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Preface

This Special Issue provides an overview of the scientific papers, focusing on advanced analytical

and numerical simulation approaches, along with experimental contributions applied to railway

infrastructures. Submissions for this issue have been received from China, Spain, Poland, Ireland,

France, Portugal, the Netherlands, and Germany. Min et al. introduces a rail-surface defect-detection

model, denoted as FS-RSDD, designed for the rail-surface-condition monitoring. Notably, it

addresses the prevalent challenge of limited defect samples encountered with prior detection models.

Arana et al. explore the condition monitoring of an overhead contact line (OCL) through the creation

of a monitoring system tailored for a pantograph installed on electrical multiple units. Kinematic and

dynamic modeling of the pantograph is undertaken to support the development of the monitoring

system. Gosiewska et al. from Poland address object detection using computer vision in scenarios

characterized by limited data by training YOLOv5 and MobileNet frameworks. It was demonstrated

that a dataset comprising 120 observations is adequate for achieving high accuracy in the object

detection task specific to railway infrastructure. In the research study conducted by Malekjafarian

et al. from Ireland a novel approach for monitoring railway track conditions is presented, based

on acceleration responses obtained from an operational train to detect alterations in the stiffness

of underlying track sub-layers. An Artificial Neural Network (ANN) algorithm is formulated,

operating on the energy content of the train’s acceleration responses. Moya et al. from Spain

present ongoing progress in the digitalization of freight wagons, encompassing the delineation,

fabrication, and on-site trials conducted on a commercial rail line in Sweden. A diverse array

of components and systems were installed in a freight wagon, envisaging the completion of an

intelligent freight wagon. Mohammadi et al. from Portugal assess and compare the effectiveness

of four distinct feature extraction methodologies, specifically, auto-regressive (AR), auto-regressive

exogenous (ARX), principal component analysis (PCA), and continuous wavelet transform (CWT), in

their capacity to autonomously differentiate between a defective wheel and a healthy one. Ton et al.

investigate the applicability of three deep-learning-based models, namely, PointNet++, SuperPoint

Graph, and Point Transformer, for the semantic segmentation of point clouds within the context of

a practical real-world scenario. The study centers on a specific use case of catenary arches within

the Dutch railway system, conducted in collaboration with Strukton Rail, a prominent contractor for

rail projects. Tan et al. introduce an Ensemble Learning approach combining Improved MultiScale

Retinex with Color Restoration (IMSRCR) and You Only Look Once (YOLO) based on acquired tunnel

image data for the detection of corroded bolts in the lining. The features of the lining images are

enhanced and strengthened using IMSRCR, mitigating the adverse effects of a dark environment

in contrast to the existing MSRCR. Lorezen et al. from Germany propose a methodology for axle

detection using accelerometers placed arbitrarily on a bridge structure. The model is implemented as

a Fully Convolutional Network suitable for processing signals represented in the Continuous Wavelet

Transforms format. This allows passages of any length to be processed in a single step with maximum

efficiency while using multiple scales in a single evaluation. Xie et al. from China seek to comprehend

the disparities in the impact of expressway bridges and subgrades on the near-surface blown sand

environment. It examines variations in wind speed and profile, wind flow-field characteristics, and

sand transport rates around bridges and subgrades.

Araliya Mosleh, Diogo Ribeiro, Abdollah Malekjafarian, and Maria D. Martı́nez-Rodrigo

Editors
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Advances in Condition Monitoring of Railway Infrastructure
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mrodrigo@uji.es
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In recent years, there has been a notable surge in investments directed towards devel-
oping new railway lines and revitalising existing ones, reflecting a global commitment to
enhance transportation infrastructure. This wave of investment is essential in meeting the
growing demands of modern societies for efficient and sustainable transportation options.
These efforts encompass numerous critical infrastructures within the railway network,
ranging from bridges and tunnels to tracks and signaling systems. Therefore, it is impera-
tive to ensure the operational integrity and safety of these infrastructures throughout their
life cycle, safeguarding against potential hazards and ensuring uninterrupted service [1,2].

This imperative has catalyzed significant advancements in the field of structural
condition monitoring for railway infrastructures [3,4]. In addition, recent scientific and
technological breakthroughs have transformed the way these infrastructures are monitored
and maintained.

Moreover, integrating artificial intelligence (AI) and machine learning algorithms has
been decisive in enhancing the accuracy and efficiency of structural condition assessment [5–7].
These technologies can process large amounts of data, identifying early anomalies and
trends that may indicate forthcoming critical situations. Additionally, using unmanned
aerial vehicles (UAVs) equipped with advanced imaging and sensing capabilities has paved
the way for cost-effective and comprehensive inspections of hard-to-reach or hazardous
areas, thus further supporting the capabilities of railway infrastructure monitoring.

The significance of these advancements in ensuring the longevity and safety of railway
infrastructures cannot be overstated. They not only contribute to the overall efficiency
and reliability of the transportation network but also play a crucial role in minimizing the
environmental footprint associated with maintenance activities. The synergistic combi-
nation of strategic investments and innovative technological applications underscores a
concerted effort toward building a resilient and sustainable railway infrastructure network
capable of meeting future demands. Despite advancements in the railway industry in
recent years, there remains a noticeable gap in the ability of science and technology to
instigate transformative innovations in the railway industry at its core.

This Editorial refers to the Special Issue “Advances in Condition Monitoring of Railway
Infrastructures”, which serves as a compilation of the most recent research achievements
in the scope of advanced planning, design, construction, monitoring, maintenance, and
management of railway infrastructures. A total of 20 manuscripts were submitted for evalu-
ation in the context of the Special Issue, with each manuscript undergoing a comprehensive
and strict review process. Subsequently, 10 papers have been accepted for publication, and
their respective contributions are detailed in the List of Contributions.

As indicated above, the contributions span diverse geographical regions, encom-
passing specific country cases such as China, Spain, Poland, Ireland, France, Portugal,
Netherlands, and Germany. The topics covered include AI (1, 3, 4, 6), track monitoring

Sensors 2024, 24, 830. https://doi.org/10.3390/s24030830 https://www.mdpi.com/journal/sensors1
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approaches (1 and 4), wayside wheel defect detection (6), freight wagon digitalization (5),
digital twins (7), Structural Health Monitoring (SHM) (9), and tunnels (10). Contributions 4,
6, and 9 entail numerical studies, while contributions 1, 2, 3, 5, 7, and 8 involve experimental
field tests.

Contribution 1 introduces a rail surface defect detection model, denoted as FS-RSDD,
designed for the rail surface condition monitoring. Notably, it addresses the prevalent
challenge of limited defect samples encountered by prior detection models. The proposed
model leverages a pre-trained framework to extract features from both normal and defective
rail specimens. Subsequently, an unsupervised learning approach is employed to discern
feature distributions and establish a feature prototype memory bank. Employing prototype
learning strategies, FS-RSDD computes the likelihood of a test sample being associated
with a defect at each pixel, guided by the information stored in the prototype memory bank.
This methodology mitigates the constraints faced by deep learning algorithms based on
supervised learning paradigms, which often deal with inadequate training samples and
reduced reliability in validation. FS-RSDD attains noteworthy precision in defect detection
and localization, even when trained with a restricted number of defective samples.

Contribution 2 explores the condition monitoring of an overhead contact line (OCL)
by creating a monitoring system tailored for a pantograph installed on multiple electrical
units. Kinematic and dynamic modeling of the pantograph is undertaken to support the
development of the monitoring system. This modeling is validated through meticulous
test-rig experiments, after which the proposed methodology is subjected to comprehensive
field tests serving a dual purpose: firstly, to prove the efficiency of the monitoring system
using benchmark measurements obtained from the tCat® trolley, and secondly, to evaluate
the reproducibility of measurements under realistic operation scenarios.

Contribution 3 addresses object detection using computer vision in scenarios char-
acterized by limited data by training YOLOv5 and MobileNet frameworks. A dataset
comprising 120 observations was demonstrated to be adequate for achieving high accuracy
in the object detection task specific to railway infrastructure. Additionally, a novel approach
for the extraction of background images from railway imagery was introduced. To validate
this method, the performance of YOLOv5 and MobileNet was evaluated on small datasets,
both with and without background extraction. The experimental outcomes indicate that
the application of background extraction reduces the sufficient data volume to 90.

In Contribution 4, a novel approach for monitoring railway track conditions is pre-
sented, based on acceleration responses obtained from an operational train to detect alter-
ations in the stiffness of underlying track sub-layers. An artificial neural network (ANN)
algorithm is formulated, operating on the energy content of the train’s acceleration re-
sponses. A computational model of a half-car train interacting with a track profile is
employed to simulate the vertical acceleration of the train. The induced damage is rep-
resented by reduced soil stiffness within the sub-ballast layer, representative of voided
sleepers. Furthermore, a sensitivity analysis is conducted to evaluate the influence of signal
noise, slice sizes, and the presence of multiple damaged locations on the performance of
the damage index.

Contribution 5 presents ongoing progress in the digitalization of freight wagons,
encompassing the delineation, fabrication, and on-site trials conducted on a commercial
rail line in Sweden. A diverse array of components and systems were installed in a freight
wagon, envisaging the completion of an intelligent freight wagon. The digitalization effort
encompasses the seamless integration of sensors designed to provide various functions,
including but not limited to train composition analysis, train integrity assessment, asset
monitoring, and continuous wagon positioning. These strides herald the potential for real-
time data analysis, anomaly detection, and the implementation of proactive maintenance
strategies, envisaging the operational efficiency and safety of freight transportation.

Contribution 6 assesses and compares the effectiveness of four distinct feature ex-
traction methodologies, specifically, the auto-regressive (AR) method, auto-regressive
exogenous (ARX) method, principal component analysis (PCA), and continuous wavelet
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transform (CWT), in their capacity to autonomously differentiate between a defective
wheel and a healthy one. The reference measurement employed in this investigation is
the rail acceleration during the transit of freight vehicles. The study encompasses four
sequential steps: (i) feature extraction; (ii) feature normalization; (iii) data fusion; and (iv)
damage detection. The findings of this study underscore that the AR and ARX extraction
methods exhibit superior efficiency in wheel flat damage detection compared to CWT and
PCA techniques.

Contribution 7 investigates the applicability of three deep-learning-based models,
namely, PointNet++, SuperPoint Graph, and Point Transformer, for the semantic segmenta-
tion of point clouds within the context of a practical, real-world scenario. The study centers
on a specific use case of catenary arches within the Dutch railway system, conducted in
collaboration with Strukton Rail, a prominent contractor for rail projects. A distinctive,
complex, high-resolution, and annotated dataset is presented for the evaluation of point
cloud segmentation models in railway environments. Comprising 14 individually labeled
classes, this dataset represents the first of its kind to be openly accessible. The modified
PointNet++ model emerges as the most effective, achieving a mean class Intersection over
Union (IoU) of 71% for the semantic segmentation task.

Contribution 8 introduced an ensemble learning approach combining Improved Mul-
tiScale Retinex with Color Restoration (IMSRCR) and You Only Look Once (YOLO) based
on acquired tunnel image data for the detection of corroded bolts in the lining. The features
of the lining images are enhanced and strengthened by IMSRCR, mitigating the adverse
effects of a dark environment in contrast to the existing MSRCR. Additionally, models
with varying parameters, exhibiting diverse performance characteristics, are integrated
using the ensemble learning method, resulting in a substantial improvement in accuracy.
Sufficient comparisons based on a dataset collected from the tunnel are conducted to prove
the superiority of the proposed algorithm.

Contribution 9 proposes a methodology for axle detection using accelerometers placed
arbitrarily on a bridge structure. The model is implemented as a Fully Convolutional
Network suitable for processing signals represented in the Continuous Wavelet Transforms
format. This allows passages of any length to be processed in a single step with maximum
efficiency while using multiple scales in a single evaluation. Consequently, the proposed
method can effectively use acceleration signals from any location on the bridge structure,
functioning as Virtual Axle Detectors (VADs) without constraint to specific bridge structural
types. The efficiency of the proposed method is tested through the analysis of 3787 passages
recorded on a steel railway bridge. The results derived from the measurement data indicate
that the proposed model successfully detects 95% of the axles.

Contribution 10 seeks to comprehend the disparities in the impact of expressway
bridges and subgrades on the near-surface blown sand environment. It examines wind
speed and profile variations, wind flow-field characteristics, and sand transport rates
around bridges and subgrades. The goal is to offer a scientific foundation for choosing
expressway route forms in sandy regions. The study employs wind tunnel tests with
models of a highway bridge and subgrade, comparing the environmental effects of wind-
blown sand on both structures. The findings hold theoretical and practical importance for
guiding expressway route selection in sandy areas.

The Guest Editors are pleased with the conclusive outcomes of the published papers in
this Special Issue, anticipating their utility for researchers, engineers, designers, and other
professionals engaged in diverse thematic aspects of advanced analytical and numerical
simulation approaches, as well as experimental studies, applied to railway infrastructures.
The Guest Editors extend their appreciation to all authors and reviewers for their crucial
contributions and for the dissemination of scientific findings. Lastly, gratitude is extended
to the Editorial Board of Sensors for their patience, support, and exceptional contributions.

Conflicts of Interest: The authors declare no conflict of interest.
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FS-RSDD: Few-Shot Rail Surface Defect Detection with
Prototype Learning

Yongzhi Min 1,*, Ziwei Wang 1,*, Yang Liu 1 and Zheng Wang 2

1 School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
12211463@stu.lzjtu.edu.cn

2 School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; wangz@lzjtu.edu.cn
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Abstract: As an important component of the railway system, the surface damage that occurs on
the rails due to daily operations can pose significant safety hazards. This paper proposes a simple
yet effective rail surface defect detection model, FS-RSDD, for rail surface condition monitoring,
which also aims to address the issue of insufficient defect samples faced by previous detection
models. The model utilizes a pre-trained model to extract deep features of both normal rail samples
and defect samples. Subsequently, an unsupervised learning method is employed to learn feature
distributions and obtain a feature prototype memory bank. Using prototype learning techniques,
FS-RSDD estimates the probability of a test sample belonging to a defect at each pixel based on
the prototype memory bank. This approach overcomes the limitations of deep learning algorithms
based on supervised learning techniques, which often suffer from insufficient training samples and
low credibility in validation. FS-RSDD achieves high accuracy in defect detection and localization
with only a small number of defect samples used for training. Surpassing benchmarked few-shot
industrial defect detection algorithms, FS-RSDD achieves an ROC of 95.2% and 99.1% on RSDDS
Type-I and Type-II rail defect data, respectively, and is on par with state-of-the-art unsupervised
anomaly detection algorithms.

Keywords: rail surface defect detection; few-shot learning; prototype learning; transfer learning;
unsupervised anomaly detection

1. Introduction

The rapid growth of railway operation mileage in recent years, due to the construction of
numerous new railway lines in many countries, has significantly increased the pressure on
maintenance. During the daily operation of railway systems, the interaction between wheels
and rails inevitably leads to surface defects such as spalling, corrugation, and grinding, which
pose serious hidden dangers to safe operation. Unlike internal defects in rails that can be
detected using techniques such as ultrasound [1] and eddy current [2,3], traditional rail surface
defect detection is mainly conducted through manual visual inspection, which is inefficient
and heavily relies on human workers’ experience [4]. In recent years, many researchers have
focused on developing machine vision-based rail surface defect detection technologies that
offer higher efficiency and accuracy to address the aforementioned issues. With the rapid
development of artificial intelligence technology, deep-learning-based algorithms, specifically
supervised learning-based defect detection algorithms, are being widely applied in rail surface
defect detection [5–8].

However, defect samples are difficult to obtain in practical work; thus, defect detection
methods based on supervised learning face two important challenges due to insufficient
defect samples. One of them is the risk of overfitting caused by the limited training data,
which may not adequately represent the distribution of defect; additionally, supervised
learning methods typically require the use of a portion of the defect data for training,
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leading to a reduction in the number of testing samples available for validation, which
affects the credibility of the validation results. Inspired by the concept of anomaly detection
(AD), some researchers have turned their attention to utilizing unsupervised learning
techniques to address the aforementioned issues in the field of defect detection [9–11].
However, these unsupervised learning-based methods rely completely on modeling the
distribution of normal samples, lacking an understanding of defect data, which may lead
to poor classification performance and a potentially high false-positive/negative rate [12].

To tackle the aforementioned shortcomings of supervised learning-based defect de-
tection methods, this paper proposes a few-shot rail surface defect detection model called
FS-RSDD (few-shot rail surface defect detection). Inspired by the prototype learning and
feature-embedding-based unsupervised AD (anomaly detection algorithms), FS-RSDD
uses a pre-trained neural network as a feature extractor for both normal and defective rail
images. Global average pooling and mask average pooling are used to embed features for
normal and defective samples, respectively, which aim to compress the feature maps into
feature vectors to obtain a compact feature memory bank. Subsequently, an unsupervised
learning algorithm is used to obtain the feature prototypes of normal samples. Finally, the
detection of rail defects is accomplished through the similarity computation between input
features and prototypes. In summary, our main contributions are as follows:

1. To overcome the challenges associated with using supervised learning-based defect
detection algorithms when there is insufficient defect data available, we have intro-
duced a simple yet effective few-shot rail surface defect detection method called
FS-RSDD, which combines unsupervised anomaly detection with prototype learning.
By effectively integrating the feature prototypes of normal rail images and defect rail
images, we have achieved high accuracy in detecting rail surface defects with very
little defect samples used for training.

2. By avoiding the partitioning of normal rail backgrounds into small image patches
and individually modeling the feature distribution of each image patch, FS-RSDD
achieves a compact feature memory bank for normal rail samples, alleviating the issue
of memory bank redundancy in feature-embedding-based unsupervised anomaly
detection algorithms.

3. FS-RSDD extensively leverages the fusion of multi-scale features to improve prediction
accuracy. Furthermore, due to the integration of both normal background feature
prototypes and defect feature prototypes for defect detection, the performance of the
FS-RSDD model remains stable and robust compared to other few-shot industrial
defect detection algorithms, even when the quality of the defect samples used for
training is relatively low.

4. Through extensive experiments, our method outperformed most existing few-shot
supervised defect detection algorithms under the same number of defect samples used
for training and achieved comparable performance to existing unsupervised anomaly
detection algorithms which assume the availability of normal training samples only.

2. Related Works

2.1. Rail Surface Defect Detection

Previous research on rail surface defect detection often utilizes traditional image
processing techniques to extract features from defect images and trains detection models
using corresponding machine learning methods [13–16]. However, the performance of these
methods is limited by the design of feature extraction, and the detection results can easily
be affected by factors such as lighting, noise, and other factors. With the rapid development
of deep learning technology, an increasing number of researchers have started studying rail
surface defect detection methods based on deep learning, especially supervised learning
methods. Wang Hao et al. integrated the improved pyramid feature fusion and modified
loss function into the Mask-RCNN algorithm for the purpose of detecting rail surface
defects [4]. Meng Si et al. proposed a multi-task architecture for rail surface defect detection,
which includes two branch models for rail detection and defect segmentation [17]. Zhang
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Hui et al. cascaded the one-stage object detection algorithms SSD and YOLOv3, integrating
the detection results from both networks to improve the accuracy of rail surface defect
detection [18]. However, these approaches neglected the fact that defect samples are scarce
and difficult to obtain in practical work.

Due to the limited number of defect samples in the field of defect detection, supervised
algorithms-based defect detection models often face issues of overfitting and low validation
credibility. To address these problems, many researchers have proposed corresponding
solutions. D. Zhang et al. partitioned the rail image data into multiple segments and
trained the defect detection model. However, this approach did not fundamentally solve
the problem [19], and more researchers have recently started studying steel rail surface
defect algorithms based on unsupervised anomaly detection algorithms. Q. Zhang et al.
implemented the detection of rail surface defects using the multi-scale cross FastFlow
model [20], while Menghui Niu et al. proposed an unsupervised stereoscopic saliency
detection method for detecting rail surface defects and achieved good detection results [21].
However, some studies have pointed out that unsupervised anomaly defect detection algo-
rithms often lead to a higher false detection rate [22,23] due to the lack of knowledge about
defect samples during the training process. In this paper, we propose a simple yet effective
few-shot rail surface defect detection algorithm that fully utilizes the feature information of
normal steel rail samples and defect sample information to achieve defect detection.

2.2. Unsupervised Anomaly Detection for Industrial Images

Deep-learning-based algorithms are being widely used in industrial defect detection
research in recent years due to their high efficiency and accuracy. Many researchers
have devoted themselves to researching industrial defect detection algorithms based on
supervised learning algorithms, which significantly depends on labeled defect data [24–29].
However, due to the hardship of collecting defective samples, it is extremely hard to obtain
enough defect data for a deep model to learn its distribution. Furthermore, supervised
learning-based methods require defect data for training, which further restricts the quantity
of test datasets and affects the credibility of validation performance. In recent years,
unsupervised-based anomaly detection (AD) algorithms have become the mainstream
paradigm for industrial defect detection, which can be categorized as reconstruction-based
and feature-embedding-based [30–32].

Reconstruction-based methods aim to train a deep network such as an adversarial
generative network (GAN) or auto encoder (AE) to reconstruct normal images. When
defective images are fed into the network, the defective parts cannot be reconstructed well,
allowing for the detection of defects. However, sometimes the model can also yield a good
reconstruction for the defective parts due to the powerful ability of the deep model [30].

Feature-embedding-based methods became the prevalent architecture in recent years,
which typically consisted of a feature extractor and a feature estimator. A feature extractor
is a deep network, typically a ResNet [33], that is pre-trained on ImageNet datasets. It
is used to extract features from normal images, which are then stored into a memory
bank. A feature estimator is used to estimate the distribution for normal features, which
can be a multidimensional Gaussian distribution [34], clustering methods [35], or flow-
based methods [36]. To avoid the deviation caused by different data distribution between
industrial images and ImageNet datasets, only features from shallow layers are used.
After distribution estimation, a distance metric is typically used to detect defects, since
defects should be far from the center of the estimated distribution. One major drawback
of embedding-based anomaly detection algorithms is that they estimate the distribution
separately for each patch of the feature map, resulting in a massive and redundant feature
memory bank to restore features from each patch. Many researchers have tried different
methods to alleviate the problem: Padim experimentally studied the possibility to reduce
redundancy of the memory bank and eventually chose to randomly discard a portion
of the extracted features [30]; Patchcore utilized a coreset subsampling method to select
representative features [32], thereby compressing the size of the feature memory bank.
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This paper introduces a feature representation method widely used in few-shot learning,
which obtains a representative and compact feature memory bank and alleviates the
aforementioned redundancy problem of the memory bank for rail surface defect detection.

2.3. Few-Shot Learning

In recent years, deep learning algorithms based on supervised learning have garnered
significant attention from researchers due to the remarkable ability of deep models and
large-scale datasets with high-quality labels. However, it is well known that supervised
algorithms fail to acquire strong generalization ability when trained on a dataset with
a small amount of data. Moreover, in many fields such as industrial defect detection,
collecting a large-scale dataset with high-quality annotations proves to be challenging.
This realization has prompted many researchers to shift their focus to the field of few-shot
learning, with the aim of enabling the model to obtain strong generalization ability with
only a few samples, akin to human beings.

Within the domain of few-shot learning in computer vision, image classification tasks
are a prominent focal point. These tasks can be broadly categorized into three distinct
classes: data-augmentation-based methods, parameter-optimization-based methods, and
metric-learning-based methods.

Data-augmentation-based methods aim to address the challenge of limited samples
in few-shot learning indirectly by enhancing the intricacy of the dataset through data
augmentation. Trinet [37] employs autoencoders to map the features to the semantic
space, followed by mapping the augmented features back to the sample space via semantic
nearest neighbor search. Moreover, Patchmix [38] resolves the issue of distribution shift
by substituting a specific region of the query image with random gallery images from
diverse categories.

Parameter-optimization-based methods generally first train a meta-learner to learn
common features (prior knowledge) of different tasks and then apply the obtained meta-
knowledge to fine-tune the base learner on the query set. The model-agnostic meta-
learning (MAML) [39], which first trains the model on a large number of task sets to
obtain an adaptable weight and then fine-tunes the model on the target task to obtain the
final classifier.

Metric-learning-based methods leverage pre-trained neural networks to extract fea-
tures from training data. These extracted features are then utilized to measure similarity
between the training data and test data using a metric. Representative methods include
Siamese networks [40] and matching networks [41]. The former inputs two samples into
the neural network and compares the similarity of the output feature vectors, while the
latter uses attention mechanisms to obtain information about the correlation between
feature vectors.

A typical embedding-based approach to few-shot image classification is the proto-
typical network [42], which utilizes a pre-trained model to extract features from a limited
amount of labeled data and learns corresponding feature prototypes from them. The net-
work then produces a distribution over classes for an input feature based on a softmax
function over distances to the prototypes in the embedding space.

The prototypical network approach, combined with the utilization of mask average
pooling, has been widely adopted in few-shot semantic segmentation methods. In addition,
the idea of prototype features in prototypical networks has also been widely applied in
many unsupervised anomaly detection algorithms [43,44].

3. Methods

This paper proposes an approach for rail surface defect detection called FS-RSDD. It
aims to tackle the challenge of detecting surface defects with a limited number of defect
samples. The proposed model combines defect feature prototypes and background feature
prototypes to enable few-shot learning in this task. The architecture of the model is depicted
in Figure 1, illustrating the integration of the proposed approach.
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Figure 1. The architecture of proposed model.

Figure 1 depicts the proposed method, which consists of two parts: embedding
extraction and prediction. In the embedding extraction phase, the approach is inspired by
feature-embedding-based anomaly detection techniques. A pre-trained model is employed
for extracting multi-scale features from the training set images. These extracted features
are then processed to generate a compact memory bank.

During the prediction phase, the feature prototypes obtained from the embedding
extraction phase are utilized to calculate the multi-scale similarity feature maps with the
feature map of test images. These similarity feature maps of normal and defect samples
are then synthesized at each scale to generate a segmentation probability map. Finally, the
probability map is smoothed to obtain the final prediction result. This process enables the
detection of rail surface defects with high accuracy with limited defect samples.

3.1. Embedding Extraction

In this paper, a ResNet g(·) pre-trained on the public dataset ImageNet is employed
as a feature extractor, and k is defined as a layer index of ResNet. In order to avoid the
deviation caused by different data distribution between industrial images and ImageNet
datasets, only features from first three layers are used; thus, k ∈ {1, 2, 3}.

First, the pre-trained model weights are fixed, and then the training set images
are passed through the feature extractor. Next, the feature maps are extracted from
the shallow layer of the network. Specifically, we are presented with {Ntrain, Dtrain},
in which subset Ntrain = {x1, x2, · · · , xN} only contains normal samples and subset
Dtrain = {xN+1, xN+2, · · · , xN+M} only contains defect samples with N � M. As shown in
Equations (1) and (2), Fk

D and Fk
N refer to the defect feature maps and normal feature maps,

respectively. They are obtained from the k-th layer of the feature extractor, which is denoted
as gk(·). M and N refer to number of defect samples and normal samples respectively. Ck,
Hk, Wk refer to channels, height, and width of feature map from layer k.

Fk
N = gk(Ntrain), Fk

N ∈ RN×Ck×Hk×Wk (1)

Fk
D = gk(Ntrain), Fk

D ∈ RM×Ck×Hk×Wk (2)

After obtaining the feature representations from defective and normal rail images, the
corresponding feature memory bank can be created by the proposed process.

3.2. Compact Multi-Scale Memory Bank

After obtaining the corresponding feature maps, the global average pooling (GAP)
operation is applied to the feature maps of normal rail images. This operation fuses the
global information of normal samples into a feature vector. On the other hand, for defective
rail images, since the defective parts only occupy a small portion of the entire image, the
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mask average pooling (MAP) operation is used. This operation, as shown in Figure 2, is
widely employed in few-shot semantic segmentation. It eliminates the features of normal
parts in the feature map and only preserves the defect-specific features by element-wise
production between feature map and mask, and then global average pooling is applied to
obtain the prototype of defects.

Figure 2. Mask average pooling.

In Equations (3) and (4), GAP represents the global average pooling operation, maskk
Dj

represents the ground truth mask, pk
D
(
xj
)

represents the feature prototype, both maskk
Dj

and pk
D
(
xj
)

correspond to a certain defective sample xj, and pk
n(xi) represents the feature

prototype of the normal sample xi. Additionally, f k
D
(
xj
)

indicates a feature map corre-
sponding to a certain image xj, and f k

N(xi) indicates a feature map corresponding to xi. �
indicates the Hadamard product.

pk
D
(
xj
)
= GAP

(
f k
D
(
xj
)� maskk

Dj

)
, pk

D ∈ RCk , xj ∈ Dtrain (3)

pk
N(xi) = GAP

(
f k
N(xi)

)
, pk

N ∈ RCk , xi ∈ Dtrain (4)

The global average pooling operation is shown in Equation (5), where pk
N(xi) repre-

sents the normal feature prototype obtained by applying global average pooling to a certain
normal feature in the layer k, and f k

N(xi)(h, w) represents the value of feature map f k
N(xi)

at position (h,w).

pk
N(xi) =

1
Hk·Wk

Hk

∑
h=1

Wk

∑
w=1

f k
N(xi)(h, w), pk

N ∈ RCk (5)

As the number of normal samples used is significantly higher than the number of
defect samples, which is distinct from the few-shot learning scenario, unsupervised al-
gorithms can be used to obtain the distribution of normal sample features. Instead of
estimating the feature prototype using the mean of sample features, as carried out in the
prototypical network, this study adopts a widely used clustering algorithm, K-Means, to
cluster the normal sample features. The cluster centers are then used as the final feature
prototypes of the normal samples.

For the normal sample feature prototype, which consists of a set of feature vectors,
clustering is performed with a predetermined number of clusters denoted as n. In this
study, a cluster center number of 30 is chosen to cluster the normal samples, and the
resulting cluster centers are utilized as the final feature prototypes. Since the number of
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defect sample features is relatively small, no clustering is conducted, and they are directly
used as feature prototypes. All prototypes will be stored as a memory bank.

3.3. Pixel-Level Defect Detection

After completing the construction of memory bank, the detection process involves
several steps as illustrated in Figure 3. First, the test image is fed into the corresponding
feature extractor, which is then used to extract multi-scale intermediate features of the
image. Next, the obtained intermediate features are then compared to the feature prototypes
obtained during the model construction stage, and based on their similarity, corresponding
similarity feature maps are calculated.

Figure 3. Detection procedure of FS-RSDD.

The features obtained from the test images are compared to the corresponding multi-
scale normal and defect prototypes at each position using a similarity calculation s(·). The
similarity calculation between input and prototypes is shown in Equations (6) and (7).
Sk

D(x)(h, w) refers to the similarity between defect feature prototypes and input image
feature map at position (h,w), similarly Sk

N(x)(h, w) refers to the similarity between normal
feature prototypes and input image feature map. Specifically, f k

img denotes feature map of a
input image.

Sk
D(x)(h, w) =

1
n

n

∑
i=1

s
(

pk
D(xi), f k

img(h, w)
)

,Sk
D(x)(h, w) ∈ R (6)

Sk
N(x)(h, w) =

1
n

n

∑
i=1

s
(

pk
N(xi), f k

img(h, w)
)

, Sk
N(x)(h, w) ∈ R (7)

In this study, cosine similarity was chosen for similarity calculation. The calculation
process for the similarity feature map is demonstrated in Equation (8), where the defect
prototype pk

D
(
xj
)

and input image feature map f k
img(h, w) are both vectors of length Ck.

s
(

pk
D
(
xj
)
, f k

img(h, w)
)
=

pk
D
(
xj
)· f k

img(h, w)∥∥pk
D
(
xj
)∥∥

2 ×
∥∥∥ f k

img(h, w)
∥∥∥

2

(8)

After performing similarity calculations between all feature prototypes and the input
image features, a probability distribution over defects for each position in the image
is established using softmax. This allows us to obtain the probability of each position
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being a defect, as shown in Equation (9), where q(y = de f ect|x ) represents the conditional
probability that y belongs to defect under the premise of given input x:

q(y = de f ect| x) =
1
3

3

∑
k=1

exp
(

Sk
D(x)(h, w)

exp
(
Sk

D(x)(h, w) + exp
(
Sk

N(x)(h, w)
) (9)

By combining Equation (9), we can observe that the essence of FS-RSDD is to evaluate
the similarity between input samples and defect prototypes, as well as the dissimilarity
between input samples and normal prototypes in three feature spaces (obtained from
three layers of the feature extractor), as illustrated in Figure 4. Finally, defect detection is
performed by integrating the prediction results from the three feature spaces, as shown in
Equation (9).

Figure 4. The similarity calculation of the FS-RSDD, blue and black areas represent the distribution
bound of normal and defective samples, respectively.

3.4. Image-Level Defect Detection

Image-level defect detection aims to perform image-level binary classification between
normal rail images and rail images containing defects. By processing the predicted results
in Section 3.3 accordingly, we can obtain the corresponding image-level prediction results.

Our approach is based on a simple idea. If we define q(y = de f ect| x) in Section 3.3 as
the defect score of a certain pixel, we can represent the probability of an image containing
defects by considering the defect score of the pixel with the highest defect score in the
predicted image. However, this approach leads to poor performance, as it only considers
individual pixels and lacks consideration for the local neighborhood pixels. In order to
further improve the detection accuracy, we decided to use a simple Gaussian blur to fuse
information from the local neighborhood of pixels. The process of Gaussian blur on an
image is the convolution of the image with a two-dimensional Gaussian distribution that
has been discretely sampled, as shown in Figure 5. Subsequently, we performed image-level
defect detection. This approach significantly improved the performance of our model, as
demonstrated in Section 4.3.
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Figure 5. The schematic of the process of two-dimensional Gaussian blur, in heat map, the depth of
red color represents the probability of the presence of defects in the area.

4. Experiments and Results

4.1. Evaluation Metrics

This article focuses on the detection and localization of rail surface defects, which
involves binary classification tasks at both image and pixel levels for defect rail images and
normal rail images. The receiver operating characteristic (ROC) and precision recall (PR)
are used as the evaluation metrics for the model.

These two performance metrics have different emphases, which enable this study to
comprehensively evaluate the performance of the model during the experimental process.
Additionally, we assessed the classification performance at both the image level and the
pixel level. These two metrics, respectively, represent the algorithm’s ability to classify
defects and accurately locate them. By evaluating performance at both levels, a more
comprehensive analysis of the algorithm’s effectiveness can be obtained.

As defined in Equations (10) and (11), the x-axis of the ROC curve represents the
false-positive rate (FPR), and the y-axis represents the true-positive rate (TPR), in which FP
denotes false positives (negative samples falsely predicted as positive), TN denotes true
negatives (negative samples correctly predicted as negative), TP denotes true positives
(positive samples correctly predicted as positive), and FN denotes false negatives (positive
samples falsely predicted as negative). A larger area under the ROC curve indicates better
performance of the classifier. In this article, the model evaluation metrics are divided into
image-level ROCs and pixel-level ROCs, which correspond to evaluation metrics for images
and individual pixels, respectively.

FPR =
FP

FP + TN
(10)

TPR =
TP

TP + FN
(11)

The recall rate is represented on the x-axis of the PR curve, while the accuracy precision
is depicted on the vertical axis. The definitions of recall and precision are provided in
Equations (12) and (13), respectively. The area under the PR curve corresponds to the
average accuracy (AP). A larger area under the PR curve indicates better performance of
the classifier.

Recall =
TP

TP + FN
(12)

Precision =
TP

TP + FP
(13)
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4.2. Experiment Setup
4.2.1. Dataset Setup

This article uses a dataset from the open-source Rail Surface Defect Detection dataset
(RSDDS) [45]. RSDDS consists of two types of rail defect data: Type-I and Type-II. Type-
I defects were obtained from 67 defect images collected from high-speed train tracks.
Type-II defects, on the other hand, were collected from 128 defect images obtained from
regular/heavy-duty transportation tracks. In this article, the two types of defect images are
first divided into normal samples and defect samples through fixed ratio image cropping.
During the cropping process, images that have a too small defect area are discarded. The
image processing process is shown in Figure 6.

Figure 6. The process of dataset creation.

After the aforementioned process, there are 113 defect samples in Type-I dataset and
230 defect samples in Type-II dataset. To ensure a balanced representation of positive
and negative samples in the test set and to provide a more accurate evaluation of the
performance of the proposed method, we randomly selected normal rail samples for the
test set, ensuring that the quantity was consistent with the number of defect samples.

Finally, the Type-I dataset consisted of 302 normal samples for the training set,
113 defect samples, and 113 normal samples for the testing set. Meanwhile, the Type-
II dataset comprised 2071 normal samples for the training set, 230 defect samples, and 230
normal samples for the testing set. Additionally, the model necessitates a limited number
of defect samples during the training phase, which will be randomly selected from the test
set. After being partitioned and resized, the resolution of Type-I rail images is 160 × 160,
while Type-II rail images have a resolution of 64 × 64.

4.2.2. Comparison Experiment Setup

The proposed method in this article is compared with mainstream unsupervised
industrial defect detection algorithms and existing few-shot supervised industrial defect
detection algorithms in terms of classification evaluation metrics on the RSDDS dataset.

As there may be variations in the defect samples extracted during each training process,
a random selection of a small subset of defect samples is employed for training during the
experimental process. To ensure robustness, multiple experiments are conducted, and the
average value is considered as the validation result of the model.

In the comparison experiments with unsupervised methods, since the defect samples
for training are randomly selected in each experiment, the test set may not include the
exact same defect samples in each experiment. Therefore, to maintain consistency, multiple
tests are also conducted on the unsupervised industrial defect detection algorithms, and
the defect samples utilized for our method are excluded from the test set to ensure a fair
evaluation of both methods on the same test set, ensuring that the test set used aligns
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consistently with the test set employed in each experiment of the proposed method in
this article.

Similarly, when comparing the performance with few-shot supervised industrial defect
detection algorithms, multiple experiments are conducted, and the average test results are
used as the final performance metric. Additionally, in each experiment, the defect samples
utilized for training the few-shot supervised industrial defect detection algorithm are
consistent with the defect samples randomly selected for training in the proposed method
in this article. Furthermore, the default values were maintained for all other settings of
the comparative models in the code. All the comparative models that were involved with
the gradient decent process are trained to convergence to guarantee the impartiality of
performance comparisons.

4.3. Comparison with Unsupervised-Based Algorithm

The performance comparison results with unsupervised methods are presented in
Tables 1–3. Table 1 displays the average image-level ROC, Table 2 shows the average
image-level AP, and Table 3 presents the average pixel-level ROC. All of these metrics
were obtained from 20 random sampling validations. In the training process, “m” refers
to the defect sample used. It is worth mentioning that the unsupervised algorithms were
implemented using the open-source industrial defect detection library anomalib [46].

Table 1. Image-level ROC of our proposed FS-RSDD and other unsupervised anomaly detection models.

Model
Dataset FS-RSDD Padim [30] PatchCore [32] stfpm [31] cflow [9] fastclow [10]

RSDDS Type-I m = 5 0.941 0.950 0.951 0.899 0.866 0.895
RSDDS Type-I m = 10 0.952 0.950 0.951 0.905 0.903 0.894
RSDDS Type-II m = 5 0.989 0.976 0.996 0.990 0.875 0.983

RSDDS Type-II m = 10 0.991 0.976 0.996 0.990 0.881 0.984

Table 2. Image-level AP of our proposed FS-RSDD and other unsupervised anomaly detection models.

Model
Dataset FS-RSDD Padim PatchCore stfpm cflow fastclow

RSDDS Type-I m = 5 0.943 0.981 0.982 0.947 0.939 0.956
RSDDS Type-I m = 10 0.953 0.980 0.981 0.951 0.950 0.953
RSDDS Type-II m = 5 0.986 0.970 0.995 0.988 0.890 0.980

RSDDS Type-II m = 10 0.986 0.970 0.995 0.988 0.886 0.981

Table 3. Pixel-level ROC of our proposed FS-RSDD and other unsupervised anomaly detection models.

Model
Dataset FS-RSDD Padim PatchCore stfpm cflow fastclow

RSDDS Type-I m = 5 0.987 0.976 0.974 0.980 0.970 0.953
RSDDS Type-I m = 10 0.991 0.977 0.975 0.981 0.971 0.954
RSDDS Type-II m = 5 0.961 0.920 0.919 0.948 0.852 0.919

RSDDS Type-II m = 10 0.962 0.920 0.920 0.948 0.855 0.919

Combining the data from Tables 1 and 2, it can be observed that our proposed method
outperforms other unsupervised industrial defect detection algorithms in terms of image-
level classification ROC, except for PatchCore. However, it does not show significant
advantage over other unsupervised algorithms in terms of image-level AP.

The reason behind this result lies in the fact that AP is more inclined towards the
detection of positive instances, i.e., defect samples, while ROC is a relatively balanced
evaluation metric. The better performance of our method in ROC compared to AP may be
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attributed to the fact that, while maintaining a high precision, our method has a lower false-
positive rate for defect detection. However, it has a higher false-negative rate compared to
some algorithms, while under the same conditions, some unsupervised defect detection
algorithms have a lower false-negative rate but a higher false-positive rate.

We further analyzed the defects that were not successfully detected by our method.
Figure 7 shows the heatmap of the undetected defect samples and the successfully classified
normal samples by our method, under the given defect detection threshold.

  
(a) (b) 

Figure 7. The heatmap visualization of false negatives and true negatives in the prediction results:
(a) heatmap of false negatives, showing high defect scores in the actual defective regions; (b) heatmap
of true negatives, showing high anomaly scores for noise or stains that are similar to defects.

By observing the heatmap of false-negative samples, we can visually see that the
defective parts in the rail images are actually represented by darker colors. This means that
our proposed method can accurately distinguish the defect foreground from the normal
rail background. The reason why these defects were not detected can be further observed
from the predicted results of true-negative samples. We can see that the reason for the
lower AP in our method is that for those stains or noises that are difficult to distinguish
from defects in the images, our method also considers them as potential defects. Although
the probability of these noises belonging to defects may not be significantly higher than
true defects, this ambiguous discrimination leads to our method’s inability to provide
clear judgments for some challenging cases. In other words, the trade-off of our method
rarely misclassifying normal samples as defect samples is that some defect samples are also
considered as normal samples. As a result, we have a higher ROC but a relatively lower AP.

Another thing we can observe from Tables 1 and 2 is that, regardless of the algo-
rithm used, there is a significantly better performance on Type-II data compared to Type-I
data. The reason behind this phenomenon is consistent with our previous analysis on the
difference in performance between the two metrics, which is the presence of noise and
interference in the images. As shown in Figure 8, it can be seen that, perhaps due to better
image acquisition conditions, the Type-II rail images contain much less noise compared to
Type-I data.

In Figure 8, the red curve indicates the defective area, while the green curve indicates
the noise that is similar to the defect. It can be clearly seen that Type-I data contain much
more noise that interferes with defect detection compared to Type-II data.

Furthermore, according to the data in Table 3, we can also observe that our method
outperforms most unsupervised AD methods except Patchcore in terms of pixel-level ROC,
indicating that our algorithm achieves more precise segmentation for the same defect.
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(a) (b) 

Figure 8. Type-I rail surface data and Type-II rail surface data. The true defects are circled in red,
while the noise or stains similar to defects are circled in green. (a) Type-I data, where more noise and
stains are visible; (b) for Type-II data, it is visually evident that there is not much noise interference.

In Figure 9, the segmentation results of different algorithms for the same defect sample
are displayed. It is evident from this that our proposed algorithm exhibits more precise
prediction and is less prone to generating false predictions on the background when
compared to other algorithms.

Figure 9. Comparison of FS-RSDD with other unsupervised AD models in terms of prediction results.

4.4. Comparison with Few-Shot Supervised-Based AD Algorithms

We also conducted comparative experiments with few-shot industrial defect detection
algorithms. The experimental setting was similar to the unsupervised algorithm compar-
ison experiment. We conducted 20 experiments, each time randomly selecting m defect
samples for model training. The defect samples used for training in the comparative meth-
ods remained consistent with our proposed method. The average ROC and average AP
were then calculated for performance comparison, as shown in Table 4. According to the
results in the table, considering both the ROC and AP metrics, our method demonstrates
advantages compared to DevNet [23] and DRA [22].

We not only compared the average performance but also recorded the performance of
the model for each experiment in order to observe the impact of different training samples
on the model’s performance.

Figure 10 shows the changes in the model’s ROC after training with randomly sampled
defect data from Type-I and Type-II datasets, respectively.
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Table 4. Comparison between FS-RSDD and other few-shot industrial defect detection models.

ROC AP

Dataset FS-RSDD DevNet DRA FS-RSDD DevNet DRA
Type-I m = 5 0.941 0.905 0.888 0.943 0.967 0.958
Type-I m = 10 0.952 0.930 0.927 0.953 0.976 0.973
Type-II m = 5 0.989 0.858 0.955 0.986 0.901 0.963

Type-II m = 10 0.991 0.911 0.974 0.986 0.939 0.978

    
(a) (b) (c) (d) 

Figure 10. Performance fluctuations of FS-RSDD compared to the benchmarked few-shot supervised-
based AD algorithms with different defect data for training: (a) Type-I, m = 5; (b) Type-II, m = 5;
(c) Type-I, m = 10; (d) Type-II, m = 10.

From the observation of Figure 10, it can be noticed that FS-RSDD exhibits more stable
and robust performance compared to other models when different defect data are used for
training. Furthermore, although FS-RSDD shows more fluctuations on Type-I data compared
to Type-II data, it shows better performance compared to the rest of the few-shot supervised-
based AD models. This is mainly attributed to the fact that FS-RSDD not only utilizes defect
features but also fully utilizes the features of a normal rail for defect detection. On the other
hand, other algorithms tend to focus more on extracting information from defect samples,
which can lead to lower accuracy when the quality of defect samples is poor.

4.5. Ablative Studies

In this section, we conducted ablation experiments to explore the impact of differ-
ent settings on the performance of FS-RSDD. These experiments included comparative
experiments on the model’s performance using features from different semantic levels of
the feature extractor, whether using Gaussian blur or not, and extracting features using
different feature extractors. The experiments were conducted by extracting defect samples
and training the model 20 times and then comparing the average performance of the model.
The number of samples extracted was m = 10, and the defect samples used for training
were consistent with those used in the experiments in Sections 4.1 and 4.2.

We first conducted comparative experiments on the performance of the FS-RSDD
model using different feature extractors, both with and without Gaussian blur. Table 5
presents the performance of FS-RSDD on Type-I and Type-II rail surface defect datasets
when using ResNet18, ResNet50, and WideResNet50 [47] as feature extractors.

From the experiment data in Table 5, we can clearly observe the significant impact of
different feature extractors and the use of Gaussian blur on the detection performance of
the model. From this, we can observe that when using ResNet18 as the feature extractor,
the model has lower accuracy but faster speed. This is evident due to ResNet18 having
fewer model parameters and faster inference speed but correspondingly poorer feature
extraction capability. On the other hand, unlike ResNet18, WideResNet50, with its wider
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feature channels, can achieve better performance when used as a feature extractor, albeit
with relatively slower detection speed.

Table 5. The impact of different feature extractors and the use of Gaussian blur on the performance
of FS-RSDD.

Feature Extractor Image-Level ROC Image-Level AP Pixel-Level ROC FPS

Type-I
m = 10

ResNet18 0.896 0.889 0.964 130.890
ResNet50 0.906 0.901 0.976 70.403

WideResNet50 0.930 0.927 0.985 64.664
ResNet18 + Gaussian blur 0.934 0.935 0.980 130.052
ResNet50 + Gaussian blur 0.937 0.935 0.986 70.837

WideResNet50 + Gaussian blur 0.952 0.953 0.991 63.519

Type-II
m = 10

ResNet18 0.968 0.959 0.939 299.114
ResNet50 0.984 0.978 0.948 231.154

WideResNet50 0.985 0.979 0.952 204.306
ResNet18 + Gaussian blur 0.986 0.983 0.955 265.375
ResNet50 + Gaussian blur 0.990 0.986 0.959 215.554

WideResNet50 + Gaussian blur 0.990 0.987 0.959 211.447

Additionally, by comparing the performance of each feature extractor with and without
Gaussian blur, we can easily observe the extent of improvement that Gaussian blur brings
to the model’s performance. This demonstrates the enhancement of predictive performance
through the fusion of pixel neighborhood features.

Comparative experiments were also conducted on the performance of the FS-RSDD
model by utilizing features from different semantic levels to construct the memory bank,
as presented in Table 6. In the experiment, the WideResNet50 is employed as the feature
extractor, and Gaussian blur is applied to improve the performance. It can be clearly seen
that the use of different combinations of semantic level features has an impact on the perfor-
mance of FS-RSDD. When only using single- or two-level features for model construction,
the performance of the model is suboptimal. However, when using multi-level features
from a shallow layer, FS-RSDD exhibits the best performance. Furthermore, we conducted
experiments with the utilization of features from deeper semantic levels. However, we
observed no significant enhancement in the performance of FS-RSDD but a decrease in
frames per second (FPS) due to the increased number of feature similarity calculations.

Table 6. The impact of constructing a feature memory bank using different hierarchical features on
the performance of FS-RSDD.

Dataset Layer
Image-Level

ROC
Pixel-Level

ROC
Image-Level

AP
FPS

Type-I
m = 10

Layer1 0.677 0.885 0.658 71.145
Layer1 + 2 0.920 0.976 0.911 63.552
Layer1 + 3 0.935 0.988 0.943 66.293
Layer2 + 3 0.954 0.991 0.956 75.039

Layer1 + 2 + 3 0.952 0.991 0.953 63.519
Layer1 + 2 + 3 + 4 0.949 0.988 0.948 61.557

Type-II
m = 10

Layer1 0.846 0.925 0.868 235.983
Layer1 + 2 0.981 0.964 0.976 221.524
Layer1 + 3 0.990 0.957 0.986 222.655
Layer2 + 3 0.990 0.959 0.987 240.008

Layer1 + 2 + 3 0.991 0.962 0.987 211.447
Layer1 + 2 + 3 + 4 0.992 0.955 0.988 207.422
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4.6. Time Complexity and the Size of Memory Bank

In this section, we conducted a comparative analysis of the computational complexity
and size of memory banks among different models. The Type-I image data have a resolution
of 160 × 160, while the Type-II data have a resolution of 64 × 64. All models employed the
same network, WideResNet50, as the feature extractor. It is evident from Table 7 that FS-
RSDD, benefiting from its compact feature memory bank that models the entire normal rail
background, outperforms unsupervised anomaly detection and few-shot defect detection
algorithms in terms of time complexity. Moreover, this advantage is more significant on the
low-resolution Type-II dataset.

Table 7. The time complexity comparison between FS-RSDD and other benchmarked models.

FS-RSDD Padim Patchcore stfpm cflow fastflow devnet

Type-I
m = 10 63.519 57.434 60.378 47.500 21.310 44.954 25.306

Type-II
m = 10 211.447 101.045 96.905 84.843 61.526 58.613 39.192

We also conducted experiments regarding the size of the memory bank. We extracted
the memory bank of our model and other methods and compared them to demonstrate the
compactness of the memory bank obtained by our approach. We contrasted our method
with memory-bank-based approaches [30,32]. The results are as shown in Table 8. In the
experiment, each model utilizes the WideResNet50 feature extractor, with an input image
resolution of 160.

Table 8. Memory bank comparison: each element is a floating-point number.

FS-RSDD Patchcore Padim

Number of elements 71,680 184,320 950,364,800
File size 282 KB 721 KB 3.54 GB

5. Discussion

The method proposed in this article mainly combines the idea of feature-embedding-
based industrial defect detection algorithms and the prototypical network. By embedding
features of defects and normal rails, corresponding feature memory banks are obtained.
FS-RSDD estimates the similarity of the input samples to the defect prototype and the
normal prototype in the feature space for defect detection. This simple and direct method
can achieve quite good results on the rail surface defect dataset using only a few samples.
However, there are still some shortcomings. After studying the experimental results in
Section 4.3, it can be concluded that although this method can effectively distinguish the
rail background and defect foreground, it cannot effectively discriminate between defects
and noise.

To explore the possibility of improving the model’s detection performance using
traditional image-processing techniques, we conducted additional experiments. We per-
formed another experiment on both the RSDDS Type-I dataset without processing and
the dataset processed with image processing. The experiment was conducted only once,
and the random seed was fixed. Following the method described in reference [45], we
used gamma transform to improve the uneven lighting in the images and combined it
with Gaussian blur for image denoising. In the end, we achieved a pixel-level ROC of
99.3% and an image-level ROC of 96.5% on the original dataset, while on the denoised
dataset we achieved a pixel-level ROC of 99.3% and an image-level ROC of 96.2%. It can be
seen that after image processing, the model’s performance did not improve as expected.
We believe this may be due to the fact that deep-learning-based feature extractors have
strong feature extraction capabilities, and the noise and uneven lighting that traditional
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image processing techniques can handle can also be distinguished by the feature extractor.
However, noise and interference that are difficult for the feature extractor to distinguish
are equally challenging for traditional image processing techniques. Therefore, instead
of traditional image processing methods, we will focus on enhancing our work through
novel image processing techniques in the future. Additionally, our research will prioritize
exploring deep learning methods in defect detection.

6. Conclusions

This paper proposes a few-shot rail surface defect detection model, FS-RSDD, to
address the issue of insufficient defect samples in the field of rail surface defect detection. FS-
RSDD combines the idea of feature-embedding-based industrial defect detection algorithms
with the prototypical network. The method utilizes a pre-trained convolutional neural
network to embed features of both defective and normal samples. It then uses clustering
algorithms to learn the distribution of features of normal samples. Finally, through the
prototype learning approach, softmax is used to estimate the probability of a test sample’s
feature belonging to a defect in the feature space.

The proposed method surpasses all comparative algorithms in terms of speed by
achieving a compact feature memory bank, which models the overall feature distribution
of normal rail backgrounds. Additionally, the proposed method outperforms comparative
few-shot defect detection algorithms in terms of accuracy on the RSDDS public dataset and
is on par with the current state-of-the-art unsupervised anomaly detection algorithms.
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Abstract: The condition monitoring of an overhead contact line (OCL) is investigated by developing
an innovative monitoring system for a pantograph on an electrical multiple unit of a regional
line. Kinematic and dynamic modelling of the pantograph is conducted to support the designed
monitoring system. The modelling is proved through rigorous test-rig experiments, while the
proposed methodology is then validated through extensive field tests. The field tests serve a dual
purpose: First, to validate the monitoring system using benchmark measurements of the tCat® trolley,
and second, to assess the reproducibility of measurements in a realistic case. This paper presents
the OCL monitoring system developed in the framework of the H2020 project SIA. The accuracy
of our results is not far from that of other commercial systems, with just 12 mm of absolute error
in the height measurement. Therefore, they provide reliable information about trends in various
key performance indicators (KPIs) that facilitates the early detection of failures and the diagnosis
of anomalies. The results highlight the importance of model calibration and validation in enabling
novel health monitoring capabilities for the pantograph. By continuously monitoring the parameters
and tracking their degradation trends, our approach allows for optimized scheduling of maintenance
tasks for the OCL.

Keywords: pantograph–catenary interaction; infrastructure monitoring; railway; experimental results

1. Introduction

The overhead contact line (OCL) or catenary system is a key element of the railway
infrastructure that provides the supply of energy to the electrical vehicles running through
a line. The electric current is transferred from the contact wire (CW) to the vehicle through
pantographs installed on the roof. The pantograph and OCL interaction depends on
their mechanical characteristics [1] and contributes to the degradation of both systems
with regard to their design configurations. Monitoring such interactions allows a good
characterization of the health status of the OCL. Furthermore, maintenance operations are
scheduled periodically to recover the original state of the OCL based on the data gathered
from periodic (however scarce) inspections. These data are normally provided by expensive
equipment installed in dedicated vehicles and processed by expert data analysts. However,
this maintenance approach increases the life cycle cost (LCC) of the railway infrastructure.
A preventive opportunistic maintenance strategy can reduce the number of maintenance
schedules [2]; the maintenance of an OCL could, therefore, be optimised by monitoring
some of their characteristics, such as the height and stagger of the CW (Figure 1), from
sensors placed on pantographs and reducing the LCC. In addition to maintenance, the
prediction of probabilistic risks is also being studied [3].
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Figure 1. Schematic representation of the overhead contact line (OCL).

The geometrical study of the pantograph frame is described by Benet et al. [4], consid-
ering a three-dimensional model. Generally, the static force at the head of a pantograph
remains constant regardless of the working height. This can be achieved through the accu-
rate design of the geometry and the mechanism to lift the pantograph [5]. Not only the static
lift force but also the tension of the CW have a significant influence on the dynamic perfor-
mance of the pantograph and catenary system [6]. The deviation of the dropper length and
the mast height from their nominal values is primarily responsible for tension changes [7].
Vesali et al. proposed a fast and accurate method for determining the static equilibrium
configuration of a catenary [8]. Regarding the dynamic behaviour, wind loads and the
irregularities of the CW also have a significant influence [9,10]. The dynamic performance
due to local dropper defects has also been studied [11]. Most of the models employed
are gathered together in the benchmark presented by Bruni et al. [12]. In these models,
pantographs are usually modelled by two or three lumped masses, whose parameters
can be obtained through experimental testing [13]. Accurate pantograph–catenary models
provide a suitable approach for different investigations, such as assessing the current col-
lection quality [14] or monitoring the stagger [15]. In addition to models, test facilities are
developed to study the interaction between pantographs and OCL systems [16].

Inspection and monitoring are closely related concepts associated with railway in-
frastructure maintenance. Inspection entails systematic examination of the condition of
different railway components, such as tracks, OCL, bridges, tunnels, and other structures,
utilising sensors, cameras, and similar technologies. Typically conducted at regular inter-
vals, such as annually or bi-annually, inspections aim to identify potential issues and defects
that need to be repaired. On the other hand, monitoring involves the continual or regular
gathering of data on the condition of railway components. These data are subsequently
analysed to detect trends and patterns that may imply potential problems or concerns.
The primary objective of monitoring is to enable early detection of potential issues and
facilitate timely intervention before they escalate into major problems. Both inspection
and monitoring serve as crucial instruments for ensuring the safety and reliability of the
railway network. While inspections provide a detailed snapshot of the condition of railway
components, monitoring allows a more continuous and real-time evaluation of their state.

The deployment and installation of infrastructure monitoring systems can vary, lead-
ing to different approaches [17]. Wayside monitoring and on-board monitoring are two
distinct methods employed in assessing railway infrastructure. Wayside monitoring in-
volves the utilization of sensors and stationary technologies positioned alongside the
railway tracks, such as on the ground, on bridges, or within tunnels. These technologies
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gather data on the condition of vehicles and some network assets. Conversely, on-board
monitoring entails the incorporation of sensors and embedded technologies directly on
trains. These technologies collect data on the condition of the trains, their components, and
the railway infrastructure’s assets as the train traverses over them. On-board monitoring
facilitates the real-time collection of data on the railway network’s condition, enabling
the identification of potential issues and defects in linear infrastructure, such as the OCL.
In this case, different technologies can be used to assess the health status of the railway
OCL. These technologies enable the detection of deformations such as sagging, twisting, or
other anomalies that could impact the performance of the OCL system. Some examples
of these technologies include laser scanners, which use lasers to precisely measure the
position and alignment of the CW [18]; infrared cameras, capable of detecting temperature
variations and other anomalies within the OCL system [19], aiding in identifying potential
issues; other vision-based technologies for anomaly detection and failure diagnosis in the
catenary equipment [20]; accelerometers, which measure the vibration of the wires and
other related structures, providing valuable insights into their dynamic behaviour [21]; and
distributed acoustic sensing (DAS) systems, which use fibre optic cables along the lines or
in the pantograph to detect defects along the OCL system and its components [22].

The above-mentioned monitoring systems for OCL can pose challenges in terms of
cost, installation, and maintenance, placing a significant burden on railway operators. To
tackle this issue, there is an increasing demand for low-cost monitoring systems that offer
ease of installation and maintenance, without the need for specialized tools or expertise.
These systems should also have the capability to gather detailed and precise data regarding
the condition of the OCL system. This enables early detection of potential issues and
failures, facilitating timely repairs and maintenance interventions. By addressing the cost
and complexity associated with monitoring, these low-cost systems aim to alleviate the
burden on railway operators and enhance the overall efficiency of OCL maintenance.

Therefore, this work aims to develop a non-intrusive and low-cost monitoring system
for an OCL that leverages the modelling of the pantograph. The system uses affordable
MEMS (micro-electro-mechanical systems) sensors in the range of a few dollars, signifi-
cantly reducing costs (up to 2–3 orders of magnitude) compared to traditional railway-
specific and optic-based systems. While our system does not cover all the parameters
covered by the EN50317 standard [23], it offers a crucial set of key performance indicators
(KPIs). These KPIs include geometrical parameters (CW height and stagger) and an estima-
tion of the static contact force, ensuring a comprehensive evaluation of the OCL condition.
Initially, the modelling of a pantograph is implemented in MATLAB to consider the kine-
matics and static loads within the working range of the panhead height. Subsequently,
experimental tests are conducted on a test rig to evaluate the actual characteristics of the
pantograph. Based on the findings from these prior tasks, the design of a non-intrusive
monitoring system is developed. Finally, the effectiveness of the developed system is
validated through field tests, which yield results comparable to those obtained through
conventional measuring methods.

2. System Modelling

In the current research, some models for simulating the mechanical behaviour of a
pantograph are proposed, which enable the simulation of various pantograph details while
accommodating changes in the characteristics of its components. The models have been
successfully implemented using MATLAB and provide interesting results regarding contact
height, static contact force and stagger of the CW. The proposed models are valid for any
pantograph, but note that the torque calculation employed for the static contact force model
is only for this specific design.

The model adopted for the kinematical assessment considers the structure of the
pantograph to be a one-degree-of-freedom articulated quadrilateral mechanism. The
symbolic solver of MATLAB allows calculating the different positions of the assembled
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structure, which comprises three primary parts: the push bar (a), lower arm (c) and
connections on the upper arm (b), given an inclination value of the lower arm according to

a· cos(α − ϕ) + b· cos(β − ϕ)− c· cos(γ − ϕ)− d = 0, (1)

a· sin(α − ϕ) + b· sin(β − ϕ)− c· sin(γ − ϕ) = 0, (2)

where:

• a, b, c are the length of the three bars of the articulated quadrilateral mechanism.
• α, β, γ are the inclination against the horizontal of a, b and c bars.
• d is the distance between fastening points.
• ϕ corresponds to the angle of fastening points against horizontal.

The solution obtained from the articulated quadrilateral mechanism defines the entire
upper arm part of the pantograph. Figure 2 shows the downward movement of the
pantograph head, where the head trajectory is defined by the dimensional characteristics
of the structure. The parameters used in the articulated quadrangle are summarized in
Table 1. The upper arm bar connected to b has a length of 2.055 m and a relative inclination
of 35.3 degrees.

Figure 2. Simplified representation of a pantograph model and movement of the pantograph head.

Table 1. Parameters of the articulated quadrangle.

Parameter Value Units

a 1.615 m
b 0.235 m
c 1.400 m
d 0.4643 m
ϕ 0.5814 rad

The uplift force of the pantograph originates from a torque applied to the lower arm.
When the strips make contact with the CW, the pantograph reaches a steady state. This
steady state can be evaluated for each position in a 2D analysis. The maximum vertical slope
of a CW should be 2‰. Therefore, at the maximum speed of a regional EMU train (around
25 m/s), the vertical speed of the panhead could reach less than 0.1 m/s and dynamic effects
on pantograph arms can be avoided. The supports for both the lower arm and the push bar
are constrained in the vertical and longitudinal directions. As a result, the structure of the
pantograph becomes hyperstatic, and a breakdown of its components is required to solve
the problem. Figure 3 illustrates the unassembled structure, which facilitates the definition
of a system comprising nine equations and nine unknowns, as follows:
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0

a31 a32 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 a65 a66 0 0 0
0 0 −1 0 0 0 −1 0 0
0 0 0 −1 0 0 0 −1 −1
0 0 0 0 0 0 a97 a98 a99

⎞
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⎛
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1 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0

a31 a32 0 0 0 0 0 0 a39
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 a65 a66 0 0 a69
0 0 −1 0 0 0 −1 0 0
0 0 0 −1 0 0 0 −1 0
0 0 0 0 0 0 a97 a98 0

⎞
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
{

bT

}
. (4)

where generally aij terms depend on the geometrical design (distance units) of the structure
and must be properly defined to obtain an equilibrium of forces and moments. The a39
and a69 non-dimensional terms, which are multiplied by a torque T, take 1 or 0 value as
a function of where the torque is applied (joint a or o). The vectors bF and bT refer to
the terms that are necessary to solve the contact force Fc or applied torque T respectively.
These terms depend not only on the geometrical design but also on the mass of each bar.
The terms Ho,d,a,b and Vo,d,a,b solve the horizontal and vertical reactions at the ends of the
bars, while neglecting any bending effects. Hence, the terms of bF and bT vectors meet the
equilibrium of force in the horizontal direction (mainly zero), the vertical direction (mainly
mass of the bar multiplied by gravity, with force units) and torque (depending on mass,
forces on the ends and their distance from the assessed point), respectively, for each bar of
the structure.

 
(a) (b) 

Figure 3. Simplified representation of a pantograph model. (a) Assembled and (b) breakdown structure.

As viscous and dry friction phenomena in articulated and prismatic joints are neglected
in the model for the estimation of the static contact force, the calculated contact force for a
known height should be given along with a confidence interval that can be obtained with
previous tests.

28



Sensors 2023, 23, 7890

The torque application mechanism on the lower arm can vary depending on the type
of pantograph. In the case of the monitoring system here presented, the pantograph (of a
regional train) is equipped with a passive torque actuator comprising two linear springs.
However, the relationship between the applied torque and the inclination angle of the
lower arm is non-linear. To achieve this non-linear torque characteristic, the pantograph
incorporates a mechanical system that controls the distance between the spring and the
rotation centre of the lower arm. This control is accomplished using two screws, which
determine the position of a one-degree-of-freedom mechanism consisting of a helical spring
and three bars.

The helical spring is elongated from its nominal length within the working range of
the pantograph structure, exerting a force Fs. The applied torque T, opposing the rotation
of the lower arm (denoted by γ), can be calculated using the stiffness of the linear spring
Ks, its elongation δs, and the distance to the rotation centre of the lower arm ds, instead of a
non-linear rotational stiffness Kγ and the accumulated rotation, according to

T(γ) = Kγ·γ = Fs·ds = Ks·δs·ds. (5)

The mechanical system that introduces a non-linear torque to the pantograph structure
has been modelled using MATLAB. This mechanism consists primarily of four bars, one
of which (associated with helical springs) can change its length and is joined at one end
to the baseplate. Another bar is fixed to the lower arm and the screws that control the
mechanism, ensuring that their relative rotation with respect to the rotation centre is the
same. The remaining two bars have circular-shaped ends, and their relative movement
with the preceding bar becomes negligible once contact with the corresponding screw is
established. Considering the lowering of the pantograph structure, before contact occurs,
the bars with circular-shaped ends and the changeable bar are aligned. Figure 4a shows
the representation of the computational model, where the elongation δs and distance
ds are calculated for each inclination of the lower arm. Figure 4b provides a schematic
representation of this model, overlaid on the actual mechanism.

(a) 

(b) 

 

Figure 4. (a) Computational modelling of torque application and (b) schematic representation above
the real mechanism.

29



Sensors 2023, 23, 7890

Once the kinematical assessment of the mechanism of torque application is completed,
the applied torque, as a function of the inclination of the lower arm, T(γ), is found to be
proportional to the stiffness of the helical spring. Using Equations (3) and (4), the static
contact force Fc on the top of the pantograph structure can be determined. Thus, the
geometrical characteristics, the mass of the pantograph structure, the spring stiffness, and
the distance of screws are sufficient to calculate the static contact force.

The system modelling approach employed in this study for the stagger assessment is
based on the signal processing techniques used in the OCL model developed by Blanco
et al. [15]. This model has a lumped mass representation of the pantograph, allowing for
its interaction with a 2D OCL model. The model calculates panhead accelerations that,
after SAWP signal processing, enable the monitoring of stagger in OCL systems. The
calculation of the static force applied at the lowest mass of the lumped mass model, aimed
at maintaining the contact force close to its nominal value, follows the guidelines outlined
in the standard EN-50367 [24]. To ensure accurate results from this model, the lumped
mass model should be representative of the pantograph installed on the train roof. For that
purpose, instead of relying on parameter estimation from real tests, a linear system analysis
(LSA) utilising multibody systems (MBS) can be employed [25].

In the system proposed here, the accelerations are directly obtained from sensors on
the panhead, and only SAWP signal processing is employed without the need to use the
dynamic model in [15].

3. Test Rig Experiments

To validate the developed model, test-rig experiments were conducted using an actual
pantograph. The tests were carried out at the facilities of the Spanish train operating
company FGC (Ferrocarrils de la Generalitat de Catalunya) on a working table designed
for the calibration of pantographs. During these experiments, multiple acceleration and
displacement sensors were strategically placed on the pantograph. An inclinometer was
mounted on the lower arm to serve as a reference for the position of the structure. Fur-
thermore, a load cell was utilised to measure the force at the panhead for different height
positions. The configuration of the sensors on the pantograph is depicted in Figure 5.

The panhead of the pantograph was positioned at different heights within the opera-
tional range, from 0.5 to 2.5 metres. For each position, three measurements were considered:

• Shaft distance from baseplate
• Rotation angle of the lower arm from the horizontal
• Deformation of the helical spring relative to a previous reference.

Figure 6 presents a comparison between the measured shaft height and the inclination
of the lower arm, as well as the kinematic assessment of the pantograph structure. The
obtained results confirm the accuracy of the dimensions of the bars used in the system
model and their links to the base frame. The computational assessment of the torque
application mechanism provides the deformation of the helical springs and their distance
to the articulation point between the lower arm and base frame. Figure 7a shows good
agreement with the measured relative displacements. Figure 7b provides the distance
obtained by simulation, which could not be directly measured but aligns well with the
expected behaviour.

The deformation of helical springs and their distance to the articulated point en-
ables the calculation of the non-linear torque provided by each spring. The total applied
torque is obtained by summing the contributions from both mechanisms on each side
of the pantograph, as depicted in Figure 8a. To validate the torque obtained from the
kinematic assessment, a load cell is used to measure the force at different heights of the
pantograph structure. By solving the system of nine equations and nine unknowns de-
scribed in Section 2, it becomes possible to calculate the required torque for a known
contact force at the panhead. Figure 8b illustrates that the torque calculated based on the
kinematical assessment exhibits less than a 5% error compared to the torque derived from
the measured force.
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Figure 5. Pantograph instrumentation for test-rig experiments: (a) overall placement of accelerome-
ters and displacement sensors; (b) load cell for the steady-state force at panhead; (c) displacement
sensors on panhead leaf-springs and (d) displacement sensor for helical springs of structure.

Figure 6. Comparison between measurements and kinematical assessment of the structure.
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(a) (b) 

Figure 7. Computational assessment of the torque mechanism by (a) distance of springs to rotation
centre and (b) their deformation comparing with test results.

 

(a) (b) 

Figure 8. (a) Calculation of applied torque from kinematical assessment and (b) comparison with
calculated torque from the measured force at shaft.

Additionally, to validate the model, some extra tests were conducted in order to
characterise the dynamic behaviour of the contact strips of the pantograph. The modal
shapes of these elements were determined using a dynamometric hammer equipped with
a dynamic force sensor (DYTRAN 1051V4). To perform this analysis, seven accelerometers
were strategically positioned on one of the contact strips of the pantograph’s head, as
depicted in Figure 9. The structure of the pantograph was set in the lowest position and
fixed to neglect additional movements. During the test, the strip was impacted vertically at
the central position using the dynamometric hammer. A total of 5 impacts were recorded
using a trigger for applied load and a time window of 5 s with a sampling rate of 800 Hz.
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Figure 9. Sketch of accelerometers placed on the tested contact strip.

Afterwards, the recorded acceleration signals were post-processed using fast Fourier
transforms (FFTs). Each signal is subjected to FFT analysis using a 3-s time window per
impact and is normalised to its maximum value. It was necessary to discard the signals
from channels corresponding to points P3 and P4 (coloured in red in Figure 9) due to
acquisition errors. Figure 10 illustrates the resulting FFT for each point, representing the
average of all impacts. Based on the identified peaks, the first and second bending modes
are found to occur at frequencies of 57.78 Hz and 133.49 Hz, respectively. Additionally, the
vertical mode of the rigid body can be observed at lower frequencies. It arises from the
mass of the contact strip and the stiffness associated with the connection to the shaft of the
pantograph structure.

Figure 10. Averaged FFTs of measured points from five impacts with a time window of three seconds.

Table 2 shows the frequency obtained experimentally for each vibration mode. These
values are similar to those in the literature [26]. The results obtained could be used for the
implementation of the structural modes of both lead and rear strips on an OCL model.

Table 2. Experimental vertical vibration modes of a pantograph contact strip.

Vibration Mode Frequency (Hz)

Rigid body 16.79
1st bending mode 57.78
2nd bending mode 133.49
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4. Monitoring System

Based on conclusions extracted from simulations, a low-cost and non-invasive monitor-
ing system has been developed, focusing on the dynamic interaction of the pantograph and
OCL (in operational service trains). The developed system aims to monitor the necessary
information to generate different KPIs, i.e., CW height, the estimation of the contact force
and the CW stagger. The design of the system adheres to two primary constraints. Firstly,
the system’s hardware costs should be minimized to ensure affordability; a low-cost system
is sought. Secondly, the installation process should be designed to be easy and non-invasive.
These characteristics are crucial in enabling the monitoring system’s suitability for use in
service vehicles during commercial operations. Nevertheless, as a counterpart, the quality
and accuracy of the data obtained may be lower compared to more sophisticated systems
that require complex installation (e.g., disassembling the pantograph’s head to accommo-
date force sensors to measure the contact force). The advantage of simpler and low-cost
systems lies in their potential for installation in all trains operating within a network, which
facilitates the generation of more frequent and pervasive data and offers additional value
through further data analytics.

Based on that rationale, the developed monitoring system comprises several modules,
namely sensors, positioning, processing and storage, communications, and power manage-
ment. Each module contributes to the overall functionality of the system, ensuring efficient
data collection, analysis, and transmission, while optimising power usage.

The analysis described in the preceding sections has allowed the identification of the
most suitable sensors for capturing the required signals, which will be further processed to
generate the desired KPIs. The system includes two piezoresistive accelerometers (with
a range of ±3 g and a bandwidth spanning from 0 to 500 Hz), mounted at both ends of
the pantograph’s head. Furthermore, a dual-axis inclinometer/accelerometer (±90◦ and
±1.7 g) is placed at the lower arm (Figure 11).

Figure 11. Architecture of the monitoring system and location of the different components in
the pantograph.

Additionally, the monitoring system is equipped with a positioning module, which is
necessary to generate both time and position stamps that are associated with the captured
data. This module is based on a GNSS receiver that combines multi-constellation features
(GPS and GALILEO) to enhance accuracy and availability. Providing an accurate (and
available) position is key to geo-positioning the monitoring data of linear assets, enabling
repeatability in the collected data. There are two key benefits to this approach. Firstly,
it enables the precise localisation of defects along the railway line, facilitating the work
of the maintenance staff in identifying and addressing issues. Secondly, when multiple
trains provide large datasets that are accurately geo-positioned on the same line over an
extended period (e.g., months or even years), it allows an advanced analysis to gain a better
understanding of the health condition of the assets. This includes observing the evolution
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of various parameters over time at specific locations and contributing to comprehensive
asset management and maintenance strategies.

The signals captured by the sensors are synchronised (time and position stamped)
and processed onboard. The first step of the processing involves analysing the panhead
accelerometries in order to detect impacts and shocks. When one of these events is detected,
a real-time message is sent to a back-office application using an LTE wireless link. This
message includes the severity and geo-localisation of the event, as well as additional
contextual data such as train and service information. To facilitate the communication
process, a publisher/subscriber system is implemented using an MQTT (message queuing
telemetry transport) broker. The broker is subscribed to the events generated by the onboard
monitoring system. Simultaneously, the raw data are processed to extract the target KPIs.
The relevant information is then stored in binary files. These files are transferred via FTP
(file transfer protocol). This transfer is carried out through the Wi-Fi installed in the stations.
This approach ensures that there is sufficient bandwidth to transmit the files and minimises
the risk of signal loss during the transmission process.

The power required to operate the electronics of the monitoring system is provided by
a 12VDC GEL rechargeable battery. The negative terminal of the battery is connected to the
pantograph structure and used as a reference voltage (i.e., virtual common ground) for the
system, ensuring electrical isolation of the bodywork. To save energy during the pilot tests,
a location-based trigger (using GNSS data) was implemented. This way, the recording of
data can be controlled automatically and can be accessed and configured remotely. The
architecture of the system and the placement of the different modules in the pantograph
are depicted in Figure 11.

The installation of the monitoring system involves securely attaching the three sensors
to the pantograph’s structure using double-sided industrial tape. Prior to attaching the
tape, cyanoacrylate-based glue is applied to the base of the sensor enclosure to ensure
a firm and reliable bond. This installation method is non-invasive and does not hinder
the normal functionality and free movement of the pantograph. The remaining electronic
components and power supply share the same enclosure, which is mounted on the base
frame of the pantograph using a specially designed base plate. The design is such that
it does not interfere with the moving parts of the pantograph while maintaining proper
clearance with the roof of the vehicle. The plate is attached to the frame using U-shaped
metallic brackets, providing stability to the entire system. The sensor cables are neatly
fixed and secured to the structure of the pantograph using zip ties. To accommodate the
movement of the pantograph, sufficient space is provided for the cables to pass through
any moving parts while adhering to the minimum flexion radius specified by relevant
standards. Figure 12 provides details about the installation of the monitoring system in
the pantograph.

 

Figure 12. Installation of the monitoring system in the pantograph. Electronics and power supply
(left); detail of an accelerometer (centre); detail of the base plate for a non-invasive installation (right).

Finally, regarding the results provided by the presented system, Table 3 lists a compar-
ison with previous work where the employed methods are indicated.
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Table 3. Comparison of provided results of CW monitoring with previous literature work and
existing commercial systems.

Results of the CW Monitoring

Ref Type Methods Wear Tension Stagger Height

Xu et al. [27] On-board Mechanics Yes No No No
Derosa et al. [28] Wayside Mechanics No Yes No No
Aydin et al. [29] On-board Vision No No Yes No
Chen et al. [30] On-board Vision No No Yes No

* tcat® [31] Trolley Vision No No Yes Yes
* Catenary Eye [32] On-board Vision Yes No Yes Yes
* Autocommute [33] On-board Vision Yes No Yes Yes

* CAT-T [34] Trolley Vision No No Yes Yes
* CAT-VW [35] On-board Vision Yes No Yes Yes

This work On-board Mechanics No No Yes Yes

* Commercial devices.

5. Results of the Proposed System in Field Tests

This section focuses on assessing the measuring system through field tests conducted
in real-world conditions. The accuracy and repeatability of the measuring system are
crucial to ensuring the reliability and quality of the collected data. The results obtained
from the field tests provide valuable insights regarding the ability of the system to accurately
measure and record data, thus confirming its suitability for practical applications. The
following subsections provide details about the case study conducted and present the
significant results obtained, which contribute to the validation of the measuring system.

5.1. Description of the Case Study

The monitoring system was installed in a pantograph of a train by the Spanish train
operating company FGC during regular service in commercial operations. FGC, founded
in 1979, features more than 92 million passengers per year and also provides freight
transportation services. With a dedicated workforce of more than 1900 people and an
extensive network spanning 290 km of track with international, narrow and Iberian gauges,
FGC operates more than 1300 train circulations per day, with a peak headway of 150 s on
the Barcelona–Vallès line.

To establish a baseline for the condition of the OCL, an initial testing campaign was
conducted using the tCat® system [31], more precisely the tCat® 1435 system. This system
consists of a measurement stroller pulled by an operator that collects several lines of
information about the track and the OCL. The measurements were carried out in track 2,
specifically between the stations of Rubí and Hospital General (milestones 20 + 124 and
18 + 377, respectively, from Plaza Catalunya station reference), as depicted in Figure 13.
The height and stagger of the CW in static conditions were recorded at all poles along
the track.

To validate the results obtained from the developed monitoring system and compare
them with the measurements taken with the tCat®, the proposed monitoring system was
installed in a regular pantograph mounted on a unit of the 112 series while running
through the same section as the tCat®. The results of this validation stage against the
baseline measurements are shown in Section 5.2.1.

Furthermore, to ensure the repeatability of the measurements and gather more data
for analysis, an additional measurement campaign was conducted. During this campaign,
two different sections of the line were analysed, with two circulations performed in each
section. Each section had a length of approximately 500 m. To save energy during regular
operations, the collection of data was automatically triggered using the GNSS subsystem.
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Figure 13. tCat® measuring system (left) and track section used in the baseline validation cam-
paign (right).

Four parameters are analysed in each case: The stagger of the CW, the height of
the pantograph, the height of the CW, and the estimated contact force. The contact force
is estimated based on the experimental results from Section 3, particularly referring to
Figure 8. The two height parameters are directly related and can be derived using the roof
height. These relationships are graphically provided in Figure 14. The panhead height,
and consequently the CW height, can be easily calculated using the kinematics of the
mechanism and the angle of the lower arm (γ), as described by Equations (6) and (7). The
parameters of these equations are obtained through linear fitting, as shown in Figure 6, and
for a roof height of 3720 mm.

Hpanhead(γ) [mm] = 493.953 + (γ·42.877), (6)

HCW(γ) [mm] = 3720 + Hpanhead(γ). (7)

Figure 14. Scheme showing a graphical definition of important parameters of the height of the
pantograph and CW.

5.2. Results

This section presents the results obtained from the field tests. The results were vali-
dated using a commercial measuring device (tCat®), and subsequently, their repeatability
was studied through multiple runs in different sections of the track.

5.2.1. Comparison with Commercial Measurement Device

The initial analysis seeks validation of the measurements taken by the system by
comparing them with the tCat® commercial measurement system. Figure 15 presents the
comparison of the CW height calculated by the monitoring system versus the reference
values taken by the tCat®. In Figure 16, the results of the stagger of the CW are shown.
Overall, the results show a very good correlation in the direct CW height measurements
(Figure 15) and promising similarities in the CW stagger parameter (Figure 16), with some
amplitude errors but good detection of the shape of the stagger.
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Figure 15. CW height comparison between tCat® and the monitoring system.

Figure 16. Calculated stagger with the monitoring system versus the reference values measured with
the tCat® system.

It is important to note that the discrete reference measurements obtained with the
tCat® device are taken statically, without direct contact with the CW, using vision equip-
ment. In contrast, the results obtained with the monitoring system here presented are
dynamic measurements captured during the actual circulation of the train, influenced by
the dynamics of the interaction between the pantograph and the OCL. The uplift force of the
pantograph with the proposed system, along with the vertical stiffness of the CW, changes
the CW height slightly when compared with the steady-state situation. The speed was
maintained constant during circulation through the section under study, with a reference
value of 45 km/h.

Considering the same KP where there are measurements with the tCat® system, the
accuracy of the developed SIA system has been calculated for the CW height. Table 4 lists
the minimum, average and maximum errors.

Table 4. Comparison of error on measured CW height with SIA system against tCAT®.

Absolute Error Relative Error

Minimum 0.704 mm 0.014%
Average 11.951 mm 0.245%

Maximum 28.980 mm 0.608%

5.2.2. Reproducibility Analysis

After the validation stage, this subsection focuses on assessing the repeatability of
measurements obtained by the monitoring system. For this study, two track sections are
analysed, namely Section A and Section B, each with a length of 500 m. To evaluate the
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reproducibility of the measurements, two runs were conducted in each section, both in the
same direction and at the same nominal circulation speeds, although in reality, both speeds
were not exactly the same.

Figure 17 displays four different parameters (speed (a), CW height (b), CW stagger (c),
and estimated contact force (d)) for each section under examination, comparing the two
runs. The graph indicates that the measured speed values in Section A are similar between
runs, whereas the differences in speed are bigger in the second case. Regarding CW height
and stagger, both sections yield highly comparable results in both runs, particularly in
the stagger KPI. Lastly, the lower section of the figure showcases the predicted contact
force between the pantograph and the CW, displaying the estimated force along with the
95% confidence prediction intervals (represented as shadowed areas). These intervals are
required because viscous and dry phenomena in joints are neglected in the calculation.
Marques et al. [36] made a revision to the modelling and analysis of friction. It is evident
that the estimated force remains consistent in both cases and falls well within the indicated
red limits.

 

Figure 17. Results of the repeatability performance study of the monitoring system in different
Section A (left) and Section B (right) for four different parameters: speed (a), CW height (b), CW
stagger (c) and contact force (d).
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Considering the same KP where there are measurements for the first run, the accuracy
of the developed SIA system has been calculated for the CW height. Table 5 lists the
minimum, average and maximum errors.

Table 5. Comparison of error on measured CW height with SIA system.

Absolute Error Relative Error

Minimum 0.010 mm 0.001%
Average 12.503 mm 0.252%

Maximum 42.051 mm 0.847%

6. Discussion

The monitoring of the OCL provides valuable information about the health status of
this crucial asset in the railway system. This monitoring can be conducted continuously or
periodically, serving different purposes. Continuous monitoring ensures that the analysed
parameters remain consistent, and any deviations could indicate a fault in the system. In
such cases, an alert can be sent to the infrastructure manager, enabling prompt action based
on the reliability of the detected fault. On the other hand, periodic monitoring is sufficient
for assessing the degradation trend over time. Figure 18 shows how a two-dimensional
plot can effectively distinguish different failures in the height of the CW. Regions with the
same measurement values are represented by flat-coloured surfaces. On the other hand, a
continuous vertical drop of the CW shows a colour gradient for different measurements. In
the case of an incorrect vertical slope, due, for example, to a broken dropper, the colour
gradient intensifies with each measurement.

(a) 

(b) 

(c) 

Figure 18. Degradation trend of the CW height. (a) Correct height, (b) vertical drop and (c) incorrect
vertical slope.

40



Sensors 2023, 23, 7890

In addition, conducting a statistical analysis of the measurements recorded at various
positions along a track section and at different times allows for a quantitative understand-
ing of the type of failure occurring. Figure 19 shows the mean and standard deviation (SD)
values for three different states. In cases where the CW height is consistently correct, both
the mean and SD values remain stable, albeit with slight variations between measurements
due to the use of a monitoring device. On the contrary, when a failure is present, one of the
parameters exhibits stability while the other shows a significant change. A vertical drop in
the CW height leads to a shift in the mean value, while an incorrect vertical slope is char-
acterised by a changing SD value. This quantitative method is essential for infrastructure
digitalisation platforms to automatically show the locations of required interventions and
the corresponding maintenance tasks throughout the entire rail line. As the monitoring
system is not as accurate as other costly inspection methods, some differences can occur
between measurements. However, assessing the trends of the statistical analysis confirms
the feasibility of utilising low-cost devices for maintenance purposes.

  

  
(a) (b) (c) 

Figure 19. Statistical analysis of the CW height changes. (a) Correct height, (b) vertical drop and
(c) incorrect vertical slope.

The static contact force is a parameter that can be directly obtained from the charac-
terisation of the pantograph. It provides valuable information by quantifying the contact
forces at different kilometric points along the railway line. Monitoring the evolution of this
contact force can serve as an indicator of contact anomalies and potential issues [37]. It is
worth noting that changes in force can be attributed to both the pantograph and the OCL,
and using multiple instrumented pantographs can help detect and analyse these changes
effectively. In addition to the static contact force, the dynamic contact force is also a valu-
able parameter for maintenance purposes. Models that describe the interaction between
the pantograph and the OCL, such as those employed for stagger characterization using
accelerometers, can be utilized to estimate dynamic forces. Machine learning techniques
can be applied to further enhance the estimation of dynamic forces, although this area
requires further development and research.

The stagger amplitude and the stagger central position, obtained from accelerations
of both sides of the pantograph strips, show good repeatability. The reliability of these
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measurements is influenced by the running conditions of the train unit. In our study,
we observed that the measurements exhibit consistent results across different runs and
operating conditions, indicating a high level of reproducibility.

By analysing the measured data, the system can promptly detect changes in forces
or OCL geometry and alert maintenance personnel in real time. This enables timely
adjustments to the pantograph’s force settings to prevent potential interaction problems
and mitigate the risk of further failures in the OCL system.

7. Conclusions

In this research work, a non-intrusive monitoring system has been developed for
the continuous monitoring of overhead contact lines that is adequate to be installed on a
train pantograph. The proposed system utilises low-cost sensors and makes use of a set of
formulae based on geometrical and mechanical parameters to ensure reliable measurements.
The reliability of measurements is further enhanced through physical modelling, which
allows for periodic updates of the pantograph’s configuration parameters.

The system modelling is based on a mechanical design approach. The kinematic
assessment of the pantograph structure and mechanism is accurately modelled, and the
employed models are validated through test-rig experiments. As a result, the position of
the pantograph head can be determined based on parameters such as the inclination of the
lower arm or push bar. Additionally, by utilising an inclinometer and knowing the height
of the carbody roof, the height of the overhead contact line can be monitored.

The static contact force can also be calculated using the inclinometer if the position of
the screws controlling the applied torque mechanism is known. Although the calibration of
this mechanism is not carried out on a daily basis and the contact force may change over
time, variations in the force correspond to changes in the height of a specific pantograph.
By employing multiple instrumented pantographs on the same overhead contact line, it
is possible to detect whether the change in the pantograph height, and consequently the
contact wire height, is due to the stress on the messenger wire or other factors.

The sensors chosen for the monitoring system have been carefully selected thanks to
the modelling and laboratory tests conducted on the pantograph. The nature and location
of these sensors are well suited to meet the required performance of the monitoring system,
given the low-cost and non-intrusive nature of the application.

The field tests conducted have demonstrated the effectiveness of the monitoring sys-
tem. The results obtained from the monitoring system were found to be comparable to
those produced by a commercial device, indicating a high level of accuracy. Furthermore,
the obtained results have exhibited repeatability across several runs conducted at different
speeds. This consistency in performance and the reliable measurement of the target param-
eters highlight the robustness of the system and its suitability for real-world applications.
The field tests provide confidence in the reliability and accuracy of the monitoring system,
positioning it as a viable solution for measuring and monitoring the overhead contact line
in operational environments.
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Abstract: Railway infrastructure monitoring is crucial for transportation reliability and travelers’
safety. However, it requires plenty of human resources that generate high costs and is limited to
the efficiency of the human eye. Integrating machine learning into the railway monitoring process
can overcome these problems. Since advanced algorithms perform equally to humans in many
tasks, they can provide a faster, cost-effective, and reproducible evaluation of the infrastructure.
The main issue with this approach is that training machine learning models involves acquiring a
large amount of labeled data, which is unavailable for rail infrastructure. We trained YOLOv5 and
MobileNet architectures to meet this challenge in low-data-volume scenarios. We established that
120 observations are enough to train an accurate model for the object-detection task for railway
infrastructure. Moreover, we proposed a novel method for extracting background images from
railway images. To test our method, we compared the performance of YOLOv5 and MobileNet on
small datasets with and without background extraction. The results of the experiments show that
background extraction reduces the sufficient data volume to 90 observations.

Keywords: object detection; computer vision; machine learning; railway

1. Introduction

Nowadays, rail transportation is widely accessible and is one of the most popular
travel forms worldwide. An increasing amount of studies show that trains are more
environmentally friendly than cars [1–3]. Additionally, high-speed trains are serious
competitors for air transport [4]; therefore, railway has a good prospect of development
ahead of it. However, with the rapid growth comes a new set of challenges for rail
management. The increased popularity will put more strain on the infrastructure, which
will need to be inspected more often; what is more, the expanding rail connections network
will result in more and more kilometers of track to monitor. All of this implies an increase
in the labor workload related to infrastructure maintenance.

The need for track inspections stems from the fact that the track is susceptible to
weather conditions, such as extreme temperatures, high levels of humidity, and air pollution.
Studies show that broken rails and welds were the leading derailment cause on tracks
in the United States [5]. However, any defect on the railroad track can carry immense
costs and even lead to catastrophic incidents such as train derailments. That is why
monitoring railway infrastructure is crucial for the safety of travelers and the reliability of
public transportation.

Currently, infrastructure inspections are manual. The specially trained staff, based on
the visual evaluation and measurements from dedicated devices, assess the degradation of
the track. Such a procedure requires much human labor, translating into a high maintenance
cost. Moreover, the inspection speed is limited to the efficiency of the human eye; thus, it
requires time and is prone to mistakes [6]. The solution for the highlighted issues could be
incorporating computer vision techniques, especially machine learning, in infrastructure
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monitoring. Machine learning is a branch of artificial intelligence that consists of algorithms
that can optimize themselves based on the provided data.

Nowadays, machine learning models achieve human-level performance in many areas,
including medicine, finance, and technology . Therefore, artificial intelligence algorithms
can be successfully used to support human decisions, including visual monitoring of rail
infrastructure [7]. In recent years, much research has been conducted on the usefulness of
computer vision for railway applications. A variety of methods were successfully applied,
starting from traditional pattern recognition [8], through classical machine learning models,
such as support vector machines [9], k-nearest neighbors [10], or random forest [11], ending
with deep neural networks [12–15]. The latter methods usually yield the best results due to
their capacity to solve complex problems. Therefore, deep learning has great potential for
detecting railway defects [16].

Computer vision-based infrastructure monitoring for fault identification usually con-
sists of two steps: (1) detection of railway components and (2) component-specific iden-
tification of defects. It is worth noting that in step (2), different rail components require
different machine learning models for fault detection. This is due to the specific char-
acteristics of faults for different components, and therefore, many studies are focusing
on only one component of the rail infrastructure. Studies include the detection of wheel
defects [17,18], the identification of bolt corrosion [19,20], assessing ballast support for
sleepers [21], aiding in the design of prestressed concrete railway sleepers [22], the recog-
nition of rail surface cracks [23], capturing fastener defect detection [24], and monitoring
bridges’ condition [25,26]. However, fault identification is impossible without accurate
object detection (OD) in the previous step (1). For example, a crack on a sleeper would not
be identified if the sleeper itself was not detected correctly. Due to its complexity and im-
portance, separate studies often address the component-detection task, where deep neural
networks detect track elements [27,28]. Over time, the need for rail object detection models
will only increase. They will be in demand for various types of infrastructure elements
and for different tracks, such as high-speed rail, maglev, or subway. Additionally, each
country may need a different model due to the country-specific regulations and different
ways the rail infrastructure is built. Therefore, it is important to study how to optimally
build object-detection models.

This paper focuses on fast and accurate railway track component detection that can
be used to support humans in monitoring rail infrastructure. We consider a scenario
when only a small dataset is available, which is the most common case for railway data.
The reason behind this stems from the low number of publicly available datasets with
photos of the tracks. As a result, it is necessary to rely on a small number of public images
or to gather new photos. The process of preparing new training datasets with railway
images is costly and time-consuming since the images have to be labeled by experts with
domain knowledge. This increases the need for precise upfront estimation of how many
images are needed to obtain an accurate machine learning model. In this article, we show
how much data are enough to train a neural network that detects track components and
which architectures are best for this task. The key contributions of this paper are as follows:

• We conducted a benchmark to determine the sufficient data volume for railway
component detection. We have shown how the YOLO and MobileNet neural network
architectures perform for different sizes of datasets. We have used a completely new
dataset with track images we collected and labeled. The results of the analysis will be
valuable to anyone designing their own railway dataset, as we provide an estimate of
the sufficient size of the data.

• We introduced a novel method of extracting background images (BIE) that can be
used to enrich the datasets for the railway object detection task. We have shown that
this method allows us to obtain better neural networks for really small datasets. BIE is
useful to improve the performance of any models for railway track object detection.

This paper is organized as follows. Section 2.1 describes railway track and its compo-
nents, Section 2.2 gives an overview of machine learning algorithms for OD, Section 2.3
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introduces our novel Background Image Extraction method, and Section 2.4 exhibits the de-
tails of the OD benchmark. Section 3 outlines the main results of the benchmark. Section 4
summarizes the findings presented in the paper.

2. Materials and Methods

2.1. Railway Track

In this Section, we describe the railway track components that are detected in experi-
ments in Section 2.4—rails, sleepers, and fasteners. The image areas without the mentioned
components mostly contain track ballast. For the object-detection task, we consider ballast
part of image background. The added examples are the images used in experiments, so
they illustrate the data used in model training.

Rails are steel bars that are the surface on which trains can move. Figure 1 shows an
example of rail used on a railway track. Sleepers serve as support for rails, fixing them
in position. Figures 2 and 3 show examples of concrete and wooden sleepers. Fasteners
are elements used to keep rails fastened to sleepers. Figure 4 shows examples of different
types of fasteners on railway tracks. Track ballast is defined as a layer of crushed materials,
usually rocks, placed around sleepers. Figure 5 shows a railway track with red arrows
pointing to the ballast.

Figure 1. Example of rail.

Figure 2. Example of concrete sleeper.

Figure 3. Example of wooden sleeper.

Figure 4. Examples of different types of fasteners.

Figure 5. Example of railway track with marked track ballast.
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2.2. Machine Learning Models for Object Detection

Object detection is a computer vision technique for locating objects with bounding
boxes (bboxes). Nowadays, convolutional neural networks (CNN) perform very well in
this task. As a result, there is plenty of research on various architectures, for example,
region-based convolutional neural networks (R-CNN) [29]. The idea of R-CNN is to start
with a selective search [30]—a region-proposal procedure to pick out regions in the image
that may contain objects of interest. In the next step, CNN extracts a feature vector from
each region proposal, then a classification model assigns classes and scores to the extracted
vectors. In the last step, a non-maximum suppression algorithm rejects image proposals
with large intersection over union (IoU) overlap with higher-scored image proposals.

While R-CNN achieves satisfactory results, the drawback of this approach is the speed
of training and prediction. To overcome these issues, Faster R-CNN [31] replaces the use of
selective search with CNN. As a result, Faster R-CNN takes an entire image and processes
it through a region-proposal network and then through a neural network that predicts
classes of objects. This increases the detection speed, yet the prediction time is still not fast
enough for real-time applications.

The Single-Shot Detector (SSD) is one of the fastest ways to achieve accurate object
detection [32]. SSD consists of a feature-extractor backbone and SSD head. A backbone is
a pre-trained classification neural network with a removed fully connected classification
layer. The SSD head consists of convolutional layers added to the backbone to find the most
appropriate bounding boxes. There is also a mobile variant of SSD, SSDLite [33], where
regular convolutions in the SSD head are replaced with separable convolutions, which
reduces both the parameter count and the computational cost compared to regular SSD.
In Section 2.4, we used MobileNetV3-small as a backbone feature extractor in SSDLite,
which is the same combination that the authors of MobileNetV3 used in their benchmarks
Section 2.4. The MobileNet architecture is based on depth-wise separable convolutions
that reduce the number of parameters [34]. In MobileNetV2, the authors introduced new
inverted residual blocks [33] and in MobileNetV3 they added squeeze and excitation
layers [35]. The MobileNetV3-small architecture is a variant targeted to low-resource use
cases and we have chosen it for experiments because of its low number of parameters,
which assures their ability to catch relationships in the data based on a small number
of samples.

Another object-detection architecture is You Only look Once (YOLO) [36,37], which has
become very popular in recent years. YOLOv5 is composed of three parts: backbone, neck,
and detection networks. The backbone CNN aggregates image features that are processed
in the neck network, creating Feature Pyramid Networks [38]. Finally, the detection network
predicts each object’s class, probability, and bbox position. In experiments in Section 2.4, we
have used two small YOLOv5 variants, the smallest variant nano (YOLOv5n) and variant
small with ghost bottleneck (YOLOv5s-ghost). The small number of parameters means
that the model has a chance to perform well on the low-volume datasets that are typical
for railway OD. Moreover, YOLO’s good performance in a wide variety of applications
implies that this architecture has great potential for railway applications as well.

We measured models’ performance with mean average precision (mAP) and mean
average recall (mAR) [39]. Precision measures how well a model finds true positives and
recall measures the proportion of true positive predictions,

Precisiont =
TPt

TPt + FPt
, (1)

Recallt =
TPt

TPt + FNt
, (2)

where TPt denotes the number of true positives, FPt denotes number of false positives,
and FNt denotes the number of false negatives. The value of t determines the IoU overlap
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above which bboxes are considered to be the same; thus, if the IoU value for predicted and
true bboxes is greater than t, the predicted bbox is considered to be correct.

The average precision is the area under the precision–recall curve obtained by plotting
the precision and recall values as a function of model’s confidence. The mAP@t is the
mean of the average precision values over all classes with a given IoU overlap threshold t.
For example, mAP@0.5 is the mean average precision for an IoU overlap threshold t equal
to 0.5. In the experiments, we use also mAP@[0.5,0.95], which is an average of the mAP
values for different IoU thresholds, starting from 0.5 and finishing at 0.95 with a step of
0.05.

The average recall is the area over a recall–IoU threshold for IoU ∈ [0.5, 1] and mAR is
the mean of the average recall across all classes. mAR n denotes that mAR is calculated
based on the top n bboxes detected in the image. In the experiments we have used an mAR
of 100.

2.3. Background Image Extraction

In this Section, we describe our novel method, named Background Image Extraction
(BIE), which cuts out areas without bboxes from the railway photo and then joins them into
a new image. Adding background images to the training set is a common procedure to
improve model performance—the same stands for detecting railway components where
the background consists mostly of ballast. Adding background images with no objects
to detect to the training phase allows neural networks to learn what they should avoid
detecting, which improves the performance of their predictions. Due to the distinctive
composition of the railway track, we came up with a railway-targeted method of extracting
background images. Figure 6 shows the general idea behind BIE. A bbox-based mask is
extracted based on a labeled image based on the position of the track component. Then,
a mask is used to cut out areas in the image that are merged into a new background image.

Figure 6. A diagram of the BIE method.

Algorithm 1 shows the procedure of mask extraction; its result is an array of the same
size as an input image. In the mask, values of 0 represent the background and 225 non-
background areas. Initially, each pixel within the mask has a value of 0. To identify the
background, i.e., the area with ballast only, bboxes of rails are pulled to the top and bottom
edges of the image, while bboxes of fasteners and sleepers are pulled to the side edges of
the image. Then, the area of the pulled bboxes is treated as non-background and cropped
out by setting the values of the corresponding pixels to 255. Such an approach ensures that
after cropping, the union of the remaining parts will form a rectangle that contains only
ballast. The newly created background image can then be used to enhance the training
dataset. Figure 7 shows example backgrounds extracted with BIE.
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Algorithm 1 Mask extraction from railway image labeled with bboxes. The dot denotes
a reference to the bbox property; thus, bbox.label means a class of bbox, bbox.width and
bbox.height are its width and height, Additionally bbox.x_left and bbox.y_top denote the
x coordinate of the left edge and y coordinate of the top edge of the bbox, respectively.

Require: n: image width, m: image height, x_margin: x coordinate bbox margin used for
mask extraction, y_margin: y coordinate bbox margin used for mask extraction
image_mask ← zeros(n, m) � An array of size n × m filled with zeros.
for bbox in bboxes do

if bbox.label is "rail" then
x_left = bbox.x_left - x_margin
if x_left < 0 then

x_left ← 0
end if
box_width ← bbox.width + x_margin ∗ 2
y_top ← 0 � Extend rail to whole image height.
box_height ← bbox.height

else
x_left ← 0 � Extend non-rail elements to whole image width.
box_width ← n
y_top ← bbox.y_top - y_margin
if y_top < 0 then

y_top ← 0
end if
box_height ← bbox.height ∗ n + y_margin ∗ 2

end if
� Set area in mask related to the adjusted bbox to 255.

image_mask[top_y : top_y + box_height, top_x : top_x + box_width] = 255
end for

Figure 7. Example backgrounds extracted with BIE.

All background images used in the experiments in Section 2.4 were created with BIE
with x_margin 30 px and y_margin 90 px. Backgrounds with a width or height smaller
than 100 px were filtered out.

2.4. Experiment

The aim of the experiment is to establish a sufficient data volume to train an efficient
railway object detection model. Railway datasets usually are small and consist of images
that are similar to each other. Moreover, infrastructure objects are also similar and are
of a regular, rectangular shape. To find the number of images sufficient to obtain an
accurate detector, we prepared training subsets of different sizes and trained the most
common object-detection models. The training was carried out with and without the
background-extraction method.
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2.4.1. Data Acquisition and Dataset

The data were collected on 2 March 2022 and 13 April 2022 at Warszawa Grochów
motive power depot in Poland. All images are grayscale and come from line-scan cameras
(raL4096-24gm - Basler racer, Basler AG, Ahrensburg, Germany). placed on the draisine
running on the railway tracks. The photos contain track sections with wooden and concrete
sleepers and do not contain switches. The dataset consists of 348 labeled images, including
299 short images of size 2083 px × 500 px and 49 long images of size 2083 px × 2100 px.
Rails, sleepers, and fasteners are labeled on the images with bboxes. Figures 8 and 9 show
the annotations of short and long photos, respectively.

Figure 8. Example of a labeled short image of size 2083 px × 500 px with concrete sleepers.

Figure 9. Example of a labeled long image of size 2083 px × 2100 px with wooden sleepers.

2.4.2. Experiment Settings

The experiments were conducted on an AMD Ryzen 5 4600H CPU (Advanced Micro
Devices, Inc., Santa Clara, California, United States) with Radeon Graphics (3.00 GHz, 32
GB RAM) and an NVIDIA GeForce RTX 2060 (CUDA version 12.0) (Nvidia Corporation,
Santa Clara, California, United States) with Python 3.8.10 in the 64-bit Windows 10 business
operating system.

We split the dataset into training, validation, and testing subsets of sizes 300, 24, and 24.
We then took subsets of the training set of sizes 240, 180, 120, 90, 60, and 30, where each
successive subset is contained in the preceding subset. The sizes of all subsets, along with
the number of extracted backgrounds, are in Table 1.

We compared three neural networks: YOLOv5n, YOLOv5s-ghost, and MobileNetV3-
small. Since the characteristic of the railway OD task is the small data volume, we have
chosen architectures that have a small number of parameters and therefore, do not require
much training data and have a fair chance to fit well. The models were trained for 100
epochs with default hyperparameters on all training subsets, both with and without ex-
tracted backgrounds, a total of 14 datasets. Detailed information about the hyperparameter
values is in Table 2. For each training subset, the best model across all epochs was chosen
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based on its performance on the validation subset, then the final model performances were
computed on the testing subset with mAP@0.5, mAP@[0.5, 0.95], and mAR 100.

Table 1. Dataset splits for experiment with numbers of observations.

Split
Number of Full
Railway Images

Number of
Background Images
Extracted with BIE

Total Number of
Images

training subset 30 30 12 42
training subset 60 60 25 85
training subset 90 90 34 124

training subset 120 120 49 169
training subset 180 180 69 249
training subset 240 240 86 326
training subset 300 300 106 406
validation subset 24 7 31

testing subset 24 - 24

Table 2. Values of models’ hyperparameters.

Hyperparameter YOLOv5n YOLOv5s-Ghost MobileNetV3-Small

Number of epochs 100 100 100
Batch size 16 16 32

Image size (in pixels) 640 × 640 640 × 640 320 × 320
Learning rate 0.001 0.001 0.01

Changes in the hyperparameter values listed in Table 2 influence the model predictions
and performance. For a smaller number of epochs, the models might not be able to learn
relationships in the data and therefore, might achieve a poor quality on both the training
and testing subsets. For a larger number of epochs, the models will learn the data better,
but there is a risk of overfitting to the training data and poor generalization. Setting a
higher value of learning rate causes a faster loss decrease but increases the risk of missing
the optimal minimum. For the lower value of learning rate, the decrease in the loss is
lower; therefore, training will take longer and there is a risk of falling into a local minimum.
Resizing images to a smaller size will lead to their poor quality; some details can be missed
and therefore, the model will not be able to detect objects properly. Too-large image sizes
will make it harder for models to properly fit the data when there is a small number of
images in the training subset.

All background images used in the experiments in Section 2.4 were created with BIE
with the hyperparameter values described in Table 3. Backgrounds with a width or height
smaller than 100 px were filtered out.

Table 3. Values of BIE hyperparameters.

Hyperparameter Value

x_margin 30 px
y_margin 30 px

Background width or height minimal size 100 px

3. Results

Tables 4–6 show the results of YOLOv5n, YOLOv5s-ghost, and MobileNetV3-small
on the testing subset. The YOLOv5n architecture achieved the best performance in terms
of all performance measures; its variant trained on datasets with background extraction
performed the best or not far below the best result. YOLOv5s-ghost and MobileNetV3-
small performed significantly worse in terms of mAP@0.5, mAP@[0.5, 0.95], and mAR.
This illustrates an advantage of the YOLOv5n model as a railway object detector, which is
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the smallest of the neural networks taken into consideration. The task is relatively simple
and the dataset so small that the large number of features in more capacious architectures
caused overfitting.

Table 4. Values of mAP@0.5 on testing subset. Bold values are the highest ones for each size of the
training subset. mAP@0.5 measures how well a model finds true objects on the image, allowing a
50% margin of error for the bbox area.

Method 30 obs. 60 obs. 90 obs.
120
obs.

180
obs.

240
obs.

300
obs.

YOLOv5n 0.563 0.899 0.919 0.933 0.941 0.934 0.942
BIE + YOLOv5n 0.843 0.908 0.923 0.931 0.947 0.938 0.936
YOLOv5s-ghost 0.00 0.079 0.589 0.712 0.848 0.879 0.906
BIE + YOLOv5s-ghost 0.008 0.352 0.778 0.816 0.858 0.899 0.910
MobileNetV3-small 0.113 0.229 0.258 0.169 0.343 0.337 0.408
BIE + MobileNetV3-small 0.276 0.149 0.176 0.281 0.348 0.322 0.369

Table 5. Values of mAP@[0.5, 0.95] on testing subset. Bold values are the highest ones for each size
of the training subset. mAP@[0.5, 0.95] measures how well a model finds true objects in the image,
averaging over different margins of error for the bbox area.

Method 30 obs. 60 obs. 90 obs.
120
obs.

180
obs.

240
obs.

300
obs.

YOLOv5n 0.208 0.531 0.582 0.615 0.641 0.647 0.663
BIE + YOLOv5n 0.427 0.593 0.636 0.617 0.651 0.659 0.667
YOLOv5s-ghost 0.00 0.020 0.218 0.326 0.480 0.499 0.555
BIE + YOLOv5s-ghost 0.002 0.120 0.395 0.395 0.479 0.541 0.559
MobileNetV3-small 0.039 0.067 0.084 0.060 0.109 0.116 0.161
BIE + MobileNetV3-small 0.099 0.026 0.042 0.087 0.093 0.120 0.108

Table 6. Values of mAR 100 on testing subset. Bold values are the highest ones for each size of the
training subset. mAR 100 measures the proportion of the top 100 correctly detected objects to all
objects in the image.

Method 30 obs. 60 obs. 90 obs.
120
obs.

180
obs.

240
obs.

300
obs.

YOLOv5n 0.391 0.596 0.645 0.686 0.707 0.711 0.718
BIE + YOLOv5n 0.528 0.666 0.702 0.683 0.707 0.717 0.723
YOLOv5s-ghost 0.00 0.074 0.334 0.420 0.549 0.584 0.626
BIE + YOLOv5s-ghost 0.020 0.208 0.469 0.483 0.552 0.607 0.630
MobileNetV3-small 0.069 0.124 0.132 0.109 0.167 0.165 0.216
BIE + MobileNetV3-small 0.142 0.065 0.091 0.140 0.140 0.185 0.160

Figure 10 shows the relationship between the training subset size and model perfor-
mance. The plot shows that for training subsets that consist of 120 or fewer observations,
YOLO models trained with BIE performed better than their variants trained without BIE.
For training subsets containing more than 120 observations, there was no noticeable im-
provement of the YOLOv5n model trained with BIE when compared to its variant trained
without BIE. Nevertheless, including background images in training subsets larger than
120 observations improved YOLOv5s-ghost. MobileNetv3-small did not show a notice-
able quality increase after adding background images. The plots show that for training
subsets consisting of more than 120 observations, the relative improvement of YOLOv5n’s
performance is slight. Therefore, 120 is a sufficient number of observations to train an
accurate model. In addition, when BIE is applied, even 90 observations are enough to
achieve the same performance as 120 observations without BIE. YOLOv5n, compared
to YOLOv5s-ghost and MobileNetv3-small, consists of a smaller number of parameters;
therefore, it is expected to require fewer observations to achieve a good performance, which
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is consistent with the experimental results. BIE augments the training set with additional
background images to teach algorithms which objects should not be detected and it can be
seen that for small datasets it does indeed improve the quality of YOLO models. In contrast,
it does not improve the quality of MobileNet, presumably because the model consists of
the largest number of parameters and needs a larger volume of data.

Figure 10. The relationship between the size of the training subset (x-axis) and model performance on
the corresponding testing subset (y-axis). Each plot corresponds to a different performance measure.
Colors mark neural network architectures and line types mark the presence of background images
extracted with BIE in the training subset. This plot is the visualization of Tables 4–6.

To showcase the phenomena observed throughout the entire test set, we present
a sample of images. Figures 11–16 show the representative visualizations of example
railway component detections from the testing subset. All figures contain the results
of models trained on datasets with Background Image Extraction. The red arrows and
numbers on figures point to incorrectly detected bboxes. YOLOv5n returns more accurate
detections when compared to YOLOv5s-ghost and MobileNetv3-small. A comparison
between Figures 11 and 12 and Figures 14 and 15 shows that YOLOv5s-ghost detects
sleepers and fasteners as well as YOLOv5n, but incorrectly detects rail bboxes, which are
too short (Figure 12) and overlapping (Figure 15). In turn, Figure 13 shows that on short
images MobileNetV3-small detects additional fasteners in inaccurate places, which may be
caused by the fact that MobileNetV3 is a backbone for SSDLite, which is a variant of Single-
Shot Detector (SSD) and SSD is known for worse detections on small objects [40]. Figure 16
shows that on long images MobileNetV3-small detects too-large bboxes for fasteners and
sleepers, which might be caused by the small number of long images in the dataset and
therefore, the model has overfitted the short images.

Figure 11. Example BIE + YOLOv5n model prediction for short image.
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Figure 12. Example BIE + YOLOv5s-ghost model prediction for short image with marked incorrectly
detected bboxes.

The red arrows in Figure 12 point to incorrectly detected rail bboxes—they are
too short.

Figure 13. Example BIE + MobileNetV3-small model prediction for short image with marked
incorrectly detected bboxes.

The red arrows in Figure 13 point to fastener bboxes that are detected in incor-
rect places.

Figure 14. Example BIE + YOLOv5n model prediction for long image.

The red arrows in Figure 15 point to places where the detected rail bboxes are overlap-
ping.

The red arrows in Figure 16 with the number 1 point to examples of undetected
fastener bboxes, with number 2 to detected fastener bboxes that are too large, with number
3 to detected sleeper bboxes that are too large, with number 4 to a detected sleeper bbox
that is in the incorrect place, and with number 5 to detected rail bboxes that are too short.
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Figure 15. Example BIE + YOLOv5s-ghost model prediction for long image with marked incorrectly
detected bboxes.

Figure 16. Example BIE + MobileNetV3-small model prediction for long image with marked incor-
rectly detected bboxes.
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4. Discussion

In summary, the experiments show that the task of railway component detection is
relatively simple, and a training set consisting of 120 labeled observations is sufficient to
train an efficient model. In addition, the results show that BIE may enrich a small dataset
and reduce the number of observations needed to train an accurate model from 120 to
90. The model that performed best is YOLOv5n, which is the smallest of the considered
architectures, supporting the hypothesis that the task is simple and does not require much
labeled data.

5. Conclusions

In this paper, we searched for a sufficient data volume for the detection of railway
infrastructure components. As a result of this study, the following findings have been made:

• In total, 120 training observations are enough to train an efficient YOLO model.
At the same time, the authors of YOLO recommend using over 1500 images per
class and over 10000 labeled objects for best training results (https://github.com/
ultralytics/yolov5/wiki/Tips-for-Best-Training-Results), accessed on 3 July 2023,
which is approximately 100 times more than was needed in our experiment. Taking
this into account, a sufficient detector of the railway objects requires a relatively
small amount of data, which is desirable since labeled railway images are not easily
available;

• The number of observations required to train an efficient railway OD model can be re-
duced to 90 observations after applying our method BIE, which allows for background
extraction from the training subset. The use of background images is common in OD
tasks since backgrounds are usually simple to acquire, which is different for railway
backgrounds, which cannot have any images that do not contain railway components.
These should be photos composed of the ballast alone, which requires additional effort
to obtain them. Thus, this paper’s result that BIE can be used to extract backgrounds
from training images is an important finding;

• The best model for the railway object detection task is YOLOv5n, which is the smallest
of the YOLO models, and therefore, is more robust for overfitting to small datasets.

In summary, this paper’s results demonstrate the great potential of neural networks for
detecting railway infrastructure objects. With a limited amount of data labeling, it is possible
to obtain adequate models that can support people in railway track condition analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

bbox Bounding Box
BIE Background Image Extraction
CNN Convolutional Neural Network
IoU Intersection Over Union
KNN K-Nearest Neighbors
ML Machine Learning
mAP Mean Average Precision
mAR Mean Average Recall
OD Object Detection
R-CNN Region-based Convolutional Neural Networks
SSD Single-Shot Detector
SVM Support Vector Machines
YOLO You Only Look Once
YOLOv5n YOLO version 5 nano
YOLOv5s-ghost YOLO version 5 small with ghost bottleneck

References

1. Banister, D. Cities, mobility and climate change. J. Transp. Geogr. 2011, 19, 1538–1546. [CrossRef]
2. Xia, T.; Zhang, Y.; Crabb, S.; Shah, P. Cobenefits of Replacing Car Trips with Alternative Transportation: A Review of Evidence

and Methodological Issues. J. Environ. Public Health 2013, 2013, 1–14. [CrossRef]
3. Kim, N.S.; Wee, B.V. Assessment of CO2 emissions for truck-only and rail-based intermodal freight systems in Europe. Transp.

Plan. Technol. 2009, 32, 313–333. [CrossRef]
4. Xia, W.; Zhang, A. High-speed rail and air transport competition and cooperation: A vertical differentiation approach. Transp.

Res. Part B Methodol. 2016, 94, 456–481. [CrossRef]
5. Liu, X.; Saat, M.R.; Barkan, C.P.L. Analysis of Causes of Major Train Derailment and Their Effect on Accident Rates. Transp. Res.

Rec. 2012, 2289, 154–163. [CrossRef]
6. Gawlak, K. Analysis and assessment of the human factor as a cause of occurrence of selected railway accidents and incidents.

Open Eng. 2023, 13, 1–3. [CrossRef]
7. Nakhaee, M.C.; Hiemstra, D.; Stoelinga, M.; van Noort, M. The Recent Applications of Machine Learning in Rail Track

Maintenance: A Survey. In Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification;
Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 91–105. [CrossRef]

8. Li, Y.; Trinh, H.; Haas, N.; Otto, C.; Pankanti, S. Rail Component Detection, Optimization, and Assessment for Automatic Rail
Track Inspection. IEEE Trans. Intell. Transp. Syst. 2014, 15, 760–770. [CrossRef]

9. Manikandan, R.; Balasubramanian, M.; Palanivel, S. Machine Vision Based Missing Fastener Detection in Rail Track Images
Using SVM Classifier. Int. J. Smart Sens. Intell. Syst. 2017, 10, 574–589. [CrossRef]

10. Ghiasi, A.; Ng, C.T.; Sheikh, A.H. Damage detection of in-service steel railway bridges using a fine k-nearest neighbor machine
learning classifier. Structures 2022, 45, 1920–1935. [CrossRef]

11. Santur, Y.; Karaköse, M.; Akin, E. Random forest based diagnosis approach for rail fault inspection in railways. In Proceedings of
the 2016 National Conference on Electrical, Electronics and Biomedical Engineering (ELECO), Bursa, Turkey, 1–3 December 2016;
pp. 745–750.

12. Hsieh, C.C.; Hsu, T.Y.; Huang, W.H. An Online Rail Track Fastener Classification System Based on YOLO Models. Sensors 2022,
22, 9970. [CrossRef]

13. Gibert, X.; Patel, V.M.; Chellappa, R. Deep Multitask Learning for Railway Track Inspection. IEEE Trans. Intell. Transp. Syst. 2017,
18, 153–164. [CrossRef]

14. Zhu, Y.; Sekiya, H.; Okatani, T.; Yoshida, I.; Hirano, S. Acceleration-based deep learning method for vehicle monitoring. IEEE
Sensors J. 2021, 21, 17154–17161. [CrossRef]

15. Lorenzen, S.R.; Riedel, H.; Rupp, M.M.; Schmeiser, L.; Berthold, H.; Firus, A.; Schneider, J. Virtual Axle Detector Based on
Analysis of Bridge Acceleration Measurements by Fully Convolutional Network. Sensors 2022, 22, 8963. [CrossRef] [PubMed]

16. Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection Using Region-Based
Deep Learning for Detecting Multiple Damage Types. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. [CrossRef]

17. Guedes, A.; Silva, R.; Ribeiro, D.; Vale, C.; Mosleh, A.; Montenegro, P.; Meixedo, A. Detection of Wheel Polygonization Based on
Wayside Monitoring and Artificial Intelligence. Sensors 2023, 23, 2188. [CrossRef]

18. Ni, Y.Q.; Zhang, Q.H. A Bayesian machine learning approach for online detection of railway wheel defects using track-side
monitoring. Struct. Health Monit. 2021, 20, 1536–1550. [CrossRef]

19. Ta, Q.B.; Huynh, T.C.; Pham, Q.Q.; Kim, J.T. Corroded Bolt Identification Using Mask Region-Based Deep Learning Trained on
Synthesized Data. Sensors 2022, 22, 3340. [CrossRef]

58



Sensors 2023, 23, 7776

20. Tan, L.; Tang, T.; Yuan, D. An Ensemble Learning Aided Computer Vision Method with Advanced Color Enhancement for
Corroded Bolt Detection in Tunnels. Sensors 2022, 22, 9715. [CrossRef]

21. Datta, D.; Hosseinzadeh, A.Z.; Cui, R.; Lanza di Scalea, F. Railroad Sleeper Condition Monitoring Using Non-Contact in Motion
Ultrasonic Ranging and Machine Learning-Based Image Processing. Sensors 2023, 23, 3105. [CrossRef]

22. Kaewunruen, S.; Sresakoolchai, J.; Huang, J.; Zhu, Y.; Ngamkhanong, C.; Remennikov, A.M. Machine Learning Based Design of
Railway Prestressed Concrete Sleepers. Appl. Sci. 2022, 12, 311. [CrossRef]

23. Zhuang, L.; Wang, L.; Zhang, Z.; Tsui, K.L. Automated vision inspection of rail surface cracks: A double-layer data-driven
framework. Transp. Res. Part C: Emerg. Technol. 2018, 92, 258–277. [CrossRef]

24. Chen, J.; Liu, Z.; Wang, H.; Núñez, A.; Han, Z. Automatic Defect Detection of Fasteners on the Catenary Support Device Using
Deep Convolutional Neural Network. IEEE Trans. Instrum. Meas. 2018, 67, 257–269. [CrossRef]

25. Meixedo, A.; Ribeiro, D.; Santos, J.; Calçada, R.; Todd, M.D. Real-Time Unsupervised Detection of Early Damage in Railway Bridges
Using Traffic-Induced Responses; Springer: Berlin/Heidelberg, Germany, 2022.

26. Suh, G.; Cha, Y.J. Deep faster R-CNN-based automated detection and localization of multiple types of damage. In Proceedings of
the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018 (SPIE), Denver, CO, USA, 4–8
March 2018; Volume 10598, pp. 197–204.

27. Giben, X.; Patel, V.M.; Chellappa, R. Material classification and semantic segmentation of railway track images with deep
convolutional neural networks. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City,
QC, Canada, 27–30 September 2015; pp. 621–625. [CrossRef]

28. Wang, T.; Yang, F.; Tsui, K.L. Real-Time Detection of Railway Track Component via One-Stage Deep Learning Networks. Sensors
2020, 20, 4325. [CrossRef] [PubMed]

29. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH,
USA, 23–28 June 2014 .

30. Uijlings, J.R.R.; van de Sande, K.E.A.; Gevers, T.; Smeulders, A.W.M. Selective Search for Object Recognition. Int. J. Comput. Vis.
2013, 104, 154–171. [CrossRef]

31. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In
Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Cortes, C., Lawrence,
N., Lee, D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28.

32. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of
the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.;
Springer: Cham, Switzerland, 2016; pp. 21–37.

33. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520. [CrossRef]

34. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

35. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Search-
ing for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul,
Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [CrossRef]

36. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015,
arXiv:1506.02640.

37. Guo, K.; He, C.; Yang, M.; Wang, S. A pavement distresses identification method optimized for YOLOv5s. Sci. Rep. 2022, 12, 3542.
[CrossRef]

38. Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings
of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26
July 2017.

39. Padilla, R.; Passos, W.L.; Dias, T.L.B.; Netto, S.L.; da Silva, E.A.B. A Comparative Analysis of Object Detection Metrics with a
Companion Open-Source Toolkit. Electronics 2021, 10, 279. [CrossRef]

40. Fang, L.; Zhao, X.; Zhang, S. Small-objectness sensitive detection based on shifted single shot detector. Multimed. Tools Appl. 2019,
78, 13227–13245. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

59



Citation: Malekjafarian, A.;

Sarrabezolles, C.-A.; Khan, M.A.;

Golpayegani, F. A Machine-Learning-

Based Approach for Railway Track

Monitoring Using Acceleration

Measured on an In-Service Train.

Sensors 2023, 23, 7568. https://

doi.org/10.3390/s23177568

Academic Editor: Jiawei Xiang

Received: 20 July 2023

Revised: 28 August 2023

Accepted: 30 August 2023

Published: 31 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Machine-Learning-Based Approach for Railway Track
Monitoring Using Acceleration Measured on an In-Service Train

Abdollah Malekjafarian 1,*, Chalres-Antoine Sarrabezolles 2, Muhammad Arslan Khan 1

and Fatemeh Golpayegani 3

1 Structural Dynamics and Assessment Laboratory, School of Civil Engineering, University College Dublin,
D04V1W8 Dublin, Ireland

2 The École Nationale des Travaux Publics de l’État (ENTPE), 69518 Lyon, France
3 School of Computer Science, University College Dublin, D04V1W8 Dublin, Ireland
* Correspondence: abdollah.malekjafarian@ucd.ie

Abstract: In this paper, a novel railway track monitoring approach is proposed that employs acceler-
ation responses measured on an in-service train to detect the loss of stiffness in the track sub-layers.
An Artificial Neural Network (ANN) algorithm is developed that works with the energies of the
train acceleration responses. A numerical model of a half-car train coupled with a track profile is
employed to simulate the train vertical acceleration. The energy of acceleration signals measured from
100 traversing trains is used to train the ANN for healthy track conditions. The energy is calculated
every 15 m along the track, each of which is called a slice. In the monitoring phase, the trained ANN
is used to predict the energies of a set of train crossings. The predicted energies are compared with
the simulated ones and represented as the prediction error. The damage is modeled by reducing the
soil stiffness at the sub-ballast layer that represents hanging sleepers. A damage indicator (DI) based
on the prediction error is proposed to visualize the differences in the predicted energies for different
damage cases. In addition, a sensitivity analysis is performed where the impact of signal noise, slice
sizes, and the presence of multiple damaged locations on the performance of the DI is assessed.

Keywords: machine learning; railway infrastructure monitoring; track damage detection; SHM;
acceleration; in-service train measurements; drive-by monitoring; ANN

1. Introduction

In recent years, with the increasing global demand for mass transportation and freight,
the maintenance of existing transport infrastructure has become important. Railway sys-
tems are vital components of transportation systems, which provide a reliable, cost-efficient,
and sustainable transportation mode. Railway services are commonly seen as a safe mode
of travel (or freight moving) with low tariffs, reliable speeding, and low environmental
impact [1]. Most of the existing railway infrastructure is aged and requires continuous
monitoring to keep it in service, which requires enormous cost [2]. Moreover, these struc-
tures are subjected to heavier axle loads, faster train speeds, and greater frequencies of
trains, which have resulted in rapid deterioration over time [3]. Hence, efficient and reliable
infrastructure monitoring systems are needed to ensure these systems run smoothly at a
reasonable cost.

Railways tracks are the first contact between the heavy, traversing trains and the
railway structure below. For that reason, the track receives significant amounts of stresses
(both longitudinal and transverse), resulting in severe deterioration over time [3–8]. The
structural condition of the railway tracks needs to be monitored regularly and essential
repairs need to be planned to provide an effective first train–rail contact. Conventionally,
railway tracks are monitored through regular visual inspection by walking along the track
with the help of hand-held surveying equipment, e.g., tachometer or leveler. This method is
expensive to perform frequently and intensive when the whole network is considered [9,10].
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Moreover, this method detects only major faults that are visually detectable, and it is
not efficient on detecting inner damages, which are only apparent when a train passes
over. Another commonly implemented method for monitoring tracks is the use of a
specialized vehicle, i.e., Track Recording Vehicle (TRV), which is equipped with optical
and inertial sensors to collect track geometric information while traversing [11]. These
vehicles can measure the level and alignment of the rail, track gauge, cross level, rail
twist, curvature/curve radius, gradient, and track position, using GPS and displacement
sensors [11,12]. According to the European regulations, the geometric characterization of
the railway track has to be measured at a regular frequency in accordance with the EN13848
standard [12], which can be implemented using TRVs. If any characteristic is above the
tolerance limit, temporary speed restrictions or a suspension of train operations may be
applied. Although TRVs provide reliable inspection data, they are extremely expensive to
deploy, and they create traffic disruptions during inspection in the form of occupied tracks
and restricted traffic speeds.

Recent research on the use of sensing technology and computational power has opened
new opportunities to improve railway track monitoring systems and to provide accurate
and cost-effective solutions [9,13]. A common practice is the installation of sensors on the
track and monitoring track accelerations to detect any faults. For example, Liu et al. [14]
proposed a method that uses a distributed network of sensors installed on the track, which
measures vertical accelerations and strains of the track. Similarly, many researchers have
proposed the use of fiber Bragg grating (FBG) strain sensors to monitor the behavior of the
track [15,16]. Although direct track monitoring systems yield effective results, these are not
feasible for the complex and widely spread network of railway infrastructure [3].

Indirect methods of monitoring have received much attention in recent years, which
are based on the installation of sensors on a passing train for track health monitoring
and railway bridge monitoring, also known as “drive-by” monitoring [17–21]. In these
methods, train components closer to the track, e.g., suspensions, are instrumented to
measure their dynamic responses, which can also be real-time data of a passing train. In
this way, several passenger trains can be instrumented and used for continuous railway
track monitoring, which can detect damage at its early stage. Several types of sensors,
like laser technology [22], cameras [23,24], and inertial sensors [25], have been tested to
develop drive-by track monitoring systems. Lederman et al. [20] proposed an energy-based
method to inspect track changes using acceleration from the train body. They used the
energy of the signals measured from several passes of an in-service train and employed
a feature detection indicator to identify changes in the track over time. In order to find
the track stiffness profile, Nafari et al. [22] used the relative vertical distance between
the rail surface at two points measured from the train, which can be acquired using a
laser-based rolling deflection measurement system. Although these approaches have
shown efficacy in the results, they have targeted one specific damage case for analysis.
Malekjafarian et al. [26] employed the Hilbert–Huang transformation in order to obtain the
instantaneous amplitudes of the acceleration signals measured on a train. They proposed a
representation of the energy of the signal as a function of train localization to detect track
irregularities. Malekjafarian et al. [3] showed that the bogie-filtered displacement (BFD)
can be numerically obtained using the measured drive-by acceleration and the system was
validated using an in-service Irish rail train. It is also seen that the BFD is sensitive to train
speed and signal noise [3]. However, with the use of statistics of train passes with different
forward speeds, BFD can effectively detect the loss of stiffness on-track.

Several approaches have been made to model the train–track interaction [27,28].
OBrien et al. [28] proposed a method for inferring a track longitudinal profile from drive-by
measurement using a numerical model. The train was modeled as a 10-degree-of-freedom
(DOF) half-train and the track was modeled as a beam resting on a three-layer sprung mass
system representing the ballast, pads, and sleepers. OBrien et al. [25] compared the results
between the numerical simulations and field test measurements to validate the modeling
scheme. They used an uneven longitudinal track profile for realistic representation of
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the track–train interaction. Using this method, dynamic responses of the train as well as
railway structures can be measured with the help of numerical methods [29].

Machine learning techniques have recently been shown to be a feasible approach
for drive-by monitoring of railway tracks. These algorithms create a neural network
model that needs to be trained using the known data and parameters in time from a
benchmark condition of a structure. Then, the model is tested using the data with unknown
condition information with the help of hidden layers and neurons [30,31]. There have
been significant developments in the application of machine learning techniques to SHM
and damage detection. Avci et al. [30] described a comprehensive overview of the use of
machine learning for vibration-based damage detection methods that can be implemented
for any type of structure. Bridge structures have commonly been studied for developing
SHM systems using machine learning algorithms [32]. Neves et al. [33] and Gonzalez
and Karoumi [34] applied an Artificial Neural Network (ANN) that was trained using
railway bridge accelerations to identify structure behavior and to develop damage detection
systems using long-term data. Santos et al. [35] used a machine learning algorithm on
bridge inspection data and identified inaccuracies caused by inspection issues. The effect
of temperature changes on bridges was also studied using the Kalman-filter-based ANN,
which has shown to eliminate the temperature effects for bridge health monitoring [36].
There are many researchers who have used cluster-based and data-driven approaches for
bridge health monitoring [37–40] and have shown promising results for effective monitoring
systems. Malekjafarian et al. [31,41] recently applied the concepts of machine learning
on drive-by monitoring of the structures. They proposed the use of an ANN model
using vehicle data, which can detect bridge frequencies and cracks on the deck. However,
the road profile roughness and temperature effects have shown sensitivity to the drive-
by approaches. Similarly, the learning-based approaches have been implemented for
railway track monitoring, e.g., to detect and classify the severity of rail corrugation [42],
wheelflat [43], and track profile [6,25,26,44], and have produced reasonable results for
detecting track damages.

In this paper, a novel two-stage railway track condition monitoring approach is devel-
oped using the responses measured on a passing train and a machine learning algorithm.
In the first stage, an ANN is created and trained using the energy of the accelerations
collected from a fleet of trains passing over a healthy track at different forward speeds.
The trained ANN is then used to predict the energy of the signals in the monitoring phase.
The prediction error, which is the difference between the predicted and the simulated
accelerations from each train pass, is used as the damage indicator. In the second stage, a
Gaussian fitting method is applied to the prediction errors under healthy and damaged
conditions. This process improves the damage detection capabilities of the system and has
been shown to effectively detect damaged track conditions by reasonably increasing the
fitted prediction error.

2. Numerical Modeling

In this paper, a coupled Train–Track Interaction (TTI) model developed by
Cantero et al. [45,46] is employed. The TTI model consists of two sub-models—the train and
the track (see Figure 1)—which interact and couple at the contact points. These sub-models
and the coupling process are explained and illustrated in the following subsections.

2.1. Track model

Train tracks generally have five components—rails, pads, sleepers, ballast, and
subgrade—that can be represented with various levels of sprung layers [45]. In this paper,
the track model (see Figure 2) consists of a beam at the surface and three sub-levels modeled
by a sprung mass. The beam represents the rail, and the sub-levels represent the sleepers,
the ballast, and the subgrade [3,28,47–50]. The rail beam is created as an Euler–Bernoulli
Finite Element (FE) beam, each of which has four degrees of freedom: two translations and
two rotations. Two beam elements are modeled between each pair of sleepers with constant
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properties such as mass per unit length (m), modulus of elasticity (E), and the second
moment of area (J). The springs and masses, representing the sub-levels, are located under
each sleeper joint spaced at regular intervals of Ls. Geometric and mechanical properties of
the track are adapted from Zhai et al. [50] and presented in Table 1.

Figure 1. Schematic of the coupled system.

Figure 2. Track numerical model.

Table 1. Properties of the track.

Property Unit Value

Elastic modulus of rail N/m2 2.059 × 1011

Rail cross-sectional area m2 1
Rail second moment of area m4 3.217 × 10−5

Rail mass per unit length kg/m 60.64
Rail pad stiffness N/m 6.5 × 107

Rail pad damping Ns/m 7.5 × 104

Sleeper mass (half) kg 125.5
Sleeper spacing m 0.545
Ballast stiffness N/m 137.75 × 106

Ballast damping Ns/m 5.88 × 104

Ballast mass kg 531.4
Subgrade stiffness mean N/m 77.5 × 106

Subgrade damping Ns/m 3.115 × 104
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A total length of 1000 m is used for the track, which appropriately allows for contin-
uous welded rails (commonly more than 180 m long [3]). In this paper, a long length of
track is considered to maintain stable distance between each end of the boundary condi-
tions. To add realistic parameters to the model, the stiffness of the ballast is considered
in a non-uniform way with an average of 7.7495 × 107 N/m and a standard deviation
of 4.5824 × 106 N/m. The ballast stiffness, in the space domain, is shown in Figure 3. In
addition, a rail profile of class 4 irregularities is generated randomly, according to the
US Federal Rail Administration guide. This profile is assumed to be constant in all the
simulations in this study. However, in some cases, the profile might change over time,
which might not be because of a defect on the track. Therefore, the authors acknowledge
that this assumption might not truly reflect real life applications, but it is considered here
for simplification. This represents a condition of the surface of the conventional rail, which
comes from its power spectral density function [51,52].

Figure 3. Distribution of the sub-ballast stiffness over distance.

The dynamic responses at any location change with time depending on the train
position. The FE modeling vectors containing the location of each DOF and its interaction
with the corresponding DOFs are created in one matrix, each for stiffness, mass, and
damping parameters, using MATLAB software R2021b [53]. Dynamic responses of the
modeled track to a time varying force are given by the system of equations at each time-step:

Mt
..
yt + Ct

.
yt + Ktyt = fint (1)

where Mt, Ct, and Kt are the mass, damping, and stiffness matrices of the model, respec-
tively; and

..
yt,

.
yt, and yt are the respective vectors of acceleration, velocity, and displace-

ment. fint represents the time-dependent dynamic interaction forces between the train and
the track.

2.2. Train Model

A half-train system, as shown in Figure 4, is modeled using MATLAB software R2021b [53]
to represent the train. This type of system is adapted from the literature [45,47,50,54], which
has been used in multiple TTI-related studies. The train car model has 10 degrees of
freedom: 7 vertical translations (four for the wheels, two for the bogies, and one for the
main body) and 3 rotations in the plane (two for the bogies and one for the main body).
mw, mb, and Jb are the mass of the wheelsets, bogie mass, and moment of inertia, respec-
tively; and mv and Jv represent body mass and its moment of inertia, respectively. Viscous
dampers with cpa damping and a spring with kpa stiffness are used to connect the wheels
with the bogies to form a primary suspension. Likewise, a viscous damper with Cs damp-
ing and a spring with ks stiffness are used for connecting the bogie with the main body.
Table 2 shows the mechanical properties of the half-train system, which are adapted from
Cantero et al. [45]. It should be noted that in this study, the wheelsets are considered as
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lumped masses and are assumed to be fixed to the track with no separation being allowed.
This means that the system will be modeled as 6 degrees of freedom in the global equations
of motion.

Figure 4. Train half-car numerical model.

Table 2. Properties of the train.

Property Symbol Unit Value

Wheelset mass mw kg 1843.5
Bogie mass mb kg 59,364.2

Car body mass mv kg 5630.8
Moment of inertia of bogie Jb kg·m2 9487

Moment of inertia of main body Jv kg·m2 1.723 × 106

Primary suspension stiffness kpa N/m 2.399 × 106

Secondary suspension stiffness ks N/m 0.8858 × 106

Primary suspension damping cpa Ns/m 30 × 103

Secondary suspension damping Cs Ns/m 45 × 103

Distance between car body center
of mass and bogie pivot Lv1, Lv2 m 5.73

Distance between axles Lb1, Lb2 m 3

The dynamic responses of the vehicle can be measured using the equations of motion
represented by the second-order differential equation:

Mv
..
yv + Cv

.
yv + Kvyv = fv (2)

where Mv, Cv, and Kv are the mass, damping, and stiffness matrices of the train model,
respectively; and

..
yv,

.
yv, and yv represent vectors of train acceleration, velocity, and displace-

ment, respectively. The dynamic interaction forces applied to the vehicle DOFs through the
track profile and rail displacements are contained in the vector fv.

2.3. Coupling of Train–Track Models

The train and the track models are combined at the wheels, which represent contact
points, to form a coupled TTI system. Equations (1) and (2) are combined in a way that
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the corresponding DOFs from each model couple together, resulting in global matrices
of the system:

[
Mv 0
0 Mt

][ ..
yv..
yt

]
+

[
Cv Cv,t
Ct,v Ct

][ .
yv.
yt

]
+

[
Kv Kv,t
Kt,v Kt

]
[
yv
yt
] = F (3)

where M, C, and K are global mass, damping, and stiffness matrices, respectively; and
F is the time-varying vector of interactive force applied by the train to the track. These
matrices are calculated at each time-step according to the changing location of the traversing
train. Static forces, caused by gravity and the track profile, are also included in the force
vector. Equation (3) is solved using the numerical Wilson-Theta integration technique [29].
A value of Wilson-Theta (θ) of 1.420815 is used to ensure unconditional stability in the
integration process.

2.4. Modeling of Damage

In this paper, the percentage loss of track ballast stiffness is used as the damaged
condition. A traversing train transfers the moving force through the tracks to the ground,
and a change in the stiffness in any component of the system impacts the vehicle’s
accelerations [45,47]. Track variability may create a local stress concentration under the
sleepers. This could lead to a loss of stiffness under the sleeper and a soft soil formation
in the subgrade layer. In the long-term, it may create a loss of contact between the ballast
and the sleepers, which are also known as hanging sleepers [55]. If hanging sleepers are
not detected at the right time, they may accelerate the track deterioration and cause more
damage. In the numerical model, the damage is simulated by reducing the ballast stiffness
by 10%, 30%, 50%, and 70% of the healthy state. These damage conditions represent partial
or nearly complete loss of the ballast underneath the track, which is one of the major issues
commonly seen by the track inspectors [3,24]. The acceleration response from the traversing
train is measured using health and damaged track cases and compared using the machine
learning and data-driven approach.

3. The Proposed Algorithm for Track Monitoring

A novel track monitoring algorithm is proposed in this paper that consists of two phases
in correlation to detect track damages. The first phase utilizes an ANN model to estimate
the energy of train acceleration responses while transversing the irregular track with
healthy conditions. This involves training a neural network to predict data from simulated
acceleration measurements. In the second phase, a test data point is predicted using the
neural network and compared with the simulated data. Also, the healthy and the damaged
data cases are separated and compared to show the changes in the predicted data from the
trained ANN. These two phases are illustrated as a flowchart in Figure 5, which shows
signal processing steps involved in each phase.

Figure 5. The proposed machine learning approach.
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The ANN is a commonly used algorithm for monitoring structures and is used to
predict the energy content of an in-service train response, considering various energy
bands and train speeds. During the monitoring stage (phase 2), the calculated energy
spectrum from each vehicle passage is compared to that predicted by the ANN and a
damage indicator (DI) is evaluated for each traversing train.

3.1. ANN Background

A neural network is a very useful and evolving tool for predicting one or more desired
outcomes in complex systems, using a history of data collection and previous outcomes.
This tool has been used several times in research studies to solve predictions to nonlinear
problems, pattern recognition, or optimization [30,39,56]. Neural networks consist of
incoming data, hidden data, outgoing data, weights and bias, an activation function, and
a summing node [36,57]. Each level incorporates several units of calculation called a
neuron [30,41], which takes its input data from the previous level and provides output
data for the next level. The input level provides the input data of the network, which are
fed to the hidden level. Each hidden level has a number of neurons that will calculate an
output using all the inputs of the input level and a predefined set of weights and bias. This
output can be either fed to the next level or directly to the output layer. The output level
analyzes all the input produced in the last hidden level and produces the last output of the
whole algorithm.

Using the MATLAB deep learning toolbox, the ANN is implemented in this paper to a
set of vehicle acceleration data. The ANN consists of an input layer with 3 input neurons,
two hidden layers (containing 20 neurons each), and an output layer. The output layer
provides the predicted results that, in this case, is the predicted energy response. Figure 6
shows the schematic of the ANN where each neuron calculates a single output data point
from the inputs at the previous levels. In Figure 6, Si is the output from the neuron ni of
the previous level, wi is the weight associated with ni, b is the neuron bias, and S is some
transform function, typically sigmoid. Activation and transform functions are given in
Equations (4) and (5), respectively. The main role of the activation function is to transform
the summed weighted input into an output value, which will be used to feed into the next
hidden layer.

Activation : ∑N
i=1 wiSi (4)

Transform : S(b + ∑N
i=1 wiSi) (5)

Figure 6. Flowchart of output calculations using neurons.
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In this paper, the ANN is implemented using the supervised learning approach, which
is based on the difference between the predicted and the simulated outputs. To train the
ANN model, a Levenberg–Marquardt backpropagation (LMBP) algorithm [58] is applied,
which operates in a closed loop to minimize the differences between the predicted and
measured signals. The hidden layers of the ANN contain two hyperbolic tangent (TanH)
activation functions, and the output layer contains a linear activation function. In this pro-
cess, the ANN must reach a state of τ* = τ, where τ* is the vector of optimized parameters
and τ is the vector of neural network parameters. The number of parameters depends on
the number of neurons, at each sub-level of learning. As described in Equation (6), for a
couple (s, y), the arg operator minimizes the value predicted by the neural network using
the input data and the actually expected data to calculate the τ* value:

τ∗ = arg{|ANN(τ, si)− yi|} (6)

Hidden layers perform as neuron nodes in-between inputs and outputs, which allow
the neural network to learn complicated features. This is performed by the multiple neurons
in each hidden layer that carry an assigned function and weight, depending on the errors
coming from each iteration. The correct number of hidden levels and neurons is necessary
to achieve accurate results with the least computational effort required. The LMBP process
is applied to the ANN, in which, during training, random weights are assigned to the
neurons initially, the inputs are passed through the hidden level to give a predicted output
value, and an error value is calculated between the predicted and actual output value.
An iterative process is created that adjusts the weight at each cycle to minimize the error.
LMBP facilitates convergence to a stable system with low computational effort and time,
and it combines the aspects of the steepest-descent method and the Gauss–Newton method
to improve the accuracy of the output with fewer iterations required [58,59]. Therefore, the
LMBP algorithm is used in this paper to utilize the ANN architecture more efficiently.

3.2. The Proposed ANN Model

A novel ANN model is developed that predicts the energy level of an in-service train
acceleration, given that the speed of the train is known. For the train response, the energy
of the vertical acceleration signal of the first bogie is chosen, as it weighs uniformly and
consistently for most of the trains due to engine weight. The acceleration signals are
transformed from the time domain to the space domain using the location and speed of the
train. The space domain is then divided into several segments of the same size where the
energy of the signals is calculated for each segment. The number of segments is used as the
second input in the ANN. The energy of the vertical acceleration signal will be summed up
for each segment and will used as the output.

ek,j =
..
uk,j

2 (7)

where ek,j is the energy of spatial point k for run j and
..
uk,j is the vertical acceleration of

spatial point k for run j.
The independent variable s is formed of the vector containing

si,j =
(
i, vj
)

(8)

where i is the segment number (so the spatial location) and v is the speed, constant over the
whole passage, for run j.

The dependent variable can be translated to

Ei,j = ∑
I

ek,j (9)

where I represents the set of points included in segment i, e is the energy at special point k,
and j represents the number of the run.
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3.3. Damage Indicator

The damage indicator is formed using the prediction error, which is the square root of
the difference between the predicted and simulated data for each segment and each pass.

Pei,j =
{

ANN
(
τ∗, si,j

)− Ei,j
}2 (10)

where Pe is the prediction error of segment i and run j, and ANN is the operator that
predicts the data using the ANN trained in the training phase.

The prediction error might vary significantly depending on the speed of the train
passage. This results from a stochastic distribution that is characterized by a normal
distribution to recognize the healthy structure from the damaged one. In this article,
prediction errors are considered to follow a Gaussian process with a mean of μ and standard
deviation of σ.

Pei,j ∼ (μ, σ) (11)

The prediction errors for a healthy structure will be quite low, and they will remain
low as long as a healthy structure is predicted. This means that the energy predicted by
the ANN is at the same level as the energy measured by the train during the testing phase.
A damage indicator is then introduced by comparing the prediction error with the mean
of the prediction errors of the healthy structure, divided by the standard deviation of the
prediction errors of the healthy structure.

DIi,j =
Pei,j − μtraining

σtraining
(12)

where μtraining and σtraining are, respectively, the mean and the standard deviation of the
prediction errors of the healthy structure.

4. Result of the Machine Learning

In this section, the proposed ANN model is analyzed using the numerical TTI model
shown in Section 2. A 1100 m long track is modeled and a track section in between 700 m
and 1000 m is used to test the proposed algorithm to avoid the boundary conditions and
to stabilize the DOFs. The damage is modeled as a loss of stiffness of the ballast, and four
damaged cases are simulated. These include reductions in stiffness down to 10%, 30%, 50%,
and 70% of the healthy stiffness. The damage is simulated as a local loss and a 5 m section
(from 800 m to 805 m length) is chosen to assess the efficacy of the approach. Figure 7
illustrates the stiffness of the ballast with healthy and damaged case scenarios.

Figure 7. Sub-ballast stiffness profile with different damaged conditions at 800–805 m section.
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A fleet of trains traversing the track with the roughness profile is simulated, and the
train bogie acceleration energies are calculated using a sampling rate of 500 Hz. For a
healthy case, a fleet of 100 trains is selected, which is used to train the proposed ANN
model. For each run, the train velocity is chosen randomly following a normal distribution
with a mean of 110 km/h and a standard deviation of 12 km/h. Similarly, a fleet of the
same size each is used for the four damaged cases. The distributions of randomly chosen
velocities for the healthy and damaged cases are shown in Figure 8a,b. In this section, no
signal noise is added in the simulations and the energy magnitudes are calculated for each
time step.

  
(a) (b) 

Figure 8. Distribution of train velocities for (a) healthy case and (b) damaged case.

The healthy track case is used to train the ANN model, which adjusts and stabilizes the
weights of the neurons in each layer. The trained ANN model is used to predict the output
data for the next four fleets of the damaged cases. These predicted data are compared with
the simulated data and the error and damage indicators are calculated. In this section,
300 m of the track around the damage location is chosen and sliced into segments of 15 m
(resulting in 20 slices), and the energy of the vertical acceleration of the train is predicted
and compared with the interval of each segment.

The change in the damage indicator with the change in damage percentage is illus-
trated as a contour plot in Figure 9 on a logarithmic scale that allows us to make a better
observation of the energy behavior with damage. In this figure, the number of runs is
indicative of one healthy and four damaged cases, meaning that the first 100 runs represent
the healthy condition, 101–200 runs represent the 10% damaged condition, 201–300 runs
represent the 30% damaged condition, 301–400 runs represent the 50% condition, and
401–500 runs correspond to the 70% damaged condition. The runs are not sorted according
to the velocities and are arranged randomly as chosen. It is also noted that a lower damage
percentage, e.g., 10% loss of stiffness, is difficult to detect using the simple ANN analysis,
and more research would be required for detecting a low magnitude of damages. However,
the proposed ANN model can be a suitable system to identify the damage before any
critical event and help prevent serious consequences.

Figure 9. Damaged indicator by slice and run-on logarithm scale (contour plot).
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5. Sensitivity Analysis

In this section, the sensitivity analysis is also carried out to ensure robustness of the
ANN model. Three new scenarios are simulated, and the analysis is repeated to assess the
efficacy of the proposed system: (i) change in energy band, (ii) adding signal noise, and (iii)
multiple damage locations. In the previous analysis, the healthy and damaged tracks were
sliced with a size of 15 m.

5.1. Size of Segments

In this analysis, the impact of the size of the slices on the effectiveness of the proposed
approach is studied. The analysis in the previous section is repeated with three different
lengths of segments—(i) 30 slices of 10 m, (ii) 60 slices of 5 m, and (iii) 150 slices of 2 m.
The damage location and the train properties are kept similar to the previous analysis, and
the performance of the proposed model is assessed using finer sizes of segments. This is
important to see the ability of the ANN model to identify the location of the damage and
its magnitude with a changing level of computational effort. Figure 10a–c illustrate the
results of the first sensitivity analysis where three different lengths of segments are used.
It can be seen in Figure 10b,c that with a smaller segment size (finer segment), there is a
loss of precision and clarity in the results. It should be noted that there is expected to be a
trade-off between the size of the area being affected on the track and the size of slices. In
this case, the damaged segment is on a 5 m section of the track; however, it can be seen that
a slice size of 10 m shows better results compared to the 2 m. This can be considered as an
important finding when it comes to real-life applications of the method.

 
(a) (b) 

 
(c) 

Figure 10. Damaged indicator by slice and run-on logarithm scale (contour plot): (a) 10 m, (b) 5 m,
(c) 2 m.

This may be caused by the comparison between the damaged area length and the size
of the segment, e.g., as shown in Figure 10c where the size of the segments is less than the
actual length of the damaged area.
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5.2. Noise Assessment

A second sensitivity analysis is carried out by repeating the analysis from Section 4
with the addition of random noise in the acceleration signal. In field testing, sensors tend
to have a certain magnitude of imperfection, which results in random perturbations in the
signals. In addition, other sources of error such as changes in rail roughness profile and the
temperature effects can be considered as sources of noise. In order to evaluate the impact
of these parameters on the accuracy of the results, the noisy signal is generated using a
commonly used equation (Equation (13)) that creates a white noise vector randomly using
a normal distribution with a mean of 0 and a standard deviation of a percentage of the
signal amplitude [60,61]. The white noise vector is then added to the calculated responses
to generate noisy/polluted responses. It can be mathematically represented as

..
upolluted

=
..
u + Ep × Nnoise × σ

( ..
u
)

(13)

where
..
u is the calculated response and σ

( ..
u
)

is its standard deviation, Nnoise is a standard
normal distribution vector with zero mean value and unit standard deviation, Ep is the

noise level, and
..
upolluted is the polluted response of the model. For the analysis in this

section, two percentages of the standard deviation 5% and 10% are used to add the noise to
the train bogie accelerations.

For each noise level, a new set of healthy track data using noisy accelerations is
measured to train the ANN model. Also, a set of 400 runs are simulated for the damaged
cases to assess the damage indicator with added signal noise. The contour plots of the
damage indicators from the analysis, using the noisy signals, are shown in Figure 11, where
Figure 11a,b represent the results with 5% and 10% noise in the signals, respectively. It
can be seen from Figure 11 that the proposed ANN model for monitoring the sub-ballast
stiffness of the tracks works with reasonable results and is reliable under realistic conditions.

 
(a) (b) 

Figure 11. Influence of the noise on the DI (plotted on logarithmic scale): (a) with 5% signal noise
and (b) with 10% signal noise.

5.3. Multiple Damage Locations

In this section, the proposed approach is also tested with damages at multiple locations.
In this analysis, two sections of the track are considered with a 50% loss of ballast stiffness.
The sections are 800 m to 805 m and 950 m to 955 mm, and a slice length of 5 m is chosen
for the analysis. Figure 12 illustrates the results of the proposed ANN analysis damage
indicator with two damaged locations. It can be seen in the figure that there is a significant
increase in the signal energy differences at the two damaged locations (slice 20 and 50,
respectively). Although there are some other visible slices that have shown a change in
magnitude of damage indicator, these differences are not as significant as the differences at
the damaged slices. This analysis proves that the proposed approach is effective even if
there are multiple locations of damage.
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Figure 12. The results of the damage indicator with two damaged sections: 800–805 m (slice 8) and
950–955 m (slice 22).

6. Conclusions

A novel railway track damage detection approach is proposed in this paper using a
machine learning technique that combines an Artificial Neural Network model (ANN) and
a Gaussian process to detect the loss of track sub-ballast stiffness. The ANN is trained using
energy responses of 100 simulated vertical train accelerations traversing over a healthy
track. Using the trained ANN, the energy responses are predicted and the prediction error
for each passage of trains is calculated using the square of the difference between the
simulated and the predicted responses. The prediction error is assessed using different
track sub-ballast stiffnesses and a Damage Indicator (DI) based on the prediction error
is proposed. In order to interpret the prediction errors and to minimize the error in the
machine learning process, the DI is defined using a Gaussian process and is used to
normalize the distribution of the prediction errors. The numerical study demonstrates that
this novel approach is effective in detecting changes in sub-ballast stiffness and is able to
locate the area of damage. Although the approach is tested for the sub-ballast stiffness loss,
other types of rail damages may also be monitored (by training the algorithm with different
damage cases) and therefore will be part of our future studies. This paper provides a
theoretical concept and numerical validation for track damage detection using the ANN.
However, a full-scale real-life demonstration of the approach is recommended as part of
future work to test the resilience of the approach on real-life tracks where environmental
variations and other physical phenomena might limit the effectiveness. A high-accuracy
positioning system, to record the train location in time and to calculate the average speed, is
an essential element in such installations. In addition, the rail and track profile are assumed
to be constant during the training and testing phase. However, it should be noted this will
not be necessary in real-life applications. Therefore, further studies need to be carried out
to address this drawback.
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Abstract: Traditionally, freight wagon technology has lacked digitalization and advanced monitoring
capabilities. This article presents recent advancements in freight wagon digitalization, covering the
system’s definition, development, and field tests on a commercial line in Sweden. A number of
components and systems were installed on board on the freight wagon, leading to the intelligent
freight wagon. The digitalization includes the integration of sensors for different functions such
as train composition, train integrity, asset monitoring and continuous wagon positioning. Commu-
nication capabilities enable data exchange between components, securely stored and transferred
to a remote server for access and visualization. Three digitalized freight wagons operated on the
Nässjo–Falköping line, equipped with strategically placed monitoring sensors to collect valuable
data on wagon performance and railway infrastructure. The field tests showcase the system’s po-
tential for detecting faults and anomalies, signifying a significant advancement in freight wagon
technology, and contributing to an improvement in freight wagon digitalization and monitoring.
The gathered insights demonstrate the system’s effectiveness, setting the stage for a comprehensive
monitoring solution for railway infrastructures. These advancements promise real-time analysis,
anomaly detection, and proactive maintenance, fostering improved efficiency and safety in the do-
main of freight transportation, while contributing to the enhancement of freight wagon digitalization
and supervision.

Keywords: railway; digitalization; freight; monitoring; wagon; infrastructure

1. Introduction

In the freight train sector, there is a significant lack of knowledge about the state of
deterioration of the railway infrastructure and the trains themselves, mainly due to the
absence of digitization and advanced monitoring. Reliant solely on manual inspections and
visual assessments, the industry has faced significant challenges in optimizing maintenance
and ensuring operational efficiency. However, recent advancements in freight wagon
digitalization have brought about a paradigm shift in this sector.

The digitalization of freight trains is a crucial advancement aimed at creating modern
functionalities that provide a cost-effective and appealing service, while also offering
improved operational opportunities to operators and infrastructure managers. These
modern functionalities encompass intelligence, detection, actuation, and communication
capabilities.

Moreover, the digitalization of freight trains aligns closely with the principles of In-
dustry 4.0, ushering in a new era of interconnected and intelligent systems. Embracing this
transformative approach, the freight train sector can harness the power of well-established
technologies such as sensor deployment and element virtualization. These technologies,
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already matured and successfully applied in domains like Industry 4.0, offer great potential
for revolutionizing the railway industry [1]. By strategically integrating sensors, the digi-
talization process enables real-time monitoring of vital aspects such as train composition,
train integrity, wagon asset condition, and continuous wagon positioning. The seamless
communication facilitated by these advanced technologies fosters a data-driven ecosystem
that empowers operators and infrastructure managers with valuable insights for enhanced
decision-making and proactive maintenance strategies. Thus, the utilization of these mature
technologies becomes a cornerstone in advancing the efficiency, reliability, and safety of
freight services in the contemporary railway landscape.

According to its principles, the transport industry must significantly enhance the cost
competitiveness and dependability of freight services to fulfil the ambitious goals outlined
in the Transport White Paper [2] for the advancement of rail freight. These goals include
nearly doubling rail freight usage compared to 2005, achieving a 30% shift of road freight
over distances exceeding 300 km to modes such as rail or waterborne transport by 2030, and
surpassing a 50% shift by 2050. Consequently, it is crucial to improve the cost-effectiveness
and reliability of freight services to meet these objectives successfully.

Rail freight must adopt a cost-effective and appealing approach to entice shippers
and divert freight from the congested road network. The challenge at hand entails two
key aspects:

• Establishing a new service-oriented profile for rail freight services that prioritizes
punctual deliveries at competitive prices. This entails integrating operations with
other modes of transportation, incorporating innovative value-added services to cater
to customer needs, and striving for operational excellence.

• Enhancing productivity by addressing existing operational and systemic weaknesses,
including interoperability issues. This can be achieved by seeking cost-effective solu-
tions, optimizing the utilization of current infrastructure, and embracing technology
transfer from other sectors to enhance rail freight operations.

By addressing these challenges, rail freight can position itself as a reliable and efficient
alternative, contributing to the shift of freight from the congested road network while
providing a cost-effective and attractive service to shippers.

The freight railway environment presents a set of formidable challenges characterized
by its extensive geographical distribution, harsh environmental conditions, and stringent
energy considerations.

This article presents a comprehensive overview of the recent developments in freight
wagon digitalization, focusing on the definition, development, and field tests conducted
on a commercial line in Sweden. With the integration of a wide range of components
and systems, the concept of the intelligent freight wagon has emerged. This digitalization
process involves the strategic installation of sensors that enable various functionalities,
including train composition, train integrity, wagon asset monitoring, and continuous wagon
positioning. Furthermore, advanced communication capabilities facilitate seamless data
exchange between these components.

To validate the effectiveness of this digitalization approach, field tests were carried out
on three freight wagons operating on the operational line between Nässjo and Falköping
in Sweden. These wagons were equipped to monitor the behavior of the train, enabling
the detection of faults or anomalies in both the wagons and the railway infrastructure.
This integrated approach not only enhances safety but also lays the foundation for a
comprehensive monitoring solution for railway infrastructures, enabling real-time analysis,
anomaly detection, and proactive maintenance.

The remaining sections of this article are organized as follows. First, the existing
work on the digitalization of freight wagons is described (Section 2). Subsequently, a
comprehensive overview of the developed system, including its services and functionalities,
is provided (Section 3). Following that, the test campaign is presented, outlining the
methods and procedures employed (Section 4). The results and discussions are then
presented in Section 5, offering valuable insights and highlighting the significance of
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data acquisition. In Section 6, the main results and their implications are summarized,
together with suggestions for future research and potential areas for improvement based
on the findings.

2. Related Work

This section describes the related work for on-board monitoring for rolling stock and
infrastructure condition determination found in the literature and in EU research projects.

Shift2Rail [3] is the first European rail initiative to seek focused research and innovation
(R&I) and market-driven solutions by accelerating the integration of new and advanced
technologies into innovative rail product solutions. Shift2Rail promotes the competitiveness
of the European rail industry and meets changing EU transport needs. R&I carried out
under this Horizon 2020 initiative develops the necessary technology to complete the Single
European Railway Area (SERA).

One of the main objectives of TD3.8 Intelligent Asset Management Strategies (IAMS)
is to shift towards a tailor-made maintenance approach by using the necessary tools for
information management and decision support. This enhances the need to digitalize
railway assets. Information is derived from the data obtained on board and on field.
One of the most needed digitalizations is in the freight railway subsector, focused on the
IP5 pillar for Shift2Rail. These activities are mostly based on the successful progress of
TD5.1 fleet digitization and automation and mostly TD5.3 smart freight wagon concepts.
For condition monitoring on the freight subsector, TD5.3.3 extended market wagons and
TD5.3.4 telematics and electrification have made the greater efforts and they have been
delivered on the documentation, demonstrations and results presented.

As for EU Rail, FP3 [4] and FP5 [5] are the pillars concerned and they have just started
their activities, so there is no published information nor are there any conclusions related
to railway onboard and infrastructure condition monitoring.

From the academic and scientific point of view, Figure 1 presents the time evolution
of the research papers related to on-board monitoring for rolling stock and infrastructure
condition determination. The increasing number of papers since 2016 proves the growing
interest in this field in the past few years. It also shows that the technology and techniques
are in the right place to serve the needs of the railway industry. Research works such as the
one discussed in [6] show that the deployment of sensors on freight wagons allows, indeed,
the detection and transmission of multiple status information regarding the maintenance
and safety of these rolling elements.

The most cross-cited papers from the comprehensive list of references [7–46] represent
the current state of the art in the field of condition monitoring for railway infrastructure.
These articles primarily focus on advanced monitoring techniques and track quality as-
sessment, including the findings of supervised experiments conducted on Polish railway
lines using the electric multiple unit (EMU-ED74) equipped with a prototype track quality
monitoring system [17]. The system incorporates a track quality indicator (TQI) algorithm,
which utilizes a given transformation to preprocess the acceleration signals. This prepro-
cessing is employed to extract the fundamental dynamics from the measured data, enabling
a more comprehensive evaluation of the geometrical track quality. A comparative analysis
is conducted to assess the performance of the proposed approach against other existing
methods. This solution is the core of a track inspection system on board an electrified unit,
which is a first step but it is not directly employable on freight wagons mainly due to power
and location constraints. In addition, this paper presents further advanced features for
freight train operation.

The second most cited [14], from 2021, is a survey which presents a comprehensive
examination of the current literature conducted to provide an updated and content-driven
analysis. This theoretical analysis is also of great interest to the research presented in this
paper as it identifies the key contributors who have significantly influenced the progress
of research in the specific area of interest. Using a coupled methodology that combines
bibliometric performance analysis and a systematic literature review, the authors are able
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to identify the influential researchers, journals, and papers in the field. The findings of this
study not only highlight the research trends pertaining to the analyzed area but also shed
light on future research directions, particularly from an engineering standpoint. The main
trends have also been considered in the research presented in this paper.

 

Figure 1. Time evolution of the research papers related to on-board monitoring of rolling stock and
infrastructure condition determination [7–46].

The following list discloses the different referrals and nuances collected by this research
for the definition of “condition monitoring”:

• Direct measurement of relevant signals with time and/or frequency domain signal
processing. Collection and real-time recording of digital and analogue signals using
distributed transducers.

• Detecting and identifying deterioration in component structures and infrastructure
performance in operating conditions. Continuous or periodic monitoring options.

• Alarm tool for maintenance. Distinguishing between normal and abnormal conditions
and thresholding techniques for alarm systems.

• Implementing proactive condition monitoring technology. Tracking technical degrada-
tion and implementing preventive activities.

• Fault detection and diagnosis systems with intelligent algorithms. Condition-based
monitoring for prognosis and diagnosis of component degradation.

• Ensuring safe and cost-effective train operation.
• Gathering and processing data for design, availability, reliability, and maintenance

support.
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Enhanced infrastructure monitoring of various elements such as bridges, viaducts,
tunnels, crosses, rail gaps, frozen soil, and leaky feeders can yield significant benefits
in terms of efficiency and safety. Neglecting safety and security monitoring of railway
infrastructure poses risks such as train collisions, derailments, terrorism, and wagon
failures. Notably, infrastructure or rolling stock failures still account for 35% of train delays,
indicating the potential for substantial performance enhancements through intelligent
systems in railway freight management [28].

From the alternatives listed above, refs. [40] and [23] categorize them into three levels
here introduced and expanded in the picture below:

• Level 1 Data Logging and Event Recording Systems. When major incidents occur, they
are used primarily to provide conclusive evidence. Equipment and operations are
generally recorded digitally. This type of system can be used to detect faults in certain
assets whose operation time or logic changes under fault conditions. Such systems
are generally devoid of any data analysis. Typically, remote access is available to the
systems, and data are logged locally.

• Level 2 Event Recording and Data Analysis Equipment. In addition to Level 1, this
offers basic data analysis options, including statistical or sequence analysis. It is
generally equipped with additional communication modules for remote access to data
and analysis. In general, these systems are used for fault detection or the investigation
of allegations but are unable to predict future failures.

• Level 3 Online Health Monitoring Systems. These systems are defined as the highest
level of condition monitoring. These devices gathers digital and analogue (digitized)
signals from monitored equipment, analyze them into characteristic signatures, com-
pare them with an internal database of healthy and simulated faulty operation modes,
and signal alarms and fault diagnosis information to operators. Expert systems,
knowledge bases, and look-up tables are standard analysis techniques.

As a complement, Figure 2 illustrates an example of an intelligent infrastructure frame-
work for railways [47]. It completes the level categorization with examples of uses and services
that could be served with the equipment and strategy put in place for the monitoring.

 

Figure 2. Intelligent infrastructure framework for railways [47].

The main conclusion from the analysis shown in this section is that a connected,
distributed, and integrated system, with more layers and distributed acquisition and
processing subsystems, is able to provide more useful information. The work presented in
this paper is the result of the work performed in the TD5.3 smart freight wagon concepts
topic and the result is part of the final demonstration performed as the conclusive activity
for condition monitoring.

3. Perspective of the System: A High-Level Overview

The digitalization framework for freight wagons presented in this section is applicable
to wagon assets and infrastructure monitoring and is designed to acquire and monitor data
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from various sensors installed on the wagons, enabling efficient and reliable operation. The
monitoring with several sensors on each bogie is complemented with train composition,
train integrity and positioning, which data are combined and converged for more accurate
processing of the raw data. The visual representation, displayed in Figure 3, provides a clear
and concise overview of the system’s architecture. It showcases the various components
and their interconnections, offering a comprehensive understanding of how the system is
designed. By referring to Figure 3, one can easily grasp the hierarchical structure, the flow
of data, and the relationships between different modules within the system.

 

Figure 3. Architecture of the digitalization framework for freight wagons.

The locomotive on-board unit (LOBU) is responsible for controlling and enabling all
communications. The LOBU serves as a central hub, storing and processing data received
from all the connected wagons. It plays a crucial role in coordinating data exchange and
ensuring seamless integration of information.

The system architecture comprises several hardware components that work together
to enable data acquisition, storage, and analysis. Each freight wagon is equipped with a
wagon on-board unit (WOBU), which serves as a local data storage and communication
device. The WOBU collects and stores persistent information about the wagon, such as its
identification, type, and available functionalities. It also acts as a gateway for sensor data
acquisition.

The HW definition of the wagon on-board unit system deployed in each wagon is
presented below; this is a connected multiprocessing platform. This architecture consists of
two controllers for processing, which are a mainstream microcontroller (STM32F105RC)
and a system on module (SOM) (iMX8-based), a series of devices for sensorization, com-
munications and the power supply system [20].

A customized card was employed, featuring an SODIMM type connector, to interface
with a VAR-SOM-MX8M-MINI [20]. It incorporates a certified railway connector, designed
for railway applications, to enable the wiring of a CAN bus in addition to the Ethernet and
USB interfaces. Figure 4 depicts the block diagram of the designed hardware (HW). The
mechanical dimensions measure 150 mm × 95 mm × 45 mm.
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Figure 4. Block diagram of the WOBU proposed HW [10].

Connectivity between the LOBU and WOBU, as well as between multiple WOBUs, is
established through a scalable communication infrastructure. This ensures efficient data
exchange and synchronization, enabling real-time monitoring and analysis capabilities.

In addition to the LOBU and WOBUs, the system includes a driver desk, which
provides a user interface for direct connectivity to the on-board system. The driver desk
allows for efficient interaction and communication with the system, facilitating control and
monitoring of various functionalities.

Furthermore, the system incorporates the control center, a centralized platform for
control and monitoring. The control center retrieves data from the cloud storage and
enables remote monitoring and analysis of the acquired information. It serves as a compre-
hensive management tool, providing insights into train performance, wagon behavior, and
infrastructure evaluation. Advanced algorithms can be applied within the control center to
derive valuable conclusions and optimize decision-making processes.

The system encompasses essential functionalities such as train composition, train
integrity, continuous wagon positioning, and spring monitoring. These functionalities
play a crucial role in organizing wagons, ensuring connectivity and safety, tracking wagon
location, and detecting spring faults.

In the following sub-sections, the specific functionalities implemented within the
system are explored, providing detailed explanations of their capabilities and the benefits
they offer for comprehensive freight wagon digitalization and condition monitoring.

3.1. Train Composition

This functionality is a pivotal aspect of freight train operations. It involves strategically
organizing and assembling wagons to create an efficient transport unit. Its importance
lies in optimizing various aspects of freight operations, such as weight distribution, load
balancing, and overall train performance. By carefully arranging wagons and ensuring
seamless connectivity between them, logistics managers can achieve optimal resource allo-
cation, streamlined logistics processes, and enhanced operational efficiency. Additionally,
efficient train composition reduces stress on rail infrastructure, minimizing wear and tear.
Accurate identification and tracking of wagons within the train formation enable real-time
monitoring, cargo identification, and efficient resource utilization.

In the developed system, each wagon is equipped with a wagon on-board unit (WOBU)
that stores essential information such as wagon identification, type, number of bogies, and
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available functionalities. This WOBU functionality is triggered upon request from the
driver desk, as mentioned earlier in this subsection. The driver desk initiates a discovery
process through the LOBU (locomotive on-board unit), which communicates with the
connected wagons. In response, each wagon provides persistent information along with
the real-time status of the connected sensors. The LOBU processes these data to establish
the current composition of the train and subsequently notifies the driver desk to display the
updated train information as shown in Figure 5. This streamlined process ensures effective
communication and seamless coordination between the different components of the system.

 

Figure 5. Driver desk visualization of the train composition.

This advanced train composition functionality offers a comprehensive solution for
managing the composition of freight trains. Leveraging digitalization technologies, our
system provides real-time insights into train formation, enabling logistics operators to
make informed decisions regarding load distribution, coupling order, and overall train
configuration. This not only optimizes train performance but also enhances safety, reduces
operational costs, and improves the overall efficiency of freight transportation.

3.2. Wagon Positioning

The integration of a position stamp in freight wagon monitoring services is crucial
for accurate evaluation and efficient tracking. It provides timestamped records of wagon
locations throughout their journey, enhancing safety, optimizing operations, and enabling
digitalization in freight transportation.
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Accurate and real-time location tracking is a primary reason for implementing a
position stamp. It allows stakeholders to precisely track wagon locations, ensuring safety
and enabling proactive measures in response to deviations or incidents. Real-time tracking
also facilitates efficient resource allocation, optimized loading/unloading operations, and
informed decision-making.

The use of a position stamp optimizes maintenance schedules and resource allocation.
Continuous monitoring helps identify maintenance requirements, minimizing breakdown
risks and maximizing operational efficiency. The data from position stamps provide
insights into wagon utilization patterns, informing resource allocation decisions, routing
optimization, and fleet management practices.

The integration of position stamps supports comprehensive digitalization. Time-
stamped position data enable efficient documentation, data-driven decision-making, and
advanced analytics. Leveraging this data, including machine learning algorithms, helps
identify optimization opportunities, improve route planning, and enhance supply chain
visibility.

To provide time-stamped position data, the proprietary hardware of WOBUs (wagon
on-board units) employs single-frequency multi-constellation GNSS receivers. These re-
ceivers translate satellite signals into messages and estimated satellite receiver distances.

The algorithm utilizes GPS and Galileo observables to estimate WOBU positions
along the train’s route. Due to suboptimal satellite visibility caused by the GNSS antennas’
lateral location between freight containers, a least squares estimation algorithm is em-
ployed. This algorithm allows recalculation of positions based on the required information,
without considering past measurements or results. It provides positions despite harsh
railway environments. Multiple WOBUs offer position redundancy for post-processing
and error analysis. Figure 6 shows the driver desk visualization of the wagon positioning
functionality.

 
Figure 6. Driver desk visualization of the wagon positioning.

3.3. Train Integrity

The monitoring of the integrity of a freight train has turned out to be an essential
requirement to operate the train in a safe way. To have the confirmation of the integrity
of the train, the operator ensures that the full train is travelling towards its destination
and no goods have been left in the way. Moreover, if this system is used as part of the
safety critical signaling system used for the operation of the railway, the occupancy of the
lane can be increased due to knowledge of the position and completeness of the train and
its wagons. This subsection introduces the different train integrity classes defined in the
X2RAIL-4 project [48] and how they could be used alone, or in a combined way to ensure
the integrity of the freight train.
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X2RAIL-4 project defined three train integrity classes depending on the technology
used to measure it:

• Train integrity class 1: This relies on wired net connectivity. All the wagons are wired,
forming a net that goes from the locomotive to the tail of the train. The LOBU, placed
in the locomotive, is continuously monitoring the wired composition functionality
to verify that all the WOBUs connected at the beginning of the operation are still
connected to the network. Any fault detected in the aforementioned network generates
an alarm message in the train integrity class 1 function.

• Train integrity class 2: This relies on the coherence between the velocities measured
at the head and tail of the train. The velocity of the train is continuously measured
both at the head and tail of the train. These velocities are then compared. If there is a
difference bigger than a threshold programmed for the lane in which the freight train
is operating, a train integrity class 2 alarm is raised in the system.

• Train integrity class 3: This relies on the distance measured between wagons. The
head and the tail of each of the wagons are equipped with an ultra-wideband (UWB)
anchor. These anchors are used to calculate the distance between the tail of a wagon
and the head of the next wagon. If the distance measured is less than the maximum
distance between coupled wagons plus a security margin calculated depending on the
maximum gap between wagons, a train integrity class 3 alarm is raised in the system.

The freight train can have deployed one or more of the introduced train integrity
monitoring classes, as shown in Figure 7. In the case that only one of the classes has been
installed, the whole train integrity function will be performed according to that class. If
there is more than one class installed, the status of all of them will be taken into account,
and the joint train integrity will be calculated taking into account the outputs of the existing
classes and their probabilities of false alarms.

 
Figure 7. Driver desk visualization of the train integrity.

3.4. Wagon Monitoring System

Ensuring safe and efficient freight wagon operation relies heavily on monitoring
springs. Springs play a vital role in absorbing shocks and vibrations, enabling a smooth
ride while safeguarding cargo and wagon integrity. However, the springs endure extreme
loads and adverse conditions throughout their service life. Factors like wear, fatigue, and
severe impacts can lead to deterioration and loss of functionality over time, negatively
impacting wagon performance and potentially leading to accidents.

Continuous monitoring of springs on freight wagons offers multiple benefits. First,
it allows early detection of any deterioration or damage to the springs, which helps to
prevent catastrophic failures and accidents. In addition, regular monitoring facilitates
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predictive maintenance, which means that springs can be replaced or repaired before serious
problems occur. This not only improves safety, but also reduces operating costs by avoiding
unplanned outages and optimizing maintenance schedules, minimizing disruptions, and
ensuring a constant flow of goods. In addition, this spring monitoring functionality,
working together with the wagon positioning function described above, facilitates the
detection of possible faults in the track structure.

The spring monitoring functionality is performed by measuring the accelerations in
the buffers of the bogies of the wagons, both at the top and at the bottom of the springs, as
shown in Figure 8.

 

Figure 8. Vibration monitoring points on springs.

Measuring the accelerations that occur in this part of the wagon allows us to check
whether the weight of the load in the wagon is balanced or not, to know the state of wear
of the dampers themselves, as well as possible defects in the track infrastructure due to the
vibration produced by the transit of the wheels of the wagon over possible imperfections in
the infrastructure.

3.4.1. Sensor Node HW Implementation

To collect data on the vibrations occurring in the springs, the development of the HW
shown in Figure 9 was proposed.

 

Figure 9. Block diagram of the sensor node proposed HW.
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This hardware consists mainly of an STM32F105RC microcontroller, which is responsi-
ble for managing the data measured by the two accelerometers proposed in this design.
This controller incorporates an ARM Cortex-M3 32-bit RISC core operating at 72 MHz
frequency. The two accelerometers proposed are the ADXL345 and the ADXL357, which
allow one to select one or the other depending on the accuracy or sensitivity to be obtained
in the measurements.

3.4.2. Data Collection and Wagon Monitoring System Functionality Flow

To obtain the acceleration data at the springs, a network consisting of four sensor
nodes connected through the CAN interface to the WOBU was deployed in every wagon.
The arrangement of these sensor nodes in the wagon can be seen in Figure 10.

 
Figure 10. The arrangement of sensor nodes in the wagon.

The data flow for the spring monitoring functionality is represented in Figure 11. Data
from the three axes (x, y and z) is collected by the sensor nodes in 10-s time windows and sent
to the WOBU through the CAN network. When the data is received at the WOBU, it stores it
in its internal memory and sends it through the ETH network to the LOBU, which is in charge
of storing all the information and processing the data coming from the wagons.

Figure 11. Schematic of the hardware involved in collecting acceleration data at the springs.

From the tablet, through a request to the LOBU, we can visualize the data as shown in
Figure 12. The driver desk application on the tablet allows us to select which spring we
want to monitor as well as to make a comparison between different springs and coordinate
axes and different measurements within the same spring.
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Figure 12. Driver desk visualization of the wagon monitoring system measurements.

4. Test Campaign

This section provides a detailed description of the test campaign conducted to rig-
orously test and validate the functionalities outlined in the previous section. The test
campaign was an integral part of the FR8RAIL-IV European project [49], aimed at evaluat-
ing the performance and effectiveness of the developed system. The campaign took place
in Sweden from 22 May to 26 May 2023, and involved a planned route that encompassed
various aspects of freight train operations. In this section, we will delve into the duration of
the test campaign, the specific types of wagons utilized, the characteristics of the track, and
the strategic placement of sensors, electronics, and antennas. These insights and findings
from the test campaign are instrumental in assessing the reliability and efficiency of the
digitalization and monitoring solution for freight wagons.

The journey, as shown in Figure 13, commenced at Nässjo station at 10 a.m., with
the train arriving at Göteborg at 3 p.m. This allowed for the loading and unloading of
containers in the wagons. At 6 p.m., the train departed from Göteborg, reaching Falköping
at 10 p.m.

 

Figure 13. Journey undertaken by the freight train during the test campaign between Nässjo
and Falköping.

The average speed throughout the journey was maintained at 35 km/h, and the train
made several stops at intermediate stations. The route encompassed various track sections,
including track changes and a mid-journey train orientation reversal.

Figure 14 presents the freight wagons employed in the test campaign “Sggrss 80’|6-
axle articulated intermodal wagon”. The train consisted of 21 wagons, with wagons 15, 16,
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and 17 being selected for monitoring, each carrying two containers. This strategic selection
enabled comprehensive data collection for analysis.

Figure 14. Schematic of the Sggrss 80´ | 6-axle articulated intermodal wagon [50].

In terms of hardware placement, as depicted in Figure 15, the electronic components
and antennas were carefully installed in the middle section of the wagons, specifically in
the stairwell area. This location ensured easy accessibility for maintenance purposes for
the validation phase of the functionalities.

 

Figure 15. Installation of electronic components and antennas.

The test campaign provided valuable insights into the performance and functionality
of the developed system under realistic operational conditions. The collected data serve as
a crucial foundation for further analysis, validation, and enhancement of the digitalization
and monitoring solution for freight wagons.

5. Results and Discussion

The primary objective, as mentioned earlier, was to acquire a substantial amount of
data from various functionalities and establish an effective monitoring system, conditions
included, with the intention of conducting comprehensive analysis in the future. The
following are the results obtained for each functionality:

• Train composition: The system successfully obtained and displayed real-time informa-
tion about the train, its wagons, and the connected sensors. The data acquisition and
visualization were performed accurately, enabling efficient monitoring of the train’s
composition, which is a key feature for train operation but also for the processing of
the data incoming from the sensors.

• Train integrity: Continuous checks were carried out to ensure the train’s integrity
while in motion. While the system effectively detected integrity breaches, there were
occasional false positives at very low speeds. This aspect is being addressed for further
improvement.

• Train positioning: Real-time visualization of the train’s current location and its indi-
vidual wagons was achieved. The system provided accurate positioning information,
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allowing for effective monitoring and tracking of the train’s movement and its deriva-
tive on components and infrastructure monitoring.

• Wagon monitoring system: The continuous monitoring and real-time visualization
of the accelerometers (both upper and lower) for each spring shown in this paper,
provide valuable insights into the dynamic behavior of the wagon throughout its
operation. By analyzing the combined data from these accelerometers, it becomes
possible to assess the wagon’s response to the condition of the railway infrastructure.
Figures 16 and 17 illustrate the recorded data, offering a comprehensive understanding
of how the wagon interacts with the track, thereby facilitating effective maintenance
planning and optimizing the overall performance of the system.

Every operational data acquisition was logged with its corresponding timestamp and
associated position. This detailed recording ensures that any faults, defects, or alarms can be
precisely located and identified, facilitating prompt action and maintenance interventions.

During the validation tests, the train was constantly monitored through various
means, including direct and remote connections from the driver desk, as well as from
a centralized control center. With this feature deployed, the comprehensive monitoring
approach ensures continuous oversight of the train’s operations, allowing for a quick
response to any anomalies or emergencies.

All the collected information is also stored in a remote server, ready for future pro-
cessing. This long-term storage enables thorough analysis and processing of the data to
derive meaningful insights, contributing to enhanced operational efficiency and informed
decision-making.

The obtained results not only validate the successful achievement of the objectives
but also lay a robust foundation for conducting future in-depth analysis and deriving
valuable insights from the accumulated data. Depending on the specific focus of the
future analysis, this rich dataset can be instrumental in detecting anomalies, failures, and
wear and tear, both within the wagons and across the track infrastructure. By leveraging
this comprehensive monitoring approach, we can see significant potential for enhancing
maintenance strategies, identifying potential issues proactively, and optimizing the overall
performance and safety of both the rolling stock and the track system.

Figure 16. Accelerometer measurements above the wagon springs, displaying acceleration values in
the x, y, and z axes together with travel route information.
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Figure 17. Accelerometer measurements under the wagon springs, displaying acceleration values in
the x, y, and z axes together with travel route information.

6. Conclusions

Based on the comprehensive analysis and findings presented in this study, the follow-
ing key conclusions can be drawn:

First and foremost, the successful development and implementation of the digital-
ization system for freight wagons have not only addressed the limitations of traditional
operational and manual inspections but have also showcased the immense potential for
enhancing the monitoring and management of components and railway infrastructures. By
integrating advanced sensors and monitoring technologies, the system has enabled accurate
and real-time monitoring of train composition, train integrity, wagon asset monitoring, and
continuous wagon positioning.

The primary objective of the system is comprehensive data gathering and monitoring.
Collaborating with stakeholders, research institutions, and the railway industry is crucial
for successful digitalization implementation. This approach brings diverse perspectives,
enhances understanding of industry needs, optimizes resource utilization, and accelerates
innovation deployment. By tailoring the system to specific demands, safety standards, and
regulations, its overall effectiveness and acceptance in the industry are enhanced. Collabo-
rative efforts foster knowledge exchange, driving further advancements in digitalization
strategies to meet evolving freight transportation needs, ensuring informed decisions,
improved efficiency, and enhanced safety.

Furthermore, the validation and testing campaign conducted on the operating line
in Sweden provided crucial information on the real-world performance and functionality
of the system. The data collected during the campaign served as the basis for the subse-
quent analysis, validation and improvement of the freight car digitization and monitoring
solution. This data-driven approach allows for continuous improvement and optimization
of the system, resulting in increased efficiency and reliability. The success of freight car
monitoring in harsh and inaccessible environments demonstrates the system’s adaptability
and its potential to provide comprehensive monitoring capabilities in a variety of operating
conditions.

In addition, it is important to recognize the growing significance of effective data
management in the context of large-scale digitalization efforts. As the volume of data
generated by the digitalization system increases, adopting advanced data management
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techniques, such as big data analytics and machine learning algorithms, becomes essential.
These cutting-edge technologies offer invaluable insights and opportunities for predictive
maintenance, optimized resource allocation, and enhanced overall system performance.
Therefore, the future direction of this research should focus on exploring these areas further
to leverage the full potential of digitalization in freight wagon monitoring. By integrating
big data analytics and machine learning algorithms, the system’s capabilities can be greatly
enhanced, enabling proactive maintenance practices, and ultimately leading to improved
operational efficiency and cost-effectiveness.

The monitoring of multiple wagons enables a thorough assessment of individual
wagon behavior. Moreover, the combination of data from these wagons offers the opportu-
nity to extract valuable insights regarding the overall condition of the railway infrastructure.
Analyzing patterns and trends derived from the collective data can help identify potential
defects or issues in the track infrastructure, enhancing maintenance planning and ensuring
optimal system performance.

In conclusion, the digitalization of freight wagons and the integration of advanced
monitoring capabilities offer transformative potential for the railway industry. By har-
nessing the power of real-time data, stakeholders can optimize operational efficiency,
enhance safety measures, and improve the overall performance of railway infrastructures.
As technology continues to advance, the successful implementation of digitalization in
the freight wagon industry requires addressing emerging challenges. Ensuring interop-
erability among different systems, prioritizing data security and privacy, investing in
research and innovation, and providing comprehensive training for stakeholders are es-
sential steps. By proactively tackling these challenges, the industry can unlock the full
potential of digitalization, leading to improved safety, efficiency, and overall performance
of the railway infrastructure.
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Abstract: One of the most common types of wheel damage is flats which can cause high maintenance
costs and enhance the probability of failure and damage to the track components. This study
aims to compare the performance of four feature extraction methods, namely, auto-regressive (AR),
auto-regressive exogenous (ARX), principal component analysis (PCA), and continuous wavelet
transform (CWT) capable of automatically distinguishing a defective wheel from a healthy one. The
rail acceleration for the passage of freight vehicles is used as a reference measurement to perform
this study which comprises four steps: (i) feature extraction from acquired responses using the
specific feature extraction methods; (ii) feature normalization based on a latent variable method; (iii)
data fusion to enhance the sensitivity to recognize defective wheels; and (iv) damage detection by
performing an outlier analysis. The results of this research show that AR and ARX extraction methods
are more efficient techniques than CWT and PCA for wheel flat damage detection. Furthermore, in
almost every feature, a single sensor on the rail is sufficient to identify a defective wheel. Additionally,
AR and ARX methods demonstrated the potential to distinguish a defective wheel on the left and right
sides. Lastly, the ARX method demonstrated robustness to detect the wheel flat with accelerometers
placed only in the sleepers.

Keywords: wheel flat detection; wayside condition monitoring; train-track interaction; unsupervised
learning

1. Introduction

Nowadays, due to the increasing importance of railway transportation infrastructures,
many studies have been conducted on their cost-effectiveness, particularly in terms of
operation and maintenance costs [1–3]. One of the main responsible for the structural
degradation of the railway infrastructure, particularly the track, is the operating rolling
stock [4,5]. Therefore, an efficient and reliable condition assessment of the rolling stock is
crucial for any infrastructure manager.

Many types of damage can affect a train’s operational performance and one of the
most important is defective wheels, which include two categories of defects, localized
defects in the wheel tread (e.g., wheel flat, spalling and shelling), and defects around the
complete wheel perimeter (e.g., wheel corrugation and polygonal wheel).

Wheel flats are the most common type of defect in train wheels and remarkably
affects running safety and causes significant damage to the infrastructure, namely the
rails and sleepers, due to the higher impact forces induced in the track [6]. The initial
cause for the wheel flat is the friction between the wheel and rail due to braking forces,
as friction can change the shape of the exterior perimeter of the wheel from round to flat.
The wheel flat length is the standard for wheelset maintenance, as stated in the General
Contract for the Use of Wagons [7]. For a wheel diameter larger than 840 mm, and in the
presence of flat lengths greater than 60 mm, the wheelset should be immediately replaced.
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Detecting defective wheels at an early stage is recommended to maintain safety, stability,
and minimize maintenance costs.

To do this, an automated approach must be developed that can clearly distinguish
between a healthy and damaged wheel. Therefore, finding effective methods for the early
detection and identification of wheel flats is of great interest to railway administrations and
rolling stock operators.

In the last few decades, researchers have proposed several onboard and wayside
systems for detecting wheel defects in operation conditions, most based on the concept that
the interaction force between the train and the track increases in a defective wheel [8,9].
Many onboard techniques are based on vibration, acoustic, image detection, and ultra-
sonic technologies [10,11]. Nevertheless, all wheels must be equipped with sensors for
comprehensive diagnosis and effective wheel condition management. The high cost and
maintenance problems of this method make it rarely used. Moreover, onboard detection
methods are commonly used to monitor track conditions.

Alternatively, wayside measurement systems are currently the preferred solution to
identify wheel flats since all wheels are evaluated during the train passage at the specific
system location [12–14]. Previous research has been focused on advanced signal processing
methods to eliminate signal interference and spotlight the faulty signal patterns of wheel
flats. Jiang et al. [15] used the empirical mode decomposition (EMD) method to divide the
signal into several intrinsic mode functions (IMF) which separates the faulty signal mode
from interferences. Amini et al. [13] proposed a method based on time–spectral kurtosis
(TSK) to reduce the effect of noise and highlight the faulty signal patterns of wheel flats.
Mosleh et al. [16] proposed a method to distinguish a defective wheel from a healthy one
based on the envelope spectrum method. Krummenacher et al. [17], by measuring the
vertical wheels’ force and using a sensor system permanently installed on the railway track,
proposed two machine-learning methods to automatically detect a defective wheel during
operation. These methods learn different types of wheel defects and predict whether a
wheel has a defect. Yi-Qing et al. [18] developed a probabilistic Bayesian method using
trackside strain sensors for the online condition monitoring of the wheels. They found that
only using monitoring data from a single sensor may produce false-negative results, but
with the data from all the deployed sensors could provide more accurate diagnostic results.

Typically, the phases for damage identification methods are related to data acquisition,
feature extraction, feature normalization, data fusion, and feature classification [1,19]. The
process of transforming time series data into alternative information, where the correla-
tion with damage is easily visible, is known as feature extraction [20,21]. Typically, the
auto-regressive model (AR) [5], auto-regressive model with exogenous input (ARX) [19],
principal component analysis (PCA) [22], and continuous wavelet transform (CWT) [8] are
employed to extract the damage-sensitive features using the dynamic responses.

One of the main challenges to detect a damaged wheel is to remove the environmental
and operational effects from the dynamic responses to obtain features that are mainly
sensitive to damage but insensitive to environmental and operational changes (EOVs).
Therefore, to reduce the variation caused by EOVs and enhance the sensitivity to damage,
feature normalization is performed by using various linear and non-linear correction
models, such as, PCA [23], kernel principal component analysis (KPCA) [24], non-linear
principal component analysis (NLPCA) [25], and factor analysis (FA) [26].

For feature fusion and dimension reduction, several algorithms, including neighborhood-
preserving embedding (NPE) [27], neural networks [28], Mahalanobis distance [29], manifold-
learning methods [30], and kernel-based methods [31], have recently been employed. The
capability of the Mahalanobis distance to capture the variability in multivariate datasets
has led to the widespread use of this technique [23]. This method has been used in multiple
research studies with excellent results as it increases the sensitivity to the damage and can
integrate data from various sensors [32].

In recent years, machine-learning (ML) approaches in combination with advanced
signal processing methods have been applied for feature classification to differentiate a
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healthy wheel from a defective one [18,33]. Unsupervised and supervised learning are
two different types of ML techniques. Unsupervised learning involves finding hidden
structures in unlabeled data to classify them into meaningful categories. On the other hand,
supervised learning assumes that a database’s categories or hierarchy of the database are
known in advance. Researchers have recently investigated supervised and unsupervised
approaches for classifying data based on dedicated features, including unsupervised meth-
ods, such as, k-mean [1], self-organizing maps (SOM) [34], and cluster analysis, as well as
supervised methods, such as, naive Bayes classifiers [35] and k-nearest neighbor (kNN)
classifiers [36].

Most of the previous research on wheel flat detection is based on engineering field tests.
However, numerical analysis is very useful for understanding the mechanism and physical
consequences based on dedicated models. Additionally, models can be used for deeper
comprehension and prediction in situations that cannot be reproduced in experimental tests.
For example, external elements, such as noise, environmental disturbances, measurement
errors, and electromagnetic interferences, easily influence the measurement process and
may affect the results, causing a decrease in measurement accuracy. Additionally, numerical
simulation makes it possible to define each unknown variable separately to check how it
affects the results.

It should be highlighted that the initial research on this topic was developed by
Mosleh et al. [5,8], who proposed an automatic wheel flat identification method based on
shear and accelerometer time series evaluated on the rails. It should be noted that the
CWT [8] and AR [5] methods have been used separately in each research to extract features.
However, none of these studies compared the accuracy of different features. Therefore,
one of the novelties of this research is the comparison of the accuracy of four different
feature extraction techniques using an unsupervised learning methodology to automatically
detect a defective wheel, which is a clear step forward in terms of the effectiveness of the
proposed method and allows full implementation for real-world application. Therefore, a
3D numerical dynamic model of a vehicle–track coupling system was used for this purpose.
The features were extracted by applying the AR, ARX, PCA, and CWT models to the
measurement records. Moreover, PCA, as well as Mahalanobis distance, were used for
feature modeling and data fusion, respectively. Finally, outlier and cluster analyses were
applied for feature classification. The following significant contributions can be highlighted
from this research work:

(1) Development of an unsupervised data-driven methodology using acceleration re-
sponses on the rail for detecting defective wheels from healthy ones;

(2) Implementation of AR, ARX, CWT, and PCA for feature extraction from multiple
sensors to transform the time series measurements into damage-sensitive features,
where the correlation with the damage can be more easily observed;

(3) Analysis of the performance of the four feature extraction methods considering the
different number and locations of the sensors on the rails;

(4) Comparison of the sensitivity of the proposed methodologies to the side (left vs. right)
of the defective wheel in a train axle;

(5) Evaluation of the effectiveness of the proposed method with respect to the minimalist
layout of sensors;

(6) Improvement in wheel flat detection by applying a two-stage fusion process: in the
first step, the features from each sensor are merged and, in the second stage, the
multi-sensor information is fused to enhance the sensibility to the damage.

2. Numerical Simulation

2.1. Train–Track Dynamic Interaction

In this study, by using in-house software vehicle–structure interaction (VSI), the simula-
tions for numerical train–track dynamic interaction were carried out. The vehicle–structure
interaction analysis is explained and validated in detail in the work of Montenegro et al. [37]
and has been used in several applications [5,16]. A 3D wheel–rail contact model couples
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the train to the track using Hertzian theory [38], to compute normal contact forces, and
USETAB routine [39], to compute the tangential forces caused by rolling friction creep. The
structural matrices from the structure (in this case, the track) and the vehicle, previously
modeled in a finite element program (FE), were imported into this numerical tool, which
was developed in MATLAB [40]. Although these subsystem models were initially created
individually, the VSI program connects them using a fully linked technique [37]. Figure 1
represents the graphical representation of this procedure.

 

Figure 1. Numerical modeling of the train–track system.

The software ANSYS [41] was used to simulate the track. Beam elements were used to
model the rails and sleepers, while spring–dashpot components were used to simulate the
behavior of the flexible layers, i.e., the ballast, fasteners/pad, and mass point components
to account for the ballast’s mass as shown in Figure 1. The train was composed of five
wagons of Laagrss type, each one with two axles, had also been modeled in ANSYS [41]
through a multibody formulation, using mass point elements located at the center of gravity
of each body, specifically the car body, and wheelsets, to simulate their mass and inertial
effects. Rigid beams were also used to consider the rigid body movements of the vehicle.
The characteristics of both the track and train models are fully described in the work of
Mosleh et al. [16,42].

2.2. Virtual Wayside System

A set of eight accelerometers were considered along the track as part of the wheel
flat-detecting system. Figure 2 depicts the position of the sensors in the proposed virtual
wayside monitoring system. Measurement points 1 to 4 simulate the position of the
accelerometers located on the right side of the track, particularly on the rail and on the
sleepers; otherwise, measurement points 5 to 8 represent the sensors located on the left side
of the track. In Section 4, accelerometers 1–4 were selected to depict the results. One of the
main advantages of the proposed method compared to previous approaches [16,42,43] is
that there is no need to install a series of sensors on the rail to monitor the whole perimeter
of the wheel. Only a minimalist set of sensors are sufficient to detect a defective wheel.

99



Sensors 2023, 23, 1910

Figure 2. Virtual wayside monitoring system.

2.3. Baseline and Damaged Scenarios

For testing and validating the automatic wheel flat-identification method proposed in
this work, baseline (undamaged) and damaged wheel scenarios were considered. After
validation, this method can reproduce real experimental data, from different types of trains
with various wheel defects, running at different speeds on the rail track with distinct rail
irregularities profiles.

As shown in Figure 1, for damaged scenarios, three defective cases are considered,
particularly ones located on: (i) the right wheel on the front wheelset of the first wagon
(Damage 1), (ii) the left wheel of the rear wheelset of the third wagon (Damage 2); (iii)
right wheel of the rear wheelset of the fifth (last) wagon (Damage 3). The lower and upper
bounds of the flat length are defined by uniform distributions U (50, 100) for the three
defective wheels. The wheel flat depth (D) is defined by the following expression [41]:

D =
L2

16Rw

where L is the flat length and Rw the radius of the wheel.
The vertical profile deviation of the wheel flat (Z) is defined as follows [41]:

Z = −D
2

(
1 − cos

2πx
L

)
.H(x − (2πRw − L)), 0 ≤ x ≤ 2πRw

where H represents the Heaviside periodic function, and x is the coordinate aligned with
the track longitudinal direction.

Wheel-rail contact force values are significantly affected by imperfections in a real-
condition environment, where the rails are not completely smooth. Although these irreg-
ularities are very small, they should be considered in the numerical analyses. Four real
unevenness track profiles are taken into consideration in this study. The selected uneven-
ness profiles of the rail are measured on the Northern Line of the Portuguese Railway
network based on the track inspection vehicle EM120 and according to the details provided
by Mosleh et al. [14]. The total length of the simulation was 1000 m.

To evaluate the proposed methodology, the accelerations on eight positions of the
rail were evaluated in both baseline (undamaged) and damaged scenarios. The baseline
condition corresponds to a train passing with healthy wheels, while the damaged scenarios
correspond to the passage of trains with defective wheels. Table 1 summarizes the assump-
tions for damaged and baseline scenarios, as well as the number of numerical analyses
performed for each scenario.
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Table 1. Damaged and undamaged scenarios.

Baseline Scenarios Damaged Scenarios

Train Freight—Laagrss wagon
Number of loading schemes 6 1 (full capacity)

Unevenness profiles 4 1
Speeds (km/h) 40–120 80

Noise ratio 5%
Flat lengths (mm) − 50–100

Number of numerical analyses 100 30

Figure 3 presents the baseline scenario for which 113 simulations were performed
considering a freight train comprising five wagons. Six different types of loading schemes
were considered: (i) full-loaded train; (ii) half-loaded train, (iii) empty train, as well as trains
with unbalanced loads in the transversal and longitudinal directions, namely (iv) UNB1,
(v) UNB2 and (vi) UNB3. According to UIC loading guidelines [44] different unbalanced
loading schemes were defined for the wagon model, where the cargo gravity center was
offset in longitudinal and transversal directions.

Figure 3. Baseline scenarios.

Figure 4 illustrates the damaged scenarios for 30 simulations which were implemented
considering several combinations of flat properties for defective wheels. As mentioned
before three defective cases were considered in this study, namely Damage 1, Damage 2
and Damage 3, which are located on the 1st, 3rd and 5th wagons, respectively. In total,
10 analyses were performed for each damaged wheel (Damages 1, 2 and 3) and the speed
was considered equal to 80 km/h. Moreover, a sampling frequency of 10 kHz was used to
evaluate acceleration signals for both baseline and damage scenarios.

The numerical signal was then polluted with artificial noise (5% of the amplitude)
based on the maximum response of the signal for a more realistic reproduction of the
measured rail response.
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Figure 4. Damaged scenarios.

In Figure 5 are shown examples of acceleration time series for baseline scenarios
obtained in sensor 3, located on the rail. These figures show the influence of different
loading schemes, train speeds, and unevenness profiles on the track response. All-time
series were filtered using a low-pass Chebyshev type II digital filter with a cut-off frequency
of 500 Hz.

 

 

(a)  

  
(b) (c) 

Figure 5. Acceleration time series for sensor 3 for a freight train considering a healthy wheel (baseline
scenario): (a) influence of vehicle speed, (b) influence of the unevenness profile, (c) influence of the
loading schemes.

Figure 5a demonstrates the relevant influence of the train speed on the evaluated
acceleration, and the need to consider various train speeds for identifying wheel flats. Ad-
ditionally, as shown in Figure 5b, both unevenness rail profiles induced similar acceleration
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responses. Finally, Figure 5c shows that both loading schemes affect the track responses
particularly on the peak acceleration values.

3. Unsupervised Learning Methodology for Wheel Flat Detection

The purposed methodology for the automatic detection of wheel flats presented in
Figure 6 includes four steps, particularly:

1. Features extraction: application of four advanced data-driven models, including
the continuous wavelet transform (CWT), auto-regressive model (AR), principal
component analysis (PCA), and ARX to extract the damage-sensitive features from
the time series;

2. Feature normalization: normalization of the extracted features by the principal com-
ponent analysis (PCA) method to increase the sensitivity to damage and remove
environmental and operational variations (EOVs);

3. Data fusion: implementation of a Mahalanobis distance (MD) to merge the features
derived from each sensor and detect wheel defects more effectively. In the first stage,
the features from each sensor are merged and, in the second stage, the multi-sensor
information is fused to enhance the sensibility to the damage [26,32];

4. Outlier analyses: upon completion of the previous step, a damage indicator (DI)
is generated for each train passage; to distinguish each DI into a defective or a
healthy wheel a statistical-based approach is used, in particular, an inverse cumulative
distribution function that allows estimating a statistical confidence boundary (CB).

Figure 6. Methodology of the automatic detection of wheel flats.
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The theoretical framework of each technique implemented within the methodology is
available in the authors’ previous publications [1,5,8,19,45].

4. Application of the Methodology of Wheel Flat Detection to a Freight Train

This section presents the application of the unsupervised learning methodology of
wheel flat detection to the case of a freight train and considers different feature extraction
methods, namely the AR, ARX, CWT and PCA. The purpose of this comparison was to
assess the sensitivity to damage of each extraction method.

4.1. Feature Extraction

Damage-sensitive feature extraction from dynamic signals is the first step of the
automatic damage detection methodology. The main goal of this step is to reduce the
dimensions of the three-dimensional dynamic features matrices 143−by−q−by−n, in
which, 143 is the total number of scenarios, including 113 baseline scenarios and 30 damage
scenarios, q is the number of sensors (four sensors) and n is the dimension of dynamic
time-histories (70,000). For this purpose, the extraction of features sensitive to the effects of
wheel flats was performed by considering auto-regressive model (AR), principal component
analysis (PCA), continuous wavelet transform (CWT), and auto-regressive model with
exogenous input (ARX).

4.1.1. AR Model

Several AR models were analyzed to determine the appropriate model order based on
the Akaike information criteria (AIC), particularly the orders between 1 and 50. The AIC
function for 30 damaged scenarios is shown in Figure 7. It can be concluded that, as the
model’s order increases, the AIC values tend to stabilize, which demonstrates that after a
model order of 40, higher orders do not yield relevant information.

 
Figure 7. AR model order definition.

Extracted features from dynamic responses by implementing the AR method are
obtained in 143−by−4−by−40 matrices which means that the number of features is signif-
icantly reduced from 70,000 to 40. Figure 8 illustrates five of the features obtained using
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the AR method for sensor 3. As shown in this figure, a particular sensitivity pattern is
recognized for damaged scenarios, in such a way that, amplitude is sensitive to the side of
the defect (right or left wheels). As an example, Figure 8b shows the amplitude of feature
19 for the 1st and 5th wagons with blue and green colors. Note that the defect is located
on the right-side wheels for the 1st and 5th wagons, while for the 3rd wagon, the defect is
placed on the left-side wheel which is presented in an orange color. It is noticeable that the
amplitude is sensitive to the side of damage (left or right wheel). Additionally, in Figure 8d,
due to the comparison of the amplitude variations between damage and baseline scenarios,
it is possible to state a significant difference between healthy and damaged wheels. For
other features, this difference is not so significant or visible, as is the case in Figure 8e.

 

Figure 8. AR—feature extraction for all 143 baseline and damaged scenarios for accelerometer 3:
(a) amplitude for feature 2, (b) amplitude for feature 19, (c) amplitude for feature 29, (d) amplitude
for feature 31, (e) amplitude for feature 39.

4.1.2. ARX Model

The auto-regressive model with exogenous input (ARX) is the second technique that
was used to extract dynamic damage-sensitive features. This method of time-series analysis
can perform a significant fusion while accurately generalizing the information contained
in the data by adjusting the ARX (143−by−4−by−80) models. By using the ARX model
the number of features is enlarged to 80 in comparison to the AR model. Figure 9 presents
five of the features obtained by using the ARX method for sensor 3. As in the AR model,
the damage scenarios features are also sensitive to the side of the wheel damage. As an
example, in Figure 9b, the blue and green colors corresponding to a defective wheel on the
right side of the 1st and 5th wagons, have similar amplitude values and are distinct from the
ones associated with the defective wheel on the left side of the 3rd wagon, represented by
the orange color. Moreover, as shown in Figure 9d, the difference between the amplitudes
between healthy and defective wheels is evident.
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Figure 9. ARX—feature extraction for all 143 baseline and damage scenarios for accelerometer 3:
(a) amplitude for feature 2, (b) amplitude for feature 19, (c) amplitude for feature 29, (d) amplitude
for feature 31, (e) amplitude for feature 39.

4.1.3. CWT

Another methodology that was implemented for feature extraction to reduce the size
of the feature matrices was the continuous wavelet transform. By using CWT, the number
of features is decreased from 70,000 to 468 and the obtained features matrices are of size
143−by−4−by−468. Figure 10 represents the extracted features for the CWT method,
which shows sensitivity to the damage but not as much as the AR and ARX models. As an
example, Figure 10a,b provides evidence that the features are sensitive to damage since their
amplitude variation for damage scenarios is higher than for the healthy scenarios. However,
for the features shown in Figure 10c,e, the amplitude variation is similar for healthy and
defective wheels and the features are not sensitive to the damage. Furthermore, all the
extracted features using CWT extraction are not sensitive to the side of the wheel defect.

4.1.4. PCA

Data science frequently uses principal component analysis (PCA) to extract features
based on the data projection into a new dimensionless subspace. PCA identifies the
covariance matrix eigenvectors with the highest values [1,5,8,19]. In other words, the PCA
method minimizes the number of features that effectively can capture the most significant
of the original features. Thus, the number of extracted features is reduced to four and
the matrices of damaged features are generated with 143−by−4−by−4 dimensions. The
extracted features using PCA are represented in Figure 11. As shown, for features one and
two, the dispersion of amplitude for healthy and defective wheels is almost imperceptible
(Figure 11a,b). In turn, as Figure 11c shows for feature three, the amplitude variation of
damaged scenarios is higher than baseline scenarios, and the amplitude difference between
the damaged and healthy wheels is quite visible. This proves that only specific features
have the potential to identify the damage.
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Figure 10. CWT—feature extraction for all 143 baseline and damage scenarios for accelerometer 3:
(a) amplitude for feature 1, (b) amplitude for feature 100, (c) amplitude for feature 200, (d) amplitude
for feature 300, (e) amplitude for feature 400.

Figure 11. PCA—feature extraction for all 143 baseline and damage scenarios for accelerometer 3:
(a) amplitude for feature 1, (b) amplitude for feature 2, (c) amplitude for feature 3, (d) amplitude for
feature 4.
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4.2. Feature Normalization

Data normalization allows to distinguish changes in the features acquired from sensor
readings influenced by environmental and operational variations. One of the significant
issues in damage detection is the difficulty of isolating environmental and operational
disturbances from the observed dynamic properties to obtain features that are primarily
sensitive to damage. Without the requirement to measure these actions, implementing a
latent variable approach, such as PCA, to the retrieved features may effectively limit the
effects of EOVs. In the feature normalization procedure, during the modeling phase, a
cumulative percentage of the variance of components with a variance greater than 80% is
removed [8].

4.2.1. AR Model

By implementing the PCA method to AR parameters to normalize the features, for
each train passage, a 4−by−40 matrix with PCA-based features was generated. Figure 12
represents 5 features out of 40 for all the 143 baseline and damage scenarios using the
AR model. As shown in Figure 12a,d, after removing EOVs, features remain sensitive to
damage and significant variations in amplitude can occur between the baseline and damage
scenarios. Additionally, it is noteworthy that, after normalization, the extracted features
by using the AR model remain sensitive to the side where the wheel defect occurs. As an
example, in Figure 12a,e, the variation in amplitude for the 1st and 5th wagons (blue and
green colors) are differentiable from the 3rd wagon (orange color).

 

Figure 12. AR—feature normalization for all 143 baseline and damage scenarios for accelerometer 3:
(a) PCA for feature 2, (b) PCA for feature 19, (c) PCA for feature 29, (d) PCA for feature 31, (e) PCA
for feature 39.

4.2.2. ARX Model

Feature normalization was also applied to the features extracted from the ARX method,
and as a result, a matrix with dimension 4−by−80 was obtained individually for each train
passage. Figure 13 shows that after implementing normalization the ARX features show
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specific sensitivity to damage. As seen in the examples shown in Figure 13c,e, the wheel
defects have a noticeable effect on the variation in the features’ amplitude. Moreover, as
with the AR feature, the sensitivity to the side of the damage (left or right defective wheel)
is still recognizable in some features after the elimination of the environmental effects, as
stated in Figure 13a,e.

 
Figure 13. ARX—feature normalization for all 143 baseline and damage scenarios for accelerometer
3: (a) PCA for feature 2, (b) PCA for feature 19, (c) PCA for feature 29, (d) PCA for feature 31, (e) PCA
for feature 39.

4.2.3. CWT

Figure 14 shows five of the normalized features which are obtained by using CWT. In
contrast to the AR and ARX feature normalization, the CWT normalization has an adverse
effect on the sensitivity of the features to damage, and therefore, after normalization, the
features are not sensitive enough to wheel defects. As an example, Figure 14a,c,e shows that
the PCA-based normalized features lose sensitivity to the defects. Therefore, the different
damages cause negligible variations in the amplitude of the feature, and no clear distinction
is achieved in relation to the baseline. Additionally, the sensitivity in relation to the side of
the damage is not recognizable for the CWT normalized features.

4.2.4. PCA

Figure 15 shows that the PCA normalized features are influenced by environmental
and operational effects, as shown in the compression of the amplitude’s variation in
comparison to the situation before normalization (Figure 11). Moreover, as shown in
Figure 15b,d, the variation in amplitude for the damaged scenarios is quite distinguishable
from the baseline scenarios, and features after normalization are sensitive to the defects. On
the other hand, the PCA normalized features are not sensitive to the side of the wheel defect.
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Figure 14. CWT—feature normalization for all 143 baseline and damage scenarios for accelerometer
3: (a) PCA for feature 1, (b) PCA for feature 100, (c) PCA for feature 200, (d) PCA for feature 300,
(e) PCA for feature 400.

 
Figure 15. PCA—feature normalization for all 143 baseline and damage scenarios for accelerometer
3: (a) PCA for feature 1, (b) PCA for feature 2, (c) PCA for feature 3, (d) PCA for feature 4.
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4.3. Data Fusion

The results of Section 4.2 show that after the elimination of the environmental and
operational effects, the difference between the baseline and damaged scenarios is not suf-
ficient to distinguish healthy from damaged wheels. Therefore, the data fusion process
was performed to increase the sensitivity of the features to the defect, and, as a result, a
damage index (DI) was achieved for each simulation. Mahalanobis distance (MD) was
used to reduce multivariate data into one single DI. To determine the similarities between
the damaged and baseline features, the Mahalanobis distance (MD) calculates the distance
between defective and healthy wheels, in which shorter distances represent higher similari-
ties. In this step, the MD was obtained for each measurement point and train passage, and
therefore, can transform all features into one single damage-sensitive feature. Thus, as a
result, a distances vector with dimension 143−by−1 was calculated for every four sensors
associated with each feature extraction method.

4.3.1. AR Model

Figure 16 shows the values for the Mahalanobis distance for accelerometers 1–4 (see
Figure 2). It is noticeable that the MD is sensitive to the defects and the variation in MD for
defective wheels is higher than for healthy ones. Additionally, the MD is clearly sensitive
to the side of the damage, as stated by the train passages of the defective wheel in the
3rd wagon (orange color) which have less amplitude compared with defective wheels on
the right side of the 1st and 5th wagons (blue and green colors, respectively). Thus, as
illustrated in this figure, it is possible to distinguish the damaged scenarios based on the
side of the wheel defect.

 

Figure 16. AR—data fusion for all 143 baseline and damage scenarios: (a) MD for accelerometer 1,
(b) MD for accelerometer 2, (c) MD for accelerometer 3, (d) MD for accelerometer 4.

4.3.2. ARX Model

The MD values for the ARX-normalized features are presented in Figure 17. It can be
observed that the fusion of the features significantly increases the sensitivity to damage,
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and after the fusion the influence of damages is recognized, as stated by the amplitude of
the variation for the damage scenarios which reaches a magnitude of 10,000. From this
point, it can also be concluded that defective wheels can be distinguished from healthy
ones. Furthermore, as shown in Figure 17, the MD is sensitive to the side of the damage
and the defective wheels on the right side (blue and green colors) can be distinguished
from the ones on the left side (orange color). Additionally, based on the amplitude values,
it is possible to conclude that the features extracted by the ARX model are more sensitive
than the ones derived from the AR model.

 

Figure 17. ARX—data fusion for all 143 baseline and damage scenarios: (a) MD for accelerometer 1,
(b) MD for accelerometer 2, (c) MD for accelerometer 3, (d) MD for accelerometer 4.

4.3.3. CWT

Figure 18 shows the MD for sensors 1–4 using CWT feature fusion. As presented in
this figure, the amplitude of variation for the damaged scenarios is higher than for baseline
scenarios; however, the maximum amplitude of the MD is 600 which is less than the value
obtained for AR and ARX. On the other hand, it is noteworthy that, the amplitude of the
MD for the defective wheel on the right side has the same range as the damaged wheel on
the left side, which means that the MD based on the CWT features is not sensitive to the
side of the wheel defect.

4.3.4. PCA

Figure 19 shows the Mahalanobis distance based on the PCA extraction method. As
shown in Figure 19c, the sensitivity for the MD based on the PCA is less than the AR and
ARX models. Additionally, it should be mentioned that like CWT and in opposition to AR
and ARX, the MD is not sensitive to the side of the wheel defect since the variation in the
amplitude for the MD does not change between the three distinct damage scenarios.
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Figure 18. CWT—data fusion for all 143 baseline and damage scenarios: (a) MD for accelerometer 1,
(b) MD for accelerometer 2, (c) MD for accelerometer 3, (d) MD for accelerometer 4.

 

Figure 19. PCA—data fusion for all 143 baseline and damage scenarios: (a) MD for accelerometer 1,
(b) MD for accelerometer 2, (c) MD for accelerometer 3, (d) MD for accelerometer 4.
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4.4. Outlier Analysis

Outlier analysis allows the assessment of how effectively the suggested methodologies
distinguish healthy wheels from defective ones for all feature extraction methods without
human intervention. In general, the literature presupposes that a chi-squared distribution
in n−dimensional space can approximate the Mahalanobis-squared distance. Therefore,
a Gaussian distribution can roughly represent the Mahalanobis distance, and an outlier
analysis based on a statistical threshold can be performed. The threshold’s significance level
is established as equal to 1% [46]. According to this theory, a confidence boundary (CB) for
identifying a damage index consisting of an outlier is calculated using the Gaussian inverse

cumulative distribution function (ICDF), considering the mean value,
−
μ, and standard

deviation, σ, of the baseline feature vector. Finally, feature damage indicators equal or
greater than the CB are considered outliers (the null hypothesis is rejected).

4.4.1. AR Model

Figure 20 depicts the results of the automatic damage detection system that considers
the responses from accelerometers 1–4 using the AR model. This figure indicates that
damage detection can be effectively performed using only sensors installed on the rail
(between or above sleepers). As an example, according to Figure 20a–c, the damaged wheels
are efficiently detected without the occurrence of false-positive cases, and so the healthy
wheels can be robustly separated from damage scenarios. Moreover, the distance between
the damaged wheels and the CB is sufficiently high; however, for the baseline scenarios
this distance is sometimes very close to the CB. On the other hand, in the case of sensor 4
(Figure 20d), located on the sleeper, the damage detection implies some false-positive cases,
which means that damage detection is not accurate enough based on the data exclusively
derived from accelerometers on the sleeper. Furthermore, by using the AR-derived features,
it is possible to observe a distinction between the behavior of indicators from wheel flats on
the right and left sides. It is relevant to mention that only one sensor is adequate to detect a
defective wheel using the AR-derived features.

4.4.2. ARX Model

The results of the automatic damage detection for the ARX-derived features are
presented in Figure 21. It can be observed that the extracted features can effectively
detect all the damage scenarios without the occurrence of any false positives or negatives.
Additionally, from the accelerometers located on the sleeper it is possible to detect the
damages (Figure 21d). This conclusion is particularly relevant since it is a clear advantage in
relation to the performance of the AR model, and because installing sensors on the sleeper
is easier than installing on the rail. Additionally, the ARX method is also promising in terms
of its ability to distinguish between damaged wheels on the left or right sides. Another
advantage of using the ARX method is that this technique can detect defective wheels
without any false positives or negatives, regardless of the sensor’s position. Finally, in the
case of ARX, it should be mentioned that installing one sensor is sufficient to distinguish a
healthy wheel from a defective one.

4.4.3. CWT

Figure 22 illustrates the damage detection assessment based on CWT-derived features.
It is possible to infer that, automatic damage detection can provide an accurate distinction
between the baseline and damaged scenarios without any false positives or negatives.
Moreover, by locating the accelerometers on the sleeper only, damage detection using CWT
is possible, in addition to the simplicity of installation. However, it can be concluded that
damage detection by implementing the CWT-derived features is not sensitive to the side of
the defect. Nevertheless, as in previous features, only one sensor is necessary to distinguish
a defective wheel from a healthy one.
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Figure 20. AR—automatic wheel flat damage detection considering the responses from accelerometers
1–4: (a) MD for accelerometer 1, (b) MD for accelerometer 2, (c) MD for accelerometer 3, (d) MD for
accelerometer 4.
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Figure 21. ARX—automatic wheel flat damage detection considering the responses from accelerome-
ters 1–4: (a) MD for accelerometer 1, (b) MD for accelerometer 2, (c) MD for accelerometer 3, (d) MD
for accelerometer 4.
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Figure 22. CWT—automatic wheel flat damage detection considering the responses from accelerome-
ters 1–4: (a) MD for accelerometer 1, (b) MD for accelerometer 2, (c) MD for accelerometer 3, (d) MD
for accelerometer 4.

4.4.4. PCA

Figure 23 represents the automatic damage detection based on PCA-derived features
for sensors 1–4. As shown in this figure, damage detection comes with at least two
false positives. The output of damage detection based on the PCA-derived features lacks
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robustness and is not able to properly detect damaged wheels. In comparison to the AR-,
ARX- and CWT-derived features, the PCA has less accuracy in damage detection.

 

Figure 23. PCA—automatic wheel flat damage detection considering the responses from accelerome-
ters 1–4: (a) MD for accelerometer 1, (b) MD for accelerometer 2, (c) MD for accelerometer 3, (d) MD
for accelerometer 4.

From Figure 23, it can be concluded that the automatic damage detection based on
PCA-derived features lacks robustness and the output comes with false positives and
negatives. Therefore, to enhance the sensitivity to defects, the second stage of the data
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fusion consisting of multi-sensor fusion is implemented, by using data from sensors on
both sides of the track. As shown in Figure 24, it is visible that after the second stage of
data fusion the PCA-derived features come without any false negatives. On the other hand,
the number of false positives is reduced to only two.

Figure 24. PCA—automatic wheel flat damage detection considering the multi-sensor data fusion.

5. Conclusions

This study aimed to compare the accuracy of an unsupervised data-driven method-
ology, based on four distinct features (AR, ARX, CWT, and PCA), for the automatic de-
tection of wheel flats and based on time–history accelerations on the track elements (rails
and sleepers).

The proposed methodology includes (i) feature extraction from acquired responses us-
ing dedicated feature extraction methods; (ii) feature normalization based on principal com-
ponent analyses (PCA); (iii) data fusion to merge features derived from each sensor and (iv)
damage detection by performing an outlier analysis using a specific confidence boundary.

From the research presented herein, it is possible to draw the following conclusions:

• the AR and ARX methods are the most accurate feature extraction methods for wheel
flat damage detection as they can robustly detect defects; these two methods are sensi-
tive to the side of the damage being the most promising to automatically distinguish
an existing defective wheel on the right side from the left side in future works;

• the CWT method is only capable of detecting damaged wheels and is not sensitive to
the side of the defect;

• the accuracy of the PCA method to detect the defective wheel is low and damage
detection using this method lacks reliability;

• the ARX method is the only method that can robustly detect the wheel flat with
accelerometers placed in the sleepers.

• One of the novelties of this research in relation to previous works [5,8] is the compari-
son of the accuracy of four different feature extraction techniques using an unsuper-
vised learning methodology to automatically detect a defective wheel, which is a clear
step forward in terms of the effectiveness of the proposed method, and allows full
implementation for real-world applications.

Such results clearly show the great potential of this innovative application of data
mining in the railway industry, particularly for infrastructure managers. Future work
includes a field trial to validate the proposed methodology based on on-site measurements.
Furthermore, for the final development of the proposed methodology, it is imperative to
develop a novel feature, or eventually upgrade the actual methodology, to additionally
classify the severities of the wheel flats.
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Abstract: Having access to accurate and recent digital twins of infrastructure assets benefits the
renovation, maintenance, condition monitoring, and construction planning of infrastructural projects.
There are many cases where such a digital twin does not yet exist, such as for legacy structures.
In order to create such a digital twin, a mobile laser scanner can be used to capture the geometric
representation of the structure. With the aid of semantic segmentation, the scene can be decomposed
into different object classes. This decomposition can then be used to retrieve CAD models from a
CAD library to create an accurate digital twin. This study explores three deep-learning-based models
for semantic segmentation of point clouds in a practical real-world setting: PointNet++, SuperPoint
Graph, and Point Transformer. This study focuses on the use case of catenary arches of the Dutch
railway system in collaboration with Strukton Rail, a major contractor for rail projects. A challenging,
varied, high-resolution, and annotated dataset for evaluating point cloud segmentation models in
railway settings is presented. The dataset contains 14 individually labelled classes and is the first of
its kind to be made publicly available. A modified PointNet++ model achieved the best mean class
Intersection over Union (IoU) of 71% for the semantic segmentation task on this new, diverse, and
challenging dataset.

Keywords: semantic segmentation; point cloud; railway infrastructure; deep learning; terrestrial
laser scanner; catenary arch

1. Introduction

Renovation, maintenance, condition monitoring, and construction of infrastructural
projects demand assessments of the current situation [1]. These processes are necessary
for the evaluation of the existing situation, possibly leading to advice for re-designing
aspects such as structural integrity, optimisation of traffic flow, and safety. In addition, the
introduction of BIM (Building Information Modelling) and 3D design in general have created
an increased need for accurate, up-to-date, 3D information of existing infrastructure.

Three-dimensional information can easily become outdated as the actual constructed
infrastructure can deviate from the original design plans or can currently exist in an altered
state [2]. Furthermore, blueprints do not always exist with a sufficient level of detail, are
not available in a digital format, or only exist in 2D. These factors underline the need for
accurate, up-to-date, 3D information.

At present, assessments and the subsequent translation to 3D are performed mostly
manually, which is a time-consuming and error-prone task. This has given rise to technology
aimed at automating the digitisation of infrastructure, such as photogrammetry and mobile
laser scanning [3]. Laser scanning is a method that provides immediate 3D geometric
information without any elaborate processing, which is in contrast with photogrammetry;
further, accuracy-wise, laser scanning has better performance over photogrammetry [4].
Another benefit of laser scanning is its independence of illumination, which means spe-
cialised measuring trains can operate at night when the utilisation of the rail network is
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lower. A downside of laser scanning is the high cost of measurement devices compared
to vision-based systems and the unstructured nature of the data. We believe the bene-
fits of laser scanning outweigh its downsides; therefore, this technique was chosen for
this application.

This paper evaluates several state-of-the-art approaches to semantic segmentation
for the digitisation of infrastructure through a use case of railway catenary arches in the
Netherlands. Catenary arches are the supporting structures above the railway track that
carry the power lines for the trains, see Figure 1. The catenary system in the Netherlands
consists of a variety of new and legacy arches, with custom and standardised components
being mixed. Digitising the physical arches into their 3D, digital counterparts is an ongoing
task. As part of this undertaking, mobile laser scans have been made of a small piece of
railway track in the Netherlands (see Section 3).

Figure 1. An example of a catenary arch (not in dataset) that shows the labels of the majority of the
classes (own work).

Supervised semantical segmentation of the scanned scene provides a starting point for
digitisation. In turn, these segments can be matched to individual components from a CAD
library to create a full digital twin of the scene. This paper considers three state-of-the-art
approaches, which semantically segment a dataset of catenary arches in the Netherlands,
and compares their efficacy. Specifically, we address variations on PointNet++ [5], an imple-
mentation of SuperPoint Graph [6], and Point Transformer [7]. PointNet++ is considered as
it has been a milestone in applying deep learning to point clouds. A catenary arch can be
seen as a set of geometrically placed objects, which fits well with the objective of SuperPoint
Graph to encode geometrical relations. The third method chosen is Point Transformer, as
this was the first method to break the 70% mean Intersection over Union (mIoU) threshold
on the S3DIS dataset [8]. Finally, implementation availability of code was taken into account
when selecting these methods.

The remainder of this article is organised as follows. First, existing work on semantic
segmentation in point clouds is described (Section 2). This is followed by a description of
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the dataset (Section 3). Next, the methodology for comparing the semantic segmentation
techniques is described (Section 4). Thereafter, the results and discussions (Section 5) are
provided. The discussion contains valuable pointers for future work and highlights the
importance of explainable artificial intelligence. Finally, the conclusion and outlook for
future work (Section 6) complete the article.

2. Related Work

Point clouds have vast applications in different areas of science and engineering
such as the construction industry [9], digital photogrammetry [10], surveying [11], and
robotics [12]. Therefore, many survey papers [13–18] have been written to compare different
point-cloud-based machine learning models both technically and empirically.

Liu et al. [16] compared various deep-learning-based algorithms for different point
cloud tasks, such as classification, segmentation, and object detection. The algorithms
were divided into two categories, namely, raw point-cloud-based methods and tree-based
deep learning. The raw point-cloud-based methods use the points directly as an input
for training a deep learning model. The tree-based algorithm first forms a k-dimensional
tree [19] (or kd-tree in short) representation of the raw point clouds. Local and global
cues imposed by this tree structure can be exploited to progressively learn representation
vectors [20]. An extensive empirical comparison of the performance of these models for a
large number of benchmark datasets was also reported [16]. However, these datasets do
not include railway catenary systems.

In a recent paper, Guo et al. [15] provided a comprehensive survey of deep learning
methods for different point cloud tasks. The methods were categorised according to the
three tasks associated with point clouds, namely, shape classification, object detection and
tracking, and segmentation. The methods for each of these classes were further classified
into different categories such as projection-based, point-based, object detection, object
tracking, scene flow estimation, semantic segmentation, instance segmentation, and part
segmentation ([15], Figure 1). Guo et al. not only briefly described the datasets but also
commented on evaluation metrics. Furthermore, a chronological overview of the methods
for all three categories was also given. The algorithms are empirically compared via
different standardised metrics using benchmark datasets.

Although the surveys described above are comprehensive in describing the algorithmic
advancement concerning various tasks related to point cloud data, they lack the aspect
of one dataset, namely, datasets related to railway infrastructure. In the remainder of
this section, the literature on point clouds related to railway infrastructure is surveyed.
The reader should be warned that the performance metric used by various authors is not
consistent—F1-score, accuracy, and mIoU are all used.

Arastounia used a high-density point cloud covering 550 m of Austrian railroad for
segmenting individual catenary components [21]. A heuristic method was employed
for this task based on the local neighbourhood structure, the shape of objects, and the
topological relationship between objects. Each of the objects being segmented had a
different model. The first step towards segmentation was detecting the track bed, which
acted as a reference base for detecting the other components such as tracks, poles, and
wires. In total, six different objects were segmented, with an average accuracy of 96.4%
being obtained.

Chen et al. [22] used a more data-driven approach towards segmentation of catenary
arches. Their approach starts by extracting line primitives at three different scales from the
point cloud data. These line primitives are then used for training a hierarchical Conditional
Random Field (CRF) model. A total of ten different objects were segmented with an overall
accuracy of 99.67%.

Soilán et al. compared two deep-learning-based approaches, PointNet [23] and KP-
Conv [24], for the task of segmenting railway tunnels [25]. Four classes were defined:
tunnel lining, tracks, wires, and ground. The PointNet model achieved an average F1-
score of 86.7% and the KPConv approach achieved an average F1-score of 87.2%. It is
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surprising that no data augmentation methods were used because the number of samples
is small. An additional surprise is the low F1-score on segmenting the tracks, which have
a very consistent geometric shape. This low score is attributed to labelling errors by the
original authors.

The works of Chen et al. and Lin et al. share the same dataset [26,27]. This dataset
was collected using a mobile, 2D laser scanning device mounted on a cart moving along
the railway track to collect data. The data consist of sequences of 2D slices, which are
perpendicular to the direction of the railway track. The sensor location is constrained to
the track, making it very easy to define a constrained search area. We hypothesise that
the variation within the captured railway catenary system is small, resulting in highly
accurate results for both works. Due to the sequential nature of the data, Chen et al. opted
to use a Recursive Neural Network (RNN) [26]. First, each of the slices is partitioned into non-
overlapping regions of points using an iterative point partitioning algorithm. After this,
PointNet [23] is used to derive local features from these regions. Thereafter, an RNN based
on Long Short-Term Memory (LSTM) architecture is used to segment the points. Seventeen
classes of catenary components are defined for the segmentation task. Obtained accuracies
in terms of mIoU were extremely high, even smaller components such as droppers and
suspension insulators achieved scores of 90.8% and 97.8%, respectively. The approach
of Lin et al. [27] to segment the point clouds into individual catenary components is by
first classifying each of the slices into one of the following categories: wires, droppers, or
poles [27]. After this, adjacent slices with the same category are grouped together. For each
of the groups, a different deep-learning-based segmentation model is trained. In total, eight
classes were segmented, and a mean accuracy of 97.01% was achieved.

We hypothesise that the majority of the work on semantic segmentation of catenary
systems rely on data from scenes with little variation. To determine the robustness of the
segmentation models, the work presented here depends on a dataset with a large variety of
catenary arches. In addition, a large number of components (14) is segmented.

3. Catenary Arch Dataset

This section details the process of creating the catenary arch dataset. First, the acquisi-
tion of the raw data is described. Thereafter, arch localisation, cropping, and labelling are
addressed. Finally, a summary of the dataset, both visual and textual, is provided.

3.1. Acquisition

To the best of our knowledge, there are no publicly available point cloud datasets of
railway catenary arches. Therefore, our work is based on a dataset provided by Strukton
Rail, containing an 800 m stretch of railway track near Delft, the Netherlands containing
15 catenary arches, which has been digitised into a point cloud. The point cloud data were
collected with a Trimble TX8 laser scanner using the level 2 operation mode. This model
has a scan duration of three minutes and a point spacing of 11.3 mm at 30 m. Points are
referenced within the Rijksdriehoeksstelsel [28] coordinate system, a national standard
coordinate system of the Netherlands.

3.2. Arch Localisation

The scanned stretch of railway track was made available by the data provider in four
chunks of data. A semi-automated method was used to detect the location of the catenary
arches within these chunks of data. This method follows a similar approach as described
by Zhu et al. [29] and Corongiu et al. [30]. The method is based on the assumption that
poles are represented by a dense volume in the z-direction.

Our method first downsamples each chunk of data using a voxel filter with a cell size
of 10 cm. This cell size enables the detection of poles and reduces the computational load.
After that, the scene is flattened to a two-dimensional grid by summing in the z-direction.
The grid size used is 20 cm. This two-dimensional representation is written to disk as a
greyscale image. Within these images, pole locations are clearly visible because of their
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high-intensity values. The procedural steps of arch localisation within a larger scene are
depicted in Figure 2. Other elements such as trees or signalling posts also produce high-
intensity regions in the image. Therefore, pixel coordinates of the outer catenary poles
are manually selected and are used to define a rectangular crop region with a padding of
2 m around the catenary arch. The major axis of the rectangular crop coincides with the
line being defined by the poles of the catenary arch. Each of the arches is cropped from
the larger chunk of data and stored individually in an LAS file [31]. After this, each of the
samples is manually labelled into 14 different classes. Labelling was performed by five
students and one senior researcher. The classes labelled are as follows: top bar, pole, drop
post, top tie, bracket, pole foundation, steady arm, contact wire, stitch wire, wheel tension
device, dropper, messenger wire support, insulator, and unlabelled.

Figure 2. Processing steps for locating catenary arches within a large scene.

3.3. Data Summary

A summary of the data is provided in Table 1. It shows that the number of points in a
catenary arch ranges between 1.6 and 11 M points. In total, the dataset contains roughly
55.4 M points. Not all classes are always present in each sample; for instance, tension
wheels are only needed every few arches and, thus, occur less frequently in the dataset.

Table 1. Statistical description of the dataset.

Arch Name Points Classes (out of 14)

0 01_01 1,586,927 13
1 01_02 2,147,546 13
2 01_03 2,664,907 13
3 02_01 11,112,574 13
4 02_02 2,415,930 11
5 02_03 4,362,055 11
6 02_04 5,257,501 11
7 03_01 2,787,253 12
8 03_02 6,782,568 10
9 03_03 1,973,730 6
10 03_04 6,582,344 11
11 04_01 2,271,179 11
12 04_02 1,673,804 11
13 04_03 1,598,090 11
14 04_04 2,183,600 12

A graphical overview of the entire dataset is provided in Figure 3. Some arches still
have the track bed present; this is due to the fact that different individuals labelled the data.
Some samples had the ground removed using an approximate progressive morphological
filter [32]. The overview also clearly shows the large variation of catenary arches. For
example, some arches span two adjacent tracks whilst others span four adjacent tracks.
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Figure 3. Overview of the dataset. Note the large variation of catenary arch types present in
the dataset.

The dataset has a large imbalance in the distribution of the classes, which is inherent
to the type of object, see Figure 4. The three largest classes (unlabelled, pole, and top bar)
jointly constitute 72.3% of the points in the dataset. On the other hand, the three smallest
classes (dropper, stitch wire, and wheel tension device) constitute only 1% of the dataset.
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Figure 4. Normalised class distribution after the voxel centroid nearest neighbour filter is applied.

128



Sensors 2023, 23, 222

4. Methodology

Three different deep learning models are evaluated with regards to the semantic
segmentation task of point clouds. The models evaluated are PointNet++, SuperPoint
Graph, and PointTransformer. The first subsection describes the general pre-processing of
the data, augmentation procedures, and the metric used for evaluation. The subsections
following this describe the details of each of the three individual models.

4.1. General Pre-Processing

Point clouds collected using a mobile laser scanner have a non-uniform density where
the density decreases as the distance from the laser scanner becomes larger. In pursuit of a
uniform density within each sample, each of the samples is downsampled using a voxel
centroid nearest neighbour filter with a cell size of 1 cm. A centroid nearest neighbour
approach is used to preserve the local point density distribution within a cell.

Each of the samples is normalised by centring the scene to the midpoint of the data
span. In addition, a scaling factor is used to limit the range of coordinate values between
−1 and 1. Taking into consideration the maximum dimension of a catenary arch in the
dataset as 24 m and adding 3 m of safety margin, the resulting maximum dimension would
be 27 m. Therefore, the appropriate scaling factor to limit coordinates between −1 and 1 is
set to 13.5 m (half of the maximum dimension).

To increase the robustness of the models and to artificially increase the variations of
the data seen by the models, various data augmentation techniques are used. The following
three augmentations are sequentially applied to the input point cloud.

1. Uniform random rotation between −180° and 180° of the points around the z-axis;
2. Uniform random translation of the point coordinates between −1 m and 1 m in

all directions;
3. Adding random noise to the points. The random noise is selected from a truncated

normal distribution with a mean of zero, a standard deviation of 2 cm, and truncated
at ±5 cm.

The parameters for the additive noise are chosen based on intuition and the facts
that the laser beam has a width of 10 mm at 30 m and the smallest object (insulator) for
segmentation has a maximum dimension of ≈30 cm.

A summary of the processing steps described previously is provided in Figure 5.

Raw arch
data

Voxel centroid
nn-filter

Centre scene
to (0, 0, 0)

Fixed scaling
to ≈ (±1,±1,±1)

Augment data

Random downsample
to 131,072 points

PointNet++

Select random
seed point

Select 4096
nearest neighbours

Point Transformer

Figure 5. Overview of the processing steps, from the raw arch data to the data fed to the machine
learning model.

As the number of samples of the dataset is limited, a leave-one-out cross-validation
procedure is used. In total, 14 different components are segmented within the scene. The
mean Intersection over Union (mIoU) per class is used as a performance metric. This metric
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weighs all the classes equally and is independent of the class size. It should be noted that
not all components are always present in each sample. As an additional overall metric, the
mean of the mIoU across all samples is reported.

As the dataset has a large class imbalance, each of the models is also trained with a
loss function that incorporates the class weights—that is, classes that are rare will have a
higher weight compared with the more common classes.

The models are trained on a desktop computer with 64 GB of RAM, an AMD Ryzen
Threadripper 2950X CPU, and two NVIDIA TITAN V GPUs with 12 GB of memory each.

4.2. PointNet++

The data pre-processing for the PointNet++ models follows the procedure outlined
in the previous section. To ensure a fixed number of points per sample, the pre-processed
point cloud is randomly downsampled to 131,072 (217) points. This number of points still
shows sufficient density for the smaller objects in the scene such as insulators, and also
allows for a small batch size of four. This means the benefits of batch normalisation [33] can
still be reaped. A limiting factor to the number of points sampled is the available memory
on the GPU. The normalisation method described in the previous section deviates from the
original PointNet++ work, which scales each individual sample to a unit circle. A fixed
scaling factor is used since the model does not need to learn to be scale-independent. As a
baseline, a vanilla PointNet++ [5] model is trained to perform the semantic segmentation
task. After the baseline is established, the PointNet++ model is modified to enhance the
segmentation of smaller objects within the scene.

This modification consists of adding an additional set abstraction level to the model.
The parameters are set such that they are in line with the sequence of the other parameters.
The number of points is set to 2048, the radius is set to 0.05, and the size of the multi-layer
perceptron is set to [16, 16, 32].

The steps per epoch are set to 4, which ensures that the model has encountered all
training samples at least once during each epoch. The training parameters are selected
based on preliminary explorative research. The model is trained for 400 epochs with a
learning rate of 0.01 followed by 200 epochs with a learning rate of 0.001. The choice was
made to use a fixed number of epochs because with the leave-one-out approach there is no
validation set, which can be used to determine an early stopping trigger.

4.3. SuperPoint Graph

The SuperPoint Graph (SPG) [6] method first geometrically partitions the input cloud
into individual segments using an unsupervised global energy model. These segments are
referred to as superpoints in the article and represent the nodes of the graph. Nodes are
connected by edges that have feature attributes such as volume and surface ratios of the
two nodes being connected. The features and the superpoints are then used as input to a
neural network.

Calculations of some of these edge features make use of the Quickhull algorithm [34].
Due to calculation imprecision and given the complex structure of the input point clouds,
the algorithm is not always able to calculate the convex hull of the point cloud. In our
case, it was not possible to create the graph in five out of the fifteen arches. An envisioned
solution to overcome the imprecision issue is by enabling the ‘joggle input’ option of the
Quickhull tool. This option randomly perturbs the input point cloud before running the
Quickhull algorithm.

Considering that only a small part of the dataset can be used, the derived results
would not be representative. Together with the fact that the generation of the graphs
is computationally expensive, the decision was made not to include the results of the
SuperPoint Graph in this article.
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4.4. Point Transformer

Self-attention networks [35] are a major milestone in the area of deep learning. These
networks made a significant impact in the areas of computational linguistics [36] and
computer vision [37]. The goal of the Point Transformer model is to apply the concept of
self-attention to point clouds.

In contrast to the PointNet++ model, this model is trained on subsets of the catenary
arch. A subset is created by selecting a random point within the arch together with its
nearest neighbours. A k-d tree is used to efficiently query the nearest neighbours of
a point—in this implementation, 4096. During each training step, an arch is selected
at random from which to draw the subset of points. To compensate for the fact that
not all arches contain the same number of points, the probability of choosing an arch is
proportional to the number of points in the arch.

The training parameters are selected based on preliminary explorative research. The
model is trained for 100 epochs with 100 steps per epoch. The initial learning rate is 0.1,
which is decreased to 0.01 after 60 epochs and decreased once more to 0.001 after 80 epochs.
A batch size of 32 is used.

5. Results and Discussion

The mIoU per class for both the PointNet++ model and the Point Transformer model
can be seen in Table 2. The numbers in bold indicate the highest scores. The classes are
ordered subjectively based on size from large to small.

Table 2. Per-class mIoU compared for the vanilla PointNet++ model, the modified PointNet++ model,
and the Point Transformer model (standard deviations between parentheses). The term nw refers to
non-weighted losses and iw refers to inversely weighted losses.

Class

PointNet++ Point Transformer

Vanilla Modified Vanilla

nw iw nw iw nw iw

unlabelled 0.63 0.63 0.69 0.67 0.73 0.43
top bar 0.73 0.73 0.80 0.78 0.78 0.70
pole 0.81 0.81 0.83 0.82 0.89 0.76
drop post 0.77 0.77 0.81 0.79 0.80 0.64
top tie 0.42 0.59 0.83 0.79 0.32 0.20
bracket 0.59 0.74 0.88 0.82 0.33 0.26
pole foundation 0.60 0.60 0.67 0.66 0.74 0.48
steady arm 0.54 0.54 0.58 0.58 0.70 0.63
contact wire 0.65 0.65 0.69 0.68 0.71 0.69
stitch wire 0.60 0.67 0.71 0.68 0.58 0.60
wheel tension device 0.52 0.44 0.70 0.76 0.07 0.09
dropper 0.31 0.31 0.51 0.46 0.54 0.39
messenger wire supp. 0.45 0.52 0.69 0.64 0.73 0.50
insulator 0.33 0.38 0.48 0.46 0.76 0.58

class mean 0.57 0.60 0.71 0.69 0.62 0.50
(0.15) (0.14) (0.12) (0.12) (0.22) (0.20)

sample mean 0.58 0.60 0.68 0.66 0.65 0.50
(0.10) (0.10) (0.12) (0.11) (0.15) (0.11)

It is challenging to objectively compare the performance of both models as they are
trained using two different methods of feeding in the input data. The PointNet++ model
trains on the downsampled version of the entire arch, whereas the Point Transformer trains
on subsets of individual arches.

Overall, the modified PointNet++ model has the best performance in terms of mean
class and mean sample accuracy. On the other hand, when counting the best performing
metrics, the Point Transformer model is clearly superior. It performs best for eight out
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of the fourteen classes, with its performance entirely pulled down by the following three
classes: top tie, bracket, and wheel tension device.

It is surprising that even with a small number of samples during training, good results
can be obtained. This can be attributed to the fact that most of the catenary arch components
have a well-defined geometrical structure, which does not vary between instances. This
might also explain the fact that applying class weights to the loss function does not give a
significant performance boost for the case of the PointNet++ model. In contrast, the Point
Transformer model shows a large gap in performance when comparing the weighted and
non-weighted results. It is unknown why this is the case.

One of the difficulties of using this dataset is the large differences in the sizes of objects,
which require segmentation. For instance, an insulator measures approximately 30 cm
and a top-bar might measure approximately 24 m, which is a factor of 80 difference with
respect to the size of the insulator. This difficulty translates into the fact that large objects
are segmented more accurately compared with smaller objects. The modified PointNet++
model shows an improvement in terms of class mIoU for the smaller components such as
the droppers, messenger wire supports, and insulators.

The dataset contains an unlabelled class, which contains all points that do not fall
into one of the other categories. Even though the models are able to correctly classify
this class to a certain extent, it is difficult to understand how it does so. Does it learn to
recognise the large variety of features associated to the unlabelled class? Or does it learn the
process of elimination—that is, if a point does not belong to one of the thirteen other classes,
then must it be an unlabelled point? These questions highlight the necessity of explainable
artificial intelligence [38] to discover the hidden, underlying functionality of such models.

Exploring the explainability of a deep learning model is a challenging task on its
own [39–42]. As a preliminary step, we focused on the shape and location of an object
since these two aspects are most important for the semantic segmentation task. We applied
transformations such as translation and rotation to the example dataset and measured the
segmentation performance of the PointNet++ based deep learning model. The preliminary
results indicate that shape has an almost negligible effect on the segmentation performance.
Changing the object’s location significantly affects the performance (these results can be
found in the student paper [43]). We are currently devising more experiments to explore
the explainability and robustness of the model.

Another interesting question that arises when trying to segment a large number of
classes is whether the performance degrades when the number of classes is large. Addition-
ally, it is hypothesised that having dedicated models for each individual class is beneficial.

When comparing the per-class mIoU of both models, the wheel tension device stands
out, which the PointNet++ model is still able to segment reasonably well. On the other hand,
the Point Transformer model has poor performance for this class. This could be caused by
the unique shape of the wheel tension device, which is circular, flat, and symmetrical. This
is another example where explainability of the model can aid in the understanding.

6. Conclusions

This work evaluated three deep-learning-based point cloud segmentation methods
(PointNet++, SuperPoint Graph, and Point Transformer) in a real-world scenario. A custom
dataset containing high-resolution point cloud scans of catenary arches was collected for
this application. The arches were manually labelled into 14 different classes. To the best of
our knowledge, this is the first high-resolution point cloud dataset of catenary arches that
is available to the public.

Overall, the modified PointNet++ model performed best, achieving an average class
mIoU of 71%. However, when counting the number of best-performing metrics, the non-
weighted Point Transformer is superior. Its mean class performance was dragged down by
just a few classes. The SuperPoint Graph model was not deemed appropriate for this use
case as it was very prone to calculation imprecision and had high computational demands.
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To counter the substantial class imbalance of the dataset, the models were also trained
using class weights. Surprisingly, this had a negligible effect on the result for the PointNet++
models, yet for the Point Transformer model it was destructive.

Outlook

Semantic segmentation of railway scenes provides a crucial stepping stone towards
automated condition monitoring. For instance, the work of Burton and Heuckelbach is
focused on vegetation monitoring [44]. Their work uses point cloud data to assess the risk
of trees falling on the railway track. With the help of semantic segmentation, the track,
masts, wires, relay cabinets, and other assets can be identified and the risk of a falling tree
can be evaluated per object type.

Other opportunities arise when wires are also part of the semantic segmentation
process. This enables monitoring parameters such as sag and stagger [45,46] of wires.

If catenary masts are part of the segmentation process, their tilt can automatically be
determined [47]. Maintenance can be planned if certain thresholds for tilt are exceeded.
Measuring the same piece of track at multiple epochs leads to an even more advanced
maintenance paradigm: predictive maintenance. For instance, in the case of mast tilt, it
would be possible to determine a tilt velocity. This can be used to make projections in the
future and can aid the creation of optimal maintenance plans.

A bottleneck for semantic segmentation in real-world scenarios is the availability of
labelled data. Creating such a dataset is tedious, time-consuming, and prone to human
errors as the classes are manually labelled. These datasets also tend to be inflexible. For
instance, adding a new class would require another iteration of manual labelling. To
address this issue, the possibility of a more model-driven approach, where models from
an existing CAD library are used, can be explored. For instance, Vock et al. proposed a
robust method for template matching within point clouds [48]. In our case, the templates
can be generated from existing CAD libraries [49]. Such an approach could be feasible as
components of the catenary arch have strong geometric shapes. An alternative approach
is to use an active learning paradigm [50] for reducing the labelling cost. It is possible to
leverage the trained model in this feat for the human-in-loop approach. This technique has
been applied successfully for image classification tasks [51] and also object detection in
point clouds [52]. Given the additional computational challenge, exploring its applicability
for point cloud segmentation opens new possibilities for research.

The current dataset was collected using a mobile laser scanner mounted on a tripod;
such a solution would not be viable when moving towards a more production-ready
solution. Therefore, the segmentation models should also be evaluated on data captured by
a train-mounted mobile laser scanner. This poses new challenges such as lower resolution,
shadow effects, and merging data together from multiple trajectories.

To further improve the segmentation quality, the possibility of adding additional
features such as colour and intensity values should be explored. The current work only
considers cropped out arches, further research should focus on segmenting entire rail-
way scenes.
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Abstract: Bolts, as the basic units of tunnel linings, are crucial to safe tunnel service. Caused by
the moist and complex environment in the tunnel, corrosion becomes a significant defect of bolts.
Computer vision technology is adopted because manual patrol inspection is inefficient and often
misses the corroded bolts. However, most current studies are conducted in a laboratory with good
lighting conditions, while their effects in actual practice have yet to be considered, and the accuracy
also needs to be improved. In this paper, we put forward an Ensemble Learning approach combining
our Improved MultiScale Retinex with Color Restoration (IMSRCR) and You Only Look Once (YOLO)
based on truly acquired tunnel image data to detect corroded bolts in the lining. The IMSRCR
sharpens and strengthens the features of the lining pictures, weakening the bad effect of a dim
environment compared with the existing MSRCR. Furthermore, we combine models with different
parameters that show different performance using the ensemble learning method, greatly improving
the accuracy. Sufficient comparisons and ablation experiments based on a dataset collected from the
tunnel in service are conducted to prove the superiority of our proposed algorithm.

Keywords: corroded bolt detection; computer vision; color enhancement; ensemble learning

1. Introduction

Railway transportation has become the main mode of land transport with its remark-
able carrying capacity and fast speed [1,2]. As an important branch, subway systems
have developed rapidly in recent years [3], becoming the preferred traveling way for city
dwellers. The lining, which is fixed and arranged by bolts, supports the tunnel structure
and guarantees the operation of metros. However, the bolts are exposed to the open air,
usually influenced by moisture and air pollutants, and the steel material thus tends to
become corroded [4–6]. When it comes to maintenance and repair, human-based visual
inspection still dominates the tunnel industry, which is also limited by training level. Patrol
inspectors have to check all bolts during non-running times such as night and early morn-
ing. However, commonly, an inspection team composed of 10 to 15 trained maintainers
could check two to three kilometers during a maintenance period of about three hours,
which is costly and inefficient. Besides, quite a few bolts are misdiagnosed as normal or
corroded due to the poor light in tunnels and fatigue caused by night work. Hence, some
researchers have tried many approaches to design an automatic, high-accuracy, and fast
detection speed method for practical engineering projects.

Computer Vision (CV), which overcomes the limitations of visual inspection by trained
human resources and the ability to detect structural damage in images remotely [7,8], has
become a prioritized technique for corroded bolt detection. However, the traditional CV
algorithms require the manual design of filter modules, which has poor robustness and
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low accuracy. Deep learning-based CV bolt corrosion detection becomes available for
engineering as deep learning develops [9–11]. For instance, Cha et al. [12] developed an
autonomous structural visual inspection method via Region-based Convolutional Neural
Networks (RCNNs) for real-time damage detection covering concrete cracks, steel and bolt
corrosion, and steel delamination. Ta et al. [13] monitored and identified the corrosion
levels of corroded bolts in a lab-scale steel structure with good illumination using a Mask-
RCNN. Suh et al. [14] adopted a Faster RCNN-based model to detect and locate damage
types, including bolt corrosion. These RCNNs search the target area with selective search
and generate nearly 2000 eigenvectors for each figure. They are mostly applied in the
precise pixel-level detection task. However, it is not easy to deploy RCNN models in
practical applications compared to end-to-end models. Plus, it is not necessary to precisely
distinguish the target pixels on the corrosion bolt in practice at the expense of speed
and cost. Another branch of deep learning target detection algorithms, You Only Look
Once (YOLO), reinterprets the principle of object detection tasks from classifications to
regressions, speeding up the training and detecting processes [15–17]. We select YOLOv5
nano (YOLOv5n) as the basis of our proposed model caused of its speed, end-to-end
characteristics, and high precision compared with the two-stage detectors.

Although the YOLOv5n shows its superior performance in computing speed and re-
source consumption, the complex corrosion targets still require improvements in accuracy.
Using multiple models with different preferences, ensemble learning makes a better and
more comprehensive decision to avoid the wrong prediction created by weak classifiers.
For example, Xu et al. [18] applied ensemble deep learning technology to learn and ex-
tract features of forest fires. Mohammad et al. [19] presented an ensemble deep-learning
approach to recognize structural corrosion in drone images. Seijo-Pardo et al. [20] con-
cluded ensemble learning of homogeneous and heterogeneous approaches, showing the
availability of integrating models with different parameters. Inspired by these works, we
put forward ensemble learning with YOLOv5n (YOLOv5n-EL) to raise accuracy without
slowing down the computing speed too much.

In addition to the corroded bolt detector, tunnels are usually damp and dim, weak-
ening the tunnel scan image to low definition, poor contrast, and color distortion. These
problems bring big troubles to the task of corroded bolt detection in such tunnels, which re-
quire figures to be pre-processed to make the features of the image more apparent for better
corroded bolt detection. It has been proved that the Retinex theory (a color-invariance-based
principle) is effective for low-light image enhancement like night and underwater [21–23].
Retinex mainly consists of three basic algorithms—Single Scale Retinex (SSR), MultiScale
Retinex (MSR), and MultiScale Retinex with Color Restoration (MSRCR). Compared with
SSR and MSR, MSRCR shows better image quality improvement and the ability to avoid the
color distortion caused by the imbalance of each color channel proportion after convolution
computation. However, the performance still degrades in the dim tunnel environment
caused by its Gaussian Blur, which reduces the sharpness of edges while brightening the
dark areas. Thus, we proposed the Improved-MSRCR (IMSRCR) algorithm to solve the
problem of fuzzy bolt edges in low-illumination tunnel images using auto-matched dy-
namic filters and L0 regularization. Through a combination scheme of the IMSRCR and the
YOLOv5n-EL, our model appears to have excellent performance at bolt corrosion detection.
Our main contributions can be summarized as follows.

1. We optimized the MSRCR color enhancement algorithm based on auto-matched
dynamic filters and L0 regularization to avoid blurring the image when brightening
the dark areas.

2. We put forward ensemble learning with its fusion strategy combining models with
different parameters to improve precision accuracy.

3. The experiments are conducted on actual data collected from a practical railway
tunnel. We disclosed our labeled dataset, the first public corroded lining bolt dataset
using a professional tunnel scanner.
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The rest of this paper is organized as follows. Section 2 exhaustively describes the
proposed approach covering the improved color-enhanced module and ensemble learning
algorithm for bolt corrosion detection. Section 3 thoroughly exhibits the details of the
experiments, including the dataset, experiment settings, comparison schemes, performance
evaluations, and the analysis of the results. Section 4 gives a discussion about the method.
Section 5 outlines our main results.

2. Methodology

Figure 1 depicts the flow chart of the corroded bolt detection scheme in a dim tunnel,
including two main modules, i.e., the image color enhancement algorithm and the object
detection module. Considering the difficulty of distinguishing corroded and normal bolts
in a dim environment, an improved MSRCR (IMSRCR) is proposed to sharpen the contrast
between the rust-infected area and the background, enhancing the appearance of image
features. Then, for essential prediction speed and training efficiency in the object detection
module, YOLOv5n is introduced to finish the object detection and location of corroded bolts
on the color enhancement image, which is an end-to-end train and predict structure. For a
further step up in accuracy, we propose YOLOv5n-EL based on YOLOv5n. Specifically, we
train a series of models with different parameters and adopt ensemble learning to integrate
all model outputs.

Figure 1. Flow chart of corroded bolt detection scheme in a dim tunnel.

2.1. The Improved IMSRCR Color Enhancement Algorithm

As is well-known, the illumination is poor, so the tunnel images gathered are dim
and unclear. Thus, we need to enhance the contrast between the bolts and the background.
MSRCR is developed on MSR and SSR based on Retinex theory, which has been approved
as an effective color enhancement method. However, MSRCR has a limited effect in dark
areas and the edges of the dark areas. In our work, we propose IMSRCR to enhance the bolts
features in dark areas. According to Retinex, the observed image I(x, y) can be divided into
the reflection component R(x, y) carrying target information and the irradiation component
L(x, y) of ambient light is

I(x, y) = L(x, y)× R(x, y). (1)

Therefore, image enhancement aims to get rid of the irradiated component and ex-
tract a reflective part that carries information about the object. By simple mathematical
transformation, we can get the expression of R(x, y) with

log R(x, y) = log I(x, y)− log L(x, y). (2)

L(x, y) can be estimated through low-pass Gaussian center function F(x, y) and the
observed image I(x, y) as

log L(x, y) = log[F(x, y)⊗ I(x, y)], (3)

where F(x, y) is defined by

F(x, y) = λe−
x2+y2

2c2 . (4)
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Meanwhile, F(x, y) should satisfies
∫∫

F(x, y)dxdy = 1. (5)

As a result, the expression of SSR can be obtained from (2)–(4) to

rssr(x, y) = log R(x, y) = log I(x, y)− log[F(x, y)⊗ I(x, y)]. (6)

The parameter c in (4) is strongly related to the scale of image enhancement. However,
the enhancements of SSR are not always satisfactory because the parameter c is not suitable
for all kinds of images. In response to the above question, MSR imports Gaussian center
function at different scales as

rmsr(x, y) =
K

∑
k

ωklog I(x, y)− log[Fk(x, y)⊗ I(x, y)], (7)

where ωk and Fk(x, y) meets the Equations (8)–(10).

K

∑
k

ωk = 1, (8)

Fk(x, y) = λke
− x2+y2

2ck
2 , (9)∫∫

Fk(x, y)dxdy = 1. (10)

Although MSR enhances image features at both low and high scales, color distortion
will occur as the parameters are different for each color channel. Thus, the color recover
factor C is added in MSRCR to keep the appearance true through

rmsrcr(x, y) = Ci

K

∑
k

ωklog Ii(x, y)− log[Fk(x, y)⊗ Ii(x, y)], (11)

where i represents the ith color channel and Ci can be expressed by

Ci = f [I′i (x, y)]

= β log[αI′i (x, y)]

= β log[α
Ii(x, y)

∑N
j=1 IJ(x, y)

]

= βlog[αIi(x, y)]− β log[
N

∑
j=1

IJ(x, y)],

(12)

in which α denotes controlled nonlinear treatment strength and β is the gain constant.
Although MSRCR performs better in image enhancement comparing MSR and SSR,

the edge of the enhanced image is still inconspicuous, which makes the performance of
MSRCR degrade in a dim environment. Accordingly, we propose an IMSRCR algorithm to
solve the problem of fuzzy bolt edges in low-illumination tunnel images. Our algorithm
uses Automatic Guide Filtering (AGF) to estimate the illumination image first and then
calculate the reflected image according to the Retinex theory mentioned above. Residual
image is extracted by the norm. Finally, the color restoration is carried out on the fused
image. The flow path of our algorithm is shown in Figure 2.
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Figure 2. Flow path of IMSRCR.

2.1.1. Illumination Estimation

In order to reduce the edge blur problem of the Gaussian filter, the Illumination
Estimation is powered by AGF, which is different from traditional MSRCR using a Gaussian
filter. The illuminance images estimated by AGF and Gaussian filter are shown in Figure 3.

(a) (b) (c)

Figure 3. Original and illumination images. (a) Original image; (b) Illumination image estimated by
Gaussian filter; (c) Illumination image estimated by AGF.

Guided filter is a local linear model with smooth edge preserving characteristics [24,25]
which is defined as

gt = ak Gt + bk , ∀tεΩk, (13)

where g is the output image after guided filtering and G is the guided image, ak and bk are
the linear coefficients at the sub-windows Ωk, Ωk represents the sub-window with scale r,
and t is the index of pixels in Ωk. We specify to input image I as the guided image Q. ak
and bk could be defined according to Guiding filtering-related theory as

ak =
σ2

k
σ2

k + ε
,

bk = μk(1 − ak).

(14)
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The scale r of the guided filter is set to three values referring to the process of the
MSRCR algorithm. The range of three values of scale r is [1, rmin], [rmin, rmid] and [rmid, rmax]
respectively [26]. rmin, rmid and rmax could be determined as

rmin =

⌊
min(m, n)

2N

⌋
,

rmax =

⌊
min(m, n)

2
− 1
⌋

,

rmid =

⌊
rmin + rmax

2

⌋
,

(15)

where m and n are the width and height of the image, and N is the number of selected
scales. To balance the smoothing and edge-preserving effects of guided filtering, an Auto
multi-scale selection algorithm is expressed by

r1 =

⌊
1 + rmin

2N

⌋
,

r2 =

⌊
rmin + rmid

2

⌋
,

r3 =

⌊
rmid + rmax

2

⌋
.

(16)

The illumination estimation result applies AGF to each channel of the input image.
The reflection component in the logarithmic domain could be defined according to the
Retinex theory

FAGF =
3

∑
j=1

ωj[logIi(x, y)− loggi(x, y)], (17)

where FAGF is the reflected image channel corresponding to the AGF.

2.1.2. Residual Fusion

In order to overcome the problem of FAGF detail loss, we used L0 norm in IMSRCR [27].
Residual results extracted by L0 norm is shown in Figure 4.

(a) (b) (c)

Figure 4. Original and residual images. (a) Original image; (b) Base layer extracted by L0 norm;
(c) Residual image.

L0 norm can be expressed as the number of non-zero elements in a vector. The L0
norm of image gradient can be expressed as

C( f ) := #
{

p|| fp − fp+1 |�= 0
}

, (18)
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where p and p + 1 are adjacent elements in the image.
∣∣ fp − fp+1

∣∣ is the image gradient
which is the forward difference of the image. # represents the number of pixels in the image
that satisfied

∣∣ fp − fp+1
∣∣ �= 0. C( f ) is the L0 norm of the image gradient.

Taking one-dimensional signal as an example, the objective function can be defined as

min
f

∑
p

(
fp − gp

)2 s.t. C( f ) = k. (19)

It must be converted into unconstrained problems for two-dimensional images. We
set smoothing parameter λ to 0.01 in combination with our use scene

min
f

∑
p

(
fp − gp

)2
+ λ · C( f ). (20)

The number of gradients in the horizontal and vertical directions of the image needs
to be constrained in the two-dimensional images. The objective function and its constraints
are expressed as

min
f

∑
(

fp − gp
)2

+ λ · C
(
∂x f , ∂y f

)
,

C
(
∂x f , ∂y f

)
= #

{
p‖∂x fp|+ |∂y fp |�= 0

}
.

(21)

Since the L0 norm is non-differentiable, the variable splitting method is used here to
relax it into two quadratic programming problems. Finally, the iterative method is used to
find the global optimum. We rewrite the objective function as

min
f

∑
p

(
fp − gp

)2
+ λ · C

(
∂x f , ∂y f

)
+ β ·

p

∑
((

∂x fp − hp
)2

+
(
∂y fp − vp

)2
)

. (22)

The iterative solution result of the objective function is expressed as

hp, vp =

{
(0, 0)

(
∂x fp

)2
+
(
∂y fp

)2 ≤ λ
β(

∂x fp, ∂y fp
)

otherwise
(23)

As presented in Figure 5, the image processed by IMSRCR is more apparent and has
higher color contrast based on subjective visual judgment. And the edge of the bolts is more
clear compared with the enhanced image processed by SSR, MSR, and MSRCR. Hence,
IMSRCR is developed for the detection module to ensure that the pictures inputted to
YOLOv5n have distinct visual features.

(a) Original image (b) SSR processed (c) MSR processed

Figure 5. Cont.
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(d) MSRCR processed (e) IMSRCR processed

Figure 5. Effect comparison of different image enhancement algorithm.

2.2. Ensemble Learning-Based Corroded Bolts Detection

CV modules with different stages, mainly one and two, are used for object detection
tasks. One-stage end-to-end algorithms give the prediction results (type and location)
directly through the backbone, while two-stage methods form a series of sample boxes
first, then classify and locate the object inside the boxes. So the non-end-to-end structure
requires much more time than the one-stage method to train and detect separately, slowing
the speed in real corroded bolt detection work. YOLOv5n, a fast and accurate one-stage CV
model, is chosen as the baseline of our ensemble learning.

2.2.1. Ensemble Learning Method

Usually, a target detection task is based on one given model to train and learn for a
good performance in detection results. As far as we know, there are some excellent models
to resolve the detection task, such as YOLO and FCNN. However, the performance of the
models mentioned above can still be improved. Adjusting HyperParameters of training
is a common technique to improve the model performance. However, it has a limited
effect as the structure of the model restricts a better performance. Ensemble learning is a
machine learning method that integrates the prediction of multiple deep learning models
to improve robustness and detection performance. It processes the multiple model outputs
as a decision question. If a mistake occurs on one of the multiple models and the others
are right, the final output of ensemble learning will correct the error considering the whole
model’s outputs. Compared with the single model, ensemble learning combining multiple
models will improve the accuracy heavily.

Ensemble learning can be divided into two categories according to training methods:
Boosting and Bagging. Boosting constructs a series of object detectors through serial
learning, which means the new detector is improved based on the adjustment to the
mistake detection data weight in the last detector. In contrast, Bagging is a parallel learning
method that utilizes the independence of different detectors to improve performance,
while a single detector cannot extract whole features. In our work, Bagging is adopted
as the ensemble learning method while we integrate different kinds of models which
are independent of each other. The structure of ensemble learning is shown in Figure 6.
It is worth noticing that our proposed integrated learning model is a parallel structure,
corresponding to the use of multi-threaded parallel learning operations to avoid bringing
excessive consumption of model training and inference time.

Bagging draws training data from the whole dataset at random and the drawn training
data will be put back before the next round of extraction. This process will be continued for
k rounds, so we can get k independent sub-datasets. Every sub-dataset is adopted to train a
basic model. As a result, we can get k independent basic models.
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Figure 6. Structure of Ensemble Learning.

2.2.2. Fusion Strategy in Ensemble Learning

Fusion strategy is fundamental in ensemble learning. With an excellent fusion strategy,
ensemble learning can combine the strengths of each model and get a better result com-
paring any single model without ensemble learning. We adopt a probabilistic ensemble
method to combine the independent basic models in our work. Assume that we have an
object with a label y and two outputs of the basic models x1 and x2 ( it can easily be ex-
panded to more outputs ). As Bagging mentioned above, the basic models are independent,
so the measurements are also conditionally independent, which can be formulated as

p(x1, x2|y) = p(x1|y)p(x2|y). (24)

This is also can be expressed as p(x1|y) = p(x1|x2, y) as the independence between x1
and x2 exists, which means that the x2 will not be changed if we give the value of y. Our
purpose is to get the value of y, which can be expressed as

p(x1, x2 | y) =
p(x1 | x2, y)p(y)

p(x1, x2)
∝ p(x1 | x2, y)p(y). (25)

As the independence mentioned above, the probabilistic relation can be written as

p(y | x1, x2) ∝ p(x1 | y)p(x2 | y)p(y) ∝
p(x1 | y)p(y)p(x2 | y)p(y)

p(y)
∝

p(y | x1)p(y | x2)

p(y)
. (26)

Utilizing the probabilistic relation, we can calculate the score of y. Given the existence
of conditional independence, it can be considered the optimal fusion scheme. The calcula-
tion can be formulated as

p(y | {xi}M
i=1) ∝

∏M
i=1 p(y|xi)

p(y)M−1 . (27)

The class prior p(y) can be easily obtained by taking the statistics for y from the dataset.
Then, according to (27), the results of all basic models can be fused.

3. Experiment

3.1. Data Acquisition System and Dataset

Figure 7 shows the data acquisition system named MS100 produced by South Sur-
veying & Mapping Technology Co., Ltd. (Guangzhou, China). It can automatically move
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and scan with a motor at a speed of 1 km/h in disease-scanning mode. The experiments
are performed on the corroded bolt dataset collected from a certain Beijing metro tunnel
in service. The dataset consists of 1441 pictures in the size 640 × 640. All the targets are
labeled with a 100 × 100 ground truth box. We split the dataset into the training set and the
test set in a ratio of 8:2, with the test set also serving as the validation set.

Figure 7. MS100 3D scanner.

3.2. Experiment Settings

Experiments in the study have been implemented on an Intel� CoreTM i7-11700K CPU
(3.6 GHz, 32 GB RAM) and an NVIDIA GeForce RTX 3060 (CUDA version 11.6) with Python
3.9.12 (PyTorch 1.11.0) in 64 Bit Ubuntu 18.04.1 Long Term Support operating system.

To train the module properly, we set the input resolution to 640 × 640 and use Stochas-
tic Gradient Descent (SGD) with 0.9 momenta as the optimizer. The learning rate is
initialized to 0.001 and the cosine decay with warm-up is selected as the learning rate
schedule. All models have been trained completely in the experiments.

As for data augmentation, we set the image rotation rate to 0.5 and the image transla-
tion rate to 0.1. Both the image scale rate and image shear rate are set to 0.5. We mainly
used Mosaic to further enhance the performance of the detector, and the Mosaic rate is set
to 1.0.

3.3. Evaluation Metrics

Taking the popular assessment in the CV detection field as a reference, the perfor-
mance is evaluated by the average precision, recall rate, precision rate, and F1 score. We
determined the predicted box as positive based on a common metric where the Intersection
over Union (IoU) between the predicted box and the ground truth box is greater than 0.5.
The definition of the targets are

Recall =
XTP

XTP + XFN
, (28)

Precision =
XTP

XTP + XFP
, (29)

F1 score =
2 × Recall × Precision
(Recall + Precision)

, (30)

where Recall and Precision represent the recall and precision rate, respectively. XTP denotes
the number of objects correctly identified as true. XFP denotes the number of misidentifica-
tions of false targets. XFN represents the number of objects that fail to be correctly detected.
F1 score can be regarded as a weighted average of recall rate and precision rate to evaluate
the model comprehensively. The engineering problem pays more attention to the F1 score.
From the perspective of recall rate and precision rate, the experiments utilize AP to test the
detection accuracy of our method.
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3.4. Performance Comparisons

Table 1 shows the comparative results on the test set between our method and some
state-of-the-art detection approaches. Faster-RCNN is a two-stage CNN-based object
detector, which is a widely used non-end-to-end detection method [28]. YOLOv5n is a
fast and powerful end-to-end detector and YOLOv5s denotes a larger size of YOLOv5n.
YOLOv5n6 adds a detection head to YOLOv5n, which can have a larger focus scale on
targets. Experiments of different color enhancement algorithms, detection structures,
and YOLOs are fully taken into consideration in performance comparison.

Table 1. The experimental results.

Method Precision Recall F1 Score AP@0.5 AP@0.5:0.95

Faster-RCNN 0.690 0.917 0.790 0.832 0.316
YOLOv5s 0.876 0.950 0.912 0.957 0.509

YOLOv5n6 0.883 0.927 0.904 0.945 0.506
YOLOv5n 0.889 0.974 0.930 0.970 0.525

YOLOv5n-EL (baseline) 0.895 0.974 0.938 0.970 0.530
MSR + YOLOv5s 0.886 0.924 0.905 0.959 0.510

MSR + YOLOv5n6 0.858 0.948 0.901 0.952 0.495
MSR + YOLOv5n 0.864 0.969 0.913 0.961 0.506

MSR + YOLOv5n-EL 0.880 0.970 0.922 0.965 0.515
MSRCR + YOLOv5s 0.877 0.933 0.904 0.961 0.509

MSRCR + YOLOv5n6 0.889 0.962 0.924 0.970 0.514
MSRCR + YOLOv5n 0.912 0.970 0.940 0.966 0.533

MSRCR + YOLOv5n-EL 0.917 0.970 0.943 0.972 0.534
IMSRCR + YOLOv5s 0.881 0.933 0.906 0.965 0.512

IMSRCR + YOLOv5n6 0.915 0.972 0.943 0.972 0.520
IMSRCR + YOLOv5n 0.914 0.970 0.941 0.971 0.535

IMSRCR + YOLOv5n-EL 0.921 0.975 0.947 0.975 0.537

As shown in Table 1, compared with Faster-RCNN, YOLOv5s, and YOLOv5n, the F1
score of YOLOv5n-EL has been enhanced by 0.148, 0.026, and 0.008, respectively. From the
perspective of AP, YOLOv5n-EL achieves 0.970 AP@0.5 and 0.530 AP@0.5:0.95, which is the
best of Faster-RCNN (0.832 AP@0.5 and 0.316 AP@0.5:0.95), YOLOv5s (0.957 AP@0.5 and
0.509 AP@0.5:0.95) and YOLOv5n (0.969 AP@0.5 and 0.525 AP@0.5:0.95). This illustrates the
advantage of YOLOv5n-EL as a corrosion bolt detector. In this problem, the corroded bolt
is the target of fixed scale, and the detection head on a larger scale may cause redundancy
of features.Therefore, YOLOv5n6 failed to improve the detection performance. Meanwhile,
YOLOv5n6 (0.945 AP@0.5 and 0.506 AP@0.5:0.95), which own a larger size of parameters,
get a lower AP than YOLOv5n-EL. The detection time consumption of contrastive models
is shown in Table 2. It is clear that the Faster-RCNN costs nearly 10 times longer than the
YOLOs in experiments caused by the non-end-to-end structure. Because the features of
corroded bolts in the dataset are relatively simple, the model with large parameters may
be more prone to overfitting in training. In this detection task, YOLOv5n-EL not only can
avoid overfitting but also achieves better performance without wasting too much time
(only 7 ms more than YOLOv5n, far less than the consumption of color enhancement).
Besides, the FLOPs cost of YOLOv5n-EL is still lower than YOLOv5s, while the results are
significantly better. The above analysis shows the correctness of choosing YOLOv5n-EL as
the detector.
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Table 2. The Time and FLOPs Consumption of Detectors.

Faster-RCNN YOLOv5s YOLOv5n YOLOv5n-EL

FLOPs (G) \ 15.8 4.1 12.3
Pre-process Time (ms) \ 0.677 0.614 0.643
Inference Time (ms) \ 9.571 5.041 12.716

NMS Time (ms) \ 1.475 1.405 1.008

Total Time (ms) 83.990 11.723 7.060 14.367

With the color feature enhancement module, Table 1 also shows that MSR makes the
detection performance of YOLOv5s and YOLOv5n-EL even worse instead of the enhance-
ment. That is due to MSR causing some color distortion, which makes the data processed
deviate from real data distribution. However, we notice that MSR lightly improves the
detection performance of YOLOv5n6 and YOLOv5n, which illustrates that, with MSR,
the overfitting caused by more parameters is somewhat relieved.

We also compare the results of MSRCR and IMSRCR to evaluate the performance
further. It can be seen from Table 1 that, compared with MSRCR, IMRCR enhances the
performance of detectors. YOLOv5n-EL achieves 0.975 mAP@0.5 and 0.537 mAP@0.5:0.95
with IMSRCR. IMSRCR effectively enhances the darker areas in the image and improves
the intensity of the target edge, which offers more help to the detector. This illustrates the
effectiveness of the IMSRCR method. We show the effects of different color enhancement
algorithms in Figure 8. In contrast, although MSR and MSRCR can also enhance the color
features of the corroded parts, color distortion may occur on other occasions, and the
edge is not clear in a dim environment. The IMSRCR can not only strengthen the features
significantly but also avoid obscurity in a dim environment, which leads to an improvement
in comprehensive detection effectiveness.

Figure 8. Examples of results from different color enhancement algorithm.

Furthermore, Table 3 shows the time consumption of different color enhancement
methods. Since MSRCR uses Gaussian blur, the enhancement speed is significantly slowed
down to undertake many numerical calculations. IMSRCR, however, avoids the shortcom-
ings, and the speed increases by about a quarter.

Table 3. The Time Consumption of Color Enhancement.

MSR MSRCR IMSRCR

Time Cost (ms) 47.576 93.308 69.870
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Figures 9–12 show the visualization of some representative detection results in the
test set. Compared to other YOLO detectors and the baseline YOLOv5n, YOLOv5n-EL
offers better performance in detection like Figure 9b,c. Comparison between Figures 9–11
shows that different color enhancement algorithms can heighten the significance of features,
changing the effect of the total model.

In summary, the experimental results indicate that YOLOv5n-EL is an efficient cor-
roded bolt target detector. In addition, the ablation study demonstrates that the IMSRCR is
helpful for the enhancement of the color features and improves the detection performance
for corroded bolts both in speed and accuracy.

(a) YOLOv5s (b) YOLOv5n-EL

(c) YOLOv5n (d) YOLOv5n6

Figure 9. Examples of detection results without color enhancement.

(a) YOLOv5s (b) YOLOv5n-EL

(c) YOLOv5n (d) YOLOv5n6

Figure 10. Examples of detection results with MSR color enhancement.

(a) YOLOv5s (b) YOLOv5n-EL

(c) YOLOv5n (d) YOLOv5n6

Figure 11. Examples of detection results with MSRCR color enhancement.
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(a) YOLOv5s (b) YOLOv5n-EL

(c) YOLOv5n (d) YOLOv5n6

Figure 12. Examples of detection results with IMSRCR color enhancement.

4. Discussion

The method composed in this paper is a corroded bolt detection model, which com-
bines the IMSRCR module and YOLOv5n-EL into one algorithm. The experimental results
on the test set demonstrate that our method has good detection performance for corroded
bolts. The parameter size of the YOLOv5n-EL basic model (YOLOv5n) is only about 14 MB,
which is suitable for project deployment and real-time detection. Our method outperforms
other comparative methods in both accuracy and speed. The color feature enhancement
made by IMSRCR is helpful for the detector to detect corroded bolts with inconspicuous
corrosion features.

5. Conclusions

In this paper, a method was put forward for tunnel corroded bolt detection. For this
purpose, an efficient CV module with color enhancement and ensemble learning is pro-
posed. Considering the low definition, poor contrast, and color distortion in the tunnel,
IMSRCR enhances the color and edge appearance based on auto-matched dynamic filters
and L0 regularization. Moreover, YOLOv5n-EL also directly improves the accuracy of
detection. To examine the effectiveness of our model, we collect corroded bolts with a
professional tunnel scanner from a practical railway tunnel. It achieves a precision of
0.921 and a recall of 0.975 within 84.237 ms (14.367 + 69.870), which confirms that the
IMSRCR + YOLOv5n-EL is the most suitable structure for the task.
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Abstract: In the practical application of the Bridge Weigh-In-Motion (BWIM) methods, the position
of the wheels or axles during the passage of a vehicle is a prerequisite in most cases. To avoid the use
of conventional axle detectors and bridge type-specific methods, we propose a novel method for axle
detection using accelerometers placed arbitrarily on a bridge. In order to develop a model that is as
simple and comprehensible as possible, the axle detection task is implemented as a binary classifica-
tion problem instead of a regression problem. The model is implemented as a Fully Convolutional
Network to process signals in the form of Continuous Wavelet Transforms. This allows passages of
any length to be processed in a single step with maximum efficiency while utilising multiple scales
in a single evaluation. This allows our method to use acceleration signals from any location on the
bridge structure and act as Virtual Axle Detectors (VADs) without being limited to specific structural
types of bridges. To test the proposed method, we analysed 3787 train passages recorded on a steel
trough railway bridge of a long-distance traffic line. Results of the measurement data show that our
model detects 95% of the axles, which means that 128,599 out of 134,800 previously unseen axles
were correctly detected. In total, 90% of the axles were detected with a maximum spatial error of
20 cm, at a maximum velocity of vmax = 56.3 m/s. The analysis shows that our developed model can
use accelerometers as VADs even under real operating conditions.

Keywords: moving load localisation; nothing-on-road; free-of-axle-detector; bridge weigh-in-motion;
structural health monitoring; field validation; continuous wavelet transformation; machine learning;
fully convolutional networks

1. Introduction

All over the world, aging bridge infrastructure is facing the challenge of increasing
traffic loads. For example, in the United States, there are more than 617,000 bridges, of which
42% are at least 50 years old and 7.5% are considered structurally deficient [1]. In Germany,
more than 40% of the 25,710 railway bridges are older than 80 years, while the average
lifespan is about 122 years [2,3]. The application of structural health monitoring (SHM)
makes it possible to increase the operational availability and safety of these structures.
Since knowledge of the actual operational loads is of high importance for the condition
assessment of the structures, especially when it comes down to the assessment of fatigue
failure and the evaluation of the remaining service life, the determination of the loads is a
key aspect in the field of SHM. Since the direct measurement of loads is often technically
difficult and usually requires significant financial resources [4–6], different methods for load
identification based on measured structural responses have been developed [6–10]. In the
case of bridges, these methods are referred to as Bridge Weigh-In-Motion (BWIM) [11–14].

For the majority of BWIM systems, information about the vehicle configuration (num-
ber of axles and axle spacing) and velocity is a prerequisite [14]. For this purpose, con-
ventional axle detectors are used [5,15–17]. However, due to the impact loads of the
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wheels, axle detectors have a limited durability [18]. In addition, the installation of the
axle detectors always implies road or railway track closures. The latter case especially
requires a considerable amount of bureaucratic, logistic, and financial effort. To avoid these
issues, modern BWIM systems use axle detection concepts that use only sensors installed
under the bridge. These concepts are called nothing-on-road (NOR) or free-of-axle-detector
(FAD) [19,20].

FAD technology uses two additional strain sensors at different positions on the bridge
to determine vehicle configuration and speed [20]. Since FAD is only suitable for specific
types of bridges [14], it was investigated whether the axle velocity and the axle spacing
could be determined using global flexural strain or shear strain measurements [14,21].
For the proposed method in [21], which makes use of shear strains, the application of strain
gauges at the level of the neutral axis is required. This is a challenge for complex structures,
especially for railway bridges with ballasted tracks, because in such cases, the position
of the neutral axis cannot be easily determined. However, the proposed method in [14]
is only suitable for structures where the structural response is dominated by the quasi
static response of the bridge, e.g., where the dynamic amplification is low. In addition, the
second time derivative of the strain signals is used here; this makes the method sensitive
to measurement noise, which entails the need for a suitable noise filter, depending on the
application.

In [14], the method of virtual axles was proposed. It assumes a vehicle with many
virtual axes, where all axles, except for the real ones, are weightless. The true axles
and their weights are then determined by solving a constrained least square problem.
As the authors stated, the method fails when there is significant noise in the signals. Since a
significant amount of noise is present in field measurements and other practical applications,
the method cannot be practically applied without a sophisticated regularisation method.
Furthermore, the method uses experimentally determined lines of influence, so it is not
applicable to cases with significant dynamic amplification in their structural response.

To the best of our knowledge, only Zhu et al. [22] have published a study on the
accelerometer-based axle detection method so far. Here, a shallow Convolutional Neural
Network (CNN) is used to detect potential axle sequences, which are then transformed
with a continuous wavelet transform. Afterwards, the axles are detected in the transformed
signals with the use of peak-finding methods. The method of Zhu et al. [22] requires
accelerometers close to the supports. The acceleration signals of these sensors are dominated
by the vehicle-induced impulses when entering and leaving the bridge, leading to the clear
axle recognition in the time domain. In contrast to this method, our approach allows for the
use of sensors at arbitrary positions, effectively reducing the number of sensors required
by SHM applications.

An axle detection method based on acceleration measurements is desirable because
the installation of acceleration sensors is much easier and less laborious compared to strain
gauges. However, accelerometers are often already installed on the structure to determine
the modal parameters and are not necessarily located close to the supports. Therefore, we
propose a method that would enable accelerometers arbitrarily placed on a bridge to be
used as VADs. In this way, the same acceleration sensors used for analysing the global
structural behaviour (e.g., at midspan or quarter span of beam-like bridges) can also be
employed in axle detection without having to install additional sensors in the proximity of
the supports.

In the present work, Continuous Wavelet Transforms (CWTs) were used because they
are generally an effective tool for analysing acoustic and visual signals [23]. In addition,
previous work has shown that CWTs are an effective tool for axle identification [18,20–22,24].
The wavelet transformed signals are subsequently analysed using a Fully Convolutional
Network (FCN) that is trained in a supervised manner to perform a binary classification
task (Figure 1). As a result, the model outputs a pseudo-probability for each time step,
whether a train axle is located above the sensor of the input signal at this time. A peak-
finding algorithm is then used to classify the pseudo-probabilities into axle (peak) or no
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axle (no peak). This enables the processing of signals of arbitrary length without the need
to divide them into time windows. Furthermore, analysis in this way is not limited to
certain mother wavelets or specific scales, as in the previously mentioned work that used
the CWT [18,20–22,24].

Figure 1. VAD process, from left to right: acceleration signals from a single sensor, set from different
transformations of the signal, localization estimation as pseudo probabilities, and identified axles
classified by a peak-finding algorithm. Signal section used is the same for each plot with horizontal
axis in the samples.

To validate our method, we recorded a data set on a railway bridge with sensors
distributed across the free span of the bridge on the main girders. The impulses of the
wheel sets were superimposed with the vibrations of the bridge, which did not allow
for their clear visual identification in the time domain. For many bridges and common
sensor setups for monitoring purposes, similar to the ones used in this study, the method
of Zhu et al. [22] would not be applicable. The VAD, on the other hand, can learn to
distinguish the contribution of the structure-dependent natural vibration from the load-
induced vibration and can thus be trained for sensors at any point on the bridge. This
allows for the application of the method, independent of bridge type and accessibility to
specific parts of the bridge.

This paper is structured as follows: In section two, the methods are presented. The first
sub-section describes the data acquisition procedure in the field experiment and the sub-
sequent data processing. The second sub-section contains the model definition. In the
last sub-section, details on the training of the model are given. Section three presents and
discusses the results. The paper ends with section four, in which the conclusions of the
present study are drawn.

2. Methods

Since we opted to use a supervised learning approach for the VAD, a set of train
passages with known axle distances and velocity was required to train the model. In the
current research, this information was obtained from strain measurements at the rail
level. For future practical applications, the information could be obtained from vehicles
with a known axle configuration and through the use of a Differential Global Positioning
System (DGPS). If such information is not available, a transfer learning approach based
on simulated data could also be an option. In the application, the model can then identify
the axles based on the transformed sensor signals. For this purpose, the model first
gives a pseudo-probability for the presence of an axle at the longitudinal position of
the sensor and for each time step of the analysed signal. In a subsequent step, a peak-
finding algorithm is used to extract only the local maxima from the pseudo-probabilities.
The extracted maxima represent the time points at which an axle is located above the sensor.
As a result, the pseudo-probabilities are classified into axle (class 1) or no axle (class 0),
without being limited to classical thresholds (Figure 1). A detailed description is given in
the following subsections.

2.1. Data Acquisition

We recorded the measurement data used in the present study on a single-span
steel trough railway bridge (Figure 2) located on a long-distance traffic line in Germany.
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The single-track bridge with a ballasted superstructure was built in 1969 and has a total
length of 18.4 m, with a free span of 16.4 m (Figure 3).

Figure 2. Photos of the investigated structure.

Figure 3. Bridge and sensor setup: (a) side view, (b) top view with sensor labels, accelerometer
x-ordinates, and strain gauge distances, (c) cross section.

The measurement setup is shown in Figure 3. It can be seen that a total of ten
seismic uniaxial accelerometers of the type PCB-39B04 (PCB Synotech GmbH, 41836
Hückelhoven, Germany ), with a sensitivity of 1000 mV/g (±10%), a broadband res-
olution of 0.000003 gRMS, a measurement range of ±5 gpk, and a frequency range of
0.06 to 450 Hz (±5%) were installed. As previously mentioned, we chose an axle detection
method based on acceleration measurements because the installation of accelerometers is
much easier and less costly compared to strain gauges.

The measurements were triggered from the ring buffer via the rising slope of the wheel
load measuring point G1 (Figure 3). The signal was recorded for 60 s, which started ten
seconds before the trigger. All sensor signals were recorded with a sampling frequency
of fs = 600 Hz using the catmanAP software and the CX22 data recorder connected to an
MX1601B universal amplifier and an MX1616B strain gauge amplifier (all products are
from Hottinger Brüel & Kjaer GmbH, 64293 Darmstadt, Germany).

By means of two wheel load measuring points, the average velocity of each axle
was determined, and from this, the actual position of the axles during the passage was
deduced. Every measuring point involved the installation of at least one pair of rosette
strain gauges (HBM 1-CXY41-6/350HE) on the rails. Each pair of strain gauges were
placed at the level of the neutral axis of the UIC 60 rail profiles with a distance of 20 cm and
allowed for the recording of bi-axial strains at an angle of 45◦ with respect to the neutral axis
(Figure 4). Thus, shear strains were obtained. The difference of the shear strains allowed us
to determine the acting wheel loads. For further details, please refer to [5]. To compensate
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for the influence of the lateral wheel loads, a pair of strain gauges was placed on each side
of the rail, such that one wheel load measuring point retrieves two signals.

Figure 4. Top view of the bridge with the wheel load measuring points used at a distance of 14.4 m,
with a detailed view of the rosette strain gauges and the weatherproof measuring point installed.

The peaks of the wheel load measurement signals were automatically identified
(Figure 5a). All passages where the two wheel load measuring points had not detected the
same number of peaks were discarded. This led to 3745 usable recorded passages out of
a total of 3787, i.e., about 98.9%. Using the temporal differences of the peaks at the two
measuring points and the known distance between the wheel load measurement points
of 14.40 m, the mean velocity could be determined for each axle. The trains reached a
maximum velocity of about 57 m/s (Figure 5b).

Figure 5. (a) Signal of the wheel load measuring point with detected peak values marked with blue
triangles (b) Histogram of determined mean train velocities for all 3745 passages.

In the next step, by using the known distances—from the first wheel load measurement
point to each of the ten accelerometers—and the mean velocity of each axle, the time at
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which the axle was at the same x-ordinate as the respective sensor could be calculated.
Since the two strain gauges of one wheel load measuring point had a distance of 20 cm
between them, the uncertainty with respect to the distance between the two wheel load
measuring points sWLM = 14.40 m was assumed to be ΔsWLM = 0.2 m. This propagated
through the velocity determination. Together with an uncertainty in time of Δt = 1

fs
= 1

600 s,
the absolute spatial error Δx from the linear error propagation for each sensor (Figure 6)
was calculated as follows:

Δx(v, s̃) = vΔt + s̃
(
| v
sWLM

|Δt + | 1
sWLM

|ΔsWLM

)
(1)

This shows that the absolute position error is increased with increasing velocity and
with the increasing distance of the sensor with respect to the first wheel load measurement
point (G1/G2).

Figure 6. Absolute spatial error of the ground-truth per sensor as a function of velocity.

The acceleration signals were combined into one data matrix: A36,000×5
L for the sen-

sors L1–L5 and A36,000×5
R for the sensors R1–R5 (Figure 3b), for each passage and with-

out any further signal processing steps. Additionally, two data matrices, Lna×5
L and Lna×5

R
(na: number of axles), containing the calculated indices at which an axle was at the respec-
tive sensor were created.

The complete data set as well as the processing code are available online [25].

2.2. Data Transformation

Transforming a signal into the frequency–time domain enables the localisation of
frequency content in time [26]. In our case, low-frequency effects such as the bridge’s
natural vibration were separated from high-frequency effects such as measurement noise
in the frequency domain, while the time domain was preserved. Therefore, the model
could learn frequency-specific information, which should lead to faster training and more
reliable results.

The most common choices for a frequency–time domain transformation are Short Time
Fourier Transformation (STFT) and CWT. The multi-resolution approach of the CWT is
particularly useful for complex signals since it adapts the window size to the frequency [27].
The STFT has a fixed resolution, which means that there is always a trade-off between a
good time resolution and a good frequency resolution, depending on the window size [26].
As a result, we chose the CWT because it is more suitable for the analysis of acoustic and
visual signals than the windowed Fourier transform [23]. The CWT has also been shown in
previous work to be an effective tool for axle detection [18,20–22,24].

With respect to the signals, a section ranging from 150 samples before the first axle to
500 samples after the last axle was further processed and transformed with the PyWavelets
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package [28] using the determined settings (Table 1). Since the parameter space was too
big to be tested on a large scale, the CWT were visualised and analysed for correlations
between the axle positions (cyan dotted line) and the power of the transformed signal
(Figure 7). As a result, we were able to find that within the range of the bridge’s natural
frequency of about 6.9 Hz for the first bending mode (Figure 7 left column), the influence
of the bridge on the vibration was mainly visible, while a correlation between the train
axles (dashed cyan lines) and the signal did not seem to be present. In the higher frequency
range, a correlation became clearer, indicating that the influence of the axles were mainly
located in the 64 Hz range (Figure 7 right column).

(a)(a

(b)

)

(c)(b)

(d)

(c)

(e)(d)

(f)

(e)

(g)
Figure 7. Set of continuous wavelet transformations (CWTs) for the signal obtained from sensor
L2 for one of the train passages. The point in time when a load transition occurs is represented
by a dashed line in cyan. Each of the transformations were independently normalised from 0 to
1 (visualised with black for 0 and yellow for 1). (a) Acceleration signal of a single train passage.
(b) Complex Gaussian CWT in frequency range of bridge. (c) Complex Gaussian CWT in frequency
range of axles. (d) Gaussian CWT in frequency range of bridge. (e) Gaussian CWT in frequency range
of axles. (f) Frequency B-Spline CWT in frequency range of bridge. (g) Frequency B-Spline CWT in
frequency range of axles.
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Table 1. Continuous wavelet transformation settings.

Wavelet Figure
Lower
Scale
Limit

Upper
Scale
Limit

First Order Complex
Gaussian Derivative

Figure 7b 1 8
Figure 7c 8 50

First Order Gaussian
Derivative

Figure 7d 0.6 6.5
Figure 7e 6.5 35

Default Frequency
B-Spline [28]

Figure 7f 1.5 10
Figure 7g 10 40

We assume that it is nevertheless advantageous for the model to receive both pieces
of information (influence of the bridge and of the axles) in order to be able to distinguish
them better.

As a result, all 6 transformations were used in combination (Figure 7b–g). To create the
final model inputs, each signal (per passage and per sensor, shown in Figure 3) was trans-
formed according to our 6 settings. Afterwards, the transformations were independently
normalised and stacked into a three-dimensional array Tns×nf×nt (ns: number of samples,
nf: number of frequencies/scales, and nt: number of transformations). Thus, each sensor
functioned independently as a VAD, which means that for our ten sensors, our method can
locate each axle ten times (ten time points for ten sensor coordinates).

2.3. Model Definition

Our approach for the Virtual Axle Detector (VAD) aimed to always evaluate entire
passes in one step so that sufficient context is preserved before and after each axle. Therefore,
in our case, the 60 s recordings were always combined into complete passages before
evaluation. To ensure that passages of arbitrary length could be efficiently processed,
a model with a flexible input length (in the time domain) was essential. Hence, we
developed an FCN [29], which only used input size-independent layers such as convolution,
pooling, or batch normalization. Our model was developed to output only a single value,
between 0 and 1, for the same number of samples as those of the input. These output values
represent the model’s certainty for an axle at the x-ordinate of the respective sensor.

Our developed VAD model was based on the U-Net architecture, originally proposed
by Ronneberger et al. [30], which was developed for semantic segmentation tasks. Here,
the goal was to classify each pixel of the input image individually in order to preserve the
resolution from the input. For the U-Net, the resolution of the input was halved 4 times (via
max pooling) in the encoder path and then doubled 4 times (via transposed convolution)
in the decoder path. In addition, the intermediate results before each pooling layer were
appended to the intermediate results after the transposed convolution layer with the same
resolution, after which they were processed together.

In our case, not each pixel but each sample had to be classified, thus reducing the
resolution in the frequency domain to 1. We achieved this by increasing the resolution in
the decoder path only in the time dimension (Figure 8), for which we used a transposed
convolution layer with a kernel size of 3 × 1. Before the intermediate results from the
encoder path could be appended to the intermediate results from the decoder path, its reso-
lution and number of feature maps were adapted. Each purple arrow in Figure 8 consists of
a reshape layer to reduce the frequency domain to the value of 1, and a convolution layer
with a kernel size of 1 × 1 to adapt the number of feature maps.
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Figure 8. Definition of the Virtual Axle Detection model (VAD), with coloured boxes corresponding
to the following layers: CB (light purple), RB (yellow), max pooling (red), concatenate (green),
transposed convolution (blue), and reshaping skip connection (purple arrow). Dimensions of the
output feature maps for the corresponding layer, with T samples at the bottom right, feature maps
at the bottom, and frequencies at the left. The model dimensions for the input: 16 frequencies × 6
transforms × T samples; for the output: 1 × 1 pseudo-probabilities × T samples.

The convolution blocks (CBs) consist of a batch norm layer and a convolution layer
with Rectified Linear Unit (ReLU) activation [31]. The CBs in Figure 8 have a 3 × 3 kernel
size. The residual blocks (RB), originally proposed by He et al. [32], were implemented
with 3 CBs in the filtering path and 1 CB in the skip connection. Here, the second CB
in the filtering path had a 3 × 3 kernel size, while the other CBs had a 1 × 1 kernel size.
The results of the filter path and the skip connection were added element-wise before
further processing. Our model had 4 pooling steps as the U-Net [30]. We could therefore
input transformed signals of any length (in the time domain) as long as they were divisible
by 16; the resolution had to remain an integer after being halved 4 times. For lengths
that were not multiples of 16, the signal was padded with zeros and thus extended by a
maximum of 15 samples.

The last layer is a convolution layer consisting of a single kernel with the size of 3 × 3
and with sigmoid activation. Therefore, the resulting outputs could be interpreted as inde-
pendent pseudo probabilities p, which indicate the predicted likeliness for a certain class
per sample. The resulting model has an input size with an arbitrary number of samples
(padded to a multiple of 16), an arbitrary number of signal transformations, and 16 frequen-
cies, which were evenly spaced from the minimum to the maximum scale. The TensorFlow
library [33] was used for the implementation of the model, and PlotNeuralNet [34] was
used for its visualisation.

2.4. Loss Function

We defined the localisation task as a supervised classification problem instead of a
regression problem in order to minimise complexity and maximise comprehensibility. We
labelled each sample using one of the following classes: Axle at the same x-ordinate as the
sensor (class 1) or not (class 0).

A common loss function for a binary classification task is Cross Entropy (CE), but for
imbalanced data sets, Focal Loss (FL) has been shown to be more effective [35]. In our case,
the total number of axles of a train is almost negligible compared to the total amount of
samples of a passage. Hence, if the model predicts all values to be 0 (and cannot locate
an axle), it will achieve an almost perfect loss for CE and will learn to ignore the axles.
This brings us to the thesis that FL is necessary in order to achieve good results. The FL is
defined as follows [35]:

FL(pt) = −1(1 − pt)
γ log(pt), (2)
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where pt is defined as follows:

pt =

{
p if y = 1
1 − p otherwise.

(3)

In the equation above, p ∈ [0, 1] is the model’s estimated probability for class 1, y is
the ground-truth class, and γ is the focusing parameter. The equation of FL consists of
− log(pt), which is equal to the CE, and (1 − pt), which is a newly introduced modulating
factor weighted by the focusing parameter γ. The larger the factor, the more significant the
effect of the modulating factor is, and with a γ of 0, the FL corresponds to the CE [35].

Due to the gamma value, the modulating factor was exponentially included in the
equation. As a result, the loss became exponentially smaller, which gave a better predic-
tion. For misclassified examples, the loss was unaffected compared to CE, which made
misclassifications much more heavily weighted (a factor of 1000 and higher is possible [35]).

2.5. Evaluation Metrics

The loss function itself does not contain information about the number of correctly
detected axles. Other metrics are needed to assess the overall performance of the VAD.
Accuracy as a metric is also insufficient to draw a conclusion about the model’s performance
due to the imbalance in our data set. A prediction containing no axles at all would reach
an accuracy of about 99% and would therefore not contain useful information. Precision
and recall are suitable metrics for imbalanced data sets [31], but they only take into account
binary results and not distance prediction and ground-truth. Due to the high sampling rate
and the uncertainty of the labels described in Section 2, however, we wanted to recognise
axle predictions within a few samples next to the ground-truth as correct and to measure
the temporal error.

As already mentioned, the model output pseudo probabilities for each time step,
whether an axle was on the same x coordinate as the respective sensor of the input signal.
However, these were continuous values that had to be converted into binary classes (0 for
no axle and 1 for with axle). In addition, the model could not natively represent fuzziness
and thus often output a large number of small spikes around the ground-truth axles. Thus,
in order to obtain a definite point in time for the crossing of an axle over the sensor, despite
the uncertainties of the model, the prediction had to be further processed (Figure 9). In order
to keep only the meaningful peaks, they were classified using the find-peaks function from
SciPy [36]. This function allowed for the use of additional logic for classifications that
go beyond setting a threshold. For VAD, we fine-tuned the following parameters of the
function: minimum height of the peak (0.25), minimum distance between two peaks
(20 samples), and prominence of the peak compared to the surrounding points (0.15). We
calculated the minimum distance d between two peaks, with an assumed minimum wheel
distance Δwmin = 2 m and the maximum velocity vmax = 220 km

h , as follows:

d =
Δwmin · fs

vmax
≈ 2 m · 600 samples

s
61.1 m

s
≈ 20 samples (4)

A threshold was used to ensure that only predictions within a certain temporal error
compared to the ground-truth would be considered correct. For example, the threshold
could classify predicted axles as correct with a maximum temporal error of 30 milliseconds
compared to the ground-truth. Depending on the application, its requirements may be
decisive for the determination of the threshold. In general, it should be taken into account
that good results cannot be expected with thresholds that are lower than the label and mea-
surement accuracies. To avoid making assumptions that are too strict, we chose the largest
reasonable threshold with 20 samples (Equation (4)) for the first evaluations. After having
classified the peaks found as correct or incorrect, they were further evaluated using the
following metrics: Precision, recall, and F1 score. Precision describes the ratio of true
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positive predictions to positive predictions and thus allows for a statement regarding how
many of the axles have been found. Recall describes the ratio of true positive predictions to
false negative predictions and thus allows for a statement in relation to how many of the
predicted axles are true. Since both of these metrics only describe a part of the problem, we
used the F1 score, which is the harmonic mean of precision and recall. Unlike the arithmetic
mean, the harmonic mean strongly penalizes small values and thus ensures that axles are
neither overlooked nor predicted arbitrarily often.

Figure 9. Exemplary output, with the model’s output pseudo-probabilities represented by the blue
lines, ground-truth by the red lines, and found peaks by the magenta triangles.

2.6. Optimization of γ

In order to find an optimal γ value for the FL, we performed a parametric study with
150 epochs per run, 150 steps per epoch, and 16 samples per batch. We split the data
set randomly, with 70% for training, 20% for validation, and 10% for testing. To ensure
comparability, the same random state was used for every run. The selection criterion used
for γ was the F1 score, because a high F1 score indicates a high value for both recall and
precision. The complete training logs and graphs for the determination of the γ value are
available online [37].

We thus confirmed our hypothesis that our data set is too unbalanced for standard loss
functions such as Cross Entropy. The model training with small γ values of 0 and 0.5 ended
in dead ReLUs after 8 or 9 epochs and is therefore unusable. However, the modulation factor
should also not be weighted too high to achieve the best performance. The relationship
between γ, precision, and recall can be described as a trade-off between detecting too many
axles and detecting too few axles (Figure 10).

The γ values of 2, 2.5, and 3 achieved the highest F1 score on the validation set. In order
to decide which γ value to use for the final evaluation, we trained the model with these
γ values in a second run for 300 epochs. In the second run, the γ value of 2.5 achieved
the highest F1 score (Table 2) and was therefore kept for testing. Since the results of the
γ values were close to each other and the middle γ value performed best, we assumed
that the optimal value had been found. The complete training logs and graphs for the final
models are available online [38] .

Table 2. The model’s performance on the validation set, depending on the γ value of FL with
increased training length. Each of the precision and recall values was taken from the epoch with the
highest F1 value.

γ F1 Precision Recall

3 0.9538 0.9477 0.9620
2.5 0.9544 0.9556 0.9542
2 0.9534 0.9559 0.9522
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Figure 10. Relationship between γ, precision, and recall with median values of the training results on
the validation set.

3. Results and Discussion

The test set consisted of 375 train passages with 13,480 axles in total. There were
10 acceleration sensors, for which the individual crossing times had to be determined,
resulting in 134,800 times that had to be localised. On the test set, for a threshold of
20 samples, the VAD with a γ value of 2.5 achieved an F1 score of 0.938, a recall of 0.946,
and a precision of 0.941. Thus, 126,449 out of 134,800 crossing times were localised correctly,
with a maximum error of 0.033 s. On average, the predicted axle times had a temporal
error of 1.16 samples (0.002 s) compared to the ground-truth, with a standard deviation of
3.06 samples (0.005 s).

Based on the distances between the sensors, we were able to convert the error from
samples (temporal) into metres (spatial). In order to examine the spatial error more closely,
we chose three threshold values:

• 200 cm as the minimum wheel distance;
• 37 cm as the maximum labelling error (Figure 6);
• 20 cm as the length of the wheel load measuring point.

The spatial errors for a threshold of 2 m were mostly at 0 cm, with an almost sym-
metrical distribution (Figure 11), thus indicating that there is no bias in the VAD. Most
values were within a spatial error of 20 cm, and only a few values had an error higher than
25 cm. The maximum labelling error in the velocity range of most passages (30–60 m

s ) was
partially even above 25 cm (Figure 6).

We calculated the precision and recall per passage and sensor for each threshold in
order to examine the distribution of the metrics in more detail, which resulted in 3750
values per threshold and metric (Figure 12). The differences in the results with thresholds
of 20 cm and 37 cm were small, as even the 25% quantile stayed above 85% for both metrics
(Figure 12). Precision and recall for a threshold of 200 cm were much better, with the 25%
quantile remaining above 96%, while the mean spatial error greatly worsened by more than
double the value compared to the other thresholds (Table 3). Therefore, we conclude that
37 cm is the optimal threshold value required to correctly evaluate the model’s performance.
In addition, we consider predictions with a spatial error above 37 cm as outliers. It should
be possible for such outliers to be sorted out in post-processing by their comparison with
known train configurations.
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Figure 11. Differences between true and predicted axle positions for a threshold of 2 m.

Figure 12. Precision and recall on test data set for different thresholds. Dotted lines with black text
represent the 25% quantile, and dashed lines with white text represent the median, if not at 1.0.

Table 3. Influence of the threshold on mean spatial error, F1, precision, and recall.

Threshold (cm) Mean (cm) F1 Precision Recall

200 10.3 0.954 0.970 0.948
37 3.9 0.915 0.926 0.910
20 3.5 0.897 0.905 0.892

To investigate the influence of sensor placement, we determined the F1 score and the
spatial accuracy per sensor. The spatial accuracy was calculated as follows:

spatial accuracy = 1 − spatial error
200 cm

(5)
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In this study, it was noticeable that sensor R3 performed significantly worse
(Figure 13). In combination with a closer look at the measurement signal of R3, we came to
the conclusion that the comparatively poor results were due to a degradation of the sensor.
Since the remaining sensors performed comparably well, we concluded that the influence
of the sensor placement was negligible.

Figure 13. Spatial accuracy (Equation (5)) and F1 score on test data set for each sensor (Figure 3).

The evaluation of the test data took 335 s for 375 passages and 10 sensors with the use
of an NVIDIA RTX 3090. The model therefore needs 0.089 s per signal, and for our entire
measurement setup, 0.89 s per passage. This would allow for the real-time application
of the VAD and is a flexible trade-off between accuracy and computing speed due to the
number of sensors used.

Compared to the work of Chatterjee et al. [24], who used FAD sensors and wavelets to
detect more axles with the FAD, our model shows a comparable success rate in detecting
axles. They were able to successfully evaluate 42/47 (about 89.4%) passages. The mean
absolute spatial error was about 10.6 cm, which is about three times as much as that in our
study. The achieved spatial accuracy in our study is still 1.4 times better compared to that
obtained in a study using FAD sensors combined with an optimized mother wavelet and
wavelet scale for the identification of axles [20]. Taking into account that we did not use
FAD in our method, and that the velocities were about twice as high, this is a confirmation
of our hypothesis that it is advantageous not to limit the analysis to certain mother wavelets
and certain scales. In contrast to the method of Zhu et al. [22], due to our model architecture,
the VAD can be applied at any point of the bridge. This allows for the use of common
SHM measurement setups in axle detection without the need to attach additional sensors.
The accuracies of the methods are similar. It should be noted that in all cases, the detection
of car axles is compared with that of train axles.

4. Conclusions

We demonstrated that with our proposed method, no additional FADs or strain
gauges on the main girders are required to realise a NOR-BWIM system. Instead, our
method allows for accelerometers at any point of the structure to be used as VADs because
our model can learn to account for the influence of the bridge structure and the sensor
placement. As a result, the much more complex installation of strain gauges as well as track
closures can be avoided.

We were also able to show that FCNs can detect axles using only acceleration mea-
surements within a spatial accuracy of 37 cm, with a precision of 93% and a recall of 91%.
The mean value of the absolute values of the spatial errors compared to the ground-truth
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here is about 3.9 cm. The results showed that the method can detect axles with spatial
errors similar to the data used for labelling.

Even though our results show higher accuracy compared to other studies that used
different methodologies, we assume that the accuracy of determining the vehicle config-
uration and velocity could be increased through the joint evaluation of several sensors,
increased model complexity, improved signal transformation, or the use of different mea-
sured quantities such as strain and displacement. Enabling the method to be used with
other measured quantities would also increase the amount of use cases.

Finally, the most important issue is the generalisability of the model. How efficiently
the model can be used depends on whether it needs to be re-trained to be able to use the
method, and if so, whether real or simulated data should be employed. Should retraining
with real data be necessary, we propose to determine the axle position during the passages
using vehicles with known axle configuration and DGPS.
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Abbreviations

The following abbreviations were used in this manuscript:

BWIM Bridge Weigh-In-Motion
CB Convolution block
CE Cross Entropy
CNN Convolutional Neural Network
CWT Continuous-Wavelet-Transformation
DGPS Differential Global Positioning System
FAD Free-of-axle-detector
FCN Fully Convolutional Network
FL Focal Loss
NOR Nothing-on-road
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RB Residual block
ReLU Rectified Linear Unit
SHM Structural health monitoring
STFT Short Time Fourier Transformation
VAD Virtual Axle Detector
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Abstract: Bridges and subgrades are the main route forms for expressways. The ideal form for
passing through sandy areas remains unclear. This study aims to understand the differences in the
influence of expressway bridges and subgrades on the near-surface blown sand environment and
movement laws, such as the difference in wind speed and profile around the bridge and subgrade,
the difference in wind flow-field characteristics, and the difference in sand transport rate, to provide
a scientific basis for the selection of expressway route forms in sandy areas. Therefore, a wind
tunnel test was carried out by making models of a highway bridge and subgrade and comparing the
environmental effects of wind sand on them. The disturbance in the bridge to near-surface blown
sand activities was less than that of the subgrade. The variation ranges of the wind speed of the
bridge and its upwind and downwind directions were lower than those of the subgrade. However,
the required distance to recover the wind speed downwind of the bridge was greater than that of the
subgrade, resulting in the sand transport rate of the bridge being lower than that of the subgrade. The
variation in the wind field of the subgrade was more drastic than that of the bridge, but the required
distance to recover the wind field downwind of the bridge was greater than that of the subgrade.
In the wind speed-weakening area upwind, the wind speed-weakening range and intensity of the
bridge were smaller than those of the subgrade. In the wind speed-increasing area on the top of the
model, the wind speed-increasing range and intensity of the bridge were smaller than those of the
subgrade. In the wind-speed-weakening area downwind, the wind speed weakening range of the
bridge was greater than that of the subgrade, and the wind speed-weakening intensity was smaller
than that of the subgrade. This investigation has theoretical and practical significance for the selection
of expressway route forms in sandy areas.

Keywords: expressway; bridge; subgrade; wind-blown sand flow field; sand transport

1. Introduction

Blown sand is the main natural disaster that threatens road driving safety in sandy
areas [1,2]. In such areas, blown sand is also an important factor in highway engineering
wiring, survey and design, route form selection, construction, operation, and mainte-
nance [3]. Expressways have become a symbol of modern traffic because of their advan-
tages, such as large transportation volume, low cost, fast speed, high traffic efficiency,
flexible mobility, few traffic accidents, and a high degree of intensive use of land resources.
In recent years, with the development of the social economy, the improvement of the
urbanization level, and the progress of automobile industry technology, expressways have
developed rapidly and have become the primary land transportation mode in sandy areas.
Compared with ordinary highways, the hazards of wind-blown sand expressways have the
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following characteristics: First, the vehicle speed is very high, and a slight sand accumula-
tion on the road surface causes traffic accidents. Second, the isolation belt in the middle of
the expressway easily becomes an obstacle to wind-sand flow. To avoid sand accumulation
there controlling the wind-sand flow on the road is necessary. Third, because the minimum
width of expressway pavement is 26 m, its thickness is approximately three times that of
ordinary highways, making the environmental impact of such expressways considerable.
In sandy areas in particular, the disturbance of the blown sand activity is more intense after
construction. Furthermore, the near-surface wind speed, wind field, and sand transport
rate are significantly changed, as are the erosion, transport and accumulation conditions
of wind-blown sand flow [4,5]. Therefore, preventing and controlling the harm caused by
wind-blown sand by relying on the road surface to transport sand is difficult. Highway
lines have three basic forms: subgrades, bridges, and tunnels. Among them, tunnels are
less affected by blown sand [6], whereas the effects of the blown sand environment on sub-
grades and bridges are obvious [7,8]. These scientific problems need to be solved urgently
for the construction of expressways in sandy areas. Determining the route form that is rea-
sonable for passing through sandy areas to reduce, or even avoid, the harm of wind-blown
sand is necessary. At present, the relevant studies mainly focus on the wind-blown sand
hazards of traffic engineering and blown sand environmental monitoring. These focuses
include wind-induced fatigue and asymmetric damage in bridges [9], buffeting response
analysis of bridges [10], wind-blown sand along railway infrastructures and mitigation
measures thereof [11], remote measurement of aeolian sand transport on sandy beaches and
dunes [12], satellite monitoring of dust storms [13], the law of sand particle accumulation
over railway subgrade [14], estimation methods and techniques of aeolian sand transport
rate [15], sand dune ridge alignment effects on the surface [16], damage by wind-blown
sand and its control measures along desert highways [17], wireless wind data acquisition
systems at arid coastal foredunes [18], and wind speed forecasting in traffic control decision
support systems [19]. However, these studies focus on the form of a single highway and
railway line, and systematic studies are lacking on the environmental effects of blown sand
in the form of subgrades and bridges. In particular, the optimization selection of the form of
expressway lines in sandy areas has not yet been reported. This investigation selected the
subgrade and bridge forms for a comparative study of the environmental effects of blown
sand to understand the differences in the influence of expressway bridges and subgrades
on the near-surface blown sand environment and movement laws, such as the difference in
wind speed and profile around the bridge and subgrade, the difference in wind flow-field
characteristics, and the difference in sand transport rate. The contribution of this investi-
gation is to provide technical support for the survey and design of expressways in sandy
areas and for the selection of route forms.

2. Research Methods

2.1. Models and Their Dimensions

The expressway pavement width is 26 m and the slope ratio is 1:1.75, following
expressway technical standards. The subgrade and bridge models of the wind tunnel
test were constructed at a 1:100 scale, based on previous studies [20,21]. The wind tunnel
used for the test had a cross-section of 63 cm × 63 cm and a boundary layer thickness of
12–15 cm. Therefore, the bridge and subgrade models were both 8 cm in height and 62 cm
in length, and their blockage ratios were 7.1% and 12.5%, respectively. The model sizes are
shown in Figure 1.
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Figure 1. Photos of model size and wind tunnel test of expressway bridge and subgrade.

2.2. Layout of Wind Tunnel Test
2.2.1. Layout of Wind Speed Test in Wind Tunnel

A total of 10 observation points were used: −30H −25H, −20H, −15H, −10H, −5H,
−3H, −1H, −0.5H, and −0H upwind of the bridge (H represents the model height, −
represents upwind, + represents downwind, and −0H represents the slope foot of the
bridge windward side). The observation point settings upwind of the subgrade were
identical to those of the bridge. Five observation points were set under the bridge: the
bottom of the windward side slope middle, bottom of the windward side slope shoulder,
bridge bottom center, bottom of the leeward side slope shoulder, and bottom of the leeward
side slope middle. Five observation points were set on the surface of the subgrade: the
slope middle of the windward side, slope shoulder of the windward side, subgrade top
center, slope shoulder of the leeward side, and slope middle of the leeward side. A total
of 12 observation points were used: 0H (representing the slope foot of the bridge leeward
side), 0.5H, 1H, 3H, 5H, 10H, 15H, 20H, 25H, 30H, 35H, and 40H downwind of the bridge.
The observation point settings downwind of the subgrade were the same as those of the
bridge (Figure 2). The wind profile of the wind tunnel test without a model is shown in
Figure 3a. In total, 10 different heights of wind speed at each position were converted using
pitot tubes that were placed at the bottom center of the wind tunnel. The measured heights
were 0.6, 0.8, 1.3, 2.1, 8.3, 12.2, 16.4, 20.2, 24.2, and 28 cm. The wind speed was measured
every 2 s 30 consecutive times, and the average value was obtained. The test wind speeds
were set in five groups: 6, 9, 12, 15, and 18 m·s−1.
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Figure 2. Wind speed experiment layout in wind tunnel.

  
(a) Wind profile (b) Sand transport 

Figure 3. Wind profile and sand transport of wind tunnel test without model.

2.2.2. Test Layout of Sand Transport in Wind Tunnel

The sandy bed surface was laid at the 10H distance upwind of the bridge. The length,
width, and thickness of the sandy bed surface were 380, 63, and 5 cm, respectively. The
sand used in the experiment was obtained from the original surface sand of the Kumtag
Desert, and the grain size distribution curve of the sand is shown in Figure 4. The sand
collector was set at the 10H distance downwind of the bridge. Every 1 cm height set up a
set of sand collector mouths (the width and height of the sand collector mouths were 2 and
1 cm, respectively), for a total of 50 heights. The sand-moving wind speed was 5.0 m·s−1.
Therefore, the test wind speed was set to 6, 9, 12, 15, and 18 m·s−1, for five groups in total.
The sand transport in the wind tunnel test without a model is shown in Figure 3b. The
test layout of the wind tunnel used to measure the sand transport of the subgrade was the
same as that of the bridge (Figure 5).

Simulation experiments in wind tunnels should generally satisfy the principles of
geometric similarity, kinematic similarity, and dynamic similarity [22,23]. In this wind
tunnel experiment, the sand used was taken from the original surface sand of the desert,
conforming to geometric similarity. The bridge and subgrade are models made according
to equal-scale reduction, also conforming to geometric similarity. The bridge and subgrade
models were placed within the boundary layer of the wind tunnel test section, the pitot
tubes were arranged at the bottom center of the wind tunnel test section, and the measured
initial wind speed profile was consistent with the distribution law in nature (Figure 3a).
Thus, this experiment conforms to kinematic similarity. In the model, the sandy bed surface
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was laid upwind, and the sand collector was set downwind. The measured initial sand
transport rate was consistent with the distribution law in nature (Figure 3b), indicating
that this experiment conforms to dynamic similarity. Therefore, this investigation satisfies
the principles of geometric, kinematic, and dynamic similarity of wind tunnel simulation
experiments to the greatest extent.

 
Figure 4. Grain size distribution curve of the test sand.

Figure 5. Test layout of sand transport in wind tunnel.

3. Test Results

3.1. Wind Speed at Each Observation Point

According to the aforementioned layout of the wind speed experiment in a wind tun-
nel, the wind speed experiment results for the bridges and subgrades are shown in Figure 6.
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Figure 6. Cont.
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(i) 

(j) 

Figure 6. Wind speed differences between expressway bridge and subgrade.

When the height of the observation point was 0.6 cm (Figure 6a), the wind speeds of
the bridge and the subgrade were nearly equal from −30H to −5H. From −5H to −0H,
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the wind speed of the bridge was significantly higher than that of the subgrade. From the
slope middle of the windward side (the bridge is at the bottom of the windward side slope
middle) to the center of the model (the bridge is the bottom center and the subgrade is the
top center), the wind speed of the bridge was significantly lower than that of the subgrade.
From the slope middle at the leeward side (the bridge is at the bottom of the leeward side
slope middle) to 5H, the wind speed of the bridge was significantly higher than that of the
subgrade. From 10H to 40H, the wind speed of the bridge was significantly lower than that
of the subgrade. Notably, the wind speed of the subgrade recovered within this distance
on the leeward side, but the wind speed of the bridge remained significantly lower than
the corresponding wind speed on the windward side and did not recover. The variation
range of bridge wind speed was significantly lower than that of the subgrade at the height
of 0.6 cm.

When the height of the observation point was 0.8 cm (Figure 6b), the wind speed
variations of the bridge and subgrade were very similar to those at 0.6 cm.

When the height of the observation point was 1.3 cm (Figure 6c), the wind speed
variations of the bridge and subgrade were very similar to those at 0.6 cm.

When the height of the observation point was 2.1 cm (Figure 6d), the wind speed
variations of the bridge and subgrade were very similar to those at 0.6 cm.

When the height of the observation point was 8.3 cm (Figure 6e), the wind speed of
the bridge and that of the subgrade were nearly equal from −30H to −5H. From −3H to
−0H, the wind speed of the bridge was significantly higher than that of the subgrade. From
the slope middle of the windward side (the bridge is at the bottom of the windward side
slope middle) to the slope middle of the leeward side (the bridge is at the bottom of the
leeward side slope middle), the wind speed of the bridge is significantly lower than that
of the subgrade. From 0H to 40H, the wind speed of the bridge and subgrade exhibited a
minimal difference. The variation range of the bridge wind speed was greater than that of
the subgrade at the height of 8.3 cm.

When the height of the observation point was 12.2 cm (Figure 6f), from −30H to −5H,
the wind speed of the bridge and subgrade had a minimal overall difference. From −3H to
−0H, the wind speed of the bridge was higher than that of the subgrade. From the center
of the model (the bridge is the bottom center and the subgrade is the top center) to 1H, the
wind speed of the bridge was lower than that of the subgrade. From 3H to 40H, the wind
speed of the bridge and subgrade had minimal difference overall. The variation range of
the bridge wind speed was lower than that of the subgrade at the height of 12.2 cm.

When the height of the observation point was 16.4 cm (Figure 6g), from −30H to −5H,
the wind speed of the bridge and subgrade had a minimal overall difference. From −3H to
−0.5H, the wind speed of the bridge is higher than that of the subgrade. From −0H to 10H,
the wind speed of the bridge was lower than that of the subgrade. From 15H to 40H, the
wind speed of the bridge and subgrade had minimal difference overall. The variation range
of the bridge wind speed was lower than that of the subgrade at the height of 16.4 cm.

When the height of the observation point was 20.2 cm (Figure 6h), the wind speed
variations in the bridge and subgrade were similar to those at 16.4 cm.

When the heights of the observation point were 24.2 and 28 cm (Figure 6i,j), although
the wind speeds of the bridge and subgrade rose and fell with each other, they had a
minimal difference overall. With the increase in height, the difference between the wind
speeds of the bridge and subgrade decreased. The variations in their wind speeds became
increasingly consistent, and the variation range of the wind speed became increasingly
smaller. However, the variation range of the bridge wind speed was slightly lower than
that of the subgrade wind speed.

3.2. Wind Flow Field

The Kriging interpolation method was used to draw the wind field map of the bridge
and subgrade (wind speed contour map) based on the aforementioned wind speed test
results. Figure 7 shows a wind-speed-weakening area between −3H upwind of the bridge
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to the slope shoulder of the windward side of the bridge. The figure also shows an obvious
wind speed-weakening area between −5H upwind of the subgrade to the slope shoulder of
the windward side of the subgrade. In these areas, the wind-speed-weakening range and
intensity of the bridge are smaller than those of the subgrade. The wind-speed-increasing
area was observed at the top of the bridge, as was an obvious increase in wind speed was
at the top of the subgrade, particularly on the slope shoulder of the windward side. In
those areas, the wind speed increase range and intensity of the bridge were smaller than
those of the subgrade. A wind-speed-weakening area was found from the slope middle
of the leeward side of the bridge to the 40H downwind, and an obvious wind-speed-
weakening area was found from the slope shoulder of the leeward side of the subgrade to
15H downwind. In these areas, the wind-speed-weakening range of the bridge was greater
than that of the subgrade, but the wind-speed-weakening intensity of the bridge was lower
than that of the subgrade. These findings indicate that the overall range of wind speed
variation of the bridge was lower than that of the subgrade, the wind field variation of the
subgrade was more intense than that of the bridge, and the disturbance of the subgrade to
the wind-blown sand environment was greater than that of the bridge.

 

Bridge 

 

Subgrad 

 

Bridge 

 

Subgrade 

Figure 7. Cont.
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Figure 7. Wind field differences between expressway bridge and subgrade.

3.3. Sand Transport

The test results of the sand transport of bridges and subgrades are shown in Figure 8
and Table 1, based on the test layout of sand transport in the wind tunnel. The sand
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transport rates of the bridge for each height followed the distribution law of exponential
functions, whereas the sand transport rates of the subgrade varying with height followed
the distribution law of Gaussian functions. Under the experimental wind speeds of the
five groups, the sand transport rates of the bridge were 7.56, 39.24, 141.05, 273.03, and
374.30 g·cm−1·min−1, and those of the subgrade were 9.56, 66.92, 164.16, 296.08, and
431.43 g·cm−1·min−1, respectively. The average sand transport rate of the bridge was
86.27% of that of the subgrade. The sand fluxes of the bridge were obviously lower than
those of the subgrade, indicating that the passing rate of the wind-blown sand flow of
the bridge was lower than that of the subgrade. Compared with the subgrade, the bridge
blocks more wind-blown sand transport and causes more sand material to accumulate near
the bridge.

Figure 8. Sand transport rate of expressway bridge and subgrade.

Table 1. Fitting results of sand transport rate of expressway bridge and subgrade.

Route Forms Wind Speed (m·s−1) Fitting Function Type Fitting Function Formula a b c R2

Bridge 6 Exponential y = a × exp(b × x) 45.30 −0.51 0.99
Bridge 9 Exponential y = a × exp(b × x) 10.98 −0.30 0.98
Bridge 12 Exponential y = a × exp(b × x) 28.60 −0.23 0.96
Bridge 15 Exponential y = a × exp(b × x) 36.87 −0.15 0.96
Bridge 18 Exponential y = a × exp(b × x) 37.48 −0.11 0.98

Subgrade 6 Gaussian y = a × exp(−((x − b)/c)2) 999.70 −118.30 45.69 0.94
Subgrade 9 Gaussian y = a × exp(−((x − b)/c)2) 2.84 14.67 13.68 0.95
Subgrade 12 Gaussian y = a × exp(−((x − b)/c)2) 6.34 24.88 14.65 0.95
Subgrade 15 Gaussian y = a × exp(−((x − b)/c)2) 10.88 26.99 15.69 0.97
Subgrade 18 Gaussian y = a × exp(−((x − b)/c)2) 15.89 27.64 15.68 0.98

4. Cause Analysis

In this test, the height of the model was set to 8 cm. Owing to the gap in the bridge, a
minimal blocking effect was observed on the near-ground airflow below this height. When
the airflow ran near the bridge, it passed through the gap at the bottom of the bridge.
The disturbance received by the airflow was small. Therefore, the variation range of the
wind speed was small, similar to the wind speed and flow field of a railway bridge [21].
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Under the same experimental conditions, because no gap existed in the subgrade, it had
a considerable blocking effect on the airflow near the ground. When the airflow ran in
the −5H to −0H range upwind of the subgrade, it can only pass through the top of the
subgrade with obstructions, resulting in considerable disturbance. Therefore, the wind
speed decreased significantly. When the airflow ran to the windward side of the subgrade,
the wind speed increased fleetingly with a climbing windward slope and reached the
maximum value when it ran the shoulder of the windward slope. Thus, the wind speed
increased significantly. When the airflow passed over the top of the subgrade, due to the
terrain decrease of the leeward slope, the airflow dispersed rapidly and the wind speed
dropped sharply. The wind speed dropped to the lowest value (0 m·s−1 or close to 0 m·s−1)
within 0H–3H downwind of the subgrade, and the wind speed dropped significantly.
Then, as the distance increased, the influence of the subgrade on the airflow weakened
and the wind speed recovered quickly. Consequently, the wind speed of the subgrade
varied sharply, and the variation range was significantly higher than that of the bridge.
Above 8.3 cm, with the increase in height, the influence of the bridge and subgrade became
smaller and the airflow was less disturbed. Therefore, the wind speed difference between
the bridge and subgrade became smaller, the variation trend of the wind speed was the
same, and the variation range decreased.

Relevant studies show that sand transported by the wind accumulates around any
type of obstacle [24,25], and the decrease in near-surface wind speed easily causes sand
material accumulation, while the increase in wind speed easily causes blown sand flow
erosion [26–29]. In the wind-speed-weakening area upwind, because the wind-speed-
weakening range and intensity of the bridge were smaller than those of the subgrade, the
range and intensity of sand material accumulation upwind of the bridge were smaller
than those of the subgrade. In the wind-speed-increasing area at the top of the model,
because the wind-speed-increasing range and intensity of the bridge were smaller than
those of the subgrade, the erosion range and intensity of the wind-blown sand flow on the
top of the bridge were smaller than those of the subgrade. In the wind-speed-weakening
area downwind, because the wind-speed-weakening range of the bridge was greater than
that of the subgrade, and the wind-speed-weakening intensity was smaller than that of
the subgrade, the sand material accumulation range downwind of the bridge was larger
than that of the subgrade. However, the accumulation intensity was smaller than that of
the subgrade.

Relevant studies have shown that the influence of bridges on wind sand movement
decreases with increasing height [21] and has no influence on the wind sand movement of
the near-surface after reaching the threshold height. However, the opposite is true for the
subgrade: the higher the subgrade, the stronger the disturbance to the wind-blown sand
activity of the near-surface [30,31]. In this experiment, although the wind speed variation
range of the bridge was less than that of the subgrade, the wind speed near the surface
(below the model height of 8 cm) still did not recover within 40H downwind of the bridge.
This lack of recovery resulted in the weakening of the driving force of wind-blown sand
flow transport, a decrease in the passing rate, and more sand materials being intercepted
near the bridge. Therefore, the sand transport rate of the bridge was lower than that of the
subgrade. At the same time, these findings indicate that the required distance to recover
the near-surface wind speed and its flow field downwind of the bridge is greater than that
of the subgrade, causing the sand material accumulation range to also be greater than that
of the subgrade.

5. Results Discussion

A comparison of the characteristics of the wind-blown sand environment of the
expressway bridge and subgrade is shown in Table 2 through the test results and analysis.
The disturbance of the bridge to the wind-blown sand environment was less than that of
the subgrade in seven indices: the variation ranges of the wind speed, variation ranges of
the flow field, wind-speed-weakening range and intensity in the wind-speed-weakening
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area upwind, wind-speed-increasing range and intensity in the wind-speed-increasing
area on the top, and wind-speed-weakening intensity in the wind-speed-weakening area
downwind. However, the disturbance of the bridge to the wind-blown sand environment
was greater than that of the subgrade in several indices, such as the required distances
to recover the wind speed and its flow field downwind and the wind-speed-weakening
range in the wind-speed-weakening area downwind, thereby decreasing the passing rate
of the wind-blown sand flow of the bridge and increasing the sand material accumulation.
Therefore, from the perspective of prevention and control of wind-blown sand hazards, the
wind-blown sand environment of the bridge was generally better than that of the subgrade.

Table 2. Comparison of characteristics of wind-blown sand environment of expressway bridge
and subgrade.

Environmental Indexes of Blown Sand Contrast Advantage Item Disadvantage Item

Wind speed
Variation range bridge < subgrade bridge subgrade

Required distance to recover the
wind speed bridge > subgrade subgrade bridge

Wind flow field

Variation range bridge < subgrade bridge subgrade

Required distance to recover the
wind field bridge > subgrade subgrade bridge

Wind-speed-weakening area upwind
Range bridge < subgrade bridge subgrade

Intensity bridge < subgrade bridge subgrade

Wind-speed-increasing area on the top
Range bridge < subgrade bridge subgrade

Intensity bridge < subgrade bridge subgrade

Wind-speed-weakening
area downwind

Range bridge > subgrade subgrade bridge

Intensity bridge < subgrade bridge subgrade

Passing rate of wind-blown sand flow
(Average under the experimental wind

speed of five groups)
Ratio (bridge/subgrade) 0.8627 subgrade bridge

According to the experimental results and their analysis, the following implications
for practical engineering applications can be obtained. When surveying and designing
expressways in sandy areas, if the construction cost is not considered, expressways through
seriously blown sand areas should generally use the bridge form. However, when the
downwind direction is limited by terrain such as river valleys or other special factors [32],
the space is narrow, and the distance is limited, expressways should use the subgrade
form. The subgrade height should also be lowered, and the bridge height should be raised
as much as possible to reduce or even avoid sand disasters. Future work can focus on
content such as the threshold distance of the downwind direction where the subgrade form
should be adopted, environmental effects of wind-blown sand of bridges with different
sizes (different heights and widths), and the threshold height of the bridge, which can
avoid sand disasters.

6. Conclusions and Implications

At a height below 8.3 cm near the surface, the variation ranges of the wind speed of
the bridge and its upwind and downwind directions were lower than those of the subgrade.
However, the required distance to recover the wind speed downwind of the bridge was
greater than that of the subgrade, resulting in the sand transport rate of the bridge being
lower than that of the subgrade. Under the experimental wind speeds of the five groups,
the average sand fluxes of the bridge was 86.27% of that of the subgrade. Above 8.3 cm,
the wind speed difference between the bridge and subgrade became smaller, the variation
trend of the wind speed was the same, and the variation range decreased.

The variation in the wind field of the subgrade was more drastic than that of the
bridge, but the required distance to recover the wind field downwind of the subgrade
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was smaller than that of the bridge. In the wind speed-weakening area upwind, the wind
speed-weakening range and intensity of the bridge were smaller than those of the subgrade.
In the wind-speed-increasing area on the top of the model, the wind-speed-increasing
range and intensity of the bridge were smaller than those of the subgrade. In the wind-
speed-weakening area downwind, the wind-speed-weakening range of the bridge was
greater than that of the subgrade, and the wind-speed-weakening intensity was smaller
than that of the subgrade. From the perspective of prevention and control of wind-blown
sand hazards, the wind-blown sand environment of the bridge was generally better than
that of the subgrade. Therefore, expressways through seriously blown sand areas should
prioritize the use of the bridge form.
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