper. To better separate and recover the original ship-
radiated noise before distortion and mixing, an end-to-end nonlinear BSS network based on
an attention mechanism is proposed in this paper. Due to the fact that the Transformer has
a shortcoming in capturing local self-dependency and performs well in learning long-term
or global dependencies, while convolutional neural networks (CNN) and RNN behave
in the opposite way [52–56], an end-to-end network is utilized combining an RNN and
multi-head self-attention, i.e., recurrent attention neural networks (RANN). The recurrent
attention mechanism is used in image aesthetics, target detection, flow forecasting and
time series forecasting [57–61], but it has not been used in nonlinear BSS yet. In order to
simulate real ship noise as much as possible, the ShipsEar database is used and two classes
of ship-radiated noise are selected to act as original ship noise [62]. Based on this noise and
nonlinear model, a dataset is generated and used in the neural network training, validation
and testing. The simulation results indicate that the proposed network performs better
in terms of separation accuracy than networks purely based on RNNs [42], the classical
Transformer [43] or a recently published end-to-end BSS U-net [47]. The advantages of the
proposed scheme are its lower mean square error (MSE), higher correlation coefficient and
higher signal-to-distortion ratio (SDR).

The rest of this paper is organized as follows. Section 2 describes the nonlinear model
of the underwater acoustic channel and nonlinear BSS, as well as the proposed recurrent
attention neural networks. Section 3 displays the simulation configuration, while the results
and discussion are given in Section 4. The paper is concluded in Section 5.

2. Materials and Methods

To model the nonlinear effect in an underwater channel, the nonlinear model based
on the softening effect of bubbles in water is utilized, which is derived in [30,63]. The
post-nonlinear (PNL) model is used as a generic framework in nonlinear BSS. To achieve the
recovery and separation of ship-radiated noise, a RANN combining an RNN and attention
mechanism is designed and proposed in this paper, and it is first utilized in nonlinear BSS.
The design of the network structure is also introduced in this section.

2.1. Nonlinear Underwater Acoustic Channel Model

It has been proven in [30,63] that bubbles in water have a softening effect on sound
pressure, and a model of varying sound pressure was derived. The same model is therefore
used in this paper. To simplify the discussion, only one-dimensional space is considered.
Usually, it is assumed that bubbles have the same radius and are uniformly distributed in
seawater. The model of the nonlinear distortion caused by the softening effect is derived
from the wave equation and Rayleigh–Plesset equation:

∂2 p(x, t)
∂x2 − 1

c2
0l

∂2 p(x, t)
∂t2 = −ρ0l Ng

∂2v(x, t)
∂t2 (1)

∂2v(x, t)
∂t2 + δω0g

∂v(x, t)
∂t

+ ω2
0gv(x, t) + ηp(x, t)

= av(x, t)2 + b

(
2v(x, t)

∂2v(x, t)
∂t2 +

(
∂v(x, t)

∂t

)2
) (2)
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In the equations above, p(x, t) is the sound pressure, which varies with the coordinates
and time, similar to the volume variation of bubbles v(x, t) = V(x, t) − v0g, with the
present volume V(x, t) and the initial one v0g, v0g = 4πR3

0g/3, with the initial radius R0g

of bubbles. c0l and ρ0l are, respectively, the sound speed in sea water and the density of the
medium. Ng is the number of bubbles per unit volume. δ denotes the viscous damping
coefficient in sea water and ω0g represents the resonance angular frequency of bubbles.
a = (γg + 1)ω2

0g/(2v0g), b = 1/(6v0g) and η = 4πR0g/ρ0l are nonlinear coefficients
defined to be convenient, in which γg is the specific heat ratio. Using i and j as space
and time indices, the first-order and second-order partial derivatives relative to time and
coordinates can be converted into a discrete format and expressed as

∂2 pi
∂x2 =

pi+1 − 2pi + pi−1

h2 (3)

in which pi represents p(x = i, t). Similarly, pj represents p(x, t = j) and the in time domain

∂2 pj

∂t2 =
pj+1 − 2pj + pj−1

τ2

∂2vj

∂t2 =
vj+1 − 2vj + vj−1

τ2

∂pj

∂t
=

pj − pj−1

τ
∂vj

∂t
=

vj − vj−1

τ

(4)

in which h and τ are the space and time interval, respectively.
Finally, sound pressure in any coordinates and at any time can be derived as

pi,j+1 =

[
τ2 pi+1,j + τ2 pi−1,j + 2

(
h2

c2
0l
− τ2

)
pi,j −

h2

c2
0l

pi,j−1

−2ρ0l Ngh2vi,j + ρ0l Ngh2vi,j−1 + ρ0l Ngh2vi,j+1

]
/(h2/c2

0l)

(5)

where the volume of bubbles at the same point is

vi,j+1 =
[
(1− δω0gτ − bvi,j−1)vi,j−1 + ητ2 pi,j + (−aτ2 + 3b)v2

i,j

+(−2 + δω0gτ + ω2
0gτ2)vi,j

]
/(2bvi,j − 1)

(6)

2.2. Nonlinear Mixing Model in BSS

In the BSS problem, the generic and instantaneous nonlinear mixing model can be
defined as

X = ϕ(S) (7)

where X = [x1(n)x2(n) . . . xM(n)]T and S = [s1(n)s2(n) . . . sN(n)]T are M mixtures and N
sources. ϕ(.) is a generic nonlinear mixing function. The purpose of nonlinear BSS is to find
a nonlinear unmixing function ψ(.) = ϕ−1(.), which is the inverse of the mixing function,
to recover the sources as precisely as possible by applying Y = ψ(X).

Many types of nonlinear mixing models are used in BSS, such as the linear quadratic,
bi-linear and post-nonlinear (PNL) models [64,65]. The PNL model is utilized in this paper
and its structure is shown in Figure 1. In the mixing system, the sources are multiplied by
an M-by-N mixing matrix to be linearly mixed based on transmitting attenuation before
undergoing nonlinear distortion by softening effect. In the separating part, the observed
signals are first nonlinearly recovered, which is the inverse of nonlinear distortion, and
then linearly unmixed by an N-by-M matrix.
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Figure 1. The sketch of the PNL model used in this paper.

2.3. Recurrent Attention Neural Networks

Due to the advantages of RNNs in capturing local information and the Transformer’s
excellent performance in acquiring global dependencies, a recurrent attention neural net-
work (RANN) is designed in this paper, which is first utilized in nonlinear BSS. To achieve
the recovery and separation of ship-radiated noise, the design of the network structure is
as shown in Figure 2 and introduced as follows.

Figure 2. The model of the proposed recurrent attention neural network, containing two layers of
recurrent attention neural network and an LSTM layer.

The multi-head attention mechanism shows the best performance in processing one-
dimensional temporal signals and it has been applied in many fields. A multi-head attention
layer is first used to process the input signals, which is followed by a residual connection
and layer normalization. However, the attention mechanism performs weakly in acquiring
the local information. Bi-LSTM has been proven to have excellent performance in nonlinear
BSS [42] and it is successful in extracting the local information but weak in acquiring global
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information; thus, it could work well to complement the attention mechanism. As a result,
a Bi-LSTM layer is then utilized in the network, which is followed by a drop-out layer to
avoid overfitting. Then, the layer of the RANN is completed.

The recurrent attention process is repeated once to improve the performance, as it will
be worse without the repetition. However, more repetitions are not necessary because this
may heavily increase the number of parameters used but only slightly improve the perfor-
mance, with more details shown in Section 4. An LSTM layer is finally used to obtain the
separated results.

The whole procedure of signal processing is described as follows. The mixture signal is
denoted as X ∈ RM×L, where M is the number of mixtures and L is the length of the signal
in the time domain. Then, X is segmented into parts with length Ns and, for convenience
in training, the size of batch bs is set. Thus, X is converted to D ∈ Rbn×bs×M×Ns with a
permutation operation and bn is the number of batches. The total bn batches are divided
into training, validation and testing sets in a proportion of 7:1:2 and used as inputs of the
network for various purposes. In the simulation below, L is set to 500 and Ns is set to 40 to
simplify the calculation. There are 1000 samples of mixture data used in total and they are
divided into various datasets with the proportion of 7:1:2.

Take the training progress as an example. The training batch D1 ∈ Rbs×M×Ns is
extended to h channels as features, D2 ∈ Rbs×h×Ns, before the attention mechanism, where
h is the number of hidden elements in the attention and RNN layers. The shape of the
feature tensors will not change until the LSTM layer, whose output is Dn ∈ Rbs×N×Ns,
and N is the number of expected separated signals. Lastly, the outputs of the network are
concatenated and recovered to Y ∈ RN×L. The progress is similar in the validation and
testing stages.

3. Simulation Configuration

3.1. Original Signals, Distortion and Mixtures

To simplify the discussion, the smallest number of signals is selected, i.e., m = n = 2
in Figure 1. To better validate the separation accuracy of the proposed network, the real
recorded ship-radiated noise from the database ShipsEar [62] is used. Entries with index
6 and 22 are used as original signals, where the types of ships are passengers and ocean
liners, respectively.

In order to maintain generality, various propagation distances are applied to the
original signals, with 10 km for source s1 and 12 km for s2. Due to the fact that the propa-
gation distance will influence the nonlinear distortion, as shown in Equations (5) and (6),
nonlinear distorting functions will be different for various linear mixing signals u(n)
in Figure 1. For linear mixing matrix A, the coefficients are randomly selected and A must
be fully ranked. When A equals [0.45, 0.13; 0.21, 0.43] and white Gaussian noise with 15 dB
is added, the spectra of the original and mixed ship noise signals are as shown in Figure 3.
It can be concluded from Figure 3 that the characteristics of the original ship noise are
severely hidden in the mixture spectra. Only frequencies below 2 kHz are displayed as the
ship-radiated noise is mainly distributed in this low-frequency region. This is used as the
first dataset.

Due to the fact that ship-radiated noise consists of strong line spectra and weak
continuous ones, and the former is the main basis of ship recognition [66,67], signals
with line spectra are also generated as originals of the second dataset. Usually, a line
spectrum consists of a fundamental frequency and resonance frequencies, with a strong
relationship with the propeller shaft frequency and blade frequency. In this set of data,
the fundamental frequencies are selected as 100 Hz and 120 Hz for both sources, and the
amplitude attenuates as the frequency increases. Parameters used for the environment are
the same as in the set of real ship noise discussed above. The spectra of the original and
mixed signals are shown in Figure 4. A similar conclusion is obtained that the line spectra
characteristics are heavily distorted in the mixtures.
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(a) Ship noise 1. (b) Ship noise 2.

(c) Mixed signal 1. (d) Mixed signal 2.

Figure 3. Spectra of original and mixed ship noise, with characteristics severely hidden in the
mixture spectra.

(a) Line spectrum signal 1. (b) Line spectrum signal 2.

(c) Mixed signal 1. (d) Mixed signal 2.

Figure 4. Spectra of original and mixed line spectrum signals, with line spectra characteristics heavily
distorted in mixtures.

354



Remote Sens. 2024, 16, 653 8 of 14

3.2. Configuration and Referred Networks

In the proposed network, the output size of each recurrent unit is 256, as well as the
number of hidden elements in the attention mechanism. The number of heads in attention is
8 and a 50% dropping rate is used in each drop-out layer. The learning rate is set as 10−4 at
the beginning and multiplies by 0.8 after every 10 epochs, with a total of 100 epochs used in
the training process. The Adam optimizer is also used to reduce the impact of the learning
rate [68]. The mean square error (MSE) is used as the loss function and is displayed in
Equation (8). The simulations are conducted on a Windows deep-learning server with
2 Intel(R) E5−2603 1.7 GHz CPUs (Santa Clara, CA, USA), 8 Samsung DDR4 16 GB RAM
(Suwon, Republic of Korea) and 4 Nvidia GTX 1080Ti GPUs (Santa Clara, CA, USA).

The referred networks should be representative of different types. The candidate
in [42], combining Bi-LSTM, LSTM and a drop-out layer, shows good performance in
end-to-end nonlinear blind source separation, denoted as RNN in the description hereafter.
The classical Transformer network [43] is another good candidate to test the performance
and is denoted as Transformer. A recently published end-to-end U-net combining a CNN
and multi-head attention, but used in linear BSS for music separation, is also selected as a
referred network [47] and denoted as U-net. The total numbers of parameters used in the
different networks are calculated by the Python package fvcore and shown in Table 1.

Table 1. Number of parameters used in different networks.

Network Parameters

RNN 0.3 M
Transformer 24 K

U-net 3.4 M
RANN (1 layer) 1.1 M

Proposed RANN (2 layers) 2.1 M
RANN (3 layers) 3.2 M
RANN (4 layers) 4.2 M

The metrics of the separation accuracy consist of the MSE, the correlation coefficient ρ
used in [69] and the signal-to-distortion ratio (SDR). The lower the MSE or the greater the
ρ and SDR, the better the performance. The metrics are calculated as follows and s and y
represent the original signals and separated ones with length L:

MSE =
1
L

L

∑
i=1

(si − yi)
2 (8)

ρ =
∑L

i=1(si · yi)

∑L
i=1(|si| · |yi|)

(9)

SDR = 10 log10
∑L

i=1(si − yi)
2

∑L
i=1 s2

i
(10)

4. Results and Discussion

4.1. Metrics of Results

The metrics of the separation results are shown in Tables 2 and 3. U-net performs
the worst because it is designed for linear BSS and the nonlinear channel is not taken into
account. The proposed network performs better than the RNN and Transformer because
the RNN is successful in capturing local dependencies and the Transformer performs well
in acquiring global ones. The RNN performs much better than the Transformer and slightly
worse than the proposed network because the local dependencies are much stronger
than the global relation in the considered underwater acoustic channels, as expressed
in Equations (5) and (6). For the RANN with different layers of recurrent attention, the
network with two layers is the best candidate because it performs much better than those
with one layer, especially in line spectrum signal separation, and fewer parameters are
used than in those with more layers.
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Table 2. Separation results of different networks for ship-radiated noise.

Network MSE ρ SDR (dB)

RNN 0.007 0.817 4.495
Transformer 0.037 0.001 −2.947

U-net 0.053 0.006 −4.453
RANN (1 layer) 0.007 0.830 4.492

Proposed RANN (2 layers) 0.006 0.840 4.651
RANN (3 layers) 0.006 0.842 4.674
RANN (4 layers) 0.006 0.843 4.684

Table 3. Separation results of different networks for line spectrum signals.

Network MSE ρ SDR (dB)

RNN 0.035 0.929 8.621
Transformer 0.311 0.015 −0.842

U-net 0.504 −0.002 −2.939
RANN (1 layer) 0.020 0.967 11.003

Proposed RANN (2 layers) 0.014 0.981 12.699
RANN (3 layers) 0.013 0.987 12.850
RANN (4 layers) 0.012 0.992 12.922

4.2. Separated Waveforms

The waveforms of the signals separated by different networks are displayed. By
randomly selecting time segments, the original and separated ship-radiated noise from
various networks is as shown in Figures 5 and 6. In Figure 5, it can be seen that the
waveform separated by the proposed network (in pink line) is slightly nearer the original
waveform (in red line) than in those by the RNN (in blue line) and it performs much better
than any other candidates. Conclusions can be made that, for ship noise, the proposed
network separates them in with slightly higher accuracy than the RNN and is better than all
others. For the line spectrum signals in Figure 6, the waveform separated by the proposed
network (in pink line) shows the best performance with the least distortion from the original
waveform (in red line) and it performs much better than any other method, including the
RNN. In conclusion, the proposed network apparently works better than other candidates.

(a) Ship-radiated signal 1. (b) Ship-radiated signal 2.

(c) Line spectrum signal 1. (d) Line spectrum signal 2.

Figure 5. Fragment 1 of original and separated waveform, with the proposed network performing
the best.
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(a) Ship-radiated signal 1. (b) Ship-radiated signal 2.

(c) Line spectrum signal 1. (d) Line spectrum signal 2.

Figure 6. Fragment 2 of original and separated waveform, with the proposed network performing
the best.

5. Conclusions

In this paper, the softening effect of bubbles in water is considered in underwater
nonlinear blind ship-radiated noise separation, and an end-to-end recurrent attention neural
network is proposed combining the advantages of the RNN and Transformer. According
to the simulation results, high accuracy of separation is obtained by the proposal in terms
of the MSE, correlation coefficient and SDR, compared with other networks including the
RNN, Transformer and U-net, which are effective in other BSS scenes. It is found that the
proposed scheme performs better than other candidates obviously in line spectrum signal
separation and has a slight advantage over the RNN in separating the real ship noise. In
the future, networks with greater compatibility with the underwater acoustic channel can
be explored to obtain higher separation accuracy.

Author Contributions: Conceptualization, R.S. and X.F.; methodology, R.S., J.W. and H.E.; software,
R.S. and M.Z.; validation, R.S. and H.E.; formal analysis, R.S., X.F. and H.E.; investigation, R.S. and
X.F.; resources, R.S., M.Z. and H.S.; data curation, R.S. and H.S.; writing—original draft preparation,
R.S.; writing—review and editing, J.W., M.Z. and H.E.; visualization, R.S., J.W. and M.Z.; supervision,
H.S.; project administration, H.S.; funding acquisition, H.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Key Program of Marine Economy Development Special
Foundation of Department of Natural Resources of Guangdong Province (GDNRC [2023]24) and the
National Natural Science Foundation of China (NSFC) 62271426.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

357



Remote Sens. 2024, 16, 653 11 of 14

Abbreviations

The following abbreviations are used in this paper:

SAS Synthetic Aperture Sonar
BSS Blind Source Separation
NMF Non-Negative Matrix Factorization
FastICA Fast Independent Component Analysis
MIMO Multi-Input Multi-Output
OFDM Orthogonal Frequency Division Modulation
IoUT Internet of Underwater Things
CNN Convolutional Neural Network
RNN Recurrent Neural Network
RANN Recurrent Attention Neural Network
Bi-LSTM Bidirectional Long Short-Term Memory
PAM Passive Acoustic Monitoring
BMI Blind Mixture Identification
PCA Principal Component Analysis
PNL Post-Nonlinear
MSE Mean Square Error
SDR Signal-to-Distortion Ratio
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Abstract: Due to its low cost and privacy protection, Channel-State-Information (CSI)-based activity
detection has gained interest recently. However, to achieve high accuracy, which is challenging in
practice, a significant number of training samples are required. To address the issues of the small
sample size and cross-scenario in neural network training, this paper proposes a WiFi human activity-
recognition system based on transfer learning using an antenna array: Wi-AR. First, the Intel5300
network card collects CSI signal measurements through an antenna array and processes them with a
low-pass filter to reduce noise. Then, a threshold-based sliding window method is applied to extract
the signal of independent activities, which is further transformed into time–frequency diagrams.
Finally, the produced diagrams are used as input to a pretrained ResNet18 to recognize human
activities. The proposed Wi-AR was evaluated using a dataset collected in three different room
layouts. The testing results showed that the suggested Wi-AR recognizes human activities with
a consistent accuracy of about 94%, outperforming the other conventional convolutional neural
network approach.

Keywords: activity recognition; WiFi sensing; transfer learning; CSI; ResNet18

1. Introduction

A variety of scenarios have drawn intense attention to human activity recognition
(HAR), including health monitoring [1], smart homes [2], and fall detection [3]. In general,
traditional HAR systems are based on wearable devices [4–6] or cameras [7,8]. However, in
camera-based systems, users run the risk of compromising their privacy.

Due to the low cost and low equipment requirement of Received Signal Strength
Indication (RSSI) and Channel State Information (CSI), the RSSI and CSI from commer-
cial WiFi antenna array devices have become widely used in activity recognition. For
example, PAWS [9] and WiFinger [10] are RSSI-based [11] methods, whose recognition
accuracy is relatively low due to the limited perception performance of the RSSI. WiFall [12],
CARM [13], and TensorBeat [14] are CSI-based methods that have higher accuracy and data
resolution than the RSSI-based methods. The CSI-based works have been used widely in
WiFi sensing, such as gestures [15], gait [16], and breath rate [17], which is also considered
in the activity-recognition model proposed in this paper.

Due to the ubiquity of WiFi signals, CSI-based activity recognition utilizes only the
wireless communication function and does not require any physical sensors, which pro-
vides a great improvement in the security and protection performance of privacy. CSI-based

Remote Sens. 2024, 16, 845. https://doi.org/10.3390/rs16050845 https://www.mdpi.com/journal/remotesensing362



Remote Sens. 2024, 16, 845

activity-recognition schemes are often composed of four steps, i.e., data processing, ac-
tivity classification, feature extraction, and activity detection [12,18]. The corresponding
works use primitive signal features, which carry much information caused by human
activity and the environment changing with different layouts. At the same time, the CSI
extracted by the antenna array is affected by environmental changes, which results in
different impacts on the wireless link by human behavior in different scenarios, shown in
Figure 1, where two people are performing walking and squatting in two different rooms.
It is called the cross-scene problem. The cross-scene problem refers to the ability of the
model to generalize across different environments or scenarios and to handle the transition
from one scenario to another, which also means that the system needs to be adaptable
to recognize activities in multiple scenarios. The multipath channel caused by a specific
activity varies with changing environment deployment in different scenes [19,20]. Cur-
rent works have applied machine learning to solve this problem [21–24]. A hybrid image
dataset (ADORESet) has been proposed, which combines real and synthetic images to
improve object recognition in robotics, bridging the gap between real and simulation
environments [25]. The possibility of connecting object visual recognition with physical
attributes such as weight and center of gravity has been explored to improve object ma-
nipulation performance via deep neural networks [26]. However, much of this work relies
on many training samples to improve accuracy, which is unrealistic when collecting data
in reality. The experimental environments are all single scenes, which cannot verify the
generalization ability of the models. Therefore, more flexible methods need to be developed
for CSI-based human activity recognition with small samples and across scenes.

  T
  T

Figure 1. Cross-scene activity recognition.

Addressing the problem of recognizing human activity in cross-scenario and small
sample environments, this paper proposes a transfer-learning-based activity-recognition
system using an antenna array: Wi-AR. The proposed structure uses the pretrained network
to reduce the system’s computational complexity instead of training it from scratch [27],
which avoids the problem of overfitting. In the method we propose, the original CSI
data collected through the antenna array are first processed by a low-pass filter for noise
reduction. The purpose of the threshold-based sliding window technique is to determine
the beginning and conclusion of activity in a protracted signal. We can then extract the
valid segment of activity from the CSI data. Time–frequency diagrams are then created by
applying the short-time Fourier transform (STFT) on the four segmented datasets. Finally,
the time–frequency diagrams are fed into the pretrained ResNet18 for identification and
classification. Based on the simulation results, it is possible to reach 94.2% precision with
the proposed Wi-AR system, which is superior to other convolutional neural network
(CNN) models. This paper contributes the following:
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(1) This paper proposes a low-cost, non-intrusive human activity-recognition system
called Wi-AR, which uses antenna arrays to detect WiFi signals without the need for
any devices.

(2) An activity feature extraction algorithm is proposed to perform the feature segmen-
tation of different activities to detect start and end moments in noisy environments.
Using a threshold-based sliding window approach, activity periods can be extracted
from CSI data more efficiently.

(3) The transfer learning strategy employs the fine-tuning of the CNN for training small
samples in a changing environment, which improves the accuracy and robustness of
activity recognition and avoids overfitting during the training process.

This paper’s remaining sections are arranged as follows: Section 2 presents the pro-
posed scheme and the preliminaries. The data collection and preprocessing are investigated
in Section 3. In Section 4, the activity-recognition model is proposed. Section 5 shows the
experimental validation results, and the last section concludes the paper.

2. Proposed Scheme and Preliminaries

2.1. Proposed Scheme

Wi-AR uses WiFi devices to recognize human movement without the need for a device.
As shown in Figure 2, CSI is collected and then processed to reduce the noise. There
are four steps in Wi-AR, among which two steps are essential, i.e., activity segmentation
and activity recognition. More specifically, the whole Wi-AR system framework can be
concluded as follows:

CSI Collection: Wi-AR system collects CSI by Intel 5300 network interface card and
WiFi devices.

Data Preprocessing: In terms of amplitude information, the Butterworth filter is chosen
to reduce the noise.

Activity Segmentation: Utilizing the processed CSI series, Wi-AR divides the whole
CSI series into four segments, which represent four different activities. To determine the
beginning and conclusion of each action, Wi-AR uses a sliding window technique based
on thresholds.

Activity Recognition: The time–frequency diagram generated by STFT is used for
classification. For activity recognition, Wi-AR uses a deep convolutional neural network
that has been trained using ResNet18.

2.2. Preliminary

(1) Channel State Information: The proposed Wi-AR exploits commercial WiFi devices
to obtain CSI. In 802.11n, each multiple-input multiple-output (MIMO) link comprising
multiple subcarriers uses orthogonal frequency division multiplexing (OFDM) technology.
Each link has a unique channel frequency response caused by the CSI. Due to the 802.11n
protocol, the WiFi network has 56 OFDM subcarriers in a 20 MHz band. Using the de-
velopment tools of the Intel5300 network interface card [28], we can obtain the CSI from
30 subcarriers of the antenna array. Let the number of transmitter and reception antennae
be denoted by Nt and Nr. If Xi denotes the transmit signal vector of each packet i and
Yi denotes the receive signal vector of each packet i, the received signal of the network
interface card can be represented as:

Yi = HiXi + Ni, i ∈ [1, N] (1)

where Ni is the white Gaussian noise vector, Hi is the CSI channel matrix, and N is the
total number of received packets. Consequently, for every communication link, the total
30 subcarriers can be obtained, H=[H1, H2 . . . H30] is an expression for the CSI channel
matrix, and the total NT × NR × 30 CSI values are finally obtained. The CSI value for each
subcarrier, including amplitude and phase information, is denoted by Hi in Equation (1)
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and can be expressed as Hi = ‖Hi‖ej(2π fi+θi), where the magnitude frequency and phase
of the i-th subcarrier are represented by ‖Hi‖, fi, and θi.

::

.......

Figure 2. System overview.
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(2) Reflection of Activity on CSI: In a WiFi system, the CSI is sensitive to environmental
changes, and thus, it can be used to describe the channel frequency response (CFR). Assume
H( f , t) characterizes the CFR. It can be described as follows:

H( f , t) =
K

∑
k=1

αk(t)e−j2π f τk(t), (2)

where e−j2π f τk(t) is the phase difference given by carrier frequency shift, αk(t) is the channel
attenuation, and K is the total of the multipath numbers. Human activity can impact
the WiFi signal on many pathways between the WiFi transmitter and the WiFi receiver.
Let λ and d(t) represent the signal length and the change in the reflection path length,
respectively, to better explain the link between human activity and the variations in the

WiFi signal. Given that fD = − 1
λ
· d

dt
d(t) is the frequency shift, we obtain:

H( f , t) = e−2πΔ f t(Hs( f ) + ∑
k∈pd

αk(t)e
j2π
∫ t
−∞ f Dk(u)du), (3)

where Pd denotes the dynamic pathways, Hs( f ) represents the total CFR of the static paths,
and Δ f is the carrier frequency offset (CFO). Preprocessing can be used to filter out the
high-frequency components in static response, as the CFR power fluctuates mostly due to
human activity. Because of multipath effects, the value of CFR fluctuates with dynamic
components, which may be used to detect human activity. Based on the Friis free space
propagation equation [29], as illustrated in Figure 3, the power of receiver is defined as:

Pd =
ptGtGrλ2

(4π)2(d + 4h + Δ)2 , (4)

where d is the distance between the transceiver pair and λ is the signal wavelength. The
WiFi transmitter and reception powers are denoted by the variables Pt and Pr, respectively.
The transmitter and receiver gains are Gt and Gr, while the vertical distance is indicated by
h. The reflection path’s length is Δ. The receiving power varies with the distance between
the transceiver pair, as shown by Equation (4). As a result, the shift in CSI may be used to
identify human activities.

Figure 3. WiFi signal reflection scenario.
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3. Data Collection and Preprocessing

3.1. CSI Collection and Denoising

The proposed Wi-AR collects the CSI with Nt transmitting antennae, Nr receiving
antennae, and 30 CSI subcarriers reported by Intel5300 network interface card, and it
can obtain 30× Nt × Nr CSI streams for all communication links. First, a Butterworth
low-pass filter is used to reduce noise and remove the high frequency. In our experiments,
we designed the Butterworth filter as a low-pass filter, in which case the noise is usually
considered to be a high-frequency signal, while the human activity signal that we wish to
preserve is a low-frequency signal. Specifically, the frequency response of the Butterworth
filter is smooth without abrupt jumps, which gives it an advantage in processing human
activity signals. Its main advantage is that it has the flattest frequency response within the
pass bandwidth, which means that it processes all frequencies consistently within this range.
The original CSI stream and the denoised CSI stream are depicted in Figures 4a and 4b,
respectively. It can be observed that CSI generated by human activity is covered by noise.
Since the Butterworth filter can maximize the passband flatness of the filter and reduce the
high-frequency noise, it is exploited before activity segmentation. The expression for the
Butterworth low-pass filter is

|H(ω)|2 =
1

1 + (
ω

ωc
)2n

=
1

1 + ε2(
ω

ωp
)2n

, (5)

where the filter order is denoted by n, the cut-off frequency is ωc, the passband edge
frequency is ωp, and the value of |H(ω)|2 at the passband edge is 1 + ε2.

Figure 4. CSI signal preprocessing. (a) The original CSI signal. (b) The low-pass filtering signal.
(c) The first-order difference signal.

While the high-frequency noise can be successfully reduced by the signal following
the Butterworth low-pass filter, it cannot reflect the characteristic change in the signal from
the waveform. To fully reflect the amplitude information of the low-pass filtering signal, it
is necessary to process the first-order difference of the signal. Figure 4b,c represents the
filtered CSI signal and the first-order difference CSI signal, respectively. It can be seen that
the signal after the first-order difference can reflect the signal characteristics of the four
behaviors, providing favorable conditions for the activity segmentation. The definition
of the first-order difference can be expressed as y(m) = x(m) − x(m − 1), where x(m)
represents the CSI value corresponding to the m-th sample index.

3.2. Activity Segmentation Based on Domain Adaptation

The purpose of activity segmentation is to truncate the start and end moments of
human activity from a long signal to extract the complete signal containing the whole
behavior. In this paper, to improve the robustness of the segmentation algorithm according
to different room layouts, a threshold-based sliding window method is adopted, shown
in Algorithm 1. First, principal component analysis (PCA) is used to extract features,
and then several components of PCA are chosen to calculate variance. The first PCA
component is not used as it contains very little useful information [13]. Second, the moving
variance of the total of the aforementioned primary components is computed using a
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sliding window. PCA can transform high-dimensional data into low-dimensional data
while retaining as much variation information as possible from the original data. This
allows us to reduce computational complexity while still retaining the main features of the
data. At the same time, PCA can effectively remove noise by retaining the main components
of the data. Moving variance can adapt to changes in the data in real time, and due to the
adjustability of the window size, this makes it very flexible when dealing with different
datasets. The variance of PCA components is shown in Figure 5a. Moving variance
depicts the difference of packets reflected by the activity. The variance of PCA is defined
as follows:

σ2
i =

∑m
1 (xi+j−1 − x̄)2)

m
, (i = 1, 2, . . . , n−m) (6)

where x̄ is the mean value of samples and m represents step size. Then, the median of
the variance is calculated by the sliding window, which also reflects the changing trend.
The threshold is calculated according to the data in the priority stationary environment.
In general, One-tenth of the maximum value of the data at static time is used as the stan-
dard. Large threshold standards are chosen to avoid the effects of static mutations, and
compensation needs to be made before the beginning and end of the behavior. For this
purpose, the compensation number is set to half of the sampling rate, i.e., 100 sampling
points. Therefore, the real start and the end are sta− 100 and f in + 100. In this way, we
finally obtain the result of activity segmentation in the original CSI amplitude, shown in
Figure 5b. The figure illustrates that the green dotted line and the red dotted line, respec-
tively, represent the beginning and the end of the activity, and the segmented signal contains
complete activities. To be suitable for different scenes, different thresholds are selected. The
activity extraction results in a time–frequency domain are shown in Figure 5c. The relevant
content of the time–frequency domain diagram will be introduced in Section 3.3.

Figure 5. Activity segmentation. (a) The variance of principal component sum. (b) Activity segmen-
tation on original CSI. (c) Time–frequency feature segmentation diagram.

Algorithm 1 Activity segmentation algorithm.
input: The amplitude α( f , t);
space The length of variance window and stride w1, s1;
space The length of the median window w2, s2;
space The Minimum interval between two actions;
space The variation between the maximum and
space minimum values of the stationary environment;
output: The start and finish time index sta, f in;
1: [ ,score] = pca(α)
2: pca(a) = score(:, 2) + score(; , 3) + score(:, 4)
3: n = 1;
4: for i = 1 : w1 : length(pcadata)− w1 do
5: pcavar(n) = var(pcadata(i : i− 1 + w1));
6: n = n + 1;
7:end
8:sta = [], f in = [];
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Algorithm 1 Cont.
9:n = 1;
10:for ii = 1 : s2 : length(pcavar)− s2 do
11: index(n) = median(pcavar(ii : ii + s2));
12: temp = 1 + (ii− 1)× w1;
13: if [length(sta) > lenghth( f in)]and

[index(n) > threshold] then
14: sta = [sta, temp]
15: if length(sta) > length( f in)and

index(n) < threshold then
16: if temp− sta(end) >= minint then
17: f in = [ f in, temp];
18: n = n + 1
19: end
20: end
21: end
22:end for
23: f in = f in + 100;
24:sta = sta− 100;

3.3. STFT Transform

Wi-AR converts the waveforms to time–frequency diagrams using the STFT to ex-
tract the signal’s combined time–frequency properties. Considering the trade-off of the
frequency-time resolution, Wi-AR sets the sliding window step size of 256 samples in
this paper.

4. Activity Recognition Model

The proposed Wi-AR adopts the ResNet18 trained by ImageNet as a classification
network combined with transfer learning. To avoid losing the source weights, the classifier
is first trained using the initial parameters to train all the network’s weights at a low
learning rate. Then, the last fully connected layer is modified to suit the target dataset.
More specifically, the learned features and weights in the pretraining process are transferred
to the recognition network of human activity. After that, the time-frequency diagrams of
the CSI are input into the pretrained ResNet18 to train the recognition model. In Figure 6,
the layer with a complete connection number is finally substituted with the categories of
human activity.

Figure 6. Model flow chart.
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4.1. ResNet18

In deep learning, the complexity of traditional CNN increases with layers. It is sug-
gested to use a deep residual network (ResNet) to address this situation [30]. Compared
with traditional CNN, ResNet is easier to train and has a faster convergence since the
whole model only needs to pay attention to the difference between input and output.
Moreover, the increase in depth does not increase the amount of computation but increases
the accuracy and the efficiency of network training. ResNet combines a deep convolu-
tional neural network with a specially designed residual structure, which can achieve an
intense network [31]. To obtain the deep features in the image, which can have a better
characterization of the human activity, and considering the depth and calculation of the
network, the ResNet18 is finally chosen as the activity classification model, which includes
17 convolutional layers and one full connection layer. The learning process is simplified
because ResNet mainly learns residual rather than the complete output. The convolution
operation computation is described as

XL
j = f ( ∑

i∈Mj

XL
i × KL

i,j + bL
j ), (7)

where Mj is the input feature map, L denotes the number of layers in the neural network,
and KL

i,j suggests the convolution kernel. The activation function is f , and the unique offset
b is output for each layer of the feature graph.

To extract more features, the number of convolutional layers increases. However, with
an increasing number of convolutional layers, there is a risk of gradient dispersion and
gradient explosion. The residual unit in ResNet18 can effectively solve the above problem.
The core idea is to divide network output into two parts: identity mapping and residual
mapping. The definition of the residual unit is

Xk+1 = f (F(Xk, Wk) + h(Xk)), (8)

where Xk and Xk + 1 stand for the input and output of the k-th residual unit, respectively.
F(Xk, Wk) is the residual mapping that must be learned. The activation function is denoted
by f and the convolution kernel by W. Figure 7a displays the CNN learning block with
less stacked non-linear layers through a direct mapping x −→ y representing F(x) and x as
stacked non-linear layers and the identity function, respectively. Figure 7b shows the iden-
tity mapping through the residual function F(x), where y = F(x) + x, as proposed in [32].

Figure 7. (a) Direct mapping in plain CNN (b) Identity mapping in ResNet.

In ResNet18, both the max-pooling and the average-pooling techniques are used.
Reducing training parameters in the network is the aim of the max-pooling layer, which
comes after the convolutional layer [33]. The last completely linked layer, which consists of
four nodes symbolizing four distinct activities, is added to receive the output of the human
activity. Figure 8 illustrates this process.
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Figure 8. ResNet18 network structure.

4.2. Transfer Learning

One common deep learning technique that is frequently applied to tiny training
samples is transfer learning. To accomplish the migration, model-based transfer learning is
used [34], which looks for pretrained parameter weights that the network’s bottom layer
may share. After obtaining the pretrained model with the ImageNet dataset, we replace the
random initialization model parameters with the new parameters except for the last fully
connected layer. Since each CNN in the ImageNet dataset is trained using 1000 classes,
and our activities include four classes, fine-tuning is used to make sure that the network
weights will not change too quickly and will fit our data without altering the original model.
Therefore, a small learning rate is set to avoid gradient vanishing.

5. Experimental Evaluation

To show the model’s capacity for generalization, the performance of the suggested
Wi-AR is first assessed on a dataset that the user has collected, and then it is tested on
additional datasets. We also contrast our model’s accuracy with that of other CNN models
in this section.

5.1. Experiment Setup

In the experiment, we collected CSI from various rooms using a computer equipped
with an Intel 5300 network interface card and a commercial WiFi router. The router is
equipped with three antennae, and the reason for using three antennae is mainly related
to the working principle of the MIMO (Multiple-Input Multiple-Output) system. In a
MIMO system, multiple antennae can send and receive multiple streams of data at the same
time, therefore increasing the transmission rate and reliability of the system. Specifically,
three antennae can form three independent antenna links, each of which can receive an
independent data stream. These three links form 90 subcarriers, i.e., for each timestamped
data, they are composed of 90 subcarriers. In this way, by analyzing the CSI of each
subcarrier, we can obtain more detailed and accurate information about the channel state
and thus better understand and utilize the wireless channel. In addition, multiple antennae
can provide more spatial diversity and spatial multiplexing, thus improving the capacity
and anti-interference capability of the system. Spatial diversity improves the reception
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quality of the signal, while spatial multiplexing increases the system’s data transmission
rate. The router is equipped with three antennae, forming an antenna array. The room is
furnished with tables and chairs, as shown in Figure 9. The data gathered in the meeting
and rest areas serve as the training set for the experiment, while the data gathered in three
separate rooms serves as the testing set. A total of 120 pieces of data were randomly chosen
from the three scenarios, and 240 samples were chosen from each of the first two scenarios
to represent the model’s generalization. As a result, there are 480 samples in the training set
and 120 samples in the testing set. Three antennae are installed on the WiFi transmitter’s
receiving side and two on the transmitter side. The sampling rate is 200 packets/s, and
30 subcarriers from each transceiver pair are obtained. At the same time, three volunteers
with different body shapes are asked to perform four kinds of activities. Four behaviors
contain two coarse-grained activities (jumping and walking) and two relatively fine-grained
activities (squatting and leg lifting). The volunteers are asked to perform each activity one
by one and keep them for five seconds. Each task has a total of 150 samples split into a test
set and a training set. If the generated time–frequency diagrams are not normalized, the
ranges of feature value distribution will vary differently. To avoid such a problem, Wi-AR
first normalizes all time–frequency diagrams and further resizes them to suit the pretrained
model. Lastly, the amount of human activity changes the final completely connected layer.

Figure 9. Different room layout for data collection. (a) The rest-room layout. (b) The meeting room
layout. (c) The class-room layout.

Before the experiment, several initial parameters need to be defined, which are listed
in Table 1. The batch size is set to 16, and the iteration value is 30. In this research, a reduced
starting learning rate of 0.001 is chosen to prevent overfitting.

Table 1. Training parameters.

Parameter Value

Image size 224 × 224

Epoch 30

Batch size 16

Initial learning rate 0.001

Lr-function StepLR

5.2. Experimental Validation

The proposed Wi-AR produces time-frequency diagrams by STFT. Figure 10 displays
the time–frequency diagrams for four different types of activities.

The scene’s computers are equipped with an NVIDIA GeForce GTX 1660S GPU, an
Intel 10500 CPU, and 32 GB of RAM. Then, use the cross-entropy loss function. If the
predicted value is the same as the true value, it approaches 0. If the predicted value
is different from the true value, the cross-entropy loss function will become very large.
Training and testing curves are, respectively, recorded in Figures 11 and 12, which repre-
sent the value changes in accuracy and loss in the training and testing process. Both can
converge after 20 iterations. In addition, a detailed evaluation of the classification result
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is conducted using three types of metrics. The metrics are defined as follows: (1) Pre-

cision is defined as
TP

TP + FP
, where the ratios of correctly marked activities (TP) and

erroneously marked activities (FP) are expressed. (2)
TP

TP + FN
is the definition of recall,

where FN represents erroneously promoted negative samples. (3) The formula for the

F1-score (F1) is F1 =
2× PR× RE

PR + RE
. Table 2 tabulates the testing data and shows the high

precision and F1-score. Figure 13a shows the confusion matrix whose rows represent the
predicted activity and columns refer to the actual activity. We find that the accuracy of
leg lifting and squatting can achieve 100% due to their obvious features, and the aver-
age accuracy is 94.2%. Walking and jumping have similar movements, so the accuracy
of recognition is not as good as it is for the other two activities. The dispersion of var-
ious activity data is displayed using the ResNet18 model under T-SNE visualization in
Figure 13b. It can be intuitively seen that the model can distinguish different activities well.

Figure 10. The time-frequency diagrams of four kinds of activities. (a) Jumping. (b) Walking.
(c) Squatting. (d) Leg lifting.

Figure 11. The training g accuracy and loss. (a) The accuracy of training. (b) The training accuracy
and loss.

Figure 12. The testing accuracy and loss. (a) The accuracy of testing. (b) The loss of testing.
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Table 2. Testing Results of the ResNet18.

Human Activity Precision Recall F1-Score

Jumping 0.90 0.87 0.93
Leg Lifting 1.00 0.97 0.98
Squatting 1.00 1.00 0.97
Walking 0.83 0.93 0.92

Figure 13. (a) The confusion matrix of human activity recognition. (b) T-SNE visualization after the
ResNet18 model for four kinds of activities.

To verify the generalization ability of the recognition model, the proposed Wi-AR is
also tested on the dataset collected by the team of Chunjing Xiao [35] for more evaluation.
The differences are that their sampling rate is 50 packets/s, and the WiFi router has only one
antenna. Ten different types of activities make up the dataset, five of which are fine-grained
and five of which are coarse-grained. The experiment is conducted using two relatively
fine-grained activities (hand swing and drawing O) and two coarse-grained activities
(running and squatting). The result of testing is tabulated in Table 3, from which we can
also see high accuracy, achieving more than 94% accuracy among each activity. And since
the drawing circle has unique movement characteristics, the recognition accuracy achieves
100% for the given dataset. As a result, the validation results show that the recognition
model has the capacity for generalization.

Table 3. Testing results of the ResNet18 on another dataset.

Human Activity Precision Recall F1-Score

Drawing O 1.00 1.00 1.00
Hand Swing 0.96 0.87 0.91

Running 0.94 0.97 0.95
Squatting 0.94 1.00 0.97

To compare the accuracy of the pretrained networks, we choose different CNN models,
such as Aexmet, VGG11, and ResNet34. Meanwhile, some classical machine learning
algorithms, such as decision trees, random forests, SVMs, etc., are also used as comparative
tests. The results of the CNN classifiers in terms of accuracy and time consumed are
shown in Table 4 to show the performance of the different CNN networks in compari-
son with the model in this paper. The accuracy of classical machine learning algorithms
is shown in Table 5. The experimental results show that the recognition accuracy of
classical machine learning algorithms is generally low because the action features car-
ried by CSI signals are significantly reduced after going through the wall, and ordinary
machine learning algorithms cannot accurately classify them, and more complex deep
networks are needed to extract their features. Among the CNN classifiers, the accuracy of
ResNet18 is 0.8% higher than that of VGG19, but the time consumed is about 25% of that of
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VGG19. In addition, ResNet18 shows higher accuracy and less time consumption than other
ResNet models.

Table 4. The accuracy of each CNN classification.

CNN Models Accuracy Rate Time Consumption

AlexNet 85.00% 4 m 22 s

Vgg11 91.67% 7 m 33 s

Vgg13 92.50% 9 m 16 s

Vgg16 92.67% 10 m 45 s

Vgg19 93.33% 13 m 10 s

ResNet18 94.17% 3 m 29 s

ResNet34 90.00% 5 m 23 s

ResNet50 84.17% 6 m 43 s

ResNet101 86.67% 8 m 17 s

ResNet152 92.50% 10 m 23 s

Table 5. Accuracy of classical machine learning algorithms

Machine Learning Algorithms Accuracy Rate

Naive Bayesian 44%

KNN 58%

Decision tree 65%

SVM 74%

Proposed 94%

Moreover, MF-ABLSTM [36] leverages attention-based long short-term memory neural
network and time–frequency domain features for small CSI sample-based activity recog-
nition, achieving 92% with 490 training and testing samples after 200 iterations. Due to
the proposed method being able to train very deep neural networks, it avoids the problem
of gradient vanishing and improves the model’s expressive power and performance. It
uses residual connections to preserve the original features, making the learning of the
network smoother and more stable, further improving the accuracy and generalization
ability of the model. During training, gradient vanishing and exploding problems can
be avoided, accelerating network convergence. Therefore, Wi-AR achieves 94.2% with
600 samples after 30 iterations. The results of the comparison are, respectively, shown in
Figure 14a,b, which demonstrate that our proposed Wi-AR scheme achieves higher accuracy
with fewer iterations for small sample-based activity recognition.

Figure 14. (a) The comparison of activity-recognition accuracy. (b) The comparison of training iterations.
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6. Conclusions

In response to the small sample size and cross-scenario issues in activity recognition,
this paper proposes the Wi-AR human activity-recognition system, which is based on
channel state data and antenna arrays. Wi-AR collects CSI data from an array of antennae
for a sequence of four kinds of activities, preprocesses the collected CSI signal, transforms
it into time–frequency diagrams, and marks samples for supervised machine learning. The
experimental results show that this method based on transfer learning can achieve 94%
accuracy with a small number of samples. We can see that Wi-AR is relevant in single-
person multi-scene environments. In future work, we will consider more realistic multi-user
human activity-recognition scene recognition. Meanwhile, it is also a challenging problem
to do effective differentiation for some similar actions. For the problem of difficult label
annotation of sensing data, semi-supervised learning is also an effective solution to deal
with this difficulty, which is also the focus of our future work.
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Abstract: This paper introduces a model-independent passive source localization method, employing
asynchronous distributed hydrophones in shallow water. Based on the frequency invariability of the
acoustic field, assuming the correct source range information, the warped spectra of received signals
at distributed hydrophones exhibit identical shapes. Subsequently, a cost function is formulated
to mutually align the warped spectra, with its maximum point indicating the source location. The
proposed method can locate the source in two-dimensional horizontal space without requiring either
angle- or time-synchronization information. Numerical simulations are conducted to demonstrate
the performance of the proposed method.

Keywords: asynchronous distributed hydrophones; shallow water; passive source localization;
frequency invariability of acoustic field

1. Introduction

In shallow water, passive source localization remains a topic of ongoing interest
and concern for many researchers. One classical method for addressing this issue is
matched field processing (MFP) [1], where the received acoustic field is matched with
model-calculated replicas to determine the source location based on the best matching
point. However, despite its effectiveness, the performance of MFP significantly degrades if
the environment model used for replica calculation is mismatched. Additionally, this class
of methods requires a large-aperture array comparable to the water depth to adequately
sample the acoustic field, thereby limiting its practical application. These limitations of
MFP have spurred the development of model-independent localization methods.

In shallow water, normal mode theory is commonly employed to explain low-frequency
sound propagation, where the received field can be described as the summation of a series of
normal modes [2]. The interference characteristics among these modes contain information
about the ocean environment and the source location. As a result, the source can be located
by exploiting the interference characteristics among the modes. The methods of source
localization in shallow water could be broadly categorized into two groups: (1) waveguide
invariant [3] or array invariant-based methods [4–6] and (2) warping transform-based meth-
ods [7–9]. The first category estimates the source range based on the relationship between
the source range and the value of the waveguide/array invariant, with the waveguide
invariant obtained as a priori environmental information. The second category, warping
transform-based methods, utilize the invariability of the characteristic frequency of the
normal modes and determines the source range by matching the measured and standard
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warped spectra. In this localization process, the standard warped spectrum must be ob-
tained in advance by using a guide source at a known range. Both types of methods can
estimate the source range without requiring sound propagation modeling. However, the
majority of existing methods are designed for a single receiving platform and focus on
locating the source in range space. Additionally, some a priori information (e.g., the value
of waveguide invariant or a guide source) is required. However, a two-dimensional (2D) lo-
cation (i.e., both x and y coordinates) is unquestionably more useful than range information
in practical applications such as attack, communication, and monitoring. To achieve 2D
localization, an additional array with a horizontal aperture can be used to determine the
azimuthal angle of the source. Another effective approach is to observe the source using
spatially distributed hydrophones. In this case, information about the mode interference
characteristics is sufficient for 2D localization.

Passive localization using distributed sensors has been extensively studied. A tra-
ditional methodology for this task involves combining the target’s direction of arrival
(DOA) measured by the distributed sensors [10–16]. The cost function can be constructed
using these measured bearings to derive the source position. Weighted least-squares (WLS)
methods [10–12] and maximum likelihood methods [13] are commonly used to solve this
problem. Another common approach for this task involves measuring the time differences
of the sensors [17–22]; then, the source position can be solved by intersecting a set of hyper-
bolic curves [17]. However, most of the algorithms mentioned above are derived under
free-field and plane-wave assumptions, which may lead to performance degradation in
practical shallow water environments. Specifically, the measured angle of arrival (AOA) for
a horizontal line array could deviate from the true counterpart due to boundary reflections,
rendering AOA-based methods biased or invalid. For the time difference of arrival-based
algorithms, the primary challenge is clock synchronization among the distributed sensors.
Additionally, performance degradation can occur due to time-delay estimation errors and
sound speed mismatches in practical applications. In shallow water, propagation time
differences between individual modes can be utilized to locate broadband sources using
distributed hydrophones [23,24]. Benefitting from the stability of the acoustic field, this
kind of algorithm can locate sources without either angle or time synchronization infor-
mation. However, this algorithm requires separating propagation modes and determining
their arrival times, which discourages its practical application.

This paper introduces a passive model-independent source localization method based
on several spatially distributed hydrophones in shallow water. The proposed method
determines the 2D source location based on the invariability of the characteristic frequency
of the normal modes, thus neither the angle nor time synchronization information is
required. Compared to the method in Ref. [23], the proposed method introduces the
warping transform of the autocorrelation function (ACF) and directly utilizes the warped
spectra to construct the cost function, simplifying its implementation in practice and
extending its applicability to non-impulse sources. Specifically, for an assumed source
location, the method applies the warping transform to the ACF of the received signal
of each hydrophone and calculates the cost function by mutually matching the warped
spectra from different hydrophones. Due to the invariability of the characteristic frequency
of the acoustic field, the warped spectra from different hydrophones will have the same
shape if the correct source location is assumed, enabling the maximum point of the cost
function to indicate the source location. The main innovations of the method in this paper
are as follows: (1) The proposed method is able to achieve source localization by exploiting
the acoustic field feature without either the angle- or time-synchronization information.
(2) The proposed method works on the signal autocorrelation rather than on the raw
signal. Numerical simulations are conducted in a shallow water environment to analyze
the performance of the proposed method. The results can be summarized as the following
two points. Firstly, the proposed method performs as expected when the received field
is dominated by the reflected modes but may be seriously degraded when the refracted
modes dominate the received field. Secondly, the source in the detection area (i.e., the area

379



Remote Sens. 2024, 16, 982

enclosed by the connection line of the hydrophones) can be located unambiguously when
the hydrophones are deployed as a regular polygon.

The remainder of this paper is organized as follows: The basic theories are presented
in Section 2. In Section 3, the principle and the localization procedures are described.
Numerical simulations and corresponding performance analysis are presented in Section 4,
followed by a short conclusion in Section 5.

2. Basic Theory

2.1. Application Scene and Normal Mode Theory

The application scene is illustrated in Figure 1, where M distributed hydrophones are
deployed at a common depth to record the signal radiated from a remote broadband source.
The source is located at ps = [xs, ys, zs]T. The emitting signal of the source is denoted as s(t)
in the time domain and S(f ) in the frequency domain. One assumes that the location of
the mth hydrophone is pm = [xm, ym, zr]T, in which zr (positive downwards) denotes the
common receiver depth. The received signal of the mth hydrophone can be denoted as xm(t)
in the time domain and pm(f ) in the frequency domain. What we need to do is to estimate
[xs, ys]T based on the observed acoustic field xm(t) [or pm(f )], m = 1, 2, . . ., M, without either
the angle- or time-synchronization information.

rsMrsm

rs
rs

x
z

y

m

M

Figure 1. Application scene.

According to normal mode theory, the received field in shallow water can be expressed
by a superposition of a series of normal modes. Under the specific boundary conditions,
the eigenvalue and the eigenfunction of the normal mode can be determined by solving
the wave equation. The received field pm(rsm, zm, f ) on the mth hydrophone in the range-
independent environment can be expressed as follows [2]:

pm(rsm, zr, f ) = S( f )
N
∑

n=1
Amn( f )ejkrn( f )rsm

= S( f ) je−jπ/4

ρ(zs)
√

8πrsm

N
∑

n=1
ψn(zs)ψn(zr)

ejkrn( f )rsm√
krn( f )

,
(1)
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where N denotes the number of the propagation modes, krn(f ) and ψn(z) denote the eigen-
value (horizontal wavenumber) and eigenfunction (mode depth function) of the nth mode,
respectively, and Amn(f ) is the mode amplitude.

Amn( f ) =
je−jπ/4

ρ(zs)
√

8πrsm

ψn(zs)ψn(zr)√
krn( f )

. (2)

The medium density around the source is denoted as ρ(zs), and rsm is the horizontal
range between the source and the mth hydrophone.

rsm =

√
(xs − xm)

2 + (ys − ym)
2. (3)

2.2. Warping Transform of the Autocorrelation Function

On the basis of the normal mode representation [illustrated in Equation (1)], the ACF
of the received field on the mth hydrophone can be shown as:

ξm(rsm, zr, t) =
∫ +∞
−∞ pm(rsm, zr, f )p∗m(rsm, zr, f )d f

=
∫ +∞
−∞ |S( f )|2

N
∑

n=1

N
∑

k=1
Amn( f )A∗mn( f )ej(krn( f )−krk( f ))rsm ej2π f td f

(4)

Equation (4) contains the self-interference terms (n = k) and the cross-interference
terms (n �= k). The unilateral ACF (referred to as ACF below) is introduced herein to
eliminate the useless self-interference terms [8], which is defined as:

ξ̃m(rsm, zr, t) =
∫ +∞
−∞ |S( f )|2

N
∑

n=1

N
∑

k>n
Amn( f )A∗mn( f )ej(krn( f )−krk( f ))rsm ej2π f (t−tm0)d f

=
L
∑

l=1
Bml

(
μl

t√
t2−t2

m0

)
tm0
√

μl√
2(t2−t2

m0)
3/4 ej2πμl

√
t2−t2

m0 ,
(5)

where
Bml( f ) = |S( f )|2 Amn( f )A∗mk( f )

μl =
√

v2
n − v2

k ,
(6)

In Equation (5), tm0 = rsm/c is the propagation time, c is the sound speed, vn is the
characteristic frequency of the nth mode, μl denotes the interference characteristic frequency
between the nth and kth mode, l = 0, 1, 2, . . . , L L = C2

N denotes the number of the possible
combinations, and the superscript * denotes the complex conjugation operation.

As seen in Equation (5), the time-dependent phase of the signal ACF is 2πμl

√
t2 − t2

m0.
Given a known source location, the warping transform in the time domain can be applied
to ξ̃m(rsm, zr, t), based on the resampling function.

hm(t) =
√

t2 + t2
m0. (7)

The output can be shown as:

(Whξ̃m)(t, rsm) =
L

∑
l=1

∣∣∣∣∂hm(t)
∂t

∣∣∣∣1/2

Bml

⎛⎝μl

√
t2 + t2

m0

t

⎞⎠ tm0
√

μl√
2t3/2

ej2πμl t. (8)

It is obviously shown in Equation (8) that the spectrum of the warped ACF (named as
FTWT spectrum) supplies a stationary monochromatic output with the intrinsic frequency
μl. Here, the interference characteristic frequency μl also bears the property of frequency
invariability [8].

As shown in Equation (7), source range is involved in the warping transform. Actually,
if the source range is correctly given, the obtained interference characteristic frequencies will

381



Remote Sens. 2024, 16, 982

only be determined by the environment and is independent of the source-receiver geometry.
On the contrary, with the wrong source range information, the obtained interference
characteristic frequencies will deviate from the standard values. Following the conclusions
in Ref. [8], if the true source range is rs, while one conducts the warping transform with an
assumed range ra, then the obtained FTWT spectrum will peak at the biased interference
characteristic frequencies as follows:

μal ≈
√

rs

ra
μl , (9)

where μl is the standard interference characteristic frequencies, which only relates to the
environment, and μal is the biased counterpart when using the incorrect source range in
Equation (7).

3. Proposed Localization Method

In the case that the source is detected by multiple spatially distributed hydrophones
simultaneously, its location can then be determined by mutually matching the FTWT spectra
from different hydrophones. Specifically, assuming a source location psa = [xsa, ysa]T (depth
coordinates of the source and sensors omitted for brevity), one can calculate its ranges to
the distributed hydrophones and then apply the warping transform to the ACF of each
hydrophone. If the assumed source location is correct, the characteristics of the obtained FTWT
spectra obtained from different hydrophones should be consistent, as all hydrophones can
extract standard interference characteristic frequencies determined solely by the environment.
Otherwise, if the assumed source location is incorrect, the abovementioned consistency will
be disrupted. In other words, the accuracy of an assumed source location can be assessed by
evaluating the consistency of the FTWT spectra from different hydrophones. The cost function
is constructed as:

F(psa) = exp

⎡⎣ M

∑
m=1

M

∑
n>m

∫
f FWm(psa, f )FWn(psa, f )d f√∫

f FWm(psa, f )d f
∫

f FWn(psa, f )d f

⎤⎦, (10)

where psa is the assumed source location, FWm(psa, f ) denotes the FTWT spectrum for the
mth hydrophone that can be calculated by applying Fourier/wavelet transform to the
corresponding warping output (Whξ̃m)(t, ‖psa − pm‖), and ||·|| is the Euclidean norm.

Overall, the proposed method can be summarized in the following seven steps:

(1) Deploy M hydrophones at a common depth to record the signal radiated by a broad-
band source. The location and received signal of the mth hydrophone are denoted as
pm = [xm, ym]T and xm(t), respectively;

(2) Calculate the unilateral ACF denoted as ξ̃m(t);
(3) Divide the area of interest into grid points, denoted as [xi, yj], i = 1, 2, . . ., Lx, j = 1, 2, . . .,

Ly, where Lx and Ly are the number of the grid on the x and y axes, respectively;
(4) Calculate the range between psa and pm for each grid point psa = [xi, yj]T

ram = ‖psa − pm‖
=
√
(xi − xm)

2 + (yj − ym)
2,

(11)

and apply the warping transform to ξ̃m(t) based on ram to obtain the warped ACF
(Whξ̃m)(t, ram). The resampling function of the warping is given as:

ham(t) =

√
t2 +

(
ram

ca

)2
, (12)

where ca is the sound speed used in the warping transform;
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(5) Apply the Fourier/wavelet transform to (Whξ̃m)(t, ram) to calculate the FTWT spec-
trum FWm (psa, f );

(6) Calculate the cost function Equation (10) based on the FTWT spectra obtained by all
M hydrophones;

(7) Conduct steps (4)–(6) for each scanning point to obtain the localization ambiguity
surface and determine the source location by the maximum point.

The diagram of the proposed method is shown in Figure 2.

m tξ

F psa

ram
m

psa xi yj

ram 

T T

m tξ

 

Figure 2. The diagram the proposed method.

4. Simulation Demonstration

4.1. Effectiveness Verification

This section conducts numerical simulations in shallow water to validate the proposed
method. A Pekeris waveguide, illustrated in Figure 3a, is considered in the simulation. The
water depth is H = 100 m with a constant sound speed c = 1500 m/s and a constant density
ρ1 = 1.0 g/cm3. The seabed is modeled as a soft half space. The density, sound speed, and
attenuation coefficient are ρ2 = 1.0 g/cm3, c2 = 1600 m/s, α = 0.14 dB/λ, respectively.
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(a) (b) 

Figure 3. Simulation Scene: (a) a Pekeris waveguide and (b) the top view of the source and dis-
tributed hydrophones.

The top view of the simulation scene is illustrated in Figure 3b. The source is lo-
cated at ps = [6, 10]T km. The four hydrophones are at p1 = [0, 0]T km, p2 = [13, 0]T km,
p3 = [0, 13]T km, and p4 = [13, 13]T km, respectively. Since the modal depth function varies
with the receiving depth, the method requires all hydrophones to be deployed at the same
depth. Both the source and the hydrophones are deployed at a depth of 20 m. The signal
emitted by the source is modeled as a linear frequency modulation (LFM) signal. The
duration and modulation band of the source signal are 3 s and [50, 150] Hz, respectively.
The received field on the hydrophones is calculated by the KRAKEN normal mode code [25]
with signal-to-noise (SNR) being set at 10 dB.

Figure 4 presents the normalized FTWT spectra from the distributed hydrophones
for the scenario described in Figure 3b. Figure 4a,b correspond to the cases where the
source location is correctly and incorrectly assumed, respectively. As can be seen, if the
source location is correctly assumed (i.e., Figure 4a), the FTWT spectra for the different
hydrophones shows the same shape. Otherwise, the consistency among the FTWT spectra
will be disrupted as shown in Figure 4b. The results in Figure 4 convincingly demonstrate
the feasibility of the proposed method.

Divide the area of interest (i.e., −10 km < x < 20 km, −10 km < y < 20 km) into grids
with a step of 0.4 km and calculate the ambiguity surface using the algorithm shown in
Figure 2. The sound speed used in the warping transform is ca = 1500 m/s. The obtained
localization ambiguity surface is shown in Figure 5, wherein the cost function is normalized
in decibels with a dynamic range of 10 dB. In Figure 5, the black asterisk donates the true
source location, and the yellow circles represent the locations of the hydrophones. As can
be seen, the ambiguity surface clearly peaks at the location of the source, demonstrating the
effectiveness of the proposed method. In this simulation example, the localization result is
[6.17, 10]T km with a localization error of 0.17 km. It is worth mentioning that the basic idea
of the method is to mutually match the warped ACF obtained by distributed hydrophones,
and the warping processing has nothing to do with the source depth. In other words, the
method proposed in this paper can estimate the two-dimensional position of the sound
source in the xoy plane when the source depth is unknown.
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(a) (b) 

Figure 4. Normalized FTWT spectra from distributed hydrophones. (a) With the correct source
location; (b) with an incorrect source location, i.e., psa = [5, 5]T km.

Figure 5. Localization ambiguity surface. The black asterisk and yellow circles indicate the true
source location and the location of the hydrophones, respectively. The black asterisk and yellow
circles indicate the true source location and the location of the hydrophones, respectively.

The result of the warping transform is closely related to the assumed sound speed,
i.e., a larger (or smaller) ca is equivalent to a smaller (or larger) assumed horizontal range
rsam, thus resulting in a larger (or smaller) interference characteristic frequency (as shown
in Equation (9)). Nevertheless, despite the influence of sound-speed mismatch on the result
of the FTWT spectrum, the relative positions of the FTWT spectrum peak among sensors
are independent of ca. Therefore, the proposed method still works as intended even if ca is
mismatched with the true sound speed. The simulation results shown in Figure 6 confirm
this speculation, where higher and lower sound speeds are used, respectively.
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(a) (b) 

Figure 6. Localization ambiguity surfaces with mismatched sound speed: (a) lower sound speed,
i.e., ca = 1480 m/s; (b) higher sound speed, i.e., ca = 1520 m/s. The black asterisk and yellow circles
indicate the true source location and the location of the hydrophones, respectively.

4.2. Performance Analysis

• Hydrophone Distribution

The hydrophone distribution is one of the important factors that affects the performance
of the method. In this section, the localization ambiguity under different distributions of
hydrophones will be analyzed through numerical simulations. According to the theoretical
analysis in Section 3, the cost function reaches its maximum when the search grid point is
identical to the source position (psa = ps). However, according to Equation (9), the cost function
will also reach its maximum (equivalent to psa = ps) if the following equation holds:

rs1

rsa1
=

rs2

rsa2
= · · · = rsM

rsaM
. (13)

Therefore, if there exists more than one point that satisfies Equation (13) in the area
of interest, the ambiguity surface will exhibit more than one peak, and the localization
result will become ambiguous. For example, if only two hydrophones are used, the points
satisfying Equation (13) form a circle characterized by a radius of R = QL/|1 − Q2|, where
Q is the distance ratio between the source and the two hydrophones, and L is the distance
between these two hydrophones. Thus, the proposed method becomes invalid when only
two hydrophones are used, as shown in Figure 7a. A fuzzy band emerges in the localization
ambiguity surface and the true source location cannot be identified.

When three hydrophones are deployed in a linear distribution, localization ambiguity
arises, similar to the problem of port and starboard ambiguity for the DOA estimation using a
linear array. The corresponding simulation result is shown in Figure 7b. As seen, a fuzzy source
symmetric to the true counterpart appears. Changing the distribution of the hydrophones to a
non-colinear arrangement allows unambiguous source localization, as shown in Figure 7c.
Therefore, in practical applications, colinear distribution of hydrophones should be avoided.
Finally, it is noteworthy that the colinear distribution can locate the source unambiguously
when and only when the source is also on the same line, as shown in Figure 7d. But the
performance of the method in this case is somewhat unsatisfying.
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Define the area enclosed by the hydrophones as the detection area for the nonlinear
distribution. The localization ambiguity of the proposed method can be numerically
analyzed based on Equation (13). Specifically, one can count the number of the points
(except ps) that satisfy Equation (13) in the detection area. The simulation results under
different numbers of the hydrophones are shown in Figure 8, wherein the hydrophones
are deployed through a regular M polygon. As seen with a M-polygon distribution, the
proposed method can provide an unambiguous localization in the detection area.

 
(a) (b) 

 
(c) (d) 

Figure 7. The localization results under different hydrophones distributions: (a) two hydrophones;
(b) three hydrophones with a colinear distribution; (c) three hydrophones with a non-colinear
distribution; (d) four hydrophones with a colinear distribution and the source is also at this line. The
black asterisk and yellow circles indicate the true source location and the location of the hydrophones,
respectively. The black asterisk and yellow circles indicate the true source location and the location of
the hydrophones, respectively.
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(a) (b) 

 
(c) (d) 

Figure 8. The theoretical localization ambiguity of the method in the detection area under different
number of hydrophones. (a–d) correspond to the cases where the number of the hydrophones is 3–6.
The color bar indicates the number of the fuzzy peaks (i.e., the number of the points (except ps) that
satisfy Equation (13)). The circles indicate the location of the hydrophones.

The above analysis leads to the conclusion that at least three sensors must be deployed to
support the proposed method. In the colinear distribution scenario, a fuzzy peak symmetric
to the true source will appear, except when the source is located on the line linking the
hydrophones. When the hydrophones are deployed with a regular M polygon, there is no
localization ambiguity in the detection area, i.e., the area enclosed by the hydrophones.

• Hydrophone Depth

The simulation environment in Section 4.1 is characterized by an isovelocity waveg-
uide, where the reflected modes dominate the received field. However, in the non-
isovelocity waveguide, the types of modes that dominate the received field depend on
the depths of both the source and receiver. Different types of modes present different
interference characteristics, which will affect the applicability of the proposed method. In
this section, we take a classical thermocline waveguide as an example to analyze the effect
of source and receiver depth on the performance of the proposed method.

The thermocline waveguide used in simulations is shown in Figure 9, which exhibits a
classical downward-refracting sound speed profile (SSP) with a mixed layer depth down to
30 m. The sound speed reduces linearly from 1520 m/s to 1480 m/s as the depth changes
from 30 m to 70 m. The sound speed, density, and the attenuation coefficient of the seabed
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are ρ2 = 1.0 g/cm3, c2 = 1600 m/s, and α = 0.14 dB/λ, respectively. Four different source–
receiver configurations (a)–(d) are displayed in Figure 9. Assuming the source location
is the same as the case in Figure 3b, the corresponding localization results are shown in
Figure 10, where Figure 10a–d correspond to the four cases in Figure 9, one by one. The
black asterisk and yellow circles indicate the true source location and the location of the
hydrophones, respectively.

 ρ2 = 
 α λ

   c  

 ρ = 1.0 3

H
  c

H
  c

H

Figure 9. The thermocline environment and different source-sensors depths configuration: (a) zs = 20 m,
zr = 20 m, (b) zs = 70 m, zr = 20 m, (c) zs = 20 m, zr = 70 m, and (d) zs = 70 m, zr = 70 m.

As shown in Figure 10, the proposed method works as expected in the following two
cases: (1) both the source and hydrophones are above the thermocline layer; (2) the source
is above (or below) the thermocline layer while the hydrophones are below (or above)
the thermocline layer. The proposed method becomes invalid if both the source and the
hydrophones are below the thermocline layer.

Normal mode theory could be used to account for these simulation results. The modes
distribution at 125 Hz for the waveguide in Figure 9 is depicted in Figure 11, which involves
(a) the modes depth function and (b) the relationship between phase and group slowness.
As can be seen in Figure 11, when both the source and hydrophones are deployed above
the thermocline layer, or the source is above (or below) the thermocline layer while the
hydrophones are below (or above) this layer, the received field is predominantly influenced
by the higher order modes (i.e., n ≥ 3). When both the source and hydrophones are below
the thermocline layer, the lower order (i.e., 1st and 2nd) modes dominate the field. The
higher order modes correspond to the reflected modes while the lower order modes are
the refracted modes. Following the conclusion in Ref. [26], the time warping function
shown in Equation (7) is exclusively associated with the reflected modes, rendering it
ineffective for the refracted modes. Therefore, the proposed method works well in the case
that the reflected modes dominate the received field (i.e., the source and/or hydrophones
are above the thermocline layer) and becomes invalid if the received field is dominated
by the refracted modes (i.e., both the source and hydrophones are below the thermocline
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layer). As a result, it is recommended to deploy the hydrophones above the thermocline
layer in the thermocline waveguide to improve the applicability of the proposed method.

 
(a) (b) 

 
(c) (d) 

Figure 10. The localization results with different source-sensors depths configurations under the
thermocline waveguide: (a) zs = 20 m, zr = 20 m, (b) zs = 70 m, zr = 20 m, (c) zs = 20 m, zr = 70 m, and
(d) zs = 70 m, zr = 70 m. The black asterisk and yellow circles indicate the true source location and the
location of the hydrophones, respectively. Due to the general principle of reciprocity, scene (c) has the
same result as (b).

Similar simulations have been conducted to analyze the applicability of the proposed
method under the positive/negative-gradient SSP waveguide. The results can be concluded
as follows: (1) Modes generated under a negative-gradient SSP waveguide presents similar
characteristics to those in the thermocline waveguide. Therefore, it is suggested to deploy
the hydrophones near the sea surface to guarantee the effectiveness of the proposed method;
(2) The depth function of the refracted mode generated under a positive-gradient SSP
waveguide remains high amplitude near the sea surface while decaying exponentially near
the seabed. Therefore, it is suggested to deploy the hydrophones near the seabed. All in
all, in a non-isovelocity environment, hydrophones should be deployed at the depth with
higher sound speed to guarantee the effectiveness of the proposed method.
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(a) (b) 

Figure 11. The (a) modes depth function and (b) modes group (phase) slowness in the waveguide
shown in Figure 9.

5. Conclusions

In shallow water, the mode interference characteristic frequencies present an invari-
ability property that is independent of the source–receiver geometry. Based on this phe-
nomenon, a passive model-independent broadband source localization method utilizing
distributed hydrophones is proposed in this paper. The basic idea of the proposed method
is to mutually match the FTWT spectra from different hydrophones and determine the
source location by verifying the invariability of the mode interference characteristic fre-
quencies. Specifically, for an assumed source location, the time warping transform is firstly
applied to the signal ACF to extract the interference characteristic frequencies for each
hydrophone and then, a cost function is calculated to verify the consistency of the FTWT
spectra from different hydrophones. The maximum point of the cost function indicates the
location of the source.

Numerical simulations are conducted to demonstrate the performance of the method
and the results can be concluded as follows: (1) the proposed method can locate the
broadband source successfully in the classical Pekeris waveguide; (2) the method works
as advertised in case that the reflected modes dominate the received field in the non-
isovelocity environment (e.g., the thermocline waveguide). Thus, it is suggested to deploy
the hydrophones at a depth with a higher sound speed to guarantee the effectiveness of
the method; (3) the localization ambiguity can be avoided in the detection area (i.e., area
enclosed by the hydrophones) when the hydrophones are distributed through a regular M
polygon (M ≥ 3).

The proposed method theoretically circumvents the environmental mismatch problem
by not relying on prior environment information. In addition, benefitting from exploiting
the interference characteristics of the acoustic field, the proposed methods require neither
the angle- nor time-synchronization information in its localization procedure. However,
the drawbacks of this method are also obvious. Since the modal depth function varies with
the receiving depth, the method in this paper requires all hydrophones to be deployed at
the same depth. Meanwhile, the hydrophones should not be colinearly distributed.

In our work getting under the way, it is expected to analyze the localization ambiguity
in detail with an arbitrary hydrophone distribution. Moreover, due to the fact that the
method becomes invalid when the acoustic field is dominated by the refracted modes, how
to exploit the interference characteristics of these refracted modes to locate the source is
still an ongoing work.
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Abstract: Deep learning techniques have made certain breakthroughs in direction-of-arrival (DOA)
estimation in recent years. However, most of the current deep-learning-based DOA estimation
methods view the direction finding problem as a grid-based multi-label classification task and require
multiple samplings with a uniform linear array (ULA), which leads to grid mismatch issues and
difficulty in ensuring accurate DOA estimation with insufficient sampling and in underdetermined
scenarios. In order to solve these challenges, we propose a new DOA estimation method based on a
deep convolutional generative adversarial network (DCGAN) with a coprime array. By employing
virtual interpolation, the difference co-array derived from the coprime array is extended to a virtual
ULA with more degrees of freedom (DOFs). Then, combining with the Hermitian and Toeplitz prior
knowledge, the covariance matrix is retrieved by the DCGAN. A backtracking method is employed
to ensure that the reconstructed covariance matrix has a low-rank characteristic. We performed DOA
estimation using the MUSIC algorithm. Simulation results demonstrate that the proposed method
can not only distinguish more sources than the number of physical sensors but can also quickly and
accurately solve DOA, especially with limited snapshots, which is suitable for fast estimation in
mobile agent localization.

Keywords: direction-of-arrival (DOA) estimation; deep learning; matrix recovery

1. Introduction

In the past few decades, direction-of-arrival (DOA) estimation has emerged a critical is-
sue across various domains, including radar, sonar, mobile communication and localization.
To perform DOA estimation in actual environments, researchers have conducted in-depth
studies and developed two main types of methods: physical model-driven methods [1–5]
and data-driven methods [6–8]. The DOA estimation method based on phase interferome-
try is proposed in [1] for real-time localization. This method can compute the DOA in real
time with lightweight architecture and full-digital dedicated hardware. However, it has
implications for phase ambiguity and phase error, and could only distinguish a low number
of receivers, with no ability to accurately estimate more DOAs at the same time. The high-
resolution DOA estimation methods, such as the multiple signal classification (MUSIC)
algorithm in [2] and the estimation of signal parameters via rotational invariance techniques
(ESPRIT) algorithm in [3], could estimate more DOAs of signals and achieve more accurate
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performance. Nevertheless, the number of DOAs they can distinguish is still limited by the
number of physical sensors, and the computational complexity remains very high. To cope
with a multipath environment, the forward/backward spatial smoothing (FBSS) algorithm
is proposed in [4] to decorrelate the coherent signals, but its degrees of freedom (DOFs) are
reduced, and the required SNR is slightly higher. In [5], the DOA estimation algorithm for
coherent GPS signals not only employs Toeplitz decorrelation but also oblique projection
to suppress noise at low SNR. The aforementioned physical model-driven methods usu-
ally require a number of snapshots and have high computational complexity and lengthy
solution time. Moreover, those methods are based on a rigorous physical model; once in
non-ideal conditions, such as a limited number of snapshots or model mismatch, their
estimation performance would be degraded obviously. Among data-driven methods, deep
neural network models have shown excellent performance and lower computational com-
plexity. The literature [8] introduces a deep neural network (DNN) model, which exhibits
robustness in the presence of defective arrays. In [9], the authors used a convolutional
neural network (CNN) for DOA estimation in low SNR conditions. In [10], it is proved
that the columns of the covariance matrix can be expressed as linear measurements of
undersampling noise in the spatial spectrum, and a deep convolutional neural network
(DCNN) was built using sparse priors. In response to the significant reduction in estimation
accuracy of existing methods for a multipath environment, reference [11] proposes a phase
enhancement model based on a CNN for coherent DOA estimation which improves DOA
estimation accuracy by enhancing phase and reducing phase distortion. In addition, the
authors evaluate the importance of the phase feature for DOA estimation accuracy and
demonstrated that the amplitude feature is redundant for DOA estimation. In [12], resid-
ual neural networks (ResNet) were used to achieve DOA estimation in a single snapshot.
In [13], deep learning was applied to DOA estimation in underwater acoustic arrays.
In [14], the authors present a novel DOA estimation framework that utilizes a complex-
valued deep learning technique. In [15], researchers used the upper triangular region
data of the received signal covariance matrix for training, effectively reducing training
complexity and accelerating training speed. In [16], an angle separation deep learning
method is proposed to achieve near-real-time DOA estimation for coherent signal sources.
Furthermore, the lightweight DNN DOA estimation method for array imperfection cor-
rection has lower computational complexity and faster running speed, making it suitable
for real-time signal processing application [17]. In [18], deep residual learning was used
to achieve wideband DOA estimation. In addition, the DOA estimation method based on
unsupervised learning with sparse array employs ResNet, which can effectively cope with
low SNR and few snapshots scenarios [19]. However, the aforementioned methods did not
consider the underdetermined scenario.

With the continuous development of the Internet of Things (IoT) and Internet of Vehi-
cles (IoV), the number of intelligent mobile agents is growing constantly. In the process of
localization and communication, the number of estimated targets is often greater than the
number of array sensors, which results in the frequent occurrence of underdetermined situ-
ations. Moreover, the mobile agents require fast calculation speed with limited snapshots,
which places higher requirements on the running speed of the DOA estimation algorithm.
However, most of the current deep-learning-based DOA estimation methods use CNN
models [10,11,20], treating the direction finding problem as a multi-label classification
task and requiring multiple samplings with a uniform linear array (ULA). The output
of the network in these methods is the probability associated with each corresponding
label. These methods not only suffer from grid mismatch problems but are also unable to
distinguish all targets in underdetermined situations, which would decrease the estimation
accuracy dramatically. In [20], the sparse array was adopted, and its covariance matrix
was recovered from the first row using a CNN-based regression method. Then, the DOA
was obtained with the Root-MUSIC algorithm from the recovered covariance matrix. This
approach has the ability to cope with underdetermined situations but cannot guarantee the
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low-rank characteristic of the recovered covariance matrix, so its DOA estimation accuracy
is constrained, especially with limited snapshots.

Therefore, in order to address the aforementioned challenges, a virtual ULA was con-
structed in this study by filling the virtual sensors into the difference co-array derived from
the coprime array, which can obtain more DOFs and improve DOA estimation resolution.
The deep convolutional generative adversarial network (DCGAN) was adopted to recover
the data associated with the virtual sensors and rebuild the covariance matrix of the virtual
ULA using the Hermitian and Toeplitz prior knowledge. In order to ensure the low-rank
characteristic of the covariance matrix, the output data of the DCGAN were further pro-
cessed using the low-rank matrix optimization algorithm. Finally, DOA estimation was
performed using the MUSIC algorithm. The proposed method not only has the ability to
cope with underdetermined scenarios but can also improve the accuracy and estimation
speed with limited snapshots.

The remaining sections of this paper are organized as follows. Section 2 introduces the
signal model. Section 3 elaborates on the structure and processing details of the proposed
method. Section 4 describes the loss function used by the network and some important
parameters. Section 5 provides experimental results. The last section summarizes the
entire paper.

2. Signal Model

It is presumed that K far-field narrow-band source signals impinge onto an M-element
array antenna (K>M), and the received signal at the array is given by:

X(t) = A(θ)s(t) + n(t), t = 1, 2, . . . , T, (1)

where θ, A, and T represent the source direction vector, array manifold matrix, and snapshot
number, respectively. s(t) and n(t) denote the spatial signal vector and additive Gaussian
white noise vector at time t, respectively. The k-th column of the array manifold matrix

A can be represented as a(θ) =

[
e
−j∗2π u1 d sin(θ)

λ , e
−j∗2π u2 d sin(θ)

λ , . . . , e
−j∗2π uM d sin(θ)

λ

]T
, where

ui, (i = 1, 2, . . . M) represents the i-th element position.
A coprime array is constructed with two sparse uniform linear sub-arrays with

I + J − 1 sensors, the first sub-array being [0, Id, 2Id, . . . , (J − 1)Id] and the second sub-
array being [0, Jd, 2Jd, . . . , (I − 1)Jd], where I and J are coprime integers. The two sub-
arrays do not overlap except for position 0. The structure of the coprime array is depicted
in Figure 1a. The covariance matrix of the received signal X(t) with the coprime array can
be expressed as

RX = E
[
X(t)XH(t)

]
=

K

∑
k=1

pka(θk)a
H(θk) + σ2I, (2)

where pk denotes the power of the k-th source signal, and I denotes the identity matrix.
Afterward, by vectorizing the covariance matrix RX and taking the distinct elements, the
equivalent virtual signal of the difference co-array can be obtained as

yd = Adp + σ2i, (3)

where Ad = [a∗(θ1)⊗ a(θ1), a∗(θ2)⊗ a(θ2), . . . , a∗(θK)⊗ a(θK)] ∈ C[2I(J−1)+1]×K,⊗ denotes
the Kronecker product, p = [p1, p2, . . . pK]

T and i = vec(I). The difference co-array contains
a few missing elements that are called holes. The array structure of the difference co-array
is shown in Figure 1b.
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Figure 1. Array structures. (a) The coprime array for I = 3, J = 5. (b) The difference co-array derived
from coprime array. (c) The virtual ULA when the number of sensors is 13.

So as to fully utilize the available information and increase DOFs, by filling the
interpolated virtual sensors, the model can be extended further as a virtual ULA with
N = max{(I − 1)J, (J − 1)I}+ 1 sensors, as shown in Figure 1c. The virtual ULA corre-
sponds to a binary vector v of 0s and 1s, in which 0 represents the interpolated virtual
element and 1 stands for the others. Correspondingly, the received signal yd is extended
to the N dimension vector yi, which has some zero elements corresponding to the virtual
received signal of interpolated virtual sensors. As demonstrated in [21], the covariance
matrix Rv of the received signal with the virtual ULA is equal to the Toeplitz matrix T (yi)
with vector yi as its first row, which can be represented as

T (yi) = Rv. (4)

In actual application, because the received signals of the interpolated virtual sensors in
virtual ULA default to 0, some elements in covariance matrix Rv are also set to 0. Compared
with the covariance matrix R of the actual ULA with N physical sensors, the covariance
matrix of the virtual ULA and actual ULA has the following relationship

T (yi) = Rv = R! L, (5)

where ! denotes the Hadamard product, L = v ∗ vT is a binary matrix to imply the zero
and non-zero elements in Rv and R is the covariance matrix associated with the actual ULA
with N elements. Our focus is to rebuild the covariance matrix R of the virtual ULA from
T (yi) with some missing elements.

As a priori knowledge, a covariance matrix should be a Hermitian matrix with a
Toeplitz structure and has a low-rank characteristic in theory. Therefore, in order to
reconstruct the covariance matrix accurately and quickly, we adopted some measures to
ensure that the recovered Rres has the above characteristics. Here, we took the average
of the values in the conjugate symmetric part of the generated matrix so as to limit the
changes in the non-missing part to the minimum range. Finally, the backtracking method
further ensures the positive definiteness of the covariance matrix.
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3. The Proposed Method

Depicted in Figure 2, the proposed model framework consists of three components:
preprocessing, the DCGAN structure and post-processing.

Figure 2. Framework of proposed model.

Firstly, we assume that the signal X is collected by T snapshots with a coprime array.
The preprocessing part calculates the covariance matrix through the raw data, which is
then normalized to the range of [−1, 1]. This is to reduce the range of values for different
features to the same range in order to accelerate training speed and improve model stability.
Subsequently, the covariance matrix Rv is transformed into a two-channel tensor. The
DCGAN structure is responsible for reconstructing the covariance matrix with a virtual
ULA from noise signals. The generator produces a result that is similar to the real covariance
matrix. Finally, the post-processing part ensures the low-rank characteristic of the recovered
covariance matrix and solves the DOA using the generated output.

3.1. Data Preprocessing

In order to adapt to the input requirements of the DCGAN, we used Rv and R
′

as
two inputs for the DCGAN, both of which are real tensors. In the experiment, since the
covariance matrix R is a theoretical value and unknown, its sampled value R

′
was used with

N-elements ULA. The first dimension represents the real part matrix Rv[1, :, :] = Real(Rv),
and the second dimension represents the imaginary part matrix Rv[2, :, :] = Imag(Rv).
According to the structure of the DCGAN generator, the generator restricts the output
data to the range of [−1, 1]. In order to speed up the training process, we performed
row-wise normalization of the real and imaginary parts. It is also helpful to create different
features with the same scale, which leads to easier optimization. Moreover, normalizing
the input data can effectively prevent gradient explosion and mode collapse, which can
better balance the generator and discriminator and improve the stability and robustness of
the model.

3.2. DCGAN Structure

For the DCGAN, the proposed design is illustrated in Figure 3.
We approach the covariance matrix reconstruction as a restoration task aiming to

compute the mapping correlation between Rv and R
′
, so that the generated Rres is as close

as possible to R
′
. The DCGAN consists of a generator with a transposed convolutional

structure and a discriminator with a convolutional structure. The transposed convolutional
structure in the generator allows for a more suitable upsampling method based on the
dataset. Following each transposed convolutional layer in the generator, a ReLU activation
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function and a batch normalization layer are applied. The final layer of the generator
network utilizes a Tanh activation function. A convolutional structure was adopted for
the discriminator. Following each convolutional layer, a LeakyReLU activation function
and a batch normalization layer are utilized. The final layer uses a Sigmoid activation
function. The LeakyReLU activation function retains a small gradient for the negative
part, facilitating higher quality recovery by the generator. Additionally, a dropout layer is
incorporated into the discriminator to balance training.

Figure 3. DCGAN structure.

The proposed model widely uses batch normalization layers due to their ability
to prevent overfitting and accelerate the training and convergence process. However,
it is important to note that batch normalization layers are not used in the input layer
of the generator or the output layer of the discriminator, since this may cause sample
oscillation and model instability. The DCGAN structure does not have pooling layers or
fully connected layers because pooling operations may lose some important information,
and the use of fully connected layers is prone to overfitting. The final output shape of the
generator is 2× N × N.

3.3. Data Post-Processing

Finally, for the data post-processing part, it should be noted that the last layer of the
generator uses the Tanh activation function. Therefore, we used the saved parameters to
reverse-normalize the network output back to its original values. In addition, although the
generated data roughly conform to the distribution of R

′
, the data do not strictly satisfy

the conjugate symmetry. Therefore, the average of the conjugate symmetric parts of the
real part matrix was directly calculated. The diagonal data of the imaginary matrix were
set to 0, the absolute values of the conjugate symmetric parts of other data were taken, the
average was calculated and positive and negative signs were assigned. Strict adherence
to this property was ensured. Furthermore, since the training strategy involves real and
imaginary dual channels, the two-channel real value data for each recovered covariance
matrix were combined into a complex-valued matrix for DOA estimation. Finally, in order
to ensure positive definiteness of the complex-valued matrix, we utilized the low-rank
matrix optimization algorithm to regularize this matrix.

4. Training Approach

4.1. Loss Function

For small-scale tasks, cross-entropy loss is sufficient for network training. However,
during the experimental process, it was found that a single cross-entropy loss led to
difficulty in limiting the recovery direction of the covariance matrix. Therefore, in this
study, a combined approach of generator loss, discriminator loss, context loss, perceptual
loss and nuclear norm loss was adopted for training. Both generator loss and discriminator
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loss are cross-entropy losses, and the input of the cross-entropy loss is a pair of outputs
from the generator or discriminator and the corresponding size label. The labels of the real
data have been smoothed using 0.9 to maintain balance at both ends. The perceptual loss is
generated by the DCGAN itself and can be represented as

Lperceptual = log(1−D(G(Rv))), (6)

where D(·) represents the discriminator, and G(·) stands for the generator.
The context loss constrains the consistency of the non-missing parts of the covariance

matrix and aims to minimize changes in non-missing parts during the recovery process. The
L2 norm is employed to calculate the loss, and the inputs of the context loss are R

′
,G(Rv),

and L, which can be represented as

Lcontextual =
∥∥∥L!G(Rv)− L!R

′∥∥∥
2
. (7)

The nuclear norm loss serves as a regularization constraint to reduce the rank of the
restored covariance matrix. It can reduce the number of unknown values that need to be
restored. Additionally, the nuclear norm loss helps control the complexity of the matrix to
avoid overfitting. The nuclear norm loss can be represented as

‖Rres‖∗ =
N

∑
i=1

σi(Rres), (8)

where Rres is the covariance matrix generated by the generator, N represents the number of
rows and columns in the covariance matrix and σi(Rres) represents the i-th singular value
of Rres.

Cross-entropy loss provides backpropagation gradients and other parameters. The
entire restoration task’s loss function can be represented as

Ltotal = Lcontextual + λ1Lperceptual + λ2Lnorm, (9)

where λ1 and λ2 are hyperparameters used to adjust the importance of the two losses.
Therefore, our goal is to ensure the stability of the non-missing parts while guiding

the generator to produce globally consistent results with the real covariance matrix. This
can further improve the accuracy of subsequent DOA estimation.

4.2. DCGAN Training

To construct the dataset, we randomly selected two angles within the range of
[−60◦, 60◦]. Each data point was then generated based on the signal model. The dataset has
SNR values ranging from −5 dB to 10 dB, with a size of 1,000,000. The training set consists
of 80% of the data, and the remaining 20% are used for validation. The model employs the
Adam optimizer to update the weights, and hyperparameters λ1 and λ2 of the total loss of
the recovery task were all set to 0.1.

The model initializes its weights from a normal distribution N
(
0, 0.022). After ini-

tialization, the model immediately applies these weights. Unlike generative tasks, the
generator’s input Rv is reshaped into a vector of shape (N × N × 2, 1) rather than random
noise, which can utilize the prior characteristics of the covariance matrix.

5. Simulation Results

We conducted several experiments to demonstrate the performance of the proposed
method. Based on individual experiment results and quantitative experimental results,
we compared this approach with some other methods. In this study, all experiments were
conducted on a desktop computer equipped with an Intel Core i7-12700F processor running
at 3.5 GHz, with 16 GB of RAM and an NVIDIA GeForce RTX 4060Ti GPU (Galax, Hong
Kong, China). The operating system used is Windows 10. The software environment uses
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Python 3.6.5 as the programming language and uses the PyTorch framework for training
and testing deep learning models.

5.1. Single Experiment Results

The proposed method was tested with a physical array consisting of seven sensors.
We conducted the experiments with a fixed snapshot count of 256 and SNR at 10 dB. Two
scenarios were considered: one with five signal sources (less than seven) and another with
eight signal sources (greater than seven). In both scenarios, we employed the following
comparison algorithms: the MUSIC algorithm, the sparse representation with lp-norm
algorithm (MAP) [22], the sparse-recovery-based method (SR-D) [23] and the CNN-based
DOA estimation method (CNN-D) [20].

As shown in Figure 4, when the number of signal sources is five (less than seven),
we assume that five uncorrelated signals originate from [−43◦,−29◦, 10◦, 32◦, 54◦]. It is
visible that all of the aforementioned methods can achieve good performance and provide
accurate DOA estimation.

Figure 4. Spectrum of DOA estimation methods when the number of signal sources is five. (a)
MUSIC. (b) MAP. (c) SR−D. (d) CNN−D. (e) Proposed method.

However, as depicted in Figure 5, when the number of signal sources increases to eight
(greater than seven), these signal sources arrive from [−43◦,−29◦,−16◦, 0◦, 10◦, 21◦, 32◦, 54◦].
The spatial spectrum of the MUSIC algorithm becomes flattened, and some spectral peaks
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merge together. The MAP algorithm can only accurately estimate partial angles of arrival.
Both of these two algorithms fail to distinguish more sources than the number of physical
sensors. Although the CNN-D method and SR-D method can obtain eight spectral peaks,
their peaks exhibit some bias, which leads to a decrease in the accuracy of these DOA
estimation algorithms. In contrast, the proposed method still forms eight sharp peaks
at the actual DOAs, which is more than the number of physical sensors (seven). It can
achieve more accurate DOA estimation in underdetermined scenarios, which is because the
proposed method extends the DOFs of the virtual ULA to 12 and reconstructs its covariance
matrix accurately using the DCGAN with the prior knowledge.

Figure 5. Spectrum of DOA estimation methods when the number of signal sources is eight. (a) MU-
SIC. (b) MAP. (c) SR−D. (d) CNN−D. (e) Proposed method.

5.2. Quantitative Experimental Results

To evaluate the performance of the proposed DCGAN method, we compared it with
two existing methods: CNN-D and SR-D. The evaluation is based on the root mean square
error (RMSE) metric. We constructed a coprime array using the coprime pairs of 3 and
5, with the element positions being {0, 3, 5, 6, 9, 10, 12}d. Furthermore, experiments were
conducted at SNR values of [−5, 0, 5, 10] dB.

As presented in Figure 6, when the quantity of snapshots is held constant at 256, the
performance of the proposed method improves consistently as the SNR increases and
surpasses the other methods, especially in low SNR conditions.
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Figure 6. RMSE versus SNR.

Then, as illustrated in Figure 7, the SNR was fixed at 10 dB, and we compared the
performance of the above methods with different numbers of snapshots. The proposed
method does not experience a significant performance degradation as snapshots decrease
and outperforms other methods. This is because the covariance matrix could be accurately
rebuilt although with the limited snapshots, which preserves low-rank characteristics and
more DOFs.

Figure 7. RMSE versus snapshots.

Next, as shown in Figure 8, we demonstrate the RMSE of these methods at different
angle separation degrees. It is apparent that the proposed method exhibits robust perfor-
mance at different resolutions, without significant fluctuations, and exhibits considerable
robustness. The CNN-D method only uses the first-row elements to recover the covari-
ance matrix and is incapable of guaranteeing the positive definiteness of the resulting
covariance matrix.
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Figure 8. RMSE versus angular separation.

In the subsequent analysis, we investigated the influence of different snapshots and
SNR levels on the performance of the proposed method. As shown in Figure 9, the
performance of the proposed method improves with an increase in the number of snapshots.
It can be observed from the figure that when the snapshot count is greater than 256, the
performance of the proposed method stabilizes. Even with a relatively limited number of
snapshots, the proposed method can achieve accurate DOA estimation without excessive
performance loss. Furthermore, the performance of the proposed method continuously
improves with an increase in SNR and stabilizes at a level of 10 dB.

Figure 9. RMSE of the proposed method with different SNRs and snapshots.

Finally, we performed 10,000 Monte Carlo simulations and recorded the estimated
total time results in Table 1. It should be noted that, to ensure the accuracy of the model,
the deep learning methods mentioned above require a long training period, so well-trained
models were used for testing. From the results, it can be seen that compared to the
traditional physics-based model SR-D, the proposed method can achieve faster estimation
time, with a decrease of about 30 times. Compared to the CNN-D method, especially at
lower SNR from −5 dB to 5 dB, our estimation time is about 10–30 s faster, although, at
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10 dB SNR, the proposed method also has a slight improvement. Combining Figure 7 and
Table 1, it becomes evident that the proposed method is capable of achieving fast estimation
even with limited snapshots. Therefore, it is suitable for fast DOA estimation in mobile
agent localization scenarios.

Table 1. DOA estimation times.

Method −5 dB 0 dB 5 dB 10 dB

SR-D 5890 s 5290 s 5720 s 5810 s
CNN-D 216.5672 s 209.0678 s 184.01 s 171.723 s

Proposed 192.8996 s 179.845 s 172.8436 s 171.667 s

6. Conclusions

This paper proposes a DOA estimation framework based on the DCGAN in underde-
termined scenarios. Compared with most of the current DL-based methods, our proposed
method transforms DOA estimation to a recovery task of a covariance matrix with more
DOFs. Our method uses the DCGAN model and takes measures to preserve the Hermitian,
Toeplitz and low-rank prior characteristics of the recovered covariance matrix. In underde-
termined scenarios, the proposed method exhibits notable advantages in the fields of both
accuracy and estimation speed, especially with limited snapshots. It is suitable for mobile
agent localization.
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