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Preface

This volume of Nutrients includes twelve independent contributions that focus on — Recent
advances in Omega-3: health benefits, sources, products and bioavailability. As a group of
molecules, the omega-3 long-chain (>C,) polyunsaturated fatty acids (LC-PUFA, also termed
LC omega-3), are required for or essential for optimal human and animal health, yet modern
western and other diets are often lacking in these key ingredients.

The papers in this volume were presented at the joint meeting of the Australasian Section
of the American Oil Chemists Society and the Omega-3 Centre held November 7, 2013 in
Newcastle, New South Wales, Australia. A full summary of all oral papers and posters
presented at this meeting is available elsewhere [1]. The volume is provided in four sections:
1. A summary paper of the Newcastle meeting and brief summaries of the papers in this
volume, 2. Health benefits and bioavailability, four papers; 3. Sources of long-chain omega-3
oils, five papers; 4. Products containing long-chain omega-3 oils, two papers. Three papers in
the volume provide reviews of: 1. The Omega-3 Index (O3I), a recently developed measure of
red blood cell EPA+DHA; 2. The role of LC omega-3 oils in child cognition; 3. New land
plant sources of DHA as a timely solution to the issue of fish oil sustainability.

We anticipate that this selection of papers will provide readers with useful updates on this
range of specific and cutting edge research on aspects of the long-chain omega-3. We very
much appreciate the time and effort put forth by the authors of these manuscripts, by those
who reviewed the manuscripts prior to initial publication in the journal Nutrients, by the
sterling editorial staff at MDPI and by the Editors in Chief - Prof. Peter Howe and Jon
Buckley - and in addition Kevin Krail, Executive Director Omega-3 Centre, who have all
made this volume possible.

Peter D. Nichols and Matthew R. Miller
Guest Editors

References

1. Murphy, K.; Howe, P. Proceedings of the 2013 meeting of the Australasian Section of the
American Oils Chemists Society (AOCS). Nutrients 2013, 5, 5065-5096.



1. Overview

Recent Advances in Omega-3: Health Benefits, Sources,
Products and Bioavailability

Peter D. Nichols, Alexandra McManus, Kevin Krail, Andrew J. Sinclair, Matt Miller

Abstract: The joint symposium of The Omega-3 Centre and the Australasian Section American Oil
Chemists Society; Recent Advances in Omega-3: Health Benefits, Sources, Products and Bioavailability,
was held November 7, 2013 in Newcastle, NSW, Australia. Over 115 attendees received new
information on a range of health benefits, aquaculture as a sustainable source of supply, and current
and potential new and novel sources of these essential omega-3 long-chain (LC, >C,) polyunsaturated
fatty acid nutrients (also termed LC omega-3). The theme of “Food versus Fuel” was an inspired way
to present a vast array of emerging and ground breaking Omega-3 research that has application across
many disciplines. Eleven papers submitted following from the Omega-3 Symposium are published in
this Special Issue volume, with topics covered including: an update on the use of the Omega-3 Index
(O31), the effects of dosage and concurrent intake of vitamins/minerals on omega-3 incorporation into
red blood cells, the possible use of the O31 as a measure of risk for adiposity, the need for and progress
with new land plant sources of docosahexaenoic acid (DHA, 22:6w3), the current status of farmed
Australian and New Zealand fish, and also supplements, in terms of their LC omega-3 and persistent
organic pollutants (POP) content, progress with cheap carbon sources in the culture of DHA-producing
single cell organisms, a detailed examination of the lipids of the New Zealand Greenshell mussel, and
a pilot investigation of the purification of New Zealand hoki liver oil by short path distillation. The
selection of papers in this Special Issue collectively highlights a range of forward looking and also new
and including positive scientific outcomes occurring in the omega-3 field.

Reprinted from Nutrients. Cite as: Nichols, P.D.; McManus, A.; Krail, K.; Sinclair, A.J.; Miller, M.
Recent Advances in Omega-3: Health Benefits, Sources, Products and Bioavailability. Nutrients 2014,
6, 3727-3733.

1. Preface

The one day symposium; Recent Advances in Omega-3: Health Benefits, Sources, Products and
Bioavailability, was co-convened by The Omega-3 Centre (O3C) and the Australasian Section of the
American Oil Chemists Society (AAOCS) in Newcastle, Australia on November 7, 2013. The
symposium was part of a three day Conference where over 150 scientists, researchers and industry
representatives gathered for talks and discussions on a variety of lipid related topics. The Omega-3
Symposium was a full day devoted to presentations on recent advances in omega-3 research and was
attended by over 115 scientists and industry representatives, with several additional presentations
occurring the following day of the conference [1]. The Omega-3 Centre operates as a specialty




healthcare association and center of excellence for omega-3 fatty acids for the Australia and New
Zealand region. The primary focus of the O3C is to communicate the “good science” and health
benefits of long-chain (>C,y) omega-3 (LC omega-3) oils, and to help translate the science and
nutritional health benefits of omega-3 oils to key opinion leaders, including scientists, healthcare
practitioners, the media and the public at large.

2. Summary of Papers in this Special Issue

Professor Clemens von Shacky from the Preventive Cardiology Unit at the Ludwig Maximilians-
University of Munich opened the Omega-3 Symposium with a keynote address on the Omega-3 Index
(O31) as a biomarker of heart health [2]. He indicated that recent large trials with eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA) in the cardiovascular field did not demonstrate a
beneficial effect in terms of reductions of clinical endpoints such as total mortality, sudden cardiac
arrest or other major adverse cardiac events, and that pertinent guidelines do not currently uniformly
recommend EPA + DHA for cardiac patients. His paper—Omega-3 Index and cardiovascular health—
therefore emphasized the importance of limiting intervention trials to those people identified with low
initial omega-3 status, use of the HS-Omega-3 Index® methodology, and also ensuring that omega-3
supplements are consumed with a meal, as bioavailability data indicated that omega-3 uptake was
dependent on concomitant fat intake.

Associate Professor Andrew Pipingas gave a presentation on neurocognitive benefits of
omega-3 in healthy adults. In his co-authored paper—Randomized controlled trial examining the
effects of fish oil and multivitamin supplementation on the incorporation of omega-3 and omega-6
fatty acids into red blood cells—healthy adult humans were randomized to receive 6 g of fish oil (1.8 g
of EPA + DHA), 6 g of fish oil plus a multivitamin, 3 g of fish oil plus a multivitamin or a placebo
daily for 16 weeks [3]. Treatment with 6 g of fish oil, with or without a daily multivitamin, led to
higher red blood cell EPA composition at endpoint, with DHA composition unchanged. The O31 was
only higher in the group receiving the combination of 6 g of fish oil and multivitamin. All treatments
increased EPA incorporation in females while, in males, EPA was only significantly increased by the 6
g fish oil plus multivitamin combination. Considerable individual variability occurred in the red cell
incorporation of EPA and DHA at endpoint. Gender contributed to a large proportion of this variability
with females generally showing higher omega-3 composition at endpoint. It was concluded that the
incorporation of LC omega-3 into red blood cells is influenced by dosage, the concurrent intake of
vitamin/minerals and gender.

Professor Peter Howe presented data linking the O3l to prediction of risk for coronary heart
disease [4]. As the index expresses circulating EPA + DHA as a percentage of total erythrocyte fatty
acids, Professor Howe posited that this could be a novel way to measure not only the risk of heart
disease, but other common health conditions such as cognitive decline and mental health disorders.
The main focus of this paper was the possible use of the O31 as a measure of risk for adiposity.
A review of research into adiposity, body composition and erythrocyte EPA and DHA in both men and
women found that the low levels of DHA in women were predictive of adiposity risk. There was no
associated risk with EPA levels in men. These findings indicate that the O3I could be a quick and cost
effective clinical marker for assisting the risk of adiposity in women. Furthermore, this study supports



the trial of adequate intakes of DHA as a complimentary therapy for the management and treatment of
overweight individuals and obesity.

The review paper by Dr. Welma Stonehouse from CSIRO covered the topic that LC omega-3
derived from marine sources may play an important role in cognitive performance throughout all life
stages [5]. DHA, the dominant omega-3 in the brain, is a major component of neuronal cell
membranes and affects various neurological pathways and processess. Despite its critical role in brain
function, human’s capacity to synthesize DHA de novo is limited and its consumption through the diet
is therefore essential. However, many individuls do not or rarely consume seafood. Dr. Stonehouse
critically evaluated evidence from randomised controlled trials (RCT) in healthy school-aged children,
younger and older adults to determine whether consumption of LC omega-3 PUFA improves cognitive
performance and to make recommendations for future research. Study design limitations in many
RCTs hamper firm conclusions. The measurement of a uniform biomarker, e.g., %DHA in
erythrocytes, is essential to establish baseline DHA-status, to determine targets for cognitive
performance and to facilitate dosage recommendations. It was recommended that future studies be at
least 16 weeks in duration, account for potential interaction effects of gender, age and apolipoprotein E
genotype and include measures of speed of cognitive performance.

Several presentations at the symposium covered new sources of LC omega-3 oil, including
discussing exciting developments with new land plant sources of long-chain omega-3 oils. A review
paper by Dr. Soressa Kitessa and colleagues from CSIRO examined use of oils containing the shorter-
chain omega-3, stearidonic acid (SDA, 18:4®3), in a range of livestock and fish feeding trials with
lamb, chicken, Atlantic salmon and barramundi [6]. Interest in the use of SDA has been enhanced by
the development of SDA-containing genetically modified soyabean oil which is planned to soon enter
the US market. However, neither oils from traditional oilseeds such as linseed, nor the new SDA
soyabean oil have demonstrated efficient conversion to DHA in the animals’ trialed or in humans.
It is this knowledge that has driven the quest by a number of research groups to produce oil
seeds containing LC omega-3, in particular DHA. Previous attempts to produce DHA in oilseeds
only achieved low levels of DHA and also were high in omega-6 PUFA and contained a high
omega-6/omega-3 ratio. Dr. Surinder Singh in his conference presentation [1] and Dr. Kitessa and
colleagues [6] described a recent breakthrough that has demonstrated the ability to produce land
plant-based oil particularly enriched in DHA, with low omega-6 PUFA levels, and an omega-3 to
omega-6 ratio close to that occurring in marine oils/seafood [7]. Therefore, the future availability of
land plant oils containing both EPA and DHA can supplement the demand for marine sources of LC
omega-3 oils in a range of areas. This in turn will enhance the sustainability of global fisheries, enable
the consumer to meet the recommended dietary targets for these oils, assist in aquaculture nutrition
and the development of an innovative food and feed industry, and ultimately deliver improved health
of consumers.

The paper by Dr. Peter Mansour and colleagues from CSIRO—Characterization of oilseed lipids
from DHA-producing Camelina sativa: A new transformed land plant containing long-chain omega-3
oils—provided detailed lipid class and fatty acid profiles for a new land plant derived oil [8].
Triacylglycerols (TAG) were the major lipid class in hexane extracts. Chloroform-methanol (CM)
extraction recovered further lipid comprising glycolipids and phospholipids and residual TAG. The
main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA



was: 7% (of total fatty acids) in the TAG-rich hexane extract and 4% in the polar lipid-rich CM
extract. The relative level of ALA in DHA-containing Camelina seed was higher than the control.
Sterols and fatty alcohols were characterized, with iso-branched odd-chain fatty alcohols, also present.

Several members from the Centre for Chemistry and Biotechnology lead by Professor Colin Barrow
at Deakin University covered aspects of single cell oil production. A paper by Thyagarajan and
colleagues examined—Evaluation of bread crumbs as a potential carbon source for the growth of
Thraustochytrid species for oil and omega-3 production [9]. The utilization of food waste by
microorganisms to produce omega-3 fatty acids or biofuel is a low cost method with environmental
benefits. It was shown that the marine microorganisms Thraustochytrium sp. AH-2 and
Schizochytrium sp. SR21 were able to use breadcrumbs as an alternate carbon source for the
production of lipids under static fermentation conditions. Liquid fermentation of Thraustochytrium sp.
AH-2 with glucose produced 4.3 g/L of biomass and 44 mg/g of saturated fatty acids after seven days.
Static fermentation of both species with breadcrumbs resulted in 2.5 g/LL and 4.7 g/L of biomass, and
42 mg/g and 34 mg/g of saturated fatty acids, respectively. Scanning electron microscopic studies
confirmed the growth of both strains on breadcrumbs. Attenuated total reflection Fourier transform
infrared spectroscopy findings for Schizochytrium sp. SR21 were consistent with the utilization of
breadcrumbs for the production of unsaturated lipids, albeit at relatively low levels. The total lipid
yield for static fermentation with bread crumbs was marginally lower than for fermentation with
glucose media, while the yield of unsaturated fatty acids was considerably lower, indicating that static
fermentation may be more appropriate for the production of biodiesel than for the production of
omega-3 rich oils in these strains.

Dr. Matthew Miller and colleagues from Plant and Food, New Zealand described the distribution of
lipids in Greenshell™ Mussel (GSM) (Perna canaliculus) [10]. He indicated that GSM are a
sustainable source of omega-3 LC-PUFA, as they require no dietary inputs, gaining all of their nutrient
requirements by filter-feeding microorganisms from sea water. GSM oil is valued considerably higher
than fish oils, and has been reported to have important health benefits, for example, anti-inflammatory
activity. It contains several minor lipid components—such as non-methylene interrupted FA,
plasmalogens and phytosterols—that are not present in most fish oil products. The lipid content of the
female GSM was shown to be significantly greater than that of the male, and the major lipid class in
both genders was phospholipid. Female GSM contained more LC omega-3, and stored a greater
proportion of total lipid in the gonad and mantle. The higher lipid content in the female was likely
related to gamete production. The mantle and digestive gland were other important sites for lipid
storage and/or function/production.

Seafood continues to be one of the major sources of LC omega-3 oils. Following an update by
Professor Giovanni Turchini on the use of omega-3 in aquaculture [1], Dr. Peter Nichols and
co-authors provided a presentation: Readily available sources of long-chain omega-3 oils: Is farmed
Australian seafood a better source of the good oil than wild-caught seafood? [11]. The two major
farmed Australian finfish species, Atlantic salmon and barramundi, have higher oil and LC omega-3
content than the same or other species from the wild, and remain an excellent means to achieve
substantial intake of LC omega-3 oils. Notwithstanding, LC omega-3 oil content has decreased in these
two farmed species, due largely to the replacing of dietary fish oil with poultry oil in the feed. For
Atlantic salmon, LC omega-3 content decreased ~30%—-50% between 2002 and 2013, and the omega-



3/omega-6 ratio also decreased (>5:1 to <I:1). The development and future application of oilseeds
containing LC omega-3 oils and their incorporation in aquafeeds would allow these health-benefitting
oils to be maximized in farmed Australian seafood. As Australian consumers increasingly seek their LC
omega-3 from supplements, a range of supplement products were also compared; all products met their
label specifications, with considerable variation occurring in relative levels of EPA and DHA and the
cost to consumers for consumption of 500 mg of EPA + DHA per day.

Adam Ismail from the Global Organization for EPA and DHA Omega-3 (GOED) in a plenary
lecture at the Omega-3 Session presented a challenge to the fish oil industry around demand and
supply [1]. He highlighted the Omega-3 ingredient marketplace as a growing US $25 billion industry,
with an increase in krill and new pharmaceutical omega-3 products predicted to gain significant market
penetration which will put even further demand pressure on resources.

Building on the theme of Adam Ismail, increasing the quality of products derived from smaller
fishers will also help with the supply issue; work presented by the collaboration of Dr. Alex Oliveria
(Kodiak, AK, USA) and Dr. Matt Miller (Nelson, New Zealand) used short path distillation as a
method to improve the quality of the Alaskan pollock (Gadus chalcogrammus) and New Zealand’s
hoki (Macruronus novaezelandiae) oils [12]. This paper—Purification of Alaskan walleye pollock
(Gadus chalcogrammus) and New Zealand hoki (Macruronus novaezelandiae) liver oil using short
path distillation—demonstrated that this technology could significantly enhance oil quality parameters
(free fatty acids, peroxide and para-anisidine values), and that purified oils obtained met the GOED
standard for edible fish oils.

The paper by Susan Bengtson Nash, University of Griffiths, and colleagues addressed:
The nutritional-toxicological conflict associated with fish oil versus Antarctic krill oil dietary
supplements [13]. Fish oil supplements and complementary medicines play a role of increasing
importance in meeting daily requirements of essential nutrients such as LC omega-3 and Vitamin D.
A new product category, derived from Antarctic krill, has gained an increasing share of the omega-3
nutriceutical market. Antarctic krill oil is marketed as demonstrating a greater ease of absorption due
to higher phospholipid content, as being sourced through sustainable fisheries and being free of toxins
and pollutants. However, limited data is available on the latter. Persistent Organic Pollutants (POP)
encompasses a range of toxic, man-made contaminants that accumulate in marine ecosystems and in
the lipid reserves of organisms. The study provides the first quantitative comparison of the nutritional
(EPA and DHA) versus the toxicological profiles of Antarctic krill oil products relative to other fish oil
categories on the Australian market. Krill oil products adhered closely to EPA and DHA manufacturer
specifications and contained intermediate levels of POP when compared to other products. Monitoring
of the pollutant content of fish and krill oil products will become increasingly important with
expanding regulatory specifications for chemical thresholds.

The selection of papers in this Special Issue highlights a range of new and including positive
scientific outcomes occurring in the omega-3 field across the areas of health benefits, sources, products
and bioavailability. Future research in the Australasia region will continue in these areas and will assist
in further increasing our understanding of the key health-benefitting long-chain omega-3 oils.
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2. Health Benefits and Bioavailability

Omega-3 Index and Cardiovascular Health

Clemens von Schacky

Abstract: Recent large trials with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in
the cardiovascular field did not demonstrate a beneficial effect in terms of reductions of clinical
endpoints like total mortality, sudden cardiac arrest or other major adverse cardiac events. Pertinent
guidelines do not uniformly recommend EPA + DHA for cardiac patients. In contrast, in epidemiologic
findings, higher blood levels of EPA + DHA were consistently associated with a lower risk for the
endpoints mentioned. Because of low biological and analytical variability, a standardized analytical
procedure, a large database and for other reasons, blood levels of EPA + DHA are frequently assessed
in erythrocytes, using the HS-Omega-3 Index® methodology. A low Omega-3 Index fulfills the current
criteria for a novel cardiovascular risk factor. Neutral results of intervention trials can be explained by
issues of bioavailability and trial design that surfaced after the trials were initiated. In the future,
incorporating the Omega-3 Index into trial designs by recruiting participants with a low Omega-3
Index and treating them within a pre-specified target range (e.g., 8%—11%), will make more efficient
trials possible and provide clearer answers to the questions asked than previously possible.

Reprinted from Nutrients. Cite as: Von Schacky, C. Omega-3 Index and Cardiovascular Health.
Nutrients 2014, 6, 799-814.

1. Introduction

Fish, marine oils, and their concentrates all serve as sources of the two marine omega-3 fatty
acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as do some products from algae.
To demonstrate an effect of EPA + DHA on heart health, a number of randomized, controlled
intervention studies with clinical endpoints like overall mortality or a combination of adverse cardiac
events were conducted in populations with elevated cardiovascular risk. One early intervention study
with oily fish, rich in EPA + DHA, and some early studies with fish oil or fish oil concentrate or even
purified EPA at doses ranging between 0.9 and 1.8 g/day indeed demonstrated effects in terms of
fewer sudden cardiac deaths, fatal or non-fatal myocardial infarctions, or a combination of adverse
cardiac events [1-6]. More recent trials did not demonstrate such effects [7—12]. Recent meta-analyses
found no significant benefits on total mortality, cardiovascular mortality, and other adverse cardiac or
cardiovascular events [13—18]. This is in contrast to findings in epidemiologic studies, where intake of
EPA + DHA had been found to correlate generally with an up to 50% lower incidence of adverse
cardiac events [18,19], and in even sharper contrast to epidemiologic studies based on levels of EPA +
DHA, demonstrating e.g., a 10-fold lower incidence of sudden cardiac death associated with high
levels of the fatty acids, as compared to low levels [20,21]. This seemingly contradictory evidence has
led the American Heart Association to recommend “omega-3 fatty acids from fish or fish oil capsules




(1 g/day) for cardiovascular disease risk reduction” for secondary prevention, whereas the European
Society for Cardiology recommends “Fish at least twice a week, one of which to be oily fish”, but no
supplements for cardiovascular prevention [22,23]. The more recent guidelines on treating patients
with stable ischemic heart disease or patients after a myocardial infarction, targeting similar patient
populations, do not recommend EPA + DHA [24,25]. At least in Europe, cardiologists do not routinely
use EPA + DHA to reduce cardiovascular risk.

A similar picture emerges for atrial fibrillation: In epidemiologic studies, consumption of EPA +
DHA or higher levels of EPA + DHA were associated with lower risk for developing atrial fibrillation,
while intervention studies found no effect [26-28]. Pertinent guidelines do not mention EPA + DHA [29].
A similar picture also emerges for severe ventricular rhythm disturbances [20,21,30,31].

Why is it that trial results are at odds with results from epidemiology? What needs to be done to
better translate the epidemiologic findings into trial results? The current review will try to shed some
light on this issue, with a special consideration of the Omega-3 Index.

2. The Omega-3 Index as a Cardiovascular Risk Factor

At least some nutritional surveys do not provide valid data [32]. This may explain, why the relation
of EPA + DHA in the diet to clinical events has been found to be looser than the relation of levels of
EPA + DHA measured in blood to clinical events (e.g., [20,33]). A detailed discussion of the pros and
cons of the various fatty acid compartments in which levels of omega-3 fatty acids (whole blood,
whole plasma, plasma phospholipids, and others) should be measured is outside the scope of this
review and can be found elsewhere [34]. The following points argue for the use of erythrocytes:
erythrocyte fatty acid composition has a low biological variability, erythrocyte fat consists almost
exclusively of phospholipids, erythrocyte fatty acid composition reflects tissue fatty acid composition,
pre-analytical stability, and other points [34-38]. In 2004, EPA + DHA in erythrocyte fatty acids were
defined as the Omega-3 Index and suggested as a risk factor for sudden cardiac death [39]. Integral
to the definition was a specific and standardized analytical procedure, conforming the quality
management routinely implemented in the field of clinical chemistry [39] In fatty acid analysis,
methods have a large impact on results: when one sample was sent to five different laboratories offering
determination of an Omega-3 Index, results differed by a factor of 3.5 [34]. While results may be
internally valid in one laboratory, a difference by a factor of 3.5 makes it impossible to compare results
among laboratories. Therefore, the Omega-3 Index was renamed HS-Omega-3 Index”. In contrast, the
laboratories adhering to the HS-Omega-3 Index methodology perform regular proficiency testing, as
mandated in routine Clinical Chemistry labs [34]. So far, the HS-Omega-3 Index is the only analytical
procedure used in several laboratories. A standardized analytical procedure is a prerequisite to generate
the data base necessary to transport a laboratory parameter from research into clinical routine.
Moreover, standardization of the analytical procedure is the first important criterion for establishing a
new biomarker for cardiovascular risk set forth by the American Heart Association and the US
Preventive Services Task Force [40,41].

As exemplified by Table 1, the HS-Omega-3 Index has been measured in many populations. Of
note, a lower HS-Omega-3 Index was always associated with a poorer clinical condition (Table 1).



Table 1. Mean HS-Omega-3 Index values in various populations, Mean (+standard
deviation (SD)). Please note that in every population studied, a lower value was found to
be associated with a worse condition than a higher value. References are given, if not,

unpublished, » = number of individuals measured.

Population HS-Omega-3 Index
Western countries (high incidence of coronary heart disease)
Germany
Unselected Individuals (» = 5000) 7.15 (£2.19)%
Patients with atherosclerosis [42], (n = 190) 5.94 (x1.41)%
Patients with hyperlipidemia [43], (n =47) 7.00 (£1.90)%
Pregnant women, week 24 (n = 103) 7.66 (£1.83)%
Patients with congestive heart failure (» = 895) 3.47 (x1.20)%
Patients with major depression [44], (n = 90) 3.93 (£1.50)%
Spain
Individuals with high risk for, but without 710%
cardiovascular disease [45], (n = 198) (SD not reported)
Norway
Patients with myocardial infarction [46] (SD not reported)
With ventricular fibrillation (n = 10) 4.88%
Without ventricular fibrillation (r = 185) 6.08%
Europe
Unselected data from routine determinations, # = 10,000 6.96 (+2.15)%
USA
Healthy in Kansas City [47], (n = 163) 4.90 (£2.10)%
Framingham-Offspring [48], (n = 3196) 5.60 (+1.70)%
Patients with stable coronary heart disease [49], 4.60%
(n=956) (SD not reported) '
Patients with major depression [50], (n = 118) 2.90 (£1.50)%
Adolescents with major depression [51], 3.46%

(n=150) (SD not reported)
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Table 1. Cont.

Patients with severe obstructive sleep apnea [52],

(n = 52) (SD not reported) 4.00%
Saudi Arabia
Individuals, most with diabetes (n = 69) 3.47 (1.20) %
Asian countries (low incidence of coronary heart disease)
Korea

Healthy controls [53], (» = 50) (SD not reported) 11.81%
Healthy control [54], (n = 40) 10.55 (£0.48)%

Patients with myocardial infarction [53], 9.57%

(n=50), (SD not reported)

Patients with hemorrhagic brain infarction [54], (n = 40) 8.55 (+0.41)%
Patients with ischemic brain infarction [54], (n = 40) 8.19 (+0.64)%

Hemodialysis-patients without calcification
on plain chest radiograph [55], (n=11)
Hemodialysis-patients with calcification
on plain chest radiograph [55], (n = 20)

9.82 (+2.37)%

9.23 (+2.34)%

Peritoneal Dialysis Patients [56], (n = 14) 12.83 (£3.30)%
Patients with a kidney transplant [57], (n = 49) 9.70 (x1.85)%
Japan
Unselected men (7 = 262), (SD not reported) 9.58%

All levels of fatty acids are determined by the balance of substance entering the body and those
leaving the body. Neither a recent meal, even if rich in EPA + DHA, nor severe cardiac events altered
the HS-Omega-3 Index [38,58—61]. However, while long-term intake of EPA + DHA, e.g., as assessed
with food questionnaires, was the main predictor of the HS-Omega-3 Index, long-term intake
explained only 12%-25% of its variability [46,62,63]. A hereditary component of 24% exists [64].
A number of other factors correlated positively (+) or negatively (—), like age (+), body mass index (—),
socioeconomic status (+), smoking (—), but no other conventional cardiac risk factors [47,64—71].
More factors determining the level of the HS-Omega-3 Index, especially regarding efflux remain to be
defined. Therefore, it is impossible to predict the HS-Omega-3 Index in an individual, as it is
impossible to predict the increase in the HS-Omega-3 Index in an individual in response to a given
dose of EPA + DHA [42,46,62,63]. In Table 2, current evidence is presented on the relation of the HS-
Omega-3 Index to cardiovascular events.

This evidence is supported by measurements of EPA + DHA in other fatty acid compartments,
as discussed in more detail elsewhere [72,73]. Within the framework of “Heart and Soul” and
“Triumph”, i1t was investigated whether determination of the HS-Omega-3 Index added to the
information obtained by assessing cardiovascular risk with a conventional scoring system, like the
Framingham or GRACE scores for predicting fatal events. The HS-Omega-3 Index provided
additional information, as demonstrated by larger areas under the curves in various c-statistics for fatal
[74] and non-fatal events [53,75]. Taken together, the HS-Omega-3 Index predicts risk, appears largely
independent of conventional risk factors, and adds to the information obtained by conventional risk
scoring, thus fulfilling the second criterion for establishing a new biomarker for cardiovascular risk set
forth by the American Heart Association and the US Preventive Services Task Force [40,41].
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Moreover, the HS-Omega-3 Index has made it possible to reclassify individuals from intermediate
cardiovascular risk into the respective high risk and low risk strata [74,75], the third criterion for
establishing a new biomarker for cardiovascular risk [40,41].

Increasing the HS-Omega-3 Index by increased intake of EPA + DHA in randomized controlled
trials improved a number of surrogate parameters for cardiovascular risk: heart rate was reduced, heart
rate variability was increased, blood pressure was reduced, platelet reactivity was reduced, triglycerides
were reduced, large buoyant low-density lipoprotein (LDL)-particles were increased and small dense
LDL-particles were reduced, large buoyant high-density lipoproteins (HDL)2 were increased, very
low-density lipoprotein (VLDL1) + 2 was reduced, pro-inflammatory cytokines (e.g., tumor necrosis
factor alpha, interleukin-1p, interleukins-6,8,10 and monocyte chemoattractant protein-1) were
reduced, anti-inflammatory oxylipins were increased [43,81-94]. Importantly, in a two-year randomized
double-blind angiographic intervention trial, increased erythrocyte EPA + DHA reduced progression
and increased regression of coronary lesions, an intermediate parameter [95]. Taken together, increasing
the HS-Omega-3 Index improved surrogate and intermediate parameters for cardiovascular events.
A large intervention trial with clinical endpoints based on the HS-Omega-3 Index remains to be
conducted. Therefore, the fourth criterion, proof of therapeutic consequence of determining the
HS-Omega-3 Index, is only partially fulfilled [40,41].

3. Discussion of Neutral Results of Large Intervention Trials

Why is it that a low HS-Omega-3 Index can be a cardiovascular risk factor, and yet the results of
the large trials testing EPA + DHA on clinical endpoints were neutral?

3.1. Bioavailability Issues

According to personal information from the respective first authors, participants of recent large
intervention trials were advised to take their supplements, frequently an encapsulated EPA + DHA
ethyl-ester with breakfast—in many countries a low-fat meal [7—11]. As discussed in more detail in a
recent review, bioavailability of EPA + DHA depends on the chemical form in which they are bound
(phospholipids > recombined triglycerides > triglycerides > free fatty acids > ethyl-esters) [96,97], on
matrix effects (capsule ingestion with concomitant intake of food, fat content in food) or galenic form
(i.e., microencapsulation, emulsification). The chemical binding form impacts on bioavailability
roughly with a factor of two, whereas matrix effects can impact bioavailability up to a factor of 13, and
the galenic form up to a factor of 21 [96-99]. When the large trials mentioned here were designed, the
bioavailability issues just mentioned were unknown. Thus, involuntarily, the combination used in
many of the large trials—An unemulsified ethyl-ester or triglyceride with a low fat meal—guaranteed
a very low bioavailability of EPA + DHA.

3.2. Issues in Trial Design

In all large intervention trials conducted so far, study participants were recruited based on clinical
conditions, but irrespective of their baseline omega-3 fatty acid status [1-12]. In all populations
studied so far, the HS-Omega-3 Index had a statistically normal distribution (Table 1). Thus, the
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proportion of the study population with high levels was not prone to the effects of EPA + DHA, if any.
In order to recruit a study population, in which an effect of EPA + DHA can be demonstrated,
recruiting study participants with a low HS-Omega-3 Index is a logical choice.

In all large intervention trials conducted so far, study participants were exposed to a trial-specific,
but fixed dose of EPA + DHA or placebo [1-12]. The inter-individual variability in response to a fixed
dose of EPA + DHA has been found to be large, i.e., vary up to a factor of 13 [42,61]. This fact alone
suggests individualizing the dose given in a trial, in order to reach a predefined target range of the
HS-Omega-3 Index, e.g., 8%—11%. The statistically normal distribution of the baseline HS-Omega-3
Index further complicates this problem: A large overlap of omega-3 levels in the EPA + DHA group and
placebo or control group can be expected, and has been seen in at least one large trial (Miihlhéusler, B.,
personal communication) [100]. With levels of omega-3 fatty acids not differing between intervention
and placebo or control groups, a difference in study outcome cannot be expected, even if the condition
studied would be susceptible to treatment with EPA + DHA. It is worth noting that when a neutral
intervention trial was analyzed in a cross-sectional way, EPA + DHA levels directly related to study
outcome and less to treatment allocation [101].

Conversely, if a trial reports a positive result, it is likely to have been conducted in a study
population with low baseline levels of EPA and DHA, like congestive heart failure: a positive result of
a large trial was reported [6], and we found a low mean HS-Omega-3 Index in patients with congestive
heart failure (unpublished data, Table 1). A similar case can be made for major depression (Table 1,
references [44,50,51,84]).

In the future, recruiting study participants with a low baseline HS-Omega-3 Index and treating them
within a predefined target range will allow clearer trial results to be a distinct possibility. Dose
adjustments will need to be performed in the placebo group. Since a larger treatment effect can be
assumed in the study size estimation, it can be expected that study sizes will be smaller and thus
studies less expensive. Clearly, these thoughts are not restricted to trials with patients with cardiovascular
risk, atrial fibrillation or ventricular arrhythmia, but can be extended to all areas of omega-3 fatty
acid research. This will facilitate scientific progress and lead to a faster recognition of the effects of
EPA + DHA.

4. Conclusions

In an inconsistent manner, EPA and DHA are either recommended or not included in guidelines of
cardiac scientific societies. The use of EPA and DHA is not supported by results of recent intervention
trials or their meta-analyses. However, epidemiologic data based on assessments of diet and, even
more so, data based on levels of EPA + DHA measured in humans, clearly demonstrate that EPA +
DHA are associated with a low risk for total mortality, sudden cardiac arrest, and fatal and non-fatal
myocardial infarctions. For a number of reasons, like a standardized analytical procedure and a large
data base, levels of EPA + DHA are best assessed with the HS-Omega-3 Index. According to current
criteria of the American Heart Association and others, the HS-Omega-3 Index is a novel
cardiovascular risk factor. Moreover, the HS-Omega-3 Index has led to a fresh look at the field of
omega-3 fatty acids and has made it possible to identify issues of bioavailability and study design,
explaining at least in part the neutral results of previous intervention trials. In the future, more efficient
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intervention studies can be conducted based on the HS-Omega-3 Index, thus providing a clearer
picture of the effects of EPA + DHA.
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Relationship between Erythrocyte Omega-3 Content and
Obesity Is Gender Dependent

Peter R. C. Howe, Jonathan D. Buckley, Karen J. Murphy, Tahna Pettman,
Catherine Milte and Alison M. Coates

Abstract: Epidemiological evidence of an inverse association between consumption of long-chain
omega-3 polyunsaturated fatty acids (LC n-3 PUFA) and obesity has been conflicting, even though
studies in animal models of obesity and limited human trials suggest that LC n-3 PUFA consumption
may contribute to weight loss. We used baseline data from a convenience sample of 476 adults (291
women, 185 men) participating in clinical trials at our Centre to explore relationships between
erythrocyte levels of LC n-3 PUFA (a reliable indicator of habitual intake) and measures of adiposity,
viz. body mass index (BMI), waist circumference (WC) and body fat (BF) assessed by dual-energy
X-ray absorptiometry. Means + SD of assessments were BMI: 34 + 7 and 31 = 5 kg/m?; WC: 105 + 16
and 110 + 13 cm; BF: 48 = 5 and 35% =+ 6% in women and men respectively. Erythrocyte levels of
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were similar in men and women while
docosapentaenoic acid (DPA) was higher and EPA + DHA (Omega-3 Index) slightly lower in men
than in women. Both DHA and EPA + DHA correlated inversely with BMI, WC and BF in women
while DPA correlated inversely with BF in men. Quartile distributions and curvilinear regression of the
Omega-3 Index versus BMI revealed a steep rise of BMI in the lower range of the Omega-3 Index in
women, but no association in men. Thus the results highlight important gender differences in
relationships of specific LC n-3 PUFA in erythrocytes to markers of adiposity. If these reflect causal
relationships between LC »n-3 PUFA consumption and risk of obesity, gender specific targeted
interventions should be considered.

Reprinted from Nutrients. Cite as: Howe, P.R.C.; Buckley, J.D.; Murphy, K.J.; Pettman, T.; Milte, C.;
Coates, A.M. Relationship between Erythrocyte Omega-3 Content and Obesity Is Gender Dependent.
Nutrients 2014, 6, 1850-1860.

1. Introduction

Polyunsaturated fatty acids (PUFA) are known to beneficially influence fat metabolism and there
are numerous studies in animal models of obesity showing that consumption of PUFA, particularly the
long-chain omega-3 (LC »-3) PUFA from marine sources, can increase fat loss and counteract
adiposity [1,2]. This has been supported by a limited number of human trials of LC n-3 PUFA
supplementation [1-3], although epidemiological evidence of an inverse association between
consumption of LC »n-3 PUFA and obesity has been conflicting [4,5].

In the Health Professionals Follow-Up Study, men with high fish consumption were less likely to
be overweight than those with low fish consumption and the proportion of overweight volunteers was
inversely related to LC n-3 PUFA intake [4]. The Nurses’ Health Study, on the other hand, found that
higher intakes of fish and LCn-3 PUFA were associated with a higher prevalence of obesity [5]. While
this unexpected effect of fish intake could be accounted for by higher energy intakes, this was not the
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case for LC n-3 PUFA intake. However, both these large studies estimated dietary intakes from
semi-quantitative food frequency questionnaires which are limited in their ability to accurately assess
intakes of different types of fat, particularly LC n-3 PUFA.

An alternative approach to assess relationships between LC #-3 PUFA consumption and obesity is
to evaluate a surrogate biomarker of LC n-3 PUFA intake. Several studies have measured LC »n-3
PUFA as a percentage of total fatty acids in plasma phospholipids with conflicting outcomes. Three
early studies conducted in populations of varying ethnicity in Canada found that plasma phospholipid
LC n-3 PUFA correlated positively with waist circumference [6—8] whereas more recent studies have
reported inverse correlations with measures of adiposity [9—11].

Fatty acid levels in plasma phospholipids reflect consumption of dietary fatty acids over a relatively
short period (weeks), whereas erythrocyte levels reflect intake over several months [12,13]. Hence the
latter is regarded as the most reliable surrogate marker of habitual dietary intake of LC n-3 PUFA.
Docosahexaenoic acid (DHA), in particular, is incorporated and retained predominantly inside the
plasma membrane for the 4 month life of the erythrocyte [12]. Surprisingly, there is little information
on relationships between erythrocyte LC n-3 PUFA levels and adiposity, although a recent analysis of
a cohort of almost 3000 subjects from the Framingham Heart Study indicated a modest inverse
relationship between erythrocyte LC n-3 PUFA and waist circumference [14].

As we routinely measure erythrocyte fatty acids in nutritional intervention trials, we have chosen to
examine relationships between erythrocyte LC n-3 PUFA levels and measures of adiposity in baseline
data obtained from a convenience sample of trial participants, most of whom had undergone DEXA
assessments of body composition. In particular, we have sought to explore potential gender differences
in such relationships.

2. Methods
2.1. Participants and Data

A secondary analysis was undertaken using de-identified pooled data obtained from volunteers
who had participated in nutritional intervention trials conducted by the University of South Australia’s
Nutritional Physiology Research Centre between 2005 and 2009. Five trials were selected in
which measures of weight and adiposity, together with analysis of erythrocyte fatty acid levels,
had been undertaken at baseline. Each trial had been approved by the University’s Human Research
Ethics Committee.

Participants were free-living, non-smoking men and women from both metropolitan and regional
locations who were predominantly overweight/obese (inclusion criterion for three of the five trials) but
otherwise healthy (i.e., without a diagnosed disease condition) and had limited consumption of fish or
fish oil (inclusion criterion for four trials). Baseline anthropometric measurements and blood samples
for determination of erythrocyte fatty acid profiles were obtained from 476 participants prior to
undergoing dietary interventions. Additionally, dual-energy X-ray absorptiometry (DEXA) assessments
of body composition were obtained at the same time from 376 of these participants.
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2.2. Assessments
2.2.1. Anthropometric Measurements

Each participant’s height and weight were recorded to calculate body mass index (BMI). Height
was measured to the nearest 0-1 cm whilst barefoot using a wall-mounted stadiometer (SECA; Vogel
& Halke, Hamburg, Germany). Body weight was measured to the nearest 0.1 kg with participants
wearing light clothing using a TANITA Ultimate Scale 2000 (Tanita Corporation, Tokyo, Japan).
Waist circumference was measured using a metric tape according ISAK international guidelines [15].

2.2.2. Body Composition

Each participant underwent a whole body DEXA scan (Lunar Prodigy, General Electric, Madison,
WI, USA) to determine fat mass and lean mass, from which percentage body fat was estimated.

2.2.3. Assessment of Fatty Acid Profiles

Relative proportions of individual fatty acids in erythrocytes were assessed using a procedure
adapted from previously published methods [16]. Erythrocytes were isolated within 2 h of collection
by centrifugation, washed in isotonic saline and stored at —80 °C. They were subsequently thawed and
the lipids were extracted with chloroform and isopropanol (2:1). The organic phase containing the lipid
was evaporated to dryness under a stream of N, gas. The lipids were then transesterified with acetyl
chloride in methanol toluene (4:1, v/v) at 100 °C for 1 h. The resultant fatty acid methyl esters were
extracted with 10% potassium carbonate. Fatty acid methyl esters were separated and quantified using
a Shimadzu 2010 gas chromatograph equipped with a 50 m capillary column (0-32 mm, inner
diameter) coated with BPX-70 (0-25 mm film thickness; SGE Analytical Science Pty Ltd., Ringwood,
VIC, Australia). The injector temperature was set at 250 °C and the detector (flame ionisation)
temperature at 260 °C. The initial oven temperature was 130 °C and was programmed to rise to 220 °C
at 58 °C/min. H, was used as the carrier gas at a velocity of 36.4 cm/s. Fatty acid methyl esters were
identified based on the retention time to authentic lipid standards (GLC-463; Nu-Chek Prep, Inc.,
Elysian, MN, USA).

Erythrocyte contents of eicosapentaecnoic acid (EPA), docosapentaenoic acid (DPA) and
docosahexanoic acid (DHA) were expressed as percentages of total erythrocyte fatty acids. The
Omega-3 Index was calculated as the sum of the EPA and DHA contents.

2.3. Statistical Analysis

Data were analysed using SPSS for Windows (Version 21.0, 2012) and presented as means = SD
(standard deviations). Gender differences in outcome measures were determined by Student’s #-test;
statistical significance was set at p < 0.05. Relationships between markers of adiposity and erythrocyte
fatty acid contents were assessed by correlation analysis and expressed as Pearson correlation
coefficients (7). A Bonferroni correction was made for comparisons of each adiposity measure with
multiple fatty acids whereby statistical significance was set at p < 0.01. Univariate models were used
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to test for gender interactions. Quartiles of Omega-3 Index were determined for each gender and mean
BMI values for each quartile were compared by ANOVA with statistical significance set at p < 0.05.

3. Results
3.1. Participant Characteristics

Participants were middle-aged and predominantly women. Table 1 presents anthropometric and
body compositional assessments for each gender. Due to the selection of overweight/obese adults for
the majority of clinical trials, average values of BMI fell within obese classifications for men and
women, although there was a wide range (18-59 kg/m?).

Table 1. Participant characteristics *.

Males Females
Age (year) 45.6 +£11.6 (185) 47.5+12.3 (291)
Weight (kg) 99.4+17.3 (185) 91.3£19.9 (291)
Height (m) 177.7+7.0 (185) 163.6 + 6.8 (291)
Body mass index (kg/m?) 31.4£5.0(185) 34.0+6.8 (291)
Waist circumference (cm) 110.0 £ 13.3 (133) 105.3 £ 16.1 (244)
Fat mass (% of total mass) 345+6.3 (133) 48.2 £5.2 (243)

* Data are presented as mean + standard deviation (number of observations provided in brackets).
3.2. Erythrocyte Fatty Acids

Table 2 shows mean values of erythrocyte fatty acid levels for each gender. Men had significantly
higher erythrocyte DPA while the Omega-3 Index (EPA + DHA) was significantly higher in women.

Table 2. Erythrocyte fatty acids (% of total; mean = SD).

Males (185) Females (282)
EPA 0.85+0.35 091+0.42
DPA ** 2.47+0.37 2.32+0.36
DHA 4.25+0.95 442 +1.02
Omega-3 Index * 5.10+1.18 5.33+1.33

Significant gender difference: * p < 0.05; ** p <0.0001.

Table 3 summarises the linear correlation analysis of relationships between erythrocyte fatty acids
and measures of adiposity. Pearson correlation coefficients (r) are presented for all participants and for
men and women separately. There were strong inverse correlations in the whole dataset between DHA,
DPA and the Omega-3 Index and measures of adiposity. DHA and the Omega-3 Index were associated
with BMI and waist circumference, whereas DPA predicted body fat. However, the apparent influence
of the Omega-3 Index can be attributed to DHA alone as EPA was weakly associated with waist

circumference only.
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Table 3. Correlations between erythrocyte fatty acids and adiposity measures.

Body mass index Waist circumference Body Fat
(kg/m’) (cm) (%)

N (all subjects) 476 377 376
EPA —0.016 —0.143 * —0.054
DPA —-0.073 —-0.116 —0.264 ***
DHA —0.191 *** —0.298 *** —0.117

Omega-3 Index —0.154 ** —0.275 *** —0.108

N (males only) 185 133 133
EPA 0.087 —0.062 —0.147
DPA —0.016 —0.201 —-0.228 *
DHA —0.077 —0.144 —0.185

Omega-3 Index —0.037 —0.133 —0.192

N (females only) 2901 244 243

EPA 0.080 —0.164 * -0.172 *
DPA —0.047 —0.125 —0.143
DHA —0.276 ** —0.353 *** —0.329 **

Omega-3 Index —0.236 ** —0.322 *** —0.306 **

Values are Pearson r. Significant correlations: * p < 0.01, ** p <0.001, *** p <0.0001.

Univariate analysis confirmed that there were significant gender interactions in the relationships
between Omega-3 Index and BMI (p = 0.015) and Omega-3 Index and waist circumference (p = 0.028)
but not between Omega-3 index and % body fat. Hence it was appropriate to split the data by gender,
although gender differences in correlations with % body fat should be interpreted with caution.
Erythrocyte DPA was the only significant correlate of adiposity in men; higher DPA predicted a lower
percentage body fat. However, DPA was not a significant predictor in women. On the other hand, there
were strong inverse correlations between all three markers of adiposity and DHA and consequently the
Omega-3 Index in women.

3.3. Associations between the Omega-3 Index and BMI

BMI is the most widely used measure of obesity and the Omega-3 Index is the most widely
accepted marker of habitual intake of LC n-3 PUFA. Hence it was of interest to further illustrate the
relationship between these measures. Figure 1 shows the mean values for BMI in each quartile of the
Omega-3 Index for each gender. The lack of a significant relationship in men was apparent. It was
also apparent that the relationship between the Omega-3 Index and BMI in women was not linear. BMI
values appeared to rise steeply in the lower quartiles of the Omega-3 Index. There were highly
significant differences between mean BMI in the lowest quartile and mean BMI in the two highest
quartiles of the Omega-3 Index in women.
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Figure 1. Average BMI values in quartiles of the Omega-3 Index.
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Curvilinear analysis confirmed the skewness of the relationship between Omega-3 Index and BMI
in women (Figure 2). A sigmoidal curve gave the most significant fit (** = 0.078, p < 0.001) and
suggested a possible threshold for the Omega-3 Index around 6%, below which BMI tends to rise
steeply. There was no such relationship for men (> = 0.006, p = 0.74).

4. Discussion

The results of this study confirm previous indications of an inverse relationship between LC n-3
PUFA levels in erythrocytes and adiposity in humans [14]. Moreover, they extend previous research
by revealing a primary role for DHA in this relationship. Most importantly, however, they highlight a
striking gender difference, whereby the association of DHA with lower adiposity was evident in
women only; men, on the other hand, tended to show an inverse association between erythrocyte DPA
and adiposity. It was also apparent that erythrocyte EPA had little relationship with adiposity.
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Figure 2. Sigmoidal relationship between BMI and the Omega-3 Index in women.
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Recognising that erythrocyte levels reflect habitual intakes of LC n-3 PUFA, it is tempting to
speculate that increased consumption of DHA-rich fish or fish oil may help to counteract obesity.
However, the correlations derived from our cross-sectional analysis cannot imply causation. One could
equally argue that being obese inclines individuals to include less fish or fish oil in their diet.
Alternatively, lower intakes of fish or fish oil and a predisposition to adiposity may both be secondary
to another independent factor, e.g., poor quality diet. The influence of independent factors may also
account for previous anomalies in reported relationships of LC n-3 PUFA intake with adiposity.
For example, the observation that larger waist circumferences were associated with higher plasma
phospholipid LC n-3 PUFA levels in Canadian Inuits and Cree Indians may have been attributable to
other aspects of diet in these populations, notwithstanding their habitually high intakes of LC »n-3
PUFA [6-8].

However, preclinical research in animal models of obesity and limited data from human intervention
trials suggests that LC n-3 PUFA consumption is causally related to adiposity. LC n-3 PUFA can
suppress fat synthesis and increase metabolism in adipose tissue via multiple mechanisms involving
altered expression of transcription factors, viz. SREBP-1 and PPARs [17]. In-vitro studies with lipid
droplets specifically implicate DHA in these mechanisms [18]. Coincidentally, DHA was the
predominant LC »n-3 PUFA consumed in a small number of human intervention trials which reported
weight loss or fat loss following supplementation [3,19,20]. Hence the highly significant inverse
correlations between erythrocyte DHA and diverse measures of adiposity observed in the present study
suggest that increasing DHA intake may help to reduce the incidence of adiposity (» = 0.353 indicates
that erythrocyte DHA levels account for 12.5% of the variance of waist circumference in women).

The limitation of this association to women is noteworthy, particularly considering that there was
no significant difference between men and women in the mean erythrocyte DHA level. Interestingly,
Decsi and Kennedy [21] reported that plasma phospholipid DHA levels for almost 3000 participants in
the EPIC study were approximately 10% higher in women than men, an effect that they attributed to
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enhanced conversion of a-linolenic acid through to DHA in women. However, no differences were
reported for DPA. The 6% higher erythrocyte DPA level for men in the present study appears to be a
unique observation but would be consistent with the hypothesis of limited conversion of DPA to DHA
in men relative to women. It is of interest, therefore, that DPA was a significant predictor of body fat
in men, whereas DHA was the predominant predictor of all measures of adiposity in women. Garg and
colleagues recently reported that DHA supplementation was effective in reducing platelet aggregation
in women, whereas EPA supplementation reduced platelet aggregation in men [22]. Clearly there is
a need to further characterise gender differences in LC n-3 PUFA and their respective functions.
A useful starting point would be large epidemiological studies such as EPIC and the Framingham
Heart Study, where blood samples have been routinely analysed for LC n-3 PUFA contents.

There is increasing recognition of the limitations of dietary intake assessment tools to estimate LC
n-3 PUFA intake and increasing acknowledgement of the need for reliable blood biomarkers of an
individual’s LC »n-3 PUFA status. Unfortunately the use of different biomarkers can lead to different
interpretations. Thus the relatively simple measure of LC n-3 PUFA in whole plasma is at best a
reflection of recent consumption, whereas assessment in a plasma phospholipid fraction reflects both
consumption and incorporation of LC #-3 PUFA in a stable pool over a period of weeks. However,
the “gold standard” biomarker for habitual LC #n-3 PUFA consumption is their relative content in
erythrocytes, reflecting, as stated earlier, their uptake and retention in the erythrocyte pool over several
months [12,13]. It is unfortunate that a number of important epidemiological studies have chosen to
use plasma phospholipid determinations when there is increasing recognition of the superiority of
erythrocyte fatty acid determinations. Indeed the Omega-3 Index, i.e., the sum of EPA and DHA in
erythrocytes, has been widely promoted as both a biomarker of LC n-3 PUFA consumption/status and
a risk factor for cardiovascular disease [23] and serves as a useful standard for comparison across
populations. Hence, we quantified relationships between the Omega-3 Index and measures of adiposity
in the present study, even though it was evident that erythrocyte DHA alone was a stronger predictor
of adiposity than the combination of EPA + DHA.

Whilst there was no apparent relationship between the Omega-3 Index and measures of adiposity in
men, examination of quartiles of the Omega-3 Index in women revealed a non-linear relationship with
BMI (Figure 1), wherein BMI was similar in the two highest quartiles but rose sharply in the lower
quartiles. This was even more evident when curvilinear relationships were tested. The best fit (shown
in Figure 2) was a sigmoidal curve, indicating a plateau effect within an approximate range of 5%—-9%,
below which BMI appeared to increase exponentially. Bearing in mind that the Omega-3 Index
predicts greater risk of cardiovascular disease below 4% and lesser risk above 8%, it appears that
extremes of the Omega-3 Index may also be associated with other risk factors, including adiposity and
depression [24,25].

BMI is a relatively crude measure of obesity; gender differences may reflect differences between
men and women in the relative contribution of fat and lean mass to BMI. However, significant
curvilinear relationships were found in women between the Omega-3 Index and both % body fat and
waist circumference as well as BMI, strengthening the argument that omega-3 intake is inversely
related to adiposity in women.

In conclusion, the outcomes of this cross-sectional analysis of erythrocyte LC »n-3 PUFA content
and measures of adiposity in a convenience sample of Australian adults are consistent with other
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evidence suggesting an inverse relationship between LC n-3 PUFA intakes and obesity. In particular,
DHA intake was a negative predictor of BMI, waist circumference and body fat content in women,
whereas DPA was a weaker negative predictor of body fat content in men. Analysis of the Omega-3
Index indicates that women in the lower range of the Index may have increased risk of obesity. These
data warrant further confirmation in larger studies where potential gender-specific effects of individual
LC n-3 PUFA are also taken into account.
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Does Consumption of LC Omega-3 PUFA Enhance Cognitive
Performance in Healthy School-Aged Children and throughout
Adulthood? Evidence from Clinical Trials

Welma Stonehouse

Abstract: Long-chain (LC) omega-3 PUFA derived from marine sources may play an important role
in cognitive performance throughout all life stages. Docosahexaenoic acid (DHA), the dominant omega-
3 in the brain, is a major component of neuronal cell membranes and affects various neurological
pathways and processess. Despite its critical role in brain function, human’s capacity to synthesize DHA
de novo is limited and its consumption through the diet is important. However, many individuals do not
or rarely consume seafood. The aim of this review is to critically evaluate the current evidence from
randomised controlled trials (RCT) in healthy school-aged children, younger and older adults to
determine whether consumption of LC omega-3 PUFA improves cognitive performance and to make
recommendations for future research. Current evidence suggests that consumption of LC omega-3
PUFA, particularly DHA, may enhance cognitive performance relating to learning, cognitive
development, memory and speed of performing cognitive tasks. Those who habitually consume diets
low in DHA, children with low literacy ability and malnourished and older adults with age-related
cognitive decline and mild cognitive impairment seem to benefit most. However, study design
limitations in many RCTs hamper firm conclusions. The measurement of a uniform biomarker, e.g., %
DHA in red blood cells, is essential to establish baseline DHA-status, to determine targets for cognitive
performance and to facilitate dosage recommendations. It is recommended that future studies be at
least 16 weeks in duration, account for potential interaction effects of gender, age and apolipoprotein E
genotype, include vegan/vegetarian populations, include measures of speed of cognitive performance
and include brain imaging technologies as supportive information on working mechanisms of LC
omega-3 PUFA.

Reprinted from Nutrients. Cite as: Stonehouse, W. Does Consumption of LC Omega-3 PUFA Enhance
Cognitive Performance in Healthy School-Aged Children and throughout Adulthood? Evidence from
Clinical Trials. Nutrients 2014, 6, 2730-2758.

1. Introduction

Optimal cognitive performance is vital throughout all stages of life. During childhood it is critical to
optimize brain development; throughout adulthood it is important to maintain optimal cognitive
functioning; and during old-age it is imperative to defer cognitive decline and prevent dementia.
The long-chain (LC) omega-3 polyunsaturated fatty acids (PUFA) derived from marine sources,
docosaehexaenoic acid (C22:6, DHA) and eicosapentaenoic acid (C20:5, EPA), may play an important
role in achieving these objectives. DHA is the dominant LC omega-3 PUFA in the brain [1] and has
been shown to accumulate in areas of the brain associated with learning and memory, such as the cerebral
cortex and hippocampus [2,3]. DHA is incorporated into neuronal membrane glycerophospholipids at

the sn-2 position where it regulates numerous neuronal and glial cell processes including neurogenesis,
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neuroplasticity, neurite outgrowth, synaptogenesis and membrane fluidity which in turn supports
membrane protein functions impacting on speed of signal transduction and neurotransmission [4-8].
In addition, DHA improves vascular tone which results in increased cerebral blood flow during
cognitive tasks [9] and it regulates the transport and uptake of glucose by the endothelial cells of the
blood brain barrier [7,10]. Unesterified DHA released from glycerophospholipids by phospholipase A2
are natural ligands for several nuclear receptors that regulate gene expression, and they are precursors
for neuroprotectins and resolvins that counteract neuroinflammation, oxidative stress and increases
neuronal survival [4,8,10]. EPA and the plant derived omega-3 fatty acid, alpha-linolenic acid (ALA),
also crosses the blood brain barrier, but >99% of these fatty acids are B-oxidised and some EPA is
de-esterified from glycerophospholipids [11]. Both ALA and EPA may contribute to brain function by
facilitating fuel supply to the brain through ketogenesis, particularly during aging [12]. In addition,
unesterified EPA may further contribute to cognitive function through the synthesis of eicosanoids that
offset neuroinflammation and improve cerebral blood flow due to its antithrombotic and vasodilatory
properties [7]. Thus, DHA seems to be more important for brain function, but ALA and EPA also play
minor roles.

The brain retains its DHA content as indicated by a long DHA half-life of ~2.5 years in human
brain [13], but studies in animal models have shown that long-term DHA depletion results in
significant losses in brain DHA [2,14]. Studies in rats which involved dietary LC omega-3 PUFA
depletion over successive generations or even in one-generation showed decreased brain DHA levels,
particularly in the frontal cortex and hippocampus areas, with reciprocal increased levels of the omega-6
PUFA, docosapentaenoic acid (DPA, C22:5, n-6). With the increase in DPA the level of unsaturation
was maintained, but brain function was impaired, including changes in learning, memory, auditory and
olfactory responses [2,6,14]. These effects were, however, restored by repletion with dietary DHA [14].
Thus, individuals who follow omega-3 PUFA deficient diets particularly over several generations, for
example families who never consume seafood, the major source of DHA, may have depleted levels of
brain DHA and their cognitive function may not be optimal. Based on studies in rodents and
non-human primates the brain has the capacity to nearly meet its daily needs for DHA through the
conversion of ALA to DHA, mainly by the liver, when sufficient dietary ALA (>1.2 g ALA/day) is
consumed [15]. The capacity of humans to synthesise DHA de novo is limited. While DHA is
retro-converted to EPA; the extent of conversion of EPA and ALA to DHA is small [1]. The
conversion of ALA to DHA is influenced by several factors; a background diet high in linoleic acid
(LA, C18:2, n-6) reduces the conversion due to substrate competition; the conversion is more efficient
in women [1]; and low dietary intakes of DHA increases conversion [15]. Vegans and vegetarians
seem to have similar capacity to convert ALA to DHA than omnivores with ALA supplementation
increasing EPA to a small extent, with little effect on DHA in blood lipids [16,17]. Consumption of
preformed DHA from fish and seafood, supplements (marine or algae derived) or DHA enriched foods
may therefore be a more efficient way of ensuring adequate supply of DHA for optimal brain
development and function. Large proportions of populations consume inadequate amounts of LC
omega-3 PUFA and fish and seafood. The 2008/2009 New Zealand Adult Nutrition Survey reported
that ~30% of adults did not or rarely consumed seafood [18]. Only 21% of Australian children
consumed fish or seafood during the two-day Australian National Children’s Nutrition and Physical
Activity survey [19] and Australian adults reported average consumption of 0.25 g/day of total LC
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omega-3 PUFA (including EPA, DHA and docosapentaenoic acid (DPA)) [20]. Median usual intakes
of total fish and fish high in LC omega-3 PUFA reported by U.S. adults was 12.2 and 1.98 g/day,
respectively and median intakes of DHA from foods plus dietary supplements was only 0.04 g/day [21].
Belgian adults reported median DHA intakes ranging from 0.07 to 0.09 g/day [22]. Several studies
have shown that vegan diets are devoid of DHA and vegetarian diets that include dairy food and eggs
only provide about 0.02 g DHA/day (reviewed by Sanders [16]). These low intakes were accompanied
by substantially lower levels of DHA in plasma, serum, red blood cells (RBC) and plasma phospholipids
(PL) in vegans and vegetarians compared to omnivores [16]. Although populations following DHA
deficient diets do not seem to exhibit apparent cognitive dysfunction, it is imperative to acertain
whether increased consumption of DHA by individuals with low dietary intakes, but otherwise healthy
will enhance cognitive performance. In summary, basic research provides strong support for the notion
that LC omega-3 PUFA, particularly DHA, play an important role in brain function; but will
consumption of LC omega-3 PUFA enhance cognitive performance in healthy school-aged children
and throughout adulthood, particularly in populations with low dietary intakes? This review will aim to
answer this question by critically examining the evidence from all the clinical trials that have been
conducted on healthy school-aged children, younger adults and older adults investigating the effects of
LC omega-3 PUFA on cognitive performance. Recommendations for future research will also be made.

2. Evidence from Clinical Trials in Healthy Mainstream School-Aged Children

DHA may be particularly important during periods of brain growth spurts which take place from the
last trimester of pregnancy up to 2 years of age. Thereafter, the frontal lobes continue to develop
throughout childhood, adolescence and into the late twenties with spurts of frontal lobe development at
age 7-9 years and mid-adolescence [23,24]. Table 1 provides a summary of all nutrition intervention
trials that have investigated the effects of LC omega-3 PUFA on cognitive function, learning and
school achievement in healthy school-aged children. Kuratko et al. [25] have also reviewed studies
published until November 2012 on DHA and learning and behavior in healthy children. The evidence
from clinical trials focusing on healthy mainstream school-aged children is relatively new as
evident from the small number of studies (» = 10) published since 2007. Most of the studies were
conducted in children aged 6-12 years old. The studies varied widely with regard to duration
(from 8 weeks to 12 months), dosage (from 0.1 to 1.2 g LC omega-3/day), type of LC n-3 PUFA (fish
oil, algal oil, enriched foods) and DHA:EPA ratio of the interventions, type of outcomes measured and
type of participants. LC omega-3 PUFA was generally provided in the form of fish oil or algal oil
(high in DHA) and in a few studies as LC omega-3 PUFA enriched foods. Most studies were
conducted in children with low baseline intakes of LC omega-3 PUFA. A landmark study by
McNamara et al. [26] showed for the first time in humans the direct link between DHA and brain
activation. Supplementation of 0.4 g/day and 1.2 g/day of DHA increased activation of the dorsolateral
prefrontal cortex during a sustained attention task in boys aged 8—10 years. However, these effects
were not translated into improvements in visual sustained attention performance. Eight weeks may be
sufficient for DHA to increase brain activation, but longer periods may be needed to result in improved
cognitive performance.
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Richardson et al. [27] showed that DHA supplementation improved reading in children who
underperformed in reading. Children with reading scores <20th centile gained an additional 0.8 months
in reading age while children in the <10th centile gained 1.9 months in reading age with DHA
supplementation. Parletta ez al. [28] showed in Australian indigenous children with low literacy ability
improvements with EPA + DHA on cognitive development (draw-a-person) with a larger effect in
the 7-12 year old children. They were unable to show improvements in academic achievement
(reading and spelling). However, these results should be interpreted in context of the myriad of factors
in this indigenous population that may have affected the attainment of English literacy, e.g., language
experiences, home support, socio-economic status (SES) and school attendance. Omega-3 supplementation
alone may not have been sufficient to overcome these factors. The fact that improvements were seen in
the draw-a-person variable, a non-verbal, culture-free test of cognitive development that does not
require schooling or specific language skills, supports this argument [28]. Studies in malnourished
7-9 year old South African [29] and 8-12 year old Mexican children [30] showed improvements in
learning and cognitive performance with LC omega-3 supplementation. Whereas no effects were seen
over 12 months in 610 year old malnourished children from India [31] and Indonesia [32]. However,
dosages were small and the supplement used in the Indian study was mostly ALA [31,32].
Baumgartner et al. [33] conducted the first LC omega-3 trial in children who were purposely recruited
with iron deficiency; they showed that EPA + DHA supplementation in children with iron deficiency
anemia had negative effects on working memory. They also showed treatment gender interactions where
boys with iron deficiency performed better in long-term memory and retrieval with DHA while girls
performed worse. These studies demonstrate the complexities of conducting omega-3 supplementation
trials on cognitive performance and learning in malnourished populations where multiple other factors
and nutrient deficiencies may affect the outcomes. Yet, these are the populations most likely to benefit
from supplementation.

Two studies conducted in healthy mainstream school children in the UK did not show any benefit
of consuming DHA on cognitive performance and learning [34,35]. The study by Kennedy et al. [34]
was underpowered and short in duration (8 weeks). In Kirby et al. [35], cheek cell EPA and DHA
increased in both DHA and placebo groups, although the increase was greater in the DHA group. Thus,
parents of children in the placebo group may have become more aware of the benefits of omega-3
PUFA and increased their intakes.

Inconsistencies between studies could be ascribed to potential modulating effects of age and
gender. Children at different phases of brain and cognitive development and boys and girls may
respond differently to LC omega-3 PUFA supplementation as was shown by Parletta ef al. [28] and
Baumgartner et al. [33]. In a large sample of 6-16 year old American children, the relationship
between dietary omega-3 PUFA and cognitive test scores was twice as strong in girls as in boys [36].
None of the other studies reviewed investigated potential interaction effects of age and gender and
some studies used wide age ranges which may have resulted in greater variability or response
modulating effects on outcomes.

Biomarkers of LC omega-3 PUFA intake are often not measured in studies on children because of
children’s fear of having a blood sample taken and consequently not wanting to volunteer for studies.
Cheek cell samples are sometimes collected, which is much less invasive and has been shown to
correlate well with dietary intakes, plasma and RBC levels [37]. The studies in Table 1 measured DHA
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and EPA levels/concentrations in RBC, plasma, RBC or plasma phospholipids (PL) and cheek cells.
The levels increased in all studies with supplementation of LC omega-3 PUFA and the magnitude of
the increase often reflected the supplementation dose [26,29,31-33,35].

To date, no LC omega-3 PUFA interventions have been conducted in adolescents and the only
evidence is from observational studies. A prospective study in >9000 15 year old Swedish school
children showed significantly higher school grades at age 16 in adolescents consuming fish more than
once a week compared to less than once a week [38]. At age 18, male adolescents who consumed fish
more than once per week compared to less than once per week at age 15 had higher 1Q scores which
was obtained from completed intelligence tests as part of the mandatory Swedish military service
conscription examination [39]. De Groot et al. [40] recently showed in 700 Dutch adolescents,
12—-18 years, that consumption of fish providing the recommended amount of EPA + DHA of
~0.45 g/day compared to no fish intake was associated with more advanced vocabulary and higher end
term grades. However, eating more fish than the recommended amount was no more beneficial [40].

In summary, it seems as if children with low literacy ability and who are malnourished with low LC
omega-3 PUFA intakes may benefit most from the consumption of LC omega-3 PUFA with regard to
cognitive outcomes (e.g., memory, non-verbal cognitive development, processing speed, visual-perceptive
capacity, attention and executive function) and school achievement (e.g., reading and spelling).
Inconsistencies between studies may have been due to different dosages, duration, other nutrient
deficiencies and lack of investigating interaction effects of gender and age. Dosages may have been
too low in several of the studies that did not show benefits. Nutrient deficiencies such as iron
deficiency in malnourished populations may need to be corrected before supplementation with LC
omega-3 fatty acids can commence to avoid potential adverse interaction between nutrient deficiencies
and omega-3 supplementation.
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3. Evidence from Clinical Trials in Healthy Younger Adults

The aim during younger adulthood is to maintain optimal brain function. Although brain development
is established, neuroplasticity is ongoing [6]. Only seven studies to date investigated the effects of LC
omega-3 PUFA on cognitive performance in younger healthy adults (Table 2). The study by
Stonehouse et al. [41] in healthy young adults who habitually consumed diets low in DHA, has been
one of the largest and longest trials to date and showed that DHA supplementation improved memory
and reaction time of memory [41]. This was also the only study so far in healthy young adults that
investigated whether gender and apolipoprotein E genotype (4POE) modulated the response to LC
omega-3 PUFA supplementation. They showed that memory domains were affected differently by
DHA in men and women; in women episodic memory improved whereas in men, reaction time of
working memory improved compared to placebo [41]. This may be explained by men and women
using different problem-solving strategies as indicated by differences in the functional organization of
the brain when performing memory tasks [42,43]. APOE did not affect responses in the group as a
whole but when stratified for gender, improvements in reaction time for working memory and attention
with DHA compared to placebo were more pronounced in male APOE4 allele carriers than in
non-carriers. However, this effects needs to be further explored since the study was not statistically
powered to investigate the three-way interaction of treatment*gender*APOE [41]. Apolipoprotein E is
the primary lipid transporter in brain tissue with carriers of the APOE4 allelic variant at several fold
increased risk of Alzheimer’s disease (~three- and ~15-fold increase in risk in 4APOE3/E4 and
APOE4/E4, respectively, relative to the wild-type genotype) [44,45]. Structural and functional
neurological changes are seen in APOE4 carrier’s decades before the appearance of any cognitive or
clinical symptoms [46—48]. Surprisingly, young (20-35 years) APOE4 carriers have been shown to
perform better on cognitive tasks than non-carriers have [49,50]. This may be due to compensatory
mechanisms being employed by carriers of the APOE4 allele as suggested by increased brain
activation in the frontal and temporal regions of APOE4 carriers during memory tasks compared to
non-carriers [47]. The APOE4 carriers may compensate by taking longer to complete the cognitive
tasks more accurately. Any effect of DHA supplementation in APOE4 carriers is therefore more likely
to be seen in tasks assessing reaction time as was seen in our study [41]. Considering the relatively
high prevalence of APOE4 carriers, (~24% in Caucasian populations [44,45] and 31% in the New
Zealand sample [41]), it may be an important factor to take into account when investigating the
cognitive benefits of LC omega-3 PUFA.

None of the other RCTs summarized in Table 2 showed any cognitive benefits with LC omega-3
PUFA [51-55]. Fontani et al. [56] showed improvements in sustained attention and reaction time of
sustained attention. However, although the trial is described as a RCT, the authors do not report the
placebo results and these results should thus be interpreted with caution. None of these trials examined
gender or APOE interactions. If gender or APOE dimorphisms exist, combining groups may cancel out
or dilute any potential effects. Some studies used smaller DHA dosages [51,52], had small sample
sizes [51,53,54,56], included a wide age range (18—70 years) [55] and all studies were short in duration
ranging from 4 to 12 weeks [51-56].
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Jackson et al. [9,53] investigated the effects of short-term (12 weeks) supplementation of LC
omega-3 PUFA on neural tissue activation and cerebral blood flow using near-infrared spectroscopy to
assess oxy-hemoglobin and deoxy-hemoglobin in the frontal cortex of adults during performance of
cognitive tasks. DHA at low and high dosages [9,53], but not EPA [9], significantly increased
oxyhemoglobin and total hemoglobin during several cognitive tasks indicating increased cerebral
blood flow.

In summary, the trial by Stonehouse et al. [41] overcame the study design limitations mentioned
above, namely the intervention period was adequate (6 months); a relatively large DHA dosage was
used (1.2 g DHA/day) which resulted in achieving RBC DHA levels of ~8%; sufficient statistical
power and gender and APOE interactions were investigated. They showed that DHA improved
memory and reaction time of memory, demonstrating that younger adults may benefit from
consumption of DHA [41].

4. Evidence from Clinical Trials in Healthy Older Adults

The main aim for cognitive function during older age is to defer cognitive decline and to prevent
dementia. Age-related cognitive decline (ARCD) is decline in cognitive functioning as a consequence
of the aging process that is within normal age limits [58]. Mild cognitive impairment (MCI) represents
a transitional state between ARCD and dementia, but individuals with MCI are able to function
normally in everyday life [59,60]. Clinical trials investigating the effects of LC omega-3 PUFA on
cognitive performance in healthy older adults (without dementia) (Table 3) have been inconsistent,
with some showing no effects [61-64] and others showing improvements in different measures of
cognitive function, mostly memory [58—60,65—-68] as well as executive function [68] and visuospatial
learning [58]. The outcomes have been affected by various study design limitations such as high
baseline LC omega-3 status, wide variations in cognitive impairment scores with MMSE ranging
from 21 to 30, small dosages, short trial duration, insensitive outcome measures, insufficient statistical
power, wide age ranges, and lack of investigating potential response modulating effects of age, gender
and APOE. LC omega-3 PUFA were provided in the form of ethyl esters, algal oil, fish oil, enriched
margarine (one study [62]) and krill oil (one study investigating effects on brain activation, not
cognitive function [69]).

One of the most rigorously designed trials was unable to show any benefit of LC omega-3 PUFA on
a range of cognitive outcomes [61]. The authors argued that the population may have already
consumed sufficient LC omega-3 PUFA as evident from relatively high serum DHA:DPA (omega-6)
ratios in both treatment groups at 24 months. Unfortunately, the authors did not assess the LC omega-3
status at baseline to confirm this. High intakes of dietary LC omega-3 PUFA of ~0.3 g/day may have
also precluded any cognitive benefits with fish oil in the study by Van de Rest ef al. [64]. In addition,
wide ranges of mini-mental scale examination (MMSE) scores from 23 to 30 may have resulted in
greater variability in cognitive responses that could have resulted in a null effect. The Alpha Omega
trial, which had 2911 patients with stable myocardial infarction, has been the largest and longest
(40 months) trial so far conducted. Neither ALA, DHA + EPA, nor a combination of ALA + DHA +
EPA affected MMSE scores [62]. The study was designed for CVD as primary outcome and MMSE
was used as a secondary measure of global cognitive function. MMSE may not be sensitive for
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detecting small changes in cognitive function with nutrition interventions in a normal aging
population. Furthermore, the effects were investigated against a background where >85% of
participants were using lipid lowering and anti-hypertensive drugs which in turn may have affected
cognitive function through their effects on cardio-metabolic markers, masking the effects of omega-3
PUFA. The most likely explanation for the lack of cognitive benefits in the study by Stough et al. [63]
was the low dosage (0.25 g/day DHA from tuna oil) consumed over a short duration of 90 days and a
wide age-range of 45-80 years which may have increased the variability in the outcome measures.

Yurko-Mauro et al. [58] showed significant improvements in several measures of memory as well
as visuospatial learning in older adults with subjective memory complaints and ARCD. The improvement
in the paired associate learning (PAL) test was related to a gain of 7 years in age compared to reference
data. Their study was sufficient in duration (6 months), provided a large dosage (0.9 g/day DHA), had
sufficient statistical power and was conducted in individuals with low habitual intakes of DHA.

Two studies were conducted in older adults with MCI [59,60]. Lee et al. [59] showed highly
significant improvements in memory in older women with MCI. Their sample size was small (n = 35),
but the effect size was large with a mean Z-score difference between fish oil and placebo of
0.8 (0.34, 1.26). The differences between this and other studies may be that participants with MCI
were recruited, leaving more room for improvement in cognitive test scores, participants were from
low socioeconomic background likely to consume low amounts of omega-3 rich fish, and a large
dosage (1.3 g/day DHA + 0.45 g/day EPA) was consumed over a long duration (12 months).
Furthermore, the study was conducted in women only which may have resulted in a more
homogeneous sample. The results are consistent with that of Stonehouse ef al. [41] who showed
improvements in memory in younger women [41]. Sinn et al. [60], in their study on older adults with
MCI, showed improvements in verbal fluency with a high DHA supplement but not with a high EPA
supplement. However, this was the only significant effect out of 11 cognitive assessments and could be
due to type 1 error. The lack of effects may have been due to insufficient statistical power. However,
the recruitment of large numbers of participants with MCI is not an easy task.

Inconsistencies between studies could be ascribed to response modulating effects of gender, age and
APOE, but very few studies have investigated these effects. Van de Rest er al. [64] identified
treatment*4POE interactions and treatment*gender interactions with APOE4 carriers and men
showing improvements in attention compared to placebo.

Improvements have been shown in cognitive performance in older adults over short duration with
high dosages [66] which is most likely due to the vascular and antithrombotic effects of EPA and DHA
rather than their effects on neurological changes. Nilsson e al. [66] showed improvements in working
memory with a high dosage of 1.5 g/day EPA + 1.05 g/day DHA over a very short period of 5 weeks.
They also showed significant improvements in cardio-metabolic risk markers that were inversely
related to performance in working memory. Witte er al. [68] also showed an inverse relationship
between improvements in executive function and fasting insulin.



49

VH{ Wwnios

ul 9seaIou]

uonIqIyuI

10 paads Suissaoord ‘Krowowr Furrom

uo $109130 ON ‘(Sur109 03 9500 159}
QWOS) SIS [[89AI 9 JO | Ul AIOWAW
pue (3SI] & uIe9| 0} S[eL) JO Ioquunu)
Surures] Jo 9jer parordur uron|

+ VHA ‘sdnoi3 uroin] + yH(Q pue
urIn] ‘YHQ ut paaoxdwir (Arowow

uL12)-3U0[/o1uBWAS) AOUAN[J [BGIOA

0qa0e[d (1)

un] + VH( (€)

uroIng Aep/Sw 1 (7)
(110 1e3[e)

VHA £ep/3 8°0 (1)
S{uLp A319u0 [RUONIINU
s udyes syudworddns

se pop1A01d SUOIIUOAIONUI INO ]

Kep/Bw 9¢ [~ VHQ Jo dyeIul Arepi
(6% = u pasA[eue
LS = u) uowom AI[eay ‘s1edk )8—09

q3eay o4ka

Sem QW00 ATRWLI]
VSN ‘VIA ‘uoisog
squow ¢ {10y

[s9] 8002
‘Jp j2 uosuyof

(009 = u) ojdwres-qns

ul' VHd pue Vdd
A0 ewseld ur asearou]

HSINIA

)M POINSEIW SB QUITOIP dANTUT00

1eqO[3 uo 1090 ON

0qa2e[{ (¥)
VIV + VHA + vdd (€)
VIV £ep/3 7 (7)

VHA + vdd £ep/3 70 (1)
:ounredrew Kep/3 (g

ur pop1aoid SUOUSAISIUL INOJ

(1167 ="4)

(Kep/Sur (00Z—SS) 81 [~ = deIul UBIpaL)
MO[ Sem aeIul VH( + Vdd duijoseg
(syurod 9°1 F 87

ds ¥ 93e10ae) [7<

ASINIA ‘stuanjed [N o]qess “s1eak 08—09

Ayreyrown

pue Kprgrowr GAD
SeM QWO00IN0 ATeWLI]
SPUBIOUIAN

sqpuow oy LY

(renL
e3owQ eydyy)
[eol zroz
*Ip 32 dsul19[on

(1B 1L “sa

96 :VHQ “1/8W 6¢ "s4 0§
v dd) oqaderd “sa 1oySiy
VHA pue yd4 :sypuout 7
18 (g7 = u) 9jdwes-qns

Ul S[OAQ] PIOk A)jBJ WNIOS

2100 AB[IP [BQO[S ‘UOIOUNJ ATINIIXD
‘poads Surssaooid ‘Arowswr ‘uonouny

2AIUZ09 [8QO[S UO J09JJ0 ON

(1o
o1[0) 0qoded “sa Kep/(VHA 5 0
+Vdd 8 7°0) 110 ysiy 1153 [Apg

:O ﬂm@ wﬁwazwﬁoo w:SU.& U@Uﬂ;oxm
(8yL=u

uo sisk[eue /98 = u) (67 = UBIPAW) T <
HSININ “Apresy A[2A1IuS00 ‘s1edk ¢/ (L

so[ep\ pue puejsuyg
sqpuow g 1LY

(ApmiS TVdO)

[19] 0102
‘v 32 InoJueq

JIIeworg

(0qadelq *s4 ¢-e3wQ D)

AdUBULIOIdJ dANIUS0)D)

STLEER:

UODUIAINU]

sjuednaed

ugisa(q Apms

CRIIEREIEN |

"S)[npe IOp[Oo Ul UONOUNj dARIUT0 pue V. INd ¢-eSowo ureydo-3uof Jo S[eL]) UOJUSAIIUI UonINNN *€ d[qeL



50

(%€8°T 03) %980~ £q
Vdd (%S59°8 01) %1~

(1o 1omoyyes) 0qadeld (g) %9t~ VHA
Aq pesearoul VHA D9 Y
pajoaye Aep/(Vdd 3 0v'0 + %96°0~ Vdd DY duljeseq
:dnoi3 vHQ BI[ensny ‘oueqsLg
SIUQWISSASSE JAIIUZ0D | [ JO INO U0 VHA 3 §§°1) 110 ysy you-yH(J (2) syuowolddns ¢-e3owo pue Joom/[< [09] z102
(%90t pue Sple[opy
ATuQ “(A1owowr orjuewos/SunyuIy) progy (Kep/(VHA 8 91°0 + ysyy Surunsuoo syuedionted papnjoxyg VZEZRININ
0)) %1'¢~4q vdd squow 9 ‘10
. J01s03) Kouan[y [equoa porordwit VHA — VdA 8 L9°T) : 10 ysy you-v dd (1) (0s=u)(sTFLT~
(%S 01) %8L°0~ _
ISWIE UONUOAIIUI Qa1 ],  93BI0AR) 77 < HSININ IDIN ‘Steak o<
£q peseandul VHA D9 Y
:dnoi8 vaa
SQWI0J)NO
doueutojrod
(sproe Aney 21]0QqE)oWOIPILD
Klowowr SUIIom 0} Poje[ar A[osIoAUl Noam KIQAQ ySI} pue
JO s)Jes winisoudew ‘aso[n[joo pue 9AIUZ09 USIMIAq
0-IN.L ‘9soon|3 Junsey ‘dgs ‘DL JeOW JUIPN[OUL JOIP YSIPAMS ATBUIpIO)
aurpeisAroolonu ‘oyeydsoyd diysuoneoy wry [99] z102
AN pasoxdur Jgs pue D1, oYejul ¢-eFOWO UO paseq UOISN[IX ON
WNIo[edIP) W0 J2[qe) ur 0qadeld uapamg ‘pung *[p 12 UOSS[IN
Kiowowr Junyrom pasoxdug Q€=U
[1o-uou ‘sa Aep/(vdd 3 0S°1 jnoysem
:panrodar porrad 3811y AJuo fuonoeiojul pasATeue ‘py = u) AYy[eay ‘s1edk 7/—1S
+ VHA 8 S0°1) :10 ystf SYOIM G ‘SHIM ¢
douonbas uondwnsuoo—uowiear],
‘IOAO-SSOID ‘1Y
%1t~ VHA
SIS [erredsonsia
‘04810~ Vdd ewseld surjoseg
‘paads 10jowoyoAsd ‘uonusye/uorOUNJ
syuowolddns ¢-eFowo
QAIINDIXA UO S}O3JJ ON (110 u109) eisAefey ‘indwny
Vdd pue Surwnsuos syuedronred popnjoxyg [6s] €102
‘([reoar oqooe[d ‘sa Kep/(VdHd 3 S0 elENY ‘SBIAYD
VH(Q ewseld ur asearouf (6¢ = u pasATeue ‘¢ = u) D J2 93]

PaAe[ap ‘AIOWAW [BNSIA AJRIPAWIL
‘Krowowr SunjIom ‘AIoWwowW WLd)-1I0ys)

Kiowow paroxduy

+VHA 3 €'1) 1o ystg

snye)s
OIWIOU0I90100S-MO] 0} d[pPIW (87

—$0) $'97 = ASINIA ‘TOIN ‘S1834 ()9<

syuow z1 ‘1Y

oy g dqe L



51

a1n3yy xo[dwod e Adoo 03 own
pue SonI[Iqe SUIuIed] ‘[[9a1 [BqIA

PIAB[OP pUE OJRIPIWIWI UO 13})9q

Kep/(Vdd + VHA) 8 80°0

$90IN0S ¢-eJowo

DT JO o3ejul UO Paseq UOISN[OXd ON

(¢T1 = u pasAeue [9BIS] “AIAV ]9 (L9l o10T
AN paunioprad snyeys 9ARIUS0o duIjeseq + Sd Sw o€
‘LST=u) “(1T'1 F §'8T~ 95e10AR) SeoM G \LOY /P 12 eAodeyyeA
19y31y yam syuedroned Jo josqns :g-e3owo )T Sururejuod Sd
L7 < ASIWIA ‘siure[dwod £1owow yiim
Y "SIONIBW A0 UO 1999 ON
syuedronred pajuswap-uou ‘s1edk ()6—(S
*[[e031 QJeIPAWWI [8QIdA pasoIduu]
uow ur paaoxdwr uonuopRy %01 F %61
:SUOTORIOIUI JOPUIS—JUOUIILAL], 'VHA + Vd4d gD ewse|d surjoseq
(%179 03) (p1oe 219]0) 0qa¥[{ (§)
SISLLIED J[9[[R Aep/3 €0~ 'VHA+VdH
%S~ £q :950p Y3IH Kep/(VHA 3 680 +
#AOdY Ul paroidwl uonuony AIe)01(J S99IN0S ¢-eFaWOo )] SpPuBIOUIAN YL
(%€8T o) Vdd 360°1) 110 ysy 3s0p Y3ty (7) [¥9] 800z
:SUONORIANUI O F—IUdWIedl ], y31y Surunsuod syuedionted popnoxg ‘uoduruoFepn
%S6°0~ £q :250p MO Aep/(VHA S 81°0 + . . I 12159 9p UBA
) (poods o (zog =u) ‘0€ @ €T $YeoM 9T ‘10U
‘'VHA + Vdd Vdd 8 97°0) 110 ysy 2sop-mo (1)
JOJOWILIOSUS ‘UONUNE ‘UonIUNy woyy paguel [6z—L7] 87 = ASININ
gD ewsed ur osearouy ISULIE UOT)UOAI)UI 1Y T,
JATINDOXD ‘Arowour) A10)eq (omuoorad 6/ ‘57)
159} AISUAYIdWOD UO S399JJ2 ON uerpaw ‘Ayjeay A[oAnIugoo ‘sieak go<
(K1owowt Jo paads
. %y €~ 'VHA 1d ewsed aurjeseq
uonude
' (110 uBaqLo0s) 0qoaoed ‘sa $92IN0S ¢-e3owo
(%TT'S 01) %6L 1~ £q Jo paads ‘Arowour Suryiom BI[eNSNY QUINOQ[OIN [e9l z10T
Kep/(vdd 8900 + VHA 8 $T°0) D130 9¥eIul U0 paseq uolsnjoxs ON
pasearour VH( "1d ewse[d ‘K1owowr A18pUOIAS ‘UOIIUIIL) SAep 06 ‘1OY ‘Ip 12 Y3n031§

K19118q 159) 9ANIUS00 PozLINdwod

QAISURUAIdWIOd UO $1991J0 ON

:[10 eUN,

(5L = u pasjeue ‘g1 = u) Aypedy
(sIeak 1’8 F 9G~ o3eI0AR) SI1BOK //—Gf

oy g dqe L



1D B 10U SeM J1 asned2q J[qe)

ur papnpour jou [(L] v 12 103oTy ‘payiodar wire Apms ¢-eSowo AJuo ‘suire juowejddns opdnniy, ‘eydie 10308y s1soroou own) - NI (SOPLIAISIY ‘D, ‘amssaid poolq o1j0IsAs ‘JgS (el PI[[OIUOD PIZIWOPUET

‘1LY 199 poolq pal ‘DY ‘prdijoydsoyd “1q ‘ouasiApneydsoyd ‘Sq ‘porrodar jou YN ‘uoneurwexdq 0Jels [eUSA-TUIA ‘GSINIA “uowredwr 9AnruSod piiur ;DA ‘ureyo-3uof ‘)7 (proe oroudejuadesoord ‘ydq

{PIoB JTOUIEXAYESOI0P “VH( SI0ISO [0I)SAOYD ‘D) 10308} d1ydoIjoInau paALIop-uTelq ‘INJE QuI[dap 2ANIuS0o pajefar age ‘qOYV @dKoussd g ureyordodijode ‘gogy ‘proe orusjour-eydie Ty SUONEIAIQQY

% € UNM pasearour

ASININ ‘UONIUN dATINIOXD
‘Krowowr SunjI0M UO JO9JJd ON

‘K1owow uonIu30031 [BqIOA PIAE[OP

Aep/3 ¥1°0
:ejul YH(J Quijeseq
VHA £ep/3 70<

(110 £0s + u109) oqooerd 10 syuowd[ddns ¢-e3owo O

VSN W sas o]

[8slo10T

VHA T1d Bwse[d “sa 110 TeS[e woy VHA Aep/3 6'0  pawnsuod oym syuedronied papnjoxg SYoOM 7 ‘1D JP J2 OINEBIA[-O3IN §
pue 9jerpawwl ‘Arowdwr drposida
(S8% =) 9T< ASWIN ‘ADAV
pue Surures] [enedsonsia pasoiduy
s syure[dwod Arowawr 9A130a[qns
‘(s1eak 6 F (L~ 93eIoAR) SIBIA GG
‘urnsur unsej yym K[osIoAul pue
ANa4g reroyduad yim pajeroosse
UorjOUNJ 9ANNIIXI UI sjuduwdAoIduy
9,8~ XopUul ¢-e32WO duIaseq
‘seare d1quuil| pue [ejorred
oom/|
‘Jeroduwia) ‘[RINO Ul SWNJOA IdJjRld
ysyy pawnsuod syuedronred 3o
%9°6~ 01 K213 ‘A139)ur [BINIONIISOIIIWU (110 19Mmopyuns) oqaoeyd
PoOpN[IX? s1asn Kuewion ‘urpeg [89] €102
paseanoul (Vdd + VHA Topewr o3tm pasorduy 'sa (VHA 8 88°0 + VdA 8 ¢E'T)
yuowdrddns 110 ysig syooMm 97 ‘1OY D 12 PIA

D9Y%) Xdpul ¢-e3aw(Q

‘Arowdwr paAoxduut

PAMOYS XIPUI ¢-eFAWO UT ISBIIOUL
15918213 POMOYS OYyM J3S-qNS
‘uonuaye pue paads

JI0JOWILIOSUQS “AIOWAW UO S109J0 ON

“UoI)OUNy 9AIINOAXd pasoIdu]

¢-edowo T Aep/3 7'C :[10 YsLq
(59 = u pasAjeue ‘(g = u)

‘(0€ 01 97 woy paguel ‘(' | F 6T~
o3e10a®) 97 > SINIA ‘S189K G/—0S

52

oy g dqe L



53

Supplementation with krill oil (0.19 g EPA + 0.09 g DHA/day) and sardine oil (0.49 g EPA+0.25 g
DHA) in 61-72 year old men for 12 weeks resulted in increased activation of the dorsolateral prefrontal
cortex during a working memory task using near-infrared spectroscopy and electroencephalography
compared to placebo. Krill oil also increased activity during a calculation task in the left frontal area,
the dominant area for calculations [69]. Fish oil (1.32 g EPA + 0.88 g DHA/day) supplementation in
50-75 year olds over 26 weeks improved brain white matter microstructural integrity and grey matter
volume in frontal, temporal, parietal and limbic brain areas [68].

In summary, many of the RCT had intrinsic design limitations which hamper drawing firm
conclusions regarding the efficacy of LC omega-3 PUFA on cognitive performance in healthy older
adults. However, the current evidence suggests that DHA may be of benefit for older adults with
ARCD and MCI, particularly for improving memory.

5. Discussion

Trends are emerging from the current evidence suggesting that consumption of LC omega-3 PUFA,
particularly DHA, by healthy school-aged children, and younger and older adults may enhance
cognitive performance particularly in those who habitually consume diets low in LC omega-3 PUFA.
However, the evidence is inconsistent due to various intrinsic design limitations in many of the RCTs
which hamper drawing firm conclusions.

Baseline DHA status may have been an important confounding factor in the available research.
Since the human brain tenaciously retains DHA [71], individuals who have been following DHA
depleted diets over the long-term are most likely to show cognitive benefits with supplementation
whereas individuals with already adequate DHA status may not respond. Although several studies
excluded participants based on high intakes of LC omega-3 sources (supplements or seafood), the way
that this was assessed and the time periods of intake considered (ranging from 2 weeks to 6 months)
differed widely between studies. Some studies included biomarkers of DHA intake to verify low
baseline status, but it has mostly been used to confirm compliance to LC omega-3 PUFA interventions.
The studies used a wide range of biomarkers and units including RBCs, plasma, plasma PL, serum,
plasma cholesterolesters (CE), plasma phosphatidylcholine (PC), RBC PC, RBC phosphatidyletanolamine
(PE), cheek cells, expressed as either % of total fatty acids or in concentration units. It is therefore
difficult to establish the long-term DHA status of participants and to interpret results across studies.

The use of a uniform biomarker is essential in order to establish baseline DHA status, to determine
target levels for optimal cognitive performance as well as threshold levels above which no further
benefits are seen. The concept of establishing an omega-3 index for mental health has been suggested
by Milte et al. [72], based on the omega-3 index for mortality from coronary heart disease developed
by Harris and Von Schacky [73]. This index expresses the levels of EPA + DHA in RBC membranes
as percentage of total RBC fatty acids and an omega-3 index of >8% is associated with the greatest
cardio-protection whereas an index of <4% is associated with the least protection [73]. Since DHA
plays a major role in cognitive performance whereas EPA’s role is probably minor, a DHA-index for
cognitive performance could be established. A biomarker reflecting long-term intake of DHA may be
more appropriate. Plasma DHA reflects recent intakes whereas plasma PL and RBC DHA reflects
long-term DHA intakes [1] but RBC DHA has been shown to be more sensitive to long-term intakes
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than plasma PL [74]. The biomarker also has to correlate well with brain tissue levels. RBC DHA was
shown to be the most efficient biomarker for accumulation of DHA in the baboon neonate brain (RBC
DHA, r = 0.86; plasma DHA, r = 0.58) (reviewed by [74]). However, in studies involving children a
less invasive biomarker may be more appropriate such as cheek cell DHA. Cheek cell DHA levels
have been shown to correlate well with dietary intakes (» = 0.65), plasma (» = 0.61) and RBC DHA
(r = 0.58) levels [37]. In a study on piglets cheek cell DHA correlated well with brain DHA levels
(r = 0.60), but the correlation was not as good as for plasma (» = 0.70) and RBC levels (r = 0.72) [75].
The analysis of whole blood collected by finger prick and stored on absorbent paper may also provide
a non-invasive, rapid, less costly and reliable method for DHA quantification (correlation between
RBC DHA and whole blood spot collected by finger prick, » = 0.58) [76]. There may therefore be
several potential candidate biomarkers, but RBC DHA may be the preferred biomarker because of the
established history of the omega-3 index for coronary heart disease [77]. Equations could to be
developed to predict a uniform DHA-index level from these different biomarkers. The uniform
measurement of a DHA biomarker/index in RCT could facilitate the establishment of target DHA
levels at which cognitive performance is optimal which could then guide dietary intake recommendations.
We know from kinetic studies that over a period of 6 months, for every 1 g/day DHA consumed, RBC
DHA levels increased by 1% [78]. Arterburn et al. [1] showed that plasma PL. DHA was highly
sensitive to dietary intake of DHA up to doses of ~2 g/day after which the DHA levels approached
saturation and increased only incrementally. Identification of factors that predict biomarker responses
to DHA consumption would be important to estimate dietary requirements for achieving DHA targets.
Flock et al. [79] identified increased EPA + DHA dose as the strongest predictor of the omega-3 index
(% RBC EPA + DHA); lower baseline omega-3 index levels, older age, lower body weight, increased
physical activity with increased dose and female sex predicted greater increases in the omega-3 index.
The background diet, particularly the omega-6 PUFA content, may also be an important predictor of
RBC DHA response [80] that needs to be investigated.

The duration of studies in this review have also been variable ranging from 4 weeks to 2 years.
Studies in animal models showed that recovery of brain DHA levels from a state of depletion is a
much slower process compared to other tissues. Rats fed an omega-3 repletion diet containing ALA
and DHA after being subjected to a low omega-3 PUFA diet through two generations required 8 weeks
to reach DHA levels comparable to rats fed omega-3 PUFA adequate diets whereas DHA was almost
completely replete in serum and liver after 2 weeks [81]. In rhesus monkeys that were omega-3 PUFA
deficient and fed a DHA rich fish oil diet, DHA in phosphatidylethanolamine of the frontal cortex
increased after 2 weeks and stabilized after 12 week [82]. The half-life of DHA in the human brain is
~2.5 years [13]. Umhau ef al. [13] commented that any potential benefit of increasing brain DHA
through dietary change may therefore not be fully manifested in clinical trials of only a few weeks and
if such rapid improvements occurred it may rather be due to peripheral actions which indirectly affect
brain function [13]. The 5-week study by Nilsson et al. [66] is an example of this where improvements
in working memory correlated with improvements in cardio-metabolic markers. This may also explain
why several short term studies failed to show any effects of cognitive function. Several studies of
16 weeks and longer showed improvements in cognitive performance [27-30,41,58—60,68] which is
the minimum time needed for RBC DHA to reach a steady state [1,78]. The brain may not be saturated
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with DHA after 16 weeks of supplementation, but measurable outcomes may become apparent
after 16 weeks.

The outcomes that were improved with LC omega-3 PUFA supplementation in children included
verbal learning and memory [29], reading [27,29], spelling [29], non-verbal cognitive development [28]
and processing speed, visual-perceptive capacity, attention and executive function [30]; in younger
adults memory and reaction time of memory were improved [41]; and in older adults several studies
showed improvements in memory [27-29,41,58-60,65,68], while executive function [68] and
visuospatial learning [58] were also improved. Very few studies assessed the speed of performing
cognitive tasks. This represents a fundamental measure of brain function and is equally informative or
complementary to information on the accuracy of task performance [83]. Speed of information
processing is one of the cognitive abilities in children to develop first and is fundamental to the
development and expression of other cognitive abilities such as learning, memory and executive
functions [23]. Bearing in mind that DHA improves neural communication through several mechanisms
as discussed in the introduction, it is highly likely that DHA may affect speed of cognitive performance.
Stonehouse et al. [41] showed improvements in reaction time of episodic memory and working memory,
but not processing speed; Portillo-Reyes et al. [30] showed improvements in processing speed; and
McNamara et al. [26] showed an inverse relationship between RBC DHA levels and reaction time in a
sustained attention task while Muthayya et al. [31] could not show any effect on cognitive speediness
with a ALA supplement containing a small amount of DHA (0.1 g/day). The significance of any speed
change should be interpreted in the context of the function that was assessed [84]. Since memory has
been the outcome most often shown to be improved by DHA supplementation, it is likely that DHA
may also improve the speed at which memory tasks are performed as was shown by Stonehouse et al. [41].
It is suggested that future studies include this outcome in their battery of tests. The use of computerized
test batteries allows for the assessment of speed of performing cognitive tasks, but also has the
advantage of standardized presentation of cognitive tests, it removes the person-to-person interactions
with a researcher that can bias and obfuscate data, and it allows for closely controlled collection of a
large amount of data within a short period of time [83]. On the other hand, it may be tempting for
researchers to assess multiple cognitive outcomes in the hope to find positive results. However,
statistical significant findings from this approach are likely to result from chance alone (type 1 error) [85].
Instead, an approach where a small set of cognitive outcomes are identified and pre-specified (primary
outcome) [85] based on current evidence, e.g., memory, and investigated in greater detail will be
more valuable in substantiating the effects of LC omega-3 PUFA on cognitive performance than a
shot-gun approach.

The increased incorporation of brain imaging technologies in future LC omega-3 PUFA
interventions could provide valuable supportive in vivo information on the working mechanisms of LC
omega-3 PUFA. Brain imaging makers can reliably reflect neurostructural, neurophysiological,
neurochemical and functional cerebral changes occurring in response to the intervention. However,
these imaging markers cannot be considered as a substitute of clinical endpoints in terms of cognitive
or behavioral response to a task or challenge [86].

As discussed above, outcomes may have been confounded by potential response modulating effects
of gender, age and APOE, but very few studies have investigated these interaction effects.
If dimorphisms exist for any of these factors, potential effects may be diluted or cancelled out resulting
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in biased conclusions. Future trials of DHA on cognitive function should take these factors into
account by either recruiting homogenous samples or by planning gender-, age- or APOE-stratification
into the study design to ensure stratified randomization and sufficient statistical power.

To date, no studies have been conducted in vegan and vegetarian populations, who have much
lower dietary and blood DHA levels compared to omnivores [16], to determine the association
between DHA intake and cognitive function. Sarter et al. [17] suggest that lifetime DHA insufficiency
may put vegans at increased risk for cognitive dysfunction. It is therefore important that future
research studies focus on this target population. The availability of vegetarian omega-3 supplements,
e.g., algae-sourced DHA, and evidence that supplementation with these preparation result in increased
plasma and RBC DHA levels in vegans and vegetarians [16,17,87] makes this possible.

6. Conclusions

Individuals with low habitual intake of LC omega-3 PUFA, children with low literacy ability and
who are malnourished, and older adults with ARCD and MCI may benefit most from consuming LC
omega-3 PUFA, particularly DHA. However, the evidence-base is still emerging and RCTs have been
inconsistent with many study design limitations. A major challenge ahead is the design and conduct of
rigorous RCT to provide the evidence-base for dietary recommendations regarding DHA. It is
recommended that future studies include a uniform biomarker, e.g., % DHA in RBC, in order to
establish baseline DHA-status, determine targets for improved cognitive performance and to facilitate
dosage recommendations. It is also recommended that future studies be at least 16 weeks in duration,
account for potential interaction effects of gender, age and apolipoprotein E genotype, include
vegan/vegetarian populations, include measures of speed of cognitive performance which could be
facilitated by using computerised cognitive test batteries and include brain imaging technologies as
supportive information on working mechanisms of LC omega-3 PUFA.

Supplementation with DHA is unlikely to be a “magic bullet” that will create geniuses. However,
because of humans’ limited capacity to synthesise DHA de novo and its critical role in brain function it
seems prudent that healthy individuals should include DHA in their diets for optimal cognitive
performance through all stages of life. While the evidence is not available yet to make specific
recommendations for dietary intake of LC omega-3 PUFA and cognitive performance, we should aim
to achieve country specific recommendations of LC omega-3 PUFA. Several international
organisations recommend consumption of >500 mg/day EPA+DHA or >2 fatty fish meals/week [88].
The Australian—-New Zealand recommended suggested dietary targets (SDT) for LC omega-3 PUFA
is 610 mg/day for men and 430 mg/day for women aged 14 and older [89]. The energy adjusted SDT
for 9—13 year old boys and girls are 510 and 410 mg/day and for 4-8 year old boys and girls 400 and
350 mg/day, respectively [90].
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Abstract: The present randomized, placebo-controlled, double-blind, parallel-groups clinical trial
examined the effects of fish oil and multivitamin supplementation on the incorporation of #-3 and
n-6 fatty acids into red blood cells. Healthy adult humans (» = 160) were randomized to receive 6 g of
fish oil, 6 g of fish oil plus a multivitamin, 3 g of fish oil plus a multivitamin or a placebo daily for
16 weeks. Treatment with 6 g of fish oil, with or without a daily multivitamin, led to higher
eicosapentaenoic acid (EPA) composition at endpoint. Docosahexaenoic acid (DHA) composition was
unchanged following treatment. The long chain LC n-3 PUFA index was only higher, compared to
placebo, in the group receiving the combination of 6 g of fish oil and the multivitamin. Analysis by
gender revealed that all treatments increased EPA incorporation in females while, in males, EPA was
only significantly increased by the 6 g fish oil multivitamin combination. There was considerable
individual variability in the red blood cell incorporation of EPA and DHA at endpoint. Gender
contributed to a large proportion of this variability with females generally showing higher LC »-3
PUFA composition at endpoint. In conclusion, the incorporation of LC »n-3 PUFA into red blood cells
was influenced by dosage, the concurrent intake of vitamin/minerals and gender.
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1. Introduction

Two of the most commonly consumed dietary supplements in the Western world are fish oils containing
long chain »-3 polyunsaturated fatty acids (LC #-3 PUFA) and multivitamins [1,2]. The high prevalence
of multivitamin use can be attributed to the fact that vitamin deficiencies are common, even in affluent
countries [3]. The high prevalence of fish oil use may be in response to recent health messages, made
by respected medical authorities such as the American Heart Association, advocating the benefits of
increasing dietary LC »n-3 PUFA intake.

Extensive research has explored the effects of multivitamin and fish oil supplementation in isolation,
however, examination into their combined effect on human health remains scarce. Data from the
National Health and Nutrition Examination Survey suggests that users of complementary medicine are
most likely to use more than one supplement [4] meaning that many people are using both vitamin and
fish oil supplements at the same time. There is also some preliminary evidence to suggest that vitamins
and fish oils may have synergistic effects. Vitamin and mineral co-factors can influence the biosynthesis of
LC n-3 PUFA, altering levels of LC n-3 PUFA measured in vivo [5-7]. In particular, a preclinical study
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demonstrated that an experimentally induced folic acid deficiency was associated with a fall in LC n-3
PUFA levels, suggesting that low levels of antioxidant vitamins may increase lipid peroxidation [7].
Based on their frequency of use and potentially synergistic actions, there is a clear need to understand
how multivitamins and fish oils combine to affect potential health outcomes.

The present study investigated the effects of fish oil supplementation, with and without the addition
of a multivitamin, on LC n-3 PUFA and LC »n-6 PUFA incorporation measured in red blood cells.
Healthy elderly participants (z = 160) were randomized into four groups to receive daily: (1) 6 g of fish oil;
(2) 6 g of fish oil plus a multivitamin; (3) 3 g of fish oil and a multivitamin; or (4) a placebo in
a double-blind, parallel groups design. The primary outcome of this trial was the effect of treatment on
cognitive and cardiovascular function, which has been previously published [8]. This paper is concerned
with the secondary aim of this trial which was to examine how high and low dosages of fish oil, in
combination with a multivitamin, affected the incorporation of LC »n-3 PUFA into erythrocytes.
Specifically, in participants taking fish oil, we predicted increases in both EPA and DHA given that
these were provided in balanced proportions in the fish oil supplements; and a dose response effect
between consumption of 3 g and 6 g of fish oil. Additionally, we also examined whether combining
6 g of fish oil with a daily multivitamin increased LC n-3 PUFA red blood cell incorporation, over and
above the effects of fish oil alone.

2. Methods
2.1. Participants

The sample consisted of 160 healthy male and female volunteers aged 50 to 70 years. Participants
were recruited from the general community and were non-smoking volunteers, not currently taking any
medication or vitamin/herbal supplements. Exclusion criteria were; diagnosis of dementia, diabetes,
neurologic (i.e., Epilepsy, Parkinson’s disease, head trauma) or psychiatric disorders (i.e., depression,
schizophrenia), cardiovascular disease (including stroke) or past or present drug or alcohol abuse.
Individuals taking anti-coagulant, anti-cholinergic, anti-depressants or acetyl-cholinesterase inhibitors were
also excluded. Further exclusion criteria included those currently taking cognitive enhancing supplements
regularly and current or long-term multivitamin or fish oil supplementation. The participant flow diagram
is shown in Figure 1. The study randomized 160 participants and 144 completed the trial.
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Figure 1. Participant flow diagram. MV: multivitamin.
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2.2. Setting

The study was conducted at Swinburne University of Technology, Hawthorn, Australia.
2.3. Interventions, Randomization and Blinding

The trial was randomised, placebo-controlled and double-blind, using a parallel group design. The
participants were randomly assigned to one of the following four daily treatments:

(1) Multivitamin combined with 3 g of fish oil (240 mg EPA and 240 mg DHA);

(2) Multivitamin combined with 6 g of fish oil (480 mg EPA and 480 mg DHA);

(3) Placebo multivitamin combined with 6 g fish oil (480 mg EPA and 480 mg DHA);
(4) Placebo multivitamin combined with placebo fish oil (Sunola oil).

Participants consumed their assigned treatment daily for 16 weeks. The clinical trials supplements
and matching placebos were provided by Swisse Wellness Pty Ltd. (Melbourne, Australia). The active
fish oil supplement was Swisse Ultiboost Wild Salmon Oil and the active multivitamin supplement
was Swisse Ultivite 50+ (Mens and Womens formulations). The constituents of the multivitamins are
given in the online supplement (Table S1). All participants took one multivitamin (or its corresponding
placebo) daily. Participants allocated to receive 6 g of fish oil daily were required to take six active fish
oil capsules daily. Participants randomized to receive 3 g of fish oil took three active fish oil capsules
and three matching placebo capsules daily. Participants in the placebo group received six placebo
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fish oil capsules daily. The placebo fish oil contained 1000 mg of Sunola Oil and 50 IU of vitamin E
administered in a soft gelatin capsule. Sunola oil is a mono-unsaturated, high oleic (#-9) sunflower oil
and was chosen as a control given that it is virtually frans-fat free and has a similar profile to olive oil.
Small sachets with a few drops of fish oil were included in containers to assist with blinding by providing
a fish odour when opened. The placebo multivitamin contained carrot powder with a small amount of
riboflavin to produce colouration of the urine similar to the active multivitamin. The placebos were
identical to the active tablets in shape, size and colour.

Participants were randomly assigned to one of the four experimental groups using a random permuted
block procedure with a block size of four. The randomisation was conducted independently by the
supplement supplier and the bottles labeled according to the randomization schedule. The research
staff were blinded to this allocation. To ensure adequate blinding, placebo and active treatments were
packaged in identical blister packs for multivitamins and sealed plastic containers for fish oil capsules.
Participants were allocated the next sequential number upon enrolment in the study. Data was unblinded
following the analysis of the main study aims.

2.4. Outcomes Measures

The outcome measures for this study were the incorporation of LC »n-3 PUFA and LC n-6 PUFA
fatty acids into red blood cells, following supplementation. Blood sampling was conducted in the morning
following a 12-h fasting period. Blood was collected via venepuncture from the antecubital vein, using
the BD-vacutainer system. Samples were analysed by Healthscope Functional Pathology according to
standard procedures. Samples were centrifuged at 3000 rpm for 10 min before plasma was removed.
Red blood cells were then washed twice by suspending in 0.9% saline, centrifuging at 3000 rpm
aspirating off the supernatant. Red cells were then stored at —20 °C until assayed. Methyl ethers of
fatty acids were prepared as follows: 350 puL of plasma and 1.5 mL of red cell extract were added to a
10 mL extraction tube. 3.8 mL of a methanol/chloroform mixture was added before vortexing the tube
for 6 min. 0.8 mL of 0.1 M KCI solution was added and the tube was then vortexed for a further
3 min and then centrifuged at 3000 rpm for 10 min. The upper aqueous layer was discarded by
aspiration. A silane treated glass wool was placed in the bottom of a glass Pasteur pipette and then
filled with sodium sulphate. The organic layer was passed through sodium sulphate and the eluate was
collected in 2 mL vials. The solvent was evaporated to dryness in heating block (<45 °C) with
nitrogen. The dry residue was reconstituted with 130 pL of Meth-Prep II methylation agent. Vials were
then closed and left to rest at room temperature overnight. 0.8 pL of the esterification mixture was then
injected into a Gas Liquid Chromatography using flame ionisation detection (GLC-FID), on a
Schimadzu G-2010 (Shumadzu, Kyoto, Japan), for analysis. Chromatic conditions included a detector
temperature of 300 °C and injector temperature of 250 °C. Injector sampling time was 0.5 min.
All fatty acid values were expressed as a percentage of red blood cell total fatty acids. The LC
n-3 PUFA index was calculated as total DHA + total EPA + total DPA. Total »-3 fatty acid and total
n-6 fatty acids were calculated as the combination of both total long and short chain #-3 (alpha linolenic
acid + EPA + DHA + DPA) and »n-6 (linoleic acid + gamma linolenic acid + eicosadienoic acid +

eicosatrienoic acid + arachidonic acid) fatty acids respectively.
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2.5. Sample Size

The sample size of 160 was determined based on the variance of the cognitive and cardiovascular
study outcomes, which are reported separately [8]. Percept changes in cognitive performance were expected
to be considerably smaller than changes in LC n-3 PUFA over the study period. Thus, the study was
believed to be appropriately powered to investigate changes in LC n-3 PUFA due to treatment.

2.6. Procedure

Participants were required to attend testing sessions at our laboratories on three separate occasions;
at baseline, following six weeks of supplementation and following 16 weeks of supplementation.
Blood samples were taken both at baseline and at week 16 only.

The research was conducted in accordance with the guidelines of the Australian National Health
and Medical Research Council and the Declaration of Helsinki (as revised in 2004). The study was
approved by the Swinburne University Human Research Ethics Committee. Written informed consent
was obtained from all subjects. This trial was registered with the Australian and New Zealand Clinical
Trial Registry (ACTRN12611000094976).

2.7. Statistical Analyses

Results were analyzed using SPSS statistics (IBM, version 20, New York, NY, USA). Univariate
analyses of variance (ANOVA) were used to examine whether any significant group differences existed
at baseline for the basic demographic and health variables displayed in Table 1. Univariate ANCOVAs
were also used to examine the effects of treatment on all outcomes variables at week 16. Significant
main effects of treatment were further examined using simple planned contrasts, applying Bonferroni
corrections to each contrast in order to adjust for comparisons across the treatment groups. Given that
males and females may respond differently to LC n-3 PUFA supplementation across different clinical
outcomes, we examined whether gender predicted the incorporation of LC »n-3 PUFA and LC
n-6 PUFA into red blood cells. For these analyses, gender was entered as a fixed factor and the respective
fatty acid variable at endpoint as the dependent variable in ANOVA. All analyses were adjusted for the
respective scores at baseline and all results were considered statistically significant at p < 0.05.

3. Results

The trial started in 2010 and was ceased in 2012 due to attainment of the desired sample size.
No serious adverse events were reported.

3.1. Cohort Demographics

The descriptive demographics of the study population at baseline are given in Table 1. The mean
age of the sample was 59 years. The sample was roughly gender balanced with slightly more females.
On average, the sample was well educated and high functioning. Blood pressure levels were normal
across the sample although Low Density Lipoprotein (LDL) cholesterol tended to be elevated across
all treatment groups. ANOVA revealed that, at baseline, the treatment groups were well matched
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across all continuous variables displayed in Table 1, with no significant group differences noted. ANOVA
also suggested that males and females were well matched across all fatty acid variables at baseline.
Mean baseline fatty acid values can be seen in Table 2, stratified according to treatment allocation.
Across the whole sample, median red blood cell composition of #-3 fatty acid and n-6 fatty acid tended
to be lower than those reported in a normative group of almost 160,000 people [9]. In contrast, median
baseline values of saturated and monounsaturated fats were higher in the present cohort.

Table 1. Sample demographics (means and standard deviations) stratified by treatment allocation.

Fish Oil, 6 g +

. Fish Oil, 3 g + . .
Variable Fish Oil, 6 g Placebo Overall
Multivitamin Multivitamin
N 43 39 41 37 160
Age, year 59.48 (5.64) 58.90 (5.60) 59.51 (5.89) 59.19 (5.96) 59.28 (5.72)
Male, % 48 48 46 46 47
Education, year 15.54 (3.10) 15.79 (3.92) 15.84 (3.94) 15.76 (3.38) 15.73 (3.57)
MMSE 28.12 (2.04) 28.25(1.61) 28.07 (2.02) 28.14 (1.74) 28.14 (1.85)
Height, cm 170.79 (8.79) 169.63 (9.17) 173.03 (9.91) 170.23 (9.05) 170.93 (9.24)
Weight, kg 74.88 (13.78) 70.98 (12.08) 76.35 (16.28) 70.35 (11.01) 73.18 (13.57)
BMI 25.54(3.59) 24.41 (3.07) 25.31 (4.03) 24.2 (2.79) 24.88 (3.43)
LDL, mmol/L 3.31(0.71) 3.51(0.72) 3.37(0.84) 3.27(0.72) 3.36 (0.75)
HDL, mmol/L 1.52(0.42) 1.61 (0.39) 1.56 (0.44) 1.57 (0.36) 1.56 (0.40)
SBP, mmHg 125.81 (20.97) 122.59 (16.92) 126.29 (16.92) 121.41 (21.47)  124.12 (19.10)
DBP, mmHg 77.19 (13.32) 75.46 (10.90) 77.71 (9.82) 74.62 (12.13) 76.30 (11.58)

Note: MMSE: Mini Mental State Examination, BMI: Body Mass Index, LDL: low density lipoprotein cholesterol,
HDL.: high density lipoprotein cholesterol, SBP: systolic blood pressure, diastolic blood pressure.

3.2. Main Effects of Treatment on n-3 Fatty Acid and n-6 Fatty Acid Blood Measures

Table 2 displays red blood cell fatty acid composition before and after treatment. Univariate ANCOVA
revealed that week 16 EPA (F(3, 136) = 12.20, p < 0.001), DPA (F(3, 136) = 3.09, p < 0.05), LC n-3
PUFA index (F(3, 136) = 3.98, p < 0.01), AA/EPA ratio (F(3, 136) = 53.74, p < 0.001), total n-3
fatty acid (F(3, 136) = 3.96, p < 0.05), total n-6 (F(3, 136) = 4.01, p < 0.01) and the »n-3/n-6 ratio
(F(3, 136) = 10.13, p < 0.001) differed between treatment groups, when controlling for baseline.
Week 16 DHA (F(3, 136) = 2.01, p = 0.10) did not differ according to treatment allocation, when

controlling for baseline.
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Table 2. Means, standard deviations and percentage change for red blood cell fatty acid

status over the course of supplementation.

Fish Oil, Fish Oil, ANCOVA
Variable L. L. Fish Oil, 6 g Placebo
3 g + Multivitamin 6 g + Multivitamin F Value
EPA, % 12.20 ***
Baseline 0.99 (0.46) 1.01 (0.30) 1.06 (0.41) 1.00 (0.43)
Week 16 1.41 (0.68) 1.98 (0.65) *** 1.66 (0.75) *** 1.06 (0.48)
% change 42.42 96.04 56.60 6.00
DHA, % 2.01
Baseline 2.66 (1.26) 2.74 (0.96) 2.92 (1.10) 2.82 (1.11)
Week 16 2.94 (1.58) 3.64 (1.27) 3.16 (1.60) 2.86 (1.21)
% change 10.53 32.85 8.22 1.42
DPA, % 3.09 *
Baseline 1.69 (0.75) 1.88 (0.50) 1.94 (0.65) 1.83 (0.61)
Week 16 1.74 (0.85) 2.31(0.67) 1.93 (0.96) 1.87 (0.74)
%change 2.96 22.87 —0.52 2.19
LC n-3 PUFA
index, % 3987
Baseline 5.34(2.31) 5.63 (1.59) 5.92 (2.04) 5.65 (2.00)
Week 16 6.11(2.99) 7.92 (2.46) ** 6.75 (3.23) 5.79 (2.31)
% change 14.42 40.67 14.02 2.48
AA/EPA, ratio 53.74 ***
Baseline 10.18 (4.06) 10.18 (2.24) 9.75 (3.20) 10.58 (3.79)
Week 16 6.11 (2.22) *** 4.48 (1.05) *** 4.64 (1.18) *** 9.72 (3.13)
% change —39.98 —55.99 —52.41 —8.13
Total n-3 FA, % 3.96 *
Baseline 5.52(2.32) 5.83 (1.61) 6.11 (2.06) 5.85(2.01)
Week 16 6.26 (3.00) 8.10 (2.47) ** 6.90 (3.22) 5.99 (2.32)
% change 13.41 38.94 12.93 2.39
Total n-6 FA, % 4.01 **
Baseline 21.97 (4.82) 24.27 (3.42) 23.80 (4.50) 23.41 (4.49)
Week 16 19.77 (5.60)* 21.63 (4.34) 19.98 (5.53) * 23.66 (4.54)
% change —10.01 —10.88 —16.05 1.07
n-3/n-6 FA,
i 10.13 ***
ratio
Baseline 0.24 (0.78) 0.23 (0.06) 0.25 (0.07) 0.24 (0.06)
Week 16 0.29 (0.10) 0.37 (0.09) *** 0.33(0.11) ** 0.25 (0.08)
% change 20.83 60.86 32.00 4.17
n 35 37 38 31

Note: EPA: Eicosapentaenoic Acid, DHA: Docosahexaenoic Acid, AA: Arachidonic Acid, LC #-3 PUFA: Long chain

n-3 polyunsaturated fatty acid, FA: Fatty acid, ANOVA results are for univariate analysis of variance comparing blood

values at end-point, by treatment allocation, whilst controlling for baseline values. Stars display results of simple planned

contrasts between the placebo and treatment groups. * p < 0.05, ** p <0.01, *** p <0.001.
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3.3. Effects of Treatment, Relative to Placebo, on n-3 Fatty Acid and n-6 Fatty Acid Blood Measures

Those treatment groups differing significantly from placebo can be seen in Table 2. The week 16
AA/EPA ratio was lower across all treatment groups relative to placebo. EPA was significantly higher
at week 16 in the two 6 g fish oil groups. Despite a significant main effect, none of the treatment groups
had significantly higher DPA at study endpoint, as compared to placebo. Both the LC n-3 PUFA index
and total n-3 fatty acid were only higher in the group receiving the combination of the 6 g fish oil and
multivitamin combination. #-6 Fatty acid was lower in the 3 g fish oil multivitamin group as well as in
the group receiving 6 g of fish oil in isolation. The n-3/n-6 fatty acid ratio was significantly higher
following 6 g of fish oil supplementation, irrespective of the multivitamin.

3.4. Effects of Fish Oil Dosage on n-3 Fatty Acid and n-6 Fatty Acid Blood Measures

Red blood cell incorporation of n-3 fatty acid at week 16 was expected to be higher following
supplementation with 6 g as opposed to 3 g of fish oil, demonstrating a dose response. When directly
comparing the 6 g fish oil multivitamin group to the 3 g fish oil multivitamin group, the higher dose
fish oil group displayed significantly higher week 16 incorporation of EPA (p <0.01), DPA (p < 0.05),
LC »-3 PUFA index (p < 0.05), total n-3 fatty acid (p < 0.05) and the n-3/n-6 fatty acid ratio (p < 0.01).
The AA/EPA ratio was also lower in the higher dose fish oil group (p < 0.01).

3.5. Effects of Combining Fish Oil with a Multivitamin on n-3 and n-6 Blood Measures

Adding a multivitamin to the fish oil was expected to increase week 16 »n-3 fatty acid incorporation
into red blood cells, over and above the effects of fish oil alone. When directly comparing the two 6 g
fish oils groups, with and without the addition of a multivitamin, there were no significant differences
between the two groups across any of the week 16 »-3 fatty acid or n-6 fatty acid variables. However,
when comparing to placebo, the LC n-3 PUFA index and total n-3 fatty were only increased following
the 6 g fish oil multivitamin combination (Table 2) and not the 6g fish oil alone.

3.6. Sources of Variability in Red Blood Cell n-3 Fatty Acid Incorporation

Figure 2 shows changes in total -3 fatty acid, EPA, DHA and the AA/EPA ratio, over the course of
the study, stratified by treatment allocation. Considerable individual variability in #-3 fatty acid change
is evident. Interestingly, many participants allocated to the fish oil conditions decreased their amount
of total »n-3 fatty acid and DHA as measured from red blood cells over the 16 week study period.
However, EPA tended to increase and the AA/EPA ratio decreased in the fish oil treatment arms
suggesting that the variability in DHA and total »-3 fatty acid may reflect individual differences in
incorporation rather than compliance to treatment. The AA/EPA ratio appears to be the best indicator
of compliance to treatment as almost all participants receiving active fish oil decreased their ratio,
whilst those in the control group tended to remain stable. Across all »-3 fatty acid measures,
the coefficients of variations using week 16 treatment means and standard deviations (Table 3) tended
to be lowest for the 6 g fish oil + multivitamin group and highest for the 3 g fish oil + multivitamin
group. The coefficients of variation also tended to be lowest for the AA/EPA ratio.
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Figure 2. Variability in red blood cell incorporation stratified by treatment allocation
for measures of DHA (A), EPA (B), AA/EPA ratio (C) and total »n-3 fatty acid (D).
EP: eicosapentaenoic acid, DHA: docosahexaenoic acid, AA: Arachidonic acid, FO: fish oil,
MV: multivitamin. Circles and stars represent outliers less than 2 and greater than 2 standard
deviations from the mean respectively.
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3.7. Gender and Variability in n-3 Fatty Acid

Recent studies suggest that males and females respond differently to LC #-3 PUFA supplementation
across different clinical outcomes [10,11]. Males and females may therefore differ in their ability to
incorporate n-3 fatty acids into erythrocytes. The authors investigated whether gender accounted for
some of the observed variability in the incorporation of n-3 fatty acids into red blood cells. Gender was
a significant predictor of week 16 EPA (F(3, 135) = 4.54, p < 0.05), DHA (F(3, 135) = 4.42,
p < 0.05), LC n-3 PUFA index (F(3, 135) =4.53, p < 0.05) and total »-3 fatty acids (#(3, 135) = 5.10,
p < 0.05). Gender was not predictive of the week 16 AA/EPA ratio (F(3, 135) = 0.01, p = 0.94)
nor DPA (F(3, 135) = 2.58, p = 0.11). Significant interactions were also found between treatment
allocation and gender for EPA (F(3, 135) = 3.40, p < 0.05), DHA (F(3, 135) = 4.99, p < 0.01),
DPA (F(3, 135) =5.10, p <0.01), LC n-3 PUFA index (F(3, 135) = 5.37, p < 0.01) and total »n-3 fatty
acids (F(3, 135) =4.86, p <0.01). Selected interactions are displayed in Figure 3 (Separate analysis of
males and females across all blood measures can be seen in Tables S2 and S3 of the online
supplement). It can be seen that females tended to have higher red blood cell incorporation of most n-3
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fatty acid blood measures at endpoint. The most interesting finding was that, in females, all treatment
groups led to an increase in EPA relative to placebo (Figure 3A). In males, EPA only increased following
treatment with the combination of 6 g fish oil and a daily multivitamin. Unlike gender, other
demographic and clinical factors such as age, height, weight, physical activity, total cholesterol, high
sensitivity CRP and general health status did not predict »-3 fatty acid incorporation into red blood cells at
study endpoint.

Table 3. Coefficients of variation for each »n-3 fatty acid blood measure at week 16,
stratified by treatment allocation.

Variable Fish Oil, Fish Oil, Fish Oil, Placebo
3g + Multivitamin 6g + Multivitamin 6g
EPA 0.48 0.33 0.45 0.45
DHA 0.54 0.35 0.51 0.42
DPA 0.49 0.29 0.50 0.40
LC n-3 PUFA index 0.49 0.31 0.48 0.40
AA/EPA 0.36 0.23 0.25 0.34
Total n-3 0.48 0.30 0.47 0.39
n-3/n-6 0.34 0.24 0.33 0.32

Note: EPA = Eicosapentaenoic Acid, DHA = Docosahexaenoic Acid, AA = Arachidonic Acid, LC »-3
PUFA = Long chain n-3 polyunsaturated fatty acid. Coefficients of variation calculated as week 16 standard
deviation/mean for each measure respectively.

Figure 3. Incorporation of EPA (A) and DHA (B) into red blood cells at study endpoint
stratified by treatment allocation and gender. Males are represented by white bars and
females by shaded bars. * Group significantly different to placebo at p < 0.05, ** Group
significantly different to placebo at p < 0.01.
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4. Discussion

This study investigated the effects of fish oil supplementation, with and without the addition of
a multivitamin, on red blood cell fatty acid composition. Daily supplementation with 6 g of fish oil for
16 weeks led to higher composition of EPA as well as a lower AA/EPA ratio. The LC »n-3 PUFA index
and total n-3 fatty acid only increased after 6 g of fish oil was administered in combination with a daily
multivitamin. As expected, 6 g of fish oil combined with a multivitamin was more effective at increasing
n-3 fatty acid erythrocyte composition than 3 g of fish oil combined with a multivitamin. Over the 16 week
study period there was considerable individual variability in n-3 fatty acid change, much of which was
accounted for by gender. A predicted dose response effect in #-3 fatty acids was seen between the 3 g
and 6 g fish oil supplements.

Fish oils combined with the concomitant use of a multivitamin increased the LC n-3 PUFA index.
The LC »n-3 PUFA index was not increased following 6 g of fish oil alone. It thus follows that the intake of
vitamins and minerals, from dietary sources, may also affect the efficacy of fish oil supplementation.
These results are important because low amounts of LC n-3 PUFA are associated with an increased
risk of death from coronary heart disease [12]. Combining fish oil supplementation with adequate
vitamin/mineral intake, either through diet or supplementation, may help bolster the LC n-3 PUFA
index thus reducing cardiovascular disease risk. Future fish oil intervention trials are advised to
account for habitual intake of vitamins (i.e., through food frequency questionnaires), as this may partly
explain individual differences in response to fish oil treatment.

The mechanism by which vitamin/mineral intake interacts with fish oil supplementation to increase
the LC »n-3 PUFA index is not completely understood. Preliminary evidence obtained from animal studies
suggests that certain vitamins and minerals, such as B vitamins and iron, influence in vivo composition
of n-3 [5-7]. Although speculative, multivitamin use may boost antioxidant defence, protecting LC »-3
PUFA from oxidation.

The present results suggest that considerable variability exists in the individual to uptake and transfer
LC n-3 PUFA to red blood cells. Gender was identified as one factor contributing to this variability.
Females supplemented with fish oil were generally found to have higher incorporation of total n-3 fatty
acids at the end of the study. No gender differences were found for the AA/EPA ratio suggesting that
gender differences are not merely due to compliance to treatment. Instead, these results suggest that
males and females differ in their ability to incorporate some specific types of LC n-3 PUFA, such as
EPA, into red blood cells. In females, all treatments led to a significant increase in EPA over and
above the placebo. In contrast, only the 6 g fish oil multivitamin treatment led to an increase in EPA
composition in males. These findings are interesting in light of recent studies showing that males and
females respond differently to LC n-3 PUFA supplementation across clinical outcomes such as platelet
aggregation [10] and cognitive performance [11]. If the present findings can be replicated, they may
have significant implications for health policy and guidelines because males and females may be
required to consume different amounts of fatty fish or fish oil supplements in order to achieve optimal
LC n-3 PUFA blood composition.

In certain areas of investigation, inconsistencies have been reported regarding the health benefits of
fish oil supplementation. For example, randomized controlled trials have produced conflicting results
as to whether fish oil supplementation can enhance cognitive performance or mitigate cognitive decline
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in adults [11,13,14]. These conflicting results are surprising given that observational studies have been
far more consistent in suggesting that »-3 fatty acid blood composition is associated with cognitive
outcomes [15-18]. In light of the present findings, inconsistencies reported in fish oil intervention
studies may be partly due to individual differences in the ability to incorporate LC n-3 PUFAs into cell
membranes. These individual differences may be due to gender or vitamin/mineral intake, either through
background diet or concomitant supplement use. Others have also suggested that genetic markers,
such as the presence of the APOE e4 allele, may also affect response to fish oil supplementation [19].
To counteract the variability in response to fish oil supplementation, these results highlight the
importance of including blood measures of LC n-3 PUFA status in future fish oil intervention studies.

The fish oil supplements in the current study contained a balanced ratio of EPA and DHA. Although
EPA increased by as much as 96%, DHA red blood cell levels did not significantly increase following
fish oil supplementation. These results are consistent with a previous report showing that EPA, as compared
to DHA, was better incorporated into erythrocyte membranes following supplementation [20]. In this
previous study, EPA increased by 300% while DHA only increased by 42% following 8 weeks of daily
supplementation with 1296 mg EPA and 864 mg DHA. Previous studies have also shown that the
uptake of DHA into erythrocyte membranes is more variable than that of EPA [20,21].

Limitations of the current study include the relatively small sample size, the relatively short
follow-up period and the fact that LC n-3 PUFA composition was only measured at baseline and
then again following 16 weeks of supplementation. Assessing red blood cell fatty acid incorporation
at multiple time points, spread out over the intervention period, would provide a better indicator of
n-3 fatty acid change across time. The multivitamin formulations used in the present study differed
slightly for males and females and this may have inflated some of the observed gender differences.
Furthermore, we did not monitor or examine how changes in other dietary factors may have influenced
the reported results over the 16 week study period. Lastly, recent studies have shown health benefits of
fish oil associated with higher dosages than that used in the present study [11,22] and it is possible that
higher dosages would differentially affect »-3 fatty blood biomarkers.

5. Conclusions

Daily supplementation for 16 weeks with 6g of fish oil, with or without a multivitamin, led to
higher EPA incorporation into erythrocytes. A dose response effect was demonstrated between
3 gand 6 g of fish oil on »-3 fatty acids. Treatment had no effect on DHA composition. At study endpoint,
the LC n-3 PUFA index was only higher for those receiving a multivitamin in addition to 6 g of daily
fish oil, suggesting that some vitamins/minerals aid the incorporation of LC »n-3 PUFA into red blood
cells. There was considerable individual variability in the response to supplementation with females,
generally found to incorporate LC n-3 PUFA into red blood cells more effectively than males. Relative
to placebo, all treatments increased EPA in females whereas only the 6 g fish oil multivitamin combination
treatment increased EPA in males. These results suggest that some males may incorporate relatively
low amounts of LC »n-3 PUFA into red blood cells despite adhering to LC n-3 PUFA intake guidelines.
This is an important area for future research because dietary recommendations around LC »n-3 PUFA
intake may need to be gender specific.
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3. Sources of Long-chain Omega-3

Readily Available Sources of Long-Chain Omega-3 Oils: Is
Farmed Australian Seafood a Better Source of the Good Oil
than Wild-Caught Seafood?

Peter D. Nichols, Brett Glencross, James R. Petrie and Surinder P. Singh

Abstract: Seafood consumption enhances intake of omega-3 long-chain (>Cy) polyunsaturated fatty
acids (termed LC omega-3 oils). Humans biosynthesize only small amounts of LC-omega-3, so they are
considered semi-essential nutrients in our diet. Concern has been raised that farmed fish now contain
lower LC omega-3 content than wild-harvested seafood due to the use of oil blending in diets fed to
farmed fish. However, we observed that two major Australian farmed finfish species, Atlantic salmon
(Salmo salar) and barramundi (Lates calcifer), have higher oil and LC omega-3 content than the same
or other species from the wild, and remain an excellent means to achieve substantial intake of LC
omega-3 oils. Notwithstanding, LC omega-3 oil content has decreased in these two farmed species,
due largely to replacing dietary fish oil with poultry oil. For Atlantic salmon, LC omega-3 content
decreased ~30%—-50% between 2002 and 2013, and the omega-3/omega-6 ratio also decreased (>5:1 to
<I:1). Australian consumers increasingly seek their LC omega-3 from supplements, therefore a range of
supplement products were compared. The development and future application of oilseeds containing
LC omega-3 oils and their incorporation in aquafeeds would allow these health-benefitting oils to be
maximized in farmed Australian seafood. Such advances can assist with preventative health care,
fisheries management, aquaculture nutrition, an innovative feed/food industry and ultimately towards
improved consumer health.

Reprinted from Nutrients. Cite as: Nichols, P.D.; Glencross, B.; Petrie, J.R.; Singh, S.P. Readily
Available Sources of Long-Chain Omega-3 Oils: Is Farmed Australian Seafood a Better Source of the
Good Oil than Wild-Caught Seafood? Nutrients 2014, 6, 1063—1079.

1. Introduction

The health benefits of omega-3 long-chain (=Cy) polyunsaturated fatty acids (LC-PUFA, also
termed LC omega-3 oils) were first documented over three decades ago. Scientists observed that
Greenland Eskimos had lower incidence of heart disease than other ethnic groups despite their high fat
diet that was rich in the blubber of marine mammals [1]. The main LC omega-3 oils that have been
attributed to this health benefit are eicosapentaenoic acid (EPA, 20:503) and docosahexaenoic acid
(DHA, 22:6w3). For brevity, we use the term LC omega-3 here in consideration of both fatty acids,
and also that of docosapentaenoic acid (DPA, 22:503). Seafood has traditionally been the major source
of these health-benefitting LC omega-3 oils [2]. Over the past decade the supply of farmed seafood has
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steadily increased, with the contribution of aquaculture to human food supplies now similar in volume
to that of the wild catch harvest.

Aquaculture is currently the main user of industrially produced fish oils, with around 90% of global
fish oil production used in aquafeeds [3]. Fish oils are used in feeds for most aquaculture species to
satisfy both essential fatty acid and energetic demands [4]. However, as aquaculture has expanded, the
ability of existing supplies, including the increasing cost, of the wild harvest fish oil resource to meet
industry needs has been largely surpassed [5]. Non-marine sources of oil, including vegetable and
animal-derived, are therefore now also included in aquafeeds as alternatives to fish oil. However, both
alternatives to fish oil have a lower content of LC omega-3 oil, which has the flow on effect of causing
a lower concentration of LC omega-3 in farmed seafood products compared to that observed
previously [6]. Generally Australian consumers and also, to our knowledge, consumers in most other
countries are not fully aware of the lower LC omega-3 content now occurring in many farmed fish
species. In addition to the trend of fish oil replacement largely by oil blends, other potential strategies
exist, including finishing diets used prior to harvest and novel ingredients such as LC omega-3
precursors [7]. However, to ensure the long-term supply of LC omega-3 oils for aquaculture there is a
clear need for new and sustainable sources of these oils from fishery independent sources.

Obtaining information on the composition of farmed seafood products is important for future
developments within the aquaculture and associated feed manufacturing industries. This study was initiated
to examine the fatty acid content and composition of two major Australian farmed fish species—
Atlantic salmon (Salmo salar) and barramundi (Lates calcifer). Particular emphasis was given to the LC
omega-3 oils, and also the comparison of the changes seen in the fatty acid profiles between samples
collected over 2010-2013 and earlier data for these same species obtained during 2002 when a largely
fish oil diet was in use. As many Australian consumers increasingly seek their LC omega-3 from
supplements, a range of supplement products also were examined and compared.

2. Experimental Section
2.1. Sample Collection

Norwegian quality cut (NQC) samples from three fresh fillets of farmed Atlantic salmon were
obtained twice per year between December 2010 and November 2013. At CSIRO, the skin was removed
and each sample was independently blended for two minutes in an OSKAR 400 continuous flow
homogenizer. Whole barramundi were supplied to CSIRO in November 2010 by Marine Produce
Australia Pty Ltd. (Broome, WA, Australia). The right fillet of each of three fish was used and the
NQC analogous cut from that fillet of the barramundi was taken. The NQC sample was then minced,
with a sample analysed for moisture content by gravimetric analysis after oven drying at 105 °C for
24 h. The remainder of the sample was frozen, freeze dried, ground in a coffee grinder, and then
shipped to Hobart for lipid extraction and analysis.

Fourteen commercially produced omega-3 fish oil capsules were purchased from a local Hobart
pharmacy. Each product was given a laboratory code: FO1-14. Oil capsules were cut open with a
scalpel and the oil transferred to a glass vial using a glass pipette.
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2.2. Lipid Extraction

NQC samples (typically between 1 and 3 g wet weight for Atlantic salmon, dry weight for
barramundi) were quantitatively extracted overnight using a modified Bligh and Dyer [8] single-phase
methanol-chloroform-water extraction (2:1:0.8 v/v/v). The phases were separated by addition of
chloroform-water (final solvent ratio, 1:1:0.9 v/v/v methanol-chloroform-water). The total solvent
extract (TSE) was concentrated using rotary evaporation at 40 °C, and total lipid content was
determined gravimetrically.

2.3. Fatty Acid Analysis

An aliquot of the TSE of the farmed fish samples or the fish oils dissolved in chloroform was
trans-methylated to produce FA methyl esters (FAME) using methanol-chloroform—conc.
hydrochloric acid (3 mL, 10:1:1, 80 °C, 2 h) [9]. FAME were extracted into hexane—chloroform (4:1,
1.8 mL). The samples were dried on a heat block (40 °C) under a stream of nitrogen gas, and an
internal injection standard (C;9 or C,3 FAME) added.

Samples were analysed by gas chromatography (GC) using an Agilent Technologies 7890A GC
(Palo Alto, CA, USA) fitted with a Supelco Equity™-1 fused silica capillary column (15 m % 0.1 mm
ID, 0.1 um film thickness (Bellefont, PA, USA) an FID, a split/splitless injector and an Agilent
Technologies 7683B Series auto sampler and injector. Helium was the carrier gas. Samples were
injected in splitless mode at an oven temperature of 120 °C. After injection, the oven temperature was
raised to 250 °C at 10 °C min™" and finally to 270 °C at 3 °C min"'. Peaks were quantified with Agilent
Technologies ChemStation software (Palo Alto, CA, USA). GC-mass spectrometric (GC-MS) analyses
of selected samples were performed on a Finnigan Thermoquest GCQ GC-MS fitted with an
on-column injector using Thermoquest Xcalibur software (Austin, TX, USA). The GC was fitted with a
capillary column of similar polarity to that described above. Individual components were identified
using mass spectral data and by comparing retention time data with those obtained for authentic and
laboratory standards.

3. Results
3.1. Oil Content

Lipid content of the farmed barramundi samples averaged 10% (WW) in 2002 and 8.5% in 2010
(wet weight, WW). Oil content of the farmed Atlantic salmon samples ranged from 6.7% to
14.7% (WW). The 2010 and 2011 autumn Atlantic salmon samples contained lower oil content than all
other samples collected from 2010 to 2013.
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3.2. Fatty Acid Composition and Content
3.2.1. Farmed Fish

Major fatty acids (FA) (as % of the total fatty acids, TFA) in farmed Australian Atlantic salmon
harvested in 2002 were in decreasing order of abundance: 16:0 (18%), DHA (17%), 18:1®9 (oleic
acid, OLA; 15%), EPA (10%) and 16:107 (6%) (Table 1). The three LC omega-3 PUFA—EPA +
DPA + DHA accounted for 30% of the TFA.

For farmed Atlantic salmon obtained in 2010-2013, the FA profile differed both from the
2002 sample, and also over the 4 year period. Major FA in the 2010-2013 samples in decreasing order
of abundance were: OLA, 16:0, 18:2w6 (linoleic acid, LOA) and 16:1w7 (Table 1); these four FA
accounted for 57% (autumn 2010) rising to 72% of TFA in late spring 2013. In 2002, these four FA
had accounted for 42% of TFA in farmed salmon. The next most abundant FA in the 2010-2013
Atlantic salmon samples were: EPA, DHA and 18:0, with all three FA decreasing over this period.
LOA increased from around 2.5-fold (autumn 2010) to 4-fold (spring 2013) compared to the 2002
sampling, and the relative proportion of arachidonic acid (ARA) decreased over the 2010-2013 period.

Expressed on an absolute basis (mg/100 g serve, WW), LC omega-3 content in farmed Atlantic
salmon was 2010 mg/100 g in 2002, then ranged from as high as 1770 mg/100 g (spring 2010)
decreasing to 980 mg/100 g in spring 2013 (Figure 1). The ratio of omega-3 PUFA/omega-6 PUFA
was 7.8 in 2002 samples, and through 2010 to 2013 showed a steady decrease from 2.6 (autumn 2010)
to 0.8 (spring 2013) (Figure 2).

The FA profiles of farmed and wild caught barramundi are shown in Table 2. Major FA (as % TFA)
in farmed samples from 2010 in decreasing order of abundance were: OLA, 16:0, LOA and 16:107,
these four FA accounted for approximately 60% of TFA in farmed barramundi. The next most
abundant FA in farmed barramundi in 2010 were: EPA, DHA and 18:0. The relative level values for
DHA in particular are lower than recorded for the 2002 farmed samples.
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Table 1. Composition of fatty acids (as percent of total FA) in farmed Atlantic salmon
(n=3)—2002 and 2010-2013.

Sample Date
Fatty acid 2002 2010 2010 2011 2011 2012 2012 2013 2013
Winter Autumn  Spring Autumn  Summer Autumn  Spring Autumn  Spring
14:0 5.5 2.1 2.7 2.8 2.5 2.4 1.8 1.9 1.7
15:0 0.5 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2
16:4 0.3 0.7 0.6 0.5 0.5 0.3 0.2 0.3 0.2
16:3 0.4 0.8 0.6 0.6 0.5 0.4 0.2 0.4 0.3
16:107c 6.2 8.3 7.0 7.4 7.2 6.4 6.8 6.9 4.9
16:0 18.0 14.4 15.1 13.9 15.7 154 15.5 14.7 13.0
17:108c +al7:0 0.4 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3
17:0 0.5 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2
18:306 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2
18:403 3.0 1.4 1.3 1.0 1.0 0.9 0.7 0.8 0.7
18:206 2.8 7.2 8.2 8.4 10.0 12.8 9.6 9.8 12.4
18:3m3 0.0 0.9 1.1 1.1 1.0 0.7 1.1 0.9 2.1
18:109¢c 14.5 27.0 29.2 33.8 33.8 33.0 39.0 38.8 42.7
18:1m7c 33 4.0 3.9 4.0 35 3.1 35 34 34
18:1m5¢ 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.1
18:0 4.2 3.9 4.4 4.2 4.1 4.5 4.5 4.5 4.0
20:406 0.8 0.8 0.7 0.6 0.5 0.3 0.4 0.5 0.4
20:503 9.6 8.5 7.4 5.9 4.9 4.4 3.1 34 2.7
20:306 0.2 0.4 0.3 0.3 0.4 0.4 0.4 0.4 0.4
20:403 1.5 0.9 0.8 0.7 0.6 0.5 0.4 0.5 0.5
C20PUFA 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.0
20:2w6 0.3 0.4 0.5 0.5 0.5 0.7 0.6 0.5 0.0
20:109¢ 1.7 1.4 1.4 1.7 1.5 1.8 1.8 1.7 1.7
20:107¢ 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2
20:0 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.2
21:503 0.6 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.1
22:506 0.3 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1
22:603 17.0 7.8 6.7 5.0 5.1 5.4 4.8 4.9 4.0
22:406 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.1
22:503 3.8 3.8 2.8 2.5 2.2 1.9 1.4 1.6 1.2
22:1wllc 0.3 0.3 0.3 0.3 0.3 0.6 0.2 0.1 0.1
22:109¢ 0.2 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.2
24:503 0.0 0.2 0.2 0.0 0.2 0.1 0.1 0.1 0.0
24:1wllc 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0
24:109¢ 0.5 0.2 0.2 0.0 0.2 0.2 0.2 0.1 0.2
24:0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0
Other 2.7 2.0 1.8 L5 1.4 1.4 1.4 L5 1.4
Sum 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Sum SFA 294 219 234 224 232 23.3 22.7 219 19.7
Sum MUFA 29.2 43.1 44.1 49.6 48.2 46.8 533 52.8 54.7
Sum Omega-3 PUFA 355 24.0 20.9 16.5 15.4 14.3 11.9 12.4 113
Sum Omega-6 PUFA 4.6 9.3 10.0 10.4 11.8 14.6 11.6 11.8 13.6

SFA, Saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids. Prefix a denotes anteiso branching.
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Figure 1. Content (+SD) of LC omega-3 oils (EPA + DPA + DHA, mg/100 g) in farmed
Tasmanian Atlantic salmon sampled in 2002 [10] and 2010-2013.
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Figure 2. Ratio (+SD) of omega-3 PUFA/omega-6 PUFA in farmed Tasmanian Atlantic
salmon, 2002 [10] and 2010-2013.
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Major fatty acids in wild caught barramundi were 16:0, OLA, 18:0, DHA and ARA (Table 2). Less
abundant components included LOA, 16:1w7¢c, EPA, 18:1w7c and DPA. Freshwater samples had
higher relative levels of LOA, OLA, 16:1w7c, 18:107c, 18:3®w3 (a-linolenic acid, ALA), 14:0 and
lower EPA and DHA than the saltwater specimens. The greatest difference between the wild fresh and
saltwater samples for any single FA was observed for DHA (5%, freshwater; 22%, saltwater).
Saltwater fish contained higher levels of LC omega-3 oils than freshwater fish. In addition to
containing considerably higher relative levels of DHA, the saltwater fish contained higher relative
levels of total PUFA than freshwater fish (Table 2). The relative level of w6 PUFA was similar in
freshwater barramundi and saltwater fish. In freshwater fish ARA made up 7.1% of TFA, while in the
saltwater wild fish it made up 12.2% of TFA. In contrast, in farmed barramundi collected in 2002 and
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2010, ARA levels were consistent at 0.6% to 0.7% and an order of magnitude lower. The ratio of ®3
PUFA/w6 PUFA differs between salt (1.9) and freshwater (0.8) barramundi (Table 2).

Table 2. Composition of fatty acids (as percent of total FA) in wild and farmed barramundi.

. 1998 1998 2002 2010
Fatty Acid
Freshwater Saltwater Farmed Farmed
14:0 2.8 0.9 5.9 3.6
15:0 0.9 0.6 0.6 0.3
16:1w7c 7.4 2.1 6.5 7.5
16:0 27.8 22.4 19 17.7
17:1w8c +al7:0 0.9 0.7 0.5 0.3
18:306 0.4 0.3 0.3 0.3
18:403 0.4 0.6 1.9 1.3
18:2w6 4.8 1 5.5 9.8
18:303 1 0.2 0 1.1
18:1m9¢ 17.9 11.7 19.6 26.2
18:1w7¢ 4 2.1 2.9 3.2
18:0 8.8 12.5 4.4 4.8
20:406 7.1 12.2 0.6 0.7
20:5w3 1.3 3.1 6.2 6.9
20:3w6 0.5 0.2 0.1 0.2
20:403 0.3 0 0.8 0.5
20:206 0.3 0.1 0.2 0.2
20:109¢ 0.6 0.3 3.5 1.1
20:1w7c 0.1 0 0.3 0.2
20:0 0.3 0.2 0.2 0.3
22:506 0.4 0 0.3 0.2
22:6m3 6.1 21.6 10.2 5.4
22:4m6 1.2 1.2 0.1 0.1
22:503 1.6 2.2 2.5 2.1
22:1wllc 0 0 1.6 0.5
22:109¢ 0 0 0.5 0.1
24:109¢ 0.2 0.8 0.5 0.2
Other 2.9 3 53 2.3
Sum SFA 42.7 39.3 31.1 27.9
Sum MUFA 31.7 17.7 37 40.7
Sum Omega-3 PUFA 11.1 28.1 21.6 17.9
Sum Omega-6 PUFA 14.5 14.9 7.2 10
Omega-3/Omega-6 0.8 1.9 3 1.55

2002 farmed barramundi [10]. 1998 and 2002 samples analysed using identical methods to 2010 fish. Wild

caught barramundi data [11]. Abbreviations as used in Table 1. Prefix a denotes anteiso branching.

Absolute concentration data (mg/100 g wet weight) for the LC omega-3 oils in wild harvest barramundi
are shown in Figure 3. Wild saltwater fish contained higher DHA levels. For farmed barramundi, LC
omega-3 content (EPA + DPA + DHA) was markedly higher than in the wild harvest samples, in 2002,
although the content decreased to 790 mg/100 g in 2010 (Figure 3).
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Figure 3. Content (£SD) (mg/100 g) of LC omega-3 oils (EPA + DPA + DHA) in wild
caught (1998) [11] and farmed barramundi (2002 [10], 2010).
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3.2.2. Fish Oil Capsules

The capsule samples were divided into three groups of LC omega-3 containing products. The first
group was those products containing elevated EPA + DHA (FO1-5, Table 3); these products contained
>500 mg of EPA + DHA per capsule, which represents use of enrichment processes to obtain the
product. One product reached this grouping largely based on its larger capsule size (Cenovis Fish Oil
Plus, FO4, 1500 mg) compared with all other products. The second group of capsules (FO6-9) was the
brands containing 180 mg EPA and 120 mg DHA per 1000 mg capsule. The Cenovis Fish Oil Plus
(FO4) 1500 mg capsule product, when normalized to 1000 mg, contained the same DHA content as the
other group 2 oils purchased, with EPA higher than for the other group 2 products. The third group
(FO10-14) contained lower EPA + DHA content than group 1 and 2 oils, ranging from 52 to 160 mg
per capsule.

The FA profiles of the fish oil capsule products are shown in Table 4. All fish oil capsule
supplements examined generally contained EPA + DHA at levels indicated on the product labels. The
five group 1 fish oils contained 41%—78% EPA+DHA. The four group 2 oils—containing 180 mg
EPA + 120 mg DHA—were very similar in composition containing around 30% EPA + DHA. The
group 3 oils contained 16%—25% EPA + DHA.

Other major FA present in group 2 and 3 oils included the saturated FA (SFA)—16:0, 18:0 and
20:0, the monounsaturated FA (MUFA)—OLA, 18:1o7¢ and 16:1®w7c. Several group 3 oils—wild
salmon oil and cod-liver oil—both contained elevated levels (~18%) of LC-MUFA—20:1wll1c
(salmon oil), 20:109 (cod liver oil) and 22:1w11c (Table 4)—distinguishing these two oils readily
from other group 2 and 3 oils. The group 1 PUFA-enriched oils varied in composition. The Omega
Brain oil (FO2) was elevated in DHA, with the other four group 1 products (FO1, FO3, FO4, FOS5)
each containing EPA > DHA. Products FO3 (Healthy Care Fish Oil One a Day) and FOS5 (Natures
Own Omega-3 Ultra) showed similar profiles, with 32%-36% EPA and 23% DHA. The omega-3 joint
product (FO1) contained the highest EPA+DHA levels (78%), with a number of other PUFA present
(18%); this oil contained the highest EPA/DHA ratio (3.4), and represents a highly purified
PUFA-containing oil product compared with all other products.
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Table 4. Fatty acid composition (as % of total fatty acids) of fish oil capsule products.
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Sample Group 1 Group 2 Group 3
FO1 FO2 FO3 FO4 FO5 FO6 FO7 FO8 FO9 FO10 FO11 FO12 FO13 FO14
14:0 0.1 0.2 0.9 42 0.5 5.7 5.8 5.7 6.2 4.8 6.9 6.6 9.1 33
15:0 0.0 0.1 0.0 0.3 0.0 0.5 0.4 0.5 0.5 0.4 0.7 0.4 0.4 0.3
16:4 2.7 0.1 0.4 22 0.4 22 24 2.3 22 0.5 0.1 1.8 1.3 0.4
16:3 1.8 0.1 0.4 1.6 0.2 1.5 1.8 1.5 1.6 0.5 0.1 1.4 0.3 0.3
16:1w7c 0.5 0.8 1.7 6.9 1.4 9.6 9.4 9.6 9.7 6.8 3.8 8.0 6.8 6.6
16:105¢ 0.0 0.0 0.0 0.1 0.0 0.2 0.2 0.2 0.2 0.4 0.1 0.2 0.5 0.3
16:0 0.3 32 2.6 11.3 35 15.1 159 15.0 15.6 13.4 18.5 15.5 19.7 10.9
il17:0 0.0 0.1 0.0 0.1 0.0 0.2 0.5 0.2 0.2 0.2 0.2 0.2 0.3 0.2
17:1o8c +al7:0 0.0 0.2 0.1 0.2 0.1 0.4 0.4 0.4 0.4 0.5 0.6 0.3 0.4 0.7
17:0 0.0 0.3 0.1 0.2 0.2 0.5 0.4 0.4 0.4 0.3 0.8 0.4 0.1 0.2
18:3w6 0.6 0.1 0.1 0.2 0.1 0.3 0.2 0.3 0.2 0.0 0.1 0.2 0.2 0.1
18:4w3 8.1 0.7 1.5 22 2.0 33 33 33 33 24 0.8 2.7 39 23
18:2w6 0.2 1.1 0.9 2.5 1.6 1.4 1.1 1.6 1.4 2.5 8.3 7.8 2.1 22
18:3w3 0.2 0.4 0.6 0.6 0.6 0.8 0.6 0.8 0.8 0.9 1.2 1.4 1.0 0.7
18:109¢ 0.2 7.7 6.6 7.8 10.5 8.5 10.0 8.4 8.4 16.8 12.7 10.0 12.6 20.0
18:1w7¢c 0.0 1.7 2.8 32 3.0 3.9 3.5 3.9 4.0 4.0 2.3 3.7 8.4 4.7
18:1m5c¢ 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.6 0.1 0.2 0.4 0.4
18:0 0.1 39 2.8 2.7 3.5 3.4 32 3.4 3.5 2.4 7.8 53 1.4 2.6
20:406 1.2 2.6 0.8 1.0 0.8 0.8 0.7 0.6 0.6 0.4 1.5 0.7 0.2 0.3
20:503 EPA 604 145 356 274 318 18.9 20.0 19.0 18.7 9.1 5.4 15.1 16.9 8.8
20:3w6 0.2 0.3 0.4 0.3 0.4 0.3 0.3 0.3 0.2 0.1 0.1 0.2 0.0 0.1
20:4m3 0.9 0.9 1.8 1.2 1.5 1.0 0.9 1.0 1.0 1.2 0.4 0.8 0.4 0.8
C20PUFA 0.1 0.1 0.8 0.4 0.4 0.3 0.3 0.3 0.3 0.1 0.0 0.3 0.0 0.1
20:206 0.1 0.6 0.5 0.3 0.4 0.3 0.2 0.4 0.3 0.3 0.2 0.3 0.0 0.3
20:1ollc 0.0 0.6 0.4 0.2 0.3 0.2 0.1 0.2 0.2 7.2 0.4 0.0 0.0 1.2
20:109¢ 0.5 23 22 1.3 22 1.3 0.5 1.3 1.1 3.0 1.0 1.3 0.9 8.8
20:107c 0.0 0.4 1.1 0.7 0.9 0.4 0.3 0.5 0.5 0.5 0.1 0.4 0.4 0.5
20:0 0.0 0.7 0.6 0.3 0.5 0.3 0.2 0.3 0.3 0.3 0.4 0.4 0.1 0.1
21:5w3 1.5 0.6 1.4 1.1 1.6 0.7 0.8 0.7 0.8 0.4 0.2 0.6 0.5 0.4
22:5w6 0.0 1.1 0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.1 1.3 0.3 0.0 0.1
22:603 DHA 17.7  46.8 232 132 232 11.8 10.9 11.6 11.7 6.9 18.8 9.4 8.2 10.3
22:406 0.1 0.5 0.3 0.2 0.2 0.2 0.1 0.2 0.2 0.0 0.3 0.1 0.0 0.1
22:5w3 1.5 29 4.5 29 43 2.3 2.1 2.3 22 1.8 1.2 1.8 0.4 1.2
22:1ollc 0.0 0.6 1.6 0.9 1.0 0.7 0.1 0.7 0.6 7.6 0.5 0.5 0.0 7.5
22:109¢ 0.0 0.4 0.4 0.2 0.3 0.2 0.1 0.1 0.2 0.7 0.1 0.1 0.5 0.4
22:0 0.0 0.4 0.2 0.2 0.2 0.1 0.3 0.1 0.1 0.1 0.2 0.2 0.0 0.1
24:603 0.0 0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
24:503 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.2
24:109¢ 0.0 1.0 0.7 0.4 0.6 0.4 0.3 0.4 0.4 0.6 0.7 0.4 0.4 0.3
24:0 0.0 0.3 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.4 0.1 0.0 0.0
Sum other 1.0 12 0.9 1.0 1.0 1.8 23 1.7 1.7 2.0 1.5 0.9 1.6 22
Sum 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Sum EPA + DPA
- DHA 797 643 632 435 594 33.0 33.0 329 32.6 17.8 254 26.3 25.5 20.2
Omega-3/0Omega-6 16.6 9.3 11.2 49 9.9 6.8 7.4 6.7 7.4 4.5 2.0 1.9 6.2 5.8

Sample codes—refer to Table 3. Abbreviations as used in Table 1. Other FA (<0.3% of total FA): 14:1®5c, 4,8,12TMTD, i15:0, al5:0,

116:0, MBrFA:1, MBrFA, 17:1, C18PUFA, i118:0, 18:1w7t, 18:1, 19:1, 20:1mw5¢, 22:107, 24: 1wl 1c.
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4. Discussion
4.1. Farmed Fish—Qil Content and Fatty Acid Profiles

Total oil (lipid) content of farmed Atlantic salmon from 2010 to 2013 was generally similar to the
oil content previously observed for Tasmanian Atlantic salmon [10]. Total lipid content in the whole
body and fillet of most fish species, and barramundi are included in this regard, tends to increase with fish
size [12]. In comparison, wild caught barramundi are considerably lower in lipid content (0.4% to
0.9%, WW; shoulder portion) [11]. Farmed barramundi fed a fish oil-based diet and previously
analysed contained various concentrations of lipid according to study, diet and fish size and fillet
section analyzed; around 10% (WW) lipid [10], 1.3% to 30% lipid [13] and 8% to 14% lipid [14].

The relative level (as % TFA) values for EPA and in particular DHA for the two farmed fish
species sampled in 2010-2013 are lower than those recorded in the 2002 analyses when both species
were being fed a fish oil based-diet (barramundi—EPA 6.2%, DHA 10.2%; Tasmanian Atlantic salmon—
EPA 10%, DHA 17%) [10]. These 2010-2013 % composition values for EPA and DHA are also
generally lower than those observed for most white muscle wild-caught fish species [11].

In addition to the reduction in EPA and DHA, the relative level of omega-6 PUFA was elevated in
both farmed species sampled over the 2010-2013 period relative to 2002, due mainly to increased LOA.
This leads to a dramatic shift in the ratio omega-3/omega-6 (i.e., from >7:1 in 2002, to <I:1 currently
for Atlantic salmon). A recent study [15] followed the release of an American Heart Association
advisory on omega-6 fatty acids and cardiovascular risk [16] and has indicated—"advice to
specifically increase omega-6 intake is unlikely to provide the intended benefits, and may actually
increase the risk of CHD and death”. A further change in the FA profile of the two farmed fish is a
large increase in the relative level of OLA. Collectively, this profile shift is reflecting a change in diet
formulation to include higher proportions of terrestrial animal and plant-based oils, with concomitant
reduction in fish oil. Similar changes in salmon oil quality occur in overseas markets [17]. Also
notable over the 2002—2013 period was the overall decrease in SFA which are regarded as the “least
healthy” and are known precursors for endogenous cholesterol synthesis. Therefore at least one
element of the current fish oil replacement strategy could be argued as improving the nutritional
quality of farmed fish. It is the absolute content of the LC omega-3 that is the most critical issue in
terms of the contribution that farmed fish make to the human diet. On an absolute (mg/100 g serve)
basis, the LC omega-3 content values observed for farmed Atlantic salmon and barramundi sampled in
2010-2013 are considerably higher than those found in most wild caught fish species [10,11], although
the values from both species are lower than previously reported a decade ago in 2002 for these two
farmed species fed a fish oil-based diet [10]. Large differences were observed between the autumn and
spring/summer samples in 2010 and 2011. Tasmanian waters varied in water temperature through this
period, together with the presence and degree of disease and other biological factors; these may be
contributing factors to the observed differences.

Wild harvest barramundi contained considerably lower absolute amounts of PUFA than the famed
samples (Figure 3). However, a low oil content combined with similar high relative levels of omega-3
in saltwater fish and both ®3 and @6 PUFA in freshwater fish are nutritionally attractive features of the
wild-harvest barramundi. The overall FA profile and lower LC omega-3 content of the wild specimens
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provide no major nutritional advantage in terms of these key components. Both wild specimens had an
omega-3/omega-6 ratio similar to or poorer that that found in farmed barramundi.

Until about 10 years ago Australian and New Zealand fish farms were largely using feeds made
with high inclusion of fishery products (fish meals and fish oils). Prior to this period, there was
evidence that LC omega-3 content in farmed fish products remained high [2,3,10]. Increasing demand
for fishery resources, such as fish oil, at a time where there is limited ability or capacity to increase
sustainable harvest of wild fish stocks, has resulted in increased use of oils derived from
non-traditional sources [7]. Oils now being routinely used include those from land plants (e.g., canola
and palm oil) and rendered oils (e.g., poultry oil) [6]. The problem with the use of these oils is that
they result in flesh with: (i) lower relative levels of LC omega-3 (as % of TFA); (ii) lower absolute
content of the LC omega-3; and (ii1) lower omega-3/omega-6 ratio. As the relative levels of these key
LC omega-3 oils decrease, LOA and OLA increase. OLA and LOA are derived from the non-marine
ingredients that are being increasingly substituted into aquafeeds, although most fish also have
significant capacity to synthesis their own OLA from both lipid and non-lipid substrates [4].

Interest has existed in Australia and New Zealand on comparison of the LC omega-3 oil content of
salmon farmed in the two locations. In Tasmania, the species farmed is Atlantic salmon (Salmo salar),
whilst in New Zealand the predominant species is Chinook salmon (Oncorrhynchus tshawytscha, also
termed king salmon). LC omega-3 content of the two species sampled at a similar time (spring 2012)
showed Atlantic salmon containing 1117 + 117 mg/100 g LC omega-3 with Chinook salmon at
2568 + 153 mg/100 g. The two species generally receive similar diets [18], and the differences in LC
omega-3 content (and similarly for the SFA and omega-6 PUFA) result largely from the higher oil
content of the fillet of farmed Chinook salmon (~25% oil content c¢f 10%—15% in Atlantic salmon).

Atlantic salmon and barramundi have, when fed a FO-containing diet, provided an excellent source
of beneficial omega-3 LC-PUFA for human consumption, but reduced concentrations of these
nutrients, as occurs through the use of vegetable oil and/or animal fat diets, may reduce their
nutritional benefit to consumers. Limited research has been performed to examine this issue. In one
study [19], dietary intake of differently fed salmon (100% fish oil (FO), 50/50 FO/rapeseed oil,
100% rapeseed oil) and the influence on markers of human atherosclerosis were compared. Significant
differences between the human consumer groups were observed in the serum fatty acid profiles,
especially for the levels of total omega-3 PUFA and the omega-3/omega-6 ratio, which were markedly
increased in the FO-fed fish consuming group in contrast to the two other groups. In addition,
significant reductions of serum TAG and of vascular cell adhesion molecule-1 and interleukin-6 were
observed in patients receiving the FO-fed salmon diet when compared with the two other groups. The
authors concluded that Atlantic salmon fed the FO-containing diet containing very high concentrations
of omega-3 LC-PUFA seemed to produce favourable biochemical changes in patients with coronary
heart disease risk factors when compared with ingestion of fillets with intermediate and low levels of
the marine omega-3 LC-PUFA, where FO was replaced in part or in full by rapeseed oil [19]. To our
knowledge, there have been no consumer trials with fish fed diets containing LOA, ALA and/or SDA
rich oils versus FO derived EPA + DHA, and looking at the effects on consumers.
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A recent study tested whether Atlantic salmon smolt fed a diet with a higher DHA/EPA ratio and a
lower content of LC omega-3 oils to that of conventional FO based diets would enhance deposition of
LC omega-3 in the liver and muscle [20]. Comparisons were made between fish fed: (1) a FO diet;
(2) a blend of 50% rapeseed and 50% tuna oil diet (termed model oil, MO1); (3) a blend of 50%
rapeseed, 25% tuna and 25% FO diet (MO2); and (4) a blend of 50% FO and 50% poultry oil diet
(FO/PO). The latter diet was representative of commercial diets in use in Australia at the time of the
study, with the proportion of chicken fat increasing even further since the study was performed. The
dietary DHA/EPA ratio was in the order MO1 > MO2 > FO/PO ~ FO. The LC omega-3 content was
approximately 2-fold lower in the MO1, MO2 and FO/PO diets compared to the FO diet, with the
relative levels (as % total FA) lowest in the MO1 diet. For the feeding trial, there were comparable
contents of LC omega-3 in the muscle of the FO, MO 1 and FO/PO fed fish [20].

A major outcome for the feeding trial was the observation that a higher DHA/EPA ratio than that
commonly occurring with FO-only diets used for Atlantic salmon was better suited for more efficient
deposition of LC omega-3 in the flesh, in particular DHA. Evidence was therefore apparent for
LC omega-3 “sparing” in the Atlantic salmon smolt fed a diet with a high DHA/EPA ratio [20]. The
use of a 50% FO and 50% PO blend in aquafeeds for Atlantic salmon, as was in the range
commercially practiced in Australia in 2010, resulted in comparable LC omega-3 content in the
muscle [20] and liver of juvenile Atlantic salmon to a FO fed fish. It is noteworthy that such an oil
blend decreases the inefficient utilization of a 100% FO diet, due to the high loss of EPA in particular,
and may be considered as an appropriate current strategy, in terms of LC omega-3 sparing, for present
use in aquafeeds for Atlantic salmon [20]. The reduction of FO incorporation in the aquafeeds has also
enhanced the sustainability of the industry, although sufficient FO still remains in the feeds used to
ensure that farmed Tasmanian Atlantic salmon remains one of the best sources of the LC omega-3 oils
available to Australian consumers.

It is important to note that in spite of changes that have occurred in feeding practices, and the
resulting lower content of LC omega-3 oils, the scope remains for the potential future use of new
alternate sources of LC omega-3 to restore the content of these health-benefitting ingredients to those
higher contents previously seen.

Further research is needed to determine the optimum relative and absolute concentrations of dietary
EPA and DHA to enhance their deposition in larger-sized commercially farmed Atlantic salmon. The
rationale to pursue such studies is supported by recent developments in plant genomics. As this
research field has progressed, important breakthrough steps have included: the isolation and
characterization of genes from the marine microalgae encoding front-end desaturases involved in DHA
biosynthesis, the isolation of highly efficient desaturases and elongases, the use of genes with omega-3
substrate preference and the development and use of a land plant (tobacco) leaf-based assay using
interchangeable design principles to rapidly assemble multistep recombinant pathways [21-23].
Progress with research on insertion of microalgal-derived genes leading to DHA production into
a range of omega-3 C;3 PUFA accumulating land plants has been reviewed [24—-26].

Recent developments have resulted in oilseeds containing elevated LC omega-3 oils, including with
fish oil-like proportions of DHA and an elevated omega-3/omega-6 ratio (2-5) [22,23,27]. These
major breakthroughs can in the future provide the feed and aquaculture industries with an opportunity
to both sustainably farm this key protein source for the growing global population, and enhance
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the nutritional quality of farmed seafood products in terms of the health-benefitting LC omega-3 oils.
Alternate feed-grade oils containing the desired FA profiles, in particular including a high DHA/EPA
ratio, are not presently available. However, a realistic examination of the future steps required suggests
that they can be a commercial reality by the end of this decade [22,23].

4.2. Fish Oil Capsules as Sources of EPA + DHA

All products generally contained EPA + DHA at levels indicated on the product labels. The cost
per 500 mg EPA + DHA (value generally advised for daily consumption by many nutritional and
health groups [2]) varied markedly from $0.05 to $5.50 (Table 3), or from $20 to $2000 per annum
(Figure 4). The lowest cost products, based on EPA + DHA levels alone, were those oils containing the
conventional 180 mg EPA and 120 mg DHA per 1000 mg capsule (group 2). In the group 2 products, a
four-fold cost difference occurred ($20-$79 pa, Table 3), although product specifications were
identical. Consumers can have difficulties in compliance (e.g., consumption of multiple large
capsules), and may prefer the range of enriched products (group 1) now available. The most expensive
product based on EPA + DHA content was the krill oil, which was six-fold more expensive than the
next most costly product.

Figure 4. Cost per annum of fish oil products to supply 500 mg/day EPA + DHA. Sample
codes refer to brands shown in Table 3. Enriched products—denotes group 1 brands
containing concentrated EPA and/or DHA. 18/12 oils denotes—group 2 standard fish oils
containing 180 mg/120 mg of EPA and DHA respectively. Other oils denotes—group 3 products
containing varying proportions of EPA and DHA and may contain other components.
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5. Conclusions

In summary, in comparison to 2002 samples of two major farmed Australian finfish species,
Atlantic salmon and barramundi sampled in 2010-2013 have been shown to contain decreased relative
levels and content of LC omega-3 oils (from 2014 mg/100 g in 2002 decreasing to 975 mg/100 g in
spring 2013 for Atlantic salmon; 1970 mg/100 g in 2002 decreasing to 790 mg/100 g per serve for
barramundi). These changes have resulted from the use of new, lower cost and sustainable ingredients
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in farmed fish feed, necessitated by the inability of existing supplies together with the increasing cost
of the wild harvest fish oil resource to meet the expanding needs of the aquaculture industry.
Notwithstanding, these two widely available farmed fish species still remain an excellent source of the
LC omega-3 oils, and in a broader context remain one of the best of all foods available for Australian
consumers. All fish oil capsule supplements examined generally contained EPA + DHA at levels
indicated on the product labels and, similar to the farmed seafood, such products can also represent a
viable alternative source of LC omega-3 oils for consumers.

Subject to consumer demand, one of the cost-effective strategies to increase the omega-3 content of
the lipid profile of farmed fish could be to include enhanced levels of omega-3 rich vegetable oils,
and/or finishing diets with higher inclusions of marine oils [6]; such a strategy may result in grades of
farmed seafood product being available for purchase that contain higher content of LC omega-3 than
standard products grown using a predominately non-marine oil based diet. In the longer term, other
strategies to consider include: selection for enhanced delta-5 and delta-6 desaturase activities (the key
enzymes converting shorter chain omega-3 to EPA and DHA) and the use of alternate long-chain

omega-3 oil sources, including new oil seeds containing EPA and DHA.
Acknowledgments

The authors thank the CSIRO Food Futures Flagship Omega-3 research team for their
contributions. 1998 and 2002 seafood data was produced by the CSIRO Marine Oils groups, in
particular Ben Mooney, Nick Elliott and Patti Virtue, with funding support from the Fisheries Research
and Development Corporation. We also thank Marine Produce Australia Pty Ltd for supplying the 2010
farmed barramundi samples, Matt Miller of NZ Plant and Food for providing NZ King salmon data,
and Nick Elliott, Peter Kube and Carol Mancuso Nichols of CSIRO and two anonymous journal
reviewers for valuable comments on the manuscript.

Conflicts of Interest
The authors declare no conflict of interest.
References

1. Bang, H.O.; Dyerberg, J.E. Lipid metabolism and ischaemic heart disease in Greenland Eskimos.
Adv. Nutr. Res. 1980, 3, 1-22.

2. Nichols, P.D.; Petrie, J.; Singh, S. Long-chain omega-3 oils—An update on sustainable sources.
Nutrients 2010, 2, 572-585.

3. Tacon, A.G.J.; Metian, M. Global overview on the use of fish meal and fish oil in industrially
compounded aquafeeds: Trends and future prospects. Aquaculture 2008, 285, 146—158.

4. Glencross, B.D. Exploring the nutritional demand for essential fatty acids by aquaculture species.
Rev. Aquac. 2009, 1, 71-124.

5. Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrell, A.P.; Forster, L;
Gatlin, D.M.; Goldburg, R.J.; Hua, K.; ef al. Feeding aquaculture in an era of finite resources.
Proc. Natl. Acad. Sci. USA 2009, 106, 15103—-15110.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

93

Glencross, B.; Turchini, G.M. Fish Oil Replacement in Starter, Grow-Out and Finishing Feeds for
Farmed Aquatic Animals. In Fish Oil Replacement and Alternative Lipid Sources in Aquaculture
Feeds; Turchini, G.M., Ng, W.K., Tocher, D.R., Eds.; CRC Publishing Ltd.: Boca Raton, FL,
USA, 2010; pp. 373-404.

Turchini, G.M.; Torstensen, B.E.; Ng, W.K. Fish oil replacement in finfish nutrition. Rev. Aquac.
2009, 7, 10-57.

Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem.
Physiol. 1959, 37,911-917.

Christie, W.W. Lipid Analysis; Pergamon Press: Oxford, UK, 1982.

Nichols, P.D.; Mooney, B.D.; Elliott, N.G. Nutritional Value of Australian Seafood Il. Factors
Affecting Oil Composition of Edible Species; Prepared for the Fisheries Research and
Development Corporation: Hobart, Australia, September 2002.

Nichols, P.D.; Mooney, B.; Virtue, P.; Elliott, N. Nutritional Value of Australian Fish: Oil, Fatty
Acid and Cholesterol of Edible Species; Report Prepared for the Fisheries Research and
Development Corporation: Hobart, Australia, August 1998.

Glencross, B.D. Nutritional management of barramundi, Lates calcarifer—A review. Aquac. Nutr.
2006, 12, 291-309.

Percival, S.; Drabsch, P.; Glencross, B.D. Determining factors affecting muddy-flavour taint in
farmed barramundi, Lates calcarifer. Aquaculture 2008, 284, 136—143.

Glencross, B.D.; Michael, R.; Austen, K.; Hauler, R. Productivity, carcass composition, waste
output and sensory characteristics of large barramundi Lates calcarifer fed high-nutrient density
diets. Aquaculture 2008, 284, 167-173.

Ramsden, C.E.; Hibbeln, J.R.; Majchrzak, S.F.; Davis, J.M. n-6 Fatty acid-specific and mixed
polyunsaturate dietary interventions have different effects on CHD risk: A meta-analysis of
randomized controlled trials. Br. J. Nutr. 2010, 104, 1586—1600.

Harris, W.S.; Mozaffarian, D.; Rimm, E.; Kris-Etherton, P.; Rudel, L.L.; Appel, L.J,;
Engler, M.M.; Engler, M.B.; Sacks, F. n-6 Fatty acids and risk for cardiovascular disease:
A science advisory from the American Heart Association Nutrition Subcommittee of the Council
on Nutrition. Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council
on Epidemiology and Prevention. Circulation 2009, 119, 902-907.

Rosenlund, G.; Corraze, G.; Izquierdo, M.; Torstensen, B. The Effects of Fish oil Replacement on
Nutritional and Organoleptic Qualities of Farmed Fish. In Fish Oil Replacement and Alternative
Lipid Sources in Aquaculture Feeds; Turchini, G.M., Ng, W.K., Tocher, D.R., Eds.; CRC
Publishing Ltd.: Boca Raton, FL, USA, 2010; pp. 487-522.

Rosewarne, G. New Zealand King Salmon Co., Ltd., Nelson, New Zealand. Personal
communication, 2013.

Seierstad, S.L.; Seljeflot, I.; Johansen, O.; Hansen, R.; Haugen, M.; Rosenlund, G.; Freyland, L.;
Arnesen, H. Dietary intake of differently fed salmon; the influence on markers of human
atherosclerosis. Eur. J. Clin. Investig. 2005, 35, 52-59.

Codabaccus, B.M.; Carter, C.G.; Bridle, A.R.; Nichols, P.D. The “n-3 LC-PUFA sparing effect”
of modified dietary n-3 LC-PUFA content and DHA to EPA ratio in Atlantic salmon smolt.
Aquaculture 2012, 356357, 135-140.



94

21.

22.

23.

24.

25.

26.

27.

Petrie, J.R.; Shrestha, P.; Mansour, M.P.; Nichols, P.D.; Liu, Q.; Singh, S.P. Metabolic engineering of
omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA A6-desaturase with
w3-preference from the marine microalga Micromonas pusilla. Metab. Eng. 2010, 12, 233-240.
Petrie, J.R.; Nichols, P.D.; Devine, M.; Singh, S.P. Engineered oil seed crops with fish oil DHA
levels. INFORM 2013, 24, 648—652.

Petrie, J.R.; Shrestha, P.; Belide, S.; Kennedy, Y.; Lester, G.; Liu, Q.; Divi, U.K.; Mulder, R.J.;
Mansour, M.P.; Nichols, P.D.; Singh, S.P. Metabolic engineering Camelina sativa with fish oil
like levels of DHA. PLoS One 2014, 9, e85061.

Petrie, J.R.; Singh, S.P. Expanding the docosahexaenoic acid food web for sustainable production:
Engineering lower plant pathways into higher plants. AoB Plants 2011, doi:10.1093/aobpla/plrO11.
Qi, B.X,; Fraser, T.; Mugford, S.; Dobson, G.; Sayanova, O.; Butler, J.; Napier, J.A.; Stobart, A.K.;
Lazarus, C.M. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in
plants. Nat. Biotechnol. 2004, 22, 739-745.

Venegas-Caleron, M.; Sayanova, O.; Napier, J.A. An alternative to fish oils: Metabolic
engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog.
Lipid Res. 2010, 49, 108—119.

Ruiz-Lopez, N.; Haslam, R.P.; Napier, J.A.; Sayanova, O. Successful high-level accumulation of
fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J. 2014,
77, 198-208.



95

Characterization of Qilseed Lipids from “DHA-Producing
Camelina sativa”: A New Transformed Land Plant
Containing Long-Chain Omega-3 Oils

Maged P. Mansour, Pushkar Shrestha, Srinivas Belide, James R. Petrie, Peter D. Nichols and
Surinder P. Singh

Abstract: New and sustainable sources of long-chain (LC, >C,p) omega-3 oils containing DHA
(docosahexaenoic acid, 22:6w3) are required to meet increasing demands. The lipid content of the
oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes
able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the
major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM)
extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and
residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl
ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in
the polar lipid-rich CM extract. The relative level of ALA (o-linolenic acid, 18:3w3) in DHA-camelina
seed was higher than the control. Major sterols in both DHA- and control camelina seeds were:
sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C;s—Cy; fatty alcohols, including
iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0.
Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the
hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not
been previously reported. These components may be derived from wax esters, or free fatty alcohols.

Reprinted from Nutrients. Cite as: Mansour, M.P.; Shrestha, P.; Belide, S.; Petrie, J.R.; Nichols, P.D.;
Singh, S.P. Characterization of Oilseed Lipids from “DHA-Producing Camelina sativa”: A New
Transformed Land Plant Containing Long-Chain Omega-3 Oils. Nutrients 2014, 6, 776-789.

1. Introduction

There are many beneficial health effects in humans of omega-3 long-chain (>C,) polyunsaturated
fatty acids (omega-3 LC-PUFA, also termed LC omega-3 oils). The major bioactive LC omega-3 are
EPA (eicosapentaenoic acid, 20:503) and DHA docosahexaenoic acid, 22:6w3). These are largely
obtained through dietary consumption of seafood, primarily fish and fish oil nutraceuticals. The
positive effects are across a range of degenerative and inflammatory disorders such as: heart disease,
stroke, theumatoid arthritis, asthma and some cancers, diabetes mellitus, multiple sclerosis, dementia
and clinical depression [1-3]. LC omega-3 oils are also important in infant nutrition and are present in
high concentrations in brain and retina and are important in the development, health and correct
functioning of these organs [4,5]. They are also nutritionally important for the survival, growth and
general health of aquaculture species particularly at the larval stage [6]. Highly purified or enriched LC
omega-3 oils are also sought after for their bioactive function as potential pharmaceutical products [7].

Future supplies of fish oil derived LC omega-3 oils from fisheries is unlikely to be able to meet
increasing demands for their inclusion in aquafeeds, foods, nutraceuticals, or for enrichment to highly
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purified EPA and DHA, as pharmaceutical bioactives and other products [8,9]. Hence, there is a need
to develop new and sustainable sources to supplement oils extracted from wild fish harvests.

It has been recognized that marine fish do not have the capacity to synthesize these oils, rather it is
microalgae, at the base of the marine food web, that have the ability to produce these oils [10,11].
Microalgae contain the genes for the various elongase and desaturase enzymes that are responsible for
the synthesis of LC omega-3 oils. Members from the brown algal line, including for example the algal
class dinoflagellates in particular, produce high proportions of DHA [12—15]. These health-benefitting
oils are then accumulated up the food chain into various seafoods, including shellfish and finfish.

The search for new and sustainable sources of LC omega-3 oils has led researchers to attempt to
transform land plants with microalgal LC omega-3 genes. As a result, a suite of microalgal genes have
successfully been incorporated into a variety of land plants including tobacco leaf [16] and Arabidopsis
seed [17,18] as a proof of concept, showing that transformed terrestrial plants can serve as an
alternative supply of these oils. A little known oilseed plant, Camelina sativa, a member of the
Cruciferae (Brassicaceae) family is an ancient plant native to Europe and Central Asian areas. It is
cultivated as an oilseed crop and used in animal feed mainly in Europe and North America and is
known as camelina, gold-of-pleasure or false flax. It has several unique and desirable features which
give it a competitive advantage over other commercial oilseed crops such as canola, soybean, and
sunflower [19]. It grows well in semiarid, marginal and saline soils and unlike commercial oilseed
crops, does not have high nutrient requirements, can tolerate insects and weeds and survive winter
sowing and frost and freeze-thaw cycles after emergence during late winter and spring. Camelina sativa
seeds can produce up to 40% oil containing high proportions of a-linolenic acid (ALA, 28%) and
linoleic acid (LA, 19%) [19], which makes this plant a good candidate for transformation into a LC
omega-3 oil producing land plant. A new DHA-producing Camelina sativa oilseed plant transformed
with a suite of microalgal LC omega-3 genes sourced from several target microalgal strains has been
recently reported by Petrie ef al. [20]. The synthesis of DHA occurs by the elongation and desaturation
of C 3 PUFA through EPA and not by retro-conversion of 24:6®3. It was also determined by >C NMR
regiospecificity analysis of the TAG-containing oil that DHA is preferentially esterified at the sn-1,3
positions of the TAG molecule [20]. Here for the first time we present the lipid class, fatty acid, sterol
and fatty alcohol composition of this new transformed DHA-producing Camelina sativa oilseed
(hereafter termed DHA camelina) and carry out a descriptive analysis with reference to an unmodified
Camelina sativa control seeds.

2. Experimental Section
2.1. Lipid Extraction

Details of the Camelina sativa seed, including: source, the full details of the gene construct inserted,
which is composed of a series of elongase and desaturase genes, the metabolic pathway and methods
used for the transformation to form the transgenic DHA-producing camelina oilseed event used in this
study has been reported by Petrie ef al. [20]. We used hexane as the extracting solvent since it is the
industry standard and it preferentially extracts TAG-containing oil due to its solvating properties and
very poor solubilization of polar lipids, particularly at room temperature. We did not use Soxhlet
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extraction so as to minimize any potential degradation of DHA due to heating for prolonged periods
during reflux. No antioxidants were added during extraction or analysis. Subsequent extractions of the
hexane-extracted crushed seed using chloroform-methanol were used to exhaustively recover residual
TAG and un-extracted polar lipids to determine the effectiveness of extraction by hexane of the
TAG-containing oil from the crushed seed. Transformed and control camelina seeds (130 g and 30 g,
respectively) were wetted with hexane and crushed using an electric agate mortar and pestle (Retsch
Muhle, Germany), transferred to a separatory funnel and extracted four times using a total of 800 mL
hexane including an overnight third extraction. For each extraction, extracts were filtered to remove
fines through a GFC glass fiber filter, and then rotary evaporated at 40 °C. The extracts were pooled
and constituted the TAG-rich hexane extract.

Following extraction with hexane, the remaining meal was further extracted using chloroform-
methanol (CM 1:1 v/v) as above, the meal was then removed by filtration and the combined extracts
rotary evaporated. The pooled CM total crude extract was then dissolved using a modified Bligh and
Dyer [21] one-phase methanol-chloroform-water mix (2:1:0.8 v/v/v). The phases were separated by the
addition of chloroform-water (final solvent ratio, 1:1:0.9 v/v/v methanol-chloroform-water). The
purified lipid was partitioned in the lower chloroform phase, concentrated using rotary evaporation and
constituted the polar lipid-rich CM extract.

2.2. Lipid Class Analysis

Lipid classes of the hexane and CM extracts were analyzed by thin-layer chromatography with
flame-ionization detection (TLC-FID; Iatroscan Mark V, latron Laboratories, Tokyo, Japan) [12] using
hexane/diethyl ether/glacial acetic acid (70:10:0.1, v/v/v) as the developing solvent system in
combination with Chromarod S-IIl silica on quartz rods and suitable calibration curves of
representative standards obtained from Nu-Chek Prep, Inc. (Elysian, MN, USA). Data was processed
using SIC-48011 software (SISC Version: 7.0-E). Phospholipid species were separated by applying the
purified phospholipid fraction (Section 2.3) obtained from silica column chromatography and developing
the rods in chloroform/methanol/glacial acetic acid/water (85:17:5:2, v/v/v) prior to FID detection.

2.3. Separation of TAG, Glycolipid and Phospholipid Fractions from the CM Extracts

Silica gel 60 (100-200 mesh) (0.3—1 g) in a short glass column or Pasteur pipette plugged
with glass wool was used to purify 10 mg of the purified CM lipid extract. The residual TAG fraction
in the CM extract was eluted using 20 mL of 10% diethyl ether in hexane, the glycolipids eluted
with 20 mL of acetone and the phospholipids eluted in two steps, first 10 mL of methanol then 10 mL
of methanol-chloroform-water (5:3:2). This second elution was shown to increase the recovery of
phospholipids [22]. The yield of each fraction was determined gravimetrically and the purity checked
by TLC-FID. All extracts and fractions were stored in dichloromethane at —20 °C until further analysis
by GC and GC-MS.
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2.4. Fatty Acid Methyl Ester Preparation

Aliquots of the hexane and CM extracts were frans-methylated according to the method of
Christie [23] to produce FA methyl esters (FAME) using methanol-chloroform—conc. hydrochloric
acid (3 mL, 10:1:1, 80 °C, 2 h). FAME were extracted into hexane—chloroform (4:1, 3 X 1.8 mL). The
meal (after hexane and CM extraction) was also trans-methylated and the value for total lipid was
determined by adding the lipid contents of the hexane and CM extracts and the FAME content of the
transmethylated meal after solvent extraction.

2.5. Sterol and Fatty Alcohol Derivatization

Samples (approximately 10 mg) from the TAG-rich hexane extract and the polar lipid-rich CM
extract were saponified separately using 4 mL 5% KOH in 80% MeOH and heated for 2 h at 80 °C in a
Teflon-lined screw-capped glass test tube. After the reaction mixture was cooled, 2 mL of Milli-Q
water was added and the sterols and alcohols were extracted into 2 mL of hexane: dichloromethane
(4:1, v/v, 3x) by shaking and vortexing. The mixture was centrifuged and the extract in the organic
phase was washed with 2 mL of Milli-Q water by shaking and centrifugation. After taking off the top
sterol containing organic layer the solvent was evaporated using a stream of nitrogen gas and the
sterols and alcohols silylated using 200 pL of Bis(trimethylsilyl)trifluoroacetamide (BSTFA,
Sigma-Aldrich) and heating for 2 h at 80 °C in a sealed GC vial; free hydroxyl groups were converted
to their trimethylsilyl ethers.

2.6. GC and GC-MS Analysis

The sterol- and alcohol-OTMSi derivatives were dried under a stream of nitrogen gas on a heating
block (40 °C) and re-dissolved in dichloromethane (DCM) immediately prior to GC/GC-MS analysis.
The FAME and alcohol/sterol-OTMSi derivatives were analyzed by gas chromatography (GC) using
an Agilent Technologies 6890A GC (Palo Alto, CA, USA) fitted with a Supelco Equity™-1
(Bellefont, PA, USA) fused silica capillary column (15 m % 0.1 mm i.d., 0.1 um film thickness), an
FID, a split/splitless injector and an Agilent Technologies 7683B Series auto sampler and injector.
Helium was the carrier gas. Samples were injected in splitless mode at an oven temperature of 120 °C.
After injection, the oven temperature was raised to 270 °C at 10 °C min ' and finally to 300 °C at
5°C min"'. Eluted compounds were quantified with Agilent Technologies ChemStation software (Palo
Alto, CA, USA). GC results are subject to an error of £5% of individual component area.

GC-mass spectrometric (GC-MS) analyses were performed on a Finnigan Trace ultra Quadrupole
GC-MS (model: ThermoQuest Trace DSQ, Thermo Electron Corporation). Data was processed with
ThermoQuest Xcalibur software (Austin, TX, USA). The GC was fitted with an on-column injector
and a capillary HP-5 Ultra Agilient J] & W column (50 m x 0.32 mm 1i.d., 0.17 pm film thickness,
Agilent Technologies ( Santa Clara, CA, USA) of similar polarity to that described above. Individual
components were identified using mass spectral data and by comparing retention time data with those
obtained for authentic and laboratory standards. A full procedural blank analysis was performed
concurrent to the sample batch.
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3. Results
3.1. Total Lipid Content

The “DHA-producing camelina” seeds analyzed here contained slightly less total lipid (36% of seed
wt.) than control wild-type Camelina (41% of seed wt.).

Of the total lipid, 31%-38% of lipid per seed weight was extracted by hexane for DHA- and
control camelina, which accounted for 86% and 92% of total lipid, respectively (Table 1). The
chloroform-methanol extraction post hexane extraction recovered a further 4.8% and 2.4% polar
lipid-rich extract from the DHA- and control camelina, respectively and the residual lipid released
by transmethylation of the remaining solvent extracted oilseed meal was 0.3% and 0.4% of seed
weight, respectively.

Table 1. Lipid content (as % of seed weight) of DHA- and control Camelina sativa seeds
after hexane extraction, post hexane chloroform-methanol (CM) extraction and subsequent
transmethylation of the extracted meal.

Extract DH[,& Control camelina
camelina
hexane 31.1 38.1
chloroforrrll-methanol 43 24
residual lipid * 0.3 0.4
Total lipid 36.2 40.9

! Polar lipid rich extract containing glycolipid and phospholipid with some residual TAG obtained by CM
extraction after hexane extraction of the meal; > Residual lipid (FAME) from transmethylated meal after
hexane and CM extractions.

3.2. Lipid Class Analysis

The TAG-rich hexane extract (Section 2.1) contained 96% TAG in both DHA- and control
Camelina. The post hexane chloroform-methanol extraction recovered residual TAG amounting
to 44% and 13% (of the CM extract), respectively. The chloroform-methanol extracts were rich in
polar lipids (glycolipids and phospholipids) amounting to 50% and 76% (of the CM extract) for the
DHA- and control camelina, respectively (Table 2). The main phospholipid was phosphatidyl choline
(PC) and accounted for 70%—-79% of the total phospholipids followed by phosphatidyl ethanolamine
(PE, 7%—13%) with smaller relative levels of phosphatidic acid (PA, 2%-5%) and phosphatidyl serine
(PS, <2%). There were several other unidentified components separated in the phospholipid fraction
(Table 3).
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Table 2. Lipid class composition (% of total lipid obtained for each extraction step) of
Hexane and CM extracts from DHA- and control Camelina sativa seeds.

DHA camelina Control camelina
Lipid class Chloroform- Chloroform-methanol
Hexane Hexane
methanol

SE/WE/HC ! 1.0 1.4 1.0 1.4
TAG 95.6 442 96.0 13.1
FFA 0.9 1.3 0.8 1.4
UN ? 0.9 1.1 0.8 1.2
ST 0.5 0.7 04 0.4
MAG 0.7 1.1 0.8 6.2
PL 0.3 50.3 0.3 76.3

Total 100.0 100.0 100.0 100.0

Abbreviations: sterol esters (SE), wax esters (WE), hydrocarbons (HC), triacylglycerols (TAG), free fatty
acids (FFA), unknown (UN), sterols (ST), monoacylglycerols (MAG), polar lipids (PL) consisting of
glycolipids and phospholipids; ' SE, WE and HC coelute with this system; > May contain fatty alcohols and
diacylglycerols (DAG).

Table 3. Phospholipid composition (% of total phospholipids) of CM extracts from
DHA- and control camelina seeds.

Phospholipid DHA camelina Control camelina

PA 2.1 4.7
UN 1 5.7 2.2
UN 2 - 1.1
UN3 - 0.6
PE 13.2 6.8
PS 1.2 1.4
PC'+PI 69.5 78.9
UN 4 4.8 3.6
UN S5 34 1.6

Total 100.0 100.0

Abbreviations: Unknown (UN), phosphatidic acid (PA), phosphatidyl ethanolamine (PE), phosphatidyl
serine (PS), phosphatidyl choline (PC), phosphatidyl inositol (PI); ' PC is the major component and PI

coelutes with PC.
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3.3. Fatty Acid Composition

Generally we have found that total seed fatty acid composition obtained by direct transmethylation
of whole seed is very similar to that of the TAG fraction, since the bulk of the lipids present in the seed
occur in the form of TAG, hence total seed fatty acid composition is not reported here. In DHA
camelina, the DHA was distributed in the major lipid fractions (TAG, phospholipids and glycolipids)
and the proportion ranged between 1.6% and 6.8% with an inverse relationship between the proportions
of DHA and ALA. The TAG-rich hexane extract of the DHA camelina contained 6.8% DHA and 41%
ALA (Table 4). The polar lipid-rich chloroform-methanol extract contained 4.2% DHA and 50% ALA.
Residual TAG from the polar lipid-rich chloroform-methanol extract contained 6% DHA and 40%
ALA. The glycolipid fraction isolated from the chloroform-methanol extract contained 3% DHA
and 39% ALA and the phospholipid fraction contained the lowest level of DHA (1.6%) and the highest
levels of ALA (54%). The DHA camelina contained higher levels of ALA and lower levels of LA
(linoleic acid, 18:2w6) compared with the control camelina in the major lipid classes (TAG, glycolipids
and phospholipids). The proportions of ALA and LA for DHA- and control camelina were: ALA
39%—-54% and LA 4% 9% for DHA camelina and ALA 12%-32% and LA 20%-29% for control
camelina. The relative level of eurucic acid (22:109) was lower in all fractions in the DHA camelina
than in the control (e.g., hexane extracts—1.3% versus 2.7%; Table 4).

3.4. Sterol Composition

The major sterols in both DHA- and control camelina were: 24-ethylcholesterol (sitosterol, 43%—54%),
24-methylcholesterol (campesterol, 20%—26%) with lower levels of cholesterol (5%—-8%), brassicasterol
(2%—-7%), 1isofucosterol (AS-avenasterol) (4%—6%), stigmasterol (0.5%-3%), cholest-7-en-3p3-ol,
(0.2%-0.5%), 24-methylcholestanol (campestanol, 0.4%—1%) and 24-dehydrocholesterol (0.5%—2%)
(Table 5). These nine sterols accounted for 86%—95% of the total sterols, with the remaining components
being unconfirmed sterols with partial identification obtained—including the number of carbons and
double bonds.

The overall sterol profiles were similar between DHA- and control camelina for both the hexane
and chloroform-methanol extracts, although there were slightly higher levels of unknown sterols in the
chloroform-methanol extracts of both the DHA- and control camelina than occurred in the hexane
extracts (10%—14% and 4%—7%, respectively).



Table 5. Sterol composition (% of total sterols) of DHA- and control camelina.

DHA camelina Control camelina
Sterols Hexane cM' Hexane cM'
24-dehydrocholesterol 0.8 1.8 0.5 1.4
cholesterol 5.7 7.6 4.7 7.2
brassicasterol 4.4 6.5 1.9 4.2
cholest-7-en-3[3-ol 0.2 0.5 0.3 0.4
campesterol 24.5 20.8 25.7 21.7
campestanol 0.4 1.1 0.4 0.9
stigmasterol 1.0 2.6 0.5 1.6
sitosterol 54.3 43.7 53.8 42.9
AS5-avenasterol (isofucosterol) 4.2 5.2 4.7 5.5
Sum 95.5 89.6 92.6 85.9
Others
UNI1 C28 1db 0.6 1.2 0.7 1.2
UN2 C29 1db 1.2 2.0 1.2 2.4
UN3 C29 2db 0.9 1.8 1.3 2.4
UN4 C28 1db 0.3 0.9 0.6 1.1
UNS C30 2db 1.2 1.8 1.4 1.8
UNG6 C29 1db + C30 2db 0.3 2.7 2.2 5.2
Sum 4.5 10.4 7.4 14.1
total 100 100 100 100

Abbreviations: UN denotes unknown, C is number of carbon atoms and db denotes number of double bonds;

' Polar lipid-rich extract containing glycolipids, phospholipids and residual TAG recovered by

chloroform-methanol (CM) extraction post hexane extraction of crushed seed.
3.5. Fatty Alcohol Composition

A series of fatty alcohols from C,;s—Cy, with accompanying iso-branched fatty alcohols, were
identified in both the hexane and chloroform-methanol extracts (Table 6). Similar profiles were
observed for the DHA- and control camelina, with some variation in the proportions of individual
components observed. The odd-chain alcohols were present at higher levels in the chloroform-methanol
extract (37%—38%) than in the hexane extract (16%—23%). Iso-17:0 (16%-38%) predominated over
17:0 (0.3%-5.7%). Another odd-chain alcohol present was 19:0 (4.5%—-6.5%). Phytol, derived from
chlorophyll, was the major aliphatic alcohol and accounted for 47% and 37% of the total fatty alcohols
in the hexane fractions in the DHA- and control camelina, respectively. There were lower levels in the
chloroform-methanol extract (9% and 12%, for DHA- and control camelina, respectively). Other
alcohols detected included iso-16:0, 16:0, iso-18:0, 18:1, 18:0, with minor levels of is0-20:0, 20:1,
20:0, 1s0-22:0, 22:1 and 22:0 also present.
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Table 6. Fatty alcohol composition (% of total sterols) of DHA- and control camelina.

DHA camelina Control camelina
Fatty alcohols Hexane cM' Hexane cM'
iso0-16:0 0.8 1.9 1.5 1.7
16:0 5.7 13.8 6.1 12.2
iso-17:0 16.4 37.1 235 38.6
17:0 3.8 0.3 5.7 1.0
iso-18:0 6.6 11.8 8.3 13.5
18:1 2.8 8.0 2.5 5.1
18:0 9.3 7.9 7.4 6.4
Phytol 47.1 9.1 37.4 11.7
19:0 4.5 5.6 5.1 6.7
is0-20:0 0.0 0.2 0.0 0.2
20:1 1.0 0.9 0.5 0.6
20:0 1.3 1.7 1.2 1.1
is0-22:0 0.0 0.2 0.0 0.2
22:1 0.0 0.5 0.0 0.3
22:0 0.8 1.0 0.7 0.5
Sum 100 100 100 100

! Polar lipid-rich extract containing glycolipids and phospholipids with residual TAG obtained by
chloroform-methanol (CM) extraction post hexane extraction of crushed seed.

4. Discussion

The oil content from camelina seeds can range from 25% to 48% [19,24-26] and can be dependent
on the location where the plant is grown and the environmental conditions during growth. Previous
researchers have published the fatty acid composition of camelina oil which is similar to what we
report here for the control camelina [27]. Since this was only a descriptive analysis with no replication
performed, we cannot yet conclusively determine whether the insertion of the omega-3 LC-PUFA
microalgal-derived genes affected the oil yield. Hence, further work including replication would need
to be done to determine if there is any statistical change in the oil yield. The results for the oil extraction
suggest that slow crushing using a motorized mortar and pestle with multiple extractions with hexane
at room temperature is effective in recovering the majority of the TAG oil.

In addition to the oil containing moderate levels of DHA, the DHA-containing camelina also had
markedly higher levels of ALA in the major lipid classes (triacylglycerols, glycolipids and phospholipids)
compared with the control camelina. This finding shows that the activity of the A-15 desaturase gene is
considerably enhanced in DHA camelina [18,20] hence there is scope to increase the DHA content
further by optimizing the elongation and desaturation of ALA. Variations in the level of ALA and
DHA in the transformed plants may also be influenced by the effects of cultivar variety and other
factors such as the quality of soil and climatic and weather conditions. It has also been reported that, in
oilseed crops, the level of PUFA in general is promoted by low temperatures (winter and spring
season) during the seed filling period, while at higher temperatures (summer season) the concentration
of saturated fatty acids is higher [26].
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Interestingly, there were some slight differences in the fatty acid profile and proportion of DHA in
the various extracts and fractions with the DHA levels being higher in the TAG-rich hexane extract
and TAG from CM extraction (6%—6.8%) and lower in the polar lipid fractions (3% in glycolipids and
1.6% in phospholipids), and 16:0 being higher in the polar lipid fractions of glycolipids and
phospholipids from CM extraction (19%—-21%) compared with the TAG-rich hexane extract and TAG
from CM extraction (6%—7%). It is not known if the low levels of residual lipid present in the meal
after solvent extraction (using hexane then chloroform-methanol) and recovered by transmethylation is
derived from free solvent extractable lipid or bound lipid which is liberated only by hydrolysis under
the hot acid methanolic transmethylation conditions. Future research will investigate this aspect.

The sterol composition of the camelina DHA and control camelina samples analysed here were
similar to that found in refined camelina oil [28] with the same major sterols present, indicating that
the added genes did not affect sterol synthesis. Previous workers reported the major sterols as being:
cholesterol (4%), brassicasterol (3%), campesterol (21%), stigmasterol (2%), sitosterols (45%),
A5-avenosterol (9%), cycloartenol (12%) and 24-methylene cycloartenol (3%). They also noted ten
minor components which were unidentified due to their very low levels. We also observed several
unidentified components at low relative levels (Table 5). Schwartz ef al. [29] reported campestanol
(1.6 mg), sitostanol (2.5 mg), stigmasta-5,24-dienol (6.2 mg), gramisterol + a-amyrin (1.9 mg),
A7-avenosterol (trace levels) and citrostadienol (1.30 mg) in camelina oil in addition to the sterols
identified by Shukla ef al. [28]. They reported the levels of the common sterols (mg/100 g oil) in
camelina oil as cholesterol (35 mg), brassicasterol (27 mg), campesterol (117 mg), stigmasterol
(5.6 mg), sitosterol (300 mg), AS-avenosterol (37 mg), cycloartenol (10 mg) and 24-methylene cycloartenol
(1.0 mg). The level of cholesterol in camelina oil was higher than occurs in most vegetable oils and
brassicasterol is a characteristic sterol found in the Brassicaceae family of which camelina is one.

Based on the combined analyses of a wide suite of lipid classes in DHA camelina and control
camelina, it would seem then that the omega-3 LC-PUFA genes have, as expected, had little or no
effect on the sterol composition. Further work will need to be carried out to determine the contributions
of these sterols from the sterol ester and free sterol fractions, in each of the extracts, by separating the
sterol ester and free sterol lipid classes and analysing them separately.

In relation to the presence of fatty alcohols, those with chain length C,—C,4 have previously been
observed in camelina after release from wax esters following saponification [30], but to our knowledge
the presence of iso-odd-chain fatty alcohols such as found here, in both DHA camelina and control
camelina, have not been reported previously. Further research needs to be performed to determine
which fractions these alcohols are present in, e.g., in free or in an esterifiedform such as in a wax ester.

5. Conclusions

This is the first detailed report of the lipid composition of a new transformed terrestrial oilseed
capable of producing DHA-containing (6.8% of total fatty acids) TAG oil with a simple fatty acid
profile and a high preference of ®3 over w6 LC-PUFA. Fish oils also have a high preference of ®3
over ®6 LC-PUFA. However, several key distinguishing features found in the transformed camelina
fatty acid profile is the high level of a-linolenic acid (ALA, 18:3w3) which is only a minor fatty acid in
fish oils and the much lower levels of EPA (eicosapentaenoic acid, 20:5»w3) making the fatty acid
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profile of the oil unique. The chloroform-methanol extract is rich in polar lipids (glycolipids and
phospholipid), since these are not extracted by hexane. Hence, the hexane extracted seed meal, from
which most of the TAG was removed may be useful as an animal feed supplement (e.g., in
aquaculture) or as a source of high value DHA-containing polar lipids (e.g., phosphatidyl choline
containing DHA). The profiles of other lipid classes such as sterols and fatty alcohols were very
similar to the control camelina. These results hold promise for the development and commercial
production of new and sustainable terrestrial sources of LC omega-3 oils, which will supplement or in
part replace LC omega-3 containing marine oils, hence alleviating pressure on wild harvest fisheries
arising from increasing demand for these oils. Future research will be extended to canola and include
similar detailed lipid class characterisation, examination of extraction efficiencies, oil stability and
enrichment of DHA.
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DHA-Containing Oilseed: A Timely Solution for the
Sustainability Issues Surrounding Fish Oil Sources of the
Health-Benefitting Long-Chain Omega-3 Oils

Soressa M. Kitessa, Mahinda Abeywardena, Chakra Wijesundera and Peter D. Nichols

Abstract: Benefits of long-chain (>Cy) omega-3 oils (LC omega-3 oils) for reduction of the risk of a
range of disorders are well documented. The benefits result from eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA); optimal intake levels of these bioactive fatty acids for maintenance of
normal health and prevention of diseases have been developed and adopted by national and
international health agencies and science bodies. These developments have led to increased consumer
demand for LC omega-3 oils and, coupled with increasing global population, will impact on future
sustainable supply of fish. Seafood supply from aquaculture has risen over the past decades and it
relies on harvest of wild catch fisheries also for its fish oil needs. Alternate sources of LC omega-3 oils
are being pursued, including genetically modified soybean rich in shorter-chain stearidonic acid (SDA,
18:403). However, neither oils from traditional oilseeds such as linseed, nor the SDA soybean oil have
shown efficient conversion to DHA. A recent breakthrough has seen the demonstration of a land
plant-based oil enriched in DHA, and with omega-6 PUFA levels close to that occurring in marine
sources of EPA and DHA. We review alternative sources of DHA supply with emphasis on the need
for land plant oils containing EPA and DHA.
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of the Health-Benefitting Long-Chain Omega-3 Oils. Nutrients 2014, 6, 2035-2058.

1. Introduction

There is a vast array of reviews, systematic reviews, meta-analysis and industry reports on seafood
consumption in general and the health benefits of omega-3 long-chain (>Cyy) polyunsaturated fatty
acids (omega LC-PUFA) (also termed LC omega-3 oils) in particular. Our review begins from the
premise that, as far as human health claims are concerned, the health benefits of seafood and their
omega-3 fatty acids are largely related to the supply of eicosapentaenoic acid (EPA, 20:5w03) and
docosahexaenoic acid (DHA, 22:6®3) [1-9]. Thus, one aim of our review is to examine the occurrence
of a marked rise in demand for oils high in EPA and DHA and against this demand, the sustainability
of marine sources of these LC omega-3 oils. The review summarises recommended intake targets
proposed and/or set by national and international bodies. It analyses the bio-conversion of
shorter-chain (C;g) omega-3 fatty acids to EPA and DHA in humans, monogastric animals, ruminants
and aquaculture species. As the major user of global fish oil (FO) supply, the aquaculture sector is
considered in a relatively greater detail with respect to both biosynthesis of EPA and DHA as well as
FO supply issues. Research trends in the area of metabolic engineering of plants to produce novel
omega-3 oil sources, and the biological efficacy of currently available oils are covered.
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2. Consensus for, and Recommendations on, Human Nutrition Needs for Long-Chain
Omega-3 Oils

Increasing numbers of clinical and epidemiological studies provide evidence supporting the case
that omega-3 LC-PUFA are responsible for a multitude of health benefits [10]. The dietary intake of
preformed omega-3 LC-PUFA—EPA and DHA—has been recognised as important [1] since in vivo
conversion of the shorter-chain (C;g) fatty acids, namely w-linolenic acid (ALA, 18:3®w3) to DHA in
particular is relatively poor [11,12]. In 2009, the International Society for the Study of Fatty Acids and
Lipids (ISSFAL) [13] provided the following position statement: “The majority of evidence from
isotopic tracer studies shows that the conversion of ALA to DHA is on the order of 1% in infants, and
considerably lower in adults.” Hence, it is critical that there are various and sustainable sources of oils
containing preformed DHA for the whole population to meet targets for adequate intake of EPA plus
DHA. Table 1 summarises the dietary intake targets proposed by various national and international
bodies [14-20].

Although the recommended daily intakes vary, they are a culmination of years of clinical and
epidemiological research that have clearly established a strong body of evidence for the beneficial
health effects of LC omega-3 oils for the improvement of cardiovascular health [21]. The
recommendations provided in Table 1 are based on consumption of both EPA and DHA. As currently
there are only limited and more niche supply alternatives to the marine supply of DHA, we also aim to
highlight specific roles of DHA in the following section to caution against reliance on LC omega-3
sources that do not provide DHA.

Table 1. Selected suggested long-chain (LC) omega-3 (eicosapentaenoic acid +
docosahexaenoic acid (EPA + DHA)) intakes (mg/day) for adults available from various

agencies and bodies.

Group EPA + DHA, mg/day

SACN/COT, UK 2004 [14] 450
National Heart Foundation (Australia), 2008 [15] 500
American Dietetic Association and Dieticians of Canada, 2007 [16] 500
FAO/WHO Expert Consultation, 2008 [17] 250-2000 *
American Heart Association, 2002 [18]:

Coronary heart disease sufferers 1000

Those seeking to reduce triacylglycerols (blood fats) 2000—4000
National Health and Medical Research Council (Australia) [19]:

Male adults 610

Female adults 430
European Food Safety Authority, 2010 [20] 250

* For secondary prevention of coronary heart disease.

3. The Role of DHA

LC omega-3 oils containing EPA and DHA are considered beneficial for certain aspects of
cardiovascular health and pharmaceutical-grade omega-3 LC-PUFA therapies have expanded rapidly
for treatment of cardiovascular-related diseases [22—24]. Whilst the majority of studies have reported
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both EPA and DHA as being protective, there is a growing body of evidence that suggests differential
effects depending on the nature of cardiovascular risk factor itself and/or the disease endpoint. For
example, DHA has been more effective than EPA for its actions on blood pressure, heart rate and
vascular health [10,25-27]. On their effects on plasma lipids, a meta-analysis of randomized placebo
controlled trials of EPA or DHA monotherapy has concluded that DHA is more effective in lowering
triacylglycerols (TAG) and raising HDL-cholesterol (HDL-c) than EPA [28]. Although DHA has been
found to raise LDL-cholesterol (LDL-c), this was also associated with increased LDL and HDL
particle sizes [29]—an outcome not observed with EPA [26]. Furthermore, only DHA was effective in
reducing the number of small, dense LDL particles [27] which are known to be more atherogenic.
Increased LDL and HDL particle sizes are negatively correlated with cardiovascular risk. Furthermore,
DHA, but not EPA, was inversely associated with intima-media thickness—an independent
predictor of cardiovascular events—in the Japanese [30], suggesting more potent anti-atherogenic
properties of DHA. Similarly, DHA but not EPA supplementation reduced the vulnerability to
experimentally-induced atrial fibrillation and secondary structural changes (re-modeling) of the
atria [31]; these findings are in agreement with observations made in several human clinical studies
that reported that lower incidence of atrial fibrillation is correlated positively with plasma DHA, but
not EPA [32,33].

The human nervous system contains a significant amount of DHA, which is required for brain
development and function especially in infants [12]. With the poor conversion of ALA and EPA to
DHA, together with the particularly important roles for DHA in humans, inclusion of DHA in infant
formula is now widespread.

With regard to mental health conditions, a range of studies have examined the effect of the LC
omega-3 oils on mild cognitive impairment (MCI) [34]. Depressive symptoms may increase the risk of
progressing from MCI to dementia. Consumption of LC omega-3 may alleviate both cognitive decline
and depression. A recent study investigated the benefits of DHA and EPA supplementation for
depressive symptoms, quality of life (QOL) and cognition in elderly people with MCI [34]. In a
6-month, double-blind, randomised controlled trial, individuals aged 65 years with MCI were allocated
to receive a supplement rich in EPA, DHA or the omega-6 PUFA linoleic acid (LA, 18:2w6).
Compared with the LA group, Geriatric Depression Scale (GDS) scores improved in the EPA and
DHA groups and verbal fluency (Initial Letter Fluency) improved in the DHA group. Improved GDS
scores were correlated with increased DHA plus EPA. Improved self-reported physical health was
associated with increased DHA. There were no treatment effects on other cognitive or QOL
parameters. Increased intakes of DHA and EPA benefited mental health in older people with MCIL
Increasing omega-3 LC-PUFA intakes may reduce depressive symptoms and the risk of progressing to
dementia. The authors concluded that this needs to be investigated in larger, depressed sample groups
with MCIL.

The same research team also examined the effects of LC omega-3 oils on literacy and behaviour in
children with attention-deficit/hyperactivity disorder (ADHD) [35]. The effects of an EPA-rich oil and
a DHA-rich oil versus an omega-6 PUFA-rich safflower oil (control)—as LA—were compared in a
randomized, controlled trial. The effect of supplementation on cognition, literacy, and parent-rated
actions was assessed by linear mixed modelling. There were no significant differences between the
supplement groups in the primary outcomes after four months. However, the erythrocyte fatty acid
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profiles indicated that an increased proportion of DHA was associated with improved word reading
and lower parent ratings of oppositional behaviour. These effects were more evident in a subgroup of
children with learning difficulties: an increased erythrocyte DHA was associated with improved word
reading, improved spelling, an improved ability to divide attention, and lower parent ratings of
oppositional behaviour, hyperactivity, restlessness, and overall ADHD symptoms. The authors
concluded that increases in erythrocyte omega-3 PUFA, specifically DHA, may improve literacy and
conduct in children with ADHD. The greatest benefit may be observed in children who have
co-morbid learning difficulties. In a recent randomized controlled intervention trial, DHA
supplementation was observed to improve both memory and reaction time in healthy young adults
whose habitual diets were low in DHA [36]; the response was found to be modulated by gender.

Another very recent application of DHA has been in the development of neuroprotective strategies
for treatment of spinal cord and head injuries. These studies—albeit at early stages involving animal
models—illustrate the significant potential of DHA, but not EPA, in the treatment of acute
neurological injury [37].

Against the increasing scientific literature pointing to the importance of the LC omega-3 oils and in
particular DHA, in human health, global supplies of fish oil (the current main source of EPA and
DHA) obtained from wild-harvest low-value marine species, termed forage fish, will not meet future
market demands [23,38]. The following sections in this review paper examine sustainability of fish oil
and future sources of the LC omega-3 oils, recent findings for the use of SDA containing oils, current
practices with aquafeeds, and further research needs.

4. Supply, Demand and Environmental Issues—A Need for Alternative Sources of
LC Omega-3 Oils

The harvest of low trophic species such as anchovy, sardines, mackerel, menhaden, capelin and
sandeel for the production of fish meal and fish oil (FO) represents the current main source of the
health-benefiting LC omega-3 oils used in aqua and animal feeds, health supplements, pharmaceuticals
and other products including functional foods.

Fish oil processing involves a range of steps after the initial meal and oil production [39]. Many of
these steps use the same processes that are used for vegetable oils. The final use for the oil determines
the level of processing, with human nutrition and pharmaceutical applications generally requiring
greater processing and accompanying quality assurance and quality control procedures than for fish
and animal nutrition. Several changes in the usage pattern have occurred over the past decades.
FO was initially widely used in livestock feed, then, as aquaculture expanded this industry became the
major user. Therapeutic uses of LC omega-3 PUFA are increasingly being recognized and recently
new pharmaceutical grade LC omega-3 products (containing 85%—-95% EPA and DHA) have gained
increasing market share, and this industry has expanded its share of use of the fish oil resource, with
less oil available for the aquaculture sector [31,40]. This changing pattern of use of FO is predicted to
continue [40]. One aspect of this recent change is that the processing of the FO to achieve the higher
grade (or more pure) LC omega-3 products results in considerable losses, with product yields in the
5%—-10% range. For instance, in a purification process reported by Belarbi ef al. [41], production of
1 kg EPA ester required 15 kg of FO, or 56 kg (dry basis) of the marine alga Phaeodactylum
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tricornutum or 70 kg of another alga Monodus subterraneus. Further research and development for
more efficient production of the pharmaceutical grade products will assist all users to maximize and
better utilize this important finite resource.

Global production of FO is around 1 million tonnes per annum, with fish meal in the range of
6—7 million tonnes per annum, except during the periodic El Nifio years [42]. Production has generally
remained at this level for the past decade [23], and requires an annual catch of 25-30 million tonnes of
feed-grade fish and unwanted fish processing waste; 4-5 kg of wet fish yields 1 kg of FO and
fishmeal. Although the current harvest of low trophic (also termed forage) species for fish meal and
FO has been regarded as sustainable for several decades, a recent development has been the foreseen
need to reduce the harvest of small oceanic forage fish like sardines and anchovies in some areas by
20%—-50% 1in order to protect larger predators that rely on these species for food [43,44]. Should such
recommendations be implemented, this would have significant flow-on ramifications for the range of
industries currently utilizing the FO resources.

An emerging source of LC omega-3 oils over the past decade has been krill oil. The current krill
harvest is around 200,000 MT [40], and is actually much less than in the 1980s prior to the break-up of
the USSR. The total allowable catch is set by the Committee for the Conservation of Antarctic Marine
Living Resources (CCAMLR) and is three times greater than the present harvest. Of the major krill oil
producers, a further development has been that Aker BioMarine has been granted certification by the
Marine Stewardship Council (MSC) in 2012. MSC has validated the harvesting and traceability for
Aker’s Antarctic fisheries. The total krill harvest is deemed sustainable at present levels in view of a
number of, although not all, bodies including various Non-Government Organizations. If there is to be
a major expansion of the krill fishery, the sustainability topic will clearly need to be revisited by these
and other expert groups including in particular CCAMLR.

5. Alternative Sources of LC Omega-3 Oils

Against the background provided above on the current and future status of marine-derived
oils—fish oil and more recently krill oil—considerable progress has occurred with the development of
new, alternate and sustainable sources of the LC omega-3 oils. Single cell organisms (SCO), such as
heterotrophic dinoflagellates and thraustochytrids (both grown and harvested for DHA containing oils)
and other algal groups and recently a genetically modified (GM) yeast (containing EPA) are now in
commercial production; strong uptake has occurred for the DHA oils in particular areas including
infant formula, health supplements and some functional foods [45]. In addition to this excellent
progress with SCO production of the LC omega-3 oils, a large number of groups are conducting
research and development with a suite of microalgae towards co-production of biofuels and other
by-products [46]. Whilst the cost of production of microalgae for biofuel production is presently
greater than for fossil fuels, future breakthroughs in culturing, harvesting and other processing are
anticipated [46], which can be expected to reduce costs. It is anticipated that these uses for SCO will
largely remain for the high value applications including in nutraceutical and pharmaceuticals rather
than in aquafeeds.
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The past decade has also seen several groups using genetic engineering to allow oilseed crops to
produce LC omega-3 oils [23]. As this research field has progressed, important breakthrough steps
have included: the isolation and characterization of genes from the marine microalgae encoding
front-end desaturases involved in DHA biosynthesis [47], the isolation of highly efficient desaturases
and elongases [48-51], the use of genes with omega-3 substrate preference [49-51] and the
development and use of a land plant (tobacco) leaf-based assay using interchangeable design principles
to rapidly assemble multistep recombinant pathways [52]. Progress with research on insertion of
microalgal-derived genes leading to DHA production into a range of omega-3 C;3 PUFA accumulating
land plants has been reviewed [2,53—55]. Transfer of genes from microorganisms to land plants has
seen accumulation in oilseeds of SDA, EPA and DHA [2] (Table 2, Figure 1). Good progress has been
made in engineering the EPA genes into crop plants, with several groups reporting the production of
EPA at levels similar to that observed in bulk fish oil (approximately 18%) [56,57]. The conversion of
the Cyp EPA to the particularly important C,; DHA, however, had been problematic with many
attempts resulting in the accumulation of EPA and DPA, but until very recently little DHA [56,58—-62].

For SDA and EPA, levels achieved in the engineered oilseed plants are comparable to levels from
other naturally occurring land plant (SDA) and/or marine (EPA) sources [23]. Elevated levels of DHA
had not been achieved prior to 2012, except for one in planta observation where the isolated TAG
fraction from the leaf of Nicotiana benthemiana contained high DHA, although high levels of the
omega-6 PUFA 18:2w6 were also present [53]. In 2012, a further key breakthrough occurred, with the
reporting, for the first time, of fish oil-like profiles for a DHA-containing oilseed plant Arabidopsis
thaliana [58]. Features of the new oil were: (i) a DHA level of 15% (of the total FA); (i1) a total of
25% new omega-3 PUFA and omega-3 LC-PUFA; (ii1) 30% ALA; and (iv) an omega-3/omega-6 ratio
that was similar to that observed for marine oils. The latter feature is a further important and
distinguishing attribute for the land plant derived LC omega-3 oils, with this report being, to our
knowledge, the first time this oil trait has been observed. More recently a similar profile has been
observed in a commercial oilseed plant (Camelina sativa) [59].

Table 2. Levels of SDA, EPA and DHA (as % of fatty acids) in new land plant oil seeds.

QOil Seed and Comparison to Farmed salmon Reference SDA% EPA% DHA%
[51] 10
[59] 5 1
. . [51] 1 26
CSIRO Oil Seeds (includes model plants) (53] L5 14
[58] 5 2 15
[59] 9 3 13
BASF Mustard [61] 15 1.5
Monsanto-Soy [56] 20
Dupont-Soy [55,57] 20 3
Farmed salmon
fed fish oil (FO) [63,64] 10 17
fed plant oil/chicken fat-FO [65] 1-5 5

Abbreviations: SDA, stearidonic acid EPA; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.
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These findings clearly indicate the feasibility of developing oilseed crops with high concentrations
of omega-3 LC-PUFA. Further research and development is needed to develop commercial oilseed
crops with LC omega-3 oil enriched in DHA as has been achieved in model plants (Arabidopsis,
tobacco) and also in Camelina. Future novel land-based plants can provide an economically viable
source of LC omega-3 oil for aquaculture and other higher value applications. A land plant source of
LC omega-3, if achieved, and assuming cultivation is permitted, will be considerably cheaper than that
from microorganisms, and could be used as an additional source of these essential ingredients in feed,
food and pharmaceutical products to improve human health (Figure 1).

6. ALA and SDA in Animal Feeds

The availability of the SDA-containing Echium oil (around 14% SDA of total FA) has enabled this
potential EPA/DHA precursor, which is one step more advanced than ALA to be trialed in animal,
including farmed fish, and human nutrition research. The general hypothesis driving this line of
research has been that animals and farmed fish fed SDA oils would produce tissue containing greater
proportion of EPA and DHA than those fed ALA oils. This is based on the assumption that the
inefficiency in the biosynthesis of EPA and DHA from ALA is related to the rate-limiting step of
converting ALA to SDA (Figure 2).

Selected poultry data from feeding experiments [66—74] where different oils have been used to
enrich thigh muscle are summarised in Figure 3. There were only modest changes in EPA and DHA
content in broiler muscle samples when the oil supplement itself did not contain the omega-3
LC-PUFA. The evidence from such a large range of experiments did not indicate marked benefit from
using Cig oils in enriching tissues particularly with DHA (Figure 3). Similar trends were noted when
we reviewed EPA and DHA enrichment of egg from omega-3 oil-supplemented laying hens and breast
muscle in broilers (data not shown). Similarly, data from lamb meat studies [75—84] are summarized in
Figure 4. Levels of EPA and DHA in lamb meat were lowest in studies where vegetable oils were
used. As the dietary fat supplement shifted towards marine sources, the levels of EPA and DHA in
lamb meat increased across experiments. The evidence so far suggests that the best way to enhance the
DHA content of livestock products is to include DHA containing fat supplements in the diet. There is
as yet no convincing evidence that current fat supplements containing ALA or SDA are suitable
alternatives for those containing preformed EPA and especially DHA.
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Figure 1. The potential future sources of omega-3 LC-PUFA are shown, with current
sources (left) being seafood and microalgae, with possible future sources through

genetically engineered plants also indicated at the right.
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Figure 2. Schematic showing synthesis of shorter-chain fatty acids in land plants (black
horizontal arrows), followed by addition of genes from marine microalgae (blue vertical
arrows) resulting in new LC omega-3 containing oilseeds. elo, elongase; des, desaturase.
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Figure 3. Levels of omega-3 PUFA (ALA) and omega-3 LC-PUFA (EPA, DPA and DHA)
in thigh muscle from broilers on a diet with: (1) no oil supplement; (2) vegetable oil; (3)
fish oil; (4) marine algae; or (5) SDA-containing oil [66—74].
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Figure 4. Levels of omega-3 PUFA (ALA) and omega-3 LC-PUFA (EPA, DPA and DHA)
in trimmed lean muscle of lambs on a diet with: (1) no oil supplement; (2) linseed or
linseed oil; (3) fish oil-vegetable oil mix; (4) fish oil; or (5) fish oil-marine algae
mix [75-84].
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7. ALA and SDA in Aquafeeds

Aquaculture continues to be the main end user of global sources of FO, yet available sources of
FO generally remain static and will likely not increase significantly. Against this background of either
static or decreasing resource availability, the demand for FO and its range of uses continues to increase
as noted earlier. The increasing demand for FO is in line with the growing global population (due to
rise by a further 34% by 2050) [85], the expanding aquaculture industry (around 10% growth per
annum), the increasing recognition of the health benefits of the LC omega-3 oils, and more recently the
resulting and therefore competing use of FO for production of pharmaceutical grade products

containing >85% EPA and/or DHA.

A number of trials have been conducted for Atlantic salmon and barramundi using the SDA rich
Echium oil (Echium plantagineum). Initial work with Atlantic salmon parr (freshwater stage) showed
that SDA was effective in producing EPA and DHA [86,87]. This freshwater phase is only a short
period of the total life cycle for farmed Atlantic salmon. Trials for the same species during the
seawater stage (bulk of the life cycle) showed SDA was not so effective [63,64,88]. Some EPA was
produced and also DPA, but no DHA. The same observations occurred for barramundi feeding
trials [89-91], that is limited or no omega-3 LC-PUFA, in particular DHA, was produced or
accumulated in the flesh of this species. Conversion of the C;g SDA for barramundi to the omega-3
LC-PUFA was even lower than that observed for Atlantic salmon. Other researchers have generally
observed similar findings where SDA inclusion has occurred in aquafeed trials with other fish species,
including Atlantic cod, striped bass, rainbow trout and gilthead seabream [92-95].

A further feeding trial with the SDA-containing Echium oil for early juvenile barramundi used the
plant bioactive sesamin as a potential modulator of lipid biosynthesis [96]. Relative to the control fish,
growth of the SDA treatment group was hindered, although interestingly both EPA and DHA
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increased. It was proposed that sesamin is a potent modulator for LC-PUFA biosynthesis in
barramundi, but probably will have more effective impact at advanced ages. By modulating certain
lipid metabolic pathways, the use of sesamin as a feed ingredient probably disrupted the body growth
and development of organs and tissues in the early juvenile barramundi.

Atlantic salmon and barramundi have, when fed an FO-containing diet, provided an excellent
source of beneficial omega-3 LC-PUFA for human consumption, but reduced concentrations of these
acids, together with a markedly decreased omega-3/omega-6 ratio, as occurs through the use of
vegetable oil and/or animal fat diets, may compromise their nutritional benefit to consumers. Limited
research has been performed to examine this issue. In one study [97], dietary intake of differently fed
salmon (100% FO, 50/50 FO/rapeseed oil, 100% rapeseed oil) and the influence on markers of human
atherosclerosis were compared. Significant differences between the consumer groups were observed in
the serum fatty acid profiles, especially for the levels of total omega-3 PUFA and the omega-3/omega-6
ratio, which were markedly increased in the FO-fed fish consuming group in contrast to the two other
groups. The authors concluded that Atlantic salmon fed the FO-containing diet and containing very
high concentrations of omega-3 LC-PUFA seemed to impose favorable biochemical changes in
patients with CHD when compared with ingestion of fillets with intermediate and low levels of the
marine omega-3 LC-PUFA, where FO was replaced in part or in full by rapeseed oil [93]. There have
been no consumer trials with fish fed diets containing ALA / SDA rich oils versus FO derived EPA +
DHA, and looking at the effects on consumers.

8. SDA Oils in Animal Models and Humans

It is apparent from examination of the research performed to date on SDA diets, that the benefits
from use of SDA (like for ALA) are due to its conversion to EPA and DHA. Whilst SDA is more
efficiently converted to EPA than ALA [98], it is important to record that the elongation of dietary
SDA to DHA has been found to be absent (or negligible at best) in humans [99-101]. Furthermore,
with respect to enrichment with EPA, the conversion efficiency of SDA to EPA was only 17% even
after four months of feeding soybean oil preparation containing 16% SDA and 11% ALA. Similarly,
three months treatment with soybean oil with even higher SDA content (28% SDA alone and
40% total omega-3) failed to change erythrocyte DHA from baseline values. These studies clearly
show the inability of SDA-rich oils to influence the endogenous DHA pool in humans. The elongation
and desaturation of SDA appears to terminate at the DPA level as increased levels of this fatty acid
have been observed [101]. However, evidence of direct physiological benefits of DPA in humans is yet
to be elucidated. The accumulation of DPA in the EPA and DHA biosynthesis pathways of many
species, and its relative abundance in red meat and some marine species also point to a need to
determine whether or not DPA should be included in the omega-3 content claim of foods and
ingredients. Inclusion of DPA will broaden the range of foods that can reach the “good source” and
“very good source” bars in the omega-3 content claims.

Similar results have also been found following animal feeding studies where dietary Echium oil rich
in SDA (and ALA; 15% SDA, 29% ALA) failed to increase plasma or tissue DHA levels compared to
supplementation with fish oil. In particular, Echium oil diet did not lead to any increase in EPA or
DHA in cardiac muscle membranes, but resulted in a dose-related increase in DPA [102]. Fish oil
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feeding on the other hand displayed considerable accumulation of DHA but not DPA. Also it is of
interest to note that anti-arrhythmic action (protection against ischemia induced cardiac arrhythmia and
sudden cardiac death in rats) was significantly greater following feeding with FO compared to
SDA-rich Echium oil [65].

Albert et al. [103] reported over a decade ago that plasma LC omega-3 levels are inversely
associated with the risk of sudden cardiac death. More recently, the omega-3 index which is the
combined total proportion of erythrocyte membrane EPA and DHA has emerged as a novel biomarker
that predicts cardiovascular risk [104]. It has also been reported that the omega-3 index correlates well
with the EPA + DHA levels of myocardial membranes [105], thus favouring its use when assessing the
risk of sudden cardiac death. Since there was no increase in DHA following feeding oils rich in
SDA [99-101], the reported beneficial rise in omega-3 index has been driven solely by an increase in
EPA. In view of the overall cardiovascular benefits specific to DHA, including the anti-arrhythmic
actions discussed above, it can be concluded that further research is needed to determine the important
question whether or not an omega-3 index that increased solely due to EPA, is of less benefit as
compared to rise in omega-3 index achieved via greater incorporation of DHA into erythrocytes, and
ultimately whether an increased SDA consumption would translate into improved human health
outcomes [101]. Taken collectively, the observations summarized in these two sections covering the
potential use of SDA-rich oils presently imply that direct supply of the pre-formed omega-3 LC-PUFA
(EPA and in particular DHA) is the preferred strategy to improve the omega-3 status in diverse
applications ranging from aquaculture, livestock and in humans.

9. Current Practices with Commercial Aquafeeds and Future Sources of LC Omega-3 Oils

Aquaculture can be considered as a traditional industry with fish culture occurring for many
centuries. Modern aquaculture expansion began in the 1980s and has continued to rise steadily since,
with the high value salmonoid fish such as Atlantic salmon being the species of choice. Fish oil,
produced as a by-product of the fish meal industry, had been the main oil incorporated into fish feed
until recent years. As noted earlier, the past decade has seen fish oil availability decrease and also
prices increase substantially. From the use of 100% FO (of the oil component), feed manufacturers are
now using up to 75% or higher of vegetable or animal-derived oils [106]. The topic of FO replacement
and alternative lipid sources has been recently examined in considerable detail, with a review book
now available for researchers, industry and other end users [107]. Given the availability of such a
substantial resource, it is not the purpose of this section to further review this topic. This FO
substitution can include mixes such as FO/rapeseed oil, FO/chicken fat, and also other combinations.
Whilst fish growth and performance is generally not affected, the concentration of omega-3 LC-PUFA
and the omega-3/omega-6 ratio in fillet products is markedly changed. For farmed Atlantic salmon
grown in Tasmania, Australia, the concentration of EPA and DHA has reduced by >30%—50% or more
(Figure 5), and the omega-3/omega-6 ratio also has reduced markedly. Marine fish typically show an
omega-3/omega-6 ratio of between 5 and 10, and for the first time in 2013 the ratio in farmed salmon
in Australia has decreased to less than 1 [108].



121

Figure 5. Farmed Atlantic salmon from Tasmania, Australia from 2002 (fish oil diet) [23]
and 2010 to 2013 (chicken fat/fish oil diet) [108]: Content of EPA (white bars) and DHA
(black bars) (mg/100 g, wet weight).
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A recent study tested whether Atlantic salmon smolt fed a diet with a higher DHA: EPA ratio and a
lower content of LC omega-3 oils to that of conventional FO based diets would enhance deposition of
LC omega-3 in the liver and muscle [109]. Comparisons were made between fish fed: (1) a FO diet;
(2) a blend of 50% rapeseed and 50% tuna oil diet (termed model oil, MO1); (3) a blend of 50%
rapeseed, 25% tuna and 25% FO diet (MO2); and (4) a blend of 50% FO and 50% chicken fat diet
(FO/CF). The latter diet was representative of commercial diets in use at the time of the study, with the
proportion of chicken fat increasing even further since the study was performed. The dietary
DHA:EPA ratio was in the order MOl > MO2 > FO/CF ~ FO. The LC omega-3 content was
approximately 2-fold lower in the MO1, MO2 and FO/CF diets compared to the FO diet, with the
relative levels (as % total FA) lowest in the MO1 diet. For the feeding trial, there were comparable
contents of LC omega-3 in the muscle of the FO, MO1 and FO/CF fed fish. A major outcome was that
a higher DHA:EPA ratio than that commonly occurring with FO-only diets used for Atlantic salmon
was better suited for more efficient deposition of LC omega-3, in particular DHA, with evidence
therefore apparent for LC omega-3 “sparing” in Atlantic salmon smolts when fed a diet with a high
DHA:EPA ratio [109].

The use of a 50% FO and 50% CF blend in aquafeeds for Atlantic salmon, as was in the range
commercially practiced in Australia, resulted in comparable LC omega-3 content in the muscle [108]
and liver of juvenile Atlantic salmon to a FO fed fish. It is noteworthy that such an oil blend decreases
the inefficient utilization of a 100% FO diet, due to the high loss of EPA in particular, and can be
considered as an appropriate current strategy, in terms of LC omega-3 sparing, for present use in
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aquafeeds for Atlantic salmon [108]. It is important to note that in spite of changes that have occurred
in feeding practices, farmed Tasmanian Atlantic salmon still remains one of the best sources of
omega-3 LC-PUFA oils available to Australian consumers. However, the scope can exist with the
potential future use of new oilseed-derived LC omega-3 to restore the content of these
health-benefitting ingredients, and also the omega-3/omega-6 ratio to that previously seen.

Further research is needed to determine the optimum relative and absolute concentrations of dietary
EPA and DHA to enhance their deposition in larger-sized commercially farmed Atlantic salmon. The
rationale to pursue such studies will be reliant on research in plant genomics since oils with the desired
FA profiles, in particular containing a high DHA:EPA ratio [58,59], whilst not presently available, will
likely be a commercial reality by the end of this decade.

10. TAG Structure of Plant-Based LC Omega-3 Qils for Optimum Bioactivity and
Food Processing

The melting characteristic of a fat/oil is an important determinant of its suitability for the
manufacture of food products. For example, a certain melting range is required before a fat can be used
for the manufacture of margarine or fat spreads. The positional distribution of omega-3 LC-PUFA
within the TAG molecules can significantly influence the melting characteristics of LC omega-3 oils.
In general, the melting point is increased when the omega-3 LC-PUFA is located at the s»n-2 position
compared with the sn-1(3) positions [110]. This has practical implications enabling the conversion of
liquid oils to semi-solid fats for margarine manufacture or use as trans fat substitutes in bakery
products. Furthermore, omega-3 LC-PUFA such as DHA are more resistant to oxidative deterioration
when located at the sn-2 position compared to the sn-1(3) positions [111].

The effects of fatty acid positional distribution on absorption and nutrition of oils and fats are less
well understood. Evidence from animal and human infant studies suggests that TAG structure affects
digestibility, atherogenicity and fasting lipid levels, with fats containing palmitic and stearic acid in the
sn-2 position being better digested and considered more harmful for cardiovascular health [112-114].
However, a few studies in human adults have indicated that fatty acid positional distribution has no
effect on digestibility or fasting plasma lipids [115,116]. There have been very limited studies on the
physiological effects of TAG positional distribution of omega-3 LC-PUFA such as EPA and DHA on
either animals or humans. These fatty acids are predominantly located at the s»-2 position in fish oil
TAG with the notable exception of seal blubber oil. Though it has been hypothesised, there are
presently not sufficient data with humans to conclude that location of omega-3 LC-PUFA at the sn-2
position confers greater physiological benefit when compared to location at the sn-1 or sn-3 positions.
We consider this as an area for further fruitful research including with animal model and clinical trials.
The available evidence does not yet support a preference as to how the LC omega-3 containing TAG
in novel oilseeds should be best assembled to maximize the nutritional benefits to human consumers.
As we acquire this knowledge, the prospect of tailoring the DHA positional distribution of novel
plant-based DHA oils (both during metabolic engineering and post-harvest) can be used to meet
optimum health and food processing properties
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11. Conclusions

The need for further clinical trials to better refine our understanding of the mode of action of the
health-benefitting LC omega-3 oils will continue, including with emphasis towards the mode of action
of the individual components namely EPA and DHA. Similar requirements exist for farmed species, in
particular cultured fish. The latter are being increasingly fed non-marine oils, although limited research
has occurred on the possible deleterious effects to the farmed species of the lower dietary proportions
of LC omega-3 oils, accompanied by a lower omega-3/omega-6 ratio, and ultimately to human
consumers. The issue of the finite supply of the fish oil resource is very clearly upon us, and new
sustainable sources of these oils are required. SCO derived oils are in use, although remain, and likely
will remain, relatively expensive and therefore better suited to niche applications. The past five years
have seen expanded interest in applications with krill oil, although considerable care with exploitation
of this environmentally sensitive and important resource must occur. After several decades of research
for production of LC omega-3 oils from oil seeds, the prospects for such a supply are now a reality,
including most recently the difficult to achieve yet nutritionally important DHA. LC omega-3 oils
derived from GM oil seed crops may in the future provide the most economically viable source of
these key essential ingredients for aquaculture and a range of other applications. It is estimated that the
cost and availability of oils from GM plants would be similar to that of currently available commercial
oilseed crops such as rapeseed and soya. Further research and development in this area has the
potential for significant commercial, health, social and environmental benefits. This exciting field of
research will now move into the commercial development phase, with feeding and other trials and
associated approvals and consumer acceptance to occur. Other areas of research for continuing effort
will include: improved processing and yields for pharmaceutical grade products, improvement and/or
further development of novel delivery modes for application of LC omega-3 oils in functional foods,
examination of the effects of omega-3 LC-PUFA positional distribution on the bioactivity and
processing properties of various LC omega-3 food products, and also for the omega-3 index to gain
increasing acceptance and use. Collectively research and development in these and other areas will
ensure that enhanced intake of the LC omega-3 oils can occur for a wider range of consumers, with
resultant global heath, economic and social benefits resulting.

Acknowledgements

We thank the wider CSIRO Food Futures Flagship Omega-3 research team for their contributions
and Allan Green who also assisted in the preparation of Figure 1. Surinder Singh, James Petrie, Rick
Phleger, Manny Noakes and Welma Stonehouse and three anonymous journal reviewers provided
helpful review comments on the manuscript.

Author Contributions
All authors contributed to the review of the literature and the preparation of the manuscript.
Conflicts of Interest

The authors declare no conflict of interest.



124

References

10.

11.

12.

13.

14.

15.

Calder, P.C.; Yaqoob, P. Marine omega-3 fatty acids and coronary heart disease. Curr. Opin.
Cardiol. 2012, 27, 412—419.

Greene, J.; Ashburn, B.A.; Razzouk, L.; Smith, D.A. Fish oils, coronary heart disease, and the
environment. Am. J. Public Health 2013, 103, 1568-1576.

Kimmig, L.M.; Karalis, D.G. Do omega-3 polyunsaturated fatty acids prevent cardiovascular
disease? A review of the randomized clinical trials. Lipid Insights 2013, 6, 13-20.

Roncaglioni, M.C.; Tombesi, M.; Avanzini, F.; Barlera, S.; Caimi, V.; Longoni, P.; Marzona, L;
Milani, V.; Silletta, M.G.; Tognoni, G.; et al. n-3 Fatty acids in patients with multiple
cardiovascular risk factors. N. Engl. J. Med. 2013, 368, 1800—1808.

Cleland, L.G.; Caughey, G.E.; James, M.J.; Proudman, S.M. Reduction of cardiovascular risk
factors with longterm fish oil treatment in early rheumatoid arthritis. J. Rheumatol. 2006, 33,
1973-1979.

Proudman, S.M.; Cleland, L.G.; James, M.J. Dietary omega-3 fats for treatment of inflammatory
joint disease: Efficacy and utility. Rheum. Dis. Clin. N. Am. 2008, 34, 469—-479.

Stall, L.A.; Begg, D.P.; Weisinger, R.S.; Sinclair, A.J. The role of omega-3 fatty acids in mood
disorders. Curr. Opin. Investig. Drugs 2008, 9, 57-64.

Jeffrey, B.G.; Weisinger, H.S.; Neuringer, M.; Mitchell, D.C. The role of docosahexaenoic acid
in retinal function. Lipids 2001, 36, 859—871.

Parletta, N.; Milte, C.M.; Meyer, B.J. Nutritional modulation of cognitive function and mental
health. J. Nutr. Biochem. 2013, 24, 725-743.

Ruxton, C.H.S.; Reed, S.C.; Simpson, M.J.A.; Millington, K.J. The health benefits of omega-3
polyunsaturated fatty acids: A review of the evidence. J. Hum. Nutr. Diet. 2007, 20, 275-285.
Williams, C.M.; Burdge, G. Long-chain »-3 PUFA: Plant V. marine sources. Pro. Nutr. Soc.
2006, 65, 42-50.

Abeywardena, M.Y .; Patten, G.S. Role of ®3 long-chain polyunsaturated fatty acids in reducing
cardio-metabolic risk factors. Endocr. Metab. Immune Disord. Drug Targets 2011, 11, 232-246.
Brenna, J.T.; Salem, N., Jr.; Sinclair, A.J.; Cunnane, S.C. a-Linolenic acid supplementation and
conversion to n-3 long chain polyunsaturated fatty acids in humans. Prostaglandins Leukot.
Essent. Fatty Acids 2009, 80, 85-91. Available online: http://info.babymilkaction.org/sites/
info.babymilkaction.org/files/Brenna%202008%20ISSFAL%?20statement%20ALA%20supplem
entaiton%20and%?20conversion%20t0%20LC%20PUFAS%20in%20humans.pdf. (accessed on
02 October 2013).

Scientific Advisory Committee on Nutrition (SACN) and Committee on Toxicity (COT). Advice
on Fish. Consumption: Benefits and Risks; TSO: Norwich, UK, 2004; p. 204.

National Heart Foundation Australia. Position Statement: FISH, Fish Oils, n-3 Polyunsaturated
Fatty Acids and Cardiovascular Health. Updated November 2008. Pro-067, 2nd Edition. National
Heart Foundation of Australia. Available online: http://www.heartfoundation.org.au/healthy-
eating/Pages/fish-oil-program.aspx (accessed on 2 October 2013).



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

125

American Dietetics Association and Dietitians of Canada. Position of the American Dietetics
Association and Dietitians of Canada: Dietary fatty acids. J. Am. Diet. Assoc. 2007, 107,
1599-1611.

FAO/WHO. Interim summary of conclusions and dietary recommendations on total fat and fatty
acids. In Proceedings of Joint FAO/WHO Expert Consultation on Fats and Fatty Acids in Human
Nutrition. FAO/WHO: Geneva, Switzerland, 10—14 November, 2008.

Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J.; American Heart Association Committee. Fish
consumption, fish oil, omega-3 fatty acids and cardiovascular disease. Circulation 2002, 106,
2747-2757.

NHMRC. Nutrient Reference Values for Australia and New Zealand; NHMRC: Canberra,
Australia, 2006.

European Food Safety Authority. Scientific Opinion on Dietary Reference Values for fats,
including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans
fatty acids, and cholesterol. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA).
EFSA J. 2010, 8, 1461.

Leaf, A. Historical overview of »n-3 fatty acids and coronary heart disease. Am. J. Clin. Nutr.
2008, 87, 19785-1980S.

Bays, H.E. Safety considerations with omega-3 fatty acid therapy. Am. J. Cardiol. 2007, 99,
35C-43C.

Nichols, P.D.; Petrie, J.; Singh, S. Long-chain omega-3 oils—An update on sustainable sources.
Nutrients 2010, 2, 572-285.

Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits
throughout life. Adv. Nutr. 2012, 3, 1-7.

Mori, T.A.; Woodman, R.J. The independent effects of eicosapentaenoic acid and
docosahexaenoic acid on cardiovascular risk factors in humans. Curr. Opin. Clin. Nutr. Metab.
Care 2006, 9, 95-104.

Cottin, S.C.; Sanders, T.A.; Hall, W.L. The differential effects of EPA and DHA on
cardiovascular risk factors. Proc. Nutr. Soc. 2011, 70, 215-231.

Kelley, D.S.; Adkins, Y. Similarities and differences between the effects of EPA and DHA on
markers of atherosclerosis in human subjects. Proc. Nutr. Soc. 2012, 71, 322-331.

Wei, M.Y.; Jacobson, T.A. Effects of eicosapentaenoic acid versus docosahexaenoic acid on
serum lipids: A systematic review and meta-analysis. Curr. Athereoscler. Rep. 2011, 13,
474-483.

Neff, L.M.; Culliner, J.; Cunnigham-Rundles, S.; Seidman, C.; Meehan, D.; Maturi, J.;
Wittkowski, K.M.; Levine, B.; Breslow, J.L. Algal docosahexaenoic acid affects plasma
lipoprotein particle size distribution in overweight and obese adults. J. Nutr. 2011, 141, 207-213.
Sekikawa, A.; Kadowaki, T.; El-Saed, A.; Okamura, T.; Sutton-Tyrrell, K.; Nakamura, Y.;
Evans, R.W.; Mitsunami, K.; Edmundowicz, D.; Nishio, Y.; ef al. Differential association of
docosahexaenoic and eicosapentaenoic acids with carotid intima-media thickness. Stroke 2012,
42,2538-2543.



126

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Ramadeen, A.; Connelly, K.A.; Leong-Poi, H.; Hu, X.; Fujii, H.; Laurent, G.; Domenichiello,
A.F.; Bazinet, R.P.; Dorian, P. Docosahexaenoic acid, but not eicosapentaenoic acid,
supplementation reduces vulnerability to atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2012,
5,978-983.

Wu, J.H.; Lemaitre, R.N.; King, I.B.; Song, X.; Sacks, F.M.; Rimm, E.B.; Heckbert, S.R.;
Siscovick, D.S.; Mozaffarian, D. Association of plasma phospholipid long-chain ®-3 fatty acids
with incident atrial fibrillation in older adults: The cardiovascular health study. Circulation 2012,
125,1084-1093.

Virtanen, J.K.; Mursu, J.; Voutilainen, S.; Tuomainen, T.P. Serum long-chain »-3
polyunsaturated fatty acids and risk of hospital diagnosis of atrial fibrillation in men. Circulation
2009, /20, 2315-2321.

Sinn, N.; Milte, C.M.; Street, S.J.; Buckley, J.D.; Coates, A.M.; Petkov, J.; Howe, P.R. Effects of
n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive
function in older adults with mild cognitive impairment: A 6-month randomised controlled trial.
Br. J. Nutr. 2012, 107, 1682—-1693.

Milte, C.M.; Parletta, N.; Buckley, J.D.; Coates, A.M.; Young, R.M.; Howe, P.R.
Eicosapentaenoic and docosahexaenoic acids, cognition, and behavior in children with
attention-deficit/hyperactivity disorder: A randomized controlled trial. Nutrition 2012, 28,
670-677.

Stonehouse, W.; Conlon, C.A.; Podd, J.; Hill, S.R.; Minihane, A.M.; Haskell, C.; Kennedy, D.
DHA supplementation improved both memory and reaction time in healthy young adults:
A randomized controlled trial. Am. J. Clin. Nutr. 2013, 97, 1134-1143.

Hall, J.C.E.; Priestley, J.V.; Perry, V.H.; Michael-Titus, A.T. Docosahexaenoic acid, but not
eicosapentaenoic acid, reduces the early inflammatory response following compression spinal
cord injury in the rat. J. Neurochem. 2012, 121, 738-750.

Tacon, A.G.J.; Hasan, M.R.; Metian, M. Demand and supply of feed ingredients for farmed fish
and crustaceans: Trends and prospects. FAO Fisheries and Aquaculture Technical Paper No. 564;
FAO: Rome, Italy, 2008.

Bimbo, A.P. Production of marine oils. In Omega-3 Qils. Applications in Functional Foods,
Hernandez, E.M., Hosokawa, M., Eds.; AOCS Press: Urbana, IL, USA, 2011; pp. 73—-105.
Naylor, R.L.; Hardy, R.W.; Bureau, D.P.; Chiu, A.; Elliott, M.; Farrell, A.P.; Forster, L;
Gatlin, D.M.; Goldburg, R.J.; Hua, K.; et al. Feeding aquaculture in an era of finite resources.
Proc. Natl. Acad. Sci. USA 2009, 106, 15103—-15110.

Belarbi, E.H.; Molina, E.; Chisti, Y. A process for high yield and scaleable recovery of high
purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb. Technol. 2000,
26, 516-529.

Barlow, S.M. Fish meal and fish oil: Sustainable feed ingredients for aquafeeds. Global Aquac.
Advoc. 2000, 3, 85-86.

Smith, A.D.M.; Brown, C.J.; Bulman, C.M.; Fulton, E.A.; Johnson, P.; Kaplan, 1.C;
Lozano-Montes, H.; Mackinson, S.; Marzloff, M.; Shannon, L.J.; et al. Impacts of fishing
low-trophic level species on marine ecosystems. Science 2011, 333, 1147-1150.



45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

127

Pikitch, E.; Boersma, P.D.; Boyd, I.L.; Conover, D.O.; Cury, P.; Essington, T.; Heppell, S.S.;
Houde, E.D.; Mangel, M.; Pauly, D.; et al. Little Fish, Big Impact: Managing a Crucial Link in
Ocean. Food Webs. Lenfest Ocean Program: Washington, DC, USA, 2012; p. 120.

Barclay, W.; Weaver, C.; Metz, J.; Hansen, J. Development of a docosahexaenoic acid
production technology using Schizochytrium: Historical perspective and update. In Single Cell
Oils, Microbial and Algal Oils, 2nd ed.; Cohen, Z., Ratledge, C., Eds.; AOCS Press: Urbana, IL,
USA, 2010; pp. 75-96.

Lam, M.K.; Lee, K.T. Microalgae biofuels: A critical review of issues, problems and the way
forward. Biotechnol. Adv. 2012, 30, 673—-690.

Zhou, X.-R.; Robert, S.S.; Petrie, J.R.; Frampton, D.M.; Mansour, M.P.; Blackburn, S.L;
Nichols, P.D.; Green, A.G.; Singh, S.P. Isolation and characterization of genes from the marine
microalga Pavlova salina encoding front-end desaturases involved in docosahexaenoic acid
biosynthesis. Phytochemistry 2007, 68, 785-796.

Robert, S.S.; Petrie, J.R.; Zhou, X.-R.; Mansour, M.P.; Blackburn, S.I.; Green, A.G.; Singh, S.P.;
Nichols, P.D. Isolation and characterisation of a AS5-fatty acid elongase from the marine
microalga Paviova salina. Mar. Biotechnol. 2009, 11, 410-418.

Petrie, J.R.; Liu, Q.; Mackenzie, A.M.; Shrestha, P.; Mansour, M.P.; Robert, S.S.; Frampton,
D.F.; Blackburn, S.I.; Nichols, P.D.; Singh, S.P. Isolation and characterisation of a
high-efficiency desaturase and elongases from microalgae for transgenic LC-PUFA production.
Mar. Biotechnol. 2010, 12, 430-438.

Petrie, J.R.; Shrestha, P.; Liu, Q.; Mansour, M.P.; Wood, C.C.; Zhou, X.R.; Nichols, P.D.;
Green, A.G.; Singh, S.P. Rapid expression of transgenes driven by seed-specific constructs in
leaf tissue: DHA production. Plant Methods 2009, 6, 8.

Petrie, J.R.; Shrestha, P.; Mansour, M.P.; Nichols, P.D.; Liu, Q.; Singh, S.P. Metabolic
engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA
A6-desaturase with w3-preference from the marine microalga Micromonas pusilla. Metab. Eng.
2010, /2, 233-240.

Wood, C.C.; Petrie, J.R.; Shrestha, P.; Mansour, M.P.; Nichols, P.D.; Green, A.G.; Singh, S.P.
A leaf-based assay using interchangeable design principles to rapidly assemble multistep
recombinant pathways. Plant. Biotechnol. J. 2009, 7, 914-920.

Petrie, J.R.; Singh, S.P. Expanding the docosahexaenoic acid food web for sustainable
production: Engineering lower plant pathways into higher plants. AoB Plants 2011, 2011,
doi:10.1093/aobpla/plrO11.

Qi, B.X.; Fraser, T.; Mugford, S.; Dobson, G.; Sayanova, O.; Butler, J.; Napier, J.A;
Stobart, A.K.; Lazarus, C.M. Production of very long chain polyunsaturated omega-3 and
omega-6 fatty acids in plants. Nat. Biotechnol. 2004, 22, 739-745.

Venegas-Caleron, M.; Sayanova, O.; Napier, J.A. An alternative to fish oils: Metabolic
engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Prog.
Lipid Res. 2010, 49, 108—119.

Kinney, A.J.; Cahoon, E.B.; Damude, H.G.; Hitz, W.D.; Kolar, C.W.; Liu, Z.-B. Production of
very Long Chain Polyunsaturated Fatty Acids in Oilseed Plants. International Patent Application
WO 2004/071467, 26 August 2004.



128

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Cheng, B.; Wu, G.; Vrinten, P.; Falk, K.; Bauer, J.; Qiu, X. Towards the production of high
levels of eicosapentaenoic acid in transgenic plants: The effects of different host species, genes
and promoters. Transgenic Res. 2010, 19, 221-229.

Petrie, J.R.; Shrestha, P.; Zhou, X.-R.; Mansour, M.P.; Liu, Q.; Belide, S.; Nichols, P.D.;
Singh, S.P. Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS One 2012,
7, €49165.

Petrie, J.R.; Shrestha, P.; Belide, S.; Kennedy, Y.; Lester, G.; Liu, Q.; Divi, U.K.; Mulder, R.J.;
Mansour, M.P.; Nichols, P.D.; et al. Metabolic engineering Camelina sativa with fish oil like
levels of DHA. PLoS One 2014, 9, e85061.

Robert, S.S.; Singh, S.P.; Zhou, X.-R.; Mansour, M.P.; Liu, Q.; Belide, S.; Nichols, P.D.;
Singh, S.P. Metabolic engineering of Arabidopsis to produce nutritionally important DHA in
seed oil. Funct. Plant. Biol. 2005, 32, 473-479.

Wu, G.; Truksa, M.; Datla, N.; Vrinten, P.; Bauer, J.; Zank, T.; Cirpus, P.; Heinz, E.; Qiu, X.
Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in
plants. Nat. Biotechnol. 2005, 23, 1013—-1017.

Finney, A.J. Metabolic engineering in plants for human health and nutrition. Curr. Opin.
Biotechnol. 2006, 17, 130-138.

Miller, M.R.; Bridle, A.R.; Nichols, P.D.; Carter, C.G. Increased elongase and desaturase gene
expression with stearidonic acid enriched diet does not enhance long-chain (n-3) content of
seawater Atlantic salmon (Salmo salar L.). J. Nutr. 2008, 138, 2179-2185.

Codabaccus, M.B.; Bridle, A.R.; Nichols, P.D.; Carter, C.G. Effect of feeding Atlantic salmon
(Salmo salar L.) a diet enriched with stearidonic acid from parr to smolt on growth and »-3
LC-PUFA biosynthesis. Br. J. Nutr. 2011, 105, 1772-1782.

Abeywardena, M.Y.; Wijesundera, C. CSIRO Animal, Food and Health Sciences, Australia.
Unpublished work, 2013.

Rymer, C.; Gibbs, R.A.; Givens, D.I. Comparison of algal and fish sources on the oxidative
stability of poultry meat and its enrichment with omega-3 polyunsaturated fatty acids. Poult. Sci.
2010, 89, 150-159.

Rymer, C.; Hartnell, G.F.; Givens, D.I. The effect of feeding modified soybean oil enriched with
C18:4n-3 to broilers on the deposition of »n-3 fatty acids in chicken meat. Br. J. Nutr. 2011, 105,
866—878.

Poureslami, R.; Raes, K.; Huyghebaert, G.; de Smet, S. Effects of diet, age and gender on the
polyunsaturated fatty acid composition of broiler anatomical compartments. Br. Poult. J. 2010,
51, 81-91.

Yang, X.; Zhang, B.; Guo, Y.; Jiao, P.; Long, F. Effects of dietary lipids and Clostridium
butyricum on fat deposition and meat quality of broiler chickens. Poult. Sci. 2010, §9, 254-260.
Jia, W.; Rogiewicz, A.; Bruce, H.L.; Slominski, B.A. Feeding flaxseed enhances deposition of
omega-3 fatty acids in broiler meat portions in different manner. Can. J. Anim. Sci. 2010, 90,
203-206.

Lopez-Ferrer, S.; Baucells, M.D.; Barroeta, A.C.; Gashorn, M.A. »n-3 Enrichment of chicken
meat using fish oil: Alternative substitution with rapeseed and linseed oils. Poult. Sci. 1999, 78,
356-365.



73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

&4.

85.

129

Lopez-Ferrer, S.; Baucells, M.D.; Barroeta, A.C.; Gashorn, M.A. »n-3 Enrichment of chicken
meat. 1. Use of very long-chain fatty acids in chicken diets and their influence on meat quality:
Fish oil. Poult. Sci. 2001, 80, 741-752.

Roth-Maier, D.A.; Eder, K.; Kirchgessner, M. Liver performance and fatty acid composition of
meat in broiler chickens fed diets with various amounts of ground or whole flaxseed. J. Anim.
Physiol. Anim. Nutr. 1998, 79, 260-268.

Schreiner, M.H.W.; Hulan, H.W.; Razzazi-Fazeli, E.; Bohm, J.; Moreira, R.G. Effect of different
sources of dietary omega-3 fatty acids on general performance and fatty acid profiles of thigh,
breast liver and portal blood of broilers. J. Sci. Food Agric. 2005, 85, 219-226.

Bas, P.; Berthelot, V.; Pottier, E.; Normand, J. Effect of level of linseed on fatty acid
composition of muscles and adipose tissues of lambs with emphasis on trans fatty acids. Meat
Sci. 2007, 77, 678—688.

Nute, G.R.; Richardson, R.J.; Wood, J.D.; Hughes, S.I.; Wilkinson, R.G.; Cooper, S.L.;
Sinclair, L.A. Effect of dietary oil source on the flavour and colour and lipid stability of lamb
meat. Meat Sci. 2004, 77, 547-555.

Kitessa, S.M.; Gulati, S.K.; Ashes, J.R.; Scott, T.W.; Fleck, E. Effect of feeding tuna oil
supplement protected against hydrogenation in the rumen on growth and -3 fatty acid content of
lamb fat and muscle. Aus. J. Agric. Res. 2001, 52, 433-437.

Kitessa, S.M.; Williams, A.; Gulati, S.; Boghossian, V.; Reynolds, J.; Pearce, K.L. Influence of
duration of supplementation with ruminally protected linseed oil on the fatty acid composition of
feedlot lambs. Anim. Feed Sci. Technol. 2009, 151, 228-239.

Kitessa, S.; Liu, S.M.; Briegel, J.; Pethick, D.; Gardner, G.; Ferguson, M.; Allingham, P.;
Nattrass, G.; McDonagh, M.; Eric Ponnampalam, E.; ef al. Effects of intensive or pasture
finishing in spring and linseed supplementation in autumn on the omega-3 content of lamb meat
and its carcass distribution. Anim. Prod. Sci. 2010, 50, 130-137.

Jeronimo, E.E.; Alves, S.P.; Prates, J.A.M.; Santos-Silva, J.; Bessa, R.J. Effect of dietary
replacement of sunflower oil with linseed oil on intramuscular fatty acids of lamb meat. Meat
Sci. 2009, 83, 499-505.

Diaz, M.T.; Caneque, V.; Sanchez, C.I.; Lauzurica, S.; Perez, C.; Fernandez, C.; Alvarez, L;
de la Fuente, J. Nutritional and sensory aspects of light lamb meat enriched in »-3 fatty acids
during refrigerated storage. Food Chem. 2011, 124, 147-155.

Berthlot, V.; Bas, P.; Pottier, E.; Normand, J. The effect of maternal linseed supplementation
and/or lamb linseed supplementation on muscle and subcutaneous adipose tissue fatty acid
composition of indoor lambs. Meat Sci. 2012, 90, 548-557.

Wachira, A.M.; Sinclair, L.A.; Wilkinson, G.; Enser, M.; Wood, J.D.; Fisher, A.V. Effects of
dietary fat source and breed on the carcass composition, #-3 polyunsaturated fatty acid and
conjugated linoleic acid content of sheep meat and adipose tissue. Br. J. Nutr. 2002, 88,
697-709.

Elmore, J.S.; Cooper, S.L.; Enser, M.; Mottram, D.S.; Sinclair, A.L.; Wilkinson, R.G.; Wood,
J.D. Dietary manipulation of fatty acid composition in lamb meat and its effect on the volatile
aroma compounds of grilled lamb. Meat Sci. 2005, 69, 233-242.



130

86.

87.

88.

9.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

FAO. How to Feed the World in 2050. Available online: http://www.fao.org (accessed on 21
October 2013).

Miller, M.R.; Nichols, P.D.; Carter, C.G. Replacement of dietary fish oil with a stearidonic acid
containing oil for Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. 2007, 146,
197-206.

Miller, M.R.; Nichols, P.D.; Carter, C.G. Omega-3 oil sources for use in aquaculture—Alternatives
to the unsustainable harvest of wild fish. Nutr. Res. Rev. 2008, 21, 85-96.

Codabaccus, B.M.; Bridle, A.R.; Nichols, P.D.; Carter, C.G. An extended feeding history with a
stearidonic acid enriched diet from parr to smolt increases #n-3 long-chain polyunsaturated fatty
acids biosynthesis in white muscle and liver of Atlantic salmon (Salmo salar L.). Aquaculture
2011, 322-323, 65-73.

Tu, W.C.; Muhlhausler, B.S.; James, M.J.; Stone, D.A.; Gibson, R.A. Dietary alpha-linolenic
acid does not enhance accumulation of omega-3 long-chain polyunsaturated fatty acids in
barramundi (Lates calcarifer). Comp. Biochem. Physiol. 2013, 164, 29-37.

Alhazzaa, R.; Bridle, A.R.; Nichols, P.D.; Carter, C.G. Replacing dietary fish oil with Echium oil
enriched barramundi with C;3 PUFA rather than long-chain PUFA. Aquaculture 2011, 312,
162-171.

Alhazzaa, R.; Bridle, A.R.; Nichols, P.D.; Carter, C.G. Up-regulated desaturase and elongase
gene expression promoted accumulation of polyunsaturated fatty acid (PUFA) but not long-chain
PUFA in Lates calcarifer, a tropical euryhaline fish, fed a stearidonic acid- and y-linoleic
acid-enriched diet. J. Agric. Food Chem. 2011, 59, 8423-8434.

Bell, J.G.; Strachan, F.; Good, J.E.; Tocher, D.R. Effect of dietary echium oil on growth, fatty
acid composition and metabolism, gill prostaglandin production and macrophage activity in
Atlantic cod (Gadus morhua L.). Aquac. Res. 2006, 37, 606—617.

Bharadwaj, A.S.; Hart, S.D.; Brown, B.J.; Li, Y.; Watkins, B.A.; Brown, P.B. Dietary source of
stearidonic acid promotes higher muscle DHA concentrations than linolenic acid in hybrid
striped bass. Lipids 2010, 45, 21-27.

Cleveland, B.C.; Francis, D.S.; Turchini, G.M. Echium oil provides no benefit over linseed oil
for (n-3) long-chain PUFA biosynthesis in rainbow trout. J. Nutr. 2012, 142, 1-8.

Diaz-Lopez, M.; Perez, M.J.; Acosta, N.G.; Tocher, D.R.; Jerez, S.; Lorenzo, A.; Rodriguez, C.
Effect of dietary substitution of fish oil by echium oil on growth, plasma parameters and body
lipid composition in gilthead seabream (Sparus aurata L.). Aquac. Nutr. 2009, 15, 500-512.
Alhazzaa, R.; Bridle, A.R.; Carter, C.G.; Nichols, P.D. Sesamin modulation of lipid class and
fatty acid profile in early juvenile teleost, Lates calcarifer, fed different dietary oils. Food Chem.
2012, 134, 2057-2065.

Seierstad, S.L.; Poppe, T.T.; Koppang, E.O.; Svindland, A.; Rosenlund, G; Freyland, L.;
Larsen, S. Influence of dietary lipid composition on cardiac pathology in farmed Atlantic salmon,
Salmo salar L. J. Fish. Dis. 2005, 28, 677-690.

James, M.J.; Ursin, V.M.; Cleland, L.G. Metabolism of stearidonic acid in human subjects:
Comparison with the metabolism of other »n-3 fatty acids. Am. J. Clin. Nutr. 2003, 77,
1140-1145.



100.

101.

102.

103.

104.

105.

106.

107.
108.

109.

110.

I11.

112.

113.

114.

131

Harris, W.S.; Lemke, S.L.; Hansen, S.N.; Goldstein, D.A.; di Rienzo, M.A.; Su, H.; Nemeth,
M.A.; Taylor, M.L.; Ahmed, G.; George, C. Stearidonic acid-enriched soybean oil increased the
omega-3 index, an emerging cardiovascular risk marker. Lipids 2008, 43, 805-811.

Lemke, S.L.; Vicini, J.L.; Su, H.; Goldstein, D.A.; Nemeth, M.A.; Krul, E.S.; Harris, W.S.
Dietary intake of stearidonic acid-enriched soybean oil increases the omega-3 index: randomized,
double-blind clinical study of efficacy and safety. Am. J. Clin. Nutr. 2010, 92, 766-775.

Walker, C.G.; Jebb, S.A.; Calder, P.C. Stearidonic acid as a supplemental source of ®-3
polyunsaturated fatty acids to enhance status for improved human health. Nutrition 2013, 29,
363-369.

Abeywardena, M.Y.; Kitessa, S.; Nichols, P.D. Dietary Echium oil rich in stearidonic (18:4®3)
acid does not increase cardiac membrane EPA or DHA. In Proceedings of the Nutrition Society
of Australia, 34th Annual meeting, Perth, Australia, 30 November—3 December 2010.

Albert, C.M.; Campos, H.; Stampfer, M.J.; Ridker, P.M.; Manson, J.E.; Willett, W.C.; Ma, J.
Blood levels of long-chain »-3 fatty acids and the risk of sudden death. N. Engl. J. Med. 2002,
346, 1113-1118.

Harris, W.S.; von Schacky, C. The omega-3 index: A new risk factor for death from coronary
heart disease? Prev. Med. 2004, 39, 212-220.

Harris, W.S.; Sands, S.A.; Windsor, S.L.; Ali, H.A.; Stevens, T.L.; Magalski, A.; Porter, C.B.;
Borkon, A.M. Omega-3 fatty acids in cardiac biopsies from heart transplantation patients:
Correlation with erythrocytes and response to supplementation. Circulation 2004, 110,
1645-1649.

Smullen, R. Ridley Corporation, Australia. Personal communication, 2013.

Turchini, G.M.; Ng, W.K.; Tocher, D. Fish Oil Replacement and Alternative Lipid Sources in
Aquaculture Feeds; CRC Press: Boca Raton, FL, USA, 2010; p. 533.

Nichols, P.D.; Petrie, J.P.; Singh, S.P. Readily available sources of long-chain omega-3 oils: Is
farmed Australian seafood a better source of the good oil than wild-caught seafood? Nutrients
2014, 6, 1063-1079.

Codabaccus, B.M.; Carter, C.G.; Bridle, A.R.; Nichols, P.D. The “n-3 LC-PUFA sparing effect”
of modified dietary n-3 LC-PUFA content and DHA to EPA ratio in Atlantic salmon smolt.
Aquaculture 2012, 356-357, 135-140.

Fraser, B.; Perlmutter, P.; Wijesundera, C. Practical synthesis of triacylglycerol regioisomers
containing long-chain polyunsaturated fatty acids, J. Am. Oil Chem. Soc. 2007, 84, 11-21.
Wijesundera, C.; Ceccato, C.; Watkins, P.; Fagan, P.; Fraser, B.; Thienthong, N.; Perlmutter, P.
Docosahexaenoic acid is more stable to oxidation when located at the sn-2 position of
triacylglycerol compared to sn-1(3). J. Am. Oil Chem. Soc. 2008, 85, 543—-548.

Hayes, K.C. Synthetic and modified glycerides: Effects on plasma lipids. Curr. Opin. Lipidol.
2001, /2, 55-60.

Sundram, K.; Karupaiah, T.; Hayes, K.C. Stearic acid-rich interesterified fat and #rans-rich fat
raise the LDL/HDL ratio and plasma glucose relative to palm olein in humans. Nutr. Metab.
2007, 4, doi:10.1186/1743-7075-4-3.



132

115.

116.

117.

Robinson, D.M.; Martin, N.C.; Robinson, L.E.; Ahmadi, L.; Marangoni, A.G.; Wright, A.J.
Influence of interesterification of a stearic acid-rich spreadable fat on acute metabolic risk
factors. Lipids 2009, 44, 17-26.

Hunter, J.E. Studies on effects of dietary fatty acids as related to their position on triglycerides.
Lipids 2001, 36, 655—668.

Berry, S.E.E. Triglycerol structure and interesterification of palmitic and stearic acid-rich fats:
An overview and implications for cardiovascular disease. Nutr. Res. Rev. 2009, 22, 3—17.



133

Detailed Distribution of Lipids in Greenshell™ Mussel
(Perna canaliculus)

Matthew R. Miller, Luke Pearce and Bodhi I. Bettjeman

Abstract: Greenshell™ mussels (GSM—Perna canaliculus) are a source of omega-3 (n-3) long-chain
polyunsaturated fatty acids (LC-PUFA). Farmed GSM are considered to be a sustainable source of
LC-PUFA as they require no dietary inputs, gaining all of their oil by filter-feeding microorganisms
from sea water. GSM oil is a high-value product, with a value as much as 1000 times that of fish oils.
GSM oil has important health benefits, for example, anti-inflammatory activity. It also contains several
minor lipid components that are not present in most fish oil products, and that have their own
beneficial effects on human health. We have shown the lipid content of the female GSM (1.9 g/100 g
ww) was significantly greater than that of the male (1.4 g/100 g ww). Compared with male GSM,
female GSM contained more n-3 LC-PUFA, and stored a greater proportion of total lipid in the gonad
and mantle. The higher lipid content in the female than the male GSM is most likely related to gamete
production. This information will be useful to optimize extraction of oils from GSM, a local and
sustainable source of n-3 LC-PUFA.

Reprinted from Nutrients. Cite as: Miller, M.R.; Pearce, L.; Bettjeman, B.I. Detailed Distribution of
Lipids in Greenshell™ Mussel (Perna canaliculus). Nutrients 2014, 6, 1454—-1474.

1. Introduction

The New Zealand Greenshell™ mussel (GSM), Perna canaliculus, is indigenous to the coastlines
of New Zealand. GSM are distinguishable by the green coloration of the shell near the lip, which gives
the mussel its name. Since the establishment of GSM aquaculture in New Zealand in 1969 [1],
the GSM industry has seen consistent and substantial growth. In 2011, the export value of GSM
was 218 million New Zealand dollars (increased from approximately 40 million NZ dollars in 1989)
from a product volume of more than 38,000 t (~90,000 t at harvest) [2]. GSM are sold as food, and are
also used to produce high-value nutraceuticals including oil extracts and freeze-dried mussel powders,
for example, Lyprinol” and Seatone”. Studies have shown that lipid extracted from GSM has numerous
health benefits, including the ability to reduce inflammation [3—13]. GSM lipid contains a high
proportion of omega-3 long-chain (C > 20) polyunsaturated fatty acids (n-3 LC-PUFA), predominantly
docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5#r-3), which are split
between the triacyglycerol and polar lipid classes [14]. There are also several minor lipid components
in GSM oil, including non-methylene-interrupted (NMI)-FA, plasmalogen, phytosterols, and furan
fatty acids [14,15]. These minor lipids are not present in most fish oil products, and some have been
shown to have beneficial effects on human health [15—-18]. Because of the low concentration of oil in
GSM [14,19] and the expensive extraction techniques (supercritical CO, with ethanol as a co-solvent,
or chemical extraction) required to extract it, GSM oil is very expensive. The estimated price is
NZ $3000/kg.
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There has been extensive research confirming the health benefits of increased consumption of »-3
LC-PUFA, especially DHA and EPA [20-23]. Consequently, there is an increasing market for »n-3
marine oil supplements. The proportion of #-3 LC-PUFA is higher in GSM oil [14] than in certain fish
oils, such as those extracted from sardine, anchovy, and cod liver. GSM obtain #-3 LC-PUFA from
their diet, which is rich in zooplankton and phytoplankton [24,25]. GSM are considered to be one of
the most sustainable sources of n-3 LC-PUFA as they are farmed, rather than wild harvested, and do
not require any dietary inputs for their nutrition. The lipid content and FA profile of GSM have been
analyzed previously [14,19,26,27]. Those studies reported that polar lipids (PL) were the major lipid
class (42.5-61.7 g/100 g) in GSM, followed by triacylglycerides (TAG) (17.8—49.2 g/100 g) with the
remainder made up of sterols (5.5-6.8 g/100 g), free fatty acids (FFA) (2.9-14.9 g/100 g), and trace
amounts of wax esters [14,19]. Previous studies reported that the concentration of PUFA in GSM lipid
ranged from 19 to 49.1 g/100 g, with 6-12 g/100 g DHA, and 8-24 g/100 g EPA [14,28]. The lipid
content of GSM, and the lipid classes and FA profile of GSM oil, are affected by many factors,
including the season, location, and the types and amounts of algae consumed. To date, there have been
no reports on the FA profiles of lipid extracted from different organs of the GSM.

In this study, we investigated the lipid classes and fatty acid profile of GSM lipids, and analyzed the
lipid content of male and female GSM. To analyze lipid localization within the GSM, we dissected the
GSM body into five components: the mantle, gonad, heart and foot, posterior adductor muscle, and the
digestive gland. A knowledge of the differences in the amounts and composition of lipids between
genders, and of how physiological function affects GSM lipids, will be useful to optimize the lipid
extraction process, which would benefit the GSM marine oil industry.

2. Experimental Section
2.1. Sampling

Whole live GSM were collected 12 November 2012 from the Marlborough Sounds
(South Island, New Zealand) and stored in a recirculating sea water system until experiments began on
16 November 2012. After transport and dry storage, mussels were rehydrated for 24 h in 100 L bins
supplied with 10 L/min filtered seawater on a flow-through basis with auxiliary aeration. The mussels
were weighed, shucked, and then the mussel meat was weighed. 10 Female and 10 male mussels were
selected for lipid extraction based on gonad color; gonads of males are creamy white while those of
females are various shades of orange (Figure 1). The data for one mussel was excluded from the
analysis because that individual was an outlier in terms of size and oil content. Six female and six male
mussels were used for analyses of the various components of the GSM body. The shell and meat were
weighed and then the meat was dissected into the mantle, gonad, posterior adductor muscle, heart/foot,
and the digestive gland (Figure 1). The gonad was not able to be completely separated, and some
gonad tissue remained attached to the digestive gland. Other un-dissectible smaller organs including
the gill and labial palp were omitted from this analysis. All samples were stored at =80 °C prior to
freeze drying before lipid extraction.



135

Figure 1. (A) Female Greenshell™ mussel (Perna canaliculus) with orange gonad;
(B) Male Greenshell™ mussel with creamy white gonad. Dissected organs of a male
Greenshell™ mussel: (C) mantle; (D) gonad; (E) digestive gland and digestive gland;

(F) posterior adductor muscle; (G) heart and foot.

The mussels were assigned a condition index as follows:

condition index (CI) = dry meat weight/(whole weight-shell weight) x 100 [29] (1)
2.2. Lipid Extraction, Fractionation, and Fatty Acid Analysis

GSM oils were extracted using a modified Bligh and Dyer protocol [30]. A single phase extraction
with CHCI;:MeOH:H,0 (1:1:0.9, v/v/v) yielded the total lipid extract (TLE). Lipid classes were
analyzed with an latroscan MK V thin-layer chromatography-flame ionization detector (TLC-FID)
(Iatron Laboratories, Tokyo, Japan). Samples were spotted onto silica gel SIII Chromarods (5-um
particle size) and developed in a glass tank lined with pre-soaked filter paper. The solvent system used
for lipid separation was hexane: diethyl ether: acetic acid (60:17:0.1, v/v/v). After development for 25 min,
the Chromarods were oven-dried and analyzed immediately to minimize adsorption of atmospheric
contaminants. Lipid classes were quantified using Azur v5.0 software (DATALYS, St Martin D’Heres,
France). The FID was calibrated for each compound class using the following compounds:
phosphatidylcholine; cholesterol; cholesteryl ester; oleic acid; hydrocarbon (squalene); wax ester
(derived from fish oil); and triacylglycerol (TAG, derived from fish oil).

An aliquot of the TLE from each sample type was trans-methylated in methanol: chloroform:
hydrochloric acid (10:1:1, v/v/v) for 1 h at 100 °C. After addition of water the mixture was extracted
three times with hexane: chloroform (4:1, v/v) to obtain fatty acid methyl esters (FAME). Samples
were completed to 1 mL with an internal injection standard (23:0 or 19:0 FAME) and analyzed by gas
chromatography mass spectrometry (GC-MS). The analytical system consisted of a Shimadzu 2010
QP GC-MS equipped a Restek GTx silica capillary column (30 m x 0.25 mm i.d., 0.25 pm film
thickness). Samples (1 pL) were injected via a splitless injector at 220 °C. The column temperature
program was as follows: 60 °C at 0 min; 40 °C min ' to 100 °C; then 10 °C min ' to 170 °C;
then 5 °C min ' to 185 °C; 2 min hold; then 3 °C min ' to 197 °C; then 0.5 °C min ' to 199 °C; 1 min
hold; then 5 °C min to 230 °C; 3 min hold; then 5 °C min ' to 250 °C; 5 min hold. Helium was the
carrier gas. GC results were typically repeatable to within +5% of the area of each individual
component in replicate analyses.
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Different classes of lipids were separated using a solid phase extraction (SPE) cartridge containing
500 mg silica (Grace Pure, Grace Davison Discovery Sciences, North Shore City, New Zealand). The
SPE column was pre-treated with chloroform, and then a TLE sample from whole mussel, mantle,
gonad, or digestive gland samples was loaded onto the column. Lipids were eluted with 10 mL chloroform
followed by 10 mL methanol [31]. The oil fractions were concentrated by rotary evaporation and
added to vials for analysis. Success of elution was confirmed via thin-layer chromatography (TLC).

2.3. Sterol Analysis

Sterols were isolated by saponifying 200 pL. TLE in 5% w/v KOH in methanol/water (8:2 v/v)
at 60 °C for 3 h. The mixture was cooled to room temperature and then 1 mL water was added. The
sterols were then extracted twice using 1 mL hexane/chloroform (4:1). The extracted total
non-saponifiable neutral (TSN) lipid fraction was transferred to labeled vials for further analysis.
The TSN lipid fraction was blown down under a nitrogen stream and then heated at 60 °C with 50 uL
N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) for 40 min. BSFTA was evaporated under nitrogen
and the sample was made up to 2 mL with chloroform before GC-MS analysis. Samples were injected
into the GC at an oven temperature of 100 °C, which was increased to 300 °C at a rate of 10 °C/min
and then held for 30 min. The mobile phase carrier gas was He. The silylated sterols were identified by
their retention times and characteristic peaks in the mass spectrum [32].

2.4. Statistical Analysis

Mean values and standard error are reported. Normality and homogeneity of variance were
confirmed and mean values were compared by one-way analysis of variance (ANOVA). Multiple
comparisons were conducted using the Tukey-Kramer HSD (honestly significant difference) test.
Differences were considered significant at p < 0.05. Statistical analyses were performed using GenStat
14th Edition software.

3. Results
3.1. Lipid Content of Whole GSM

The lipid content of whole female GSM (1.9 g/100 g ww; 9.3 g/100 g dw) was significantly
(p < 0.01) higher than that of male GSM (1.4 g/100 g ww; 7.4 g/100 g dw). The average total meat
mass per individual was 18.3 g + 3.3 g for females and 19.87 g+ 2.2 g for males. The Condition Index
(CI) was 11.25 + 2.0 for females and 9.57 + 1.6 for males. There was no statistically significant
difference between the two genders in the CI, size, or weight.
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3.2. Lipid Classes of GSM

The major lipid class in both genders of GSM was PL. There was a significantly (p < 0.03) higher
concentration of PL in males (82.3 g/100 g TLE) than in females (77.8 g/100 g TLE) (Table 1). The
concentration of TAG in females (19.4 g/100 g TLE) was significantly higher (p < 0.03) than that in
males (13.2 g/100 g TLE). The minor lipid classes in males and females were sterols (2.8-2.9 g/100 g
TLE) and trace amounts (0.1 g/100 g TLE) of free fatty acids (FFA).

Table 1. Absolute FA (wet weight) and proportion of lipid classes (g/100 g TLE) in female

and male Greenshell™ mussel (GSM) oil.

Fatty acids (mg/g mussel ww) Female Male F D
14:0 10.6 +2.1 73+1.2 18.2 <0.001
16:0 473+6.9 422+6.1
17:0 24+04 26+04
18:0 11.7£1.8 12.1+£2.0

Other SFA 56+1.1 54+0.7
Total SFA 77.7+£12.0  69.5+£9.6
16:1n-7 18.3+3.1 120+2.0 26.5 <0.001
18:1n-9 3.0+£0.6 2.8+0.7
18:1n-7 7.6+1.5 59+1.0 7.7 <0.05
20:1n-9 9.8+1.5 10.0 £2.1
20:1n-7 43+1.5 3.0+ 0.6 5.9 <0.05
Other MUFA 1.7+0.5 09+0.3 15.5 <0.001
Total MUFA 447+ 7.4 346 +5.1 11.4 <0.01
18:4n-3 5.7+1.0 32+0.7 37.8 <0.001
18:2n-6 3.7+0.7 3.1+0.6
18:3n-3 2.7+0.3 2.0+£0.5 14.1 <0.01
20:4n-6 4.6+0.7 45+1.0
20:51-3 609+114 425+£63 18.0 <0.001
20:2 53+0.7 5.8+1.8
20:2NMI 32+0.5 2.7+0.5
22:6n-3 59.2+10.2 52.9+8.1
22:5n-3 4.1+0.7 32+0.5 10.05 <0.01
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Table 1. Cont.

22:2NMI 50+£0.8 4.7+1.1
Other PUFA 7.7+1.5 7.6+2.1
Total PUFA 162.1 £254 1322+ 7.9 <0.01
19.3
Total n-3 132.8+£22.5 104.3 £ 10.2 <0.01
14.5
Total n-6 12.0+ 1.7 11.1+£2.22
Total other 9.7+6.4 10.1+7.8
Lipid Classes
(g/100 g TLE)
TAG 19.4+4.9 13.8+3.2 5.8 0.03
ST 28+1.3 29+0.5
FFA tr tr
PL 77.8+4.5 82.3+3.2 6.0 0.03
Lipid content
g lipid /100 g wet weight 1.9+0.2 1.4+0.3 14.7 0.001
g lipid/100 g dry weight 92+1.1 74+15 8.7 0.01

Values are mean + standard error (7 = 9). ww; wet weight; Other SFA: Sum of 15:0, 17:0, 20:0, 22:0 and
24:0; Other MUFA: Sum of 16:1n-5, 18:1n-Ttrans, 18:1n-5, 22:n-11 and 22:1n-9; Other PUFA: Sum of
16:2n-6, 18:3n-6, 20:4n-6, 20:2n-6, 22:5n-6, 22:4n-6 and 22:2n-6; Other includes fatty aldehydes and 4,8,12
trimethyl tetradecanoic acid (4,8,12-TMTD); NMI, non-methylene interrupted; TAG; triacylglycerols;
PL: polar lipid; ST: sterols, FFA; free fatty acids; tr: trace.

3.3. FA Profiles of GSM

The major FA class (in % FA) was PUFA (53.8-55.9 g/100 g TLE), the main component
of which was n-3 LC-PUFA (42.4-45.6 g/100 g TLE). The n-3/n-6 ratio was 6.6 in male GSM and 8.3
in female GSM. The major fatty acids (>10 g/100 g TLE) in both male and female GSM were EPA,
DHA, and palmitic acid (16:0 PA). There were small amounts of NMI FA, including 20:2 NMI FA
(2.8-3.4 g/100 g TLE) and 22:2 NMI FA (1.0-1.9 g/100 g TLE). The absolute FA content of the male
and female (in mg/g ww) are shown in Table 1. Compared with male GSM, female GSM showed
significantly (p < 0.01) higher concentrations of alpha-linolenic acid (ALA, 18:3#n-3), stearidonic acid
(SDA 18:4n-3), EPA, docosapentaenoic acid (DPA(#n-3), 22:5n-3), total n-3s, and total PUFA.

3.4. Lipid Content and Lipid Classes in Different Organs

We used SPE to separate the non-polar and polar lipid fraction of TLE from the whole male and
female GSM and from the various organs (Figure 2). The success of chromatographic separation was
confirmed by TLC-FID. The most lipid-rich organs were the gonad (male, 3.1 g lipid/100 g ww; female,
4.0 g lipid/100 g ww), digestive gland (male, 3.1 g lipid/100 g ww; female, 3.7 g lipid/100 g ww) and
mantle (1.5 g lipid/100 g ww; female, 2.0 g lipid/100 g ww). There were lower concentrations of lipid
in the heart/foot (male, 1.3 g lipid/100 g ww; female, 1.0 g lipid/100 g ww) and adductor muscle
(male, 1.2 g lipid/100 g ww; female, 0.8 g lipid/100 g ww) (Table 2, Supplementary Table S1). In all
organs, PL was the major lipid class in the TLE. There were higher concentrations of TAG in the
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digestive gland (male, 28.8 g/100 g TLE; female, 33.5 g/100 g TLE) and gonad (male, 38.5 g/100 g
TLE; female, 33.7 g/100 g TLE) than in the other organs. The lowest concentrations of TAG were in
the heart/ foot and adductor muscle samples (<8 g/100 g TLE). The main lipid class in the TLE from
those samples was PL (>80 g/100 g TLE).

Figure 2. Lipid distribution in female and male Greenshell™ mussels (GSM) organs.
* Gonad also contained gill and labial palp. Values are mean =+ standard error (n =9).
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3.5. FA Profiles of Lipids from Different Organs

In both male and female GSM, there were no differences in the proportions of the major FA (those
detected at more than 10 g/100 g TLE; i.e., EPA, DHA, and PA) among the five different organs. For
the minor FA, the proportions of SDA and ALA in the TLE from the digestive gland were significantly
(» <0.01) greater in the female GSM than the male GSM.

3.6. Sterols

Saponification of the TLE produced a total non-saponifiable neutral (TSN) fraction, which
contained mainly sterols (Table 3). GC-MS analysis was performed after silylation of the TSN
fraction. In total, 18 sterols were identified in GSM, with cholesterol being the predominant sterol.
There was a significantly (p < 0.01) higher proportion cholesterol (30.2% of total sterols) in male GSM
than in female GSM (28.5% of total sterols). The second most abundant sterol was brassicasterol; the
proportion of brassicasterol was significantly (p < 0.01) higher in female (23.4% of total sterols) than
in male GSM (21.05% of total sterols). Other major sterols were 24-nordehydrocholesterol, occelasterol,
trans-22-dehydrocholesterol, and 24-methlenecholesterol.

4. Discussion
4.1. Male vs. Female GSM

In this study the lipid content of female GSM was significantly (p < 0.01) higher than that of
male GSM even though it was previously reported that female mussels contain lower levels of total
lipids [33]. Also, there was a significantly (p < 0.01) higher concentration of the TAG lipid class in the
female than in the male. Because female GSM contained larger amounts of lipid than did males, the
total amount of FA was higher in females than in males. In particular, the amounts of FA in the n-3
LC-PUFA class (ALA, SDA, EPA, and DPA) were all significantly (p < 0.01) higher in female than in
male GSM. Differences in the lipid profile between male and female GSM have not been
published previously, although a recent report showed similar results for the mussel species
Mytilus galloprovincialis [34]. In another study, the FA composition of male and female GSM from
two locations (Marlborough Sounds and Stewart Island) was profiled over three seasons (winter,
spring, summer) but the types of lipids, that is, the lipid classes, were not reported [26]. Further, it was
reported that GSM contained higher levels of lipids in summer and autumn than in winter and spring,
but that the highest #-3 content was in winter [28]. In our study, we analyzed GSM collected in late
spring (November) of 2012. Our results showed differences in lipid content, lipid classes, and total
FA content between male and female GSM. In future research, it would be interesting to analyze
changes in lipid content, lipid class composition, and the FA profile of male and female GSM on a
finer time scale.
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Table 3. Sterol content of female and male Greenshell™ mussel (GSM) oil extract.

Sterols g/100 g total sterols Sterol name Female Male f P
24-nordehydrocholesterol 24-nordecholesta-5,22 E-dien-3f-ol 6.3+0.9 6.7+04
24-nordehydrocholestanol 24-nor-5a-cholest-22 E-en-33-ol 0.1+0.0 0.2+0.0

Occelasterol 27-nor-24-methylcholest-5,22 E-dien-3 -0l 43+£03 45403
Trans-22-dehydrocholesterol Cholesta-5,22 E-dien-3f3-ol 124+0.7 13.1+0.8
Trans-22-dehydrocholestanol Sa-cholesta-22FE-en-3f-ol 0.3=+0.1 0.2+0.1

Cholesterol Cholest-5-en-3f-ol 285+1.5 302+£0.8 11.1  0.004

Cholestanol Sa-cholestan-3f-ol 0.3+0.2 0.5+04

Brassicasterol 24-methylcholesta-5,22 E-diene-3-ol 234+0.9 21.0+1.4 21.3  <0.001
Brassicastanol 24-methyl-5a-cholest-22 E-en-3 -0l 0.3+0.3 0.3+0.2

Ergosterol 24-methylcholesta-5,7,22 E-triene-3 -0l 0.6+04 0.0 +0.1 16.6  <0.001
24-Methylenecholesterol 24-methylcholesta-5,24(28)-en-33-o0l 162+1.2 16.6 1.6
24-Methylcholesterol 4-methyl-5a-cholestan-33-ol 1.9+04 1.6 +0.7
Stigmastanol/Porifasterol 24-ethyl-5a-cholesta-5,22 E-diene-3f3-ol 0.6+0.2 0.7+0.2
Sitosterol 24-ethyl-5a-cholestan-3f-ol 1.8+04 2.1+03
Isofucosterol 24-ethylcholesta-5,24(28)Z-dien-33-ol 1.7+0.4 1.7+0.4

Unknown sterols 1.3£0.1 0.3+0.1 40.8 <0.001

Values are mean =+ standard error (n = 9); Unknown sterols could not be identified from MS data.

There is significant biological investment by the GSM into the production/storage of lipids during
gonad development during winter, before spawning [28]. In general, the amount of lipid increases in
GSM before spawning, and decreases to its lowest level immediately after spawning as a result of lipid
loss during reproduction. GSM can also spawn in autumn (March—April) or shed eggs throughout their
life cycle [28]. These reproductive events could explain differences in FA and lipid accumulation
throughout the seasons. The higher lipid content in the female GSM is likely associated with
oogenesis, during which lipid globules and small quantities of glycogen accumulate in the eggs [35].
There is a large variation in the timing and duration of gonad development in GSM and other
mollusks, and the timing of gametogenesis varies according to the season and location [35]. A better
understanding of the reproductive cycle, and how it affects the amount of lipid in GSM, may allow
GSM oil producers to optimize the harvest time to obtain higher lipid yields.

Little is known about FA biosynthesis in GSM. In general, most bivalve species gain the majority of
FA from their diet, although biochemical modifications of some FA occur in some species. The idea of
“you are what you eat” has led to the study of signature lipids that can help to shed light on the prey-
predator relationships in ecosystems. When analyzed using high-powered statistical models, signature
FA profiles can reveal prey-predator relationships in a food web. GSM are filter feeders that consume
a variety of phytoplankton and zooplankton [24,25]. Recently, studies on feeding blue mussels
(Mpytilus edulis) organic waste from an aquaculture facility showed that when they were fed on a non-
traditional (fish waste) diet, they did not feed or grow, but instead showed significant decreases in
growth and total lipid content [36,37]. Phytoplankton and zooplankton are high in n-3 LC-PUFA,
which results in the FA profile of GSM oil being rich in EPA and DHA. The types of FA present in the
food sources of GSM will depend on factors such as season, location, and temperature. The similarity
in the relative proportions of FA (g/100 g TLE) in males and females (and even among organs)
suggested that there was little adaption of FA from their shared diet by either gender. However, the
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larger amount of lipid in the female GSM suggests that it has a greater capacity than the male GSM to
store, and possibly biosynthesize, FA, especially n-3 LC-PUFA.

The biosynthetic pathway for n-3 LC-PUFA is unknown in GSM. Vertebrates have a poor capacity
to produce DHA from precursors via the Sprecher pathway [38]. However, there is some evidence that
invertebrates, such as the nematode Caenorhabditis elegans, have different pathways to produce n-3
LC-PUFA [39]. The FA results confirmed that the major biosynthetic precursors in the n-3 LC-PUFA
pathway are present in the FA profile of GSM. These biosynthetic precursors include ALA, SDA,
EPA, and DPA (n-3), with DHA being the final product. All of these FA except for DHA were present
in significantly (p < 0.01) higher proportions of total FA in the female than in the male GSM. The
higher concentrations of ALA, SDA, EPA, and DPA (»-3) may indicate that the female GSM has a
greater n-3 LC-PUFA biosynthetic capacity during gametogenesis. Furthermore, in the digestive gland,
the proportions of ALA and SDA in the FA profile were significantly (p < 0.01) higher in female than
in male GSM. This may indicate a higher rate of FA biosynthesis in the digestive gland before lipids
are transported for storage in the gonad. However, these FA results could also indicate that female
GSM have an enhanced capacity to filter, process, and store n-3 LC-PUFA. To date, there have been
no published reports of feeding trials to clarify aspects of lipid metabolism and/or storage in GSM.
Therefore, it remains a matter of speculation whether the higher concentrations of FA in female than in
male GSM are a result of enhanced biosynthesis or greater storage capacity.

Minor bioactive FA present in the GSM profiles included NMI PUFA, 4,8,12 trimethyl tetradecanoic
acid (4,8,12-TMTD), and fatty aldehydes, all of which have been reported previously [14,19]. NMI FA
are present in various mollusks at concentrations of up to 20% of wet weight [16]. Mollusks can synthesize
NMI, which are believed to have structural and functional roles in biological membranes [16], via
biosynthetic pathways that are still not fully understood. Our results showed that there were differences
in the amount of NMI between male and female GSM, and that there was significantly less NMI in the
gonad than in the other organs. Fatty aldehydes and 4,8,12-TMTD were present in GSM, but at very
low concentrations (<1 g/100 g TLE), and were not included in the FA profiles. The amounts of
both 4,8,12-TMTD and fatty aldehydes were substantially lower than those detected in our previous
analyses of GSM that were collected from a similar location but at a slightly earlier time of the year
(August and September 2009) [14]. Both NMI and 4,8,12-TMTD are possible indicators of red algae
and/or some zooplanktonic pteropods, which could have been directly or indirectly consumed [19].
However, in other mollusks such as the green abalone, Haliotis fulgens, there is some evidence that
20:2 and 22:2 NMI may be metabolic products of desaturation of LC-MUFA [40]. Therefore, their
presence may indicate an endogenous biosynthetic capacity of GSM.

4.2. Differences among Organs

Although the gonad contained the highest concentrations of lipid, the digestive gland also contained
high lipid concentrations, which may be indicative of lipid-rich stomach contents. The lipid extracted
from the digestive gland was darker and stickier than that extracted from the other organs. The dark
color may represent non-enzymatic browning during extraction; this reaction occurs between oxidized
lipids and primary amine groups, and has been observed in PL emulsions [41]. The digestive gland
will likely contain the highest concentrations of endogenous lipases and low pH which may lead to the



145

oxidization of lipid because of the more extreme conditions. Further, the dark color could be due to
pigment residues derived from algae from the GSM diet

Generally, different lipid classes perform different functions in biological systems. Neutral lipids
(i.e., TAG) are used as energy storage, while PL are mainly components of structural and functional
parts of the cell. The lipid content of bivalves is directly linked to the gametogenic cycle, as TAGs and
PLs play important roles as structural components and energy reserves in the gonads and gametes and
during embryonic development [35]. Previous studies have shown the accumulation of neutral lipid
reserves in eggs for a number of bivalve species, although studies looking at lipid production in GSM
are not as detailed with regards to the effects of the gametogenic cycle [26,28]. It has been suggested
that the digestive gland plays an important role in storing metabolic reserves, such as lipids, for use in
gametogenesis and during periods of stress [35,42]. As previously mentioned, the higher proportion of
n-3 LC-PUFA biosynthetic precursors (ALA and SDA) in the GSM digestive gland indicates that this
organ is the most likely site of FA biosynthesis, and that these FA may have structural and functional
roles in gamete development. The GSM analyzed in this study were collected in single sampling
during a period of gametic growth; therefore, we cannot comment on changes in lipid composition
during the year.

The mantle was the largest of the organs analyzed in this study, and accounts for approximately 20%
of the wet weight of the mussel (Figure 2). The mantle is an important store of lipids in GSM; our
results showed that this organ contained 21.5% (male mussels) and 28.0% (female mussels) of the total
lipid. The main lipid class in the mantle was PL (73.5 g/100 g TLE in females; 77.3 g/100 g TLE in
males) because of the large amount of structural tissue in this organ. The mantle consists of vascular
connective tissue and plays a role in directing particles to the gills and deflecting other materials [35].
Our results suggested that the mantle of GSM also functions in lipid storage. The proportion of neutral
lipids, which are generally used for storage, was higher in the mantle (22.9 g/100 g TLE in females;
18.4 g/100 g TLE in males) than in organs such as the adductor muscle (<3.0 g/100 g of TLE), which
have different functions.

The three major organs of the GSM that store and use lipids are the gonad, digestive gland, and
mantle. Our results showed that the adductor muscle and the heart and foot contained lower
concentrations of lipids (3.9 g/100 g of TLE for adductor muscle and 5.4 g/100 g of TLE for heat and
foot). The lipid extracted from the adductor muscle and the heart and foot showed similar FA profiles
to that of the mantle. In the TLE from both the adductor muscle and the heart and foot samples, the
major lipid class was PL (83.1-91.78 g/100 g of TLE) with minor amounts of TAG (1.9-7.5 g/100 g of
TLE) and sterols (4.7-8.1 g/100 g of TLE). Profiles are included in the Supplementary Files. In general,
the differences in lipid classes among different organs and between genders were minimal, suggesting
that the diet is the main source of these FA and has the greatest influence on FA composition.

4.3. Sterols

The sterols in marine invertebrates are generally derived from sterols in the diet. However, some
unconventional sterols are more common in primitive invertebrates, while cholesterol is found in
greater proportions in more complex organisms [43]. The sterol profile of GSM reported here
(Table 3) is similar to that of the only other published GSM sterol profile [19]. In a previous study,
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GSM were sampled from a similar region (Marlborough Sounds) at a similar time of year (October,
compared with our sampling time in early November). In that study, there were only minor differences
in the sterol profile among samples collected from four different sites [19]. This finding suggested that
there was little difference in the diets of GSM among sites.

Phytosterols have wide bioactivity in humans. In particular, they are considered to be effective in
lowering cholesterol, and consequently may have a preventive role against vascular disease [18,44].
Further beneficial properties of phytosterols include cancer prevention [18,45]. Phytosterols and
cholesterol are likely metabolized by internal and external microorganisms into other bioactive
substances. Phytosterols cannot be synthesized by humans and, therefore, can only be obtained through
the diet. However, GSM may have some capacity to biosynthesize cholesterol into different phytosterols
depending on their stage of the life cycle, sexual maturity, and gender [46]. As they are lipophilic
substances with positive health benefits, phytosterols have been added to margarines and spreads to
create “functional” foods. The amount of phytosterols derived from land sources is increasing in the
marine environment as a result of land base ingredients increased used in aquafeeds. Changes from
marine to terrestrial sources of protein and oil for use in aquafeeds has resulted in increased amounts
and different types of phytosterols in farmed Atlantic salmon [47]. Here, we report that GSM oil
contained approximately 3% phytosterols, of which about one-third was cholesterol. Larger amounts of
sterols (5.5%—6.9%) have been reported previously for GSM [19]. Phytosterols such as isofucosterol and
occelasterol are not common in our diets as they are not typical in terrestrial food sources, but may
have novel beneficial functionalities. Isofucosterol and occelasterol are most likely derived from
marine algae. In future research, it would be interesting to investigate whether novel phytosterols,
along with the high content of w3 LC-PUFA in GSM, can provide increased protection against
coronary heart disease in humans.

4.4. Implications of Results for the GSM Industry

The major implications of this work are for the GSM oil industry, which is growing in both value
and volume. A detailed understanding of the location of n-3 LC-PUFA in GSM may allow novel
processing techniques to be established. The firmer parts of the mussel (posterior adductor muscle,
heart and foot) contained very low concentrations of oil and #-3 LC-PUFA, and removal of these
organs would reduce the amount of material processed using expensive freeze-drying and super-critical
oil extraction procedures. This could potentially improve yields and benefit producers. Further,
development of all-female lines of mussels would give mussel oil producers a greater source of oil and
n-3 LC-PUFA. We estimate that oil yields could increase by as much as 35%, »-3 yields by 27%, and
EPA yields by 43% if all-female mussels were extracted at the appropriate time of year. Highest yields
could be obtained if female GSM were harvested in the peak reproductive state, since the gonad is the
major storage centre for lipid. Higher investment in reproduction by the female GSM gonad may be to
supply ample nutrition to offspring/eggs. The FA data suggested that female GSM have a higher
biosynthetic capacity than that of males, and that they also store more lipid than do males. Compared
with male GSM, female GSM contained larger amounts of the #-3 LC-PUFA biosynthetic precursors
SDA and ALA. If both genders obtain the same FA from the shared diet, the increase in these biosynthetic

precursors provides further evidence of an enhanced biosynthetic capacity in female GSM.
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5. Conclusions

The lipid profiles of GSM were evaluated on the basis of gender and anatomy. The lipid content of
the female GSM (1.9 g/100 g ww) was significantly greater than that of the male (1.4 g/100 g ww).
The major lipid class in both genders was PL. Compared with male GSM, female GSM contained
more n-3 LC-PUFA, and stored a greater proportion of total lipid in the gonad and mantle. The higher
lipid content in the female than the male GSM is most likely related to gamete production. The mantle
and digestive gland were other important sites for lipid storage and/or function/production. Novel
bioactives, such as NMI-FA, plasmalogens, and phytosterols were identified in GSM oil.
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Supplementary Information

Table S1. Fatty acid concentration (mg/g) of Greenshell™ mussels. Polar and neutral lipid

fractions were separated by solid phase extraction (SPE).

Fatty acid Female Male Female Male F P
(mg/g ww) Polar lipid Polar lipid Neutral lipid Neutral lipid

14:0 53+09¢ 3.5+£1.1° 1.9+09° 0.9+05% 50.8 <0.001
16:0 232+28° 19.8+43° 59+272 3.0°+1.6° 110.8 <0.001
18:0 56+0.8° 58+13° 1.0£05° 0.7+03° 113.0 <0.001
Other SFA 26+04° 25+0.7° 05+032 0.3+0.2° 84.8 <0.001
Total SFA 37.9+45° 328+74° 9.5+44% 52+£27% 105.7 <0.001
16:1n-7 92+16" 57+18" 33+1.7° 1.6£1.0° 455 <0.001
18:17-9 1.5+04° 1.3+03° 0.6+03% 04+02% 26.6 <0.001
18:1n-7 3.7+05° 29+09° 1.1+£0.6° 0.6+03° 59.5 <0.001
20:17-9 47+07" 46+08"° 0.7+03 0.6*+0.2° 2233 <0.001
20:1n-7 20+£06° 1.4+04° 0.5+02% 0.3+0.1% 28.5 <0.001
Other MUFA 08+02°¢ 04+02" 03+0.1% 0.1£0.1% 27.6 <0.001
Total MUFA 21.7+£28°¢ 163+£4.0° 6.5+29% 3.6+1.8° 80.8 <0.001
18:4n-3 28+049 1.5+05¢ 1.1£06° 0.5+0.3" 422 <0.001
18:2n-6 1.8+03° 15+04° 05+03% 03+022 482 <0.001
18:3n-3 13+03¢ 0.9+02" 04+03° 02+0.1% 459 <0.001
20:4n-6 22+03" 21+04"° 02+0.12 02+0.1% 201.5 <0.001
20:5n-3 305+52°¢ 205+5.7° 75+£32°% 41+19° 80.0 <0.001
20:25-6 26+05" 26+04"° 03+0.12 02+00% 172.2 <0.001
20:2NMI 1.5+£0.1° 1.3+£03° 04+0.1° 02+0.1° 146.7 <0.001
22:5n-6 03+0.1° 03+0.1° 0.1+0.12 0.1£00% 6.8 <0.001
22:6n-3 28.7+3.7° 248+49° 6.3+33% 3.9+1.7% 121.9 <0.001
22:5n-3 20+£02° 1.5+04° 0.3+02° 0.2+0.1% 139.4 <0.001
22:2NMI 24+04° 22+04"° 02+0.12 02+002 177.7 <0.001
Other PUFA 43+1.0° 41+14° 13+1.8 0.8+£0.6° 20.7 <0.001
Total PUFA 795+9.6°¢ 62.7+140° 1784792 104+45°2 112.7 <0.001
Total n-3 65.5+8.6°¢ 495+11.6° 15.6+6.9% 9.0+£39° 107.5 <0.001
Total n-6 58+1.1° 55+1.7° 1.1£06° 0.8+£03% 62.73 <0.001
Total other 43+29° 3.9+25° 02+0.1° 02+0.1% 11.2 <0.001

Values are mean + standard error (#=9). ww; wet weight; Other SFA: Sum of 15:0, 17:0, 20:0, 22:0 and 24:0; Other MUFA: Sum of

16:1n-5, 18:1n-Ttrans, 18:1n-5, 22:n-11, and 22:1n-9; Other PUFA: Sum of 16:2n-6, 18:3n-6, 20:4n-6, 20:2n-6, 22:5n-6, 22:4n-6, and

22:2n-6; Other includes fatty aldehydes and 4,8,12 trimethyl tetradecanoic acid (4,8,12-TMTD).
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Table S2. Fatty acid concentrations in oil extracted from Greenshell™ mussel (GSM)
adductor muscle and heart and foot.

. Adductor Muscle Heart & foot
Fatty acids (g/100 g TLE)
Female Male Female Male
14:0 1.9+0.6 2.4+0.5 2.6+0.5 23+0.7
16:0 18.6 £ 6.1 26.3+10.1 19.0+1.8 16.1 £4.1
17:0 14+£0.5 1.5+£04 1.5+0.2 1.3+0.2
18:0 5.6+0.9 6.8+2.7 52+0.3 5.0+04
Other SFA 1.7+£0.5 1.3+£0.5 2.6+0.2 24+£0.5
Total SFA 292+7.9 38.1+13.4 30.8+24 27.1+53
16:1n-7 20+£1.2 22+0.6 44+0.7 40+£1.2
18:1n-9 0.7+0.2 0.7+0.3 0.8+0.1 0.8+0.2
18:1n-7 2.6+£0.8 2.1+£0.7 1.9+0.2 1.9+0.3
20:1n-9 43+0.7 3.5+09 47+0.6 48+0.3
20:1n-7 0.9+0.1 0.6+0.3 1.1+0.1 1.2+0.2
Other MUFA 04+04 0.6£1.0 04+0.0 04+0.1
Total MUFA 10.8 £ 1.1 9.8+2.3 13.2+0.7 132+ 1.1
18:4n-3 0.8+0.5 03+£04 0.7+0.3 0.8+0.2
18:2n-6 1.5+0.5 1.1+£0.6 1.5+0.2 1.5+0.1
18:3n-3 0.8+0.3 0.6+£0.4 0.8+0.1 0.8+0.1
20:4n-6 1.9+0.3 1.2+0.6 3.1+04 32+02
20:5n-3 135+ 1.8 120+ 1.0 11.3£1.5 12943
20:2NMI 1.0+0.3 0.5+04 1.8+0.3 1.7+£0.2
20:4n-6 04+0.2 02+0.2 0.5+0.1 0.6+3.2
20:2n-6 0.1+0.1 0.1+£0.1 0.2+0.0 0.2+0.1
22:6n-3 253+6.4 23.7+10.8 19.6+3.0 21.7+0.2
22:5n-3 32+09 24+18 1.7£0.4 1.9+0.1
22:3 0.5+0.1 0.3+0.3 0.8+0.2 09+04
22:2NMI 2.1+£0.8 1.7+£1.5 23+04 24+02
Other PUFA 1.5+£0.5 1.0+ 0.5 1.8+0.2 22+0.2
Total PUFA 559+9.6 47.6 +13.0 50.5+3.8 545+6.6
Total n-3 43.6 +8.0 39.1£11.5 34.1+3.5 38.1+£5.8
Total n-6 49+13 32+1.3 6.5+1.2 6.4+0.3
Total other 40+£1.2 44+£28 52+1.5 49+19
Lipids
TAG 1.9+22 27+1.7 49+33 7.5+58
ST 7.1+1.6 4727 8.1+1.8 6.9+0.7
PL 87.8+6.0 91.3+25 86.8 1.8 83.1+7
Lipid content
g lipid /100 g wet weight 0.8+0.4 1.2+0.6 1.1+0.1 1.3+0.2
g lipid/100 g dry weight 32+1.7 4.6=+2.7 5.0+£0.7 5.8+1

TLE: Total lipid extract; Values are mean + standard error (z = 6); Other SFA: Sum of 15:0, 17:0, 20:0, 22:0,
and 24:0; Other MUFA: Sum of 16:1n-5, 18:1n-7trans, 18:1n-5, 22:n-11, and 22:1n-9; Other PUFA: Sum of
16:2n-6, 18:3n-6, 20:4n-6, 20:2n-6, 22:5n-6, 22:4n-6, and 22:2n-6; Other includes fatty aldehydes and
4,8,12 trimethyl tetradecanoic acid (4,8,12-TMTD); TAG: triacylglycerols, PL: polar lipid; ST: sterols.
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Evaluation of Bread Crumbs as a Potential Carbon Source
for the Growth of Thraustochytrid Species for Oil and
Omega-3 Production

Tamilselvi Thyagarajan, Munish Puri, Jitraporn Vongsvivut and Colin J. Barrow

Abstract: The utilization of food waste by microorganisms to produce omega-3 fatty acids or biofuel
is a potentially low cost method with positive environmental benefits. In the present study, the marine
microorganisms Thraustochytrium sp. AH-2 and Schizochytrium sp. SR21 were used to evaluate the
potential of breadcrumbs as an alternate carbon source for the production of lipids under static
fermentation conditions. For the Thraustochytrium sp. AH-2, submerged liquid fermentation with 3%
glucose produced 4.3 g/L of biomass and 44.16 mg/g of saturated fatty acids after seven days. Static
fermentation with 0.5% and 1% breadcrumbs resulted in 2.5 and 4.7 g/L of biomass, and 42.4 and 33.6
mg/g of saturated fatty acids, respectively. Scanning electron microscopic (SEM) studies confirmed
the growth of both strains on breadcrumbs. Attenuated total reflection Fourier transform infrared
(ATR-FTIR) spectroscopy for both strains were consistent with the utilization of breadcrumbs for the
production of unsaturated lipids, albeit at relatively low levels. The total lipid yield for static
fermentation with bread crumbs was marginally lower than that of fermentation with glucose media,
while the yield of unsaturated fatty acids was considerably lower, indicating that static fermentation
may be more appropriate for the production of biodiesel than for the production of omega-3 rich oils in
these strains.

Reprinted from Nutrients. Cite as: Thyagarajan, T.; Puri, M.; Vongsvivut, J.; Barrow, C.J. Evaluation of
Bread Crumbs as a Potential Carbon Source for the Growth of Thraustochytrid Species for Oil and
Omega-3 Production. Nutrients 2014, 6, 2104-2114.

1. Introduction

Thraustochytrids are marine protists that belong to Labyrinthulomycetes and were first reported by
Sparrow in 1936. These microorganisms are epibiotic in nature and represent a diverse group of
organisms living in marine and estuarine habitats throughout the world and exhibiting a saprotrophic
mode of nutrition [1]. Due to their ability to produce a large amount of oil, including polyunsaturated
fatty acids (PUFAs), research has focused on lowering their cost of production using low cost carbon
and nitrogen sources, particularly for large-scale industrial fermentation [2]. Biomass produced
through heterotrophic fermentation of thraustochytrids is a potentially sustainable approach to the
production of PUFAs for food, feed and supplement applications and oil for biofuel applications [3].

Thraustochytrids can act as microbial cell factories for the production of omega-3 PUFAs, squalene,
and other secondary metabolites such as carotenoids and sterols, along with enzymes and extracellular
polysaccharides [2]. For commercial utility in the production of these materials, thraustochytrid growth
should be low cost, particularly to compete in the food market as a replacement for fish oils. Because
heterotrophic organisms require a carbon source for bioconversion into oil, they are more expensive to
grow in terms of consumables than autotrophic organisms. Heterotrophic fermentation has some




154

advantages over autotrophic fermentation, particularly the ability to use standard industrial
fermentation equipment at scale and to get much higher cell density than can be achieved with
autotrophic organisms, which often need complex and expensive equipment to enable light to reach the
cells while preventing contamination [4,5]. The cost of glucose as a carbon source in the growth
medium to produce biomass can account for up to 30% of the overall production cost and so
commercial biofuel production using heterotrophic fermentation requires the use of low cost carbon
sources such as glycerol or food waste [6,7]. Food wastes generated worldwide are about 1.3 billion
tons [8]. Management of food wastes through landfill dumping is common and is environmentally
problematic. Food in landfills can rot and release methane gas, which is a major contributor to carbon
emissions worldwide [9].

Research on using microbial fermentation to convert food waste into value added products is
limited [10]. Schizochytrium mangrovei and Chlorella pyrenoidosa have been grown using food waste
obtained by fungal hydrolysis and were reported to produce biomass potentially useful as a feed
supplement or for biodiesel production [6]. Schizochytrium mangrovei KF6 was also reported to utilize
processed bread crust to produce docosahexaenoic acid (DHA) from shake flask fermentation at 200
rpm under fluorescent light for eight days [11]. Polyunsaturated fatty acids were produced by
Mortierella alpina utilizing rice bran as the carbon source in a solid-state column reactor under static
conditions. Static conditions, where there is no agitation during the growth phase, are often used in
solid substrate fermentation, as opposed to submerged liquid fermentation which requires higher
energy inputs for continuous shaking of the flask at constant speed [12]. Other inexpensive carbon
sources derived from food wastes that were studied includes okara powder [13], residues from beer
and potato processing [14], sweet sorghum juice [15], coconut water [16], marine aquaculture waste
water [17] and crude glycerol [18].

The objective of the present study was to investigate the ability of some thraustochytrid strains to
utilize bakery waste, specifically breadcrumbs (BC), as an alternate carbon source in the fermentation
media to produce lipids under static conditions. Scanning electron microscopy (SEM) was used to
investigate the growth pattern of these microorganisms during static fermentation, and attenuated total
reflection Fourier transform infrared (ATR-FTIR) spectroscopic analysis was performed to observe the
production of unsaturated fatty acids during fermentation. ATR-FTIR spectroscopy and SEM were
shown to be useful for monitoring static fermentation.

2. Experimental Section

All chemicals including fatty acid methyl ester standards used in this study were procured from
Sigma-Aldrich (Sydney, Australia) and Merck Chemicals (Victoria, Australia) and were of
analytical grade.

2.1. Preparation of Seed Culture

Thraustochytrid strains used in the study were Thraustochytrium sp. AH-2 (ATCC® PRA-296™,
Manassas, VA, USA) and Schizochytrium sp. SR21 (ATCC® MYA-1381™, Manassas, VA, USA) and
these strains were procured from the American Type Culture Collection (ATCC, Manassas, VA,
USA), and grown in liquid media containing 1 g yeast extract, 15 g peptone, 20 g glucose (1 g yeast
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extract, 1 g peptone, 5 g glucose for Schizochytrium sp. SR21) in 1 L of artificial sea water (ASW) at
70% strength, according to ATCC product information sheets. In brief, the cultures were grown at
20 °C with shaking speed of 120 rpm for 96 h. Seed culture of 5% (v/v) culture was used in subsequent
submerged liquid glucose fermentation and static fermentation with breadcrumbs as an alternate
carbon source.

2.2. Submerged Liquid Fermentation with Glucose Medium

Cultures were grown in 250 mL flasks with 50 mL of medium altered and adopted from
Li et al. [19]. Flasks were kept at 20 °C with shaking speed of 120 rpm for 7 days with medium at a
starting pH of 6.0 (prior to autoclaving) and the pH was not controlled over the fermentation period.
Flasks were collected for the dry weight determination and fatty acid estimation, each for 24 h.

2.3. Preparation of Bakery Waste Bread Crumbs (BC) for Static Fermentation

Breadcrumbs (crude powder; non-uniform size) were purchased from a local bakery (Geelong,
Australia) for evaluating their utilization under static fermentation. BC powder was used for carrying
fermentation experiments. Static fermentation was carried with the same media as submerged
fermentation but with BC (at 0.5% and 1%) substituted for glucose in the media. Flasks were kept
under static conditions in an incubator at 20 °C for 7 days, with pH of medium adjusted at 6.0 prior to
autoclaving but not adjusted during the fermentation phase. Flasks were inoculated with 5% (v/v) seed
culture (Section 2.1) under aseptic conditions. Samples were collected for the cell dry weight and fatty
acid estimation after 24 h. Freeze-dried BC were analyzed using an EuroEA elemental analyzer
(Euro Vector, Milan, Italy) to determine the percentages of carbon and nitrogen content.

2.4. Scanning Electron Microscopy (SEM)

A small flake of freeze-dried cells was mounted onto carbon tape on an aluminum stub and air
dried, after which 60 nm of gold was deposited on its surface using a sputter coater. The cells were
examined under a scanning electron microscope (SEM Supra 55 VP, Zeiss, Berlin, Germany) at
accelerating voltage 3—5 KV using secondary electron detector.

2.5. Fatty Acid Extraction and Gas Chromatography (GC) Analysis

Fatty acid extraction was performed as previously described with some modifications [20]. In brief,
10 mg of freeze-dried cells were used for lipid extraction. Fatty acids were extracted with a mixture
containing a 2:1 ratio of chloroform to methanol and repeated 3 times. For trans-esterification, 1 mL
toluene was added followed by addition of 200 pL of internal standard, methyl nonadecanoate (C19:0)
and 200 pL of butylated hydroxytoluene (BHT). Acidic methanol (2 mL) was also added to the tube
and kept for overnight incubation at 50 °C. Fatty acid methyl esters (FAMEs) were extracted into
hexane. The hexane layer was removed and dried over sodium sulphate. FAMEs were concentrated
using nitrogen gas prior to GC analysis [21]. The samples were analyzed using a GC-FID system
(Agilent Technologies, 6890N, Santa Clara, CA, USA). The GC instrument was equipped with a
capillary column (Suplecowax 10, 30 x 0.25 mm, 0.25 pm thickness). Helium was used as the carrier
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gas at a flow rate of 1.5 mL-min . The injector was maintained at 250 °C and a sample volume of
1 uL was injected. Fatty acids were identified by comparison to external standards (Sigma-Aldrich,
Sydney, Australia). Peaks were quantified with Chemstation chromatography software (Agilent
Technologies, Santa Clara, CA, USA) and corrected using theoretical relative FID response
factors [22]. Samples are analyzed in duplicate and compared to external standards.

2.6. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopic Analysis

ATR-FTIR measurements of the freeze-dried samples were conducted using an Alpha FTIR
spectrometer (Bruker Optik GmbH, Ettlingen, Germany) equipped with a deuterated triglycine sulfate
(DTGS) detector and a single-reflection diamond ATR sampling module (Platinum ATR
QuickSnap™, Ettlingen, Germany). The ATR-FTIR spectra were acquired at 4-cm ' spectral
resolution with 64 co-added scans within the 4000400 cm ™' spectral region. Blackman-Harris 3-Term
apodization, power-spectrum phase correction, and zero-filling factor of 2 were set as default
acquisition parameters using OPUS 6.0 software suite (Bruker Optik GmbH, Ettlingen, Germany).
Background spectra of a clean ATR surface were acquired prior to each sample measurement using the

same acquisition parameters.
2.7. Statistical Analysis

Data were statistically compared using one-way analysis of variance (Anova), and the significant
difference was identified using Tukey’s and Scheffe tests. The analysis was carried out using SPSS
software (IBM" SPSS® Statistics 20, Sydney, Australia).

3. Results and Discussion

Thraustochytrium sp. AH-2 was previously isolated from coastal and mangrove habitats of Goa and
further studied for its extracellular alkaline lipase production [23]. In the present study, control
fermentation profiles were obtained using submerged liquid fermentation with 3% glucose as the
carbon source. Under glucose conditions, biomass of 4.3 g/L and total lipid yield of 941 mg/L were
achieved (Table 1). The biomass and lipid yield for our species is similar to that reported for 7. aureum
ATCC 34304 [24], although optimization of controlled fermentation conditions would probably enable
higher biomass and lipid production for strain AH-2. Oleic acid (C18:1n9) was the major fatty acid at
63.19 mg/g, followed by palmitic acid (C16:0) 32.33 mg/g, DHA (C22:6n3) 23.74 mg/g and stearic
acid (C18:0) 11.82 mg/g. C14:0, C15:0. C16:1n7, C17:0, C17:1n7 were present in lower amounts.
DHA (C22:6n3) was the major PUFA, followed by docosapentaenoic acid (DPA) (C22:5n6) at
4.32 mg/g and eicosapentaenoic acid (EPA) (C20:5n3) at 3.03 mg/g.
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Table 1. Fermentation profiles for Thraustochytrium sp. AH-2.

Biomass Lipids Saturated fatty Mono-unsaturated

F tation t
ermentation type (mg/L) (mg/L) acids'(mg/g) fatty acids > (mg/g)

Submerged liquid fermentation (3% glucose) 4300 941.32 44.16 63.19
Static fermentation (0.5% bread crumbs) 2530 260.0 42.4 29.00
Static fermentation (1% bread crumbs) 4760 390.0 33.6 22.6

! Palmitic acid (C16:0); stearic acid (C18:0); * Oleic acid (C18:1n9).
3.1. Fermentation Growth Using Bread Crumbs as the Carbon Source

Elemental analysis of the freeze-dried BC revealed approximately 40.95% carbon and 3.23%
nitrogen. The fatty acid analysis of unfermented BC is presented in Table 2 and shows oleic acid as the
major fatty acid in the profile, followed by palmitic acid (C16:0), stearic acid (C18:0), linoleic acid
(18:2n6) and other fatty acids were also present. The polyunsaturated fatty acids EPA, DPA and DHA
were not detected in the fatty acid profile of BC.

Thraustochytrium sp. AH-2 was grown using BC as the carbon source and the results compared
with those obtained using glucose. BC is known to contain primarily complex carbohydrate in the form
of starch [25]. BC was used at levels of 0.5% and 1%. Higher levels of 3% and 5% BC gave no
improvement in cell growth and made lipid extraction difficult and were not pursued further.
Fermentation with 0.5% BC gave 2.5 g/L of biomass and 260 mg/L of total lipid yield. Fermentation
with 1% BC gave 4.7 g/LL of biomass and 390 mg/L of total lipid yield (Figure 1). Compared to liquid
fermentation with glucose, the total lipid yield was relatively low for static fermentation.

Table 2. Fatty acid profile ' (mg/g) of unfermented bread crumbs, submerged liquid
fermentation and static fermentation with bread crumbs, for Thraustochytrium sp. AH-2.

C16:0 C18:0 C18:1n9 C18:2n6 C18:3n3 (C20:5n3 C22:5n3 C22:6n3 others
Unfermented bread crumbs fatty acid profile

2.20 1.50 3.10 1.00 0.00 0.00 0.00 0.00 1.50
Submerged liquid fermentation fatty acid profile *
32.33° 11.82° 63.19° 2.76* 0.00*° 3.03 4.32 23.74 33.35
Static fermentation fatty acid profile
259 16.5° 29.0° 12.9° 1.2° 0.00 0.57 2.40 14.40
20.4 "7 13.2° 226" 11.2° 1.2° 0.00 0.00 1.30 11.50

! Palmitic acid (C16:0); stearic acid (C18:0); oleic acid (C18:1n9); linoleic acid (C18:2n6); linolenic
(C18:3n3); EPA (C20:5n3); DPA (C22:5n3); DHA (C22:6n3); > Submerged liquid fermentation media with
3% glucose incubated for 7 days at 20 °C with shaking speed of 120 rpm; * Static fermentation with same
medium composition as submerged liquid fermentation, with breadcrumbs as 5 and 10 g substituted for
glucose in 1litre of 70% ASW at pH 6; * Static fermentation with 0.5% BC, incubated at 20 °C for 7 days; °
Static fermentation with 1% BC, incubated at 20 °C for 5 days; *® indicates statistically significant difference

for submerged liquid fermentation (*) and static fermentation ® (p <0.05).
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Figure 1. Fermentation profile of Thraustochytrium sp. AH-2 under submerged liquid
fermentation with 3% glucose as the carbon source.
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Under static fermentation, unsaturated fatty acids were poorly synthesized, although the
presence of C18:3n3 (linolenic acid), EPA and DHA were clearly observed. Previous study on
Schizochytrium mangrovei KF6 under heterotrophic conditions with processed bread crust also
reported low levels of unsaturated fatty acids [11]. In general, monosaccharide sugars in the media
result in the production of higher levels of PUFAs compared to di- and poly-saccharides [26]. As BC
contains mainly starch, the observed poor synthesis of unsaturated fatty acids is not unexpected. In this
study, the maximum fatty acid profile with 1% BC was observed on day 5, after which fatty acid
content decreased, probably due to lipid consumption by the organism. Lipids and fatty acids
accumulated in oleaginous microorganisms can act as energy sources for growth that are utilized when
there is a lack of available carbon in the media [27].

The total amount of saturated fatty acids, which was primarily C16:0 and C18:0, were 42.4 mg/g
with 0.5% BC and 33.6 mg/g with 1% BC, whilst submerged liquid fermentation with glucose as
the carbon source gave an only slightly higher level of saturated fatty acids at 44.1 mg/g. Since PUFA
production is low and unsaturated production is relatively high, fermentation with BC provides
a fatty acid profile more consistent with that of biofuel, than did submerged liquid fermentation.
Static fermentation may be a useful method for converting BC to oil, since parameters are readily
standardized at industrial scale.

3.2. Scanning Electron Microscopy (SEM) Observation of Cell Growth

The fermentation growth for Thraustochytrium sp. AH-2 and Schizochytrium sp. SR21 were
compared for BC and glucose as the carbon source using SEM. The morphology of freeze-dried
unfermented BC was observed using SEM as a control material. The SEM images of cells grown
using submerged liquid fermentation with glucose show spherical cells that are clumped together
(Figure 2a). When grown in the presence of BC, cell clusters are attached to the BCs, confirming that
cells do grow on this complex carbon source (Figure 2b,c).
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Figure 2. SEM images of freeze-dried cells for (a) freeze-dried cells of Schizochytrium sp.
SR21 grown under submerged liquid fermentation; (b) Schizochytrium sp. SR21 cells
grown with 1% BC as alternate carbon source; (¢) Thraustochytrium sp. AH-2 cells grown
with 1% BC as alternate carbon source; (d) Thraustochytrium sp. AH-2 grown under
submerged liquid fermentation.
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3.3. ATR-FTIR Spectroscopy Analysis of Cell Lipid Content

ATR-FTIR spectroscopic measurement of Schizochytrium sp. SR21 was performed to confirm the
production of unsaturated fatty acids when BC was used as an alternative carbon source, in comparison
to the submerged liquid fermentation with glucose of the same strain. Figure 3 shows the comparison
of the ATR-FTIR spectral features of the raw unfermented BC, the static fermented 1% BC and
glucose fermented cells. In particular, the olefinic C=CH stretching vibration found at ~3014 cm™" is
commonly known as a representative band for unsaturated fatty acids [28,29]. This band is clearly
observed in the freeze-dried cells that were grown in 1% concentration of BC under static fermentation
and with glucose, suggesting that observable amounts of unsaturated fatty acids were produced in the
cells grown by both fermentation methods. The triplet bands found in the range of 30002800 cm ™', on
the other hand, are attributed to C-H stretches of lipids and proteins [29]. At the low wavenumber
region, the strong bands centered at 1650 and 1545 cm™', known as amide I and II bands, respectively,
occurred due to the protein moieties in the BC and the cells. The sharp band at
1725 cm™', on the other hand, represents v(C=0) stretches of ester functional groups from lipids and
fatty acids, and is therefore indicative of total lipids produced by the cells [28-30]. According to the
intensities of this band, fermentation with glucose led to a substantially higher amount of total lipids
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produced in the microorganisms. However, the ratios of unsaturated fatty acids per total lipids (i.e.,
L014/11725) were found to be comparable between both fermentation approaches, suggesting that similar
yields of unsaturated fatty acid can be achieved using BC as a carbon source under static fermentation
of Schizochytrium sp. SR21. Therefore, growth of these strains on BC is potentially useful both for the
utilization of food waste and the production of lipid.

Figure 3. ATR-FTIR spectra of: (a) Thraustochytrium sp. AH-2; and (b) Schizochytrium
sp. SR21. Black line—submerged fermentation; Blue line—unfermented breadcrumbs;

Red line—static fermentation with breadcrumbs.
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4. Conclusions

Thraustochytrium sp. AH-2 and Schizochytrium sp. SR21 were tested for their ability to utilize BC
during static fermentation as a low-cost and environmental friendly carbon source for producing oil for
either biofuel (saturated fatty acid rich) or food (PUFA rich). The fatty acid profiles from
Thraustochytrium sp. AH-2 indicated low levels of PUFA and higher levels of saturated oil.
ATR-FTIR spectroscopy of Schizochytrium sp. SR21 was also consistent with higher levels of
saturated fatty acids. Fermentation on BC containing complex carbohydrate appears to be more
appropriate to the production of biofuel from these organisms than for the production of high levels of
PUFA for food applications, due to the suppression of PUFA when BC is used as the carbon source.
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4. Products containing Long-chain Omega-3

Purification of Alaskan Walleye Pollock (Gadus chalcogrammus)
and New Zealand Hoki (Macruronus novaezelandiae) Liver QOil
Using Short Path Distillation

Alex C. M. Oliveira and Matthew R. Miller

Abstract: The beneficial health effects of a diet rich in #-3 long chain polyunsaturated fatty acids (n-3
LC-PUFA) have been extensively researched in recent years. Marine oils are an important dietary
source of n-3 LC-PUFA, being especially rich in two of the most important fatty acids of this class,
EPA (eicosapentaenoic acid; 20:5#-3) and DHA (docosahexaenoic acid; 22:6m-3). Oils rich
in n-3 LC-PUFA are prone to oxidation that leads to loss of product quality. Alaskan pollock
(Gadus chalcogrammus Pallas, 1814) and New Zealand’s hoki (Macruronus novaezelandiae Hector,
1871) are the highest volume fisheries of their respective countries. Both produce large quantities of
fishery byproducts, in particular crude or unrefined #-3 LC-PUFA containing oils. Presently these oils
are used as ingredients for animal feed, and only limited quantities are used as human nutritional
products. The aim of this research was to investigate the applicability of short path distillation for the
purification of pollock and hoki oil to produce purified human-grade fish oil to meet quality
specifications. Pollock and hoki oils were subjected to short path distillation and a significant decrease
in free fatty acids and lipid oxidation (peroxide and para-anisidine values) products was observed.
Purified oils met the Global Organization for EPA and DHA Omega-3 (GOED) standard for edible
fish oils.

Reprinted from Nutrients. Cite as: Oliveira, A.C.M.; Miller, M.R. Purification of Alaskan Walleye
Pollock (Gadus chalcogrammus) and New Zealand Hoki (Macruronus novaezelandiae) Liver Oil
Using Short Path Distillation. Nutrients 2014, 6, 2059-2076.

1. Introduction

The beneficial health effects of #-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) are well
established. There is evidence that n-3 LC-PUFA play a role in the treatment and possible prevention
of cardiovascular diseases, hypertension, diabetes, arthritis, and other inflammatory and autoimmune
diseases [1—4]. Marine oils are an important dietary source of n-3 LC PUFA, being especially rich in
two of the most important fatty acids of this class, namely EPA (eicosapentaenoic acid; 20:5#r-3)
and DHA (docosahexaenoic acid; 22:6n-3). Due to its nutritional value, there is growing interest in
refining fish oil from different marine sources for human consumption. Refined edible fish oil can be
consumed in the form of a pharmaceutical (e.g., Omacor™, Lovaza™), or nutraceutical (e.g., fish oil
capsules), or it can be added as an ingredient to boost levels of #n-3 LC-PUFA in various food items
such as baked goods, orange juice and yogurt [5].
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Aquaculture is presently the major user of n-3 LC-PUFA oils. Therefore, the nutraceutical and
pharmaceutical industries are in competition with aquaculture industries for access to n-3 LC-PUFA,
and the increased demand for this marine oil has lead to an increase in the value of this commodity [6].
Currently, most of the fish oil used in aquaculture feeds is produced from non-food forage fish species
from Peru and Northern Chile; Mexican and Central American Pacific coasts; the US Gulf and Atlantic
coasts; Norway; Iceland; and other regions [7]. Most of these industrial fisheries are harvested at
sustainable levels and increased oil production from these sources is unlikely [8]. A possible method
for increasing the human intake of n-3 LC-PUFA is improving the quality and processing yields of oils
rendered from abundant although presently underutilized marine byproduct streams.

Alaskan walleye pollock and New Zealand’s hoki are major world fisheries with large
economic importance to their respective countries. Alaska walleye pollock, previous scientific name
Theragra chalcogramma and recently reassigned to Gadus chalcogrammus [9], is the largest volume
fishery in Alaska and estimated at over 1,000,000 tons per year [10]. The Bering Sea and Aleutian
Islands, and the Gulf of Alaska pollock fisheries are considered sustainable and were certified by the
Marine Stewardship Council (MSC) in 2005 and 2010. The combination of a high production volume
and the year-round availability of pollock byproducts make these raw materials ideal for the
production of human-grade fish oils [10]. Hoki (Macruronus novaezelandiae, family Merlucciidae) is
the major commercial fishery in New Zealand. Hoki is a hake species and has MSC certification as
being a well-managed species. The quota varies depending on stocking information and was set
at 150,000 tons for the 2013-2014 fishing season. Hoki are found in the waters surrounding
New Zealand, in particular the Chatham Rise, Cook Straight, around the Sub Antarctic islands as well
as southeastern Australia. Both of these species store large amounts of oil in their liver making them
a good source of n-3 LC-PUFA. Pollock liver oil has been reported to contain n-3 LC-PUFA
concentrations of 23 g/100 g, with 5 g/100 g DHA and 15 g/100 g EPA [11]. Hoki liver oil contains
similar concentrations of n-3 LC-PUFA (23 g/100 g), with a different ratio of DHA (12 g/100 g) to
EPA (6 g/100 g) [12].

Hoki and pollock oils are rich in n-3 LC-PUFA and susceptible to lipid degradation processes
which cause loss of the valuable LC-PUFA, and development of rancid odours and flavours [13]. Lipid
oxidation is a degradative free radical reaction which can be triggered by many mechanisms such as
singlet oxygen or peroxide radicals, from sources such as light and/or oxygen and catalysts such as
iron [13]. Some important triggers of lipid oxidation in fish byproducts are iron from hemoglobin,
as well as temperature and the presence of oxygen during processing [13]. Lipid oxidation products do
not only impart unpleasant taste and smell to fish oils but they also exert cytotoxic and genotoxic
effects [14,15]. Ingestion of these compounds may cause low density lipoprotein cytotoxicity [16],
atherogenesis and atherosclerosis [17], and liver enlargement indicating nutrition-induced toxicity [18].
For these reasons, it is critical to monitor the quality and oxidative stability of edible fish oils.
Oxidation products in crude marine oils, such as pollock and hoki liver oil, can be high, reducing the
oil value and quality. Oxidation is measured by a series of tests. The Peroxide Value (PV) measures
the primary products of lipid oxidation (lipid peroxides) while para-Anisidine Value (p-AV) is a
method used to measure secondary products of oxidation (aldehydes and ketones). Acid Value (AV),
often used as an indication of quality of the oil, quantifies free fatty acids (FFA) that have been cleaved
from their parent molecules (e.g., triglycerides or phospholipids) as a result of hydrolytic breakdown.
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Cleavage of a FFA from a parent molecule, commonly known as lipid hydrolysis, results from
increased enzymatic activity in the fish tissues post-mortem; the lipases triggering the degradation
process are either innate to the organism or of bacterial origin. As there is no compulsory or regulatory
qualitative parameters for lipid oxidation for marine oils to date, many marine oil processers use
the Global Organization for EPA and DHA Omega-3 (GOED) voluntary monograph [19]. The 2012
GOED monograph states that for oils for human consumption, the following values are required:
AV <3 mg KOH/g; PV <5 mEq/kg; p-AV < 20; and a resulting TOTOX of <26 (result of calculation,
(2 x PV + p-AV) is also a requirement.) The GOED monograph also contains specifications for the
maximum level of dioxins, PCBs and heavy metals with relevance to the process technology used in
this study. In addition, the European Community has implemented hygienic, raw material quality and
process requirements for fish oil intended for human consumption (Regulation (EC) 853/2004). The
Codex Alimentarius Committee on Fats and Oils has recently started to assemble the Standard for Fish
Oils and currently this document is at Step 2 [20].

In Alaska and New Zealand, large quantities of fishery byproducts are already utilized for the
production of fishmeal and fish oil. However, most fish oil produced in Alaska and New Zealand is
crude, only serving as an ingredient for animal/aquaculture feed. Food-grade fish oils can be produced
from crude fish oils by including further processing steps that add value to marine byproducts for the
respective fishing industries. Traditionally, fish oil purification is composed of four consecutive steps:
degumming, neutralization, bleaching and deodorization. Degumming removes soluble and insoluble
impurities such as proteins, phospholipids, waxes and trace metals [21]. Degumming is accomplished
by washing the oil with an aqueous solution of an organic acid such as citric or phosphoric acid under
mild heat [22]. Neutralization, often referred to as alkali refining, is used to remove FFA and this is
accomplished by treating the degummed fish oil with sodium hydroxide (aqueous solution) under mild
heat [21]. Bleaching the neutralized fish oil further purifies it by removing pigments, traces of soap,
sulfur- and carbonyl-containing compounds, pigment breakdown products and trace metals [21].
Bleaching is accomplished by treating the oil with an adsorbent such as activated earth (bleaching
clay), activated carbon, or chitosan [23]. Deodorization is the final purification step and consists of
removing aldehydes and ketones that are responsible for the peculiar fish oil odor, which in most cases
is not appealing to consumers. Aldehydes and ketones are formed during lipid oxidation, and this
degradation of fatty acids may occur during raw material handling and storage, and/or during the
rendering process. Since the late 1980’s, an additional step has been added in which the fish oil is also
subjected to another step of molecular distillation to remove persistent organic pollutants (POP) [21].
In summary, the general objective of purification is to remove impurities that have negative health
effects and detrimental sensorial and qualitative impacts on marine oils such as odor and taste.

Molecular distillation offers advantages for separation, purification and/or concentration of natural
products, usually consisting of complex and thermally sensitive molecules such as fat-soluble vitamins
and PUFA, because it minimizes losses caused by thermal degradation [24,25]. In this context,
short-path distillation (SPD), provides an alternative to the traditional fish oil purification process by
removing unwanted free fatty acids, deodorizing (removing aldehydes and ketones), and removing
environmental contaminants under low pressure conditions [26-28]. One of the main advantages of
using this technology, as compared with traditional fish oil purification steps, is that SPD does not
require chemical treatments during processing, thus reducing processing effluents and decreasing the
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number of steps needed to refine fish oils. It is noteworthy to mention that it is expected that a majority
of odorants, that is, low-molecular weight volatiles, in fish oils will be distilled off during short-path
distillation due to the low-pressure used in the SPD system. However, SPD has its limitations and
will not remove most pigments or heavy metals and therefore, cannot replace all physical refining
steps used in traditional fish oil refining when either depigmentation or removal of heavy metals
are required. The aim of this work was to investigate the applicability of short-path distillation to
refine crude pollock and hoki oils to produce purified human-grade fish oil that meet GOED
quality specifications.

2. Experimental Section
2.1. Materials

Pollock oil was produced in November of 2008 onboard the F/T American Triumph (American
Seafoods Group) during the Bering Sea Pollock season. The pollock oil, produced at sea, was rendered
from a mixture of fresh byproducts using a sequence of three inline horizontal contherm heat exchangers
operated at 85-90 °C, and product cook time was less than 2 min. The cooked material was then
separated into oil, water, and a protein sludge using a three-phase centrifuge operated at about 85 °C.
Ascorbyl palmitate was used as an antioxidant. Ascorbyl palmitate (Sigma Aldrich, St. Louis, MI,
USA) was mixed into the centrifuged crude Pollock oil, immediately after rendering, at a ratio of
250 mg/kg [29]. The oil was stored in 25 kg containers fitted with screw-top caps and frozen at
—20 °C. Pollock oil was received frozen at the Kodiak Seafood and Marine Science Center (Kodiak,
Alaska) and kept at =30 °C until used.

Hoki oil was produced by Sealord Group Ltd. (Nelson, New Zealand) at their rendering plant on
6 August 2006. Barox™ (Kemin, Des Moines, A, USA) was used as an antioxidant and was added at
750 ppm immediately after rendering. The oil was kept at —40 °C until shipment to Kodiak, Alaska, in
March of 2011.

2.2. Purification of Fish Oil Using Short-Path Distillation

The SPD process was conducted using a combination of processing variables in a sequence similar
to previously reported [30-32]. The SPD apparatus (Figure 1) consisted of a Pope 2” Wiped-film Still
(Pope Scientific Inc., Saukville, WI, USA) connected to a Diffstak® Mk2 diffusion pump model
63/150 (BOC Edwards, Crawley, West Sussex, UK) and also to a high-vacuum pump model RV3
(BOC Edwards). A Penta-Drive DC Meter Speed Control (Pope Scientific Inc.) for controlled rotation
of the carbon blades in the evaporator was set at 450 or 500 revolutions per minute and digitally
displayed by a RPM meter (Minarik, Aneheim, CA, USA). The surface area of the wiped film is
0.033 m?, the evaporator was contained in a heated jacket (Pope Scientific Inc., Saukville, WI, USA),
and temperature of the evaporator was digitally controlled with a Digital Indicating Controller model
UT35A (Yokogawa Electronic Corporation, Sugarland, TX, USA) and system pressure was monitored
by a Digital Pressure Monitor (Kurt J. Lesker Company, Philadelphia, PA, USA). Distillation was
conducted in a two-step procedure. The SPD cold-trap was cooled with dry-ice in acetone.
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Pollock oils were purified using the SPD system during the summer of 2009 and hoki oils were
purified in the spring of 2012. A portion of 1500 mL of either crude fish oil was added to the graduated
feed flask and the heat tape enclosing the flask was set to 60 °C. The first distillation (first degassing
pass) parameters were as follows: internal condenser temperature 55 °C; evaporator temperature
150 °C; feeding rate 360—480 mL/h; roller speed 450 rpm (hoki) or 500 rpm (pollock) and vacuum
0.05-0.06 mbar. The degassed oil was used immediately or stored in a sealed vessel under nitrogen at
5 °C for a maximum of 24 h. The main fish oil distillation (second pass) parameters were as follows:
condenser temperature 55 °C; evaporator temperatures were 190 °C, 200 °C or 210 °C; feeding rate
360—480 mL/h; roller speed 450 rpm (hoki) or 500 rpm (pollock) and vacuum 0.01-0.02 mbar. The
refining yields were determined gravimetrically, with about 300 g of oil trialed for each temperature
parameter. The purification process was repeated three times for each type of oil and yielded nine
purified oil samples (three independent oil replicates for each evaporator temperature tested).

2.3. Proximate and Oxidation Analysis

Rancidity and oxidation of fish oils were assessed in accordance to AOCS official methods
including Acid Value (AOCS Official Method Cd 3d-63, [33]), Peroxide Value (AOCS Official
Method Cd 8-53, [34]) and para-Anisidine Value (AOCS Official Method Cd 18-90, [35]). Reported
TOTOX values were calculated via the equation TOTOX = (2 x PV) + p-AV [13]. Water content was
measured by the Karl-Fisher method using an automated tritrator; values were generally <0.02%.

2.4. FAME Analysis

Fatty acid methyl esters (FAME) were prepared using KOH and methanol [36]. FAME were
transferred into 1.5 mL snap-cap amber GC vials (Agilent Technologies, Wilmington, DE, USA) and
immediately analyzed. An internal standard, tricosanoic methyl ester (23:0), was used for quantification.
Fatty acid profiles were determined with a GC model 6850 coupled to a flame ionization detector
(Agilent Technologies, Wilmington, DE, USA) fitted with a DB-23 (60 m x 0.25 mm id., 0.25 um film)
capillary column (Agilent Technologies, Wilmington, DE, USA). An autosampler performed the GC
injections and injection volume was 1 plL. The chromatographic conditions were as previously
described [37]. Unsaponifiable matter was calculated from the initial recorded weight of the oil
(~20 mg) used for methylation, compared to the total lipid converted to methyl esters (mg FAMES).
FAME were quantified in mg/g oil by using an internal standard and also a five-point calibration curve
for all fatty acids included in the Supleco 37 mix (Sigma Aldrich, St. Louis, MI, USA) [38].
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Figure 1. Short-path distillation (SPD) system.
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2.5. Statistical Analysis

Mean values were reported plus or minus standard error of the mean. In cases where data was
reported in percentage composition, values were transformed using arcsin function to yield normalized
data prior to statistical analysis. Normality and homogeneity of variance were confirmed and a
comparison between means was achieved by one-way analysis of variance (ANOVA). Multiple
comparisons were achieved by Tukey-Kramer HSD (honestly significant difference). Significance was
accepted as probabilities of 0.05 or less. Statistical analysis was performed using SPSS® statistics 17.0
and GenStat version 14 software.
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3. Results
3.1. Peroxide Value (PV)

Figure 2a depicts the PV of crude hoki and pollock oils together with values determined after oils
were subjected to molecular distillation with set evaporator temperatures of 190, 200 or 210 °C. The
crude pollock oil, with an initial PV of 6.32 + 0.45 mEq/kg, was purified by molecular distillation with
set evaporator temperatures of 190 °C (PV of 0.13 £+ 0.06 mEq/kg), 200 °C (PV of 0.10 = 0.00 mEq/kg)
and 210 °C (PV of 0.10 £ 0.00 mEqg/kg) (Figure 2a). PV of the three refined pollock oils did not
statistically differ from each other and were all significantly (p < 0.001, f'= 561.1) lower than the crude
pollock oil. The crude hoki oils had significantly (p < 0.001, /= 113.6) higher PV, 10.33 + 1.15 mEq/kg,
than the values measured for any of the distilled hoki oils (190 °C 2.32 + 0.28 mEq/kg; 200 °C
2.38 + 0.44 mEq/kg; 210 °C 2.28 + 0.33 mEq/kg). Significant differences were not observed in the PV
of hoki oils distilled at the different evaporator temperatures tested.

Figure 2. Quality indices of crude pollock (#» = 3) and hoki (n = 3) oils, purified by short
path distillation with variable evaporator temperatures (190 °C, 200 °C and 210 °C).
(a) Peroxide Values; (b) para-Anisidine Values; (¢) TOTOX Values; and (d) free fatty

acids (FFA) Values.
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Figure 2. Cont.
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3.2. Para-Anisidine Value (p-AV)

Figure 2b depicts the p-AV of crude hoki and pollock oils together with values determined after oils
were subjected to molecular distillation with set evaporator temperatures of 190, 200 or 210 °C. The
p-AV of crude pollock oils (20.09 + 0.19) were significantly higher (p < 0.001, /= 41.7) than values
determined for the higher temperature distilled oils (200 °C 13.81 + 2.39 and 210 °C 8.28 £+ 2.01).
Crude hoki oils had significantly (p < 0.001, f = 37.8) higher p-AV (21.48 £ 4.06) than the
values measured for hoki oils distilled using all evaporator temperatures: 190 °C (5.33 £ 1.27), 200 °C
(4.61 £ 0.92) or 210 °C (4.93 £+ 2.00). The p-AV of hoki oils subjected to molecular distillation at the
tested evaporator temperatures were not significantly different.

3.3. TOTOX Value

Figure 2c¢ depicts the TOTOX values of crude hoki and pollock oils together with values determined
after oils were subjected to molecular distillation with set evaporator temperatures of 190, 200 or
210 °C. The TOTOX values of crude pollock oils (30.22 £ 6.90) were significantly (p < 0.001,
f = 17.63) higher than those of their respective distilled counterparts at any of the tested SPD
evaporator temperatures. A significant reduction in the TOTOX values (p < 0.001, /= 17.63) of
pollock oils distilled at 210 °C (8.48 = 1.22) was observed when these were compared to the TOTOX
values of pollock oils distilled at either 190 °C (19.87 + 2.39) or 200 °C (14.01 £ 2.00); however, the
TOTOX values of oils distilled at the two lower temperatures did not significantly differ from one
another. Crude hoki oils had significantly (p < 0.001, = 296.9) higher TOTOX values (42.15 + 1.87),
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than those of their respective distilled counterparts at any of the tested SPD evaporator temperatures.
Regardless of the evaporator temperature tested, the TOTOX values of distilled hoki oils were not
significantly different (190 °C 9.98 +1.10; 200 °C 9.37 + 1.74; 210 °C 9.49 + 1.72).

3.4. Acid Value (4V)

Figure 2d depicts the AV of crude hoki and pollock oils together with values determined after
oils were subjected to molecular distillation with set evaporator temperatures of 190, 200 or 210 °C.
The AV values of crude pollock oils (0.45 + 0.01 mg KOH/g) were significantly higher (p < 0.001,
f = 1634.6) than values determined for distilled pollock oils, regardless of tested SPD evaporator
temperatures: 190 °C (0.09 = 0.01 mg KOH/g), 200 °C (0.06 = 0.01 mg KOH/g) or 210 °C
(0.09 + 0.01 mg KOH/g). The AV of crude hoki oils averaged 13.18 = 1.65 mg KOH/g of oil and
were significantly (p < 0.001, /= 187.4) higher than the values obtained for distilled hoki oils
(190 °C 0.06 £ 0.00 mg KOH/g, 200 °C; 0.04 + 0.03mg KOH/g; 210 °C 0.06 + 0.00 mg KOH/g).
A significant difference was not observed in the AV values of distilled hoki oils.

3.5. Fatty Acid Profiles

The FA profiles of the crude pollock oil and three distilled fractions are shown in Table 1. In
general the amount of fatty acids in the distilled fractions was significantly higher due to the reduction
in unsaponifiable matter, in particular in the 210 °C fraction. The crude pollock oil had significantly
higher (p < 0.001, /= 45.63) unsaponfiable matter (24.01 + 0.94) than the oils from the three different
treatments (190 °C 15.95 = 1.76; 200 °C 17.16 £ 0.27; 210 °C 10.54 + 0.27). The two most abundant
(>10.0 g/100 g) fatty acids observed in the pollock crude oils were long chain monounsaturated fatty
acids (LC-MUFA): (20:1n-11, 12.2 g/100 g and 22:1n-11, 12.0 g/100 g). The n-3 LC PUFA were also
present: DHA (4.0 g/100 g) and EPA (7.8 g/100 g). The most abundant FA class was MUFA
(46.5 g/100 g) with the remainder being composed of saturated (SFA 13.8 g/100 g) and PUFA
(15.6 g/100 g). The n-3 PUFA made up a majority (91%) of the PUFA fraction.

Table 1. Fatty acid (g/100 g oil) and unsaponifiable matter content of crude pollock oils
(£SD) and pollock oils (=SD) purified by short-path distillation (SPD) with variable
evaporator temperatures (190 °C, 200 °C, 210 °C).

Fatty acids ' Crude oil SPD 190 °C SPD 200 °C SPD 210 °C
(g/100 g) (=SEM) (=SEM) (=SEM) (£SEM)
14:0 3.85+0.09a 4.00£0.13ab 3.96 £ 0.06a,b 4.35+0.02b
16:0 6.61 £0.12a 7.10 £0.20a 7.00 £0.07a 7.66 £0.01b
16:1n-7 7.70 £0.14a 8.25+0.23a,b 8.13+0.08a 8.88 £ 0.00b
18:1n-9t 1.59 £0.02a 1.73 £0.04b 1.71 £ 0.01b 1.85+0.00¢
18:11-9 4.15+£0.06a 4.55+£0.11b 4.47 £0.02b 4.84£0.01c
18:1n-7 2.50 £0.03a 2.75 £ 0.06b 2.70 £0.01b 2.93 +£0.00c
20:1n-11 12.17 £ 0.14a 13.65+0.25b 13.45+0.02b 14.49 + 0.04c
20:1n-9 3.45+0.03a 3.83 £0.08b 3.80 £ 0.02b 4.04 +£0.00c
22:1n-11 12.01 £ 0.07a 13.67 +0.19b 13.48 £0.05b 14.46 £ 0.14c
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Table 1. Cont.

Fatty acids ' Crude oil SPD 190 °C SPD 200 °C SPD 210 °C
(g/100 g) (xSEM) (+#SEM) (£SEM) (+£SEM)
18:3n-3 0.25+0.01a 0.28+0.01a,b 0.27 £ 0.00a,b 0.29 +0.00b
18:4n-3 1.22+£0.02a 1.34+0.03b 1.32+0.01b 1.42 £0.00c
20:4n-3 0.29 +0.00a 0.34+0.01b 0.33 +0.00b 0.36 £ 0.00¢c
20:5n-3 7.83+£0.07a 8.77+0.17b 8.62+£0.01b 9.26+0.01c
22:2n-6 0.42+0.01a 0.45+0.01a,b 0.46 +0.00a,b 0.48 +0.00c
22:5n-3 0.63 +0.00a 0.71 +£0.01b 0.70 £+ 0.00b 0.75+0.01c
22:6n-3 4.00 £ 0.02a 4.55+0.07b 448 +£0.01b 4.79 £ 0.04¢c
Other SFA 3.42+0.09a 3.76 £0.11a,b 3.70 £ 0.05a,b 4.02 +0.00¢
Sum SFA 13.88 +0.29a 14.85 + 0.44a,b 14.66 + 0.18a 16.02+0.01b
Other MUFA 2.94+0.03a 3.28 £0.06b 3.24+0.01b 3.49 +£0.02¢
Sum MUFA 46.50 + 0.50a 51.71+£0.99b 50.97 +0.09b 54.97 +0.20¢
Sum PUFA 15.61+0.15a 17.49 + 0.35b 17.21 +£0.02b 18.47 £ 0.06¢
Sum »-3 1422 £0.12a 1598 £0.31b 15.71£0.02b 16.87 + 0.06¢
Sum Unsaponifiable matter ~ 24.01 + 0.94a 15.95+1.76b 17.16 =0.27b 10.54 £0.27c

Note: ' Values are means = SEM, #-3. Means in a row with different letters differ significantly as determined
by Tukey-Kramer HSD, p < 0.01. SFA, Saturated fatty acids; MUFA, Monounsaturated fatty acids; PUFA,

Polyunsaturated fatty acids.

In hoki oil, there were only minor differences observed between FA profiles of crude and distilled
hoki oils (Table 2). The three most abundant (>10.0 g/100 g) fatty acids observed in the hoki oils were
oleic acid (OA, 18:1n-9, 23.0 g/100 g), palmitic acid (PA, 16:0, 17.0 g/100 g) and DHA (22:6n-3,
12.0 g/100 g). Other important fatty acids were 20:17-9 (7.0 g/100 g) and EPA (20:5#r-3, 6.5 g/100 g).
The most abundant FA class was MUFA (44.0 g/100 g) with the remainder being composed of
SFA (24.8 g/100 g) and (PUFA 24.0 g/100 g). The n-3 PUFA made up a majority (85%) of the PUFA
fraction. There was no statistical difference in the unsaponifiable matter in the crude and purified

hoki oils.

Table 2. Fatty acid (g/100 g oil) and unsaponifiable matter content of crude hoki oils
(£SD) and hoki oils (+SD) purified by short-path distillation (SPD) with variable
evaporator temperatures (190 °C, 200 °C, 210 °C).

Fatty Acid ' Crude oil SPD 190 °C SPD 200 °C SPD 210 °C
(/100 g) (+SEM) (=SEM) (+SEM) (+SEM)
14:0 3.56+0.01a 3.52+0.10a 3.51+0.05a 3.54+0.07a
16:0 17.04+0.08a  16.84+049a  16.92+0.29 17.04+0.51a
18:0 3.20+0.03a 3.16 + 0.06a 3.19+0.06a 3.21+0.09
16:1n-7 476+002b  4.74+006ab  4.72+0.04a 4.84+0.02a,b
18:1n-9t 0.47 +0.01a 0.48 +0.02a 0.48+0.01a 0.49 +0.01
18:1n-9¢ 2291+0.17ab  22.81+0.29a  22.82+0.03a  23.32+0.08b
18:1n-7 3.14 +0.02a 3.07 +0.09a 3.11 +0.06a 321+0.0la
20:1n-9 7.03 +0.07a 6.98 + 0.08a 7.00 + 0.04a 7.12+0.07a
20:1n-7 0.32 4 0.00a 0.31+0.01a 0.31+0.01a 0.33 = 0.00a
22:1n-11 3.20 +0.05a 3.19+ 0.04a 3.18 +0.02a 3.23 +0.06a




Table 2. Cont.

173

Fatty Acid ' Crude oil SPD 190 °C SPD 200 °C SPD 210 °C
(g/100 g) (xSEM) (SEM) (xSEM) (xSEM)
24:1n-9 1.14+0.01a 1.13+0.02a 1.13+0.02a 1.13+0.02a
18:2n-6 2.61+£0.01a 2.62 +0.04a 2.61 £0.02a 2.68 £0.02a
18:3n-3 0.79+0.01a 0.78+0.01a 0.76 £0.01a 0.77+0.01a
18:4n-3 0.93£0.02a 0.94+0.01a 0.93+0.01a 0.96 £ 0.02a
20:5n-3 6.43 +0.06a 6.48 +0.13a 6.46 +0.08a 6.68+0.15a
22:5n-6 2.04+0.02a 2.10+0.17a 2.03+0.05a 2.06 +0.06a
22:6n-3 11.88+0.12a 11.99 + 0.25a 11.94+0.15a 12.32+0.36a
Total SFA 24.79 + 0.06a 24.87+0.07a 24.68 £ 0.12a 24.81+0.17a
Total MUFA 43.97+0.02a 43.76 + 0.05a 43.76 + 0.02a 44.69 +0.07a
Total n-3 PUFA 20.04 + 0.06a 20.28 £ 0.20a 20.09 + 0.04a 20.79+0.11a
Total PUFA 23.50 +0.03a 23.77 + 0.04a 23.66 + 0.09a 24.46 +0.12a
Sum Unsaponifiable matter 7.74 £0.24a 7.60 £ 0.29a 7.90 +0.29a 6.04+0.97a

Note: ' Values are means + SEM, #-3. Means in a row with different letters differ significantly as determined
by Tukey—Kramer HSD, p <0.01. SFA, Saturated fatty acids; MUFA, Monounsaturated fatty acids; PUFA,
Polyunsaturated fatty acids.

4. Discussion
4.1. Removal of Lipid Oxidation Products by SPD

The SPD system effectively removed the markers for lipid oxidation in both pollock and hoki oils.
The primary products of oxidation, measured as PV, were significantly reduced in the distilled oils
from both fish species examined and met the GOED monograph of quality marine oil. The final
PV results in distilled pollock oils were lower than in distilled hoki oil, regardless of distillation
temperature. Neither oil type showed a graded reduction in the PV with increasing temperature of
the evaporator in the SPD system. Crude hoki oil had higher (10.3 + 1.2 mEq/kg) starting PV values
than those recorded for crude pollock oil (6.3 = 0.5 mEq/kg). The higher PV level may reflect the
differences in storage time (hoki oil 5.5 years, pollock oil 10 months) or differences in crude oil
processing conditions. Previous work on better quality commercial oils showed PV values reduced
from 1.8 mEqg/kg to 0.7 mEq/kg [26] and all distilled oils studied had values in this range, moreover
pollock and hoki oils had much lower PV than the maximum recommended in the GOED voluntary
monograph (<5 mEq/kg) [19]. There was an 80% reduction in lipid peroxides between crude and
distilled hoki oils (2.38-2.36 mEq/kg), while this reduction was 97% for the pollock oil (<0.14 mEq/kg).
Further work is needed to understand the efficiency of the SPD system in removing peroxides from
fish oils, however, our findings indicate the initial content of peroxides in the crude oil appeared to
have a significant impact in the values found in distilled oils. Further adjustments to distillation
process variables need to be investigated, which can counterbalance variability in the initial levels of
peroxides in crude fish oil, to yield consistent rate of reduction of peroxides from crude to distilled
oils. For instance, a slower flow of the oil through the evaporator may yield lower peroxide values in
the distilled product because peroxides will decompose into secondary oxidation products that may be
distilled off depending on molecular weight. On the other hand, prolonged exposure to high temperatures
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even under extremely low pressures may promote removal of other constituents of the oil that have
antioxidant properties, such as fat soluble vitamins, which may be desirable in the final product.

A previous study on marine oil purification on a larger SPD (0.06 m?, double the size of our wiped
surface area) showed reductions in PV, p-AV and TOTOX over a series of experiments that
was greater than reductions observed for traditional activated carbon treatments [26]; this study
demonstrated that reduction in PV is related to flow rate and evaporator temperature [26]. A
commercial scale SPD (3m? wiped surface area, 350 Lh™' flow) study showed PV reduction, but did
not show as pronounced reduction in oxidation parameters (14%-32% reduction in PV and 0%-21%
reduction in p-AV) as we have demonstrated (76%—-98% reduction in PV and 12%—78% reduction in
p-AV) [28]. Our slow flow rate (0.36-0.48 Lh™"), high evaporator temperatures (190-210 °C), and
small surface area (0.033 m?) may have resulted in greater reductions in PV. It is difficult to make
comparisons between studies using different SPD; however, differences based on flow rate per m* of
evaporator surface area will give good indication of residence time of oil. In our study we had an
estimated residence time of 10.9-14.5 Lh™'-m 2, while the larger scale study was ten-fold greater at
116.7 Lh™"-m™* [28]. Traditional fish oil refining also includes a bleaching step to remove colored
compounds and oxidation products. If reduction in oil color is desirable, then fish oils should be subjected
to beaching prior to SPD and this likely further reduces the PV and p-AV values of finished product.

The SPD was an effective process to also remove secondary lipid oxidation products
(carbonyl-containing compounds) that were measured using the p-AV method for both oils studied.
In the pollock oils the results demonstrated an evaporator temperature effect, with pollock oils distilled
at 210 °C showing the greatest reduction in p-AV when compared with values for oils distilled at either
190 or 200 °C. All distilled oils had p-AV below the GOED voluntary monograph recommended level
of <20; however, pollock oil distilled at 190 °C had an average p-AV (19.6 + 1.1) that was very close
to this limit. These results suggest that within the temperature range studied, an evaporator temperature
of 210 °C is preferred for distilling crude pollock oils that contained ascorbyl palmitate when using the
SPD system; while for crude hoki oils any of the tested temperatures would be suitable for removing
secondary products of oxidation. One potential confounding variable is ascorbyl palmitate that was
added to crude pollock oil (250 ppm) for its established antioxidant properties [27], which was absent
in the crude hoki oil. The hoki oil had Barox™ added post rendering as an antioxidant at a maximum
of 750 ppm. A weakness in our study with this regard is the lack of data regarding quantity of ascorbyl
palmitate or Barox removed from pollock and hoki oils as a result of distillation at the three tested
evaporator temperatures. Further investigations are necessary to determine the influence of these
additives in fish oils as it pertains to distillation efficiency of secondary products of oxidation using the
SPD system.

The TOTOX values for distilled hoki and pollock oils, regardless of the evaporator temperatures
tested, fell well under that required by the GOED monograph (TOTOX < 26). As TOTOX values are a
function of PV and p-AV, not surprisingly the results for the AV were the major contributor for the
significant difference observed between TOTOX values of pollock oils distilled at the three tested
evaporator temperatures.
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4.2. Removal of Lipid Hydrolysis Products by SPD

The SPD process was very efficient at removing free fatty acids (FFA) from both hoki and pollock
oils. This method removed high amounts (13.1 mg KOH/g) of FFA from the hoki oil. The SPD process
removed even minor quantities (0.5 mg KOH/g) of FFA that were found in crude pollock oil to very
low levels of 0.06-0.09 mg KOH/g recorded for distilled oils. The FFA of distilled pollock oils were
comparable to the levels determined for distilled hoki oils (0.04—0.06 mg KOH/g). The distilled oils FFA
concentrations were far beneath the suggested maximum levels of the GOED voluntary monograph
(<3 mg KOH/g) [19]. Overall, the SPD system operated at the evaporator temperatures studied yielded
virtually complete removal of FFA from crude oils, regardless of their initial FFA content.

It has previously been shown that FA ethyl esters added to fish oil assisted in the removal of
persistent organic pollutants using SPD [26]. It was proposed that the addition of the FA ethyl esters
led to the formation of a “working fluid” that enhanced the efficacy of the process [26]. The working
fluid model can include any volatile compounds in the fish oils, including FA ethyl esters, FFA,
cholesterol, mono-, di- and triacyl glycol, natural vitamins and antioxidants, and added antioxidants
and carriers used in the commercial formulations (e.g., propylenglycol). The fluidity of this mixture
will also depend on the internal condenser temperature. It is possible that the higher content of the FFA
in the crude hoki oils assisted, via a similar mechanism, in the removal of the secondary oxidation
products as determined by p-AV. This “working fluid” model may help explain the enhanced reduction
in p-AV of distilled hoki oils as compared with the more gradual, and temperature-dependent, effect
observed for the distilled pollock oil samples (Figure 2b). Even though data in this study does not
support conclusive remarks about the applicability of the working fluid model to explain the research
findings, it suggests further research in this particular topic should be conducted.

4.3. Effect of SPD on Oil Fatty Acid Composition

A major consideration for the use of SPD in fish oil processing is whether it affects the
concentrations of EPA and DHA in the oil. Overall there were no appreciable changes to FA profiles
in either of the oils for any of the temperatures tested. There were no differences in the concentrations
of EPA and DHA in any oils post SPD treatment of the hoki oil. In the Pollock oil there was a small
although significant increase in both DHA and EPA in the 210 °C fraction. The preservation of PUFA
at all tested temperature conditions confirmed that SPD is an effective method to purify fish oils,
which have been previous shown in other studies [26,28]. Further, as expected, SPD reduced the
amount of unsaponifiable matter in the oil which has also been previously demonstrated [26]. The
advantages of the SPD system include the short residence time of the oil in the evaporator combined
with very low operating pressures and limited reaction time available for undesirable lipid degradation
processes to take place, which are known to occur during distillation of oils when using traditional
oil processing [5].

4.4. Uses of SPD in Marine QOil Processing

Liver oils, historically obtained from Atlantic cod, have been consumed in Scandinavian countries
as far back as the middle ages and are an important source of n-3 LC-PUFA [21]. More recently
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pollock oils and oils from other gadoid species (which includes Hoki) and Hake have overtaken cod
as the traditional source of fish oil [21]. This is the first reported use of SPD to purify hoki and pollock
oils. SPD provides a rapid and gentle way to increase the quality and value of these oils. In a
preliminary study (data not shown) it was determined that no significant difference (Tukey’s Honest
Significant Difference Test; p < 0.05) existed in various quality parameters examined between pollock
oil purified at 210 °C using roller speeds of 500 or 450 rpm. The 50 rpm decrease in the roller speed,
from the maximum allowable setting of 500 rpm, was selected for purification of hoki oils because
this speed poses less mechanical stress to the internal movable parts of the evaporator that operate the
wiped film blades.

Preventing fish oil lipids from undergoing undesirable oxidative chemical changes during rendering
and purification steps is a key element to obtaining a final product that has prolonged shelf life and
adequate sensorial and nutritive properties. It also ensures consumer’s safety. It has been previously
reported that SPD can strip oil of natural and added antioxidants [29,32]. A 50% reduction in
tocopherol concentration was demonstrated by the application of a series of different SPD conditions
in rapeseed oil [32]. In another study, reductions of up to 90% of the original concentrations of
antioxidants were observed in vegetable oils subjected to short-path distillation [29]. It was suggested
that through the application of antioxidants at different steps of oil processing, such as pre- and
post-SPD, a reduction in the oxidation status of the oil can be achieved; however, the antioxidant
systems used were not disclosed due to commercial sensitivities [29]. Liver oils such as hoki, pollock
and cod are known to be a good source of fat soluble vitamins such as A, D and E. This may be
advantageous if hoki or pollock oil are to be consumed on a daily basis to achieve intake of EPA and
DHA at the levels recommended for certain disorders. For example, the American Heart Association’s
(AHA) recommendation of consumption of 2—4 g of EPA+DHA per day would require 10 to 20 g of
hoki and pollock oils. In these doses the amount of minor components of the oil such as lipid soluble
vitamins may be approaching the upper limits (UL) of recommend dietary intake. Pollock oil lipid
soluble vitamins have been reported with vitamin A (retinol) 103 g/g and vitamin E (measured
as -tocopherol) 172 g/g [11]. Unrefined hoki oil has higher levels of vitamin A 1400-1900 g/g, vitamin E
(measured as -tocopherol) 600—1100 g/g and ~100 g/g of vitamin D [39,40]. The recommended dietary
intake (RDI) and UL, which is maximum daily intake unlikely to cause adverse health effects, for
an adult male and female are different for each vitamin. The RDI from the nutrient reference values of
Australia and New Zealand of vitamin A is 900 pg/day for men and 700 pg/day for women with a
shared UL of 3,000 pg/day [41]. Two grams of hoki oil would reach the UL of vitamin A consumption,
and similarly for vitamin D. However, for vitamin E the UL and RDI are substantially higher than the
content in hoki oil (300 mg/g UL, 4 mg/g RDI). In this study we did not measure the effect of SPD
on the vitamin content of the hoki and pollock oils, but it is expected that there could be a loss of
lipid-soluble vitamins using this process. Previous work has seen vitamin loss in spratt (Sprattus sprattus)
oil up to 82% for vitamin A, 64% vitamin D and 42% vitamin K [26]. The loss of lipid soluble in
vitamins by SPD pollock and hoki oils would be important to establish for commercial use.

This work was carried out using a laboratory-scale bench top SPD. This equipment has several
glass-on-glass connections which do not always give a good seal and require extensive leak checks
and verification that stable pressure values have been achieved before distillation is carried out. All
distilling pressures were <0.02 mbar and the vacuum varied slightly between replicate distillation runs,



177

for instance the range of pressures recorded for nine pollock oil distillations was 0.018—0.011 mbar.
This slight change in vacuum between runs due to the apparatus has been previously reported [29];
however, industrial scale stainless steel SPD equipment provides finer control of the vacuum between
replicate distillations. Albeit not included in this study, determination of the concentration of
antioxidants pre- and post-SPD purification of oils, together with other parameters such as sensory
properties, polar lipids and oxidative stability trials, should be considered for future research and
development endeavors on these oils.

5. Conclusions

The Alaskan fish oil industry is growing, with several companies refining marine oils and selling
higher value products. However, there are still many companies that sell fish oil for non-edible
purposes, such as for use in aquaculture. The New Zealand hoki industry does have the capability to
make edible fish oils; however, the bulk of the oil is still sold as crude or unrefined due to processing
costs. SPD provides a gentle and efficient way to improve the quality of these oils that could be readily
added into the rendering processes in these countries. Moreover, SPD has the potential to provide
major benefits for industry as it involves reduced and simplified processing for the purification of
marine oils. Unfortunately, as is often the case for the new technologies, SPD involves high operating
costs which have prevented the broad uptake of this technology by industry to date.

Although recognition of the importance of oil quality and sustainable processing is growing,
potential cost saving and/or oil yield increases remain the prime parameters for the implementation of
a new process. However, the potential for SPD to provide improved oil quality has been clearly
demonstrated in this study.
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A Nutritional-Toxicological Assessment of Antarctic Krill Oil
versus Fish Oil Dietary Supplements

Susan M. Bengtson Nash, Martin Schlabach and Peter D. Nichols

Abstract: Fish oil dietary supplements and complementary medicines are pitched to play a role of
increasing strategic importance in meeting daily requirements of essential nutrients, such as long-chain
(>Cy0, LC) omega-3 polyunsaturated fatty acids and vitamin D. Recently a new product category,
derived from Antarctic krill, has been launched on the omega-3 nutriceutical market. Antarctic krill oil
is marketed as demonstrating a greater ease of absorption due to higher phospholipid content, as being
sourced through sustainable fisheries and being free of toxins and pollutants; however, limited data is
available on the latter component. Persistent Organic Pollutants (POP) encompass a range of toxic,
man-made contaminants that accumulate preferentially in marine ecosystems and in the lipid reserves
of organisms. Extraction and concentration of fish oils therefore represents an inherent nutritional-
toxicological conflict. This study aimed to provide the first quantitative comparison of the nutritional
(EPA and DHA) versus the toxicological profiles of Antarctic krill oil products, relative to various fish
oil categories available on the Australian market. Krill oil products were found to adhere closely to
EPA and DHA manufacturer specifications and overall were ranked as containing intermediate levels
of POP contaminants when compared to the other products analysed. Monitoring of the pollutant
content of fish and krill oil products will become increasingly important with expanding regulatory
specifications for chemical thresholds.

Reprinted from Nutrients. Cite as: Nash, S.M.B.; Schlabach, M.; Nichols, P.D. A Nutritional-Toxicological
Assessment of Antarctic Krill Oil versus Fish Oil Dietary Supplements. Nutrients 2014, 6, 3382-3402.

1. Introduction

Fish are a nutrient-dense food source. The role of marine-derived, long-chain (LC) (>C,) omega-3
(03) polyunsaturated fatty acids (LC-PUFA), in the promotion of health is well established. Since
early observations that Greenland Eskimos who subsisted on large amounts of fish suffered low levels
of cardiovascular disease related mortality, epidemiological and experimental evidence has confidently
shown the protective role of sufficient ®3 LC-PUFA intake against cardiovascular disease and certain
types of cancer, e.g., [1,2]. In particular docosahexaenoic acid (DHA, 22:6w3) and eicosapentaenoic
acid (EPA, 20:5w3), each with distinct roles in disease prevention, have been credited for their
contribution to a healthy diet. In addition to serving as energy stores, ®3 LC-PUFA form integral
structural components of cellular membranes [3]. For example, ®3 LC-PUFA are highly concentrated
in the cellular membranes of the retina and brain and accumulate there rapidly in the third trimester of
foetal development. Gestational ®3 LC-PUFA restrictive studies have shown significant deleterious
impact to off-spring visual acuity and cognitive function [4]. Finally, symptomatic alleviation with
®3 LC-PUFA intake has been reported for a broad range of health conditions. Anti-inflammatory
properties of @3 LC-PUFA provide a molecular basis for symptomatic alleviation of inflammatory
disease such as rheumatoid arthritis, lupus and asthma [5-7]. More recently improvements in
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psychiatric disorders such as depression and schizophrenia with ®3 LC-PUFA administration have
been observed [8].

Fish oil is also a rich source of lipid-soluble micronutrients such as vitamin D, which plays a
fundamental role in bone health [9]. Consequently, The National Heart Foundation of Australia, in
accordance with a host of international agencies, recommends consumption of fish at least twice a
week. Paradoxically, modern diets in developed nations are characterised by severe w3 LC-PUFA
deficiency, reflecting low seafood intake. This was exemplified in a recent study which found 78% of
the Australian population did not meet their daily recommended intake of ®3 LC-PUFA [10]. In fact, it
must be considered that meeting health targets for seafood intake is not economically nor ecologically
attainable for large fractions of the global population [11].

Effectively tackling dietary deficiency of seafood micronutrients would carry significant bearing on
both the social and economic burden of disease. Increasing the dietary status of vitamin D alone in
Western Europe has been estimated to alleviate the economic burden of disease by $293 billion per
year [12]. In the absence of sufficient high quality, affordable seafood sources, dietary supplements
and complementary medicines are pitched to play a role of increasing strategic importance.

A new product category has been launched on the omega-3 nutriceutical market and is currently
gaining significant market share. A nutriceutical oil derived from Antarctic krill (Euphausia superba),
a Euphausiid crustacean forming the basis of the Antarctic food web, has been marketed since 2002
and has recently become broadly available in Australia [13]. Marketing of krill oil centres on three
characteristic properties of the oil. Krill oil contains the essential nutrient, choline and an antioxidant,
astaxanthin. In addition, it is posed that Antarctic krill oil derived 3 LC-PUFA is more bioavailable
compared to fish oils. A higher fraction of @3 LC-PUFA is associated with phospholipids in krill oil,
compared to triacylglycerols in fish oils. This property has been theorised to improve absorption and
bioavailability of w3 LC-PUFA [14], based upon independent liposome carrier research [15].
Secondly, one major krill oil manufacturer has achieved Marine Stewardship Council certification of
sustainability and, as a whole, the industry is often viewed as being sustainable due to the fact that the
worldwide harvest constitutes only a minor fraction of established fishing quotas, e.g., [14,16]. It
should be noted, however, that uncertainty surrounds the distribution and density of circumpolar krill
stocks and therefore the robustness of fishery quotas remains debated [17]. Finally, krill oil is cited as
being naturally free of toxins and pollutants [6]. Persistent Organic Pollutants (POPs) are toxic
contaminants that bioaccumulate, and have been introduced to the environment since the mid-1900s.
Their extreme persistence and effective environmental dispersal mechanisms have resulted in
ubiquitous contamination of all environmental matrices. POPs are considered a substantial risk to human
health [18] and are subject to the Stockholm Convention, a legally binding treaty signed by over
100 nations, and ratified by Australia in 2004 [19].

Within an ecosystem, lower trophic level species such as zooplankton, are often found to
accumulate lower levels of POP contaminant burdens due to shorter life-spans. However, this cannot
be assumed when comparing species from different ecosystems. Polar species are characterised by
large body size and long life spans. Antarctic krill live to 5—7 years which is comparable to, or longer
than, source species commonly used in fish oil production [13]. Similarly, Antarctic krill have
demonstrated highly adaptable feeding, and in addition to their herbivorous feeding, have been
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observed to rely on cannibalism and detritivory to endure food deprivation [20]. This dietary flexibility
also confounds their trophic placement and thus the POP bioaccumulation patterns of the species.

Historical or “legacy” POPs are chlorinated compounds. Their common molecular structures predict
similar environmental behaviour. In the physical environment they are semi-volatile. Volatilized
fractions will undergo progressive movement towards colder and colder climates experiencing
“cold-trapping” at the poles of the earth [21]. In the particulate phase they will adhere strongly to
organic matter representing an effective mechanism for transfer from the terrestrial to the aquatic
environment and assimilation into food-webs. Consequently, the vast majority of human exposure to
POPs occurs via seafood consumption [22,23]. This clear nutritional-toxicological conflict associated
with seafood intake has urged the Codex Alimentarious Commission for Contaminants in Food to
convene an expert consultancy on the risks and benefits of fish consumption [18]. In the case of fish oil
dietary supplements, the scenario is even more acute. Legacy POPs are extremely lipophilic and
accumulate in the fat reserves of animals. When the lipid fractions of seafood are selectively isolated
and concentrated for administration as dietary supplements or complementary medicines, the seafood
micronutrient:POP burden conflict is exacerbated. Indeed, repeated incidences of fish oil product
recalls due to exceedance of POP safety guideline have occurred and are only likely to rise as the
market expands and authorities pursue greater regulatory overview [24,25].

Recently we conducted the most comprehensive analytical survey of POPs in any Antarctic
environmental matrix to date [26]. Our study centred on Antarctic krill, as POP vectors to the
remainder of the Antarctic food-web, and extended across almost a quarter of the Antarctic continent.
Our findings highlighted that Antarctic krill POP profiles were distinct from those typical of northern
hemisphere species, but that they were not insubstantial. Indeed, for some compounds such as
hexachlorobenzene (HCB), levels were comparable to or greater than those of similar trophic level
species in other global regions. This work has prompted the following strategic examination of
commercial krill oil products. Here we will assess krill oil POP burdens, as well as product nutritional
lipid class and fatty acid profiles. These will be compared to those of other categories of commercial
fish oil dietary supplements available on the Australian market.

2. Experimental Section
2.1. Product Selection

Four categories of seafood-oil dietary supplements were selected for analysis, namely, (i) krill oil;
(i1) enriched (in terms of EPA + DHA) fish oil; (iii) nutriceutical formulations containing fish oil; and
(iv) standard or budget grade 18:12 (EPA + DHA) fish oil (Table 1). Products representative of the two
major krill oil manufacturers were selected under the krill oil category. For the other remaining
categories, three representative and readily available brands were selected. Efforts were made to
combine capsules from two separate batches of each product for each POP and FA analysis. This was
achieved for all products except Blackmores Omega Liquid Fish Oil for which only a single batch
number could be sourced. Full details of selected products and batch numbers are listed in Table 1.

2.2. Sample Analysis
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2.2.1. Lipid Extraction and Class Determination

Pre-weighed (c.a. 0.03 g) oil samples were used for lipid analyses. Individual capsule or liquid oil
samples were cut open and dissolved in CHCI;. A known aliquot of total lipid (achieving a final
concentration of approximately 10 mg lipid/mL CHCI;) was transferred into separate vials and made
up to 1.5 mL of CHCls.

2.2.2. Fatty Acid (FA) Determination

An aliquot of the total lipid extract was trans-methylated by addition of MeOH/HCI/CHCI;
(3 mL 10:1:1, v/v/v, 80 °C/2h) to produce fatty acid methyl esters (FAME). After cooling the mixture
and addition of 1 mL of water, FAME were extracted (3x) with 4:1 hexane/dichloromethane. A C19
FAME internal injection standard was added prior to analysis by gas chromatography (GC) using a GC
(Agilent Technologies 7890A) equipped with a Supelco Equity™-1 fused silica capillary column
(15 m x 0.1 mm internal diameter, 0.1 pm film thickness) [27]. GC-mass spectrometry (GC-MS)
confirmed FAME identifications and was performed on a Finnigan Thermoquest GCQ GC-mass
spectrometer fitted with a column of similar polarity to that described above, an on-column injector
and using Thermoquest Xcalibur software (Austin, TX, USA). Helium was used as carrier gas and
other operating conditions were as previously described [27]. The relative levels of individual FA were
expressed as percent of total FA area. A catalogue of quantified FA is presented in Table 2. FA present
at less than 0.5% of total FA in all products are grouped as Other FA; this FA group comprised
1.6%—4.2% of the total FA across the products analysed.
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2.2.3. Quality Control

For lipid class and FA profiling, commercial (Nuchek) and laboratory standards (e.g., tuna oil) of
known composition were routinely analysed to both confirm component identifications and ensure
data quality.

2.2.4. Chemical Analysis

Oil samples were analysed for chlorobenzenes (hexa- and penta-chlorobenzene); chlorinated
pesticides; hexachlorocyclohexanes (a-, B-, y- HCH); the dichlorodiphenyltrichloroethane (DDT) group
(0,p’-DDE, p,p’-DDE, o0,p’-DDD, p,p’-DDD, 0,p’-DDT, p,p’-DDT); toxaphene (Tox-26, 32, 40 + 41,
42a, 44, 50, 62); polychlorinated cyclodienes (endosulfan-I , endosulfan-1I, endosulfan-sulphate,
heptachlor-exo-epoxide, heptachlor-endo-epoxide, trans-chlordane, cis-chlordane, oxychlordane,
chlordene, heptachlor, trans-nonachlor, cis-nonachlor, dieldrin, aldrin, isodrin, endrin) and the
individual compounds mirex and trifluralin. In addition, samples were analysed for the polychlorinated
biphenyl (PCB) congeners, 18, 28, 31, 33, 37, 47, 52, 66, 74, 77, 81, 99, 101, 105, 114, 118, 122, 123,
126, 128, 138, 141, 149, 153, 156, 157, 167, 169, 170, 180, 183, 187, 189, 194, 206 and 209 (IUPAC
numbers) and polychlorinated dibenzo-p-dioxin/furan (PCDD/F) congeners; 2,3,7,8-TCDD, 1,2,3,7,
8-PeCDD, 1,2,3,4,7,8-HxCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD,
oCDD, 2,3,7,8-TCDF, 1,2,3,7,8/1,2,3,4,8-PeCDF, 2,3,4,7,8-PeCDF, 1,2,3,4,7,8/1,2,3,4,7,9-HxCDF,
1,2,3,6,7,8-HxCDF, 1,2,3,7,8,9-HxCDF, 2,3.,4,6,7,8-HxCDF, 1,2,3,4,6,7,8-HpCDF, 1,2,3,4,7,8, 9-HpCDF
and OCDF.

2.2.5. Sample Preparation and Clean-up

The extraction and clean-up methods for POP have previously been described in full [26]. In brief,
dioxin, furan and non-ortho PCB sample extraction and clean-up was performed on a semi-automated
3 column system (first column, Na,SOy, activated silica and potassium silicate; second column, single
use Fluid Management Systems (FMS) silica column; third column, single use FMS activated carbon
column). The sample portion containing PCDD/Fs and non-ortho PCBs was eluted from column 3 with
toluene, reduced and exchanged to hexane before undergoing further clean-up by sulphuric acid coated
silica column followed by potassium hydroxide coated silica column.

Samples for PCB and chlorinated pesticide analysis were extracted on a cold-column and cleaned by
gel permeation chromatography, alumina and silica gel columns.

2.2.6. Quantification

The isomer identification and quantification was carried out with HRGC/HRMS using a
Hewlett-Packard 589011 (1990-2003) or 6890N (2003-2006) gas chromatograph coupled to an
AutoSpec mass spectrometer (Micromass Waters, Manchester, UK). Resolution of mass spectrometer
was >10,000 with electron ionization mass spectrometry in the selected ion monitoring mode
(GC/EI-HRMS-SIM). Two SIM values were monitored for each isomer group. The added "*C-labelled
isomers were used as internal standard for each group. Additionally, the recovery rates of the added
internal standard compounds were determined.
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2.2.7. Quality Assurance

The following quantification conditions were fulfilled for all data presented: (i) the retention time of
the native compound was within three seconds of the corresponding *C-labelled isomer; (ii) the isotope
ratio of the two monitored masses was within +20% of the theoretical value; (iii) the signal/noise was
>3/1 for quantification; (iv) the recovery of the added BC-labelled internal standards was within
40% to 120% and thereby in agreement with EU and US guidelines and official methods;
(v) prior to each new series of samples the blank values of the complete clean-up and quantification
procedures were determined. Clean-up of samples only commenced when a sufficiently low blank
value was obtained. At least once a year the laboratory participates in an international laboratory
inter-calibration exercise.

2.3. Metrics
2.3.1. Tolerable Daily Intake (TDI)

Various regulatory bodies and food authorities have assessed the levels of chemicals that are safe for
human consumption, based upon observed affect levels in animal models. The tolerable daily intake
(TDI) refers to a threshold of a chemical which does not appear to carry an appreciable risk. In the
current study we have used a variety of sources for our reference TDIs, namely Health Canada and the
US EPA, The World Health Organisation and the International Panel on Chemical Safety (IPCS) as

well as peer-reviewed literature.
2.3.2. Toxicity Equivalency Factors (TEQs)

Toxicity equivalency factors express the toxicity of similar acting, planar, dioxin, furan and certain
PCBs relative to the most potent congener 2,3,7,8-TCDD which is assigned a value of 1.0. The TEQ
values applied in the current study refer to Van den Berg ef al.’s 2005 re-evaluation of TEQ values [28].

3. Results and Discussion
3.1. Lipid and Fatty Acid Profiles

The majority of categories and brands of seafood oil supplements matched or exceeded
manufacturer EPA and DHA specifications, with the exception of three brands which fell slightly
below (~10%—-30%) the manufacturer specifications (Tables 1-3). These related to EPA levels in one
enriched fish oil, namely Blackmores Omega liquid fish oil (1700 mg specified vs. 1500 mg observed)
and DHA levels in Nature’s Way Kidsmart (133 mg specified vs. 95 mg observed) and Blackmores
Pregnancy and Breastfeeding Gold (125 mg specified vs. 85 mg observed). It is noted, that for pure oil
capsules it is possible to compensate for EPA and DHA batch variability through marginal capsule
volume adjustments. This is however, less readily achievable for formulations, such as the latter two
products, and uncontrollable for liquid formulations. A listing of all FA present at >0.5% of the total
FA in each product analysed is shown in Table 2.
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3.2. Persistent Organic Pollutants

None of the categories or products analysed in the current study, at their highest recommended
dosage, came close to fulfilling tolerable daily intake (TDI) levels for any single analyte (Table 4).
Despite the fact that environmental exposure to POPs does not occur to a single residue at a time, but
rather to complex and interacting mixtures, this finding is reassuring. As a means of qualitatively
comparing and contrasting the eleven products analysed in this study, and providing an overview of
chemical summaries obtained, we devised a simple scoring system (Table 5). The five products with
the greatest contaminant burden for five key compound groups, plus TEQ values, were ranked from 1-5
with the sample containing the highest concentrations receiving a score of 5. Bioceuticals Omegasure
liquid fish oil and Blackmores 1000 mg both carried a cumulative score of 16 reflecting their
placement among the top five products for five and four compound/index groups respectively.
Blackmores Pregnancy and Breastfeeding Gold formula and Nature’s Own 1000 mg each received a
score of 12. Blackmore’s Pregnancy and Breastfeeding Gold formula incorporates tuna oil, sourced
from northern hemisphere oceans, thereby likely contributing to the higher contaminant burdens found
in this formulation, despite its lower oil content. Blackmore’s Joint formula was the only product
which did not feature among the top five products for any analyte or index group.
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Table 5. Ranking (1-5) of products according to analyte or TEQ category where a
score of 5 denotes the highest concentration/index value.

YHCH YDDT YChl HCB YPCB TEQ  Score

SW 1 5 1 7
Nor 4 4
Bio-O 4 2 6
B-Q 5 5
BCT 2 4 3 4 3 16
B-Joint 1 1
NWK 1 3 4
B-P 5 4 2 1 12
NO-1000 5 3 12
B-1000 3 3 5 5 16
C-1000 2 2 4

Hexachlorocyclohexane (HCH) congeners did not feature prominently in any product profiles,
possibly reflecting the slightly lower lipophilicity of this compound group. The DDT group
included the highest concentration of any single compound, with 13 ng/g lipid p,p’-DDE detected
in Nature’s Own 1000 mg standard fish oil product, equalling a maximum daily dose 120 ng of
p,p’-DDE. Notably, only one krill oil formulation (Swisse) showed detectable levels of Y DDT.
p,p’-DDE has repeatedly been found to be one of the dominant congeners accumulating in Antarctic
krill and their predators [26,33-38]. Previously, the authors have reported a comprehensive overview
of baseline contamination in Antarctic krill [26], with HCB and p,p’-DDE dominating the
described profiles. Further, team studies on dependent populations of humpback whales
(Megaptera novaeangliae), found that the profiles of these predators closely mirrored the profiles
of their principal prey, Antarctic krill. In the case of the krill oil products analysed in the current
study, however, only trace (440 pg/g lipid or daily dose) levels were quantified in the Swisse krill oil
brand which may indicate purification through the manufacturing process.

Detectable levels of chlordanes were observed in only three products, namely Bio-Organics
Super Liquid fish Oil (30 ng per maximum daily dose), Bioceuticals Omegasure fish oil (4.6 ng per
maximum daily dose) and Nature’s Way Kidsmart (0.1 ng per daily dose). Similarly, endosulfan-I
was only detected at trace levels (390 pg/g lipid) in BioOrganics Super Liquid fish oil.

Toxaphene structures were not quantified in five of the eleven products due to loss of the
analytes during clean-up. However, notable quantities were detected in Cenovis 1000 mg (19
ng/daily dose; 0.15% TDI) and Bioceuticals Omegasure fish oil (16 ng/daily dose; 0.14% TDI).
Only trace levels of toxaphene were quantified in Nature’s Way Kidsmart and Blackmores
Pregnancy and Breastfeeding formulation. These congeners were undetectable in Blackmores Joint
formula and BioOrganics Super Liquid fish oil.

Chlorobenzenes (penta- and hexa-) were quantified in eight of eleven products at levels ranging
from 27-9900 pg/maximum daily dose. Antarctic krill products carried the highest levels of
chlorobenzene contamination for both penta- and hexa- congeners. The higher levels of particularly
HCB, in Antarctic krill oil is not surprising as this has repeatedly been shown to be the compound
dominating POP profiles of the Antarctic sea-ice ecosystem food-web [26,33,34]. The finding that
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levels were greater than any other product categories, sourced from other global regions, however,
was unexpected as HCB has been postulated to be approaching global equilibrium [39]. This
finding does not support equilibrium conditions and may be reflective of cold trapping or
remobilisation processes of the compound in Polar Regions, combined with steady removal from
temperate or tropical source regions.

Polychlorinated biphenyls (PCBs) were detected in all products at cumulative levels ranging
from 0.01% TDI (Blackmores Joint formula) to 0.94% TDI (Blackmores 1000 mg). Krill oil
products were at the lower end of the spectrum (0.034% and 0.015% TDI for Swisse and Norkrill
krill oil respectively), as is expected, given the manufacturing applications of these compounds and
the lower historical usage in the southern hemisphere.

Dioxins and furans encompass a class of compounds which are not intentionally produced, but
originate primarily through the manufacture of other chlorinated chemicals or combustion
processes. Whilst the highest detected levels of any single dioxin or furan congener was 73.0 pg/g
lipid of octachlorodibenzodioxin (OCDD) found in Bioceuticals Omegasure fish oil, only the krill
oil products contained multiple detectable congeners. This is surprising given the low vapour
pressure of dioxins and furans which predict long range atmospheric transport in association with
particles. This in turn lowers their potential for effective transport to the Antarctic. Toxicity
equivalencies (TEQ) are available for dioxins, furans and a sub-set of planar PCBs, and are
calculated based upon their common mode of action. The single highest TEQ for any product
analysed was obtained for Blackmores 1000 mg standard fish oil product which yielded a TEQ of 5.6
TEQ or 4.7% of the 120 TEQ TDI. Swisse Krill oil, however, also featured among the top five
highest ranking TEQ products. Dioxins, furans and planar PCBs are among the POP compounds
most effeciently removed by common fish oil cleaning processes [40]. This finding therefore raises
two possibilities. Either some of the fish oil products analysed are subject to one or more chemical
purification steps during manufacture, reducing their original TEQ values to the ones observed
here, with krill oil apparently not being subject to the same procedures. Alternatively processing
and handling itself may have introduced contaminants to the krill oil product that were not present
in the raw oil. The dioxin/furan profiles of krill oil here do not match the profiles of whole
Antarctic krill previously analysed [25], providing support for the latter.

4. Conclusions

This study compared a range of readily available fish and krill oil dietary supplements for both
their favourable long-chain omega-3 composition and content, as well as their persistent organic
pollutant profiles. All products and categories adhered closely to manufacturer specifications and
none exceeded chemical guideline thresholds. When krill oil was compared across categories to
other fish oil products and formulations, it was the most expensive oil per 500 mg DHA + EPA and
adhered to manufacturer EPA and DHA specifications. The two krill oil products were ranked as
intermediate in terms of their levels of POP contaminants when compared overall to the remaining
omega-3 nutriceutical products selected for this study, with distinct chemical profiles reflecting
their geographical region of origin. This study is the first to provide quantitative evaluation of
toxicological profiles of Antarctic krill products, an emerging nutriceutical category. It hereby
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balances consumer information with regard to marketing of krill oil on the basis of product
chemical purity. Ongoing monitoring of the pollutant content of fish and krill oil products will
become increasingly important as food authorities seek regulatory overview of this rapidly
expanding industry.
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